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Abstract

In this thesis two aspects of braneworld models are studied. A new attempt at
finding the metric of a braneworld black hole within the second Randall-Sundrum
model is explored. Branes containing distributions of perfect fluid are embedded in
a variety of b-dimensional SO(4)-symmetric bulk spacetimes so that the Israel junc-
tion conditions are satisfied. A particular class of time-dependent embeddings are
studied and shown to be unable to describe the braneworld black hole. Static tra-
jectories are then investigated in five-dimensional anti-de Sitter and Schwarzschild
backgrounds. These reveal a wide variety of permissible trajectories which are clas-
sified according to their energy-momentum profiles. The static embedding of branes
in a Schwarzschild-anti-de Sitter spacetime is then explored, revealing objects with
possible interpretation as “braneworld stars”.

The evaporation of higher-dimensional rotating black holes, both on the brane
and in the bulk is studied from an analytical perspective. A matching technique is
employed to derive the solution for the radial component of the fields of scalars,
fermions and gauge bosons propagating in the brane-induced line-element of a
higher-dimensional rotating black hole. These solutions are used to calculate Hawk-
ing radiation spectra from a black hole in the spin-down phase of its lifetime within
the Arkani-Hamed-Dimopoulos-Dvali model. The same method is used to calculate
the emission of scalar fields into the bulk spacetime of a higher-dimensional rotating
black hole and a comparison is made between brane and bulk emission rates. Finally
the matching technique is applied to the problem of graviton emission in the bulk

from a higher-dimensional Schwarzschild black hole.
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Chapter 1

Introduction

Since 1865 when James Clerk Maxwell unified the equations of electricity and mag-
netism, physicists have remained acutely aware that a deeper order may lie beneath
the multitude of seemingly fundamental forces. One hundred years later the uniting
of electromagnetism and the weak force by Weinberg and Salam reduced the num-
ber of independent forces further and gave tantalising suggestion that a route to the
unification of all known forces may exist. To this day great effort is expended in
the search for “Grand Unification”, consolidating the electroweak and strong forces
into a single framework and simplifying the somewhat arbitrary structure of the
Standard Model of Particle Physics.

At its most basic level the Standard Model consists of a menagerie of particles:
12 force carriers, 48 matter particles and the (as yet undiscovered) Higgs boson. The
electroweak and strong forces are described by gauge theories, arising from the sym-
metry group SU(3) x SU(2) x U(1). Upon careful selection of around 20 adjustable
parameters the Standard Model obtains extraordinarily accurate predictive power
when compared with experiment at energies up to 1 TeV. Despite this power the
theory has a failure so critical that it remains an impossible endpoint for theoretical
particle physics: there is no mention of the oldest known force.

The classical theory of gravity is Einstein’s general relativity [6] where the back-
ground upon which physics plays becomes a dynamical arena. Matter causes space-
time to curve and this curvature determines the motion of particles along spacetime

geodesics. According to Einstein the structure and evolution of our four-dimensional

1



Chapter 1. Introduction 2

universe is governed by the equation

1 1)

R;u/ - 2Rg;w = 8w GNTulu (11)

where R,, and R are the Ricci tensor and scalar respectively, g,, is the spacetime
metric, "Gy is Newton’s gravitational constant and T}, is the energy-momentum
tensor describing the matter content of the universe. The Einstein equations (1.1)

can be derived from variation of the Einstein-Hilbert action [7, 8]

1
S=——— [ —gRd'z+ Sy, 1.2
].67T(4)GN / g T M ( )

where

2 0Sum
Tl_“/ - _—_W1
V999

A major obstacle in the union of gravity and particle physics is that general

and g =detg,, .

relativity is a classical theory whereas the Standard Model is quantum in nature.
Given the success of quantum theory it is generally believed that some method of
quantising gravity is required to successfully describe physics beyond the classically
valid regime. Unfortunately, direct efforts to achieve this have met with results
that are either incalculable or unpredictive [9-11]. On a practical level this is not a
problem as the energy at which quantum gravity effects become significant is given
by the Planck scale, "Mp = mﬁ& ~ 10' GeV, which is far beyond the anticipated
reach of even the most powerful present-day particle accelerators’. While this is a
convenient situation for existing theory to enjoy, the lack of experimental results
in the quantum gravity regime acts as a hindrance to development of the correct
quantum theory of gravity. The situation also poses the question — why is the
fundamental scale of gravity sixteen orders of magnitude larger than the electroweak
scale of Standard Model forces, M,, ~ 1 TeV? On a conceptual level, the absence
of a consistent method of quantising gravity is deeply unsatisfactory and a number

of new theories have been proposed as candidate quantum gravity descriptions. In

parallel there has been a concerted effort to explain the disturbing hierarchy present

When operational it is anticpated the Large Hadron Collider will conduct experiments with

centre of mass energy ~ 1.4 x 10* GeV.
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in the energy scales of the fundamental forces. Out of these investigations string
theory has emerged as a leading contender.

String theory [12-14] is a quantum theory in which all particles are unified as the
particular vibrational modes of elementary microscopic strings. Among the many
quantum vibrational states of the relativistic string, one closed-string mode can be
identified as the particle of gravity, and consequently the theory may be viewed as a
consistent quantum theory of gravity. Realistic models of string theory incorporate
supersymmetry and by the mid 1980s five distinct superstring theories had been
discovered. Many interrelations between these theories have been discovered and it
is believed that they all arise as different limits of a single theory, known as M-theory
[15-17). A somewhat surprising calculational result is that M-theory operates in

eleven dimensions, while the superstrings it contains are ten-dimensional in nature.

1.1 Extra Dimensions

At first sight a fundamentally eleven-dimensional spacetime is at odds with both
the Standard Model, explicitly constructed to operate in four dimensions, and the
predictions of general relativity, where a Newtonian inverse-square gravitational
force is intimately tied to the existence of only three accessible spatial dimensions.
To see this consider a generalisation of the static, non-relativistic, weak-field limit
of Einstein’s equations governing the gravitational potential “*"I/ when n extra

dimensions are introduced
(4+n (44n)
v? V = S(B-I—n) " Gn Pm » (13)

where S(py = 2aP/2/T(D/2) is the surface area of the unit sphere in D spatial
dimensions, “*"Gy is the higher-dimensional generalisation of Newton’s constant
and p,, is the matter density sourcing the gravitational field. If the matter density
is taken to be a point particle of mass m then application of the (4-+n)-dimensional

Gauss law gives the gravitational force per unit mass exerted by this particle as

(44n)
"Gy m

7=n+2

(4+n)

Fr) = — (1.4)
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Dilution of gravity into the larger volume of extra-dimensional space weakens its
effect between two bodies separated by all but the smallest of distances. This result
is in conflict with experience of the long range nature of the gravitational force and
seemingly excludes the possibility of extra dimensions.

Turning a momentary blind eye to empirical evidence, the calculational predic-
tion of the number of dimensions may also be viewed as a strength of string theory.
Historically the number of spatial dimensions has been regarded as yet another pa-
rameter to be entered into a theory by hand. However, it now seems plausible that
this number is not arbitrary, but determined by underlying theoretical consistency.
For string theory to be a serious candidate for a unified theory it is clearly neces-
sary to hide the extra dimensions from everyday view, thereby resolving the conflict

between their existence and physical experience.

1.2 Kaluza-Klein Compactification

One method proposed by Kaluza in 1921 (and subsequently extended by Klein)
[18,19] was motivated by a desire to unify gravity and electromagnetism. Kaluza
considered a five-dimensional universe in which the extra spatial dimension is com-
pactified on a circle of radius L through the identification y ~ y + 27kL where k

takes all integer values. When the 5-d metric is expanded in a Fourier series as

iky .
gas(@,y) = > €T ghp(a), (1.5)
k

where g% 5 (z#) are the amplitudes of the Kaluza-Klein modes, it can be seen that the
5-d nature of the universe is manifested in the 4-d effective theory as an infinite num-
ber of fields with masses |k|/L. If the radius of the compact dimension is sufficiently
small (eg. of order the Planck length, “Ip = L:f;ﬂ ~ 10733 ¢cm) so that the energy
of the first Kaluza-Klein mode (k = 1) is greater than that accessible by particle
physics experiments, then the effective low-energy theory contains massless modes
only and the effective metric can be assumed independent of the extra dimension, y.
Under these conditions Kaluza and Klein showed that the action for five-dimensional

gravity, calculated truncating the five-dimensional metric at the zero mode in the
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Fourier expansion, naturally reproduces the action for four-dimensional gravity and
electromagnetism coupled to a scalar field. This demonstrated that extra dimen-
sions could be present in the universe but hidden from experimental view providing

they are compactified on a very small scale.

1.3 Braneworlds

An alternative method of ensuring the known results of particle physics are preserved
is to confine the Standard Model, a priori, to a four-dimensional slice of a higher-
dimensional spacetime. With all conventional matter fixed by some mechanism to
a hypersurface of appropriate dimension the additional dimensions need no longer
be curled tightly out of sight, but may be large or even infinite in extent. Such a
hypersurface upon which our everyday universe resides is commonly referred to as
a “brane”. A critical feature of braneworld models is that while matter is confined
to the brane, gravity, being the dynamics of spacetime itself, must necessarily be
higher-dimensional in nature and permeate both the brane and the extra dimensions
of the bulk. At the same time it remains of utmost importance that any viable
theory including extra dimensions must produce a phenomenologically acceptable
four-dimensional theory of gravity and cosmology. It was shown in equation (1.4)
that the observed Newtonian inverse-square law relies heavily on the presence of
exactly three spatial dimensions. A major task of braneworld models is finding an

extra-dimensional configuration that recovers this result.

1.3.1 Arkani-Hamed-Dimopoulos-Dvali (ADD) Braneworlds

In 1998 the ADD model [20-22] was proposed as a framework for solving the hierar-
chy problem. It achieved this by suggesting that the fundamental scales of gravity
and Standard Model forces are, in fact, the same. According to the model, gravita-
tional and gauge interactions become united at the weak scale, M,,, which is then
the only fundamental short distance scale in nature. This is possible because there
exists a number of large (in comparison to the Planck length) extra dimensions and

the observed Planck mass, "Mp ~ 10'° GeV, is only an effective scale whose relative
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enormity is purely a consequence of our four-dimensional viewpoint.
To see how this might arise it is necessary to relate the observed Planck mass,

M~ 1 TeV, by pursuing a

“Mp, to that of the higher-dimensional theory,
simple Gauss’ law calculation and dimensional analysis argument. To begin with,
the relationship between "Gy and Gy (the full and effective Newton’s constants)
must be established. Suppose that the n extra dimensions are compactified as in the
Kaluza-Klein case: y, ~ yo + 27kL, and a point mass, m, is placed at some origin
in the spacetime. This situation is equivalent to an infinite n-dimensional lattice of
“image masses” in an uncompactified spacetime. The force on a test particle at a
distance 7 < 27 L from the mass will be essentially higher-dimensional in nature,
as in equation (1.4), owing to the minimal contributions from the image masses. At
much larger distances, r > 27w L the resolution between discrete image masses will
be lost and they will appear as continuous infinite strings of uniform mass density
in each of the extra dimensions. The gravitational field at such a distant point can
then be found by performing a Gauss’ law integration over a cylinder centred around
the n-dimensional line of mass, with side length [ and three-dimensional spheres of

radius r forming the ends. Such an integration gives the effective four-dimensional

force per unit mass on a test particle as

{44+n) (4)
() Gym Gym

From this it is clear that the fundamental and effective Newton’s constants are
related by the volume of the extra-dimensional space: WGy ~ LGy

The Planck mass may be defined in arbitrary dimension as the unique combi-
nation of the fundamental constants ¢, A and “*™Gy that has units of mass. From
equation (1.4) the dimensionality of "Gy clearly varies with the dimensionality
of spacetime, in particular
[3+n

ML?
T

[(4+n)

GN] .

ik [c] : (A] :

M|t

From this “*"’Mp can be calculated as

1
{(44+n) ﬁ:C h, ™ 2
e = g (2] )
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and substituting for “""Gy yields
g

n (4)a r2
(4+n)j\/[F2)+n -~ 1 he (h) _ Mp ’ (18)

LGy \ ¢ Lr
where in the last equality natural units have been adopted by setting h = c=1. So
the fundamental and effective scales of the gravitational interaction are also related
by the volume of extra dimensional space: "M3 ~ L" M FAR

The presence of massive Kaluza-Klein gravitons in extra dimensional theories
modifies the cross-sections of Standard Model particle interactions, but this imposes
only very mild constraints on the possible size of extra dimensions. Torsion balance
experiments have sought to observe extra dimensions directly through modifications
to Newton’s law at small scales. Taking the fundamental Planck mass ~ 1 TeV
and the observed value of the effective 4-d Planck mass, if there exists just one
extra dimension then the above relation would suggest its size is of order 10'3cm,
implying deviations from Newtonian gravity over scales the size of the solar system.
Such a result is excluded by experiment. If there are two extra dimensions then
the limit to their size decreases to approximately 0.1 mm. The most recent torsion
balance experiments [23-25] have demonstrated the accuracy of Newton’s law down
to = 50um, suggesting n = 2 is excluded also.

It may be argued that the ADD model does not pose a satisfactory explanation
of the hierarchy problem as it merely removes one disparity in scales by introducing
another, specifically that between the weak scale and the compactification scale:
M, > 1/L. However by confining all but the gravitational sector to the brane the
model demonstrated that the size of extra compact dimensions may be much larger
than previously supposed and is mainly restricted by the current limit on the scale

at which the Newtonian inverse-square law is known to hold true.

1.3.2 Randall-Sundrum (RS) Braneworlds

In 1999 Randall and -Sundrum -proposed-a novel solution to the -hierarchy problem
[26] whereby our 4-dimensional universe is confined to a brane in a bulk spacetime
with negative curvature. Their model utilises a non-factorisable five-dimensional

geometry, in which the 4-dimensional metric of the visible universe is dependent
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on the location of the brane in the higher-dimensional bulk. The extra dimension
is compactified and Z, symmetric with a negative tension brane (on which our
universe resides) and a hidden positive tension brane located at the orbifold fixed
points. In this scenario it can be seen that mass hierarchies in our visible universe
are exponentially generated from fundamental mass scales all of order “Mp owing to
the curvature of the bulk and the separation of the branes in the higher dimension.

In a subsequent paper [27] Randall and Sundrum extended this setup and, dis-
carding the hidden brane of their first model, demonstrated that Newtonian gravity
can be consistent with the presence of non-compact extra dimensions if the geom-
etry of the bulk spacetime forces the zero mode of the five-dimensional graviton
to be bound to the brane. Having such a mode ensures four-dimensional Newto-
nian gravity is recovered on the brane, while the contribution from the continuum
of Kaluza-Klein states generates a correction to the force law that is potentially
observable in short-distance gravitational experiments.

It is this second Randall-Sundrum model that is perhaps the most geometrically
appealing form of the braneworld model and forms the foundation upon which a
significant part of this thesis is based. Consequently a full discussion of the Randall-

Sundrum models is conducted in chapter 2.

1.3.3 Dvali, Gabadadze and Porrati (DGP) Braneworlds

Shortly after Randall and Sundrum showed that extra dimensions could be com-
patible with Newtonian gravity in a warped spacetime, Dvali et al. demonstrated
that such a situation was also possible with infinite flat extra dimensions [28]. They
examined the competition between the bulk five-dimensional curvature scalar, “R,
and the corresponding intrinsic curvature scalar on the brane, mR, in an action of

the form

1 (5) 1 4)
S =" O Rd®r + 4/ -9 Rd4:c, 1.9
, 1,6_7r“)GN/, T B A (1.9)

where (S)gMN(:v) = (s)gMN(za,y) is the five-dimensional bulk metric for which 'R
is the Ricci scalar and (4)gu,,(a:) = (S)gu,,(x", 0) is the induced metric on the brane

(located at y = 0) with corresponding 4-d Ricci scalar, “R. Analysis of the grav-
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itational potential on the brane found by considering small perturbations from a
five-dimensional Minkowski bulk produces the 1/r form of the Newtonian potential
at small distances, with a leading-order correction corresponding to logarithmic re-
pulsion. However, in the DGP case the tensor structure of the graviton propagator
is found to correspond to a massless five-dimensional graviton (or equivalently a
massive 4-dimensional one),

1 x 1 Vi 1 v
57" n’? + 577“577 -3 n?, (1.10)

instead of the desired massless four-dimensional propagator,

%n“"n”ﬁ + %n“[’n”" - %n“”n"ﬁ : (1.11)
While this difference may seem slight, it is critical in reproducing the results of
4-dimensional gravity as a 5-dimensional graviton has an extra polarisation state,
manifested as an additional four-dimensional scalar field, which must be included in
the 4-d effective theory. Therefore having a graviton propagator with the structure
of (1.10) is equivalent to having a scalar-tensor theory of gravity from the four-
dimensional perspective, which yields an additional attractive force. This additional
force causes the DGP model to predict anomalous results for experimental tests of
general relativity. In particular the gravitational bending of light by the sun is found

to be only 3/4 its correct value [29)].

1.4 Summary and Overview

The notion of confinement of non-gravitational physics to lower-dimensional hyper-
surfaces holds particular importance in string theory where open strings, represent-
ing the matter and gauge particle sector, are attached at each end to objects known
as D-branes. Braneworld models, such as those outlined in this chapter, present
an instructive phenomenological realisation of string theory ideas and have conse-
quently been the source of a great deal of research over the last decade. While three
of the most common classes of braneworld model have been outlined here, it should
be noted that numerous other brane configurations have been explored in the lit-

erature [30-33]. As the braneworld concept has matured it has developed into an
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interesting possible resolution of a number of longstanding problems in mathemat-
ical physics, most notably the hierarchy problem and the consistent incorporation
of extra dimensions. Many extensive review articles have been written [34-37], the
contents of which have been drawn upon while preparing the theoretical background
presented in chapters 2 and 4.

In the course of extended debate with physicists and mathematicians it is easy to
lose the sense of wonder felt upon first realisation that the universe might have more
dimensions than the three we readily perceive. If incontrovertible evidence of extra
dimensions were to be found through experiment it would be a truly revolutionary
discovery. One of the most exciting aspects of braneworld theory is that it does
not exclude such discoveries being made in the relatively near future. Given the
possible lowering of the fundamental scale of gravity down to levels achievable in
the Large Hadron Collider, there is a chance that production of microscopic black
holes in ground-based experiment may be within present technical capability. The

prospect of witnessing quantum gravity effects has never been so close.

%ok K

To outline the content of this thesis: in chapter 2 a review of the Randall-Sundrum
models will be conducted. Subsequent attempts to find descriptions of astrophys-
ical objects, such as black holes, within this framework will be outlined and the
limitations of the resulting expressions will be discussed. Chapter 3 presents a new
approach to the search for a braneworld black hole. Although the braneworld black
hole metric remains elusive, by embedding a four-dimensional brane containing per-
fect fluid in a number of bulk spacetimes, a fully consistent system describing objects
with interpretation as braneworld “stars” is obtained.

In the absence of an analytic braneworld black hole metric the calculation of ob-
servable signatures of astrophysical objects within the Randall-Sundrum framework
is somewhat restricted. However, progress can be made within the ADD model,
a scenario which méy be considered equivalent to a Randall-Sutidrum branéworld
when the brane tension, black hole mass and bulk curvature are all small. It is
possible to derive the field equations for particles propagating in higher-dimensional

black hole backgrounds and compute the Hawking radiation spectrum both on the
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brane and in the bulk. Chapter 4 outlines the theory behind this calculation and
defines the quantities used to characterise Hawking radiation spectra from higher-
dimensional black holes. Chapter 5 contains a new calculation of the emission of
particles from a higher-dimensional rotating black hole onto the brane, while chapter
6 is concerned with emission of scalars into the bulk. Chapter 7 fills a gap existing
in the literature by examining the emission of gravitons from a higher-dimensional

Schwarzschild black hole into the bulk. Finally, in chapter 8 conclusions are drawn.



Chapter 2

Randall-Sundrum Braneworlds

When developing their first braneworld model Randall and Sundrum were moti-
vated by resolving the hierarchy problem. The ADD model had recently offered
an explanation using large extra dimensions that eliminated one disparity in scales
by creating another. To avoid this rather unsatisfactory feature they considered a
brane configuration motivated by a new S!/Z, compactification of M-theory [38,39]

combined with a non-factorisable warped geometry.

2.1 The Randall-Sundrum Two Brane Model (RS1)

In the first Randall-Sundrum model [26] two four-dimensional branes are embedded
in a five-dimensional anti-de Sitter (adS) bulk. The extra dimension, denoted by the
coordinate ¢ with range —7m < ¢ < m, is compactified with radius 7. and taken to
be Z, symmetric in the hypersurface ¢ = 0. A negative tension brane, on which the
Standard Model is confined, and a positive tension brane are located at the orbifold
fixed points in the extra dimension, ¢ = m,0 respectively. The action for such a

configuration is given by

)
R vis
5= / V"0 (2?, - As) dx + / V=0 (Lois = Ais) 8¢ — 7)
'*'/ \/ — " (Lnia — Mia) 6(9) d°z,  (2.1)

12
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in the bulk and on the brane must be imposed

k2 k
A5 = _6_’ )\hid = —/\vis = 6_ . (24)

K5 a7

In the coordinates of equation (2.3) all slicings of constant ¢ have metrics propor-
tional to the Minkowski standard vacuum. They are related to one another by a
“warp” factor which takes its maximum value of unity at the hidden brane and
decays exponentially towards a minimum on the Standard Model brane at ¢ = 7.
Figure 2.1 illustrates the configuration of branes and this variation of the warp factor

in RS1.

2.1.1 The Physics of RS1

By considering massless fluctuations about the classical solution (2.3) it is possible
to relate the fundamental five-dimensional parameters “G ~,Te and k to those that
would be experienced by a brane observer witnessing the effective four-dimensional
theory. The perturbed four-dimensional metric is written, (4)§,“,(:1:) = TN + hyu s0

that the bulk line-element takes the form
ds* = 6_2""°|¢|(4)§W(z)dm“dx” + ridg?, (2.5)

where it has been assumed that some mechanism stabilises the inter-brane distance
so that fluctuations in the brane separation can be neglected [40-42]. The effective
Newton’s constant “Gy is recovered by substituting the form of the metric (2.5)
into the expression for the five-dimensional action and picking out the component
proportional to the four-dimensional curvature scalar “R that is constructed from

the perturbed four-dimensional metric “”gw
T (“UR
Seps = /d%/ ree  reldly [ Wg — 4 (2.6)
- 2/%5
Integrating out the extra dimension ¢ yields the relation between four and five-

dimensional gravitational couplings

(4)
Gy

5)
Gy k

(1 — e 2rem) (2.7)

or, using equation (1.7) in natural units, between Planck masses,

(5)
(4)M12> — ]I:A/[I%

(1 —e ) . (2.8)
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Next consider the action for a Standard Model particle on the visible brane. A scalar

field, H, would have action

Spis = /d4$ /_(via)g [(uis)guuquTqu _ )\(|H|2 _ 7713)2] +.o, (2.9)

but owing to the presence of the warp factor and the location of the brane at ¢ = «,
the metric on the visible brane is not equal to the “fundamental” metric appearing

—2%krem (4=

in the effective Einstein action, “”g,“,, but related by wgu,, =e Juv- Making

this replacement in the scalar action yields

Svis — /d4:13 /_(4)ge-4krc7r [(4)§uu62krcwquTvUH _ /\(lH’Q o mg)Q] + .. ’ (2.10)

which must then be renormalised, H — <™ H, to extract the physical masses mea-
sured by an observer on the brane when making measurements within the effective

theory which has metric (4)§W,

Sess = /d%\/—(‘”g [“”gﬂ"quTqu — A(|H|* - e‘riC”mg)z] +... (211)

So within the first Randall-Sundrum model fundamental masses, mg, are related to

observed masses, m, in the effective four-dimensional theory by

kT . (2.12)

m e

Equations (2.8) and (2.12) now afford an explanation to the hierarchy problem.
Suppose there is only one fundamental scale in nature, taken to be around the
order of the observed Planck scale ‘“Mp ~ 10!° GeV. If this is true then both the
fundamental Planck scale M p and the fundamental masses of Standard Model
particles mgy must also be of this magnitude. However, the observed masses of
particles may be significantly lower owing to the exponential relation in equation
(2.12). In particular, if k7, &~ 10 then equation (2.12) generates observable masses
of around 1 TeV from fundamental masses of order "M p. Furthermore, if e=*m™

really is of order 107!¢ then equation (2.8) becomes

(4)

: (5)y 3~
M3
M2~ —F

k‘ 3

(2.13)

so clearly no dramatic hierarchy is required between the fundamental parameters

of the five-dimensional theory: O p, k, po = 1/r. and mg. To generate TeV scale
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particle masses from a theory with all parameters at the scale “Mp requires a
hierarchy of at worst k/u, ~ 10.

Finally, a change of viewpoint to that of a visible-brane-based observer shows that
it is even possible to consider the TeV scale fundamental and the Planck scale derived
krem

from the system geometry. By making the coordinate transformation z# — e "™ g#

the warp factor on the visible brane becomes unity, while that on the hidden brane

Zkrem  Now no rescaling of Standard Model fields is required so

takes the value e
the fundamental masses are all equal to the observed masses in the TeV range. The
extremely weak gravitational coupling, “Cy, is due to the magnitude of the graviton
wavefunction (the warp factor) being ~ 1032 times smaller on the visible brane than
it is on the hidden one. The suggestion that physics may be consistent with a
fundamental scale around 1 TeV is extraordinary as it raises the possibility that

radically new phenomenology may be accessible in the next generation of ground-

based collider experiments.

2.2 The Randall-Sundrum One Brane Model (RS2)

In their second braneworld model [27] Randall and Sundrum dispensed with the
brane at ¢ = m and with it their solution to the hierarchy problem. What they
gained was a braneworld model using a warped extra dimension of infinite extent
that produces a viable four-dimensional effective theory of gravity. To achieve this
they begin with the RS1 model and reverse the roles of the hidden and visible branes
so that the Standard Model is confined to the positive tension brane at ¢ = 0. They
then remove the negative tension brane at ¢ = 7 from the system by sending the
compactification radius of the extra dimension r, — 0o. This then leaves a single,
positive tension brane residing in a five-dimensional adS bulk which is Z, symmetric

in the brane. The bulk metric for this model is given by
ds® = e~ Wy datdz” + dy? . (2.14)

where y = 7. ¢, in terms of the RS1 compactified coordinate ¢. The brane resides
at y = 0 and y now takes the range 0 < y < 0o. The problem of stabilising the

inter-brane separation no longer exists as it becomes desirable for the second brane
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2.2.1 Gravity in RS2

The most interesting feature of RS2 is its gravitational phenomenology. According
to the conventional large extra dimension scenario there was no way in which four-
dimensional gravity could be reproduced on a brane unless the extra dimensions were
compactified on a large (in comparison to the Planck length) yet sufficiently small
scale (to avoid conflict with Newton’s law). Randall and Sundrum demonstrated
that if the extra dimension is warped then it may be infinite in extent and still
consistent with known gravitational law.

To find the effective four-dimensional gravitational field it is again necessary
to consider fluctuations about the classical solution to Einstein’s equations (2.14).
However, since the extra dimension is now infinite in extent, it is no longer possible to
neglect the massive Kaluza-Klein modes as there will be no energy gap between the
zero mode and the lowest mode with mass. The infinite nature of the extra dimension
imposes a continuous Kaluza-Klein spectrum and the resulting gravitational force
is due to the combined effect of exchange of all of these graviton modes. To see this
consider generalised linear fluctuations of the metric of the form

g = e Wy L+ b (2,y). (2.16)

Suppressing Lorentz indices, the metric perturbation is then assumed to be separable
in its dependence on bulk and brane coordinates: h(z,y) = h,(y)e??, with p? =
—m? and m being the mass of the Kaluza-Klein mode on the brane. Working in the
Randall-Sundrum gauge defined by: h,, = h,, = 9,h*, = h* = 0, evaluation of the
linearised Einstein equations expanded about (2.14) yields the equation of motion

for the extra-dimensional component of the tensor fluctuations
1, . m? 2kly|
—§8yhm(y) + [2k* — e Vi — 2k6(y) | hm(y) = 0. (2.17)

This must be satisfied along with the boundary condition that h,,(y) is an even

function owing to the Z, symmetry in the brane. The transformations
klyl. :
€ -1 Klyl ~
2 = sgn(y)—— han(y) = €= % hun(2), (2.18)
allow the equation of motion to be converted into Schrodinger-like form

m- ~

() 4V (2Don(z) = (). (2.19)
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where the potential is given by

15k 3k6(2)
V@ =gy T 2

Much of the physics of RS2 can be interpreted through this potential. Firstly the -

(2.20)

function supports a single normalisable bound state mode, the massless zero mode,
corresponding to the usual four-dimensional graviton. The zero mode has wavefunc-
tion

. 1

ho(z) = m ; (2.21)

which is peaked on the brane and decays rapidly into the bulk. The presence of
a massless zero mode bound to the brane ensures four-dimensional gravity is re-
produced to leading order. The remaining massive Kaluza-Klein modes form a
continuum and asymptote to plane waves as the potential decays into the bulk. In
the region of the brane the massive mode wavefunctions are strongly suppressed
indicating that the Kaluza-Klein modes couple only weakly to low-energy states on
the brane. An analysis of the Newtonian potential experienced on the brane due to

a particle of mass M reveals it is of the form

(4)
Gy M 2
5= G <1 ; 3%_2) , (2.22)

where the short scale correction is due to the combined effect of the continuum of
suppressed massive Kaluza-Klein modes.

It should be noted that although Randall and Sundrum’s original analysis, as
followed in the above discussion, produces a qualitatively correct picture of the ef-
fective gravity on the brane, the specific result (2.22) has been taken from the more
complete analysis performed by Garriga and Tanaka [43]. They considered the effect
of placing an isolated point mass on the brane and then calculating the weak grav-
itational field that it produces. Since both the brane energy density and the point
mass are sources in Einstein’s equations they interact with one another, resulting in
the brane bending in the fifth dimension [44,45]. Garriga and Tanaka also showed
that the effect of this brane bending is to contribute a term to the metric pertur-
bation that exactly converts the factor of % featuring in the massless 5-d graviton
propagator (see equation (1.10)) to the factor of % that is required in the corre-

sponding four-dimensional case. Since it accurately reproduces both the Newtonian
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force law and correct four-dimensional structure of the graviton propagator in the
low-energy limit, the Randall-Sundrum single brane model has become something

of a paradigm of extra-dimensional model building.

2.3 Black Holes in RS2

As mentioned in the introduction, it is critical that a realistic model incorporating
extra dimensions reproduces the standard strong-gravity results of cosmology and
astrophysics. The braneworld generalisation of the Friedmann-Robertson-Walker
universe is an extensively studied subject [46-57]. Owing to the high degree of sym-
metry required of a cosmology the five-dimensional problem was found to be fully
integrable [52]. The general cosmological braneworld can be completely understood
as a four-dimensional hypersurface following a time-dependent trajectory through
a five-dimensional adS bulk containing a black hole. The most pressing question
in braneworld astrophysics has been no less a source of investigation than its coun-
terpart in cosmology. However, almost a decade later, the braneworld black hole

remains undescribed.

2.3.1 The Black String

It was noticed that the form of the Randall-Sundrum metric (2.14) permits conve-
nient generalisation [58]. It is possible to replace the Minkowski component with
any four-dimensional metric that is Ricci flat and the resulting 5-d metric is still
a solution to the higher-dimensional Einstein equations with negative cosmological
constant. This presents an obvious candidate for a braneworld black hole. Chamblin
et al. [59] replaced the Minkowski metric with that describing a 4-d Schwarzschild

geometry
1 dr?
k22 U(r)

where U(r) = 1 — 24 402 is the metric on a 2-sphere and the coordinate u is related
r 2

ds?

—U(r)dt* + + 72dQ2 + du?| | (2.23)

to the RS coordinate y by ku = e*¥l. By taking this brane-based approach they
guaranteed that the correct description of a four-dimensional black hole is found

on the brane. However, from a five-dimensional bulk perspective this metric can
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be considered as the foliation of the 5-d spacetime by Schwarzschild slices with
magnitude scaled by the warp factor. From the higher-dimensional viewpoint it is
clear that the Schwarzschild singularity is not localised on the brane, but projects
out along the extra dimension. This candidate braneworld black hole is a slice of an
infinite five-dimensional black string.

To reproduce the results of four-dimensional general relativity the gravitational
collapse of uncharged, non-rotating matter confined to the brane should ultimately
settle down to a final state which is stable and without naked singularity. Unfortu-
nately for the black string, neither of these results hold.

While the Ricci scalar and square of the Ricci tensor are finite everywhere in the

spacetime (2.23), the square of the Riemann tensor

(2.24)

48 M2

16
diverges for every finite value of u at the black string singularity » = 0, in addition
to the adS horizon u = oo. The latter divergence is only encountered when the
adS horizon is approached along certain geodesics (eg. along the axis of the string),
however Chamblin et al. showed that components of the Riemann tensor diverge
in a frame parallelly propagated along any timelike geodesic that reaches the adS
horizon, so the singularity will be visible from the brane.

It was originally conjectured that Gregory-Laflamme instabilities [60] near the
adS horizon would cause the black string to pinch off forming a stable extended
object referred to as a “black cigar”. Subsequent analysis demonstrated [61] that it
decays into an accumulation of “mini black holes” towards the adS horizon. Accord-
ing to either result it is clear that the black string solution’s status as the endpoint

of gravitational collapse is questionable.

2.3.2 A General Covariant Approach

“With the failure of the simplest method, a more general brane-based approach to
finding the black hole metric was developed. Shiromizu et al. [54] derived the relation
between the 5-d bulk Einstein equations and the effective equations induced on a

four-dimensional brane for arbitrary bulk and brane geometries.
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By using the equations of Gauss

(4)

RY%ep = "R aphdhd hEnfl + K4 Kpp — K4 Kpe (2.25)

and Codazzi

DK P — DAK P = “RppnFhF (2.26)

) : . . .
where hap = gap—nang is the induced metric, n? is the vector normal to the brane
and Kap = h AE h BF VEnpg is the extrinsic curvature, the five-dimensional Einstein

equations

5 1
®Gas = "Rap — 5(5R(5)9AB — ks Tap, (2.27)

project onto the brane as

2 1
(4)Guu _ % ((5TABhuAhVB + [(S)TABnAnB (ST] )

KK, — K Ko+ (KaﬁK ~ K hy — €. (228)

In the above “T4p is the 5-d energy-momentum tensor and G = (STAA (likewise for
K), also &,, = (S)CABCDnCnDh 4h B is the projection of the bulk Weyl curvature
orthogonal to n”. Note that in the notation adopted the induced metric, h4p, can
be written as either a four or five-dimensional tensor with corresponding greek or
roman indices. It can also be used to project five-dimensional quantities onto the
brane thereby converting roman indices to greek. With the braneworld scenario in

mind the 5-d energy-momentum tensor is written as
(5 {5
Tap = T — As"gan + Tand(y), (2.29)

where the é-function enforces confinement of brane energy-momentum, Tap, to a
hypersurface located at y = 0. From Einstein’s equations it is clear that the presence
of a discontinuous source of energy-momentum in the spacetime causes the geometry
to possess a corresponding discontinuous feature. The nature of this discontinuity
is encoded in Israel’s junction conditions [62], which can be found by integrating
Einstein’s equations along a path which just crosses the brane, picking out only the

singular components of the geometry and energy-momentum
[hag)t = 0, | (2.30)

8 1 .
[Kap]t = &s (TAB - ghABT> : (2.31)
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where [X]J_r = lim, o+ X —lim,_o- X = X* — X~ Fixing the Z; symmetry of the
bulk imposes a strict constraint on the geometry either side of the brane. Specifically,
as an observer passes through the brane they measure quantities of exactly the same

magnitude, but with the direction of the normal reversed. Consequently

N 1 -
Kip=-Kip= % <TAB - ghABT) : (2.32)
and it is therefore possible to work with quantities on the + side of the brane only,
allowing + labels to be omitted. Substituting equations (2.29) and (2.32) into (2.28)

yields the induced Einstein equation

(4) K5 2%5 ulk ~
G = —?Ag,hw + wa(:rb WY+ k2L, (T) — €, (2.33)
where
) ) Tbulk
Fow(T) = TS50 AR P + by, (Tg‘gknA - T) , (2.34)
and
~ 1 - - 1 = | 1~aﬂ~
HuV(T) - ETT#V - ﬁT hl“’ - ZTM Tl/a + gT Talghl“’ . (235)

As in the original Randall-Sundrum case, it is common to make a distinction between
the self-energy of the brane and the energy-momentum arising from Standard Model
matter fields

Tow = ToM = Nyrane My - (2.36)

With this separation the Einstein equations can be written in their final form

2 . ,
G = ra (TSM = Aghy,) + —g?fw(Tbulk) + KL, (T5M) — £, (2.37)
where
(5),~92
(4) Kyq 4n GN/\brane 3A5 )‘brane
Gy = — = ____“i7orane d Ay = . 2.38
N 8 3 o ! Ky )‘bra‘ne N 2 ( )

In the general covariant approach to determining the braneworld metric there
are essentially three independent modifications to the standard four-dimensional

Einstein equations:

o F,, (T"*) — arising from any energy-momentum present in the bulk beyond

pure cosmological constant.
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e 11, (T°M) — a consequence of extrinsic curvature terms resulting from the

brane embedding.

e £, — the projected Weyl term inherited from the geometry of the bulk space-

time.

It is possible to show that the first of these corrections vanishes if ordinary
energy-momentum conservation is required on the brane. From equations (2.26),
(2.27) and (2.32) the divergence of the Standard Model energy-momentum tensor

may be expressed as

V"Tj,j” = Zhu"nBT/‘fg’“ . (2.39)

In general, energy-momentum is exchanged between bulk and brane fields violating
4-d conservation. To make the interaction between the brane and the bulk purely
gravitational it is necessary to impose T54¥ = 0, which then removes the term
Fuw (Tb“”“) from the projected Einstein equations.

It is instructive to see where the RS2 model fits into this covariant framework.
For a pure adS background the bulk Weyl term, £,,, vanishes. Also the brane
energy-momentum is taken to be zero beyond its cosmological constant so Tf,,M =0,
= I1,,,(T5) = 0. Finally the bulk and brane cosmological constants are tuned so
that the metric on the brane is Minkowski. From equation (2.38) the condition for
this is A2,,,. = —6As/ks which is satisfied by the RS2 cosmological constants in
(2.15).

Within the covariant formalism the vacuum outside a braneworld black hole or

star will satisfy the induced field equations

“Ru, = —E . (2.40)
In order to solve this equation some assumption must be made about the form
of £, A first possibility is to set £, = 0 and seek solutions that correspond
to exact 4-d gravity. This was the approach taken by Chamblin et--al {59} and
led to the black string geometry and its undesirable features. The second option
is to assume some non-zero form for £,, and seek brane solutions of static black

hole exteriors with 5-d corrections. This would seem the most realistic approach



2.3. Black Holes in RS2 25

given that the four-dimensional effective potential (2.22) was found to contain short-
distance corrections caused by the 5-d Kaluza-Klein modes. Indeed, such solutions
have been found [{63-67] but they all face a common problem. The bulk metric
corresponding to the particular choice of £,, has either not been found or is without

physical interpretation.

2.3.3 ° A Bulk-Based Perspective

Since the development of the covariant brane-based formalism other analytic ap-
proaches have been pursued [68-73] without complete success and attempts to solve
the system numerically [74-77] have been plagued with issues of sensitivity. A persis-
tent problem with brane-based methods is that assumptions must be made regarding
the geometry of the bulk that either introduce physically undesirable features or ren-
der the background spacetime uninterpretable. An obvious way around this is to
adopt a bulk-based perspective. From the outset, the required features of the extra-
dimensional spacetime are specified, and then a brane with energy-momentum is
introduced in such a way that the 5-d Einstein equations remain satisfied without
the bulk being perturbed. This task is no more than explicitly solving the Israel
equations (2.30) and (2.31) in a fixed background. It is a procedure that was success-
fully applied to brane cosmology [50] and was hoped might transfer to braneworld
black holes.

Unfortunately it has so far proven unsuccessful. The problem with this method
is that although the bulk remains well behaved, the Israel equations are sufficiently
restrictive that they specify the trajectory of the brane and its energy-momentum
content completely, up to a small number of integration constants. In their ap-
pendix Chamblin et al. [59] demonstrate that it is not possible to intersect the 5-d
Schwarzschild-adS black hole with a static, pure vacuum domain wall. However,
a time-dependent trajectory with more general matter distribution has never been

explored.



Chapter 3

Black Holes and Braneworld Stars

Motivated by a desire to find the braneworld black hole metric, the problem of
embedding time-dependent branes containing perfect fluid in a variety of standard
five-dimensional backgrounds has now been addressed [1]. To conform with the RS2
model a solution is sought in asymptotically adS spacetime that is Z, symmetric in
the brane.

To describe a braneworld black hole a fully consistent bulk-brane-black-hole grav-
itational system must preserve the SO(3) symmetry on the brane that is present in
our desired 4-d Schwarzschild-like induced metric. The brane trajectory and its
matter content must satisfy the Israel junction conditions (2.30)—(2.31) that allow
a gravitating domain wall to be inserted into a spacetime without perturbing the
background geometry. The formalism for achieving such a setup is outlined in the

next section.

3.1 The General Brane Equations

Analysis of a general braneshape embedded in a 5-d SO(4) symmetric spacetime is
most conveniently performed in a coordinate system which makes this symmetry

explicit. In such a system the 5-dimensional line-element takes the form

ds® = —U(r)dr® + dr? + r®(dx* + sin® x dQ2?) , (3.1)

1
U(r)
where U(r) is a general function of the global radial coordinate and d2? is the line

element on a unit 2-sphere. To specify the brane position a constraint is imposed
26
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between the coordinate functions: x = x(7,7). This is the most general embedding
that preserves the desired SO(3) symmetry on the brane. If a general 5-vector is
described by the coordinate functions 4 = (7,7, x, 6, ¢), then a new basis may be

constructed in terms of the unnormalised brane tangent vectors and unit normal:

T4 = (1,0,%,0,0)
R4 = (0,1,%x,0,0)
o4 = (0,0,0,1,0) (3.2)
4 = (0,0,0,0,1)

ng = n(_Xv_X,717070)'

In the above, overdot and prime denote partial differentiation with respect to 7 and
r, respectively, and n—12 = (—Xﬁz + Ux’2 + T%) The tensor hap = (S)QAB — NaNB
projects vectors onto the wall, and its tangential components define the induced

metric on the brane. In the aforementioned basis, it can be evaluated as

U +T2).(2 TQXXI

7,2X'XI _(17 + T2X/2

hAB = TQSiIl2X

r?sin? y sin? @

\ 0

It should be noted that in the present convention the non-zero four-dimensional

component of the above tensor representing the metric induced on the brane may
be referred to with greek indices as hy,,.

The physical manifestation of the brane is as a hypersurface containing energy-
momentum. It is described by the tensor T4 5 which includes contributions from both
Standard Model fields and brane vacuum energy. For simplicity its brane-projected

form is taken to be

T = [p(r,7) + p(1, 7)) hpohup uu? + p(7,7) hysr (3.3)

which describes an isotropic distribution of perfect fluid with p(7,r) and p(r,r) the

fluid energy density and pressure, respectively. Note that in writing down the brane
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energy-momentum no distinction is made between the component from Standard
Model fields and that due to vacuum energy. The vector u* is the fluid’s 4-velocity
on the brane, chosen to satisfy the normalisation condition w*u"h,, = —1. In the

tangent vector basis (T, R, ©, ®) the fluid’s 4-velocity is chosen to be

1
ub = ———(1,0,0,0). (3.4)

- hTT

The ansatz (3.4) allows the brane energy-momentum tensor to be rewritten as

. h,rh,
Tw=—(p+p) ’;ZTTTT +phu. (3.5)

For later convenience, the energy density and pressure of the fluid will be related by

an “equation of state” p(7,r) = w(r,7)p(7,r), and the quantity
v(r,7) =24 3w(r,7), (3.6)

is defined for use in subsequent calculation. In the context defined above w is unusual
as an equation of state since it is an arbitrary function of both r and 7 so does not
restrict the pressure in any way.

As mentioned in §2.3.2, it is possible to embed an energy-momentum-containing
brane into a fixed bulk spacetime without perturbing the geometry providing Israel’s

junction conditions [62] are satisfied
[K,uu - Kh';w]t = K’5Tﬂl/7 (37)

where K, = h#Ah,,B V anp is the extrinsic curvature of the brane, and k5 = 871'(5)GN.
As in equation (2.32), under imposition of the Z, reflection symmetry in the wall
these conditions become

K ~ 1 ~
K, = ?5 <TW = 3l T) : (3.8)

If the brane is then taken to contain the perfect fluid of equation (3.5) with equation
of state (3.6) then the Israel conditions become

Ku=2p [hw ~(1+v (3.9)

) h'y.ThuT
6 b

hTT
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or in component form,

1
Kprr=—n ()'(' +Urx'x* - 5 UU’x'> = —% pU (—U +7r7x%) , (3.10)
Uy 3 ks (1 5 o (1+0)ri3x?
Kpp = — U = — 3.11
RR n<x+r s+ Tx) 60{U+TX+ Uy (3.11)
U'x K5
Krp=-n{x+= +Urx X — = —— pur’xx/, (3.12)
2U 6
Koo = —n (Ury'sin® x — sinx cos x) = %pr2 sin® y . (3.13)

A detailed derivation of the above extrinsic curvature components can be found in
appendix A.1. Two further equations may be obtained by ensuring consistency of 7

and r derivatives of (3.13) with the remaining Israel equations

. 1, Ksp 2 Ksp 2
L4 Ur — U+ 2P0 4 opeoty) = —29F 14
x<+2UT U+6n( + v)r COX) on (3.14)

1 Ksp X’ cot x Ksp' o
"1+ 2Ur-U+ =211 —— ] = ——7". 3.15
X<+2 r=U+ g U s 6n ' (3.15)

In summary, a 4-dimensional brane containing perfect fluid may be defined by
its energy density, p(r,7), equation of state, p(r,7) = w(7,7)p(7,7), and the shape
of its embedding, x(7,7), in a 5-dimensional spacetime. When the bulk spacetime
is spherically-symmetric and defined by a single function U(r) then the embedding
is consistent with Einstein’s equations providing the set of functions p(7, ), w(r,r)
and x(7,7) simultaneously satisfying (3.10)-(3.15) may be found. This task may
be simplified by defining a new function @@ = rcos x and using equation (3.13) to

eliminate the quantity k5p/6n. Equations (3.10)-(3.15) are then rewritten as

(2.. 1
. %—(a'r—a) <§U'7‘—U> +a+

(1+v)

[U(ar — @) + ]( U+ Tzal)zo, (3.16)

1
o Urid' + (o'r — ) <§U"r - U) -+

[U(e'r = a) + a] Ur?a?(a'r — a)? _
(r2 — a?) (r2a? = U(r? — o?))

(1+v)
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U
o Tk ~ 37 a+ (14+0)(U(a'r —a) + a) ) =0, (3.18)
/ K5 r?6° / 2 2 2 : :
° U(ar—a)+a=€p7' T +U(dr—a)’+7° -« : (3.19)
pr [ 1+iUT-U
— = 1 3.20
* p Ta(U(a’r—a)+a+( +U)r2—a2 ’ (3:20)

p'r o' — o 1+:Ur-U (1+wv) 2620 |
( ) (U(Q'T —a)+a * (r2 — a?) (r2a2 - U(r? — oz2))> . (3.21)

3.2 The Time-Dependent Brane

The solution of the full time-dependent problem, equations (3.16)-(3.21), is an ex-
tremely complicated task. It is demonstrated in appendix A.2 that consistency
of the third order mixed derivatives, found by further differentiation of equations
(3.16)-(3.18), allows the equation of state to be expressed entirely in terms of the
braneshape and its first derivatives

(r2 — on)(%U”r2 -Ur+U-1)
(U(a'r — a) + a)[(ar — ) (R0 — U) + a — DeXerelqUr 0))

(r?—a?)(~U+58%)

1+v= . (3.22)

It is then possible to substitute for (1 +v) using this expression in each of equations
(3.16)-(3.18), (3.20) and (3.21) to recover partial differential equations for o which
may, in principle, be integrated to give the braneshape. From equations (3.20) and
(3.21) the energy density may then be determined to obtain the complete set of
functions p(7,7), w(r,r) and x(7,7) specifying the system. However, in order to

progress analytically it is necessary to make some simplifying assumptions.

3.2.1 A Class of Time-Dependent Solutions

Inspection of the brane equations reveals an obvious simplification that results from
setting v = —1. This corresponds to demanding w = —1 in the brane equation of
state, but does not restrict our analysis to pure vacuum brares since thé energy den- -

sity and pressure both remain r- and 7-dependent. Under this restriction equations
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(3.16)-(3.21) become

1
o 24 —-U(dr —a) (EU’T—U)—i-Ua:O, (3.23)
o Urld'+ (d'r —a) (%U’T—U)—a:(), (3.24)
1 !
. ra'—g[ga:o, (3.25)
1
' Ks r?a’ ’ 2 2 2 z
o U(ar—a)+a:€pfr - +U(dr—a) +1° —a : (3.26)
p . 1+3Ur-U
2= 27
) a(U(a’r—a)+a ’ (3.27)
p'r

1+ivr-U
il ) (3.28)

Ulad'r —a)+«

o

©|

Equations (3.27) and (3.28) can then be integrated to determine the energy density

_ M

p= U(a'r = a)+al , (3.29)

which may, in principle, be a (7, r)-dependent quantity. In addition, (3.25) is imme-

diately integrable yielding

alr,r) = f(r)/U(r) + g(r), (3.30)

where f(7) and g(r) are, at present, arbitrary functions. If the above form of a(r,r)

is substituted into (3.24) then
1
VU (% U'r> -Ur+U — 1) f(O)+Urg" +(g'r—9) (iU,T - U) —g=0. (3.31)

The only way for this equation to be satisfied for all 7, with f(7) # 0, is for the

factor preceding f(7) to vanish:

1
3 U'r>-Ur+U-1=0, (3.32)
which has solution
U(r) =1+ Ar + Br?, (3.33)
for constants A and B. Thus a brane with equation of state w = —1 may only

be embedded in a bulk with the above form for the metric function. Apart from

Minkowski spacetime, the only known case with physical interpretation is that of a
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5-dimensional (anti) de Sitter spacetime, obtained by setting A = 0; nevertheless in
order to describe the most complete set of analytic time-dependent solutions both
A and B will be retained in the analysis.

Further information about the braneshape may be determined by inserting the

solution for a(7,7) into the sum of equations (3.23)-(3.24): &+ U?a” = 0, to obtain

. vur Ut

flr) + f(7) — ) +UVUg¢" =0. (3.34)
2 4U

If it is assumed the brane trajectory oscillates in time with constant frequency A so

that

(1) = Cycos(A1) + Cysin(A7), (3.35)

then equation (3.34) will be satisfied if the following two constraints hold indepen-

dently , ,
v’ v
24U

By using the solution for the metric function (3.33), the first of the constraints leads

M=0 and ¢"=0. (3.36)

to the result \2 = B — A?/4, and the second to g(r) = g;7 + go. The latter, when
inserted into equation (3.31) after the coefficient of f(7) has been set equal to zero,
yields the relation g; = goA/2.

Finally, the energy density constant py may be determined by demanding the
solution satisfies (3.26). If the form of p given in equation (3.29) is substituted into
(3.26) then

a? 36
U(a’7‘—a)2—a2+(1—3—@)#:0, (3.37)
which leads to
36 : A?
—=1- 2—(3——> f?2—gd). 3.38

Substitution of the oscillatory ansatz for f(7) into the above equation yields

6
Po = - .
k14 (B = 4) (g8 - C1 - C)

(3.39)

To summarise, a fully consistent family of time-dependent brane embeddings in a

5-dimensional spherically-symmetric bulk spacetime, specified by the single metric



3.2. The Time-Dependent Brane 33

component U(r) = 1+ Ar + Br?, are determined by the functions:

2
3A [go + f(T)\/m] + 6goBr

res 1+ (B~ 4) (@3 - C} - C3)
— Pressure: p(r,r) = —p(7,7), (3.42)

f(r) = Cicos <ﬂ7> + Cy sin (\/B - AIQT> ,

and A, B, C1, Cy and gg are all arbitrary real constants.

— Brane shape:  rcosx(7,7) = f(7)VU(r) + g0 (1 + ﬂ) , (3.40)

— Energy density: p(r,r) = (3.41)

where

It is apparent that the energy-momentum tensor on the brane, although char-
acterised by an equation of state with w = —1, can be both 7- and r-dependent,
providing A # 0. If A = 0 all coordinate dependence is removed from the brane
energy density, leaving the constant

6903

_ . 3.43
s VIt B - =) (343)

p:

With A = 0 the bulk metric may be interpreted as that of a 5-d maximally symmetric

spacetime. Furthermore, the choice of parameters C, = 1/k, Cy = 0, B = k* and

go = —1/k corresponds to the specific case of a pure tension brane with self-energy
6k

P =PRSS = —, (3.44)
Ks

following the trajectory

1
V1+k%r? cos(kt) — — (3.45)

a(r,r) =rcosx(r,1) = — =

=

in a bulk spacetime that is pure anti-de Sitter, with curvature k. This is exactly the
Randall-Sundrum brane in global coordinates. To demonstrate this it is necessary to
employ the transformation between global adS and Randall-Sundrum horospherical
coordinates:

-1

ku = [\/1+k2r2(:osk’r—krcosx ,
kt = (ku)V1+k?r? sinkr, (3.46)

klx| = (ku)krsiny,
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3.3 The Static Brane

The brane equations may also be considerably simplified if the system is taken to be
time-independent. Then ¥ = & = 0 and p = 0. The remaining conditions (excluding

(3.18) which is now trivially satisfied) become:

v = —(a'r — ) (U( 30" ) , (3.48)

[ ]
a'r —a)+a
o Urid + (ar —a) (%U’r—U) —a=0, (3.49)
e Ulr—a)+a= %pr U(a'r—a)>+7r° - QZ]% : (3.50)
p'r , 1+3UTr—-U
— = — . ol
* p (ar a)(U(a’T—a)+a (3:51)

Once again the brane energy density can be found by integrating restriction (3.51)
to give:

plr) = gg [U(a'r —a) +a] (3.52)

where pg is an integration constant. Substituting for p(r) in (3.50) yields
/ 2 2 36\
Uldr-—a)—a"+|1-—55)r"=0. (3.53)
K5Po
In fact, equations (3.49) and (3.53) governing the brane trajectory can be solved

exactly by transforming to the modified radial variable

S 50

Expressed in these terms the time-independent brane equations admit the fully-

consistent solution:

— Brane shape:  cosx(r) = ae” +be ", (3.55)

— Energy density: p(r) = % [\/—U_ (ae” —be™") +ae” + be_F] , (3.56)
2 pOU/ 5 _F

— Pressure: ry=—=p(r) — ae” —be™") | 3.57

where
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Finally, the induced metric on the brane can be written as

36 r2dr?

ds? = ~Udr?
S R U =)

+ (r* — a®) 2. (3.58)

It should be noted that the constants a and b featuring in equation (3.55) encode
exactly the same information as the integration constant py, and the arbitrary zero

point of the modified radial variable 7 from the integration in (3.54).

3.4 Static Braneworld “Stars”

The static brane equations have been shown to admit an implicit exact solution in
terms of the radial variable 7, which depends on an integral of the bulk Newtonian
potential U(r). Although this is an exact solution, the properties of the brane
depend on the specific relation between 7 and r. Once this is determined for a
given background, equations (3.55) - (3.57) represent a consistent static, spherically
symmetric distribution of isotropic perfect fluid on the brane. This is the brane
equivalent of the Tolman-Oppenheimer-Volkoff system describing the interior of a
star in astrophysics. In the static case there exists a variety of background spacetimes
with physical interpretation in which a brane may be embedded. This results in a
correspondingly varied set of energy density and pressure distributions, some of
which may correspond to a static braneworld star. In order to determine which
of these solutions represent physically interesting configurations it is necessary to
undertake a systematic examination of the permissible energy density and pressure
profiles.

The simplest possible bulk spacetime with physical significance is the vacuum:

U = 1. In this case 7 = Inr, and a(r) = ar? + b. Introducing the polar coordinates
¥ =rcosy, y* =rsiny, (3.59)

brings the brane trajectories to the form

. 1\, 1—dab

with £* = b in the particular case a = 0. These solutions are of limited physical

importance as they have constant energy and pressure: p = 2apy, p = —2p/3. A
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shift of the 2* coordinate by 1/2a reveals that they correspond to an Einstein static

universe,
ds® = —dr* + R2d3 (3.61)
where R2 = (1 — 4ab)/4a’.
A more general family of bulk spacetimes can be considered by making the choice

U(r) = 1+Cr" for the bulk metric function, where C and n are arbitrary constants.

It is then possible to find 7 as a function of r by straightforward analytic integration:

VU -1
VU +1

allowing a to be written in the general form:

1
F=—1 3.62
F=ln , (362

afr) = [A‘\/U—l%+3(\/ﬁ+1)%] , (3.63)

with A and B convenient redefinitions of the integration constants a and b appearing
in the general solution (3.55).

These solutions (3.63), in conjunction with the choice for the bulk metric function
U(r) = 1+ Cr", describe different brane configurations in a variety of spherically
symmetric bulk backgrounds. Two such backgrounds of immediate physical signifi-
cance correspond to n = +2, — pure adS spacetime, and the Schwarzschild solution

in five dimensions.

3.4.1 A 5-Dimensional Anti-de Sitter Bulk

In the case of a 5-dimensional bulk filled with negative cosmological constant, the
bulk metric function may be written as U(r) = 1+ k?r?, where k is the inverse adS

radius. The shape of the brane, «(r), is then given by the expression:
a(ry=rcosx(r) = A (\/(7 - 1) + B (\/ﬁ—l- 1) , (3.64)

where, in terms of (3.55), 7 has been set to zero at infinity, A = a/k, and B = b/k.

Using the planar coordinates (3.59), the above trajectory may be written as

(A - B)) _ gy A B) (1 4ABR) (3.65)

00+ 455 -5
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Figure 3.2: A selection of branes of varying coefficient A, for the case B = 0,k = 1

in a H-dimensional anti-de Sitter bulk.

where 3 = k2(A+ B)%. When projected in the (z*,3*) plane these brane trajectories
can be thought of as conic sections classified by the parameter 3. For 8 > 1, the
brane is an ellipse, 3 = 1, a parabola, § < 1, an hyperbola, and when § = 0
the projection of the brane is a straight line. In Figure 3.2, the resulting brane
configurations for some indicative values of the integration parameters A and B are
displayed. For simplicity, k£ has been set to 1, and B = 0. As A varies, the shape
of the brane changes gradually covering the three main cases outlined above. The
physical significance of 3 becomes apparent from computation of the energy density
according to (3.56):

p=k%p(A-B)= Ok k4 - B) . (3.66)

s /1= B+ k2(A — B)?

This reveals that the energy density is constant throughout the brane and for A > B

it remains positive. Then for § = 1, the energy density has precisely the Randall-

Sundrum critical value pps = 6k/ks, while for 3 less (greater) than unity the branes
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are sub- (super-) critical. Turning to the equation of state on the brane, equations

(3.48) and (3.6) imply

(A+B)k*py _ 6k k <(A+B)

)= et T ks /T- B+ k(A— B2\ 3VU —(A_B)>'

(3.67)
It should be noted that a static trajectory may not be obtained for a critical or
super-critical brane composed of pure cosmological constant (w = —1). Such a
solution requires A + B = 0, which necessarily corresponds to # = 0 and thus a
sub-critical, or Karch-Randall brane [33]. For 3 # 0, a varying tension is required
to support the braneshape — a feature that will be manifested in the braneworld as
a surplus pressure.

Finally, the induced metric on the brane can be evaluated

36 r?dr?
d 2 _ d 2 S 2 2 dQQ
s U(r)dr® + 2RT 0 = o) + (r® — o®(r)) dQ?
36 dr?
= —Ur()dr’ + 5 N L
KsPo U(r(r)) (1 — a—f‘—)
= —U(@r()dr?+ o + #2dQ? (3.68)
1 — A72/3 2 '
where \/3 = —k? + p?k2/36 is the effective cosmological constant on the brane and
the general time-independent result
"\ 2 2 2 2 2 92
aq 36 Kep Kz pg 2
1 - = - 22 (1 -U+Ud .69
U(r)( T) 2 {U T 26 r2( +Uad™)| (3.69)

found by combining equations (3.52) and (3.53), has been used in the particular case
U(r) = 1 + k*? and a(r) given by (3.64). In equation (3.68) the coordinate 7 =
rsin x has been defined. Its physical interpretation is of a brane radial coordinate
as it sets the scale of the two-sphere line element d2? in the induced metric. Clearly,
the spatial part of the metric takes the form of a constant curvature space, being
flat, anti-de Sitter or de Sitter depending on whether the brane is critical, sub- or
super-critical respectively. However, since the relation between r and 7 is in general
convoluted, the brane has a non-trivial Newtonian potential. This is because unless
A = —B, the surplus pressure on the brane described above acts as a source and

results in a spacetime that is not asymptotically flat. To see this explicitly consider
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a critical brane

k2 (A% + B2 +2/2)° o
ds? = — A By ) dr® + di* + #* d2?2. (3.70)

This spacetime is clearly not asymptotically flat, and can be shown to result from

the source

. L 4
7 =0 Tr=T¢=T% = ,
T ’ T T ke (2A? + 2B 4 72)

which corresponds to the actual pressure discrepancy on the brane: p + 6k/ks.

(3.71)

Similar results hold for the case of sub- or super-critical branes for which 77 = A # 0.

Therefore these particular trajectories have excess pressure on the brane, which
results in metrics that do not asymptote exact Randall-Sundrum or Karch-Randall
branes. However, if |[kA| and |kB| are large enough, the metric can be flat (or
asymptotically (a)dS) over many orders of magnitude before the effect of the pressure

is significant.

3.4.2 A 5-Dimensional Schwarzschild Bulk

The cosmological constant may now be removed from the 5-dimensional bulk and a
point mass inserted to establish a spherically symmetric Schwarzschild background.
This is accomplished by setting n = —2 and C' = —p so that the metric function
becomes U(r) = 1 — p/r?, where u is related to the actual mass of the black hole
by Mgy = 37?u/ks. Then, equation (3.63), that describes the shape of the brane,

takes the form
a(r) =rcosx(r) = r? [A (\/ﬁ — 1) +B (\/ﬁ—i— 1)] , (3.72)

where now A = —b/\/1t, B = a/\/it, and 7 = 0 at the horizon. By construction,
these trajectories are strictly valid only outside the black hole event horizon since
the definition of the 7 coordinate involves a branch cut there. It would be possible
to redefine 7 inside the horizon, although since interest is focused on the exterior
solution this will not be performed here.

Following the same analysis as before, the functions p and p are now found to be

p(r) = po [B(\/ﬁ+ 1)? — AWVT — 1)2] , (3.73)

Po 2 2
p(r) = —plr) + 57 [B(\/ﬁ+ 1)22VU — 1) — AWVT - 12(2VU + 1)] , (3.74)
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where py = ﬁ. Clearly p is not constant for these branes, in contrast to the
adS case, and it is now necessary to consider what may be thought of as a physically
sensible brane energy and trajectory. If the above solutions are to correspond to
realistic astrophysical objects such as stars or black holes then p must necessarily be
positive and ideally possess a distribution representing a localised accumulation of
energy density. When viewed in terms of a coordinate that a brane-based observer
would perceive as “radial” it is desired that the brane energy density increases
towards the centre of the brane. This is not quite equivalent to p being a decreasing
function of r since, as discussed in §3.4.1, the brane radial coordinate is in fact
rsin x, therefore each trajectory must be examined in turn.

To examine the shape of the brane, equation (3.72) is squared to obtain:
4AB7? +2(B — A)rcosy — cos’ x = u(A + B)?. (3.75)

The solutions of the above equation are hyperbolae in the (cos x, r)-plane, which

leads to the following parametric solution in polar coordinates:

r = y/pcoshA, (3.76)
X = Arccos (\/u(Be* — Ae™)) . (3.77)

Constraints must be imposed on the range of the parameter A since |cosy| < 1, and
only solutions with positive p are sought.

Subject to these restrictions it is possible to classify the qualitatively different
families of trajectory allowed. First of all, note that the brane can only touch the
event horizon providing

0<B-A<1/Va, (3.78)

the first inequality arising from positivity of energy. Computing the derivative <

from (3.76) and (3.77) shows that unless B = — A, % — 00 at the horizon, so the
brane touches the horizon at a tangent. However, if B = —A, then the brane may
actually pass through the horizon, and coincide with the central singularity.

From (3.75), it is clear that the general shape of a trajectory is primarily deter-

mined by the quantity AB. There are three distinct cases to consider:
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Figure 3.3: A selection of branes for the case AB > 0, in a 5-dimensional
Schwarzschild bulk of fixed mass parameter g = 0.03. The dashed line denotes

the corresponding horizon radius.

e AB > 0. In this case (3.77) implies that either the brane completely encloses
or touches and terminates on the event horizon, depending on the value of
B — A in comparison to the critical value 1/,/u. If the brane touches the
horizon then it does so on the right of the (a*,y*)-plane since positivity of
energy requires B > A. The brane then exists to the right of such points of
contact since, from equation (3.72), cos x is then an increasing function of r.

Figure 3.3 shows a sample set of brane trajectories in this class.

For B > A > 0, the energy density (3.73) remains positive throughout the
brane. From equation (3.51), it can be seen that this corresponds to p being
an increasing function of r, hence these branes have an energy Su;‘plus at
the point farthest from the evenf horizon. The branes tel"lmliétillg 70’11> the
horizon have the appearance of the inside of a bubble, with the event horizon

defining its boundary and its energy density concentrated at the centre, # = 0.
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A=-1 A=-10 A=-20

Figure 3.4: A selection of branes for the case AB = 0, in a 5-dimensional

Schwarzschild bulk of fixed mass parameter 4 = 0.03. The case A = 0,B = 1

is shown together with a set of branes with B = 0 and variable A. The dashed line

again denotes the event horizon.

However, the pressure (3.74) increases away from the bubble centre becoming
infinite on contact with the event horizon, thus rendering the bubble boundary

singular.

AB = 0. If A =0, then (3.72) will only correspond to a brane outside the
horizon if |cos x| = rB (1 + VU) < 1. This leads to the bound B < 1/,/i
while positivity of energy demands that B > 0. Examination of (3.72) then
shows that these trajectories begin tangent to the horizon, curving outwards
into the bulk, before returning to the event horizon once again. The indicative
case (A = 0,-B = 1) is-shown in figure 3.4. The energy. density and pressure
of these trajectories are similar to those of branes with AB > 0 terminating
on the horizon, and they also correspond to bubbles with a singular pressure

boundary.
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On the other hand, if B = 0 the trajectories asymptote rcosx = —pA/2 at
infinity, remaining approximately straight until the vicinity of the horizon at
which point they bend away from the black hole. Those branes which make
contact with the horizon are equivalent to the planar solutions first considered
in [71]. If —A < 1/,/it, then they become tangent to the horizon at the
same point as the trajectory found by swapping B and —A (as illustrated
by the two blue lines in figure 3.4). If —A > 1/,/i, the trajectories manage
to bend sufficiently far that they avoid the event horizon altogether. In the
limiting case A = —1/,/1t the brane just skims the horizon. Figure 3.4 also

demonstrates a number of these brane trajectories with B = 0 and variable A.

The energy and pressure of brane trajectories with B = 0 have a particularly

simple form:

p= "55‘4 (\/ﬁ— 1)2 . p= —g(‘/ﬁ%. (3.79)

For A < 0, these branes have p positive and uniformly decreasing as 7 in-
creases. If |A] < 1/,/i, the energy density decreases away from the horizon,
however the pressure still diverges there. If |A| > 1/,/g, the brane never
touches the horizon and the pressure remains finite everywhere. Moreover,
the energy density decreases away from the central region # = 0, and hence
these trajectories correspond to asymptotically empty branes with localised

positive mass sources.

e AB < 0. From positivity of energy A must be negative, and the brane lies
exclusively on the right hand side of the (z*, y*)-plane. As in the case AB > 0,
the brane is either a single arc which touches the horizon, or a closed loop. A

selection of these branes are depicted in figure 3.5.

For arc branes with B — |A| > 0, the energy density increases away from
the horizon and reaches its maximum value at the centre of the brane (7 =
0), again creating a bubble with diverging pressure at its boundary. The
same singular pressure behaviour is exhibited by the arc branes with B —
|A| < 0, although in this case, the energy initially decreases away from the

horizon, before increasing again to form an energy source around + = 0. In
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Figure 3.5: A selection of branes for the case AB < 0, in a 5-dimensional
Schwarzschild bulk of fixed mass parameter 4 = 0.03. The dashed line denotes

again the corresponding horizon radius.

the case of closed loops that do not touch the horizon the pressure singularity
is avoided, and the energy density profile resembles one of the two described

above depending on the particular value of B — |A| in that case.

In the cases described above the brane may touch the horizon but never cross it.
However, if the integration constants are arranged so that A = —B then the brane

equation may be written as

,*2+ * 1 2_ 1
y T TIB) T 16B2

This situation is unique in that the brane extends beyond the black hole horizon

(3.80)

and even intersects the point mass located at z* = y* = 0. For this trajectory the
singularity problem associated with crossing the horizon is removed by the choice

A = —B. The energy density is uniformly increasing with r for B > 0, and acquires
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its maximum value at the point farthest from the black hole. This type of brane is
also shown in figure 3.5 — the solid purple line indicating the sole trajectory which
crosses the horizon.

Having derived these brane trajectories, it is important to draw attention to
those which may be considered most physically relevant. It should be noted that
from the definition of the brane extrinsic curvature the normal, defined in (3.2),
points out of the spacetime being kept in the Z, symmetric identification. This
means that, in figures 3.3-3.5, for a trajectory which escapes to infinity it is the
right-hand side of the bulk spacetime which is being kept, and for closed branes it
is the interior of the bubble.

Focusing on the asymptotically flat B = 0 trajectories, it is possible to show that
these have precisely the energy-momentum expected of a Tolman-Oppenheimer-
Volkoff (TOV) star solution. From (3.79) both the energy density and pressure are
peaked around 7 = rsin y = 0. Moving away from the central region the energy falls
off as 1/r* and the pressure as 1/7® (with 7 o r for large 7). Plotting the energy
and pressure for the brane shows that this does indeed correspond to a localised
matter source, with the peak energy density dependent on the minimal distance
from the horizon. The central energy and pressure can be readily calculated from
this minimal radius, r,, = p|A|/2 + 1/2|A]:

__ 44 _ 16|A]|
e s+ pAZ2" PTG (AT — 1) (1 + pA2)2

which shows that the central pressure diverges as uA? — 1. However, for |A| =

(3.81)

1/y/1 the trajectory just touches the event horizon of the black hole, which is the
source of this divergent pressure. This is analogous to the divergence of central
pressure in the four-dimensional TOV system, which is indicative of the existence
of a Chandrasekhar limit for the mass of the star.

Some examples of the solutions to the brane TOV equations are given in figure
3.6. In the left hand plot the brane intersects the horizon at # = 0.17, at which
point the pressure becomes singular but the energy density remains finite. As the
brane trajectory is displaced further from the horizon, the pressure of matter on the
brane decreases, being barely distinguishable from the axis in the right-hand plot.

Also as A? increases, the spread of the matter on the brane increases slightly. In
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where F'(b) — constant of O(1) from above very rapidly. In other words, the total
mass of the star is directly proportional to the bulk mass parameter. The central
singularity in the pressure results from either reducing b to bring the brane into
contact with the horizon, or increasing u to expand the horizon onto the brane. In
either case, the total mass and the concentration of the matter increases. There is
however no overall upper bound on the mass of the star, as it is always possible to
obtain a non-singular solution for any u by making b large enough. The limit on mass
is therefore not a true Chandrasekhar limit, but more a statement about an upper
bound on the concentration of matter. The real reason there is no absolute upper
bound is because, unlike the RS system with an adS bulk, gravity on the braneworld
is not localised, nor is it four-dimensional. This is also seen in the induced metric
on the brane (3.58), which in the case of a Schwarzschild bulk has no convenient
expression in terms of the radial coordinate 72 = 72 — o?. However, for the one
solution which tends to infinity @ — wu|A|/2, which implies that the asymptotic
metric is in fact the projection of the 5-dimensional Schwarzschild metric on the
brane.

In summary, the pure Schwarzschild spacetime has a diverse set of brane tra-
jectories, most of which are closed, however, there is a class of asymptotically flat
branes which have a localised source satisfying the dominant energy condition (DEC)
(except where pressure singularities occur) and hence with the interpretation of an

isolated gravitating star.

3.5 Braneworld Stars: A Schwarzschild-adS Bulk

Since the Randall Sundrum model is a brane in adS spacetime, it is instructive to
examine the case of a static brane embedded in a 5-dimensional Schwarzschild-anti-
de Sitter (SadS) spacetime. It is anticipated that any consistent brane trajectories
in SadS have the potential to correspond to brane stars or black holes. It should be
efnph:asised that these solﬁtions will be not just brane solutions, but fully consistent
brane and bulk solutions, since the Israel equations for the brane have been solved

in a known bulk background.
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In the Randall-Sundrum scenario the empty brane solution does not have zero
energy-momentum, but a background constant energy and tension: T, w = Abrane v,
where Aprane = prs for the critical RS brane, and Aprene < prs for the subcritical
Karch-Randall brane. Therefore, computed values of p and p in the brane energy-
momentum tensor (3.5) will include this background brane energy-momentum. Ac-
cording to [54], the brane gravitational field couples to the differential energy-
momentum

T = Thy — Z—‘;h,w, (3.83)

where p; is the background brane tension. For critical branes, 7,,, will correspond to
the additional matter on the brane sourcing the spherically symmetric gravitational
field, however, sub- and super-critical branes will have an additional gravitational
effect from the imbalance of bulk and brane cosmological constants. In order to
ensure consistency with those brane trajectories already described in a pure adS

bulk, from equation (3.5) the background brane tension will be identified as
_ 6k(a—1)
Pv = ———/15 m,
In five-dimensional Schwarzschild-adS spacetime the metric function U(r) is given

by

(3.84)

1

U(r) =1+ k*? — 5 (3.85)

and is not covered by the general metric ansatz studied in section §3.4. The function

7 does have an exact analytic expression

1
k71+

. 2
Elliptic F {Arosin <L> T—;] , (3.86)
T_ 7'+

7(r) =

although it is of limited use owing to the presence of the Elliptic function and the
imaginary value of r_. In the above, r, (the black hole horizon) and r_ are defined

by the expressions

o —14+/1+4k% ,  —1—+/1+ 4k (387
= T = . .
2k? ’

"+ - 2k?

- An alternative analytic approachis to find a'series solution for the shape of the
brane a(r) by making the change of variable A = 72. Then equation (3.49) may be

written as

22N (KPA? + A — ) + &' X (K*A* + p) — pa =0, (3.88)
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where prime now denotes differentiation with respect to A. If a series solution of the

form

a(A) =D a A", (3.89)
n=0

is sought, then (3.88) becomes

oo 5 o0
Z k*(n+~v—2) <n +7 - 5) an_o A" + Z(n +v9 - 1D(n+7—2)ap_1 A"

n=2 n=1
- 1
— Z pn+v-1) (n +v - 5) a A"t = 0. (3.90)
n=0

Equating powers of A yields relations between coeflicients of the series expansion

1
n = 0 u(v—l)(v—i)aozm

1
n = 1 v(v — Dag — wy (’y + 5) a; =0, (3.91)

5
n > 2 E*(n 4y — 2) (n+7—§> o+ n+vy—1(n+7v—2)an_ —

1
pn+~v—1) (n+7—§) a, =0.

From the above relations all possible series coefficients may be computed in terms
of the lowest order coefficient for each of the independent solutions corresponding
to v =1/2,1. This leads to the general solution for the braneshape

1¢4 1 [2¢8 8 1

2 4 6 6 8 10
e [1- 25 5 30 o [is + 3 150) 70 (35)]

where the dimensionless variable £ = kr and parameter ¢ = uk? have been intro-
duced (for convenience the symbols ag and by have been used to denote the arbitrary
integration constant when the solution is expressed in terms of dimensionless vari-
ables, but it should be noted that their dimensionality has then changed to preserve
consistency). From this expression the form of the pressure and energy density may
be derived through equations (3.48) and (3:52) respectively. It is clear that'if a solu-
tion is sought in the limit ¢ = pk? > 1 then the infinite series may be truncated and

a finite term expression used to describe a Schwarszschild-adS brane to the required

accuracy. Unfortunately, the analysis presented in appendix A.3 demonstrates that
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a limit may be placed on the radius of convergence of the series solution that tends
to the radius of the Schwarzschild-adS black hole horizon when the large ¢ limit is
taken. In order to describe branes in this background it is necessary to resort to nu-
merical solution through equation (3.86). Before proceeding, it is instructive to first
deduce some general properties of SadS brane trajectories based in part on what
has been learned from the study of Schwarzschild and anti-de Sitter embeddings
separately.

For large enough r, the geometry will be dominated by the cosmological constant
so any brane trajectories found should asymptote to a pure adS solution. Also, if
uk? < 1, so that the black hole is much smaller than the adS scale, then in the
vicinity of the horizon the trajectory should be well approximated by one of the
Schwarzschild branes already described. Owing to these two facts it is reasonable to
expect that, for small mass black holes at least, the brane trajectories ought to be
well approximated by some combination of Schwarzschild and adS branes already
analysed.

For ease of comparison with the asymptotic pure adS limit, in the subsequent
analysis the r-coordinate is zeroed at infinity. Then, the range of ¥ in SadS turns
out to be finite, and to decrease sharply with increasing u (for example, if p = 0.01,
r. ~ 0.1 and 7y ~ —3.7, whereas if 4 = 10%, r, ~ 10 and 7, ~ —0.13). This
suggests that trajectories in large mass SadS black hole spacetimes are in some
respect more finely tuned than their small mass counterparts.

The focus of this study is those branes which have a matter distribution that may
be interpreted as an isolated gravitating source. The key requirements of such an
object are a localised energy excess at the centre of the brane which decays rapidly
with increasing brane radial coordinate. To satisfy this then, unless the brane is a
closed bubble, the energy density p must be a decreasing function of r. From (3.51)

it can be seen that in SadS

,_ 2up ,
p = 7_30 (cos x), (3.93)

so p will be a decreasing function of r providing cos x is also. However, from (3.56),
p is asymptotically dominated by pov/U(ae™ —be™7)/r o (cos x)', hence any positive

energy brane trajectory will have (cosx)’ > 0 as r tends to infinity, and hence p
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Figure 3.7: A sample of supercritical brane trajectories with a +b > 1 in a 5-
dimensional Schwarzschild-anti-de Sitter background of fixed parameters £k = 1 and

i = 0.03. The dashed line denotes again the horizon.

will slowly increase towards infinity also. Consequently there will be a region at
large r that is under-dense in comparison with the “background” energy density at
infinity. However, this under-density will prove to be extremely marginal, and many
trajectories have, as their main feature, interior energies significantly in excess of
their background value.

As in the case of a pure adS background, the SadS trajectories can be classified
according to whether they asymptote the adS boundary at non-zero x, at y = 0,
or close off and do not reach the boundary at all. These correspond to subcritical

(a + b > 1), critical (a + b = 1), or supercritical branes (a + b < 1) respectively.

3.5.1 Supercritical Branes

It is possible to show that all closed trajectories must be supercritical. Clearly if a

trajectory is not closed, it is not supercritical since if a brane asymptotes the adS
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boundary then in that asymptotic regime it must have |cosx| ~ |a + b| < 1 from
the pure adS results. Now suppose that the brane has a finite extent. In that case
the brane must satisfy cosx = 1 at some value 7; < 0. If the brane is closed it
should also satisfy cos x = cos xo at some other value 7y < 7y, where xo = 0 if the
bubble lies entirely on the right-hand side of the black hole and xo = 7 if the bubble
encloses the black hole. The only other possibility for a finite brane is to terminate
on the horizon and, in that case, 7o = 7y if xo € (0, 7). Applying these conditions
the constants a and b may be evaluated as

F F
e'l — e cos xg

7 7
s (e™ cos xg — €™)
e2f1 — 62?0

e2f1 . 270

a= , b=

(3.94)

From the above it may be seen that, since 7y < 71 < 0, a+ b is a decreasing function
of 71; therefore, since a+b=1for 7, =0, a+b > 1 for a closed bubble with 7; < 0.

In figure 3.7, a sample of supercritical brane trajectories are depicted for fixed
background parameters £ = 1, ¢ = 0.03, and various values of the constants a
and b that feature in the general solution (3.55). The branes exhibit the features
discussed above and form either closed loops or arcs terminating on the horizon.
The latter characteristic is determined by whether a and b satisfy the constraint
|cos x| =~ |ae™ + be~™| < 1 near the horizon. For the arcs terminating on the
horizon the energy density remains positive and increases towards the centre of the
brane. However, as in the Schwarzschild case, the pressure becomes singular at
the horizon. For branes forming a closed loop entirely to the right-hand side of
the horizon a similar behaviour is found to that encountered in the Schwarzschild
background: the energy density is maximised at the most distant point on the brane
and decreases towards the vicinity of the horizon. A uniformly increasing behaviour
for the energy density is found in the case of brane trajectories that enclose the black
hole horizon: p reaches its maximum positive value at the point located farthest from
the black hole, although care must be taken over the choice of a and b to ensure

that p remains positive throughout the trajectory.
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Figure 3.8: A sample of critical brane trajectories with a +b = 1 in a 5-dimensional
Schwarzschild-anti-de Sitter background of fixed parameters k = 1 and g = 0.03.

The dashed line again denotes the black hole horizon.

3.5.2 Critical Branes

Critical branes are defined by the condition a+b = 1, asymptoting the adS boundary
at exactly x = 0. The branes are open, and may or may not touch the black hole
horizon depending on the exact values of the parameters a and b. To determine
when this occurs the trajectories may be described in terms of a single parameter

by writing a = (1 + ¢)/2 and b = (1 — ¢)/2. Then, if
¢ < |tanh#, /2|, (3.95)

the trajectory remains on the right-hand side of the horizon: after reaching a point
of-closest ‘proximity, the brane bends to avoid the horizon and eventually escape
to infinity. If ¢ saturates or exceeds the above bound, the brane terminates on the
horizon. A sample of critical trajectories in a SadS background is shown in figure

3.8.
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this pressure excess, the other main difference with pure Schwarzschild trajectories,
is that whether branes satisfy the differential dominant energy condition (DEC) at
their centre depends crucially on the choice of c.

The term “differential DEC” refers to the DEC for the differential energy-
momentum 7, and thus the energy-momentum tensor for an observer on the brane.
In pure Schwarzschild, the DEC is satisfied except for branes which skirt extremely
close to the horizon, where the local Weyl curvature causes the pressure to diverge.
This phenomenon is also observed for the SadS branes passing close to the horizon,
however, as c is decreased (or b increased) the central energy dominates the pressure
for only a finite range of b before once again dropping below the pressure. This is
because further from the horizon the adS curvature becomes more significant and
for pure adS branes the effect of this curvature is to induce a pressure excess. Many
of these features are illustrated in figure 3.9 where the differential energy density
and pressure profiles of three of the trajectories in figure 3.8 are presented. There
is clear localisation of both energy density and pressure at the centre of the brane,
corresponding to the distribution of a positive mass source, and in the middle figure

the DEC is satisfied in the central region.

3.5.3 Subcritical Branes

This family of branes with a +b < 1 are similar in many respects to critical branes.
They correspond to open trajectories that asymptote the adS boundary, although
at nonzero x. The same bound as before, whether |cos x| ~ |ae™ + be ™| < 1,
determines if the brane terminates on the event horizon or remains to the right of
it. As the subcritical brane trajectories look similar to those presented in figure 3.8,
apart from the angle of approach to the adS boundary, it is not necessary to present
another graph detailing their appearance. As might be expected, the energy density
and pressure profile in this case is also similar to that already studied. Once again,
for a large family of parameters a and b, solutions with a positive energy excess at
the centre of the brane may be readily found.

One special subcritical trajectory highlighted in the pure adS case was the Karch-
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Figure 3.10: A mixture of sub-, super- and critical brane trajectories in a 5-
dimensional Schwarzschild-anti-de Sitter background of fixed parameters k = 1 and

p = 0.03.

Randall brane, a + b = 0. This can be extended to the SadS case obtaining
cosy = 2asinhv. (3.96)

However, since a > 0 for a positive energy trajectory, this has (cosy)’ > 0 so the
energy density is always increasing with r. Therefore, regardless of whether these
trajectories terminate on the horizon, they always correspond to energy deficits
on the brane, and hence negative mass sources from the point of view of a brane
observer.

Finally, it is important to see if the Schwarzschild trajectory that was non-
singular on the horizon, intersecting perpendicularly and extending to the origin,
lia,s a Sch—adS generalisation. This corresponded to ae™ = be "™+ (note that the

condition A = B for Schwarzschild was for the 7 coordinate zeroed at the horizon).
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Extending this concept to SadS gives the trajectory
cos x = 2ae™ cosh(F — 7). (3.97)

These can be super- sub- or precisely critical, depending on the magnitude of a,
however, all of these branes have (cosx)’ > 0, so contain energy deficits on the
brane.

The brane trajectories found in this section and depicted in figures 3.7 and 3.8
have obvious similarities with those presented in the previous sections. As expected,
trajectories in a bulk containing both a mass and a negative cosmological constant
are hybrid constructions, exhibiting a mixture of the features and characteristics
that appear with a pure adS or Schwarzschild background. As an example, figure
3.10 presents one possible SadS generalisation of figure 3.2, exhibiting all three
possible forms that branes may take in a spacetime that is asymptotically adS. The
parameters a and b in this particular case have been chosen so that the branes
remain to the right of the horizon, bending away to avoid contact in the central
region. Finally, it should be noted that the study of SadS backgrounds with larger
mass parameter y leads to similar families of trajectories. As mentioned earlier, an
increase in the value of i causes the range of the 7-coordinate to reduce, requiring an
increased accuracy in the numerical analysis involved in plotting the corresponding
trajectories. Beyond this increase in numerical sensitivity, the study of large mass

SadS backgrounds yields the same characteristics for permitted brane trajectories.

3.6 Summary

In this chapter fully consistent gravitational systems involving a brane containing
perfect fluid embedded in a variety of five-dimensional spherically symmetric bulk
spacetimes have been presented. A time-dependent family of brane trajectories was
found with equation of state p(7,7) = —p(7, ), however the background spacetimes
in which-these could be embedded excluded the possibility of a black hole occlirring
in the bulk. In the hope of finding a consistent braneworld black hole solution
within the RS2 model a time-independent scenario was then investigated. Static

branes embedded in pure five-dimensional adS and Schwarzschild bulks were first
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analysed separately, before considering the more general Schwarzschild-adS case in
full.

The static slicing of a known spherically symmetric bulk was found to be com-
pletely integrable, with the solution conveniently written in terms of an implicit
function of the bulk radial variable. All possible trajectories for a brane containing
a perfect fluid matter source, corresponding to braneworld Tolman-Oppenheimer-
Volkoff solutions, have been classified. A number of these solutions have pressure
and energy density distributions that permit the interpretation of braneworld stars.
However, the part of the bulk spacetime retained under the Z, symmetric identifi-
cation does not, in general, include the singularity or even the black hole horizon.
The induced metrics on the brane are non-singular everywhere and therefore cannot
correspond to the desired braneworld black hole.

Almost all branes embedded in asymptotically adS space were found to contain
excess pressure at large radius. The only possible case that produces a well-behaved
asymptotic limit is the subcritical Karch-Randall brane. Unfortunately reconciling
a subcritical choice of brane cosmological constant with a positive mass distribution
on the brane proved to be impossible. It is interesting to note that the original RS2
model is not plagued by this problem of excess pressure. Its appearance is related to
the fact that the brane trajectories analysed here are static in global coordinates. As
noted in §3.2, the RS2 brane trajectory is actually a time-dependent slicing of adS
in global coordinates. This suggests that removal of the pressure excess may only
be achieved through solution of the complete time-dependent system of equations
(3.16)-(3.21).

So a static solution with all the features of a braneworld star has also proved
elusive. However, it is important to note that in the course of investigation much
progress has been made towards finding the exact braneworld star and black hole
solutions through the development of an analytical strategy for finding complete
solutions to the brane Tolman Oppenhelmer Volkoﬁ problem as Well as a system-
atlc scheme for clasmfymg such solutions accordmg to their distribution of energy—A

momentum.



Chapter 4

Hawking Radiation in Large Extra

Dimensions

One of the most exciting features of braneworld models is the possible lowering of
the fundamental scale of gravity to levels achievable in next generation particle col-
liders. High-energy scattering experiments involving collisions with trans-Planckian

“*Mp, have potential to produce miniature black

centre-of-mass energy, /s >>
holes [78,79]. Such low-mass black holes will be characterised by a relatively large
temperature Ty and extremely short lifetime, decaying rapidly via Hawking radi-
ation into all kinematically permitted elementary particles. In order to correctly

identify a collider-produced black hole it is important to determine its characteristic

emission spectrum of Hawking radiation.

4.1 Black Hole Creation in High-Energy Colli-
sions

Black hole creation is a fundamentally quantum gravity process. However, in a
similar manner to conventional quantum theory, if the produced black hole has a
mass that is several times the fundameéiital Planck mass then, on quantum gravity
scales, the black hole may be considered a macroscopic object and a semi-classical

approach adopted.

60
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Intuitively, a black hole with mass Mgy = /s > (H")]\/[p and corresponding
horizon radius, 7y, will be created in the collision between two highly-energetic
particles with centre-of-mass energy /s if the impact parameter of their collision
b < ry. Owing to the complexity of the collision process, a detailed relativistic
study including the effects of gravitational radiation [80-84] and the formation of
a closed-trapped surface around the colliding particles [85-93] must be performed
to reliably improve these intuitive bounds. Fortunately an analytic expression ac-
curately reproducing the upper bound on the impact parameter for n > 1 may be

derived by assuming a black hole will form if particles approach within [94, 95]

1

u n-41
5 : (4.1)
) }

(e

bmax =2

where u is related to the mass of the black hole in a manner that will be outlined
in §4.3. A corresponding lower bound on the centre-of-mass energy retained by
the black hole seems to suggest it is a decreasing function of the number of extra
dimensions present [85,87]. This result is significant since if only a small fraction
of the energy available in particle collision is retained by the black hole then the
semi-classical assumption employed in subsequent analysis may not apply to black

holes created in the next generation of particle accelerators.

4.2 Black Hole Evolution

Hawking demonstrated that when general relativity and quantum mechanics are
combined black holes may evaporate the energy they contain into a spectrum of
fundamental particles [96]. This Hawking radiation may be understood through the
creation of virtual particle/anti-particle pairs at the horizon. If a positive-energy
particle escapes to infinity, while its negative-energy partner falls into the black hole
then the net effect is that the black hole loses mass and emits radiation. The infalling
particle may have negative energy, as viewed from infinity, since the asymptotically
timelike Killing vector becomes spacelike inside the horizon.

The existence of Hawking radiation suggests that the lifetime of an isolated black
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hole must be finite. In (44n)-dimensions the lifetime can be approximated as [97]

n+3

T ! < Mz >n—+1 . (4.2)

~
4+n 4+n

Within extra-dimensional models ‘"M, p ~ 1 TeV so a black hole of minimum mass
Mgy ~ 5 TeV may be safely considered macroscopic [98,99]. Substituting this
bound into equation (4.2) yields extremely small predictions for the lifetime of a
microscopic black hole. For example, if n = 2, collider black holes evaporate within
the vanishingly small period 7 ~ 1 x 107% s,

Despite the fleeting nature of its existence, the lifetime of a trans-Planckian black

hole may be divided into four phases [98,99]:

e The balding phase: All quantum numbers possessed by the colliding particles
are shed, except for charge, angular momentum and mass. The black hole
emits mainly gravitational radiation and the asymmetry present in the violent

production process is reduced.

e The spin-down phase: Any remaining angular momentum about an axis per-
pendicular to the plane in which the particles collided is lost through Hawking
radiation. Such angular momentum arises where the original collision occurs

with non-zero impact parameter.

e The Schwarzschild phase: Having shed all its angular momentum the black
hole is reduced to a static, spherically symmetric state which continues to lose

its remaining mass through Hawking radiation.

o The Planck phase: As the mass of the black hole approaches M quantum

gravity effects dominate and the semi-classical approximation breaks down.

Particles emerging from a black hole do so into a spacetime with significant
curvature. This curvature presents a gravitational potential energy barrier, impeding
propagation to infinity' and causing some particles to be reflected back towards the
singularity. The spectrum of Hawking radiation witnessed by observers at infinity
will therefore depend upon the specific structure of the spacetime outside the black

hole at the moment the particle is emitted.
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Within the Randall-Sundrum models no analytic braneworld black hole metric
exists so it is difficult to perform a realistic calculation of the emission spectrum dur-
ing any of the four phases of a black hole’s lifetime. However, closed-form solutions
describing both static and rotating black holes exist in asymptotically flat space-
time of arbitrary dimension [100]. Under certain assumptions these metrics present
an ideal starting point for calculation within the ADD model where extra spatial
dimensions are compactified but with large radius. If the black hole is of sufficiently
low mass that its horizon radius is much smaller than the compactification scale of
the extra dimensions, then the black hole will appear to be a higher-dimensional

object submerged in an extra-dimensional spacetime of effectively infinite extent.

4.3 The Myers-Perry Black Hole

In 1986 Myers and Perry [100] discovered a solution to Einstein’s equations repre-
senting a rotating point source in arbitrary-dimensional, asymptotically flat space-
time. In the four-dimensional Kerr solution [101] there is only one possible plane of
rotation, but as the dimensionality increases the number of independent planes in
which retation may occur (and hence the number of parameters required to specify
the motion of the black hole) increases also. In (4+n)-dimensional spacetime up
to [(n + 3)/2] angular momentum parameters must be specified. However, black
holes that are created in collisions between particles confined to an infinitely thin
four-dimensional brane may only have non-zero impact parameter along the brane,
and thus acquire only one non-zero angular momentum parameter about an axis in
the brane. Consequently the (4+n)-dimensional black hole metric relevant to the
study of microscopic black hole evaporation in collider experiments is that with only

a single angular momentum parameter

2asin® f b
ds® = —(1 - Z:fl_]>dt2-%‘%r_‘l—dtdngdruz:de%

220 G2 0 .
<r2 +a® + %) sin® 0 dp® + r? cos® 0 dQ2 (4.3)
where

M ¥ =r1?+a®cos’f, (4.4)
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and dQ2 (6, 0y, ...,0,_1, ¢) is the line-element on a unit n-sphere. The mass, angular

momentum and temperature of such a black hole are given by

+2)A, 1 ~ 1)a?
(n+2)Ania J 2 My a. TH_(n+)+(n 1)a?

Mpy =~ 2n+2 =
ST T n+2 an(1 + a)ry

(4.5)
where the area of a (n + 2)-dimensional unit sphere, A, -, and the horizon radius

ry (defined by A(ry) = 0) are given by

9 (n+3)/2 o e
EZ H_{lJraE] ’

An+2 - (46)

and the definition a, = a/ry has been made.

Since the creation of the black hole depends crucially on the value of the impact
parameter between the two highly-energetic particles, and that in turn defines the
angular momentum of the black hole, an upper bound can be imposed on the angular
momentum parameter, a, by demanding that the black hole is created during the
collision. As already discussed, the maximum impact parameter value leading to
creation of a black hole is given in equation (4.1). If the black hole is assumed to
be formed when two massless particles of equal energy Mpy /2 collide with impact
parameter b then in the centre-of-mass frame the angular momentum of the particles
before collision is J = bMpy /2. Taking this to be equal to the angular momentum
of the resultant black hole then, using the definition of the horizon radius 7y and
the second of equations (4.5), the maximum value the black hole angular momentum
parameter may take is [94]

n+2

max — . 4.7
a’* 2 ( )

Without the restriction imposed by equation (4.7) the black-hole angular mo-

mentum parameter would be unbounded for n > 1, contrary to the cases n = 0 and
n = 1, where a maximum value of a exists so that a real solution for the black-hole
horizon is guaranteed.

The Myers-Perry metric, equation (4.3), is a good approximation to the space-
time -experienced by particles escaping from a microscopic black hole providing two
key assumptions are satisfied. The first is that the energy contained in the field of
the escaping particle is sufficiently small in comparison to the mass of the black hole

that the background metric is unperturbed by the emission. This will be true during
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the early stages of evaporation for black holes with mass 2 5 TeV - significantly
larger than the rest masses of all known particles. As the decay proceeds the black
hole mass will decrease to the point where the energy of an emitted particle is a
significant fraction of the mass of the black hole, at which point the back-reaction on
the black hole metric must be taken into account. However, when Mgy has reduced
to =~ 1 TeV the black hole will pass into the Planck phase where the semi-classical
analysis breaks down and a quantum theory of gravity is required for calculation.
The second assumption is that the emission process is quasi-stationary so that as
each particle is emitted the black hole has time to reach equilibrium at its new
temperature before further energy is lost. This assumption does not hold in the
balding phase where the black hole rapidly loses the hair inherited from the parti-
cle collision. Both assumptions are only valid in the spin down and Schwarzschild
phases, so attention will be focused on these parts of the black hole lifetime in the

subsequent analysis.

4.4 'The Role of the Brane

Up to now the role of the brane has been neglected in the discussion of higher-
dimensional black hole evaporation. In order for equation (4.3) to represent the
spacetime into which Hawking radiation emerges it is essential that the tension
of the brane is much smaller than the black hole mass so that the Myers-Perry
background is unperturbed. The dominant effect of the brane is in restricting the
region of spactime into which particles may be emitted.

One of the major features of braneworld models is that Standard Model particles
are confined to the brane while gravity and possibly scalar fields may propagate in
the bulk. This must also be true of particles emitted via Hawking radiation. While
all known scalar, fermion, gauge boson and graviton degrees of freedom may, in
principle, be detected in the emission spectra on the brane, there will also be a
missing energy signal comprising graviton and scalar modes that have esbaped our
directly visible universe, being emitted into the bulk.

In order to account for all the energy of a black hole lost in Hawking radiation it



4.5. Calculation of the Hawking Radiation Spectrum 66

is therefore necessary to consider the equations of motion of particles propagating
both on the brane and in the bulk separately. To achieve this, bulk calculations are
made using the full metric (4.3) whereas brane calculations are performed projecting
the metric onto the four-dimensional submanifold found by restricting all additional
angular coordinates {6; = /2, » = 0}. The induced metric is then identical to (4.3),

but with the term proportional to dQ2 omitted.

4.5 Calculation of the Hawking Radiation Spec-
trum

The energy radiated by a black hole into a particular degree of freedom may be
calculated by considering the asymptotic form of the vacuum expectation value of
the energy-momentum tensor for that particle species in the background created
by the black hole. Since the concepts of “vacuum” and “particle” are observer-
dependent in quantum field theories on curved spacetimes, it is important to define
the components of such a calculation with great care [102].

There are many standard vacua defined in the literature in curved backgrounds,

the most common of which are:

e The Hartle-Hawking vacuum - defined to be a vacuum state that respects all
spacetime symmetries and is regular everywhere, in particular on the past and

future event horizons H*.

e The Boulware vacuum — is free from particle flux at both past and future null
infinity Z*. An observer with such a vacuum state would see no particles

entering the black hole or escaping to infinity.

e The Unruh vacuum — exhibits no incoming radiation from past null infinity 7,
but modes emanating from the white hole region of the analytically continued

spacétime H~ are thermally populated.

Applying these concepts to the specific case of the four-dimensional Kerr background

(with metric given by the n = 0 case of equation (4.3)) it is possible to show that, in
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the sense defined above, no “true” Hartle-Hawking or Boulware vacuum states exist
[103,104]. However, the vacuum relevant for calculation of the Hawking radiation
spectrum is the Unruh vacuum, for which no complications arise in construction.
To illustrate the procedure, consider the case of a massless scalar field in the
background of a rotating four-dimensional black hole. The field satisfies the corre-

sponding curved-spacetime Klein-Gordon equation
1
V. VE® = —— 0,(v/—9g9""3,P) = 0. (4.8)
This equation can be shown to be separable [105], employing basis functions of the

form

1 o
ttnle) g St

where S,¢m(cos @) are the four-dimensional spheroidal harmonics. The radial com-

(COS H)Rufm (T) s (49)

ponent R, (r) satisfies a Schrodinger-like ordinary differential equation

d?
( - Vw!m) wam = 07 (410)

when written in terms of the ‘tortoise’ coordinate, defined by dr,/dr = (r* +a?)/A.
In the asymptotic regions close to the horizon (r, — —oo0) and out at infinity

(r. — oo) the potential takes the constant values

—-k? asr, — —o0 where k =w —mfl = w — %,
vu;KmN T

—w2 as Ty — 00.

In order to ensure that a ground state with the desired properties of an Unruh
vacuum is obtained it is convenient to work in a basis of solutions to the scalar
field equation that is tailored to the Cauchy surface Z- UH~, upon which boundary
conditions are to be applied. Modes that would have emanated from the white hole
region ‘H~ are commonly referred to as “up” modes, while those corresponding to
unit particle flux from Z~ are known as “in” modes. Given the asymptotic forms
of the potential, a basis of solutions to the radial equation (4.10) that is tailored to

the surfaces H~ and Z~ take the asymptotic forms

ehre AW T 5 o

R o (r) ~ A
Buperrs Ty — OO
(4.11)
. Bine—ikr, r, — —00
wem(T) ™~

e—zwr* -+ Alnem)r, P, — 00.
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Continuing the Schrodinger equation analogy, it is possible to think of the coeffi-
cient A*? as a reflection coefficient for a particle propagating away from the black
hole and B™ to be the corresponding transmission coefficient. Similar interpreta-
tions may be employed for the coefficients A™® and B when applied to a particle
propagating towards the horizon. Wronskian relations between the “up” and “in”
solutions impose a number of restrictions that allow the “up” parameters, relevant
in describing a particle propagating away from the horizon, to be recast in terms of
“in” parameters that refer to the inverse problem of a particle incident on the black

hole. In particular

. |
1—]A"? = ;J—|B’"|2 (4.12)
1 - |42 = %|B“”|2 (4.13)
w(BY)* A" = —kB™(A")* (4.14)
wB" = kB™. (4.15)

The above relations (4.12) and (4.13) demonstrate an interesting feature of radia-
tion from a rotating black hole. For w > 0, & < 0 both |A™|? and |A*"|?> exceed
unity, indicating that the amplitude of the reflected wave is greater than that of the
incident one. This amplification of the reflected wave is a phenomenon known as
superradiance [106].

Using the “up” and “in” radial solutions of equation (4.11) in (4.9) to construct a
basis of solutions to the field equation, it is then straightforward (although care must
be taken for modes with £ < 0 [104]) to quantise the scalar field and define the past
Unruh vacuum, |U~), as the state which is annihilated by all operators creating
a particle incident from Z~ and which contains a thermal population of particles
from H~. Using this vacuum state it is then possible to calculate the (past Unruh-)
vacuum expectation value of the renormalised scalar field energy-momentum tensor
at future null infinity. Integrating the {rt}-component of this vacuum expectation
value over a two sphere at spatial infinity yields

w | B |? dw

— |t - > w
ren — , 4.1
(wrTTivT) ;n:/;:(] exp(k/Tyg)—1 k2w (4.16)

which represents a flux of energy away from the black hole, corresponding to Hawking
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radiation. This expression can be simplified slightly by changing perspective to that

of a particle incident on the black hole. Using equations (4.15) and (4.12)
w
k

where | Agern|? is the absorption probability for a scalar particle incident on the Kerr

|BY? =1 — |A™* = | Agen|?, (4.17)

black hole. The absorption probability for a particle with spin s is formally defined

as the ratio of the incoming particle flux at the horizon, fs(fn), to that at infinity,

’ )
(O:) : (4.18)

s,in

|~’4s€m|2 =

The preceding analysis has also been performed for emission of fermions [107]
and gauge bosons [108] from the Kerr black hole and yields very similar expressions.
More specific comment on the derivation of the absorption probability for particles
with non-zero spin is left for the next chapter where particle emission on the brane
is considered in detail. Overall, the power spectrum due to emission of an individual
degree of freedom with spin s from a four-dimensional rotating black hole may be

written as [109]
d2E(s) - 1 WlAsé’m|2
dtdw 27 = exp(k/Ty) £1°

(4.19)

where the nature of the + factor in the denominator is determined by the spin of
the emitted particle: “+” for fermions and “-” for bosons.

The discussion leading to equation (4.19) focused exclusively on particle emis-
sion in the four-dimensional Kerr background, however, extending the argument to
the projected Myers-Perry background of the induced on-brane metric is straight-
forward. The only deviation arises in the form of the radial equation that must be
solved to extract the absorption coefficient |Ag,|?. This calculation is the subject
of the next chapter.

In addition to Hawking radiation on the brane, it would be interesting to know
the fraction of energy lost to the bulk. To find the spectrum of radiation into
the bulk spacetime it is necessary to perform a higher-dimensional field theoretical
calculation analogous to that outlined above. This is yet to be accomplished for
an arbitrary number of spatial dimensions, although the specific case of a five-

dimensional spacetime has been addressed [110]. The result of that study is an
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identical expression to equation (4.19), except that summation occurs over the mode
structure relevant to the spheroidal harmonics in four spatial dimensions. Given
this result, it will be assumed here that the bulk Hawking radiation spectrum in
a (4 + n)-dimensional spacetime may be calculated according to equation (4.19)
but with summation over the mode structure relevant to the (3 + n)-dimensional
spheroidal harmonics. The emission of bulk scalar fields is studied in chapter 6.
Before proceeding with direct analytic calculation it is worth pausing to consider

the characteristic features that might be expected of the Hawking radiation spectra.

4.6 Features of the Spectrum

In four dimensions the contribution from a single degree of freedom to the energy
emission spectrum of a perfect blackbody at temperature T" takes the form

d*E(BB) 1 w3
dtdw — 2n2exp(w/T) £ 1"

(4.20)

It is apparent from comparing equations (4.20) and (4.19) that, while there is a
clear resemblance, the spectrum of radiation from a black hole differs from that
of a true blackbody in a number of ways. In particular, the presence of k£ rather
than simply w in the exponential is closely tied to the phenomenon of superradiance
that occurs for modes co-rotating with the black hole. As previously mentioned,
this is defined as the reflection probability of a wave incident on the gravitational
barrier exceeding unity, or equivalently the absorption probability being negative.
Superradiance occurs when k = w — ma/(r% + a?) < 0, so should be visible in plots
of the absorption probability both on the brane and in the bulk, but only for modes
with m > 0 and over a finite range of w.

The absorption probability is dependent on properties both of the particle be-
ing emitted, such as its spin, energy of emission and the partial wave under con-
sideration, and also of the surrounding spacetime, including the number of extra
dimeﬁsioﬁs &;n—d fotatidn rate o‘f the‘ blaék hole. The latter twc; dependerﬁcies‘ ére
of particular interest if the evaporation of black holes is to be observed at future

colliders. The w-dependence of |Agm|? contributes further to the deviation between
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spectra of black holes and black bodies. Despite these differences there are two

particular limits in which the forms of the spectra more closely coincide.

4.6.1 The Low-Energy Limit

The gravitational potential barrier typically increases with increasing value of the
principal angular momentum quantum number ¢. Consequently, at very low energy,
the absorption probability for the lowest modes tend to dominate over all others
by several orders of magnitude. For scalar particles, since the £ = 0 mode requires

m = 0, the on-brane low-energy spectrum may be written as

2 1(0) 2 2 [(BB)
TET L _wMwl o, EETT (4.21)
dtdw  2mexp(w/TyH) — 1 dtdw
where
T
0((10)(‘-") = u?lAOOOlQ (4.22)

encodes the residual deviation of the black hole spectrum from that of a standard
four-dimensional blackbody with temperature T}, and is consequently termed the
“sraybody factor”. It represents the outgoing transmission cross-section of the low-
est partial wave in the gravitational background. The definition may be extended
to general modes

s m
Uz(zn)L(W) = EIAsﬂmlgy (423)

and partial cross-sections may be calculated by summing over desired vales of m
and ¢. For example, the low-energy cross-section for particles with non-zero spin is
determined by summing over the values of m corresponding to the lowest principle

quantum number for that species ¢,
s s
oy (@) = = D [Astom”. (4.24)

Studies of on-brane radiation during the Schwarzschild phase have discovered that
the value of the graybody factor in the low-energy limit.tends to different values.
depending on the spin of the particle emitted [111]. In particular, it has been found
that for scalar particles it always reduces to the brane-projected area of the horizon,

4rr%. For emission in the bulk, a corresponding higher-dimensional low-energy
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cross-section may be defined as [112)

s 2n+17rn-2‘—1 n + 3
0-§0?n(w) = wn+2 F ( 2 ) Z |AS£01’71,TL|2 . (425)

m

In the Schwarzschild phase this quantity was found to reduce to the full area of the
higher-dimensional black hole in the limit of emission of extreme low-energy scalar
particles. It would be interesting to see if these results also hold in the spin-down

phase.

4.6.2 The High-Energy Limit

At very high energy £ ~ w for all modes and the Hawking radiation spectrum on
the brane can be written

dQE(S) _ 1 wl.Asgm|2 . (s) dzE(BB)

arr L — A 4.26
dtdw 21 & exp(w/Ty) 1 P11 () dtdw (4.26)

where

m
T (@) = Y 0pm = — > [Msem®, (4.27)
m

£m

is the total cross-section, found by summing over individual cross-sections for each
mode. Particles emitted with extremely high energy should experience negligible
effect from the gravitational potential barrier. In this limit the total cross-section
should tend towards a high-energy asymptotic value, known as the geometrical optics
limit, which is the same for all particle species.

Owing to the relations between infalling and outgoing particle parameters in the
field theory calculation of the radiation spectrum, the geometrical optics limit may
be calculated from purely classical arguments as the cross-sectional area correspond-
ing to the minimum impact parameter that permits an incoming relativistic particle
to escape to infinity. This calculation is conducted for brane-confined particles in
the analysis of the next chapter.

As in the low-energy limit, a corresponding higher-dimensional analog -of the
total cross-section may be defined as

2n+l7r"T+1

s n+3
{/}
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where {J} represents the set of quantum numbers indexing all possible higher-
dimensional spheroidal harmonic states. This should also tend to a geometrical
optics limit, although it will differ from the on-brane value owing to the larger
number of directions from which a particle may approach the black hole in a higher-

dimensional space.

Having defined the absorption probabilities, energy emission rate and asymptotic
cross-sections for Hawking radiation both on the brane and in the bulk, it is now
possible to analyse the spin-down phase of a collider-manufactured black hole in

terms of these physical quantities.



Chapter 5

Brane Emission in the Spin-Down

Phase

While the Schwarzschild phase of the lifetime of a microscopic black hole has been
studied extensively using both analytic [113,114] and numerical techniques [111],
owing to the increased complexity of the gravitational background, the spin-down
phase has been the subject of less attention. As was mentioned in chapter 4, collider-
manufactured black holes are highly likely to have finite angular momentum imme-
diately after creation as a result of the non-zero impact parameter between colliding
parent particles. Consequently, the emission of Hawking radiation during this pe-
riod of rotation is an important component of the total energy lost by the black hole
that may either be available for detection on the brane or must be accounted for if
lost to the bulk.

This chapter considers the spectrum of Hawking radiation from degrees of free-
dom emitted by the black hole onto the brane. A number of recent studies have
addressed this topic mainly through numerical analysis [115-121] or by focusing on a
spacetime of specific dimensionality [94,122]. In the following sections a well-known
matching technique is employed to solve the field equations in the projected back-
ground and derive analytic expressions for the on-brane Hawking radiation spectra

from a black hole with angular momentum (2, 3].

74
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5.1 The Field Equations

As mentioned in the previous chapter, the gravitational background on the brane
from a collider-produced black hole in a (4 + n)-dimensional bulk is given by the

projected Myers-Perry solution

2a15in® 0 X
d32=—<1— s )dtQ—ﬂdtd@+—dv-2+zd92+

Yn-l Yn-l A
2 : 29
(Tz faly ;7) sin? 0 dg?, (5.1)
e
where
A=7‘2+a2—L1, ¥ =1%4a* cos?4, (5.2)
rn-

The mass, angular momentum and temperature of the black hole were given in
equation (4.5).

Although the above background is very similar to the standard four-dimensional
Kerr spacetime, it contains an explicit dependence on the number of additional
spacelike dimensions n. The potentially observable deviations of the Hawking radi-
ation spectra from that predicted in ordinary 4-d general relativity may be traced
back to this dependence.

To study the propagation of fields in the above background it is necessary to
derive their equations of motion. For simplicity it is assumed that particles couple
only minimally to the gravitational background and have no other interactions so
that they satisfy the corresponding free equations.

The exact forms of these equations of motion for particles with spin s can
be found by employing the Newman-Penrose formalism [123, 124] which permits
the study of multi-component fields propagating in a curved background. In the
case of particles propagating in the brane-induced background of a rotating higher-
dimensional black hole (5.1) this task has already been performed [37,94], so is not

repeated here. To outline the result: if the factorised ansatz for the field

U(t,1,0,0) = ™™ ™ Ry(r) ve(0) (5.3)

is assumed, where S}, (f) are the spin-weighted spheroidal harmonics [125-130], then

the free equations of motion for particles with spin s = 0, % and 1 may be combined
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to form the following “master” equation [119], satisfied by the radial part of all

radiative components of the field,

d dR K? —isKA'
AT — s+l 5 ) " 63 sl — As Rs =Y,
o (A o ) + [ A + diswr + s (A 2) sl ¢ 0

where

K=(*4+ad)w—am, Age = Aot + a*w? — 2amw . (5.5)

In the above, Ay is the angular eigenvalue appearing in the equation satisfied by the
spheroidal harmonics

1 d dsm,
T <sm€ ¥ ) + (5.6)

(m + scos 9)2

+Ae+s] S =0.
sin? 6 ¢ S) st

<a2w2 cos? 0 — 2aws cosf —

From equation (5.4), it is clear that the radial parts of the radiative components
with s = |s| and s = —|s| satisfy different equations, owing to the presence of the

J5s| term. This can be overcome by redefining
R+|S| = Al P+|5| , R_|S| = P_|5| . (57)

In terms of these new functions, the radial master equation on the brane takes the
simplified form

2 1 -
Alsl C;i (A1—|S| %) + (E—ELA + 4iswr — Asg) Pi(ry=0, (5.8)
r r

where the A”-term has been removed, and A,, = Ajge + 2]s]. It is not possible to

express the angular eigenvalue A5 in closed form, however it can be written as a

power series in aw [125,127,131,132] as

Noe = =Isl(sl + 1) + Y fi (aw)* (5.9)
k

For the purpose of calculation in this Chapter terms to fourth 01del have been

retained and the con‘espondlng coefficients may be written [132]

fo=10(f+1), (5.10)
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2ms?
fr= Nk (5.11)
fo=h(f+1)—h(f) -1, (5.12)
_ 2h(l)ms? _ 2h(f+ 1)ms?
b= DD e+ 2) (5.13)
5 = 4h(€ + 1)m? 4h(€)m? s L+ 2)h{(€+1)h(€+2)
T (ez(e+ 1)4(0+2)2 (¢ —1)2(¢ + 1)2) ST T 2+ 1) (2 +3)
R2+1)  ROAE+1)  h2€)  (£— Dh(€—1)h(0)
206 +1) 20(0+1) 20 T upi—1) (5.14)
where
02— (g 2Y(p2 — §2\(f2 — L(n — 3)2
h(e) = (& — 4( +§23()2_ l)(E)J(rel) ile = 0)) (5.15)
1 1 ms
§(a+ﬂ):max(|m|,|s|) 5(0—5) = max(ml ) (5.16)

The absorption probability |Asm|? for propagation of fields in the on-brane back-
ground around a rotating black hole may be calculated by solving equation (5.8) and
then computing the ratio of the total inward flux at the horizon to that at infin-
ity, equation (4.18). Once |Asnn|? has been determined it is possible to calculate
the Hawking radiation spectrum, equation (4.19), and the cross-sections (4.24) and

(4.27).

5.2 Analytic Solution of the Field Equations

Even in the case of a standard four-dimensional rotating black hole there is no known
exact analytic solution to the radial master equation that is valid throughout the
entire radial regime. To proceed it is necessary to adopt a well-known approximate
method whereby the radial equation is first solved in two asymptotic regimes: close
to the black hole horizon (r ~ ry), and very far away from it (r > ry). These
two solutions are then stretched and matched at an intermediate zone to create a
- smooth analytical solution extending over all r. In the following analysis a unified
formalism is developed encompassing all brane-localised particles by treating their

spin s as an arbitrary parameter.
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5.2.1 The Near-Horizon Solution

Focusing first on the near-horizon regime, if the change of variable

A(r) df A(r)

o f) = s = S = (L=

5.17
r2 + a? dr ( )

is employed, where the function A(r) is defined by A(r) = (n + 1) + (n — 1) a?/7?,

then equation (5.8) takes the near-horizon (r ~ ry) form

d’P, dP,
1- > +(1—|s| - B. > 18
=D+ (= lsl= B G+ (5.18)
Ki““,[,(*,‘}i (425w, . Ase)(1 +QE)}PS(T) —0,
where the following definitions have been made
Wy = Wry, a*za/”’H,
A, = (n+ 1)+ (n—1)ad?, K,=(1+a?)w, —a,m, (5.19)
B 2ls|+n(l+a?) 4a? , _ O0A|
B* = 1—|S|+ A* AZ, A*—ETH—A*.

By making the field redefinition P;(f) = f*(1 — f)?F(f), equation (5.18) takes the

form of a hypergeometric equation [133]

&’F dF
f(l—f)Wﬁ—[c—(1+a+b)f]ﬁ—abF:O, (5.20)
with
a=a+pf+B.,—-1, b=a+ [, c=1-1s|+ 2. (5.21)

The power coefficients a and 8 can be determined by solving the second-order alge-

braic equations

K? isK.
a2—|31a+A§—2‘f4* =0, (5.22)
and
K? isK, (4isw, — Ag) (1 + a?
B 4 B(B. +|s| —2)+ Bx B s m AL ta) (g0

AL A AL

that follow from demanding that the coefficient of F'(f) is indeed —ab. These re-

|s iK, s
=—+|—+= 5.24
Q4 2 A* + 9 ) ( )

strictions have solutions
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and

By = [(2 —|s] = B.) £ (5.25)

DO —

4K? — 4isK, A,  4(disw, — Age) (1 + a?)
\ﬂB* R m

The general solution of the master equation near the horizon is then given by

Pvu(f) =A_f*(1 - f)’ F(a,b,c; f) +

Ay f*(1—fPFla—c+1,b—c+1,2—¢c f). (526)

where A4 are arbitrary constants. Since the choice has been made to express the
absorption probability purely in terms of the “in” modes, according to equation
(4.17), it is appropriate to impose the boundary condition that no outgoing modes
may exist near the black hole horizon. To ensure this, the near-horizon solution
(5.26) can be expanded in the limit r — 7y (equivalently f(r) — 0). The result
depends on which value of « is selected from equation (5.24). The choice a@ = ay
yields

|sl+s |3]+s K

Pyu(f) ~ A f55° f1555 ¢ Ay f775° fiar (5.27)

while a = a_ gives

|s|—s ’_1& _Isl—s l'K—*
Pun(f) = A_f55° p=15 4 A, =55 f1% (5.28)
Introducing the tortoise-like coordinate
1
y =r(1 +a?) n/(lf) , (5.29)
the factors fiiﬁ_: reduce to e**¥  with
ma
k=w—mQ=w— 5 5.30
w—m w 2 o (5.30)

describing an outgoing and incoming free wave, respectively. It should be noted
that, although the coordinate ¢ is not identical to the canonical tortoise coordinate,
defined by dr./dr = (r? + a?)/A(r), it is true that

dy AN (r% +a*)? ry\n-2? dr,
- = AN S L 31
dr (A*) (r? 4+ a?)? ( 7 ) dr’ (5:31)
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so in the limit » — rg the two coordinates converge and the near-horizon asymptotic
solution assumes, as found previously [116,117], the free-wave form in terms of the
standard tortoise coordinate. In order that the field is neither singular nor identically
zero at the horizon, the correct boundary condition in the vicinity of ry for a field
with spin s is [134]

Ry ~ A=Se (5.32)

In the present context this translates to

K+ Kx

Prg e ™ = f7R Py~ ettt = MR (5.39)

So the boundary condition of no outgoing waves near the horizon requires the se-
lection &« = @ and A; = 0. There is one further criterion that must be applied.
In order that the hypergeometric function F(a, b, c; f) may converge it is necessary
that Re(c — a — b) > 0. Imposing this leads to the choice § = [, bringing the

near-horizon solution to the final form
Pyvu(f) = A_f*(1 - f)° F(a,b,c; ). (5.34)

For the purpose of matching the near-horizon and far-field solutions at an in-
termediate region it is necessary to stretch the near-horizon solution to values of
the radial coordinate that are much larger than the horizon radius. This may be
achieved by first changing the argument of the hypergeometric function from f to
1 — f using the identity [133]

I'(c)T'(c — a — b)
I'(c—a)l(c—0)

F(a,b,c; f) = F(a,bja+b—c+1;1— f)+ (5.35)

c—a—b F(C) F(a’ +b— C)

I'(a) I(b) Fle—a,c—bc—a—-b+11-f).

(1-1)

The function f(r) may be alternatively written as

n—1
p 1 TH (1+ad)
S P N Y (A O e 2 5.
f(r) rn-l g2 4 g2 ( T ) (rfry)? + a? (5.36)

where the defining equation of the horizon, A(rg) = 0, has been used to eliminate

. In the limit » > rg, and for n > 0, the above expression tends to unity.
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Using the above result, the argument of the “stretched” hypergeometric function
goes to zero in the limit of large r and the corresponding “stretched” near-horizon
solution takes the form

s L(c)T(c—a—b)
['(c—a)T(c—0b)

_gra-B.—js L@ T(a+b—c)
['(a) (b)
(5.37)

Pyu(f)~ A_ (1= f)°

+A_(1-f)

For r > rg, the quantity (1 — f) can be accurately approximated by
1—f:(L+ﬁ)G§ywa (5.38)
bringing the stretched near-horizon solution to the final power-law form
PNH(T) ~ A, p(nt1)8 + A, T(n+1)(ﬂ+|sl+B.—2), (5_39)

with

s D()l(c —a - b)

A = A[U+a)nH}F@—a)@—M’ (5.40)
_ 2 1] ~BHsieB -y DOl +b—¢)
Ay = A_[Q+ad)rit]” OO (5.41)

Before addressing the form of the far-field solution it is worth noting that all near-
horizon results in this section smoothly reduce to those known to be valid in the

Schwarzschild phase by taking the limit a — 0 [113,114].

5.2.2 The Far-Field Solution

In the far-field limit 7 > 75 the radial master equation (5.8) may be expanded as

dr? r dr (5-42)

T r2

d?P, N 2(1 — |s]) dP; N (wg N 2isw  Ajsie + 2|s| + a2w2) P -0

where in each term only the dominant component in the expansion in powers of 1/r

has been retained. By making the redefinition P, = e~ryz@sl-142) B where

Z:\AMﬂ—1V+MN#+mﬂ+a@%, (5.43)

the far-field master equation (5.42) is transformed to a confluent hypergeometric

equation B
d? P, dP;
+(b—
dz? +(b-2) dz

z P, =0, (5.44)
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which has as its independent solutions the Kummer functions M(a, b, z) and U(a, b, 2)
[133]. Overall, the solution to the master equation in the far-field limit may be writ-

ten as

Prp(r) = e—iwr,r%(QISI—H‘Z) x (5.45)

1 Z 1 Z
{Bll\/[<§—s+—2—,1+Z,22w’r>+BQU(§—8+§,1+Z,22wr>] .

As in the near-horizon case, the above solution may also be extrapolated beyond
its region of validity, on this occasion towards small values of the radial coordinate.
This is achieved by taking the limit r — 0 in (5.45), yielding [133]

I(2)

1 1
Pop(r) ~ By rz@sl-142) L g 3@sl-1-2)__"\“J
FE(T) 1 2 =s+2)

(2iw)~%. (5.46)

It is apparent that the far-field solution also adopts a power-law form upon ex-
trapolation. This feature may be used to construct a complete radial solution by
matching the two expressions (5.39) and (5.46) at an intermediate value of r. On
first inspection there is no obvious way to achieve this matching, however, if the

limits wry = w, < 1 and a/ry = a, < 1 are taken, in which case

2|s| -1
B, ~ 2- : 5.47
sl + =2 (5.47)
B o= (1255 = y/(2lsl - 1)2 + A, (5.48)
2(n+1) =]
then the stretched near-horizon solution (5.39) takes the form
PNH(T) —_ Al 7«%(2|S|_1+ V (2'5|_1)2+4As£) + A2 T%(lel_l_ (2|S|—1)2+4A3g ) (549)

From the definitions (5.5) and (5.43) for Ay and Z respectively, the low-aw limits

Ae = Ao+ 2s| (5.50)

Z =~ /(2]s]| — 1)2 +4(Xe + 2|s]) (5.51)

may be found. Providing this limit is adhered to, the powers of r in the two stretched
solutions (5.46) and (5.49) match exactly. It should be emphasised that in order
to achieve a higher level of accuracy in the analysis, no expansion is performed in
the arguments of the gamma functions and terms to order (aw)* are retained in the

expansion of the eigenvalues. A smooth solution valid over the entire radial regime
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is then obtained if the relevant coeflicients corresponding to matching powers of r

between the two solutions are identified. This requires

B I'Z) -z A
B=2t—_ ¥ 9 o 5.52
32 F(%—S+§)( ZCU) A2 ( )
where A;/A; follows from equations (5.40) and (5.41)
A F - - s -
1 (c—a—b)T(a)T'(b) it +af)rz+l]2ﬁ+| [+B.-2 (5.53)

A, T(e—a)l(c—bT(a+b-rc)
Having found a solution to the radial master equation that is exactly valid in the
near-horizon and far-field limits and smoothly connects the two regions, it is now

possible to calculate the absorption probabilities of low-energy particles (w, < 1)

with general spin s incident on a slowly rotating (a, < 1) black hole.

5.3 Calculation of the Absorption Probability

The absorption probability |Age,|? is defined, as in equation (4.18), as the ratio of
the incoming particle flux at the horizon to that at infinity

(H)

fs in
| Asem|® = oo (5.54)

s,in

Where it is possible to write the 7 — oo limit of the solution to the field equation

as a sum of incoming and outgoing spherical waves of the form

‘ (in) e—'iwr (out) eiwr
Ri(r)~ A= __ 44 , (5.55)

sém v sém v

(in)

sfm

for some constant v, then a reflection coefficient R, = Alesd /A, may be defined,

sfm

in terms of which the absorption probability can be written

2

(out)
As!m

A(i")

sfm

|-As£m|2 =1- Iflzslml2 =1- (556)

To see if this is possible for the solution to the field equation derived in the previous
section it is necessary to expand the far-field solution (5.45) to the extreme far-

field limit by taking the 2 — oo limit of the Kummer functions M(a,b,z) and
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Ul(a,b, z) [133]. Performing this expansion yields

P ( ) BQ Bl eﬁr(%*&k%)l’w (]_ + Z) 1 e'-iwr .
)™
. (2iw)35+2 F'(i+s+%) 15—l
B Bl (1+2Z2 iwr
. 12 4 1 ( Z) 1is—|s| (557)
(2iw)z 2T (3 —s+Z)r
= y(in) e ™" (out) e’
=V e T e (5.58)

where the second equality defines the coefficients Y™ and Y. 1t is clear from
the above that, while the solution may be expanded asymptotically as incoming and
outgoing waves, the radial dependence of the two modes does not match for general
s, so the absorption probabilities for different particle species must be calculated

separately.

5.3.1 Scalars

For scalar particles with s = 0 the extreme far-field expansion reduces to

—iwr iwr
€

in) € ou
PFF(T‘)ZYO( )—T +Y0( t ,

(5.59)

In this case the powers of r in the inward and outwardly propagating waves do
indeed match and the absorption probability may be found using equation (5.56)

Y(out) 2
0

|-/402m|2 =1- :
(in)
Yz)ln

(5.60)

5.3.2 Fermions

For s = +1/2 the components of the asymptotic solution do not match, being

PFF(p) o yin) g—iwr | y(out) e’ PRy o im €
() =Y e Y — PIi(r) =Y,
2 2 2 2 2

+ Y eir - (5.61)
T 2

"
The flux of fermions emitted by the black hole follows formally by integrating the
radial component of the conserved current over solid angle. However, as in the 4-
dimensional case [107,124, 135-137], it is possible to show using the radial master

equation that the relation

d
- (|P%|2 - |P_%|2) ~0 (5.62)
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holds and hence the quantity 7 o \P% |2 —|P_ 1 |2 is conserved for arbitrary values
of r. Since particle number is conserved, the sum of the flux in at the horizon and

out at infinity must equal the total flux in at infinity, consequently

H 00
Az dt 1 Ty (5.63)
1, = = — T~ . .
S

Substituting for the form of the flux, .7-'%, and accounting for the difference in sign

between fluxes in opposite directions, the absorption probability may be written as

2
‘Pgoo)t _‘ =)
[Agpn|? = 1- 2= 2
2 Pl =[P
Y(out) 2
1
_ . 2
= 1= || (5.64)
+

where the explicit far-field form of the radial solution (5.61) has been used in the
second equality. Then from the definition of Yo" in equation (5.58) it is apparent

that the s = +1/2 components are related by

2iw

Yy = y5 (5.65)
K \//\%€+1+a2w2 2
and using this equation the absorption probability may be written entirely in terms

of the s = +1/2 component as

ut) 2
4w? Yl(o 5

1- 2
Ay +1+a%w? |y
2

Aol = (5.66)

5.3.3 Gauge Bosons

Again, the s = +1 components have non-matching powers of r in their asymptotic
expansions so it is not possible to use equation (5.56) to calculate the absorption
probability. There is also no conserved particle current permitting an apalogous
cralcr-lhlatién- to thét of the fermion case. To proceed a technique may be followed
in which the radial master equation is transformed, through a radial function re-

definition and use of the tortoise coordinate r,, to an alternative form with real,
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short-range potential [138]. Then, the asymptotic solution at infinity for the gauge

field is given in terms of the new radial function by the expression [108, 138]

X ~ e A(m) eiwr*, (567)

fmw

representing a sum of outgoing and incoming plane waves with constant amplitudes.

From this the absorption probability may easily follow according to equation (5.56)

| Am|> =1 — A8 2. (5.68)

mw

A full analysis [108,138] relates the amplitude Agm in equation (5.67) to the coef-
ficients Y{"™°*) appearing in equation (5.58), leading to the result

2

16wt | ylewt)
[ Avem]® = 1 — " (5.69)
B | Y

where the constant By, is defined as the coefficient appearing in the differential

equation [124]
A D{D}P,, = Bomo P1, (Dg =0, + z'K/A) (5.70)

or, equivalently, as the constant of proportionality relating

ou 4w2 ou
vyl — _ 2 ylew) (5.71)

mw

when the asymptotic solution (5.58) is substituted in equation (5.70). By using the
explicit expressions of Yﬁm) from equation (5.58) the s = +1 components of Ys**"

are related by
4w? (out)

Y(out) _ _
- g+ 2+ a2w? T

, (5.72)

which leads t0 Beme = Aje+2+a%w?, and gives the final expression for the absorption

probability for brane-localised fields with spin 1

Y(out) 2
1

yl(,m)

16w*

A m P=1-
[Avem] (Ao + 2 + a2w?)?

(5.73)

Curiously enough, although no conserved particle current exists, an identical result
to that given above is recovered by assuming such a current does in fact exist. By

examining the energy flux through the horizon, the radial photon number flux may
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be shown to be proportional to F; = | P |2 —|P_y|? [139]. If this quantity is assumed
to be conserved then, following the argument for fermions

(out) 2

-1

|A1€ |2 = 1 - n
m Y+l( )

(5.74)

Substituting for Y_(‘i"t) using equation (5.72) in the above expression then recovers

the result (5.73).

To summarise, the absorption probabilities for particles with spin s = 0, %, 1
given in equations (5.60), (5.66) and (5.73) respectively, may be written in terms of

the single expression

4&]2 2s
|-As€m|2 =1- ( )

Y(out) 2
S
Y'S(in)

5.75
Ase + 28 + a’w? ( )

5.4 Plotting the Absorption Probability

Since it is the absorption probability that largely characterises the Hawking radiation
spectra, it is worth examining in detail its. dependence on the spacetime properties,

n and a, and also those of the emitted particle, w and (s, ¢, m).

5.4.1 Dependence on Particle Properties

Figures 5.1-5.3 illustrate the absorption probabilities of the modes corresponding
to the three lowest principal angular momentum quantum numbers ¢ for scalars,
fermions and brane gauge bosons, respectively. In this case the black hole has
rotation parameter a, = 0.4 and exists in a spacetime with n = 6 extra dimensions.
It is clear that for each species of particle |Agey,|? is suppressed with increasing ¢
and also suppressed with increasing m for fixed ¢. It is also apparent that a general
trend exists whereby the absorption probability for the lowest mode decreases with
increasing s. This trend persists for the second lowest mode and beyond although it
becomes somewhat obscured at higher ¢, owing to the increasing number of modes

and differing mode structures of different particle species.
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Figure 5.1: Absorption probability |Agen,|? for brane scalar particles, for n = 6,
a, = 0.4 and the modes ¢ = 0 (red), 1 (green) and 2 (blue). The solid lines represent

the analytic solution, while the dashed lines follow from numerical calculation.
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Figure 5.2: Absorption probability |.A 1 eml|? for brane fermions, for n = 6, a, = 0.4

and the modes ¢ =  (red), 3 (green) and 2 (blue).
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Figure 5.3: Absorption probability |.A;¢m|? for brane gauge bosons, for n = 6, a, =
0.4 and the modes ¢ = 1 (red), 2 (green) and 3 (blue).
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In general, absorption probabilities increase as the energy of the emitted particle
w increases. This is to be expected as higher-energy particles will feel less effect from
the gravitational potential barrier impeding their propagation to infinity. However,
modes with positive values of m have absorption coeflicients which initially decrease,
becoming negative over a finite range of w, before increasing again. This is the
phenomenon of superradiance that was described previously and is exhibited in
figure 5.1 and more clearly in 5.3. In figure 5.1 two sets of lines are depicted:
the solid lines are the analytical results derived in the previous section, while the
dotted lines follow from a numerical study that was performed to reproduce the
results appearing in [116,117]'. To ensure the highest possible level of accuracy in
the numerical solution this study included the exact numerical eigenvalues of the
spheroidal harmonics. There is excellent agreement between the two sets of values,
particularly in the low-w, limit. Significant deviation is only exhibited for the £ = 2

modes at energies w, ~ 0.9.

5.4.2 Dependence on Spacetime Properties

Since the lowest-order modes are dominant at low energy for all particle species, it
is the behaviour of these modes that will be used to describe the dependence of the
absorption probability on the spacetime parameters a, and n.

Figures 5.4-5.6 illustrate the effect on |Agm|? of increasing a, for the lowest
modes with s = 0, 1/2 and 1 respectively. It is apparent that, in almost all cases, the
low-energy absorption probability is enhanced with increasing angular momentum of
the black hole. The only circumstance in which this does not hold is for superradiant
modes where |Ag,|?> becomes increasingly negative as a, increases. While this
behaviour is only illustrated in the left-hand plot of figure 5.6 for gauge bosons, it
is also found to be true of superradiant scalar modes.

For fermions and gauge bosons the low-energy, low-angular momentum analytic

expression may be extended to higher values of w, and a, and still used to draw

!Thanks are extended to Chris Harris for providing the basis of the code and numerical values

of the eigenvalues used in this study.
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reliable conclusions about the behaviour of the absorption probability. Figure 5.6
has been extended to larger w, and considers values of a, up to 1.5 to illustrate
this. Examination of the behaviour of the lowest gauge boson modes reveals that,
for modes with m < 0, what is initially an enhancement with a, at low-energy
becomes a suppression as w, increases beyond the strict range of validity of the
analytic expressions. Similarly, while increasing a, enhances the superradiant effect
of modes with m > 0 at low energy, at higher energy increased rotation of the black
hole increases the absorption probability. Comparison of these features with the
corresponding numerical results [115] reveals a good quantitative agreement in the
low-energy and low-angular momentum regime. Outside this limit the qualitative
agreement is favourable for m = =1, although the analytic expression tends to
underestimate the magnitude of the superradiance for larger values of a,. For m = 0
the numerical results predict monotonic increase of the absorption probability with
a. over the full range of w, while this holds true for the analytic expression only for
w < 0.6. The corresponding expression for fermions may also be extended to high
energy, revealing similar behaviour. Modes with m > 0 have absorption probabilities
that are monotonically increasing throughout the range of energy 0 < w, < 1.5, while
modes with m < 0 are enhanced with a, at low energy, but suppressed with a, in
the high-energy limit. Comparison with existing numerical results [119] reveals that
again, the analytical results are quantitatively accurate in the low-w and low-a,
limit and qualitatively correct for both m = £1/2. The high-energy extension of
the scalar case is less reliable since, outside the low-w, limit, the gamma functions
featuring in equation (5.53) exhibit singular behaviour for some parameter values,
rendering the absorption probabilities unphysical.

Figures 5.7-5.9 depict the dependence of | Ay, |? on the number of extra dimen-
sions n for all three particle species. In general, the low-energy absorption proba-
bilities are enhanced with increasing number of extra dimensions. However, there
are several exceptions to this, in particular the gauge boson modes with m < 0, for .
which the situation is reversed. Additionally, the behaviour of superradiant modes
differs depending on the value of s. The low-energy absorption probability increases

with n for superradiant gauge bosons, but becomes more negative for superradiant
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Figure 5.7: Absorption probability |.Aoem|? for brane scalar particles, for ¢ = 0,1,
a, = 0.4 and n = 3 (red), 5 (green), 7 (light blue) and 9 (dark blue).

0.05

Figure 5.8: Absorption probability |.A 11 |2 for brane fermions with m = +1/2 (left)

and -1/2 (right), a. = 0.4 and n = 3 (red), 5 (green), 7 (light blue) and 9 (dark
blue).
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Figure 5.9: Absorption probability |A;;,,|* for brane gauge bosons with m = +1
(left), O (centre) and -1 (right) and a, = 0.4, n = 3 (red), 5 (green), 7 (light blue)

and 9 (dark blue).
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Figure 5.10: Absorption probability |.Aoem|? of brane scalar particles, for £ = 0 (red),
1 (green), 2 (blue), ax. = 0.4 and n = 2 (left) and n = 6 (right). The solid lines
correspond to the analytic solution, while the dashed lines are the result of an exact

numerical analysis.

scalars.

Finally, it should be noted that the accuracies of a number of approximations
made in the course of the analysis are n-dependent. In particular, as n increases
the assumed behavior of f(r) at infinity in equation (5.38) improves and terms that
were neglected during the matching of the asymptotic solutions, such as K,/A,,
become even more suppressed. Figure 5.10 compares the accuracy of the n = 2
absorption probabilities for the lowest scalar modes with the corresponding case for
n = 6. In both plots the analytic and numerical solutions are depicted. It is clear
that increasing n improves the accuracy of the analytic solution over a wider range

of energy.

5.5 An Improved Scalar Analysis

In general, there is significant disagreement between the analytic scalar absorption
probability and the numerical results, even at low energy, for modes with ¢ = 1
and low n. The error arises from the attempt to maintain a unified formalism for
emission of particles with differing spin. In the case of scalar fi€lds it is possible to

improve upon the result derived in the previous section by returning to the far-field
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radial equation (5.42), which takes the form

d2P0 2 dPO + 9 )\0[ + CLQLUQ
dr?2 7 dr t

) Po(r) =0. (5.76)

r2
In the analysis of §5.2 this was solved by transformation to a confluent hyperge-
ometric equation and had as its solution equation (5.45), written in terms of the
Kummer functions. It is also possible to transform equation (5.76) into a Bessel
equation for Py(r) by making the substitution Py(r) = % Py(r). Tts solution then

takes the form

Prr(r) = % J, (wr) + % Y, (wr), (5.77)

where J, and Y, are the Bessel functions of the first and second kind, respectively,

with v = /Mg + a?w? + 1/4, and B} integration constants. Repeating the analysis
of §5.2 for this new far-field solution, it is necessary to stretch the Bessel functions
to the near-horizon regime. Using the standard identities for Bessel functions as the

argument z — 0 [133],

1 Z\V
e~ oo (5) (5.78)
1 Z\ "V
Y,(2) ~ —-T(v) (5) , (5.79)
T
the stretched far-field solution becomes
PBsca (ﬂ) v/ Aoet+aZw+1/4
Ppp(r) ~ ;2 —~ (5.80)
VT (\/)\oe+a2w2 +1/4+ 1)
B;ca

—+/ Aggtacw?+1/4
r <\/)\0g P 1/4) (ﬂ) ” .
T\T 2
Again, the stretched far-field solution takes a power-law form which may be matched
to the stretched near-horizon expression (5.49) providing the low-energy and low-

angular momentum limits are taken. Performing the matching leads to a restriction

analogous to equation (5.52), given by

/ 2041

BSCG 1 2

Boa = o= —= 1 Vo + a?w? + 1/4 x (5.81)
B3 T \wry (1 + a2)=+1

r? (\//\og+a2w2+1/4) T(a+ 8+ B. - 1)I(a+8)T(2—20 - B,)
20+ B, -2)T2+a-F-B,)(1+a—7)
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Figure 5.11: Absorption probability |Aoem|? of brane scalar particles, for £ = 0 (red),
1 (green), 2 (blue), a, = 0.4, n = 2 using the far-field Kummer function solution
(left) and Bessel function solution (right). The solid lines correspond to the analytic

solution, while the dashed lines are the result of an exact numerical analysis.

In the asymptotic far-field limit » — oo the Bessel functions may be approximated

using the standard z — oo relations [133]

Ju(2) — \/gcos (z — V—; - %) , (5.82)

Yo(z) — 2 sin (z T E) . (5.83)

This leads to

1 B /B ; kil w B - .B‘ ; . AV m
= A.(slc?l) ¢ + A(szzt) e’_ . (584)
r T

Since the incoming and outgoing spherical wave components have the same radial

dependence, the absorption probability may be calculated using equation (5.56) as

2
Moenl” = 1 AeD|" | B iyt
i~ A Bi* 4 iBs™
_ 1 . Bsca - i 2 — 2’ (B.:ca - BSC&) (5 85)
Bsca + Z BSC&B;ca, + 7‘ (B;ca - BSC&) + 1 . .

To illustrate the improvement in accuracy that is achieved by-using Bessel instead
of Kummer functions in the far-field solution, figure 5.11 presents both methods for
n = 2 and a, = 0.4. In the remainder of this chapter the Bessel function solution

will be used to plot scalar quantities.
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5.6 The Low-Energy Limit

By expanding the analytic expressions (5.75) and (5.85) for the absorption proba-
bilities one may obtain simplified, compact expressions that reveal more clearly the
low-energy asymptotic behaviours of the individual particle species as well as charac-
teristic differences in the extreme low-energy values of the corresponding absorption

cross-sections.

5.6.1 Scalars

Beginning with scalar particles, according to equation (5.81), in the limit w — 0,
Bseo ~ w™ @+ and, therefore, B,oB?,, > (B!, — Bsa) > 1. Then, equation
(5.85) simplifies to

2 2(Bly = Bsa) .. [ 1 1
[ Aoen* o g m = = 2 = ) (5.86)

sca sca

Substituting for B, using equation (5.81), and the fact that « is purely imaginary,

yields
|A |2 9% (wTH/2)2€+l F(Q/H + B* - 2) X
0fm )
(C+ T2 +3) (1+a2) " T2 -28-B,)
1

MNa+ B8+ B, —1)['(—a+ B8+ B. - 1) T'(a+8) T (—a+p)

'2+a—-p8-B,)I(-a+8+B.-1)I(1+a—-0)(-a+0)—

r2—a-p-B)l(la+B+B. - 1)T(1—a-)T(a+06)| (5.87)

= 21X22X23,

where ¥, 39 and X3 are defined by the quantities on each of the three lines above.
Focusing attention first on 33, and using the gamma function relation I'(2)[(1—2z) =

7/sin7z [133], this can be written as

5 ~n? sin(2na) sinw(28 + B.) 5 88
7 sinm(a+ 8+ B.) sinm(—a + 3+ B,) sinm(a+ §) sint(—a+ 3) (5.88)

2¢+1

From the factor w in equation (5.87), it is clear that the expression for the

absorption probability in the very low-energy regime is dominated by the lowest
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partial waves, a property that is in accordance with the results presented in section
5.4. Then, assuming that m is small and a, < 1, the limit w — 0 is equivalent to

a — 0. Expanding terms in Y, and X3 to linear order in « gives

1 2m3a sinw (203 + B.)
Yy = Yy = — . 5.89
T I(B+ B, -1)2I(B)?’ 5 sin? (8 + B,) sin’ 13 (5.89)
The additional gamma function relation I'(2)['(—z) = —7/zsin wz allows the overall

expression for the low-energy limit of the scalar absorption probability to be written

as

| Aoem|® = (5.90)
A (wry /2)* K, sin?7(28 + B,) T2(26 + B, — 2)T2(1 — ) (2 — B, — 20)
A, (14 a2)" 5 (041 T2(0+ 1) T2(B+ B, — 1) sin’ 7(8 + B.)

By using the expression for # in equation (5.25), one may easily conclude that
the quantity (2 — B, — 20) is always positive, while the same also holds for A, =
(n+1)4+(n—1)a?, for all values of a, and n > 0. Therefore, the overall sign of | Aggn|”
is determined by the sign of K,, or equivalently of w — ma/(r% + a?) = w — m§d.
A negative sign for the latter quantity arises only where m > 0, and denotes the
occurrence of superradiance. A superradiant domain therefore exists in the low-
energy regime and extends over the range of values 0 < w < wy, = m ). For a, <1,
the larger the value of a,, the larger the rotational velocity €2 of the black hole, and
the more extended the superradiant regime becomes. This is in agreement with the
behaviour described in section 5.4.

From equation (5.90), the low-w behaviour of the absorption probability for a par-
tial wave with general ¢ is governed by a factor of w?*? (including the w-dependence
of K,). The on-brane cross-section is derived from the absorption probability, via
equation (4.22), through division by w? and is therefore proportional to w?. Conse-
quently, only the cross-section for the lowest mode ¢ = 0 reduces to a non-vanishing
asymptotic value as w — 0. Focusing attention on this lowest mode, in order to
simplify equation (5.90) further, it is also necessary to expand the expression of 3
in the limit w — 0. In this limit 8 = —(|s| + £)/(n + 1) + O(w?, a?, a,w.), so for

s = ¢ =0, 8 ~ 0, which allows the extreme low-energy absorption probability for
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Figure 5.12: Low-energy cross-section a((]o) (in units of 7%) for brane scalar particles.

The left-hand figure depicts n = 2 and a, = 0 (red), 0.2 (green), 0.4 (light blue)
and 0.6 (dark blue) while the right-hand figure is for a, = 0.2 and n = 1 (red),
2 (green), 3 (light blue) and 4 (dark blue) In each case the solid lines denote the

analytic approximation while the dotted lines represent the exact numerical result.

scalar particles to be written

4 (wry)? (14 a?)
(1 + az)—l/(n-f-l) (2 _ B*)

oo |” = - T (5.91)

The corresponding absorption cross-section for the dominant partial wave is then

(1+a)ms
[(n+1)+(n—1)a?] (2- B.))

s
ot = 55 Mo’ = 4m (1 + a?) T (592)

In the case of scalar particles propagating in a Schwarzschild-like brane-projected
line-element, the low-energy asymptotic value of the absorption cross-section result-
ing from the lowest partial wave was shown to be equal to the projected 4-d horizon
area of the higher-dimensional black hole, 4n7%, regardless of the number of extra
dimensions [111,113]. It would be instructive to determine whether a similar re-
lation holds in the case of an axially-symmetric brane background. According to
equation (5.92), 0(()0) is indeed proportional to the projected 4-d horizon area of the
higher-dimensional rotating black hole Ay = 4n(r?% + a?), however, the relation
involves a multiplicative factor which is both a, and n-dependent. In the left-hand
plot of figure 5.12, both the analytic and exact numerical versions of 0'(()0) are illus-

trated for fixed n and a, between 0 and 0.6. The numerical results reveal that the

asymptotic low-energy cross-section is indeed equal to the horizon area of the black
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hole, regardless of the number of extra dimensions. For small values of a., the mul-
tiplicative factor appearing in equation (5.92) is very close to unity and the analytic
expression closely reproduces the exact numerical one. As a, increases though, the
range of validity of the approximation is exceeded and a deviation appears. At fixed
a,, the right-hand image in 5.12 reveals that the analytic low-energy cross-section is
enhanced with increasing n, whereas the numerical result retains the constant value
Ap. For n <1 the analytic expression is smaller than the exact result, whereas for
n > 2 the opposite is true. For n > 2 the magnitude of the deviation is an increasing
function of a,.

From the above results it may be concluded that the behaviour of the lowest
mode of a scalar particle, whereby its partial cross-section equals the on-brane area
of the black-hole horizon in the low-energy regime, generalises to rotating black
holes. This feature has been found before in the particular case of a 5-dimensional
bulk [122], but was yet to be demonstrated for the general (4 + n)-dimensional
case. As was found with a spherically-symmetric brane line-element, the result is

independent of the number of additional transverse spacelike dimensions.

5.6.2 Fermions and Gauge Bosons

In a similar manner the low-energy properties of the absorption probabilities and
cross-sections for fermions and gauge bosons may be determined by expanding equa-
tion (5.75) in the limit w — 0. In this limit equation (5.43) reduces to Z ~ 2¢ + 1

and then, from the expression of By/B; in (5.52), it is found that

B I'2¢+1 N A N
gi ~ ﬁ (2iw) =241 A—; = Mg (2iw) 26D (5.93)

w=0
with Mg, a complex constant independent of the energy w. Examining first the

fermions, if s = 1/2 then equation (5.66) becomes

o My, T(2¢ +2)
| %Eml - o ]M%émr(ze + 2) eim(e+1/2) 4 F(f + 3/2) (22@))26’4—1
oy T3/ (1 1
N " 5.94
2
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Figure 5.13: Total absorption cross-section for spinor fields in units of r%. The
left-hand figure is for n = 6 and a, = 0 (red), 0.3 (green), 0.6 (light blue) and 0.9
(dark blue). The right-hand figure is for a, = 0.5 and n = 3 (red), 4 (green), 5 (light
blue) and 6 (dark blue).

Corresponding absorption cross-sections for individual modes may be defined as

1
aﬁg,? = 7 |Aygn|*/w? and take the form

1y 224l 21T 3/2) [ 1 1
(p 27T mw (43 )< >+ (5.95)

ol = +

ém T(26+2) Mg, Mt,.
2

From the above result it is clear that, in a similar manner to the non-rotating higher-

dimensional black hole [111,113], the absorption cross-section of the lowest fermionic

mode, with £ = 1/2, assumes a non-zero asymptotic value, specifically

(3) _ 1 1 .
o1, 27((]\/[%% +1\’1T1m , (5.96)

while all higher fermionic partial waves, with { > 1/2, have zero absorption cross-

section as w — 0. The quantity M1, depends both on the number of extra
dimensions n and on the angular momentum parameter a, of the black hole. In
figure 5.13 the dependence of the low-energy cross-section, found by summing over ¢
and m, on both a, and n is depicted. It may be observed that the asymptotic value
of the absorption cross-section for fermions in the low-energy regime is enhanced in
terms of both parameters of the gravitational background.

For gauge fields, with s = 1, equation (5.73) leads to a similar result for the
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Figure 5.14: Total absorption cross-section for gauge bosons in units of r%. The
left-hand figure is for n = 6 and a, = 0 (red), 0.3 (green), 0.6 (light blue) and 0.9
(dark blue). The right-hand figure is for a, = 0.5 and n = 3 (red), 4 (green), 5 (light
blue) and 6 (dark blue).

absorption probability, namely

_ ]\/Ilfm. F(ze + 2)
Mg (20 + 2) €€ 4+ T(£ + 2) (2iw)26+!

|Além|2 ~ 1]

(2w)2TIT(0 + 2) i(My, — Miom)
I'2¢+2) | M 1em|?

(5.97)

The corresponding absorption cross-section has the form

22€+17T w2€—1 F(e + 2) i(Alfﬂm — ]\/Illm)
O1em =
1 I'(2¢ + 2) | M|

¥ (5.98)

In this case all gauge field modes, including the lowest with £ = 1, have zero asymp-
totic low-energy cross-section. Again, this is in agreement with the corresponding
results derived for the non-rotating case [111,113]. The dependence of ¢(!), summed
over { and m, on a, and n is shown in figure 5.14. In this case, while an increase in

n results in an enhancement of the cross-section, increasing a, causes suppression.

5.7 The High-Energy Limit

In this section a comprehensive study is conducted of the high-energy asymptotic
limit of the total absorption cross-section for fields existing in the brane-induced
background of a (4 4+ n)-dimensional rotating black hole. The asymptotic limit has

been studied previously for a Schwarzschild black hole, both in the four-dimensional

;1
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[140-145] and (4 + n)-dimensional case [79,111]. For a rotating black hole, the
corresponding analysis has been performed only in the 4-d [146] and 5-d [122] cases
— the general (4 + n)-dimensional situation has yet to be considered. As will be
seen, in an analogous manner to the higher-dimensional Schwarzschild-like brane
background, the number of transverse dimensions, although inaccessible to brane-
localised fields, affects the high-energy limit of the cross-section. For fermions and
gauge bosons the analytic expressions derived in this chapter may be extended to
successfully describe the intermediate and high-energy regimes of the absorption
probability and calculate a value of the high-energy cross-section. The corresponding
extension for scalar fields is less accurate, so the results of an exact numerical analysis

are presented instead.

5.7.1 The High-Energy Cross-Section

As discussed in §4.6.2 the total absorption cross-section crt(f,’t) = om aéf,)l of extremely

high-energy particles tends towards a constant value that is independent of particle
(s)

om aSymptotes to zero in

species. Although each individual partial cross-section o
the high-energy regime, the superposition of an infinite number of partial waves,
each reaching its maximum value at a larger value of w as ¢ increases, results in the
total cross-section oscillating towards this constant high-energy value.

Figure 5.15 illustrates the features described above for the case of scalar particles

with n = 2 and a, = 0.3. Exact numerical results are presented for the partial cross-
(0)

om for the modes ¢ = 0 to 5, as well as the total value 0522 found

sections oéo) =30
through summation over ¢. The oscillatory emergence of a constant high-energy
value for the total cross-section is clear.

Figure 5.16 compares the total cross-sections of different particle species. The
characteristic low-energy behaviours described in the previous section are apparent,
as is the fact that 0£f,2 tends towards the same high-energy value, regardless of the
type of particle under consideration.

In the course of the analysis, the high-energy limit of at(jt) has been studied for

a range of values of n and a, and the results are displayed in table 5.1. It should

be noted that, while for low values of n and a, summation over a relatively small
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Figure 5.15: Partial absorption cross-sections ago), for the modes ¢ = 0,1,2,3,4
(blue curves), and the total absorption cross-section 0532 (red curve) for n = 2 and
a. = 0.3, both in umits of 7%. The dashed line denotes the value obtained by using

the geometrical optics limit (5.105).
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Figure 5.16: Total absorption cross-sections afz,), , for scalars (red), fermions (green)
and gauge bosons (blue) for n = 6 and a, = 0.5, in units of r%. All species tend to

the same high-energy geometrical optics value (5.105) denoted by the dashed line.
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a\n 1 2 3 4 5 6
0.0 12.6 9.6 8.2 7.3 6.7 6.2
0.3 13.6 10.4 8.6 7.6 7.0 6.5
0.5 15.7 11.5 9.5 8.4 7.6 7.1
0.7 18.7 13.2 10.7 9.4 8.5 7.9
1.0 25.1 16.6 13.2 11.4 10.3 9.5
1.5 40.7 24.1 18.6 15.8 14.0 12.9
2.0 62.8 33.6 25.2 21.1 18.7 17.2

Table 5.1: High-energy asymptotic values of the total absorption cross-section at(;t),

in units of 7%, as a function of n and a,.

number of partial waves is necessary to recover the high-energy value, as either a,
or n increases the number of modes that must be taken into account increases also.
In addition the asymptotic value of at(jt) emerges at ever larger values of w, which
lengthens the computation time considerably.

From the entries of table 5.1 the strong dependence of the high-energy absorption
cross-section on both the number of extra dimensions and the angular momentum
of the black hole may be observed. As in the non-rotating case [111], o) is strongly
suppressed as n increases. On the other hand, an increase in the value of a, results
in an enhancement. As would be expected, for a, = 0 the values of at(jt) match those
obtained for a scalar particle in a Schwarzschild-like projected brane background
[111]. It should also be noted that a feature which seemed to hold for scalars in the
5-dimensional case [122], that the high-energy limit of ot(jt) is close to the low-energy
value, appears to be unique to that particular spacetime dimension. This is evident
in figures 5.15 and 5.16, or can be seen by comparing the entries of table 5.1 with

the horizon area Ay = 4n(r% + a?) that corresponds to the low-energy value O'(()O).

5.7.2 The Geometrical Optics Limit

For a non-rotating black hole, the geometrical optics limit has been successfully used

to explain the high-energy asymptotic value of the absorption cross-section at(jt) both
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in the pure 4-dimensional [140-142,145] and (4 + n)-dimensional [79,111] cases. In
the higher-dimensional situation the analysis demonstrated that, for particles living
on the brane, the Schwarzschild black hole behaves as a perfect absorber of radius

1
n+3\" [n+3
.= ) 5.99
" rH( 2 ) n+1 (5.99)

The geometrical optics cross-section is then given by the target area, o, = #r2. For
all n, the values following from this expression are in perfect agreement with the
results of a numerical analysis [111], and are displayed in the first row of table 5.1.

Here, a similar study will be performed in an axially-symmetric black-hole brane
background to investigate the potential connection between the analytic values that
follow from this analysis and the exact numerical ones appearing in table 5.1, for
a. # 0. To achieve this, a method described in [146] is closely followed. Although
the formalism there was developed for the case of a pure 4-dimensional Kerr black
hole, it also applies exactly to the case of a brane-projected rotating black hole, the
only difference appearing in the expression of the metric function A(r). For brevity,
only the basic assumptions and final equation describing the particle’s trajectory
will be presented here.

The line-element (5.1), in which the brane-localised particles propagate, is invari-
ant under translations of the form ¢ — t + At and ¢ — ¢ + A¢. The corresponding
Killing vectors f&) = 6! and §f‘ o) = d% then lead to the conserved conjugate momenta
pt = —F and py = —L,. The brane metric also possesses a Killing tensor ,,, that
leads to an additional conserved quantity @ = £, p*p” — (Fa + L,)*. Combining
the above, the equation of motion of a particle with rest mass m, i.e. p,p* = —m?,

takes the form [146]

s dr _ +RY2, R =[E(@?+a®) + L.a)’ — A[m*? + (L, + aE)* + Q] ,

X
(5.100)
where A is the affine parameter of the trajectory. The conserved quantity Q takes
the explicit form Q = L? — L2 — a%(E? — m?)cos? §,, where 6, is the value of the
azimuthal angle as the particle approaches the black hole from infinity, and L the
total angular momentum of the particle.

A particle approaching a rotating black hole from infinity, may do so by following
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a number of possible trajectories. Here attention will be focused on the cases of a
massless particle with its trajectory either transverse (6., = 7/2) or parallel (6, =
0,7) to the rotation axis. Starting with the transverse case it is found that, for
motion strictly on the equatorial plane, cosf,, = 0 and L = L,. Then, Q = 0, and
equation (5.100) takes the form

dr 2_ o [12, 2 aji 0 oo )
(Eﬁ) =k [b (@ = A)+2b =+ (r" +0a%)" —a A]. (5.101)

In the above the definition ¥ = L/FE has been made, where b > 0 is the impact
parameter of the particle. For the above equation to be consistent, its right-hand
side, or equivalently the expression inside the square brackets, must be positive-
definite. Since the particle approaches the black hole from large r, attention will
be focused on the radial regime outside the ergosphere, where the coefficient of b2,
(a® — A), can be shown to be negative. Then the constraint on the values of b takes
the form by < b < by, where b; o are the roots of the expression which follows from
setting the right-hand side of equation (5.101) equal to zero. However, it may easily
be seen that by < 0, therefore the classically permissible regime is defined by the
constraint 0 < b < b;. Particles with impact parameters in this range can access
all values of the radial coordinate, and thus reach the black-hole horizon where
they may be absorbed. According to the geometrical optics argument, the closest
distance a particle may approach the black hole without being captured is

ap+ 7" /a? + 02 — K
r. = min(b;) = min ( s r 1) : (5.102)
pn+l I

As a consistency check it is noticed that, for a = 0, the above expression reduces
to 7. = min (r//1 — Z&7), which is identical to the result (5.99) for a non-rotating
brane black-hole background derived in [79,111]. By further setting n = 0, the purely
4-dimensional Schwarzschild case [140-142] is also recovered, with r, = 3v3ry /2.
For general n and a, an analytic expression for the minimum distance referred to
in equation (5.102) is difficult to find. Nevertheless, a simple numerical analysis may
lead to the value of 7. in units of ry, after using equation (4.6) to eliminate the mass
parameter . Then, through the relation o, = 772, the corresponding absorption

cross-section may be found; its values, for a variety of n and a,, are displayed in table



5.7. The High-Energy Limit 107

a,\n 1 2 3 4 5 6
0.0 12.6 9.6 8.2 7.3 6.6 6.2
0.3 17.9 12.8 10.4 9.0 8.1 74
0.5 23.5 15.9 12.6 10.7 9.5 8.7
0.7 31.0 20.0 15.4 12.9 11.4 10.3
1.0 46.0 27.6 20.6 17.0 14.8 13.4
1.5 81.9 44.3 31.7 25.6 22.2 19.9

2.0 131.6 654 45.3 36.3 31.3 28.2

a.\n 1 2 3 4 5 6
0.0 12.6 9.6 8.2 7.3 6.6 6.2
0.3 10.0 8.2 7.3 6.6 6.2 9.9
0.5 9.5 8.1 7.3 6.8 6.4 6.1
0.7 9.5 8.4 7.7 7.3 6.9 6.7
1.0 10.5 9.6 9.0 8.6 8.4 8.1
1.5 13.4 13.2 12.7 12.3 12.1 11.9
2.0 19.2 18.5 18.1 17.8 17.5 17.4

Table 5.2: Geometrical optics value of the absorption cross-section oy, in units of
%, for particles moving in the equatorial plane of the axially-symmetric brane black

hole (5.1), for a > 0 (upper table) and a < 0 (lower table).

5.2. The two sub-tables correspond to the two possible orientations of the particle’s
angular momentum L: as it approaches the black hole from infinity moving in the
equatorial plane, its angular momentum and that of the black-hole can be either
parallel (aL > 0) or anti-parallel (aL < 0). It has been assumed here that L > 0
always, and then the sign choices a > 0 and a < 0 correspond to the first and
second sub-tables of table 5.2, respectively. For a < 0, the sign of the first term in
the numerator of (5.102) is reversed, leading to a lower value of r, and consecfuently
of the cross-section.

It is also possible to analyse the case of a zero-mass particle approaching from
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a,\n 1 2 3 4 5 6
0.0 12.6 9.6 8.2 7.3 6.6 6.2
0.3 13.7 10.4 8.7 7.8 7.1 6.6
0.5 15.7 11.6 9.7 8.6 7.9 7.3
0.7 18.7 13.5 11.2 9.8 9.0 8.4
1.0 25.1 17.2 14.0 12.3 11.3 10.5
1.5 40.9 25.7 20.5 18.0 16.5 15.4
2.0 62.8 36.9 28.9 25.3 23.3 22.0

Table 5.3: Geometrical optics absorption cross-section gy, in units of 7%, for particles

moving parallel to the rotation axis of the axially-symmetric brane black hole (5.1).

infinity along an orbit that is parallel to the black hole’s rotation axis. This corre-

sponds to cos? ., = 1 and L, = 0. In this case

2
(2 Z—:) = E*(r? +a*)? - AL*. (5.103)

Defining, as before, b = L/E, one may easily conclude that the above equation is

b < (#;;2) . (5.104)

The above leads to the minimum distance of the particle’s approach avoiding capture

by the black hole being

only consistent providing

\/a'2 + T2 - Tnu—l

.2 2
re = min ( e ) . (5.105)

For a = 0 this result also reduces to the Schwarzschild case (5.99), as it must since
in the absence of rotation all directions of the particle’s orbit are equivalent. Using
equation (5.105), the values of the corresponding absorption cross-section oy, in
units of %, are given in table 5.3.

Having derived these geometrical optics values, it is now possible to compare
them to the exact numerical ones derived from a full analysis of the high-energy
scalar field absorption cross-section. It is important to realise that the values dis-

played in tables 5.2 and 5.3 correspond to trajectories with a specific azimuthal
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angle, while the numerical values of table 5.1 represent quantities integrated over
all possible angles of incidence. Nevertheless, it is informative to determine if any
relationship exists between the various results.

A direct comparison of the entries of tables 5.1 and 5.2 reveals that the numerical
cross-section is smaller than that corresponding to a trajectory in the equatorial
plane with alL > 0, but larger than the one with al. < 0. On the other hand,
by comparing the entries of tables 5.1 and 5.3, a near-perfect agreement is realised
for low values of a, or n. The same agreement can be seen graphically in figures
5.15 and 5.16, where the dashed black lines represent the appropriate values from
table 5.3. It may therefore be concluded that, in the low n or a, limit at least,
particle trajectories running parallel to the rotation axis of the black hole lead to an
absorption cross-section that is almost identical to the high-energy asymptotic value
of the total cross-section. As either n or a, increases a deviation between the two
values arises, however the values in table 5.3 still provide a good approximation to
the exact result that avoids resorting to the numerically intensive task of accounting

for contributions of all possible particle trajectories.

5.8 Energy Emission Rates

To complete the study of Hawking radiation on the brane from a higher-dimensional
rotating black hole, the analytic expressions for the absorption probabilities can be
used to compute the energy emission spectra of the various particle species and
determine their dependencies on the topological parameters of the spacetime. Figure
5.17 illustrates these dependencies for the specific cases of gauge boson emission at
constant n and variable a, (left-hand plot), and fermion emission at constant a.
and variable n (right-hand plot). In each case emission is enhanced by increasing
the relevant spacetime parameter. This is in accordance with results derived for
static black holes [111,113,114] and also in numerical studies of the rotating case
[11757117’ 119]. Since these deI')evndenci-es. are found to hold true for all bafticle
species, only two plots are presented to avoid repetition.

A comparison of the different particle species is illustrated in figure 5.18. In the
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Figure 5.17: Low-energy emission rates of particles on the brane. The left-hand
figure is for emission of gauge bosons with n = 6 and a. = 0 (red), 0.5 (green), 1
(light blue) and 1.5 (dark blue). The right-hand plot is for fermions with a, = 0.5
and n = 3, (red), 4 (green), 5 (light blue) and 6 (dark blue).

extreme low-energy regime scalar particles dominate, followed by fermions and then
gauge bosons. However, as the energy of the emitted particle increases the black
hole preferentially radiates energy in the form of gauge bosons. The exact same
behaviour was found in the non-rotating case for n = 6 [111, 113, 114], although
it should be noted that the relative magnitude of particle species is n-dependent.
This n-dependence for fixed a, is unchanged from the non-rotating case so will not
be discussed further here. At fixed n, the pattern of behaviour is unchanged by
increasing a, — the competition for dominance is merely shifted to smaller w, as the

spectra of all fields is enhanced.

5.9 Summary

The spectrum of Hawking radiation from a higher-dimensional rotating black hole
has been studied analytically by solving the field equations of particles propagating
in the brane-induced black hole background using an extension of a well-known
solution matching technique. This permitted calculation of an analytic expression for

|2 that is valid in the limits of low particle

the absorption probability of particles | Asen
energy and slow black hole rotation. A single formalism was presented to account

for all types of particle, however comparison of scalar absorption probabilities with
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Figure 5.18: Comparison of the energy emission rates of scalars (red), fermions

(green) and gauge bosons (blue) on the brane with n = 6 and a, = 0.1.

the results of an exact numerical analysis revealed that a significant improvement
could be achieved by using Bessel rather than Kummer functions to describe the
far-field radial behaviour of the scalar field.

Investigation of the properties of the absorption probabilities revealed that, in all
cases, the lowest partial mode is dominant at low energy, and this mode is suppressed
with increasing spin s. In general, | Az, |? is enhanced with increasing rotation of
the black hole a, and also with the number of extra dimensions n, although this
behaviour is complicated by phenomena such as superradiance.

The extreme low-energy limit of both the absorption probabilities and cross-
sections was investigated by expanding the analytic expressions in the limit w — 0.
It was discovered that the low-energy cross-section for scalars tends to the brane-
projected area of the higher-dimensional rotating black hole Ay = 4n(r% + a?), a
result that generalises a well-known feature of emission from static black holes. The
cross-section for fermions tends to a n- and a.-dependent quantity, the form of which
was derived, and the corresponding quantity for bosons tends to zero.

The high-energy limit of the cross-section was also investigated, revealing that
it reaches a constant value independent of the particle’s spin. A classical analy-
sis, evaluating the minimum impact parameter that permits a particle following

a geodesic in the black hole spacetime to escape to infinity, predicted a range of



5.9. Summary 112

theoretical “geometrical optics” cross-sections, depending on the orientation of the
particle’s approach to the black hole. It was found that the value assuming the par-
ticle approaches parallel to the axis of rotation very closely matches the high-energy
asymptotic limit of the cross-section, both in its dependence on a, and n.

Finally the Hawking radiation spectra were investigated using the analytic ex-
pressions for the absorption probabilities previously derived. The spectra of all
particles was found to be enhanced with both a, and n, while the dominance of
a particular species depended largely on the energy range being examined and the

number of extra dimensions transverse to the brane.



Chapter 6

Bulk Emission of Scalars in the

Spin-Down Phase

Although not directly detectable by brane-based observers, the emission of particles
into the bulk by evaporating black holes is of great interest as it is an important
component in determining the proportion of the black hole’s total energy that is
available for detection on the brane.

Under the assumptions of extra-dimensional models, only gravitons and scalar
fields propagate in the bulk. Owing to the relative simplicity of the field equation,
the emission of scalars into the bulk has been studied previously from a Schwarzschild
black hole [113] and for the rotating case in five-dimensions [110]. In this chapter the
emission of scalar modes into the full spacetime surrounding a (4 + n)-dimensional

rotating black hole is studied [4].

6.1 The Field Equation

The gravitational background into which scalar particles emerge when emitted into
the bulk is that of the full Myers-Perry metric with a single angular momentum

parameter

2a/sin® @ X
ds? = —(1- —F* :_ - - Zdr? + X dp?
s (1 P ) dt P ditdp + —dr* + +

ET‘"_l
113

2 : 29
(7‘2 +a® + CL—MSL) sin® 0 dp* + 72 cos® 0 d2 (6.1)
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where

7

-, Y =r7r?+a®cos’h. (6.2)
,rn—

A=r%4q?%—

As in the case of brane-emission the particles are assumed to couple only minimally
to the background and be free from any other interactions so that they satisfy the

higher-dimensional free equation of motion

) 1
VMVM(I) = \/__g (91\4(\/ '—ggMNaN(I)) =0 R (63)
where _1
V—g=Xsinfr" cos"HHsini g; . (6.4)
i=1

The above field equation can be separated by assuming the factorised ansatz
d = e_i“’teim‘PR(T) 5(9) }/jn(gla Ceey 0n_1, Q5) y (65)

where Y, (6;,...,0,-1,¢) are the hyperspherical harmonics on the n-sphere that

satisfy [147]

n—1 n—1 P 9..Y.
s Gk ]n oL in .
‘ sin' 8; + +7(j+n—-1)Y;, =0.
g | RS %o li(lll ) [T sin?0; | [T ~ sin? 6, i )Y
(6.6)
The functions R(r) and S(é) are then found as the solutions to the decoupled equa-
tions
1 " K?  j(j+n-1)ad?
rna (r"A0.R) + (A 3 —Ajem | R=0, (6.7)
1 m? (i +n-1)
. 9 n 98 2.2 2 9 _ _ E m =
o P Jp (sin B cos 95)+(w a” cos = Y + Ejpm | S=0,
(6.8)
that first appeared in the literature in [148]. In the above,
Ajem = Ejom + a*w? — 2amw . (6.9)

The angular eigenvalue Ejq,, (aw) provides a link between the angular and radial
equation and, as was the case with on-brane emission, its value cannot be written
in closed analytic form, but may be expressed as a power series in aw [149,150]. For

the purpose of this analysis, which will be valid only in the low-w and low-a limit,
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it suffices to retain terms in this expansion to 5th order!

Ejom =0l +n+ 1)+ (aw)? {1+2m2_2j(]‘—1)—2€(€+1)_2n(5+j)_n2]
7fm — ),

(26 +n—1)(20+n+3)
Jf—j—m)(l+j+n—|m-1)
16(2¢ +n —1)2(2( +n - 3)
4204n-3)1+2m?* - 25— 1) —20(£ +1) = 2n(f + j) — n2)} B
(20+n—1)(2¢+n+3)
(—j—|m|l+2)l+j+n—|ml+1)
16(2¢ +n + 3)%2(20 + n + 5)
4(20+n+5)(1+2m? —25(j — 1) — 20(£ + 1) — 2n(f + j) — n?)
20 +n-D20+n+3)

(aw)

[(f—j—|m|—2>(e+j—1m|+n—3)—

[M—j—hﬂ+®w+j—mu+n+m+

H +---. (6.10)

In order for the power series to converge in the limit aw — 0 by terminating at
finite order, a number of restrictions must be imposed on the allowed values of the
integer parameters (7, ¢, m) specifying the emission mode: in general, m may take
any integer value and j and ¢ any positive or zero integer value providing [149]

£~ (j + ml)

5 € {0,2%}. (6.11)

0> j+|m| and

By using the power series form of the angular eigenvalues it is possible to solve
the radial equation (6.7) analytically using the method of the previous chapter.
The solution for the radial function R(r) will permit calculation of the absorption
probability | Ajem|? for the propagation of a massless scalar field in the bulk. Exactly
as in the on-brane case, this will then allow calculation of the corresponding cross-

sections and Hawking radiation emission rates of the black hole.

'Equation (6.10) for the eigenvalues E,,, is based on the analysis of [149] but disagrees slightly
with the version given there as the sign of the second order term is reversed. This is necessary so
that, in the limit j,n — 0, the expression for Ej¢y correctly reproduces the on-brane eigenvalues

that have appeared in the literature previously [127,132].
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6.2 Analytic Solution of the Field Equation

6.2.1 The Near-Horizon Regime

In the near-horizon limit equation (6.7) may be brought to hypergeometric form by
employing the same transformations as in §5.2.1. Changing variable r — f(r) =

A(r)/(r* + a?) yields

d’R dR
f(1—f)W+(1—D*f)ﬁ+ (6.12)
K2 G +n—1al+Aem) (1+ad)], _ o
AZ f(1— f) A2(1-f) ’
where
4a?
D, =1- :2 , (613)

*

and A, and K, retain their definitions from equation (5.19). Following the same
arguments as in §5.2.1 equation (6.12) has solution in terms of the hypergeometric

function F'

Rvu(f) = A f*(1 - f)’ Fla,b,¢; f)
+A f*(1=f)PFla—c+1,b—c+1,2—cf), (6.14)
where
a=a+8+D,-1, b=a+ (3, c=1+42a, (6.15)

and the power coefficients o and 3 are defined by

1K,

a:iA* ’ (6.16)
1
7 {(Q_D*)i (6.17)
\/(D* _9)2 - 4{1(3 - (G +n- 12123 + Ajem) (1 +az)] } |

To impose the boundary condition of no ingoing modes at the horizon, the near-

horizon solution may be expanded in the limit r — rg to give

Ryu(f) ~ A_ JEE Ay A pFRA g othy 4 g oFiRY (6.18)
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where the tortoise-like coordinate y and quantity & are defined in equations (5.29)
and (5.30) respectively. In this case it is possible to set either A_ = 0 or A} =0,
depending on the choice for a. The two options are equivalent, so to be consistent
with the notation of the previous chapter the choice @ = a_ is made, which imposes
A, = 0. Then, requiring that the hypergeometric function converges restricts the
choice of power coefficient = (_ so that the near-horizon solution may be written

as
Ryu(f) = A-f*(1 - f)P F(a,b,c; f), (6.19)

using the newly defined quantities in equations (6.15)—(6.17).
The near-horizon solution may be stretched towards the far-field regime by using

the identity (5.35) and the approximation for 1 — f in equation (5.38) to yield
Ryp(r) = Ayr (DB Ay p (D (BHD--2) (6.20)

with A, and A, defined as
s I'(c)(c—a—1b)
[(c—a)l(c—1b)’

—+0.-2) T()T(a+b—-c)
I'(a)[(b) '

A = A [1+a)r]

Ay = A_[Q+ad)ry] (6.21)

6.2.2 The Far-Field Regime

Following the “improved” method of §5.5, the substitution R(r) = r_("TH)R(T)

brings equation (6.7) into the form of a Bessel equation [133], in terms of z = wr,

2R 1dR Ejem + a?w® + (2£1)7) -
4R —R+<1— s R+ (BF) N B (6.22)

dz? + 2 dz 22

The solution in the far-field regime may be written as

B B
Rep(r) = —op Jo (wr) + —ir Yy (wr) (6.23)
T 2 T2

with J, and Y, Bessel functions of the first and second kind and

1\ 2
v= \/Ejgm + a’w? + (%) . (6.24)




6.3. The Absorption Probability 118

The far-field solution may be stretched to small r by expanding the Bessel functions

using (5.78) and (5.79)

B, (4)"
Rpp(r) ~ n_ll ( 2 ) . B& I:,(,V)u .
P Tv+1) wr's (%)

(6.25)

Then, taking the small a, and w, limit in the power coeflicients of r — so that terms

2

* 7

of order (w?, a?, a,w,) or higher may be ignored — exact matching between the two

asymptotic solutions (6.20) and (6.25) may be achieved since
—(n+1)8 ~ (40w} d aw,),

(n+1)(B+D.—2) = —({+n+1)+0(w al aw.),

ntl + O(a’w?). (6.26)

v ~ ¢+

As in the previous chapter, to ensure greatest possible accuracy no expansion is
performed in the arguments of the gamma functions and terms to order (aw)* are
retained in the expansion of the eigenvalues. Then, the matching of the two asymp-

totic solutions leads to the constraint

B 1 2 2€+n+1 + 1 2
B = it I \/Ejlm + a’w? + (n ) (627)
B, T \wryg (14 a2)»7 2

I? (\/Ejem + a?w? + ("—;—1)2) MNa+pB+ D, —1)T'(a+B)T(2-28- D,)
I'20+ D, -2)T2+a—-B-D)T(1+a-70)

X

The above relation guarantees the existence of a smooth, analytic solution for the
radial part of the wavefunction for all r, valid in the low-energy and low-rotation

limit.

6.3 The Absorption Probability

The absorption probability may be calculated by examining the extreme far-field

limit of the solution to the radial equation. Using the Bessel function identities

(5.82) and (5.83) the r — oo limit of the far-field solution takes on the form of



6.3. The Absorption Probability 119

incoming and outgoing plane waves

1 . —i(wr—Zv-% . {wr—Tpy—_=%
RFF(T) ~ m[(Bl-{—zBQ)e (w 2 4)-}-(31—132)6( 2 4)]
o e—iwr o eiwr
Al("n ) n+2 + Az(mt) n42 (628)
T2 r2

Since the powers of r multiplying the incoming and outgoing components are iden-

tical, equation (5.56) may be used to calculate the absorption probability

2 —
Bl - ZBQ
B +1B,

A(OO)

oul

A

B 2i (B* — B)
- BB*+i(B*-B)+1’

| Ajem|” =1 -

(6.29)

6.3.1 A Numerical Check

To test the accuracy of the above analytic expression it is possible to follow the
method of [95] and construct a numerical solution to the radial equation (6.7) using
the NDSolve routine in Mathematica. It should be noted that the solution will not
be exact as the low-order expansion of the angular eigenvalues (6.10) will be used
in place of the exact values that would follow from numerical analysis of equation
(6.8) also. However, in the low-(aw) limit this numerical solution will serve as a
good approximation to the true value, against which the analytic expression may be
tested.

The boundary condition of no incoming waves at the horizon may be applied in

the numerical routine by imposing, in the limit r — rpy,

dR ik

dr— f(r)’

This holds owing to the form of the very near-horizon solution written in terms of

(6.30)

the tortoise-like coordinate in equation (6.18). Once the field equation has been
solved numerically, the absorption probability may be extracted from the far-field

limit of the solution. From equation (6.28) it is possible to define at infinity

1 ior | n22 1 d [ nt2 ‘ 1 . AT (2w .
By = 3¢ [T Rt Lw ("’ ’ R)} = T (B iBae 124D (6.31)

1 [z, i d [ o 1 NN
B = e [PER- SL ()| < (i i,




6.3. The Absorption Probability 120

2
|Ajiml
0.00001

8x107%¢
6x10°C}
4%x107% |

2x107%}

WwIy

-2x10°%}

Figure 6.1: Absorption probabilities | A;em|” for bulk scalar fields with n = 2, a, =
0.4 and £ = 0 (red), 1 (green) and 2 (blue), with individual modes labelled by the
indices (j, m). Solid lines correspond to the analytic result (6.29), while dashed lines

follow from numerical analysis.

and then the absorption probability can be extracted from the numerical radial

solution using these quantities as

2 2

B-
By

B—1
B+

I-Ajlm|2 =1- ‘

(6.32)

6.3.2 Plotting the Absorption Probability

In figure 6.1 the absorption probability is plotted for the lowest partial waves with
n = 2, a. = 0.4, and values of j,¢,m obeying the restrictions (6.11). As in the
on-brane case, the dominance of the first partial wave j = ¢ = m = 0 is observed,
and the suppression of lAj27n|2 with increasing values of the angular momentum
numbers is evident also. Superradiance can again be seen for modes with positive
m. Figure 6.1 depicts both the value of |A;en |I? that follows from the analytic result
(6.29) (solid lines), as well as that obtained by integrating the radial equation (6:7)
numerically (dashed lines). As in the case of fields propagating on the brane, the
approximate analytic method leads to values that are in excellent agreement with

the numerical results, not only in the low-energy regime but beyond this also.
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Figure 6.2: Absorption probabilities for the bulk scalar mode j = ¢ = m = 0. The
left-hand figure has variable a,: n = 4 and a. = 0.1 (red), 0.4 (green), 0.7 (light
blue) and 1.2 (dark blue). The right-hand plot has variable n: a, = 0.5 and n = 4
(red), 5 (green), 6 (light blue) and 7 (dark blue).

Focusing on the dominant first partial wave, figure 6.2 demonstrates the depen-
dence of the absorption probability on the rotation parameter a, and the number
of extra dimensions n. From the left-hand plot it is clear that an increase in the
rotation of the black hole causes an enhancement in the value of I.Ajgml2 in the
low- and intermediate-energy regimes. The right-hand plot shows that the absorp-
tion probability is strongly suppressed as n increases. The latter behaviour was also
found for bulk scalar fields propagating in the background of a spherically-symmetric
higher-dimensional black hole [111].

An interesting question is how the absorption probabilities for brane and bulk
scalar fields in a rotating black-hole background compare. By examining the results
presented in this section and the previous chapter, it may be concluded that the
absorption probabilities for both types of scalar field are enhanced as the black
hole rotation parameter increases. In contrast to this, the value of the absorption
probability increases with n for brane scalars, while it decreases for bulk scalar fields.
Important conclusions may also be drawn by directly comparing figure 6.1 with the
corresponding figure for on-brane emission 5.11: for the same values of n and a., the
absorption probability for brane scalar fields is consistently larger than that for bulk
scalars by almost 3 orders of magnitude, both for superradiant and non-superradiant

modes. The same observation was made in the 5-dimensional case [122] — here, it
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has been demonstrated that this behaviour persists for higher values of n.

6.4 The Low-Energy Limit

In the extreme low-energy limit a compact analytic expression for the absorption
probability may be derived by following a similar procedure to that of §5.6. In the

higher-dimensional case, as w — 0, B o« 1/w?*"*! therefore

(1 1
| Ajer|? =~ 2i (E - B*> . (6.33)
Substituting for B from equation (6.27) it is found

— 2 (wry/2)% T I'(28 + D, —2)
-A' m 2 — 204 n+1 634
send €+ T2(¢+ ™) (1 + a2) 55 T(2 - 28— D.) : (634)
r2+a—-p-D)I1+a-p8) T'2-a-pB-D,)I'(1—a-7)

INa+B+D,—1)T(a+p) I'(—a+p03+D,—1)T(-a+p)

Focusing attention on the dominant mode j = ¢ = m = 0, and performing an
analysis similar to that in §5.6, the extreme low-energy absorption probability may
be written

4 (1 + a?)?(wry )™ +?

Aooo|” = +.o 6.35
| 000| A* 2"(7’&-0— 1)F2 (nTH) (2 . D*) ( )

The above result allows computation of the higher-dimensional absorption cross-

section a(()?i for the dominant bulk scalar mode in the asymptotic low-energy regime.

The cross-section for a scalar partial wave indexed by the values (7,4, m) may be

written as
;Hlrtt 43
(0) 2
Ojeyn ((.U) - wn+2 F ( 2 ) N] |Aj€m|
2" n+3 AH N 2
_ S J oml? 6.36
™ < 2 ) (wrg)™+? (1 + a2) [Aser| (6.36)
where
. . nt3
N o= @itn—1)(+n—2) A, = 2n7 v} (r3 + @) (6.37)

7 jf(n—1)! ! (%)

2
are the multiplicity of the jth partial wave in the expansion of the wave function

over the hyperspherical harmonics on the n-sphere, and the horizon area of the
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Figure 6.3: Absorption cross-section for the bulk scalar mode j = £ = m = 0, for

n = 2 and various values of a,.

(4+n)-dimensional rotating black hole, respectively. Substituting for the low-energy

absorption probability (6.35) in the above recovers the low-energy cross-section as

(n+ 1)(1 +(I,E)AH
A.(2-D,)

For a, — 0 this reduces to Ay, a behaviour that was found in the analysis of a

o\ (w) ~ (6.38)

static black hole [111]. For a. # 0, the numerical results (dashed lines) presented
in figure 6.3 confirm that, here also, the low-energy limit of the cross-section tends
to the full higher-dimensional area of the corresponding rotating black hole. The
solid lines demonstrate the agreement of the analytic results with the numerical ones
for small values of a., and the deviation that occurs as the rotation parameter is

increased.

6.5 The Energy Emission Rate

Having found the absorption probability it is now possible to compute the rate of

energy emission of massless scalar fields in the bulk. This is given by the expression

dPE 1 = w . \
dtdw 2w Z exp [k/Tu] — 1 Nj|Ajem!” . (6.39)

j€m

The above differs from the 4-dimensional expression (4.19) in the presence of an ad-

ditional sum over the new angular momentum number j, and from the 5-dimensional
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one [110] in the introduction of the multiplicity of states N; (6.37) following from
expansion of the wavefunction over the n-dimensional sphere.

A useful check of the validity of the above emission rate is to take the non-rotating
limit. In this circumstance equation (6.39) should reduce to the well-known result for

bulk scalar emission from a (4 + n)-dimensional Schwarzschild black hole [111,113]

d2E 1 W 2
= — N, 6.40
dtdw 27 ; explw/Tg] =1 ° Ael™ (6.40)

where N, is the degeneracy of the £th mode of the harmonics on the (n + 2)-sphere

(204+n+1)(£+n)!
0 (n+1)!

N, = (6.41)

In the limit a — 0, then & = w, and the absorption probability becomes independent
of both m and 7, retaining a dependence only on the principal quantum number ¢.
Equation (6.39) then matches (6.40) providing the following relation holds

¢

Z N=> (t-j+1) G nj!_(i))ij;;!n “2_ . (6.42)

=0
The first equality in the above equation holds since, according to the restrictions
(6.11) imposed on the quantum numbers, for each value of (7, £) m may take £ —j+1
values and for each value of ¢, j may take the values 0 < j < ¢. In order to prove
equation (6.42), the factor 25 +n — 1 is rewritten as (7 + n — 1) + 7 and the sum is
then split into two parts. Replacing the index j by ¢ —n + 1 in the first sum and by
¢ —n + 2 in the second, the middle part of equation (6.42) takes the form

f+n-1 {4+n—-2
Y C+n—-1-i+1)Clin-1)+ > ((+n-2-i+1)C(E,n—1), (6.43)

i=n—1 i=n-1

s!
ri{s—r)!"

where C(s,7) is the combination function, C(s,r) = By using the identity

i(s—z’—’rl)C(i,r)=C(5+2,r+2), (6.44)

i=r
the first sum in equation (6.43) reduces to C(¢ + n + 1,2 + 1), and the second to
C(£+n,n+1). The sum of these two combination functions is equal to N,.
By using equation (6.39) the energy emission rate of bulk scalar fields from a

higher-dimensional rotating black hole is plotted in figure 6.4 and its dependence on
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Figure 6.4: Energy emission rates for bulk scalar fields. The left-hand figure has
variable a,: n = 5 and a, = 0.1 (red), 0.5 (green), 1.0 (light blue) and 1.5 (dark
blue). The right-hand plot has variable n: a, = 0.5 and n = 4 (red), 5 (green), 6
(light blue) and 7 (dark blue).

the angular momentum parameter and number of extra dimensions is illustrated.
The profile exhibited by the absorption probability is also observed here: the emis-
sion rate is enhanced with a, in the low-energy regime, as was the case for brane
particles, but is suppressed in terms of n. Drawing experience from previous studies,
the enhancement resulting from increased black hole rotation is expected to persist
over the entire range of energy — on the other hand it is likely, given the similarity
of the results with those for bulk scalar fields in a non-rotating background [111],
that the low-energy suppression with n will be replaced by a strong enhancement
at the high-energy regime.

Finally, it is important to address the question of the brane-to-bulk ratio of the
rate of scalar field energy emission from a higher-dimensional rotating black hole.
The answer to this question will define the amount of energy spent by the black
hole in the observable brane channel. The comparison of bulk and brane absorption
probabilities discussed in the previous section has given a clear signal as to which
emission is dominant, however the final comparison should involve the total emission
rates where the different multiplicities of states have been taken into account. By
using equations (6.39) and (4.19), the brane-to-bulk ratio for scalar fields emitted
by a rotating black hole is depicted in figure 6.5. It may easily be observed that

increasing n greatly increases this ratio, suggesting the brane channel is more highly
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Figure 6.5: Brane-to-bulk ratio of the energy emission rates for scalar fields. The
left-hand figure illustrates the dependence on a, for n = 1 and a, = 0 (red), 0.3
(green), 0.6 (light blue) and 0.9 (dark blue). The right-hand plot demonstrates the
dependence on n for a, = 0.5 and n = 1 (red), 2 (green), 3 (light blue) and 4 (dark
blue).

favoured in higher-dimensional spacetimes. Increasing a, suppresses the ratio in the
low-energy limit, although the effect is slight. It should be noted that in all cases
the ratio of the brane to bulk emission rate always remains above unity, rendering
the brane channel dominant. This result, along with the strong n-dependence, was

also found in the study of radiation from a Schwarzschild black hole [111].

6.6 Summary

In this chapter the emission of scalar particles from a higher-dimensional rotating
black hole into the bulk spacetime has been investigated. The method used for brane
scalar particles in the previous chapter has been extended to the full bulk spacetime
to derive an analytic solution to the radial part of the field equation. This was
then used to calculate absorption probabilities, cross-sections and finally the energy
emission rate. A numerical analysis of the radial equation has also been performed
and found to be in good agreement with the analytic expressions.

Many of the same dependencies on model parameters were found as in the case of
on-brane emission. The notable exception to this is that the absorption probability,

and consequently the energy emission rate, decreases with increasing number of
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extra dimensions n for emission in the bulk. While this is in contrast to the on-
brane behaviour, a similar trend was found in emission from a static black hole [111].
Comparison of bulk and brane absorption probabilities revealed that, for a given
mode, emission on the brane is favoured by approximately three orders of magnitude.

An analysis of the bulk scalar rate of energy emission revealed its behaviour is
largely inherited from the absorption probability, showing an increase with a., but
decrease with n. Calculation of this rate permitted determination of the fraction
of the black hole’s total scalar energy emission that is potentially detectable on the
brane, taking into account the differing multiplicity of states between brane and
bulk particle modes. In the low-energy limit the brane-to-bulk ratio is consistently
above unity, tending rapidly to infinity as the emitted particle’s energy approached
zero. An increase in the number of extra dimensions brings a dramatic increase in
the ratio, as also found in studies of the Schwarzschild case, while increasing angular
momentum of the black hole introduces a very mild suppression.

The quantities presented here are all valid in the low-w,, low-a, limit and so
cannot be used to integrate over w and determine the total energy emission rate
into a given mode. Also, when deciding how much of the black hole’s total energy
is available on the brane for detection, no mention has yet been made of energy lost
in the form of bulk gravitons. Owing to the higher degree of complexity involved in
deriving the appropriate field equations for gravitons, this is a topic that has only

recently been studied for a higher-dimensional Schwarzschild black hole [5].



Chapter 7

Bulk Graviton Emission in the

Schwarzschild Phase

Gravitational perturbations of a D = 4+n-dimensional static black hole with metric

[151] 2

d
ds® = —h(r) dt* + ﬁ 02, h(r)=1-

(which follows from taking the limit a — 0 of the Myers-Perry solution (4.3)) may be

7
rntl ’

(7.1)

decomposed into a symmetric traceless tensor, a vector and a scalar component [152)].
Owing to the SO(2 + n) symmetry of the above metric, these perturbations can be
further expanded in terms of the spin-weighted spherical harmonics on the S**™ unit
sphere. Using this decomposition and employing a gauge-invariant formalism [153]
the graviton field equations R4 = 0 are completely separable and the radial
components may be written in terms of a number of gauge-invariant variables [154].
For each species of gravitational perturbation it is possible to define a “master
variable” ® in terms of the gauge-invariant variables so that the radial equations for
all three types of gravitational perturbation may be written as a Schrodinger-like

equation

h% (h%)ﬂw?—\/)@:o. (7.2)

The form of the potential V' varies depending on the type of perturbation. For

tensor and vector-like perturbations

Vrv = h_g_) [€(f+n+ 1)+ n(”: 2) _ ’“("12)2 (m)nﬂ] |

128

(7.3)

7
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Figure 7.1: Comparison of the potentials experienced by scalar (red), vector (green)

and tensor (blue) gravitational perturbations for n = 2 and ¢ = 2.

with k = —1 and k = 3 respectively, and ¢ being the angular momentum quantumn
number of the mode in the expansion of the field over the spherical harmonics. For
scalar gravitational perturbations the form of the potential is rather more compli-

cated

h(r) g1 = h)* +p(1 = h)?+w(l —h) + 2
2 42m+ (n+2)(n+3)(1 - h)

In the above m = 4({ +n + 1) — n — 2, and

Vs = (7.4)

g = (n+2)%n+3)?, z = 16m* +4m*(n+2)(n+4),
p = (n+2)(n+3)[4m(2n® +5n+6) + n(n+2)(n+3)(n-2)], (7.5)
w = —12m(n+2) [m(n—2)+n(n+2)(n+3)].

For illustration, the potentials experienced by each of the three types of gravitational

perturbation are shown in figure 7.1 for the case n = 2, £ = 2.

7.1 Solving the Field Equations

Equation (7.2) has no known analytic solution over the entire range of the radial

coordinate for any of the potentials (7.3)-(7.4). In order to proceed it is possible to
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once again adopt the approximate method that has been used to solve the radial
equations in the previous two chapters.

Concentrating first on derivation of the near-horizon solution, it is possible to
treat tensor and vector perturbations together, owing to the similarity in the form
of their potentials (7.3). The more complicated scalar potential (7.4) must be con-
sidered separately. Employing the change of variable r — h(r) allows equations

(7.2)-(7.3) for tensors and vectors to be rewritten in the near-horizon region in the

form
d°® (2n+3) ] d®
h(l=h)— _ e o), ¢
( h)dh2+{ i) hJ ot
(wry)? A k(n + 2)?
— S0 (7
Ln+n%u—h) u_hy+qn+ng , (7.6)
where again k£ = —1 for tensors and k& = 3 for vectors, and the quantity
A= f+n+1) n{n + 2) -

(n+1)? 4(n+1)2’
has been defined for convenience.
The above equation takes the form of a hypergeometric equation (5.20) if the
field redefinition ®(h) = h*(1 — h)?F(h) is made and the constants a,b and c are
identified as

(n+2) (n+2)
2(n+1) 2(n+1)

where G is an arbitrary constant. Furthermore, demanding that the coefficient of

a=a+ 0+ +@G, b=o+ 0+ -G, c=1+2a, (7.8)

F(h) in the transformed equation be exactly —ab yields three additional constraints

that determine the remaining unknown constants, a, § and G

wry

=120+ n+1)? — ¥y
B = 2T 1) : (7.10)
(T.V) _ (1+k)(n+2)
G — D (7.11)

Then, the general solution of the transformed radial equation (7.6) may be written

as
®np(h) = A_R*(1 — h)? F(a,b,c; h) +

A h*(1-hPFla-c+1,b—c+1,2—ch), (7.12)
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where A, are arbitrary integration constants. Once again, the boundary condition
of no outgoing waves immediately outside the black-hole horizon may be ensured by

expanding the solution in the limit r — rp, or equivalently h — 0, in which case
Oyp(h) = A_h* + AL h™ = A_e*™¥ 4 A, eV (7.13)

where, in the last part of the above equation, the tortoise-like coordinate in the
Schwarzschild spacetime
dy A

dr h(r)rnt2’ (7.14)

has been used. The asymptotic near-horizon solution is written in terms of both
incoming and outgoing plane waves since very close to the horizon, as illustrated in
figure 7.1, the potential V for all types of gravitational perturbation vanishes. As
in the bulk scalar case, performing the interchange o, < «a_ simply interchanges
the integration constants A_ «— A, in equation (7.12), therefore the sign of a can
be chosen arbitrarily; to be consistent with the conventions of previous chapters the
choice @ = o~ has been made. The aforementioned boundary condition then forces
the outgoing wave to be discarded by setting A, = 0. The sign in the expression
for A is again fixed by imposing the convergence condition of the hypergeometric
function, Re(c —a — b) = ——= — 203 > 0, which demands the choice 3 = 3_ be

n+1

made. This brings the near-horizon solution to its final form
Dnp(h) = A_h* (1 — h)? F(a,b,c;h). (7.15)

In the case of scalar gravitational perturbations, by employing the same change

of variable, the corresponding near-horizon field equation can be brought to the form

T [1_(2n_4r?)) }d@

w | T mry

mrim(i—n) a-m °|2=0 (7.16)

[ (wry)? A
where A was defined in equation (7.7) and the quantity C is

g1 —=h)?+p(l-h)+w
4(n+1)%2m+ (n+2)(n+3)(1 — h)]?’

C (7.17)
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with
- z(n +2)%(n + 3)?
_ 1
7 p A , (7.18)
n+2)(n
b o= w2t n)l(” +3) (7.19)

In this form, equation (7.16) has polesat h =0 and h = 1 (or, at 7 = ry and r = oo,
respectively) while the quantity C' takes on a constant value in both limits.

In order to transform this equation to hypergeometric form using the same field
redefinition as in the vector and tensor case, it is important that the third term in
the part of equation (7.16), proportional to ®, is a constant. Since this equation is
valid in the near-horizon regime, the most obvious choice of constant is that which
arises by taking the limit A — 0 in the expression for C (7.17)

g+p+w
4(n+1)22m+ (n+2)(n+3)]?"

Cop = (7.20)

The method then proceeds exactly as before, with the hypergeometric indices (a, b, ¢)
given by equations (7.8), and the powers («, 3) by (7.9)—(7.10). The only difference

arises in the constant G that, in the case of scalar perturbations, takes the value

G = \/M Co. (7.21)

An+1)2

By applying the same boundary condition, the general solution for scalar per-
turbations in the near-horizon regime is also given by equation (7.15), with a = a_
and 0 = (4_.

Next, the solution in the far-field regime is constructed. In the limit 7 > ry,

h — 1, and the radial equation for all types of gravitational perturbations takes the

e (w2 _(nt 1)2_“‘1) =0, (7.22)

simplified form

dr? 72
where A was defined in equation (7.7). By setting ® = /7 R, the new radial function

R is found to satisfy a Bessel differential equation

d’R(2) N 1dR(2) n (1 _ V_Q) R(z) =0, (7.23)

dz? z dz 22
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with 2z = wr and v = £+ (n + 1)/2. Therefore, the general analytic solution to the

field equation for all species of graviton in the far-field limit can be written as
(I)FF(T') :Bl\/;‘]€+"7“ (WT)+BQ\/;)/'£+nT+—I (wr), (724)

where J, and Y, are Bessel functions of the first and second kind, respectively, and
B, 5 are arbitrary integration constants.

To construct the complete radial solution it is necessary to stretch the near-
horizon solution (7.15) towards large values of r, and the far-field solution (7.24)
towards the origin. The near-horizon solution may be stretched by using the hyper-
geometric function identity (5.35) in equation (7.15), before taking the limit r > 7y,
or h — 1. This then yields

Bn+l) T(c)T(c—a—b) rp\~1-B0tD) T'(c)T(a+b—c)
Tle—a)Tlc—b) "~ () F(a)F(b()7 N

Oyu(r) ~ A (’—H)

T T

Turning next to the far-field solution, it may be expanded in the opposite limit,
r — 0, by using the standard formulae, (5.78) and (5.79), for the Bessel functions

as the argument z — 0 in equation (7.24) to obtain

= (7.26)

W)Hﬂ%“—l Pe+3+1 B, (2)e+"7“ F(€+ n-Zl-l)
5 .

Qpp(r) ~ By (— m - ST

To ensure the stretched forms of the two asymptotic solutions match it is nec-
essary to take the low-energy limit wry < 1 in the expression of 3, equation
(7.10). At first-order approximation, the wry-term may be ignored, in which case
Bn+1) - —(£+ n/2 + 1) and the powers of r in equations (7.25) and (7.26)
become identical. A smooth matching is then achieved, and a complete solution is
constructed, providing the following relations between the near-horizon and far-field

integration constants hold

n+1

B _ (2 5 I (¢+ 2£2) ['(c)T(c—a—1b)

A (er) F(c—a)T(c—b)ytH (727)
By o (vrH et gt I'(c)T(a+b—c)

A- ( 2 ) L (¢+ ) T(a)T(b) VT (7.28)

This completes the derivation of a low-energy analytical solution to the field equa-

tions for all types of gravitational perturbations propagating in a (4+n)-dimensional
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Schwarzschild black-hole background. With these solutions it is now possible to cal-

culate the corresponding absorption probabilities.

7.2 The Absorption Probability

In the limit 7 — oo the effective potentials for all types of gravitational perturbation
again vanish due to the asymptotically flat nature of the metric. In this regime the
general solution is described by incoming and outgoing plane waves, the form of
which can be found by approximating the Bessel functions using equations (5.82)
and (5.83). Equation (7.24) becomes

1
27w

m

{(B1 —iBy) e(m=3v=1) 4 (B, +iBy) e (=% ”‘ﬂ} o
(7.29)

q)pp(’r') o~

where as before v = £+ (n+1)/2. Since the incoming and outgoing wave components
decay at the same rate, the absorption probability may be evaluated using equation

(5.56)

2

2
A(out)
£ : (7.30)

A2 =1—|Ref2=1—

L |B-i
- B+i

where Agm) and Ag‘mt) are the incoming and outgoing wave amplitudes evaluated at

infinity and B is defined as

pobBi__ < 2 )2“"-“ P(e+22) T (e+ ) T@)I())T(c—a—b)
B, Wwry al(c—a)T(c—=b)T(a+b-c)
(7.31)
The above two equations define the low-energy analytic absorption coefficient asso-
ciated with the propagation of gravitons in the higher-dimensional black hole back-
ground given in equation (7.1). Individual solutions for scalar, vector and tensor
components of the gravitational perturbations follow upon substituting the corre-
sponding values for the hypergeometric indices (a, b, ¢) found in the previous section.
As in previous chapters, a compact low-energy expression for the absorption
probability may be derived for gravitons. For convenience the hypergéometric indices

are rewritten as

a:a+ﬁ+G1, b=a+6+G2, c=1+2a, (732)



7.2. The Absorption Probability 135

where

n -+ 2 n+2
G =—— =——-G. 7.
"To(n+1) +G, G: 2(n+1) ¢ (7.33)

As G takes a different value for each type of perturbation under consideration,
y p
G2 will also. Since B ~ 1/(wry)**"*1 then in the extreme low-energy limit

BB* >» i(B* — B) > 1. Therefore, by keeping only the dominant term in the

denominator
2 . 1 1 *
AP =2 (5 = =) = K(wrin, 0) (70, 8) - Z'(@,B) . (7.39)
where
wrg\ 20+l 20 (04 282 T(=1+ 26 + G, + Ga)
K =—(— 7.35
w1 =-(5) " Tarepy ta-w-a-ay O
and
FMl4+a-p-G)T'(1l+a—-p0—-G,)
7 = 7.36
(OL,,B) F(Ol‘i‘ﬁ‘i‘Gl)F(O[—f-ﬁ“f—Gg) ( )
Using the Gamma-function identity
T
MNa)T(1 —z)=—zD(-2)T(z) = ) (7.37)
the definitions of G 2 (7.33) and keeping only the dominant term
0 = _(2€+—n+2) 38
= e (7.38)

in the expansion of # (equation (7.10)), then K(wrg, ) may be written in the limit

wry L1 as
K(wru, ) = (228)""" i (n+ 1) |
2 T (¢+23)" T (1+:25)" sin [7(260) + G + Gy)]

(7.39)

Considering next the expression for Z(«, 3), the only complex quantity appearing

is a, which is purely imaginary, therefore Z*(«, ) = Z(—«, ). By using the same
Gamma-function identity as above, it is possible to write

,”2

Y N+ B+ GO+ 1 GaP (740
sin[m(a+ 8+ G))] sin[n(a + B+ G2)] —sin[r(a — 8 — Gy)] sin[r(a — 3 — Gs))
|sin[m(a + 8+ G)]|? |sin[7(a + 8+ G2)] |?
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Finally, expanding in the limit wry < 1, or equivalently o — 0
2c
Z7-z7+="2 sin[r(289 4+ G; 4+ G2)| T'(1 — 8O — G1)*T(1 — B9 — Gy)*. (7.41)
s

By combining equations (7.39) and (7.41), the asymptotic low-energy absorption

probability may be written in the relatively compact analytic form

wH)2z+n+2 rl+-45-0)°T(1+4+G)°

IA |2 = 4 ( =L n+i n+l (7.42)
‘ ( 2 L6+ m3)° T (14 2)°

In the above the zero-order approximation for 4 ~ 5‘®) has been used again and also

the definitions (7.33) to recover the dependence on the parameter G. According to

n2

— ] for vector

equation (7.11), the value of G is zero for tensor perturbations and
ones, while for scalar gravitons its value is given in equation (7.21). In the case
of tensor perturbations it can be shown that the above result reduces to that of
the absorption probability for a scalar field propagating in the bulk [113]. This
result could have been anticipated by examining the equation satisfied by tensor
gravitational perturbations in the bulk more closely: starting from equation (7.2)
and setting ®1)(r) = Vr"+2®(r), the new radial function ®(r) is found to satisfy
the equation of a scalar field (equation (10) in [113]) propagating in the static,
higher-dimensional black-hole background (7.1).

From equation (7.42), it is clear that the absorption probability depends on
both the angular momentum quantum number ¢ and number of extra dimensions
n, through the arguments of the Gamma functions as well as the power of wry. As
either ¢ or n increases, the power of wry increases too which, for wry < 1, causes
a suppression in the value of [A,|2. As the behaviour of the remaining factor is less
clear table 7.1 displays the explicit value of |4,]? for all three types of gravitational
perturbation, as follows from the simplified expression (7.42), for the indicative
values n = 2,4,6 and ¢ = 2,3,4. From these entries, one may easily conclude that,
as either ¢ or n increases, the value of |A4;|? for all types of gravitational perturbation
in the asymptotic low-energy regime is significantly suppressed. It should be noted
also that, for the same values of ¢ and n, |A|*> assumes a different value for each

type of perturbation. From table 7.1 it appears that the tensor perturbations are

suppressed by orders of magnitude in comparison to the other two, while the relative
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S
n ¢ p A2 A2 A2
n=2 {=2 8 1.7-1074 7.4.1073 2.7.-1073
¢=3 10 1.1-10°6 1.6-107° 1.8-107°
=4 12 46-107° 3.7-10°8 55.10°8
n=4 £=2 10 3.2.10°6 2.2.101 3.4.107°
¢{=3 12 1.9.-1078 4.2-1077 3.1-1077
¢=4 14 81-10"1 9.5.10710 1.3-107°
n=6 f=2 12 3.1-10°8 3.2.10°6 22.1077
(=3 14 1.5-10710 4.7-107° 1.9-107°
/=14 16 54.10713 89.10712 8.4-10712

Table 7.1: Dependence of the absorption probability for tensor, vector and scalar
gravitational perturbations in the bulk on n and ¢, in the asymptotic regime wry —
0. Entries represent coeflicients of (wry)P, eg. for tensor perturbations with ¢ = 2,

n = 2 the absorption probability should read | A2 = 1.7 1074 (wry )8,

magnitude of vectors and scalars strongly depends on the particular values of ¢ and
n chosen. As tensor perturbations have the same absorption probability as bulk
scalar fields, it would be interesting to determine whether gravitons dominate over
scalar fields during the emission of Hawking radiation in the bulk.

In deriving the absorption probability for gravitational perturbations in the bulk
the low-energy assumption was made only once — during the matching of the two
asymptotic solutions in the intermediate zone. Nevertheless, that was sufficient to
restrict the validity of the solution to values of the energy parameter wry well below
unity. The simplified analytical result (7.42) emerged after a series of expansions
in the arguments of the Gamma functions appearing in equations (7.31) and conse-
quently its validity is rather more restricted. Table 7.2 offers a comparison of the
values of the absorption coefficient derived by using the two analytical expressions,
equations (7.30)-(7.31) and (7.42), as wry ranges from 0.001 to 0.5. It may easily

be seen that, for very low values of wry, the agreement between the two expressions
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WT g |A§ZT)|2 (simplified expression) |.A§T)|2 (exact expression)
0.001 1.6997 x 10~28 1.6997 x 10~28

0.01 1.6997 x 10~2° 1.6999 x 10-%0

0.1 1.6697 x 10712 1.7112 x 10712

0.3 1.1152 x 1078 1.1839 x 1078

0.5 6.6396 x 1077 7.8001 x 1077

Table 7.2: Deviation between the values of the absorption probability for tensor
gravitational perturbations given by the simplified and complete analytical expres-

sions for n = 2, ¢ = 2 and different values of wry < 1.

is remarkable; however, as wry reaches 0.5, the values deviate by as much as 15%.

In the final stages of preparation of these results for publication [5] a number of
additional papers appeared in the literature [155-157] that also study emission of
bulk gravitons in a higher-dimensional Schwarzschild background. The results for
vector and tensor perturbations in [156] are in excellent agreement with those pre-
sented here, however, in contradiction to that just derived, it is claimed that scalar
gravitational perturbations cannot be treated analytically and a numerical result
is provided instead. Examination of this numerical expression found it to disagree
significantly with the analytical result derived above for scalars!, so a numerical
analysis of the problem was required to independently check the extent to which the

absorption coeflicients (7.30)-(7.31) may be deemed accurate.

7.2.1 A Numerical Check

As in the previous chapter, the field equation (7.2) may be solved numerically for
all types of perturbation using the NDSolve routine in Mathematica. In this case,
the boundary condition of no incoming waves at the horizon may be applied by
imposing

do  w

d_’r‘ = _W, (743)

!Thanks are extended to Julien Grain and Aurelien Barrau for drawing attention to this.
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AP

1x10°% ¢

8x1077 |
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2x1077

—— wWry

Figure 7.2: Comparison of the analytic (solid lines) and numerically (dashed lines)
derived absorption probabilities for scalar (red), vector (green) and tensor (blue)

gravitational perturbations for n = 2, £ = 2.

in the limit » — rgy. Once the field equation has been solved numerically it is

possible to define at infinity

1. i dP 1 -
B. = v |® |l =_—-_ (B + B 1-(2€+n+2)’
+= 3¢ [ +wdr] Vang D1t iBa)e
1 _; 1 dd 1 (e .
B.= e & 12| = (B, - iBy)e~ Tt 7.44
2° [ wdr] Vim0t T B (7.4
and then the absorption probability can be written in terms of these quantities
B—if B_|?

2-1- =1-|= 7.45
[Ad B+i B. (7.45)

A comparison of the analytic and numerically derived absorption coefficients, plot-
ted as a function of the dimensionless energy parameter wry, for all types of per-
turbation in the case n = 2, £ = 2 is shown in figure 7.2. It is clear from this single
instance that, while the expressions for the tensor and vector perturbations are in
excellent agreement with the numerical result at low energy, the scalar case displays
significant deviation. In fact, the analytical results predict that scalars should be
subdominant to vectors for the lowest mode, £ = 2, while the corresponding numeri-
cal results predict the exact opposite. It is clearly necessary to improve the analytic

scalar result significantly.
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7.3 Gravitational Scalars Revisited

Given the accuracy with which the vector and tensor absorption coefficients are
described, the error must lie in an assumption made uniquely for the scalar case. In
the far-field regime the solutions for all types of perturbation are necessarily identical
since the potentials tend to zero at large r in all cases. Therefore the problem must
arise in the near-horizon limit.

Reexamining the near-horizon limit reveals that, in the scalar case alone, a choice
had to be made so that the equation of motion could be cast into hypergeometric

form. In general, any equation of the form

o (2n+3) ] do
g = T
(wrp)? of -
[(n+1)2h(1—h) T (1-h) -%|®=0, (7.46)

for arbitrary constants &/ and %, may be converted into hypergeometric form with
indices as in equation (7.8), by employing the transformation ®(h) = h*(1—-h)°’F(h),

where

wWwry

o= a_= — , (7.47)
n+1
—1—4/1+4|{(n+ 1) — (wry)?
g= 0 \/ [2(n+1) ! ], (7.48)
B (n +2)2
G = \/m - %, (7.49)

and a_ and §_ have been chosen to be consistent with the discussion in §7.1. In
the previous scalar analysis the parameter choices & = A (as in equation (7.7))
and ¥ = Cy (equation (7.20)) were made. However, changing the variable in (7.46)
back to the original radial coordinate r reveals that an arbitrary choice of &/ and ¥
corresponds to starting from an original Schrodinger-like equation of the form (7.2)

but with potential
(n + 1)2h(r)

V=t e+ (1- 0] (7.50)

So choosing A and Cj as the arbitrary constants required for the hypergeometric

analysis is equivalent to starting out with a different form of potential in the original
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the optimal coefficients

A, - m+2)(n+3)g+p+w+2) N z2—29—p
Yo+ 122m+ (n+2)(n+3)°  An+122m+ (n+2)(n+3))°
(7.52)
oo 3g+2p+w . (n+2)(n+3)gtpt+w+t2)
i 4(n+1)2(2m+(n+2)(n+3))2 2(n + 1)2(2m+(n+2)(n+3))3'
(7.53)

For comparison, the improved potential (7.50), using the above choice of coefficients,
is also displayed in figure 7.3. The increased accuracy this choice offers is instantly
apparent. In particular, at r = 1.02ry the deviation from the true value is only
0.2%, while at r = 1.0027y it is 0.002%. It is now possible to repeat the analysis
of §7.1 in full using the new values of 8 and GG to obtain an enhanced solution to
the gravitational scalar field equation valid over the entire radial regime. However,
performing this calculation reveals the improvement has come at a price.

When stretching the near and far-field solutions to an intermediate region, (7.25)
and (7.26), exact matching of the powers of r was only possible because in the low-
energy limit f(n +1) — —(€ +n/2+ 1). In that case the powers of r in each half
of the stretched solutions matched separately and so the corresponding coefficients
of each half could be equated separately also. This imposed two conditions that
determined the two quantities B;/A_ and B;/A_ (and hence B = B;/Bs) uniquely.
From equation (7.48) it is clear that the above limit of S(n + 1) depends on the
particular choice @ = A. Use of the optimal value of the coefficient & = Aopt
destroys the exact matching.

In order to have matching it is now necessary to impose a value of the radial
coordinate at which the two asymptotic solutions are equated: ®yg(r.) = Pppr(r.).
Using equations (7.25) and (7.26) this translates to

TH Bt T(e)T(c—a—b) TH 1) T Da+ b — ¢
A ( ) Me—a)Tie—b) ' () NOND)

B wry ot Vi . by +1
=5 (%") m(,,) - (7:54)

ntl I+
B2 2 3 n+1 Ty 2
— | — vral [ ¢ .
™ (er) T ( + 2 ) (r*
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The presence of r, in the above relation means it is now necessary to determine three
quantities: By/A_, By/A_ and 7, so that B = B;/B; may be calculated uniquely.
This requires imposition of a further two restrictions, in addition to (7.54). At this
point a number of possible choices may be made. In order to achieve the smoothest
possible matching it would be reasonable to impose equality of the first and second
derivatives of the asymptotic solutions at r, also. Unfortunately these conditions
are rarely found to be satisfied for real values of r, and lead to nonsensical values of
the absorption probability. An alternative is to require that the two halves of the

asymptotic solutions match separately, so that

B(n+1) oy ol e+5+1
. A (T_H) L(c)T(c—a—b) _ B, (ﬂ) +od JVTH (n) |
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This would seem a sensible requirement since from equation (7.48) 0§ is negative
definite. The new value of B that results is identical to the previous version except.

for an additional r.-dependent factor

- 2B(n+1)+26+n+2
Bopt = (—”) B, (7.56)

where B is as defined in equation (7.31). Finally the new scalar absorption coefficient

may be calculated as ,

Byt — 1
Dopt — , (7.57)

AlSg =1~ .
| fl Bopt+l

sca

and the extreme low-energy expansion is given by

r 28(n+1)+20+n+2
M&m=(i) AL, (7.58)

where |A4,|? is the original low-energy expansion in equation (7.42), using the ap-
propriate optimal values of 4 and G.

Since the two restrictions (7.55) automatically ensure (7.54) is satisfied, then one
further constraint must be imposed to determine r,. Again, the desire for a smooth
matching would suggest that requiring the first derivative of both asymptotic solu-

tions to match at v, would be appropriate. Unfortunately this also produces mainly
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complex values of r, and unphysical predictions for the absorption coeflicient. No
reliable method of choosing r, has yet been discovered based on analytic argument
alone. At present, appropriate values are selected by direct comparison with the
numerical solution.

Figure 7.4 shows absorption coeflicients for ¢ = 2 and n ranging from 1 to 8.
In the uncorrected version the deviation from the numerical result increases rapidly
with increasing n, however the corrected version is found to be in much better
agreement for all n by imposing the fixed value r, = 1.62ry. The agreement is most
pronounced for larger n indicating that, in the case of the dominant mode ¢ = 2, r,
is a weak function of the number of extra dimensions. Examining the situation for
general £ reveals that as £ increases the dependence of r, on n strengthens slightly
and the constant value approximation begins to break down.

Figure 7.5 illustrates the corresponding situation for n = 2 and variable ¢. The
corrected absorption coefficient is found to be in excellent agreement with the nu-
merical value out to wry ~ 1, but the required value of r, is, in general, a strongly
decreasing function of £. Figure 7.6 illustrates the w-dependence of 7, for the domi-
nant mode ¢ = 2 and the same range of n as in figure 7.4. The values of r, displayed
are accurate to three significant figures and reproduce the numerical results to within
an error of at most 3%. Excluding the cases n = 1 and 2 (red lines marked in the
figure) where more significant variation occurs, r, is found to be approximately
independent of w over the range 0 to wry ~ 1, that may be safely considered “low-
energy”’. For larger n the optimum matching region is found to be centred on the
value r, = 1.62ry, as illustrated in figure 7.4.

With this improved analysis for the scalar case, it is now possible to return to
the main analytical result for gravitons in the bulk, equations (7.30)-(7.31) and
examine the absorption coefficient in more detail. As in the case of emission on the
brane [37,111], the non-simplified analytical expression for |A,|? is found to be in
excellent agreement with the exact numerical result in the low-energy regime and in
a good — both quantitative and qualitative — agreement at ir-lténﬁedia,tzé energy. At
high-energy the validity of approximations made in the analysis breaks down and

reliability of the analytic expressions is compromised.
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Figure 7.4: Comparison of the analytic gravitational scalar absorption probabilities

(solid lines) with the numerical results (dashed lines) for £ = 2 and variable n. The

top figure (uncorrected) shows n = 1 (dark red), 2 (light red), 4 (green) and 7 (blue),

while the bottom figure (corrected) presents n = 1 to 8 (n increasing from left to

right) with r, = 1.62ry.
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Figure 7.8: Analytic absorption probability |.4.|? for tensor (solid lines), vector

(short-dashed lines) and scalar (long-dashed lines) gravitational perturbations in

the bulk for ¢ = 2, and n =0, 2, 4, 6.

In figure 7.7 the full analytic expressions for absorption probabilities for all types
of gravitational perturbation are depicted for n = 6 and £ = 2 to 5. The correspond-
ing numerical results are no longer reproduced owing to their excellent agreement
with the analytic values. Figure 7.8 displays the corresponding case for the dom-
inant mode ¢ = 2 and n = 0, 2, 4, 6. As should be expected, for all types of
perturbation and values of ¢ and n the absorption probability vanishes when the
energy of the propagating particle goes to zero, while it increases with wry. Figure

7.7 reveals that, as £ increases, the absorption probability for all types of gravita-

tional perturbation is suppressed, in accordance with the behaviour observed in the

entries of table 7.1; although the results depicted correspond to the case n = 6, this
behaviour holds for all values of n. Figure 7.8 shows that for fixed ¢ increasing n
also causes significant suppression for all graviton types. This behaviour is observed
for the lowest two partial modes with £ = 2 and £ = 3; for higher values of ¢, |.A,|?
shows a temporary enhancement as n increases from 0 to 2 that returns to rapid

suppression as n increases further.
As was noticed while studying the extreme low-energy regime, the absorption
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n 1 p | A 2(corrected)
n=2 =2 8 3.9-1072
¢ = 10 5.9-107°
=4 12 1.1-1077
n=4% (=2 10 2.5.1073
l = 12 1.1-10°¢
{=4 14 4.3-107°
n==06 (=2 12 5.7-107°
= 14 5.0-107%
=1 16 42-1071

Table 7.3: The corrected asymptotic low-energy absorption probability for scalar
gravitational perturbations in the bulk. Asin table 7.1, entries represent coefficients

of (wry)P and these values supersede those given previously for scalar modes.

probability for tensor gravitational perturbations is significantly suppressed in com-
parison to vectors and scalars. This behaviour is also found to extend to intermediate
energy. The original expression for the scalar absorption coefficient (and the entries
in table 7.1 derived from it) gave the misleading impression that the competition
for dominance between vector and scalar perturbations depends on the particular
values of £ and n. As can be seen from the corrected figures 7.7 and 7.8 and the cor-
rected low-energy expansion given in table 7.3, scalar gravitons have an absorption
coefficient that is individually dominant for every value of n and ¢. However, for
a given angular momentum quantum number ¢, different types of perturbation are
characterised by a different multiplicity of states and this fact must be accounted
for before a reliable conclusion may be drawn on which type of gravitational degree
of freedom is most likely to be emitted into the bulk by a static, higher-dimensional

black hole.



7.4. The Energy Emission Rate 150

Ng(T) NegV) Ne(S)
n=1 n=6 n=1 n==6 n=1 n==6
£=2 10 495 16 231 9 44
=3 24 2574 30 910 16 156
=4 42 8748 48 2772 25 450
=15 64 23868 70 7140 36 1122

Table 7.4: Multiplicities of states corresponding to the same angular momentum
number ¢ for tensor, vector and scalar gravitational perturbations, for n = 1 and

n=6.
7.4 The Energy Emission Rate

In a spherically symmetric higher-dimensional background the multiplicities of states
corresponding to the same angular momentum number £ for tensor, vector and scalar

perturbations are given by the expressions [158, 159

n _ nn+3)(+n+2)(¢—-1)(20+n+1)(¢+n—1)
N = 200+ 1)l (n+ 1) . (759)

(l+n+1)(20+n+1)(f+n—1)

vy _

N B ({+ 1)!n! ’ (7.60)
(S) (2€+n+1)(€+n)!

Ne O (n+1)! (7.61)

Table 7.4 displays these multiplicities for some indicative values of £ and n, rendering
the proliferation of states as either parameter increases immediately apparent. From
this it is clear that the value of the absorption probability is not the sole factor
important in determining the contribution of each type of gravitational perturbation
to the total emission rate of the black hole.

Having obtained the absorption probability and multiplicities of states for each
type of perturbation, it is now possible to calculate the corresponding low-energy
power spectrum. The field theory calculation, analogous to that in §4.5, determining
the energy emission rate of higher-dimensional gravitons has yet to be performed.
However, given the similarity of the five-dimensional scalar energy emission rate

[110] with the corresponding four-dimensional case and the close relation between
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expressions for particles in four-dimensions with differing spin, it is reasonable to
assume that the contribution of each type of gravitational perturbation to the total

graviton energy emission rate is given by

ZEP 1 (P)| 4(P) w
==Y N 2 — 7.62
dtdw 2w ; e M exp(w/Ty) — 1 (7.62)

where the superscript P = (T,V, S) denotes the type of perturbation. The total
amount of energy emitted per unit time and unit frequency by the black hole in
the form of gravitons is then given by summing over the three contributions. As
an exact numerical analysis is required to calculate the full spectra (including the
high-energy regime), here attention will be focused on the relative emission rates for
the different types of gravitational perturbations and their magnitude in relation to
that for bulk scalar fields.

A simple numerical calculation combining equation (7.62) with the entries of -
tables 7.1, 7.3 and 7.4, reveals that, in the asymptotic low-energy regime, scalar
gravitons are the dominant type of gravitational degree of freedom emitted in the
bulk. For example, for n = 2 and ¢ = 2, scalar perturbations amount to 67% of
the total gravitational degrees of freedom emitted, compared to 32% for vector and
1% for tensor modes. As n increases further, so does the dominance of the scalar-
like perturbations that, for n = 6 and ¢ = 2, reaches a magnitude of 77%. This
dominance is significantly decreased and even over-turned at the level of higher
partial waves: for instance, for n = 6 and ¢ = 4, the vector, scalar and tensor
perturbations correspond to 51%, 39% and 10%, respectively, of the total number
of gravitational modes emitted.

The above results are strictly only valid at extreme low-energy so to gain a more
reliable understanding of the behaviour of the radiation spectrum as the particle
energy increases it is necessary to consider the full analytic expression (7.30)-(7.31).
In figure 7.9 the energy emission rates for all types of gravitational perturbation,
for n = 1 and n = 6 are plotted using the complete analytical expression (7.30)-
(7.31) and the corrected gravitational scalar result. For comparison, the energy
emission rate for bulk scalar fields is also included. In the summation over angular

momentum quantum numbers in equation (7.62) all modes up to £ = 12 have been
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Figure 7.9: Energy emission rates for tensor (blue), vector (green) and scalar (red)
gravitational perturbations and scalar fields (black) in the bulk, for n = 1 (left),
and n = 6 (right).

included although, in the very low-energy region of the spectrum, the contribution
of all modes with ¢ > 4 is at least four orders of magnitude smaller than that of the
¢ = 2 mode, regardless of the number of extra dimensions. Including such a large
number of modes in the sum minimises the error that might otherwise be introduced
in the intermediate energy regime.

The results depicted in figure 7.9 are in fact in excellent agreement with the
conclusions derived using the simplified expression for |A,|2. The scalar-type per-
turbations are indeed the dominant gravitational degrees of freedom emitted by the
black hole in the bulk for all values of n. Likewise, the tensor modes are always the
most suppressed although their relative magnitude increases as n increases owing
to the large multiplicity of tensor states. Despite the above, the energy emission
rates for all types of gravitational perturbations in the bulk, even when combined,
remain well below that for scalar fields in the low-energy regime. This is due to the
fact that the emission rate for scalar fields receives a significant enhancement at low
energy from the dominant £ = 0 and ¢ = 1 modes that are absent from the spectrum
of gravitational perturbations. However, it is apparent from the right-hand plot in
figure 7.9 that as w, increases, the higher partial waves gradually come into dom-
inance and, for large n at least, canse graviton enﬁssion to su;prefsede that of bulk
scalar fields.

Finally, by comparing the vertical axes of the two plots in figure 7.9 it is possible
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to conclude that the low-energy emission rate for all degrees of freedom in the bulk
decreases as the number of extra dimensions increases. Although both the temper-
ature of the black hole and multiplicity of states undergo a significant enhancement
as n increases, the suppression of the absorption probability, depicted in figure 7.8,
prevails, leading to overall suppression of the number of degrees of freedom emitted.
This low-energy suppression for bulk scalar fields was first witnessed in [111,113]
but the exact numerical analysis performed in the latter work showed that at high
energy the spectrum is actually enhanced with the number of extra dimensions.
This is a result of a combination of factors — first the milder suppression of the
absorption probability with n that occurs at higher energy, but also by the shift of
the emission curve in accordance with Wien’s law since a higher-dimensional black
hole has a higher temperature. This latter effect leads to a preferential emission
of higher-energy particles as n increases [111]. Due to the similarities observed in
the behaviour of gravitational and scalar fields in the bulk, the same enhancement

might be expected of gravitons in the high-energy regime.

7.5 Summary

In this chapter the emission of gravitons into the bulk from a (4 4+ n)-dimensional
Schwarzschild black hole has been investigated. Working in the low energy regime,
the field equations for tensor, vector and scalar-type gravitational perturbations
have been solved analytically and the absorption probability computed in each case.
Both a complete analytic expression and its asymptotic low-energy simplification
have been studied in detail, and their dependence on the angular momentum number
¢ and number of extra dimensions n was examined. Although numerically different,
as the energy increases these two expressions have qualitatively identical behaviours,
revealing an increase in the absorption probability with increasing energy and sup-
pression as the number of extra dimensions n and angular momentum number ¢
increase. | | -

The complete analytical expression for the absorption probability has been used

to derive the contribution of each gravitational degree of freedom to the total gravi-
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ton emission rate of the black hole in the bulk. The results show that scalar gravita-
tional perturbations are the dominant gravitational energy-carrying mode emitted
in the bulk for all values of n and tensors are the most suppressed. The absence
of the £ = 0,1 partial waves, dominant in the extreme low-energy regime, from all
gravitational spectra causes even the total graviton emission rate to be less than that
of scalar fields in the bulk. However, as energy increases and higher order modes
come into dominance this situation appears to be reversed, particularly for larger
n. Finally, as known from previous study of bulk scalar fields, the energy emission
rates for all types of gravitational perturbations are suppressed with the number of

extra dimensions throughout the low-energy regime.



Chapter 8

Conclusions

It is sometimes said that no worthwhile new theory resolves one problem without
creating five more of significantly increased complexity. In this regard braneworlds
are exceedingly worthwhile. Despite (or perhaps as a consequence of) the enormous
volume of literature that has appeared on braneworld models in the last decade, there
are now many more outstanding problems with these theories than the question of
hierarchy amongst the fundamental forces they were proposed to resolve. It has been

the task of this thesis to address and progress two of these problems in particular.

8.1 Randall-Sundrum Black Holes

The Randall-Sundrum braneworld black hole metric has proven elusive from the
moment it was realised higher-dimensional warped geometries might render extra di-
mensions consistent with our standard four-dimensional view of the universe. Many
different approaches have been applied and, while none has uncovered the complete
solution, each has furthered understanding of the problem and revealed more about
what may and may not be accomplished within the braneworld framework.

In chapter 3 a new approach to the Randall-Sundrum black hole was explored.
In order to ensure a well-behaved metric from the five-dimensional perspective,
Vthe reétfictions on embedding a four-dimensional hypersurface in a variety of five-
dimensional bulks were derived for time-dependent brane trajectories containing per-

fect fluid distributions of energy-momentum. The complete set of time-dependent
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restrictions are of sufficient complexity that, for the moment at least, analytic solu-
tion was only possible by seeking the subset of all possible trajectories for which the
equation of state on the brane is p(r,7) = —p(r,7), with p and p the pressure and
energy density of perfect fluid on the brane respectively. Despite this restriction
a rich variety of brane trajectories have been uncovered, with a given configura-
tion specified by the values of five constants of integration. From a mathematical
perspective these represent new solutions to classical general relativity where the
full interaction between the bulk spacetime and an energy-momentum containing
brane has been taken into account. From a physical perspective, these trajecto-
ries cannot represent the desired braneworld black hole. A consistency condition
arose in the process of solution that restricts the form of bulk spacetime in which
branes with the above equation of state may be admitted. The only permissible
higher-dimensional metrics with physical interpretation are those of constant cur-
vature, excluding the possibility of a black hole being present in the bulk. As such,
the set of time-dependent solutions found represent a generalisation of the original
Randall-Sundrum situation, but not a braneworld black hole.

A second possible simplification of the problem may be achieved by seeking
time-independent trajectories. In this case the restrictions became completely in-
tegrable, being expressed analytically in terms of an implicit function of the radial
variable. Most importantly, the assumption of time-independence removed the re-
striction on the form of the bulk metric, allowing static branes to be embedded in any
SO(4)-symmetric five-dimensional spacetime. Two physically relevant backgrounds
for which the brane trajectories and energy-momenta could be written in particu-
larly convenient forms were the five-dimensional anti-de Sitter and Schwarzschild
spacetimes. Again, a wide variety of brane shapes and energy distributions were
discovered and analysed according to which might represent physically realistic con-
figurations. For trajectories in pure adS the branes were characterised by constant
energy density and their topology determined by the value of this energy density
in relation to the critical value found‘in flle Ra“ndall—Sundrum model, that exactly
cancels the background negative energy density. Branes with super-critical energy

density were closed, while critical or sub-critical branes were open. One feature of
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of these branes that distinguishes them from the RS case is that in almost all cir-
cumstances they possess an excess pressure and are consequently not asymptotically
flat.

Of particular interest were a class of solutions in a Schwarzschild bulk for which
the brane extended to infinity and passed close to the black hole, bending away to
just avoid touching the horizon in the region of closest approach. These branes were
found to contain a localised accumulation of energy density in their central region
that satisfied the dominant energy condition. In terms of their energy-momentum
description they fulfilled most of the requirements of a braneworld star. Unfortu-
nately, the gravitational potential witnessed by an observer in the vicinity of such a
braneworld star would not be that of standard four-dimensional gravity since asymp-
totically the induced metric is the projection of the five-dimensional Schwarzschild
metric, which has incorrect radial dependence. It was hoped that considering a bulk
black hole in asymptotically anti-de Sitter spacetime might rectify this in the same
manner that working in adS spacetime in the original RS model confined gravity to
the brane. Unfortunately this was not to be the case. Analysis of brane trajectories
in five-dimensional Schwarzschild-adS spacetime revealed that, while a satisfactory
energy-momentum distribution was achievable in the central region, the problem of
asymptotic excess pressure found for static branes in pure adS persisted.

Despite a configuration with all the desired properties of a braneworld star or
black hole remaining undiscovered, it should be emphasised that the solutions found
here represent the first completely consistent bulk-brane-black hole gravitational
systems of lower symmetry than braneworld cosmologies. While the restrictions
imposed to simplify the equations governing brane properties always introduced
undesirable features, the possibility remains that the full set of time-dependent
equations derived in chapter 3 may admit a braneworld black hole solution if some
route, either analytic or numerical, can be found through the complexity of the full

equations.
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8.2 Higher-Dimensional Hawking Radiation

With the potential lowering of the fundamental scale of gravity suggested by brane-
world models, the prospect of creating small black holes in high-energy collisions
has become closer to reality. Much work has been conducted in the last five years
on determining the spectra of Hawking radiation that might be witnessed in the
laboratory as a microscopic black hole evaporates. Owing to the relative simplicity
of the equations involved, the radiation from static Schwarzschild black holes has
been studied extensively, both analytically and numerically. However, in high-energy
particle collisions the non-zero impact parameter between parent particles renders
production of black holes with angular momentum extremely likely.

As with the static case, the key to deriving emission spectra from a rotating
black hole is to solve the field equations for particles propagating in the appropriate
background. For all particle species the field equations are found to be separable,
and it is solution to the radial component in particular that determines the prob-
ability of a particle being emitted. The key to achieving this has been use of a
powerful technique involving matching of asymptotically accurate solutions in a in-
termediate regime to generate smooth radial solutions for each particle species that
are approximately valid throughout all space. From these solutions the emission
spectra may be derived. A limitation of the solution-matching technique is that it
is only strictly valid in the limit of emission of low-energy particles from a slowly
rotating black hole. That said, the expressions derived in chapters 5-7 have been
tested, where possible, against exact numerical results and found to compare very
favourably, even outside their strict range of validity.

In this thesis emission of scalars, fermions and gauge bosons onto the brane and
scalar particles into the bulk from a higher-dimensional rotating black hole have
been considered. Also the emission of gravitons into the bulk from a static black
hole has been studied. Detailed conclusions about the emission of each particle
species have been drawn at the end of each chapter, so the reader is referred there
to avoid repetition. It should be mentioned, however, that in each case all analytic
quantities derived compare well with their numerical counterparts in the appropriate

low-energy and low-black-hole angular momentum limits and they all reduce to
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known results existing in the literature for emission from Schwarzschild black holes.
A number of features familiar from the static case, such as the cross-section for
emission of scalar particles being equal to the horizon area of the black hole, have
been shown to generalise to the rotating case. Also the high-energy cross-section
has been found to reach a constant value, the same for all particle species, that may
be calculated using a geometrical optics argument based on the minimum impact
parameter a particle may possess without being absorbed by the black hole when it
is incident from infinity along a path parallel to the black hole’s axis of rotation.
An obvious avenue of further study is to consider the emission of gravitons into
the bulk from a higher-dimensional rotating black hole. Given the detailed for-
malism required to study gravitational perturbations of the Schwarzschild metric,
generalisation to the rotating case is anticipated to be a highly involved task. How-
ever, its study is essential before accurate estimates of the true fraction of a black

hole’s mass radiated on the brane may be obtained.

To conclude it is worth returning momentarily to reality. Although theoreticians
are prone to talk about extra dimensions with an air of certainty, it should be re-
membered that they are still an extremely radical idea. To date, they have a problem
far greater than any theoretical inconsistency: there is not a shred of experimental
evidence to suggest they exist. That said, absence of evidence cannot be cause for
exclusion and it is likely just such a radical idea is required to ease the friction be-
tween general relativity and quantum mechanics. With the Large Hadron Collider
soon to generate data at the highest laboratory energies ever achieved, anything
could be witnessed and it is important to be able to interpret whatever is found.
The study of black holes in braneworld models ensures that if extra dimensions do
indeed exist then, should their signature appear in high-energy experiment, one of

the most radical discoveries in modern physics won’t just pass unnoticed.
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Appendix A

Detailed Calculations

A.1 Extrinsic Curvature Components

If the spacelike vector n“ denotes the normal to a timelike hypersurface ¥ and is
normalised such that nyn? = 1, then the change in the normal vector when it is

parallel transported along some vector T4 parallel to ¥ must lie entirely in ¥ since

1
TLBTAVAHB = iTAVA ('II,BTLB) =0. (A.l.l)

Consequently the extrinsic curvature K, may be defined over ¥ as the Ath com-
ponent of the change in the normal one-form when parallel transported along the

Bth coordinate curve

Kap = WY ANV yny (A.1.2)

where h4p is the projection tensor described in §3.1. If U = de and V = diu are two
arbitrary vectors tangent to ¥ then the extrinsic curvature Kyy in these directions

may be evaluated by performing a geodesic-like calculation

Kyy = UAVBRYREV yny = UMVNV yny

d%aN dzM dzS
= —nn | — 4N = Al13
"™l dndy T M v | (A13)

where I'fj¢ are the connection coefficients associated with the metric of the bulk
spacetime. It is now possible to apply this to the circumstances in §3.1 to calcu-

late the extrinsic curvature components parallel to the brane tangent vectors (3.2).
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Working with basis functions z# = (7,7, x, 6, ¢), in terms of which the bulk metric

may be written

1

ds* = —U(r)dr® + 00

dr? + r?(dx® + sin® x d2?) (A.1.4)

then the brane location may be specified by the constraint x = x(7,7) and the

normal takes the form

_ . / 1 _ Xg 12 1
na =n(-x,—x,1,0,0) where 5= U—l—UX +r2 . (A.1.5)

with overdot and prime denoting /0t and 9/0r respectively. With this notation

the non-zero components of the extrinsic curvature may be evaluated using equation

(A.1.3) as:

d?zN dzM dz* . . .
forr = = { dr? + s dr ?} = —n [I7, + Fxxx2] — ny [X]
1
= —n (x +Urx'x* - 5 UU’X’> , (A.1.6)
d?zN da™ dz’
K =~ | i+ Pl | = e [T+ T = [ 250
2 / UI !
=-n (x” + TX + 25 + Urx’3> , (A.1.7)
d?zN dzM dzS . . . )
o= {ﬁ ! %?ﬂ = s [T7] =y [Tox] = o [¥ + T
. U
=-n (X/‘F%WLUTXIQX— 2(;<> ) (A.1.8)
d?zV dzM dz .
Kee = —ny [ 402 + F%SW%] = —n, [[ge] — 1y [T5]
= —n (Ury'sin® x —sinxcos x) . (A.1.9)

. d?z™ dz™ dz’ ,
Koo = = | + Do 5 | = = [E54] = e [0

= —nsin®# (Ury'sin® x — sin x cos x) = sin’ §Kee . (A.1.10)
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A.2 The Time-Dependent Brane Equation of State

The Israel equations (3.16)-(3.18) may be written as

2..
% — ('t — a) (%U’r—U) +a+(A=0, (A.2.1)
Urld” + (o't — a) (%U’r—U) —a+(B=0, (A.2.2)
1U'r
2.1 1 . _
rd - o ra+¢C =0, (A.2.3)
where
1 r?a?
T 24
A U< U+r2—a2)’ (A.24)
2.2( 1. 2
B - Ur¢a?(a'r a)&.2 , (A.2.5)
(r? = a?)? (U + 5%;5)
¢ = ralar—a) (A.2.6)

(7.2 — a?)

¢ = 1+v)UlaTr—a)+a), (A.2.7)

and consequently AB = C?. An additional constraint between the above Israel
equations may be obtained by differentiating equation (A.2.1) with respect to r and
equation (A.2.3) with respect to 7 and then requiring consistency of the third-order

mixed derivative ¢&':

0 2ria & r2alUr (1.,
TE(AQ'I) = i + g Tgr AT <§U r— U) - (A.2.8)
1U'T) +a'r+CAr+CAr =0,

’ 1 "2
(a'r a)<2Ur 5

a 3_., 1U'7’ 2“ N : _
TE;(A.Q.B) = Td - &+ (Cr+(Cr=0, (A.2.9)
! 1 ", 2 ! C ]' !
= (d'r —a) —§U'r +Ur-U+1 +E(A+B) §U7’—U — (A +(A.2.10)

CA'v + (' Ar — %(CCT +¢Cr)=0.
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A further constraint is obtained by performing a similar procedure but ensuring

consistency of the other third-order mixed derivative &”:

Tag(A.ZQ) = Urld"+ (%U’r — U) (&'r? — ar) — ar + (A.2.11)
T
(Br+(Br =0,
0 0., 3., 11U Ur,
TE(A.Z?)) =  2rid + 1 s YT ar + (A.2.12)
1/UT\°. 1r 5., ,
§<U> ar — ora +(Cr+¢C'r=0,
T 1. ., 9 , 2¢C (1,
= U( §U7‘ +U'r U+1>+ i <2Ur U) ¢C+ (A.2.13)

C'r+ (' Cr— %(CBT +(Br)=0.

In the cases analysed in chapter 3 it was possible to solve the system of equations
explicitly for the special cases of time independence or brane equation of state w =

—1 since the conditions on the energy density could be integrated to give
o Po I
p== [Uldr—a)+al, (A.2.14)
T

for pg an arbitrary constant. In the more general case this is not possible, owing to
the extra terms arising in equations (3.27) and (3.28). However, motivated by the
result above some simplification can be obtained by assuming the above form for
the energy density, but promoting p, to be an arbitrary function of 7 and r: pg(7, 7).

In this case equations (3.27) and (3.28) may be written in the more compact form

por ¢C
Pt (A.2.15)
por (B
O - (A.2.16)

Now, ensuring consistency of the mixed derivative gy, found from taking the
appropriate derivatives of the above two equations, and then substituting back for
the first order derivatives of py gives the condition

/ / | - _ 1 l f Q
{C’r—t—CCT—E(CBT—i—CBT)—CC [1——(2[17‘ U>+——U(a’r—a)} (A.2.17)

U
(Bar 1,
U?(a'r — a) <2UT U) '
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The left hand side of equation (A.2.17) is exactly the quantity appearing on the
second line of (A.2.13) so the above may be used to substitute back into (A.2.13) to

remove all derivatives of ¢, B and C. The resulting equation may be rearranged to

give |
. fon _UII 2 _ UI U -1
‘= ra(a'r : o) (3U"r r—;— ) ’ (A.2.18)
Cl(a'r—a) (U -U) +af e (LU'r — U)
or
2 A2 lU//Q_U/ U-1
1 4o = (" = o)GU —Ur+U - 1) A.2.19)

rzdz(a"r—a)(%U’r—U)] ' (
(r2—a2)(~U+522%)

(Ule'r —a) + a)[(a'r —a)(3Ur—U)+a—

A.3 Convergence of the Series Solution to the

SadS Brane

From the analysis of §3.5 two independent series solutions to the differential equation

(3.49) governing the shape of the brane may be found. They can be written as

a(r) = Z apr®t? 4 Z bar2hth, (A.3.1)
n=0 n=0

where ag and by are arbitrary constants and a, and b, satisfy the recurrence relations

a, = 0, (A.3.2)
E(n—1)(n—23 _
a, = (n ) (nl 2) Ao+ (n—ll)an_l (forn >2), (A.3.3)
pn (n+3) (n+3)
b = o (A.3.4)
2p
k2 (n — 3 ) _3
b, = (n 2) (nl )bn—Q + (n_?lbn_l (forn > 2). (A.3.5)
pn (n—3) nn

W

Considering first the “a” solution, from the above recurrence relation it is clear that
all coeflicients in the series have the same sign, so any radius of convergence that can
be found to a sub-series must represent an upper limit to the radius of convergence
of the full series. In particular, coefficients as,,, for integer m, each contain a term
of the form

ag /3’" (25— 1) (25 - 3) _ apk™™ (2m)!
27 (27 + 3) pm 22n(m!)2(dm+ 1)

(A.3.6)

Aom O
Jj=1
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“ bh

Transforming to the dimensionless quantities 0 = pk? and € = kr the solution

contains a sub-series

4n+2 4n+2
) D a Z o7 P 4n e Z Sn€ (A3.7)

the first three terms of which are visible in equation (3.92). Employing D’Alembert’s

ratio test, a limit may be placed on the radius of convergence of this sub-series by

requiring
- snrr 4| o |@n+2)2n+1)(4n+1)
) e nlﬂ?fo’ do(n+ 1)2(4n + 5) &<l
=< o. (A.3.8)

This consequently places the same upper limit on the radius of conversion of the
full “a” series solution. It can similarly be shown that the “b” series contains a

sub-series of the form

Dbozon( 2n—1)HiZ_5) " Zt &t (A-3.9)

where, again, the first three terms are apparent in equation (3.92). Utilising D’Alembert’s

ratio test
tn 2n—-1 -1
lim +1£4 — ( n )(4n ) §4 <1
n—o0 n n—o0 0(2n -+ 1)(4n + 1)
= £ < Vo, (A.3.10)

demonstrates that /o is also an upper limit to the radius of convergence of the “b”
solution.

The presence of this upper limit precludes the existence of any finite-term se-
ries solutions extending to the adS boundary. Moreover, it can be seen that for
many values of the parameter ¢ the limit on the radius of convergence is far more
restrictive. The value of the dimensionless coordinate £ corresponding to the hori-
zon radius in Schwarzschild-anti-de Sitter spacetime is given by &y = _1%‘/“—4"
For ¢ = 1 it is apparent that the upper limit on the radius of convergence may be
written as ., = 1.27€y. However, the low-order expansion (3.92) is only valid in

the limit ¢ > 1 and as ¢ increases into this region then &,,,, tends rapidly to &g,

implying the solution is only valid inside the horizon. »




