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Abstract 

The dual slab waveguide interferometer is introduced as a device which has many 

applications in various research areas. Reported is its ability to provide details on 

the mechanism for the vapour sorption of thin polymer films, the development of 

the interferometer as a wavelength tracking device for the telecommunications 

industry and a method to characterise the thermo-optic properties of 111-V 

semiconductor alloys. 

The vapour sorption mechanisms of thin films of polymers Polyisobutylene (PIB) 

and Polyvinylpyrrolidone (PVP) on exposure to several solvents are investigated. 

Coating interferometer chips with a thin layer of polymer and monitoring the 

interference fringe pattern for changes due to the exposure to a solvent vapour 

provides information on the mechanism for vapour sorption as one of swelling 

rather than void-filling. Interferometer sensitivities to vapour concentrations are 

linear and depend on refractive index differences between polymer and condensed 

vapour. 

An interferometer manufactured from III-V semiconductor compounds is 

developed to produce a device which can operate as a wavelength tracker. 

Sensitivities of over 6 mrad I pm and 7 mrad I pm for single and dual quaternary 

systems respectively indicate that a device of length around 5 mm would be 

capable of detecting picometer input wavelength changes including thermal 

background noise. 

The sensitivity to thermal changes provides a simple method for determining the 

thermo-optic coefficient of two Indium Gallium Arsenide Phosphide (InGaAsP) 

alloy compositions as (3.15±0.08)x10--4K-1 and (2.60±0.17)x10--4K-1 for 

InGaAsP compounds with bandgap wavelengths around 1.3 pm and 1.15 pm 

respectively. 
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Chapter 1 : Introduction 

1.1. Optical Waveguides 

Optical waveguiding now allows the confinement and transmission of light over 

distances ranging from thousands of kilometres in long-distance fibre optic 

systems to just tens of microns in integrated photonic devices. It is used primarily 

to connect various optoelectronic devices but in many situations they form an 

integral part such as the waveguides providing optical confinement in 

semiconductor lasers. 

Planar or slab waveguides are the simplest form of waveguide and consist of three 

stacked layers of dielectric material where the refractive index of the central layer 

is higher than that for the two cladding layers and so the light is confined by total 

internal reflection within the central layer and is guided along the length of the 

waveguide. The slab waveguide however has no lateral confinement and so it has 

little or no practical use. 

The most common waveguides used in the telecommunications industry are 

circular waveguides for fibre optic transmission and channel waveguides, for 

example rib, buried channel or ridge waveguides, used typically over short 

distances for applications such as modulators, switches and filters. Both of these 

types of waveguide confine light in two dimensions. 

The slab waveguide is therefore thought of as little more than the basic example 

used when teaching waveguide theory or useful in developing an electromagnetic 

explanation for the more complicated structures. In this thesis however is 

presented one type of slab waveguide which has multiple practical applications 

from the vapour sorption of thin polymer films to working as a picometer­

sensitive wavelength tracking device. It is the dual slab waveguide interferometer. 
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1.2. The Dual Slab Waveguide Interferometer and 

Farfield Scientific 

The dual slab waveguide interferometer consists of two vertically stacked slab 

waveguides, as shown in Figure 1-1. The introduction of an optical field into the 

dual slab structure excites both upper and lower modes in the waveguiding layers 

with equal efficiency and they propagate through the structure. At the output 

plane, the two modes diffract into the far field where they form an interference 

pattern analogous to Young's interference fringes. The spatial intensity 

distribution of the interference pattern is representative of the relative phase 

position of the output fields of the upper and lower modes at the output plane of 

the device. Therefore a change in the phase of one or both waveguiding modes 

causes the interference pattern to move providing a method for measuring the 

phase shifts. 

High index 
Low index 

Figure 1-1 Schematic diagram of the dual slab waveguide interferometer 

Phase changes are primarily due to changes in the effective index of the 

waveguiding modes and so the interferometer is very sensitive to environmental 

changes which affect the refractive index of the layer materials, such as input 

wavelength, temperature or exposure to gases or liquids. 

The dual slab waveguide interferometer along with a dual polarisation analysis led 

to a patented design [1] and the founding of Farfield Sensors, latterly Farfield 

Scientific. The company was set up to research and develop dual polarisation 
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interferometry (DPI) into a commercial enterprise, initially usmg the 

interferometer as a biological sensor. 

Farfield works with Silicon Oxynitride interferometer chips coated with a thin 

film of a biological material, such as a protein, which becomes a layer in the 

upper waveguide structure. The lower waveguide is unaffected by changes at a 

surface level and so acts as a reference waveguide. Phase changes when the chip 

is exposed to a gas or liquid are therefore directly related to index and thickness 

changes in the biological layer. From this information an analysis of the changes 

in thickness, density and mass of surface structures can be produced. 

This technique has advantages over similar methods in that it is extremely 

sensitive to changes in the biological material and it is simple to design and 

operate as it has large fabrication tolerances with no need for optical transforming 

components and a large positional tolerance with easy optical alignment. The 

technique has been verified against analogous x-ray crystallography and neutron 

scattering methods [2, 3]. 

Recent work has been published using DPI on a wide array of topics including the 

analysis of the interactions of biological materials such as the conformational 

changes occurring when the protein Transglutaminase binds Calcium ions [4], the 

effects of Melittin inducing lysis in Phospholipid Liposomes [5], the interactions 

between D-biotin and the protein Streptavidin [6] and carbohydrate-protein 

interactions [7]. The technique has also been used to analyse the absorption of 

biological materials onto the Silicon Oxynitride chip surfaces such as the protein 

Bovine Serum Albumin [8], the enzyme Lysozyme [9] and the formation of 

hybrid bilayer membranes [ 1 0]. 

In recent years Farfield have ventured into the telecommunications industry as the 

dual slab waveguide interferometer may provide a method capable of measuring 

and controlling the wavelength of tunable lasers in a monolithically integrated 

device. 
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1.3. Telecommunications 

The increase in demand for bandwidth for voice, fax and especially data traffic, 

due to the massive increase of internet use in the past decade, has led to the 

deployment of the optical fibre transmission technique dense wavelength division 

multiplexing (DWDM). It is a technology that first assigns incoming data signals 

to specific optical frequencies within a designated frequency band and then 

multiplexes them onto one fibre. This allows vast amounts of data to be 

transmitted simultaneously down a single fibre. Each assigned frequency channel 

is well spaced from the next in order to avoid cross-talk between channels and 

hence loss of data. As the demand continues to grow the spacing between these 

channels is becoming closer and so the capability of devices which can track and 

stabilise the output wavelength of the optical sources becomes increasingly 

important. 

Most laser systems employ a Fabry-Perot etalon filter, which uses power monitor 

photodiodes to provide an error signal to a feedback loop to correct any drift in 

the output frequency of the laser [ 11-13]. The disadvantages of this system are 

that laser power fluctuations may wrongly indicate wavelength shifts without a 

second reference photodiode, the direction of the shift cannot always be 

determined and the etalon filter is not naturally suited to monolithic integration 

with laser sources. 

Interferometric detection of wavelength shifts can be an extremely sensitive 

method and may offer a better prospect of monolithic integration. Mach-Zehnder 

techniques [14] and fibre-based wavelength monitoring and measurement devices 

that use Young's fringes [15, 16] have been proposed. 

The development of the dual slab waveguide interferometer as a very sensitive 

wavelength tracking device could prove to be very useful with application areas 

including discrete wavelength measurement and wavelength locking for both 

research and commercial in-network use. New interferometers will need to be 
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fabricated from 111-V semiconductor alloys in order to operate well in the 

telecommunications C-hand as well as allow for full monolithic integration. 

1.4. Thermo-Optic Effect 

As with all integrated devices operating in this wavelength region, thermal issues 

are the major limiting factor of the sensitivity of the apparatus. Designing an 

interferometer that is very sensitive to wavelength changes will make it thermally 

sensitive as well. A thermal optical components have been proposed [I 7, 18] but 

perhaps a more realistic solution is to manage the problem [ 19]. The intrinsic 

thermal response of a device can be modelled accurately provided the thermo­

optic coefficients of the materials comprising the device are known. 

These values are established [20] for many of the common optical materials such 

as silicon oxide, lithium niobate, silicon and semiconductor binaries such as InP 

and GaAs. However there is an absence of the reported thermo-optic coefficients 

of quaternary III-V compound semiconductors, partly due to experimental 

verification requiring complex sample geometries such as prisms [21 ], etalons 

[22] or waveguide devices [23]. 

Since the dual slab waveguide interferometer will be very sensitive to thermal 

changes it could provide a relatively simple method for the measurement of the 

thermo-optic coefficient in principle of any desired III-V alloy system across wide 

ranges of temperatures and wavelengths. 

1.5. Aims and Objectives 

The aim ofthis Ph.D. thesis will be to explore the various applications of the dual 

slab waveguide interferometer following on from work previously carried out. 

The interferometer will be used as both a fully functioning device in the biological 

sensor area of research and work as an experimental test structure for 

telecommunication devices. 
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The content of this thesis can therefore be divided into two sections. Firstly, the 

mechanism of the vapour sorption of thin polymer films is investigated using 

polymer-coated Silicon Oxynitride dual slab interferometers. This follows 

previous work in this area [24-27] as well as M.Sci. final year projects within the 

Photonics, Sensors and Materials group at Durham. Thin layers of the polymer 

Polyisobutylene are exposed to a range of solvent vapours and the polymer 

Polyvinylpyrrolidone is exposed to water vapour. 

The remainder of the thesis is devoted to the use of III-V Semiconductor dual slab 

interferometers. The development of a picometer-sensitive wavelength tracker 

from previous work at visible wavelengths [28] is reported with details on the 

whole process from design and modelling to experimentation and analysis. The 

thermo-optic behaviour of the devices is discussed and a method for determining 

the thermo-optic coefficient for 111-V materials is introduced, with values for the 

quaternary alloys used in this thesis reported. 
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Chapter 2 : Waveguide Theory 

2.1. Introduction 

In this chapter a theory of waveguides is developed from electromagnetic 

principles. Starting from Maxwell's equations, a description of the propagation of 

an electromagnetic wave is developed. This is then used to determine reflection 

and transmission of a plane wave at an interface, leading to Snell's law and the 

evanescent field. These concepts are then used to produce a full electromagnetic 

study of the slab waveguide, including solutions for both symmetric and 

asymmetric waveguides. 

Optical interference is also discussed culminating in the description of a double­

slit interference pattern. Finally some important waveguide properties are 

described. 

2.2. Basic Electromagnetic Theory 

In order to develop a waveguide theory from electromagnetic principles it is first 

necessary to derive an expression for an electromagnetic wave. This is done by 

developing a wave equation from Maxwell's Equations [1-6]. 

2.2.1. Maxwell's Equations 

Maxwell's curl and divergence equations are; 

VxH(r,t)=J(r,t)+ BD(r,t) 
ar 

v x E(r,t) =- an~~,t) 

'V·B(r,t)=O 

'V·D(r,t)=p 
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where E and H are the electric and magnetic fields respectively, D and B are 

the electric and magnetic displacements and J and p are the current and charge 

densities. The electric field, E , is a vector property which is a function of the 

position vector r and time t, where r defines a particular location in space 

(x,y,z) at which the field is being measured, i.e. E(r,t) = E(x,y,z,t). 

In order to solve Maxwell's curl equations, (2.1) and (2.2), additional information 

is required and this is provided in the form of the constituent relations. These 

relations link field strengths with flux densities through a set of material 

coefficients that characterise the bulk properties of a given material. They are 

written as; 

D=&E 

B=jiH 

(2.5) 

(2.6) 

where £ and ji denote the tensors of the permittivity and the magnetic 

permeability, respectively. In an isotropic medium the permittivity and 

permeability are scalar quantities and the constituent relations are just; 

D=&E 

B=f.JH 

In free space, f.1 = f.lo = 4JZ" X 1 o-? NA-2 and & = Eio ~ 8.85 X 1 o-12 F I m . 

The permittivity and permeability can be written as products in the form; 

f.1 = f.l,. f.lo 

(2.7) 

(2.8) 

(2.9) 

(2.1 0) 

where &,. and f.l,. are the relative permittivity (or dielectric constant) and relative 

permeability. At optical frequencies above the natural frequencies of the phonon 

modes, the dielectric constant can be related to the refractive index, n of a 

dielectric material by; 
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(2.11) 

2.2.2. The Wave Equation 

A vector wave equation which describes the propagation of electromagnetic 

waves in a material can be derived from Maxwell's equations. In the case of 

isotropic dielectric materials, it is reasonable to assume that magnetic effects can 

be neglected so that l'r = 1 and hence 11 = flo , and that there are no free charges or 

currents flowing, so that J and p are both zero. 

We start by substituting the constituent relations (2.7) and (2.8) into the two curl 

equations (2.1) and (2.2) to eliminate the variables D and B giving; 

BE 
VxH=&-

8t 

an 
VxE=-J.l,­

o at 

(2.12) 

(2.13) 

Taking the curl of (2.13) and separating the time and spatial varying components 

of H gives; 

a 
VxVxE = -!'0 -(VxH) at (2.14) 

We can then substitute in for cur!H from (2.12) to eliminate H and leave only 

electric field terms; 

(2.15) 

Applying the standard vector identity V x V x A= V (V ·A)- '\1 2 A for any vector 

A to (2.15) yields; 
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2 a2E 
V(V·E)-V E=-flc­

o at2 (2.16) 

We note however that substituting the constituent relation (2.7) into the 

divergence equation (2.4) leads to; 

V'·D=cY'·E=O (2.17) 

Since c :;t: 0, V' · E = 0 and so Eq. (2.16) becomes the vector wave equation for 

the electric field; 

n2E( )- a2
E(r,t)=O 

v r, t floc 2 at 
(2.18) 

Similarly, the vector wave equation for the magnetic field could be derived as; 

n2H( )- a2
H(r,t)=O 

v r,t floc 2 at 
(2.19) 

2.2.3. The Time-Independent Wave Equation 

When dealing with electromagnetic waves propagating through a medium it is 

often assumed that the fields involved will be harmonically varying, at some 

single angular frequency OJ • The electric field in steady state can thus be written 

as; 

E(r,t) = E(r)eiwr (2.20) 

where the exponential term, eiwr , IS the complex notation describing the 

cosinusoidal time-variation. From this we can find the time-derivative terms of the 

wave equation (2.18), as; 

25 



oE . o2E , - = zwE and so --= -w-E ot ot2 
(2.21) 

so that the wave equation reduces to; 

(2.22) 

2.2.4. The Scalar Wave Equation for Plane Waves 

The wave equation can be solved for plane waves, i.e. waves which have surfaces 

of infinite planes perpendicular to the direction of propagation. The distance 

between planes of equal phase is given by the spatial wavelength A . For a wave 

propagating in the z-direction, it will have an electric field which only varies with 

changes in z and so oE I ox = oE Icy = 0 . The wave equation can then be 

reduced to a scalar equation by considering only one polarisation component of 

the electric field, for example the electric field component in the x-direction, Er. 

The plane wave will have a scalar wave equation; 

(2.23) 

The propagation of the phase of a plane wave along the position vector r can be 

described in terms of the wavevector k , through 

(2.24) 

So the phase propagation of the plane wave along the z-axis can be given by; 

k·r=kz=kz z (2.25) 

The wavenumber k is related to the spatial wavelength A by k = 2;r I A . 

26 



It is therefore sensible to suggest that a possible solution to wave equation (2.23) 

has the form; 

(2.26) 

where Exo is an arbitrary constant. Substituting into Eq. (2.23) shows that this is 

valid provided; 

(2.27) 

Hence the full solution to the scalar wave equation, including the time variation, 

E (z t) = E ei<wt-kz) 
x ' xO (2.28) 

This equation represents a travelling wave propagating in the z-direction with 

amplitude Exo . 

2.2.5. Phase Velocity 

The phase of the electric field given by Eq. (2.28) is; 

cp(z, t) = wt- kz (2.29) 

The partial derivative of cp with respect to t, holding z constant, is the rate of 

change of phase with time, given by; 

(2.30) 
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Whereas the rate of change with distance is found by taking the partial derivative 

with respect to z , namely; 

( arp) = -k 
8z 1 

(2.31) 

The speed of propagation of the condition of constant phase, t.e. the phase 

velocity, can be found by using; 

(8rpl8t)z 

(8rp18z)
1 

Taking the appropriate partial derivatives, we get the phase velocity vph; 

(8z) OJ -v -
at 'I'- ph--;; 

(2.32) 

(2.33) 

Substituting Eq. (2.27) into (2.33) and applying (2.9) gives the phase velocity as; 

(2.34) 

In free space £,. = 1 , and so v ph = 1 I~ p 0£ 0 = 3 x 108 m Is which is the velocity of 

light in a vacuum, written as c. In materials, £,. is normally greater than unity so 

that v ph < c, i.e. light travels slower in matter than in free space. The factor by 

which the light is slowed is c I v ph = Ji: = n • The spatial wavelength A and 

wavenumber k of a material can therefore be related to their free space 

equivalents respectively by; 

A = Au and k = nk 0 (2.35) 
n 
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2.3. Reflection and Transmission at a Dielectric Interface 

Having found an equation to describe electromagnetic wave propagation, it is 

intuitive to understand how a plane wave behaves when incident on a dielectric 

interface [ 1, 2, 6-9] in order to develop a theory for waveguides, since a 

waveguide consists of a guiding region which has a higher refractive index than 

the cladding surroundings. 

2.3.1. Plane Waves at an Interface 

Consider a plane wave which falls incident on a dielectric interface, i.e. a 

boundary between two materials of different refractive index, as shown Figure 

2-1. 

E, 

y z 

Figure 2-1 Relative orientation of incident, reflected and transmitted wave vectors 

in the plane of incidence 

The light is incident at an angle Bi on the boundary and it is partially reflected at 

an angle B, and refracted or transmitted at an angle 8
1 

• The electric fields of the 

incident, reflected and transmitted waves can be represented respectively by; 

E ( ·) _ E -i(k,·rl 
i I - Oie 

E (r) = E e-i(k,·rl 
r Or (2.36) 

E ( ) = E -i(k,·r) 
1 r ote 
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Electromagnetic boundary conditions require that the component of the electric 

field that is tangential to an interface must be continuous across it. Thus we have; 

(2.37) 

This relationship must be satisfied at any point on the interface (at x = 0) and so; 

[E -ik,r_v -ik. z E -ik,.y -ik z J [E -ik,"y -ik z J 
iOe e " + rOe e n = tOe . e " 

tan tan 
(2.38) 

The only non-trivial solution to Eq. (2.38) is to require that; 

(2.39) 

These relations are known as the phase-matching requirements. Physically they 

mean that the incident, reflected and transmitted waves must lie in the same plane 

and so we can choose all three wave vectors to lie in the xz plane for convenience 

without losing generality. This plane is called the plane of incidence. The 

wavevectors are then given by; 

where 

and from Eq. (2.35); 

k =-k x+k 2 
1 lX IZ 

k, = +k,xx + k,.,z 

kr = -krxx + kr) 

kix = kl cos ei, kiz = kl sin ei 

k,x = k1 cos B,, k,z = k1 sin B, 

klx = k2 cos el, klz = k2 sin el 
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(2.41) 



(2.42) 

The requirement that the tangential, or z component, of the three waves are the 

same yields that; 

(2.43) 

Applying Eq. (2.42) to this gives Snell's law; 

(2.44) 

The critical angle, Be , is the angle of incidence from which the transmitted angle 

is 90° as shown in Figure 2-2. It can be determined from Eq. (2.44) as; 

(2.45) 

y z 

Figure 2-2 Relative orientation of incident, reflected and transmitted wave vectors 

when incident ray is at critical angle 

Eq. (2.43) can be re-expressed as; 

(2.46) 
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and rewritten as; 

(2.47) 

For all angles of incidence above the critical angle, i.e. ()i > ()c, k, sin ()i > k2 and 

so k
1
x will become wholly imaginary and given by; 

k -~k2 . 2 () k2 . 
tx =-1 1 Sln i - 2 =-Jatx (2.48) 

and the variation with x in the transmitted region is of the form e-;a,, so the field 

decreases exponentially into the transmitted region and is called an evanescent 

wave. The plane wave is totally internally reflected at the interface. 

2.3.2. Reflection and Transmission Coefficients 

2.3.2.1. Plane Wave Polarisation 

So far it has not been necessary to discuss the polarisation of the plane waves but 

in order to take the theory further these must now be defined. 

Any form of light can be represented by two orthogonal linearly polarised waves. 

These components are chosen to be perpendicular and parallel to the plane of 

incidence, as shown in Figure 2-3. A wave with the electric field perpendicular to 

the plane of incidence is said to be transverse electric (TE) or s-polarised light. 

When the electric field is in the plane of incidence, the light is transverse magnetic 

(TM) or p-polarised. 
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x TE wave incidence 

nl 
Hi 

z 
n2 

y 

TM wave incidence 

y 

Figure 2-3 Incident field orientation forTE and TM waves 

2.3.2.2. TE Wave Incidence 

For TE incident light, the electric field only has a y -component, and so we can 

assume that both the reflected and transmitted waves are also polarised along y . 

Since everything is uniform in the y -direction, a Icy must be zero for all field 

quantities. The electric fields of the three waves will be of the form; 

(2.49) 

The boundary condition that the electric field must be matched on either side of 

the boundary (when x = 0) means the equation becomes; 

E -ik1,z + £ -ik..,z = £ -ik,z iOe rOe tOe (2.50) 
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Since kiz = k,z = k,z = kz from Eq. (2.39), this simply reduces to; 

(2.51) 

The time-independent form of Maxwell's curl equations (Eq. (2.13)) can be 

written as; 

(2.52) 

When the curl operator is applied to the electric field E = E
0
e-i(krl one gets; 

D E ( ' a ' a ' a ) E -i(k,x+k,.y+k,z) vx = x-+y-+z- x 0e · 
ax ay az 

'( 'k 'k 'k ) E -i(k,x+k,v+k,z) = -1 x x + y Y + z z x 0e · · (2.53) 

=-ikxE 

and so; 

k x E = wp0 H (2.54) 

This allows us to determine the magnetic field of the three waves as; 

H.=-~-(- ~k -zk. )E. -i(-k,,x+k1,z) 
1 x z 1x 10e 

WJlo 

H = -.-~- (- ~ k + zk )E -i<k'"x+k.,zl 
r X z rx rOe (2.55) 

WJlo 

H = -~-(- ~k _ ~k )£ -i(-k"'r+k1,z) , x z 2 tx ,oe 
WJlo 

Again the tangential component of the magnetic field ( z component) must be 

matched on both sides of the boundary (at x = 0 ) and so we can write; 
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(2.56) 

Since kix = krx and using Eq. (2.41) we can rewrite this as; 

(2.57) 

Solving Eqs. (2.51) and (2.57) simultaneously, we can define the reflection and 

transmission coefficients as; 

(2.58) 

2.3.2.3. TM Wave Incidence 

This analysis can easily be repeated for the case of TM incident light, where the 

magnetic fields of the three waves only have a y -component. The important 

difference is that the magnetic field will be; 

H _ ~H -i(k·r) _ ~ ~£ -i(k-r) 
- y oe - Y.\1&' J.lo oe (2.59) 

where the ~ c: I J.lo term comes from the ratio of the magnetic and electric field 

amplitudes. Since the dielectric constant is different in each material, the term will 

be different for the transmitted wave compared to the other two waves and have 

the effect of changing the reflection and transmission coefficients to; 

(2.60) 
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2.3.3. Total Internal Reflection 

In section 2.3.1 it was shown that a plane wave incident at an angle above the 

critical angle would be totally internally reflected and the x -component of the 

transmitted wave vector, k,x become wholly imaginary. If this condition is applied 

to the reflection coefficients, they can be rewritten as; 

(2.61) 

These reflection (and transmission) coefficients are complex, having a magnitude 

and a phase which can be found by writing the coefficients in complex 

exponential form; 

R -IR I i,PTE d R -IR I iihM TE - TE e an TM - TM e (2.62) 

The magnitude of the coefficients is therefore; 

(2.63) 

and the phase is; 

(2.64) 

Thus we see that the incident beam is totally reflected since the reflection 

coefficient is unity, and the waves undergo a phase change on reflection. 
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2.3.4. The Goos-Hanchen Shift 

The effect of these phase changes on an incident beam, of finite cross-sectional 

dimensions, upon total reflection is to laterally shift the beam by an amount ik 

from the position predicted by geometric-optics considerations [ 1 0-12]. 

A simple analysis [13] can be shown by considering a guided wave incident on a 

plane interface as; 

E (z) = E. e -ik,z 
I 10 

(2.65) 

The reflected amplitude is found using £,.0 = E;o · RrE(TMJ where RrE(TMJ = ei'h-EtTM) 

as shown before. The wave after reflection is therefore; 

E (z) = E ei[-k,z+¢(k,J] 
r 10 (2.66) 

where kz = k1 sin B; . Since the wave is laterally confined by the interface, the 

effects of diffraction can be included by considering the wave as a group of rays 

near the angle B; . The phase shift can therefore be expanded as a Taylor series for 

propagation constants near kz ; 

(2.67) 

The reflected wave can be re-written as; 

Er(z) = E;o expJ -(kz + kz')z + ¢(kJ + kz' [ d¢, J ] l dkz k,=O (2.68) 

= E;o exp i[ -kzz + ¢(kJ ]exp i [ -kz' (z + ik) J 
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where & = -d¢1 dkz'. The reflected beam has therefore been laterally shifted by a 

distance & as shown in Figure 2-4 .. Note that the lateral shift can also be 

interpreted as the rays penetrating into the interface and reflecting off a fictitious 

boundary given by L1x = & I 2 tan B; . The shift is very small unless the ray angle is 

close to the critical angle. 

n ---------------------
2 ------------------~----

& 

Figure 2-4 Lateral displacement of an incident beam caused by total internal 

reflection 

2.4. The Slalb Waveguide 

The effect of the dielectric interface on a plane wave, incident at an angle greater 

than the critical angle, is to totally internally reflect it and as such guide the wave 

away from the interface. If a second boundary was introduced a distance d above 

the first, as shown in Figure 2-5, so that the incident angle was greater than the 

critical angle for both interfaces, then the wave would be totally internally 

reflected at both boundaries and be guided in the z -direction along the length of 

the interfaces. Such a geometry is known as a slab waveguide [1-3, 13, 14], where 

the core region of refractive index n2 is surrounded by cladding regions of 

refractive index n1 and n3 respectively where n2 > n1 3 
• 
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X= +d /2 
ni XL 

y z 

X= -d I 2 

n3 

Figure 2-5 Rays propagating due to total internal reflection in a slab waveguide 

2.4.1. The Symmetric Slab Waveguide 

For simplicity, a symmetrical slab waveguide where the upper and lower cladding 

regions have the same refractive index, i.e. n1 = n3 , will first be considered. It has 

already been shown that the electric field in the cladding region is an evanescent 

field and we would expect the field in the core region to be a standing wave from 

the superposition of upward and downward propagating wave solutions. Since the 

waveguide is symmetrical about x = 0 , one would expect the field solution to be 

either odd or even with respect to x . Only the z -components of the propagation 

constant provide the phase propagation of the wave and so in slab waveguides it is 

common to use f3 instead of kz where the propagation constant f3 = k0n2 sin Bi. 

2.4.1.1. TE Wave Solutions 

We will first look at the waveguide solutions for the TE case where the electric 

field is polarised along y. The time-independent wave equation (Eq. (2.22)) can 

be reduced to; 

iiE 82E 
v v 2 E 0 -2-- + -2-- +OJ Jlo& y = ax az (2.69) 
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where Ev = yE. The electric field has a z -variation of the form E,.(z) = EY0e-iPz 

which when substituted into the wave equation gives; 

(2.70) 

The solutions to this equation for the x -variation in the field will be of the form; 

provided that; 

a, = ~ /)2 - oi f.lo&, 

a2 = ~o/ f.lo&2- /)2 

x>d/2 

lxl s d 12 

X< -d /2 

(2. 71) 

(2.72) 

The unknown amplitude coefficients can be related to each other through the 

requirement that the tangential components of the electric and magnetic fields 

must be matched on either side of an interface. The tangential component of the 

magnetic field can be found again from Eq. (2.52) as; 

· BE (x) 
H.(x) = 1 

>' 
- OJf.lo ax 

And so the solution for the magnetic field will be of the form; 
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x>d/2 

lxl s d 12 

X< -d /2 

(2.73) 

(2.74) 



Since the waveguide is symmetrical about x = 0, it is sufficient to match the 

boundary conditions at x = +d I 2. By equating the electric fields and magnetic 

fields in Eqs. (2.71) and (2.74) respectively at x = +d I 2 we get; 

~ cos(a2d I 2) + B2 sin(a2d I 2) = A1e-a1d
12 

-a2 A2 sin(a2d I 2) + a 2B2 cos(a2d I 2) = -a1A1e-a1d
12 

(2.75) 

As stated, the field solution will be even or odd with respect to x. For the even 

solution we will get a symmetric mode, which means that the electric field will 

have a maximum amplitude at x = 0 and the evanescent tails will have the same 

sign, thus B2 = 0 and A1 = B1 • For Eqs. (2.75) to be simultaneously true it is 

required that there is a guidance condition given by; 

(2.76) 

Similarly for antisymmetric modes, where the amplitude is zero at x = 0 and the 

evanescent tails have opposite sign, i.e. A2 = 0 and A1 = -B1 , the guidance 

condition is; 

(2.77) 

2.4.1.2. TM Wave Solutions 

This analysis can be repeated for the case of TM incident light, where the 

magnetic field is polarised along y . The tangential component of the electric field 

can be found from; 

EJx) = . 1 BH"(x) 
lOJ& ax 

And so the magnetic and electric field solutions will be of the form; 
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a, A -a,x -- ,e 
c:, 

X >d/2 

lxl:::;d/2 

X< -d /2 

x>d/2 

E,(x) = ~ - a 2 A2 sin(a2x) + a 2 B2 cos(a2x) 
- lOJ &2 5 2 

lxl:::;d/2 

X< -d /2 

Matching the fields at x = d 12 gives the simultaneous equations; 

(2.79) 

(2.80) 

(2.81) 

And so the guidance conditions for the symmetric and anti-symmetric modes are 

given respectively by; 

(2.82) 

tan(a,d I 2) = -(:))a, I a, (2.83) 

The guidance conditions can be solved either graphically or numerically to find 

that only discrete values of a 2 , and therefore f3, satisfy the equations. 

This is demonstrated in Figure 2-6, a plot of the solution to the guidance condition 

forTE even modes, found by rearranging Eq. (2.76) to; 

(2.84) 
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where 11k = ~ al f.lo ( c2 - c1) , and plotting both sides of the relation. The 

intersection points represent an allowed solution which corresponds to a particular 

guided mode, denoted by the mode index m . One can see that for any mode m ; 

(2.85) 

10 

5 
,_ increasing M 

--1:::----------------------
2J[ 

-5 

-10 

Figure 2-6 Graphical solutions to the guidance condition forTE even modes 

2.4.1.3. Transverse Field Patterns 

Each guided mode has its own particular transverse field distribution. As stated 

before, each even mode ( m = 0, 2 ... ) will have a symmetric distribution about 

x = 0 and each odd mode ( m = 1, 3 ... ) will have an anti-symmetric field pattern. 

The field distributions of the first two guided TE modes in a symmetric slab 

waveguide, of an arbitrary core thickness of 2 11m, are shown in Figure 2-7. The 

zeroth-order mode has a maxima at x = 0 and decays exponentially in the 

cladding regions as expected while the first-order mode has a 'zero' at the origin. 

Higher order modes have an increasing number of 'zeros' in their distributions. 
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E,. 

-3 -2 2 3 X 

cladding region core region cladding region 

Figure 2-7 Normalised field distribution for the two lowest-order modes (TE) for 

a symmetric slab waveguide of 2 Jff11 thickness 

TM mode distributions are similar to those of TE modes except that TM modes 

penetrate further into the cladding regions. This can be shown by noting that the 

difference between the guidance conditions for TE and TM modes (Eqs. (2. 76) 

and (2.82)) is given by; 

(2.86) 

which confirms that the exponential decay coefficient for TE modes must be 

larger than that for TM modes. 

The zeroth-order mode shown above is well-confined, meaning most of its energy 

is confined to the central guiding region while only a small part is decaying in the 

cladding regions. The level of confmement is dependent on the mode number, 

wavelength of the waves, thickness of the core region and difference in refractive 

index between core and cladding regions, !J..n = n2 - n1 • In general a mode is more 

confined as the wavelength decreases, the core thickness increases and !J..n 

increases. The effect of the latter is shown in Figure 2-8. 
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-3 -2 -1 0 2 3 X 

cladding region I core region cladding region 

Figure 2-8 The lowest-order mode (TE} for a symmetric slab waveguide with 

varying index difference between core and cladding regions given by a) 

~n = 0.01, b) ~n = 0.03 and c) ~n = 0.1 

As the mode number increases, the mode becomes less confined as can be seen in 

Figure 2-7 where the first-order mode penetrates further into the cladding regions 

than the zeroth-order mode. 

The number of modes which can be guided by a waveguide is also dependent on 

wavelength, thickness and index difference. The number of solutions increases 

again as wavelength decreases, thickness increases and ~n increases. So as one 

mode becomes more and more confined, a second mode will be allowed which in 

tum will become more confined itself as the parameter increases/decreases and so 

on. 

2.4.1.4. Cut-off Conditions 

The point at which a mode is cut-off can be found by considering that each mode 

is characterised by a particular angle of incidence which ceases to be guided when 

this angle tends to the critical angle, given in Snell's law as; 
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(2.87) 

Since the propagation constant for a mode is f3 = k0n2 sin(};, it implies that f3 at 

cut-offis given by; 

(2.88) 

By re-writing Eqs. (2. 72) in terms of wavenumber k it follows that; 

2 n2 2k2 0 al = Pc.o. -nl o = 
2 . 2k2 n2 . k2 ( 2 2) a2 = n2 o - Pc.o. = o n2 - nl 

(2.89) 

The guidance conditions for symmetric and anti-symmetric modes respectively 

become; 

Solutions to this exist only for; 

tan(a2dl2to =0 

tan ( a 2d 12 to = -oo 
(2.90) 

(2.91) 

where m is again the mode number. Substituting in for a 2 then gives the general 

cut-off condition for symmetric slab waveguides; 

(2.92) 
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2.4.2. The Asymmetric Slab Waveguide 

The asymmetric waveguide structure, consisting of cladding layers of difference 

refractive index, is the most general case for three-layer slab waveguides. The 

solutions in this case will still consist of exponential decaying fields in the 

cladding regions and oscillatory fields in the core. However, since the waveguide 

is no longer symmetric, the solutions will be neither even nor odd and so an extra 

phase component, 1f1 , is introduced into the field description of the core to 

account for this. 

2.4.2.1. TE Wave Solutions 

Extending from the solutions to the symmetric waveguide in Eq. (2. 71 ), the 

solutions for an asymmetric slab waveguide with a x -variation in the field will be 

ofthe form; 

where; 

a, = J /32 - oi Jlo&, 

a2 = ~a/ Jlo&2 - /32 

a3 = J /32 - cti Jlo&3 

x>dl2 

lxl :s; d I 2 

X< -d 12 

And similarly the tangential magnetic field solutions can be given by; 
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x>dl2 

lxl :s; d I 2 

X< -d 12 

(2.93) 

(2.94) 

(2.95) 



The fields must be matched at both boundaries this time since the waveguide is 

asymmetric and so equating the electric fields and magnetic fields in Eqs. (2.93) 

and (2.95) respectively at x = +d I 2 we get; 

A
2 

cos ( a
2
d I 2 + 1f1) = A,e-a,d/2 

a
2
A

2 
sin ( a

2
d I 2 + 1f1) = a

1
A

1
e-a,dll 

(2.96) 

For these to be simultaneously true it is required that there is a guidance condition 

given by; 

Similarly, matching the boundary conditions at x = -d I 2 yields; 

A, cos ( -a,d 12 + 'f/) J A,e -a,m 

-a
2
A

2 
sin ( -a

2
d I 2 +If/)= a

3
A

3
e-a,dll 

resulting in the guidance condition; 

(2.97) 

(2.98) 

(2.99) 

The two guidance conditions cannot be solved directly so they must be combined 

to eliminate 1f1 and obtain a single equation suitable for numerical or graphical 

solution. This can be done by noting that tan x = tan ( x ± mr), which when applied 

to the guidance conditions gives; 

a 2d I 2 + 1f1 =tan_, (a, I a2 ) ± mr 

a
2
d I 2 -ljl = tan_, ( a

3 
I a

2
) ± mr 

Adding these to eliminate If/ yields the relation; 
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(2.101) 

2.4.2.2. TM Wave Solutions 

This analysis can be repeated for the case of TM incident light to find the 

magnetic and electric field solutions will be of the form; 

alA -a1x -- Ie 
&I 

EJx) = ~ - a 2 A2 sin( a 2x +If/) 
lOJ &2 

x>dl2 

jxj s; d I 2 

x<-d 12 

X >dl2 

jxj s; d I 2 

X< -d 12 

Matching the fields at x = d I 2 gives the simultaneous equations; 

A2 cos( a 2d I 2 +If/)= A1e-a1d
12 

- a 2 Az sin ( a
2
d I 2 +If/)=-~ A1e-a1d

12 

&z 5 1 

And matching of boundary conditions at x = -d I 2 yields; 

Az cos( -a
2
d I 2 +If/)= A3e-a3d

12 

- az Az sin ( -azd I 2 +If/)= a3 A3e-aldl2 

&z 5 3 

The guidance conditions are therefore given by; 
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(2.1 03) 

(2.1 04) 

(2.105) 



tan(a,d 12+v+ (:))a, I a, 

tan( a,d I 2-ljl) ~ -(:~)a, I a, 

And so the general guidance condition for TM modes will be; 

2.4.2.3. Ray Model 

(2.1 06) 

(2.1 07) 

(2.108) 

These guidance conditions for TE and TM modes gtven in Eqs. (2.101) and 

(2.1 08) respectively can be confirmed by considering the ray model of a slab 

waveguide, where travelling waves can be thought of as an infinite number of zig­

zag rays propagating via total internal reflection, as can be seen in Figure 2-9. For 

rays to propagate in phase there must be an integral multiple of 2;r radians 

between equivalent points of phase on the ray's geometrical path. So for example 

in Figure 2-9, the phase shift between A and C, ¢Aac must equal 2m;r. This will 

consist of a component due to the optical path length, ¢path plus phase shifts due 

to the total internal reflection at each interface given by Eqs. (2.64). The phase 

shift ¢path is equal to the product of the wavenumber and path length which is 

-k2 (2d cos B;) . Since a 2 = k2 cos B;, the total phase change can be written as; 

(2.1 09) 

where ¢J~ is the phase change on total internal reflection for a TE wave between 

regions 1 and 2. This guidance condition is exactly the same as Eq. (2.101), thus 

the ray model and electromagnetic description of an asymmetric slab waveguide 
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provide the same result. These can then be solved numerically or graphically to 

determine the allowed guided modes. 

n, 
x=+d/2 ----~~--~--~--~----~--~--~----~-----

Constant Phase Plane 

Figure 2-9 Ray model showing zig-zag rays which constitute a guided wave 

2.5. Optical Interference 

Optical interference is the interaction of two or more light waves yielding a 

resultant irradiance that deviates from the sum of the component irradiances [15-

18]. For two beams to interfere they must in general be very nearly the same 

wavelength and they need to be coherent. 

2.5.1. Two-Beam Interference 

Consider two waves represented by E1 and E 2 • In accordance with the principle 

of superposition, the total electric field E at a point in space P defined by the 

position vector r, arising from the two separate fields E 1 and E 2 , is given by; 

The wave equations of the two waves can be expressed in the form; 

E, = E01 cos(k, ·r-wt+&1) 

E 1 = E02 cos(k2 ·r-wt+&2 ) 
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(2.111) 



where &1,2 is the initial phase of the respective waves. 

E 1 and E 2 are rapidly varying fields with optical frequencies of the order of 

1014 Hz for visible light. Therefore both E, and E2 average to zero over very 

short time intervals, meaning the actual field is an impractical quantity to detect. 

However, the radiant power density I , also called the intensity and moreover the 

irradiance, measures the time average of the square of the wave amplitude and can 

be measured directly with a wide variety of sensors. Thus, the study of 

interference is best approached by considering irradiance. It is given by; 

(2.112) 

where ( £ 2
) denotes the time-averaged value of the magnitude of the electric 

field. 

The resulting irradiance at P is given by; 

I =&0c(E2
) 

= &0c(E ·E) 

=&0c({E1 +E2 )·{E1 +E2 )) 

= &0c(E1
2 + E~ + 2E1 • E2 ) 

=&0c(Enr +&0c(E;)r +&0c(2E,·E2 ) 

= I1 +I2 +I12 

(2.113) 

The first two terms, I, and I2 correspond to the irradiances of the individual 

waves, E 1 and £ 2 • The last term depends on the interaction of the waves and is 

called the interference term, I 12 • 

To evaluate the interference term, one must consider the dot product of the two 

waves; 
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(2.114) 

In order to simplify, let a= k 1 • r + &1 and f3 = k 2 • r + & 2 , giving; 

E, · E 2 = E 01 • E 02 cos( a- wt) cos(fJ- wt) 

:. (E, ·E2 ) =E01 ·E02 [cosacosf3(cos2 wt)+sinasinf3(sin2 wt) (2.115) 

+ (cos a sin f3 +sin a cos f3) (sin wt cos wt)] 

Over any number of complete cycles, it can be shown that; 

(2.116) 

Hence; 

(2.117) 

where t5 is the phase difference between E 1 and £ 2 arising from the combined 

differences in path length and initial phase angle. 

From Eq. (2.112), one can see that the irradiances of the individual waves can be 

given by; 

(2.118) 

And so the interference term becomes; 
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(2.119) 

And the total irradiance is therefore; 

(2.120) 

At varying points in space, the total irradiance will alternate between a maximum 

value of 11 + 12 + 2N, and a minimum of 11 + 12 - 2N, due to the oscillatory 

nature of the cosine term. A maximum irradiance is obtained when cos 8 = 1 

which occurs when 8 == 2m;r for m = 0, ± 1, ±2 .... In this case the waves are in­

phase and there is total constructive interference. When the waves are completely 

out of phase, there is total destructive interference and a minimum irradiance is 

obtained. The condition for this is cos 8 = -1 , which occurs when 8 = (2m+ 1 );r . 

If the amplitudes of E 1 and E 2 are equal, there will be complete destructive 

interference as 11 = 12 = 10 and so the total irradiance will be given by; 

I= 210 (1 +cos 8) 

8 
= 410 cos2

-

2 

(2.121) 

As such, the maximum irradiance is 410 and the minimum is zero. These maxima 

and minima would be seen as light and dark regions on a screen placed in the 

region of interference, and are known as interference fringes. 

2.5.2. Young's Double-Slit Experiment 

In 1802, Thomas Young carried out the first decisive experiment to demonstrate 

optical interference. The geometry of his experiment is shown in Figure 2-10. 
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s, 
s 

Figure 2-10 The geometry of Young's double-slit experiment 

A monochromatic plane wave illuminates a long narrow slit, denoted S0 . The 

light spreads out in cylindrical waves from the slit according to Huygens' 

principle and is allowed to fall on two parallel, narrow, closely-spaced slits, S1 

and S2 • The two slits will constitute two coherent light sources, whose 

interference can be observed on a screen a large distance away, s. 

The optical path difference between the two rays along S1P and S2P can be 

determined, to a good approximation, by dropping a perpendicular from sl onto 

S2P. The path difference is therefore; 

=r2-lj 

= asinB 

(2.122) 

For very small angles, one can approximate sin B::::: B, and so r2 -IJ = aB. From 

the geometry, one can see that e = y Is, therefore; 

(2.123) 

The condition for constructive interference is; 
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8 = [k(r2 -fj)] = 2mJr 

=> r2 - fj = 2mJr I k = mA 
(2.124) 

Combining Eqs. (2.123) and (2.124) gives the position of the m1
h bright fringe on 

the screen; 

s 
Y =-mA m (2.125) 

a 

For destructive interference; 

r2 -fj =(m+ Ji)A 

Ym = :( m+~)A 
(2.126) 

The fringe spacing is the difference in position of two consecutive maxima and so 

is given by; 

s s 
Ym+l- Ym =-(m+1)A--mA 

a a (2.127) 
s 

=> ~y =-A 
a 

From Eq. (2.121), the irradiance on the screen is given by; 

I = 41 cos2
- = 41 cos2 ~ 1 = 41 cos2 

--8 [ k(rJ - r. ) ] ( yaJr) 
0 2 ° 2 ° SA 

(2.128) 

This irradiance is plotted in Figure 2-11. However, this is an idealised case and 

actual fringe patterns drop off with distance on either side of the origin due to 

diffraction and assumptions that () is small. 
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, (yali) 
I =410 cos ~ 

5 3 3 5 
m= -2 -I 0 2 

2 2 2 2 2 2 

Figure 2-11 A plot of an idealised irradiance against screen position for a 

double-slit 

2.5.3. Fraunhofer Diffraction 

The Fraunhofer diffraction pattern for the double-slit experiment can be calculated 

by dividing the slits into intervals of dimension ds, and treating them as point 

sources as per Huygen's Principle. The total field at a point P, as shown in Figure 

2-12, can be found by integrating over all the intervals, where each interval 

contributes a field at P of; 

(2.129) 

where (ELds I r0 ) is the amplitude of the wave, r0 the path length from the 

interval at s = 0 to the point P and ~ is the path difference between r0 and the 

path length from any other interval ds at height s . 

57 



f 

Figure 2-12 Geometry for determining irradiance due to Fraunhofer diffraction. 

The lens puts the observation screen effectively at infinity 

Integrating over the two intervals, specified in Figure 2-13, and noting that from 

Eq. (2.122) that the path difference can be written as d = s sine, gives; 

(2.130) 

E i(kr0 -rut) [ I. . I . I. . I. . l e --l(a-b)ksm8 --i(a+b)ksm8 -1(a+b)ksm8 -l(a-b)ksm8 
= L e 2 _ e 2 + e2 _ e2 

r0 iksinB 

Figure 2-13 Specification of slit widths and separation for double-slit Fraunhofer 

diffraction 
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To simplify the equation, let; 

a= kasinB and f3 = kbsinB 
2 2 

(2.131) 

And so, Eq. (2.130) reduces to; 

E 2EL b . f3 i(kr. -wt) 
P =---sm cosa·e o 

ro f3 
(2.132) 

Again, it is best to work in terms of irradiance and so; 

2 (
ELb)

2
(sinfJJ

2 
2 = c&0 -- --- cos a 

ro f3 
(2.133) 

~ 41, ( si;; J' cos' a 

The sin 2 f3 I f3 2 factor can be shown to come from the diffraction pattern for a 

single-slit and the cos2 a term when written out in full is; 

2 2(kasinB) 2(ya1r) cos a = cos = cos --
2 SA 

(2.134) 

which is the same as in Eq. (2.128) for an interference pattern for a double-slit. 

The irradiance is therefore a product of the two and can be considered a 

modulation of the interference fringe pattern by a single-slit diffraction envelope, 

as shown in Figure 2-14. Since a > b, the cos2 a factor varies more rapidly than 

the sin 2 f3 I f32 factor. The diffraction envelope has minima at f3 = mJr for 

m = ±1, ± 2 ... and the interference pattern has minima at a= ±mJr I 2. 
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Figure 2-14 A plot of irradiance against screen position for a double-slit 

including diffraction (a=3b) 

2.6. Waveguide Properties 

There are a number of waveguide properties which can be important to the 

development and use of a waveguide device. Discussed here are some which are 

important to this thesis, namely material dispersion and loss mechanisms. 

2.6.1. Material Dispersion 

The dependence of the dielectric constant or refractive index of a material on the 

frequency of light is known as material dispersion [2, 17]. This can be examined 

by looking at the dispersion equation which expresses refractive index as a 

function of frequency; 

(2.135) 
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This equation is derived by treating a medium as a classical forced oscillator when 

subjected to the electric field of a light wave. Where the plasma frequency 

OJP = Ne2 I &0me, with N the contributing electrons per unit volume, e and me 

are the charge and mass of an electron respectively, OJ0 is its resonant frequency 

and r is a very small damping force. 

Far away from this resonant frequency, OJg >> OJ2 and n can be considered to be 

constant over that small frequency region. As OJ increases towards OJ0 , 

( OJg - OJ
2

) decreases and the refractive index gradually increases with frequency. 

This is known as normal dispersion. When OJ approaches OJ0 , the damping term 

becomes dominant and n decreases with OJ . This is called abnormal dispersion 

and the frequency regions around OJ0 are known as absorption bands. A plot of 

refractive index versus frequency is shown in Figure 2-15 to demonstrate this 

behaviour. 

There is usually more than one resonance frequency m real materials. The 

dispersion relation can account for this by rearranging to; 

n
2 

(OJ)= 1 +OJ~ L ~ ( OJg1 - OJ
2 + iyOJ) (2.136) 

j 

where j = 1, 2, 3 ... and j 1 is a weighting factor called the oscillator strength. 
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{J) 

absorption band 

Figure 2-15 A plot of refractive index versus frequency 

2.6.2. Losses in a Waveguide 

Guided light propagating through a waveguide will experience attenuation or loss 

which can be generally attributed to three different mechanisms; absorption, 

scattering and radiation [14, 17]. The latter becomes significant when waveguides 

have bends so it will not be discussed for slab waveguides. Scattering loss usually 

dominates in dielectric waveguides while absorption loss is the primary 

mechanism in semiconductors. The loss of some of the energy confined in the 

guided light is due to photons being scattered or absorbed as the beam propagates 

through the waveguide. 

The intensity of a light beam transmitted at the end of a waveguide, of length z , 

can be found by Beer's Law; 

(2.137) 

where / 0 is the incident intensity and a is the loss coefficient which includes 

losses due to all mechanisms. 
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2.6.2.1. Absorption Losses 

When photons are absorbed, they are destroyed by giving their energy to atoms or 

electrons within the absorbing material. All optical materials absorb photon 

energy, however the amount of energy absorbed and at which wavelength it 

occurs differs from material to material. 

Absorption losses can be due to interband absorption, where photons of greater 

energy than a semiconductor band gap are absorbed to raise electrons from the 

valence band to the conduction band, or free carrier absorption, where a photon 

gives up its energy to electrons or holes in order for them to move up in their 

respective bands. The latter occurs when a semiconductor is heavily doped and 

the former can be avoided by using a wavelength far longer than the absorption 

edge wavelength of the material. 

2.6.2.2. Scattering Losses 

When photons are scattered, they generally maintain their energy but their 

direction of travel is changed. Scattering losses can be due to volume scattering, 

caused by random spatial fluctuations within the waveguide, or surface scattering, 

due to the relative smoothness of the layer surfaces. 

Volume scattering follows Rayleigh's Law which states that the attenuation 

coefficient of such scattering is proportional to A, -I. 

Surface scattering is generally the primary loss mechanism because propagating 

waves strongly interact with the surfaces of a waveguide. In terms of the ray 

model, scattering occurs at each total internal reflection along the length of the 

waveguide and hence is proportional to the number of reflections. As such, 

higher-order modes experience greater loss due to their smaller reflection angles, 

ei. 
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Chapter 3 : Vapour Sorption in Thin Polymer 

Films 

3.1. Introduction 

The aim of this chapter is to develop a technique for probing the density of thin 

film polymer layers on exposure to vapours using dual slab waveguide 

interferometry, following on from previous work in the area [1-4]. Initially, theory 

and background of the dual slab waveguide interferometer and polymers, 

Polyisobutylene and Polyvinylpyrrolidone, will be given as well as the description 

of some alternative methods. Secondly, experimental set-up, theoretical modelling 

and experimental procedure will be discussed. Finally, experimental results will 

be presented and analysed. 

3.2. Background and Theory 

3.2.1. Dual Slab Waveguide Interferometer 

In the previous chapter an electromagnetic study of a slab waveguide was 

developed culminating in solutions for both transverse electric and transverse 

magnetic modes of symmetric and anti-symmetric waveguides. Consider now a 

dual slab waveguide consisting of two vertically stacked slab waveguides of finite 

length, as shown in Figure 3-1, where n2 > n1 • 

n, 
n2 .. 

n, 

n2 .. 
ta 

n, 

Figure 3- I A dual slab waveguide interferometer 
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When an optical field is introduced into the waveguide, modes in both core 

regions are excited equally and propagate through the structure as described for a 

single slab waveguide. At the output plane, the two modes diffract into the far 

field where they form an interference pattern analogous to Young' s interference 

fringes . 

In section 2.5.2, Young ' s double-slit experiment is described showing how light 

diffracting from two slits will interfere to produce interference fringes in the far 

field of spacing s/i I a where s is the distance between slits and screen, li is the 

wavelength of the light and a is the slit spacing. 

In the dual slab waveguide interferometer the output plane of the two core regions 

where the field propagates replace the two slits and a photodiode array is used 

instead of a screen, but the overall geometry remains the same. The number of 

visible fringes is limited by both the distance between the chip end face and the 

detector and the beam size of the input laser. 

The interference pattern from the interferometer, shown on a photodiode array in 

Figure 3-2 and on a screen in Figure 3-3 , is representative of the relative phase 

position of the output fields from the two waveguides. As such, a change in the 

phase will cause the interference pattern to move providing a transduction method 

for measuring the phase shifts . 
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Figure 3-2 Interference fringes for dual slab waveguide interferometer as 

detected on photodiode an·ay (courtesy of Farfield Sensors) 
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Figure 3-3 Interference fringes for dual slab waveguide interferometer as 

displayed on screen 

The phase shifts are equal to the phase change between the two modes over the 

length of the waveguide, given by; 

(3 .1) 

where 11fluu> represents the change in phase propagation constant in each mode 

according to; 

(3 .2) 

where k0 = 2tr I A.u and Nu U> is the effective refractive index of the mode, 

comprising of a weighted average of the refractive indices of the layers over 

which the mode field extends. 

Modal coupling between the two waveguides is avoided by making the 

interferometer asymmetric, that is the upper slab waveguide has different 

thickness and refractive indices than the lower waveguide. As such, the mode in 

the lower guide is unaffected by changes to the surface of the interferometer chip 

and can be considered to be a reference mode. Any shift in the interference fringes 
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is therefore entirely due to the change in effective refractive index of the upper 

mode as given by; 

(3.3) 

By monitoring the shift in the fringe pattern, this gtves a method of directly 

measuring the change of the upper mode effective index. 

This effect can be used to measure small changes in the upper cladding layer. This 

layer can be a thin polymer film which when exposed to a vapour will result in 

very small changes in t~ickness and refractive index of the film, causing a phase 

shift of the upper mode which is measured by the shift in fringe pattern. By 

monitoring both the transverse electric (TE) and transverse magnetic (TM) phase 

shifts, the calculated effective index of the mode can be resolved into unique 

values of thickness and refractive index change for the polymer layer. 

The device has previously been used in the field of vapour detection. Prior work 

has been focussed on the humidity sensing of water molecules by both completely 

polymer waveguides [2, 3] and by the silicon oxynitride guides with top polymer 

layer [2, 4]. Work has proven successful to date but focus has moved away from 

developing a vapour sensor to looking more at the mechanisms behind the 

changes in thin film polymers on exposure to vapours. 

3.2.2. Polymers 

In general polymers are water and gas resistant macroscopically, but actually the 

microstructure of polymers is not so dense - there are small voids between 

molecules and very thin films can be quite porous. Therefore polymers have the 

ability to absorb a certain quantity of vapour molecules. These vapour molecules 

can pass through the air/polymer interface when there is a partial pressure 

difference of vapour between the inside and the outside of the polymer. The 

vapour molecules go into the polymer by being adsorbed onto the surface of the 

polymer and then diffusing through the polymer from one microvoid to another. 

The diffusion strongly depends on the size and shape of the vapour molecule. Van 
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der Waals type interactions must be disrupted to allow re-arrangement of the local 

structure for the vapour molecules to move through the polymer. 

Permeability is governed by Fick's laws of diffusion [5]. The 1-D case provides 

an adequate treatment. 

First Law: For steady-state diffusion, where concentration is constant with time; 

F = -D de (3.4) 
X dx 

where Ft is the flux, D IS the diffusion coefficient and de I dx IS the 

concentration gradient. 

Second Law: For time-dependent concentration; 

(3.5) 

Vapour molecules will migrate through the polymer due to the concentration 

gradient but are then reflected back into the film when the vapour reaches the 

impermeable substrate. The overall transport process depends on the polymer 

chain segmental mobility and defects within the polymer. 

For microporous films exposed to a vapour the variation in refractive index can be 

described by [2]; 

l.:!,.n = /(1- q)l.:!,.nP (3.6) 

where (1- q) is the relative pore free volume, f is the volume fraction of 

micropores taken by the vapour molecules and l.:!,.n P is the change in refractive 

index inside the pores, I.e. from n =1 for air to 

n =condensed vapour refractive index. The more volume the vapour molecules 

fill, the lwger the increase in polymer refractive index. The absorption of vapour 

by the polymer can also lead to swelling of the polymer layer which varies 
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considerably from polymer to polymer. When a polymer is exposed to a 

condensed vapour of lower refractive index that the polymer chain index, the 

polymer refractive index will decrease overall when layer swelling outweighs the 

increase in refractive index by void filling. 

The system as designed has the ability to investigate thickness and refractive 

index changes due to vapour exposure of any polymer as long as it is possible to 

fabricate thin films onto the waveguide structure. Two polymers, namely 

Polyisobutylene and Polyvinylpyrrolidone, have been investigated - chosen to 

follow on from previous work carried out on these polymers. The basis for the 

original work was due to interest in the water sorption characteristics [ 4, 6] and 

free volume [7] of Polyvinylpyrrolidone in pharmaceutical science and to develop 

a simply technique to test the ability of Polyisobutylene to work as a humidity 

sensor for a range of solvents (work carried out in M.Sci. final year projects). 

3.2.2.1. Polyisobutylene 

Polyisobutylene (PIB) is classed as a synthetic rubber, or elastomer as it has a 

glass transition temperature well below room temperature, as shown with other 

properties in Table 3-4. The glass transition temperature is the temperature above 

which a polymer becomes soft and pliable, and below which it becomes hard and 

glassy. Since it is formed from a small carbon double bonded molecule, in this 

case Isobutylene, it is called a vinyl polymer. 

Property PIB PVP 

Glass Transition Temperature, T g (K) 200 433 

Refractive Index, n~0 1.505 1.53 

Density (g/ml) 0.92 1.25 

Molecular Weight 420,000 300,000 

Table 3-4 Properties of Polyisobutylene (PJB) and Polyvinylpyrrolidone (PVP) 

[8} 
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It is made from the monomer Isobutylene by cationic vinyl polymerisation, as 

shown in Figure 3-5. 

The initiator is a cation, which is an ion with a positive electrical charge. It is 

shown as A+ in the figure. A pair of electrons, negatively charged, from the 

carbon-carbon double bond will be attracted to this cation (i) and will leave the 

carbon-carbon double bond to form a single bond with the initiator. This leaves 

one of the former double bond carbons deficient in electrons and carrying a 

positive charge (ii). 

CH3 

H2 I A--c -c+ 

I 
CH3 

i) ii) 

H CH3 

I I c-c 
I I 
H CH3 

n 

iii) iv) 

Figure 3-5 Formation of Polyisobutylene by cationic vinyl polymerisation 

This new cation will react with a second monomer molecule in the same manner 

as the initiator reacted with the first monomer molecule (iii). This happens 

repeatedly until high molecular weight is reached and the reaction is stopped 

resulting in the final product (iv). The reaction is very fast and so the process is 

carried out at around -100 °C to control it. 

The main properties of PIB are its tackiness and gas impermeability. As such it is 

used in applications such as sealants and adhesives. 
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3.2.2.2. Polyvinylpyrrolidone 

Polyvinylpyrrolidone (PVP) is also a vinyl polymer. As shown in Table 3-4, it has 

a glass transition temperature that is much higher than room temperature and so 

PVP is classed as a glassy polymer. It is made from the monomer 

Vinylpyrrolidone by free radical vinyl polymerisation, as shown in Figure 3-6. 

The initiator is a free radical, which is a molecule with an unpaired electron. It is 

shown as B · in the figure. The pair of electrons from the carbon-carbon double 

bond is easily attacked by the free radical. This unpaired electron takes one of the 

electrons from the double bond (i). This new pair of electrons forms a new 

chemical bond between the initiator and one of the double bond carbons of the 

monomer molecule. The other electron associates itself with the other carbon 

atom (ii). 

i) 

iii) 

H 

H2 I 
R-8-C-C· 

I (yo 
ii) 

H 

H2 I 
c-c----+ 

I (yo 
iv) 

Figure 3-6 Formation of Polyvinylpyrrolidone by free radical vinyl 

polymerisation 
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This new free radical will react with a second monomer molecule in the same 

manner as the initiator reacted with the first monomer molecule (iii). This happens 

repeatedly until high molecular weight is reached and the reaction is stopped by 

either coupling, disproportionation, or chain transfer, resulting in the final product 

(iv). 

The main property of PVP IS its affinity to water and as such it is used in 

applications such as hair gels and sprays, as it can be rinsed out when hair is 

washed, and as dissolving assistants and dispersants of medicines. 

3.2.3. Alternative Methods 

Polymers are a good choice of material to examine vapour sorption characteristics 

as their refractive index has a dependence on density and humidity changes [9, 

1 0]. These changes are easily detected by the interferometer system described 

here and it should be possible to resolve the data to explain how the polymer 

thickness and refractive index change on exposure. There are other methods 

employed which use polymers as vapour sensors, which this system could do too, 

but these methods do not have the ability to explain how the polymer is changing. 

There are also other methods which use interferometer-type sensors. 

3.2.3.1. Polymer Films in Vapour Sensing Applications 

Polymer films are being utilised as vapour sensing materials through a variety of 

techniques. Examples of these include humidity sensors such as capacitive sensors 

[11, 12] and piezoresistive sensors [13], using Polyisobutylene in a chemical 

sensor [ 14, 15] and the application of polymer-coated quartz crystal microbalance 

as a sensor. 

Quartz crystal microbalance (QCM) is a type of acoustic wave sensor whose 

technology has been applied to a wide variety of mass, chemical, and biochemical 

measurement applications. It operates by applying an alternating voltage between 

two electrodes situated on either side of a thin disk of quartz. Due to the 

piezoelectric properties and crystal orientation of the quartz, the applied voltage 

results in a shear deformation of the crystal. The crystal is electrically excited into 
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resonance when the excitation frequency is such that the crystal thickness is an 

odd multiple of half the acoustic wavelength. At these frequencies a standing 

shear wave is generated across the thickness of the plate. 

Deposition of a small mass onto the surface of the QCM lowers its resonance 

frequency. The sensor can therefore detect small changes in mass by monitoring 

how the fundamental oscillating frequency changes upon absorption of particles. 

In the simplest case it can be described through the Sauerbrey equation [16]; 

(3.7) 

where L1m is the change in mass, L1f is the frequency shift, A is the coated crystal 

area,fo is the operating frequency, and cr is the mass sensitivity. 

The QCM sensor will respond to everything, so in order to get the sensor to 

respond selectively, a sensitive layer is added to the crystal surface [ 17]. Polymers 

are the most common type of coating used due to their capability to reversibly 

absorb vapours and liquids [ 18]. In much of the work published on the use of 

polymer coatings for vapour sensing the acoustic properties of the polymer are 

neglected. The contribution of the film to the observed QCM response is a subject 

that has yet to be resolved. 

Work has been published which has confirmed that PIB-coated QCM sensors 

could be useful [19] and described the use of PVP-coated QCM sensors to detect 

Ammonia and aliphatic amines [20]. Other work has shown the use of PDMS­

coated QCM sensors to detect toluene [21 ], demonstrated hydrocarbon detection 

by POA-coated crystals [22], and explained a polymer-coated QCM to detect 

ethanol [23]. 
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3.2.3.2. Interferometers in Vapour Sensing Applications 

Interferometers are common elements in optical systems because they can 

measure very small changes in optical index; therefore they are widely used in 

sensor applications [24, 25]. 

An example of this is the Mach-Zender type interferometer sensor [26, 27] where 

one path is used as the reference while the other is used as the measuring branch 

which is coated with a sensing material, such as a polymer, and exposed to the 

environment. The difference in optical path or phase can be used to detect that the 

optogeometrical properties of a coating have changed. 

Examples of planar waveguide interferometric sensors are the difference 

interferometer [28] and the reflecting interferometer [29]. In the difference 

interferometer, polarised light is end-coupled into a planar waveguide so that TE 

and TM modes are coherently excited. The two modes propagate on a common 

path and interact with a sample causing changes in their effective modal indices. 

Therefore a phase difference between the TE and TM modes occurs at the end 

face of the waveguide. The measured phase difference can be used to detect 

relative humidity changes as water molecules adsorbing onto the waveguide 

surface will change the refractive index of the waveguiding film. In the reflecting 

interferometer, the waveguide structure is irradiated by white light which is 

partially reflected at the waveguide/polymer and polymer/air interfaces 

respectively. The superposition of these two partial beams reflected at parallel 

interfaces is analysed by the interferometer. The interference pattern can be 

affected either by the swelling of the polymer film or by the adsorption of vapour 

molecules onto the polymer surface. 
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3.3. Experimentation 

3.3.1. Experimental Set-up 

The experimental set-up, as shown in Figure 3-7, consists of a vapour generation 

system [30] and a data detection and recording section which includes a laser, 

computer and a dual slab waveguide interferometer system, namely the 

AnaLight® Bio250 from Farfield Sensors, as pictured in Figure 3-8. 
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Figure 3-7 Schematic of experimental set-up 

computer 

.I u=J 

The vapour generation system IS designed to produce low concentrations of 

solvent vapour in a nitrogen gas. It comprises two diffusion cells, a temperature 
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controlled water bath and flow meters. The diffusion cell consists of two flasks 

connected by a capillary tube. A small volume of solvent is used to partially fill 

the lower flask which is submerged in a temperature controlled water bath. The 

solvent vapour molecules then diffuse through the capillary tube to the upper flask 

where they are mixed with nitrogen to form a certain concentration and carried 

away by the carrier gas to the polymer-coated sensor chip. 

Different concentrations can be achieved by: i) varying the temperature of the 

water bath, ii) changing the diameter of the capillary tube, both of which alter the 

diffusion rate of the solvent or, iii) changing the flow rate of the carrier gas to 

alter the ratio of solvent molecules to nitrogen molecules. 

Two lines, one with the constant concentration of solvent and one reference line 

of dry nitrogen, are connected with the sensor chip through a four-port valve. The 

reference line was made equivalent to the vapour line so that any phase changes 

detected would be due to changes in the polymer layer and not because of any 

differences between the lines. 

The AnaLight® Bio250 (Figure 3-8) consists of a Silicon Oxynitride dual slab 

waveguide interferometer described previously, a He-Ne laser source (633nm), a 

128-element photodiode array and software to Fourier transform the interference 

pattern into measurable phase shifts. The advantage of this system is the ability to 

monitor what happens to both the TE and TM modes. This gives the system the 

unique ability to resolve phase changes into both thickness changes and refractive 

index changes. The laser beam is focussed onto the cleaved input endface of the 

sensor chip, which is fixed in a temperature controlled housing. The interference 

fringe distribution from the output endface is imaged onto the photodetector array 

which detects movement in the fringe pattern generated and displays, via the 

computer software, the changes in phase. The line from the four-port valve 

connects into the top of the sensor chip housing allowing the vapours to run across 

the top of the chip before leaving through an output line. 
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Figure 3-8 Photograph of AnaLight® Bio250 

3.3.2. Chip Parameters 

He-Ne laser source 

The chips used were fabricated at the National Microelectronics Research Centre 

(NMRC) and comprise alternate layers of high and low index Silicon Oxynitride 

deposited by PECVD processes. Chips are cleaved from a 1 OOmm diameter wafer 

which is supplied pre-sawn into strips 5.8mm in width and normal to the 100 

crystal plane. The waveguide consists of 5 layers but has a rectangular window in 

the top layer removed. 

This allows a thin layer of polymer (or any other compound of interest) deposited 

onto the chip to act as the upper cladding layer in this region. The composition of 

the chip given by the manufacturer is shown in Table 3-9. 

78 



Layer Thickness (run) Refractive Index 

1 - Lower Cladding 1938.8 ± 20 1.4825 ± 0.001 

2 - Lower Waveguide 1028.5 ± 5 1.523 ± 0.001 

3 - Central Cladding 2985.0 ± 47 1.4715 ± 0.001 

4 - Upper Waveguide 1024.5 ± 4 1.520 ± 0.001 

5 - Upper Cladding 2021.3 ± 20 1.4725 ± 0.001 

Table 3-9 Manufacturer's specifications for interferometer chip 

Farfield Sensors' Resolver® [31] software is used primarily to determine 

refractive index changes of the material filling the upper cladding window based 

on chip dimensions and both TE and TM phase changes from an experiment. The 

software solves the electromagnetic equations behind dual slab interferometry for 

a given structure using these phase changes and the lower mode as a fixed 

reference. The upper mode effective index is then calculated and so a value for the 

index change of the upper cladding material is provided. 

Using this software it is possible to work backwards to calibrate the waveguide. 

The waveguides are calibrated for the window region as this is the working area. 

By assuming the central cladding layer to be correct, the upper guiding layer can 

be calibrated by determining the experimental phase change for a known change 

in refractive index. Resolver® software is then used to give a value for thickness 

and refractive index of the upper waveguide based on the chip dimensions and the 

phase and refractive index change from an experiment. 

The experiment involves flowing water, refractive index 1.334 (at 633 nm and 

20°C), over the chip followed by 80% ethanol solution, refractive index 1.3658 

[32] (at 633 run and 20°C), and measuring the phase change. The measured phase 

change from water to 80% ethanol solution is shown in Figure 3-10. From this 

change, the upper waveguide is calibrated as having a thickness of 1035.96 run 

and a refractive index of 1.529. Values for the fourth layer are now assumed to be 

correct and the chip is classified as calibrated, although there will be some error in 
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these values as the accuracy is based on how well the refractive index of the 

central cladding and 80% ethanol solution are known. 
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Figure 3-10 Graph of phase changes for water to 80% ethanol then back to water 

for single windowed chip. The graph shows the TE (solid line) and TM (dotted 

line) phase changes 

3.3.3. Polymer Film Production 

Thin films of PIB and PVP were to be coated onto the interferometer chips 

described above, but before that was undertaken, theoretical modelling of the chip 

structure with polymer layer is necessary to determine both the range of film 

thickness which can be used and the optimum film thickness to achieve maximum 

phase change. 

3.3.3.1. Film Thickness Modelling 

Using a 1-D mode solver program SLAB® [33], it is possible to calculate the 

range of thicknesses for which interference fringes should be visible. The criterion 
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for this is that only the two lowest order modes are excited. Excitation of second 

order modes and above will interfere with the mode in the upper waveguide and 

hence cause the loss of the interference fringes. Figure 3-11 shows the electric 

field, for TE modes, of the two excited modes for the single windowed chip plus a 

polymer layer of PIB, refractive index ( n;0
) of 1.505, thickness 205 nm. 
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Figure 3-11 Graph showing the two lowest order TE modes in comparison to 

waveguide structure for a PIB layer thickness of 205 nm. The graph shows the 

waveguide index (solid line), the zeroth (right dotted line) and the first (left 

dashed line) order modes 

On comparison to the waveguide structure, one can see the lowest order mode is 

in the upper waveguiding layer and the first order mode is in the lower 

waveguiding layer. The lowest order mode is always defined as that having the 

greater effective refractive index. 

For a thicker PIB layer, e.g. thickness 2 fJm, there are four modes excited in the 

waveguide as shown in Figure 3-12. The higher order modes will interfere with 

the lowest order mode and hence any interference pattern between the two lowest 

order modes will be lost. 
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Figure 3-12 Graph showing the TE modes which occur for a PIE layer thickness 

of 2 J.lm. The graph shows the waveguide index (black solid line), zeroth (right 

dotted line), first (left dashed line), second (right dashed line) and third(right 

solid line) order modes 

Figure 3-13 and Figure 3-14 show the effective refractive index of all upper TM 

modes (the lower mode can be ignored as it is a fixed reference) for the structure 

described previously with a polymer layer of varying thickness of PIB, refractive 

index ( n;0
) of 1.505, and PVP, refractive index ( n;0

) of 1.53, respectively. By 

determining at what polymer layer thickness the second order mode appears in the 

upper waveguide, a maximum thickness limit for each polymer film can be set. 
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Figure 3-13 Graph showing the effective refractive indices of all upper TM modes 

for waveguide with PIB layer. The graph shows zeroth (solid line), first (dashed 

line) and second (dotted line) order upper modes 
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Figure 3-14 Graph showing the effective refractive indices of all upper TM modes 

for waveguide with PVP layer. The graph shows zeroth (solid line), first (dashed 

line) and second (dotted line) order upper modes 
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Interference fringes should therefore be visible for a maximum PIB layer of 

500 nm thick and for a PVP layer of around 420 nm thick and lower. 

3.3.3.2. Theoretical Predictions 

Using SLAB® it is possible to calculate the change in effective refractive index of 

the upper guiding layer for changes in film thickness and refractive index of the 

polymer film coating the waveguide. This change in upper mode index directly 

represents the expected phase shifts from experimental readings as phase change, 

11¢ is given by; 

(3.8) 

As alluded to previously, there are two possible effects which occur when the 

polymer is exposed to the vapour. 

The vapour diffusing into the polymer fills microvoids in the polymer structure, 

replacing the air which would currently occupy them, increasing the overall 

refractive index of the polymer layer and hence the upper waveguiding mode 

index. This represents void-filling behaviour. 

Or, the thin polymer film expands due to the vapour displacing the polymer chains 

rather than the air in the microvoids causing a decrease in the polymer index, as 

the vapours to be used all have condensed phase refractive indices lower than the 

polymers, as shown in Table 3-15. The swelling however places some of the 

polymer layer in a region previously occupied by Nitrogen/solvent vapour and so 

the upper wave guiding mode, as seen in Figure 3-11, will experience an increase 

in its effective refractive index as the polymer has a higher refractive index than 

the Nitrogen/solvent vapour. These two effects are counter-acting and so the 

overall effective index of the upper mode can increase positively or negatively 

depending on the balance between the two effects. 

Void-filling can be modelled by considering a small increase in the polymer layer 

index for a fixed thickness, while the swelling can be modelled by considering a 

small layer thickness increase with a small decrease in polymer refractive index. 
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Polymer/Solvent Refractive Index [34, 35] 

Polyisobutylene 1.505 

Polyvinylpyrrolidone 1.53 

Toluene 1.494 

Cyclohexane 1.423 

Ethanol 1.36 

Water 1.334 

Table 3-15 Refractive index of all used polymers and solvents 

The change in effective refractive index of the upper waveguiding mode as a 

function of initial polymer thickness for PIB is shown for both void-filling and 

swelling mechanisms in Figure 3-16 and Figure 3-17 respectively for TE 

polarisation. 
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Figure 3-16 Theoretical change in effective refractive index of upper waveguide 

expected for an increase in refractive index of a PIB layer of0.0025 (solid line) 

and 0.005 (dashed line) 
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Figure 3-17 Theoretical change in effective refractive index of upper waveguide 

expected for a 1% increase in thickness and a decrease in refractive index of a 

PIB layer of zero (solid line), 0.0005 (dashed line) and 0.001 (dotted line) 

The modelling shows that for void-filling behaviour, the increase in the upper 

mode effective index increases with both polymer layer thickness and index as 

would be intuitively expected. 

The modelling of the swelling behaviour shows that both positive and negative 

phase changes are possible, as expected. The polymer layer thickness where the 

mode index change switches from positive to negative, (i.e. the zero phase change 

point) is dependent on both the increase in polymer layer thickness due to 

swelling and the decrease in polymer layer index due to polymer chain 

displacement. A positive phase change would be expected for a very thin polymer 

layer while a negative change would be likely to occur for a thicker polymer layer. 

Similarly, the change in effective refractive index of the upper waveguiding mode 

as a function of initial polymer thickness for PVP is shown for both mechanisms 

in Figure 3-18 and Figure 3-19 forTE polarisation. 
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Figure 3-18 Theoretical change in effective refractive index of upper waveguide 

expected for an increase in refractive index of a PVP layer of0.0005 (solid line) 

and 0. 001 (dashed line) 
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Figure 3-19 Theoretical change in effective refractive index of upper waveguide 

expected for a 1% increase in thickness and a decrease in refractive index of a 

PVP layer of zero (solid line), 0.0005 (dashed line) and 0.001 (dotted line) 
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These plots show a similar expectation but with the PVP zero phase change point 

at a much thinner polymer layer thickness than for the PIB. This is likely to be the 

case as there is a larger refractive index difference between PVP and water than 

between PIB and Toluene/Cyclohexane, so the polymer index will decrease more 

for PVP upon exposure. 

These plots are for arbitrary changes in thickness and refractive index of the 

polymer layer which will obviously depend on both vapour used and 

concentration of the vapour, but they will provide a good comparison with 

experimental results in order to determine the type of vapour sorption behaviour. 

3.3.3.3. Film Production 

Thin films of Polyisobutylene and Polyvinylpyrrolidone were coated onto the 

interferometer chips using dip coating. The polymers were dissolved in the 

appropriate organic solvent in preparation for coating. Cyclooctane (COAN) was 

used for the PIB and Dimethylformamide (DMF) was used for the PVP. Strips of 

chips (2 or 3 chips to a strip of wafer) were cleaned using a 

Methanol/Hydrochloric Acid bath then ultrapure water rinse before being dried 

with Nitrogen. Strips were then dip coated in a polymer solution. Once coated 

samples were then placed in a vacuum oven at 80°C, and left under heat and 

vacuum for 24 hours until the solvent had evaporated off. The strips of wafer were 

finally cleaved into chips of length 24mm. 

Thicknesses of the films were determined by using a Tencor Alpha-step 200. 

Different thicknesses of film could be achieved by: i) changing the ratio of 

polymer to solvent, or ii) varying the dip coating speed. 

Solutions which give the appropriate range of film thicknesses from dip coating 

are shown in Table 3-20. 
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% Polymer in soln Dip speed range Film thickness 
Polymer Solvent 

(wt:wt) (crn/s) range (nm) 

PIB COAN 3.03 2-3 110-205 

PVP DMF 3.97 2-4 160-300 

Table 3-20 Solutions used to make the thin polymer layers 

It is thought that after the polymer layer is removed from heat and vacuum once 

the drying process is complete, the polymer chains are likely to line up in the 

plane of the layer. This means there is a high possibility of birefringence in the 

polymer layer. If so the TE mode will see a slightly higher refractive index than 

the TM mode. 

3.3.3.4. Vapour Concentration Calibration 

The choice of vapours to be passed over the polymer layers were based on 

previous work in this area. The main vapour of interest was Toluene, chosen for 

PIB as it is soluble to this vapour, as well as the similarly non-polar but lower 

refractive index Cyclohexane and slightly polar Ethanol for comparison. Water 

vapour was chosen for the PVP layered chips as it is known to absorb water 

readily [ 4]. 

In order to know the concentration of solvent vapour generated in the system, 

calibration is required for a given capillary tube for each solvent. The calibration 

method [30] involves measuring the mass loss of solvent from the lower flask 

(Figure 3-7) over an extended period of time for a constant flow rate of carrier gas 

and at a constant temperature of the water bath. When repeated for a range of 

temperatures a constant in the diffusion equation (3.9) can be determined by 

plotting r against TIn ;r . 

(3.9) 
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where r is the diffusion rate, D0 , To, Po are diffusion coefficient, temperature and 

pressure at 0° C and 1 atm, M is the molecular weight of vapour, A and L are 

the area and length of the capillary tube, R is the gas constant, T is the water 

bath temperature and ;r = 1/(1- pI Po) where p is the vapour pressure. 

From (3.10), vapour concentration can be plotted against Nitrogen flow rate at 

different water bath temperatures, as shown for each solvent in Figure 3-21 to 

Figure 3-24, where; 

. diffusion rate x 106 

concentratwn (ppm) = _ ___:c::__ ______ _ 

flow rate+ diffusion rate 
(3.1 0) 

oL---L--~--L--~---L--~-~--~ 

0 5 10 15 20 25 30 35 40 

Flow rate (mllmin) 

Figure 3-21 Concentration against flow rate for Toluene using a capillary of 

diameter 5 mm and length 10 em, for water bath temperatures of 25-50 ° C, 

increasing in 5° C intervals 
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Figure 3-22 Concentration against flow rate for Cyclohexane using a capillary of 

diameter 5 mm and length 10 em, for water bath temperatures of 25-50 ° C, 

increasing in 5° C intervals 
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Figure 3-23 Concentration against flow rate for Ethanol using a capillary of 

diameter 5 mm and length 10 em, for water bath temperatures of25-50 °C, 

increasing in 5° C intervals 
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Figure 3-24 Concentration against flow rate for Water vapour using a capillary 

of diameter 5 mm and length 10 cm,for water bath temperatures of25~50 °C, 

increasing in 5° C intervals 

3.3.4. Experimental Method 

Experiments were designed to first run Nitrogen over the sensor chip to reach a 

stable reference state from which phase changes due to exposure to the solvent 

could be measured. Once this state was reached the four-port valve (Figure 3-7) is 

switched, exposing the sensor chip to the low concentration of solvent vapour 

carried in the nitrogen gas. After the immediate change in phase due to exposure 

to the solvent vapour the system is given time to once again reach a steady state 

before switching the valve back to release a Nitrogen purge of the chip. This 

process is repeated twice more. 

After a number of runs of this experiment, it was found that the system stabilised 

after 10 minutes of the initial exposure to Nitrogen and the change in phase 

levelled off enough to suggest that the valve could be switched every 5 minutes. 

A series of experiments were carried out using these settings for both polymers 

and the various solvents. 
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3.4. Results and Analysis 

3.4.1. Polyisobutylene Layers 

Using the solution shown in Table 3-20, interferometer chips were coated with a 

layer of PIB of thickness either 110 ± 5 nm , 140 ± 5 nm or 205 ± 5 nm . 

Experiments were carried out at room temperature (23.0 °C) and at laser 

wavelength 633 nm. The chips were exposed to a range of concentrations of three 

solvent vapours; Toluene, Cyclohexane and Ethanol. 

3.4.1.1. Fringe Image 

An example interference fringe distribution from the output endface of a PIB 

coated chip imaged onto the photodetector array is shown in Figure 3-25. 
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Figure 3-25 Fringe image for a PIB coated interferometer chip 

The interference pattern has a good contrast ratio between the maxtma and 

minima but the image is quite noisy. This noise is due to both mechanical and 

thermal fluctuations in the polymer layer, as well as mechanical drift in the laser 
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and focussing lens set-up. This nmse will cause phase fluctuations in the 

experimental readings but these should be small and will be easily averaged out. 

3.4.1.2. Exposure to Nitrogen Only 

In order to determine whether switching between the two gas lines has any effect 

on an interferometer chip, a dry run was carried out where Nitrogen only was run 

over a PIB coated chip with polymer layer thickness 205 nm at the same flow 

rate through both lines. The resulting TE and TM phase for the experiment are 

shown in Figure 3-26. 
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Figure 3-26 Graph ofTE (solid line) and TM (dashed line) phase changes on 

exposure to Nitrogen from different lines 

There are three important points to note from the above. 

Firstly, there is a drift in the readings over time which is at a constant rate. This 

effect is due to both the noise described above and to drift problems over long 

periods of time in the temperature control system. By subtracting a background 

from the phase changes, accurate data excluding drift can be obtained. 
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Secondly, there is a sharp increase in phase when the Nitrogen is first switched on 

which is likely due to the gas cooling the interferometer chip. This indicates that 

the thermo-optic coefficient of the chips is negative. 

Finally, when the switch is changed between line 1 and line 2 there is no change 

in the phase indicating that switching between the two lines will not affect the 

polymer layer and as such any changes in the forthcoming experiments will be 

entirely due to exposure to a solvent vapour. 

3.4.1.3. Exposure to Toluene Vapour 

Nitrogen was run over an interferometer chip, coated with 110 ± 5 nm of PIB . The 

solvent in the water bath was heated to 50° C resulting in a concentration of 

approximately 1575 ppm of Toluene vapour being run over the chip, before being 

purged with Nitrogen. The resulting TE and TM phase shifts are shown in Figure 

3-27. 
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Figure 3-27 Graph ofTE (solid line) and TM (dashed line) phase changes of 110 

nm thick PIB layer due to exposure to 1575 ppm of Toluene vapour 
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The exposure to Toluene vapour of the thin PIB layer results in a relatively large 

positive phase change. 

Since the phase change is positive, it does not indicate whether the process of 

vapour sorption is void-filling or swelling when compared to the theoretical 

modelling in Figure 3-16 and Figure 3-17. Further investigation is required with 

thicker polymer layers to determine the process. 

Further exposures of this polymer layer to the Toluene vapour results in 

equivalent changes in phase, as shown in Figure 3-28, indicating that there IS 

reasonable repeatability in the experiment. 
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Figure 3-28 Graph ofTE (solid line) and TM (dashed line) phase changes of 110 

nm thick PIB layer due to repeated exposures to 1575 ppm of Toluene vapour 

The experiment was repeated for interferometer chips coated with 140 ± 5 nm and 

205 ± 5 nm of PIB. The resulting TE and TM phase shifts are shown in Figure 

3-29 and Figure 3-30 respectively. 
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Figure 3-29 Graph ofTE (solid line) and TM (dashed line) phase changes of 140 

nm thick P1B layer due to repeated exposures to 1575 ppm of Toluene vapour 
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Figure 3-30 Graph ofTE (solid line) and TM (dashed line) phase changes of205 

nm thick PIB layer due to repeated exposures tv 1575 ppm of Toluene vapour 
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The phase changes for the chip with a 140 ± 5 nm thick PIB layer are agam 

positive but the magnitude this time is not as large as before with the thinner chip. 

Furthermore the phase changes for the interferometer with a 205 ± 5 nm PIB layer 

are negative. This indicates swelling behaviour rather than void-filling when 

compared with the theoretical modelling (Figure 3-17). 

These results seem to confirm the nature of the modelled swelling behaviour 

where the two competing factors are the thickness increase and index decrease. 

The layer thickness increase results in the upper mode effective index increasing 

as a higher percentage of the mode field is contained in the polymer layer, rather 

than in a Nitrogen/solvent region, after swelling than before. The index decrease 

is due to the lower refractive index condensed vapours displacing the polymer 

chains. Which factor dominates depends on initial polymer film thickness. 

As the initial polymer layer thickness increases the amount of upper mode field 

initially contained in the polymer layer increases and so any thickness increase 

makes less of a difference. Likewise, as the initial polymer layer thickness 

increases the decrease in polymer layer index will have a greater effect on the 

upper mode effective index. Hence, a very thin polymer layer will experience a 

large upper mode effective index increase due to swelling and a small upper mode 

index decrease due to polymer chain displacement, while a thicker film will only 

experience a small mode index increase from the swelling but a large decrease 

because of the displacement due to the condensed vapour. 

The point at which these two factors appears to balance out (i.e. the zero phase 

change point) is at an initial polymer layer thickness of approximately 170 nm. 

It would be expected that all three polymer thicknesses are experiencing the same 

swelling mechanism but there is the possibility that the thinnest film is 

experiencing void-filling, i.e. the mechanism changes with polymer thickness. 

One way to investigate this is to compare the response times of the three chips as 

one would expect swelling to be a slower process that void-filling. 
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3.4.1.4. Response Times 

The response times of each of the polymer layers on exposure to the Toluene 

vapour then to the Nitrogen purge are shown in Figure 3-31 and Figure 3-32 

respectively. 
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Figure 3-31 Graph ofTM phase change response time for 110 nm (solid line), 

140 nm (dashed line) and 205 nm (dotted line) thick PIB layer due to exposure to 

1575 ppm ofToluene vapour 
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Figure 3-32 Graph ofTM phase change response time for II 0 nm (solid line), 

I40 nm (dashed line) and 205 nm (dotted line) thick PIB layer due to Nitrogen 

purge 

The plots show that irrespective of layer thickness and Toluene or Nitrogen purge, 

the response time of the interferometer to stabilise is around 15-20 seconds. The 

sorption of the vapour into and out of the polymer layer is therefore rapid and in 

general consistent. The fact that the response times are the same for the three 

different polymer thickness suggests that the mechanism for sorption of the 

vapour is the same for all three layers and is therefore swelling. 

3.4.1.5. Phase Change Sensitivity 

The waveguides were exposed to a range of concentrations of Toluene vapour in 

order to determine the sensitivity of each chip in terms of radians per part-per­

million of Toluene vapour. Figure 3-33 to Figure 3-35 show the results of these 

exposures for the interferometer chips coated with PIB layers of thickness 

110±5 nm, 140±5 nm and 205±5 nm respectively. 
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Figure 3-33 Graph ofTE (circles/solid line) and TM (crosses/dashed line) phase 

changes versus Toluene vapour concentration for the 110 nm thick PIB layer 
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changes versus Toluene vapour concentration for the 140 nm thick PIB layer 
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Figure 3-35 Graph ofTE (circles/solid line) and TM (crosses/dashed line) phase 

changes versus Toluene vapour concentration for the 205 nm thick PIE layer 

The data appears to have a linear relationship between phase change and 

condensed vapour concentration. The linear fit of the data gives the phase change 

per ppm of Toluene vapour, as shown in Table 3-36 for each PIB layer thickness. 

A linear sensitivity to a solvent vapour concentration for the polymer-coated 

interferometer chips suggests that the devices could be suitable for accurate 

vapour sensing, however more work would be required to look at this further. 

Points to consider for this would be a more reliable fit to the data in Figure 3-34 

and the potential for saturation at high concentrations as possibly indicated in 

Figure 3-35. 
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Layer Thickness Average TE sensitivity Average TM sensitivity 

(nm) (rad I ppm) (rad I ppm) 

110±5 8.2x10-5 12.9xl0-5 

140±5 4.4xl0-5 5.8x 10-5 

205±5 -21.9x10-5 -14.1 x 1 o-5 

Table 3-36 TE and TM phase sensitivity of PIB layers to Toluene vapour 

3.4.1.6. Exposure to Cyclohexane Vapour 

Experiments were repeated this time using Cyclohexane vapour in order to see 

what effect exposing the polymer layers to a lower refractive index condensed 

vapour would have and to determine the mechanism of vapour sorption. 

Cyclohexane has a refractive index of 1.423 compared with that of 1.494 for 

Toluene [35] so if the mechanism is again swelling, a much larger negative phase 

change would be expected for the thicker polymer layers. 

Interferometer chips coated with a thickness 140 ± 5 nm and 205 ± 5 nm of PIB 

were exposed to approximately 4950 ppm of Cyclohexane vapour (a water bath 

temperature of 50 °C ). The resulting TE and TM phase shifts are shown in Figure 

3-37 and Figure 3-38 respectively. 
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Figure 3-37 Graph ofTE (solid line) and TM (dashed line) phase changes of 140 

nm thick PIB layer due to repeated exposures to 4950 ppm ofCyclohexane 
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Figure 3-38 Graph ofTE (solid line) and TM (dashed line) phase changes of205 

nm thick PIB layer due to repeated exposures to 4950 ppm ofCyclohexane 

vapour 
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The phase changes for both thicknesses are negative indicating agam the 

mechanism for vapour sorption to be the swelling of the polymer layer. The much 

lower refractive index of the Cyclohexane vapour means that the lowering of the 

polymer index due to chain displacement is the dominant effect compared to an 

upper mode index increase due to swelling and as such the thinner polymer layer 

has a negative phase change for Cyclohexane whereas it was positive for Toluene. 

The phase changes appear to be much larger than for Toluene however 

Cyclohexane has a much larger vapour pressure than Toluene and as such has a 

larger concentration at the same water bath temperature of 50° C . 

Phase change against concentration can again be plotted in order to compare the 

Cyclohexane exposure to the Toluene exposure more accurately. These are shown 

for the interferometer chips coated with PIB layer of thickness 140 ± 5 nm and 

205 ± 5 nm in Figure 3-39 and Figure 3-40 respectively. 
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Figure 3-39 Graph ofTE (circles/solid line) and TM (crosses/dashed line) phase 

changes versus Cyclohexane vapour concentration for the 140 nm thick PIB layer 
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Figure 3-40 Graph ofTE (circles/solid line) and TM (crosses/dashed line) phase 

changes versus Cyclohexane vapour concentration for the 205 nm thick PIB layer 

Table 3-41 shows the result of plotting a linear relationship between the 

concentration and phase change giving the phase change per ppm of Cyclohexane 

vapour for each PIB layer thickness. 

Layer Thickness Average TE sensitivity Average TM sensitivity 

(nm) (rad I ppm) (rad I ppm) 

140±5 -4.7x10-5 -2.0x 10-5 

205±5 -32.3x10-5 -31.5 X 10-5 

Table 3-41 TE and TM phase sensitivity of PIB layers to Cyclohexane vapour 

The average sensitivities of the PIB layer to the Cyclohexane vapour are indeed 

higher than that for the Toluene vapour. This indicates that the difference m 

refractive index of the two condensed vapours is the dominant factor IS 

determining the nature of the phase change. 

106 



Again there is a linear sensitivity between phase change and vapour concentration 

suggesting a possible sensing ability for the polymer-coated chips. The fact that 

the phase change is positive for Toluene vapour and negative for Cyclohexane 

means that the chips could differentiate between the two vapours as well. 

3.4.1.7. Exposure to Ethanol 

In comparison to the previous solvents Ethanol is a slightly polar solvent 

(compared to completely non-polar) and so the Ethanol vapour should not diffuse 

into the polymer layer as well as the previous vapours. The refractive index of 

Ethanol (n = 1.36) [35] is much lower again than the previous and so negative 

phase changes would be expected for both polymer thickness. 

Plots of the phase changes when the interferometer chips coated with a thickness 

140 ± 5 nm and 205 ± 5 nm of PIB were exposed to approximately 577 5 ppm of 

Ethanol vapour (a water bath temperature of 50°C) are shown in Figure 3-42 and 

Figure 3-43, followed by plots of phase change against concentration shown in 

Figure 3-44 and Figure 3-45. 
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Figure 3-42 Graph ofT£ (solid line) and TM (dashed line) phase changes of 140 

nm thick PIB layer due to repeated exposures to 5775 ppm of Ethanol vapour 
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Figure 3-43 Graph ofTE (solid line) and TM (dashed line) phase changes of205 

nm thick PJB layer due to repeated exposures to 5775 ppm of Ethanol vapour 
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Figure 3-44 Graph ofTE (circles/solid line) and TM (crosses/dashed line) phase 

changes versus Ethanol vapour concentration for the 140 nm thick PIB layer 
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Figure 3-45 Graph ofTE (circles/solid line) and TM (crosses/dashed line) phase 

changes versus Ethanol vapour concentration for the 205 nm thick PIB layer 
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The results were as expected, with much smaller negative phase changes than 

compared to Toluene and Cyclohexane showing that the slightly polar Ethanol 

molecules do not diffuse through the polymer well due to the Vander Waals type 

interactions. 

Table 3-46 shows the result of plotting a linear relationship between the 

concentration and phase change giving the phase change per ppm of Ethanol 

vapour for each PIB layer thickness. 

Layer Thickness Average TE sensitivity Average TM sensitivity 

(nm) (rad I ppm) (rad I ppm) 

140±5 -0.3 X 10-5 -0.4x 10-5 

205±5 -2.2 x w-5 -2.3xl0-5 

Table 3-46 TE and TM phase sensitivity of PIB layers to Ethanol vapour 

3.4.1.8. Polymer-coated Interferometer Temperature Dependence 

At the start of an experimental run the temperature of the temperature controlled 

housing of the interferometer uses a PID algorithm to reach the temperature as set 

by the user. During this period it was noticed there is a correlation between the 

phase change and the temperature, i.e. the phase decreased when the temperature 

increased and vice versa. The phase change is due to the refractive indices of all 

the layers in the interferometer being subject to change with temperature due to 

the thermo-optic effect, and is still given by; 

(3.11) 

but where the change in propagation constant of each mode is now; 

~R - 2;r(N1i -Nr2 ) 
Pu(l) - Au u(l) u(l) 

(3.12) 
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where the effective refractive index denoted NuUJ is given for the appropriate 

mode at temperatures I; and I; , at fixed input wavelength Au . 

It was possible to plot this change in phase against the change in temperature, 

shown in Figure 3-47, for the thicker film and to produce a relationship between 

the two. The phase change due to the temperature of the interferometer, i.e. the 

chip thermo-optic coefficient 11¢r , is given here for the 205 ± 5 nm thickness of 

PIB used; 

TE modes: 11¢r = -3.2 rad I K 

TM modes: 11¢r = -3.0 rad I K 

Figure 3-47 Graph ofTE (circles/solid line) and TM (crosses/dashed line) phase 

changes against chip temperature for 205 nm thick layer of PIB. 

3.4.2. Polyvinylpyrrolidone Layers 

Using the solution shown in Table 3-20, interferometer chips were coated with a 

layer of PVP of thickness 290 ± 10 nm. Experiments were carried out at room 
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temperature ( 23.0 °C) and at laser wavelength 633 nm. The chips were exposed 

to a range of concentrations of water vapour. 

3.4.2.1. Exposure to Water Vapour 

Approximately 5075 ppm of water vapour (a water bath temperature of 35°C) 

was run over the interferometer chip. The resulting TE and TM phase shifts are 

shown in Figure 3-48. 
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Figure 3-48 Graph ofTE (solid line) and TM (dashed line) phase changes of 290 

nm thick PVP layer due to repeated exposures to 5075 ppm of water vapour 

The phase changes are negative, again indicating that the mechanism for sorption 

is swelling and that the lowering of the refractive index of the polymer layer due 

to displacement of the polymer chains dominates over the positive swelling effect. 

The phase changes are much larger than seen in the PIB layers. This is due to the 

PVP having a much larger affinity to water vapour compared to the PIB with 

Cyclohexane and Toluene, and there being a much larger difference in refractive 

index between the polymer and water (n = 1.33). 
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Previous work using a different chip design and much thicker polymer layers of 

2.5 J.lm [4] reported that both sorption mechanisms occurred. Firstly they noted 

void-filling behaviour (positive phase change) followed by a slow negative index 

change due to swelling. This does not appear to be the case here for much thinner 

PVP films suggesting that void-filling behaviour only occurs in thick, possibly 

less dense PVP layers. 

3.4.2.2. Response Times 

Looking at the response times on exposure to the water vapour then to the 

Nitrogen purge can confirm that there is no bimodal sorption behaviour. These are 

shown in Figure 3-49 and Figure 3-50 respectively. 
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Figure 3-49 Graph ofTE (solid line) and TM (dashed line) phase change 

response time for 290 nm thick PVP layer due to exposure to 5075 ppm of water 

vapour 
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Figure 3-50 Graph ofTE (solid line) and TM (dashed line) phase change 

response time for 290 nm thick PVP layer due to exposure to Nitrogen purge 

The plots show that the response time of the interferometer to stabilise is over a 

minute, compared with 15-20 seconds for the PIB layer. This indicates that the 

mechanism for vapour sorption of the water vapour into the PVP layer is much 

slower that for solvent vapours diffusing into PIB. Whereas Toluene molecules 

reach an equilibrium in PIB quickly, perhaps water molecules can continue to 

cause the PVP layer to swell after that initial period. There is no indication of 

void-filling behaviour. 

3.4.2.3. Phase Change Sensitivity 

The waveguide was exposed to a range of concentrations of water vapour in order 

to determine the sensitivity of each chip in terms of radians per part-per-million of 

water vapour. Figure 3-51 shows the results of these exposures. 
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Figure 3-51 Graph ofTE (solid line/squares) and TM (dashed line/circles) phase 

changes versus water vapour concentration for the 290 nm thick PVP layer 

In contrast to the solvent vapour exposures on PIB, the average phase change 

decreases as the concentration increases. This could imply that as the 

concentration of the water vapour increases, the mechanism for absorption starts 

to change to one of void-filling which would increase the layer index. An increase 

(compared to lower concentrations) of phase change due to the layer swelling 

more seems unlikely as the initial layer is already quite thick and contains almost 

all the upper mode field, so any large polymer thickness increase would not affect 

the upper mode field index. 

The result of plotting a linear relationship between the concentration and phase 

change gives the phase change per ppm of water vapour as 84.0 x 1 o-5 rad I ppm 

for TE modes and 90.7 x 1 o-5 rad I ppm for TM modes. 
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3.5. Conclusions 

The dual slab waveguide interferometer has the unique ability to monitor TE and 

TM phase changes due to changes in the upper cladding region of the structure. 

These phase changes can be directly correlated to changes in the effective 

refractive index of the upper wave guiding mode. When this cladding is a polymer 

layer exposed to a solvent vapour, phase changes can be examined to explain the 

mechanism behind the changes. 

The equipment has the capacity to easily flow a number of vapours over the 

interferometer chips for a range of concentrations. The resultant phase changes 

can be calculated with relative ease and compared to theory to suggest ideas of 

what is happening to the polymer layer. 

Polymer layers are dip-coated onto interferometer chips to a thickness accuracy of 

±5 nm, as limited by Alpha-step thickness accuracy. Thicknesses of up to 

400- 500 nm can be coated onto the waveguides to still produce interference 

fringes. 

Condensed vapour molecules will absorb into the polymer layer by Fickian 

diffusion, where the refractive index of the polymer film can be calculated in 

terms of the amount of free volume in the polymer due to microvoids in the 

structure. The mechanisms behind the vapour sorption are void-filling and 

polymer swelling. The former involves the vapour molecules filling the 

microvoids, as such the vapour occupied fractional volume increases at the 

expense of the free volume fraction. This will result in a positive increase in the 

refractive index of the polymer layer. In turn this will cause the effective 

refractive index of the upper wave guiding mode to increase which will be seen as 

a positive phase change in the interference fringes. The latter involves the vapour 

molecules displacing the polymer chains resulting in the polymer layer swelling, 

as such the vapour fractional volume increases at the expense of the occupied 

volume fraction. This will cause the overall polymer index to decrease, as will the 

upper mode effective index. However, the expansion of the polymer layer will 

result in the upper mode field, initially partly in the air above the polymer film, 

becoming more contained in the polymer layer. Therefore, the upper mode 
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effective index will increase. For this mechanism, a positive or negative phase 

change could be seen depending on whether the film swelling or index decrease is 

the dominant factor of the two. 

The first polymer to be researched was the rubbery Polyisobutylene. On exposure 

to Toluene vapour, the thinner films of thickness 110 ± 5 nm and 140 ± 5 nm had 

a positive phase change while the thicker film of 205 ± 5 nm had a negative 

phase change. This was predicted by the theoretical model where a layer of PIB 

was modelled to have a 1% thickness increase and arbitrary refractive index 

decrease on exposure to a vapour. It showed that for films below about 170 nm 

there should be a positive phase change and a negative phase change would be 

seen for polymer layers thicker than this. If the PIB layer was modelled to have 

just a positive index change as in void-filling then this would predict positive 

phase changes for all polymer thicknesses. The thickest film is clearly undergoing 

polymer swelling where the index decrease is dominating over the thickness 

increase, probably due to the upper mode field being mostly contained in the 

polymer layer pre-exposure so any thickness increase has little effect on the 

overall upper mode effective index. The positive phase change of the thinner films 

could be due to either mechanism, but the fact that the response times of all the 

polymer thicknesses are the same suggests that they all could be undergoing the 

same mechanism, where the film thickness increase is the dominant effect in the 

thinner films. The interferometer showed a sensitivity of about 

1 0 X 1 o-5 rad I ppm of Toluene for the thinnest film and about 

-20x10-5 rad I ppm of Toluene for the thickest film. This means Toluene 

concentrations of around 5-10 ppm could be detectable above the device noise 

floor of ±1 mrad, were the device to be utilised as some sort of vapour sensor. 

Though in reality, the noise on the interference fringe pattern would result in a 

noise floor of possibly 10 times that quoted. 

The Polyisobutylene-coated chips were also exposed to Cyclohexane and Ethanol 

vapour. All phase changes were negative for chips with polymer layers 

140 ± 5 nm and 205 ± 5 nm . This indicates that the diffusion mechanism is 

definitely one of polymer expansion but the difference being that the lower 

refractive indices of Cyclohexane and Ethanol, compared to Toluene, results in 
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the lowering of the polymer layer index being a much more dominant effect over 

any increase in layer thickness. The lower index of Cyclohexane results in it 

having larger phase changes compared to that for Toluene, as shown by the 

thickest film which has a sensitivity of over -30 x 1 o-5 rad I ppm of Cyclohexane. 

The Ethanol molecules however cause only very small phase changes, with the 

thickest film having a sensitivity of only -2 x 1 o-5 rad I ppm of Cyclohexane. 

This is due to the relatively polar nature of Ethanol meaning it cannot diffuse well 

into the Polyisobutylene layer. 

As a by-product of the experiments, the thermo-optic coefficient, i.e. phase 

change due to temperature change, of the Polyisobutylene-coated interferometer 

chips was found to be around -3 rad I K . 

The sorption of water vapour into a Polyvinylpyrrolidone layer of thickness 

290 ± 5 nm was looked at. Due to its affinity to water, the polymer readily 

absorbed the vapour producing much larger phase changes than seen with 

Polyisobutylene in the range of a few radians. Previous work [4] on a layer of 

thickness 2.5 pm showed an initial positive phase change which suggested the 

void-filling mechanism while the thinner layer researched here has a negative 

phase change. This suggests that in a much thicker polymer layer there is a large 

free volume fraction which the water vapours will fill first, while in this thinner 

layer, there either isn't much free volume or the water cannot get into it as the 

mechanism is clearly again one of polymer swelling. Compared to the exposure of 

the Polyisobutylene layers to solvent vapours the response time of the water 

vapour sorption is much slower, on the scale of over a minute compared to that of 

around 15 seconds. This could suggest that the water vapour has the ability to 

keep the polymer layer swelling over a longer period of time allowing more and 

more water molecules to diffuse into the polymer, while the solvent vapours 

quickly reach an equilibrium with the Polyisobutylene chains so they cannot 

continue to diffuse into the polymer. Another striking difference with the water 

vapour sorption into Polyvinylpyrrolidone is that the phase change decreases as 

the water vapour concentration increases. This could imply that the mechanism 

begins to change to one of void-filling when the concentration increases. The 
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interferometer has a large sensitivity of 80- 90 x 1 o-s rad I ppm of water vapour, 

as such the device has the ability to detect a concentration of water vapour as little 

as a few parts-per-million. 

Both structures have provided information on how vapours are diffusing into the 

respective polymers. In theory it should be possible to resolve the TE and TM 

phase changes into data of how the polymer thickness and refractive index has 

changed, as has been done for interferometer chips coated with 

Trimethylchlorosilane exposed to various liquids [32]. However this has proved 

unsuccessful due to software limitations and the probable birefringence in the 

polymer layers due to the planar alignment of the polymer chains. 
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Chapter 4 : Wavelength Tracking 

4.1. Introduction 

Increased demand for bandwidth through the internet has led to the development 

of dense wavelength division multiplexing (DWDM) in the optical fibre 

communications network [ 1, 2]. This involves transmitting channels of different 

wavelengths simultaneously down the same optical fibre. As the channel count 

increases the capability of devices which track and stabilise the output wavelength 

of the optical sources becomes increasingly important. Current systems employ 

the use of an optical filter and feedback system to maintain the correct 

wavelength, most commonly a Fabry-Perot etalon filter which uses a monitor 

photodiode to provide an error signal to a feedback loop which in tum corrects 

any drift in the output frequency of the laser. 

4.2. Theory and Background 

4.2.1. Dual Slab Waveguide Interferometer 

In Section 3.2.1, the basic operating principles of the dual slab waveguide 

interferometer were discussed in terms of its use as a chemical and biological 

sensor. The device can also be used to detect small changes in input wavelength. 

The basis of how the interferometer works remains the same, however movement 

of the interference pattern is due to the change in the optical path length difference 

and in the effective refractive index of the wave guiding modes because of changes 

in wavelength of the light coupled into the device rather than changes to the 

physical structure of the sensor chip. 

The phase shifts are equal to the phase change between the two modes over the 

length of the waveguide, given by; 

(4.1) 
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where !1fluuJ is the change in propagation constant in each of the upper and lower 

waveguiding modes. The change in propagation constant in each mode due to a 

wavelength change from a to b is given by; 

(4.2) 

where NuUJ is the effective refractive index of the mode at the two wavelengths 

a and b. 

4.2.2. Previous Work 

The interferometer has been used to track wavelength changes at visible 

wavelengths [3] using the Silicon Oxynitride chips described in Chapter 3. The 

structures had a wavelength sensitivity of 37.5 mrad I nm.mm for transverse 

electric (TE) excitation and 35.8 mrad I nm.mm for transverse magnetic (TM) 

polarisation. The chips of length 24 mm therefore had the ability to detect 6 pm 

wavelength changes around 635 nm. The measurements proved to be in good 

agreement with their theoretical predictions. 

Theoretical prediction however show that those devices would not produce large 

wavelength sensitivities at infrared wavelengths and so a theoretical structure 

made from Indium Phosphide and Indium Gallium Arsenide Phosphide was 

proposed which would give the ability to detect ± 1 pm wavelength changes 

around 1550 nm for a device of length 5 mm. 

The aim of this chapter is to take this work further and produce interferometer 

chips which will have such a sensitivity and the ability to track small wavelength 

changes in telecommunications diode lasers. 
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4.2.3. Compound Semiconductor Materials 

Semiconductor materials have unique electronic properties and as such have 

become the material of choice for modem electronics. However they are also ideal 

as a passive waveguiding material and their optoelectronic properties make them 

the key materials for many optoelectronic devices such as lasers [4, 5], light­

emitting diodes and photodetectors [6, 7]. The most important for photonic 

devices are the Ill-V compound semiconductors. 

These are formed by combining elements from groups III and V in the periodic 

table to form a binary compound which has a zincblende structure [8, 9], which is 

two intertwined face-centred-cubic lattices similar to that for diamond but with 

two elements. There are many possible combinations of which Indium Phosphide 

(lnP) and Gallium Arsenide (GaAs) are two examples. Different binary 

compounds can be alloyed with varying compositions to form ternary and 

quaternary compound alloys [ 1 0], of which Indium Gallium Arsenide Phosphide 

( In,_xGaxAsl1-y or InGaAsP) is an example. 

Most optoelectronic devices require the growth of different layers of 

semiconductor materials on a wafer substrate and so matching the lattice constants 

of the materials used is very important to prevent stresses and strains between 

layers which result in defects. A plot of lattice constant against bandgap energy is 

shown in Figure 4-1 for various 111-V compounds at room temperature [11]. For 

alloyed semiconductors, their parameters fall within the area bounded by the 

curves connecting the associated binaries. For example, InGaAsP parameters are 

found within the area bounded by InAs, GaAs, InP and GaP. Quaternary 

semiconductors are therefore easier to lattice match as they have a large flexibility 

due to having two variable composition parameters. 

The optical wavelength 1.55 Jlm is of particular interest because it lies in a 

window of minimum loss for silica optical fibres. At 1.55 Jlm, photon energies 

are 0.8 eV so the materials used at this wavelength must have a bandgap energy 

larger than this. One particular system therefore used for laser sources and light­

emitting diodes is the InGaAsP lattice-matched to InP system. ln1_xGaxAsYP1_Y is 

lattice-matched to lnP and suitable to work at 1.55 Jlm when it has a composition 
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of 0 ~ y ~ 0.9 and x ~ 0.47 y, as indicated on Figure 4-1. A large range of 

compositions are therefore possible covering a bandgap energy range of 

0.8-1.35 e V which is equivalent to a wavelength range of 0.92 -1.55 pm. 

InGaAsP lattice­
matched to InP 

~AISb 

I 
I 

:-0.7 

1.6 f------+---H:--tr-+-~+-----\-i-------+--l--,----i:---;.~__:::.:.....;...,----+---+----rl, o.s 

GaSb 

0 ·4 InAs 

InSb ] = 
0.0 Q < 

:'i.4 5.5 

II 
II 
II 
II 
II 

j~ 
:'i.n :'i.7 5.R 

I 

:'i.IJ n.o n.J n.2 n.3 n.4 n.:'i 

Lattice constil.tlt a0 (A) 

Figure 4-1 Bandgap energy and lattice constant of various Ill- V semiconductors 

at room temperature 

The materials InP and InGaAsP were therefore chosen as the materials to be used 

in the dual slab waveguide interferometer as waveguiding will be possible at 

1.55 pm and there could be the possibility of chip level integration of the 

interferometer to diode laser chips in the future. 

4.2.4. Alternative Methods 

The task of tracking and stabilising the output wavelength of semicondl.),ctor diode 

lasers in telecommunications systems has been tried by many different methods, 
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though they all share the common need for a closed control loop with a feedback 

mechanism; they cannot be carried out directly on the output beam of the laser. 

Methods have included using the atomic resonances of Rubidium [12] to lock the 

laser frequency using Doppler beats, as well as using the absorption lines of 

12 C2H 2 and 13 C2H 2 gases in the 1.51-1.55 pm wavelength range [13], again 

using a comparative method to produce an error associated with the laser 

wavelength. Alternative methods have used semiconductor laser amplifiers to 

measure and track wavelength changes [ 14] and methods involving monolithic 

integration of a control device have also been proposed, utilising the surface­

emitted sum-frequency generation in semiconductor multilayer waveguides [ 15] 

and the properties oftwo in-line adjacent rib-waveguide photodetectors [16]. 

Interferometric detection of wavelengths shifts have also been investigated with 

techniques using Mach-Zender interferometers [ 17, 18] and fibre-based 

wavelength monitoring devices that use Young's fringes [19, 20]. 

The most common method is carried out by the means of a Fabry-Perot thin-film 

filter [21-24], which uses a monitor photodiode to provide an error signal to a 

feedback loop which corrects any drift in the output frequency of the laser. 

Atomic resonances have also been used to calibrate these Fabry-Perot style 

etalons [25] . 

4.2.4.1. The Fabry-Perot Wavelength Locker 

The Fabry-Perot etalon [26-28], or interferometer, is an optical resonator which 

utilises multiple beam interference. The instrument consists of two highly 

reflecting plane-parallel plates of distance I apart and refractive index n , 

generally equal to 1. An incident beam will be repeatedly reflected off each 

surface, resulting in many rays being transmitted from the plate parallel to each 

other. These parallel rays can then be brought together to interfere in the focal 

plane of a lens, as shown in Figure 4-2. 
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Figure 4-2 Schematic of the Fabry-Perot eta/on 

The irradiance distribution of the interference pattern is given by; 

focal plane 
of lens 

(4.3) 

where 10 is the incident irradiance, R and T are the reflection and transmission 

coefficients of the plate surfaces and o is the total phase change between 

successive beams, due to two additional traversals of the plate. 

The maximum transmission is therefore unity when o = 2m;r , where m 1s an 
! 

integer. The phase delay due to the additional round trip can be expressed as; 

0 = 4;rnl cos e 
A 

where A is the incident wavelength and e the angle of incidence. 

Combining (4.4) and the condition for maximum transmission gives; 
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em 
(4.5) v =---

m 2nl cos() 

where v and c are the frequency of the incident beam and the velocity of light in 

a vacuum, respectively. 

For a fixed plate difference and angle of incidence, Eq. (4.5) defines the 

frequencies for which there will be maximum (unity) transmission. The spacing 

between the frequencies in called the free spectral range (FSR). The transmission 

should approach zero away from the maximum transmission points depending on 

the resolution of the etalon, known as its finesse F . It is controlled by the 

reflection coefficient of the plate where the minimum transmission between the 

unity transmission points will approach zero as R approaches unity. 

The Fabry-Perot etalon can be used as a wavelength locker by typically tapping 

some of the output beam from a diode laser using a coupler into a closed control 

loop. This beam is then split again into two beams; one of which is directly 

monitored by a photodiode, the second is directed through a Fabry-Perot etalon 

whose output signal is monitored by a second photodiode. 

The frequencies of light which are used in telecommunication are set out by the 

International Telecommunications Union (ITU) grid. This breaks the infrared 

region of light which telecommunications devices operate in into channels spaced 

at 25,50 and 100 GHz apart. 

The etalon is designed so that its free spectral range matches that of the ITU grid, 

meaning that an incident beam of a frequency matching an ITU grid frequency 

should have a maximum transmission out of the etalon. The optical power falling 

onto both the photodetectors should therefore be equal. By monitoring and 

comparing the change in the relationship of the two photocurrents, a wavelength 

error can be determined, independent of laser power or wavelength. This error 

then acts as a feedback to correct the wavelength of the tunable laser source. 

The disadvantages of the current devices are the size, lack of monolithic 

integration and accuracy with commercially available devices accurate to around 

±lOpm. 
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4.3. Theoretical Analysis and Design 

4.3.1. Materials 

As stated, the materials chosen were the III-V semiconductor compounds, Indium 

Phosphide and Indium Gallium Arsenide Phosphide. InP has a refractive index 

around 3.18 while the quaternary InGaAsP has an index in the range 3.28-3.41 

depending on the composition of the compound. As such InP was used for the 

cladding regions and InGaAsP for the core waveguiding regions. The choices of 

composition of InGaAsP were limited by those available from the manufacturers. 

Therefore the resulting compositions of InGaAsP chosen were those which have 

bandgap wavelengths ( A.g) of 1.3 pm and 1.1 pm, denoted as 1.3Q and 1.1 Q 

respectively. 

With the choice of materials decided, theoretical analysis of the interferometer 

structure was necessary to determine the choice of layer thicknesses. 

4.3.2. Proposed Structure 

Theoretical modelling was carried out usmg the 1-D mode solver program, 

SLAB® [29], using refractive indices shown in Table 4-3. 

Layer Material Refractive Index (at 1.55 pm puJ 
Cladding InP 3.184 

Core InGaAsP ( A.g = 1.3 pm) 3.397 

Core InGaAsP ( A.g = 1.1 pm) 3.290 

Table 4-3 Table of materials and refractive index of materials used in modelling 

4.3.2.1. Single Slab Waveguide Modelling 

A single slab waveguide of each InGaAsP composition with InP cladding is 

modelled to determine at what core thickness a second mode becomes allowed. 
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This second mode cut-off will establish the maximum thickness of an 

InGaAsP/InP waveguide suitable for interferometry. Figure 4-4 and Figure 4-5 

show the effective refractive indices of the lower order transverse electric (TE) 

modes for both waveguide compositions. 
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Figure 4-4 Graph showing the effective refractive indices of the zeroth order 

(solid line) andfirst order (dashed line) TE modes for a single slab waveguide of 

InP/1.3Q 
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Figure 4-5 Graph showing the effective refractive indices of the zeroth order 

(solid line) andfirst order (dashed line) TE modes for a single slab waveguide of 

InP/J.JQ 

From this, the maximum guide thickness can be determined as 0.65 Jim for the 

InP/1.3Q waveguide and 0.93 Jim for the InP/l.lQ waveguide. 

The minimum guide thickness can be found by examining the quality of the 

modes within the slab waveguides. It is necessary to have good confinement of 

the mode within the core waveguiding layer in order to get a good interference 

fringe pattern. As the thickness of the waveguide core increases, the more 

confined the mode becomes and the quicker the mode tails off into the InP 

cladding. This can be seen for TE modes for both compositions in Figure 4-6 and 

Figure 4-7 respectively. 
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Figure 4-6 Graphs showing lowest order mode shape for lnP/1.3Q structure for 

waveguide core thicknesses ofO.JO pm and 0.20 pm 
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Figure 4-7 Graphs showing lowest order mode shape for InP/l.JQ structure for 

waveguide core thicknesses of 0.15 pm and 0. 30 pm 

The minimum guide thickness was determined to be 0.15 pm for the lnP/1.3Q 

waveguide and 0.25 pm for the InP/1.1 Q waveguide. 

The thickness which gives the maximum dispersion, 1.e. the largest effective 

refractive index change of the modes, can be found by considering a 1 nm 

wavelength change around 1.55 pm for the two different single slab waveguide 

compositions. At this point however when the input wavelength starts being 

varied it is important to include material dispersion. 

4.3.2.2. Material Dispersion 

As mentioned in Section 2.6.1, the refractive index of the materials is dependent 

on the frequency of light. The refractive index of the three semiconductor 

133 



materials over the telecommunications C-hand is given in Table 4-8, as calculated 

by a 2-D mode solver FIMMW AVE® [30], which uses published models [31, 32] 

and parameters [33]. 

Wavelength 
InP 1.3Q 1.1Q 

(nm) 

1530 3.1856 3.4015 3.2932 

1540 3.1846 3.3990 3.2917 

1550 3.1836 3.3966 3.2903 

1560 3.1826 3.3943 3.2889 

1570 3.1816 3.3921 3.2876 

Table 4-8 Table ofrefractive indices oflnP, 1.3Q and J.JQ over C-hand 

4.3.2.3. Waveguide Dispersion 

Figure 4-9 and Figure 4-10 show the expected change in the effective refractive 

index of the TE wave guiding mode on experiencing the 1 nm wavelength change, 

for the two compositions respectively. Plotted alongside are the theoretical 

changes if material dispersion were not included. 
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for a 1 nm wavelength change about 1550 nmfor a lnP/1.1Q structure including 

(solid line) and ignoring (dashed line) material dispersion 
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From the graphs it is obvious not only that it is important to include the material 

dispersion of the semiconductors in theoretical calculations but also that the 

presence of material dispersion is of benefit to the interferometer as it increases 

the sensitivity of the waveguides to a change in wavelength. The maximum 

dispersion points are around a waveguide core thickness of 0.88 Jim for the 1.3Q 

waveguide and 1.42 Jim for the 1.1 Q waveguide. Both of these thicknesses are 

out-with the respective second-mode cut-off points for the two waveguides. 

Therefore under the constraint of single-mode operation, the maximum dispersion 

will occur at the upper thickness limit. 

4.3.2.4. Dual Slab Waveguide Modelling 

According to the theory in Section 4.2.1, the phase shift in the interference pattern 

due to a wavelength change will be given by the difference in the effective index 

change of the upper waveguide over the change in the lower waveguide, as shown 

by combining Eqs. (4.1) and (4.2); 

(4.6) 

This equation implies that a maximum phase change will occur when the zeroth 

order mode experiences a large effective index change and the first order mode 

experiences a small change. Looking at the expected refractive index changes 

shown in Figure 4-9 and Figure 4-10, it indicates that this is achievable by 

maximising the thickness of the lower waveguide and minimising the thickness of 

the upper waveguide. 

Therefore, possible designs for dual slab waveguide interferometer structures are 

shown in Table 4-11, allowing 50 nm for manufacturing accuracy. 
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Thickness Thickness 
Layer Material 

(,um) 
Layer Material 

(,um) 

Lower Clad InP 1.5 Lower Clad InP 1.5 

Lower Guide 1.3Q 0.6 Lower Guide 1.1Q 0.85 

Central Clad InP 2.3 Central Clad InP 2.3 

Upper Guide 1.3Q 0.2 Upper Guide 1.1Q 0.3 

Upper Clad InP 2.0 Upper Clad lnP 2.0 

Table 4- I I Possible structures for Ill- V semiconductor dual slab waveguide 

interferometers 

Cladding thicknesses were chosen to be large enough so that there should be no 

modal overlap and both modes should be contained within the dual slab structure. 

For again a 1 nm wavelength change about 1550 nm, the respective phase 

changes of the two structures are shown for both transverse electric (TE) and 

transverse magnetic (TM) polarisations in Table 4-12. 

Structure 
TE sensitivity TM sensitivity 

( mrad I nm.mm ) ( mrad I nm.mm) 

InPI1.3Q 580.0 634.0 

InPI1.1Q 225.2 237.3 

Table 4-I 2 Predicted sensitivity of lnP/I.3Q and lnP/I.IQ structures for a I nm 

wavelength change about I 550 nm 

The InPI1.3Q structure has an excellent predicted sensitivity to wavelength 

change, suggesting that a device of just 5 mm will be able to detect wavelength 

changes of ±1 pm with a signal-to-noise ratio of around 3 above the noise floor of 

±1 mrad of a wavelength tracking set-up. The InPI1.1Q structure has however a 

sensitivity 2-3 times lower. This is what would be expected when looking at the 

expected effective refractive index change plots in Figure 4-9 and Figure 4-10 

where the InPI1.1 Q structure has a much lower expected index change. This is 
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due to the refractive index difference between InP and InGaAsP(1.1 Q) being less 

than that between InP and InGaAsP(1.3Q). 

Using this fact that a InPI1.1Q waveguide will have a smaller expected effective 

index change than its InPI1.3Q counterpart, the phase sensitivity can be further 

increased by considering a structure with a thick 1.3Q layer as the lower 

waveguide and a thin 1.1 Q layer as the upper waveguide, as shown in Table 4-13. 

Thickness 
Layer Material 

(pm) 

Lower Clad InP 1.5 

Lower Guide 1.3Q 0.6 

Central Clad InP 2.3 

Upper Guide 1.1Q 0.3 

Upper Clad InP 2.0 

Table 4-13 Proposed structure for a highly sensitive three-material dual slab 

waveguide interferometer 

This structure has a expected wavelength sensitivity of 828 mrad I nm.mm for TE 

modes and 825 mrad I nm.mm for TM modes, an increased sensitivity of over 

30%. 

Limited to two chip wafers, the InPilnGaAsP(1.3Q) structure and the 

lnPIInGaAsP( 1.3Q)IInGaAsP( 1.1 Q) design were chosen to be manufactured. 

4.3.2.5. Interferometer Chip Dimension 

Limited to wafers of diameter 2 inches, interferometer chips dimensions were 

chosen to both maximise the number of chips per wafer but also to make the chips 

a manageable size for use. Three different lengths of waveguides were also 

wanted so that comparative wavelength sensitivity and loss measurements could 

be made. As such the dicing pattern in Figure 4-14 was used for both structUres. · 
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Figure 4-14 Dicing pattern of 2 inch diameter wafer for production of 

interferometer chips of width 2 mm and lengths 4, 8 and 12 mm 

4.3.3. Actual Structures 

4.3.3.1. Indium Phosphide Transparency 

In the telecommunications C-band, Indium Phosphide is transparent, i.e. light of 

wavelength around 1550 nm will not be absorbed at all when passing through a 

structure made from InP. This is due to InP having a band gap energy of 

1.344 eV which in terms of wavelength is a band gap of 0.912 pm. This means 

that any light with a wavelength larger than this will not be absorbed. 

In terms of the five-layer dual slab waveguide structure this is not a problem as 

light is required to pass through the waveguide and a lack of loss in the material 

will mean better interference fringes. However the waveguide is grown on an InP 

substrate resulting in light both being coupled into this as well as light leaking 

down through the structure to the substrate. This light will interfere with the two 

waveguiding modes and as such no interference pattern will be seen in the far 

field. 
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To compensate for this, two design modifications were added to the waveguide 

structures. Firstly, the InP substrate is doped with n-type dopant Sulphur with a 

carrier concentration of 5x1018 cm-3
. This has the effect of lowering the band gap 

energy (hence increasing A.g) so that the substrate adsorbs light in the infrared 

range the interferometers are wanted to work in. The carrier concentration was 

limited by those available from the manufacturer. 

Secondly, a two-layer buffer was added between the substrate and dual slab 

structure to absorb any stray light which leaks down through the structure. The 

absorbing layer was made of Indium Gallium Arsenide (lnGaAs) with a band gap 

wavelength of 1.65 pm, well above the range of wavelengths to be used in the 

experiments. And between this layer and the substrate is an InP layer neutrally­

doped with a carrier concentration of I x 1018 em -3 of Silicon. The materials used 

were chosen to ensure good lattice matching with the other semiconductor 

materials in the structure. 

These modifications ensured that excellent fringe images would be available. 

4.3.3.2. Chip Parameters 

The two structures were grown by molecular beam epitaxy by the EPSRC 

National Centre for III-V Technologies at the University of Sheffield. The 

resulting specifications are shown in Table 4-15 and Table 4-16. 
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Layer Character 
Dopant I Thickness 

Concentration (J..tm) 
Substrate 2"- InP VCZ S I 5x1018 cm-3 350 

1 lnP Si I 1 x 1018 cm-3 0.5 

2 InGaAs ( Ag = 1.65 j.lm) 1.0 

3 InP 1.5 

4 InGaAsP ( Ag = 1.3 j.im ) 0.5 

5 InP 2.3 

6 InGaAsP ( Ag = 1.3 j.im) 0.2 

7 InP 2.0 

Table 4-15 Specifications for interferometer chips of lnP/1. 3Q design 

Layer Character 
Dopant I Thickness 

Concentration (J.tm) 
Substrate 2"- InP VCZ S I 5x1018 cm-3 350 

1 InP Si I 1x1018 cm-3 0.5 

2 InGaAs ( Ag = 1.65 j.lm) 1.0 

3 InP 1.5 

4 InGaAsP ( A.g = 1.3 j.im) 0.5 

5 InP 2.3 
InGaAsP 

6 (Ag =1.155 j.im) 0.3 

7 InP 2.0 

Table 4-16 Specifications for interferometer chips of lnP/1.3Q/1.15Q design 

Due to manufacturing limitations, the band gap of the 1.1 Q materials was in fact 

Ag = 1.155 j.lm (denoted as 1.15Q) and the lower waveguide layer of 1.3Q in both 

structures (layer 4) has a thickness of 0.5 j.lm. 

4.3.3.3. Buffer Layer Mode 

When modelling the entire waveguide structure, it becomes apparent that there 

will be waveguiding modes contained within the buffer layer, as shown in Figure 

4-17. 
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Figure 4-17 Graph showing all the TE modes allowed compared to the waveguide 

structure. There are three modes within the buffer layer on the left as well as the 

two waveguiding modes on the right 

However, due to the absorption of the light in the tertiary lnGaAs material, none 

of the modes in the buffer layer will travel all the way through an interferometer 

chip so only the two interfering waveguiding modes will be emitted at the 

endface. Modelling suggests that the modes in the buffer layer will experience a 

loss in the order of 1 03 dB I em , which over the shortest length chip of 4 mm will 

still result in those modes all being absorbed. The expected loss for the 

waveguiding modes is in the order of 0.1 dB I em . 

4.3.3.4. Predicted Wavelength Sensitivity 

The predicted phase sensitivities over the telecommunications C-hand range of 

wavelengths for the two manufactured structures are shown in Figure 4-18 and 

Figure 4-19 for a 1 nm increase in wavelength from the starting wavelength. 

142 



700 

a 65o 
E 

~ 600 

5 
.£ 550 
·E 
•t;; 

1::: 
II) 

Vl 500 

t 
13 
0 
~ 450 

::: 
400~--~--~-.--~.-~-.--~.-~--~~--~-. 

1510 1520 1530 1540 1550 1560 1570 1580 1590 

Starting Wavelength (run) 
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4.4. Experimentation 

4.4.1. Experimental Set-up 

The experimental set-up, as shown in Figure 4-20, uses a tunable laser source 

which has its wavelength calibrated by a wavemeter. Light is coupled into a 

single-mode fibre by a FC/PC connector and runs to a bare-fibre holder via a fibre 

polarisation controller. The cleaved fibre end is positioned close to the endface of 

an interferometer chip, which is fixed in a dual stage temperature controlled 

housing, in order for the light to diffract to a beam size which excites the two 

waveguiding modes with approximate equal efficiency. The interference fringe 

distribution from the output endface is imaged onto a 256-pixel infrared lnGaAs 

linear photodetector array and snapshot fringe images are stored on a computer to 

be input into a program to Fourier transform the interference patterns into 

measurable phase values. 

D 
I Wawmetar D 11-----il Tunab~ Laser~ I 

(ooq 
Fibre Poansatton 

CoolroDer 

Temperature Contot D 
Boards 

.----------f 

Chip Housing 

Figure 4-20 Schematic of experimental set-up 

4.4.2. Equipment Design 

The above equipment was based on equipment used in previous experiments but 

due to the novelty of working around 1.55 Jim the entire set-up had to be 

designed from scratch. 
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4.4.2.1. Chip Housing 

A temperature controlled chip housing was designed which consists of three parts, 

as shown in Figure 4-21; 

A small inner chip holder made from copper is held within a copper block that is 

used to fine control the temperature of the chip. This is encased in a glass-filled 

nylon block which acts as an insulator between the copper holder and an outer 

aluminium block acting as an outer temperature control. 

OUTER 
THERMISTOR 

NYLON CERAMIC 
INSULATOR 

COPPER INNER 

ALUMINIUM OUTER 

INSULATION 
CHIP HOLDER 

....., 
>­z 
[/) 

CHIP 

INNER 
THERMISTOR 

INNER 
PELTIER 

PAD OF THERMALLY 
CONDUCTING ELASTOMER 

Figure 4-21 Schematic of chip housing 

Different sizes of chip holder were made so that chips of lengths 4 mm, 8 mm 

and 12 mm could all be held within the housing. Holes in the aluminium outer 

shell were made to match the position of screw holes on the infrared 

photodetector array so that the housing could be screwed neatly onto the front of 
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the array. According to Young's double-sit theory (Section 2.5.2), the spacing of 

the fringes is given by; 

s 
~y=-A 

a 
(4.7) 

In order to get a minimum of three full fringes falling onto the photodetector of 

dimensions 12.8 x 0.25 mm at a wavelength of 1.55 Jlm with a "slit difference" 

of 2.65 Jlm, the distance between chip endface and detector must be less than 

7.3 mm. It was therefore necessary to be able to couple the housing and detector 

close together in order to get a good fringe image. The position of the chip was 

designed so that the chip endface was situated in the middle of the photodetector 

array. 

4.4.2.2. Temperature Control 

The inner copper piece is kept at a specific temperature by means of a peltier 

which is controlled by a temperature control board (courtesy of Farfield Sensors) 

through feedback temperature readings given by a thermistor buried within the 

copper block. This block is encased in thermally-insulated nylon ceramic material, 

which is itself encased in an aluminium block. This outer piece is also controlled 

by means of the peltier/thermistor control system, this time utilising two larger 

peltiers. The whole unit is covered in the insulating material, Neoprene and heat 

sinks attached to fans are attached to the side of the housing. Using a PID 

algorithm and setting the outer temperature to 1 °C lower than the inner to create 

a thermal gradient, the control electronics can maintain the set inner temperature 

to better than ±10 mK. Figure 4-22 shows the temperature measured by the inner 

thermistor, after initial stabilisation, over a period of 60 mins . 
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Figure 4-22 Graph of inner thermistor temperature against time 

Under shorter periods of time the temperature could be accurate to better than 

±5 mK . Future work could improve this further by optimising the PID settings. 

4.4.2.3. Polarisation 

The light emitted by the tunable laser source is of an unknown polarisation and so 

the use of a fibre polarisation controller (FPC) is employed in order to set the light 

to either TE or TM polarisation. The device consists of three paddles in which 

single-mode fibre is looped around. This stressing of the fibre induces 

birefringence and so the paddles act as three independent fractional wave plates. 

The amount of birefringence induced in the fibre is a function of the fibre 

diameter, the size and number of loops and the wavelength of the input light. By 

positioning the three paddles at specific angles to each other, it is possible to 

produce purely TE or TM polarised light outputting from the fibre. 

This is achieved by positioning an infrared polariser between the cleaved fibre 

endface and the photodetector before experiments are carried out. Aligning the 

polariser with its fast axis and shining TE polarised light onto it should result in 
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no light getting through. Therefore, moving the FPC until no light is detected on 

the photodetector array means that there must be TE polarised light. This can be 

checked by rotating the polariser by 90° resulting in all the TE polarised light 

getting through and the detector should see a maximum intensity. The difference 

between the two readings gives the extinction ratio of the light polarisation. In 

general this is in the order of -20 dB. Conversely by moving the FPC so that 

there is maximum transmission when the polariser is aligned to its fast axis and 

zero when it is rotated through 90° , TM polarised light can be obtained from the 

output of the fibre. 

4.4.3. Experimental Method 

After setting the polarisation of the light, the polariser is removed from the set-up 

and the cleaved fibre end is positioned as close as possible to the endface of the 

interferometer chip. The fibre position is then adjusted until a good fringe image 

can be seen on the real-time detector image shown on the attached computer 

(Figure 4-20). The temperature control is set and allowed to run for around I 0 

minutes until it has stabilised. The system is then ready for experimental readings 

to be taken. 

In general, the snapshot fringe image is taken and stored as a data file consisting 

of the arbitrary intensity measurement of each of the 256 pixels. This data can 

then either be plotted to reproduce the fringe image or inputted into the Fourier 

transform program to produce a relative phase value. Continuous measurement of 

the fringe image was not possible and so snapshot images were taken every time a 

change to the system stabilised. 

The optical communications C-hand is a range of wavelengths from around 

1530 nm to 1570 nm . Since this range is the main focus of telecommunications 

devices, experiments were carried out around the higher, middle and lower ends 

of this range, i.e. 1530 nm, 1550 nm and 1570 nm. The tunable laser source has 

a wavelength range of 151 0 -1690 nm , with a fine tuning of 1 pm . The accuracy 

of this value was monitored with a calibrated wavemeter. 
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General experiments involved taking readings over a wavelength range of ±1 nm 

around the chosen wavelength points, increasing in 1 00 pm intervals. The tunable 

laser was set to move to the desired wavelength, stabilise then move onto the next 

wavelength every 10 seconds. The detector computer was programmed to take 

and store a snapshot image each time the wavelength changed. The pixel 

intensities of each of the readings were then put through the Fourier transform 

program to produce relative phase values for each image and the phase difference 

between adjacent fringe images could then be calculated. 

Experiments were carried out for a range of chips of lengths 4 mm, 8 mm and 

12 mm of each of the two chip designs. 

4.5. Results and Analysis 

4.5.1. :O:nP/InGaAsP(1.3Q) Structure 

Readings were taken on interferometer chips of the InP/1.3Q structure, shown in 

Table 4-15. Experiments were carried out at a chip temperature of 25.0 °C and 

with a polarisation extinction ratio a minimum of -20 dB. Chips of all three 

lengths were subjected to wavelength changes around the three chosen 

wavelengths. 

4.5.1.1. Fringe Image 

Example fringe image distributions from the output endface of an interferometer 

chip of length 12 mm imaged onto the photodetector array are shown in Figure 

4-23, plotted for three wavelengths around 1550 nm . 
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Figure 4-23 Fringe image for a I 2 mm InPII.3Q interferometer chip for TM 

polarised light at wavelengths I 549.9 nm (solid line), I 550 nm (dashed line) and 

I550.I nm (dotted line) 

The interference pattern has an excellent contrast ratio between the maxima and 

minima and the image is practically free from noise. The excellent quality of the 

fringe pattern will mean that the data taken should be very good and free from 

errors. 

The shift in the interference pattern can be seen as the wavelength increases from 

1549.9 nm to 1550.1 nm as a positive shift from left to right. This confirms the 

theoretical prediction that the phase change will be positive when the wavelength 

shift is also positive, and vice versa. The image shifts approximately 7 pixels 

between each reading. Since each pixel is 50 pm wide, this is a shift of roughly 

350 pm. The phase shift can be found from; 

(4.8) 

where ~y is the fringe shift and P is the period of the pattern. 
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Therefore the shift in the interference pattern is approximately equivalent to a 

phase change of 675 mrad. This equates to an approximate wavelength 
I 

sensitivity of 560 mrad I nm.mm which is in excellent agreement with the 

predicted value of about 570 mrad I nm.mm , found from Figure 4-18. This value 

is of course not precise and so the data needs to be looked at in detail to determine 

the wavelength sensitivity of this InPI1.3Q design. 

4.5.1.2. 12 mm Length Chips 

The experimental phase changes for chips of length 12 mm , given for 100 pm 

wavelength shifts over a range of ±1 nm around 1530 nm, 1550 nm and 

1570 nm are shown in Figure 4-24, Figure 4-25 and Figure 4-26 respectively. 
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Figure 4-24 Experimental phase changes for a 12 mm InP/1.3Q interferometer 

chip for 100 pm wavelength shifts around 1530 nmfor both TE (circles/solid line) 

and TM (crosses/dashed line) polarisations 
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Figure 4-25 Experimental phase changes for a 12 mm JnP/1.3Q interferometer 

chip for 100 pm wavelength shifts around 1550 nmfor both TE (circles/solid line) 

and TM (crosses/dashed line) polarisations 
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Figure 4-26 Experimental phase changes for a 12 mm JnP/1.3Q interferometer 

chip for 100 pm wavelength shifts around 15 70 nm for both TE (circles/solid line) 

and TM (crosses/dashed line) polarisations 
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The linear fits to the data give the overall phase changes for the 2 nm around each 

of the three wavelengths, as given in Table 4-27. 

Wavelength 
TE phase change TM phase change 

(rad I nm) (rad I nm) 

1530 nm 6.27 7.06 

1550 nm 5.93 6.69 

1570 nm 5.66 6.34 

Table 4-27 Phase changes for 12 mm 1nP/1.3Q inteiferometer chips 

This data can then be converted into wavelength sensitivities in order to compare 

with the theoretical predictions, as has been done in Table 4-28. 

Theoretical Wavelength Experimental Wavelength 

Wavelength 
Sensitivity Sensitivity 

( mrad I nm.mm ) ( mrad I nm.mm ) 

TE TM TE TM 

1530 nm 568.4 615.4 522.1 588.0 

1550 nm 527.2 568.3 494.3 557.8 

1570 nm 491.4 527.5 471.4 528.2 

Table 4-28 Comparison of theoretical predictions and experimental wavelength 

sensitivities for 12 mm InP/1.3Q inteiferometer chips 

The experimental results are in very good agreement with the predicted theoretical 

values. They show the same phase change sense as the theoretical model as well 

as confirming that the TM values will have a larger sensitivity than that for TE 

polarisations. 

The TE values are around 6-8% less than expected whereas the TM values are 

closer to the predicted values with a difference of 2-5% for readings at 1530 nm 

and 1550 nm and they are almost equal at 1570 nm. The discrepancies can be 
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attributed to small errors in the characteristics of the manufactured structures. 

These can be down to the layer thicknesses and the bandgap of the material not 

being exact. The latter would mean that a slightly different refractive index should 

be used in the modelling. 

Overall the results are very good and they show that the interferometer is highly 

sensitive to wavelength changes and could be used to track or measure changes 

for either polarisation. A 1 pm wavelength change would cause over 5 mrad of 

phase change for the 12 mm length chip, even at the devices least sensitive point, 

and should therefore be detectable by the equipment which has a noise floor of 

around ± 1 mrad . 

4.5.1.3. 8 mm Length Chips 

The experiments were repeated for chips of length 8 mm . The resulting phase 

changes around 1530 nm, 1550 nm and 1570 nm are again shown in Figure 

4-29, Figure 4-30 and Figure 4-31 respectively. 
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Figure 4-29 Experimental phase changes for a 8 mm lnP/1.3Q interferometer 

chip for 100 pm wavelength shifts around I 530 nmfor both TE (circles/solid line) 

and TM (crosses/dashed line) polarisations 
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Figure 4-30 Experimental phase changes for a 8 mm InP/1.3Q interferometer 

chip for 100 pm wavelength shifts around 1550 nmfor both TE (circles/solid line) 

and TM (crosses/dashed line) polarisations 
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Figure 4-31 Experimental phase changes for a 8 mm 1nP/1.3Q interferometer 

chip for 100 pm wavelength shifts around 1570 nm for both TE (circles/solid line) 

and TM (crosses/dashed line) polarisations 
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The linear fits to the data again give the overall phase changes for the 2 nm 

around each of the three wavelengths, as given in Table 4-32. 

Wavelength 
TE phase change TM phase change 

(rad I nm) (rad I nm) 

1530 nm 4.00 4.61 

1550 nm 3.84 4.35 

1570 nm 3.67 4.13 

Table 4-32 Phase changes for 8 mm InP/1.3Q interferometer chips 

As would be expected, the phase changes are around two-thirds of that for the 

12 mm length chips. This will be looked at further once the data on 4 mm length 

chips is presented. 

4.5.1.4. 4 mm Length Chips 

Finally, the experiments were repeated for chips of length 4 mm. The resulting 

phase changes around 1530 nm, 1550 nm and 1570 nm are again shown in 

Figure 4-33, Figure 4-34 and Figure 4-35 respectively. 
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Figure 4-33 Experimental phase changes for a 4 mm lnP/1.3Q interferometer 

chip for 100 pm wavelength shifts around 1530 nm for both TE (circles/solid line) 

and TM (crosses/dashed line) polarisations 
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Figure 4-34 Experimental phqse changes for a 4 mm lnP/1.3Q interferometer 

chip for 100 pm wavelength shifts around 15 50 nm for both TE (circles/solid line) 

and TM (crosses/dashed line) polarisations 
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Figure 4-35 Experimental phase changes for a 4 mm lnP/1.3Q interferometer 

chip for 100 pm wavelength shifts around 15 70 nm for both TE (circles/solid line) 

and TM (crosses/dashed line) polarisations 

The linear fits to the data again give the overall phase changes for the 2 nm 

around each of the three wavelengths, as given in Table 4-36. 

Wavelength 
TE phase change TM phase change 

(rad I nm) (rad /nm) 

1530 nm 2.07 2.35 

1550 nm 1.89 2.20 

1570 nm 1.81 2.00 

Table 4-36 Phase changes for 4 mm lnP/1.3Q interferometer chips 

The data is again as would be expected with phase changes around one-third of 

that for the 12 mm length interferometer chips. 
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4.5.1.5. Chip Length Comparison 

The wavelength sensitivities from the three different chip lengths are compared in 

Table 4-37. 

Wavelength Sensitivity ( mrad I nm.mm) From Chip Length 

Wavelength 12mm 8mm 4mm 

TE TM TE TM TE TM 

1530 nm 522.1 588.0 500.6 576.3 517.0 588.1 

1550 nm 494.3 557.8 480.0 543.8 471.2 548.8 

1570 nm 471.4 528.2 458.1 515.9 451.3 500.2 

Table 4-3 7 Comparison of experimental wavelength sensitivities for I 2 mm, 8 mm 

and 4 mm lnP/1.3Q interferometer chips 

The values are in very good agreement with each other with a spread of only 

1-3% around the mean value. In general the chips of length 12 mm have the 

highest sensitivity. 

The good agreement shows that the interferometers ability to work well as a 

sensitive wavelength tracker is not dependent on the chip length, though 

obviously the longer the chip, the larger the phase changes. In theory chips of 

lengths as short as 0.5 mm will still have large wavelength sensitivities equivalent 

to those for the longer chips and will also have the potential to be fully integrated 

with a laser chip. An interferometer only 0.5 mm long should be able to detect as 

little as 5 pm of wavelength change around 1550 nm, assuming a device noise 

floor of ±1 mrad. 

4.5.1.6. Loss Measurements 

Part of the reason for having three different chip lengths was to try and determine 

the absorption loss through the waveguides. Experiments were designed to record 

fringe patterns for all three chip lengths for a varying laser output power at a fixed 

wavelength of 1550 nm. 
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These however proved inconclusive and no trends could be deduced from the 

experimental readings. This is due to there being loss at a number of points within 

the set-up. There is the coupling loss as the light is focussed onto the 

interferometer end face of around -10 dB, the absorption loss through the 

waveguide and loss as the light diffracts into the interference pattern which falls 

onto the photodetector array. In order to accurately determine the absorption loss 

of the waveguides all other possible loss factors have to be the same between 

experiments and this proved unfeasible. 

However the total loss through the system was not an issue as an input laser 

power of over just 50 ,uW was capable of saturating the detector. 

4.5.1. 7. Repeatability 

In order to determine whether the phase change measured each time a wavelength 

change occurs will be the same, repeated measurements were taken for each chip. 

The experiments involved taking readings again at a wavelength range of ± 1 nm 

around the chosen wavelength points in 100 pm intervals. This was then repeated 

to produce 15 sets of data. From this an accurate mean value could be determined 

to use for the phase change plots and values given before, but also a standard 

deviation could be calculated to determine the variation between the readings. 

Plotting the mean value and the standard deviation of the phase values for each 

wavelength shift can show the variation in the data and determine whether the 

interferometer can be considered to have good repeatability. Figure 4-38 shows 

this for a chip of length 12 mm for TM polarisation readings around 1550 nm. 

This is the same data that is plotted in Figure 4-24 but rather that plotting the 

cumulative phase change, the phase change of each wavelength shift is shown. 

160 



800 

750 

I I ! I 1 
I 

~ 700 I I I o:s I I I .... 

I I I I I I 5 1 I I I 
~ 650 I I I I I I I I I I a I I I ?); 

..<:: I I I u 
a) 
<ll 600 o:s 

..<:: 
t:L.. 

550 

1549.0 1549.5 1550.0 1550.5 1551.0 

Starting Wavelength (run) 

Figure 4-38 Mean phase change with standard deviation for a 12 mm lnP/1.3Q 

interferometer chip around 1550 nmfor TM polarisation 

The data indicates two things. Firstly, plotting the data this way seems to show 

that there is an oscillatory nature to the readings across the wavelength range. This 

will be discussed later in Section 4.5.3. 

Secondly, there is very little variation between the readings for each wavelength 

shift. The standard deviation is a maximum of 0.032 over the entire wavelength 

ranges (around 1530 nm, 1550 nm and 1570 nm) which works out as an error of 

5%, though the average is just 3%, which is a very small error over 15 readings. 

This suggests that the interferometer will have a very good repeatability. 

4.5.2. InP/InGaAsP(1.3Q)/ InGaAsP(1.15Q) Structure 

Readings were this time taken on interferometer chips of the InP/1.3Q/1.15Q 

structure, shown in Table 4-16. Experiments were again carried out at a chip 

temperature of 25.0 °C and with a polarisation extinction ratio a minimum of 

-20 dB. Chips of all three lengths were subjected to wavelength changes around 

the three chosen wavelengths. 
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4.5.2.1. Fringe Image 

Example fringe image distributions for an interferometer chip of length 12 mm 

imaged onto the photodetector array are shown in Figure 4-39, plotted again for 

three wavelengths around 1550 nm . 
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Figure 4-39 Fringe image for a 12 mm lnP/1.3Q/1.15Q interferometer chip for 

TM polarised light at wavelengths 1549.9 nm (solid line), 1550 nm (dashed line) 

and 1550.1 nm (dotted line) 

The interference pattern for this design is even better quality than for the lnPI1.3Q 

structure. It has excellent contrast ratio between the maxima and minima and the 

image is free from noise. The shift in the interference pattern is larger for this 

design as predicted. The image shifts approximately 6 pixels between each 

reading, and the pattern has a period of 53 pixels. Therefore the shift in the 

interference equates to an approximate wavelength sensitivity of 

590 mrad I nm.mm which is near the predicted value of about 660 mrad I nm.mm, 

found from Figure 4-19. Again, this value is not precise and the readings need to 

be analysed to get an accurate value for the wavelength sensitivity. 
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4.5.2.2. 12 mm Length Chips 

The experimental phase changes for 12 mm length chips of the lnP/1.3Q/1.15Q 

design are given in Figure 4-40, Figure 4-41 and Figure 4-42 for a wavelength 

range of ±1 nm around 1530 nm, 1550 nm and 1570 nm respectively. 
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Figure 4-40 Experimental phase changes for 100 pm wavelength shifts around 

1530 nmfor a 12 mm InP/1.3Q/1.15Q interferometer chip for both TE 

(circles/solid line) and TM (crosses/dashed line) polarisations 
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Figure 4-41 Experimental phase changes for 100 pm wavelength shifts around 

15 50 nm for a 12 mm lnP I 1. 3 Q/ 1.15 Q interferometer chip for both TE 

(circles/solid line) and TM (crosses/dashed line) polarisations 
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Figure 4-42 Experimental phase changes for 100 pm wavelength shifts around 

1570 nmfor a 12 mm lnP/1.3Q/1.15Q interferometer chip for both TE 

(circles/solid line) and TM (crosses/dashed line) polarisations 
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The linear fits to the data give the overall phase changes for the ± 1 nm around 

each of the three wavelengths, as given in Table 4-43. 

Wavelength 
TE phase change TM phase change 

(rad lnm) (rad I nm) 

1530 nm 8.00 8.02 

1550 nm 7.42 7.44 

1570 nm 6.91 6.96 

Table 4-43 Phase changes for 12 mm lnP/1.3Q/1.15Q interferometer chips 

This data can again be converted into wavelength sensitivities in order to compare 

with the theoretical predictions, as has been done in Table 4-44. 

Theoretical Wavelength Experimental Wavelength 

Wavelength 
Sensitivity Sensitivity 

( mrad I nm.mm ) ( mrad I nm.mm) 

TE TM TE TM 

1530 nm 735.3 727.7 666.7 668.0 

1550 nm 669.5 662.7 618.6 619.9 

1570 nm 613.8 607.6 575.8 579.9 

Table 4-44 Comparison of theoretical predictions and experimental wavelength 

sensitivities for 12 mm JnP/1.3Q/1.15Q interferometer chips 

The experimental results are agam m good agreement with the theoretical 

predictions. They show that the TE and TM sensitivities will be approximately the 

same as well as confirming that this design has a much higher wavelength 

sensitivity than the previous InPIInGaAsP(1.3Q) design. The TE values are 

around 25% larger than for the InPI1.3Q design and the TM values are larger by 

about 11%. 
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Compared to the theory the experimental wavelength sensitivities are 6-1 0% less 

than predicted for TE polarisations and about 5-8% less for TM polarisations. 

Again the discrepancies can be attributed to geometric tolerances and imprecise 

knowledge of band gap wavelengths and hence material refractive index. Since 

the difference between theory and experiment is slightly larger for these 

lnP/1.3Q/1.15Q interferometer chips, it would suggest that the extra error is down 

to tolerances in the 1.15Q material layer. 

Overall the results are very good and they show that using the two different 

InGaAsP compounds will improve the wavelength sensitivity of the 

interferometer to an extremely high level. There is well over 2Jr radians of phase 

change for a 1 nm wavelength change over the entire telecommunications C­

hand. The device also has relatively equal amounts of phase change for both TE 

and TM polarisations meaning the interferometer is polarisation-independent. 

The experimental phase changes indicate that a device as short as 2 mm should 

be able to detect 1 pm wavelength change, assuming a ±1 mrad noise floor, as 

long as it can be shown that the experimental wavelength sensitivities are the 

same for varying chip length. 

4.5.2.3. 8 mm and 4 mm Length Chips 

In order to determine whether the experimental wavelength sensitivities are 

indeed the same for different chip lengths, the results for both 8 mm and 4 mm 

length chips need to be looked at. 

First, the phase changes for wavelength changes around 1530 nm , 1550 nm and 

1570 nm for chips of length 8 mm are shown in Figure 4-45, Figure 4-46 and 

Figure 4-47 respectively. 
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Figure 4-45 Experimental phase changes for 100 pm wavelength shifts around 

1530 nmfor a 8 mm InP/1.3Q/1.1 5Q interferometer chip for both TE 

(circles/solid line) and TM (crosses/dashed line) polarisations 
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Figure 4-46 Experimental phase changes for 100 pm wavelength shifts around 

1550 nmfor a 8 mm InP/1.3Q/1.1 5Q interferometer chip for both TE 

(circles/solid line) and TM (crosses/dashed line) polarisations 
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Figure 4-47 Experimental phase changes for 100 pm wavelength shifts around 

1570 nmfor a 8 mm InP/1.3Q/1.15Q interferometer chip for both TE 

(circles/solid line) and TM (crosses/dashed line) polarisations 

Fitting the data to g1ves the overall phase changes around the three chosen 

wavelengths, as presented in Table 4-48. 

Wavelength 
TE phase change TM phase change 

(rad I nm) (rad /nm) 

1530 nm 5.26 5.28 

1550 nm 4.87 4.96 

1570 nm 4.67 4.61 

Table 4-48 Phase changes for 8 mm InP/1.3Q/1.15Q interferometer chips 

Finally, the phase changes for wavelength changes around 1530 nm, 1550 nm 

and 1570 nm for chips of length 4 mm are shown in Figure 4-49, Figure 4-50 and 

Figure 4-51 respectively. 
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Figure 4-49 Experimental phase changes for 100 pm wavelength shifts around 

1530 nmfor a 4 mm InP/1.3Q/1. 1 5Q interferometer chip for both TE 

(circles/solid line) and TM (crosses/dashed line) polarisations 
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Figure 4-50 Experimental phase changes for 100 pm wavelength shifts around 

1550 nmfor a 4 mm InP/1.3Q/1.15Q interferometer chip for both TE 

(circles/solid line) and TM (crosses/dashed line) polarisations 
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Figure 4-51 Experimental phase changes for I 00 pm wavelength shifts around 

1570 nmfor a 4 mm InP/1.3Q/1.15Q interferometer chip for both TE 

(circles/solid line) and TM (crosses/dashed line) polarisations 

The linear fits to the data gives the overall phase changes for the 2 nm around the 

three chosen wavelengths, as presented in Table 4-52. 

Wavelength 
TE phase change TM phase change 

(rad I nm) (rad I nm) 

1530 nm 2.53 2.61 

1550 nm 2.38 2.45 

1570 nm 2.17 2.16 

Table 4-52 Phase changes for 4 mm InP/1.3Q/1.15Q interferometer chips 

As would be expected, the values for phase change for the 8 mm and 4 mm 

length chips scale nicely with each other and the values for chips of length 

12 mm. 
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4.5.2.4. Chip Length Comparison 

The wavelength sensitivities from the three different chip lengths are compared in 

Table 4-53. 

Wavelength Sensitivity ( mrad I nm.mm) From Chip Length 

Wavelength 12mm 8mm 4mm 

TE TM TE TM TE TM 

1530 nm 666.7 668.0 657.9 660.1 633.6 651.4 

1550 nm 618.7 619.9 608.8 620.0 595.7 613.2 

1570 nm 575.8 579.9 583.3 575.6 542.2 540.5 

Table 4-53 Comparison of experimental wavelength sensitivities for 12 mm, 8 mm 

and 4 mm 1nP I 1. 3 Q/ 1.15 Q interferometer chips 

The values are in very good agreement with each other with a spread of only 

0.5-4% around the mean value. In general again the chips of length 12 mm have 

the highest sensitivity. 

The good agreement shows that the interferometers of this InP/1.3Q/1.15Q design 

will also have the ability to work well as a sensitive wavelength tracker and are 

independent on the chip length, though obviously the longer the chip, the larger 

the phase changes. An interferometer of this design and length 0.5 mm should in 

theory be able to detect as little as 3 pm of wavelength change. 

4.5.2.5. Repeatability 

Again the repeatability of the interferometers can be determined by taking 15 sets 

of data for a wavelength range of ± 1 nm around the chosen wavelength points in 

100 pm intervals. The mean value and the standard deviation of the phase values 

for each wavelength shift can show the variation in the data and determine 

whether the interferometer can be considered to have good repeatability. Plotted 

in Figure 4-54 is the individual phase change for each wavelength interval for a 

chip of length 12 mm for TM polarisation readings. 
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Figure 4-54 Mean phase change standard deviation for a 12 mm InP/1.3Q/1.15Q 

interferometer chip around 1550 nm for TM polarisation 

The data again shows an oscillatory nature in the readings across the wavelength 

range, which will be discussed next in Section 4.5.3. 

The variation between the readings for each wavelength shift is very small and is 

better than for the InP/1.3Q design. The standard deviation is a maximum of only 

0.012 over the entire wavelength ranges (around 1530 nm, 1550 nm and 1570 

nm) which works out as an error of just 1.6%, with an average of only 1%, which 

is a very small error over 15 readings. This suggests that this interferometer 

design will have an excellent repeatability. 

4.5.3. Experimental Errors 

The differences between the experimental values and the theoretical predictions 

can be attributed to geometric tolerances and the lack of a precise knowledge of 

the material band gap wavelength and hence its refractive indices. Some 

modelling carried out to determine the error in the refractive index and hence the 
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actual band gap wavelengths of the quaternary materials used is given in the 

Appendix. 

There are also some smaller experimental errors which also have to be considered. 

Firstly, as seen in the repeatability sections for both of the interferometer designs, 

there is something of an oscillatory nature in the phase change readings. This can 

be attributed to a spherical aberration. This is due to the fact that when the light 

diffracts from the chip endface into the far field it has a spherical wavefront. The 

light falls however not onto a spherical surface but the flat surface of the 

photodetector linear array. As such, the interference pattern spreads out on the 

array surface. This can be demonstrated by considering two fringe patterns, one 

with a central maximum and the other tr radians out of phase with a central 

minimum, as shown in Figure 4-55. Since the images are from the same chip and 

experiment the fringe period should be the same, however this is not the case. 
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Figure 4-55 Fringe image for a 12 mm lnP/1.3Q/1.15Q interferometer chip for 

TM polarised light at wavelengths 1549.6 nm (solid line) and 1549.9 nm (dashed 

line) 
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The period for the fringe image for the wavelength 1549.9 nm is 56 pixels while 

it is 51 pixels for the 1549.6 nm fringe image. This shows the image has spread 

out over the pixel range. 

For the purpose of these experiments this was not an issue as experimental phase 

values were being averaged over a 2 nm wavelength range. Over this range the 

interference pattern will go through more than 4Jr radians of phase change and 

so the overall change will average out the oscillatory error. 

If readings were needed for smaller wavelength changes then this error would 

have to be accounted for by a correcting algorithm which fixes the period of each 

fringe image to be the same. 

The fact that the period changes between readings also causes an error for the 

Fourier transform program as this uses a fixed period when calculating phase 

changes from interference patterns. The amount by which this skews the data can 

be determined by comparing a set of readings which have been calculated using a 

fixed period and a set of readings which have been calculated using the exact 

period for each interference pattern. These values are shown in Table 4-56 for a 

wavelength change around 1550 nm for a 12 mm InP/1.3Q/1.15Q interferometer 

chip. 
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Starting Wavelength (nm) Fixed Variable % Difference 
1549 0.718376 0.681548 5.40 

1549.1 0.716323 0.696705 2.82 
1549.2 0.74663 0.747025 0.05 
1549.3 0.771923 0.760297 1.53 
1549.4 0.78431 0.753658 4.07 
1549.5 0.75941 0.781422 2.82 
1549.6 0.74552 0.760256 1.94 
1549.7 0.732943 0.774003 5.30 
1549.8 0.731518 0.736691 0.70 
1549.9 0.719043 0.68744 4.60 
1550 0.721749 0.712879 1.24 

1550.1 0.745653 0.734643 1.50 
1550.2 0.794945 0.791626 0.42 
1550.3 0.772431 0.754075 2.43 
1550.4 0.740224 0.766509 3.43 
1550.5 0.753013 0.782383 3.75 
1550.6 0.730292 0.750701 2.72 
1550.7 0.723039 0.68853 5.01 
1550.8 0.706269 0.697054 1.32 
1550.9 0.73996 0.740095 0.02 

Table 4-56 Phase change sensitivities calculated using both fiXed and variable 

fringe periods for 12 mm lnP/1.3Q/1.15Q interferometer chip for wavelengths 

around 1550 nm and TM polarisation 

The data shows that there is some variation between fixed and variable periods. 

However, the overall phase change for the 2 nm wavelength range is negligible 

as can be seen in Figure 4-57. The fixed period method is therefore suitable to use 

for this set of experiments where the data is averaged over the 2 nm wavelength 

range. Again for smaller wavelength changes this would have to be corrected. 
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Figure 4-57 Experimental phase changes for 100 pm wavelength shifts around 

1550 nmfor a 12 mm InP/1.3Q/1.15Q interferometer chip calculated using both 

fixed (circles) and variable (crosses) periods 
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4.6. Conclusions 

The dual slab waveguide interferometer has the ability to detect and track input 

wavelength changes. This ability and the very high sensitivity to such changes 

make it capable of detecting very small wavelength changes in the picometer 

range as well as correctly determining whether the change is positive or negative. 

Interferometer chips were designed to produce very high wavelength sensitivities 

over the entire telecommunications C-hand. 

The design process involved producing a theoretical model of a dual slab 

waveguide structure using the materials Indium Phosphide (InP) and Indium 

Gallium Arsenide Phosphide (InGaAsP) which would maximise the potential 

sensitivity to wavelength change. The layer thicknesses were limited by the needs 

for the structure to have only single-mode operation in each waveguiding layer 

and to have enough power in each mode to produce an excellent interference 

fringe pattern. By plotting the waveguide dispersion, including material 

dispersion, the maximum dispersion points were found to be the upper thickness 

limit for each guiding layer. From this and factoring in manufacturing limitations 

two designs were produced. One with cladding layers of InP and guiding layers of 

different thicknesses of InGaAsP with a band gap wavelength of 1.3 Jim, denoted 

1.3Q. The second with the same essential structure but with an upper guiding 

layer of InGaAsP with a band gap wavelength of 1.15 11m, denoted 1.15Q. The 

substrate on which these layers were grown had to be heavily doped to make it 

highly absorbing at 1.55 Jim and as such two extra layers were also included 

between substrate and dual slab waveguide to act as highly absorbing buffer 

layers and to lattice-match the materials. The theoretical model predicted that 

these structures would have a very high sensitivity to wavelength change, in the 

order of 450-650 mrad I nm.mm for the InPI1.3Q design and 575-775 

mrad I nm.mm for the InP/1.3Qil.15Q design. 

Experiments were set up to vary the wavelength of a tunable laser source over a 

range of ±1 nm, increasing in 100 pm intervals, around 1530 nm, 1550 nm and 

1570 nm . These points being the higher, middle and lower ends of the 

telecommunications C-hand. The interferometer chips were held in a dual stage 
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peltier controlled thermal housing which maintains the chip temperature to better 

than ±1 0 mK . The polarisation of the light was set to either transverse electric 

(TE) or transverse magnetic (TM) polarisation using a fibre polarisation controller 

to an extinction ratio of better than -20 dB. Snapshot interference fringe images 

were taken from a 256-pixel infrared InGaAs linear photodetector array at each 

wavelength and then converted to relative phase values by a Fourier transform 

program. 

The design of both structures proved to be excellent as fringe images from each 

design had very good contrast ratios and were essentially free from notse. 

Experimental data was collected for three different chip lengths (12 mm, 8 mm 

and 4 mm ) for both structures. 

The InPIInGaAsP( 1.3Q) interferometer chips had a high sensitivity to wavelength 

change with the device of 12 mm having a phase change of 5.9 rad I nm forTE 

polarisation and 6. 7 rad I nm for TM polarisation around 1550 nm. This equates 

to an ability to produce around 6 mrad of phase change for a 1 pm wavelength 

change, which is well above the noise floor of the equipment. 

The averaged experimental values proved to be in very good agreement with the 

theoretical predictions, with TE values approximately 6-8% less than expected 

and TM values around 1-5% less. Comparing the wavelength sensitivity of each 

chip length showed that there was only a spread of 1-3% between the three chip 

lengths. This indicates that the interferometers ability to work well as a sensitive 

wavelength tracker is independent of chip length. 

The experimental results from the InPIInGaAsP(1.3Q)IlnGaAsP(1.15Q) design 

were also in good agreement with the theoretical model with both TE and TM 

values approximately 5-1 0% less than the predicted values. The comparison of 

different chip lengths proved to be just as good with a spread of 0.5-4% between 

the wavelength sensitivity values, demonstrating chip length independence also. 

The experimental values were greater than for the InPI1.3Q design by around 25% 

for TE polarisation and 11% for TM polarisation. This confirmed the theoretical 

prediction that this design would be more sensitive. 

The interferometer chips of length 12 mm showed to have a very high sensitivity 

to wavelength change with a phase change of 7.4 rad I nm for both TE and TM 
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polarisations around 1550 nm. This equates to more than 7 mrad of phase 

change for a 1 pm wavelength change, again well above the noise floor of the 

equipment. 

Both interferometer designs proved to have excellent consistency between 

repeated experiments with the InP/1.3Q design having an average of around 3% 

variation between readings and the InP/1.3Q/1.15Q design was even better with 

an average of just 1% variation. This indicates that both structures have the ability 

to produce consistent results time and again. 

The differences between the theoretical predictions and the experimental averages 

can be mainly accounted for by considering errors in the manufactured structures. 

Small inaccuracies in layer thickness will vary the overall phase changes due to a 

wavelength shift and small errors in the knowledge of the band gap of the 

compounds will mean that the refractive index differs in the actual structure from 

those used in the theoretical model. There are some experimental errors also due 

to spherical aberration. As the spherical wavefronts of the diffracting light from 

the chip endface form an interference pattern on the flat photodetector array 

surface, the fringe image will spread out. This results in the period of the 

interference fringes oscillating as the pattern goes through 2Tr radians of phase 

change. This problem is not so much of an issue for these experiments as the 

readings were averaged over the 2 nm wavelength range of each set of readings, 

though it would have to be addressed for monitoring smaller wavelength changes. 

Overall, both dual slab waveguide interferometers work extremely well with a 

very high sensitivity to wavelength change over the whole telecommunications C­

hand. Current commercial devices are accurate to approximately ± 10 pm and are 

not integrated into the laser chips. These two structure could produce the ability to 

detect ± 1 pm wavelength changes with devices as short as 2.1 mm for 

InP/InGaAsP(1.3Q) interferometer chips and 1.8 mm for the lnP/1.3Q/1.15Q 

design. 

However, around 25 °C, the 12 mm length interferometers have a thermo-optic 

coefficient of around -3 rad I K . This means that for the temperature controller 
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limits of ±10 mK, the resulting phase changes would be +2.5 mrad I mm. This 

would then become the noise floor of the device. 

Minimum device lengths would then have to increase to at least 5.3 mm for the 

InP/1.3Q design and 4.5 mm for the InP/1.3Q/1.15Q structure. These thermal 

issues and the thermo-optic coefficient of the devices will be discussed in the next 

chapter. 
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Chapter 5 : The Thermo-Optic Effect in III-V 

Semiconductors 

5.1. Introduction 

Design and fabrication of integrated photonic devices reqmres the prectse 

knowledge of material parameters such as the refractive index. This is especially 

important for devices where wavelength-dependence scales with refractive index, 

for example, distributed feedback lasers, interferometers, wavelength-multiplexers 

and demultiplexers. However, the refractive index of optical materials is not a 

constant parameter with respect to temperature. This variation is known as the 

thermo-optic effect. Knowledge of the temperature dependence of the refractive 

index is essential for the correct functioning of these wavelength-dependent 

devices, although it can also be exploited to advantage in the design of thermally 

activated devices, such as switches, modulators and filters. Direct extraction of a 

value for the thermo-optic effect from the measurement of the refractive index 

usually poses problems due to the weakness of the effect, so although there is 

much data on the refractive index over a wide range of wavelengths for most 

materials used in integrated photonics, the precise value for the thermo-optic 

effect is missing. 

In this chapter a method for determining the thermo-optic coefficient of the 

quaternary semiconductor compound Indium Gallium Arsenide Phosphide 

(lnGaAsP) used in the dual slab waveguide interferometer is established and 

values for the thermo-optic effect are obtained. 

5.2. Theory 

5.2.1. Thermo-Optic Effect 

As stated, the variation of the refractive index with temperature at a constant 

pressure is known as the thermo-optic effect. It is denoted by dn I dT where n is 

the refractive index of the material and T the temperature and hence is given in 
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units of inverse Kelvin or Centigrade. The values of dn I dT are relatively small 

compared to values of the refractive index, ranging in magnitude between 1 o-3 to 

10--{, K-1 and can be both negative and positive. For semiconductors, the effect is 

relatively large compared to most materials, usually in the order of 1 o-4 K- 1
, and 

positive. This means refractive index dependent devices made from 

semiconductors are particularly sensitive to temperature changes but despite this 

there is a substantial lack of data available reporting the thermo-optic coefficients 

of III-V semiconductor compounds. 

5.2.2. Measurement Using the Dual Slab Interferometer 

The basis of how the interferometer works remains the same, however movement 

of the interference pattern is due to the change in effective refractive index of the 

waveguiding modes because of changes in temperature of the device. This is due 

to the refractive indices of the layers in the interferometer being subject to change 

with temperature due to the thermo-optic effect. 

The phase shifts are again equal to the phase change between the two modes over 

the length of the waveguide, given by; 

(5.1) 

where L is the length of the interferometer chip and l:lfluu) represents the change 

in propagation constant in each mode, on this occasion according to; 

/1fJ11 (1) = ~ ( Nu(l) ( T2)- Nu(l) ( T;)) (5.2) 

with the effective refractive index denoted Nu(l) , given for the appropriate mode 

at temperatures I; and T; , at fixed input wavelength Au . 
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Since the change in effective mode index with temperature is dependent on the 

thermo-optic properties of the wave guiding layers, it follows that the thermo-optic 

coefficient of the InGaAsP guiding layers can be found by measuring phase shifts 

due to changes in temperature, as putting Eqs. (5.1) and (5.2) together gives; 

(5.3) 

where 8.T = I; -I; . 

This becomes more apparent if the effective refractive index of a mode is 

considered as a function of the refractive indices of the layers it propagates 

through; 

(5.4) 

The index of each layer is itself a function of temperature and as such, the 

effective thermo-optic coefficient, dN / dT of each mode can be expressed as the 

summation of the following partial derivatives, as per the chain rule; 

dNuuJ 8NuUJ dn1 8Nuul dn2 8NuuJ dn3 --=---+---+---
dT 8n1 dT 8n2 dT 8n3 dT 

(5.5) 

where the dn1(2•3l I dT terms correspond to the thermo-optic coefficient of each 

layer and the 8NuUJ I 8n1(2•3l terms are sensitivity functions which indicate the 

confinement of the mode to the appropriate layer. 

Hence the InGaAsP layer thermo-optic coefficient, dn2 I dT can be found as all 

other variables can be measured, calculated or quoted from other work. 
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5.3. Review of Theoretical and Experimental Methods 

Although there is plenty of data available on the refractive index for InGaAsP and 

lnP semiconductor compounds (1-4], there is very little reported results for the 

thermo-optic coefficients of lnP and there appears to be nothing available for 

lnGaAsP. 

There have been different theoretical relations and experimental techniques 

proposed for finding a value for the thermo-optic effect in semiconductors. This 

section reviews the more established methods and compares the data available for 

lnP. 

5.3.1. Theoretical relations 

There are two main methods for calculating the thermo-optic coefficient, namely; 

1) The application of empirical relations between the refractive index and the 

energy bandgap of a material. In this case the refractive index function is 

determined only by the displacement of the intrinsic absorption edge. 

2) The application of empirical dispersion relations analogous to those of 

Sellmeier or Lorenz-Lorentz in which thermo-optic coefficients can be derived 

from the temperature dependence of the intrinsic frequencies and dispersion 

parameters of equivalent oscillators. 

5.3.1.1. Correlation between Energy Gap and Refractive Index 

The two most interesting optical properties of semiconductor materials are their 

refractive index and optical energy bandgap. It naturally followed that a few 

empirical relations relating the two parameters would be developed [5-9]. In these 

relations the refractive index is independent of temperature but it has been shown 

[ 1 0] that these expressions give a good approximation for the temperature 

coefficient of the refractive index. 

The first proposal, made by Moss [5-7], was based on the very general concept 

that the energy levels in a solid will be scaled down by a factor of 1 I E~r , where 

£elf is an effective relative permittivity, which approximates to the square of the 
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refractive index. Hence the minimum energy required to raise an electron into an 

excited state (i.e. the optical band gap energy Eg) would vary as 1/ n4 given by 

the relation; 

(5.6) 

where K is a constant equal to 95 e V . This was later revised to I 08 e V by 

Ravindra et al. [9]. 

By analysing a wide range of materials [ 11 ], Ravindra took this concept further 

and established a linear relationship between n and Eg ; 

n=a+fJEg (5.7) 

with a = 4.084 and f3 = -0.62 e v-' . This relationship was proven to be more 

valid than the Moss relation over a wide range of semiconductors, independent of 

structure. 

A third empirical relation was proposed by Herve and Vandamme [8] where; 

n = 1 +( A J
2 

Eg+B 
(5.8) 

with A= 13.6 eV and B = 3.4 eV. 

Herve and Vandamme [10] took the relations by Moss (5.6), Ravindra et al. (5.7) 

and themselves (5.8) and produced expressions for the thermo-optic effect in 

order to compare their accuracy. The temperature dependence of the refractive 

index in these equations comes from the variation of both Eg and the constants 

involved with temperature and so they considered the constants to be linear 

functions of T . The expressions are as follows; 
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Moss: 

Ravindra et al. 1 
: 

]__ dn _]__( dK __ 1 dEg J 
n dT 4 KdT Eg dT 

(5.9) 

(5.10) 

where they only consider the constant f3 to be linearly temperature dependent. 

Herve-Vandamme: (5.11) 

where again only the constant B is a linear function of T . 

Substituting A=13.6 (eV) and Eg+B=[(13.62 /n2 )-1T
2 

into Eq. (5.11) gives 

the comparable relation; 

(5.12) 

The authors compared the three relations ((5.9), (5.10), (5.12)) to experimental 

values for a variety of semiconductors and found that in general for materials with 

band gap below 1.43 eV that their relation (5.12) was best, followed by Ravindra 

et al. (5.10) with Moss (5.9) as the poorest. For materials with band gap above the 

1.43 e V threshold, the Moss relation was considered the best, followed by Herve­

Vandamme while the Ravindra relation was poor. Overall, the Herve-Vandamme 

relation had the better behaviour. 

Since InP is one of the materials used in the dual slab interferometer structures it 

is worth calculating the values of its thermo-optic coefficient using each of the 

three relations and comparing the results, as given in Table 5-1. 

1 In the paper [ 1 0], the authors have the last term as 1 /(a + fJT) but this appears to be an error 

and the term should in fact be 1 /(a + f3 E g) as shown. 

189 



Relation dnldT (xlO-'~K- 1 ) 

Moss 1.74 

Ravindra et al. 1.68 

Herve-Vandamme 1.66 

Table 5-l Comparison of InP thermo-optic coefficient data for the three empirical 

relations 

The three relations give values of the thermo-optic coefficient which are of the 

same order of magnitude but differ after the first decimal place. This illustrates 

that producing a definitive theoretical value for thermo-optic coefficients is 

difficult as the three values differ by a reasonable amount. The relations do 

however provide a satisfactory qualitative description of the temperature 

dependence of the refractive index in that they can determine the sign and value of 

dn I dT to one order of magnitude. The fundamental flaw with these relations is 

that the values quoted above are for all wavelengths and temperatures and so they 

do not take into account the fact that the thermo-optic effect is non-linear, i.e. the 

value of dn I dT will differ depending on the temperature (as well as wavelength) 

it is measured at. 

5.3.1.2. Sellmeier Type Dispersion Relations 

The second method for obtaining an empirical relation for the thermo-optic effect 

is to consider an oscillator model and examine how the oscillator wavelengths and 

strengths vary with temperature. This was first proposed by Ramachandran [12], 

who devised a semi-empirical theory to characterise the thermo-optic effect in 

crystals, in which he employed a series of oscillator strengths and wavelengths as 

adjustable parameters and the dispersion was fitted to experimental data. He found 

a relationship between the temperature shifts of various parameters and 

fundamental oscillator wavelengths; 
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dn 2 " ( 1 d A; J 2n dT = K -3a(n -1)+ ~F(A,A;) A; dT (5.13) 

where a is the thermal expansion coefficient and K is effectively a constant over 

a limited temperature range and 

(5.14) 

with k; a constant, A; the resonant wavelength of the i1
h oscillator and A is the 

wavelength of the incident radiation. The problem with this formulation is that 

there are far too many parameters and no general expression was presented for 

determining their variation with temperature - critical for calculating dn I dT. 

Tsay [13] produced a two-oscillator model for dn I dT based on the variation with 

temperature of the fundamental optical transitions in crystals, which are the 

energy gap Eg and the fundamental phonon frequency m0 , and their 

corresponding optical oscillator strengths. In their simple analysis, they obtained 

the electronic and lattice susceptibility at frequency m respectively as; 

(5.15) 

where mpe and OJP1 are the effective electronic and lattice plasma frequencies 

respectively, OJg is an average optical band gap and damping effects have been 

neglected. The refractive index in the transparent region of optical materials can 

be obtained by considering just the real part of the dielectric function and so; 

(5.16) 

One then obtains a sum of electronic and lattice contributions for dn I dT ; 
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dn ( dn) ( dn) 
dT= dTe+ dT, 

(5.17) 

where; 

2n (-d_n ) = 4JrX [-3a- _2 __ d_OJ_g ----=-1--=-J 
dT e e OJg dT 1-a/ /OJ~ 

(5.18) 

2n(dn) =4Jrx,(-3a-~de* -~dwa 1 l 
dT 1 e * dT OJ0 dT 1 - OJ2 I OJ~ ) 

(5.19) 

where a is the thermal expansion coefficient and e * is the transverse effective 

charge. The above two equations were used to explain thermo-optic behaviour of 

some semiconductors but the evaluation is critical for many unknown parameters 

and the procedure is not straightforward. These equations are also unable to 

explain the nonlinear behaviour of the thermo-optic effect with temperature. 

Harris et al. [ 14] proposed an empirical relation for the dispersion of dn I dT 

which relates the observed values of dn I dT to the wavelength A and the 

wavelength corresponding to the energy gap Ag by the expression; 

(5.20) 

where a and b are constants and the normalised wavelength R = A 2 /(A 2 -A;) . 

This relation was without any theoretical justification but it was re-examined by 

one of the authors, Johnston [ 15], in light of the phenomenological calculations 

carried out by Tsay et al. [13]. The very small lattice contributions (5.19) were 

neglected and it was noted that the normalised wavelength R occurs explicitly in 

Eq. (5.18) as R =A 2 I( A 2 - A;)= 11(1- OJ2 I OJ~) and implicitly in Eq. (5.15) as one 

can write OJpe = Kwg where K is a constant which depends on the material and 

so; 

192 



This allows Eq. (5.18) to be written as; 

For practical data interpolation, this was simplified to; 

2n dn = AR+BR2 

dT 

(5.21) 

(5.22) 

(5.23) 

All these methods require many parameters and are complicated to work with so 

no InP values were able to be determined. 

Also, most of these published works on semiconductors generally assume that the 

thermo-optic coefficients are nearly independent of temperature over a wide 

temperature range and hence the reported dn I dT calculations are assumed nearly 

constant over a temperature range of a few hundred degrees. In practice this is not 

the case. 

5.3.1.3. Handbook of Thermo-Optic Coefficients 

The most comprehensive collection of thermo-optic coefficients to date is 

published in a handbook by Gorachand Ghosh [ 16]. He has produced a physically 

meaningful dispersion relation [ 17, 18] for analysing the thermo-optic coefficients 

of all optical materials. The model considers the temperature coefficient of the 

optical excitonic band gap and optical isentropic band gap to be the contributing 

factors to the thermo-optic effect. An energy band diagram [ 16] for optical 

materials is shown in Figure 5-2. The excitonic band gap ( Eeg ) corresponds to the 

energy of peak reflectivity and the isentropic band gap ( E;g) is the name assigned 

by Ghosh to the energy gap corresponding to a temperature-insensitive band-to-
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band transition lying between the electronic absorption band and the excitonic 

band. 

Electrons 
Isentropic band 

Excitonic band 

Lattice/ionic absoption band 

Valence band 

Figure 5-2 A Schematic energy-level diagram for isotropic materials 

Ghosh [ 19] derived the equation for representing the thermo-optic coefficients in 

terms of the linear expansion coefficient a , the temperature coefficient of the 

excitonic band gap, and the isentropic band gap as; 

dn 2 ( 1 dEeg Eig J 2n- = ( n -I) - 3a ---------=---"---:=--
dT Eeg dT (Ei~- £ 2

) 

(5.24) 

where E is the photon energy. Eq. (5.24) is rewritten in terms of the normalised 

dispersive wavelength R as; 

2n dn = Kz (-3aR __ I_ dEeg R2J 
dT Eeg dT 

(5.25) 

where R = (A 2 I (A 2 
- Ai!)) and the constant K is related to the low-frequency 

refractive index n0 in the IR region as K 2 = E0 -1, where E0 = n~. When a 

constant dn I dT IS considered for a small temperature interval, Eq. (5.25) is 
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transformed into a form of the Sellmeier relation that represents the product of 

refractive index and thermo-optic coefficient: 

2n dn = GR+HR2 

dT 
(5.26) 

The constants G and H are related to the thermal expansion coefficient a , and 

the temperature coefficient of the excitonic band gap Eeg, respectively, by the 

relations G = -3aK2 and H = ( -11 Eeg)(dEeg I dT)K 2
• From Eq. (5.26), one can 

see that the product is controlled by two factors which normally compete with one 

another to give positive or negative values of the thermo-optic coefficient. The 

first factor, the contribution from the thermal expansion coefficient, is negative 

because a is normally positive for optical materials. The contribution is also 

small because a is of the order of 1 o-6 K- 1
• The second factor, the temperature 

coefficient of the excitonic band gap, has two contributions. The second part 

(dEeg I dT) is of the order of 10-4 eVK-1 and is normally negative. Since the first 

part ( -1/ Eeg) is also negative, this gives H a positive contribution which is 

larger than G , yielding positive values of dn I dT for most semiconductor optical 

materials. 

Values of the thermo-optic effect for a number of materials were calculated and 

for lnP in particular it was found that dn I dT = 3.217 x 1 o-4 K- 1 at A. = 1.0 pm and 

T = 20 °C . There is however no thermo-optic data for ternary or quaternary 

semiconductor alloys. 

5.3.2. Experimental Techniques 

Various experimental techniques have been developed to determine values for the 

thermo-optic effect in semiconductors. These include those based on prism­

shaped specimens [20, 21], diffraction grating based photonic devices such as 

optical demultiplexers and couplers [22, 23], interferometric based methods [24, 

25] or even the use of multilayer optical cavities [26]. 
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One such interferometric based method is the multiple-beam interferometry 

technique used by Cocorullo et al. [24, 27]. This technique is direct and is based 

on the measure of the temperature variation required to cause a complete optical 

detuning of a structure working as a Fabry-Perot etalon, i.e. an optical cavity 

defined by two parallel opposite mirrors where multiple-beam interference takes 

place (Section 4.2.4.1 ). This sort of test fits the requirements relating to the 

realisation of integrated photonic components since pre-processed materials, such 

as semiconductor wafers or chips, can easily have their faces polished to create 

semi-reflecting mirrors which allows the determination of the thermo-optic effect 

directly in bulk materials. It is also viable for basic integrated photonic structures, 

such as planar or channel waveguides with cleaved reflecting end-facets. The 

theory behind the technique involves basic Fabry-Perot etalon formulae such as 

the Airy sum formula which describes the transmitted light intensity, I', across 

the etalon cavity as the result of the interference amongst back and forth travelling 

coherent waves. This is given by; 

I' = 10 -----,-----

1 
4F2 

. 2 +-2-sm rp 
:rr 

(5.27) 

where 1° is the incident light intensity and F is the finesse of the etalon, 

dependent on the reflectance R of the cavity surfaces and gtven by 

F = :rrJR (1- R). The phase coefficient is given by rp = 2:rrnl cos B I A with l the 

cavity length and B the incident angle after refraction inside the etalon. Material 

absorption losses, usually very low at the characteristic wavelengths coinciding 

with those of the photonic devices, are neglected. The phase coefficient rp whose 

variation generates the interferometric fringe pattern has a temperature 

dependence due to changes in the input wavelength A , the refractive index n and 

cavity length l and so; 

drp =(2:rr/cosB) dn +(2:rrncosB) dl 
dT A dT A dT 
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where dl I dT, taking into account the thermal expansion of the cavity, is given by 

al!1T , a being the thermal expansion coefficient of the material. Therefore, a 

heating of the etalon structure induces a variation of the phase coefficient that 

results in an intensity modulation of the light transmitted by the cavity. The 

magnitude of the thermo-optic coefficient can be directly calculated through the 

relation; 

dn = -na 
dT 4l!::.T"12 

(5.29) 

where !::.T"12 is the temperature variation required to cause orp = ;rr I 2, i.e. a 

complete detuning of the cavity. Therefore, the temperature variation of a test 

structure which causes the transmitted signal of the etalon to switch from one 

maximum to the nearby minimum is measured and from it values of the thermo­

optic effect are calculated. This method has been used [28] to give a polynomial 

fit of experimental data at 1.5 pm to be given by the following relation for bulk 

InP; 

(5.30) 

Which gives a room temperature value of 2.00 x 10-4 K-1 though the estimated 

error on the data is 8%, mainly due to the uncertainty in the actual sample 

temperature at each measurement step. 

A technique using prism-shaped specimens to measure dn I dT was developed by 

Bertolotti et al. [20]. They carried out measurements on a range of 

semiconductors, including InP, using the technique of minimum deviation m 

prisms made of the semiconductor material under study. This technique involves 

determining the refractive index of the material from the relation; 

sin()~)( a+ BD) n = _....:c....::..:.....:.._--":.:.. 

sin(}i)a 
(5.31) 
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where a is the angle of the prism edge and (}n is the minimum refractive angle, 

which is a function of wavelength and temperature. By varying the temperature 

over a range of 15-35 °C and measuring the minimum refractive angle, values 

for dn I dT for a range of wavelengths from the absorption edge to 12 f.Jm were 

calculated. For InP at 1.55 f.Jm, the value of the thermo-optic coefficient was 

found to be about 2 x 1 o-4 K-1 (reading from plot as opposed to a given value) 

with a relative error for the data as large as 20% due to the error in the angle 

determination. Since the angles of the prisms do not depend on temperature, the 

error however does not affect the values of dn I dT as a function of temperature 

but only its absolute value. 

A technique for accurately measuring the refractive index, and hence the thermo­

optic effect, of doped and undoped InP by means of a grating coupling technique 

was reported by Martin et al. [22]. Samples consist of a thick guiding layer of 

intrinsic InP grown onto a doped lnP substrate with a grating etched into the top 

surface. The method involves coupling a plane monochromatic wave incident 

onto the structure to the waveguiding modes through the grating etched into the 

top layer. When guided modes are excited, one can observe enhanced reflections 

as well as coupled waves. Providing that the grating period is uniform, the optical 

spectrum is narrow and the sample temperature is maintained constant, extremely 

sharp reflection peaks are measured. This means that the refractive index can be 

determined to a very high accuracy since it deduces from the resonant angles as; 

. (} mA n=sm +-
A 

(5.32) 

where (} is the resonant angle, A is the grating period and m is the grating order. 

By varying the temperature of the device for a fixed wavelength, values of the 

thermo-optic effect for the doped InP substrate were found. For ann-doped InP 

substrate with doping level of N = 3.2 x 1018 em -J at a wavelength of 1.557 j.Jm, 

dn I dT was calculated to be (1.88 ± 0.02) x 10-4 K-1 around room temperature. It 

can be presumed than the carrier effects depend only slightly on temperature so 
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the variation m refractive index of undoped InP will be around the same. 

Although this method has only a very small error, corresponding to the 0.01 K 

experimental temperature accuracy, the problem with this technique is the 

necessity of such a complex test structure. 

Another technique for finding the thermal dependence of the refractive index of 

InP based on an integrated photonic device was proposed by Gini and Melchior 

[23]. They determined the thermo-optic coefficient by measuring the transmission 

wavelengths of a temperature-controlled n- In+- InP integrated optical 

demultiplexer as a function of device temperature. It works by feeding light from 

an input channel waveguide into a planar waveguide structure where it spreads out 

and is diffracted by a deeply etched reflective grating. The curved grating focuses 

the light onto a focal line at a reflection angle dependent on the incident 

wavelength. Four laterally spaced output waveguides are placed at the focal line 

and are coupled to single-mode fibres. The maximum transmission from the input 

to a given output is achieved when; 

(5.33) 

where d is the grating constant, a and /3; the input and output angles on the 

grating, m the working order, A-max the wavelength for maximum transmission, 

and neff is the effective refractive index of the planar waveguide structure. By 

varying the temperature and finding the wavelengths with maximum transmission, 

the effective refractive index of the planar waveguide was calculated. The 

variation of refractive index of the InP is assumed to be the same as for the 

effective refractive index of the waveguide structure. The thermo-optic coefficient 

was found to vary with wavelength in the range 1.2 to 1.6 pm over a temperature 

range of 10 to 60 °C, given by the quadratic expression; 

dn (A.)= 8.36x 10--4 -8.194x 10--4 A+ 2.6x 10--412 

dT 
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with A in )..till. So at room temperature and a wavelength of 1.55 f.im, the thermo­

optic coefficient of InP would be 1.91 x IO--'~ K- 1 
• Again this technique, though 

accurate, requires a very complicated integrated photonic set-up. 

5.3.3. Review of Available InP Thermo-Optic Coefficient Data 

Values of the thermo-optic coefficient for InP using both the empirical and 

experimental methods previously discussed are grouped together in Table 5-3 to 

show the disparity of the data available and to determine which value of dn I dT 

should be used with this work. It is not possible to quote all data at the same 

wavelength and temperature range due to work being carried out over different 

ranges but where possible values will be quoted at 1.55 f.im and room 

temperature. 

dnldT Quoted at 
Type Source Ref. 

(x10--4K-1
) A(f.lm) T(°C) 

Moss 1.74 all all [1 OJ 

Theoretical Ravindra et al. 1.68 all all [10] 

Herve-Vandamme 1.66 all all [10] 

Cocorullo et al. 2.0 1.5 25 [28] 

Martin et al. 1.88 1.56 27 [22] 
Experimental 

Gini-Melchior 1.91 1.55 10- 60 [23] 

Bertolotti et al. 2.0 1.55 15- 35 [20] 

Ghosh 3.22 1.0 20 [16] 
Data 

Landolt-Bomstein 0.86 5-20 -173-127 [29] 
Handbooks 

IN SPEC 2.3 1.0 - [30] 

Table 5-3 A list of published values of the thermo-optic coefficient for InP 
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Although there is not a good agreement between the values, they are all in the 

same order of magnitude. The experimental values taken on their own however 

are close together and in general in the same wavelength and temperature range in 

which the work reported in this chapter is carried out. So for the purpose of these 

experiments, an averaged value for the thermo-optic coefficient of InP based on 

the results from the experimental methods will be used. It is calculated as 

dn I dT = (1.95 ± 0.05) x 10--4 K-1
• 

5.3.4. Applications 

The thermo-optic effect can also be exploited for the design of active devices, like 

switches [31, 32], modulators [33], resonators [34] and filters [35]. 

One example is an optical switch which uses a dynamic local index gradient 

induced in an InGaAsP/InP Y-junction waveguide switch [31]. Digital optical 

switches which are fast, compact, low loss and wavelength independent are major 

components in future optical networks and telecommunications applications. This 

switch's primary mechanism is to induce a localised index gradient across an 

input waveguide by injecting carriers into the core layer of the waveguide. 

However, the switch also works by heating the device, giving rise to a change in 

refractive index due to the thermo-optic effect. The change in refractive index 

causes light to change from travelling down one branch of the Y -junction to being 

guided down the other. The switch has a contrast ratio of 1 0 dB and response time 

of approximately 500 ns . Although this is around 1 00 times slower than the 

carrier induced mechanism, it shows that the thermo-optic effect can be utilised 

for such devices. 

A second device which uses the thermo-optic effect is a low-power vertically 

coupled microring resonator demonstrated by Christiaens et al. [34]. Microring 

resonators are compact, scalable and versatile and have been demonstrated in 

applications such as wavelength conversion and all-optical logic gates. 

Wavelength tunable devices are desirable and one method for achieving this is 

through thermo-optic tuning. This resonator is fabricated from an epitaxial layer 

structure of alternating InP and InGaAsP (A = 1.3 pm) layers. The wavelength of 
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the light dropped by the resonator is shifted on application of an input power to 

contact resistors which heat the device. Tuning can be achieved up to a range of 

16 nm for a low power consumption of just 50 m W . Although this device 

requires complicated processing, it indicates how the strong thermo-optic effect in 

III-V semiconductors can be harnessed to produce tunable devices with limited 

power consumption. 

5.4. Theoretical Predictions 

Unlike in the previous chapter (Section 4.3.3.4), the phase sensitivity to 

temperature change in the dual slab waveguide interferometer cannot be directly 

predicted as the thermo-optic coefficient for both the 1.3Q and 1.15Q materials is 

unknown. However by considering a range of possible thermo-optic coefficients 

for both materials, an expected range of phase change due to temperature variation 

can be calculated for both the lnP/1.3Q and lnP/1.3Q/1.15Q structures. This is 

again achieved by modelling in the 1-D mode solver program, SLAB [36]. 

The range of possible thermo-optic coefficients can be suggested by considering 

two points; 

Firstly, that the thermo-optic coefficient appears to mcrease as bandgap 

wavelength increases. This seems to be the case as AlAs has a thermo-optic 

coefficient of 1.43 x 10-4 K-1 while GaAs, an alloy with larger bandgap 

wavelength but of similar lattice constant, has a coefficient of 2.67 x 10-4 K-1 [26]. 

A reasonable assumption would be that both InGaAsP compositions will have a 

thermo-optic coefficient larger than that for InP ( 1.95 x 10-4 K-1
) but less than for 

InGaAs (which is unfortunately also unknown), as they have the same lattice 

constant but increasing bandgap wavelength (Figure 4-1 ). 

Secondly, the thermo-optic coefficient for 1.3Q should be larger than for 1.15Q as 

it has a larger bandgap wavelength. This can be confirmed as [3 7] has reported 

that the ratio between the thermo-optic coefficient of 1.1 Q and 1.3Q is 0.81 . 

Using this, in order that the 1.15Q materials has a thermo-optic coefficient greater 
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than 2 x 10--4 K-1 
, the thermo-optic coefficient of 1.3Q must be at least 

2.5x10-4 K-1
• 

As such, the two chip structures will be modelled with values for thermo-optic 

coefficient of 1.3Q in the range 2.5x10--4K-1 -3.5x10--4K-1 with those for 1.15Q 

a ratio of0.81 less. 

The actual bandgap wavelengths (see Appendix) for the 12 mm chips used in 

these experiments were approximately 1.289 pm for 1.3Q and 1.156 pm for 

1.15Q so the theoretical calculations here will use these values. 

The resulting phase changes predicted for a one degree change in temperature 

around 25 °C are shown in Figure 5-4 and Figure 5-5 for the two chip structures, 

and for both transverse electric (TE) and transverse magnetic (TM) polarisations. 
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Figure 5-4 Predicted temperature sensitivity for InP/1.3Q structure around 

25 °C forTE (solid line) and TM (dashed line) polarisations 

203 



6 
E 

-150 

~ -200 

f::! 
5 
.c 
:~ -250 
·u; 
~ 

r:rJ 

~ -300 
.... 
0 
0.. 
E 
0 

E-
-350 

2.0 2.2 2.4 2.6 2.8 3.0 

1.15Q dn/dT (xI 0
4

) 

Figure 5-5 Predicted temperature sensitivity for JnP/1.3Q/1.15Q structure around 

2 5 ° C for TE (solid line) and TM (dashed line) polarisations 

The predicted values indicate that the phase changes will be easily measurable for 

even a small temperature variation at the lowest predicted thermo-optic coefficient 

value of the 1.3Q material. They also show that the InP/1.3Q/1.15Q design will 

have a larger sensitivity to changes in temperature. These values should also 

provide a platform for comparing with experimental values. 

Note that in principal both of these plots can go to zero temperature sensitivity 

which would produce an athermal device. However, the materials needed to 

achieve this would have a refractive index less than that of lnP and as such 

waveguiding would not be possible. 

5.5. Experimentation 

5.5.1. Experimental Set-up 

The experimental set-up for measuring phase shifts due to changes in 

temperatures is the same as for wavelength tracking experiments, described in 
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Section 4.4.1 and shown again below in Figure 5-6. It consists of light from a 

tunable laser source being coupled into the endface of an interferometer chip via a 

single-mode fibre looped in a fibre polarisation controller. The output interference 

pattern is detected by a 256-pixel infrared InGaAs linear photodetector array 

where the image is stored then converted into a relative phase value via a Fourier 

transform. The temperature of the interferometer chip is controlled by a dual stage 

peltier control housing. 

D 

Fibre PoiU•ation 
COO!roDer 

Temperature Contol D 
Board• 

,------------; 

Chip Housi"'l 

Figure 5-6 Schematic of experimental set-up 

5.5.2. Experimental Method 

The polarisation of the input light IS agam set using the method outlined in 

Section 4.4.2.3, upon which the polariser is removed from the set-up and the 

cleaved fibre end is positioned very close to the interferometer chip endface in 

order to produce a good fringe image on the detector array. The temperature of the 

housing is then allowed to stabilise at a set point before experiments are 

undertaken. 

General experiments involved fixing the input wavelength to 1550 nm, chosen 

because it is the midpoint of the telecommunications C-band, and moving the 

temperature ofthe device in 0.2 °C intervals from 25.0~25.4 °C. It was decided 

that in order to get an accurate value for the thermo-optic coefficient of the 
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interferometers, repeated experiments over a small temperature change was the 

best approach. Other experiments over larger temperature ranges were also carried 

out. The temperature of the housing was allowed to stabilise for 15 minutes 

between temperature changes. 

At the end of this 15 minute period, a snapshot fringe image was taken and stored 

as a data file consisting of the arbitrary intensity measurement of each of the 256 

pixels. The pixel intensities of each of the readings were then put through the 

Fourier transform program to produce relative phase values for each image and 

the phase difference between adjacent fringe images could then be calculated. 

Experiments were carried out for chips of length 12 mm of each of the two chip 

designs. 

5.6. Results and Analysis 

5.6.1. General Temperature Changes 

Initial experiments were carried out to determine both a rough estimate for the 

temperature sensitivity of the dual slab interferometers and to see whether there 

was a linear response. Readings were taken on interferometer chips of length 

12 mm for both the InP/1.3Q and InP/1.3Q/1.15Q structures. Chips were 

subjected to a temperature change of 25.0 °C to 26.0 °C, increasing in 0.1 °C 

intervals, at a laser output wavelength of 1550 nm with a polarisation extinction 

ratio of at least -20 dB. The resulting average phase changes for both designs are 

plotted in Figure 5-7. 

206 



0.0 181'· •• 
X 

-0.5 0 

X 
~ 

"0 
o:l -1.0 -!::-
QJ 

>(· •• bll 
1::: 

-1.5 o:l 
X 0 .c 

u · .. x QJ 
<J) 

o:l -2.0 0 .c 
p... 
QJ 

X. 
> 
·~ -2.5 x.· .. 0 
~ '·.~ 

-3.0 

x 
-3.5 

25.0 25.2 25.4 25.6 25.8 26.0 

Starting Temperature (
0
C) 

Figure 5-7 Experimental phase changes for 0.1 °C temperature shifts between 

25 °C and 26 °C for both 1nP/1.3Q (circles/solid line) and lnP/1.3Q/1. 1 5Q 

(crosses/dashed line) interferometer designs 

The experimental phase changes do appear to change linearly with temperature 

and fitting the data gives the overall phase change for the temperature range, i.e. 

the thermo-optic coefficients of the chips, as -2.53 rad I K for the lnPI1.3Q 

interferometer and -3.31 rad I K for the lnPI1.3Qil.15Q chip design. These 

values can be converted to temperature sensitivities of -211 mrad I K.mm and 

-276 mrad I K.mm respectively. 

When compared to the theoretical predictions in Figure 5-4 and Figure 5-5, these 

values appear to have the same ratio between the lnPI1.3Q and InPI1.3Qil.15Q 

temperature sensitivities as the modelling. 

The values indicate a thermo-optic coefficient of around 3.1 x 10-4 K- 1 for 

InGaAsP(l.3Q) and hence around 2.5x10-4K-1 for InGaAsP(l.15Q). 

These values are just a rough estimate so in order to determine the thermo-optic 

coefficient ofboth chip structures more accurate readings need to be taken. 
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5.6.2. Interferometer Thermo-Optic Coefficient 

Repeated readings were taken from 25.0-25.4 °C in 200 mK intervals for chips 

of length 12 mm of both InP/1.3Q and lnP/1.3Q/1.15Q structures in order to 

determine an accurate mean value for the thermo-optic coefficient of each 

structure. 

Figure 5-8 shows the chip temperature over such a set of readings. The plot shows 

that the temperature has definitely settled to within a good control of the set point 

by the time readings are taken before the next temperature change. 
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Figure 5-8 Graph of inner thermistor temperature against time showing 

experimental method and temperature control 

Figure 5-9 and Figure 5-l 0 show the mean and standard error of the relative phase 

value for both TE and TM polarisations for the InP/1.3Q and lnP/1.3Q/1.15Q 

interferometers respectively. 
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The plotted data shows there is a relatively high spread of values which indicates 

the difficulties of controlling precisely the temperature and confirms the need for 

repeated values to establish an accurate mean. The mean values confirm what was 

theoretically predicted from the modelling. Firstly that InP/1.3QI1.15Q chips have 

a larger temperature sensitivity than lnPI1.3Q structures, and secondly that TE 

and TM values are relatively equivalent but TM sensitivities are marginally higher 

for the InPI1.3Q design while TE sensitivities are slightly higher for the 

InPI1.3QI1.15Q design. 

The values for the thermo-optic coefficient of each chip design can be calculated 

and are given in Table 5-11. 

InPI1.3Q InPI1.3QI1.15Q 

( mrad I K.mm) ( mrad I K.mm) 

TE -225.4±6.7 -270.0±17.0 

TM -226.0±6.9 -264.9 ± 11.2 

Table 5-11 Thermo-optic coefficient for InP/1.3Q and InP/1.3Q/1.15Q chip 

structures 

5.6.3. Derivation of Thermo-Optic Coefficient Equation 

Phase shifts due to temperature changes for the dual slab waveguide 

interferometer were given in Eq. (5.3) as; 

!1¢ = 2JLL!1T [dN" _ dN1 ] 

Au dT dT 
(5.35) 

Since this work involves a variation in temperature it is important to include 

thermal expansion as it will have a larger effect than for the fixed temperature 

work in Chapter 4. 

It is assumed that the waveguide layers will expand equally and the thermal 

expansion of the substrate will dominate the waveguiding layers due to having a 
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thickness of 350 pm compared with just a total of 8 pm for the deposited layers. 

The thermal expansion coefficient, a of InP ( 4.56 x 1 o-6 K-1
) will therefore be 

used for the whole chip. Effects due to interlayer strain leading to stress-optical 

effects will be neglected. 

Therefore rearranging Eq. (5.35) and including thermal expansion, the induced 

phase change, 11¢ becomes; 

where for a small change in temperature, 11T = T2 ~ T; , the chip length and 

effective refractive index at I; will be given by; 

L(T2 ) = L(T;) + aL(T; )11T (5.37) 

and 

(5.38) 

Eqs. (5.37) and (5.38) can be substituted into Eq. (5.36) to give; 

where to simplify matters, the upper and lower terms are treated separately. 

Expansion and simplification leads to; 

11"' = 2" L (T.) 11T [ dNu(l) ( T;) +aN (T.) + ai1T dNu(l) ( T;)] (5 .40) 
'f'u(I) Au I dT u(i) I dT 

The overall induced phase shift can then be written as; 
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l1t/J= 2;rLI1T[dNu _ dN1 +a(N -N )+ai1T(dNu _ dN,)] 
Au dT dT !I I dT dT 

(5.41) 

where all reference to (I;) has been removed for clarity. In practice the final term 

will be vanishingly small and will be neglected. The central term will make a 

small correction and will be retained. 

The thermo-optic coefficient, dN/dT of each mode was expressed in Eq. (5.5) as; 

dNuuJ oNuuJ dn1 oNuuJ dn2 oNuu> dn3 --=---+---+---
dT on1 dT on2 dT on3 dT 

(5.42) 

These terms can be simplified by considering the modal picture, as shown m 

Figure 5-12; 
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Figure 5-12 Graph showing the confinement of waveguiding modes in an 

inte~ferometer 
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The layers numbered 1 and 3 for both modes are cladding layers of InP while 

layer 2 is the core region oflnGaAsP, and both modes are symmetrical. Eq. (5.42) 

therefore simplifies to; 

(5.43) 

This can be substituted into Eq. (5.41) and rearranged for InGaAsP thermo-optic 

coefficients, as such; 

(5.44) 

For an interferometer with an InP/1.3Q structure, where the upper and lower 

quaternary layers are identical, the thermo-optic coefficient of 1.3Q can be found 

from; 

_____!2g_= 
0 

l.JQ- 2-" -2-' _____J..I'_-a(N,-N,) -" --' (5.45) dn (A. ~IP ( aN aN ) dn )/( aN aN J 
dT 2;rL~T an,,,. an,,p dT anQ, anQ, 

Similarly for an InP/1.3Q/1.15Q structure, the thermo-optic coefficient of the 

1.15Q material is given from; 

Thus the thermo-optic coefficient for the quaternary materials can be determined 

from the measured phase changes. 
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5.6.4. Thermo-Optic Coefficient Of InGaAsP 

5.6.4.1. Rate of Change of Effective Mode Index with Layer Index 

The final variable to calculate before the thermo-optic coefficients of the InGaAsP 

materials can be found is the rates of change of effective mode index with layer 

index, aN I an1,p and aN I anQ for each mode of each polarisation for both chip 

structures. 

These are found by varying the layer index, n1<2•3) over a very small range near the 

actual quoted value (using values based on the band gap wavelengths calculated in 

the Appendix), in these cases varying the index at the sixth decimal place. The 

effective index of the mode, Nu(l) can be found using SLAB® for each value of 

n1<2•3l and plotted against it. The resulting slope of the plot at the given value of 

n1<2•3) corresponds to aN I an,< 2•3) • Such a plot is shown in Figure 5-13 for the 

lower waveguiding mode of a InP/l.3Q structure for TE polarisation, i.e. 

aN, I anQI . The linear fit to the data at the actual value of n2 gives aN, I anQI as 

0.76777. 
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waveguiding layer index for the lower waveguiding mode of an InP/1.3Q 

structure for TE polarisation 

Similarly, the values for all other modes are given in Table 5-14 and Table 5-15. 

Structure InPI1.3Q 

Polarisation TE TM 

Mode upper lower upper lower 

aN 
-- 0.32644 0.76777 0.25500 0.71360 
anQ 

2 
aN 

0.68203 0.24558 0.75436 0.30272 
anlnP 

Table 5-14 aN I an111p and aN I anQ values for InP/1.3Q modes 
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Structure InP/1.3Q/1.15Q 

Polarisation TE TM 

Mode upper lower upper lower 

aN 
- 0.41208 0.76775 0.35861 0.71365 
anQ 

2 
aN 

0.59464 0.24551 0.64892 0.30265 
anlnP 

Table5-15 aNianinP and aN!anQ valuesforlnP/1.3Q/1.15Qmodes 

5.6.4.2. Thermo-Optic Coefficient Of 1.3Q 

The equation to calculate the thermo-optic coefficient of 1.3Q was given in Eq. 

(5.45) as; 

The variables required for calculation are given below in Table 5-16; 
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Polarisation TE TM 

Au(m) 1.55x10--6 

L(m) 1 X 10-3 

dnlnP (K-1) 
dT 

1.95 X 10-4 

a(K-1
) 4.56x 10--6 

tPuQ I 11T (rad I K.mm) -225.38x 10-3 -225.95 X 10-3 

N" 3.22053301 3.21274801 

N, 3.29451072 3.28745352 

BN" 
0.32644 0.25500 

BnQ" 

BN1 
0.76777 0.71360 

8nQ1 

2 BN" 
0.68203 0.75436 

BnlnP 

2 
BN, 

0.24558 0.30272 
BnlnP 

Table 5-16 All variable values required to calculate thermo-optic coefficient of 

1.3Qfor both TE and TM polarisations 

The thermo-optic coefficient for 1.3Q is therefore calculated for TE and TM 

polarisations as; 

The values for the thermo-optic coefficient should be the same for both 

polarisations. Consequently the overall average thermo-optic coefficient for 1.3Q 

ts; 

dn 
____!_:!fL = 3.15 X 10-4 K-l 

dT 
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5.6.4.3. Thermo-Optic Coefficient Of l.lSQ 

Similarly, from Eq. (5.46), the equation to calculate the thermo-optic coefficient 

of 1.15Q is given by; 

where the required variables can be quoted as; 

Polarisation TE TM 

Au (m) 1.55 X 10--{) 

L(m) 1 X 10-J 

dnlnP ( K-l) 
dT 

1.95 X 10-4 

dnuQ ( K-l) 3.155x10-4 
dT 

a(K-1
) 4.56xl0--{i 

tPuQ I AT ( rad I K.mm) -270.01x10-3 -264.90x10-3 

N" 3.21593427 3.21274801 

N, 3.29451072 3.28745352 

a Nil 
0.41208 0.35861 

anQu 

aN, 
0.76775 0.71365 

anQI 

2 aNu 
0.59464 0.64892 

anlnP 

2 
aN, 

0.24551 0.30265 
an/nP 

Table 5-17 All variable values required to calculate thermo-optic coefficient of 

1.15 Q for both TE and TM polarisations 

The thermo-optic coefficient for 1.15Q is therefore calculated for TE and TM 

polarisations as; 
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dn dn 1
"
15

Q (TE)=2.61752x10-4K-1 and 1
"
15

Q (TM)=2.58215x10-4K-1 

dT dT 

Again the values for TE and TM polarisations are slightly out and as such the 

overall average thermo-optic coefficient for 1.15Q is; 

dn 
l.l 5

Q =2.60x10-4K-1 

dT 

5.6.4.4. Experimental Errors 

The maximum uncertainty of the calculated thermo-optic coefficients comes from 

the temperature control limit of ± 10 mK , the standard error of the measured 

phase changes, given in Table 5-11, the accuracy of the used refractive index 

values, using a ±5 nm uncertainty of the band gap wavelengths, and the 

differences between the calculated values forTE and TM excitations. 

The thermo-optic coefficients for the 1.3Q and 1.15Q materials are therefore; 

dn 
____!_:_!SL = ( 3.15 ± 0.08) X 10-4 K-1 

dT 

dn 
l.l

5
Q =(2.60±0.17)x10-4K-1 

dT 

5.6.4.5. Comparison To Theory 

The values of the thermo-optic coefficient for the InGaAsP alloys can be inputted 

back into the modelling software to determine what theoretical phase change 

should be expected and this can be compared to the experimental values to 

determine how accurate the experimental process was. A comparison of the values 

is shown in Table 5-18. 
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Structure InPI1.3Q InPI1.3Qil.15Q 

Polarisation TE TM TE TM 

( mrad I K.mm) ( mrad I K.mm) ( mrad I K.mm) ( mrad I K.mm) 

Experimental -225.38 -225.95 -270.01 -264.90 

Theoretical -219.26 -229.48 -271.39 -260.89 

Table 5-18 Comparison of experimental and theoretical temperature sensitivities 

for both structures and polarisations 

The experimental and theoretical temperature sensitivities are in good agreement 

with each other with a difference of around 1%. This indicates that the method 

employed here is good and accurate. 

The ratio between the two thermo-optic coefficients is calculated as 0.824. This 

is very close to the value given by [37] of 0.81. Their value however was 

calculated using exactly 1.1Q while the material used here has a slightly longer 

band gap wavelength of 1.156 pm, as such the ratio calculated here should be 

slightly larger. This agreement also indicates that the accuracy of the thermo-optic 

coefficient values is very good. 
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5. 7. Conclusions 

Like all sensitive devices working in the telecommunications C-hand, the dual 

slab waveguide interferometer is not only sensitive to very small wavelength 

variations, as it was designed to do, but it is also sensitive to small temperature 

changes. Despite controlling the chip temperature to better than ± 10 mK in the 

wavelength tracking experiments, this temperature sensitivity causes the device 

noise floor to increase to around three times the original value, decreasing the 

minimum wavelength sensitivity of the device. It is therefore paramount to have 

good thermal data, such as the thermo-optic coefficient, for the materials used in 

order to control and compensate better. However, due to the inherently small 

nature of the thermo-optic coefficient of III-V semiconductor materials compared 

to their refractive index values, it has proven difficult to produce accurate and 

agreeing values through many theoretical and experimental methods. In terms of 

the materials used within the dual slab interferometer, there is enough data on 

Indium Phosphide (lnP) to decide on a value of ( 1.95 ± 0.05) x 10-4 K- 1 for its 

thermo-optic coefficient, however there is no data for Indium Gallium Arsenide 

Phosphide (InGaAsP) available, despite it being a well used material in 

telecommunication devices. 

The temperature sensitive nature of the dual slab interferometer provides a method 

for calculating the thermo-optic coefficient of the two InGaAsP compounds used 

in the chip structures. By varying the temperature of the interferometer chip, at a 

fixed wavelength, and measuring the resulting phase change, a value can be 

determined for the temperature sensitivity, or the chip thermo-optic coefficient, 

which can be used to determine the thermo-optic coefficient of the waveguiding 

InGaAsP layers. 

For a temperature change, the resulting phase change is related to the change in 

effective refractive index of each mode. This effective index is simply a 

composition of a measure of the fraction of the mode in each of the core and 

cladding layers multiplied by the thermo-optic coefficient of that layer. Since the 

coefficient is known for InP and the sensitivity functions for each mode can be 

determined by calculating the rate of change of the effective mode index with 
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layer index, the only unknown parameter is the thermo-optic coefficient for the 

InGaAsP materials. As such an equation can be derived to give this coefficient in 

terms of all the other known parameters. 

For InGaAsP with a band gap wavelength of 1.3 Jim this is; 

__!2g_ = o 1.3Q- 2--" -2--' ~-a(N., -N,) -" -- --' dn ( Jc t.¢ ( aN aN ) dn )/( aN aN ) 

dT 27T L!!T an,.,p an,.p dT anQu anQI 

and for InGaAsP with a band gap wavelength of 1.15 5 Jim it is; 

To determine the phase change per degree Kelvin of each of the two chip designs, 

repeated measurements were taken around 25 °C to produce an accurate mean 

value. This was necessary to compensate for the fluctuating nature of the chip 

temperature which caused a reasonably wide spread of values. 

The overall thermo-optic coefficient of the InPI1.3Q chip structure was found to 

be ( -225.4±6.7) mrad I K.mm for TE polarisation and 

( -226.0±6.9) mrad I K.mm for TM polarisation. For the InPI1.3QI1.15Q design, 

the chip thermo-optic coefficient was ( -270.0± 17.0) mrad I K.mm and 

( -264.9 ± 11.2) mrad I K.mm for TE and TM polarisations respectively. These 

values were in agreement with initial theoretical predictions which showed that 

for the InPI1.3Q structure, TM phase change would be larger than TE and vice­

versa for the InPI1.3QI1.15Q structure, with the latter having a larger phase 

change overall. 

From these values the thermo-optic coefficient for the InGaAsP compounds was 

found (3.15 ± 0.08) X 10-4 K-l 

(2.60±0.17)x10-4 K-1 for InGaAsP(l.l5Q). 

to be 
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The accuracy of these values is confirmed by comparing to the theoretical model 

which showed good agreement between the experimental and theoretical values, 

and by considering the ratio between the values to be 0.824 which is only slightly 

larger, as would be expected, than the 0.81 ratio reported by [37], who used l.lQ 

rather than the 1.15Q used in these interferometer chips. 

Not only does this method produce values for the thermo-optic coefficient of the 

quaternary compound InGaAsP at band gap wavelengths 1.289 pm and 

1.156 pm but it also provides a method of determining the thermo-optic 

coefficient of further InGaAsP compound compositions or any semiconductor 

materials that can be used to make a dual slab waveguide interferometer. 
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Chapter 6 : Overall Conclusions and Future Work 

Slab waveguide structures have little practical use due to only confining light in 

one dimension. However the dual slab waveguide interferometer presented in this 

thesis is a device that combines an ability to work as a fully functioning device for 

one area of research and also work as an experimental test structure in another. 

This thesis has reported on multiple applications of the dual slab interferometer 

looking at the ability to provide details on the mechanism for the vapour sorption 

of thin polymer films, the development of the interferometer as a wavelength 

tracking device for the telecommunications industry and its ability to characterise 

the thermo-optic properties of III-V semiconductor alloys. 

Work to investigate the mechanism of vapour sorption of the polymers 

Polyisobutylene (PIB) and Polyvinylpyrrolidone (PVP) involved dip coating the 

dual slab interferometer chips with a thin film of polymer which acts as the upper 

cladding layer of the device. Shifts in fringe movement are directly related to 

changes in the upper mode effective index since the lower waveguide acts as a 

fixed reference. 

Layers of different thickness of PIB were exposed to varying concentrations of 

Toluene, Cyclohexane and Ethanol vapours. 

Modelling suggested that void-filling behaviour, where vapour molecules fill air­

filled microvoids in the polymer layer and hence increase the polymer index, 

would result in increasing positive phase changes with initial polymer layer 

thickness. Alternatively swelling behaviour, where the condensed vapour 

molecules are displacing the polymer chains which both increases the polymer 

layer thickness and lowers its overall refractive index, would result in positive 

phase changes for very thin polymer films which decrease and become negative at 

greater initial film thickness. 

Experimental results concluded from the measurement of negative phase changes 

on exposure for thicker films that the mechanism for vapour sorption in thin PIB 

films is one of swelling rather than void-filling. 
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Phase changes were found to be linearly related to the vapour concentration and 

the lower index of Cyclohexane resulted in larger phase changes on exposure than 

compared to Toluene and only very small phase changes were measured on 

exposure to Ethanol due to its relatively polar nature. 

Experiments exposing a layer of PVP to varying concentrations of water vapour 

concluded that for a thin film the mechanism for vapour sorption is again 

swelling. Phase changes were much larger and slower to stabilise than for PIB 

suggesting the water vapour can continue to expand the PVP chains for a longer 

period of time. Phase changes were found to decrease with concentration possibly 

indicating a change in sorption mechanism. 

The aim of this section was also to provide values of thickness and index change 

for the polymer layers on exposure to the various solvent vapours. However the 

ability to resolve the transverse electric (TE) and transverse magnetic (TM) phase 

changes into thickness and index values has been restricted by software 

limitations and the probable birefringence in the polymer layer due to the planar 

alignment of the polymer chains. 

This would be a key issue to resolve for future work in this area as actual values 

of thickness and index change would be very valuable. From there many more 

polymers and vapours could be investigated. Other areas of future interest could 

be in the development of the vapour sensing properties of the polymer-coated 

interferometer chips. They have shown a linear sensitivity to vapour concentration 

and for swelling mechanisms there is a thickness where phase change would be 

zero upon exposure to a solvent vapour due to thickness and index changes 

balancing out. This could lead to the development of a vapour sensor which is 

insensitive to one vapour but can detect as little as 50 ppm of another. 

Future work could also look at the mechanisms involved for the water sorption of 

PVP. Previous work with thick polymer layers has shown bimodal behaviour 

while this work could also indicate this to be the case as concentrations increase. 
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Again a working program to resolve these phase changes into polymer thickness 

and index changes would prove crucial. 

The application of the dual slab waveguide interferometer as an extremely 

sensitive method for wavelength tracking in the telecommunications C-hand was 

investigated. Differences in the thickness and composition between the two 

confinement layers gives rise to a difference in the optical path length and 

waveguide mode dispersion between the two guides, so as the input wavelength 

changes, the net effect is a phase change difference found by monitoring the 

interference pattern. 

Extensive modelling of possible structures was undertaken to find a dual slab 

structure which would still operate as an interferometer but be sensitive to 

picometer level wavelength shifts. Novel structures were designed and 

manufactured using III-V semiconductor alloys, Indium Phosphide (InP) and 

Indium Gallium Arsenide Phosphide (InGaAsP), and fabricated on suitable 

absorbing layers and on a heavily doped InP substrate. Two designs were 

produced, one an interferometer where the quaternary alloy is identical (1.3Q) for 

upper and lower waveguides and the other a more sensitive dual quaternary 

system ofboth 1.3Q and 1.15Q. 

Experimental results were found to be in good agreement with the theoretical 

predictions with sensitivities of over 6 mrad I pm and 7 mrad I pm for the single 

and dual quaternary systems respectively. This equates to an ability to detect 

picometer wavelength changes which is better than currently available devices. 

Experiments also concluded that there was excellent consistency of sensitivities 

between different device lengths and repeated measurements. The dual quaternary 

system also had equivalent TE and TM responses. 

The differences between theory and experiment were mainly down to a difference 

in actual band gap wavelength of the quaternary materials and what they were 

quoted as. Using the experimental results it was possible to determine to a 

relatively good accuracy the actual band gap wavelengths which were confirmed 

by photoluminescence data. 
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As with all devices working in this wavelength region thermal issues are the 

major limiting factor. Designing an unbalanced interferometer has provided a very 

sensitive device to wavelength changes, however it also makes it thermally 

sensitive as well. Despite having temperature control of better than ±1 0 mK for 

the interferometer chips using a dual stage pettier controlled housing, this still 

raises the noise floor of the device by as much as 3 times. 

The dual slab interferometer has provided an excellent test bed for the 

development of a wavelength locking device. The interferometer has been 

deliberately designed in materials currently used in telecommunications devices 

such as laser sources so that there could be the possibility of chip level integration 

at some stage. Future work would continue on this path to develop a device that 

could be commercially viable. Work would have to move away from the 

experimental slab design to perhaps an asymmetric Y -junction with photodiode 

detectors which could be more rapidly integrated with a diode laser chip. The 

principles would remain the same to produce a highly sensitive system. A 

feedback-control system could then be implemented to turn the wavelength 

tracker into a locker. Crucially a method of controlling and adjusting to 

temperature variations would have to be developed alongside. 

The interferometer chips have proved extremely sensitive to thermal fluctuations 

as can be seen for both the 111-V compound semiconductor wavelength tracker but 

also in the polymer-coated chips used for vapour sorption experiments but this 

sensitivity has provided a method for measuring the thermo-optic properties of the 

materials which make up the dual slab structure. 

By fixing the input wavelength of the interferometers, the devices become 

sensitive only to changes in temperature and due to the knowledge of the dual slab 

structure, thermo-optic values can be extracted for the quaternary alloy lnGaAsP. 

At stated before, thermal issues are the main problems in the telecommunications 

C-hand wavelength range, so thermo-optic data on the materials used is crucial. 
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There appears to be a gap in the published knowledge of III-V semiconductor 

alloys so developing a method and providing values of the thermo-optic 

coefficient of materials at room temperature and C-hand wavelengths could prove 

very useful. 

Experimental phase values for small changes in temperature were measured and 

substituted into a derived equation to get thermo-optic coefficient values including 

thermal expansion of (3.15±0.08)x10-4K-1 and (2.60±0.17)xl0-4K-1 for the 

1.3Q and 1.15Q materials respectively. These values had good agreement with 

theoretical modelling and the ratio between them seemed to confirm previously 

published work. 

The method appears to be both simple and effective as device structures require 

only epitaxial multilayer deposition and no lithography. Future work could go on 

and provide thermo-optic data for a variety of wavelengths and temperatures and 

for the range oflnGaAsP alloys from lnP to Indium Gallium Arsenide (lnGaAs). 

In summary, the dual slab waveguide interferometer has shown a great ability in a 

wide range of research areas. It is both simple to fabricate and to use which makes 

it ideal as a test bed for new ideas or as a research tool itself. In this thesis it has 

been used to research polymer vapour sorption, develop a highly sensitive 

wavelength tracker for the telecommunications industry and as a method for 

providing vital thermo-optic data for III-V semiconductor alloys. Each of these 

areas could be investigated much further but it is hoped that this thesis has shown 

the capabilities of the interferometer and provided both interesting and important 

results. 
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Appendix: InGaAsP Band Gap Wavelengths 

The differences between the theoretical predictions and the experimental averages 

can be mainly accounted for by considering errors in the manufactured structures. 

Small inaccuracies in layer thickness will vary the overall phase changes due to a 

wavelength shift and small errors in the knowledge of the band gap of the 

compounds will mean that the refractive index differs in the actual structure from 

those used in the theoretical model. 

The layer thickness is accurate to around ±1 nm which would cause a maximum 

error of around 0.4%, which is far less than the differences between experimental 

and theoretical values. This suggests that the main error is a refractive index error 

caused by using an inaccurate band gap wavelength for the two InGaAsP 

materials. 

This can be explored further by calculating the theoretical phase changes for a 

range of material band gap wavelengths in order to match better with the 

experimental values. The closest match should indicate, to a reasonable accuracy, 

what the material band gap actually is. 

Theoretical phase values were calculated for a range of band gap wavelengths 

using refractive index values from the 2-D mode solver, FIMMWAVE®, which 

uses the best available models and parameters. Plotted in Figure A-1 is the 

averaged difference between theoretical phase values and the measured 

experimental phase changes for the InP/1.3Q design for the three chip lengths of 

4,8 and 12 mm. 

The plot indicates that the band gap wavelength for InGaAsP(l.3Q) for the 12 mm 

length chips is around 1.289 J.lm and around 1.282 J.lm for the 4 mm and 8 mm 

length chips. 
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Figure A-1 Difference between theoretical predictions and experimental phase 

values over a range of band gap wavelengths for 4 mm (solid line), 8 mm (dashed 

line) and 12 mm (dotted line) length InP/1.3Q interferometer chips 

The band gap wavelength is not the same for the different chip lengths as the 

chips were taken from different areas of the wafer (see Section 4.3.2.5) and data 

provided by the EPSRC National Centre for III-V Technologies, who fabricated 

the wafers, indicates that the InGaAsP material band gap varies over the wafer 

structure. Shown in Figure A-2 is photoluminescence (PL) spectrum for the 

approximate areas on the chips where the 12 rnrn and the 8 rnrn and 4 rnrn chips 

carne from. 

The PL data shows that there is a difference of around 10 nrn between the peak 

values of the two wafer areas, similar to the difference calculated for band gap 

wavelengths above. 

Note too that in general, maximum PL is at a lower energy (longer wavelength) 

than band gap energy, Eg. This is the indeed the case here as maximum PL is 

around 5-9 nrn longer than the calculated band gap wavelength, which suggests 

that the method for determining band gap is reasonably accurate. 
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Figure A-2 Photoluminescence spectrum of lnGaAsP (1.3Q) material for 

approximate area on wafer where 12 mm length chips (left) and 4 mm and 8 mm 

length chips (right) were selected from 

Using these band gap wavelengths for the InGaAsP(1.3Q) material, the band gaps 

can be found for InGaAsP(1.15Q) in a similar manner. Plotted in Figure A-3 is the 

averaged difference between theoretical phase values and the measured 

experimental phase changes for the InP/1.3Q/1.15Q design for the three chip 

lengths of 4,8 and 12 mm. 

The plot indicates that the band gap wavelength for InGaAsP( 1.15Q) for the 12 

mm length chips is around 1.156 J.lm, around 1.158 J.lm for the 8 mm length 

chips, and around 1.154 J.lm for the 4 mm length chips. 
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Figure A-3 Difference between theoretical predictions and experimental phase 

values over a range of band gap wavelengths for 4 mm (solid line), 8 mm (dashed 

line) and 12 mm (dotted line) length InP/1.3Q/1.15Q interferometer chips 

Using the values calculated above accounts for the differences between the 

original theoretical predictions and the experimental values. Comparisons with 

provided PL data indicates that the band gap wavelength of the InGaAsP(l.3Q) 

material is indeed lower than quoted and that this method for determining the 

actual band gap is reasonably accurate. The calculations also indicate that the 

band gap of the InGaAsP( 1.15Q) material is very close to the quoted value 

( Ag = 1.155 f.Jm ), if not exact. Unfortunately there was no PL data provided for 

this wafer for comparison. 
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