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Abstract 

Pract ical Implementation of a Dependently Typed Functional Programming 
Language 

Edwin C. Brady 

Types express a program's meaning, and checking types ensures tiiat a program has the 

intended meaning. In a dependently typed programming language types are predicated on 

values, leading to the possibihty of expressing invariants of a program's behaviour in its 

type. Dependent types allow us to give more detailed meanings to programs, and hence be 

more confident of their correctness. 

This thesis considers the practical implementation of a dependently typed programming 

language, using the E P I G R A M notation defined by McBride and McKinna. E P I G R A M is 

a high level notation for dependently typed functional programming elaborating to a core 

type theory based on Luo's U T T , using Dybjer's inductive famihes and elimination rules to 

implement pattern matching. This gives us a rich framework for reasoning about programs. 

However, a naive implementation introduces several run-time overheads since the type sys­

tem blurs the distinction between types and values; these overheads include the duphcation 

of values, and the storage of redundant information and explicit proofs. 

A practical implementation of any programming language should be as efficient as pos­

sible; in this thesis we see how the apparent efficiency problems of dependently typed pro­

gramming can be overcome and that in many cases the richer type information allows us 

to apply optimisations which are not directly available in traditional languages. I introduce 

three storage optimisations on inductive families; forcing, detagging and collapsing. I further 

introduce a compilation scheme from the core type theory to G-machine code, including a 

pattern matching compiler for elimination rules and a compilation scheme for efficient run­

time implementation of Peano's natural numbers. We also see some low level optimisations 

for removal of identity functions, unused arguments and impossible case branches. As a 

result, we see that a dependent type theory is an effective base on which to build a feasible 

programming language. 
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Chapter 1 

Introduction 

Computer programs are ubiquitous. As we rely on computers more and more in all aspects 

of daily life, i t becomes more important to minimise errors in computer software; i t is 

particularly important where privacy or safety is concerned. A n error-free computer program 

is, however, rare — a programmer attempts to minimise the number of errors by using a 

combination of techniques including formal specification, careful design, correctness proofs 

and extensive testing. 

Part of the difficulty in writing a correct computer program lies in the problem of con­

verting the design in the programmer's head (which one would hope is well understood) to 

a program which a computer can execute. Over the last fifty years increasingly powerful 

programming languages have been developed to allow the programmer to express a design 

as a program in more familiar terms; more modern languages feature more powerful type 

systems, which allow the programmer to specify more precisely the intended semantics of 

the program and provide more powerful paradigms for modelhng. 

Dependent type systems [ML71, Luo94] allow types to be predicated on values and have 

traditionally been apphed to reasoning and program verification. More recent research, how­

ever [Aug98, Xi98, McBOOa, MM04b], has led to the use of dependent types in programming 

itself. The principle is that the richer type system allows a more precise type to be given to 

a program so that more errors can be detected at compile-time which would previously have 

remained undetected until run-time, and even then perhaps only in unusual circumstances. 

Dependent types also allow us to give types to more programs than traditional simple type 

systems. 

The use of dependent types in programming leads to several implementation difficulties 

on the one hand, and optimisation opportunities on the other hand. One difficulty is that 

the distinction between types and values is blurred so i t is less clear how to erase types at 

run-time. Types can also express relationships between values — such relationships may 

mean one value can be computed from another, so we need not store both. W i t h rich type 

information, we know more about the possible inputs and outputs of a program and ought 

1 
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to be able to use this information to optimise a program. In this thesis, I begin to explore 
techniques for removing the run-time overheads of dependent types and gaining run-time 
benefits from our richer type information. 

1.1 Types in Programming 

Following Mitchell [Mit03], we identify three main purposes which types serve in modern 

programming languages. These are: 

1. Naming and organising concepts. The type of a function or data structure reflects 

the way that structure is used in a program. In this way, types provide documentation 

to programmers and aid maintainability. 

2. Ensuring that the machine interprets data consistently. Types ensure that 

operations are apphed to objects of the correct form. For example, typechecking 

prevents an operation which expects an integer being given a floating point number, 

which would then be interpreted incorrectly. An object wi l l always be treated in a 

way consistent wi th its representation. 

3. Providing information to the compiler about data. A compiler uses the type 

of an object to decide how to lay out that object in memory. Two objects of the same 

type wil l always be represented in the same way. 

These purposes assist the programmer, the machine and the compiler respectively. The 

importance of data types in programming languages has been acknowledged throughout the 

history of programming. Originally, languages attached types to values out of necessity — 

difl'erent types are laid out in memory in different ways, so the programmer was required 

to declare the purpose of a variable. As such, the first of the major computer languages, 

FORTRAN [IBM54], included primitive types for describing integers and real numbers and 

basic support for data structures wi th arrays. 

Modern functional programming languages such as Haskell [P'^02] and the M L fam­

ily [MTHM97, Ler02] take this idea much further, allowing user defined data structures and 

function types. Primitive types, which effectively give an interpretation to bit patterns (for 

the benefit of the machine), are combined into compound types which give a higher level 

understanding of data (for the benefit of the programmer). 

The development of more advanced type systems has led to two further purposes for 

types; in modern languages types are not only present because they are a necessity for 

the compiler, but because they provide documentation for the programmer and consistency 

checking for programs — giving a type to a function eff'ectively gives a specification to that 

function, which serves as documentation for the programmer, and which the compiler verifies 

by typechecking. 
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1.2 Dependent Types in Programming 

The characteristic feature of a dependent type system, as opposed to the "simple" type 

systems of Haskell and M L , is that types can be predicated on values. This allows the 

programmer to give a more precise type to a value, with the effect that more errors can 

be caught at compile-time, rather than manifesting themselves only when the right circum­

stances arise at run-time. As an introductory example, we shall consider the following simple 

Haskell function which appends two lists: 

append : : [a] -> [a] -> [a] 

append [ ] xs = xs 

append (x :xs ) ys = x:(append xs ys) 

We can compute the length of a fist as follows: 

l e n g t h : : [a] -> I n t 

l e n g t h [ ] = 0 

l e n g t h (x :xs ) = 1+(length xs) 

The append function, if written correctly, satisfies the property that the length of the 

output is the sum of the lengths of the inputs: 

l e n g t h (append xs ys) = l eng th xs + l eng th ys 

This is not checkable directly in Haskell, although we could use a tool such as QuickCheck 

[CHOO] to generate random test cases, or write a correctness proof externally. W i t h a 

dependent type system, we can give this function a more precise type which reflects the 

property directly in the type. This helps avoid a common class of error (using the wrong 

Ust) by giving each input hst a distinct type. Although such an error is unlikely in a small 

function such as this, in a large system i t may not be so diflacult to confuse one hst for 

another. 

There have been various approaches to implementing dependent types in programming 

languages, so the type of the function, and how the Ust is represented, varies from system to 

system. Let us consider now some different implementations of dependent types and discuss 

how they might be used to implement list append such that i t provably preserves the length 

property above. 

1.2.1 Cayenne 

Cayenne [Aug98] is a dependently typed functional language loosely based on Haskell, and 

similar to the language of the Agda theorem prover [HalOl]. Cayenne allows functions to 

compute types, which allows more functions to be typeable; examples given are p r i n t f , 
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the type of which is computed by examining the format string, and a well-typed inter­

preter [AC99], the return type of which depends on the object level expression to be evalu­

ated. 

Without going into too much detail on the syntax, let us consider how to implement 

append. We can express lists of a given length (known as vectors) in Cayenne by writing 

a function vect to compute an appropriate type via a recursive definition (rather than by 

declaring a data structure): 

vect :: (a :: #) -> Nat -> #; 
vect a (Zero) = Unit; 
vect a (Succ x) = (Pair a (vect a x ) ) ; 

An empty vector is represented by the unit type, and a non-empty vector by a pair of 

the head and tail. Peano style natural numbers are used here to represent the length of the 

vector, Zero and Succ being the constructors of a data type of natural numbers. The type 

of the append function now expresses the property that the length of the resulting fist is the 

sum of the length of the inputs: 

append : : (a :: #) | - > (n,m : : Nat) |-> 
(vect a n) -> (vect a m) -> (vect a (n + m ) ) ; 

append xs ys = ys; 
append xs ys = case xs of i 

(z,zs) -> (z,append zs ys) 
} ; 

Note here that pattern matching is on the length, rather than the vector itself Pattern 

matching on the vector is not allowed, since empty and non-empty vectors are represented 

by different concrete types. There is a small notational overhead here (i.e., the additional 

arguments a, n and m, which are required as the type of the function depends on them), but 

the advantage is that we know from the type that append satisfies the property we want. 

The drawback to Cayenne's powerful type system is that typechecking becomes undecid-

able. This is because typechecking in this type system requires the evaluation of type level 

programs at compile-time — i f a type level program does not terminate, typechecking wil l 

not terminate. Cayenne deals wi th the problem by inserting a configurable upper bound 

on the number of reduction steps allowed in the typechecker; reaching this upper bound is 

treated as a type error. Hence the result of typechecking is "Correct", "Incorrect" or "Don't 

know". 

1.2.2 DML 

D M L [Xi98] is an extension to M L allowing a form of dependent types. I t is really a family 

of languages D M L ( C ) where C is a constraint domain from which we draw the values on 
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which types can be predicated. In D M L , we do not write functions which compute types 

— instead, we give constraints on the types which are verified by a constraint checker. In 

his thesis, X i implements the domain of natural numbers, and adds a syntax for annotating 

M L types wi th indices. Lists can be annotated as follows: 

datatype ' a l i s t = n i l I cons of 'a * ' a l i s t 

w i t h n i l <l 'a l i s t ( O ) 

I cons < | -Cnrnat} 'a l i s t ( n ) -> 'a l i s t ( n + i ) 

Using this annotated list type, we can also declare the type of append in terms of anno­

tated fists. The definition is the same as the non-dependently typed version, but the type 

expresses the length property which the definition must satisfy: 

f u n C a ) 

append(n i l ,y s ) = ys 
I append(cons(x,xs) ,ys) = Cons x (append xs ys) 

where append <| { m : n a t , n : n a t } L i s t ( m ) * L i s t ( n ) -> List(m+n) 

Here we have used a standard list type, but added annotations which describe the length. 

The advantage is that we can pattern match on the fist as usual, however there is not the 

fu l l dependency of Cayenne in that only types for which a constraint checker has been 

implemented can be used as indices. 

The original motivation for this was to catch more errors at compile-time; however, 

X i has also used dependent types to direct optimisations including array bounds check 

elimination [XP98] and dead code elimination [Xi99a]. 

1.2.3 Inductive Families cind Epigram 

E P I G R A M is a platform for dependently typed functional programming based on inductive 
families [Dyb94]. Inductive families are a form of simultaneously defined collections of 

algebraic data types (such as Haskell data declarations) which can be parametrised over 

values as well as types. For our list append example, we can declare an inductive family for 

vectors, parametrised over the element type and indexed over the length. To do this, first 

we declare a type of natural numbers, using the natural deduction style notation proposed 

in [MM04b]: 

data where 
0 : N s n : N 

The reason for using the natural deduction style notation, rather than the more standard 

HaskeU style data declaration is that a constructor of a family is allowed to target a subset of 

the family i f desired, where the subset is given by a parametrised function which itself may 

be a constructor (of another family). In the following declaration of vectors, for example. 
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note that Vnil only targets vectors of length zero, and Vcons only targets vectors of length 

greater than zero: 

data A - * " • ^ where V e c t A n : • " ^ " - ^ Vnil : Vect ^ 0 
X : A xs : Vect A k 
Vcons X xs : Vect A sk 

To write append, since lists are indexed over their lengths, we first need "append on 

lengths", namely plus. The type of a function is introduced with a let declaration, also 

written in a natural deduction style. The function itself is written in a pattern matching 

style, wi th elim n indicating that the function is primitive recursive over n. We wi l l discuss 

this notation in detail in Chapter 2 — elim n in particular gives access to an elimination 
rule for N which implements primitive recursion over N. Elimination rules, implemented by 

pattern matching, are an important feature of EPIGRAM which we wil l introduce in section 

2.1.3. We write plus as follows: 

let n , m 
plus n m : N 

plus n m <̂= elim n 

plus 0 m m 

plus (s fc) m H-> s (plus A; m) 

We are now in a position to write the append function. The type signature of this 

function is similar to the equivalent function in Cayenne, but written using the natural 

deduction style notation. The two arguments n and m are imphcit - since they are used in 

the types of xs and ys, and we know the type of Vect, the typechecker infers that they must 

also be arguments to append and so there is no need to write them down: 

xs : Vect An ys : Vect A m 
append xs ys : Vect A (plus n m) 

append xs ys <= elim xs 
append Vnil ys ^ ys 
append (Vcons x xs) ys i—> Vcons x (append xs ys) 

This is similar to the D M L definition, and the program itself (ignoring the type) is 

similar to the Haskell definition. However we are not limited to indexing only over natural 

numbers, as in D M L . The disadvantage is that the checking of more complex constraints is 

not automated — for example we may have to write extra functions to prove commutativity 

or associativity of plus. 

The length function is straightforward to write in this setting, as the length is passed 

impUcitly as an argument wi th any Vect. Since i t is imphcit, we subscript i t in the definition 

(as n): 

xs : Vect A n let length ars : P 

l ength„ xs i-> n 
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Even this function is redundant; we know the length is n from the type before we evaluate 

this function. We effectively carry the length around with every list, trading time (computing 

the length) for space, as wi th vectors in the C + + STL [MSDOl]. 

Inductive families have been used extensively by theorem provers including COQ [CoqOl], 

L E G O [LP92], A L E [Mag94] and Plastic [CLOl). In this kind of setting dependent types can 

be used to prove properties of simply typed programs, for example by declaring an inductive 

family to represent the desired property. A trivial example, the less than or equal relation, 

can be represented as an inductive family: 

data • ^ where P • 
x<y •• * leO : 0<y \eS p : sx<sy 

To construct an instance of a < 6 is effectively to prove the proposition that a is less 

than or equal to b; hence we can prove that a program has this property by constructing 

instances of a < 6 for appropriate a and b. We wil l see an example in section 2.3.2, where the 

minus function is defined to take a th i rd argument wfiich ensiures that the smaller number 

is subtracted fi-om the larger number. 

The E P I G R A M notation is defined by McBride and McKinna in [MM04b]. This nota­

tion elaborates to a dependent type theory based on Luo's U T T [Luo94]. The research 

documented in this thesis has been carried out in the context of a prototype back-end for 

E P I G R A M and so I wi l l discuss the notation briefly introduced here in greater detail in Chap­

ter 2. The main innovative feature of E P I G R A M is to take inductive families seriously as 

data structures, rather than as a basis for describing properties of programs. 

1.2.4 Benefits of Dependent Types 

Types for Specification 

We have seen an example, wi th list append, of how dependent types allow us to give a 

more precise type to functions. Functions over the Vect family specify invariant properties, 

namely the lengths of the vectors involved. Such invariants allow the typechecker to check 

properties which would otherwise need to be verified by the programmer by hand. Another 

example, red-black trees [Oka99], must maintain the invariants that a red node does not 

have a red child, and all paths from the root to an empty node pass through the same 

number of black nodes. X i shows an implementation of this wi th dependent types [Xi99b], 

so that the invariants are checked by the typechecker. 

W i t h dependent types, the programmer and compiler have more information about what 

the program is intended to do prior to writing the program. This helps the programmer, 

in that i t aids understanding of the problem and helps them write a correct program, and 

helps the compiler, in that i t has more information with which to identify potential errors 

and optimisations. By giving more precise types, we are giving a more precise specification. 
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Therefore, implementation errors are more likely to be identified at compile-time rather than 

run-time. 

We prefer, therefore, to take types as the prior notion to programs, treating them as 

specifications of programs. Rather than writing a program without type annotations then 

allowing the compiler to infer the type afterwards (if indeed the program is well-typed) we 

prefer to write the type first, restricting the number of programs we can write. In this 

way, types can drive the process of program development, encouraging the programmer to 

understand the problem in advance and guiding the programmer to a correct program by 

refinement. W i t h type inference, any well-typed program wil l do, whatever its type — with 

the type as the prior notion, however, only a well-typed program of the given type wi l l do. 

Dependent types enable a programmer to say more precisely which programs are acceptable. 

Proofs as Programs 

Another benefit of using a dependent type system is that proofs of correctness can be 

written in the language itself, such is the richness of the type system. Rather than showing 

some property of a function externally (an error prone process since i t depends on correctly 

transcribing the program from one setting to another) a property can be shown in the 

language itself. This has the advantage that the proof of a property of a function is based 

on the actual implementation, rather than some external model. In this way, dependent 

types can also be used to prove properties of simply typed programs. The Curry Howard 

isomorphism [CF58, How80] describes the correspondence between proofs and programs. 

There are two approaches to showing properties of a program within the language. The 

apparently simpler approach is to represent the property as a datatype (for example the less 

than or equal type in section 1.2.3). Then we can write functions which build instances of 

that type to prove properties of the program. However, i t is often preferable to represent 

the property as an index of a datatype. For example, Vect is indexed over its length, which 

means that any well-typed function which manipulates a Vect is imphcitly also a proof of the 

length invariant of that function. So by using inductive families with appropriate indices, 

we do not need to write proofs after writing the program — the proof is implicit in the fact 

that the program is well-typed. 

Dependent tjrpes are also used to extract simply typed programs firom proofs of their 

specifications. Program extraction in COQ [PM89, Let02] extracts the computational parts 

from the proof of a specification and generates an M L or Haskell program. We can also 

consider the use of dependent types for hardware verification. In Chapter 5 we wi l l see a 

development of binary arithmetic, representing numbers as an inductive family in order to 

ensure consistency of some aspects of the implementation. 



C H A P T E R 1. I N T R O D U C T I O N 

Articulacy 

Aside from improving the safety of programs, dependent type systems give us more articulacy 

and subsume many other sophisticated programming techniques and language extensions. 

Phantom Types [Hin03] and Generic Haskell [CL02] for example provide extensions which 

are also handled in a dependently typed setting. Furthermore, there are programs we can 

write in a dependently typed language which would not be typeable in a simply typed 

language. 

The C function p r i n t f takes a format string which determines the form of the rest of 

the arguments. This is an obvious example where dependent types would be useful, and a 

straightforward implementation is given in Cayenne [Aug98]. Functional unparsing [Dan98] 

presents a technique for producing formatted output in a simply typed language, but this 

rehes on using sophisticated implementation techniques to get around the less sophisticated 

type system. 

The Haskell standard prelude includes a family of functions for applying a function of n 
arguments to corresponding items in n lists. There are 8 functions defined separately for this, 

z i p W i t h l . . . zipWithS. Again, techniques have been proposed to allow the implementation 

of this more generically [FIOO, McB02], but again these rely on sophisticated implementation 

tricks (and often clumsy notation) to get around the type system. Dependent types give 

a more elegant approach to solving such problems — the hard work is done by the type 

system, not the programmer. 

Wi th dependent types, we can implement lists wi th varying element type in a type safe 

fashion. The interpreter example in Chapter 4 includes an example of this, where values in 

the environment may be any one of several types. This interpreter, based on [AC99], uses 

dependent types to avoid the need to "tag" each value wi th its type — instead types are 

determined by the expression being interpreted. 

A recent extensions to the Glasgow Haskell Compiler, Generalised Algebraic Data Types 

[PWW04], adds some of the power of dependent types to Haskell. For example, well-typed 

terms can be given a more precise type as in [AC99]. However, they still do not allow types 

to be predicated on values, as with a ful l implementation of dependent types. 

Interactive Development 

A potential further benefit of dependent types is that i t gives more information to an in­

teractive type-directed programming system. The kind of type-directed editing used in 

theorem provers, such as COQ and L E G O , is not often seen for programming languages 

{CYNTHIA [WBBL99], for M L , is an exception). A possible reason for this is that the type 

system does not give enough information for type-directed editing to be worthwhile; wi th 

dependent types, there is both more possibility of the system being able to direct the pro­

grammer to a program, and more need of such a system since the more precise types can 

make i t harder to find a well-typed program without machine assistance. 
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Efficiency 

Dependent types give us more static information about what a program is intended to 

do. Altenkirch [Alt93] mentions that this information could potentially be used to make 

programs more efficient. However, this potential has been exploited very little until recently. 

X i has used dependent types to aid wi th array bounds check elimination [XP98] and dead 

code ehmination [Xi99a] in D M L , and Augustsson and Carlsson's tagless interpreter [AC99] 

is an example of how dependent types allow more efficient code. However, there has been 

little work on optimisation of programs built on inductive families, largely because inductive 

families have not, until now, been taken seriously as an approach to programming. 

Unfortunately, in a naive implementation of a dependently typed language wi th inductive 

families there are several overheads. The separation between types and values is blurred; 

types can be computed from values, and values can hold information about types. In par­

ticular, inductive families can store information about their invariants. There seem to be 

several sources of overhead here; there are space overheads in storing the indices and time 

overheads in the complex manipulations required on types. In a naive implementation, this 

can lead to quite an overhead. However, the opposite ought to be true — the type system 

tells us more about what a program is supposed to do, therefore we ought to be able to 

produce more efficient code. This thesis investigates techniques for doing so. 

1.2.5 Strong Normalisation 

A distinctive feature of E P I G R A M is that all (well-typed) terms are strongly normalising. 
A term is strongly normaUsing i f all reduction sequences starting from that term terminate 

without error at the same normal form; Goguen shows that the strong normalisation property 

holds for U T T [Gog94], and as a result E P I G R A M programs (being based on a type theory 

similar to U T T ) are strongly normalising. This has several implications and advantages. 

Firstly, we have a much stronger notion of type safety. In a tj^pe safe, but not strongly 

normalising language such as Haskell, running a type correct program can have one of three 

results: 

• The program terminates, giving a result of the appropriate type. 

• The program terminates with an error due to an expression not being defined for all 

possible inputs. This kind of error means that reduction can not progress. 

• The program does not terminate. This kind of error means that reduction wi l l progress 

infinitely. 

In E P I G R A M , strong normalisation ensures that only the first possibiUty can apply. To 

put i t another way, the error value (denoted ± ) is imphcitly an element of all types i f 

non-termination and partial definitions are allowed, but i t is not an element of any type in 

E P I G R A M . There is a clear advantage here, in that running a program is guaranteed to yield a 
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result. Strong normahsation also ensures the decidability of typechecking; we no longer have 

the difficulty that type level programs may not terminate, as in Cayenne. The undecidability 

of the Halting Problem for Turing complete languages means that we cannot tell for any 
program whether or not i t terminates, and so we write programs for which the machine 

can estabhsh termination by checking that recursive calls are on syntactically structurally 

smaller values. Turner discusses this in [Tur96]; he observes that in practice most programs 

are structurally recursive, and many of those which aren't (such as quicksort) can be made 

so (we wil l discuss the quicksort example in particular in section 2.3.4). Nevertheless, there 

are some programs which i t wi l l always be impossible to write, since a strongly normalising 

language can not be Turing complete. 

We could imagine a hypothetical dependently typed language being on one of three levels: 

• A l l programs terminate (Strongly normalising). 

• Type level programs (those run at compile-time) terminate. 

• No termination restriction. 

Dependent type theory and E P I G R A M sit on the first level, Cayenne on the last. D M L , by 

having less sophisticated type level programs, sits on the second level. In practice, we might 

consider relaxing the strong normalisation restriction in E P I G R A M i f given an appropriate 

compiler flag, to move to the second and third levels; however in this thesis I wi l l consider 

strongly normahsing programs only, because we can use the strong normaUsation property 

to our advantage in optimisation. 

1.3 Contributions 

Types give us static information about a program; they tell us what a program is supposed to 

do. Dependent types allow more accurate typing and hence give us more static information. 
We ought to be able to make use of this not only to have more confidence about whether a 

program works as planned, but also to optimise more aggressively. This thesis explores the 

optimisation of dependently typed programs, the primary contributions being: 

• A technique for removing redundant and duplicated information from data structures. 

This technique examines type dependencies and removes terms whose values are forced 

by other values. Also, i t identifies and removes constructor tags which are made redun­

dant by case analysis on other values. The values which are removed are introduced 

by the use of dependent types; i t is therefore important that such values are identified 

and removed in order for dependently typed programs to have comparable run-time 

to simply typed programs. 

• A compilation scheme for a dependently typed lazy functional language. I extend well-

understood technology for efficient evaluation of lazy functional languages (specifically. 
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Johnsson's G-machine [Joh84] and Augustsson's pattern matching compiler [Aug85]) 

to take advantage of our detailed type information. I t is not essential that we use the 

G-machine; other methods for executing functional languages (whether lazy or eager) 

can be adapted in a similar way. 

• A n optimised representation of natural numbers using an external implementation. I 

consider what is required to provide external implementations of type theoretic data 

structures, taking natural numbers as an example. 

• Specific techniques for transforming decorated terms in a dependent type theory into 

efficiently executable code which leads in particular to the removal of unreachable code 

branches, identified by typing. 

While this work presents several optimisations for dependently typed programs, i t is 

important to understand that since dependently typed programs are initially decorated 

with much more static information in the program as well as in the type, we are starting at 

what seems like a big disadvantage. Perhaps, then, the most significant contribution is the 

removal of redundant static information from the program and its data, without affecting 

the operational behaviour of the program and the meaning of its data. Having reached this 

point (which merely catches up with where we start optimising simply typed programs) we 

can begin to apply further optimisations based on our rich type information. 

1.4 Related Work 

Martin-Lof's constructive type theory [ML71] has been the basis for much research in the-

.orem proving and programming via the Curry Howard isomorphism [CF58, How80]; other 

dependent type theories are Luo's Extended Calculus of Constructions [Luo94] and the Cal­

culus of Inductive Constructions [CoqOl]. Interactive theorem provers are often based on 

some form of dependent type theory — the logical language of NuPrl [C''"86] is similar to 

Martin-Lof's type theory wi th universes [ML75]; L E G O [LP92] is based on Luo's ECC and 

COQ is based on the Calculus of Inductive Constructions. O L E G [McBOOa] builds on the 

L E G O [LP92] theorem prover, introducing tactics geared towards programming wi th induc­

tive famihes as well as theorem proving. Further (unpublished) work on O L E G resulted in 

tactics for interactive development of pattern matching programs — these tactics led to the 

design of E P I G R A M [MM04b]. 

Recent extensions to the Haskell type system can be used to support some aspects of 

programming wi th dependent types. McBride's "Falcing I t " style of programming [McB02] 

shows how Haskell type classes with functional dependencies can be used to implement some 

vector operations (and some inductive families). Each constructor of the vector, V n i l and 

Vcons, is a separate type, and is an instance of a type class Vect. To define a function 

over vectors then involves implementing a method as part of the type class. While this 
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gives some of the advantages of dependent types, such as the more precise types of vector 

operations, there are some big problems with this approach. Firstly, i t does not generalise 

to all inductive families. Secondly, the notation required to program in this way is rather 

inconvenient — function definitions are distributed among several instance declarations. 

Thirdly, there is a potential run-time overhead in that the implementation of type classes 

necessitates the passing around of a dictionary of functions representing the methods of a 

class (although this can often be inlined). 

The majority of this work is concerned wi th the efficient execution of terms in a dependent 

type theory. For this, we consider interpretation and compilation. Interpretation is based 

on the normalisation by evaluation technique of Berger and Schwichtenberg [BS91], and 

compilation is based on Johnsson's G-machine [Joh84] and Augustsson's pattern matching 

compilation [Aug85]. We are therefore considering the execution of the type theory itself, 

rather than translating to some other setting as is the approach of program extraction [PM89, 

Let02] (which translates type theory terms to M L or Haskell) and Cayenne (which translates 

Cayenne programs to Lazy M L , and compiles the resulting program with the typechecker 

switched oflF). By compiling directly, rather than via another high level language, we have 

the opportunity to take advantage of features of the type theory in implementing compilation 

efficiently. 

An important aspect of efficient execution is the optimisation of programs. There is 

potentially a large amount of redundant information in types, and many of the optimisa­

tions of dependently typed programs we wi l l see involve the removal of computationally 

irrelevant or unused parts of code, in a similar manner to Berardi's pruning of simply typed 

A-terms [Ber96]. We wil l see methods for removing redundant information from dependently 

typed data structures in Chapter 4. Some of the techniques we shall see here, in particu­

lar the removal of content-free data structures, have a similar effect to aspects of program 

extraction in CoQ which aims to remove the purely logical parts of a proof to retrieve a 

program. The advantage to the techniques we use in Chapter 4 over program extraction is 

that i t is not only the logical parts which are removed, but all parts which can be shown 

not to be used at run-time. Nevertheless, the techniques we shall see are equally apphcable 

to program extraction. 

Another optimisation, which we shall see in Chapter 5, involves the transformation of a 

high level representation of natural numbers into a low level primitive type. A similar ap­

proach is taken by [MBOl, Mag03) for implementing numbers more efficiently in CoQ. The 

IsabeUe theorem prover [NPW02] also implements natural numbers natively, although the 

techniques for doing so are not documented^. The low level implementation of natural num­

bers leads to the possibility of a further optimisation, unboxing the representation [PLQla], 

in which numbers axe represented directly rather than as pointers to their binary represen­

tation. 

Many techniques which apply to simply typed languages can also be adapted towards 

'Larry Paulson, personal communication 
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optimising dependently typed programs; for example, the Glasgow Haskell Compiler's com­

pilation by transformation approach [San95, PS98] applies correctness preserving transfor­

mation rules to an intermediate representation. InUning in particular [PM02] is an important 

optimisation for two reasons; firstly, functional programmers use functions in much the same 

way as C programmers use macros, and hence a good inliner is vital, and secondly inlining 

often exposes further optimisation opportunities. We wiU examine some program transfor­

mations in Chapter 6. 

1.5 Overview 

The research documented in this thesis has been carried out in the context of an experimental 

implementation of a back end for E P I G R A M . In this section I wi l l give an overview of the 

implementation and an outhne of the rest of the thesis. 

1.5.1 System Overview 

Nai ve Path 

EPIGRAM 

ExTT ExTT' 

RunTT RunTT' 

G-machine 

Optimised Path 

Extraction/ 
Evaluation 

Execution 

Figure 1 .1 : System Overview 

Figure 1.1 shows an outhne of the system. Between the E P I G R A M program and its 

execution there are several stages, and two possible paths through the system. The left path 
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represents a naive approach to compilation, where no optimisation takes place and all terms 

are directly compiled from their elaborated form. An understanding of this path is necessary 

to explain the path on the right, which represents an optimising approach to compilation. 

Along this path, we remove duphcated and redundant information from data structures and 

make use of the rich type information to remove unreachable code. The phases indicated on 

the diagram are briefly summarised as follows: 

• Step 1 in the diagram is the elaboration phase. This is described by [MM04b]; in this 
phase, programs in E P I G R A M notation are typechecked and elaborated into a core type 
theory, TT. 

• We now either take a naive approach, or an optimising approach. The naive path 

proceeds as follows: 

— Step 2a is a transformation into an execution language for the core type theory, 

called ExTT. In fact, in this approach, T T and ExTT are identical, so this is the 

identity transformation. 

— Step 3 is extraction of ExTT terms into Haskell, which is a simple to implement 

method of executing terms, but less efficient than compilation into an abstract 

machine language. I t is less efficient because, to deal wi th terms which have an 

E P I G R A M type but no Haskell type, we must use an intermediate representation 

of values. 

— Steps 4a and 5a are two parts of the transformation into a run-time language 

of function definitions, RunTT. RunTT programs consist of supercombinator 
definitions; these are function definitions with no free variables and no inner 

lambdas, a form suitable for compilation to abstract machine code. Step 4a 
translates user defined functions by Johnsson's supercombinator l i f t ing algorithm, 

while step 5a translates pattern matching eUmination rules into RunTT using an 

adapted version of Augustsson's pattern matching compiler [Aug85]. 

— Step 8a translates the supercombinator language into G-machine code [Joh84], an 

efficient abstract machine language for the execution of lazy functional programs. 

Some minor modifications are made to account for compiling dependent types. 

The optimising path is the primary contribution of this thesis. The steps are similar to 

those in the naive path, but the transformations between each stage are more involved. 

This path proceeds as follows: 

— Step 2b translates T T into the execution language ExTT', which here is a marked 

up version of TT. Parts of terms which are unused or duplicated (that is, consid­

ered redundant) are marked for deletion. 

— Steps 4b and 5b correspond to 4a and 5a, in that they convert ExTT' into RunTT' 

by lambda hfting and pattern matching compilation. The marking of step 2b 
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means that these processes are not so simple — the lambda hfting process removes 

all terms which are marked for deletion; such terms must also be accounted for 

by the pattern matching compiler. 

— Step 6 is a compilation-by-transformation phase on the execution language ExTT'. 
This makes some transformations for efficiency, in particular, making recursive 

calls direct rather than via an elimination rule. 

— Step 7 is a second compilation-by-transformation phase on the supercombinator 

language. In this phase, source to source transformations are applied to RunTT' 
which make use of the knowledge we have gained through typechecking — for 

example, removal of impossible cases. Also some standard transformations are 

made — inUning, and removal of unused arguments. 

— Step 8b translates RunTT' into G-machine code. I introduce some new instruc­
tions to the G-machine for this phase to take advantage of the marking optimi­
sations in ExTT'. 

• Finally, step 9 involves the execution of G-machine code. There are several ways to 

achieve this — either by the implementation of an interpreter for the abstract machine, 

or a compiler from G-code to a more concrete target language such as C , machine code, 

or C— [PN097]. I give state transition rules for G-machine instructions, many of which 

are as originally defined by Johnsson, but some of which I introduce to implement the 

optimising features of ExTT' and RunTT'. 

1.5.2 Chapter Outline 

The various stages in the compilation of E P I G R A M programs, as shown in figure 1.1 are 

presented in this thesis. The structure of the rest of this work is as follows: 

Chapter 2 presents a background to the literature and the field of type theory and func­

tional programming, and an introduction to programming with dependent types in 

the E P I G R A M notation. 

Chapter 3 discusses execution environments and covers the naive compilation path into 

G-machine code, adapting Johnsson's G-machine for use wi th T T . 

Chapter 4 covers steps 2b, 4b and 5b. I n step 2b, terms are marked up for later deletion. 

Marking takes place by means of three optimisations. The first of these is the forcing 
optimisation, which identifies parts of terms whose value is determined by another part 

of a term (and hence are redundant). Secondly, the detagging optimisation identifies 

where constructor choice in an elimination is determined by another value, meaning 

that the constructor tag need not be stored. The third optimisation is collapsing 
which identifies types wi th no computational meaning, which can be deleted entirely 

at run-time. 
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After step 2b marks terms for deletion, these terms really are deleted in the super-

combinator hfting process in step 4b. Marking also affects the pattern matching 

compilation process, step 5b — no case selection can take place on deleted terms. In 

this chapter we wi l l see a modified pattern matching compiler algorithm which takes 

account of this and further takes advantage of the strong normalisation property of 

E P I G R A M . 

Also in Chapter 4 are several examples, including an extended example of these tech­

niques showing an inductive family based implementation of Augustsson and Carlsson's 

well-typed interpreter [AC99] and its run-time costs. 

Chapter 5 considers the introduction of primitive types into the language, and the opti­

misation of the natural number representation N by transformation of ExTT'. This 

occurs in step 6 of the compilation process. 

Chapter 6 covers additional optimisations. Firstly, a method for removing the abstrac­

tion layer of elimination rules is presented. By this method, recursion at run-time 

is implemented directly rather than by an elimination operator, effectively recovering 

the declared pattern matching behaviour of functions. As well as removing a layer of 

abstraction, this opens up the possibility of further optimisations such as tail recursion 

optimisation. 

This chapter also considers optimisations which only apply in a dependently typed 

language of total functions — specifically, the elimination of impossible cases by typing 
rather than by global analysis. These optimisations take place during steps 6 and 7 
of the compilation process. 

Chapter 7 presents some conclusions. We wi l l see how the features of E P I G R A M ' S type 

system contribute to a more efficient implementation of programs and consider some 

directions for further research. 

Appendices A , B and C cover other technical details. Appendix A gives a detailed ac­

count of compihng a simple function, Appendix B presents some proofs of the prop­

erties of ExTT and Appendix C gives an implementation of a normalisation algorithm 

for ExTT. 

1.5.3 Implementation Note 

A t the time of writ ing the E P I G R A M elaborator is stiU in development, although an early 

version has recently been released. In particular, this prototype has not implemented the 

urith or named with notation described in section 2.2.7. The implementation documented by 

this thesis is of a prototype back-end for E P I G R A M . This includes an implementation of T T 

(including a simple theorem prover wi th tactics for building terms in TT) , compilation to 

G-machine code via ExTT and RunTT, and extraction of Haskell programs from TT. This 
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prototype has served as an environment for experimentation with the implementation and 

optimisation techniques described here. Nevertheless, the techniques described wil l also be 

apphcable to elaborated E P I G R A M programs, or indeed any language based on dependent 

type theory. 

Since the front end is still in development, there are no large, real world, examples as yet. 

As a result there is no benchmark suite corresponding to Haskell's nofib suite [Par92], for 

example, against which to compare the results of the optimisations presented here. Instead, 

the results I present are in the form of comparisons between code generated by the naive 

and optimised compilation paths and analysis of the run-time costs of the RunTT programs 

generated. These results themselves are encomaging, and suggest that i t is indeed possible 

to build a feasible programming language on top of a dependent type theory. 



Chapter 2 

Epigram and its Core Type 
Theory 

This chapter gives an introduction to the background of type theory and dependently typed 

functional programming and introduces the high level E P I G R A M notation along with the 

core type theory to which i t elaborates. In the introduction we considered the benefits of 

dependent types for programming and some of the approaches taken by various languages 

and systems. We saw in the introduction that the characteristic feature of a dependent type 

system is the ability to predicate types on values, which leads to a more precise specification 

for programs, using list append as a motivating example. In this chapter, we wil l see in 

more detail how dependent types are used in E P I G R A M and its core language and consider 

several examples of E P I G R A M programs. 

We wi l l look first at the core language of E P I G R A M , which I call TT, since this is the lan­

guage we wil l be compiling and optimising in later chapters. This core language, introduced 

in section 2.1, is a dependent type theory similar to Luo's E C C [Luo94] with the addition of 

definitions and inductive families. Tactics for developing programs in dependent type theory 

developed by McBride [McBOOa] led to the design of the high level E P I G R A M notation. We 

wiU later see several examples of E P I G R A M programs and so in section 2.2 we introduce the 

high level notation and discuss some of the programming idioms this allows in section 2.3. 

2.1 TT — The Core Type Theory 

The first stage in the compilation of a programming language is translation to a core rep­

resentation; in the case of a functional language tfiis is often a form of the A-calculus. For 

example, the core language of the Glasgow Haskell Compiler [GHC03], Core Haskell [TTOl], 

is a subset of Haskell resembling the polymorphic A-calculus. The core language of E P I G R A M 

is based on a dependently typed A-calculus, similar to Luo's ECC [Luo94] with some minor 

19 
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additions for practical programming. In this section, we wil l examine the details of the core 

language and look at some example programs. 

2.1.1 The Core Language 

The core language of E P I G R A M , which I call TT, is based on Luo's E C C with definitions, 

inductive families and equality. The syntax of T T is shown in figure 2.1. We may also 

abbreviate the function space Wx:S. T hy S T i f x is not free in T. There is an infinite 

hierarchy of predicative universes, : Universe levels can be left implicit and inferred 

by the machine, as in [HP91]. As such, when showing TT terms, we wil l generally leave out 

the universe level; for the majority of the examples in this thesis, i< indicates •o-

t : := * i (type universes) 1 ^ (variable) 
1 Vx-.t.t (function space) 1 D (inductive family) 
1 Xx:t.t (abstraction) 1 ^ (constructor) 
1 11 (application) 1 D-El im (elimination rule) 
1 letxt—it tint (let binding) 

Figure 2.1: The core language, T T 

Remark: Although a;, D, c and D-E l im all represent names of some form, i t is convenient 

in an implementation to make this syntactic distinction as each one is treated differently in 

various parts of the system. 

Contexts 

The core language gives the syntax for both types and terms. In addition, we have a context 

r which binds names to types and values. A valid context is defined inductively as: 

F f - g : Ths : S 
£ h vahd r ; 2 ; : S h vahd F ; x i-» s : S h vahd 

Where £ denotes the empty context, T\x : S denotes a context extended by a variable 

declaration x wi th its type S, and F ; a; s : S denotes a context extended by a variable 

definition x wi th its type S and value s. Computation and typechecking only make sense 

relative to a context. We write the typing judgement, which is a relation expressing that a 

term t has type T relative to a context F as follows: 

F h t : r 

Where computation or typechecking takes place in the empty context, I shall write the 

typing judgement as follows, eliding the £: 

\-t : T 
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Computation 

Conceptually, computation in the core language is defined by contraction rules, given in 

figure 2.2. Contraction, relative to a context F , is given by one of the following contraction 

schemes: 

• /3-contraction, which substitutes a value applied to a A-binding for the bound variable 

in the scope of that binding. Since we have local definitions, by let bindings, then 

/3-reduction is given by the scheme F h {Xx •.S.t)s ^ letxi—>s : S int. 

• ry-contraction, which eliminates redundant A abstractions. 7/-contraction is given by 

the scheme F 1-Ax: 5'./a; / . 

• ^-contraction, which replaces a let bound variable by its value. J-contraction is given 

by the scheme F ; X H ^ S : S \- x s. 

/3-contraction pr-pr ^ —r 
r \-[Xx:S. t) s l e t x i - ^ s : S mt 

77—contraction ^PH—^ TT^ j 
' r \- Xx:S. f X f 

(5—contraction F;x i-> s : 5 ;F ' h a; s 

Figure 2.2: Contraction schemes for T T 

The terms of the form {Xx : S. t) s, Xx: S. f x and x are called /9-redexes, Tj-redexes 

and (5-redexes respectively. The terms let x : S sint, f and 5 are their contractums, 

respectively. 

yS-contraction is often presented as a substitution, i.e. F h (Ax. t) a ^ t[x/a]. Here, we 

prefer to implement i t in terms of let binding as in [MM04b], since this simplifies presentation 

of the theory; we use the following contextual closure rule to reduce a let binding by giving 

rise to a (5-redex: 

I j j r s : S \- t u 
F H let X 1-̂  s : S int u 

Reduction (> ) is the structural closure of contraction, and computation (>*) is the 

transitive closure of reduction. We also say that i f a term x contains an occurrence of a 

redex y, and we replace y by its contractum, resulting in the term x', then x one-step reduces 

to x ' (F h X O i x') 

Conversion, denoted ~ , is the smallest equivalence relation closed under reduction and 

is defined in figure 2.3. I f F I - x ~ ? / , then y can be obtained from x in the context F by 

a finite (possibly empty) sequence of contractions and reversed contractions. Terms which 

are convertible are also said to be computationally equal. The conversion rule makes use of 

syntactic equivalence, denoted = . I f F h x = then the terms x and y are are identical 
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up to a-conversion. We avoid name capture problems in practice by referring to bound 

names by their de Brui jn indices [dB72] — the de Brui jn index of a variable is the number 

of variables bound more recently. 

Definition: x is convertible to y relative to F (F h 2; ~ j / ) 
i f and only if there exist xi,... ,Xn{n > 1) such that V h x = xi,T \- y = x^ 
and F h i j > i Xi+i or F h i^+i t>\Xi, for i = 1 , . . . , n — 1 

Figure 2.3: Conversion for T T 

We say: 

• A term is in normal form i f and only if i t contains no redexes. We denote the normal 

form of a term t relative to a context F by F h N F ( f ) . A term t is strongly normalising, 

denoted F 1- SN (<) , i f every reduction sequence tx>iti\>it2>i • • • reaches normal form 

in a finite number of reductions. 

• A term is i n weak head-normal form 

— I f i t is not a reducible expression. 

- I f i t is of the form / a and / is a weak head-normal form. 

We denote the weak head-normal form of a term relative to a context F by F 1- W H N F ( i ) . 

Type Inference Rules 

The type inference rules for T T are given in figure 2.4. Given the language and the typing 

rules, there are two problems for which we would like to have an algorithm (as with any 

type system): 

• Type Checking ( T C ) Given a term t, a type T and a context mapping names 

to types F, can we determine that the term t has type T in the context F (written 

F f- < : T)? 

• T y p e Synthesis ( T S ) Given a term t and a context F, can we infer a type T such 

that F h < : T? This is also known as type inference. 

A type synthesis algorithm for T T is given in figure 2.5 (TS). We use the following 

notation: 

• F h i ==4> T means that t is assigned the type T. 

• T \- t = ^ T -» T ' means that the type T assigned to term t has a weak head-normal 

form of v . 
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Using this algorithm, we check a judgment F h a : i4 by synthesising types and checking 
for conversion in the standard way [Hue89, Coq96], as follows: 

• Th- A =^ X ^-kn (check yl is a type) 

• r h- a = > B (infer a type for a) 

• r h yl ~ 5 (check that the inferred and declared types are convertible) 

r h valid 
r t- *„ : • „ + ! 

r ; x : 5 ; r ' h v a l i d 

Type 

Var T;x : S;T'^x : S 
(Similarly for c, D, D-El im) 
T;x>-^ s : SS'\- vahd 

s S;T'\-x : S 

T\-f : ^x:S. T T \-s : S 
T \ - f s : lets; : S ^ sinT 

r;x : S\- e : T T h V x : 5 . T : 
r\-Xx:S.e : \/x:S.T 

r;x : S\- T : i.n ThS : 
Th-\/x:S.T : 

App 

^ Lam 

Feral I 

r h ei : 5 r;x ^ ei : S \- 62 : T T \- S : *n T; x ei : S \- T : *n 
P h l e t x : S'i->eiine2 : htx : S l-^ eimT 

r h x : A^ 

Figure 2.4: Typing rules for T T 

Remeirk: The operational semantics of T T requires weak head normalisation — i.e., for 
reduction to proceed requires the machine to know whether a term is a A or constructor 
headed. Some aspects of typechecking also require weak head-normal forms (for example 
checking i f a term has a V form at the head). Other aspects require conversion, which relies 
on reduction to normal form or weak head-normal form. 

2.1.2 Inductive Datatypes 

Datatypes in the core language T T are defined as inductive datatypes in the style of L E G O , 
CoQ and A L F , and as presented by [Dyb94]. An inductive datatype is declared as a disjoint 
union of constructors, each wi th zero or more recursive and non-recursive arguments. A n 
example of an inductive datatype is the type representing natural numbers, N , which can 
be described in a natural deduction style with a type formation rule, and rules for each 
constructor, as follows: 
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Lhl . 

r ;x 

r h valid 

r h valid 
* n + l 

: SeT 

(Similarly for c, D, D-El im) 
r h valid X : 5 s e T 

X \/x:S.T r\-s-- r h 5 ~ s' 
r\- f s ^ ] e t x : S' s i n T 

r-x:She=^T r\-Wx:S.T^X 
T\-Xx:S.e = 

5 h T X ^ *„ 
yx:S. T 
r h 5 = X' 

ri-Va;:5. T ^ X 
r h ei ^ 5 ' r h 5 ~ 5' 

=^ T r ; x : ei h r==> X ' F; z : 5 H-> ei h 62 
r h let a; ei,in 62 let 2 e i i n T 

Figure 2.5: Type synthesis for T T 

data where 0 : N s n 

This type introduces three constants to the context F, representing the type constructor 
(N) and the two data constructors (0 and s). 

N : • e F 
0 : N G F 

s : N - ^ N e F 

Inductive datatypes can also be parametrised over a value. Lists, for example, are 
parametrised over their element tjrpe. This can be described as follows: 

data List .4 : * where nil : List A 
xs : List A 

cons X xs : List A 

Note that we do not declare A : * m the premises for nil and cons, as its presence 
is inferable from the type formation rule. We adopt the convention, as in [MM04b], that 
constructor arguments wi th inferable types such as A need not be declared explicitly, for 
the sake of readability. Nevertheless, when the constructors are added to the context, we 
keep J4 as an argument to both nil and cons as i t is required to preserve type correctness. 
The constants which are added to the context are: 

List : • ^ * e F 

nil : \/A:*.L\stAeT 
cons : V^:*.Va;:i4.Va;s:Listyl. ListA G F 
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In the definition of List, the value of the parameter A does not change across the structure; 

however, i t is not necessary for each constructor to target the entire family as in List, nor is 

i t necessary for the parameter to be a type. We could, for example, parametrise lists over 

their length as well as their element type. Vect is a datatype for Usts parametrised over their 

length (vectors), and is described as follows: 

data N 
Vect An : -k where X : A xs : Vect A k 

e : Vect^O xr.xs : Vect yl (s fc) 

Here we use an infix constructor for the non-empty vectors, similar to the infix constructor 

: used for HaskeU Usts. These rules state that empty hsts have length zero and non-empty 

lists increase the length by one. Hence, as items are added to the vector, the length parameter 

increases. We call such parameters, which do change across the structure, indices. We say 

that Vect is an inductive family. 

Note that each constructor targets a sub-family of Vect — this is the reason for using 

natural deduction style to introduce constructors, rather than a Haskell style data declara­

tion. Again, there are implicit arguments to each constructor; the constants added to the 

context are as follows: 

Vect : * -> N ^ • e r 
e : V > l : * . V e c t y l O G r 

:: : \/A:-k.\/k:N.\/x: A.^xs-.^ect A k.Vect A {s k) e T 

The general scheme for declaration of an inductive family D with constructors Cj is given 

in figure 2.6. The s are the indices, and we split the constructor arguments into a (the non-

recursive arguments) and y (the recursive arguments). The vector notation x [dB91] denotes 

the fact that there may be zero or more arguments in the form of x, and correspondingly oci 
denotes the ith (zero based) entry in the vector x. The constructors Cj can not be reduced 

further; we say that a term which is a fully apphed constructor is in canonical form. 

data i : I data 
Di : -k 

where di : Ai yn •• D r i i . . . yij : D r y where ci ai ^1 : D si 

On • An Vnl •• Drnl . . . Vnk • D r„A: 
CnOnVn • D S„ 

Figure 2.6: Inductive family declaration 

A recursive argument may also be higher order, although figure 2.6 does not show this 

for the sake of clarity (i.e., i t may be a function which computes a recursive argument, rather 

than simply a recursive argument), provided that i t satisfies a condition which ensures that 
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computation over the datatype wil l terminate. This condition, known as strict positivity, 
states that i f an argument to a constructor of a family D has type T —» D s, then an instance 

of D may not occur in T. 

Dybjer's presentation of inductive famihes [Dyb94] also identifies the parameters of a 

datatype; in E P I G R A M we do not require the programmer to identify the parameters ex­

plicitly but rather look for values which cannot change across the structure. The s are the 

indices and parameters of the datatype; these may be computed from or predicated on the 

non-recursive arguments. 

2.1.3 Elimination Rules 

When we declare an inductive family D, we give the constructors which explain how to build 

objects in that family. Along with this, the machine generates an elimination operator 
D-El im (the type of which we call the elimination rule) and corresponding reductions, 

which we call i-schemes. These describe and implement the allowed reduction and recursion 

behaviour of terms in the family. The method for constructing ehmination operators is well 

documented, in particular by [Dyb94, Luo94, McBOOa]. 

Like [McBOOa] I wil l give t-schemes in pattern matching form. The general form of 

an eUmination rule and its associated t-schemes is shown in figure 2.7 . Elimination rules 

reduce when they are fully applied and the target is in canonical form; we call this t-
reduction. The arguments to the elimination rule are as follows, using the nomenclature 

of [McBOOa, MM04b]: 

• a; is the target, preceded by its parameters and indices, i. The target is the object to 

be eliminated by the rule, and corresponds to the scrutinee of a case expression in a 

traditional functional language. 

• P is the motive of the elimination. The motive is a function which computes the 

return type of the ehmination from the target. The motive allows an elimination to 

return a different type depending on the value of the target, and hence distinguishes an 

elimination rule from a typical fold operator, where the return type is a polymorphic 

type variable. 

• rric is a method for the case of the constructor c. The method for c is the reduction 

chosen on elimination i f the target is headed by the constructor c. The function takes 

arguments for each argument to c, and for each recursive argument yi to c i t takes an 

extra argument representing the value of the recursive call to D-El im wi th y as the 

target. 

Remark: We call an elimination operator applied to a target an eliminator. While in 

most presentations the arguments to an elimination operator are ordered motive, methods, 

target, we choose to put the target first (preceded by its parameters and indices, as i t depends 
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D -E l im : \fi:I.\fx:Di. (target) 
VP:V?: / . D ? - > * . (motive) 
Vmc : \/a:A. V ? / i : D f i . . . . V%:Dr,-

Priyi-> ... -» P r j V j --» Ps{cay). > (methods) 

P i X 
J 

D -E l im s (cay) P m m^ay (D -E l im riyi P fn) ... (D -E l im rj yj P fh) 

Figure 2.7: Elimination rule for D, wi th t-scheme for c 

on them) to support E P I G R A M ' S notion of eliminators for pattern matching, which we wi l l 

see in section 2.2.2. 

As an example, the elimination rule for N is as follows: 

N - E l i m : V n : N . Target 

V P : N - ^ * . Motive 

Vmo: P 0. Method for 0 

WrUs-.'^k-.N.Wih-.P k.P {s : k). Method for s 
P n Return type (motive instance) 

The t-schemes for N - E I i m which implement this elimination rule are given in pattern 

matching form as follows: 

N - E l i m 0 P mo rris nu) 
N - E l i m (s fc) P ?T!o rris (N -E l im k P mo rris) 

A simple example of a function which can be implemented in terms of this elimination 

rule is plus, defined as follows: 

plus : V n , m : N . N 

plus An, m : N . N - E l i m n (An: N. N) m (Afc: N . Xih: N . s ih) 

This is defined by recursion over the first argument n. When n is zero, the return value 

is m. When n = s for some k we get an induction hypothesis ih which tells us the value of 

the recursive call (plus kn). In this case, we return the successor of the recursive call, s ih. 

For a datatype where a parameter does not change across the whole structure, we can 

Uft out the parameter from the arguments to the motive and methods. For example, the 

elimination rule for List does not pass J4 as an argument to the methods, since A does not 

change: 
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List-Elim VA-.i.. 
V/:Lis tyl . 

V F : L i s t ^ 

Vmni i :P (n iU) . 

Parameter 

Target 

Motive 

Method for nil 

Vmcons: Va;: A. V x s : List A. "iih: P xs.P (cons Axxs). Method for cons 

P I Return type 

List-Elim A (nil 4̂) P runw mcons "Viii 

List-Elim A (cons Ax xs) P rrinw nitons ^cons x xs (List-Elim Axs P m„i\ nicons) 

Recall that all arguments are kept explicit in TT, hence the A appears as an argument 

to nil and cons in this elimination rule. The elimination rule for Vect lifts the parameter A 
out of the motive and methods, but passes the length index through as i t does change across 

the structure: 

Vect-Elim : V ^ : * . Parameter 

Vn:N. Index 

V?; :Vect^n. Target 

VP: Vn: N. Vect An-^*. Motive 

Vme: P 0 (e A) . Method for e 

Vm::: Vifc: N . V i : yl. Vxs: Vect A k. Method for :: 

"iih-.Pk xs.P {sk){::Akx xs). 
P nv Return type 

Vect-Elim AO {e A) P m.,., 

Vect-Elim A {s k) A k x xs) P m-,; 
m.,: k x xs (Vect-Elim A k xs P nie m,;) 

E P I G R A M also generates non-recursive ehminators (case analysis rules) for each type. 

These are the same as the recursive eliminators except that there are no additional arguments 

in the methods for the result of recursive calls. For N , this would be as follows: 

N-Case : V n : N . Target 

V P : N - > * . Motive 

VTr!o:PO. Method for 0 

ym^:Wk:N.P{sk). Method for s 

P n Return type 

I t is not difficult to see how to prove this from N -E l im, simply by not using the inductive 

hypotheses in the method calls. However, in practice, i t is more efficient to define i t directly 

as i t removes a level of indirection. The general scheme for D-Case is shown in figure 2 .8 . 

2.1.4 Equality 

Thanks to the Curry Howard isomorphism, inductive families can represent not only data, 

but also proofs of propositions. An important such proposition is prepositional equality. 
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D-Case : .yx-.Di. (target) 
— » -AT. (motive) 

Vm^ : ya:A. V y i : D n . . . . yyj-.Dfj. P s (c ay ) . 
1 (methods) 

P i X 

D-Case s {cay) P m w^ay : P s {c a y) 

Figure 2.8: Non-recursive Elimination rule for D, with t-scheme for c 

which is defined using Martin-Lof's identity type declared as in figure 2.9 (using an infix 

notation for the type constructor = ) . 

data ^ - - ^ ^ a = 6 : • where refl a : a 
= - e l i m : V ^ : * . V a : ^ . V 6 : ^ . 

V x : a = 6. V P : a = b-> *. 
V m r e f i : P (refl yl a). P a; 

= - e l i m A a a (refl yl a) P mrefi rrvefi A a 

Figure 2.9: Martin-Lof's Equahty 

We can declare an equality between any two values in the same type, but we can only con­

struct a proof of equality between two values which are equal. The constructor application 

refl a is a proof that a = a. 

This equahty relation is sufficient to describe equality between objects of the same type. 

However, wi th inductive families i t is often useful to be able to describe equality between 

potentially different types. For example, i t is impossible to declare an equality between two 

Vects with different indices, even i f those indices are propositionally equal. I t is intuitively 

clear that the following proposition (that :: respects equality) holds, however the definition 

of propositional equality we have is insuflacient to express the theorem; there are type errors 

because the vectors involved have different indices. 

wrong : VJ4:*. V T O : N . V2;:i4. Va;s:Vect yl (s m). 

yn:N.yy:A.\/ys:\/ectA{sn). ( x ) 

m = n X = y —> xs = ys —* {:: A m X xs) = {:: A n y ys) 

Instead, we use McBride's heterogeneous definition of equality^ [McBOOa], declared as in 

figure 2.10. Using this definition, we can declare an equahty between two values in different 

types, but we can only construct a proof of an equality between two identical values in the 

same type. Note that we do not declare this family with a data declaration but rather 

add the type formation and ehmination rules to the core type theory as axioms, because 

^McBride calls this "John Major" equality. 
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the default elimination rule given by the D-El im scheme would not be suitable. The rule 

generated for a data declaration would be abstracted over both types A and B but we only 

want to be able to apply the rule when the types A and B are the same. Henceforth, = is 

this heterogeneous equality. 

A,B : b •• B ^ : • a : A 
a = 6 : * refl a : a = a 

-elim : WA:-k.Wa: A.Vb: A. 
\/x:a = b.yP:a = h^-k. 
V m r e f i : ^ ' ( r e f i l l a ) . 

= -elim A a a (refl ^ a) P rrirefi Jî refi A a 

Figure 2.10: Heterogeneous Equality for Dependent Types 

2.1.5 Properties of TT 

There are several metatheoretic properties which hold for U T T as shown by Goguen [Gog94], 

and hence we assume to hold for T T . These are: 

• Church Rosser. I f two terms s and t are convertible, then s and t have a common 

reduct, up to syntactic equivalence (= ) . 

ifr\- s-t 
then there exists r , r' such that 

r h s >* r and r h 11>* r ' and r h r = r ' 

• Strong normalisation. A l l well-typed terms in T T are strongly normalising. 

ifr h t : T then SN(t) 

• Subject reduction. I f s reduces to t, then s and t have the same type. 

F h s : T Ft - s o * i 
T\-t : T 

• Uniqueness of types. A term only has one type, so i f the same term is shown to 

have two types with respect to the context, then those two types must be convertible. 

T\-s : T T\-s : r 
F h T ~ T ' 
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• Adequacy. In the empty context (that is, in the absence of any assumptions) the 

weak head-normal form of a term < is a constructor form. 

i f \- t : Ds 

then WHNF(<) = c ?for some c, t 

Remark: Tj-contraction can cause problems with the metatheory, particularly with regard 

to the Church Rosser property. The counterexample which shows that Church Rosser fails 

is as follows (with A ^ B): 

Xx:A. {Xx :B. x)x 

This reduces to Aa; : J4. a; by /3-reduction, and \x : B. x hy 77-reduction. Of course, 

this term is not well-typed, but we still have a problem because Church Rosser is often 

shown by erasing types and showing the property for the untyped terms. Nevertheless, we 

are only interested in the well-typed terms, and the work of Geuvers [Geu93] and Jay and 

Ghani [JG95] leads us to believe that Church Rosser does hold for TT wi th 77. 

2.1.6 Universe Levels and Cumulativity 

r \ - x - y T \- X ^ y T\- ydi z 
F h x ^ y F h X < z 

F; X : 5i h Ti ^ T2 
F h :< * n + l ri-V2;:5i . T i ^Va;:52. 

Figure 2.11: Cumulativity 

In TT, we have an infinite hierarchy of predicative universes, i.e 7ic„ : *„+i for n > 0. 

In [MM04b], the core type theory also has cumulativity (figure 2.11), which allows us to 

embed values in higher universes — so i f J4 : we also have A : *n+fe for k > 0. The 

problem with defining cumulativity rules for the type theory, however, is that i t breaks the 

uniqueness of types property. W i t h cumulativity we can, for example, say the following: 

N : *o 
N : 

Prom uniqueness of types, we could then conclude that •o = * i , which is clearly not true. 

The uniqueness of types property wi l l be crucial to later parts of this thesis, and so we do 

not have cumulativity in the core type theory. Nevertheless, there are programs for which 

cumulativity is useful. An example wil l be given in section 4.6; at that point I wi l l suggest, 

in section 4.6.2, a solution to the cumulativity problem based on Tarski style universes, as 

implemented in Plastic [CLOl]. 
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2.1.7 TT Examples 

To show how the core type theory is used, let us consider some small example programs. 

We have already seen plus, defined by elimination of its first argument: 

plus : V n , m : N . N 

plus An, m : N . N - E l i m n ( A n : N . N ) m (Afc: N . A i / i : N . s ih) 

A more complex example is the append function on lists; this is similar in structure to 

plus. I f the first hst xs is empty, we simply return the second list ys. Otherwise, i f the first 

list is of the form cons z zs, we return (cons z (append zs ys)), where the recursive call is 

represented by the inductive hypothesis ih. 

append : Vi4 :*. Vxs, j/s: List ^ . List 4̂ 

append A ^ : * . Axs, ys:List J4. 

List-Elim A xs {Xxs: List A. List A) ys 

(Xz: A. Xzs: List A. Xih: List A. cons A z ih) 

In Chapter 1 we considered the type safety of vector append as compared with hst 

append. The definition of vector append in the core type theory is of the same structure 

as hst append, although i t does raise some issues about typechecking. The definition is as 

follows: 

vappend : Vi4: *. Vn, m : N . Vxs: Vect A n. Vys: Vect A m. Vect A (plus n m) 

vappend XA : *. An, m : N . XXS : Vect A n. Xys: Vect A m. 

Vect-Elim Anxs (An : N . Axs: Vect A n. Vect A (plus n m)) ys 

(Afc:N. Xz:A. Azs:Vect A k. Ai / i: Vect (plus k m). 

:: A (plus k m) z ih) 

The issues with typechecking are based on the expected return types of the methods of 

Vect-Elim. The problems are: 

• In the € case, we expect a return type of Vect A (plus 0 n) . However, the return value 

ys has type Vect A n. 

• In the :: case, we expect a return type of Vect A (plus (s k) n) , however the return 

value oi :: A (plus k n) z ih has type Vect A (s (plus kn)). 

So why does the given definition of vappend typecheck? This definition typechecks be­

cause in conversion checking we are comparing normal forms (or weak head-normal forms) of 

terms, rather than the syntactic forms. For example, in checking the e case, the normal form 

of plus 0 n is n — this is reducible because the first argument to plus, which is the one we 

pass to the elimination rule, is in canonical form (i.e. headed by a constructor). Hence, the e 

case typechecks. The :: case typechecks for similar reasons. This is an important point about 

typechecking dependently typed programs — syntactic equaUty checking is not enough; we 

must reduce to normal form (or use some other method of conversion checking based on 
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reduction) before checking equality, hence why without strong normalisation typechecking 

becomes undecidable. 

2.1.8 Labelled Types 

Labelled types, introduced in [MM04b] are an extension to the core type theory which allow 

terms to be "labelled" by another term which describes its meaning. We extend the TT 

language of section 2.1 with syntax for labelled types as in figure 2.12. The typing and 

contraction (called /9-reduction) rules for these syntax extensions are given in figure 2.13 

and figure 2.14. 

t ::= 
I {I •• t) 
I call(/)< 
I returnt 

I ::= nt ( A name applied to zero or more terms) 

Figure 2.12: Extensions to T T for labelled types 

P h T 
P I - : T) : 

P f - t : T 
P h return ^ : {I : T) 

Label 

Return 

T h t : {I : T) 
T\-c^{l)t : T 

Figure 2.13: Typing and rules for labelled types 

^contraction r h call ID (retm^TtV^t 

Figure 2.14: Contraction rule for labelled types 

E P I G R A M programs are defined interactively, wi th metavariables (or holes, • : T) 

standing for parts of programs which have not yet been written, and their type. Labelled 

types allows the types of holes to be more informative; the system implicitly inserts a label 

into the return type of a function. So, i f we are defining plus interactively, the type is 

plus : V n : N . V m : N . { p l u s n m : N) 
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Now the types of recursive calls and return values give us some useful information, namely 

their meaning as well as their type. An incomplete definition of plus, wi th metavariables 

in place of the cases, is labelled as follows: 

plus = A n , m : N . 

N - E l i m n ( A n : N . ( p l u s T i m : N)) 

• : (p lusOm : N) 

• : Vfc:N.Vi/ i : (plusfcm : N).(plus (s fc) m : N) 

Labelling the return type in this way tells us that when n is 0, the return value of the 

function is the value of plus 0 m, and when n issk, the recursive call we get is the value of 

plus k m and the return value of the function is plus (s k) m. 

The purpose of the return keyword is to create a label, rather than a N. Then, since 

the inductive hypothesis is now a label rather than a N , the application of the inductive 

hypothesis is made wi th the call keyword. 

A more detailed account of labelled types and their use in elaborating E P I G R A M terms is 

given in [MM04b]. I wi l l in general leave labels out of terms — i t is a simple transformation 

to change T T terms wi th labels to TT terms without labels. Eventually, I wiU use these 

labels to assist in efficient compilation. The details of this optimisation wil l be described in 

Chapter 6. 

2.2 Programming in Epigram 

This thesis concentrates on the efficient compilation of E P I G R A M programs and we wil l see 

many examples of E P I G R A M programs and their elaborated forms. Rather than writing 

programs directly in T T , E P I G R A M is a high level notation for programming which makes 

programs more readable and easier to develop. This section gives a tutorial introduction 

to programming with inductive families in the high level E P I G R A M notation, building on 

the core type theory of T T . For a complete specification of E P I G R A M see [MM04b]; a more 

comprehensive tutorial is given in [McB04]. 

2.2.1 Basic Notation 

D a t a Type Declcu-ations 

Inductive datatypes and famiUes are declared using a data declaration, as we have already 

seen in section 2.1.2: 
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data 

where 

Ds : 

ai : Ai yu : D rn ... yij : D nj 
ci aiyi : D si 

^ • Vnl •• Ornl ... Vnk • D Hrfc 
Cn On ?n : D S„ 

The indices of each constructor may differ — such as in the Vect family (see section 2 .1 .2 ) 

where the constructors for the empty and non-empty vectors target different and disjoint 

branches of the family — so a Haskell style data declaration is insufiicient to express many 

families. 

The recursive arguments y may be higher order provided that they satisfy the strict 

positivity condition (see section 2 . 1 . 2 ) . When a structure is strictly positive, we know that 

the recursive arguments can only represent smaller structures. 

Function Definitions 

A function definition takes the form of a type signature followed by the function body. 

Functions, like inductive datatypes, are declared in a natural deduction style, wi th the 

premises above the fine (i.e., the argument types) and the conclusion below the line (i.e., 

the return type). This gives a convenient notation for dependent types because argument 

names can appear in the type of later arguments, and in the return type of the function. 

let Y f 7 ^ {body} 

In this declaration, S denotes the types of the arguments, and T the return type of 

the function. There may also be implicit arguments, as wi th data type declarations, whose 

values can be inferred from the given arguments s. The type of elaborated f in the core T T 

is: 

f : Vi ' : J .Vs :ELAB (5 ) . E L A B ( r ) 

(Where ELAB(p) denotes the elaboration of a high level program p, and i : 7 are the 

implicit arguments.) We use the V f : S notation, wi th exphcit names for the arguments, 

since dependent types allow the x to occur in the return type of f, T, in much the same 

way as the x are allowed to occur in the body of f. Just as A is a binder for function bodies 

in A-calculus, the V symbol is a binder for function types. 

Finally, for function types Vx: S. T, where x is not free in S we can use the more concise 

notation which wil l be famihar to Haskell or M L programmers: 

f : 5 - > T 
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2.2.2 Programming with Elimination Rules 

As we saw in section 2.1.2, constructors provide a means for creating objects of an inductive 
datatype, and ehmination rules provide a means for deconstructing those objects. In TT, 

ehmination rules are the only means for examining datatypes and so the high level notation 
provides a convenient means for applying elimination rules. 

Earlier, we saw the plus function on natural numbers defined in TT as follows: 

plus : V n , m : N . N 

plus = An, m : N . N-EHm n (An:N. N) m (AA:: N. Xih:N. (s ih)) 

Let us consider how the EPIGRAM system allows us to define this function using high 
level notation, in an interactive style. We begin by declaring the type of plus: 

let n, m : N 
plus n m : N 

W i t h this, E P I G R A M ' S interactive development system gives us a template for a function 
definition, with a "hole" for its body, • , indicating its type: 

plus nm • : N 

We would like to define this function by recursion on the first argument, m, so we tell 

E P I G R A M to apply the eUmination rule N - E l i m to n. The "by" operator (-̂ =) takes as its 

right hand side an eliminator (i.e. an eUmination rule appUed to its target). As a shorthand, 

we can access the appropriate eUminator for a term x wi th the notation elim x. Applying 

the eUmination rule gives two possible cases for n: 

let ^ ' " ^ '• ^ — plus n m : N 

plus n m elim n 

plus 0 m i-> • : N 

plus (s fc) m • : N 

The details of the elimination rule are hidden from the programmer; however, behind 

the scenes the system is building a term in TT, complete wi th labeUed types. The labeUed 

type of plus is: 

plus : Vn, m : N . (plus n m : N) 

The system knows if a recursive call is aUowed by searching through the bindings in the 

context and checking for a term with a labelled type which matches the recursive call — this 

term is an inductive hypothesis. For this function, plus A; m is an allowed recursive call in 

the s k case, since the type of the inductive hypothesis is (plus km : N) . We can complete 

the definition as follows: 
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let — plus n m : N 

plus n m <̂= elim n 
plus 0 m m 

plus (s ^) m s (plus k m) 

We therefore use elimination rules to generate readable pattern matching style functions. 

E P I G R A M programs are tree structured in that a call to an ehmination rule breaks the 

program down into sub problems; we reflect this by indenting the program where there is 

an appeal to an elimination rule. 

Remark: Using this approach, pattern matching is not hard-wired. Instead, there is a 

pattern matching style interface for programming with eliminators. Also, the interactive 

approach to program development means that the programmer does not have to type in 

the whole definition; the appropriate patterns are given by the elimination rule. This is 

particularly useful where case analysis on one argument tells us something about other 

arguments (case analysis on a Vect tells us which constructor was used to build its length 

index, for example). We wi l l see some examples of this later, in particular in sections 2.3.2 

and 2.3.3. 

2.2.3 Impossible Cases 

One of the most important features of the elaboration process is the ehmination of cases 

which can be shown to be impossible through types. For example, consider how we might 

write a function which returns the tai l of a non-empty vector. We declare the type, and get 

a template for the function as follows: 

let v-.y^ctAjs n) 
— vTai l V : Vect A n 

vTailt; \--> • : Vect yl n 

Clearly, the empty vector is not a valid input to this function — the type specifies that 

the input must have a non-zero length. As a result, when we declare that we wish to write the 

function by Vect-Case v (using the notation case v to access the non-recursive elimination 

rule), all the system gives us is the case for the non-empty vector: 

, V : Vect A (s n) 
^ vTailt; : Vect yl n 

vTai l V <^ case v 
vTail(a:: 'i;) i - ^ • : Vect yl n 

Completing this definition is straightforward: 

let V : Vect A (s n) 
vTai l V : Vect A n 

vTail V case v 
vTail(a : : t ; ) i-> v 
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By examining the input type Vect A (s n) we see that the empty vector e is an impossible 

case, since i t has the type Vect A 0 which does not unify with the input type. This much is 

clear for us to see, but how does the elaboration mechanism know that v T a i l {a::v) is the 

only case and how does i t produce a valid term in TT? 

For this we use a technique described in [McBOOb], elimination with a motive. To define 

a function in this way, the machine inserts equational constraints into the motive expressing 

the allowed values of the indices. This requires an empty type and a tr ivial type. The empty 

type is a type wi th no constructors: 

data where 
False : * 

Since this type has no constructors, the eUmination rule has no methods. As a result i f we 

have an element of the empty type we can prove anything by passing any motive to the 

elimination rule. 

False-Case : V / : False.VP: False ^ •.P / 

The tr ivial type has one constructor: 

data = F where True : • () : True 

The technique for ehminating impossible cases revolves around showing that the case is 

impossible, thereby producing an element of the empty type and returning a value of the 

appropriate type with False-Case. Checking impossible cases like this can be done auto­

matically by elaboration and i f a case is shown to be impossible i t need not be written down. 

The elaboration of vTai l is shown in detail in Appendix A. The result of this elaboration 

is shown in figure 2.15. Here, I have separated this into several functions for readability; in 

practice the system generates this as one definition. 

2.2.4 Example — Vector lookup 

Suppose we have a list, /, and an index, n, and we wish to retrieve the nth element of the 

hst /. Traditionally, i f we want to do this robustly, we might take the following steps: 

1. Check the length of I. 

2. Check that n is within the bounds of /. 

• I f out of bounds, perform some error handling routine. In Haskell, we return J . 

in the error case, but this is not an option in E P I G R A M because of the strong 

normalisation property. 

3. Perform the lookup. 

The first two steps are potentially expensive, but i f we leave them out we run the risk of a 

program error. X i [Xi98] describes the use of constraints wi th dependent types to eliminate 
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d M o t i v e : V n : N . * 
d M o t i v e \-* \n:N. N-Case n (Vn:N. -k) False (Afc:N. True) 
d i sc r imina te : Vn :N. Vp : sn = 0. False 
d i sc r imina te t-> An: N . Ap: s n = 0. 

= - e l i m N (s n) p d M o t i v e () 

emptyCase : : Vn : N. (s n = 0) Vect A n 
emptyCase i — > \A:*. Xn:N. Xp:s n = 0. 

False-Elim (d iscr iminate n p) (Vect A n) 

consCase : V ^ : * . Vn :N. Vfc:N. Vect ^ (s n = sk)-*\/ectAn 
consCase XA:*. Xn:N. Xk:N. \v:\/ect A k. Xp:k = n. 

= - e l i m N k n (SJn j k n (eq_sym N n k p)) (An :N. Vect An) v 
v T a i l A u x : V n : N . V ^ : * . VA;:N.Vv:Vect^ fc. (s n = fc)-» Vectyl n 
v T a i l A u x Xn:N. XA:-k. Xk:N. Xv: Vect A k. 

Vect-Case Akv 
{Xk:N.Xv:yectAk.{sn =k)^yectAn) 
(emptyCase A n) 
{Xk:N. A a : ^ . Av:Vect A k. consCase An k v) 

v T a i l A ^ : * . An :N. At; :Vectyl(sn) . 
(A/fc:N. At; :Vect^fc. 
XP-.yk-.N.Wv.VectAk.isn = A:) ^ Vect T in . 
P{sn)v (refl (s n))) 
n V ( v T a i l A u x n A) 

Figure 2.15: Elaborated vTai l 

such bounds checks at run-time. Inductive families give us an alternative method. We begin 

by defining a family of finite sets. The finite sets, indexed over n, are sets with at most n 

elements and a natural use of this is to represent bounded numbers. 

data 

where 

Fin 
Fin n 

fO : Fin (s n) fs i : Fin (s n) 

We can see from the indices that i t is not possible to create an element of Fin 0. To create 

such an object would be meaningless — Fin 0 is a set wi th no elements, corresponding to a 

type with no values. 

The dependencies on Fin and Vect give us invariants which must hold in the definition of 

the lookup function. These invariants are verified at compile-time by the typechecker rather 

than at run-time by the run-time system. We declare the type of the lookup function with 

a let declaration: 

let i : Fin n v : Vect A n 
lookup i V : A 

There are two extra arguments, n and A, which are left implicit as they can be inferred 
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from the types of i and v. There are some other constraints which we can infer just from 

the type: 

• The value of n cannot be 0 in a well-typed appUcation of lookup, in the empty context 

(i.e., when n is in canonical form). This is because i t is impossible to create a canonical 

element of Fin 0. I f n were equal to zero, then i would have to be of type Fin 0. 

• As a result, the vector v must be non empty. This means that one possible error, 

that of looking up an element from an empty list cannot happen at run-time because 

attempting to call the function wi th an empty vector would be a compile-time error. 

The function is written by recursion on i . I f the value of i is zero then we return the first 

element in the list, otherwise we look in the tai l of the hst. I wi l l again write the program 

by refinement, as directed by the E P I G R A M elaborator. The first step is to declare that we 

wish to write the program by recursion on i. 

lookup i V elim i 
lookup fO V 1-^ D : A 
lookup (fs i ) t; I—» • : yl 

This gives us the possible patterns for i. The next step, for each subgoal, is case analysis 

on V. Here the elaborator establishes that the empty vector would violate the constraints in 

the type, as with the vTai l function, and so we do not get a pattern for the empty vector. 

Note that giving two elimination rules on the right of <;= means that the second rule wi l l be 

applied immediately in each case generated by the first rule (c.f. the Then tactical in L E G O 

or sequencing with semicolon ( ; ) in C O Q ) . 

lookup i V ^ elim i <= case v 
lookup fO (a:: v) a 

lookup {fs i) {a :: v) i—» lookup i v 

We use Vect-Case rather than Vect-Elim because the recursion is on the finite set, rather 

than the hst, so we do not need the recursive call on Vect. 

The definition of lookup is now complete. Impossible cases were eliminated by the 

typechecker and constraints given by the invariants on the length of the vector and the 

bounds of the finite set mean that i t is not possible to have an array bounds check error. 

2.2.5 Alternative Elimination Rules 

Sometimes the default eUmination rule for a data type is not the ehmination behaviour we 

want. We are not restricted to these default rules, however; any function with a motive and 

methods is considered an eUminator and we can therefore write down the pattern matching 

behaviour resulting from the methods. 

A term e is an ehminator in a context T if: 
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• r-t : A\- e : VP:(Vo:^.*) .Vmc, : ( V o i ; i i . P si) Vmc„ : (Vai: ^ i . F s „ ) - ? 

• T;t : A h valid 

• T;P : ( V o : i . * ) ; 5 i : Ai \- P Si : -k, where 1 < z < n. 

This term e is a function which eUminates zero or more targets. The patterns which 

are allowed are given by the arguments s, to the return type of each motive (mc.) Looking 

again at N-El im, we see how this fits the general scheme: 

N-El im : Vn:N. 
V P : N ^ * . 

Vwo:PO. 

\/ms-yk:N.Wih:P k.P {s k). 
Pn 

The arguments to the motive P in the return type of the methods mo and give the 

patterns which are allowed, which are 0 and s k. 

There is no reason why there should be only one target, and indeed in the case of indexed 

or parametrised families, the indices are effectively additional targets. The eUmination rule 

for vectors illustrates this: 

Vect-Elim : V A : * . 

Vn: N.Vu: Vect A n. (Targets) 

V P : V n : N . V e c t ^ n ^ * . 

Vme:POe 

Vrri:;:VA;:N.Va:>l.Vv: Vect A fc.Vi/i-Pkv.P (s k) {a::v) 
P nv 

The two arguments to the motive P indicate that this rule eliminates two values together. 

This makes sense, since the second value v depends on the first value n. 
We can also write user defined ehmination rules with this kind of behaviour. For example, 

we can write a double recursion rule which eliminates two natural numbers at once. 

N-double-elim : Vn, m : N . 

Vmo„:Vn:N. P O n . 

Vr7iso:Vn:N. P(s n) 0. 

VTr!ss:Vn:N. V m : N . P n m ^ P (s n) (s m). 

P n m 

User defined rules are implemented in terms of the ehmination rules we akeady have, in this 

case by N -E l im: 

N-double-elim n m P mon msO IThs <= e l i m n 

N-double-elim 0 m P mon ruso nhs I - + mon m 

N-double-elim (s n) m P TJTon rrjso THss •<= e l i m m 

N-double-elim (s n) 0 P mcn rriso iriss 

N-double-elim (s n) (s m) P mon TTlsO rUss H-> rriss n m (N-double-elim n m) 
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Some functions are naturally recursive over two values, for example max which returns the 

larger of two natural numbers. N-double-elim gives us a convenient pattern of recursion 

for writing this function: 

let '^'"^ • ^ max n m : N 
max n m <= N-double-elim n m 
max 0 m H-> m 
max (s n) 0 >-» s n 
max (s n) (s m) l-^ s (max n m) 

2.2.6 Derived Eliminators and Memoisation 

The ehmination rules automatically generated for datatypes give us primitive recursion — 
a recursive call is allowed on recursive arguments of datatypes. This does not necessarily 
make all structurally recursive functions easy to define, however. Consider the function to 
return the n th element of the Fibonacci series; one way to write this in Haskell is as shown 
below: 

f i b : : Nat -> Nat 
f i b 0 = S 0 

f i b (S 0) = S 0 

f i b (S (S k ) ) = p lus ( f i b k) ( f i b (S k ) ) 

This is not a very efficient definition; there are two recursive calls, but i t does not take 

advantage of sharing and some values of recursive calls wi l l be computed repeatedly. Nev­

ertheless, i t represents a simple mathematical definition of the Fibonacci function. Unfor­

tunately though, while i t is structurally recursive, i t is not primitive recursive and therefore 

cannot be defined directly using N - E l i m . 

In COQ, structurally recursive functions can be defined using the primitive Case and 

F i x constructs, which separate the concepts of case analysis and recursion. A function 

defined using F ix , wi th a declared decreasing argument, can make recursive calls where the 

declared decreasing argument is structurally smaller. Gimenez shows that elimination rules 

can be defined using Case and F i x and, conversely, all Case /Fix based functions can be 

defined using elimination rules [Gim94]. McBride mechanises the latter technique in his 

thesis [McBOOa], and this is also implemented by E P I G R A M as described in [MM04b]. 

In E P I G R A M , as in COQ, the concepts of case analysis and recursion are separated. 

However, in E P I G R A M , ehmination rules are used to implement the separation. Hence, for 

a family D, in addition to D-El im and D-Case, an additional recursion operator is derived, 

called D-Rec. This operator carries within its motives a memo structure (D-Memo) which 

is a large tuple holding a value for the recursive call to each structurally smaller value: 
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D-Rec : Va: yl.Vx: D a.VP: (Vs: A.D s ^ 

(Vs: A.Wy: D s .D-Memo {P y) P y) P x 

Note that this fits the form of eUmination rules given in section 2.2.5. A call to the 

operator D-Rec for a term d : Ds does not itself do case analysis, but rather gives access 

to recursive calls on values structurally smaller than d. To do the case analysis we require 

an additional application of D-Case. 

The construction of such eUmination operators is rather complex, and described in detail 

in [McBOOa]. Prom the programmer's point of view, what i t means is that any recursive 

caUs on structurally smaller values are accessible via the memo structure. The definition 

of fib can therefore now be written by N-Rec and N-Case. We use the notation rec x to 

access the appropriate recursion rule. 

let f ibn : N 

fib n <;= rec n <^ case n 
fib 0 0 

fib (s k) case k 
fib (sO) sO 
fib (s (s jfc')) ^ plus (fib k') (fib (s k')) 

For reference, the construction of N -Rec and its helper functions are shown in figure 

2.16, figure 2.17 and figure 2.18. The fully elaborated fib function is shown in figure 2.19. 

This definition is large and barely readable, and is clearly a function we are happy to let 

the elaborator write for us. Note that the results of the recursive calls to fib are accessed 

by projecting them out of the tuple built by N-Memo. 

n : N P : N 
— N-Memo n P 

—»* n : N P : N 
— N-Memo n P : * 

N-Memo n P <^ elim n 
N-Memo 0 P h--» True 
N -Memo ( s ik )P •» (P n X N-Memo k P) 

Figiu-e 2.16: N-Memo definition 

let N • M : Vn :N. (N-Memo n P ) ^ (P n) 
N -MemoGen n P M : N-Memo n P 

*}-MemoGen n P M <= ehm n 
N -MemoGen 0 P M ^ {) 
N -MemoGen {sk)P M H-> let rec : (N-Memo k P ) ( P k) 

N -MemoGen A; in (Af rec, rec) 

Figure 2.17: N -MemoGen definition 
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let n : N P : N - > ^ M : Vn :N. N - M e m o (P n) ^ (P n) 

N-Rec 71 P M 
^-Rec n P M : P n 

M n (N-MemoGen P M n) 

Figure 2.18: N-Rec definition 

fib ^ An: N. N-Rec n ( A z : N . N ) 
(An' : N . N-Case n ' (Ax: N. (N-Memo (Xy: N . N) x) ^ N) 

(Aw:True. sO) 
{\k: N . N-Case k (Ax: N. (N-Memo {Xy: N . N) (s x)) ^ N) 

((Ax: N - M e m o {Xy: N . N) sO. sO)) 
(AA::N. A M : (N, (N, N - M e m o (Ax:N. N) fc)). 

p lus (fst M) (fst (snd M)) ) ) ) 

Figure 2.19: Elaborated fib 

2.2.7 Matching on Intermediate Values 

The examples we have seen so far have performed pattern matching only on the arguments 

passed directly to the function. In practice though, we often create intermediate values 

in the process of computation. We could match on these by passing all of the pattern 

variables to a helper function, but [MM04b] also describes a more compact notation for 

this, the "with" construct {Ihs \ expr {program}). This construct adds expr to the values 

we axe allowed to match on. Here we extend this notation to the "named with" construct 

{Ihs I var <— expr {program}), which gives a name var for later case analysis. 

An example of a function where such behaviour is useful is the f i l t e r function from the 

Haskell standard prelude. Filter removes any items from a list to which a given predicate 

does not apply. In Haskell, i t is defined wi th guards to check the intermediate computation: 

f i l t e r :: (a -> Bool) -> [a] -> [a] 

f i l t e r p [] = [] 
f i l t e r p (x:xs) I p x = x : ( f i l t e r p xs) 

I otherwise = f i l t e r p xs 

In E P I G R A M we take p x as an intermediate computation and match on its result wi th 

Bool-Case (figure 2.20). Pattern matching is on the result of the intermediate computation 

in a similar style to the pattern guards proposed for Haskell [EPOO]. We wil l see several 

examples where this notation is useful; either making definitions more concise or removing 

the need for auxihary functions. 
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let L Bool xs : L]stA 
filter / xs 

filter / a;s 
f i l t er / nil 
filter / (cons x xs) 

List^ 
^ elim xs 
H-» nil 

b ^ f x 
true 
false 

case b 
» cons X (filter / xs) 
* filter / xs 

Figure 2.20: filter definition 

2.3 Programming Idioms 
We have so far seen the basic syntax of E P I G R A M and some small example programs. These 

have been very similar in structure (if not in their typing) to the sort of programs we might 

write in a traditional functional language. However, wi th the stronger type system come 

new programming idioms. In this section, I wi l l discuss some of these and the additional 

syntax E P I G R A M provides to support them. We wi l l start by looking at two of the simpler 

idioms, dependent pairs and writing programs by induction over proofs, and move on to 

more complex and powerful idioms, views and techniques for showing termination. 

2.3.1 Dependent Pcdrs 

I t is often the case in dependently typed programming that we do not know in advance of 

running a function which builds an instance of a family what the indices of that family wi l l 

be. For example, i f we write the filter function of the previous section over Vect rather than 

List (correspondingly calling i t vfilter), what is its return type? 

j , ^ ^ p : A —> Bool I S : Vect A n 
— vfilter p xs : Vect A ? 

In some cases, we can write a function which computes the required index in advance. 

I f we axe converting a List to a Vect, for example, we can calculate the length of the List, 

length, and build the index from that: 

/ : Lis t^ let length I length / 

length nil 

length (cons x xs) 

elim / 

* 0 

» s(lengthis) 

let / : List .4 
listToVect / 

listToVect I 

listToVect nil 

listToVect (cons x xs) 

Vect A (length I) 

elim I 

2;::(listToVectxs) 
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For vfilter however, we can only compute the index by running the function itself. In 

this case, we prefer to return a dependent pair of values. A dependent pair is a pair in 

which the type of the second item is predicated on the first value. This can be built into 

the core type theory as a primitive, as in Luo's E C C [Luo94], but inductive families mean 

that this is not necessary. In E P I G R A M we declare dependent pairs as an inductive family 

with the declaration in figure 2.21. 

data A : * F : A->-k data EAF : * 

where a : A f : F a 
( a , / ) : ^AF 

Figure 2.21: Dependent pair 

Using a dependent pair, we can write vfilter as in figure 2.22. Note that there are 

additional matches on the results of recursive calls to vfilter, and that the first element of 

the pair can be inferred by the typechecker from the type of the second element. Using a 

dependent pair hke this can provide a convenient layer of abstraction for an inductive family 

which hides the indices — the user of functions over the family need not know what the 

indices of the family are. The use of ? in the return values indicates that we expect the 

elaborator to be able to infer the values of these terms, as in each case there is only one 

value which would be well-typed. 

/ : yj —> Bool xs : Vect A n 
— vfilter / xs 

vfllter / xs 
vfilter / e 
vfilter / {x::xs) 

E N (Vect A) 
= ehm xs 
- (?,nil) 
b ^ f x 

true 

false 

P 

P 

case 6 
- vfilter / xs 

i-,xs') 
— vfilter / xs 

{.,xs') 

case p 
* {?,x::xs') 
case p 

^ {^,xs') 

Figure 2.22: vfilter definition 

Pairing like this is similar to the approach taken to vectors in the C++ standard template 

Ubrary [MSDOl], in that the internal representation pairs the length with the list data itself, 

and operations on the vector class preserve length invariants. In C+-I-, however, the length 

invariants are maintained by hand, rather than by the type system. 
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2.3.2 Induction Over Proofs 

Properties can be expressed as inductive relations in E P I G R A M , which allows us to impose 

more constraints on the definition and use of functions. Sometimes i t is difficult or impossible 

to express constraints using the indices of an inductive family alone. An example of where 

this is difficult is in defining the minus function on N . I t does not make sense to subtract a 

number from a smaller number since N does not represent negative numbers. We end up with 

either a mathematically incorrect definition of minus (by returning 0 i f the result should be 

negative), or a function which is not defined for all of its inputs, which is impossible. The 

solution is to define a relation to express the constraint that a number must be subtracted 

from a larger or equal number. This is the less than or equal relation. 

data ^ ' ^ • ^ where P • ^<y 
x<y •• * leO : 0<y leSp : {sx)<{sy) 

The minus function now takes three arguments; the two numbers n and m along with a 

proof that m is less than or equal to n. Then rather than defining the function by elimination 

of m or n, we define the function by elimination of p. By doing the recursion on the proof, 

we get patterns for m and n since they are the indices of the proof relation. This proof 

ensures that no invalid arguments can be passed to minus. 

n, m : N p : m < n 
— minus n m p : N 

minus n m P elim p 
minus n 0 (leO n) i—> n 

minus (s n) (s m) (leS mnp) minus nmp 

Remaric: The main point here is that the patterns are generated not from the data directly, 

but from a proof of a property which must hold for that data. There is therefore only one 

case analysis required — on the proof — rather than case analysis on each of the numbers. 

Which case apphes when we do case analysis on the proof affects the possible values of the 

numbers, an effect which we only begin to see when using dependent types. 

2.3.3 Views 

We have looked at alternative eUmination rules in section 2.2.5, in order to give alterna­

tive pattern matching behaviour. Another method, once we know the alternative pattern 

matching behaviour we would Uke, is to write down an inductive family whose generated 

elimination rule has the behaviour we are looking for. Such an inductive family gives an 

alternative view of data; a family D s is a view of its indices s i f there is a covering function 

d : Vs : 5. D s. Views were originaUy proposed by Wadler [Wad87] as a means of furnishing 

abstract types with pattern matching behaviour. The presentation here is as in [MM04b]. 

An example of the use of views is to give an informative comparison operation. Tradi­

tionally, we might have an i f then i^see construct, where 6 : Bool and e : T for some 
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T, which is equivalent to Bool-Ceise. There are however two shortcomings of the typing of 

an if expression: 

• There is no distinction between the types of the then and else branches, so there is no 

protection against accidentally writ ing the branches the wrong way round. 

• We do not retain any information about the test in the type, either its result or any 

other information generated while performing the test. 

For example, how might we compare two Ns? The conventional way would be to define 

an ordering function, returning an element of an Ordering type with constructors It, eq and 

gt. 

let Nord n m : Ordering 

Nord n m 4= elim n. elim m 

Nord 0 0 H-^ eq 

Nord ( sn) 0 gt 

Nord 0 (sm) 1-^ It 

Nord (s n) (s m) Nord n m 

However, this function is doing some extra work which is not reflected in the return 

value; i t is effectively performing a subtraction of the smaller from the larger number and 

throwing the result away. I f we later want to know the difference between the two numbers, 

this information has been lost, so we have to recalculate i t . W i t h a dependent type system, 

we can do better than this by making an ehmination rule which eliminates numbers based 

on their difference: 

Ncompare : Vm, n:N. 

V P : N - » N ^ v ^ . 
Vmit:Vx, y.N. P X (plus x (s y)). 
Vm«,:Vx:N. P x x . 
Vmgt :Vx , j / :N.P (p lus2 / (sx) ) y. 
P mn 

This elimination rule, defined by recursion over m and n, finds which is the larger number 

and applies the appropriate method, but also each method type records which number is 

greater and by how much. Using this elimination rule, i t is straightforward to write functions 

such as the following, absDiff , which finds the difference between two numbers: 

let , r^.'tr M absDifF m n 4= Ncompare m n 
— absDifi m n : N 

absDiff X (p lusx ( sy ) ) sy 
absDifF x x 0 

absDifF (plus 1/(s x)) y H-> sx 
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The patterns we get for the arguments of absDifF allow us to pick out directly what the 

difference between the arguments is, without doing any subtraction, since the subtraction 

has already been eff'ectively performed by the elimination rule. Writing elimination rules 

such as Ncompare by hand is, however, cumbersome. Instead, E P I G R A M supports the use 

of views; the idea behind views is that the easiest way to get an elimination rule with the 

behaviour we want is to define a family whose default elimination rule has that behaviour. 

For example, the behaviour we want for Ncompcire is given by the ehmination rule for the 

Compare family in figure 2.23. 

data m : F*! f n : N data 
Com pa rem n : * 

where y : N where It 2/ : Compare x (plus x (s y)) 

eq : Compare a; a; 

X : N 
g t x : Compare (plus y (s x)) y 

Figure 2.23: The Compare view o f N 

When a family D is declared, as well as generating D-El im, D-Rec, and D-Case as we 

have seen, E P I G R A M generates D-View as shown in figure 2.24. This is an elimination rule 

which generates patterns for the indices of D, but not D itself — i t is easy to see how to 

build the definition of this from D-El im, simply by dropping the target argument from the 

methods and motives. This rule is the non-dependent elimination rule for D. 

D-View : V? : / . V i : D 1 (target) 
yp-.yi-.i. *. (motive) 
Vm^ : V a : i . V j / i : D r i . . . . Vyj-.Drj. 1 

Pri-> ^ P y j ^ Ps. > (methods) 

Pi 
) 

Figure 2.24: View rule for D 

We can access the appropriate view rule for x by the notation view x. Hence, i f we have 

a view D s wi th a covering function d, we can write a function by D-View wi th the following 

notation: 

Ihs view d s 

To show that any two numbers are comparable by this view, we build a covering function 

compare as in figure 2.25. Note that in the recursive cases, we use the view notation for 

pattern matching. 
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let 
compare n m : Compare n m 

compEU-e n m < elim n, elim m 
compare 0 0 —» eq 

compare (sn) 0 gtn 
compare 0 (s m) It m 
compare (sn) (s m) < ̂  view compare n m 
compEU-e {sx) (s(plus {sy) x)) ^ \ty 
compare (sx) (s x) —> eq 
compare (s(p] us {sx) y)) (s y) gtx 

Figure 2.25: The covering function for Compare 

Using the view notation notation, we can use the Compare view rather than Ncompare 
and get the appropriate patterns for the numbers in the definition of absDifF. 

let m, n 
absDifF m n absDiff 

absDifF 
absDifF 

m 
X 

X 

^ view compare m n 
sy 

^ 0 
1-^ s X 

(plus X (s y)) 
X 

absDifF (plus y (s x)) y 

Note that the view notation suppresses the intermediate values created by the covering 

function compare m n, so we can concentrate on the patterns the elimination rule gives us. 

Applying view compare m n has the same effect as would applying Ncompare, wi th the 

advantage that the definition of the new pattern matching rule is by first order programming. 

2.3.4 Termination 

We have seen that one of the requirements of being a well defined E P I G R A M function is that 

the function must terminate. This raises an important question, since i t is impossible to 

decide in general i f a general recursive function terminates — how big a restriction is this, 

and when can we show that a function which is not structurally recursive does nevertheless 

terminate? 

Consider the quicksort function. For simphcity we wi l l make this a monomorphic func­

tion and sort natural numbers in increasing order. In Haskell we might write the function 

as follows: 

qu ickso r t [ ] = [ ] 

qu ickso r t ( x :x s ) = q u i c k s o r t 1 ++ ( x : q u i c k s o r t r ) 

where 1 = [y I y < - xs , y < x] 

r = [y I y < - x s , y >= x] 

This is a nice concise definition wi th two auxihary functions to partition the fist into 

two halves, and a main function which reconstructs the sorted hst from the sorted parts. 



C H A P T E R 2 . E P I G R A M A N D ITS C O R E T Y P E T H E O R Y 5 1 

However, the recursion is not structural, so such a definition would not be accepted by 

E P I G R A M . 

We do know that this function terminates (it can be shown by noting that the recursive 

calls are always on obviously smaUer hsts) — but how do we prove this to the language? 

I w i l l briefly explain two possibilities for overcoming this sort of problem by defining the 

quicksort function in E P I G R A M , declared as follows: 

let ^ •• ListN 
quicksort / : List N 

Domain Predicates 

General recursion in type theory can be achieved by means of a general accessibility pred­

icate [Acz77]. A value a is accessible by a relation -< if there is no infinite decreasing 

sequence starting from a. A set A is well-founded wi th respect to -< i f all of its elements 

are accessible by -<. The accessibility predicate is defined in E P I G R A M as below: 

data -< : A—> A-* -k a 
AGO A < a : -k 

, p : yx:A.{x~<a)-^AccA -< x where . ' .—: 
acc p : AGO A ^ a 

The elimination rule for this predicate is known as the rule of well-founded recursion. 
Then, to guarantee that a general recursive algorithm terminates, we prove that i t has a 

decreasing argument type which is well-founded and that the arguments to the recursive 

calls are smaller than the input. \ 

Bove [Bov02a] and Capretta [Cap02, BC03] note that one general accessibility predicate 

gives no information that can help in a specific case. This often results in long and com­

plicated proofs. Instead, they propose defining special purpose domain predicates for each 

general recursive function, and define the function by recursion over the domain predicate. 

For the quicksort example, the function always terminates on the input nil, and termi­

nates on the input Gonsxxs i f i t also terminates on the inputs fllter(< x)xs and filter(> x)xs. 
This is expressed by the qsAcG predicate (figure 2.26). 

data xs : ListN 
qsAcc xs : * 

where qsNil : qsAcG nil 

qsl : qsAcc (filter (< x) xs) qsr : qsAcc (filter (> x) xs) 
qsCons qsl qsr : qsAcc (cons x xs) 

Figure 2.26: Domain predicate for quicksort 

A quicksort helper function, quicksort' is defined by induction over this predicate 
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(figure 2.27). I f we ignore the references to the predicate and concentrate simply on the 

Usts, we see that this helper function is identical in structure to the Haskell definition. 

quicksort' xs acc •<= ehm acc 
quicksort' nil qsNil i - ^ nil 
quicksort' (cons x xs) (qsCons qsl qsr) 

quicksort' (filter (< x) xs) qsl ++ cons x (quicksort' (filter (> a;) xs) qsr) 

Figure 2.27: Helper function for quicksort 

To use this predicate and the helper function to define quicksort, we prove that all Usts 

are accessible by the predicate, and hence that the domain of quicksort is the whole of List: 

let : ListN 
— al lQsAcc zs : qsAcc zs 

Given this function to build the predicate, the top level definition of quicksort is 

straightforward: 

quicksort xs i—> quicksort' xs (al lQsAcc xs) 

The difficulty wi th this method is in the definition of a l lQsAcc, which is where the 

details of the termination proof lie; this function is non-trivial to define. However, Bove 

and Capretta's method can be applied systematically to any terminating recursive function, 

including nested recursive calls and mutual recursive calls [BCOl, Bov02b] leaving the user 

only to write a function to construct the accessibility predicate. 

We could also consider qsAcc to be a view of lists, with a l lQsAcc as the covering function. 

This gives a clearer definition of quicksort, hiding away the domain predicate while still 

giving access to the same recursive calls. We have previously seen views used for alternative 

pattern matching — here we use views to generate different allowed recursive calls. The 

view based definition is shown in figure 2.28. 

quicksort xs 4= view a l lQsAcc xs 
quicksort nil i - + nil 
quicksort (cons x xs) 

1-^ quicksort (filter (< x) xs) ++ cons x (quicksort (filter (> x) xs)) 

Figure 2.28: Using qsAcc as a view of fists for recursion 

Making the Function Structural 

I t would be preferable to avoid having to give a proof wi th every function which does not 

terminate through structural recursion, as wi th domain predicates, quicksort as defined in 

Haskell above had the drawback that i t was relying on clever code, rather than an informative 
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data structure. The question to ask, therefore, is what is the data structure which gives the 

recursion behaviour we would like for quicksort? 

There are two cases in the quicksort definition. There is the case of the empty list, and 

the case where we take out the head of the Ust, aU items smaller than the head, and all 

items greater than the head. The corresponding data structure for this recursive behaviour. 

Quicksort, is shown in figure 2.29. 

data ^ . I f— where 
Quicksort : * empty : QuickSort 

/ : Quicksort a: : N r : QuickSort 
partit ion I x r : QuickSort 

Figure 2.29: quicksort intermediate structure 

We notice that the intermediate structure we have defined is nothing more than a binary 

tree. This should not be a surprise — tree-sort is merely quicksort wi th the recursive 

structure made expUcit as intermediate data^. We can build a function which behaves like 

quicksort by composing a conversion function from Usts to binary trees (listToTree) wi th 

a function converting back again (fiatten). 

quicksort x i - » flatten (listToTree x) 

Is this function really quicksort? In one sense, no; i t is tree sort, which is a sUghtly 

different algorithm in that i t involves building an intermediate structure. However, the 

original Haskell function does not implement quicksort precisely either — Hoare's original 

imperative definition of quicksort [Hoa62] relied on a clever technique for in place sorting of 

lists, which we do not get in this definition. Turner notes in [Tur96] that for each version 

of quicksort there is a tree sort which performs exactly the same comparisons and has the 

same complexity. We also note that the tree data structure being built is the same as the 

structure which is built internally by the evaluation of the HaskeU quicksort. I t may not be 

the same definition or even exactly the same algorithm, but we have not lost anything in 

terms of complexity or behaviour from the Haskell definition. 

Remzirk: Since we have dependent types, we could even refine the intermediate structure 

further, by including order invariants. Then we would be sure that l istToTree constructs 

a binary search tree, and that flattening produces a sorted list. 

2.4 Summary 

In this chapter, we have seen the background to functional programming wi th dependent 

types using E P I G R A M and the underlying type theory. The E P I G R A M high level notation 

elaborates to a dependent type theory TT based on Luo's U T T with inductive famiUes, 

^In fact tree-sort was the first program proven correct by structural recursion in [Bur69] 
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heterogeneous equaUty and labelled types. We have seen examples of programs in T T — in 

particular, we should note that programming directly in T T leads to large and unreadable 

terms even for some very simple programs; vTai l is a prime example. 

The E P I G R A M elaborator exists to write these large and unreadable terms so that the 

programmer need not think about low level details such as how to prove certain cases are 

impossible and which variables (the inductive hypotheses) give the allowed recursive calls. 

Programming in the high level notation is based on using ehmination rules to give pattern 

matching behaviour to functions. To support this. E P I G R A M generates several elimination 

rules for a family: 

• D-El im is the basic ehmination rule which gives primitive recursion on D. A l l other 

elimination rules can be defined in terms of D-El im. This rule is accessed by the 

notation elim x. (See section 2.1.3). 

• D-Case gives case analysis on D, but no recursion. Although this can be defined in 

terms of D-El im by ignoring the inductive hypotheses, i t is more efficient to implement 

the reductions directly. This rule is accessed by the notation casex. (See section 2.1.3). 

• D-Rec generates a memo structure which gives access to recursive calls on structurally 

smaller values. This rule is accessed by the notation rec x. (See section 2.2.6). 

• D-View generates an elimination rule which gives recursion on the indices of D. This 

allows us to create new pattern matching behaviour for a family which is not necessarily 

based on constructor patterns. This rule is accessed by the notation viewx. (See section 

2.3.3). 

Coquand notes that one of the drawbacks of programming with ehmination rules is 

readabiUty [Coq92], and proposes a pattern matching notation for dependent types. E P I ­

GRAM'S high level notation solves this readabihty problem by recovering the ehmination rule 

based definitions from pattern matching definitions; this is possible because programming by 

pattern matching and programming by elimination rules are equivalent [Gim94, McBOOa]. 

There is an additional benefit to the elimination rule based approach taken by E P I G R A M , 

which is that user defined ehmination rules can be written by using views (or even directly) 

which gives more powerful pattern matching behaviour. The remaining drawback is that 

elimination rules, unhke direct pattern matching, impose an extra level of abstraction on 

programs. However, in Chapter 6, we wiU propose a method for overcoming this drawback. 



Chapter 3 

Compiling ExTT 

In the last chapter I presented the core language of E P I G R A M and the high level notation. 

The core language is executed through a translation to an execution language, ExTT, and 

so in this chapter I wi l l show a compilation scheme for ExTT. To begin with, we consider 

only the naive path (see figure 1.1 on page 14), where the transformation from T T to ExTT 
is the identity transformation; in later chapters we wil l see how the compilation techniques 

can be modified in order to optimise evaluation via an optimising transformation to ExTT. 

Compilation of any language involves translation to a machine language (or abstract 

machine language). Doing this directly for E P I G R A M is difficult, in particular because a 

typical machine does not have the same execution model as a functional language. In­

stead we translate via an intermediate representation which still has a functional flavour, 

yet is more amenable to translation to an abstract machine language. In this chapter we 

introduce an intermediate language which I call RunTT, and give a compilation scheme for 

translating RunTT into abstract machine code. The abstract machine we use is based on 

the G-machine [Joh84, Aug84], a well understood graph reduction machine. 

Compilation of ExTT to G-machine code therefore consists of two high level steps; first 

we translate to the intermediate representation RunTT, then from RunTT to G-code. RunTT 
is a language of supercombinators, which are higher order functions with no free variables; 

removing free variables eliminates one difficulty from the compilation process. Each super-

combinator sequence is then compiled to a G-code sequence which, when executed, builds 

the supercombinator body. 

At the end of the chapter, we wi l l look at some of the issues in designing a run-time 

system for a dependently typed language, specifically the overheads which are present when 

taking a naive approach to compilation. 

55 
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3.1 E x e c u t i o n Env ironments 

Before we look at the details of the compilation of ExTT, let us consider the possible ap­

proaches we may take. The method used for evaluating an expression in a functional lan­

guage depends on several things: 

• Different techniques are used for interpretation and compilation. Compilation pro­

duces faster code, but interpretation is sometimes desirable, for example for fast pro­

totyping and testing of individual functions. 

o We should consider whether we want to reduce to a normal form, a head-normal form 

or a weak head-normal form. 

• We should also make a choice between lazy evaluation, eager evaluation, or some hybrid 

approach as compilation techniques can differ substantially in each case. 

W i t h a dependently typed language, there is a new problem — we need some kind of 

evaluation mechanism at compile-time in order to implement the conversion check. We 

wi l l therefore consider two environments for evaluation of terms, these being compile-time 

evaluation, where we reduce to the normal forms required by the conversion check, and run­

time evaluation where we reduce in the empty context (with no free variables) and reduce to 

weak head-normal forms, doing only as much evaluation as is required by the programmer. 

3.1.1 Normalisation by Evaluation 

Normalisation by evaluation [BS91, BES98, FilOl], also known as reduction-free normal­

isation [AHS951 is a straightforward method for producing normal forms which relies on 

the meta-language's implementation of substitution. An implementation in Haskell, for ex­

ample, pushes substitution through to the Haskell level. The basic technique is to build 

a meta-level representation of the term to be evaluated (eval) , evaluate that term in the 

meta-language then reify the term back to an object level representation of normal forms 

(quote). Finally, we revert to the representation of ExTT ( f o r g e t ) . Figure 3.1 shows an 

overview of the process of normalisation by evaluation for ExTT. 

There are two main applications of normahsation by evaluation; firstly to provide a 

straightforward normalisation algorithm for the conversion check, and secondly for partial 

evaluation. The goal of partial evaluation is to simplify a function of multiple arguments 

where some arguments are known at compile-time; normaUsation by evaluation is used to 

push the argument values through the body of the function. The main advantage of us­

ing normaUsation by evaluation over other techniques such as compiled strong reduction 

[GL02] or the Krivine Machine [HMP96, WF03] is the ease of implementation; rather than 

implementing substitution by hand, we use the meta-language's implementation of substi­

tution. I t is not clear that normalisation by evaluation is more efficient than other methods, 

however. 
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Object Level 

ExTT Term 
e v a l 

Normal Form 

Meta Level 

Haskell Value 

Meta level evaluation 

quote 

f o r g e t 

ExTT Term 

Haskell Value 

Figure 3.1: Normalisation By Evaluation 

Normalisation by evaluation has not yet been proved correct for dependent type the­

ory; however its correctness for simple type systems suggests we have no reason to think 

otherwise. Ultimately, however, i f a dependently typed programming system is to use nor­

malisation by evaluation and claim i t is a safe system, then i t must be shown to be correct. 

In Appendix C, we wi l l see an implementation in Haskell of normahsation by evaluation 

for ExTT. 

3.1.2 Compilation 

Compilation into machine language (whether a CPU's machine code or an abstract machine 

language) is a more efficient way of producing a normal form of a A-term than interpreting 

or normahsing directly, simply because analysis of the syntactic structure of the term is done 

in advance. As a result, decisions such as evaluation order are taken only once for each term 

and the choice encoded in machine language. Several different compilation methods have 

been developed, differing in particular in whether they perform lazy or eager evaluation. 

Continuation Passing Style 

Continuation passing style [App92], or CPS, is a method for evaluation in which functions 

return no value, but rather make ta i l calls which pass a continuation function explaining 

what to do with the result. This approach lends itself nicely to generating imperative 
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code since i t makes sequencing explicit. [MWCG99], for example, describes the phases of 

compiling System-F to a typed assembly language via an intermediate CPS representation. 

CPS is often used in the implementation of eager (call by value) languages, as i t addresses 

problems such as repeated evaluation of an argument and ordering of side-effects. Lazy 

languages do not generally use CPS as an intermediate notation, partly due to tradition, 

but also because the explicit ordering makes i t difficult to implement ful l laziness — i.e., 

avoiding evaluating a subterm more than once. 

Abstract Machines 

Compilation of lazy languages generally involves the implementation of an abstract machine 

which identifies an appropriate set of instructions for building graph representations of A-

terms and their weak head-normal forms. 

Landin's SECD machine [Lan64] was the first abstract machine for reducing A-terms. 

SECD stands for Stack, Environment, Control, Dump, which are the machine's internal 

registers. The memory of the SECD machine contains lists and integers, and the instruction 

set contains instructions for building lists and closures. A closure is a pair of the term 

and an environment containing representations of the free variables in the term; effectively 

this represents a suspended computation. This machine was originally used to implement 

I S W I M [Lan66], and a lazy version was developed for LispKit [HJJ82]. 

The Krivine machine is a well known method for normalisation of A-terms [HMP96, 

WF03]. I t is an evaluation machine which simulates weak-head reduction. I n the Krivine 

machine, closed A-terms are represented as closures. A closed term is a term containing no 

free variables. Representing terms this way avoids repeated substitution; the machine takes a 

closure and a stack, and returns a closure. At the end of the computation, there is a simple 

transformation (unloading) from closures to closed A-terms which performs substitutions 

across the whole term in one pass. 

Johnsson's G-machine [Joh84] shares several characteristics wi th the SECD machine. I t 

too has stack, environment, control and dump registers; its novel features are the updating 

and sharing of graphs within the abstract machine and the inclusion of an output stream 

(although this is not an essential feature). A compiler based on the G-machine transforms 

function definitions into a set of supercombinators, which are functions with no free variables. 

G-code, the language executed by the G-machine, consists of instructions which build a 

graph representation of these supercombinators; a supercombinator is compiled into code 

which builds a graph and updates the root of the current reducible expression with that 

graph. The G-machine is a standard technique for implementing lazy functional languages, 

including Lazy M L , the HaskeU B compiler and the nhc Haskell compiler [R6j95]. I t is 

described further in [Pey87, PL92], and later in this chapter where i t is used to implement 

ExTT. 

Several variants and developments of the G-machine idea exist, such as the {v, G)-
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machine [AJ89] which is a modification geared towards parallel execution. Another abstract 

machine which takes several ideas from the G-machine is the ABC machine [SNvP91], used 

for the execution of Concurrent Clean. The design is very similar, but is focused on how 

the abstract machine code wil l ultimately be executed on a concrete machine. The Three 

Instruction Machine (TIM) [FW87] takes a different approach to representing function ap­

plication nodes in the graph, preferring a spineless approach in which application nodes are 

represented as pairs of a code pointer and a tuple of arguments. 

GHC is based on the Spineless Tagless G-machine (STG) [Pey92], which takes ideas from 

both the G-machine approach and the T I M approach. This machine deals wi th free variables 

internally, which eliminates the need for building supercombinators. Also, there is a uniform 

representation of closures which avoids the need for a distinction between constructor nodes 

and application nodes on the heap (hence the name tagless) — each closure is associated 

wi th a code pointer which evaluates and updates the closure; in the case of constructors, 

the closure is already evaluated so the code pointer points to a function which does nothing 

(in the simplest case) or returns a pointer to code for the appropriate case (in optimised 

cases). The STG machine has a more abstract code resembhng a functional language, rather 

than an imperative instruction sequence like the G-machine. Nevertheless, STG code has 

an operational semantics which is translated into an internal representation called Abstract 

C, then finaUy into C or machine code. 

A more recent development is GRIN (Graph Reduction Intermediate Notation, [BJ96, 

Boq99]) GRIN is a more low level highly optimisable notation for graph reduction. Its 

principal advantage is the ability to use heap analysis to eliminate unknown control flow 

due to evaluations and higher order functions, while still maintaining a functional style 

suitable for program transformations. 

Strong Reduction 

Gregoire and Leroy have developed a compiled implementation of strong reduction (using 

caD by value semantics) within the CoQ system [GL02]. Abstract machines are generaUy 

geared towards producing weak head-normal forms, not reducing under binders. However, 

when checking types in a dependent type theory such as the CIC implemented in CoQ, we 

need to reduce under binders and deal wi th free variables. Gregoire and Leroy's abstract 

machine is a modification of the OCaml run-time machine, Z A M , extended with the abihty 

to manipulate free variables. We could imagine this technique being used to implement 

strong reduction of T T using lazy evaluation by extending the G-machine in a similar way. 

3.1.3 Program Extraction 

Another possibility for producing executable code, rather than compiling to an abstract 

machine language, is to output code in another functional language by program extrac­

tion [PM89, Let02]. Extraction generally refers to the derivation of a simply typed program 
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from a proof of its specification — this involves stripping type expressions and proof irrele­

vant structures from code and could equally well apply to the translation of a dependently 

typed program into a simply typed form. 

This method reduces the problem of compilation to a simpler problem, that of expressing 

a dependently typed term with a simple type. As a result, we get aU the advantages of using 

the well tested, efficient and optimised run-time system of an already existing language. 

Unfortunately, i t is not always possible to extract a term with an appropriate type (consider 

a function whose return type differs depending on its input, for example) and furthermore, 

we do not get the possibility of applying any low level optimisations based on dependent 

type information. 

3.1.4 Execution of Epigram 

Phase Distinction 

The nature of a dependently typed programming language leads to there being some blurring 

of the distinction between compile-time and run-time, in that i t is not immediately obvious 

which functions wi l l be executed at compile-time and which functions wi l l only be executed 

at run-time. Cardelli claimed in [Car88] that as a result types cannot be erased at run-time, 

although Augustsson showed for Cayenne that this was not the case [Aug98], since Cayenne 

has no means to analyse types at run-time (i.e., a casetype construct). Similarly, E P I G R A M 

has no way to examine types at run-time. 

What happens is that there are two settings in which a function may be evaluated. In the 

first setting, during typechecking, functions are evaluated in order to check convertibility of 

terms. We wil l refer to this as "compile-time evaluation". In this phase, strong normalisation 

is important, as we may need to reduce terms containing free variables. In the second setting, 

"run-time evaluation", evaluation of functions is an end in itself; we only consider reduction 

to weak-head normal form and can safely assume that there are no free variables. 

Evaluation Strategy 

The evaluation strategy we have chosen for E P I G R A M is lazy evaluation. There are several 

reasons in favour of both strict and lazy evaluation, but we chose lazy evaluation initially 

because of the number of arguments to both functions and constructors which exist only for 

the purpose of ensuring type correctness; lazy evaluation ensures that these wil l never be 

evaluated at run-time. We wi l l also take a lazy evaluation strategy at compile-time, for two 

reasons; firstly, for consistency with the run-time system and secondly since i t allows us to 

take advantage of the substitution mechanism of the meta-language, Haskell, which itself is 

a lazy language. However, i t is worth noting that for E P I G R A M the distinction is not crucial 

— since terms are strongly normalising, reduction wil l terminate at the same normal form 

whichever strategy we choose. 
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3.2 T h e R u n - T i m e Language R u n T T 

3.2.1 Supercombinators and Lambda Lifting 

RunTT is an intermediate language of supercombinators used to facilitate the compilation 

to abstract machine code. A supercombina tor s is a A-abstraction of the form: 

s Xx.E 

where f is a series of zero or more arguments and E contains no A-abstractions, such 

that s has no free variables. Having no free variables is a big advantage at compile-time 

— we can compile a fixed code sequence for each supercombinator without having to worry 

about external effects. 

Supercombinators are an extension of combinators , which are A-abstractions containing 

no occurrences of a free variable [Bar84]; the extension is that supercombinators can also be 

constants (that is, have no arguments). Only three combinators are required to represent 

any function^, given appropriate base types and primitives. These are: 

S ^ A/; g; x.f x{gx) 
K H-> A i ; y. x 
I H-> Ax. X 

Early implementations of lazy functional languages such as Turner's SASL [Tur79] used 

a transformation into S, K and I as the basis of compilation, along wi th some other combi­

nators for optimisation purposes. The advantages of using this fixed set of combinators are 

that such a small set can easily be implemented in hardware and the reduction machine is 

fairly simple to implement. This simplicity comes at a cost, however — since the granularity 

of execution is so small, the translation to S K I combinators can result in large programs. So 

instead of using a fixed set, we choose an appropriate set of supercombinators for each user 

defined function by a process known as lambda lifting [Hug84, Joh85]. The first step of 

compilation from ExTT is to lambda hf t the ExTT terms into a run-time language, RunTT. 

3.2.2 RunTT Syntax 

The syntax of RunTT is presented in figure 3.2. The main features which distinguish RunTT 

from the execution language ExTT are: 

• A bindings appear only at the top level of terms; there are no inner As and no free 

variables. 

• A l l constructor applications (including type constructors) are fully apphed. 

• There is a case construct — in ExTT case analysis is performed by pattern matching the 

i-schemes of elimination rules and implemented by t-reduction; definition of ehmination 

^ It is even possible with two, since 11—» S K K 
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rules in RunTT is via this case construct, which arise by compilation of the pattern 

matching i-schemes. We call the term which is analysed by the case expression the 

scrutinee. 

Type information, although i t is not executable, is retained as a potential aid to op­

timisation; I wi l l generally suppress the type label on As since at this stage i t serves no 

computational purpose. 

s : := AS : e. e (supercombinator) 
e ::= x (bound variable) / (global name) 

1 V i : e. e (function space) (type of types) 
1 e e (function appUcation) c(e) (constructor apphcation) 
1 let g : e t—> e in e (let binding) D(e) (type constructor appUcation) 
1 case e of alt (case expression) 

alt : := c {x) e (case alternative) 

Figure 3.2: The supercombinator language, RunTT 

For simphcity of run-time representation, we ensure that all constructors are fully ap-

pUed. This is straightforward to achieve, by Tj-expansion of all constructors which are not 

fully apphed. The advantage of doing this is that at run-time we wi l l always know, from 

the arity of a constructor, how much space to allocate for i t . In a higher order language, i t 

is not possible to do the same thing for function apphcations, and especially not in ExTT 

where the arity of a function may differ according to its input. 

Constructor applications are given a separate syntax, c(e) to indicate that they are 

always fully applied, c itself is the tag of the constructor; I wi l l present these as constructor 

names for readabiUty, but in practice they are represented by integers. This integer can be 

used as an index into the jump table representing the alternatives in a case expression for 

which the constructor is the scrutinee. 

RunTT is not strongly normaUsing, nor is i t necessary or beneficial for i t to be so. 

Since RunTT terms arise from programs in a strongly normalising language, we can be 

sure that programs in RunTT terminate (provided, of course, that the transformation to 

supercombinators is correct). In a naive setting, we can also show termination by checking 

that case expressions make recursive calls on structurally smaller values. However, to require 

RunTT programs to be structurally recursive in general would give a lot less freedom for 

optimisation — in particular, we would not be able to remove the level of abstraction 

introduced by having to show termination for non-structurally recursive functions such as 

quicksort. Another consideration is that RunTT could potentially also be used as the 

run-time language for a language other than ExTT which may not be strongly normalising. 
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3.3 Trans la t ing Funct ion Definit ions to R u n T T 

We begin with a mapping from names to T T terms, Def s. A name maps to either a user 

defined function, a data or type constructor, or an elimination rule: 

i n f i x 1 : : : 

data t h i n g : : : type = t h i n g : : : type 

data NameDef = Fun Term 

I Con Int 

I TyCon I n t 

I E l im Pat terns 

type Defs = [(Name,(NameDef : : : Term))] 

The type Defs describes the global context P. Pairing of terms with their types is 

implemented by the infiix constructor : : : rather than simply a tuple, for clarity. The 

type NameDef describes each possible entry in the context, taking function definitions, data 

constructors, type constructors and pattern matching elimination rule definitions separately. 

For each name which maps to a term (i.e., implemented with the Fun constructor of 

NameDef), that term is either a CAF (a constant applicative form) taking no arguments, or 

a A-binding. How do we translate these definitions to RunTT? There are some intermediate 

steps and representations involved; let us now consider these steps. 

3.3.1 Grouping A-abstractions 

Before we start, we ensure that all data and type constructors are fully applied. This is 

simple to achieve, by Tj-expansion, i f any are not ful ly applied. Since RunTT expects all 

constructors to be ful ly applied, i t is wise to apply this step while we are still allowed inner 

A-abstractions, rather than complicating lambda hfting further. 

The first stage in translating a function definition into RunTT is to allow A-bindings 

of more than one argument. In T T , all A-abstractions are of arity 1. So, for example, in 

a binding \x : X. \y : Y. e, i f x appears in e then x is free in e. I t is more convenient 

i f A-bindings of more than one argument are allowed — here this results in the binding 

Xx : X\y : Y. e, where x and y are both bound in e. 

We achieve this by repeatedly applying a grouping transformation [-JG to the term: 

lXx:X. Xy: Y. ejc ^ lXx:X;y: Y. eja 

lXx:X.e]G =^ Xx-.X.e 

The default case of | - ] G traverses the term looking for A-bindings. This transformation 

identifies where the scope of a A-binding is itself a A-binding, and merges them into one 

A-binding. Naturally, terms here fit neither into the syntax of T T (since A binds multiple ar­

guments) nor RunTT (since there may be inner As) so we use an intermediate representation 
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in which the only difference from T T is to allow binding of multiple arguments. 
The notation \x : X\y : Y, wi th the arguments separated by a semicolon, denotes that 

X and y are both bound by the same A. In this setting, we use de Brui jn levels rather than 

de Brui jn indices to represent variable names, as we can then think of the index i as the i t h 

argument to a function, (e.g. in Xx : X;y : Y, x is represented by 0 and y by 1). 

As an example of the grouping step, consider the plus function, defined in T T as follows: 

plus : Vn:N.Vm:N.N 

plus ^ Xn,m:N. N - E l i m n (An:N. N) m (A^:N.Xih:N.s ih) 

Grouping the arguments results in the following definition: 

plus t-^ Xn;m : N . N - E l i m n (An: N . N) m (Afc; ih: N . s ih) 

3.3.2 Lambda Lifting 
The second stage is to l i f t out all remaining inner A-abstractions and let bindings to the top 

level, removing free variables. We do this by giving each inner abstraction and binding a 

unique new name and replacing their occurrence with their name. In the case of the plus 
function, this results in the following (assuming the names p lus l and plus2 are not defined 

elsewhere: 

plus An; m : N . N - E l i m n p lus l m plus2 
p lus l A n : N . N 

plus2 1-^ Xk;ih:N.sih 
In this case, the resulting function definitions contain no free variables. However, this is 

not always the case. Consider the following (uncurried) definition: 

f Ax; y : N . let z : N H-> plus x 2/in plus z z 

Lif t ing out the inner let binding results in the following set of top level definitions: 

f Ax; 2/ : N. plus f l f l 
f l h-̂  plus X y 

There is clearly a problem here — x and y are free in f l ; the function has no hope of 

accessing the appropriate x and y unless i t is given more information. The solution is to add 

X and y as arguments to f l , and change the appUcation in f to pass through appropriate x 
and y: 

f I—> Ax; y : N . plus ( f l x j / ) ( f l x y) 
f l Ax; y : N . plus x y 

Johnsson describes an effective algorithm for determining the free variables in a set of 

function definitions by solving set equations in [Joh85]. Although in this example, i t was 

clear which arguments were to be abstracted out, the optimal solution is not always so 

obvious, especially where there are nested let bindings or mutually recursive functions. 
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We should note that in this example, we have lost fu l l laziness (i.e., avoiding executing 
any subterm more than once) by hfting z out — evaluating f wi l l involve evaluating il x y 
twice! This kind of problem can be solved by a separate fu l l laziness pass [PL91b] which 
identifies maximal free expressions prior to lambda hfting. 

The purpose of lambda l i f t ing is to remove free variables in order to make compilation 

easier. In the STG machine, however, free variables are kept; Santos notes in [San95] 

that there is a performance penalty in the resulting code where free variables are removed. 

Conversely, GRIN [B J96] does compile from supercombinators generated by the hbcc Haskell 

compiler and gets encouraging results, yielding code several times faster than that produced 

by the STG machine in many cases. GRIN's performance comes largely from the ability to 

eliminate unknown control flow from programs (due in part to higher order functions) and 

therefore allowing a more sophisticated heap analysis. 

3.3.3 Tidying up 

The final step, now that we have top level functions wi th no inner A-abstractions and no 

free variables, is to translate the definition into RunTT syntax. The only difference now is 

the constructor syntax which represents fully applied constructors only — we have already 

ensured that all constructors are fully apphed, so there is a simple mapping to RunTT. In 

the case of plus, we get the following RunTT supercombinators: 

plus H-> An; m : N ( ) . N - E l i m n p l u s l mplus2 
p lus l H-» An:N().N() 
plus2 Xk;ih:NQ.s{ih) 

3.3.4 Arity 

What is the arity of the function adder in the following E P I G R A M declaration? 

let — j j — " • ^ adderType n <= ehm n 
— adderType n : * • '^ 

adderType 0 H-» N 
adderType (sk) i—» N —+ adderType k 

let — J J ^ ' ° " . ^ m ' adder n a <^ elim n 
— adder n a : adderType n 

adder 0 a H-^ a 
adder (sk) a i—> An : N . adder k (plus a n) 

The arity depends on the input n; the number of arguments expected is n -|- 1. At 

run-time i t is often helpful to know the arity of a supercombinator to check whether i t is 

fully applied. Do dependent types cause some difficulty here? The lambda lifted version of 

adder in RunTT is as follows (eliding the argument types): 
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adder ^—^ An. N - E l i m n adder l adder2 adderS 
adderl i—» Am. N() —» adderType m 
adder2 H-> A a. a 

adders ^-* Xk; ih; a; n. ih (plus a n) 

Conveniently, due to lambda lif t ing, each of these supercombinators are of known arity, 

as is N - E l i m which is called by adder. What happens is that adder returns a function i f 

given s fc, or a constructor i f given 0. We can get the arity of a supercombinator simply by 

counting the variables bound by the A. 

3.4 Trans la t ing E l i m i n a t i o n R u l e s to R u n T T 

In addition to translating T T functions into compilable supercombinators, we need a way to 

translate pattern matching eUmination rules into a compilable form. For this, we translate 

into Augustsson style case expressions [Aug85]. For eUmination rules, the algorithm for 

doing so is rather simpler than Augustsson's algorithm since we know in advance that we 

can make the necessary case distinction on the target of the elimination rule; for each t-
scheme, the pattern in the target argument's position is a different constructor form. We 

know this must be the case, because {.-schemes are machine generated and built only from 

data declarations. Given a set of t-schemes for a family D s: 

D-El im s (ci Siyi) P m rtic-^ ... 

D-El im s{c„anyn) P m ... 

Case distinction is made on the constructors of the target, C i , and we know that the right 

hand side refers only to the arguments of these constructors and the names of the other 

arguments. Thus, we take the target of the elimination rule as the scrutinee of the case 

expression, and translate into RunTT as foUows: 

D-El im As; c; P\ m. case c of 

c i (a i ,m) rUc, ... 

C n ( a „ , J / n ) "Tc„ • • • 

D-El im in this form is a lambda Ufted supercombinator, since there are no inner lambda 

abstractions. For example, ehmination on natural numbers, N -E l im, is translated to the 

following case expression: 

N - E l i m An; P; mo; m,. case n of 

0() mo 

s{k) ^ ms (N -El im P mo ms) 
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3.5 T h e G-machine 

Later in this thesis I wil l be discussing optimisations and transformations at the ExTT and 

RunTT levels rather than at the lower level of abstract machine. Nevertheless, let us consider 

the design of an abstract machine for RunTT in order that we may see what effect the design 

decisions we make at the RunTT level have on the abstract machine. Further implementation 

details of the G-machine are given in Appendix D. 

The principle behind the G-machine [Joh84, Aug84] is to build graph bodies from a 

series of sequentially executed abstract machine instructions, called G-code. Each super­

combinator is compiled to a sequence of instructions which instantiates the body of the 

supercombinator in the machine's memory; this results in several optimisations. The deci­

sion of which subexpression to reduce is made at compile-time rather than run-time. Also, 

the abstract language is finally in an imperative form which allows a more direct mapping 

into a real machine code or programming language. 

Choice of Abstract Machine 

We use the G-machine here since i t is a standard, well-understood and well-documented 

approach for implementing run-time systems for lazy languages. This is not the fastest or 

most modern abstract machine (GRIN [Boq99] and STG code [Pey92] are more efficient), 

but is relatively straightforward to implement for experimentation wi th higher level optimi­

sations based on the type system of T T . I t is not an essential feature of E P I G R A M , ExTT 
or even RunTT that the G-machine is used as a back end, nor is i t essential to any of the 

optimisations we wil l present later. 

One problem in particular wi th the G-machine is that i t is not abstract enough; G-code 

is fairly low level and therefore does not necessarily map well onto any specific CPU (e.g., 

i t is stack based whereas many CPUs are register based). This problem is addressed by the 

STG machine whose language has a more functional flavour. An interesting topic of further 

research would be to examine how dependent type systems might affect the implementation 

of an abstract machine. We wi l l later be making some modifications to the G-machine, 

in particular to deal with elimination rules efiiciently, and wil l identify some things which 

ought to be taken into consideration in the design of an abstract machine for a dependently 

typed language. 

3.5.1 Graph Representation 

Each supercombinator is compiled to a series of abstract machine instructions which, when 

executed, construct an instance of the supercombinator body. To this end, we need to 

consider how a supercombinator body is represented at run-time. A supercombinator can 

build any of the following: 

• A closure representing an unevaluated (suspended) function application. 
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• A function applied to no arguments. 

• A fully applied constructor. 

• A constant (in RunTT as it stands, these are only the type universes * , ) . 

A graph node can therefore be one of: 

• A P P / a, where / and o are graphs representing a function body and its argument 

• FUN n, where n is the name of a function. 

• CON t xs, where t is the constructor tag, and xs is a list of known length. 

• T Y P E , which stands for any type. As there is no casetype construct or equivalent form 

of universe elimination, there is no way to ehminate on types so distinguishing between 

them in the evaluation graph would serve no purpose. There is only one such node; 

all references to i t are shared. We could, however, imagine extending the machine so 

that i t did allow elimination over types, by adding heap nodes for representing type 

constructors; doing so may help wi th the implementation of polymorphic functions as 

in [HM95]. 

These graphs are stored on the heap, which is a garbage collected global store. 

3.5.2 Machine State 
The G-machine state is a tuple, (C, S, G, E, D) where 

• C is the code sequence currently being executed. This is a fist of G-machine instruc­

tions. 

• 5 is a stack of node names pointing into the graph. 

• G is the graph, which maps node names to heap nodes. -

• £ is the global environment mapping function names to a pair of their arity and their 

code. 

• £) is a dump for recursive evaluations, effectively a call stack. This is a stack of pairs, 

where each pair holds a stack of node names (5 before the evaluation) and a G-code 

sequence (C before the evaluation). 

Johnsson's original G-machine was a 7-tuple, the extra elements being o, an output 

stream to which the result of evaluation is printed and V, a stack of basic (primitive) values 

for storing the results of intermediate computations. I have left out the output stream to 

concentrate on the evaluation of graphs. Our language of supercombinators (at the moment) 

has only constructors of inductive families as canonical forms so I omit V. I wi l l discuss 
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the addition of primitive types into the language in Chapter 5 — we can generate suitable 

forms for output by introducing strings as a primitive and writing a show function for each 

type. 

3.5.3 Informal Semantics 

G-machine instructions can be divided into several groups. There are instructions for man­

aging the stack, instructions for building and deconstructing graphs and instructions for 

controlling evaluation and execution. The basic form of any G-machine program is to build 

a graph and evaluate i t . 

The stack management instructions include: 

• PUSH i, which pushes the value at the offset i from the top of the stack onto the top 

of the stack. This results in two copies of the value on the stack. 

• PUSHFUN / , which pushes the value FUN / onto the top of the stack. 

• MOVE i, which moves the value at the top of the stack to the offset i from the top of 

the stack, which has the effect of reordering the stack. 

• DISCARD n, which discards the top n stack items, which may be garbage collected 

later. 

• SLIDE i, which discards the i stack items below the top item (that is, leaving the top 

item intact, i t discards from item 1 to item i + 1). 

Graph construction and deconstruction instructions include: 

• MKAP, which builds an apphcation node applying the second item on the stack (the 

function) to the first item on the stack (the argument), placing the application node 

on the stack. 

• MKCON i c, which builds a constructor application node applying the constructor c to 

the top i items on the stack. 

« MKTYPE, which creates a reference to the graph T Y P E . 

• SPLITn, which, assuming the graph at the top of the stack is of the form C 0 N ( 2 ; i , . . . ,avi), 

pushes X onto the top of the stack, with Xn pushed last. 

The presence of MKTYPE may be surprising, since E P I G R A M and ExTT have no means of 

examining types, which suggests that all types can be erased. I t is not completely clear that 

this is the case however; whether i t is possible depends to some extent on the implementation 

of universes, for example. In the naive compilation path, therefore, we do not remove types. 

Later, in the optimised compilation path, we wi l l see some methods for removing types 

which can be shown never to be examined. 

Evaluation and execution control instructions include: 



C H A P T E R 3 . C O M P I L I N G ExTT 7 0 

• EVAL, which evaluates the item at the top of the stack to canonical form (that is, 

head-normal form). 

• JUMP which jumps to the label 

• CASEJUMP (ci , li),..., (cn. In), which examines the top stack item (which is assumed 

to be in canonical form) and jumps to the label appropriate to the constructor at the 

head of the graph. 

• LABEL /, which defines the target of a JUMP or CASEJUMP instruction. 

• UPDATE i, which updates the item at offset i from the top of the stack with the item 

at the top of the stack. 

• RET n, which discards n stack items and continues execution from the point where 

the previous EVAL was made. 

The instructions give the basic evaluation behaviour of the G-machine, on which the 

translation scheme I wi l l present next is based. I wi l l shortly add further instructions to 

cover proper tai l recursion, and later extend the G-machine wi th instructions to implement 

elimination rules efficiently. 

3.5.4 Operational Semantics 

Since the G-machine is a state machine, its formal semantics are defined by state transition 

rules, presented in figure 3.3. I use the foUowing notational conventions: 

• The code sequence, C , is presented as a sequence of instructions separated by semi­

colons, as in the translation scheme, and terminated by a pair of brackets, e.g. . . . ; { ) . 

• The stack, S, is presented as a sequence of names which are pointers into the graph 

G, e.g. no.ni.(). 

• The graph G is the memory of the G-machine; G[n = v] indicates that the name n 
refers to the value v in G. An empty graph is represented as { } , and update of a node 

n in the graph wi th a value v is denoted by G{n = v}. 

• The environment E is a mapping from names to pairs of arity and code. E[f = (a, c)] 

indicates that the supercombinator / has arity a and is built by the code sequence c. 

• The dump D is effectively a call stack, presented as a sequence of pairs of code and a 

stack (i.e. closures). 

Note that there is an additional instruction accounted for in this presentation, UNWIND. 

The machine is put into the UNWIND state by both EVAL and RET to unwind the spine of 

an application onto the stack. 
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{PUSHi; c,no...rH.S,G,E,D) =^ {c,ni.nQ ... fh-S, G, E, D) 
{PUSHFUNf-c,S,G,E,D) =^ {c,n.S, G{n = FUN f } , E, D) 
(MOVE i ; c, 710 . •. Tii.S, G, E, D) =^ (c, m . . . 7ii_i.rzo.5, G, E, D) 
(SLIDE 2; c, Tio . . . n,.S, G, E, D) =^ (c, TK,.S, G , E, D) 
(DISCARD i ; c, Tio . . . TH-I.S, G, E, D) =^ (c, S, G, E, D) 
(MKAP; c, 0 . / . 5 , G , E, D) =^ (c, n.S, G{n = APP / a} , E, D) 
(MKCON i c , no . . . TH^I.S, G, E, D) =^ (c, n'.S, G{n' = CON i (no . . . E, D) 
(MKTYPE; c, 5, G , £•,£») = ^ (c, G[r i = TYPE], £>) 
(SPLIT i- c, n.5, G [ n = CON t (rio - •. TH-I)], E, D) 

=^ {c,ni-i...no.n.S,G,E,D) 
{EyAl; c,n.S,G\n = APPf a],E,D) =^ (UNWIND; (), n.(), G , i ; , (c, 5 ) . 
(EVAL; c, n.S, G[n = FUN f],E, D) = ^ (UNWIND; (), G , (c, 5).£>) 
(EVAL; c, n.5, G[n = CON t a], E, D) =^ (c, n.5, G , ^ , D) 
{EyM; c, n.S, G[n = TYPE], E,D) =^ {c,n.S, G,E,D) 
( C A S E J U M P ( t i , / i ) , . . . , ( t „ , g ; 

LABEL/ i ; c i . . . LABEL Z„; c^, 
n.S,G[n = CONt,a],E,D) =^ {ci,n.S,G,E,D) 

(JUMP I; ... LABEL /; c, S, G, E, D) =^ (c, S, G, E, D) 
(LABEL /; c, 5, G , ^ (c, S, G, E, D) 
(UPDATE i;c,no... Ui.S, G[n^ = No], E, D) =^ (c, m . . . m.S, G{ni = No), E, D) 
(RETi ; c,nQ...ni-i.n.S,G\n = kPP f a],E,D) (UNWIND; {),n.S,G,E,D) 
(RETi ; c,no...ni^i.n.S,G\n = Pm}],E,D) =^ (UNWIND; {),n.S, G, E, D) 
(RETi ; c,no...ni-i.n.S,G[n = CONta],E,{c',S').D) {c',n.S',G,E,D) 
(RETi ; c,no...ni-i.n.S,G[n = JYPE],E,{c',S').D) =^ {c',n.S', G, E, D) 
(UNWIND; {),n.S,G[n=^APPf a],E,D) =^> (UNWIND; {),f.n.S,G[n = APPfa],E,D) 
(UNWIND; 0,nc...ni.S, 

G[rjo = FUN / , m = APP n[ n[',... ,ni = APP < n,"], 
i ; [ / = (i,c)],£>) 

= ^ ( c , < . . . < . n i . 5 , G , £ , i ) ) 
(UNWIND; 0 , no . . . n^.O, G[no = FUN / ] , E\f = {a, c')], (c, S).D) where i < a 

=^ {c,ni.S,G,E,D) 

Figure 3.3: State transitions for the G-machine 

3.5.5 TrEuaslation Scheme 

The translation scheme from RunTT to G-code is rather smaller than the translation scheme 

given in the original G-machine papers [Joh84, Aug84, Aug85] primarily because of the lack 

of primitive types in T T (however, see Chapter 5 for extensions in ExTT which implement 

low-level behaviour arising from high level E P I G R A M declarations). Canonical forms in TT 

consist only of constructor forms and basic types. 

The top level translation scheme given in figure 3.4 gives code which reduces the 

body of a top level supercombinator to canonical form. 

The S f - j translation scheme, given in figure 3.5, gives code to compute the canonical 

form of an expression and leaves the value on the top of the stack. This is the scheme which 

translates the body of function definitions. 
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The C|-| translation scheme, given in figure 3.6 gives code to construct the graph of 

an expression and leaves a pointer to the graph on the top of the stack. This scheme is 

called by the scheme for constructing graphs which are to be evaluated later, giving 

lazy semantics. 

Given an environment of supercombinators E, and a RunTT supercombinator e to evalu­

ate, the initial state of a G-machine to evaluate the supercombinator e is (iSIeJ, (), { } , E, ()). 

3.5.6 Example — plus and N-Elim 

For the plus function compilation proceeds as follows: 

plus An; m. N - E l i m n p l u s l m plus2 
5|An; m. N - E l i m n p l u s l m plus2| 

= ^ £:[N-Elim n p l u s l m plus2] r 3; UPDATE 3; RET 2 

= ^ C | N - E l i m n p l u s l mplus2l r 3; UPDATE 3; RET 2 

= ^ C | N - E l i m l r 3 ; Cfn] r 4 ; MKAP; C [ p l u s l l r 4 ; MKAP; 

C M r 4 ; MKAP; C|plus2] r 4 ; MKAP; UPDATE 3; RET 2 

= ^ PUSHFUN N - E l i m ; PUSH 2; MKAP; PUSHFUN p l u s l ; MKAP; 

PUSHl; MKAP; PUSHFUN plus2; MKAP; UPDATE 3; RET 2 

The function r is defined such that r (n ) = 3 and r (m) = 2. Compilation of p l u s l and 

plus2 is rather simpler; the compilation to G-code of plus, p l u s l and plus2 are shown in 

figure 3.7 

The compilation of N - E l i m requires dealing with a case expression. The G-machine code 

for N - E l i m is given in figure 3.8. 

3.5.7 Implementing a G-machine Compiler With Dependent Types 

The G-machine compiler we have seen here has been implemented as a simply typed trans­

lation, since its implementation is in Haskell. What benefit would we get from implementing 

this program in a dependently typed language? Let us consider the invariants which need 

to be maintained in the compiler and look at the sort of errors which could occur. In the 

course of developing the G-machine compiler, the main sources of errors were: 

• Incorrect stack manipulation (for example, stack overflows due to incorrect variable 

indexing). 

• Attempting case analysis on a value which is not yet in canonical form (due to a 

missing EVAL). 

Instances of this kind of error can be reduced by giving a dependently typed representa­

tion to G-code. Here, we wil l briefly consider how this might be achieved. Given the main 

sources of error, occurring in stack manipulation and in analysing non-canonical values, we 
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SlXa : E. ej =^ £le} r{m + 1); UPDATE m + 1; RET m 
where m =^ LENGTH(a) 

r{ai) = =^ (m + 2) - i 

Figure 3.4: The <S| | translation schenae 

£lxj rn ^ PUSH n - r{x); EVAL 
£ : | c a seeo fc i (o i ) ^ e i . . . C n ( S a ) f ^ j r n =^ 

f [el r n; CASEJUMP (c i , h) (cz, h) • • • (c„, /„); 
LABEL h; SPLIT m ; f f e i l di n + m ; MOVE m + 1; DISCARD m + 1; JUMP / 

LABEL/ 
where dn{aij) =^ n+j 

(k{x) =^ r{x) 
Uk = LENGTH(afc) 

f |let a ^ ei in eal r n = > Clei] r n; f [esl r' (n + 1); SLIDE 1 
where r ' (a) = > n + 1 

r'{x) =^ r{x) 
Slej rn ^ C[e]] rn 

Figure 3.5: The Sf-} translation scheme 

C l f j r n =^ PUSHFUIM/ 
r n =^ PUSH n - r(2:) 

C |* i l r n ^ MKTYPE 
CIVa;:ei.e2l =^ MKTYPE 
C|c(ei, 62 , . . . , ei)i rn =^ Cfeij r n; C[e2l r (n + 1 ) ; . . . ; 

Cfeij r (n + i - 1); MKCON ci 
C|D(e)l = ^ MKTYPE 
C|ei 62] r n CleJ r n; CJezI r n + 1; MKAP 
C[let a ^ eimezjrn =^ CJeiJ r n; CIe2l r' (n + 1 ) ; SLIDE 1 

where r ' (a) = > n + 1 
r'(2;) =^ r{x) 

Figure 3.6: The C[-] translation scheme 
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plus K-» An; m. N - E l i m m p l u s l n plus2 
<S|An; m. N - E l i m m p l u s l n plus2| 

= ^ PUSHFUN N - E l i m ; PUSH 2; MKAP; PUSHFUN p l u s l ; MKAP; 
PUSHl; MKAP; PUSHFUN plus2; MKAP; UPDATES; RET2 

p l u s l An. N() 
5|[An. N() l =^ MKTYPE; UPDATE 2; RET 1 

plus2 H-> Xk; ih. s{ih) 
SlXk;ih.s{ih)l =^ PUSH 0;MKCON s i ; UPDATE 3; RET 2 

Figure 3.7: Compilation of plus to G-machine code 

- E l i m An; P; mo; m,. case n of 
0 njo 
s{k) ms ( N - E l i m kP morris) 

<S|An; P; TOO; rrzs. case n of 
0 TTJo 
s(A:) nis ( N - E l i m P mo njs)l 

PUSH3;EVAL;CASEJUMP(0,fc)(s,4); 
LABEL fe; SPLIT 0; PUSH 2; MOVE 1; DISCARD 1; JUMP 
LABEL 4; SPLIT 1; PUSH 2; PUSHl; MKAP; 

PUSHFUN N - E l i m ; PUSH 2; MKAP; 
PUSH 6; MKAP; PUSH 5; MKAP; 
PUSH 4; MKAP; MKAP; 
MOVE 2; DISCARD 2; JUMP/ 

LABEL/; UPDATES; RET4 

Figure 3.8: Compilation of N - E l i m to G-machine code 

implement a datatype representing G-code sequences indexed over tiie canonicity of contents 
of the stack. A value can either be in canonical form or a redex, and we represent the stack 
contents as a vector which explains the canonicity of each item in the stack. 

data where Canonicity : * Canonical : Canonicity Redex : Canonicity 

Stack = An: N. Vect Canonicity n 

Now we define a datatype Gcode which represents G-code sequences and is indexed over 

the stack. As a result, the index on each instruction describes how that function affects the 

stack. 
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data g : Stack n ^^^^^ i : F\n n q : Gcode s 
Gcode s : * 5; PUSH i : Gcode ( lookup i 5)::s 

g : Gcode (a::/::s) 
5; MKAP : Gcode Redex::s 

g : Gcode {x::s) 
5; EVAL : Gcode Canonical::s 

Note how, of the instructions given here, the indices describe some detail of the oper­

ational semantics of each instruction, wi th respect to the stack. These indices ensure the 

following properties: 

• Wi th PUSH, the index must be within the bounds of the stack, since the l ookup 

operation requires its argument to be a Fin bounded by the vector size. 

• Wi th MKAP, there must be two arguments on the stack so there can be no stack 

overflow. 

• Wi th EVAL, we are guaranteed to end up with a canonical value on the stack. There 

is also a potential optimisation here, of removing unnecessary EVALs when we know a 

value is already in canonical form due to the stack contents. 

For the moment, however, we have implemented the compilation schemes in Haskell, 

using a list to represent the byte-code. Further work which wi l l be possible when the 

E P I G R A M front end is stable wi l l be to implement this translation scheme using dependent 

types and therefore showing several correctness properties in a straightforward way, 

3.6 Proper Tail Recursion 

A problem with the G-machine in its current presentation is that many functions build 

closures which are immediately evaluated when the function returns. This has two principal 

disadvantages — i t creates garbage unnecessarily, and i t creates an extra stack frame. A t a i l 

ca l l helps to avoid this problem. I f the last thing a function does is return a fully applied 

function, there is no need to build the closure; the code for that function can be executed 

immediately with a tai l call. Assuming ARlTY (g) = 2, this definition of f makes a tai l call: 

f i-» Xx.gOx 

The 5 [ - | compilation scheme builds the following G-code for f: 

SlXx-gOxj =^ PUSHNAMEg; MKCONOO; MKAP; PUSHl; MKAP; UPDATE3; RET2 

On reaching the RET instruction, the closure built by f is entered. I f g is fully applied, 

however, i t would clearly make more sense to jump to g directly and avoid building the 

intermediate closure. 
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Where a function is fully appUed, we can simply squeeze out the i stack elements which 

refer to the current function's local variables, keeping the m elements which are passed 

the tai l call. This introduces a new G-code instruction, SQUEEZE m i, also introduced by 

Johnsson [Joh84]. Tail calls are made by the JFUN / instruction, which jumps directly to 

the code for the function name / . The operational semantics of these instructions are shown 

in figure 3.9. 

(SQUEEZE mi- c,no... rim-i • • • nm+^-l•S, G, E,D) =^ (c, no . . . n,n-i.S, G, E, D) 
(JFUN/; c , n o . . . n i _ i . 5 , G ' , S [ / = ( i , c ' ) l , £ ' ) =^ {c',rH>... TH-LS , G, E, D) 

Figure 3.9: State transitions for SQUEEZE and JFUN 

f can now be compiled more efficiently to the following G-code: 

^ [ A x . g O i I = > CON 0 0; PUSH 1; SQUEEZE 2 1 ; JFUN g 

Dealing wi th tail calls efficiently requires some modifications to the f | - ] compilation 

scheme. I introduce a separate compilation scheme, 7?.|-| which returns a value and is 

presented in figure 3.10. I f the value returned is a fully applied function i t can be made into 

a ta i l call, otherwise the f | - | scheme is used. 

Tiff aiaa ... Omjrn ^ Cla^ r n; C M r (n + 1 ) ; . . . ; C|a™] r (n + m - 1); 
SQUEEZE m ( n - l ) ; J F U N / 

i f A R I T Y ( f ) = m 
nlej rn ^ £:[e] r n; UPDATE n; RET (n - 1) 

Figure 3.10: The 7?.|-] compilation scheme 

The top level <S|-] compilation scheme (figure 3.11) now returns a value, rather than evalu­

ating its body. 

5[Aa : E.ej => TZfej r (m -t-1) 
where m = > LENGTH (o) 

r{ai) (m + 2 ) - i 

Figure 3.11: The <S|-] compilation scheme, with tail calls 

3.7 Run-time Considerations 

In this chapter we have seen a naive method for compiUng ExTT to an abstract machine 

code; ExTT arises from the identity transformation from T T terms in their raw form, without 

considering particular features of T T which make the resulting code potentially large and 
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ineflicient. The type safety, totality and provabihty of terms in E P I G R A M relies on adding 

extra information to terms in the language which would not be present in a simply typed 

language; particularly worrying is the machinery required to eUminate impossible cases, as 

we saw in the v T a i l example in Chapter 2 (repeated here in figure 3.12). 

let V : Vect A (s n) 
Vect A n 

-> V 

vTa i lw 
vTa i l ( a : : v) 

d M o t i v e : 
d M o t i v e H-» 

discr imina te 
d i sc r imina te 

Vect A n 

V n : N . * 
An:N. N-Case n (Vn:N. *) False (Alt: N . True) 

: Vn:N.Vp:s n = 0. False 
->• A n : N . Ap:sn = 0. 

= - e l i m N (sn) p d M o t i v e () 

emptyCase : : V n : N. (s n = 0) ^ Vect A n 
emptyCase H-» A>1:*. An :N. Ap:s n = 0. 

False-EIim (d iscr iminate n p) (Vect A n) 

consCase : VA:* . V n : N . Vfc:N. Vect yl A; -+(sn = sk) ^ 
consCase i-> \A:*. Xn:N. Xk:N. Xv:\/ect A k. \p:k = n. 

= - e l i m N k n (SJn j k n ( eq j sym N n k p)) (An :N . Vect An) v 

v T a i l A u x : Vn :N. V>1:*. Vifc:N. V?;:Vect .1 fc. (s n = fc)Vect ^ n 
v T a i l A u x >-* An :N. A>1:*. Afc:N. Au:Vect ^ A:. 

Vect-Csise Akv 
{Xk:N.Xv:\/ectAk.{sn =k) -^VectAn) 
(emptyCase A n) 
{Xk:N. Xa:A. An: Vect A k. consCase Ankv) 

v T a i l i-> A ^ : * . A n : N . Az; :Vect^(sn) . 
{Xk:N.Xv:VectAk. 
AP:Vfc:N.Vt; :Vect^fc. (sn = fc)Vect ^ n. 
P{sn)v (refl (s n))) 
n V ( v T a i l A u x n A) 

Figure 3.12: v T a i l and its elaboration 

There are several efficiency problems which we might note in developing the run-time 

system for the language. Consider the version of v T a i l as written by the programmer (at 

the top of figure 3.12), and the fully elaborated term. The programmer's version suggests 

that a target machine might proceed along these lines: 

• Get a pointer to v, the argument, v consists of a pointer to the head of the vector h 

and a pointer to the tai l of the vector t. 

• Return the pointer to t. 

There is only one possible case here; we know from type checking that the vector must 

be non-empty so there should be no need to examine v to check whether i t even has a head 
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or tail . However, the fully elaborated vTcii l tells a rather different story. There is a proof 

of equality constructed, an appeal to the elimination operator of vectors and the element 

type and length of the vector are passed implicitly although never used. How can we get the 

target machine to compile to the simple two step procedure above from this code? Problems 

such as this which arise in the execution of dependently typed terms wil l be addi'essed in 

the rest of this thesis. 

There are several overheads which we can immediately identify which we ought to pay 

close attention to in the design of an optimised run-time system for TT. 

3.7.1 Invariants of Inductive Families 

The indices of inductive families express the properties of elements of that family. The 

indices of Vect, for example, express the fact that all elements must be the same type and 

that the length increases by one every time we add an item. These indices are left implicit 

in the declaration of Vect since they can be inferred by the type checker, but what happens 

to them at run-time? Figure 3 . 1 3 shows the optimal (that is, with perfect sharing) storage 

of a vector a::h::c\:e, on the heap (the instances of A are also shared, but I have omitted the 

pointers for clarity). 

This is wi th perfect sharing; i t is possible (and indeed hkely) for the numbers representing 

vector length to be separate instances. Although the programmer writes down only two 

arguments to the :: constructor, the typechecker has inferred that i t is a vector of element 

type A and that the inner vector has length s (s 0). These values are stored on the heap 

along wi th the vector. To make matters worse, when the vector grows a length argument is 

stored wi th each :: node, even though the type tells us that the length must be one more 

than the length of the inner vector. There are 25 cells here used to represent the vector, 

its length and its element type. Just removing the extra pointers to the length and element 

type reduces this to 1 8 cells. 

A naive representation of inductive famiUes would store all of the values in the structure, 

simply because they are part of the structure whether implicit or not. A practical imple­

mentation must consider methods for removing implicit information, whether i t be inferable 

at run-time (like the length of the Vect) or simply not used (hke the element type). Since 

implicit information is implicit exactly because i t is duplicated in some other part of the 

term this amounts to removing subterms whose values are already known. We would like to 

be able to remove these duplicated terms at run-time, but we must take some care, for the 

following reasons: 

• I f duplicated values are removed from the representation of famihes, the compilation 

of eUmination rules to RunTT as in section 3.4 is not so straightforward. We wi l l 

no longer f ind all variables used on the right hand side of the reduction simply by 

examining the target — we might also need to look at the indices. 



C H A P T E R 3. C O M P I L I N G ExTT 7 9 

Stack 

Figure 3.13: Storage of a::6::c::e 

• We need to bear in mind the difference between compile-time evaluation for type 

checking, and run-time evaluation. Are there any terms which can be removed in one 

setting but not the other? 

• We need to be sure that the transformed program has the same operational behaviour 

as the original program. A transformation which is not guaranteed to preserve the 

behaviour of a program is of no practical use. 

3.7.2 Proofs 

Dependently typed functional programs can include proofs of equations both as additional 

checks on invariants and in order to assist the type checker. In fact, elimination wi th a 

motive [McBOOb], which is used in the definition of v T a i l to help remove impossible cases, 

rehes on inserting equaUty proofs into the motive of an ehmination rule. 

These proofs assist the type checker and help assert properties of a program. At run­

time, however, they have served their purpose and have no computational meaning so can 

safely be removed. This does not just apply to equaUty proofs but to any inductive relation 

which shows some computationally irrelevant property. The difficulty here is in identifying 



C H A P T E R S . C O M P I L I N G E X T T 80 

which inductive families are computationally irrelevant and which may serve a purpose at 
run-time. 

The C O Q system approaches this problem by making a distinction between computa­

tional families and logical famihes. Set is an element of Type and is a universe of compu­

tational structures, and Prop, also an element of Type, is a universe of logical structures. 

I t is not possible within C O Q to move from the Prop universe to the Set universe by in­

duction over a type in Prop, but we are allowed to generate a Prop by inductioii over a 

type in Set. The practical result of this is that no Prop (with the exception of singleton 

types, such as equality, since they have informative content) can produce a computational 

structure and so i t is guaranteed that a Prop wil l not be used at run-time. The extraction 

mechanism [PM89, Let02], which creates M L or Haskell programs from C O Q terms, exploits 

this by removing all (non-singleton) instances of Prop from the extracted code. 

n, m : N p : m < n 
— minus nmp : N 

minus n m P ^ eUm p 
minus n 0 (leO n) n 
minus (s n) (s m) (leS mnp) i - ^ minus nmp 

Figure 3.14: Programming by induction over a proof 

In section 2.3.2 I gave an example of programming by induction over a proof (See figure 

3.14). In C O Q , i t would not be possible to write such a program using the default < relation 

since it inhabits the Prop universe. To write this program would require adding a separate < 

relation as a member of Set, which would result in the relation being present in the extracted 

code. Since we get patterns for the arguments n and m from the induction rule, however, 

i t would seem intuitively obvious that the proof is not needed at run-time. We would like 

to find a way to be able to program by induction over a proof, but still remove that proof 

at run-time i f the resulting patterns allow us to do so. The domain predicates used to show 

termination (see section 2.3.4) are an important example of a situation where we would hke 

to write programs by induction over a proof, but we would still like to be able to remove 

such termination proofs at run-time. 

3.7.3 Number Representation 

So far, we have been using a unary representation of natural numbers: 

data M where ^ M ^ ' 
N : • 0 : N s n : N 

W i t h this declaration, we write functions plus and m u l t and are able to prove charac­

teristic properties of these functions in a straightforward manner. 



C H A P T E R 3 . C O M P I L I N G E X T T 8 1 

An experienced programmer, or anyone thinking about the internal representation of 

programs, might wonder whether this does not cause significant overheads, and of course i t 

does. After all, computers have arithmetic operations built in and we can, we would hope, 

be reasonably confident of their correctness! So why do we use this representation, and can 

we do better? 

Although operationally disastrous, the unary representation of N is conceptually useful. 

The benefits of N are that: 

o I t is naturally structurally recursive, which machine integers are not. This allows 

us to relate other structures (such as Vect) to natural numbers. Also, i t allows us 

to implement a kind of bounded representation corresponding to a f o r loop in an 

imperative language. 

• I t is, at least in theory, unbounded, unlike machine integers which have some upper 
and lower bound. 

• As a result proving properties of N , functions over i t , and famihes indexed over i t , is 

more straightforward. 

Leaving primitive types such as integers, characters, strings and arrays out of the core 

language gives us a small, clean, theoretically sound core. While this facihtates checking 

program correctness, i t fails to take advantage of the architecture of the underlying machine. 

What we would like is a compilation scheme which changes the theoreticaUy sound imple­

mentation of N into an unbounded big number type based on machine integers along wi th a 

justification of the correctness of this compilation scheme. Then we keep the compile time 

advantages of the N structure (by continuing to program wi th N in the high level notation), 

while still taking advantage of the underlying machine (by translating to an appropriate low 

level representation). 

3.7.4 Dead Code In Impossible Cases 

In section 2.2.3 I showed the elaboration of the v T a i l function which takes the tai l of a 

non-empty vector, where the empty vector case is impossible. The machinery required to 

prove this is quite complex and leaves a lot of computationally redundant information in the 

VTEUI term. Some of the problems here are due to equahty proofs, as described in section 

3.7.2, but even i f we overcome this problem there is still some redundant information: 

• The whole term is wrapped in an outer A-abstraction in order to introduce an equaUty 

into the motive. 

• One of the cases in the helper function v T a i l A u x , performs elimination on the empty 

type. Since i t is not possible to have an element of the empty type we can be sure this 

case wiU never be executed. 
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• Having one impossible case leaves only one case which can apply. This suggests that 

i t might be nice to shortcut the apphcation to Vect-Case somehow so that no check 

is made at run-time. 

Finding a way to overcome these three problems would lead to a target machine version 

of v T a i l close to that suggested at the beginning of this section. 

3.7.5 Intermediate Data Structures 

We saw intermediate data structures used to assist computation by the use of views in section 

2.3.3, where fist reversal and N comparison were both implemented as data structures. Also, 

an intermediate data structure was used in section 2.3.4 to represent the computational 

behaviour of the quicksor t function. While these structures give us the relevant patterns 

on the left hand side of a function definition, there is a small overhead in creating and 

matching on the intermediate structures. 

A possible approach to removing these intermediate values is Wadler's deforestation 

technique [Wad84, Wad90]. In general such structures wi l l not cause a large performance 

hit, particularly since using a lazy evaluation strategy means that the structures need not 

be computed in their entirety before pattern matching. I t may even be preferable not 

to remove these structures; where the same structure is examined more than once, lazy 

evaluation caches the intermediate result. 

3.8 Summary 

In this chapter, we have seen how ExTT terms can be compiled to an abstract machine 

code (G-machine code), which gives code for run-time only evaluation of a term. We have 

looked at the compilation process via an intermediate language of run-time supercombina-

tors, RunTT and shown how to translate these supercombinators into G-code. This is a 

standard technique which has been appfied in lazy functional languages for many years, and 

adapts to dependently typed programming wi th only minor modifications. Other virtual 

machines, such as the ABC machine and the (i/, G)-machine, are built on similar concepts 

and so such machines should adapt easily to dependently typed programming languages. 

The approach to evaluation we have taken in this chapter has largely been naively 

adapted from techniques for implementing simply typed lazy functional languages — but 

we have also briefly looked at some of the run-time considerations of dependently typed 

programming. The naive approaches we have taken in this chapter, both to normalisation 

of terms for typechecking and to compilation, clearly have several overheads which are not 

a problem in simply typed functional languages. In the following chapters, we shall look at 

ways of optimising the naive compilation scheme to take account of these considerations. 



Chapter 4 

Optimising Inductive Families 

(Much of the material in this chapter, except sections 4.4 and 4.6, has previously appeared 

as [BMM04]). 

Machine generated elimination rules are the basic method by which E P I G R A M programs 

make decisions, perform recursion and compute results and therefore their efficient imple­

mentation, and the efficient storage of the data they examine, is very important to the effi­

ciency of E P I G R A M programs. The building of elimination rules from inductive definitions is 

well understood and described in [Dyb94, Luo94, McBOOa] among others. The computation 

behaviour of the rules is often presented directly as pattern matching i-schemes similar to 

those we might find in Haskell, but wi th the possibility of repeated arguments and arbitrary 

terms on the left hand side where type dependency dictates the form of these terms. We can 

think of these elimination rules as a particularly special kind of pattern matching function 

whose behaviour and definition we know more about than we might reasonably know about 

pattern matching functions in general. For example, we know that functions are total, so we 

need not perform any run-time checks for incomplete function definitions — if some patterns 

are not covered, i t is because the type dictates that those patterns are impossible. 

In this chapter I wi l l talk about how to take advantage of these special featiues of elimi­

nation rules to optimise their implementation. First, we wil l look again at the general form 

of ehmination rules and examine an important property — namely that in a well-typed ap­

plication, repeated arguments must be convertible. Given this, we go on to look at methods 

for implementing eUmination rules, taking advantage of their properties in order to stream­

line their definition and hence programs which elaborate in terms of them. In particular, we 

observe that since an elimination rule for a family D is the only function allowed to examine 

the internal structure of D, we are free to choose any internal representation for D provided 

that i t gives enough information to implement the ehmination rule. We wil l use this obser­

vation to remove redundant data from the representation of famihes in several ways, and 

show several examples of data structures which can be optimised by these techniques. 

83 



C H A P T E R 4 . O P T I M I S I N G I N D U C T I V E F A M I L I E S 8 4 

In the naive compilation path presented in the previous chapter, we used the identity 

transformation to translate from T T to ExTT. In this chapter, however, we wil l add annota­

tions to ExTT which mark terms for optimisation, and specify optimisations by translation 

rules from T T to ExTT. The marking up of terms in this way leads to the need for a more 

sophisticated translation from ExTT to RunTT, especially regarding the compilation of elim­

ination rules to simple case expressions. A compilation scheme for this is presented, along 

wi th associated modifications to the G-machine. Finally, we wi l l see a larger example of the 

use of dependent types — a well-typed interpreter in the style of [ A C 9 9 ] — and how the 

optimisations presented in this chapter apply to this example. 

4.1 Elimination Rules and Their Implementation 

4.1.1 Form of Elimination Rules 

Recall that an inductive family D, wi th constructors is declared as below: 

data i - J -Di : • 

where •• j i ^ ^ P . . . ^ • j " ^ : D r„ 
ci aiyi : D Si Cn a„ ?/„ : D s„ 

When a family D is declared, E P I G R A M generates a basic ehmination rule D - E l i m and 

three other rules derived from i t , D-Case, D-View and D-Rec, which together are used to 

implement functions defined wi th the high level pattern matching notation. The ehmination 

operators (i.e., the implementations of these rules) are the only functions which are allowed 

to examine an instance of D directly. 

We have already seen elimination operators used for programming in Chapter 2 and built 

a compilation scheme for programs writ ten in this way in Chapter 3. However, such a naive 

compilation scheme has its disadvantages, as noted at the end of Chapter 3. How can we 

take advantage of the properties of elimination operators so that the compiler produces a 

more efficient implementation? 

I wi l l take Vect as a running example. Recall that elaborating the declaration of Vect 

results in a type declaration Vect : \/A:-k. Vn :N. *, and constructors: 

e : V ^ : * . V e c t ^ O 

:: : : • . Vifc :N . Va: >1. Vt;: Vect .1 ifc. Vect ^ (s fc) 

The variables left impUcit in the data declajation have become explicitly quantified 

arguments. In naive implementations these take up space, as shown at the end of the 

previous chapter — every Vect A n stores the sequence 0 , . . . , n - 1, and n references to A. 
The space imphcations for families wi th more complex invariants are quite drastic i f this 

problem is left unchecked. 

The t-schemes generated for Vect are as follows: 
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V e c t - E l i m ^ 0 (e ^ ) Pm^m-,., 

Vect-Elim A (s k) {:: A k av) P rric m-,., Tn-,: k av (Vect-Elim Akv P rrif, m-,) 

The most important thing to observe here about this pattern matching definition is that 

there are repeated arguments on the left hand side. That is, A appears twice in the first 

t-scheme, and A and k appear twice in the second scheme. What are the semantics of such 

definitions? This appears to require non-linear pattern matching — in Haskell this would 

be illegal; here we might expect to have to do a run-time conversion check to make sure that 

arguments wi th the same name really are convertible. Even then, what should happen i f 

the conversion check fails, since there is no possibility of failure (i.e., -L is not a value) in a 

language of total functions? The important property of elimination operators is that i f the 

application is well-typed, such a conversion check cannot fail at run-time. This property is 

applied in the Plastic proof assistant to avoid checking of repeated arguments [ C L 9 9 ] . 

The type of an application of an elimination operator (eliding the method types for 

clarity) is: 

D - E l i m s : V 2 : D s. V P : ( V K 7. D ? ^ * ) . . . . ^ P s 2 

The type of a typical constructor, to which this operator wi l l be applied, is: 

cay : D t 

I f an application F h D - E l i m s {cay) is well typed, F h D s ~ D ? must hold, since 

D - E l i m s expects an argument whose type is convertible wi th D s. Hence s ~ ? must also 

hold (by the Chiurch Rosser property and the definition of the conversion relation) so there 

is no need to repeat the conversion check at run-time — duphcated pattern variables are 

guaranteed to be matched by convertible terms in a well-typed application. This property 

has important consequences; effectively i t tells us that the naive implementation is passed 

duplicate information — surely we can erase all but one instance of each repeated argument? 

Another important observation, of which we can take advantage in the implementation 

of an elimination rule, is that the form of one argument can teU us something about other 

arguments. In the case of Vect-Elim, for example, i f the target is headed by e, we know 

that the length index must be 0 — no other value would be well-typed, so there is no need 

to deal wi th those cases. 

The elimination rule D - E l i m is the basic means T T provides for inspecting data in the 

inductive family D, and the other ehmination rules can be implemented in terms of i t . There­

fore if we optimise D-Elim's reduction behaviour, we optimise the programs which elaborate 

in terms of i t . Moreover, if any data in the representation of D's elements is not needed by 

D-El im, then i t is never needed at run-time and can be erased from the representation — 

only the elimination rule has direct access to the arguments of D's constructors. 
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4.1.2 Pattern Syntax and its Run-Time Semantics 

In Chapter 2 we saw that E P I G R A M generates an elimination rule for each inductive datatype 

which implements (--reduction for that datatype in terms of i-schemes. Let us now examine 

in more detail how t-schemes are implemented in order to establish how to erase data from 

structures. 

We write a set of t-schemes in pattern matching style wi th a fixed arity, 

D - E l i m Pi e, 

where each pi has the given arity, pij is a p a t t e r n and is a term over pj's p a t t e r n 

variables. The rule set is then compiled into an efficient case-expression. I n the naive 

implementation of Chapter 3, we compiled t-schemes in a fixed manner by case analysis on 

the target. Now, however, we take a more general approach, annotating the patterns to 

direct the compilation, wi th parts of patterns which are presupposed to match marked by 

[•]. This pattern syntax is presented in figure 4.1. 

X (pattern variable) | c p (constructor pattern) 
[t] (presupposed term) | [c] p (presupposed constructor pattern) 

Figure 4.1: Pattern syntax 

The marking of a pattern [x] indicates that in a well typed pattern, i may be presupposed 
to match, without checking. Such markings are made using the observations from section 

4.1.1, that only one occurrence of a repeated argument need be matched, and that we can 

teU the form of some terms by matching on other arguments. We also mark terms which are 

not in constructor form, since i t is not possible to determine x from f x for arbitrary f . Such 

terms can also be presupposed to match by the fact that the application of the elimination 

rule must be well typed. We define an operation \p\ which strips these presupposition marks 

from a pattern, as in figure 4.2. 

1̂ 1 =J> X 
^ c \ p \ 

m => t 
l[c]| P = > c \p\ 
\pp\ =^ \p\ \p\ 

Figure 4.2: \p\; removing presupposition marks fi'om a pattern 

The partial function M A T C H (figure 4.3) specifies when a pattern and term yield a match­

ing s u b s t i t u t i o n (MATCHES Hfts M A T C H to argument sequences by composing the sub­

stitution built from the first argument with the substitutions built from the rest of the 

arguments). M A T C H is a meta-operation, i.e. i t is an operation on syntax. 
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M A T C H ( X , t ) = 

MATCU{cp,t) = 
M A T C H ( [t'] , t ) = 

M A T C H ( [ C ] P, t ) = 

M A T C H E S ( nil, nil) 

M A T C H E S ( p p, t t ) 

t / x 
M A T C H E S ( p , t) i f WHNF(t) 
I D 

MATCHES(p ,7) i f W H N F ( t ) ^ > 
= > I D 

= ^ M A T C H ( P , t ) o M A T C H E S ( p , t ) 

d t and c = c' 

c't 

Figure 4.3: Pattern matching semantics 

The first two Unes of M A T C H test constructors and bind pattern variables as is usual in 

implementations of pattern matching. The remaining two Unes, however, presuppose the 

successful outcome of testing. To justify these presuppositions, we shall require that each 

t-scheme is respectful of well typed instances, as defined in figure 4.4. The respectfulness 

condition states that i f a set of patterns wi th presupposition marks matches an argument 

sequence t, yielding substitutions cr, then applying those substitutions to the unmarked 

patterns, \pi\, yields the original argument sequence t. 

i f F h D-El im t : T 
and MATCHES(pi, t ) =4> a 
then F I - D-El imcr |p i | = D - E l i m ? : T 

Figure 4.4: The respectfulness condition for t-schemes 

Remark: Respectfulness is not an issue in simply typed programming, because no analysis 

of arguments can be left out — i.e., i t is not possible to learn the form of any argument 

by looking at other arguments. W i t h dependent types, on the other hand, examining one 

argument can restrict the possible forms of other arguments. 

A set of /.-schemes, D-El im Pi ej is well-defined according to the criterion in figure 

4.5. An application of a well-defined set of schemes yields t-reduction D-El im t aci, 

which is the matching substitution a appUed to the right hand side of the appropriate t-

scheme, Cj. In a well-defined set of t-schemes, there is exactly one scheme which matches 

when the rule is fully applied and the target is constructor headed; the ehmination rule is 

implemented by a total function wi th non-overlapping patterns. 

i f F h D - E l i m t : T, where D-El im is fully appUed with a constructor headed target 
then MATCHES(pi, t) = > a for exactly one i 

Figure 4.5: The well-definedness condition for t-schemes 

The implementation of an elimination rule must be both respectful and well-defined to be 

acceptable, since these conditions ensure that the implementation has the desired behaviour; 
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well-definedness preserves totality, and respectfulness ensures that reduction correctly im­

plements the i-schemes. Respectfulness also preserves subject reduction. 

4.1.3 Standard Implementation 

The standard implementation of a rule D-El im corresponds to the scheme given in 

section 3.4; that is, evaluation proceeds by inspecting the target of the ehmination and 

ignoring the indices — the indices are presupposed given the target, since the indices are 

computed by the arguments of the constructor. For D : V i : 7. *, wi th typical constructor 

c : \/a: A. D n ^ ... -> D rj ^ D s, 

our typical t-scheme has a standard implementation as shown in figure 4.6. 

For typical c : Va: .4. D f i ^ . . . —» D r, -» D s 

D-El im [s\{cay) P m m^ay (D-El im nyiP fh) ... (D-El im r, yj P m) 

Figure 4.6: Standard implementation of D-El im 

Theorem 4 . 1 . The standard implementation of D-Elim is well-defined and respectful. 

Proof For any T, i f F h D-El im (c a' y') P'm' : T then 

MATCHES([s] (cay) P m, s' (c a' y') P' in') => a, 

where CF is a'/a o y'/y o P'/P o fn'/m 

but matching the other t-schemes fails, so these schemes are well-defined. Typechecking, 

we get ca'y' : D (a ' /o o y'/y)s = D as. Hence as = s' as D-El im s' (c a' y') is well-typed. 

Hence our typical scheme is respectful. • 

The standard implementation is well-defined — we have exactly one scheme exphcitly 

matching each of D's constructors — and respectful, by inversion of the typing rules. This is 

just as well, because there is no guarantee that the indices s wi l l take the constructor form 

which expUcit matching requires. 

For example, the standard implementation of Vect-Elim is given in figure 4.7. 

Vect-Elim [A] [0] (e A) P m^ m-,. m, 
Vect-Elim [A\ [s k\ {:: Ak av) P m-,-, m-.k av (Vect-Elim Akv P m^ m-,) 

Figure 4.7: Standard implementation of Vect-Elim 
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4.1.4 Alternative Implementations 

In the standard implementation, we do not examine the indices at all; they are presupposed 

as they are computed from the arguments to the constructor. However, where these indices 

are themselves constructor or variable patterns we can examine them in the reduction rule 

and so we are free to consider alternative implementations of the corresponding t-schemes. 

We may certainly presuppose a pattern variable in the target i f we can recover i t by matching 

an index. For example, this implementation of Vect-EIim is also respectful and well-defined: 

Vect -E l im^ 0 (e [^]) Pm^m.... 
Vect-Elim A (s k) (:: \A] [k] av) P m-,., viy.kav (Vect-Elim Akv P m.,-) 

But this implementation still does more work than is necessary; there is no need to check 

the constructor tags on both the length and the target — one check wi l l do. If , for example, 

the target is e, we already know that the second argument must be 0, since the declaration 

of the e constructor tells us that this index can only take the value 0 for constructor e. 

Likewise, i f the target is ::, the second argument must be headed by s. 

We may either examine the constructor of the vector, as in the first implementation in 

figure 4.8 or instead privilege index length over vector contents, as in the second implemen­

tation. 

1. Vect-Elim A [0] {t[A\) P 
Vect-Elim A ([s] k) (:: [A] [k\ av)Pm^ 171;: m,;: k av (Vect-Elim AkvPm^m:) 

2. Vect-Elim ^ 0 {[e][A]) F m. me 
Vect-Elim A (s k) ([::] [A] [k\ av)Pm, m,: m . .. k av (Vect-Elim A k v P nifm::) 

Figure 4 .8 : Alternative implementations of Vect-Elim 

In the following sections, we show how to choose alternative implementations for elimi­

nation operators by systematically exploiting the presence of constructor symbols in indices. 

The implementation of an elimination rule is chosen so that i t examines as httle of the tar­

get as possible. Since only the ehmination rule has direct access to the target, this leads 

naturally to space optimisations, where we do not merely "comment out" unnecessary data 

from patterns — we delete them entirely from the representation of datatypes. 

4.2 ExTT and Its Properties 

Previously, in the naive compilation path, the mapping from T T to ExTT was the identity 

transformation. For the optimising path, we augment ExTT's syntax with deleted terms {t} 

and its operational semantics wi th corresponding deleted patterns (figure 4 . 9 ) . The intention 

of deleted terms and patterns is to exploit the fact that, as shown in the previous section, we 
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do not need to examine all of the left hand side of an elimination rule in order to t-reduce. 

Deleted patterns match only deleted arguments, and yield the identity substitution: 

M A T C H ( { « } , { f } ) I D 

p :•= X (pattern variable) 
[t] (presupposed term) 
{<} (deleted term) 

{t} (deleted term) 

M A T C H ( { p } , {t}) I D 

c p (constructor pattern) 
[c] p (presupposed constructor pattern) 

I {c} p (deleted constructor pattern) 

y{x:t}.t (deleted function) 

Figure 4 .9 : Extensions in ExTT 

ExTT terms arise only by mappings from TT, so we think of ExTT as a family of languages 

ExTT(5'), parametrised over a set of mappings S from TT. In the naive compilation path, 

therefore, we compiled ExTT(0). 

We define a forgetful mapping operation |-| which removes the deletion marks from ExTT 

terms, giving a TT term. |p| removes the deletion marks from patterns, as defined in figure 

4 .10 . Correspondingly, we define an operation \t\ which removes deletion marks from terms, 

defined in figure 4 . 1 1 . 

|2;| = => X 
| cp | = => c \p\ 
|{*}l = => t 
| {c}p | = c \p\ 
m\ = t 
\ [ C ] P \ = =^ c \p\ 

Figure 4 .10: \p\\ removing deletion marks from a pattern 

\x\ x 
\ix:S. T\ = > V x : | 5 | . | T | 
\\x:S. e\ =^ \x:\S\. \e\ 
|let x ^ vine] let X \v\ in |e| 

= > l < l 
| V { x : 5 } . T\ = > V a ; : | 5 | . | T | 
l / a | = ^ I / I \a\ 

Figure 4 . 1 1 : |it|; removing deletion marks fi'om a term. 
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4.2.1 Properties of ExTT 

W i t h the additions to ExTT come additional equality, conversion and computation rules. To 

distinguish these from the rules for TT, we annotate the turnstile as follows: 

Ex Ex 
Syntactic equality for ExTT is denoted by F h x = y. 

Ex Ex 
Conversion for ExTT is denoted by F h x ^ y. 

Ex Ex 
• Reduction for ExTT is denoted hy T h x t>* y. 

T T 

Likewise, we annotate the turnstile on T T judgments as F h J . Where there is no 

ambiguity, we wi l l omit the annotation. 
Contraction is as for TT, except that deleted terms {•} do not reduce (i.e., {•} is not a 

Ex Ex 

reducible expression, and so {i} is a normal form for all t). We also say that F I - {a;} = {y} 

for all X , y. Strong normalisation holds trivially for ExTT, since {i} is a normal form for all 

t and all ExTT reductions have a corresponding T T reduction (see Lemma B.3 in Appendix 

B) . 

We extend the definition of contexts to annotate variables which are expected to be 

deleted. Contexts are defined as in figure 4 .12 . 

F h g : F h s 
f I-valid F ; i : S h valid F ; x i - ^ s : S h valid 

F h D s : • „ if F; {y} : V6 :B . D ?;F' h valid then 3 i . DisJOlNT(si, U) 
T;{x} : V 5 : ^ . D s h valid 

Figure 4 .12 : Contexts in ExTT 

The side condition on the last rule ensures that a name can only be added with deletion 

marks i f the indices of its type are disjoint wi th all other deleted names in the context. We 

wi l l postpone discussion of the D I S J O I N T operation and the purpose of this rule until section 

4 .3 .2 . Again, we use |F| to remove deletion marks from entries in F, as defined in figure 4 .13 . 

1̂ 1 ^ £ 
| F ; x : S\ |F | ;a: 1̂ 1 
| F ; x s : 5 | |F | ;a; H - k l : \S\ 
| F ; { T } : 5 | ^ \ T \ ; X \s\ 

Figure 4 .13 : |F|; removing deletion marks fi-om all entries in the context 

We also have a conversion rule corresponding to that for T T (figure 4 . 1 4 ) . 
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^ Ex 
Definition: x is convertible to y relative to F (F h i ~ 

Ex ^ Ex 
if and only i f there exist x\,... ,Xn{n'>\) such that T \- x = xi,V \- y = x,x 

Ex Ex Ex Ex 
andF h t>i Xi+i or F h x^+i t>i x ,̂ for i = 1 , . . . , n - 1 

Figure 4.14: Conversion for ExTT 

4.2.2 Defining Optimisations 

We wil l consider a variety of optimisations of inductive families and their elimination rules. 

Optimisations are defined by mappings from T T to ExTT — an optimisation for a family D 

is given by: 

• A substitution | - j from each constructor of the family to an ExTT term. 

• An optimised t-scheme for each constructor of the family. 

• An updated entry in F for each constructor of the family. 

For original t-scheme F h D -E l im % ê , the optimised i-scheme has the form 

D -E l im Pi di, where \pi\ = U, K l = Ci and every undeleted free variable in rf, is a 

pattern variable in pi. That is, unmarking the optimised scheme yields the original scheme. 

The optimised schemes must be well-defined in that exactly one scheme must match when 

D -E l im is fully applied wi th a constructor headed target, and respectful in that 

i f F h D - E l i m t : T and M A T C H E S ( p i , = > a 

then there exists a substitution r such that F h r |(T(D-Elim pi)\ = D -E l im t : T 

That is, applying the optimised elimination rule and unmarking the result yields the same 

result as applying the original rule. The role of r is to instantiate the variables free in ê , 

but deleted in dj — these are deleted since they are not needed when executing ExTT terms, 

hence they need not be matched. 

4.2.3 Typechecking via ExTT 

There are two settings in which evaluation takes place in E P I G R A M (namely, compile-time 

and run-time, as described in section 3.1.4), and hence there are two settings to consider 

for optimisations. While ExTT is primarily designed as a language for efficient run-time 

evaluation of T T programs, we can also get some benefit at compile-time, by using ExTT 

for typechecking. 

Figure 4.15 gives a type synthesis algorithm for ExTT. The intention is to use this type 

synthesis algorithm to check T T judgements, bypassing the TT type synthesis algorithm 

entirely. Since typechecking relies to some extent on reduction (in the conversion check), we 

can optimise typechecking by avoiding the reduction of marked terms in ExTT. 
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F h valid 

r h valid 

=^ *n+l 

X : SeT 

(Similarly for c, D, D-Elim) 
r h valid X : 5 >-> s G F 

X-»yx:S.T F h s = s' r h 5 ~ 5" 
F h / s ^ l e t a ; : 5" i-> s m T 

f =^ X-^y{x:S).T T^s=^S' ThS-S' 
r i - / { s } = ^ l e t 2 ; : 5" h-. s i n T 

F h valid { f } : yx-.S.T &T T^s=^S' V^S-S' 
\f] s=^Mx : S' ^ smT 

F h valid {f} : V { x : S } . r e r V \ - s S ' T ^ S - S' 
F h {/}{s} ^ l e t a ; : S" H-> s i n r 

r ; a: : S h e ^ T F h Vo;: 5. T = ^ 
\x:S.e^^x:S. T 

r;x : S\- T ^ X -**n F I - 5 = ^ X ^ - » * „ 
F h V x : ^ . r = ^ * „ 

T h S ^ X T\-ei^S' F h 5 ~ 5 ' 
F; a; : 5 ei h 62 ^ T F; a; : 5 ei h T = ^ ^ 

F h l e t x : 5 i—>ei ine2 let a; : 5 ei i n T 

Figure 4.15: Type synthesis for ExTT 

I f we want to check a judgement F h a : v4 using the ExTT type synthesis algorithm, we 

must ensure that the translation from T T to ExTT satisfies certain properties. I n particular, 

for an optimisation to be valid at compile-time we require the following three properties to 

hold: 

Ex 
Property 1. / / | F l \- faj ^ B then^A. T \- a ^ A andT 1- ^ ~ | B | 

Property 2. IfT \- a ^ A then3B. 

IF l h [a l = ^ B and 

|F ] h 5 ~ 1̂ 11 and 

i n h 5 = ^ X ^ 

Property 3. / / [F] h [yll ~ B then vV Ac^\B\ 

T T 

These properties ensure that we can check a judgement F h a : A by checking the 

following: 
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IFI h 1̂ 1 = ^ X ^ 

^ Ex, 

Ex Ex 

Properties 1, 2 and 3 ensure the soundness and completeness of this algorithm. This is 

demonstrated by Theorems B . l and B.2 in Appendix B which show that type sjoithesis in 

ExTT is equivalent to type synthesis in TT. 

4.3 Building Efficient Implementations 
The generation of alternative implementations of eUmination rules relies on three optimising 
transformations, which are called forcing, detagging and collapsing, from [BMM04]. 

• Forcing implements the commenting out of constructor arguments which are also 

retrievable from the indices by pattern matching. This reUes on the injectivity property 

of constructors, and the respectfulness and well-definedness of ehmination rules. 

• Detagging implements the commenting out of constructor tags of the target where 

the choice of (--scheme can be determined by the indices alone. This relies on the 

disjointness property of constructors, and the respectfulness and well-definedness of 

elimination rules. 

• Collapsing is a run-time only optimisation which implements the commenting out of 

entire data structures. This apphes when forcing and detagging comment out all but 

the recursive arguments of a structure. As we wil l see, collapsing applies only when 

evaluation takes place in the empty context. 

4.3.1 Eliding Redundant Constructor Arguments 

The first alternative implementation of Vect-Elim in figure 4.8 above matches A and k in 

the indices rather than the target: 

Vect-Elim A [0] (e [A]) Pm^m.,., 

Vect-Elim A ([s] k) (:: [A] [k] av) P m.,., ̂  m-.-.k av (Vect-Elim Ak v P rUe m-,;) 

In general, when can we comment out an argument of a constructor? 

I f we have two constructor headed terms, c S, c 6 in the same type D s and the value of 

the i t h argument of c is determined only by (or forced by) the indices s, such that Oj ~ &j, 

we say that the ith. argument of c is forceable (figure 4.16). For example, the A argument 

to e is forceable since if e a, e 6 : Vect A 0 then clearly a ~ 6 ~ >1; no other value would be 

well typed. For ::, A and k are forceable in the same way. 
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The ith argument of a constructor c is forceable 
i f F h c a, c 6 : D s implies F h Oj ~ 6i 

Figure 4.16: Forceable arguments 

To say whether an argument is forceable is, in general, difficult, and likely to be undecid-

able since i t relies on the injectivity of a function, and knowing the inverse of that function. 

However, i t is possible to identify some forceable arguments. I n particular, constructor 

arguments which are repeated in an t-scheme are forceable. This is to be expected; such 

repeated arguments arise from the patterns describing constructor indices. Constructors are 

injective, and since they cannot be reduced i t is tr ivial to compute what the arguments must 

have been given a constructor application in normal form. 

Consider a typical constructor, fully applied to variables, cay : D s. I f we express s 
as where p arises by marking the presupposed terms in patterns built from s, then any 

Oi appearing as a pattern variable in p is forceable, by injectivity of constructors. We call 

these arguments concretely forceable (figure 4.17) since they can be retrieved in constant 

time by pattern matching on the indices. 

For fully applied c a ^ : D s, where s = \p\ 
i f Oi appears in p as a pattern variable then Oj is concretely forceable 

Figure 4.17: Concretely forceable arguments 

L e m m a 4.2. / / Oj is concretely forceable in cay, then the ith argument of c is forceable. 

Proof. We need to show that substitution instances of concretely forceable variables in pat­

terns are convertible. 

For cay : D s, Oj is concretely forceable i f i t appears as a pattern variable in p where 

\p\ = s. Oi is determined by a pattern variable appearing in pj. So i f two terms matching pj 
are convertible, then the two terms matching Oj must also be convertible, by respectfulness 

of ehmination rules. Therefore the substitution instances (determined by M A T C H ) must also 

be convertible. 

• 
To express s as we write a program P A T to extract from a term a linear pattern 

wi th its variable set and P A T S , which lifts P A T across argument sequences, shown in figure 

4.18. V is an accumulator containing the variable set built so far (which is initialised to the 

empty set 0); the second argument is the index in s. 

The helper operation L A Z Y exploits the fact that we need not examine the constructors 

at the head of the indices to implement the reduction, given that i t can be implemented by 

examining the constructors at the head of the target. 
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PAT (V, x) =^ {xU V,x)ii X ^ V 
P A T {V,ct) ^ ( y ' , L A Z Y ( c , p ) ) i f P A T S ( K , t ) (V" ,p ) 
P A T (V, t ) =^{V,[t]) 
P A T S ( V, nil) = ^ ( F , n i l ) 
P A T S ( V,tt) =^ ( F " , p p ) 

i f P A T ( y , i ) = ^ ( y ' , p ) and P A T S ( l^ ' ,?) = ^ {V",p) 
L A Z Y ( C, I P ] ) = ^ [c p] 

L A Z Y ( C, P ) ^ > [c] p otherwise 

Figure 4 .18: Extracting patterns from a constructor's indices 

For our typical constructor c, P A T S (0, s) gives us ( V , p) where V is the set of arguments 

of c which are forced by s, and p are the patterns which D-El im wi l l match. I f an argument 

Xi & V then Xi is concretely forceable. Then we may create an alternative implementation 

for the t-scheme which matches c as follows: 

D - E l i m p ( c a l ^ l y ) P m --^ rric • • • where a l^ l ==» [a] i f a G V 
ot^l = > a otherwise 

The helper operation a'^' comments out the variable a in the patterns if i t appears in 
the set of concretely forceable arguments V. 

L e m m a 4.3. If c a y : D s, and P A T S (0, s) = ( l ^ , p ) then Va G V, a is a concretely 
forceable argument of c. 

Proof. P A T S traverses patterns inserting pattern variables into V. By definition, these are 

concretely forceable arguments of c. • 

T h e Forcing Optimisation 

The forcing optimisation on a constructor c marks the concretely forceable arguments of 

c for deletion; i t generates a substitution on the identifier c, which gives a term in ExTT. 

Also, we get an optimised t-scheme in ExTT for c. To be meaningful, this optimisation is 

apphed to all constructors of a family D. The general scheme is given in figure 4 .19 , and the 

instance for Vect in figure 4 .20 . Note that types are eUded in the A-bindings; this is to avoid 

distracting attention from the optimisation i tself— A a; 6; e is used here as a shorthand 

for \a:A.\b:B e. 

When forcing, we also update the context by |F]), so that the type of the constructor c 
in the optimised context binds deleted arguments. Since we change all apphcations of c so 

that the appropriate arguments are deleted, the optimised code is well-typed in ExTT. The 

types of the constructors in the Vect example are as follows: 

e : V{A :*} .Vect AO 

:: : V{>1 : • } . V{fc :N} . Va: A. V^;: Vect >1 fc. Vect (s fc) 
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For each c : Va: ^. D n - > . . . - > D r, -> D s where P A T S (0, s) =^ {V, p) 

take |cl Aa; y. c y 

D-El im p{cai^ y)Pm h-» m^ a y (D-El im ri yi P m) ... (D-El im r , y^ P m) 

where =4> {o} i f a e V 
a^^ = > a otherwise 

and c : V a : ^ M . Vy: 17]. D € [F] 
where V O : A M = ^ V { O : I^tj} i f a G K 

V a : A M ^ V a : [ A ] otherwise 

Figure 4.19: The Forcing Optimisation 

H =^ XA.e{A} 
|::| =^ XA; k; o; w. :: {A} {A:} a v 

Vect-El im / I [0] (e {A}) Pm^m.... ^ m^ 
Vect-Elim A ([s] /c) (:: {yl} {A:} a v) P m^ m.,; m^.kav (Vect-Elim A u P me m :̂) 

Figure 4.20: Forcing for Vect 

So rather than merely commenting out concretely forceable arguments using a'^', the 

forcing optimisation marks such arguments for deletion wi th . Note in the Vect-Elim 
rule that the constructor tags 0 and s are commented out (but not marked for deletion) to 

indicate that they are not inspected; these tags are commented out by the L A Z Y operation 

in figure 4.18. 

In the transformation from ExTT to RunTT, the deleted arguments really are removed 

from the fully applied constructors. This is safe because these terms are only decomposed 

by Vect-Elim, the new implementation of which does not expect the deleted arguments. 

Properties of Forcing 

Forcing satisfies the required properties of a compile-time optimisation. The eUmination rule 

is respectful and well-defined, and typechecking the resulting terms in ExTT is equivalent 

to typechecking in TT. 

Theorem 4.4. The forcing implementation of D-Elim is respectful and well-defined. 

Proof Clearly, |p| = s and |c ^| = c a ^, so i f F h D-El im s' (c a' y') P'm' : T then, 

as before, s' = (a ' /ao y'/y)s. Now, 

M A T C H E S ( P , {d'/aoy'/y)s) => o^^v{a[/ai) 

M A T C H E S ( C a W j7,c a' f ) = > o ^ ^ v « / a i ) ° v'lv 

Hence any matching substitution a for the left-hand side satisfies 

ID |a (D-El im p (c a W j / ) p ^ ) | = D-El im s' (c a' f ) P'm' 
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So these schemes are respectful. They are clearly well-defined, as they discriminate on the 
target's constructor. • 

Theorem 4.5. Forcing satisfies Properties 1, 2 and 3. 

Proof. See Theorems B . 7 , B . 8 and B . 9 in Appendix B . • 

Remark: How can we display elements of D accurately i f we erase parts of the structure? 

Information which is dropped by the forcing optimisation can always be retrieved by writing 

a function in terms of the elimination rule, and so displaying a term does not need direct 

access to the term's representation; display (or at least conversion to a textual representa­

tion) can be implemented in terms of the elimination rule, writing a function similar to the 

show function in Haskell. Assuming the existence of a String type, we might write a show 

function for D by the following scheme: 

let - - j L j ^ i 
show d : String 

show^ d elim d 

showj (ci ai ^ i ) " c i " -H- (show Si) -H- (showp^ yi) 

shows {Cn On ijn) 1"̂  "c„"-H-(show ^ ) - R - ( s h o w p „ ^„) 

This assumes appropriate show functions for each of the a, but in principle we see that 

displaying structures, including their erased elements, is straightforward. 

4.3.2 Eliding Redundant Constructor Tags 

In the second alternative implementation of Vect-Elim in figure 4.8, case selection is by 

analysis of the length index rather than the target itself: 

V e c t - E l i m ^ 0 (HMD Pm^m;; 

Vect-Elim A (s k) ([::] [A] \k] av) P rUe m.,., m-.-.kav (Vect-Elim AkvPrn^ m.,-,) 

For which types can we do case selection on an argument other than the target? 

I f we have two constructor headed terms c o, c' 6 in a type D s, and the constructor choice 

is determined only by (or forced by) the indices s, such that c = c' we say that the family 

D is detaggable (figure 4.21). i.e. the constructor tag is determined only by s; given s, 

we can tell what the constructor tag must be. Vect is detaggable because the length index 

determines whether the constructor is e (if the length index is 0) or :: (if the length index is 

sk). 

Again, there is no method in general to tell whether a family is detaggable, but we 

can use properties of constructors to identify some famiUes as detaggable. For any set of 

(,-schemes, i f the index patterns are already mutually exclusive, we can decide which scheme 

applies without checking the target's constructor tag. The D I S J O I N T operation (figure 4.22) 

checks i f two patterns are guaranteed to match disjoint sets of terms. 
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A family D is detaggable 
i f F h c a, c' 6 : D s implies c = c' 

Figure 4.21: Detaggable families 

D I S J O I N T ( cp , c'q) = > true i f c ^ c' 
D I S J O I N T ( cp , c q ) = ^ 3 / . D I S J O I N T ( p i , qi) 
D I S J O I N T ( [c] P, [c'l ?) = > 3 z . D I S J O I N T ( p i , ft) 
D I S J O I N T ( p , 9 ) = > false otherwise 

Figure 4.22: The D I S J O I N T meta-operation 

Of course if we are to match on the indices then we must actually examine their con­

structors, so the previous lazy definition of P A T S is not sufficient. We compute the patterns 

we need for this optimisation with E P A T S (figure 4.23) — the same as P A T S but wi th L A Z Y 

replaced by E A G E R . E A G E R generates patterns without commented out constructors, to 

indicate to the pattern matching compiler that i t may inspect these tags. 

E P A T { V , x ) = 4 > (x U x) i f X ^ V 

E P A T { V , C t ) = > ( y , E A G E R ( C , P)) i f E P A T S { V , t ) = ^ { V , p) 

E P A T { V , t ) ^ { V , [ t ] ) 

E P A T S ( V , nil) ( F , n i l ) 

E P A T S ( V , t t ) =^ iV",pp) 
i f E P A T { V , t ) ^ {V',p)ajid E P A T S {V',t) --

E A G E R ( C, P) =4> c p 

iV",p) 

Figure 4.23: Extracting eager patterns 

For each constructor Cj : V x : X i . D Sj of a family D, EPATS (0,si) gives us {Vi,Pi), 

where V, is the set of arguments of Cj forced by si and Pi are the patterns which D -E l im 

wil l match. I f the patterns pi generated from the indices are mutually exclusive, we say D 

is concretely detaggable (figure 4.24). 

The pattern sets are mutually exclusive i f the following property holds: 

^ j . 3k. DlSJOlNT{pik,Pjk) true 

That is, for every pair of t-schemes, one of the indices is matched in each scheme by 

disjoint patterns; this ensures that by examining all of the indices we have reduced the 

number of possible t-schemes to one. In order to implement detagging, we extend ExTT's 

operational semantics with deleted constructor patterns {c} p. A deleted constructor pattern 

{c} p matches a term t i f the canonical form of < is a deleted constructor application {c} t 
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For a family D with i constructors of the form 
C i : yx:Xi.Dsi 

Where for each i, E P A T S (0, Si) => ( V i , pi) 
i f V i / j. 3/c. D i s J O l N T ( p i f e , p j j t ) then D is concretely detaggable 

Figure 4.24: Concretely detaggable families 

and p also matches t. 

M A T C H ( { C } P , t ) M A T C H E S ( P , t ) i f W H N F ( i ) = ^ ({c} t ) 

We are careful to distinguish ({c} { ^ ) , which is a tr ivial canonical form with its constructor 

and all of its arguments deleted, from {c t} , which is deleted altogether. 

L e m m a 4.6. / / D is concretely detaggable then D is detaggable. 

Proof. For two constructors of D, C j and c ,̂ the patterns pi and pj are generated by E P A T S . 

No set of terms can match both sets of patterns unless t = j , by the definition of concretely 

detaggable. 

I f we have F h c a, c' 6 : D s, then we have E P A T S (0, s) => {V,p). Since no term can 

match patterns for more than one constructor, p determines the constructor, so F h c = c'. 

• 

The Detagging Optimisation 

The detagging optimisation scheme is given in figure 4.25. Note that this optimisation 

subsumes the forcing optimisation by marking x wi th . Detagging for vectors is given 

in figure 4.26. The types of the constructors in ExTT are as for the forcing optimisation; 

however, they are added to the context with deletion marks: 

{e} : W{A:-k}.yectAO 

{::} : V { A : • } . V{A;:N}. Va: vl. Vv:Vect .4 fc. Vect .4 (s fc) 

Recall that the definition of contexts only allows us to add constructors of a family wi th 

deletion marks to the context i f the indices of the type are pairwise disjoint wi th previously 

added constructors of the same family. This side condition holds for detaggable famihes, 

since detaggability is decided by pairwise disjointness of indices. 

We achieve this space optimisation at the cost of using eager rather than lazy patterns. 

The number of constructor tests required increases by a constant factor (possibly zero if, as 

in the case of Vect, there is another index wi th disjoint patterns across all t-schemes) and 

indices may sometimes be computed where they would previously be ignored. In practice, 

we take a greedy approach to minimising the number of eager patterns required to make the 

distinction, by checking the index wi th the most disjoint constructor tags first. 

The number of constructor tests required is a factor in deciding whether to apply this 

optimisation, the balance being between speed and storage requirements. I f we are more 
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I d =^ Xx. {c,} f M 

D-El im Pi {{c^} f W ) P m Ci 
where Ci is the right hand side from the standard implementation of D-Elim. 

and { C i } : V a : . V j / : J F l . D R € [F] 
where V a : A { ^ = ^ V{a : [>1I} if a£V 

ya:A^^ =^ya:lAj otherwise 

Figure 4.25: The detagging optimisation 

| : : I =^ XA;k;a;v.{.-}{A}{k}av 

Vect-Elim A 0 ({e} {A}) P m^ m.,, m^ 
Vect-Elim A (s k) ({::} {4} { 4 av) P m^m,, --^ m.,.. k a v (Vect-Elim AkvP m^ m...) 

Figure 4.26: Detagging for Vect 

concerned with speed, we might prefer to hmit the number of constructor tests on the indices 

to one, or even not allow detagging at all to avoid the overhead of eager pattern matching. 

However, i f we are more concerned with space, we might not want a l imit on the number of 

constructor tests at all. 

As wi th many optimisations, i t is difficult to decide on a single best approach for all 

cases and i t may even be preferable to leave the maximum acceptable number of constructor 

tests as an option for the programmer. 

Properties of Detagging 

Detagging, hke forcing, satisfies the required properties of a compile-time optimisation. The 

elimination rule is respectful and well-defined, and typechecking the resulting terms in ExTT 

is equivalent to typechecking in TT. 

Theorem 4.7. The detagging implementation of D-Elim is respectful and well-defined 

Proof. These schemes are respectful for all F by the same argument as for forcing—the 

switch to eager patterns does not affect the set of variables matched from the indices, nor 

the success of matching well-typed values. Deleting the constructor in the target can only 

improve the possibility of a match, but the disjointness condition directly ensures that the 

schemes remain well-defined. • 

Theorem 4.8. Detagging satisfies Properties 1, 2 and 3. 

Proof See Theorems B.12, B.13 and B.14 in Appendix B. • 
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4.3.3 Collapsing Content Free Families 

Consider the less than or equal relation, declared and elaborated as follows: 

data where , ^ , ? • 
x<y : * leO : 0<y leSp : sx<sy 

< : N ^ N ^ * 

leO : \fy:N.<Oy 

leS : yx,y:N.<xy <{sx){sy) 

Note that we use prefix notation for < when i t is in elaborated form, and infix for the 

higher level notation. The < family describes a property of its indices and stores no other 

data. I t is not surprising therefore to find that much of its content can be deleted. The 

detagging optimisation on < (with concretely forced arguments also deleted) is given in 

figure 4.27. 

[leOl = ^ Xy. (fleO} {y}) 
lleSj =^ Xx;y;p.{^eS}{x}{y}p) 

<-El imO y ({leO} {?/}) P mieo mies meO y 
< - E l i m (s x) (s y) ({leS} {x} {y} p) P m^o TTM^S 

TOieS xyp (< -El im xypP rrMeO mes) 

Figure 4.27: Optimisation of < 

Now we are left wi th only one undeleted argument, the recursive p in leS. This argument 

serves two purposes — firstly i t is the target of the recursive call and secondly i t is passed 

to the method mies- We might think that p can also be eUded — ultimately i t can only 

by examined directly by < -E l im which, by induction, can be shown never to examine i t 

(since the target is not examined at all in the base case, and the recursive argument is 

passed as the target to each recursive call). In compile-time evaluation, however, where we 

may reduce under binders, we must at least check that the target is canonical for reduction 

to be possible. I f not, we run the risk of reducing a proof of something which cannot be 

constructed, such as 5<4! 

Compile-Time vs. R u n - T i m e Implementation 

In our Vect-Elim example, we deleted both e and its argument. We might be tempted to go 

a step further, and comment out that entire target, since the A and 0 indices tell us exactly 

what the canonical form of the target must be. 

Vect-Elim A 0 [{e} {A}] P m-.: m. 

However, this t-scheme is not respectful and breaks subject reduction thus: 

. . . ; X : Vect .4 01- Vect-Elim AOx P m^m-.: : POx 
m, : POe 
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The pattern ({e} {A\) may not test tags or extract arguments, but i t still only matches targets 

whose weak head-normal forms are constructor applications. The forcing and detagging 

optimisations are safe to use in any context, and we need to reduce under binders (that is, 

in a non-empty context) when performing the conversion checks which ensure that E P I G R A M 

programs elaborate to well typed terms. 

However, at run-time, we can employ a much more restricted notion of computation, 

reducing only in the empty context. The nature of run-time evaluation is that we produce 

only as much of a normal form as the programmer requires. While we can produce a 

strongly normalised term due to the termination property of TT, we only reduce the scope 

of a binding if i t is applied (i.e. bound) to a canonical form. 

In the run-time scenario, we can exploit the adequacy property of TT (figure 4.28) to 

gain further optimisations, not available in a general context; in the empty context, t must 

reduce to some constructor form. 

i f \- t : Ds 
then WHNF(t) = c ?for some t 

Figure 4.28: Adequacy of T T 

The adequacy property ensures that in the empty context, there is no non-canonical 

normal form to which t can reduce; the only normal forms available are canonical forms. In 

effect, we may employ weaker criteria for alternative implementations of ehmination oper­

ators in run-time execution, since such execution always takes place in the empty context. 

The respectfulness condition at run-time (figure 4.29) is the same as respectfulness, wi th 

the additional constraint that i t holds only in the empty context. 

if I - D - E l i m t : T 
and MATCHES(pi, t) =^ a 
then h D - E l i m a I Pi I = D - E l i m ? 

Figiure 4.29: The run-time respectfulness condition for t-schemes 

We also have a weaker criterion for well-definedness (figure 4.30) which takes into account 

that all values passed to a ful ly apphed function are in canonical form. 

i f f- D - E l i m t : T, where D - E l i m is fully applied 
then MATCHES(pi, ?) = ^ a for exactly one i 

Figure 4.30: The run-time well-definedness condition for t-schemes 

The adequacy property tells us that the target wi l l always match a constructor pattern 
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at run-time, hence we may safely presuppose a pattern from which no information is gained, 

as suggested above. Moreover, by applying this observation inductively, we can sometimes 

extract another, more drastic optimisation from the guarantee of adequacy at run-time — 

collapsing of content free data structures. 

4.3.4 The Collapsing Optimisation 

Let us reconsider the optimisation of < in a run-time scenario. At run-time, always reducing 

in the empty context, we never need to check that the recursive argument p is canonical 

because the adequacy property tells us that i t must be. Hence, at run-time, we no longer 

need to store the recursive argument — the entire family collapses. This optimisation is 

given in figure 4.31. 

[leOl Ay. ({leO y}) 
[leSl = ^ Xx;y-p.{^eSxyp}) 

< - E l i m 0 y {leO y} P nneo rrnes meO y 
< - E l i m (s a;) (s y) {leS x y p] P m\^o mies 

mies X y {ip}) ( < - E l i m x y {p} P mieo n îes) 

Figure 4.31: Run-time optimisation of < 

Note that ({p}) remains an argument to the mies method, although after deletion we pass 

the t r ivial canonical object; since mies can be instantiated by any function of an appropriate 

type we must take into account the possibility that i t is instantiated by a polymorphic 

function, where i t is unknown at compile-time whether an argument is collapsible or not. 

For which families can we do this run-time optimisation? 

I f we have two terms a, 6 in a family D s, and the values of o and b are determined 

entirely by s, such that there is at most one element of D s, then we say D is collapsible 

(figure 4.32). The relation < is collapsible because there is only one way of constructing any 

value in x<y for given indices x and y. 

A family D is collapsible 
i f h I , y : D s implies h x ~ y 

Figure 4.32: Collapsible families 

Again, deciding whether a family is collapsible is likely to be undecidable in general, 

but we can apply a more restricted notion which identifies collapsible families which can be 

reconstructed from their indices. We say a family is concretely collapsible (figure 4.33) 

i f i t is concretely detaggable (which accounts for reconstructing the constructor choice from 

the indices), and for each constructor c : Vo : A. D n D -» D s, EPATS (0, s) 
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gives (a, p) — that is, all of the non-recursive arguments a appear in the set of concretely 

forceable variables. 

For a concretely detaggable family D with i constructors of the form 
Ci : Va: ^ i - D n i ^ . . . -> D nj D s 

I f for each i, EPATS (0, s) = > (o, p) then D is concretely collapsible 

Figure 4.33: Concretely collapsible families 

The general case for the collapsing optimisation is given in figure 4 .34 . The original 

D-El im, which is passed an argument in the family D, is transformed into a new version of 

D - E l i m which has that argument dropped. The motive still has the same type as in the 

standard D-E l im , but the only value which wil l be passed in the target position wil l be the 

trivial canonical value, (). 

D - E l i m p{cay} P fh 
^ m^a {{yi}) ... {{yn}) ( D - E l i m n {yi} Pm) ... ( D - E l i m r„ {t/„} P m) 

|c | Xa; y. ({c a y\) 

[ D - E l i m l =^ Xt; x; P; m. D - E l i m ^{a;} P fh 

Figiure 4 .34: The collapsing optimisation 

T h e o r e m 4.9. The collapsing implementation of D-Elim is respectful at run-time and 

well-defined at run-time. 

Proof. These schemes are well-defined at run-time (in the empty context) by the same 

argument as for detagging. They are respectful at run-time because the only possible left-

hand sides have the form I - D - E l i m s' (c o' y') P' rh', hence, by disjointness, the only possible 

match, even wi th the target deleted, is wi th the scheme for c, wi th matching substitution 

a — a'/a o P'/P o f n ' / f h , binding all the undeleted free variables on the right-hand side 

because EPATS (0, s) = > (a,p). Taking T = y'/y, we see that 

h r |cT(D-Elim p {c a ^ P m) | = D - E l i m s' (c a' y') P'm' 

hence these schemes are respectful at run-time. • 

Trade-ofFs 

For a concretely collapsible family, the constructor tag and all the non-recursive arguments 

are cheaply recoverable from the indices. "Cheaply" means that the arguments can be 

retrieved in constant time by matching on the fuUy evaluated indices, and the constructor 

tag can be determined by inspecting a (user determined) small number of the constructor 

tags on the indices. 
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There is a trade-off in all of these optimisations between storage requirements and speed. 

Even though arguments can be retrieved in constant time, for non-trivial indices — e.g. 

s(s(s(s(s(s n))))) — the cost of recovery increases, as recovering the value n in this case 

involves analysing the argument of each successor symbol. Another issue is that indices 

may also be computed as the result of a function; in a lazy evaluation setting, an effect of 

forcing here may be to compute a value which would otherwise remain unused. We have 

not yet explored the space/time trade-offs of these optimisations for such complex indices, 

in particular because the dependently typed programs we have investigated so far have not 

had such complex indices. 

The possibiUty of collapsing data structures is the main advantage of the detagging 

optimisation; detagging is a necessary step towards collapsing. In general, the space saving 

in not storing the tag of a family at run-time is small in comparison to the fact that we 

are now committed to retaining some indices in order to discriminate between i-reductions. 

Otherwise, as we wil l see with some of the optimisations in Chapter 6, we may be able 

to discard these indices. I f detagging leads to collapsing of an otherwise redundant data 

structure however, i t is beneficial. 

4.3.5 Interaction Between Optimisations 

While these optimisations work well on inductive families in isolation, we should consider how 

optimisations wil l interact when several constructors and elimination rules are transformed. 

There is one consideration in particular — earlier, I stated that the elimination rule for a 

family D was the only function allowed to examine D directly. Clearly, in the presence of 

detagging, this is no longer the case. Now, any eUmination rule is able to examine D, i f D 

forms an index of a concretely detaggable family. For example, the detagged Vect-El im rule 

has direct access to the constructors of N . 

What problems might this cause? Consider the following data structure, an association 

list which hnks a Vect of keys {B) to their values {A): 

, . A,B : -k V : Vect B n 
data — v?—. J n 

aVect A B V : * 
^here / : ^yect A B v aNil : a V e c t ^ B e aCons a i : aVect A B (b::v) 

A first look at this suggests i t might be a detaggable family; each constructor's Vect index 

is disjoint, surely? However, since Vect itself is detaggable, we can no longer discriminate 

on its constructors! The elaboration of aVect is shown in figure 4.35. 

That is, the current set of substitutions from T T to ExTT are applied immediately the 

family is elaborated. Notice that although we can not discriminate on the constructors of 

Vect, by indexing over a Vect we must also index over Vect's indices! And so, this family is 

also detaggable, by disjointness of Vect's indices. 

In general, i f constructors of a family D are indexed by disjoint constructors of a de-
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aNil : Vyl,S*:.aVect A B { e } 
aCons : V T I , B : * . V a : ^ . Vfe:5. V n : N . Vw: Vect 5 n. V/:aVect ̂  5 w. 

aVect A B {{.} {B} {n} b v) 

aVect-Elim AB 0 ({e} {B}) aNil P m^m "JaCons "^Nii 
aVect-Elim AB{sk) ({::} {S} {A:} 6 v) (aCons AB abkl) P rrhm rrhcons 

rUaCons A B ah k V I (aVect-Elim A B kvl P rrZaNii 'TJaCons) 

Figure 4.35: Elaboration of aVect 

taggable family X, D is also detaggable because the case distinction which discriminates 

between X's constructors can also be used to discriminate between D's constructors. We 

must, however, be careful to apply substitutions as we go so as not to attempt pattern 

matching on these detagged constructors. 

4.3.6 Using the Standard Implementation 

I t is also possible that we could take a more straightforward approach to implementing 

optimised elimination rules, even using the standard implementation. Recall the standard 

implementation of Vect-Elim, which marks the indices as presupposed: 

Vect-El im \A] [0] (e .4 ) P m.,., 
Vect-Elim [A] [s k\ {:: A k a v) P m-,; ^ m-.-.k av (Vect-Elim Ak v P m-,;) 

In the forcing, detagging and collapsing optimisations, we have exploited the presence of 

constructor symbols in indices to remove arguments from data structures. An alternative 

optimisation, however, would arise from the observation that the indices are never examined 

in the body of the standard implementation of D - E l i m so need not be passed to the ehmi­

nation operator at all. This would save space, in that there would not be extra references to 

the indices on the stack, but we would also expect to save time since building an apphcation 

of the elimination rule would require fewer MKAP instructions. 

In the current implementation, we prefer to use the alternative implementations gen­

erated by the forcing, detagging and collapsing optimisations, rather than the standard 

implementation, for two reasons: 

• Firstly, i f we remove arguments from the apphcation of the ehmination operator, rather 

than the application of the constructor, then there wi l l stiU be pointers to the indices 

at each level of a recursive data structure. I f on the other hand we remove arguments 

from the constructor, there are only pointers to the indices at the top level apphcation 

of the ehmination operator — these apphcations may, of course, occupy a significant 

amount of memory in a lazy implementation. 

• Secondly, as we wil l see in Chapter 6, we have further techniques for optimising ap­

plications of ehmination operators which can in many cases remove arguments to the 
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operator as well as constructor arguments. I f we make the choice too early between us­

ing the standard implementation and an alternative implementation, we wil l be denied 

these optimisations. 

Nevertheless, there are many issues to consider in optimising a program, and i t is not 

clear whether the techniques presented above are optimal in all cases. For example, building 

an application of an eliminator is more expensive than building a constructor application, 

since i t requires more steps (MKAP applies a function to only one argument, MKCON applies 

a constructor to all of its arguments, since it can assume that constructors are ful ly applied). 

Further work is required to determine how other implementation choices (for example, lazy 

versus eager evaluation) affect the optimisations. 

4.4 Compilation Scheme for ExTT 

4.4.1 Extensions to RunTT 

The language of supercombinators, RunTT, is now built from marked terms in ExTT. The 

translation into ExTT is an analysis phase and the actual erasure is applied in the l i f t ing on 

RunTT supercombinators. Marked terms, {t\, are simply omitted as part of the supercom-

binator hfting algorithm. By erasing the same arguments from constructors and patterns 

of t-schemes, we ensure that deleted arguments are matched only by deleted patterns and 

therefore both can safely be removed. 

Compiling elimination rules into RunTT is no longer so straightforward as compilation to 

a case on the target of the elimination rule. Previously, we used case analysis on the target 

to extract constructor arguments. Having elided some of these owing to their repetition, 

we need another means of retrieving their values. One way to do this is with multiple 

case expressions. However, this is potentially expensive. As a result of the well-definedness 

property of /,-schemes, i f we know which t-scheme applies, we also know the form of each 

argument to the elimination rule. As a result, we would like to be able to project subterms 

out of these arguments without checking their form. We would like to do only enough case 

analysis to establish which 4-scheme applies. We also now introduce a "match anything" 

pattern for case analysis which is useful in the compilation of t-schemes for detagged families. 

To avoid case analysis where we already know the form of an argument, I introduce 

a rgument p r o j e c t i o n into RunTT. Where a term t in RunTT is known to have the form 

c(eo, e i , . . . Cn), t\i projects the i t h argument out of the tuple i f i < n, and is undefined 

otherwise. However, we know that i < n must hold, so there is no run-time check. 

As a result of the detagging optimisation, we would also like to delete constructor tags 

from the RunTT representation. As well as tagged constructor applications, c(e), I introduce 

untagged constructor applications, (e). case analysis on such forms is not allowed; instead, 

argument projection is used to retrieve arguments. 

The syntax of this extended RunTT is given in figure 4 .36 . 
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s : := Xa : e. e (supercombinator) 
e ::= x (bound variable) / (global name) 

1 \fx:e.e (function space) (type of types) 
1 e e (function application) c(e) (constructor application) 
1 let a : e 1—> e in e (let binding) D(e) (type constructor application) 
1 e\i (argument projection) (e) (untagged constructor) 
1 case e of alt (case expression) 

alt ::= c (x) e (case alternative) 
1 - ^ e (match anything) 

Figure 4.36: RunTT with extensions 

4.4.2 Compiling Elimination Rules 

Translating into the supercombinator representation from ExTT is relatively straightforward, 

using the algorithm presented in Chapter 3 with t h l additional requirement that marked 

terms be removed. Translation of pattern matching i-schemes is less straightforward. The 

main problem arises where a family has been detagged since we are no longer guaranteed that 

there is an argument for which all patterns have disjoint constructor tags. Another problem 

is that case analysis on the target does not necessarily retrieve all of the arguments which 

wiU be passed to the method, as some may have been removed by the forcing optimisation. 

Pattern matching i-schemes can be compiled into case expressions using Augustsson's 

pattern matching compiler algorithm [Aug85, Pey87] wi th some modifications and simplifi­

cations. The priority is to establish which t-scheme apphes wi th as few case expressions as 

possible. Well-definedness at run-time of elimination rules tells us that exactly one of the 

cases must match; there is no error case to handle. This property makes optimisation of 

pattern matching much easier, compared wi th other optimisations of the pattern matching 

compiler algorithm — optimisations such as those described in [SROO, FMOl] make use of 

exhaustiveness information (i.e. checking that the patterns cover all cases) or reordering 

constructor tests. In particular, the algorithm we present here tests each constructor only 

once. 

The pattern matching compiler is defined by the I compilation scheme. This scheme 

takes two arguments; firstly, a sequence of names of the i arguments to the elimination 

rule, e i . . . fii. The second argument is a hst of patterns and their reductions, each one 

corresponding to a case of the eUmination rule. 

Pn---Pii xi 

I{ei ...Ci, ) 

This scheme compiles a respectful and well defined (non-overlapping and no error case 

exactly one set of patterns matches in all cases) set of t-schemes of the form 
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I Pu ••• Pli xi 

f Pnl • • • Pni Xn 

where the arguments are given unique names e i . . . ê . 

There are some preliminaries to consider before applying this method. Firstly, we must 

consider how to project arguments from constructors. For each pattern argument to each 

t-scheme, pij, we extract its variable set v (that is, the names which appear as pattern 

variables in pij), together with, for each variable v in that variable set, a term t which 

projects the value of that variable from the argument ej matched by the pattern pij. Then 

the right hand side of the i-scheme Xi is modified by substituting the term t for the variable 

V. We define the meta-operation PROJECT, which computes the mappings from ExTT names 

to RunTT terms, as in figure 4.37. 

Given a pattern p, and the name of the argument which matches on that pattern n, 

PROJECT generates a fist of pairs {x, t), where a; is a pattern variable and t is the RunTT 

term which projects the value of x from the argument matched by the pattern. The argument 

/ is a function passed to recursive calls of PROJECT; when looking for names in a nested 

pattern, / is the RunTT term which retrieves the term matched by the nested pattern. 

PROJARGS is a helper operation which retrieves names from nested patterns — i is the 

index of the argument being examined. For each (unmarked) argument x, PROJARGS calls 

PROJECT on x w i th an argument projection composed with / . 

PROJECT(n, x) PROJECT' (n , (Aa =^ a),x) 

P R O J E C T ' ( n , / , X ) = > [ ( i , / n ) ] 
P R O J E C T ' ( n , / , ( c e ) ) P R O J A R G S ( n , / , 0 , e) 
P R O J E C T ' ( n , / , ({c} e)) = > P R O J A R G S ( n , / , 0 , e) 
P R O J E C T ' ( n , / , [x] ) =^[] 

PROJARGS(n,/,i, 0 ) =S>Q 
PROJARGS(n, / , i, {{x} : xs)) PROJARGS n f i xs 
PROJARGS(n,/, i, {x : xs) ) 

= > PROJECT'(n, ((Aa = > (a!i)) o/),x)-H-l-PROJARGs(n,/, ( i -M),a;s) 

Figure 4.37: The PROJECT operation 

For example, i f we have a pattern ({::} {A\ {fc} a v) for an argument x, we can extract 

RunTT terms to retrieve a and v from x wi th PROJECT(2;, ({::} {̂ 4} {/:} a v)). Evaluation of 

this proceeds as follows: 
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PROJECT(a;, ({::} {̂ 4} {k} a v)) ^ PROJECT'(a;, (Ax =^ x), ({::} {A} {k} a v)) 

=4> PROJARGS(a;, (Ax =^ x),0,{{A} {k} av)) 

^ PROJARGS(X, (Ax =^ x),0,{{k} a v)) 

^ PROJARGS(x, (Ax =^ x),Q,{av)) 

^ PROJECT' (x , (Aa = ^ a!0) a) 

-H-PROJARGS(x, (Ax x ) , l , ( t ; ) ) 

=> [ (a ,x!0)]-H-PROJARGS(x, (Ax =^ x),l,{v)) 

[ (a ,x!0) ] -H-PROJECT' (x , (Aa =^ a\l),v) 

=> [ (a ,x!0) , (« ,x! l ) ] 

Arguments may be nested inside constructors, such as the n in s (s n). In this case, the 

argument is projected out as follows: 

PROJECT(x , s ( sn ) ) [(n, (x!0)!0)] 

For each pattern pij, a mapping from variable names matched to the RunTT terms which 

retrieve those variables is given by an application of PROJECT(ej , (Ax = > x) pij). Then 

these terms are substituted in the right hand side of the pattern for the argument names. 

For example, the N - E l i m rule 

N - E l i m 0 P rrio ffls mo 

N - E l i m (sk) Pmorrh nhk ( N - E l i m k P monh) 

is compiled to a RunTT case expression by invoking the I compilation scheme as follows: 

N - E l i m ^ I ( ( n , P , mo, r r ^ ) , | ° ' ' " ^ " ^ ] ) 
K\ , , ' ^ / ' | ( s f c ) p ^ ^ ^ ms (n!0) ( N - E l i m (n!0) P mo 771,) j' 

A second consideration is how to optimise the rule so that the minimum number of case 

analyses are required. To achieve this, we reorder the e such that the argument where 

most patterns are disjoint (i.e., the greatest number of disjoint constructors) is examined 

first. This is a greedy approach, the intention being that one case analysis wi l l suffice 

in the maximum possible cases. [SROO] describes heuristics for minimising the number of 

constructor tests, but for ehmination rules for non-detaggable families (and even many for 

detaggable famihes), there wi l l be an argument where all patterns are disjoint. 

The I compilation scheme, summarised in figure 4 .38 , proceeds by examining the leftmost 

patterns pu • • - Pin, which represent the patterns which the first argument ei could match. 

I t is a recursive function, e decreasing in length on each recursive call, which shows its 

termination. There are several cases to consider. 

Case 1 : n = l ; o n l y one possible p a t t e r n 

In this case, no further checking need be done, as we have eUminated aU but one case. Since 

the elimination rule is total, this must be the case which applies. No case is needed, as the 

variables in the patterns are extracted by argument projection in x i . 
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Case 1 Only one possible t-scheme 

J(ei ...ei, {pn . . . p i i ^ X i } ) = > Xi 

Case 2 Leftmost patterns are all disjoint 

!

(ci ai) pi2 . . . pu xi 
}•) = ^ case ei of 

(C„ a^)pn2---Pni ^ Xn (ci Si) ^ xi 

(c„ On) 'Xn 

Case 3 No pair of leftmost patterns are disjoint 

Pll---Pli Xi 
I ( e i . . . e m , { .. 0 I{e2...en, 

Pnl---Pni Xi 

Pl2--- Pu Xi 

,Pn2- • - Pni Xi 

Case 4 A t least one pair of leftmost patterns is disjoint 

Take P to be the smallest set such that pn G P i f pn is in constructor form. Then: 

{ Pii...pii xi 1 
>) ^ 

PnX---Pni ^ Xn J 

case ei of 

p ^ I ( e , . . . e „ , { P ; = - - ^ - - } ) 

[where Vp e P, Vfc. p t i ^ P ox {pki = c(e) and p = c(e')] 

. ^ I ( e 2 . . . e „ , { ^ ' = - - - ^ ' = ' } ) 

[where 'ik.pki ^ P] 

Figure 4.38: X compilation scheme 

J ( e i . . . e i , | p i i . . . p H 2:1 | ) Xl 

Case 2: pu .. .pni are a l l d i s jo in t pa t te rns 

In this case, distinction can be made on the first argument alone. I f V i 7̂  j.DiSJOiNT(pii, p j i ) , 

Pii is constructor headed for all i, such that Cj Oj = pil and the RunTT case expression is 

built as follows: 

I{ei...ei,< 

(ci a i )p i2 . . .p i i Xl 

[{Cn On) Pn2 • • • Pni Xn J 
\ ) = ^ case ei of 

(ci ai) ^ Xl 

(c„ On) 
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Case 3: N o pa i r i n pn .. .pni is headed by d i s jo in t constructors 

In this case, no distinction can be made on this argument, so we move on. I f a term is 

presupposed, this means we don't even examine i t because we already know what i t is; 

examining i t in the compiled code would break our specification of M A T C H . The RunTT 

expression is built as follows: 

I ( e i ...Cm, I 

Pu.-.pu Xi 

IPnl •••Pni 

) 1(62 •••en,{ 

Pl2 - • • Pli Xi 

LPn2- -Pm Xi ) 

) 

In practice, the optimisation of reordering the e in descending order of the number of 

disjoint constructor patterns wi l l ensure that this case never apphes. 

Case 4: T w o or more o f pu .. .p„ i are headed by d i s jo in t constructors 

This is the most complex case, and is a generalisation of case 2. Here, some t-schemes can 

be ehminated, but no definite choice can be made. We make recursive calls to 1, leaving out 

the schemes which cannot match. We take P to be the smallest set of patterns such that 

Pii £ P if Pii = c(e) for some c and e. 

Then the RunTT case expression is built by: 

J(ei ...ei,{ 
Pi i • • • Pli 

IPnl 

Xi 

Xn 

case ei of 

p I{e2...en: 

-•^ J{e2...en, 

\Pk2 •• • Pki Xi 

[where Vp e P, Mk. pki ^ P ox {pki = c(e) and p = c(e'))] 

Pfe2 • • • Pki Xl 
>) 

[where yk.pki ^ P] 

That is to say, i f ei matches a pattern p, we can rule out the cases where the pattern for 

ei is headed by a different constructor, but we cannot rule out the cases where the pattern 

for ei is a variable. 

I f there is only one pattern variable ei left to consider, all patterns must be disjoint, 

or an error has occurred. I f a family is detaggable, i t is on the understanding that case 

distinction can be made on the indices. Otherwise, case distinction can always be made on 

the target. 

There is a question remaining of how to compile a rule w i th no t-schemes, such as with 

the ehmination rule for the empty type: 
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data p- j where 
False : * 

False-Elim : V i : False. VP: F a l s e P a: 

This type has no constructors, and hence the elimination rule has no t-schemes. Of 

course, in practice, this rule can never be executed, since there is no canonical form of False 

on which to apply i t . I wi l l postpone discussion of an effective way to handle this problem 

until section 6.2.4 — for the moment, i t suffices to say that False-Elim can not reduce. 

Example — Vect 

Recall the detagged Vect elimination rule: 

Vect-Elim ^ 0 ({e} {A}) Pmem-,. m^ 
Vect-Elim A (s k) ({::} {A\ {A;} a v) P m^ m.,-, m-,., k a v (Vect-Elim A k v P m-,.) 

The first step in compihng this to pattern matching form is to give each argument a 

unique name. For readability, let us take A, n, x, P, m^ and m-,-, (rather than e i . . . ee). 

Then for each t-scheme, we compute the terms required to extract pattern variables from 

the left hand side with PROJECT. This is t r ivial in the e case. For ::, applying PROJECT to 

each argument yields: 

PROJECT (4 , ^ ) =^ \{A,A)\ 

PROJECT(n, (s fc)) =^ [{k,n\Q)] 

PROJECT(X, ({::} {A} {k} a v)) = > [(a , i !0) , {v,x\l)\ 

P R O J E C T ( P , P ) = ^ \{P,P)\ 

PROJECT(m£, m^) = ^ [(me, m^)] 

PROJECT(m::, rri::) = > [(m::,m::)] 

Then we get a RunTT term for Vect-Elim by applying I as follows: 

Vect-El im i-> XA\ n; x; P; m^; m-,;. 
'0 A {{e^ {A}) P m- ^ 

\ (n!0) (x!0) (x ! l ) 
(Vect-Elim A (n!0) ( x l l ) P m^ m-..) 

which reduces to the following case expression: 

Vect-El im XA; n; x; P; m^; m.,.,. 
case n of 

0 

(s(fc)) (n!0) (x!0) ( x l l ) 

(Vect-Elim A (n!0) ( x l l ) P m :̂) 

A curious effect of this compilation algorithm as that, although the case expression binds 

the k argument of s, i t is not used in the right hand side; rather, n!0 is used to get k. This 

happens because we do not know before I compilation which names can be bound by case 
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expressions and which we need to get by argument projection. I t is a simple transformation 
to reinstate names which are bound by case afterwards, by reversing the mapping generated 
by the PROJECT operation. In this case, we have sk, and PROJECT(n, (sfc)) = 4 > [{k, (n!0))]; 
reversing the mapping from k to (n!0) gives: 

Vect-Elim >-^ XA; n; x; P; 171^; m-,;. 

case n of 

0 me 
{s{k)) m,: A; (x!0) (x ! l ) 

(Vect-Elim A k (x! l ) P m....) 

However, we do not do this immediately after compilation of the patterns — to do so is 
a premature optimisation ̂  Instead we wait until other optimisations have been appUed to 
the RunTT term. 

Example — between 

A more complex example results from the between relation over three numbers m, n, p, 
which expresses the property that m < n < p: 

data m, n,p 
between mnp : * 

where 6 : between 0 0 m 
^^^^^^ bO : between 0 0 0 bOOs 6 : between 00 (s m) 

b : between Omn 6 : between mnp 
bOss b : between 0 (s m) (s n) bsss b : between (s m) (s n) (s p) 

To show that this relation really does represent the property we want, we can prove the 

lemma m < n — > n < p ^ between mnp. This can be proved by induction over the variables 

m, n and p, then inversion over the relations. The t-schemes for between are shown in figure 

4.39. 

between-Elim 0 0 0 bO F mbo rribOOs '"boss "ibsss n%o 
between-Elim 0 0 (s m) (bOOs mb) P mbo "iboos "iboss "̂ bsss 

mboos m b (between-Elim 0 0 m 6 P mbo "̂ bOOs "iboss "ibsss) 
between-Elim 0 (s m) (s n) (bOss m n 6) P mbo TUboos "iboss Tibsss 

mboss mnb (between-Elim Omnb P mbO "iboos "iboss n%sss) 
between-Elim (s m) (s n) (s p) (bsss mnpb) P mbo mboOs "ibOss "ifasss 

TTibsss mnpb (between-Elim mnpb P mbo ?"bOOs '"boss ^bsss) 

Figure 4.39: t-schemes for between-Elim 

between is concretely detaggable, since 

y i ^ j . 3k. DlSJOiNT(pjfe, pjfe) true 

^The reason why projection is preferred is explained in section 6.2.4. 
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That is, i t is possible to estabhsh which constructor appfies purely by examining the 

indices. In addition, between is concretely collapsible. The implementation of the (run­

time) elimination rule is given by the marked-up i-schemes in figure 4.40. 

between-Elim 
between-Elim 

0 0 {bO} P rribo mboos ^boss "̂ bsss rribo 
0 (s m) {bOOs mb} P mbo mboos "̂ bOss Wbsss 

"UJOOS {{b}) (between-ElimO 0 m {b} P n%o mboos "ifaoss "ibsss) 
(s m) (s n) {bOss m n 6} P rribo m^oos TTibOss ̂ bsss 

TTibOss'm n {{b}) (between-Elim Omn{b} P mto niboos rriboss Tibsss) 
between-Elim (s m) (s n) (s p) -(bsss mnp b] P n%o "ibOOs "JbOss "̂ bsss 

TTibsss mnp {{b}) (between-EHm m n p {b} P rribo "ibOOs "ifaOss "^bsss) 

between-Elim 

0 
0 

0 

Figure 4.40: t-schemes for between-Elim after collapsing 

Applying the I compilation scheme, which repeatedly applies case 4, yields the super-

combinator definition shown in figure 4.41. Note again that since between is concretely 

collapsible, instances passed to the methods are replaced wi th the tr ivial canonical empty 

tuple, (). 

between-EUm H -> Am; n; p; P; n%o; mboos; "ibOss! n̂ bsss-
case m of 

0 case n of 
0 case p of 

0 mbo 
s{k) mboOs k {) ... 

s{k) -> mboss A; (p!0) 0 . . . 
s{k) TTibsss k (n!0) (p!0) () . . . 

Figure 4.41: Compiled t-schemes for between-Elim 

4.4.3 Extensions to the G-machine 

The extensions made to RunTT in the previous section necessitate some alterations to the 

G-machine. There are two principal changes: 

• Implementation of constructor argument projection (e!i) is possible via the CASEJUMP 

instruction, but this is inefficient since the purpose is to avoid unnecessary case analysis 

at run-time. We ought to implement this operation more efficiently. 

• Case analysis now exists only to establish which t-scheme to execute, not to project 

out arguments. We can therefore imagine a simpler alternative to CASEJUIVIP. In 

addition, since case is now not necessarily on the target of an eUmination rule, some 

cases may be impossible. RunTT includes a "match anything" case alternative, so this 

also needs to be handled. 
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N e w C o m p i l a t i o n Schemes 

To handle these additions to the language, we need to make additions to the f | - ] and 

C|-| compilation schemes, and to the heap representation of the G-machine. 

There are some alternative approaches to dealing with argument projection in the G-

machine. The effect of projecting the nth argument from a graph G could be to either push 

a new graph node onto the stack for later evaluation, PROJ n G (the lazy approach) or to 

push the graph pointed to by the nth argument of a G in canonical form onto the stack (the 

eager approach). I choose the eager approach because, in general, the projection wil l not be 

made more than twice in an /.-scheme (once as an argument to the method, and once in the 

recursive call). The overhead of constructing the graph node is too much for the laziness to 

compensate for this; and even so, an optimisation which lifts out common subexpressions 

can ensure that the projection is evaluated only once. 

Construction of untagged structures is relatively straightforward. Corresponding to 

CON t xs, there is a new graph node type: 

• TUP xs, where xs is a list of known length, which represents a detagged constructor 

as a tuple of the arguments xs. 

Two new instructions are added to the G-machine. PROJ i projects the i t h argument 

out of the (canonical) object on top of the stack, replacing the top stack value. MKTUP i 
constructs an untagged constructor from the top i stack elements. The G-machine state 

transition rules for these instructions are given in figure 4.42. 

(MKTUP i ; c,rH)...TH-i.S,G,E,D) =^ {c,n'.S, G[n'= TUP {no ... m-i)], E, D) 
(PROJ i; c, n^.S, G[no = CON t (XQ .. ),E,D) =^ {c,Xi.S,G,E,D) 

(where a is the number of arguments to the constructor) 
(PROJ i; c, no.S, G[no = TUP [xo ... Xi.. .Xa), E, D) (c, Xi.S, G, E, D) 

(where a is the number of arguments in the tuple) 

Figure 4.42: State transitions for MKTUP and PROJ 

The additions to the £\-\ compilation scheme are given in figure 4.43. Firstly, evaluating 

an argument projection e\i involves evaluation of e (to get i t into a canonical form) then 

projection of the zth argument of e wi th PROJ. We also account for evaluation of untagged 

tuples and case expressions with defaults. 

The CASEJUMP instruction has shghtly different behaviour to account for the changes 

to RunTT. I t examines the target and jumps to the appropriate label, as before, but there 

is also a default case to account for the "match anything" pattern. There is stiU no error 

case; typechecking accounts for the fact that this can't happen. 

Figure 4.44 gives the additions to the C|-] compilation scheme. For argument projection, 

note that the projection itself is evaluated eagerly; e is compiled by the £\-\ scheme to ensure 
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SleUj rn ^ Sfej r n; PROJ i; EVAL 
Slieu 62, . . . , e^)] r n Cfeij r n; C[e2l r (n + 1 ) ; . . . ; 

Cfci} r {n + i - 1); MKTUPi 
g|case e of C i (a i ) ei . . . c„{an) ^ Cn , - ^ e^es] r n =^ 

Slej r n; CASEJUMP (ci, î) (c2, k) • • • (c„, Q ke!', 
LABEL h; SPLIT m; f | e i l din + m; MOVE m + 1; DISCARD m + 1; JUMP I 

LABEL kei-, f [edefl r n; 
LABEL i 

where c!„(ajj) =4> n - j - j 
4(2;) r ( x ) 
rife = LENGTH (ttfc) 

Figure 4 .43: Extension to the £{•} scheme 

that the object of the projection is in canonical form. This scheme also includes construction 

of untagged tuples. 

C|e!i] rn f [el r n; PROJ i 
C | (ei , 62, - . . , ei)l r n =^ C | e i l r n; CIe2l r (n - f 1 ) ; . . . ; 

C|ei] r ( n + i - l ) ; M K T U P i 

Figure 4 .44: Extensions to the C|-] scheme 

4.5 Examples 

We can see the effect that the transformations described in this chapter have on programs 

by running the programs on a G-machine both wi th and without the transformations ap­

plied. There are several quantities which we may choose to measure, such as the number 

of instructions executed, memory allocations, memory usage, processor cycles used or time 

taken. The quantities we choose to measure for each run, naive and optimised, are the 

following: 

• The number of G-machine instructions executed. 

• The number of thunks (suspended computations) created. 

• The number of memory accesses (instructions which analyse a heap cell). 

• The number of cells allocated for data storage. 

We choose number of instructions executed above processor cycles or time taken because 

of the nature of the implementation of the G-machine, and the size of the examples; since the 
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examples are small and run quickly, we can get a more precise measure of the time taken this 

way. We choose thunks and cell allocations to give an idea of how much storage is required, 

which gives a picture of how well the optimisations perform as storage optimisations. 

The only optimisations applied are those presented in this chapter; there is, for example, 

no strictness analysis or inlining or any form of tail recursion transformation. This is to see 

how the forcing, detagging and collapsing optimisations work independently of any other 

analysis. Some of the results we wil l see may seem surprising, particular wi th regard to 

the number of instructions executed. This is largely due to the inefficiency of number 

representation in TT, using an unary representation of N — this problem wi l l be addressed 

in Chapter 5. The extra layer of abstraction imposed by elimination rules, particularly 

arguments unused at run-time such as the motive, also adds significant overheads which wil l 

be addressed in Chapter 6. There is also an overhead in outputting results (which we do 

by converting the result of each program to a string), a tr ivial implementation detail not 

addressed in this thesis. 

4.5.1 The Finite Sets 

The finite sets, indexed over a natural number n, are a family of types wi th n elements. 

Effectively, they are a representation of bounded numbers and are declared as follows: 

data " •• N Fin n : * 

fO : Fin (s n) fs i : Fin (s n) 
where i : Fmn 

The forcing optimisation ehdes the indices from the elaborated constructors: 

[fOl =^ An .fO{n} 

|fs] =^ An; i. fs {n} i 

After stripping the forceable arguments, the shape of the resulting type matches that of 

N — that is, the base constructor takes no arguments and the step constructor takes a single 

recursive argument. This is to be expected; Fin and N represent the same thing (natural 

numbers), but Fin also maintains an invariant representing an upper bound on the number 

which is not part of the data structure. 

An expression, Iookup(fs(fsf0))((s(s0))::(s0)::0::e), was evaluated and printed before and 

after applying the transformations. The results of evaluating and printing this expression 

are shown in figure 4.45. 

4.5.2 Comparison of Natural Numbers 

The Compare family from [MM04b] represents the result of comparing two numbers, storing 

which is the greater and by how much: 
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Program Version Instructions Thunks Memory Accesses Cells 
Naive 549 300 166 39 

Vector lookup Optimised 537 300 166 27 
Change -2.23% - - -30.76% 

Figure 4.45: Run-time costs of Fin and Vect 

data 

where 

m : n : 
Compare m n : * 

]L±3 
It y : Compare x (plus x (s y)) 

eq : Compare x x 

X 
gtx : Compare (plus 2/(s a ; ) ) 2/ 

Compare is an example of a family which is collapsible, but not concretely collapsible. 

Clearly there is only one possible element of Compare m n for each m and n, and given this 

element we can extract their difference in constant time. I f we were to collapse Compare 
we would replace this simple inspection by the recomputation of the difference each time 

the same value was used. We restrict concretely collapsible families to those where the 

recomputation of values is cheap. 

Nonetheless, by forcing. Compare need only store which index is larger and by how much: 

Iltl = 
[eql 

fetl 

Ax; y. It {x} y 
• Xx.eq {x} 

\x;y.gtx{y} 

The results of applying this optimisation to a program which computes the gcd of two 

Ns by using view Compare are shown in figure 4.46. 

Program Version Instructions Thunks Memory Accesses Cells 
Naive 37896 18864 12293 2749 

gcd 6 3 Optimised 37486 18636 12293 2567 
Change -1.08% -1.20% - -6.62% 

Figure 4.46: Run-time costs of gcd, written by view Compare 

For reference, the gcd program is presented in figure 4.47. A view plusrec is defined to 

give recursion on numbers which are shown to be smaller by their presence as an argument 

to plus. The "?" used as an argument to plusRec indicates that the typechecker is expected 

to work out what this argument should be — i t is often the case in writing dependently 

typed progi-ams (particularly those which express proofs) that the typechecker can work out 

what an argument should be, purely from its type. 
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data " : N ^ u ^ . ^ R • Va, 6: N. (n = s(plus a 6)) ^ PlusRec b 
PlusRecn plusReci? : PlusRec n 

let 

N R : Va, 6:N.Veg:n = s (plus a &). PlusRec 6 
a,b : N eq' : sn — s (plus a n) 

plusrecs n R a b eq' : PlusRec b 
plusrecs n R a b eq' <= case eq' 
plusrecs (plus ab) R a b eq' <= case a 
plusrecs b R 0 b refl i-> plusRec R 
plusrecs (s (plus a b)) R {s a) b refl R a b refl 

let plusrec n : PlusRec n 
plusrec n <= elim n 
plusrec 0 plusRec? 

plusrec (s k) H-> plusRec (plusrecs k (Aa, b:N. \eq:k = s (plus a b). ?)) 

let • ^ gcd mn : N 
gcd m n view plusrec m view plusrec n 

<= compcu-e m n 
gcd re (plus a; (sy)) <= case x 
gcd 0 (sy) s j / 
gcd (s x) (plus (s x) (s y)) ^ gcd (s x) (s y) 

gcd X X H-» X 

gcd (plus y (s x)) y <= case y 
gcd (sx) 0 i - » sx 
gcd (plus (s y) (s x)) (s y) (-* gcd (s y) (s x) 

Figure 4.47: Computing the greatest common divisor of two integers 

4.5.3 Domain Predicates 

In [BC03], Bove and Capretta use domain predicates to prove termination of general re­

cursive functions, an example of which we have already seen in section 2.3.4. Domain 

predicates are inductive famiUes which express the termination criteria for each possible 

input to a function. 

The quicksort function terminates on the input nil, and terminates on the input consxxs 

if i t terminates on the inputs filter ( < x) xs and filter (> x) xs. This is expressed by the 

qsAcc predicate; this gives the termination criteria for each input cons x xs and nil: 

data ^ •• ListN 
qsAcc / : • 

where qsNil : qsAcc nil 

qsl : qsAcc (filter ( < x) xs) qsr : qsAcc (filter ( > x) xs) 
qsCons qsl qsr : qsAcc (cons x xs) 
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The main part of quicksort is defined by induction over this predicate; the details of 

the termination proof he in converting a hst to an instance of the domain predicate. A naive 

implementation of this method would need to store the predicate, since quicksort is, in 

their method, implemented by induction over i t . However, qsAcc is concretely collapsible, 

hence i t need not be stored at run-time: 

IqsNil] = ^ {qsNil} 
|qsCons| = > \x; xs; qsl; qsr. {qsCons x xs qsl qsr} 

In fact the optimisation replaces computation over qsAcc by computation over its indices, 

restoring the intended operational semantics of the original program! 

We should expect Bove-Capretta domain predicates to be collapsible because they are 

constructed mechanically from pattern matching programs in the first place. Further, do­

main predicates generated to show termination of a function defined by non-overlapping 

patterns are concretely collapsible. 

Take a non-structurally recursive f, defined by pattern matching: 

let P | f pi ^ ei 

i Pn en 

where e, may include any number of arbitrary recursive calls to f x, for arbitrary terms 

x where all variables in x are retrievable from p by pattern matching. For the predicate to 

be concretely collapsible, the patterns p, must be non-overlapping and complete, i.e.: 

V i ^ j . 3k. DiS}OlNT{pik,Pjk) = > true 

This is the same condition which ensures that the eUmination rule for detaggable famihes is 

respectful and well-defined. 

For each of the cases pi, we have that f terminates i f all recursive calls in e, terminate. 

The domain predicate generated for f is of this form: 

data • 
TACC X : • 

r^ : fAcc f i •. • rvn : fAce ^ . n : f A c c f i . . . ? ^ : f A c c ^ 
f p i r : fAcc pi fPn ^ ^ fAcc p„ 

The fAcc predicate gives termination conditions for each of the cases of f. A case i, wi th 

patterns pi, terminates i f every recursive call made by that case terminates. The xj indices 

of the nested fAccs are the arguments to the recursive calls — any variables in these terms 

are forceable arguments, since they are retrieved from pi by pattern matching. 

Recall that a family is concretely collapsible i f i t is concretely detaggable and if, for 

each constructor, all of the non-recursive arguments are forceable. Now observe that this is 

always true for any fAcc: 
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• I t is detaggable, because the condition that the patterns pi are non-overlapping in the 

definition of f is the same as the condition for the indices of a detaggable family. Since 

the Pi are the indices of fAcc, i t is a detaggable family. 

• A l l non-recursive arguments for each constructor (the variables appearing in xj) are 

forceable, since they are retrieved from pi by pattern matching. 

Figure 4.48 shows how the collapsing transformation affects the run-time costs of quicksort. 

Program Version Instructions Thunks Memory Accesses Cells 
Naive 175649 86600 55221 17268 

Quicksort Optimised 171264 85586 55189 13900 
Change -2.50% -1.17% -0.05% -19.50% 

Figure 4.48: Run-time costs of quicksort 

4.5.4 Non-repeating Lists 

We can use the List family to build a representation of lists in which duplicate values are 

not permitted. To do this, we build a new datatype indexed over lists and including an 

additional proof which verifies that in each non-empty Ust, the head is not an element of 

the tai l . We define the elem function, which tests whether a value is an element of a Ust as 

follows; the / argument is instantiated wi th a function to test equality between two values 

of the parameter type. This is similar to Haskell's type class system, in which, internally, 

a dictionary would be passed to elem containing the appropriate instance of the equality 

function. 

List A f : A Bool let 

elem a 
elem a 
elem a (cons x xs) f 

I 
elem a l f : Bool 

/ / <= elim I 

nil / H-> false 
f a x 

P 
true 
false 

case V 
> true 
+ elem a i s s 

The So family is a predicate which says that its argument is always true 

over Bool but only an element of So true can be instantiated: 

b : Bool 

i t is indexed 

data So 6 where oh : So true 

So is trivially concretely collapsible; there is only one possible value. Now we can use the 

So family to prove that a value added to a list is not already an element of that list. The 

DList family represents lists wi th no duplicate elements, and is indexed over the list which 
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holds the actual data, as well as an equality function used for testing for presence of a value 

in the list: 

data ^ 

where 

Bool I : Listyl 
DUstAfl : * 

0 : D L i s t y l / n i l 

X : A s : DL\st A f xs p : So (not (elem x x s / ) ) 
insert x s p : DList / (consx xs) 

There are several advantages to indexing this structure over lists. Essentially, i t is a list 

but with extra preconditions; indexing over lists means that we can still use List functions 

such as elem over DLists. Indexing over List also makes DList concretely collapsible, so the 

run-time representation is simply the underlying List coupled wi th the equality function. 

The disadvantage is that the user of this type has to maintain invariant properties of the 

underlying Ust — this is important in defining DList functions, but we would prefer to 

abstract details of these invariants away from users of the type. Rather than make the user 

use the DList type directly, we use a dependent pair to expose an interface: 

DLlstTopAf S (List yl) (DList y l / ) 

The collapsing optimisation yields the following substitutions for constructors of DList: 

101 =^ \A-J;l.{^{A}if}{l\ 

insert XA;f;x;xs;s;p. {insert} {A} {/} {x} {xs} {s} {p} 

The run-time costs of a function over a DList are shown in figure 4.49. This function 

takes a DList of Ns and totals all numbers in that DList. 

Program Version Instructions Thunks Memory Accesses Cells 
Naive 69612 28218 30695 2494 

TotalUng a DList Optimised 66333 27278 29774 1622 
Change -4.71% -3.33% -3.00% -34.96% 

Figure 4.49: Run-time costs of adding values in a DList 

4.5.5 Simply Typed A-calculus 

We define the simply typed A-calculus in a similar fashion to [MM04b], making extensive 

use of inductive families to specify invariants on the data structures. We begin with STy, 

an unindexed type representing simple monomorphic types wi th a base type and function 

spaces: 

data STy : • where s,t : STy 
L . : STy s t : STy 
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We represent contexts by Vects of types, Env = Vect STy. The explicit size allows us to 

give a safe de Brui jn representation of variables, themselves rendered by the the Fin family. 

Hence our the family Expr, represents non-checked but well-scoped terms. 

data ^ •• N Expr n : * 

^^^^^ i : Fmn S : STy t : Exprsn / , s : Exprn 
eVar i : Exprn eLam S t : Expr n eApp/s : Exprn 

Clearly n is forceable for each of these constructors, by its appearance as a variable in 

the index of each constructor. 

In order to give types to variables, we introduce the Var relation, representing member­

ship of a context. Var G i T states that the i t h member of the context G has type T, and 

is concretely collapsible. 

data ^ • ^ • "̂̂ y Var G I T : * 

where V : Var G 2 r 
stop : Var(5'::G)f0 5 pop u : Var(5'::G) (fs i) T 

Finally, we have a type of well typed terms. This is indexed over a context, the raw 

term i t arises from and its type. Tliis gives us a particularly safe representation — i t is not 

possible to write a typechecker which gives rise to the wrong well typed term. This indexing 

also enables us to synchronise terms safely wi th value environments during evaluation in the 

style of Augustsson and Carlsson [ A C 9 9 ] . 

data g : Env n e : Expr n T : STy 
Term G e T : * 

where v : V^r G i T b : Term (g::G) e T 
var V : Term G (eVar i) T lam 6 : Term G (eLam S e) {S ^ T) 

f : Term G fe {S ^ T) a : Term G ae S 
app / a : Term G (eApp/e ae) T 

A naive implementation of Term gives rise to a horrifying amount of dupHcation. For­

tunately, many of the arguments are forceable and thanks to the indexing over raw terms, 

Term is also detaggable. After these optimisations and the collapsing of Var, this is all that 

remains: 

Ivarl =^ \n;G;i;T-v.{vBr}{n}{G^{{}{J}{v} 

llaml =^ An; G; 5; e; T; 6. {lam} H {G} {5} {e} { 7 ] 6 

[appl = ^ An; G;/e; 5; T ; / ; ae; a. {app} {n} {G} {fe} S {1} f {ae} a 

The only non-recursive arguments which survive are the domain types of appUcations. 

Typechecking thus consists of ensuring that these can be determined. 

The run-time costs of running the typechecker on a simple term, applying the identity 

function to an element of base type, are shown in figure 4 .50 . 
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Program Version Instructions Thunks Memory Accesses CeUs 
Naive 23232 13746 6910 1620 

Typechecking Optimised 20891 11820 6722 1136 
{Xx : L. X ) L Change -10.08% -14.01% -2.72% -29.88% 

Figure 4.50: Run-time costs of typechecking (Aa; : L. x) L 

4.5.6 Results summary 

Program Version Instructions Thunks Memory Accesses Cells 
Naive 549 300 166 39 

Vector lookup Optimised 537 300 166 27 
Change -2.23% - - -30.76% 
Naive 37896 18864 12293 2749 

gcd6 3 Optimised 37486 18636 12293 2567 
Change -1.08% -1.20% - -6.62% 
Naive 175649 86600 55221 17268 

Quicksort Optimised 171264 85586 55189 13900 
Change -2.50% -1.17% -0.05% -19.50% 
Naive 69612 28218 30695 2494 

TotaUing a DList Optimised 66333 27278 29774 1622 
Change -4.71% -3.33% -3.00% -34.96% 
Naive 23232 13746 6910 1620 

Typechecking Optimised 20891 11820 6722 1136 
{Xx : L . x)i Change -10.08% -14.01% -2.72% -29.88% 

Figure 4.51: Results of marking optimisation 

The results are summarised in figure 4.51. In each case there is a significant reduc­

tion in the number of cell allocations made on the heap (this being where data is stored). 

Correspondingly, there is a reduction in the number of instructions executed; this is not 

surprising, since fewer heap nodes need to be created. The transformations are intended as 

storage optimisations and are appUed here with some success — the number of memory ac­

cesses, however, remains largely the same. This is not surprising, because the optimisations 

are intended to avoid duplication of data rather than to remove data outright. I t is however 

also good to see that a result of the space optimisation is also a shght reduction in the 

number of overall instructions executed. I t would be surprising to see anything other than 

a reduction in space, given the nature of the transformations; each transformation removes 

subterms rather than rearranging subterms so i t is almost certain that we should see a saving 

somewhere. Nevertheless, these results show that, at least for these simple examples, these 

optimisations are not at the expense of time. 

Since this is an experimental implementation, we do not necessarily get an accurate 

picture of run-time just from the number of instructions executed; in particular, some in-
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structions are more expensive to execute than others. We can, however, see from the nature 

of the transformations that in general they remove instructions, rather than replacing sev­

eral cheap instructions wi th one expensive one. i.e., the transformations prune ExTT terms, 

in that they simply remove constructor arguments. Hence in the G-code, there are fewer 

PUSH instructions, and MKCON builds smaller data structures. The only way in which 

these transformations can cause performance to get worse (in terms of time, using a lazy 

evaluation strategy) is i f they cause an index to be evaluated which otherwise would not be 

- this would happen i f the index is needed for some other computation (i.e. PROJ needs to 

be evaluated) or an index is used for discrimination. However, in general, we choose indices 

because their values are related to the family's values and so construction of the family is 

closely related to computation of the index, hence this problem is unlikely to arise. Also, 

Ennals notes in [EPOS, EnnOS] that most values are eventually evaluated to normal form, 

so there is rarely a penalty in "speculatively" evaluating a value. 

These results are obtained by applying the forcing, detagging and collapsing optimisa­

tions in isolation, and therefore do not present a ful l picture of the run-time costs of E P I G R A M 

programs. We should also consider that these programs are all run to completion; in many 

situations, particularly with lazy evaluation, we may expect production and consumption of 

data to be interleaved. In future work, when there is a significant body of E P I G R A M code to 

experiment with, i t wi l l be interesting to investigate how other optimisations interact wi th 

the optimisations presented here. In particular, Jones' root optimisation [Jon94], which 

takes advantage of arguments which do not change in recursive calls, may have a beneficial 

effect on the implementation of elimination rules. Serious G-machine implementations also 

do some re-ordering of arguments; this kind of technique may also improve the effect of the 

root optimisation. 

Dependent types present us wi th another approach to reasoning about optimisations; 

in future work, we may wish to model potential optimisations by creating a representation 

of ExTT code in E P I G R A M itself, indexed over its cost, similar to Santos' cost semantics 

[San95]. Using such an approach, we could predict the cost of the original and transformed 

code, and compare the prediction wi th actual results. 

4.6 A larger example — A well-typed interpreter 
Some of the advantages of Cayenne [Aug98] are demonstrated by Augustsson and Carlsson's 

well-typed interpreter [AC99]. The interpreter they implement has the following features: 

• I t implements addition of integers, boolean comparisons, A-abstraction and function 

apphcation, returning an element of a Cayenne type. 

• The return type depends on the program being interpreted. For example, the return 

type of an addition operation is an integer, but the return type of a comparison is a 

boolean. In a simply typed language, this would be achieved through a tagged union, 
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with a tag indicating the return type. Augustsson and Carlsson demonstrate that the 

overhead of the tag is unnecessary when using dependent types. 

• Only well-typed expressions can be interpreted, achieved through the using of a well-

typing predicate passed to the interpreter. 

• Type dependency is also used to verify the synchronisation between type environments 

(that is, the types passed to a A-abstraction) and value environments (the values 

applied to a A-abstraction). If , for example, the first element in the type environment 

is N , the first element of the value environment can only be an element of N . 

In this section, I implement the same program using inductive families to represent well-

typedness (removing the need for a well-typing predicate) and synchronisation of type and 

value environments. I also show how the marking optimisations of this chapter lead to an 

efficient RunTT implementation. 

4.6.1 The language 

The language to be interpreted is a simply typed A-calculus with integers, booleans, addition 

and compaxison. I wi l l refer to this language as AAC- Its syntax is shown in figure 4.52 

and its typing rules in figure 4.53. This language augments Augustsson and Carlsson's 

implementation wi th a primitive recursion operator for natural numbers, primrec. 

e : := Aa : s. e A-abstraction ei 62 application 
1 ^ bound variable ei + 62 addition 
1 ei < 62 less than or equal 61 and 62 boolean and 
1 n number b boolean value 
1 primrec ei 62 63 primitive recursion 

Figure 4.52: The interpreter language, AAC 

F h n : N r\-b : Bool 
r \- ei : s t F l - e 2 : s F, a : s h e : t 

F h 61 62 : t r h Aa : s. 6 : s t 

F h ei : N F h e, : N F h ei : N F h e, : N 
F 1- ei - f 62 : N F h ei < 62 : Bool 

F 1- ei : Bool F h ei : Bool 
F h 61 and 62 : Bool T,a : t\- a : t 

F h x : N z : A s : A^ A 
F h primrec x z s : A 

Figure 4.53: Typing rules for AAC 
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4.6.2 Representation 

This language can be represented as an inductive family wliich, by indexing over the type 

environment and the type of an expression, ensures that only well-typed expressions can be 

built. 

Since the value returned by the interpreter is a type in the implementation language, 

we implement type environments as a vector of types. As with the simply typed A-calculus 

example of section 4.5.5, we represent type environments as vectors of types, and membership 

of a type environment as a relation (figure 4.54). 

let 

data 

where 

n : N Env; Vect * n Env n : * 

G : Env n t : Fin n t : * 
War Git : * 

VarGit 
stop : Var(s::G)fOs pop w : Var (s::G) (fs i ) t 

Figure 4.54: Type environments 

The declaration of the family representing AAC is as shown in figure 4.55. There is a clear 

resemblance between this declaration and the typing rules in figure 4.53. There is no need 

for a well-typing predicate; indexing over the type means that if a term can be built at all 

i t must be well typed. 

^ Expr G A • * where 
: 

k : N b : Bool 
enat k : Expr G N ebool b : Expr G Bool 

/ : Expr G{s^ t) a : Expr G s e : Expr (s::G) t 
eapp/ o : Expr G t elam e : Expr G (s —> <) 

a, b : Expr G N a, b : Expr G N 
eadd a b : ExprGN ele a 6 : Expr G Bool 

a, b : Expr G Bool V : Mar Git 
eand a b : Expr G Bool evar v : Expr G t 

X : ExprGN z : Expr G A s : Expr G {N-> A ^ A) 
eprimrec x z s : Expr G A 

Figure 4.55: Interpreter type declaration 

The interpreter has a value environment in which to look up the values of variables. 

Since variables in the environment may have different types, using a Vect is not appropriate. 

Instead, we synchronise i t wi th the type environment; each value in the value environment 

gets its type from the corresponding entry in the type environment. The declaration of the 
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value environment is given in figure 4.56, along wi th a lookup function. 

data Env: 

let 

ValEnv G 

V : Var G i r 

where 

ve 

empty : ValEnv e 

t : T r : ValEnv G 
extend t r : ValEnv ( r : : r ) 

ValEnv G 
envLookup v ve : T 

envLookup v ve <= elim v 
envLookup stop (extend t r) \-^ t 
envLookup (pop v) (extend t r) envLookup v r 

Figure 4.56: Value environments 

Note, in envLookup, that i t is only possible to look up values in a non-empty environ­
ment. This is ensured by the type of v, which is indexed over i : Fin n, making i and n 
implicit arguments to envLookup. Since i cannot take an index of zero, the ValEnv cannot 
be indexed over a non-empty type environment. The type of envLookup ensures that the 
value we retrieve from the value environment wi l l have the type given by the corresponding 
entry in the type environment. 

Remark — Universes 

In the interpreter, we represent type environments as a vector of There is a difficulty here 
with universe levels, however, as we do not have cumulativity; here we use Vect to contain 
elements of type •o (i e., the parameter type is itself of type * i ) , whereas earlier we have 
used Vect to contain elements of some type in •o- W i t h the type theory as i t stands, we 
can only do this wi th two separate declarations of Vect, at different universe levels, which 
is at best inconvenient — i t would be preferable for Vect to allow element types at all levels 
of the universe hierarchy. In this example, we assume that this is the only use of Vect and 
allow i t to contain elements of •o- Nevertheless, the problem of how to deal wi th universe 
hierarchies must ultimately be addressed. 

A possible solution is to use Tarski style universes [ML85], as discussed in [Luo94] and 
implemented in Plastic [CLOl]. However, such decisions about the representation of uni­
verses do not affect the optimisations presented in this thesis, and so we wi l l not discuss 
them further here. 

4.6.3 The interpreter 

The implementation of the interpreter for AAC is shown in figure 4.57 — this program 
can also be viewed as a proof that evaluation of expressions in AAC terminates, since the 
implementation is in a strongly normalising language, primrec is a helper function which 
implements the primitive recursion over N . 
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interp itself is written by structural recursion over the input expression x. I t returns a 

semantic representation, as an E P I G R A M term, of the input expression. So, for example, the 

interpretation of a A-abstraction in AAC (elam) is an E P I G R A M function which implements 

that A-abstraction. Interpretation of an application then simply applies the function to the 

interpretation of its argument. Note that in the case for elam, we use the implicit argument 

s to estabhsh the input type of the function. This approach is similar to normalisation by 

evaluation (see Appendix C ) in that we construct a semantic representation of the term to 

be interpreted, but there is no reification back to the object language here. 

let interp x ve : T 
interp X ve <= elim X 
interp (enat k) ve H-» k 
interp (ebool b) ve ^ b 
interp (eapp/ a) ve 1—> (interp / ve) (interp a ve) 
interp (elanis e ) ve i-> A a : s. interp e (extend a ve) 
interp (eadd a 6) ve 1—> plus (interp a ve) (interp b ve) 
interp (ele a b) ve 1—+ le (interp a ve) (interp b ve) 
interp (eand a b) ve i - » and (interp a ve) (interp b ve) 
interp (evar v) ve h-i envLookup v ve 
interp (eprimrec x z s) ve I—> primrec (interp x ve) (interp z 

let N N 
primrec n z : s : A 

primrec n z s <s= elim n 
primrec 0 z s ^ z 
primrec (%k) z s ^ sk (primrec k z s) 

Figure 4.57: The interpreter 

The plus function which implements the eadd operation is defined elsewhere; the boolean 

operations le and and have straightforward implementations (figure 4.58). 

let 

let 

le n m : Bool 

L 2 L Bool 
and X y : Bool 

m 
m 
m 
0 

le n 
le 0 
le (s n) 
le (s n) 
le (s n) (s m) 

and X y < 
and true y i 
and false J/ i 

= ehm n 
-» true 
= eUm m 

false 
le n m 

case X 
* y 
» false 

Figure 4.58: Implementation of le and and 
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4.6.4 Optimisation 

We have already seen the optimisations which apply to Fin and Vect, which can also be 

apphed in this case. We also observe that Var is concretely collapsible. The transformations 

which arise by marking the forceable arguments to Expr's constructors are shown in figure 

4 .59 . 

|enat| =^ An; G; k. enat {n} {G} k 
[ebooll =^ An; G; b. ebool {n} {G} b 
[eappl =^ An; G; s; t;f; a. eapp {n} {G} s {t} f a 
|elam] An; G; s; t; e. elam {n} {G} s t e 
|eadd] =^ An; G; a; b. eadd {n} {G^ a b 
|ele] = ^ An; G; a; b. ele {n} {G\ a b 
|eand| =^ An; G; a; b. eand {n} {G} a b 
levari ^ An G; i; t; v. evar {n} {G} i {t} {v} 
|eprimrec| An; G; A; x; z; s. eprimrec {n} {G} {A} x z s 

Figure 4 .59: Optimisation of Expr 

There are several things to note about these transformations. In particular, the type 

environment which is stored at every node of an expression in a naive implementation of 

Expr is removed from the term entirely so wi l l appear only as an argument to Expr-Elim. 
We also see that some of the * arguments have not been marked, however — s and t are still 

arguments to elam, s is still an argument to eapp. These are not forceable since, as they do 

not appear in the indices of these constructors, they wi l l not appear as pattern variables in 

Expr-Elim. However, as there is no casetype construct, these arguments can never be used 

— i t is conceivable that a later optimisation can remove such arguments. 

I f we also optimise out the unusable type arguments which remain, this structure is the 

same as the one used in [ A C 9 9 ] , and the same as a structure we might consider using to 

represent terms in a simply typed language. In this example, there is no run-time storage 

overhead caused by indexing the family over several invariants. 

4.6.5 Results 

The run-time cost of the interpreter is assessed by evaluating four AAC expressions of varying 

size and complexity. First, we define two functions; plus which applies the primitive addi­

tion operator to its two arguments, and mult which applies plus recursively to implement 

multiplication. In AACI these are defined as follows: 

plus Ax. Xy.x + y 
mult >-> Ax. Xy. primrec x 0 (A^;. Xih. plus y ih) 

The four expressions we interpret are, in increasing order of complexity, 2, 2 + 3 , plus 2 3 

and mult 2 3. The run-time cost of each of these evaluations is shown in figure 4 .60 . 
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Program Version Instructions Thunks Memory Accesses CeUs 
Naive 1009 744 225 35 

2 Optimised 997 744 225 23 
Change -1.18% - - -34.29% 
Naive 9569 6876 2419 526 

2-f3 Optimised 9389 6876 2419 346 
Change -1.88% - 0 -34.22% 
Naive 31661 21120 8236 3037 

plus 2 3 Optimised 30218 20904 8104 1846 
Change -4.55% -1.02% -1.60% -39.21% 
Naive 199832 113916 54669 27766 

mult 2 3 Optimised 187473 112620 53637 16919 
Change -6.18% -1.14% -1.89% -39.07% 

Figure 4.60: Run-time costs of the interpreter 

Clearly, the biggest gain on applying the optimisation is the reduction in the number 

of cells required to store data. This is not surprising since i t is precisely the purpose of 

the forcing and detagging optimisations. In each case, the optimisation removes 35-40% of 

the allocations. A natural consequence of this is to reduce the total number of G-machine 

instructions executed — there are fewer arguments to constructors, so fewer stack operations 

required. For the larger expressions we also see a slight reduction in the number of thunks 

built — this occm-s as a result of RunTT functions which build constructor applications 

needing fewer arguments, e.g.: 

An; G; k. enat n G k optimises to Xk. enat k 

The optimised version builds fewer application nodes, hence fewer thunks. 

4.7 Summary 
We have seen in this chapter how the properties of ehmination rules lead to the optimisation 

of the data structures eliminated by those rules and the programs which elaborate in terms 

of those rules. We have defined an extended execution language for TT, which we call ExTT. 

Terms in ExTT can arise only by applying an optimising transformation for the original TT. 

In particular, we apply three optimisations based on the form of an eUmination rule: 

• The forcing optimisation arises from the observation that arguments which are re­

peated in an eUmination rule must be convertible. We only need to keep one copy of 

such arguments — given the choice between keeping the copy passed as an index to 

the elimination rule and keeping the copy stored within the data structure, we keep 

the copy passed to the eUmination rule, firstly because this appears only in the top 

level appUcation and secondly because we wiU have further opportunities to remove 

this i f i t remains unused. 
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• The detagging optimisation arises from the observation that elimination rules are well-

defined (that is, complete and non-overlapping). Hence, i f we can determine which 

i-scheme to choose based on the constructors of something other than the target, we 

need never store the constructors of the target itself. 

• The collapsing optimisation arises from the observation that evaluation at run-time is 

in the empty context and hence aU observable terms are in canonical form. I f we never 

need to examine the canonical form of an object, we need not store that object at all. 

The collapsing optimisation is only valid at run-time, which means that different trans­

formations are used for constructors and elimination rules of collapsible families depending 

on whether we are in a compile-time or run-time setting. We cannot, therefore, simply apply 

the transformation from T T to ExTT once at compile-time only — i f we want to get the ful l 

benefit of the collapsing optimisation, we have to apply a second set of transformations for 

the run-time setting. 

These are remarkably straightforward optimisations, but they only present themselves 

because we are taking inductive families seriously as data structures. The purpose of the 

forcing optimisation is largely to overcome the space penalties of adopting dependent types 

in the first place, but detagging derives new benefit from static information unavailable in 

a simply typed set£iiig. For example, in the development of a typechecker for the simply 

typed A-calculus as presented in section 4.5.5, i t is clear that there must be a link between 

the raw terms and the well-typed terms. I n a simply typed language, this is inexpressible, 

but the indexing of the well-typed terms over the raw terms not only expresses the link, but 

leads to an optimisation of the representation of well-typed terms. Collapsing, too, derives 

further benefit — we can delete accessibility arguments and equational reasoning from run­

time code not because we deem them to be proof-irrelevant, but because they actually are 
irrelevant. This allows us to build new structures on top of old structures, wi th additional 

invariants (such as the non-repeating fist example of section 4.5.4), without any overhead. 

The forcing, detagging and collapsing optimisations necessitate a more sophisticated 

compilation scheme for elimination rules than we used in Chapter 3, as we saw in sec­

tion 4.4.2. This is a modified version of Augustsson's pattern matching compiler algo­

r i thm [Aug85, Pey87]. The modifications are made to take advantage of the respectfulness 

and well-definedness of elimination rules — we only do enough case analysis to identify which 

t-scheme applies, and use constructor argument projection (x!i) to project out arguments 

where we already know (due to well-definedness) what form an object must take. 

As wi th all optimisations, there are various trade-offs to consider when applying these 

optimisations. For example, forcing is a storage optimisation, but we must consider the 

possible time penalty in reconstructing the forced arguments firom the indices, where the 

indices are sufficiently complex. W i t h detagging and collapsing, we must consider whether 

removing the tag leads to an overly complex implementation of the elimination rule, due 

to increased difficulty in discriminating between constructors. Evaluation strategy also has 
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an effect; i t is possible that these storage optimisations cause terms to be evaluated which 

would otherwise remain unused in a lazy evaluation setting. W i t h the examples we have seen 

in this chapter, i t is relatively easy to project out constructor arguments and discriminate 

on ehmination rules, since the indices on the families we have considered are not partic­

ularly complex. However, we are just beginning to learn how to write dependently typed 

programs, and i t remains to be seen whether the programs we have seen in this chapter are 

representative of dependently typed programs as a whole. 



Chapter 5 

Number Representation 

Paul Graham notes in "The Hundred Year Language" [Gra03] that in a programming lan­

guage, just as in Mathematics, the fewer axioms the better. He even asks "Could a pro­

gramming language go so far as to get rid of numbers as a fundamental data type?" The 

original core definition of Lisp as proposed by McCarthy [McC60] did not have numbers as 

primitives, after all, and this is what we have done so far wi th E P I G R A M , defining natural 

numbers just as any other inductive datatype. While this is convenient for programming 

thanks to the natural structure i t has and the elimination behaviour i t generates, i t is not 

practical for computation wi th large numbers due to space and time complexity. What 

we look for with natural numbers, and potentially with any data structure which can be 

represented in a more compact fashion, is an efficient internal representation in RunTT and 

transformation rules from the T T definition to the efficient internal representation. 

A practical programming language includes certain datatypes as primitives, from which 

the user can build more complex data structures. Such primitives typically include integer 

and real numbers, characters and strings. These primitive types can be equipped wi th 

primitive operations such as comparison, arithmetic in the case of numbers, and various 

manipulation operators in the case of strings. The choice of primitive types in a programming 

language is often based on the data which the underlying machine has a representation for, 

numbers being the obvious example. Landin considers a family of languages, IswiM [Lan66], 

parametrised over the choice of primitive types (in Landin's words, "a basic set of given 

things") with a common structure ("a way of expressing things in terms of other things") 

where the choice of primitives affects the application domain of a language. 

In E P I G R A M , however, there are no primitive types — only a "way of expressing things in 

terms of other things" — and all data structures are built by hand via inductive datatypes. 

As a consequence, the core language has no access to the machine's eflacient implementation 

of primitive types. We may define types with similar behaviour to the structures provided 

by the CPU, such as N , but wi th far worse performance, in terms of both speed and space. 

In this chapter, we wi l l consider ways to improve this situation, first considering an imple-

136 
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mentation of binary arithmetic purely in E P I G R A M , then an external implementation which 

uses the CPU's representation of numbers as the underlying representation of N . 

5.1 Representing Numbers in Type Theory 

In Chapter 3, I mentioned the inefficiency of number representation as an overhead which 

we must take into consideration in the design of a run-time system for E P I G R A M . The ad­

vantages to the programmer are that the unary structure of N gives rise to obvious recursion 

behaviour and, correspondingly, straightforward proofs of properties of functions over N and 

data structures indexed over N. These advantages are perhaps outweighed by efficiency con­

siderations. The size of the representation of a number n is proportional to n itself; compare 

this wi th a binary representation where the size is proportional to log n. Correspondingly, 

the unary nature of the structure means that arithmetic operations take time proportional 

to n whereas operations on a binary representation take time proportional to log n. 

An example of the limitations of the N representation arises in [COOl]. This work is 

primarily interested in using an external oracle to provide witnesses for applying Pockling-

ton's Criterion to show primality of large integers; this works by using a Java program to 

generate COQ tactic scripts. Caprotti and Oostdijk note that while they are able to generate 

tactic scripts for large numbers, the theorem prover is not able to process the data structures 

required to store these numbers. 

Work by Magaud and Bertot [MBOl] improves the situation within CoQ. Here, they 

present a technique for transforming data structures and their proofs into a more efficient 

representation using N as their example. This involves mapping the constructors and elim­

ination rule of N to a binary setting bin, relying on a proof of an isomorphism between N 

and bin. While clearly an improvement, this technique still relies on N as an intermediate 

structure for implementing the elimination rule. In a practical programming language we 

would like to avoid such overheads, and take advantage of the underlying machine directly. 

5.1.1 What is N used for? 

There are three main uses for natural numbers in E P I G R A M programs: 

1. The structure of a N allows i t to be used to specify size-based invariants of data 

structures; Vect is an example of this, in that adding an item to a vector corresponds 

to adding a s symbol to a N. Many properties of N and operations on i t can be proved 

inductively in order to verify properties of structures which are indexed over N . 

2. Recursion over N gives bounded iteration, corresponding to a for loop in an imperative 

language. N - E l i m n represents performing an operation n times. This is similar 

to the motivation for the Church numeral representation [Chu41] wliich represents 

appUcation of a function n times. 
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3. N and its basic operations plus and m u l t can be used as a straightforward implemen­

tation of unsigned integer arithmetic. 

The most important of these is the first; using N in this way gives us a method for 

verifying size-based properties of programs without having to execute N based programs at 

run-time (since the properties are verified once and for all at compile-time). The second 

purpose, using N - E l i m to perform an operation n times, gives a method for repetition with 

guaranteed termination (as wi th a f o r loop in an imperative language). In this case, we 

need not worry that the structure of N is of order n, because n is exactly how many times we 

want to execute an operation. I n the third case, however, using N to implement arithmetic, 

the structure of the number representation is unimportant; plus and m u l t are abstract 

operations for which the programmer is not interested in the internal representation or 

implementation. I t is unreasonable to consider N an appropriate structure where arithmetic 

is an end in itself. 

There are therefore two separate settings to consider; where the structure is important (as 

in verification of properties and bounded iteration) and where the structure is unimportant 

(as in arithmetic). These are two separate aims, and it therefore makes sense to choose two 

separate representations for each. 

5.2 The Word family 

In this section I present an implementation of binary numbers in E P I G R A M taking advantage 

of inductive famihes and views. The main aim of this representation is to provide a space 

efficient representation and efficient arithmetic operations entirely within the core language 

of E P I G R A M . 

There have been proposals for methods of representing numbers efficiently in the A-

calculus. [GolOO] chooses a representation based on a hst of bits wi th predicates for zero 

and successor and a predecessor function and defines efficient arithmetic functions. A rep­

resentation in C O Q is given by [MBOl], based on numbers of the form 0, 1, 2 x x and 

2 x x + 1. 

Many different approaches to number representation are suggested by [Knu69]. I choose 

a dichotomous representation for numbers; a number is a represented as a tree of digits, 

wi th the individual bits at the leaves. Every number, other than the base cases, has a more 

significant word and a less significant word. This representation^ has simphcity in mind. I t 

leads to a straightforward definition of the successor, addition and multiphcation functions 

since there are only two cases to deal wi th — one digit and two digit numbers. 

^originally due to James McKinna 
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5.2.1 Word n 

Word n is a family representing non-zero numbers of length 2 " digits. I also define a 

parametrised type ( • )o which adds a zero element to any type. Representing non-zero 

numbers separately, while shghtly complicating the data structure, has some advantages. 

Firstly, i t leads to a certain amount of compression; large numbers of leading zeroes are 

collapsed. Secondly, i t allows a more precise definition of the types of certain functions, 

including successor and predecessor. 

The (• )o family (figure 5 . 1 ) adds a zero element to any family; a value is either zero, or 

any value in the original family. This is the same in structure as the Maybe type in Haskell. 

data 
iT)o 

where 
0 : (r)o [t] • (T)o 

Figure 5 . 1 : Lif t ing a zero element 

Non zero words are indexed over n , such that their length is 2 " . This means that for 

n ^ 0, the number can be broken down into two halves; a more significant word and a less 

significant word. Also, they are parametrised over the digit type, D. The digit represents 

the base of the number system. Informally, a number composed of 2*^+^ digits can be any 

of the following: 

digits 
Zero 

2*= digits 2*= digits 

Zero Non Zero 

2'' digits 2* digits 
Non Zero Number 

The base case, for numbers of 2 ° digits, is clearly simply a digit: 

<— 2° digits —• 
Digit 

The E P I G R A M declaration which builds such a structure is given in figure 5.2. 

For simplicity, in what follows I wi l l take D = {1} and ehde i t , so that Word n contains a 

binary representation of numbers. There is no reason why D should not be any other base, 

including 32 bit machine integers. 

The indexing of numbers over n is crucial to this representation for two reasons in 

particular. Without i t , i t would be possible to build badly formed numbers where the left 

and right halves were of diflFerent lengths, necessitating either run-time checks on the length, 

or needless complexity in function definitions. Also, the index provides a useful structure 
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data 

where 

D 
Word D n : -k 

d : D 
Wd d : Word D 0 

w : Word D n 
WOw : W o r d £ ) ( s n ) 

w : Word D n w„ : (Word D n)o 
\N@ww, : WordZ)(sn) 

Figure 5.2: Word declaration 

for recursive calls — i t is possible to write functions wi th a base^ case (dealing with the 

single digit numbers) and a recursive case (dealing wi th the two digit numbers). Indexing 

over n means that numbers are inherently bounded by the index, unhke N which is (at least 

theoretically) unbounded. While this may be a disadvantage i f we really want to represent 

unbounded numbers, i t is in harmony with bounded machine arithmetic. 

Remark : Using (• )o to insert a zero element into Word has the unfortunate problem of 

making the recursive argument to W@ non strictly positive. While there is a simple 

transformation to get around this problem, namely using two separate families for zero and 

non-zero Words, we wil l continue using (• )o for clarity of presentation. 

5.2.2 The Split view of Word (s n ) 

I have said that this representation of numbers is dichotomous, which suggests that any 

number of length greater than one digit can be regarded as a two digit number. We might 

say that in this representation, every number has at most two digits. Dichotomous repre­

sentations have been used in the past to implement numbers of arbitrary size, such as in 

early versions of LeLisp and as possible hardware representations^. To take advantage of 

this property, I introduce a view of numbers which gives their two digits separately, spHtting 

them into a more significant word and a less significant word. To begin, I define a "glue" 

function {x\y) which appends two digits: 

w,v : (Word n)o 
— w\v: (Word s n)o w V <̂= case w 

0 V <= case V 
0 0 0 

0 H-> WOw 
V V 

Then the Split view of a number (figure 5.3) gives the more significant and less significant 

halves of that number. The covering function for this view is straightforward to define (figure 

^ "Base" being a particularly appropriate word in this context. 
'Jean Vuillemin, personal communication. 
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5.4); i t is basically the inverse of the glue function defined above. 

data w : (Word s n)o data Split w : -k 

where msw, Isw : (Word n)o where digits msw Isw : Split {msw 1 Isw) 

Figure 5.3: The Split view 

let w : (Word s Tt)o 
sp l i t w : Split w w 

0 
sp l i t 
sp l i t 
sp l i t 
sp l i t 
sp l i t W@ w V 

WOw 

case w 
> digits 0 0 

case b 
> digits 0 pw] 

» digits I w IV 

Figure 5.4: Covering function for Split 

This view gives a convenient form for pattern matching on two digit numbers. Using 

view sp l i t w for recursion over w gives a pattern containing the two "digits" of the number: 

let w : (Word s 7i)o 
/ w : SomeType f w ^ view spl i t w 

f {msw\lsw) H-> . . . 

This view is used extensively in the definition of arithmetic over Words. In particular, 

when defining functions by induction over the length of the Word, n, splitting numbers in 

this way gives us access to the recursive calls on the smaller Words. 

5.2.3 The successor function 

Since numbers are inherently bounded by their index, i t is possible for the successor function 

to overflow. What, then, is an appropriate type for successor? I represent the possibihty of 

overflow wi th the ( • )°° type (figure 5.5), which, like ( • )o, is the same in structure as the 

Maybe type in Haskell. 

data T : * where 
00 : (r)= 

t : T 
\t\ : {TY 

Figure 5.5: Overflow type 

I t would be good for the successor function to be surjective, since then i t has an inverse, 

the predecessor function. The zerolessness of Word means that i t is possible to give i t an 
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appropriate type. The definition is by induction over the index, n, where the s n case is 

defined by the Split view. Note that the index is an imphcit argument to this function; since 

recursion is on this index, I have subscripted i t in the definition (figure 5.6). Note also that 

there is a separate function, sucDig i t for implementing the base case (one digit numbers). 

w • (Word n)o 
— sue w : (Word n)^ 

s u c „ 
S U C o 
S U C s „ 

w 
w 
w 

suCsn {msw\lsw) 

• elim n 
+ sucDig i t w 
• view sp l i t w 

sue Isw 
GO 

\lsw'] 
, w : (WordO)o 
— sucDig i t «; : (Word O)'̂  

sue msw 
oo 

^ mswllsw' 

sucDig i t w 
sucDig i t 0 
sucDig i t I w I 

oo 
\msw'\0] 

case w 

oo 

Figure 5.6: The successor function 

5.2.4 Addition 

Like successor, addition on bounded numbers can overflow. The typical way to capture this 

with hardware implementations of binary arithmetic is wi th a carry flag. This is perhaps 

reminiscent of the way we were taught to add up two digit numbers in primary school, wi th 

the form shown in figure 5.7. 

a b 
+ c d 

^out e f 

Figure 5.7: General form of addition 

We begin by adding the less significant digits, and getting an intermediate carry, {z^id,!) = 
b d. Then we add the more significant digits using the intermediate carry, {zout, e) = 

a - t - z „ i j c. The carry flag is represented by the type Carry, wi th two constructors yes 

and no. The return type is a pair of the carry flag and the binary number — this is 

not a dependent pair, so we use the simpler tuple type Carry x (Word n)o rather than 

E Carry {Xz: Carry. (Word n)o). 
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W i t h the dichotomous representation, this maps nicely into a case for the base digits, and 

a recursive case. Again, recursion is on the length index of the arguments. This function 

is surjective — the base case is clearly surjective by examining all the possibilities, and 

the recursive case (figure 5.8) is surjective because i t simply glues the result of (surjective) 

recursive calls together. The base case (figure 5.9) does nothing more than tabulate the 

eight possible base cases for add wi th carry on a single bit number. 

data 

let 

Carry 

x,y : (Word TI)O 

where no : Carry 

: Carry 

yes : Carry 

ado X y z., 
a d c „ X 
adco X y Z; 
adcsn ab cd z., 
adcsn (a|6) (c|rf) z, 

Carry x (Word n)o 
y Zin elim n 

-+ adcDig i t x y Zi, 
- view sp l i t ab 

ado b d Zin 
= view sp l i t cd 

adc a c z^id 
{zout,e) {zout,e\f) 

Figure 5.8: Definition of adc 

let x,y : (WordQ)o Zjn : Carry 
adcDig i t x y z^ : Carry x (Word 0)o 

adcDig i t x y Zin <= case Zm, case y, case x 
adcDig i t 0 0 no i - > (no, 0 ) 
adcDig i t 0 ^ no i 
adcDig i t 
adcDig i t 

O no 
b_ no 

adcDig i t 0 0 yes 
adcDig i t 0 b yes 
adcDig i t 
adcDig i t 

0 yes 
b^ yes 

no, 
no. 

W d l 
W d l ) 

y e s , ^ 
no, W d l D 
yes,0) 
yes,0) 
yes W d l I) 

Figure 5.9: Base case of adc 

The simplicity of this definition is due entirely to the choice of representation. A t the 

expense of doing a little extra work to build an appropriate ehmination rule (by the Split 

view) for two digit Words, we get a simple implementation for addition. 

5.2.5 Multiplication 

Let us go back to school again, and consider how we were taught to multiply two two-digit 

numbers using long multiphcation. The general form can be presented as in figure 5.10. 
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22 
where 

e 
h 

e 
9 I 

i 
k 

f = bxd 
h — a X d 
j = b X c 
I = a X c 

P ^ f 
zi,o = e + h + j 
Z2,n = g + i + I + zi 
m = k + Z2 

Figure 5.10: General form of multiplication 

This is an approach we can consider taking for multipUcation with Word; for a two-digit 

multipUcation, there are four smaller multiplications on single-digit numbers, which lends 

itself to recursion on the size of the number. However, this seems untidy, not to mention 

inefficient — as well as four multiplications, there are five additions {zi and Z2 being the 

carry of these additions). 

Instead of straightforward multiplication, therefore, I implement multiplication with ac­
cumulator. The idea is that instead of the addition taking place at the top level, i t is pushed 

through each recursive call as an accumulator wi th the actual addition only taking place in 

the base case. In this way, the four digits of the result can simply be read off, rather than 

calculated from addition of intermediate results. The general scheme (figure 5.11) is similar 

to that of long multipUcation, but we see the addition in the intermediate computations. 

The type is as follows: 

wi,W2,zi,Z2 : (Wordn)o 
— m u l t wi W2 zi Z2 : (Word n)o x (Word n)o 

a b 
X c d 
+ e f 
+ 9 h 

i j 
k I 
m n 
P 

sp l i t wi 
sp l i t W2 
spl i t zi 
spl i t Z2 
m u l t b df h 
m u l t a d e g 
m u l t b ci I 
m u l t a c k m 

{bxd + f + h) 
{ax d + e + g) 
{bxc + i + l) 
{ax c + k + m) 

o I p n 

Figure 5.11: Scheme for multiphcation wi th accumulator 

This scheme is implemented by sp l i t on all four arguments, then recursion on the index 
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of the Word (figure 5.12). I t should be noted that the zeroless representation allows us to 

take some shortcuts in this definition (although they are not presented here) since n x 0 = 0. 

wi,W2,zi,Z2 : (Word n)o 
— m u l t wi wg Z] Z2 : (Word n)o x (Word n)o 

m u l t , „ ( a | 6 ) ( c | r f ) ( e | / ) {g\h) m u l t b d f h 
m u l t a d e g 

{ k j ) 

{o\p,n\j) 

m u l t b ci I 
(m,n) m u l t a ck m 

io,p) 

Figure 5.12: Recursive case of m u l t 

This method of multiplication wi th accumulator does, however, still involve four sub 

multiplications. This is mainly as a result of the chosen representation; however, many more 

efficient algorithms exist for multipHcation which reduce the number of multiphcations on 

smaller digits to three, most notably Karatsuba multiphcation [K063]. Bernstein [Ber98] 

gives a survey of these techniques, attempting to present every technique known at the time 

of writing. While the implementation presented here is less sophisticated, i t does give us 

some insight into how we might use type dependency to give more precise typing for complex 

operations. 

5.2.6 Changing Bases 

So far, we have taken the base D = { 1 } . What happens i f we take some other base? Any type 

can be used as the base, provided that there is an implementation of sucDig i t , adcDig i t 

and m u l t D i g i t for that type. To access these implementations, i t becomes necessary to 

parametrise the type not only over D, but over the implementations of these base cases 

for arithmetic (hence separating out the definitions of sucDigi t , a d d D i g i t and so on). 

This does not clutter the definitions of functions on Word, or the construction of values 

in Word, as may be expected, because parameters can be left implicit. An appropriate 

definition is shown in figure 5.13. The extra parameters, s, a and m are the base cases for 

successor, addition and multipUcation on D respectively. Comparing this wi th the Haskell 

type class approach, we might consider digits to be a type class with successor, addition and 

multiplication defined as methods of that class. In Haskell, these methods would be passed 

around in a dictionary, in much the same way as they are passed as indices to the Word 

family here. 

A natural choice for the base would be machine integers. We can imagine these to be 

simulated by an E P I G R A M data declaration as follows: 
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data 

where 

D 

s : (£>)°° 
o : D -» D ^ Carry -» (Carry x D) 
m : D ^ D ^ D ^ D ^ D n N 

Word D s am n : * 
D 

Wd d : Word £» s a m 0 
w : Word D s a m n 

WO w : Word D s ain{sn) 

w : Word D s a m n w„ : (Word D s am n)o 
W@ I / ; Wg : Word D s am{5n) 

Figure 5.13: Word declaration, with base functions 

data 

where 
Int 

0 : Int 1 : Int 2 : Int •• 4294967295 : Int 

This definition would be accompanied by suitable definitions for accessing the low level 

implementations of successor, addition and multiplication. These functions would of course 

have to rely on features outside the core of E P I G R A M . 

suc in t : Int ( ln t )°° 

adc in t : Int - * Int Carry 

m u l t i n t : Int —> Int —> Int -

-> (Carry x Int) 

Int Int 

5.2.7 Building Big Numbers From Word 

A problem wi th the Word n family as given is that i t is stiU inherently bounded by 2 2" 1. 

Thus i t is not isomorphic to N and cannot be used invisibly as a drop-in replacement for 

N at runtime. One way to represent unbounded numbers based on Word is as a dependent 

pair: 

b i g n u m En : N . (Word n)o 

Unfortunately, this is still not isomorphic with N; this can be seen by observing that, 

for example, while (0,0) and (sO, 0 ) are distinct bignums, they both represent the number 

zero. In many contexts, this is not a problem. However, i t does make proving an elimination 

rule wi th behaviour corresponding to that of N - E l i m more difficult. 

The difficulty is caused by the possibihty of leading zeroes; an alternative representation 

of big numbers, built on top of Word, is to build a family BigNumber wi th constructors 

corresponding to Word, but without a leading zero constructor (figure 5.14). Zeroes are 

lifted with (• )o as before. 

There is a straightforward mapping between Word and BigNumber (figure 5.15) since the 

constructors are similar. 
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data 

where 

D : • 
B i g N u m b e r D : * 

d : D 
BigD d : B i gNumberD 

w : Word D n w„ : (Word D n)o 
Big@wWg : BigNumberl* 

Figure 5.14: Big Number declaration 

let 

let 

w : (Word rt)o 
wordToBig tu : (BigNumber)o 

b : (BigNumber)o 
wordldx b : N wordldx 

wordldx 
wordldx 

wordToBig 
wordToBig 
wordToBig 
wordToBig 
wordToBig 
wordToBig 

b <= 
0 h-

w 
0 
w 

Wd d 
WO w 

W@ W WQ 

b 
BigD d 

Big® i) 
•n 

W Wo 

caseb 
> 0 
case b 

» 0 
» s n 

let b : (BigNumber)o 
bigToWordft : (Word (wordldx 6) )o 

<= case w 
^ 0 

case w 
i-> BigD d 
i-» wordToBig w 
i-> Big@ w Wo 

b 
0 

bigToWord 
bigToWord 
bigToWord 
bigToWord 

bigToWord Big® w WQ 

BigD d 

<^ case b 
^ 0 
<s= case b 
^ \Ndd 
i-> W@ w 11)0 

Figure 5.15: Mapping between BigNumber and Word 

Arithmetic operations on BigNumber are implemented in terms of the Word functions. 

Some manipulation of indices is required so that both arguments are in the same branch 

of the Word family, and to deal wi th possible carry flags (in the case of addition) and 

accumulators (in the case of multiphcation). 

The basic pattern for arithmetic on two numbers x : (Word n)o and y : (Word m)o 

is to compare the indices m and n, and pad the smaller to the size of the larger, using the 

pad function (figure 5.16). 

The type of pad (returning an index of plusp n) allows i t to be used in conjunction with 

max (written by view compare) and compare. The definition of max is given in figure 

5.17. 

Then the helper function adcBig, which adds two differently sized Words, returning a 

Word of the larger size and a carry flag, can be defined by the same pattern of recursion, as 
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w : (Word n)Q p : N 
— pad w p : (Word (plus p n))o pad w p 

pad w 0 
pad w (s n) 

elim p 
* w 

» 0 | (pad w n) 

Figure 5.16: The pad function 

let •• 
— max X y : N 

max 
max 

X 

X 

y < 
(plus (s y) x) 

— view compare x v 
plus (s y) X 

max X X —> X 

max (plus (s a;) y) y —» plus (s x) y 

Figure 5.17: The max function 

in figure 5.18. 

let wi : (Word n)o W2 : (Word m)o Zjn : Carry 
adcBig : Carry x (Word (max n m))o 

adcBig n Wi m W2 Zin view compare n m 
adcBig n Wi (plus (s y) n) W2 Zin i—> adc (pad Wi {sy)) Zi„ 
adcBig 71 Wi Ti 11)2 

H-» adc Wi W2 Zin 
adcBig (plus (s x) n) wi m w^Zin ^ adc wi (pad W2 (s x)) 2i„ 

Figure 5.18: Adding two Words of different size 

Finally, we write a function to convert the BigNumbers into Words, do the arithmetic, 

then convert back again. This function (in figure 5.19) also has to deal wi th any possible 

carry resulting from the addition and resize the BigNumber accordingly, one is a helper 

function which builds a Word n representing the number one, wi th appropriate index n. 

5.2.8 Discussion 

The BigNumber type gives us a method for computation wi th large numbers in type theory. 

Its advantages for arithmetic become more noticeable as numbers get larger; wi th small 

numbers there are overheads in constructing the data structure and the arithmetic operations 

are more complex than those of N . We cannot replace N entirely wi th BigNumber however. 

Firstly, i t is indexed over N so i t does not make sense to remove N entirely. Secondly, the 

eUmination rule for BigNumber does not give the same primitive recursion behaviour as that 

of N . While i t is possible to build such an induction principle, i t rehes on an isomorphism 

between BigNumber and N and conversion between the two structures; doing this means 

that we still have to use N as an intermediate structure and so the space advantages are 

lost. BigNumber is only really useful as an implementation of big number arithmetic. 
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a,b : (BigNumber)o 
— addBig : (BigNumber)o (BigNumber)o —> (BigNumber)o 

addBig a b adcBig (bigToWord a) (bigToWord b) case p 
{z,w) 4= case z 

(no, f i i ) 1-^ wordToBig-w 
(yes, w ) i - » one|(wordToBig w) 

Figure 5.19: Adding two BigNumbers 

A further problem wi th BigNumber is the difficulty of implementing division. Addition 

and multiplication work well in the framework of two digit numbers, but there is no obvious 

way to implement division in terms of division on numbers with a smaller index, except by 

repeated subtraction. 

5.3 External Implementation of N 

BigNumber 's disadvantages are that i t is less efficient than N for computation wi th small 

numbers and that there is no direct primitive recursion behaviour matching that of N . We 

now consider an alternative approach to number representation, using an external hbrary to 

implement unbounded numbers. GMP, the GNU Multi-precision arithmetic Hbrary [G+04] 

is one such Ubrary; some implementations of Haskell Integers (for example, in GHC and 

the Haskell B Compiler) use GMP. The issue with an external library is whether we can 

trust uncertified external code to be called from a certified core. We certainly have no reason 

not to trust GMP as a faithful implementation of unbounded numbers. In particular, as a 

well used hbrary, a lot of software would fail i f there were errors. Aside from this, there is 

research taking place into proving the correctness of features of GMP [BMZ02]. I f we take 

GMP to be a trusted external oracle, what are the steps involved in compihng T T terms 

which use N into RunTT terms which use GMP? 

To answer this question, consider how N is used. I t has constructors and an elimination 

rule, so naturally these wil l need to be translated into the new setting. The /.-schemes of 

the eUmination rule are implemented in terms of pattern matching on N , so we wiU need 

to consider pattern matching on the new representation. Finally, in considering pattern 

matching, we should bear in mind that detagged and collapsible families may also have 

elimination rules implemented by pattern matching on Ns. 

5.3.1 Construction of Ns 

For constructing Ns in the RunTT setting, I introduce integer Uterals and an addition op­

erator into ExTT and correspondingly into the supercombinator language. We introduce 

these at the intermediate level of ExTT rather than into RunTT because of the need to 
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pattern match on the new representation in the compilation of elimination rules; the rules 

for some detagged famihes in particular may need to match on N. We add features to ExTT 

to construct Ns in this form, and to manipulate them, shown in figure 5.20. 

t ::= 
1 i (Integer hteral) 
1 t op t (Arithmetic operator) 
1 t cmp t (Comparison operator) 
1 i f t then t else t (Integer testing) 

op ::= + 1 - 1 * 
cmp ::= < 1 = = 1 > 

Figure 5.20: Additions to ExTT for external implementation of N 

This allows the following simple translation on ExTT terms: 

0 101 = 

bin)} N + 1 

Any repeated successor apphcations (e.g., s (s (s k))) results in multiple additions. A 

simple constant folding optimisation removes this. For example, |s (s (s k))j =^ k + 3. 

Note, however, that RunTT terms arising from elimination rules are, as usual, treated 

diflFerently. This is necessary, since pattern matching on integers and pattern matching on 

inductive families are implemented in very different ways — a simple transformation on 

RunTT case expressions is not sufficient to cover this. 

There is, perhaps, a worry about preserving type correctness here. Since the transfor­

mation occurs only on well typed terms, and all Ns are converted to integers (by observing 

that each constructor is mapped to an integer), we need not be concerned that correctness 

is compromised. 

Boxing and Unboxing 

In the current implementation, integers are given a boxed representation; i.e., they are 

stored on the heap as a reference to the integer, rather than the integer itself. This is 

because GMP uses a boxed representation; i t is not the case that an arbitrary integer can 

fit into a single machine word. 

Nevertheless, there is much to be gained from considering how to avoid boxing and 

unboxing where possible. GHC includes unboxed values as first class values [PL91a] which 

aids strictness analysis and allows unboxed values to be used as part of algebraic data 

structures. 

While an advantage of boxing values is to give a uniform representation to data which 

aids in the compilation of polymorphic functions (in that only one version need be compiled, 

rather than separate version for instantiation wi th integers, characters, booleans etc), this 
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does mean that instantiating the function with a primitive type can be needlessly inefficient. 

In [HM95], Harper and Morrisett describe a technique for run-time type analysis which 

allows separate compilation of boxed and unboxed versions of polymorphic functions. To 

apply this technique in E P I G R A M would require the addition of a casetype operator at the 

RunTT level, and would necessitate the storing of some type information on the heap (rather 

than merely storing a TYPE node as we do currently), but the benefits from avoiding boxing 

may be enough to make this worthwhile. 

5.3.2 Elimination and Pattern Matching 

I f we are to write the t-schemes for the new implementation of N , we wil l need additions to 

the pattern syntax which allow for matching on GMP integers. These extensions are shown 

in figure 5.21. 

p : := 
k (Integer literal pattern) 
X + k (Non zero variable) 

Figure 5.21: Extensions to the pattern syntax for external implementation of N 

A similar transformation is apphed to patterns as that which is appUed to ExTT terms. 

Constant folding is applied on repeated applications of s so that the resulting pattern con­

forms to the syntax. The pattern transformation is as follows: 

101 = ^ 0 
Is nl =^ Inj + l 

To implement matching on these patterns, and so that we can ultimately take advan­

tage of the GMP external implementation, I add further operations to RunTT which allow 

inspection and manipulation of integers, corresponding to the extensions to ExTT. The fu l l 

extensions to RunTT are shown in figure 5.22. 

e : := 
i (Integer Uteral) 
e op e (Arithmetic operator) 

1 e cmp e (Comparison operator) 
1 if e then e else e (Integer testing) 

op ::= + 1 - 1 * 
cmp ::= < 1 = = 1 > 

Figure 5.22: Extensions to RunTT for external implementation of N 

The semantics of i f are straightforward; i f the expression being tested (a simple boolean 

comparison) is true, evaluate the then branch, otherwise evaluate the else branch. 
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The two new cases for the pattern syntax are handled by extra cases for the PROJECT' 

operation, shown in figure 5.23. Recall from section 4.4 .2 on page 1 1 0 that PROJECT com­

putes terms for projecting the values of arguments from patterns, wi th PROJECT' as a helper 

operation. 

P R O J E C T ' ( T I , / , k ) = D 
P R O J E C T ' ( n , / , (a; + A:)) = [ x , { f n ) - k ] 

Figure 5.23: Extra cases to PROJECT' 

For an a; + fc pattern, if we know i t matches, x is retrieved simply by subtracting k from 

the argument n. 

To compile pattern matching in this form, two cases are added to the pattern matching 

compiler scheme X. Recall (from page 1 1 1 ) that I examines the patterns pu .. . p i „ , which 

represent the patterns for the first argument ei, to establish whether case distinction can 

be made on ei. These additional cases are summarised in figure 5.24. 

Case 5 Two possibilities, wi th pai = 0 and pbi = x + k, where a,b e { 1 , 2 } 

J(e i . . . ei, (J* , P"2...Pai 1 if e, == 0 then Xa else x^ 
'\{x + k)pb2...pbi Xb \' - ' " 

Ccise 6 p i i = 0 for some i , and pj\ = x + k iox some j 

Take P to be the smallest set of patterns such that pa £ P \i pn — 0 or = x + k 

for some constant k. Then: 

{ Pn---Pii xi \ 

i f e i = = 0 t h e n I ( e 2 . . . e „ , | ^ ' = ' - - - ^ ' = ' ^ | ) [Vfc. p^i 0 P or p a = 0] 

else 1 ( 6 2 . . . e„,|^'=;^---^'=^ } ) [VA:. p.^ ^ 0] 

Figure 5.24: Extra cases of X 

Ca&B 5: Pal = 0 and P6i = a; + fc, where a, 6 e { 1 , 2 } and n = 2 

This is a special case for integers corresponding to case 2 for constructor patterns. Case 

distinction can be made on this argument alone. I f e\ = 0, we evaluate case a, otherwise 

we evaluate case b. The RunTT case expression is built as follows: 

X{ei...ei,< >) ^ > i f ei = = 0 then else a% 
^ 2 ; + fc) P62 . . . Pbi Xb J 

I t is not necessary for the zero case to appear first; the cases can be in either order. 



C H A P T E R 5. N U M B E R REPRESENTATION 153 

Case 6 : pu = 0 for some i, and pji = x + k for some j 

This is a special case of the compiler for integers, corresponding to case 4, where two or 

more of pn .. .pni are headed by disjoint constructors. We take P to be the smallest set of 

patterns such that pn e P'd pu = 0 or pu = x + k for some constant k. 

Then the RunTT expression is built as follows: 

I{ei ...ei,{ 
Pn -- Pu xi 

\,Pnl-- Pni 2Vi J 

) 

i f e i = = 0 t h e n l ( e 2 . . . e „ , | ^ ' ^ ' " " ^ ' = ' | ) [\/k. pki ^ P or pki = 0] 

Example — N - E l i m 

W i t h this new representation, how is elimination of Ns compiled into RunTT? 

N - E I i m 0 P rrio Ws mo 

N - E l i m (s fc) P mo JTis m, fc (N -E l im A; P mo m,) 

The transformation to the integer representation gives us this rule to compile into RunTT: 

N - E l i m 0 P mo ms mo 

N - E l i m (k + l ) Pmorrh rru, k (N -E l im k P mo m^) 

For the second case, applying PROJECT to the first argument (let us call this argument 

n) yields: 

PROJECT(n, (fc + 1 ) ) =J> p , n - l ) ] 

Examining the patterns for the first argument, we see that case 5 appUes. The term in 

RunTT is therefore a straightforward i f expression: 

N - E l i m H-» An; P; mo; m^-

if n == 0 then mo else m, (n — 1 ) (N -E l im (n — 1 ) P mo mauc) 

Aside — recursion and iteration 

I f reduction order does not matter, which i t does not when termination is guaranteed, we 

might consider an alternative implementation of N - E l i m which is iterative rather than re­

cursive. This relies on some additional notation for RunTT (for which I wi l l not give a formal 

treatment); we add assignment to a mutable variable {x := t), exphcit sequencing (indicated 
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by separating expressions with a semicolon) and a while loop for bounded iteration. W i t h 

this additional notation, we can write an iterative version of N -E l im: 

N - E l i m H-> An; P; mo; n\. 

acc : = TOO; 

k:=0; 
while k < n 

acc := TUs k acc; 
k:=: k + 1 

return acc 

This clearly has the same behaviour as the original N -E l im, but without the overhead 

of building a thunk for the recursive call. The locally bound k and acc are reused, although 

this requires that TOS is evaluated eagerly — hence the requirement that termination is 

guaranteed. We also need to be careful in the case where the successor case does not 

make a recursive call. Unfortunately, this does not generalise; we can only do this because 

N holds no data other than its own size. Nor can we build this function directly from the 

pattern matching representation of N - E l i m in ExTT. However, i t may be worth hard-coding 

elimination rules such as this since optimising an elimination rule optimises those programs 

which are written in terms of i t ; a future research direction could potentially involve the 

identification of efficient (tail-recursive or iterative) elimination rules. 

Example — between-Elim 

Recall the between type from Chapter 4 which represents a proof that m < n < p: 

data ^J^^'^'P • ^ between mnp : -k 

_.i ,„rp 6 : between 0 0 m 
^ ^ ^ ^ bO : between 0 0 0 bOOs 6 : between 0 0 (s m) 

6 : betweenOmn b : between mnp 
bOss h : between 0 (s m) (s n) bsss b : between (s m) (s n) (s p) 

The collapsing of this relation along with the translation to CMP integers gives t-schemes 

as in figure 5.25. Applying the X compilation scheme, which repeatedly applies case 6, 

yields the supercombinator defirution shown in figure 5.26. As before instances passed to 

the methods are replaced with the tr ivial canonical empty tuple, (). 

5.3.3 Homomorphisms with N 

So far wi th this integer representation, we have managed to convert the T T representation 

into an efficient run-time representation. The only improvement we really have, though, 

is space compression — all functions are ultimately still written by structural induction 

over N , using N -E l im. In order to really take advantage of this eflacient representation, we 
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between-Elim 0 0 0 {bO} P m^o m^oos "iboss "ifasss " H J O 
between-Elim 0 0 (s m) {bOOs m b} P mbo rubOOs m^ss m>sss 

TTJboos m {{b}) (between-Elim 0 0 m {6} P mbo "ibOOs "̂ faOss rribsss) 
between-Elim 0 (s m) (s n) {bOss mnb} P rribo rribOOs "̂ bOss "̂ bsss 

rriboss fn n {{b}) (between-Elim 0 m n {6} P mbo "ibOOs "̂ bOss "ibsss) 
between-Elim (s m) (s n) (s p) {bsss mnp b} P n%o mboos "̂ b0s5 "UJSSS 

^ TTibsss m n p ({6}) (between-Elim mnp {b} P mbo f̂ ibOOs '̂ iboss "̂ bsss) 

Figure 5.25: (,-schemes for between-Elim with GMP 

between-Elim i— > Am; n; p; P; rribo; mboos; ^boss; mbsss-
i f m = = 0 

then i f n = = 0 
then i f p = = 0 

then mhn 
else mboOs [p - 1 ) 0 . . . 

else mboss (n - 1) (p - 1)0 . . . 
else TTibsss (m — 1) (n — 1) {p — 1)0 . . . 

Figure 5.26: Compiled <.-schemes for between-Elim 

would hke to use the arithmetic operations provided by the GMP library rather than the 

TT definitions. 

I wil l consider three basic functions; plus, mult and compare. I consider compare to 

be an important function to optimise, i f not a primitive, since i t implements an ordering 

and subtraction on Ns at the same time. Not only this, but as compare n m has linear 

complexity for what is essentially subtraction, a more efficient implementation would be 

beneficial. 

We write functions on GMP integers in ExTT corresponding to the N based definitions, 

plus and mult have corresponding implementations in ExTT defined using primitive oper­

ators as follows: 

plusint ) 
multint 

An; m. n -|- m 

An; m. n * m 

To use these definitions in place of the T T definitions, the following transformations are 

appfied during the transformation from T T to ExTT: 

|plus| plusint 
|mult] = > multint 

As an additional optimisation, where these functions are fully applied the definitions can 

be unfolded. Hence plusint x y becomes simply x + y. compare is slightly more difficult; 

for one thing, i t must take into account the erasure of forced arguments in the Compare 
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family. As a result, the ExTT definition is similarly marked up. Its marked TT definition is 

as follows: 

compeirelnt An; m. 

i f n < m then It {n} (m — n — 1) 

else i f n = = m then eq {n} 

else gt {m} (n - m - 1) 

Then a similar transformation as before is used in the translation phase from TT to 

ExTT. We do not automatically unfold comparelnt as wi th plusint and multint as the 

definition is rather larger. 

|compare]] = ^ comparelnt 

5.3.4 Typechecking the External Implementation 
Since the GMP integers are added in ExTT, i t is worth considering how the addition of GMP 

integers affects the typechecking algorithm. The conversion check, conceptually, involves the 

checking for syntactic equality of normal forms. For the external implementation of N we 

can use the equality defined by GMP to check the syntactic equality of the Ns: 
x,y : n X = G M P y 

x = y 

Hence i f two GMP-implemented Ns x and y are equal by a GMP equality test, then they 

are convertible. We are not attempting to reason about the conversion to GMP here — the 

use of this rule implies that we trust the correctness of GMP's implementation of equality. 

There is a problem, however, wi th typechecking the external GMP implementation of 

N; namely that the conversion rules which previously held for plus, mult and compare do 

not hold for plusint, multint and comparelnt. For example, the definition of plus gives 

two rules for the conversion checker (these rules arise from the direct reduction behaviour 

of plus when the first argument is in canonical form): 

plus 0 m ~ m 

plus (s fc) m ~ s (plus k m) 

Similar rules do not hold for plusint because the reduction behaviour of the + operator 

is defined externally. The solution adopted by [MBOl] is to make these conversion rules 

expficit. To do this, we can define the foUowing axioms describing the external behaviour 

of GMP Ns: 

plusO : Vn: N. plusint 0 m = m 

pluss : Vn, m : N. plusint (fc -|-1) m = (plusint k m) + 1 

These type isomorphisms (whose run-time implementations are effectively the identity 

function) are inserted by the typechecker where they transform a term's actual type into its 
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expected type, using the algorithm from [MBOl]. In the current implementation, however, 

the typechecker uses the naive representation of N for typechecking, only transforming for 

compilation. This is acceptable for many programs wi th limited type level computation, 

however a future implementation wil l also transform to an efficient implementation of N for 

compile-time execution. 

5.3.5 Extensions to the G-machine 

The new RunTT operations for manipulating GMP integers wi l l clearly need to be trans­

lated to primitive operations in the G-machine. Johnsson's G-machine [Joh84] has a value 

stack of basic values for storing intermediate values in primitive types. Unti l now, we have 

considered the G-machine to be a 5-tuple (see section 3 .5 .2 ) ; now I add a value stack, so that 

the G-machine state is a 6-tuple (C, S, V, G, E, D). The primitive values are big numbers 

and boolean values (arising from comparisons on big numbers.) The idea behind the value 

stack is that i t avoids building graphs from intermediate computations — a value is only 

transferred onto the main stack when a computation is complete. This is similar to the 

approach adopted by the STG machine. 

There is a new graph node, BIGINT i , where i is an integer represented by GMP, and a 

graph node BOOL 6 where 6 is a boolean value. Also, I add new instructions for manipulation 

of big numbers and booleans on the value stack. Values on the value stack are either big 

integers or booleans, i or h. These instructions are defined as follows: 

• PUSHBIGi constructs a graph BIGINT z and pushes it onto the stack S. There is no 

equivalent for booleans, since we do not have boolean literals in RunTT; they arise 

only from comparisons. 

• PUSHINTi pushes the value i onto the value stack V. 

• PUSHBOOL h pushes the value b onto the value stack V. 

• GET retrieves the integer from the graph at the top of the stack (which must be a 

BIGINT i) and pushes i onto the value stack V. 

• MKINT pushes the integer at the top of the value stack V onto the stack S (the 

opposite of GET.) 

• MKBOOL pushes the boolean at the top of the value stack V onto the stack S. 

• ADD, SUB and MULT apply the appropriate arithmetic operation to the top two values 

on the value stack V. 

a LT, EQ and GT apply the appropriate boolean comparison to the top two values on 

the value stack V. 
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• JTRUE I examines the value on the top of the value stack and jumps to the label / i f 

the value is a boolean "true". 

The state transition rules for these instructions are given in figure 5.27. 

(PUSHBIGi; c,S, V,G,E,D) 
(PUSHINTi; c,5, V,G,E,D) 
(PUSHB00L6; c,S, V,G,E,D) 
(GET; c, n.S, V, G\n = BIGINT i],E, D) 
(MKINT; c , 5 , i . y , G,E,D) 
(MKBOOL; c,S,b.V,G,E,D) 
(ADD; c,S,x.y.V,G,E,D) 
(SUB; c,S,x.y.V,G,E,D) 
(MULT; c,S,x.y.V,G,E,D) 
(LT; c,S,x.y.V,G,E,D) 
(EQ; c,S,x.y.V,G,E,D) 
(GT; c,S,x.y.V,G,E,D) 
{nRUEi,c,S,true.V,G,E,D) 
(JTRUE/;c, 5, false. y , G , £;,£>) 

c,n.S,V,G[n = B\GmTilE,D) 
c,S,i.V,G, E,D) 
c,S,b.V,G,E,D) 
c,S,i.V,G,E,D) 
c, n.S, V, G\n = BIGINT i ] , E, D) 
c,n.S, y , G [ n = BOOL blE,D) 
c,S,x + y.V,G,E,D) 
c,S,x-y.V,G,E,D) 
c,S,x*y.V,G,E,D) 
c,S,x<y.V,G,E,D) 
c,S,x = y.V,G,E,D) 
c,S,x> y.V,G,E,D) 
JUMP/ ; c ,5 , V, G,E,D) 
c,S, V,G,E,D) 

Figure 5.27: State transitions for computing basic values 

5.3.6 Compilation Scheme 

A new compilation scheme, S | | , compiles expressions of basic values. This scheme compiles 

code to put an expression on the value stack rather than the main stack. Since the value 

stack consists only of integers and booleans the resulting code wil l be more efficient than 

manipulations on a stack of graphs. CompiUng with this scheme effectively implements the 

unboxing of integers and booleans for compilation of complex expressions, then boxing the 

result. The scheme is given in figure 5.28. 

Biqrn =^ PUSHINTi 
Blei + eijrn Bldj r n; B|e2l r n; ADD 
Blei - r n ^ ^ l e i l r n; Sle2l r n; SUB 
Bid * e2jrn ^ BfeiJ r n; B|e2l r n; MULT 
S[ei < €21 r n ^ S f e i l r n; ^[621 r n; LT 
B[ei = 621 r n = ^ ^ l e i l r n; fi[e2l r n; EQ 
e j e i > 621 r n ^ ^ l e i l r n; B|62l r n; GT 

Figure 5.28: The B | - l compilation scheme 

I extend the Sf-j scheme to handle basic values, as in figure 5.29; top level expressions 

are passed through to the Bf-j scheme and the result placed on the stack. The 5 | 1 scheme 
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also handles if expressions. The only addition to the C|. | scheme is to construct graphs of 

primitive values (shown in figure 5.30. 

f l e i + 62! r n 
£"|ei - 62] r n 
f f e i * 62] r n = 
f | e i < 62! r n 
^ [ e i = 62! r n 
£[e i > 62! r n 
f | i f ei then else 63! 

Blei + 6 2 ] r n ; MKINT 
Bid - 62] r n ; MKINT 

Bid * 62! r n- MKINT 
- Bid < 62] r n ; MKBOOL 
- Bid = 62! r n ; MKBOOL 

Bid > 62! r n ; MKBOOL 
Bldjrn; JTRUE ^r; 

Slesjrn; JUMP/; 
LABEL It; 

£{62} r n; 
LABEL/ 

Sli PUSHBIG i 

Figure 5.29: Extensions to the compilation scheme 

r n PUSHBIG i 

Figure 5.30: Extension to the C| . | compilation scheme 

5.3.7 Example — Factorial Computation 

A common example of a recursive function over the natural numbers is the factorial function 

(n!). The simplest way to write this in E P I G R A M is as in figure 5.31, following the usual 

rules that 0! = 1 and n! = n * (n - 1)!: 

let , " = N 
— fact n : N 

fact 0 i - » sO 
fact {sk) 1—» mult (s k) (fact k) 

Figure 5.31: Factorial Function 

The problem wi th writing a function over a natural number n is that it i t very likely to 

have complexity of at least 0{n). W i t h factorial, the problem is even greater as the size 

of numbers involved grows very rapidly. This is as much a problem of storage as speed — 

the unary representation requires nearly four million cells to store 10!. Let us nevertheless 

examine the compilation of the fact function as defined in figure 5.31. The elaborator 

produces the following definition in TT: 

fact A n : N . na tE l im n (An:N. N) (sO) (Afc, ih-.n. mult (s k) ih) 
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Beginning with a naive approach and taking the above definition as the ExTT version of 
fact, we get the following straightforward translation to RunTT supercombinators: 

fact l-^ An. na tEl im n fact l s(0) fact2 

fact l h-> An. N 

fact2 H - * \k; ih. mult s{k) ih 

These supercombinators compile to G-code as follows: 

5 [ f a c t l = ^ PUSHFUN N -El im; PUSH 1; MKAP; PUSHFUN f a c t l ; MKAP; 

MKCONOO; MKCONsl ; MKAP; PUSHFUN fact2; MKAP; 

UPDATE 2; RET 1 

5 | f a c t l l = ^ MKTYPE; UPDATE 2; RET 1 

5 | f a c t 2 l PUSHFUN mult; PUSH 2; MKCON s 1; MKAP; 

PUSHl; MKAP; UPDATES; RET2 

The inefficiency in this definition is caused by the use of the 0{n) function mult to do 

the multiplication. If, instead, we apply the transformations of this chapter to replace N 

wi th an external GMP based representation then we have access to a fast multiplication 

function. The translations yield the following ExTT definition: 

fact An :N. na tEl im n (An: N . N ) l ( A f c , i / i : N . multint ( fc - f - l ) i / t ) 

We can unfold the definition of multint to get the following simpler definition: 

fact A n : N . na tE l im n (An: N . N ) l ( A A ; , i / i : N . (A;-1-1)* i/i) 

There is now the following translation to RunTT supercombinators: 

fact An. na tEl im n fact l 1 fact2 

fact l i - » An. N 

fact2 \k; ih. (fc - I - 1 ) + ih 

Finally, we get the following G-code for these supercombinators: 

5 | f a c t l PUSHFUN N -El im; PUSH 1; MKAP; PUSHFUN f a c t l ; MKAP; 

PUSHBIGl; PUSHFUN fact2; MKAP; UPDATE 2; R E T l 

5 | f a c t l l MKTYPE; UPDATE2; R E T l 

5 I f a c t 2 l = ^ PUSHl; GET ; PUSHBASICl; ADD; PUSH 0; GET; 

MULT; MKINT; UPDATES; RET2 

The main difference between the two definitions is simply that the user defined mult 

function has been replaced by an efficient external representation encoded as a single G-

machine instruction. The effects of this simple transformation, even on the small application 

of fact sssO, are large, and shown in figure 5 .32. 

Note again that these results are based only on the optimisation of N. Other overheads, 

including the extra layer of abstraction imposed by the use of elimination rules and the 

outputting of results (via a show function again defined by an elimination rule) are also 

present, and we wil l see some optimisations for removing these in Chapter 6. 
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Program Version Instructions Thunks Memory Accesses Cells 

fact sssO 
Naive 
Optimised 
Change 

118931 
4304 

-96.38% 

55372 
1382 

-97.50% 

40863 
1098 

-97.31% 

7871 
182 

-97.69% 

Figure 5.32: Run-time costs of the factorial function 

5.3.8 Extending to Other Primitives 

The approach to primitives we have taken here is rather different from the approach taken 

by GHC in the Spineless Tagless G-machine [Pey92]. In that system, the philosophy is that 

the machinery for implementing user defined types should be efficient enough to be usable 

for primitives such as lists. We have taken a different approach to N for two reasons: 

• N is inherently inefficient, being a unary representation of numbers. Despite this, the 

structure has advantages at compile-time, so i t makes sense to use N and transform i t 

to an efficient representation. 

• In general, we can expect to get a big performance improvement by optimising common 

operations and datatypes (similar to the RISC approach to computer architecture, 

where the philosophy is to choose a small highly optimised set of common instructions). 

We should not see this as imposing a performance penalty on user defined types, but 

rather making a performance gain on common primitive types. 

Having implemented N externally, we might consider whether other primitives can be 

implemented externally. In some ways this follows Landin [Lan66], who suggests a family 

of languages ( I S W I M ) parametrised over the set of primitives they choose; the choice of 

primitives is based on the problem domain. An E P I G R A M data type has the following 

features which an external implementation may provide: 

Constructors. In the case of N , 0 was mapped to 0 and s n to n -I- 1. 

Eliminat ion Rule . An implementation of N - E l i m was built by determining the correct 

pattern matching behaviour for 0 and n + k from the pattern matching behaviour of 

0 and s. 

Primit ive Operations, plus, mult and compare were mapped to plusint, multint and 

compareint respectively. 

Conversion Rule . A conversion rule for N constants was given in terms of the GMP equal­

ity test. 

So providing an external implementation of a datatype means giving E P I G R A M types 

to externally implemented operations. Not all of these make sense for every data type; 
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in particular floating point numbers have no obvious primitive recursion behaviour, for 

example, and even a conversion rule is difficult since there is always an error bound in a 

floating point calculation. A floating point implementation would be treated as an abstract 

data type, only providing constructor functions and primitive arithmetic operations. Further 

investigation of such details should be in the context of a module system for E P I G R A M , 

primitive types being provided by an external module. 

Integers 

Having considered an efficient implementation of the natural numbers, we should also 

consider how integers ( Z ) might be represented in E P I G R A M . The approach taken by 

L E G O [LP92] is to treat integers as a pair of natural numbers, including a positive and 

negative component. This is a simple representation, but has the disadvantage that a single 

integer can be represented in an infinite number of ways. A pair of a natural number and 

its sign is another possible representation. The current C O Q implementation, on the other 

hand, uses a more sophisticated representation based on binary, as described in [MBOl]. 

However integers are described as an E P I G R A M type, i t wi l l of course be possible to apply 

the same techniques we have appUed to N to give an efficient internal representation. 

Multiple Return Values 

Numbers are not the only thing which i t is useful to treat as a primitive. In E P I G R A M , and 

in programming with inductive famihes in general, we often find i t useful to return pairs (or 

larger tuples) of values. This is because values carry around invariants; a Vect is paired with 

its length, for example. Hence, i f a function can return a different length Vect depending on 

its input, i t needs to return the length along with the Vect using a S type. For example, we 

can write the vector filter function as follows: 

, , f : A Bool xs : Vect A n 
— vRlterfxs : S N (Vect >1) 

vfilter f xs <= elim xs 
vf l l t er / e >-» (?, nil) 

vfilter / {x::xs) b <—/x <= case 6 

true p < — vfilter f xs 4= case p 

(_, I S ' ) i - > {?,x::xs') 
false p <— vfilter f xs <= case p 

{.,xs') ^ {?,xs') 

Returning values along with their dependencies is a common programming idiom wi th de­

pendent types, as we saw in section 2.3.1. For this reason, i t may be beneficial to implement 

techniques for dealing wi th multiple return values; doing so has already been investigated 

for Standard M L [Mit94] and similar techniques can apply to E P I G R A M . Using C— as a 

back-end has an advantage here, as i t supports multiple return values in machine registers. 
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5.4 Correctness of External Implementation 
One of the advantages of programming in E P I G R A M is that proofs of correctness can be given 

in the language itself. When we use an external implementation of some language feature 

however, as we have wi th N, we cannot do this. The closest we can get to a correctness proof 

of the GMP representation is to model GMP integers in E P I G R A M and check the correctness 

of the model. This is not quite the same as a ful l correctness proof; any errors in modelHng 

are caught but not necessarily errors in the implementation. I t is still worth doing, however, 

for the following reasons: 

• We can at least check the correctness of the algorithms and memory allocation, as 

with a recent proof of GMP square root [BMZ02, Mag03]. 

• As a longer term goal, a precise specification of GMP numbers and their associated 

operations may lead to the extraction of a more efficient implementation. 

I do not propose to give a ful l model of GMP numbers and their operators here; to do so 

would be a very large project and a possible direction for future research. However, let us 

briefly consider how we might represent their structure as an inductive family in E P I G R A M . 

5.4.1 Representing GMP integers 

The internal representation of an integer is as a C struct wi th three fields [G+04]. These 

fields are: 

• An array of l imbs . Limbs correspond to digits; the D parameter of the Word family 

gives a concrete representation of limbs. 

• An integer representing the number of limbs in the number. This integer is negative 

when representing a negative number. We only consider positive numbers for N , so 

we wi l l only consider positive integers in this field. This integer corresponds to the n 

index of the Word family. 

• An integer representing the space allocated for limbs. I f any operation causes the 

number to outgrow the space allocated for i t , more space is allocated and this field 

changed accordingly. 

Leaving aside the memory allocation issue for the moment, we might model integers in 

a GMP style as follows: 

data ^ : * n : ^ ^j-„_p Is : Vect £> n 
^ G M P £ » n : * mkGMP/s : GMP £» n 

GMP integers are modelled as a sized list, so we use Vect to keep the list of limbs and its 

size consistent (in fact, all we do here is add another level of constructor to keep the type 

distinct from Vect). n represents the amount of limbs, and Is the array of limbs. We can 
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use similar techniques to those in section 5.2.7 to resize the Vects accordingly for arithmetic 

operations between numbers of different sizes. 

A refinement of this includes a representation of the memory allocated for the number, 

and carries a proof that there is enough memory to store the number: 

data ^ • * " •• N ^here " ' ^ : V e c t P n p : n < a 
— G M P D n : • ^^^^^ mkGMP a k : G M P D n 

The extra argument to mkGMP, a, represents the number of limbs available. The con­

structor also carries a proof p (represented by < , and therefore concretely collapsible) that 

there is enough space to store the limbs in this amount of memory. By writing the arithmetic 

functions on this representation, we can extract the following information: 

• Where there is a possibiUty of overflow. 

• Where and when memory allocations might be needed and where they are superfluous. 

I t is perhaps too much to hope that extraction of code for arithmetic on this representa­

tion would be more efficient than the highly tuned machine code implementation of GMP. 

However, modelling the properties of GMP data structures in this way can give us some 

insight into where safety checks are needed in the low level implementation. 

5.4.2 Correctness of Behaviour 

The representation we now have ensures that the memory allocated for limbs is always 

enough to hold the data. What i t does not ensure is that arithmetic operations have the 

correct behaviour. This is another situation where inductive families can help; we can also 

index the GMP family by the N i t represents. To do this, we write a function to convert the 

hmb representation to its corresponding N: 

i ^ ^ . Is : Vect D n 
— l i m b s T o N a t / s : N 

Then the return type of the mkGMP constructor also gives the N interpretation of the 

GMP number: 

D : -k n,i : N , a : N / s : Vect Dn p : n < a data ^ . . r . —-• where -GMPDni : * ""^"^ mkGMP a Is : GMP £> n ( l imbsToNat is) 

Then to implement, for example, addition on GMP numbers builds an impHcit proof that 

the GMP addition is a homomorphism with the N addition. Since addition may overflow 

and therefore require more space to store the result, we return a dependent pair containing 

the length and the GMP value. 

let X : GMPDni y : GMPDmj 
a d d C M P x t / : S N (An:N. GMP D n (plus i j ) ) 

Any implementation of this function must be a correct implementation of addition; any­

thing else would not typecheck. 
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5.5 Summary 

We have seen three uses of natural numbers; two of these (bounded recursion and indexing 

of data structures) rely on the structure of N , and the other (arithmetic) does not, as i t 

provides implementations of abstract operations on numbers. 

Since arithmetic operations are abstract operations on numbers, we can consider alter­

native representations of numbers to provide more efficient implementations of arithmetic. 

W i t h the Word family in section 5.2, we saw an implementation of binary numbers purely 

in E P I G R A M , using size invariants to verify the structure of these numbers. However, even 

implementing binary numbers in this way is impractical when compared to a hardware im­

plementation. One possibility to improve this is to parametrise Word over a base type which 

implements arithmetic in hardware. However, allowing access to a hardware implementa­

tion forces us to extend the core language of T T and consider the additional typing and 

conversion rules this entails. A more useful application of this kind of implementation is for 

the verification of hardware design — we could imagine using a dependently typed language 

to model the hardware and its properties and implement operations on the hardware in a 

type safe way. 

When numbers are used primarily for their structural properties i t is still good to con­

sider an efficient representation. In section 5.3 we saw additions to ExTT and associated 

translation rules for using an efficient external implementation of N via the GMP hbrary. 

The advantage of this approach is that no changes are required to the core language, al­

though we do need to justify that the translation rules are vaUd. We can justify this using 

the same observation that we used in Chapter 4 to build efficient elimination rules; i.e., any 

representation can be used for a family provided that its ehmination rule can discriminate 

between t-schemes. Our translation scheme provides direct mappings from N to GMP, and 

corresponding additions to the I compilation scheme. The major difficulty is in verifying 

that the GMP implementation of arithmetic mirrors the E P I G R A M implementation — to do 

this directly in E P I G R A M is impossible, since GMP is an external Hbrary, but i t is possible 

to model GMP integers in E P I G R A M . This verification is a large and difficult task, but we 

have seen one possible way to approach the problem. For all practical purposes, however, i t 

would be unreasonable to assume that GMP is not a correct implementation of arithmetic, 

given its successful use in other programming language implementations (such as GHC and 

Python). 

What we have not seen is how we might use E P I G R A M to implement heavily numerical 

programs. For this sort of application, we should think of numbers as abstract data, wi th 

abstract operations. Where possible, we would give these operations E P I G R A M types (e.g. 

Float, Double, Int, etc) and conversion rules (as we did with the GMP representation of N). 

I t would make sense to investigate this approach in the context of a module system, rather 

than as an addition to the core language. 

The introduction of primitive types creates further implementation difficulties, not all 
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of which we have investigated yet. We have briefly considered boxing and unboxing of 

primitives, but further investigation is required as to how to handle unboxed values most 

efficiently, whether using the techniques of [PL91a], [HM95] or others. The casetype analysis 

of [HM95] may be particularly beneficial and relatively simple to implement since we afready 

have type level programs. 



Chapter 6 

Additional Optimisations 

Several other well known optimisation techniques can, of course, be applied to E P I G R A M 

terms arising from the optimisations already presented. This chapter presents some well-

known optimisations and some which arise from the E P I G R A M type system and shows how 

these optimisations might interact wi th those already seen. The optimisations we present 

are to be appUed after typechecking, and hence are run-time only. 

The approach taken follows that of Santos, who exploits the advantages of Compilation by 

Transformation for Haskell in his thesis [San95]; the transformation based optimiser is also 

described in [PS98]. This approach to compilation uses a single intermediate representation 

diu-ing most of the compilation process. This has the advantages that i t allows optimisations 

to be implemented in a simple way, and that transformations are easier to prove correct — 

each transformation can be implemented and verified independently. For E P I G R A M , we 

apply optimising transformations at two levels. Higher level transformations on ExTT terms 

axe used to transform some of the more abstract features of the language into a form more 

suitable for efficient compilation — in particular, the transformation of recursion operators 

into direct recursive calls. We also apply optimising transformations at the RunTT level. 

We separate these optimisation passes for two reasons: 

• Types are preserved in ExTT terms, which makes i t easier to prove transformations 

correct. We would prefer to preserve types for as long as possible so we t ry to perform 

as many transformations at this level as we can. A t this level, we can also take 

advantage of labelled types (see section 2.1.8) for optimisation. 

• Further optimisations are available once all functions are transformed into their RunTT 

representation, since there is no longer the need to take care to maintain the sepa­

ration between user defined functions and elimination rules. In particular, inlining 

of non-recursive elimination rules becomes available. More aggressive (and non type 

preserving) optimisations such as argument removal also become available. 

167 
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We transform at the level of ExTT, rather than TT. This is firstly so that we do not inter­
fere with the analysis of elimination rules which allows the deletion of redundant arguments 
(see Chapter 4). In addition, we can be more liberal wi th ExTT terms — we are already 
sure of their type correctness and termination properties, so we can concern ourselves more 
with their meaning, the main example being the replacement of elimination rules wi th the 
more efficient direct recursive calls. 

6.1 Optimisations in ExTT 

6.1.1 /?-reduction 

The most basic transformation which can be applied to terms in ExTT is /5-reduction: 

l{Xx:T.e)aj e[a/x] 

We must be careful not to apply this automatically, however. I f x occurs more than once 

in e, we risk evaluating the same a more than once. In such a situation, i t is safer to either 

not yS-reduce, or to let bind the name before reducing, as follows: 

|(Aa;:T. e)o] ==4> let a; o i n e 

/3-reduction is always worth applying, in either of these forms, since i t saves a reduction 

at run-time and, even more importantly, can expose the other transformations which we wil l 

discuss in this chapter. 

6.1.2 Simplifying Non-recursive D-Elim 

Writing a function over a family D by means of the elimination operator D-El im gives the 

programmer access to a recursive call on any recursive arguments of D. But i f a function 

written over D-E l im does not make any recursive calls (that is, i t does not use the inductive 

hypothesis in a method call), i t would be better written with the case operator D-Case. 
Both D-Case and D-El im are generated automatically on elaboration of a family D, D-Case 
being constructed from D-El im by discarding the inductive hypotheses. 

Here is a t r ivial example: 

let . r, ' ^ p—r isZero n <J= ehm n — isZero n : Bool 
isZero 0 h-> true 

isZero (s k) false 

This elaborates to the following term in ExTT: 

isZero t-^ A n : N . N - E l i m n (An:N. N) true (Afc, i / i : N . false) 

Since the inductive hypothesis ih is unused in the method for s, we can safely use N -Case 
rather than N -E l im: 
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isZero An : N . N - C a s e n ( A n : N . N ) true (Afc : N . false) 

How do we tell which argument to the method is the inductive hypothesis? Due to the 

way we build elimination rules, an inductive hypothesis follows each recursive argument. 

More generally, however, we can make use of the labelling on types (see section 2.1.8). 

Unti l now, I have been suppressing labels; recall that elaborated E P I G R A M terms label 

recursive calls and inductive hypotheses, so that i t is clear to the programmer (in the high 

level notation) what the meaning of the inductive hypothesis is and so that the elaborator 

can tell what the allowed recursive calls are. Elaboration of is Zero wi th labels gives the 

following: 

isZero : Vn :N. (isZero n : N) 

isZero H - ^ An:N. N - E l i m n (An:N. (isZero n : N)) 

(return true) (Afc:N. Ai / i : (isZero k : N). (return false)) 

I t is clear which is the inductive hypothesis from the label on its type; since no inductive 

hypothesis is used, N - E l i m can be replaced with N-Case. A similar transformation applies 

for D-View where there are no appeals to an inductive hypothesis. 

This is an apparently tr ivial optimisation, which I call elimination unfolding, wi th 

not much obvious benefit in practical terms. However, i t does open up the possibility for 

further optimisations which were previously inapplicable, as we wil l now see. 

6.1.3 Rewriting labelled types 

Where a recursive function over D is written by D-Elim, the ehmination rule is one extra 

level of indirection. The purpose of the rule at compile-time is to ensure that all recursion 

is primitive and so recursive functions terminate. At run-time, however, we would like to 

remove this level of indirection since i t has served its purpose and now merely causes a 

run-time overhead. 

Let us examine the plus function again, defined recursively using N - E l i m . While we 

have better ways of optimising this function (using an external representation of N), the 

simplicity of the data structures used in this definition allow us to focus attention on the 

rewriting of the recursive call. 

let •• N 
— plus n m : N 

plus n m <= elim n 

plus 0 m i-» m 

plus {sk)m i-> s (plus k m) 

Elaboration, including the labelling, gives the following term in ExTT: 

plus : Vn, m :N . (plus n m : N) 
plus i-» An, m : N . N - E l i m n (An:N. (plus n m : N)) (return m) 

(Afc:N. Ai / i : (plus A: m : N). return s(call (plus k m) ih)) 
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The labelling gives us the meaning of each inductive hypothesis; the call (plus k m) ih 
says that the use of ih represents a call of plus m. I f that is what i t represents, why the 

indirection? Once termination (via a primitive recursive definition) has been established 

and the term typechecked, we can replace the appeal to the inductive hypothesis wi th its 

actual meaning. The transformation is simple, and shown in figure 6.1. 

call (/) <1 caU (/) / 

Figure 6.1: Rewriting a term with labelled type 

The call and return are retained by this transformation to preserve type correctness, but 

we no longer use the inductive hypothesis. The elaborated plus becomes: 

plus : Vn, m : N . (plus n m : N) 
plus H^-An, m : N . N - E l i m n (An:N. (plus n m : N)) (return m) 

(AA; :N . Az/i: (plus A; m : N). return s(call (plus k m) (plus fc m))) 

Since there is now no use of the inductive hypothesis in this function, by the transfor­

mation of the previous section we can use N-Case instead of N -E l im: 

plus : Vn, m : N . (plus n m : N) 

plus An, m: N. N-Case n (An: N. (plus n m : N)) (return m) 

(A/c:N. return s(call (plus k m) (plus k m))) 

The typing rules of the labelling operation are such that a well-typed term results from 

dropping the labelling annotations (Z : T) and call and return expressions, by the substi­

tutions in figure 6.2 (which must all be apphed together to preserve type correctness): 

=> T 
=^ t 

Jreturn <| = t 

Figure 6.2: Removing labels 

Applying these substitutions to the elaborated plus gives: 

plus : V n , m : N . N 

plus i-> An, m : N. N -Case n (An: N . N) n 

{Xk:N. s(plusA; m)) 

By doing these transformations we recover the pattern matching behaviour in the elab­

orated program which was specified in the original E P I G R A M program. In O L E G [McBOOa], 

tactics exist to create a correct pattern matching program fi:om the elaborated definition. 

This is a sUghtly different approach; here we recover the compiled pattern matching program 

directly. D-Case is after all merely a higher level abstraction of applying the case operator 

to an element of D s. The approach we take here has two advantages: 
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• We still recover a compiled form for programs which do not have directly compilable 

pattern matching behaviour, such as those built by user defined elimination rules or 

views. We cannot, for example, compile the pattern matching form of compare on 

page 50 because the patterns on the left hand side are arbitrary terms rather than 

constructor forms. 

o We do not have to take an additional step of compiling the resulting pattern match­

ing definitions into simple case expressions; to do this would duphcate work, having 

compiled elimination rules and built the program in terms of those ehmination rules. 

W i t h the current implementation of elimination rules, this transformation is always ben­

eficial as i t removes a layer of indirection. In future, however, we may need to be more 

careful i f we choose an optimised iterative or tail-recursive implementation of an elimination 

rule (as suggested for N - E l i m on page 153) since this transformation would supersede the 

optimised elimination rule. 

6.1,4 Optimising D-Rec 

Recall from section 2.2.6 how structurally recursive functions are built by memoising recur­

sive calls. The example given was the Fibonacci function: 

let n : N 
^ f ibn : N 

f i b n <= rec n . case n 

f i b 0 1-^0 

fib (s k) 4= case k 

fib (sO) sO 

fib (s (s k')) ^ plus (fib k') (fib (s k')) 

Elaboration of this gives rise to a frightening looking term, which is no less frightening (but 

perhaps more informative) for the insertion of labels into the types: 

fibH-» An :N .N -Recn(Aa ; :N . (fibx : N)) 

(An ' :N.N -Casen'(Aa ; :N. (N-Memo(A2/:N. (flby : N ) ) x ) - * ( f i b x : N)) 

(Au: True, return sO) 

(Afc:N.N-CaseA;(Ax:N. (N-Memo(At / :N. ( f i b i / : N ) ) s x ) - > ( f l b x : N)) 

(Ax:(N-Memo(A2/:N. (fibt/ : N)) sO). return sO) 

(Afc ;N .AM : (N,(N,N -Memo(Ax :N. (fibx : N)) fc)). 

return plus (call (fib s k) (fst M ) ) (call (fib k) (fst (snd M) ) ) ) ) ) 

There are two questions to answer about optimisations of D-Rec: 

1. Can we remove the outermost call to D-Rec? 

2. Even if we can, do we want to? 
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D-Rec is used for memoising the results of recursive calls; the purpose of this is primarily 

to make recursive calls on structurally smaller values accessible. Given the labels on terms 

identifying the meaning of lookups in the memo structure (such as in the call on the last line 

of the fib function above) is the memo structure now necessary? Let us see what happens 

to fib after applying the call rewriting transformation and dropping labels: 

fib ^ An :N .N -Recn(An :N .N) 

(An: N. N-Case n (An: N. (N -Memo (An: N. N) n) -> N) 
(Au:True. sO) 
(Afc: N. N-Case (An: N. (N -Memo (An: N. N) s n) N) 

{Xx: (N -Memo (An: N. N) sO. sO)) 
(Ait:N. A M : (N, (N, N -Memo (An:N. N) ifc)). 

plus (fib (s k)) (fib jfc)))) 

The memo structure M is no longer used in the recursive case, which suggests that we 

can drop the outermost N-Rec and indeed, if we do, the function behaves in the same way 

as our original elaborated definition: 

fib ^ An :N.N -Casen(An :N.N) 
(sO) 

(Afc :N. N-Case fc (An :N. N) 
(sO) 
(AA;:N. 

plus (fib (s k)) (fib k))) 

Unfortunately, doing this "optimisation" has in fact made the function less efficient; 

previously, the memoisation of recursive calls also ensured that no call to fib was computed 

twice. Here, however, in the recursive case, fib k is computed twice — once directly, and 

once as a recursive call of fib (s fc). 

The answer to the first question is yes — we can remove the outermost D-Rec by re­

placing lookups in the memo structure with the appropriate recursive call. In this case, 

the answer to the second question is no — it results in a less efficient definition. Perhaps, 

however, in cases where only one recursive call is made in each branch of the function, this 

transformation is worthwhile as the benefit of memoisation is Umited to showing the function 

is structurally recursive. 

We are now in a position to compile definitions efficiently into their RunTT representa­

tion. A further transformation phase is applied to RunTT, which is the subject of the next 

section. 
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6.2 Optimisations in RunTT 
6.2.1 Inlining 

The inlining transformation expands function definitions in-place; instead of caUing the 

function at run-time, we replace the call wi th the body of the function at compile-time. We 

can not always be certain that inlining is an optimisation; [PM02] details many of the issues 

involved. Whether to inline a function depends on several factors such as the size of the 

function body (small functions are good candidates), the number of times it is applied (a 

function called few times is a good candidate) and whether we can be certain that inlining 

wi l l not cause dupHcation of work. 

Inlining of a suitable function f is given by the transformation in figure 6.3. Note that 

the instances of / which are inlined are ful ly applied; although this may rule out some useful 

optimisations, we do this because the RunTT syntax allows A only at the top level. 

f Xx.e 
| f a] =^ e[a/x] where LENGTH(a) = ARlTY(f) 

Figure 6.3: The inlining transformation 

Why do we do the inlining at the RunTT level rather than earlier, in ExTT? The reason 

is that inlining in RunTT allows inlining of D-Case operators. In ExTT, we cannot inline 

elimination rules since their form (direct definition of t-reductions) is incompatible with the 

form of user defined functions. 

Example — Inlining Case Operators 

Following on from the rewriting of labeUed types earUer, we observe that D-Case operators 

are good candidates for inlining — they are not recursive, and can often be syntactically 

smaller than the call. This removes the final layer of indirection introduced by using D-El im 
operators in the first place. 

After the transformations on ExTT which reduce plus to an appUcation of N-Case wi th 

direct recursion, the supercombinators generated for plus are: 

plus t-> An; m : N . N -Case n p lus l m (plus2 n) 

plus l ^ A n : N . N 

plus2 An; fc:N. s(plus n fc) 
N-Case An; P; mn; rrw. case n of 

0() mo 

s(A;) rrisk 

plus l , plus2 and N -Case are all suitable candidates for inlining. A t this stage, p lus l 

and plus2 are not fully applied in plus so they cannot be inlined, but N -Case can, which 
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gives the following: 

plus H-+ An; m : N . case n of 

0() m 

s{k) ^ plus2 k m 

plus l A n : N . N 

plus2 1-^ An; fc:N. s(plus n fc) 

Now, plus2 is fully applied so can be inlined, and since P was not used by N-Case, the 

use of p lus l drops out of the program. This gives the following single definition for plus: 

plus H-» An; m : N . case n of 

0() ^ m 

s{k) s(plus k m) 

So plus, defined by an elimination rule, is ultimately transformed to a directly recursive 

function implemented by case analysis, which is the supercombinator definition we might 

expect if plus had been defined by pattern matching in the first place. 

Another Example — flatten 

plus is a straightforward example of this process, but perhaps an unrealistic one since we 

have better ways of optimising this function using the GMP transformation of Chapter 5. 

Let us examine how the same process apphes to the flatten function over a user defined 

structure, a binary tree. Let us first look at the data structure, and the high level definition 

of the function. 

We choose to define trees with values stored only at the leaves: 

A : • data Tree A 
a : A I : Tree ^ r : Tree ^ 

Leaf a : Tree A Node I r : Tree A 

Flattening a tree into a Ust involves creating a Ust of one item, in the Leaf case, and 

appending the result of recursive calls on the left and right trees in the Node case. 

let t : Tree 4 flatten t <i= Tree-Elim t 
— flatten t : List A 

flatten (Leaf a) i—> cons a nil 
flatten (Node / r) i—> append (flatten I) (flatten r) 

This definition elaborates to the following, based on Tree-Elim, wi th the implicit argument 

A to flatten made explicit, and labels placed on the terms: 

flatten >-> Ai4:*. At :Tree ^4. 

Tree-Elim t {Xt: Tree A. (flatten A t : List A)) 
( A a : ^ . return (cons a nil)) 
(AZ:Tree ^ .AZi / i : (flatten ^ / : List^) . 
Ar:Tree i4. A n / i : (flatten i4 r : List^l). 

return (append (call (flatten A I) lih) (call (flatten A r) rih))) 
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Rewriting in ExTT replaces the inductive hypotheses lih and rih wi th the recursive calls 

they represent, flatten 4̂ Z and flatten r . Now the caU to Tree-Elim can be replaced with 

a call to Tree-Case: 

flatten H-> Ayl:^^^. Ai :Tree ̂ 4. 

Tree-Case t (At:Tree A. List .4) 

(Ao: i4. cons a nil) 

(A/: Tree A. Xr: Tree A. 

(append (flatten A I) (flatten A r))) 

In the translation to RunTT the call to Tree-Case can be inlined, resulting in the following 

supercombinator definition of flatten (note that the type labels, A, are removed from the 

structure by forcing): 

flatten H-> XA; t. case t of 

Leaf(a) ^ cons(a, nil()) 

Node(/, r) append (flatten A I) (flatten A r) 

6.2.2 Unused Argument Removal 
An apparently t r ivial but nevertheless important optimisation is the removal of arguments 

which are unused in a supercombinator body, by examining their sjoitactic occurrence. In 

simply typed languages, such a transformation is unUkely to have much of an effect, since all 

arguments are there because the programmer has put them there. W i t h E P I G R A M ' S implicit 

arguments, sometimes arguments are inserted into elaborated terms only for typechecking. 

This is particularly likely when programming wi th inductive families — an index to a family 

must also be passed as an (often imphcit) argument to a function over the family, whether 

needed or not by that function. 

An example is the flatten function in the previous section. The A argument is unused, 

although i t must be there for the function to typecheck. A t run-time, this argument can 

clearly be discarded. 

T h e Argument Removal Transformation 

Consider a supercombinator f with arguments x. 

f Af . e 

The body of f may make any number of direct recursive calls to f, wi th arguments yj. 
Then each argument in x may be classified as follows: 

• Passive: Either Xj does not appear in e at all, or i t is used only as (or as part of) the 

i t h argument to any fully applied recursive call of f. 

• Active: Xi appears anywhere else in e — either not as an argument to a recursive call 

of f, or as part of the jth argument, where j ^ i. 
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A passive argument need not be passed to f, for obvious reasons — f wi l l never examine 

i t . In a base case, a passive argument oci is unused since i t appears only as the ith argument 

to recursive calls. In a recursive case, Xj is unused if i t is unused in the recursive call; i t 

must be unused, by induction. 

So, sphtting the arguments x into Xa (the active arguments) and Xp (the passive argu­

ments), we make the removal optimisation as in figure 6.4. Note that the substitution of 

f for f is also made in the body of f so that unused arguments to recursive calls are also 

substituted. 

f ^ Xxa. e 
f ^ , Xp. f X(i 

I f X a 

Figure 6.4: The argument removal transformation 

Why build a new f rather than simply modifying f? The problem is that a higher 

order function may call f, and we have changed the type of f by removing arguments. 

Such a function cannot know until run-time which function to call and therefore i t cannot 

know which arguments have been dropped from the function. Therefore, only ful ly applied 

instances of f are transformed. This is a technique also used by [PL91a] to exploit strictness 

analysis by changing boxed values to unboxed values without changing the type of a function, 

f is a wrapper function for f , which is the worker. 

Since the argument removal optimisation removes some type information from defini­

tions, i t is one of the last transformations to be appHed — after all type preserving optimi­

sations have been applied. 

Nested Unused Arguments 

I f an argument Oi is used in f only in a call to g, but is unused in g, what happens to in 

f ? The design of the system is that a declaration gets elaborated, optimised and translated 

to G-code immediately — as a result, when f is declared, we already have the substitutions 

generated firom the declaration of g. Applying these substitutions to f before looking for 

new transformations means that the argument Oi is also identified as unused in f. 

Argument Removal and Detagging 

This optimisation does raise a question about the detagging transformation from Chapter 

4. The compilation of the Vect append function illustrates the problem: 

xs : Vect An ys : Vect A m 
— append xs ys : Vect A (plus n m) 

append e ys ys 

append (x::xs) ys i-> x::(append xs ys) 
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Although not explicitly stated, or used, n and m must be arguments to the elaborated 
append for the term to typecheck. A t run-time, they are never explicitly used — this causes 
meaningless extra stack push and pop instructions in the G-code, so can these arguments 
simply be dropped? Unfortunately, i t is not so simple. Consider the elaborated append, 
after the detagging optimisation: 

append A>1:*. An, m : N . AXS: Vect ^ n. A^/S : Vect J4 m. 

Vect-Elim n xs 

{\n:N. Xxs-.Vect A n. {append An m xs ys : Vect .4 (plus n m))) 

return ys 

{Xk:N. Xx:A.Xxs:\/ectAk. 

Xih: (append A k m xs ys : Vect A (plus k m)). 

return {::} {̂ 4} {fc} x (call (append A k m xs ys) ih)) 

After the transformations of the previous section (making recursion direct, and inhning) 

as well as detagging, we get the following supercombinator for append: 

append i—> XA-, n; m; xs\ ys. case n of 

0 ys 

s(fc) ::((xs!0), (append A k m (xs!l) ys)) 

We need to keep n, as we establish which constructor of Vect was used by examining n. 

We can still drop two arguments from append however {A and m are both passive, since 

they are used only in the recursive call), and get the following substitution: 

append' i—* An; xs\ ys. case n of 

0 ys 

s(fc) --^ ::((xs!0), (append' fc (xs!l) ys)) 

fappend A nmxs ys^ =^ append' n xs ys 

I f we do not allow detagging, and only apply the forcing optimisation, we get the following 

supercombinator which discriminates on the constructors of Vect: 

append A.<4; n; m; xs; ys. case xs of 

e ys 

•.•.{a,v) :: (a, (append y4 (n!0) m w j/s)) 

Here, clearly A, n and m are passive as they are only used in the recursive call so we can 

build append' by dropping these unused arguments and apply the following substitution: 

append' H-» Xxs: ys. case xs of 

e ys 

•.•.{a,v) :: {a, {append'V ys)) 

[append .4 n m xs ys} append' xs ys 

This is an example of the tradeoffs which have to be made when optimising. Detagging 

reduces the storage requirement of Vect, but we lose this run-time speed optimisation. Since 
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the space optimisation of detagging is small, this is one reason why we restrict detagging to 

those families which are also concretely collapsible. 

Types and Proofs 

A common appUcation of this transformation is to polymorphic functions, that is, those 

which depend on a type. Since there is no casetype construct at present, any argument 

A : • cannot be used. Such arguments wi l l ultimately be identified as unused and hence 

dropped from run-time code. 

Another consideration is what happens to proofs which cannot be collapsed. Dependently 

typed programs may carry proofs of properties which are verified by the typechecker, but 

never used at run-time. These are the kind of object which would be in the Prop family 

in C O Q and hence dropped by program extraction. In our system, we identify such objects 

as unused and drop them. This definition of < , for example, is not concretely collapsible, 

because i t is not detaggable: 

, . m, n : N . p : n < m data —b where — m<n : -k leN n : n < n leRp : n<s m 

We may use this relation to verify properties of functions. We can define minus by 

induction over the numbers, using the proof to ensure that no invalid call of minus can be 

made: 

n,m :N P : m ^ n ^ j ^ ^ ^ ^ 0 p ^ n 
— minus nm p : N 

minus n{sm) p i-> s (minus n m (le.trans_S p)) 

A small amount of theorem proving is necessary to create the third argument to the 

recursive call of minus. le_trans-S is a lemma which proves s n < m —> n<m. When 

elaborated and compiled to an optimised supercombinator, we get the following: 

minus i—> An; m; p. case m of 

0 n 

s{k) s(minus n k (le.trans-S p)) 

The 3rd argument, p, is passive; i t only appears as part of the 3rd argument to the 

recursive call. As such, i t can be removed. 

Higher Order Functions 

A limitation of this transformation can arise wi th the use of higher order functions. For 

example, consider the foOowing function vmap which maps a function across a vector. 

, . f : A ^ B xs : Vect An , ^ ,. let ^ 7 o — r n vmap f xs <= elim xs — vmap / xs : Vect B n ^' 
vmap / e H-> e 

vmap / {x::xs) H-» (/ i)::(vmap / xs) 
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We may wish to map a function with unused arguments across this vector, such as the 

following function mkPair which pairs a value of any type wi th itself. In its elaborated 

form, there is an unused argument A giving the type of the value. 

mkPair :\A X A) " ikPair a ^ (a, a) 

mkPair XA; a. (a, a)^ 

When passed to the higher order function vmap, for example to map across a vector 

xs : Vect N n, the elaborated ExTT is as follows: 

vmap N ( N X N ) n (mkPair N ) xs 

Since mkPair is not ful ly applied here, we cannot apply the argument removal trans­

formation, and must instead call the wrapper function. One possible way to avoid this is to 

77-expand the application and A-lift the resulting abstraction. I t is not obvious whether this 

additional step, creating an extra supercombinator, is beneficial, and further experimenta­

tion with real E P I G R A M programs wil l be necessary to provide useful data for comparison. 

6.2.3 Identifying No-Operations 

Consider the foUowing function, which weakens an element of a finite set by l i f t ing i t into 

the next biggest set: 

let , ^ ••'^'"i? , — ^ weaken fO ^ fO 
— weaken i : Fm (s n) 

weaken (fs i) K-> fs (weaken i) 

This function doesn't appear to be doing much — in fact, most of the activity is implicit; 

in the fO case the return value is in the next higher set but we do not see this due to the 

implicit argument. To clarify what is happening, let us look at the elaboration of weaken 

t o T T : 

weaken i—> A n : N . Ai:Fin n. Fin-Elim i (An :N . Az:Fin n. (weaken n i : Fin (s n))) 

(An : N . return (fO (s n))) 

( A n : N . A i : Fin n. A«/i: (weaken n i : Fin (sn)) . 

return fs (s n) (call (weaken n i) ih)) 

We now see explicitly that the function increments the index of the finite set. Fin has 

forceable arguments, however, so after the forcing optimisation, we have the following ExTT 

definition: 

weaken 1-^ A n : N . A i : Fin n. Fln-Elim i (An :N . Ai:Fin n. (weaken n i : Fin (s n))) 

(An : N . return (fO {s n})) 

(An : N . At : Fin n. Ai / i : (weaken n i : Fin (sn)) . 

return fs {s n} (call (weaken n i) ih)) 

The indices which are incremented (which is, of course, the purpose of this function) 

have been deleted! We might begin to get suspicious of the purpose and run-time cost 
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of this function, even more so when we examine the supercombinator which results after 
elimination unfolding, inlining and argument removal: 

weaken \—* Xi. case i of 

fO() fO() 

fs( j ' ) fs(weaken i') 

We have a function which does nothing, recursively. Clearly, we would like to avoid 

running this function as i t has existed only to manage indices for typechecking. The RunTT 

transformation we would like is: 

|weaken| = > id 

(where id H-> Ax. x and can itself be inlined.) 

How can we estabhsh systematically whether a RunTT function is equivalent to the 

identity function? A function f of a family D wi th n constructors Cj o; where a are non-

recursive arguments and y are recursive arguments is effectively a no-operation i f i t has the 

following form: 

f H-> Ax. case x of 

ci(a,y) c i (a , f i / i i , . . . , f j / im) 

Cn{a,y} Cn{a,iyni,.-.,iynm) 

The property that a function of this form is effectively the identity function can be 

shown as follows. Where the input to f is a constructor Cj with no recursive arguments, 

then f Ci(a) = Ci(a) , and so for all base cases, the function is equivalent to the identity 

function. Now, where the input is a constructor Ci wi th recursive arguments, we have 

f Ciioi, yi) i-> C i ( a , f 2/ii . . . f yim) 

We must show that 

C i ( a , f yii...f Vim) = Ci{ai,yi) 

To show this, i t suffices to show that f yij = yij for all This is exactly what we get 

from the inductive hypothesis, so f x = x for all x. 

This is another important optimisation in a dependently typed setting which we would 

not expect to have to deal with in a simply typed setting. Such "invariant management" 

functions may often be used in typechecking and i t is clearly desirable that we do not get a 

corresponding run-time effect of taking structures apart only to put them^back together again 

immediately. Note that this transformation does not consider the possibihty of mutually 

recursive no-operations. In such a case, a more sophisticated analysis is required. 

6.2.4 Rewriting of False-Elim 

So far we have been examining transformations which exist primarily to catch up with the 

position where we can start optimising simply typed programs. This in itself is a good thing; 
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several well understood optimisations are now open to us such as strictness analysis, tail 

recursion optimisation, deforestation, several lower level code transformations from [San95] 

and so on. But now, on top of these, we finally see an example of how dependent types can 

further optimise programs. 

The empty type False, is declared as follows: 

data 1̂ -1 where 
False : * • 

There are no constructors (i.e., no canonical forms) and, correspondingly, the elimination 

rule has no t-schemes and hence no reduction behaviour. A t run-time, where elimination 

rules are only executed when applied to canonical forms, we can be sure that False-Elim 
wil l never be executed, because False has no canonical forms. What are the consequences 

of this? 

Recall that at run-time all arguments to functions must be reducible to a canonical form. 

Since False has no canonical forms, we can be sure that any function taking an argument 

of type False (or indeed any type with no constructors) wi l l never be executed. Also, a 

function which returns an instance of False can never produce such an instance so i t , too, 

wi l l never be executed. We introduce a new constant. Impossible into RunTT to indicate 

that an expression cannot be evaluated. Compilation of this constant produces code which 

places a dummy value on the stack; this value cannot be examined since i t has no canonical 

forms, nor can we generate any code which attempts to examine i t . 

£ |Impossiblel r n =J> ALLOC 
C[Impossible! r n ALLOC 

Figure 6.5: Compilation of Impossible 

The ALLOC instruction (figure 6 .6 ) pushes a dummy value, HOLE, onto the stack. In 

practice, we never expect to build such a value in a lazy setting. ALLOC was used in 

Johnsson's original G-machine to allocate space for the results of letrec expressions. 

(ALLOC; c, S, V, G, E, D) (c, n ' .5, V, G\n' = HOLE], E, D) 

Figure 6.6: Operational semantics of ALLOC 

Given a function 

f Aa. e 

I f Oj : False for any i , or / : 'ia:A. False, then we modify the definition of f to 

f Aa. Impossible 
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This transformation, impossible expression elimination, is defined as in figure 6.7. The 

condition that T is a type wi th no elements may not be decidable, therefore in practice we 

take as the condition that T is a family wi th no constructors. 

Such functions obviously have all arguments in a unused, and can be inlined. This is 

one example of a situation where retaining the types on supercombinators is convenient. 

I t is preferable to introduce Impossible as a keyword in RunTT rather than ExTT since 

introducing i t in ExTT would cause some terms not to be typecheckable. 

|Aa. e| = ^ A a. Impossible 
if 3 i such that : T 
where T is a type with no elements. 

Figure 6.7: Impossible expression efimination 

An obvious example of a function which takes an argument of type False is False-Elim. 
Recall from Section 4.4.2 the difficulty of compihng the t-schemes for Faise-Elim — by this 

transformation however, the supercombinator built for False-Elim is straightforward: 

False-Elim H-> Xx; P. Impossible 

When combined with other transformations, particularly inlining, this is a powerful 

optimisation technique. We wi l l see shortly in section 6.2.6 how marking of impossible to 

execute functions leads to the removal of impossible case branches. 

This transformation relies on the strong normalisation property of TT; there is no ± in 

E P I G R A M . I f we were to remove the strong normaUsation restriction from T T and allow 

either or both of general recursion and partial function definitions, we would be able to 

create a value of type False, which would invalidate this transformation. One way to do this 

is by defining a general recursive function absurd as follows: 

let J F ~ i — absurd absurd 
— absurd : False 

Another way is to use a partial function definition, and take the head of an empty Ust: 

let headl^^-^A ^^^'^ (cons a; xs) i-» x 

let J p-j— absurd head nil 
absurd : False 

Since TT terms are strongly normalising, however, we need not worry about this and 

can be certain that an element of False cannot be constructed. 

6.2.5 Distributing Applications of case 

I f the result of a case expression is applied to some expression x, then x wi l l be applied to 

whatever the result of the case application is. In this situation, we move the apphcation 

to each case branch (figure 6 . 8 ) . The advantage of this transformation is that i t opens up 
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possible inlining in each case branch by ensuring that each branch is as fully applied as 

possible. Inhning is important here since it can help to explicitly identify impossible cases. 

|(case e of =^ case e of 
ci ai yi ei Ci ai yi eix 

Cn Q71 Vn 

Figure 6.8: Distributing Applications 

6.2.6 Impossible Case Deletion 

If a case branch leads to impossible to execute code, that case branch can be deleted; there 

is no point in generating code for an error condition since we know error conditions can 

never be reached. Figure 6.9 shows the transformation. 

[case e of => case e of 
ci ai yi ci Si yi ei 

U Oi yi Impossible Cn Sn ? n Sn 

(hi Vn 

Figure 6.9: Impossible Case Deletion 

The possibility of this transformation arises after inlining of functions which cannot be 

executed either due to returning False or taking an argument of type False. 

case Collapsing 

Santos [San95] lists several transformations which eliminate case expressions. These are: 

• C£ise reduction, where the case expression scrutinises a constructor application, a 

variable which has already been scrutinised, or a variable let bound to a constructor 

application. 

• case elimination, which eliminates case expressions on already evaluated unboxed 

values. Such case expressions exist to evaluate the unboxed value. 

• Ccise merging, which combines two case expressions which scrutinise the same vari­

able. 

• case error, which reduces case ± of . . . to ± . 
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• default binding elimination, which removes a default binding if the variable it 

binds is unused. 

• dead alternative elimination, which removes alternatives which cannot apply, given 
previous case expressions. This is similar to our impossible case deletion, but is based 
on analysis of code rather than types. 

Many of these also apply in RunTT, but we have another possibility, which arises from the 
fact that _L is not a value in E P I G R A M . If deletion of impossible cases and dead alternative 
ehmination leave only one option, then we no longer need to examine the scrutinee — we 
already know what its value must be! This is only possible in the absence of ±; otherwise, 
± is an element of every type and can always be a possibility during case analysis. 

Excmiple — vTa i l 

Consider again vTai l , where the following simple definition hides an elaborate proof that 
the empty vector case is impossible: 

, V : Vect A (s n) 
— wTallv : Vect ^ n 

vTai l V 4= Vect-Caise v 
vTai l (a:: v) ^ v 

It takes a number of elaboration and transformation steps before we are in a position 
to apply any impossible case deletion at the RunTT level. The details of the elaboration 
and compilation are given in appendix A; here we will only consider the final stages, in two 
settings — firstly, where Vect has had the forcing optimisation only applied (figure 6.10), 
and secondly, where it has had the detagging optimisation apphed (figure 6.11). 

vTai l 1-̂  \A\n\v. case v of 
e() Impossible 
•.-.{x^xs) (̂ '̂1) 

Figure 6.10: vTai l supercombinator for forced Vect 

In the case of forced vectors, the e case branch has been explicitly marked as impossible 
to reach. By impossible case deletion, we can remove the Impossible branch, which results 
in a case expression with only one possibility: 

vTa i l \A\n;v. case v of 

•.•.{x^xs) (w!l) 

This results in a case expression which can be collapsed. We know that the only pos­
sibility is a :: constructor, so we do not even need to check. Note that if we had xs rather 
than (u!l) as the right hand side, we would not be able to collapse the case; we would need 
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to use the case expression to bind xs to the tail of the vector. We only map argument 
projections back to the name of the argument they project if we still have the name bound 
by a case expression after all possible case ehminations have been applied. The resulting 
supercombinators (after removal of unused arguments) are: 

vTai l ' H-> Xv. {v\l) 
vTai l A^; n; v. vTai l ' v 

vTEiil I — > XA;n;v. cases(n) of 
0() Impossible 
s(jfc) {v\l) 

Figure 6.11: vTai l supercombinator for detagged Vect 

In the case of detagged vectors (figure 6 .11) , the scrutinee of the case expression is already 
a canonical form, so case selection can be made at compile-time rather than run-time before 
even examining the contents of each case branch. Again, we end up with: 

vTai l ' Xv. {v\l) 
vTai l XA: n: v. vTai l ' v 

6.2.7 Interaction Between Optimisations 

Several of the optimisations presented here depend on each other — in particular, inlining 
is important to all of them and applying more transformations opens up more possibihty for 
inlining. On definition of a function, after its elaboration to T T , we apply transformations 
in the following order: 

Trcinsformations in ExTT 

• Translate to ExTT firom T T applying the forcing, detagging and collapsing markings 
from Chapter 4 and the C M P transformation from Chapter 5. 

• Apply /3-reductions. We do this simple optimisation first as it can arise from optimi­
sations already made (forcing in particular) and can open up the possibility of further 
optimisations. 

• Rewrite labelled types and drop labelling annotations. 

• Unfold D-EI im rules to D-Ceise. This is made possible by the removal of induction 

hypotheses in the previous stage. 

• Translate to RunTT. 
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Transformations in RunTT 

• Inline D-Case operators. Later optimisations are applied to case expressions directly 
and have a different effect depending on the function which uses the case operator, so 
inlining these early gives the most benefit. 

• Apply other inlining transformations generated from previous function definitions. 

• Distribute case applications, to create opportunities for inlining and identification of 
impossible cases. 

• Identify expressions which cannot be evaluated due to taking or returning a value in 
a type with no constructors. 

• Apply inlining again, since the last stage may open up more inlinable applications. 

• Delete impossible cases which may have arisen from the previous inlining stage. 

• Collapse case expressions where possible. These may arise from the previous stage 

where all but one case branches are impossible. 

• Apply inlining again, since new infining rules may have been generated and new op­
portunities may have arisen from case collapsing. 

• Remove unused arguments. 

• Identify No-operations. This can be applied at any time but it makes sense to wait 
until as many removals as possible have been made since more no-operations may arise 
as a result. 

• Apply a final inlining phase, in particular to inline any applications of id generated 
by the previous stage. 

It is not clear, however, what the optimal ordering of transformations is, or even if 
such an ordering exists. Since many transformations can expose possibilities for further 
transformations, it may even be preferable to apply groups of transformations iteratively, as 
is the case with GHC's rewrite rules. 

6.3 More Examples 

Finally, let us look at how these transformations affect the compilation of some functions we 
have already seen in a higher level form. First, we look at the RunTT code for the collapsing 
of the domain predicate for quicksort. We then look at projection; firstly, projection of a 
value from a vector, then the corresponding projection from a value environment indexed 
over a vector as in the interpreter example in section 4.6. 
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6.3.1 Collapsing a domain predicate — quicksort 

We saw in Chapter 4 how domain predicates for proving termination, such as that for 

quicksort, are collapsible, so that the resulting code has the intended operational semantics 

of the original program, quicksort is defined by means of a view, hence by induction over 

a proof of the qsAcc predicate: 

data I - ListN 
qsAcc/ : • 

where qsNil : qsAcc nil 

qsl : qsAcc (filter (< x) xs) qsr : qsAcc (filter (> x) xs) 
qsCons qsl qsr : qsAcc (cons x xs) 

quicksort xs <= view al lQsAcc xs 

quicksort nil nil 

quicksort (cons x xs) 

H^- quicksort (filter (< x) xs) ++ cons x (quicksort (filter (> x) xs)) 

Since qsAcc is collapsible (by being indexed over the List being sorted), its elimination 

rule is defined by case analysis on the List. The RunTT supercombinator for quicksort is 

simphfied by the following transformations: 

• Collapsing of qsAcc and forcing of List (which removes the element type from the 

structure). 

• Unfolding the view rule qsAcc-View to qsAcc-Case. 

• Inlining qsAcc-Case to a direct case expression on the List index. 

The resulting supercombinator is given in figure 6.12. This version of quicksort that we 

compile is therefore exactly the version we would write in a high level language if we did not 

have to show termination. The advantage is that we know this general recursive definition 

must terminate. 

quicksort H XI. case I of 
nil() nil{) 
cons(2;,a;s) ^ quicksort (filter (< a;) xs) ++ 

cons(x, quicksort (filter (> x) xs)) 

Figure 6.12: Supercombinator definition of quicksort 

6.3.2 Projection from a vector — lookup 

The lookup function projects the ith value from a vector. It does not need to check for an 

empty vector, because its type specifies that the input cannot be an empty vector and there 

can be no overflow. This should be reflected in the compiled code. 
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lookup (fs i) (a :: u) t—> lookup i v 

The RunTT supercombinator for lookup is simplified by the following transformations: 

• Detagging of Vect and forcing of Fin. 

Unfolding of the elimination rule Fin-Elim to Fin-Case. 

• Inlining Fin-Case. 

• Elimination of the impossible case of e. 

Dropping the unused arguments representing the indices of the Fin and Vect. 

The resulting supercombinator is as follows: 

lookup t-> Ai; v. case i of 
fO() v\0 
fs{x) lookup X {v\l) 

Figure 6.13: Supercombinator definition of lookup 

This supercombinator reflects the fact that no run-time testing is required on the length 

of the vector — to project values out and make the recursive calls, we simply assume that 

the vector must be non-empty and project out the relevant argument. Figure 6.14 shows 

the compiled G-code for the lookup function. 

5 | A J ; t;. case i of 
fO() v\0 
fs(x) lookup X (v!l)l 

PUSH 1; EVAL; 
CASEJUMP(fO,/i)(fs,/2); 
L A B E L / i ; 

PUSH 2; EVAL; PROJ 0; MOVE 1; DISCARD 1; JUMP/; 
L A B E L / i ; 

SPLIT 1; PUSHFUN lookup; PUSH 0; MKAP; 
PUSH 2; PROJ 1; MKAP; EVAL; 
MOVE 2; DISCARD 2; 

LABEL I; 

Figure 6.14: Compiled G-code for lookup 
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6.3.3 Projection from an environment — envLookup 

In the implementation of the well-typed interpreter in section 4.6, we used the envLookup 

function to project a value from the environment. This function was defined as follows: 

jgj. V : Var ei T ve : ValEnv e 
— envLookup we : T 

envLookup stop (extend tr)i-*t 
envLookup (pop v) (extend f r) i—» envLookup v r 

Recall that the value environment is indexed over a type environment (represented by 
a Vect of types) to ensure that values of the correct type are projected out of the value 
environment. Again, the type specifies that the environment cannot be empty. 

The RunTT supercombinator for envLookup is simplified by the following transforma­
tions: 

• Detagging of ValEnv, forcing of Fin and collapsing of Var such that constructor choice 
is made by the constructor of Fin. 

• Unfolding of the elimination rule Var-Elim to Var-Case. 

• Inlining of Var-Case to a direct case expression on its Fin index. 

• Elimination of the impossible case of empty environments. 

• Dropping the unused arguments representing the indices of the Var, Fin and type and 
value environments. 

The resulting supercombinator is given in figure 6.15. 

envLookup y--> \i\ ve. case i of 
fO{) ve\Q 
H{x) envLookup x {veW) 

Figure 6.15: Supercombinator definition of envLookup 

Perhaps unsurprisingly, the resulting code has the same shape as the code for lookup; 

the only difference in the high level definition is the introduction of several invariants to 

check that the environments are synchronised. Removal of the invariants leads to code of 

the same form. 

Correspondingly, the G-code for envLookup is almost identical to that for lookup; the 

only difference is in the recursive call (which is to envLookup rather than lookup). Figure 

6.16 shows the G-code for envLookup. 
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cSjAi; ve. case i of 
fO() ve\0 
fs{x) envLookup a; (we!l)| 

= ^ PUSH 1; EVAL; 
CASEJUMP(fO,/i)(fs,/2); 
L A B E L / i ; 

PUSH 2; EVAL; PROJ 0; MOVE 1; DISCARD 1; JUMP i; 
L A B E L h ; 

SPLIT 1; PUSHFUN envLookup; PUSHO; MKAP; 
PUSH 2; P R O J l ; MKAP; EVAL; 
MOVE 2; DISCARD 2; 

LABEL I; 

Figure 6.16: Compiled G-code for envLookup 

6.4 Summary 

In E P I G R A M , we build function definitions by elimination rules. This has several advantages 

— it gives a uniform way to build functions, ensures that functions are terminating by 

abstracting recursive calls and we have also seen how we can use ehmination rules to remove 

duphcated data. However, they do add an extra level of abstraction; when we have finished 

with the elimination rule, we would like to remove that level of abstraction and do recursion 

directly. In this chapter, we have seen a technique for doing so, using labelled types to 

replace inductive hypotheses with direct recursive calls. 

Having removed this level of abstraction, we are now in a position to apply other well-

known optimisation techniques. Two very simple techniques are /3-reduction and inUning. 

While they do not in themselves produce a great improvement, their main purpose is to 

expose other optimisation opportunities. We have seen several examples in this chapter, in 

particular exposing impossible cases for removal and in extreme cases, such as with vTai l to 

remove the case expression completely since only one branch is possible. This ability to do 

case collapsing when only one case is valid arises from the type system, because canonical 

values cannot be ± . 

Some other optimisations are necessitated by using dependent types, such as the removal 

of identity functions like weaken. Dropping unused arguments is also more important 

here than in a simply typed language, since several arguments may be added to functions 

imphcitly as the indices of a family. Inductive families are tied to their indices in that they 

are always passed around with their indices. If a particular function does not use the indices, 

we would like to avoid passing them to that function, but D-Case and D-El im need the 

indices to pass through to their methods. By removing D-El im and inlining D-Case, we 

can establish which of the indices are unused and remove them. 

After applying the optimisations in this chapter, we are in a better position than we 

would be with simple types — we can now apply several more well known optimisations 
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for tail recursion, strictness analysis, and so on, but we have already applied additional 
optimisations based on the dependent type system. 



Chapter 7 

Conclusions 

7.1 Contributions 
In this thesis, we have seen several techniques for compiling dependently typed functional 
programs. The style of programming involves extensive use of indices on inductive famihes 
to maintain invariant properties of programs. In the course of developing an implementation 
of the core language, T T , we have made the following observations: 

• Well understood methods, with some minor extensions and modifications, can be used 
to compile a dependently typed programming language based on inductive families. 
We get a compiled implementation of T T by translating to supercombinators and 
G-code. The additional considerations for E P I G R A M are as foUows: 

— We need to take account of functions which accept varying numbers of arguments. 
This is dealt with simply, without needing to modify the lambda lifting process, 
by a supercombinator of fixed arity returning a value of function type if more 
arguments are expected. 

- The compilation scheme needs to take account of type constructors. Since we 
have no means to analyse type constructors at run-time, we need only add one 
node to the 'heap to represent all types. 

• Implementing T T involves the compilation of pattern matching ehmination rules. We 
have observed that to compile such rules involves dealing with repeated arguments, 
arbitrary terms, and the presence of presupposed constructor symbols in patterns. Far 
from making pattern matching more difficult to compile (since we might expect to have 
to perform a run-time conversion check), we can exploit the fact that all ehmination 
rules are well-defined and respectful — we do not have to test repeated arguments for 
convertibihty since we know by typechecking that such arguments must be convertible. 
This analysis of the patterns in an elimination rule leads to three optimisations; forcing, 
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detagging and collapsing. Forcing and detagging remove parts of structures which 
represent information duplicated elsewhere whereas collapsing removes entire data 
structures, meaning that a program can be defined by induction over a proof without 
that proof having to be stored at run-time (domain predicates being an important 
example of this). 

• We have considered the implementation of a numerical data type in E P I G R A M . T O do 
so in core E P I G R A M is possible, however in a practical implementation we would like to 
make use of the arithmetic operations available on the underlying CPU. To this end, 
we have seen transformation rules inserted into the compilation process to translate 
the unary definition of N into a GMP based implementation of big numbers. 

• Impossible case removal is an optimisation which requires complex static analysis in a 
simply typed language, but is easily implementable in our setting by analysis of types 
and appUcation of a set of fairly obvious program transformations. We can remove 
impossible cases by observing that an element of the empty type. False, cannot be 
constructed. 

While there are obvious overheads in a naive implementation of T T , by a series of re­
markably straightforward transformations we can remove these overheads and even achieve 
optimisations which are not obviously available in equivalent simply typed programs. 

7.2 Conclusions 

Programming in E P I G R A M is based on using ehmination rules to implement the pattern 
matching behaviour of functions. While the high level notation involves writing functions in 
pattern matching form, the elaboration of these definitions into T T gives a definition in terms 
of eUmination rules derived from data declarations. Effectively, these ehmination rule based 
definitions correspond to compilation to simple case expressions. An elimination rule D-El im 
and its variants D-Case and D-View are high level abstractions of case expressions and can 
be translated into case expressions by a simple unfolding and inlining transformation, as 
seen in Chapter 6. 

Elimination rules implement pattern matching, and are always used down to the RunTT 
level (at least until D-Case operators are inlined) to abstract pattern matching. Only 
ehmination rules have access to the actual data; as such, we are free to choose any concrete 
representation for a data type provided that: 

• The implementation of its eUmination rule knows how to choose the appropriate t-
scheme based either on its own representation, or the representation of its indices. 

• All other eUmination rules know how to discriminate on its representation, if necessary 
for detagging. 



C H A P T E R 7. C O N C L U S I O N S 194 

• If its elimination rule cannot discriminate on its own representation (as is the case 
with detagged families) then no other ehmination rule will attempt to discriminate on 
its representation. 

While pattern matching and fixpoint equations are often considered better as they are 
more readable for programmers [Coq92], eUmination rules have advantages for implementa­
tion purposes, and so E P I G R A M translates pattern matching definitions into elimination rule 
based definitions. A further advantage is that implementation by elimination rules provides 
an optimisation opportunity; moving all case analysis on a datatype into one place means 
that it is easier to change the representation of that datatype, as we did with the forcing, 
detagging and collapsing optimisations in Chapter 4. 

This is also why we can choose a GMP implementation of N — only N-El im and ehm­
ination rules which discriminate on Ns need to know how to discriminate between 0 and 
n -I- 1. It is conceivable that we could implement other datatypes externally in the same 
way — an implementation of Vect may, for example, simply be an appropriate sized block 
of memory. As long as the ehmination rule knows how to discriminate between empty and 
non-empty Vects (which it can do on length, as we know from detagging) and can extract the 
head and tail of non-empty Vects, then we can choose this implementation. Optimisations 
of data structures arise from analysis of ehmination rules; forcing, detagging, collapsing, 
and the transformation of N to a GMP representation all arise by such an analysis (forcing, 
detagging and collapsing are automatic, the N transformation is not). 

Ultimately, compilation of T T to an executable form is by using standard techniques 
with small modifications. The modifications we made to the G-machine were simply a 
graph node for holding types and argument projection for data structures for use in forced 
and detagged eUmination rules. We also have a modified pattern matching compilation 
scheme for t-schemes; this does not need to be as general as a scheme for pattern matching 
definitions in a simply typed language because of the restriction that t-schemes must be 
respectful and well-defined. In particular, we have no need to check for unmatched patterns; 
there can be no error case. Given the minimal modification made to the G-machine, we can 
expect the same modifications to be apphcable to more sophisticated and efficient run-time 
systems, such as GRIN [BJ96, Boq99] or the STG-machine [Pey92]. 

The removal of domain predicates (such as in showing termination of quicksort) is 
an important application of the collapsing technique. Bove points out [Bov02a] that if we 
suppress the proofe of the domain predicate, we get almost exactly the original algorithm. 
This is certainly true for the purposes of display and understanding, but the usual method 
for suppressing proofs at run-time (by making them part of the logical Prop universe and not 
allowing computation over them) does not work; we need to be able to write the function 
by induction over these proofs. Collapsing provides a method for actually removing proofs 
of the domain predicate at run-time. 

Some of the techniques we have seen can also apply to program extraction, particularly as 
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implemented in CoQ [PM89, Let02]. The difficulty is in translating to the Case/Fix setting, 
although implementing case as an operator D-Case, abstracting away the case analysis as 
with elimination rules, is a possible approach. The current CoQ extraction system does not 
remove forced arguments from inductive families; it is primarily designed for extracting pro­
grams built from a specification which pairs a result with proofs of properties of that result. 
The forcing optimisation would improve code extracted from indexed inductive famihes. 
Collapsing would also be beneficial; extraction aims to remove logical parts from proofs and 
retain computational parts. A collapsible data structure describes some other computation 
(such as the domain predicate for quicksort) and as such is not itself a computational part; 
removing such a structure would be a valuable optimisation for extracted code. 

In imperative and simply typed functional languages, sophisticated techniques are neces­
sary to apply dead code ehmination. In DML, Xi shows how constraint checking can be used 
to eliminate unreachable case branches [Xi99a]. In our setting, with full inductive families, 
the compile-time approach is even simpler — any function which takes an argument of a 
type with no constructors (e.g. False), or returns a value in a type with no constructors, 
can be replaced by the constant Impossible, leading to obvious transformations on RunTT 
case expressions. Values of type False arise fi-om the equational reasoning performed by 
the elaborator on the indices of a family; it is the use of inductive famihes which allows 
impossible cases to be deleted easily. 

Array bounds check elimination is an optimisation which arises from Xi's work [XP98] 
with DML, where expressing constraints on function types results in the removal of bounds 
checking code at run-time. The lookup function over the Vect family demonstrates a similar 
optimisation in an inductive family based language. We never check the vector is empty 
because the type proves that it cannot be. Again, with lookup, the impossible cases of 
the empty vector are eliminated. This kind of optimisation is hkely to come up often in 
practice where a function's domain type covers only part of a family — we see examples in 
the interpreter at the end of Chapter 4 and the implementation of big number arithmetic 
in Chapter 5. 

The techniques described here depend on the knowledge gained from the type system. 
However, many of them also depend on terms being strongly normalising. Without strong 
normahsation, we can build a value of type False (although, obviously, not a canonical value 
since there are none). If we can build an element of the empty type, we have arguments 
which we can pass to False-Elim, which does not have t-schemes. It does, however, allow 
us to build non-canonical but type correct terms which prove something that ought to 
be unprovable. For example, we can use a function absurd : False to build the proof 
of 0 = sn which makes an appHcation of vTai l to an empty fist type correct. Without 
strong normalisation, we must introduce checks into the run-time system which make sure 
a term is canonical before it is reduced; as soon as the possibihty of non-canonical terms 
at run-time is introduced, we lose the possibility of collapsing and impossible case branch 
elimination. Forcing and detagging are still applicable however. Strong normahsation is 
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even more important than we first thought — not only do we need it to ensure decidability 
of typechecking, we also need it to make full use of types in optimisation. 

The real question is whether the inductive family based programming paradigm can 
compete with more mainstream programming paradigms. It is clear that programs based 
on inductive families are safer, in that their type specifies more precisely what the program 
does and hence gives the compiler more possibility of identifying errors at compile-time. 
However, does this lead to slower, more memory-intensive performance at run-time? At 
this stage, our implementation is not mature enough to give sohd results for comparison, 
nor is there a sufficient body of E P I G R A M programs to get real world examples. However, 
the nature of the code which is generated (both at the RunTT level and the compiled G-
machine code) with several run-time checks eliminated and no obvious redundant data or 
arguments suggests that dependently typed programs can have at least as efficient a run­
time performance as simply typed programs; when run-time checks which would otherwise 
be present are ehminated due to the richness of the type system (for example in lookup, 
vTall) this suggests that dependently typed programs can ultimately be more eflacient than 
simply typed programs. 

The techniques described in this thesis show that the style of programming implemented 
by E P I G R A M is a feasible approach to generating safe and efficient code at run-time — ap­
parent overheads are removable by remarkably straightforward analysis of elimination rules 
and further optimisations arise directly from typing constraints. I beheve that dependent 
types will lead to programs which are faster and more easily shown correct than their simply 
typed counterparts. 

7.3 Further Work 

Programming with inductive famiUes as in E P I G R A M is an innovative approach to program­
ming; until [McBOOa] and [MM04b] the main focus of research into dependent types was for 
theorem proving and program verification using systems such as C O Q and L E G O . This the­
sis has presented a first implementation of compilation techniques specifically designed with 
dependently typed programming in mind. As such, it raises several questions and suggests 
many possible directions for future work. We will finish by examining these questions and 
considering how further work may proceed. 

At the time of writing, the E P I G R A M front end is still in development — an early version 
has recently been released, but the majority of the work presented in this thesis was carried 
out in a theorem prover based on T T , using small example programs which were elaborated 
either by hand or with the help of other theorem proving systems. When the system is 
stable, we need to write programs both to demonstrate the advantages of dependently typed 
programming for ensuring program correctness and to have a more reahstic body of programs 
with which to test the run-time efficiency. Many of the examples of this thesis could be 
extended or adapted; in particular it would be interesting to develop a compiler for a subset 
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of HaskeU in E P I G R A M . 

The compilation techniques discussed in this thesis are geared towards compilation of 
code for run-time execution (although we have seen that the forcing and detagging optimi­
sations in particular are also applicable at compile-time). The execution strategy we have 
examined, via RunTT and G-machine code, is designed for run-time execution only. How­
ever, it is also worth considering building abstract machine code for compile-time execution 
by the typechecker, as in [GL02]. This work improves the speed of typechecking in CoQ 
substantiaUy for theorems involving a large amount of computation, although for the CoQ 
standard library the speed is close to the original implementation. Checking the standard 
hbrary requires Uttle computation; we might expect more in programs which use inductive 
famihes heavily and so this approach is worth considering. Gregoire and Leroy implement 
strict evaluation, whereas we have used lazy evaluation for E P I G R A M — their techniques are 
nevertheless adaptable to lazy evaluation by adding a new heap node type to the G-machine 
for free variables. 

E P I G R A M is based on a strongly normaUsing dependent type theory. The strong normal­
isation property presents several possibiUties for optimisation although many of these have 
not yet been investigated. In a strongly normalising language choice of reduction order is 
less important — whatever happens, the program will terminate, although choice of redex 
can determine how quickly reduction reaches a normal form. If terms are not strongly nor­
malising, we have to be careful with optimisation due to the undecidabiUty of the Halting 
Problem; in a Turing complete language we cannot evaluate arbitrary subexpressions at 
compile-time since they might not terminate. A lot of effort can be spent in a compiler for 
a lazy language on finding which subexpressions can be evaluated strictly without causing a 
program to loop forever due to the evaluation of an infinite structure, e.g. [CP85]. However, 
since we have strong normalisation for E P I G R A M , we can safely choose to evaluate any sub-
term strictly. We originally chose lazy evaluation because of the number of values (impUcit 
arguments to both functions and constructors in particular) which exist only for typecheck­
ing and which never need to be evaluated at run-time. In the presence of our optimisations, 
perhaps we should reconsider this choice. There are stiU many problems where lazy eval­
uation is a more attractive choice — search problems are an example, where we build a 
search tree for the whole search space, but only evaluate a small part of this tree — perhaps 
we should default to strict evaluation and limit lazy evaluation to such problems. Robert 
Ennals, in his thesis on adaptive evaluation strategies [Enn03], reaches the conclusion that 
it is better to default to strict evaluation and annotate programs where laziness is required. 
Further investigation is required on the benefits of each evaluation strategy in a strongly 
normaUsing language. 

Many of our optimisations are based on changing the implementation of a family's eUmi­
nation rules so that the family can be stored in a more efficient way. Optimising the elimina­
tion rule has the consequence of optimising programs which elaborate in terms of it. Hence, 
we might not only consider implementations which aUow more eflacient storage of data, but 
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also implementations which traverse data structures in a more efficient manner. We briefly 
considered an iterative implementation of N-El im in Chapter 5; traversal of Lists and Vects 
is also an iterative process (since the structures are linear) so the recursive elimination rules 
we generate are perhaps not the best implementation. Making functions tail-recursive is well 
known as an important optimisation in functional programming [Ste77, LSOO]; we ought to 
look for such an optimisation in compiler generated elimination rules, since these rules form 
the basis of all computation in E P I G R A M . There are several things to consider in making 
elimination rules for Lists and Vects iterative — it may involve changing the order of traver­
sal (right to left, rather than left to right) or even changing the internal representation of 
the data structme. 

There are some Umits to the forcing optimisation as implemented in Chapter 4. Not all 
forceable arguments are concretely forceable, as forcing relies on identifying the inverse of 
injective functions for which we do not have a decision procedure in general. This means that, 
potentially, we are storing duplicate values without being able to tell they are duphcates. 
For example, we could index a binary tree over the number of items stored at the leaves: 

A : -k n : N data 
I ree /i 

.̂ ĵ̂ gj.g g : A I : Tree An r : Tree A m 
Tree A n : -k 

a : A 
Leaf a : Tree A (sO) Node / r : Tree A (plus n m) 

We cannot drop both n and m from the arguments to the Node constructor, but in theory 
we can work out one from the other. In practice, however, the forcing optimisation keeps 
both. Possible solutions involve allowing the user to specify how to compute a value which 
is forceable, but not concretely forceable, or even allowing the user to specify that a value 
is unused (and therefore deletable) at run-time and then checking that it really is unused. 
Similar problems apply to the detagging and collapsing optimisations, where a value may 
be detaggable or collapsible, but not concretely so. Many views are collapsible, for example 
— Compare, however, is a view which is collapsible but not concretely collapsible. 

In Chapter 5 we saw how an external implementation of N could be used to optimise 
arithmetic. We could imagine extending this to give low level implementations of other com­
mon data structures, List and Vect being obvious examples. To do this would be to adopt an 
opposing philosophy to that adopted in the design of the S T G machine; a design philosophy 
of the S T G machine is that user defined types should be efficient enough that the same 
technology can apply to built in types and standard hbrary types (such as lists). However, 
where eflScient external implementations exist it makes sense to make use of them, partic­
ularly when applying the optimisation is a simple matter of replacing the constructors and 
elimination rule with appropriate alternatives. Introducing primitives also encourages us to 
think about unboxing representations; to implement unboxing in polymorphic functions, we 
can consider introducing a type level case construct for run-time type analysis as in [HM95]. 
The overheads of this approach, namely that types (in many cases) need to be stored at 
run-time are potentially outweighed by the benefits of unboxing. Of course, in any case 
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where types remain unused they can still be deleted by the optimisations of Chapter 6. We 

can also use external types in another way, by defining abstract datatypes and an interface 

— e.g., a mathematical program may wish to make use of an external implementation of 

floating point values and associated operations. In this setting, the abstract datatype has no 

constructors or elimination rule, but simply a set of functions (with E P I G R A M types). This 

would require us to think about the structure of a module system for E P I G R A M , perhaps 

following some of the ideas of the recently introduced CoQ module system [Chr04]. 

An effect of the forcing optimisation is that i t changes the shape of a data type [Jay96]. 

The shape of a data type refers to its structure and the "holes" where data can be inserted. 

The forcing optimisation changes Fin to a type wi th a constructor of no arguments, and a 

constructor with a recursive argument. This resulting shape of Fin is the same as that of N; 

i t follows that optimisations which apply to N ought to apply to Fin too — we could, for 

example, reasonably store Fin as a GMP integer. We might even be able to go further wi th 

Fin, since its upper bound is known from the type, and store i t as a machine integer. Note 

also that the value environments in Chapter 4's interpreter have the same shape as Vect after 

forcing and detagging. I f we have a low level implementation of Vect (for example as a block 

of memory), a low level implementation of value environments follows. We saw in Chapter 

6 that this also leads to projection functions for Vect and ValEnv having the same G-code. 

Low level implementation of a lookup function on Vect (for example, by directly inspecting 

the i t h location in a block of memory) ought therefore to lead to a low level implementation 

of a lookup function on value environments. This kind of optimisation should take place at 

the R u n T T level; i f constructors are represented not by their names, but by an index into a 

jump table of t-reductions, such optimisations become easier to identify. 

The implementation described in this thesis uses well understood technology, but wi th 

known hmitations. According to Santos, an implementation based on A-lifting suffers a run­

time penalty compared with one which can deal wi th free variables [San95]. The G-machine 

is perhaps not abstract enough; there are too many low level details, such as the use of a 

stack for local variables, which may not map as directly as we might hope onto a real CPU. 

Such limitations are dealt wi th in recent implementations of GHC [Pey92, PMR99, SMG+99] 

and can be adapted to a dependently typed language in a similar way to the adaptation of 

the G-machine in this thesis. While the results of this thesis show that a dependently typed 

programming language is feasible to implement, we would ultimately like to have a complete 

implementation giving us a real execution platform for comparison with other languages. 



Appendix A 

Compiling vTail 

The vTai l function, which returns the tail of a non-empty vector, has a simple definition 

which hides a complex elaboration: 

let V : Vect A (s n) 
vTai l V : Vect A n 

vTai l V <= case v 

vTail {a::v) >-» v 

By examining the input type Vect A (s n) we see that e is an impossible case, since i t has 

the type Vect ylO which does not convert wi th the input type. This much is clear to see, but 

how does the elaboration mechanism know that vTai l (a::?;) is the only case and how does 

i t produce a vaUd term in T T ? 

A . l vTail elaboration — a first attempt 

A first attempt at elaborating the definition of vTai l into T T meets wi th some difficulties. 

Applying Vect-Case to v immediately and fiUing in the case for a::v, the resulting term, 

still leaving out the implicit arguments A and n: 

vTai l >->• XA:-k. Xn:N. Xv:\/ect A{sn). 
Vect-Case v (Target) 

(Ait:N.Xv: Vect A ifc.Vect A n) (Motive) 

( • : V e c t ^ n ) (Method for e) 

{Xk:N.XA-.i^.Xv.yect A k.v) (Methodfor ::) 

This attempt runs into trouble with the case for e. The metavariable to fill in is the 

method for this case and we have neither a value of type Vect A n nor a means of making 

one. Somehow the information that this case is impossible has been lost — the simple reason 

for this is that the motive of the elimination is not expressive enough. I f we include this 

information in the motive then we retain enough information to fill in the case. 
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To do this, we construct proofs of equalities which must hold and pass them into the 
motive; this is the basis of the elimination w i t h a motive technique [McBOOb]. 

A.2 vTail elaboration — second attempt 

The first step in elaborating vTai l is not to apply the elimination rule, but rather to modify 

the input to be a vector of length k along with a proof that ^ = sn. This proof then becomes 

part of the motive which results in the case for the empty vector being passed a proof that 

0 = sn. This is clearly a contradiction from which we can construct an element of the empty 

type. Prom here, we can prove anything, including an impossible case. 

To introduce the equahty proof we wrap the body of the definition inside a A abstraction 

applied to the proof: 

vTai l XA:-k.\n:N.Xv:\/ectA{sn). 
{Xk:N. Xv:\/ectAk. 
XP-yk:N.Wv:\/ectAk.{sn = k)->\/ectAn. 
P{sn)v (refl (s n))) 
nv{a : Wk-.N.Wv.yectAk.isn = k)-^yectAn) 

The goal we are left wi th on applying this proof, VA;: N. Vv: Vect Ak.{sn = fc) —» Vect A n, 
has the same meaning as the type of vTai l , namely that any vectors to which i t applies 

must be of non zero length, wi th the difference that the proof is passed explicitly, rather 

than implicit in the type. 

We now define the helper function, vTai lAux. 

v l ^ i l A u x : yn:N.VA:*.\fk:N.\/v:yectAk.{sn = fc)-> Vect ^ n 
vTai lAux ^ Xn:N. XA:-k. Xk:N. Xv.Wct A k. 

Vect-Case i; 

{Xk:N.Xv:yectAk.{sn =k)^\/ectAn) 
( • : (s n = 0) ^ Vect A n) 
{Xk-.N.Xa-.A.Xv.yectAk.n : (s n = s f c ) ^ V e c t ^ n ) 

The motive now holds the equality proof which means that we have enough information 

to eliminate the e case. We write an auxiliary function to show that s n = 0 gives us an 

element of the empty type. 

dMotive : Vn: N. • 

dMotive t-^ An: N.N-Case n (Vn: N.*) False {Xk: N.True) 

discriminate : Vn:N. Vp:sn = 0. False 
discriminate An: N . Ap: S n = 0. 

= -elim N (s n) p dMotive () 

dMotive computes the return type for discriminate. I f the second item in the equality is 

0, then we return an element of the empty type, otherwise we return an element of the unit 
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type. Since = -elim only requires a method for when the second item is equal to the first, 
this means we only need provide an element of True to complete the proof - but since we 
know the second element is zero, the empty type is returned. 

Now that we have an element of the empty type we can prove anything, so i t is t r ivial 

to construct the element of Vect A n required in the e case: 

emptyCase : VJ4 IT^. Vn :N. (s n = 0) —> Vect ^ n 

emptyCase i-» \A:-k. \n:'H. \p:s n = 0. 

False-Elim (discriminate n p) (Vect A n) 

Filling in the hole for the e case, this leaves us wi th the :: case: 

vTai lAux : Vn :N . :*. V)t :N . : Vect .A jfc. (s n = fc) ^ Vect n 
vTai lAux i-» Xn:N. XA:-k. Xk-.N. Xv.Vect A k. 

Vect-Case v 

{Xk:N.Xv:yectAk.{sn = fc) ^ Vect A n) 
(emptyCcise A n) 
{Xk:N.Xa:A.Xv:yectAk.a : (s n = s ) t ) -> Vect n) 

The :: case requires a function from s n =sk ^ k = n and rewriting with = -elim to 

complete the proof. We use S J n j : Vn, m : N . s n = s m — > n = m and eq_sym : WA : 
Vx, y: A. X = y ^ y — x to rewrite the equahty, and define the case for :: wi th the 

following function, consCase: 

consCase : Vyl: Vn: N . Vfc: N. Vect .4 A;-+(s n = sA ; ) ->Vect^n 

consCase i-^ A ^ l : * . An :N. A ^ : N . At;:Vect ^ fc. Ap:A: = n. 

= -elim Hkn (S_inj k n (eq-sym Nnkp)) (An: N. Vect An)v 

Then we can complete the definition of vTai lAux: 

vTai lAux : V n : N . V ^ : * . Vjfc:N. Vi;:Vect ^ jfc. (s n = i t ) V e c t n 

vTai lAux i -* An: N . A ^ : *. AA;: N . At;: Vect A k. 
Vect-Case Akv 
{Xk:N.Xv:\/ectAk.{sn = fc)Vect ^ n) 

(emptyCeise n) 

{Xk:N. Xa:A. At;: Vect A k. consCase An k) 

Finally, we can use this helper function to fill in the hole in vTail: 

vTai l 1-̂  Ayl :* . An :N. At;:Vect A ( s n ) . 

(Afc:N. At;:Vect^A:. 

AP:Vfc:N.Vt;:Vect>l it. (sn = ifc) ^ Vect ^ n . 

P (s n) t; (refl (s n))) 

n V (vTai lAux n A) 

The complete definition of vTa i l is rather complex although the machinery required 

to produce this is added automatically by the compiler. The user need not worry about 
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the details of this machinery but i t is important for ensuring function totality that this 

machinery is there. 

A.3 Building Supercombinators 

For quick reference, the fu l l elaborated definition of vTai l is given in figure A . l , with the 

functions in the order in which they wil l be compiled. We wil l take each one in turn and 

consider its compilation into optimised supercombinators, in the presence of forcing of the 

Vect (but not detagging, or collapsing of equality proofs, since I would like to focus attention 

on the optimisation of vTai l in isolation). 

dMotive : Vn: N . * 
dMotive An: N . N-Case n (Vn: N . -k) False (AA;: N . True) 

discriminate : V n : N . Vp : sn = 0. False 
discriminate An :N. Ap:s n = 0. 

= -elim N{sn) p dMotive () 

emptyCase : V^l Vn :N. (s n = 0) —> Vect A n 
emptyCase i -* A ^ : * . An:N. Ap:s n = 0. 

False-Elim (discriminate n p) (Vect A n) 

consCase : V ^ : * . Vn :N. V/: :N. Vect Ak-* {sn = s fc) -> Vect A n 
consCase i-^ XA :*. Xn:N. Xk:N. Xv:\/ect A k. Xp:k = n. 

= -elim N A; n (S J n j k n (eqjsym Hnkp)) (An: N. Vect ^ n) ?; 

v T a i l A u x : Vn :N. V ^ : * . Vfc:N. VviVect ^ fc. (s n = fc) ^ Vect vl n 
v T a i l A u x An:N. A 4 : * . AA;:N. AviVect .4 fc. 

Vect-Case Akv 
(Afc:N.Aw:Vect.4fc. (sn = it) ^ Vect yl n) 
(emptyCase A n) 
(Afe:N. Xa:A. Av:Vect A k. consCase Ankv) 

vTa i l A ^ : * . An :N. Ai;:Vect A ( s n ) . 
(Ait :N. At;:Vect>lA;. 
AP:Vit:N.V7;:Vect^A;. ( sn = / t ) V e c t >1 n. 
P{sn)v (refl (s n))) 
n V (vTai lAux n A) 

Figure A . l : Elaborated vTai l 

A.3.1 dMotive £ind discriminate 

dMotive A n : N . N-Case n (Vn:N. • ) False {Xk:N. True) 

discriminate H-» A n : N . Ap:s n = 0. 

= -elim N (s n) p dMotive () 
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dMotive is the motive for the elimination apphed by discriminate, so we wil l take 

these two functions together. 

dMotive initially compiles to the following set of supercombinators: 

dMotive \-^ An. N -Case n dMot ive l False dMotive2 

dMotive l i—» An. * 

dMotive2 H-+ AA;. True 

Inlining of N -Case results in the following single supercombinator: 

dMotive An. case n of 

0() False 

5{k) True 

discriminate is straightforward, given dMotive: 

discriminate i—» An; p. = - e l i m N s(n) p dMotive () 

However, we observe that discriminate returns an element of the empty type; this is 

clearly impossible. The function therefore collapses as follows: 

discriminate i—* An; p. Impossible 

A further transformation is applied to remove the two arguments which are unused in 

the body of discriminate. The supercombinators we generate are summarised in figure 

A . 2 , and the substitution rules in figure A . 3 . 

dMotive i—> An. case n of 
00 ^ False 
s{k) True 

discriminate' H-» Impossible 
discriminate H-> \n\p. discriminate' 

Figure A . 2 : Compilation of discriminate and dMotive 

[discriminate n p\ discriminate' 
|discriminate'] = > Impossible 

Figure A . 3 : Substitution rules for discriminate and dMotive 

A.3.2 emptyCase 

emptyCase is defined in ExTT as follows: 

emptyCase : VY4 : Vn : N . (s n = 0) —> Vect A n 

emptyCase i—> AJ4:*. A n : N . Ap:s n = 0. 

False-Elim (discriminate n p) (Vect A n) 
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Building a supercombinator definition for emptyCase initially gives: 

emptyCase i-> A ^ ; n;p. False-Elim (discriminate n p) (Vect A n) 

False-Elim expects an argument in the empty type; therefore it can never be evaluated, 

so this function can never be evaluated. We therefore collapse i t to the supercombinator 

definitions in figure A.4, wi th substitutions as in figure A.5. 

emptyCase' i—> Impossible 
emptyCase i—» AJ4; n; p. emptyCase' 

Figure A.4: Compilation of emptyCase 

|emptyCase Anp\ = ^ emptyCase' 
|emptyCase' | ^ > Impossible 

Figure A.5: Substitution rules for emptyCase 

A.3.3 consCase 

consCase is defined in ExTT as follows: 

consCase t-> XA:-k. Xn-.N. Xk:'H. Xv.MecX. Ak. Xp:k = n. 
— -elim N k n (S-inj k n (eq-sym Nnkp)) ( A n : N . Vect .A n ) t; 

Building a supercombinator definition for consCase initially gives: 

consCase i-> A ^ ; n; k\ v\p. 
= -elim N A: n (S J n j k n (eq^ym N n /c p)) (consCasel ^4) v 

consCasel i-» XA\ n. Vect A n 

After elimination unfolding and inlining, we get: 

consCase i-» XA;n;k;v;p. casep of 

refl(n') t; 

Since case expressions with only one branch can be trivially reduced to that branch (since 

the scrutinee wil l always be in canonical form), this definition reduces to that in figure A.6, 

wi th the obvious inlining and argument removal substitutions in figure A.7 

consCase XA; n ; k; v; p. v 

Figure A.6: Compilation of consCase 
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IconsCeise A n k v pj 
fconsCcise' vj ==>• v 

consCase' v 

Figure A.7: Substitution rules for consCase 

A.3.4 vTailAux 

vTai lAux is where most of the work is done; i t is defined in ExTT as follows: 

vTai lAux : Vn: N. : *. Vfc: N . : Vect .1 fc. (s n = k)Vect A n 
vTai lAux >-> Xn:N. XA:*. Xk:N. Xv: Vect A k. 

Vect-Case Akv 

{Xk:n.Xv:y&ctAk.{sn = fc) ̂  Vect .1 n) 
(emptyCase A n) 

(Afc:N. Aa:i4. Aw: Vect A k. consCase Ankv) 

Building supercombinator definitions for vTa i lAux initially gives: 

vTai lAux An; A\ k; v. Vect-Case Akv ( v T a i l A u x l A n) 
(emptyCase A n) (vTailAux2 A n) 

v T a i l A u x l i—» XA; n; k; v; p. Vect A n 
vTai lAux2 XA; n; k; a; v. consCcise Ankv 

After inlining of Vect-Case we get the following: 

vTai lAux >—> An; A\ k\ v. case v of 

e() emptyCase A n 
::{x, xs) vTai lAux2 A n (n!0) {v\0) {v\l) 

vTai lAux2 is now inlinable as i t is fully appHed, and a small definition. There is now 

no more which can be done to transform this function; i t returns a function which expects 

an equality proof, which is to be passed through to emptyCase and consCase. We do 

consider vTa i lAux a good candidate for inlining, however. The definition and substitutions 

are given in figures A.8 and A.9. 

v T ^ l A u x I—» An; A; k\ v. case v of 
e() emptyCase A n 
•.•.{x,xs) consCase J4 n (n!0)(?;!l) 

Figure A . 8 : Compilation of vTa i lAux 
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| vTa i lAux n A k ---> case V of 
e() emptyCase A n 
•.•.{x,xs) ^ consCase >1 n (n!0) ( i i ! l ) 

Figure A.9: Substitution rules for vTa i lAux 

vTail 

vTai l , the top level function, is defined in ExTT as follows: 

vTai l A ^ : * . An:M. At;:Vectv4(sn). 

(AA::N.At;:Vect>lA;. 

AP:Vn:N.Vi ; :Vec t^ fc . ( sn = / b ) V e c t yl n. 

P{sn)v (refl (s n))) 

n V (vTai lAux n A) 

Before we start compiling to supercombinators, we notice that this function /3-reduces 
to the following: 

vTai l A>l :* .An :N. A t ; :Vec t i l ( sn ) . 

(vTai lAux nA{sn)v (refl (s n))) 

Building supercombinator definitions for vTai l from this simplified definition gives: 

vTai l A^l; n; v. vTai lAux n A s(n) v refl(s(n)) 

The substitution rules built from vTa i lAux tell us that vTa i lAux is inlinable. Applying 

this, we get: 

vTai l I-+ XA;n;v. (case v of 

e() emptyCase A n 

::{x,xs) consCase i4 n (n!0) ( v l l ) ) 

refl(s(n)) 

That is, the result of the case is appUed to the equality proof. The proof can be hfted 

into each branch of the case expression — this is to make each branch as fully applied as 

possible. We get: 

vTai l XA;n;v. case v of 

e() emptyCaise i4 n refl(s{n)) 

::(a;, xs) consCcise A n (n!0) (v! l ) refl(s(n)) 

Now we have inlining available on each branch. Applying the inlining substitution for 

emptycase (section A.3.2) and for consCase (section A.3.3) gives: 

vTai l XA;n;v. case v of 

e() Impossible 

::{x,xs) (^'!l) 
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This is what we expected all along! The e case branch has been explicitly marked as 

impossible to reach. We can go even further, and remove the Impossible branch, which 

results in a case expression with only one possibility. 

vTai l 1-̂  XA;n;v. case v of 

•.•.{x,xs) (w!l) 

Having only one possibility, there is no need to test what v is — we already know! As 

it is a total function, there is no possibility of an error case and the type specifies which 

is the only case that can apply. Figure A . 1 0 gives the final supercombinator for vTai l — 

eS'ectively, all i t does is move a pointer to the next cell, just as we would have hoped. There 

are, incidentally, also two unused arguments which can be dropped in a fully applied call to 

vTai l . 

vTai l ' H Ai;. (t;!l) 
vTai l H ̂ XA; n; v. vTai l ' v 

Figure A. 10: Compilation of vTai l 

A.4 G-code 

Given this definition of vTai l , the resulting ^-code is extremely simple. vTai l ' is inlined, 

making the RunTT definition of vTai l the following: 

vTai l i-* XA;n-v. (vll) 

Compilation to G-code of vTai l and vTai l ' is given in figure A . l l . We see that execution 

of this function consists of evaluating the argument to canonical form, projecting out the 

first argument and then evaluating that argument to canonical form. In practice, the inlining 

of vTai l ' and analysis of the G-code sequences produced wi l l often mean that many of the 

evaluations are not necessary, since the variable is already in canonical form. 

v T a i l : 
5IAi;. (t;!l)I PUSH 0; EVAL; PROJ 1; EVAL; UPDATE 2; R E T l 

vT^i l ' : 
SlXA;n;v.iv\l)l =^ PUSH 0; EVAL; PROJ 1; EVAL; UPDATE4; RET 3 

Figure A . l l : G-code for vTai l and vTai l ' 



Appendix B 

Typechecking ExTT 

In this appendix, I give proofs that typechecking for ExTT terms built from TT by the 

forcing and detagging optimisations is equivalent to typechecking the original T T terms. 

In the presentation that follows, we w i l l distinguish between TT and ExTT judgments by 

annotating the turnstile. Where there is no ambiguity, I wi l l omit the annotation. 

B . l Typechecking Algorithms 
TT 

I t is standard [Hue89, Coq96] to implement checking the judgment F h o : .4 by checking 

that y4 is a type, inferring a type B for the terra a and testing by conversion whether i t 

matches the proposed type A. i.e. we check the following: 

TT 

, T h A ^ X - » i c n 

TT 
TT TT 

• T \- A~ B 

Since we assume Church Rosser holds for TT, conversion can be implemented as follows: 
TT TT TT TT 

r h a~fe i fr h at> c and F h 6 > r f a n d F I - c= d 

In practice, we take c and d as the normal forms of a and b respectively. 

Figure B . l gives a type synthesis algorithm for TT . I t is standard that the T T inference 

algorithm is sound and complete for TT . 

We seek to show that the corresponding methods of inference for ExTT may be used to 

solve the checking problem in TT, as follows: 

. [ F l h [ A l = ^ X ^ 

. IF] H 14 = ^ B 

209 
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r h vahd 
r i -^„ 

r h valid 
*n+l 

X : 5 e r 

(Similarly for c, D, D-Elim) 
r h valid X : 5 H-> s € T 

Y\-x=>S 
'^x-.S.T r h s = P I - S: 

r i - / s let: I in T 

T;x : S\- e P l - V x : ^ . T X 
T\-Xx:S.e = 

T;x : S\- X ^ 
•\/x:S. T 

P l - V x : ^ . T 

T \- S => X i^n P h e i ^ S " P h 5 ~ S " 
P; a: : 5' 1-̂  ei h 62 = ^ T T; x : S i-^ ei h T ^ X' ^ 

P h l e t a ; : 5 i - » e i i n e 2 =^ ]etx : S ^-* eivaT 

Figure B . l : Type synthesis for T T 

. |P1 h l A j ^ B 

Figure B.2 gives a type synthesis algorithm for E x T T . 
An optimisation [-1 from T T to E x T T is admissible at compile-time if i t satisfies the 

following three properties: 

Property 1. / /[PJ h f a j = ^ B then3A. P a ^ andP V .4 ~ | 5 | 

Property 2. IfT \- a ^ A then3B. 
Ex, B and 

Ex Ex 

| r i h 5 ~ 1^1 and 
Ex 

P I h B ^ X ^ 

Property 3. If |P1 h I / l ] ~ B then P h" ^ ~ |S | 

These properties state that i f an optimised term is well-typed in E x T T , then the original 
term must also be well-typed in T T such that its T T type converts wi th the unmarked E x T T 
type. Therefore i f these properties hold, we never have to typecheck T T terms and can rely 
on typechecking the marked terms. 

Assuming that these properties hold for an optimisation, we can show the soundness and 
completeness of the E x T T typechecking algorithm by the following theorems (Note that we 
use P h X =^ i4 ~ A' as a shorthand for P f- x A, P h 4̂ ~ 



A P P E N D I X B . T Y P E C H E C K I N G E X T T 211 

F h valid 
r h * „ 

r h vahd X : g g r 
T\-x=^S 

(Similarly for c, D, D-Elim) 
F h valid X : 5 s e F 

T \ - x ^ S 
X^Vx-.S.T F h s : S' T\-S-S' 
F l - / s = > l e t x : S' H-» s i n T 

r i - / ^ X ^ V { a : : 5 } . r T [-s => S' T h S - S' 
r i - / { s } ^ l e t 2 : : S' ^ sinT 

F h valid i f } : \fx:S.T GT T \-S S' T h S - S' 
r\- { f } s ^ ] e t x : S' ^ S i n T 

F f - v a h d i f } : y{x:S}.T &T F l - s = : » 5 ^ T \-S - S' 
T\- { f } is} =>Mx : S' ^ sinT 

r;x:S\-e=^T T h\fx:S. T ^-k^ 
F h A x : 5 . e = 4 > V x : 5 . T 

F I - 5 

F l - V x : ^ . T = 

F h ei F I - 5" ~ S" 
F; a: : S e i f- 62 = » r T; x : S ei \- T =^ X' 

F h l e t x : S ' ^ - * e i i n e 2 = > let 2; : 5 i—> ei i n T 

Figure B.2: Type synthesis for ExTT 

Ex 
Theorem B . l (Soundness of ExTT for typechecking T T ) . / / |F1 h [ ^ | = ^ AT ^ 

and IF] h | a l ^ S and {Tj h [ ^ ] ~ B then vY a ^ A'^ A andvY A ^ X' ^ 
Ex 

Proof [F l h |a] = ^ 5 shows that 3^ ' . F h a ^ ^ ' and F h yl ' ^ \B\, by Property 1. 

Also, by Property 3, | F l I - | 4 ] ~ S shows that T \- A ^ \B\. 

Hence, F h ~ yl ' , so F h a ^ ^ ' ^ ^ . 
Ex Ex. X ^ *„ shows that 3X'. F h A ^ X ' and F h X ' ~ | X | , by Property 

1, and since |^n| — *n 
then F h 

X' 

• 
Theorem B.2 (Completeness of ExTT for typechecking T T ) . I f T \ - a = > A then 

i n f ^ l A j ^ X ^ ^ n and [FI h [a] = ^ 5 and p I h {Aj ~ B. 

Proof By Property 2. • 

We show in this appendix that the forcing and detagging optimisations of Chapter 4 

satisfy Properties 1 to 3, and hence that typechecking an ExTT term produced by these 
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optimisations gives a sound and complete typechecking algorithm for T T . 

B.2 The Forcing Optimisation 

Forcing is given in ful l in figure B.3. The translations are on well-scoped terms, i.e. all 

variables are declared or defined in the context: 

I D I ^ D 
|D -E l iml = ^ D-El im 
Usj=^ m is} 
lWx:S. n ^ \ / x : l S l l T j 
lXx:S.ej^Xx:lSllel 
[let 2; : 5 1-̂  V in el = ^ let g : ^ [v] in fel 
l4^Xa:lAlXy:Diil.ca^^ y 

where V is the set of concretely forceable variables in a 
^ {a} i f a e F 
=^ a otherwise 

Figure B.3: The forcing optimisation 

Correspondingly, the types of c and D-E l im are modified in the forced context so that 

marked arguments are expected in forced argument position. Forcing of a context is given 

in figure B.4: 

IT-x : 5 1 ^ | r ] i ; x : {Sj 
[r;c : V S : ^ . V j / : y . D s l ^ lrl;c : V a : ^ ^ . Vj?: f . D [s] 

where V is the set of concretely forceable variables in 5 
V a : y l W ^ V { a : y l } i f a€V 
V a : A < ^ = i > V a : A otherwise 

lr;e : 5 ^ s l ^ [ r i ; i : 1̂ 1 W 

Figure B.4: Forcing a context 

B.2.1 Equivalence of Reduction 

The following theorem shows that a reduction step in T T either maps to a reduction step 

in ExTT, or does nothing (since the reduction takes place inside a marked term). 

L e m m a B . 3 . I f v V a^i b then either F h | a | = or 3c. |r| h [o] > c and c = | 6 | . 
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Proof Sketch. By the structure of a, and the definition of the forcing optimisation. The 
contractions available in aU cases are the same for |a] and a, except in the case of con­
structor application, where some arguments may be marked. In this case, either there is no 
reduction in ExTT (because i t takes place inside a marked argument) or (after ,0-reductions 
of arguments) there is an equivalent reduction in ExTT inside another argument. Since the 
reduction rules for ExTT correspond to those for TT, this reduction must be equivalent to 
the T T reduction. • 

Due to this property, i f a term a has a normal form b in TT, then |a] has a normal form 

c in ExTT such that \b\ = c. 

Corollary B .4 . I f v V S ^ T then [F l h | 5 ] ~ [ T l . 

Proof. Trivial, by Lemma B.3. • 

B.2.2 Equivalence of Typechecking for Forcing 
TT TT 

L e m m a B . 5 . F \- a ~ | | a l | 

Proof. Trivial, since we have ?y-conversion. The proof is by induction on the typing judgment. 

• Case a = c. Then |c] =^ Xa:lAj. Xy-.Dltl. c a^^ y. 

Removing the marks yields Aa: 1̂1 .cay, which is 77-convertible wi th c. .Xy:D 

A l l other cases are provable trivially by induction. 

• 
Ex Ex 

L e m m a B.6 . / / | F l h 5 ~ T then F h |5 | ~ IT ] . 

Proof By induction on the typing judgement for normal forms of S and T. Take a = NF(5) 

and b = N F ( r ) (where N F gives a normal form in ExTT). 

The possible normal forms are: 

• Xx:S. e, where S, e are normal forms. 

• Wx:S. T, where 5, T are normal forms. 

• cay, where a, y are normal forms or of the form {t}, and t is any term. 

I f the outermost constructors differ, conversion does not hold, so we consider the cases 
Ex Ex 

where a and b are of the same form. In each case, we can assume that |F] h a ~ b. 
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• Case a = and b = -kj. Then |a| = and |6| = so conversion holds in both 
systems if i = j. 

• Case o = X and = x'. Then |a| = x and |6| = x ' . I f |P]1 h x = x' then [P] h x U x' 
so conversion holds. 

• Case a = Ax:S^. e and 6 = Ax:5'. e'. Then |a| = A x : ! ^ ! . |e| and |6| = Ax: |S" | . |e'|. 

By induction, if |P1 h 5 ~ 5' then P V \S\ ~ and i f [P; x : 51 : h e ~ e' then 
T T T T 

P; X : 5 1- |e| ~ |e'|, so conversion holds in T T i f i t holds in ExTT. 

• Casea = Vx :5 . r a n d 6 = V x : 5 ' . r . Then |a| = Vx: |5|. |r| and |6| = Vx: |5'|. |r'|. 

By induction, if [PJ h 5 ^ 5' then P |5| ^ |5'| and i f [P; x : 5] h T ^ T ' then 
T T T T 

P;x : 5 h | r | ~ | T ' | , so conversion holds in T T i f i t holds in ExTT. 

• Case a = cay and b = cbz. Then \a\ =ca' y' and |&| = c' b' z', where, as before: 

- Oj = [a- | i f a- is not concretely forceable. 

- Oj = {a^ i f a- is concretely forceable. 

- bi = Ib'-J i f 6,' is not concretely forceable. 

- bi = {bQ if 6- is concretely forceable. 

- 2/i = Ml 

Synthesising types of a and 6 we get: 

Ex ^ 

- |P] h a = > D s for some s. 
Ex 

- | r | h 6 = ^ D' ? for some t. 

Ex Ex Ex 

|P | h a ~ 6 i f and only i f the constructors are identical, i.e. c = c', and corresponding 
arguments are convertible. For each argument, due to the forcing optimisation, either 
both Oi and bi wi l l be marked, or neither. 

Ex Ex T T 
- I f neither are marked, then if |P] I - a; ^ bi then P h |ai | ~ |6t| by induction. 

T T T T T T T T T T T T 
As P h loil ~ a,' and P h \bi\ ~ 6,', then P h a,' ~ 6̂  

- I f both are marked, then i t is because they are concretely forceable arguments. 
Hence, by Lemma 4.2, they are also forceable. By the definition of forceable, this 
means the arguments are determined by their indices, which are already in the 
context since the terms are weO-scoped. Hence the conversion check has ^already 
been made. 
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• 
Theorem B.7 (Property 1 for forcing). I f l T j h |al ^ B then3A. vV a ^ A and 

T T TT 

r h / I ~ |5 | 
Ex ^ 

Proof. By induction on the typing judgment, A h 6 B, where VT, a, A = [r| and 
6 = |a|. In each case, we synthesise B and find that there is appropriate A such that 

TT TT 

r h / I ~ 

• Case b = -kn- Then B = *n+i- We must have a = 7̂ „, so take A = -kn+i-

• Case b = x. Then 5 = 5" if: 

- X : S e AoT 

- X : S e £ A 

So if A = |r] we must have 

- X : 5' G r or 

- X : 5' e e r 

where 5 = 

So take A = S', and by Lemma B.5, 5' ~ so vV A^^ \B\. 

• Cases b = D, b = D-Elim, b = c similarly to b = x. 

• Case b=yx:S.T. Then o = \/x:S'. T' where S = and T = [ T ' ] . 

If A h 5 = ^ X ^ and A; x : S h T ^ Y ^ - k n then B = 

Then by induction: 
^ Ex 

- A l - 5 = ^ X - » * „ gives i.h. 
Vr , a .A = | r i , 5 = [ a ] , 3 ^ . r 1- a ^ ^ a n d r h 

- A ; I : 5 h r = ^ F ^ * „ gives i.h. 
Vr,6.A;a; : 5 = [FI, T = [61, 

T T T T T T j T 

3B. r h ft =!4 B and r h B \ Y\ 
T T T T , T T XT TT T T -r-r 

So r 1- 5' ^ >1 ~ •„ and T; T : h T' S ~ *„. So T K ^ ~ 
• Case 6 = let2; : S i-^ vine. Then a = let a: : S' <-* v' ine' where S = fS'j, v = Iv'j 

and e = |e ' l . 
Ex Ex 

I f A h 5 = ^ X ^ * „ , A h v ^ S", A h 5 ~ S", A; X : S ^ v \- e ^ T and 
Ex 

A;X : S>-^v\- T ^ X' ^-kn then S = leta; : S^vinT. 

Then by induction: 
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^ Ex, 

T T T T 

TT TT 

A h 5 X -» gives i.h. 

Vr,a. A = | r l , 5 = H .3^ . r h a=!=^^andr h y l ~ | X | . 

A h w = ^ 5 " gives i.h. 
Vr ,6 .A = lrl ,v = [61,35.r \- b^Bandr \-

Ex ^ 

A; a; : S v h- e ==> T gives i.h. 
Vr,c.A;a; : S ^ v = ITj, e = 14, 

T T TT TT j j 

3(7. r h Candr h C b! |T| . 

So r V 5 " ^ r h" ^ and r ; x : \S\ V e' ^ \T\. Then 

A = letx : in I r | if r I - ~ V (which holds by lemma B.5) and 
r h \S"\ ~ | 5 | (which holds by lemma B.6). 

• Case b = f s. Then a = f s' where / = [[/ 'I and s = |s'I. 

If A h / = ^ X -« V i : 5 . r and A h s = ^ S" and A h S' ~ 5' then 
B = l e t x : M in T. 

Then by induction: 

- Ah f ^ X ^yx:S.T gives i.h. 

VT, a. A = [ r ] , / = [al, 3^. T V a ^ 4 and ^ ^ \X\ 
Ex Ex 

- A h s = ^ 5' gives i,h. 
VT, 6. A = PI, s = [61,35. r h 6 =I5> B and 5 ^ |5'| 

S o r T ^ / ' ^ ^ ^ | X | - « V 2 : : | 5 | . |r | and T V s ' ^ 5 

Then ^ = let a; : |5"i ̂  s'in | T|, if |5| ~ 

By Lemma B.6, if [Tl h 5 ~ 5 ' then T | 5 | ~ \S'\. 

So ^ = leta; : ^ s'in \T\, 
B=]Btx : [ s ' l i n T , 

TT T T 
and therefore F h A ~ |B|, by Lemma B.5. 

• Case 6 = / { « } • Then a = f x where / = | / ' ] , x = s and x e F, since the forcing 
optimisation only places variable names in {•}. 

If A h / = ^ JC ̂  Va;:5. T and A h s = ^ 5' and A h 5 ~ 5' then 
5 = let2: : S' sinT. 

Then by induction: 

- Ah f ^ X ^yx:S.T gives i.h. 

V r , a . A = [ F l , / = | a l ,3^ . r h AandA ~ |X | 
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TT 
SoT h f ' ^ A ~ \X\-^yx:\S\. \T\. 

If a; : 5" e A, then x : |S"| € T. 

Then = let a; : s in | r|, and yl ~̂  

Case 6 = {f} s does not arise by forcing. 

Case b = { f } {s} does not arise by forcing. 

Ex Ex 
• Case 6 = Ax:5. e. If A; 2: : 5 h e = ^ T and A h ViiS' . T *„ then 

B=Vx:S. T. 

Then either: 

a = Xx:S'.e' where S = [S'} and e = [e' 

Then by induction: 
Ex 

A;x : 5 h e Ex, T gives i.h. 

VT, a. A; a; : S = {Tj, e = laj, BA.T \- a ^ .1 and T 1- A 'c^ \T\ 
TT TT 

Ex 
* A\-\/x:S.T=^-k„ gives i.h. 

Vr,6. A = [ri,V2::5. T = | 6 ] ] , 3 5 . r h b ^ B andT h S ~ |*„ 

So T; x : 5' h e' vl ~ |r | andr 1- Xx:S'. e' -

| 5 | ^ 5 ' , sotake^ = Va;:|5|. |T|, andT T ^ ^ ^ | 5 

a = c iib = Xa :A. Xy: Y. c y, 
^ Ex - -Then A \- b =^\/a:A.Wy:Y.\eta : A^ a inlet ? 

and r h a =I5> Va:^' . Vj/: 7 ' . D s', by lookup in T. 

Since A = fVl A = {A'} and ? = [ ? ' ! . 

TT 
Vx:5'. irl. 

y I—> j i in D s 

By Lemma B.5, 

r h 

= A' = Y' and |s| = s', 

\/a:A.yy:Y.\eta : .A 1-̂  a in let y : Yi-^y'mDs 
and take A = \/a:A'. Wy: Y'. D s" and 
S = Va:i4. Vy: y . let a : .AH-+ainlety : y i - + ^ i n D s 

~ V a : ^ ' . V j / : y ' . D s ' 

• 

A then3B. 
Ex, 

Theorem B.8 (Property 2 for forcing). IfT h a = 

| r l h [a] = ^ 5 and 

r i h S ~ 1̂1 and 

in h B = ^ X -* 



APPENDIX B . TYPECHECKING EXTT 218 

Proof. By induction on the T T typing judgement, F h a = > A. In each case, we synthesise 
Ex Ex 

A and find appropriate B such that |r | h B ~ [.4|. 

• Case a = Then |a| = So take A = *„+i and B = *n+i-

• Case a = X. Then |a| = x. 

Then .4 = S' if: 

- X : 5 6 r or 

- X : S ^ e eV 

So if A = |r] we must have 

- X : S" e A or 

- X : 5' e e A 

where S' = IS}. 

Take ^ = 5 and B = 5", so by definition p l h B ~ 1̂1-

• Case a = D, a = D-Elim. Similarly to a = a;. 

• Case a = c. Then |a]] = Ao:^. Xy: Y. c y_ 

TV a^ya:A.\fy:Y.D s, by lookup of c in T. 
I f A = ( [ r i t h e n A l - Ial=^Va:[^I.Vs7:|fl . leta : ^ a in let? : Y ^ ymDls'l 
Take A = ya:A.\fy: Y.Ds and 
B = V a : | i l . V j / : | f ] . l e t a : A i-> S in let j / : Y^ymDls'j 
so by definition | r ] f- B ~ [̂ 1. 

Case a = / s. Then |al = [ / I {sj. 

IfvV f ^ X ^Wx:S. T 
T T XT TT - r r 

and r h s =14 5' and r h 5 ~ 5' 
T T T T 

then r h / s = ^ l e t 3 ; : S' i-^ sinT. 

By induction: 

- rV f ^ X -»\fx:S.T gives i.h. 

VT, 6. A = irl , 6 = |/1,3B. A h 6 = ^ B and A h B ~ IVa::̂ . Tj and 
A h B ^ X ^ 

- r s ^ 5' gives i.h. 

VT, b.A = | r l , b = [si, 3 B . A h b ^ BandA ^ B ~ [S'JandA h B = ^ X J| 
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So [ r l h I / l = i ? > X ~ l V x : 5 . T l . 
Ex Ex. Ex 

If [ r l h 151 ^ then h [ / I |s] = ^ let ^ : {S'j ^MmlTl 

PI h |51 ~ holds by Corollary B.4, so take 
^ = let2; : S"H^sinr and 

5 = let :E : ^ {sj in | r i , hence p l h 5 ^ I^J. 

Case a = Vx:5. T. Then [aj =V2;:[5]. | T l . 

If r 5 ^ *„ and F; X : 5 V T =S> then 
T T T T 

r I - Vx:5'. T^*n-

By induction: 

T T j j 

- F h 5 =^ gives i.h. 
VF, 6.A = |F1, b = ISj, 3B.A h b = ^ BandA h B ~ *„andA h B 

T T T T 
F; X : S \- T ^-k^ gives i.h. 

^ Fx ^ Ex 
VF,6.A = lF];x : [SJ, 6 = I T ] , 3 B . A h 6 ̂  B and A h B ~ *„ and 

^ Ex 

Ex S o p I h V x : I 5 l . i r i = ^ * „ . 

So we take J4 = •„ and B = 

• Case a = let2; : S >-y vme. Then la j = let a; : [ ^ l H in |e]]. 

If r V 5 ^ X ^ and F t; ^ 5' and F 5 ~ 5' and 
T T T T T T XT 

F;x : S<-^v\- e = ! 4 r a n d F ; x : S ^ v \- T ^ X' ^-k„ then 
A = leta; : ^ n - ^ v i n r . 
By induction: 

T T T T 
- F h 5 =^ •„ gives i.h. 

VF, b.A = [Fl, b = ISl 3B.A h b ̂  BandA h B ~ *„andA h B = ^ 

- F ^ 5' gives i.h. 

VF, 6. A = fFl , b = I t ; l , 3 B . A h 6 = ^ B a n d A h B ~ |5 ' ] and 
Ex Ex 

A h B X ^ *„. 

— F;x : S I—* V \- e =^ T gives i.h. 
Ex 

VF,6.A = |Fl ;x : [51 H . ^ = W, 3 B . A h 6 = ^ B and 

A h B ~ [ T l and A h B = ^ X *„. 
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TT T T 
So B = let I : |I5] ̂  [^1 in [TJ if T h [ 5 ] ~ [5 '1 (which holds by Corollary B.4). 

Case a = Xx:S.e. Then |a] = Xx-.{SI. {e}. 

liV-x : 5 ^ 6 ^ T a n d r h ^ V a ; : 5 . r ^ X ^ * „ t h e n r h ^ A 2 : : S ' . e : ^ V 2 ; : S ' . T . 

By induction: 

T; X : S \- T gives i.h 
Ex 

Vr,6. A = iri;a; : 6 = |el, 3B. A h 6 = ^ B and A h B ~ IT ] and 
Ex Ex 

Ex Ex, 
A h B = ^ X ^ 

So i r l h A i : [51. [e] Vx: [5] . [ T ] , if p l h Vx: I ^ l - [ T l 

^ I = ^ *„, by i.h. and [Tl h {Sj = ^ holds if [T]; x : [51 valid. : 151 h 

So take = Vx: 5. T and B = Vx: |51. 1^1-

• 
Ex Ex 

Theorem B.9 (Property 3 for forcing). / / (Tj t- [^1 ~ B then T h 4 c± |B 

Proof. By Lemma B.6,r t- | I ^ 1 | ~ |B|. 
TT T T 

Then by Lemma B.5, T I - ^ ~ |B|. • 

B.3 The Detagging Optimisation 

Detagging is given in full in figure B.5. The translations are on well-scoped terms, i.e. all 
variables are declared or defined in the context: 

1̂ 1 
D 

[D-Eliml => D-Elim 

[Vx:5. r l = ^ V x : I 5 1 . [ T l 
[Ax:5. el Ax:[51. [el 
[let a; : 5 v in el ^ let 9 : [ 5 ] [t;l in [e| 
|cl = > Ao: [741. Ay :D [ i | . {c} y if D is concretely detaggable. 
[cj = > Aa:[Al. Ay:D [i]]. c y otherwise. 

where V is the set of concretely forceable variables in a 
flW =^{a}ii a€V 

= > a otherwise 

Figure B.5: The detagging optimisationg 
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As with forcing, detagging is applied across a context, with the types of c and D-Elim 
modified accordingly. Detagging of a context is given in figure B.6: 

{V-c : V a : i . Vt/: f . D ^ [Fl; {c} : V a : ^ W . Vy: Y. D p I if D is concretely detaggable 
|F;c : \/a:A.yy:Y.Ds\^{T\-c : Va: Vg: f . D |s| otherwise 

where V is the set of concretely forceable variables in a 
Va :^W ^ V { a : [ y l l } i f aeV 
V a : ^ { ^ ^ Vo : | ^ ] otherwise 

iT-x : S j ^ i r i ; x : iSj 
[F;e : 5 s] [F]; x : [51 W 

Figure B.6: Detagging a context 

B.3.1 Equivalence of Typechecking for Detagging 

Lemma B.IO. F h" a ^ |IoI| 

Proof. Trivial, since we have jj-conversion. The proof is by induction on the typing judgment. 

• Case a = c. Then {cj =^ Xa'-fAl Xy-.Dlij.ca^^ y or 
|c| ==> AS: lAJ. \y: D {c} y, depending whether c's type is detaggable. 

Either way, removing the marks yields Xa:A.Xy:Di.cay, which is 77-convertible with 
c. 

• All other cases are provable trivially by induction. 

• 
Lemma B . l l . / / [F] h 5", T : V and [[F] h 5 ~ T then F V \S\ ~ | r | . 

Proof. Similarly to Lemma B.6 , except that there is an additional normal form possible, 
and hence an additional case: 

• {c} o y, where a, y are normal forms or of the form {t}, and t is any term. 

• Case a = {c} a y and b = {c'jb z. Then |a| = c a' ^' and |&| = c' b' z', where: 

— ftj = |a^| if a- is not concretely forceable. 

— Oi = {a^ if is concretely forceable. 

— bi = if 6- is not concretely forceable. 

— bi = {b^ if b'i is concretely forceable. 

-yi = Ml 
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- ^ = k ' l -

Synthesising types of a and b we get: 

^ Ex 

- | r | h a = ^ D s for some s. 
- [ri h 6 = ^ D' F for some t. 

Since [F] h a,b : V, we know D = D'. 
Ex Ex , , . , . , . Ex 

| r | h a ~ 6 if and only if the constructors are identical, i.e. c = c', and corresponding 
arguments are convertible. Conversion holds for marked arguments as in Lemma B.6. 
So we now show that if we are comparing marked constructors, they must be the same 
constructor. 

By the definition of detaggable, marked constructors are determined by their indices, 
which are already in the context since the terms are well-scoped. Hence an equivalent 
conversion check has already been made. 

• 
Ex Ex 

Theorem B.12 (Property 1 for detagging). I f l T j h |a]] ̂  5 then 
T T - r j T T j j 

Ex 

Proof. By induction on the typing judgment, A h 6 = ^ B, where W, a, A = | r | and 
T T TT b = |a] . In each case, we find appropriate A and B such that P h v4 ~ \B\. Cases are as 

Theorem B.7 except: 

• Case b = { f } s. Then a = f s' where s = |[s'| and / ' e F, since the detagging 
optimisation only marks constructor names in function position. 

If {f} : Vx:5'. T G A and A h s = ^ 5" and A h 5 ~ 5" then 
Ex Ex 

A \- { f } s ^ ] g t x : 5 ' i - » s i n r , soB=le ta ; : S' sinT. 

By induction: 
Ex Fx 

- A\- S' gives i.h. 
Vr,a. A = [ r i,s = |a l ,3^.r h a ^ A a n d ^ ^ | 5 ' | 

S o r V s ' ^ ^ ^ | 5 ' | and if {f} : Vx:5. T £ A then / : \/x:\S\. \T\eT. 

So^ = letx : | 5 ' | K ^ s ' i n | r | i f r V | 5 | ~ 

Since [F] h vaUd. S,S' : *„. Then by Lemma B . l l , if iTj h S,S' : *„ and 

[Fl h 5 ~ S' then F |5| ~ |5'|, and so we now have F ^ ^ \B\. 
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• Case b = { f } {s}. Then a = f x where s = x, x € F and / ' € F. 

If {/} : V { x : 5 } . r e A and A h s = ^ 5' and A h 5 ~ 5' then 
^ Ex 

A h {/} {s} = ^ let a; : 5' s in T, so B = let a; : 5' s in T. 

If {/} : Vx :5 . T G A then / : V x : | 5 | . | r | G F. 

If X : 5' e A, then x : |5'| € F. 
Then >1= lets : |5'| H-> sin | T|, if F V |5| ~ |5'| (by Lemma B . l l ) so F V ~ |B|. 

• 
T T T T 

Theorem B.13 (Property 2 for detagging). / /F h A then3B. 
[Fl h [al = ^ B and 

Ex Ex 
[Fl h B :^ |yll and 

in h B = ^ X ^ *„ 

Proof By induction on the T T typing judgment. Cases are as for Theorem B.8, except: 

• Case a = c. Then either 

- [al = Aa:^. A j / : y . c a { ^ j 7 o r 

- laj= Xa:A.Xy:Y.{c}a^^ y 

r h a =14 Va: I . Wy: Y. D s, by lookup of c in F. 
Ex 

I f A = | F l t h e n A h [ a l = ^ V a : [ i l . V y : l y l . l e t 5 : A^ainlety: Y ^ yinDls'l 
whether or not c is marked. 
Take A = \fa:A. Vj?: f . D s and 
B = V a ; [ i l . V j 7 : [ y i . l e t a : A t - > a i n l e t j / : F i - ^ j7in D [s'l 

Ex Ex 

SO by definition [Fl h B ~ [̂ 1 

• 
Theorem B.14 (Property 3 for detagging). / / [Fl h [̂ 1 ~ B then F ^ ~ |B| 

Proof By Lemma B . l l , F Y |[̂ 1| "5" |B|. 

Then by Lemma B.IO, F h A ̂  |B|. • 



Appendix C 

An Implementation of 
Normalisation By Evaluation 

In this appendix I give an implementation in Haskell of normalisation by evaluation for 
ExTT, first with the core terms then adding inductive families and t-schemes. Since ExTT 
has T;-conversion, we will be producing ry-long normal forms; that is, aU names are fully 
applied. This implementation is based on ideas of Fihnski [FilOl] and discussion with Conor 
McBride. 

Recall that the technique of normalisation by evaluation (figure C.l) is to build a meta-
level representation of the term, then reify it back to an object level representation of normal 
forms and finally to revert to the representation of terms. 

C . l Representation of terms 
/ 

C . l . l Representing Well Typed Terms 

Leaving aside the representation of inductive famihes and t-schemes for the moment, we 
can represent well-typed terms in ExTT with the Haskell data structure in figure C.2, called 
Term. The scope of a binding is represented explicitly in Term, using Scope. The purpose of 
this is to be able to distinguish by type between closed terms (of type Term) and terms with 
free variables (of type Scope Term). Local variables are de Bruijn indexed [dB72]; there is 
no exphcit name bound in the term. The index represents the number of bindings since the 
variable was bound — zero represents the most recently bound variable. 
Remark: String is not necessarily the best choice for representing variable names, al­
though it is adequate for our purposes here. It may be better to use a representation which 
distinguishes scope, for example, or distinguishes between machine generated names and 
user supplied names. [MM04a] details the issues involved. 

224 
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Object Level 

ExTT Term 

Meta Level 

e v a l 

Normal Form 

forget 

ExTT Term 

Haskell Value 

Meta level evaluation 

quote 
Haskell Value 

Figure C.l: NormaUsation By Evaluation 

C.1.2 Representing Normal Forms 

There are two stages to the normahsation by evaluation process; translating from the object 
level to the meta-level, then translating back again. First, we build a model of the term in 
the meta-language using a function called eval. Then we reify the meta-level representation 
as a syntactic representation of the object language using a function called quote. 

An important structiue in this process is the representation of normal forms. These 
can be represented both semantically (i.e., the representation in the meta-language) and 
syntactically (i.e., the representation of normal forms in the object language). We declare 
a datatype Model, given in figure C.3, which is parametrised over a scope former, of kind 
* -> This parametrisation means that the scope of a binding can be represented in 
several ways, allowing us to build semantic as well as syntactic representations of values in 
the same framework. We build a semantic representation by using a function rather than a 
data constructor as a scope former. 

Normal forms are spht into two possible cases, the ready (or canonical) terms which are 
already in normal form and the blocked terms which could possibly be reduced further if 
given additional arguments. Blocked terms consist of a head term (with its type, which will 
be used to direct 77-expansion) and a spine which holds the arguments applied to the head 
term. The data type which represents the spine is simply a list where new items are added 
to the end, rather then the beginning. We implement f map, splength and append functions 
for spines as in figure C.4, corresponding to map, length and ++ on ordinary hsts.. 
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data Term = V In t — de B r u i j n indexed variable 
1 P Name — Global name 
1 App Term Term — Function application 
1 Lam Term (Scope Term) — Lcimbda binding 
1 Let Term Term (Scope Term) — Let binding 
1 Pi Term (Scope Term) — Pi binding 
1 Const Const — Constcint 

newtype Scope x = Sc x 
data Const = Type In t 
type Neune = String 

Figure C.2: Representation of ExTT terms 

i n f i x 1 : : : 
data th ing : : type = thing : : : type 

data Model s = R (Ready s) 
1 B (Blocked : : : (Model s)) (Spine (Model s)) 

data Ready s = RLam (Model s) (s (Model s)) 
1 RPi (Model s) (s (Model s)) 
1 RConst Const 

data Blocked = BV In t 

data Spine x = Empty 1 Snoc (Spine x) x 

Figure C.3: Representation of normal forms 

Representing normal forms in this way prevents us from inadvertently creating a term 
which is not in normal form, for example we cannot construct a A-binding appUed to an argu­
ment as a normal form since only blocked terms can have arguments applied to them. That 
is, we use the type system to help us avoid errors by creating a more precise representation 
for normal forms. 

C.1.3 Representing Scope 

Model is parametrised over s which, when instantiated, indicates how to represent scope. 
As well as Scope, I introduce a second representation for the scope of a binding, Kripke 
(figure C.5) . 

Scope represents the scope of a binding syntactically; a Model Scope is therefore a syn­
tactic representation of normal forms with an obvious forgetful map back to Term. 

Kripke, on the other hand, is a Kripke-style semantic representation of values (possible 
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instance Functor Spine where 
fmap f Empty = Empty 
fmap f (Snoc xs x) = Snoc (fmap f xs) (f x) 

splength : : Spine a -> In t 
splength Empty = 0 
splength (Snoc s v) = 1+splength s 

append : : Spine a -> Spine a -> Spine a 
append xs Empty = xs 
append xs (Snoc ys y) = Snoc (append xs ys) y 

Figure C.4: Utihty functions for Spine 

newtype Kripke x = Kr (Weakening -> x -> x, Weakening) 
newtype Weakening = Wk Int 

Figure C.5: Kripke declaration 

world semantics — there are many possible values but given more information, i.e. the 
function argument, we can decide which value apphes). This scope former takes a Haskell 
function to evaluate the body of the scope when passed a Weakening and the value to 
substitute in the body. The weakening is an integer which is used to handle de Bruijn 
indices correctly — when we go under a binder the index 0 refers to the most recently 
introduced variable, and all variables above the binder are weakened by 1. 
Remark: Using de Bruijn levels, rather than de Bruijn indices, would eliminate the need 
for the weakening [Fil99, FilOl]. However, this makes it harder to manipulate terms directly 
and so we prefer to use de Bruijn indices. 

We now have two representations for normal forms, called values in the semantic case 
(because they represent a value in the meta-language) and normals in the syntactic case 
(because they represent normal forms directly), with type synonyms declared for conve­
nience, as in figure C.6. 

type Value = Model Kripke 
type Normal = Model Scope 

Figure C.6: Normal form type synonyms 

To implement the normalisation function we have three operations to define — an evalu­
ation function to convert a term to its meta-language representation, a quotation function 
which converts the meta-language's semantic representation to a syntactic representation 
(reification) and finally, it is often useful to have a forgetful map which converts the syn­
tactic normal form back to the original representation of well-typed terms (it is a forgetful 
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map because it forgets the additional information that the term is in normal form). 
The evaluation function keeps a local context, Env, to keep track of variable bindings. 

This is represented as a Ust of values. The global context for the normalisation operation, 
Ctxt, is a lookup table from names to typed Values (i.e. Value: : :Value) — all global 
definitions are stored as a normal form, built from their TT definitions. Initially, we have a 
table of definitions, Def s, which is a lookup table from names to typed Terms. I will take 
as an invariant of the normalisation operation that all names which are used are guaranteed 
to be defined in the context. Where the terms are well-typed and there are no names which 
are not bound to terms (for example, axioms) this will always be the case. Env and Ctxt 
are declared as in figure C.7. Figure C.8 shows the declarations of the evaluation, quotation 
and forgetful map functions. 

type Defs = [(Name,(Term : : : Term))] 
newtype Env = Env [Value] 
type Ctxt = [(Name,(Value : : : Value)] 

Figure C.7: Environment and global context 

eval : : Ctxt -> Env -> Term -> Value 
quote : : Value -> Normal 
forget : : Normal -> Term 

Figure C.8: Normalisation functions 

The context, Ctxt, is built from the TT definitions, Defs, using the mkCtxt function, 
which creates the Value representing each definition from the original Term: 

mkctxt : : Defs -> Ctxt -> Ctxt 
mkctxt [] acc = acc 
mkctxt ( ( n , v : : : t ) : x s ) acc 

= mkctxt xs ( (n , (eval acc (Env [ ] ) v) : : : eval acc (Env [ ] ) t ) :acc) 

C.2 The evaluation function "eval" 

We write eval, the function which translates from well-typed terms to a semantic represen­
tation of terms, by case analysis on the input term. The complete definition, for TT but 
without inductive famihes and i-reduction, is shown in figure C.9. 

Two cases are straightforward, these being the evaluation of constants and de Bruijn 
indexed variables. Evaluation of constants is a direct mapping to normal form and evaluation 
of variables involves looking up the value in the context. This implements 5-reduction: 
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eval : : Ctxt -> Env -> Term -> Value 
eval ctxt g (Const c) = R (RConst c) 
eval c txt (Env g) (V n) = gUn 
eval c txt g (P x) = case lookup x ctxt of 

(Just (v : : : t ) ) -> v 
eval c txt g (Lam t (Sc b)) = R (RLam (eval c tx t g t ) 

(Kr (\w X -> eval (x:weaken w g) b,Wk 0 ) ) ) 
eval ctxt g (Pi t (Sc b)) = R (RPi (eval c tx t g t ) 

(Kr (\w X -> eval (x:weaken w g) b,Wk 0 ) ) ) 
eval c txt (Env g) (Let v t (Sc b)) 

= eval c txt (Env (eval ctxt (Env g) v):g) b 
eval c txt g (App f a) = apply (eval c txt g f ) (eval c tx t g a) 

apply : : Value -> Value -> Value 
apply (R (RLam t (Kr ( f , w ) ) ) ) v = f w v 
apply (B b s) v = B b (Snoc s v) 

Figure C.9: eval definition for TT without inductive families 

eval c txt g (Const c) = R (RConst c) 
eval ctxt (Env g) (V n) = g!!n 

Evaluation of global names involves looking them up in the global context Ctxt, substi­
tuting the body for the name. Since the context stores normal forms, no further work is 
required to produce a Value: 

eval c txt g (P x) = case lookup x c tx t of 
(Just (v : : : t ) ) -> v 

/3-reduction lies at the heart of the normalisation algorithm and so the Lam and Pi 
cases are where the real work takes place. These cases involve building up an appropriate 
semantic representation of the scope of the normal form, so that we use the meta-language's 
implementation of substitution. 

eval ctxt g (Lam t (Sc b)) = R (RLam (eval c tx t g t ) 
(Kr (\w X -> eval (x:weaken w g) b.Wk 0 ) ) ) 

eval ctxt g (Pi t (Sc b)) = R (RPi (eval c txt g t ) 
(Kr (\w X -> eval (x:weaken w g) b.Wk 0 ) ) ) 

In each of these cases the scope of the binding is a function which adds the argument to 
the local context, weakening the values already in the context by the given weakening, then 
evaluates the body of the lambda binding in this new context. Thanks to Haskell's lazy 
evaluation semantics, this function is not executed yet and will not be until requested by 
the quote function. In this way we rely on Haskell's substitution mechanism to perform the 
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substitution rather than implementing it ourselves. Implementation of the weaken function 
is by recursion over Value, incrementing any variables in the value by the weakening. 

Evaluation of a let binding is similar, except that we already know the value which is to 
be added to the environment. We continue by evaluating the scope, with the bound value 
added to the environment. This implements the contextual closure rule: 

eval c txt (Env g) (Let v t (So b)) 
= eval c tx t (Env (eval c tx t (Env g) v):g) b 

Finally, we have the function appHcation case. This evaluates the function and its argu­
ment and uses a helper function to perform the application. 

eval c txt g (App f a) = apply (eval c tx t g f ) (eval c txt g a) 

The apply function checks whether the function is a lambda binding, and if so applies the 
function in its scope. If the function is a blocked application, we simply add the argument 
to the spine of that blocked application. When adding /,-schemes this will become more 
important, since adding an extra argument may make the blocked term reducible, specifically 
in the cases where it makes a constructor or elimination rule fully applied. 

apply :: Value -> Value -> Value 
apply (R (RLam t (Kr ( f , w ) ) ) ) v = f w v 
apply (B b s) v = B b (Snoc s v) 

C.3 The quotation function "quote" 

The quote function takes a semantic representation of a term and translates it back to a 
syntactic representation. In the process, the meta-language reduces the semantic represen­
tation to normal form, hence the quote function produces syntactic normal forms. Normal, 
from their semantic representations. Value. This involves traversing the term and evaluating 
any unevaluated scope functions with an appropriate weakening and argument. We define 
a type class, in figure C.IO, for quotable terms. While this is a very general class definition, 
there are two advantages to using a class rather than simply defining a function: 

• I t allows the name quote to be overloaded for each part of the Model structure. 

• We may at some stage wish to extend the class definition to include extra features 
such as name generation (say, to map de Bruijn indexed local variables back to the 
user's chosen name). 

This class definition relies on multi parameter type classes and functional dependencies, 
non-standard features of Haskell available in the Glasgow Haskell Compiler and some other 
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class Quote x y I x -> y where 
quote : : x -> y 

Figure C.IO: Type class for quote 

instance Quote Value Normal where 
quote (R r ) = R (quote r ) 
quote (B (b : : : t ) s) = B (b : : : quote t ) (fmap quote s) 

instance Quote (Ready Kr ipke) (Ready Scope) where 
quote (RConst c) = RConst c 
quote (RLam t s) = RLam (quote t ) ( s j m t a c t i f y t s) 
quote (RPi t s) = RPi (quote t ) ( s y n t a c t i f y t s) 

s y n t a c t i f y : : Value -> Kripke Value -> Scope Normal 
s y n t a c t i f y t (Kr ( f , w ) ) 

= (Sc (quote ( f (weaken w (Wk 1 ) ) (B ((BV 0 ) : : : t ) Empty))) ) 

Figure C . l l : The quote operation on Value 

implementations. The instance definition which converts values into syntactic normal forms 

is given in figure C . l l . 

The function s y n t a c t i f y is a helper function for this operation which applies the func­

tion representing the scope to an appropriate value. Since we don't know what the argument 

is as the function is not fuUy applied, the appropriate argument is naturally the de Brui jn 

index 0, standing for the most recently bound variable. The function / evaluates the scope 

of a binding passed to s y n t a c t i f y . Since this function evaluates under a binder, the context 

in which the scope is evaluated is weakened by 1 , meaning that variables which were bound 

on a higher level are referred to correctly. 

In this case, no further work is required to produce an T;-long normal form, since there 

are no blocked names to expand. 

C.4 The forgetful map "forget" 

Having used a more precise data structure to create the normal form of a term, i t is often 

helpful to be able to return the normal form as a Term itself. This is the purpose of the 

f o r g e t function which maps a syntactic normal form to the equivalent Term. 

Again f o r g e t is defined using a type class, in figure C.12, which allows the name to be 

overloaded for each paxt of the Model structure. 

f o r g e t is a straightforward traversal of normal forms, the only difficulty being that 

functions are applied to only one argument, rather than an entire spine. To deal with this 

we use a helper function makeApp. The instance definitions which create a Term from a 
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class Forget x y I x -> y where 
f o r g e t : : x -> y 

Figure C.12: Type class for f o r g e t 

Normal are given in figure C.13. 

instance Forget Normal Term where 
f o r g e t (B (b : : : t ) s) = makeApp ( f o r g e t b) (fmap f o r g e t s) 
f o r g e t (R r ) = f o r g e t r 

instance Forget Blocked Term where 
f o r g e t (BV i ) = V i 

instance Forget (Ready Scope) Term where 
f o r g e t (RLam t (Sc s ) ) = Lam ( f o r g e t t ) (Sc ( f o r g e t sc) ) 
f o r g e t (RPi t (Sc s ) ) = P i ( f o r g e t t ) (Sc ( f o r g e t sc ) ) 
f o r g e t (RConst c) = Const c 

makeApp f Empty = f 
makeApp f (Snoc xs x) = App (makeApp f xs) x 

Figure C.13: The forgetful map from Normal to Term 

C.5 Adding t-schemes 

The normalisation function presented so far gives the basic details of normalisation by 

evaluation. To make the system useful however, we would like data structures and some way 

of choosing between different code branches. Chapter 2 described inductive families and their 

elimination rules — in this section we wil l see how ehmination rules can be implemented in 

a normalisation by evaluation setting. This requires adding a representation of constructor 

forms and elimination rules to the term language. 

C.5.1 Constructors 

A constructor form is simply a global name applied to some arguments; we can already 

represent this in the term language. Unlike function names, however, they do not map to a 

definition, but rather are used to direct i-reduction. We therefore modify the definition of 

Def s. A name maps to either a function definition (Fim Term), a construtor wi th its arity 

(Con I n t ) or a type constructor with its arity (TyCon I n t ) . The new definiition of Def s is 

shown in figure C.14. 



A P P E N D I X C . A N I M P L E M E N T A T I O N OF N O R M A L I S A T I O N B Y E V A L U A T I O N 233 

data NameDef = Fun Term 
1 Con I n t 
1 TyCon I n t 

type Defs = [(Name,(NameDef : : Term))] 

Figure C.14: Adding constructor definitions 

An elimination rule can only be reduced when given a fuUy applied constructor. We 

therefore add constructor names and type constructors to the blocked normal forms (for 

constructors which are not fully applied) and to the ready normal forms (for those which 

are fully applied). These additions are shown in figure C.15. 

data Blocked = . . . 

1 BCon Name I n t 
1 BTyCon Name I n t 

data Ready s = . . . 

1 RCon Name (Spine (Model s ) ) 
1 RTyCon Name (Spine (Model s ) ) 

Figure C.15: Adding constructors to normal forms 

The fully appUed constructors also store the values to which they are applied; this is 

convenient for implementing elimination rules which access the arguments of a constructor. 

There are situations where i t might be useful to add further information to constructor 

names. An integer tag on the constructor can act as a reference into a lookup table of 

t-reductions. This is the representation chosen by several graph reduction systems to speed 

up choice of reduction, including early implementations of the G-machine [Pey87, PL92]. In­

stead of a tag, a function pointer can be used to directly point to the code for the i-scheme, 

which is the approach taken by the STG machine [Pey92]. We choose the straightforward 

representation of the name and arguments here because of the approach we take to imple­

menting elimination rules. 

As before, we use a function mkctxt to build a context from the list of definitions. 

Function definitions map to Values as before. Constructor names also map to Values; a 

constructor of zero arity is ful ly apphed so we build a ready form, otherwise we build a 

blocked form. 

C.5.2 Elimination Rules 

Elimination rules are generated from a user defined data type, rather than by the user 

directly. Syntactically, an elimination rule is simply a name; however, semantically, there 

must be an implementation of its pattern matching behaviour. For this reason, we do not 
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mkctxt : : Defs -> Ctxt -> C tx t 
mkctxt [ ] acc = acc 
mkctxt ( (n , (Fun v ) : : : t ) : x s ) acc 

= mkctxt xs ( ( n , (eva l acc (Env [ ] ) v) : : : eva l acc (Env [ ] ) t ) : a c c ) 
mkctxt ( (n , (Con 0 ) : : : t ) : x s ) acc 

= mkctxt xs ( ( n , R (RCon n Empty) : : : eva l acc (Env [ ] ) t ) : a c c ) 
mkctxt ( (n , (Con i ) : : : t ) : x s ) acc 

= mkctxt xs ( ( n , B ( (BConn i ) : : : t y ) Empty : : : t y ) : a c c ) 
where t y = eval acc (Env [ ] ) t 

mkctxt ( (n,(TyCon 0 ) : : : t ) : x s ) acc 
= mkctxt xs ( ( n , R (RTyCon n Empty) : : : eval acc (Env [ ] ) t ) : a c c ) 

mkctxt ((n,(TyCon i ) : : : t ) : x s ) acc 
= mkctxt xs ( ( n , B ((BTyCon n i ) : : : t y ) Empty : : : t y ) : a c c ) 

where t y = eva l acc (Env [ ] ) t 

Figure C .16 : Building a context of Values with constructors 

represent t-schemes directly as terms, but rather as a function implementing that rule's 

behaviour. 

An elimination rule takes a number of arguments and i f i t is possible to apply the rule to 

those arguments, returns the Value representing the result of elimination. I f not, evaluation 

cannot proceed. The Haskell type describing this behaviour is: 

type ElimRule = Spine Value -> Maybe Value 

For each data type, there is a function of type ElimRule which defines its t-schemes. 

We do not add elimination rules to the term language; they are represented by their names, 

which are bound in the global context to a Value. 

In the language of normal forms, i t may be that we have an ehmination operator which 

cannot be appUed, either because i t has too few arguments or because its target is not in 

canonical form. A value is in canonical form i f i t cannot be reduced further; that is, i t is 

ready rather than blocked. For data types, this means that the target is a fully applied 

constructor. For this reason, we add elimination rules to the blocked normal forms, as in 

figure C . 1 7 . We keep the name of the elimination rule as well as its implementation, so that 

we can implement the forgetful map back to Terms i f the eUmination rule cannot be reduced. 

type ElimRule = Spine Value -> Maybe Value 

data Blocked = . . . 
I BElim (ElimRule.Name) 

Figure C .17 : Adding elimination rules to normal forms 

We extend NameDef to map a name to an implementation of an elimination rules, and 

extend mkctxt accordingly, as in figure C . 1 8 . Elimination rules are represented in pattern 
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matching form (Patterns) and compiled to an implementation (ElimRule) using mkelim, 
although we wil l not go into the details of this representation here. 

data NcuneDef = . . . 
1 E l im Pat terns 

mkctxt ( ( n , ( E l i m p ) : : : t ) : x s ) acc 
= mkctxt xs ( ( n , B ((BElim (mkelim p , n ) ) : : t y ) Empty : : t y ) : a c c ) 

where t y = eval acc (Env [ ] ) t 

Figure C .18 : Adding elimination rules to Def s 

C.5.3 Evaluation of Elimination Operators 

I t now remains to define cases of eval , quote and f o r g e t for constructors and elimination 

operators. The complete definition of eval is given in figure C . 1 9 . The only addition is in 

the apply helper function, since constructor and elimination rules are evaluated by looking 

their values up in the context. When applying a blocked constructor to an argument, we 

check whether the constructor is now fully applied; i f so, we create a ready term, otherwise 

we simply add the argument to the spine. 

apply (B ((BCon n i ) : : : t y ) s) v 

I splength (Snoc s v) = i = R (RCon n (Snoc s v ) ) 

I otherwise = B ((BTyCon n i ) : : : t y ) (Snoc s v) 

apply (B ((BTyCon n i ) : : : t y ) s) v 

I splength (Snoc s v) = i = R (RTyCon n (Snoc s v ) ) 

I otherwise = B ((BTyCon n i ) : : : t y ) (Snoc s v) 

Whenever an argument is added to a blocked eUmination rule, we t ry to apply the 

eUmination rule to its arguments by applying its ElimRule function. I f this produces a 

value we continue, otherwise we retain the blocked term. 

apply (B ((BElim ( e , x ) ) : : : t y ) s) v 

= case e (Snoc s v) of 

Nothing -> (B ((BElim ( e . x ) ) : : : t y ) (Snoc s v ) ) 

Just V - > V 

For quotation, no extra work is required for blocked constructors since they are not 

parametric in their scope. The complete definition, wi th constructors and t-reduction, is 

shown in figure C . 2 0 . The addition to the previous definition is for ful ly appHed constructors, 

which are quoted as follows: 

quote (RCon n s) = RCon n (fmap quote s) 

quote (RTyCon n s) = RTyCon n (fmap quote s) 
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eval : : C tx t -> Env -> Term -> Value 
eva l c t x t g (Const c) = R (RConst c) 
eval c t x t (Env g) (V n) = g ! !n 
eval c t x t g (P x) = case lookup x c t x t of 

(Just (v : : : t ) ) -> v 
eva l c t x t g (Lam t (So b ) ) = R (RLam (eval c t x t g t ) 

(Kr (\w X -> eval (x:weaken w g) b.Wk 0 ) ) ) 
eva l c t x t g (P i t (Sc b ) ) = R (RPi (eva l c t x t g t ) 

(Kr (\w X -> eval (x:weaken w g) b,Wk 0 ) ) ) 
eva l c t x t (Env g) (Let v t (Sc b ) ) 

= eva l c t x t (Env (eval c t x t (Env g) v ) : g ) b 
eva l c t x t g (App f a) = apply (eva l c t x t g f ) (eva l c t x t g a) 

apply : : Ctx t -> Value -> Value -> Value 
apply (R (RLam t (Kr ( f , w ) ) ) ) v = f w v 
apply (B ((BCon n i ) : : : t y ) s) v 

I splength (Snoc s v) = i = R (RCon n (Snoc s v ) ) 
I otherwise = B ((BTyCon n i ) : : : t y ) (Snoc s v) 

apply (B ((BTyCon n i ) : : : t y ) s) v 
I splength (Snoc s v) = i = R (RTyCon n (Snoc s v ) ) 
I otherwise = B ((BTyCon n i ) : : : t y ) (Snoc s v) 

apply (B ((BElim ( e , x ) ) : : : t y ) s) v 
= case e (Snoc s v) of 

Nothing -> (B ((BElim ( e . x ) ) : : : t y ) (Snoc s v ) ) 
Just V - > V 

apply (B b s) V = B b (Snoc s v) 

Figure C.19: Complete eval definition, wi th (.-reduction 

The forget operation is also relatively straightforward since most of the work, dealing 

wi th the spine, has already been done. The complete definition is shown in figure C.21. 

Forgetting blocked constructors is a straightforward map to the Term constructors: 

f o r g e t (BCon n i ) = P n 

f o r g e t (BTyCon n i ) = P n 

When we forget an elimination rule which could not be appUed, we get back the name 
of the rule, rather than its implementation: 

f o r g e t (BElim ( e , x ) ) = P x 

Forgetting fully apphed constructors deals with apphcation of the spine in a similar way 

to the spine of blocked applications, using makeApp: 

f o r g e t (RCon n s) = makeApp (Con n (splength s ) ) (fmap f o r g e t s) 

f o r g e t (RTyCon n s) = makeApp (TyCon n (splength s ) ) (fmap f o r g e t s) 
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instance Quote Value Normal where 
quote (R r ) = R (quote r ) 
quote (B (b : : : t ) s) = B (b : : : quote t ) (fmap quote s) 

instance Quote (Ready Kr ipke) (Ready Scope) where 
quote (RConst c) = RConst c 
quote (RLam t s) = RLam (quote t ) ( s y n t a c t i f y t s) 
quote (RPi t s) = RPi (quote t ) ( s y n t a c t i f y t s) 
quote (RCon n s) = RCon n (fmap quote s) 
quote (RTyCon n s) = RTyCon n (fmap quote s) 

s y n t a c t i f y : : Value -> Kripke Value -> Scope Normal 
s y n t a c t i f y t (Kr ( f , w ) ) 

= (Sc (quote ( f (weaken w (Wk 1 ) ) (B ((BV 0 ) : : : t ) Empty))) ) 

Figure C.20: The quote operation on Value, wi th constructors 

C.5.4 Quotation to r/-long normal form 

Now that we have added constructors, the final step is quotation to T]-\ong normal form, 

implementated as in figure C.22. This is type directed; we quote a term/type pair, and 

Tj-expand all elements of function type. At the top level i t is fairly straightforward; i f we 

have a function type, we make sure the term is a A form: 

quote (v : : : (R (RPi t y (Kr ( f . w ) ) ) ) ) 

= (R (RLam (quote t y ) (Sc (quote ( ( app ly v vO) : : : f w v O ) ) ) ) ) 

where vO = (B ((BV 0 ) : : : t y ) Empty) 

I f we have a blocked apphcation, we have the type of the head symbol, which we use 

to direct the quotation of the arguments in the spine. The spine holds the arguments 

backwards, which is slightly inconvenient, but not difficult to deal with: 

quote ((B ( b l : : : t y ) sp) : : : _) 

= B ( b l : : : quote t y ) ( f s t (qspine sp)) 

where qspine Empty = (Empty, t y ) 

qspine (Snoc sp v) I ( s p ' , R (RPi t (Kr ( f , w ) ) ) ) <- qspine sp 

= (Snoc sp' (quote (v : : : t ) ) , f w (vO t ) ) 

vO t = (B ((BV 0 ) : : : t ) Empty) 

C.5.5 Example — Natural Numbers 

The natural number data type and its t-scheme were defined as below in Chapter 2: 
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instance Forget Normal Term where 
f o r g e t (B (b : : : t ) s) = makeApp ( f o r g e t b) (fmap f o r g e t s) 
f o r g e t (R r ) = f o r g e t r 

instance Forget Blocked Term where 
f o r g e t (BV i ) = V i 
f o r g e t (BCon n i ) = P n 
f o r g e t (BTyCon n i ) = P n 
f o r g e t (BElim ( e , x ) ) = P x 

instance Forget (Ready Scope) Term where 
f o r g e t (RLam t (Sc s ) ) = Lam ( f o r g e t t ) (Sc ( f o r g e t sc) ) 
f o r g e t (RPi t (Sc s ) ) = P i ( f o r g e t t ) (Sc ( f o r g e t sc) ) 
f o r g e t (RConst c) = Const c 
f o r g e t (RCon n s) = makeApp (Con n ( sp length s ) ) (fmap f o r g e t s) 
f o r g e t (RTyCon n s) = makeApp (TyCon n (sp length s ) ) (fmap f o r g e t s) 

maikeApp f Empty = f 
makeApp f (Snoc xs x) = App (makeApp f xs) x 

Figure C . 2 1 : The forgetful map from Normal to Term, with constructors and t-reduction 

data where " ^ 
N : * '"'^^ 0 : N s n : N 

N - E l i m 0 P mo TUs mo 

N - E l i m (s fc) P mo TTJs m^ k {N-mim k P mo m^) 

The constructor names are represented in Def s as follows: 

[ ( " 0 " , C o n 0 ) , ( " s " , C o n 1 ) ] 

For the elimination operator, we define a function of type ElimRule which takes a spine 

of the arguments and returns a value i f reduction is possible. Reduction is possible when 

the spine contains the correct number of arguments (foiu: in the case of N - E l i m ) and the 

argument in the target position is in canonical form. 

For N - E l i m , we can define such a function by hand, as below. There are two cases in 

which the function can produce a value. These are when the target matches a fully applied 

instance of either constructor and the other arguments, P, mo and m^ are present. In any 

other case, no reduction is possible. 

na t e l im (Snoc (Snoc (Snoc (Snoc Empty x) P) mZ) mS) = case x of 

(R (RCon " 0 " Empty)) -> r e t u r n mZ 

(R (RCon "s" (Snoc Empty n ) ) ) -> 

r e t u r n (apply (apply mS n) (B (BElim ( n a t e l i m , " n a t e l i m " ) ) 

(Snoc (Snoc (Snoc (Snoc Empty n) P) mZ) mS))) 
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instance Quote (Value : : : Value) Normal where 
quote (v : : : (R (RPi t y (Kr ( f , w ) ) ) ) ) 

= (R (RLam (quote t y ) (Sc (quote ( ( app ly v vO) : : : f w v O ) ) ) ) ) 
where vO = (B ((BV 0 ) : : : t y ) Empty) 

quote ((B ( b l : : : t y ) sp) : : : _) 
= B ( b l : : : quote t y ) ( f s t (qspine sp)) 

where qspine Empty = (Empty, t y ) 
qspine (Snoc sp v) I ( s p ' , R (RPi t (Kr ( f , w ) ) ) ) <- qspine sp 

= (Snoc sp' (quote (v : : : t ) ) , f w (vO t ) ) 
vO t = (B ((BV 0 ) : : : t ) Empty) 

quote (v : : : t ) = quote v 

Figure C .22 : Quotation to 77-long normal form 

_ -> Nothing 

n a t e l i m _ _ = Nothing 

C.6 Building Elimination Rules 

Of course, we cannot hard code ehmination rules for all inductive families — although doing 

so may be an optimisation for some commonly used families like N , we would like a more 

general way of evaluating eliminations. For an inductive family D, we would like a general 

method of constructing a function of type Spine Value -> Maybe Value representing its 

elimination rule D-El im, defined by the following general scheme in pattern matching style: 

D - E l i m s (ci Si yi) P fh t i 

D - E l i m s {c^ On Vn) P 'fn l-n 

An eUmination rule is reducible i f the target is in canonical form (that is, there is an 

RCon at the head) and i t has been passed the right number of arguments — that is, the 

length of the spine equals the arity of the elimination rule. 

So, given an arity, the location of the target on the spine, and a fist of reductions (mapping 

from constructor name to a function which produces a Value, given a local context), we can 

build a generic implementation of an elimination rule, shown in figure C . 2 3 . 

The function checks that the spine i t is given is the correct length; i f not, i t cannot proceed: 

genElim a c r s sp 

I splength sp < a = Nothing 

I f the spine has the appropriate number of arguments, we try to apply the appropriate 

i-scheme. reduce is a helper operation which takes the target, and the spine with the 

constructor removed: 
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genElim : : I n t -> I n t -> [(Name,(Gamma -> Va lue ) ) ] -> 
Spine Value -> Maybe Value 

genElim a c r s sp 
I splength sp < a = Nothing 
I otherwise = reduce (sp!!c) (remove c sp r s ) 

reduce (R (RCon n as)) sp r s 
= do V <- lookup n as 

r e t u r n v (Env (as 'append' sp)) 
reduce _ sp r s = Nothing 

Figure C.23: Complete definition of genElim 

genElim a c r s sp 

I otherwise = reduce (sp!!c) (remove c sp r s ) 

reduce (R (RCon n as)) sp r s 

= do V < - lookup n as 

r e t u r n v (Env (as 'append' sp)) 

reduce _ sp r s = Nothing 

How does this help? We can use genElim to build any reduction rule from its arity, 

target and t-schemes. For each constructor C i of D, such that Ci a y : D s, we build a 

function representing the t-scheme for that constructor, wi th motive P and methods fh, 
following the ideas of [CL99]: 

As; a; y; P; fh. n 

The arity of the elimination rule a is calculated from the number of indices of the type 

(s) and the number of constructors (n); o = s -f n -|- 2, the extra 2 accounting for the target 

and motive. The position of the constructor in the argument list, c, is given by the number 

of indices; c = s. 

The reductions, rs, are given by constructing a map such that c i maps to t j ; is 

typechecked so that local variables are represented by the appropriate de Bruijn index. 

Then the function implementing the ehmination rule for D is given by: 

D - E l i m = genElim a c rs 

We can build na t e l im in this way as follows: 

natZ g = eva l g (V 0) 

natS g = eval g (App (App (V 0) (V 3) ) 

(App (App (App (App 

(P "na te l im") (V 3 ) ) (V 2) ) (V 1)) (V 0 ) ) ) 

na t e l im = genElim 4 0 [ ( " 0 " , n a t Z ) . ("S",natS)3 
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The de Brui jn indices in the reductions of this rule refer to the Values passed through 

in the local context g. Hence, there are no lambdas; the variables have already been bound. 

C.7 Conversion Using Normalisation by Evaluation 

We have implemented normalisation by evaluation to support the conversion test, which is 

required for typechecking in an implementation of TT. I t is useful to be able to run arbitrary 

terms within the system during program development (as with CoQ's Eval tactic) but we 

are interested in eflScient evaluation primarily to speed up the conversion check. 

Usually, we would reduce to weak head-normal form when typechecking, as in Coquand's 

algorithm [Coq96], because this is more eflncient in the case where terms differ at the head; i t 

does not require the evaluation to finish when we already know that two terms do not convert. 

We can however take advantage of Haskell's lazy evaluation to ensure that normalisation 

does not continue longer than necessary and write the conversion check on Normals rather 

than weak head-normal forms. This conversion check is simply a check for syntactic equaUty 

since the terms in question cannot be reduced further. 

The efficiency of performing the conversion check this way relies on lazy evaluation. The 

equahty check between two terms in normal form proceeds by checking the head of each 

term and i f there are differences, returning false immediately. Only i f the heads are the 

same does the body need to be evaluated and the quote function run on the scope. 

The main disadvantage to this approach is that normalisation expands definitions by 

5-reduction. For example, we know that plus ~ plus because the function names match. 

Using normafisation by evaluation for the conversion check, we expand the names and check 

whether the definitions match. W i t h small definitions, this does not appear to be a big over­

head and we would expect i t in general to be outweighed by the efficiency of normahsation 

by evaluation as compared to other approaches such as the Krivine machine. As we begin 

to implement larger programs in E P I G R A M , however, i t may be wise to rethink this strategy 

and implement a more efficient technique, perhaps based on Gregoire and Leroy's compiled 

strong reduction [GL02]. 

Note that there is more work to be done on both the theory and practice of normahsa­

tion by evaluation for dependent type systems. We would like to do some experiments to 

determine how efficient normalisation by evaluation is compared with other approaches such 

as the Krivine Machine and compiled strong reduction. Also, we do not yet have a proof of 

correctness of normalisation by evaluation for a dependent type system. 



Appendix D 

G-Machine Implementation 
Details 

The G-machine is written in C + + , using the Boehm and Demers garbage collector [BDXHOl]. 

I t is not implemented with efficiency as a primary concern (in particular because more re­

cent abstract machine designs such as the STG machine [Pey92] are more efficient) but 

rather wi th clarity and ease of results generation. This appendix gives an outline of the 

implementation. 

D . l Heap Nodes 

Heap nodes are represented with a C+-I- class Value, wi th subclasses for each node type. 

Value itself is derived from gc.cleanup which allows garbage collection, and causes the 

destructor to be called when the structure is no longer accessible. The only interface function 

we require is canonical which returns whether a node can not be reduced further, although 

in practice we add functions for display and debugging purposes. 

class Value : p u b l i c gc_cleanup {. 

p u b l i c : 

v i r t u a l boo l canonica l ( ) = 0; 

>; 

Application nodes contain a pointer to the function and its argument. 

class AppNode : p u b l i c Value 

{ 
p u b l i c : 

242 
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AppNode(Value* f , Value* a ) ; 

v i r t u a l bool canon ica l ( ) { r e t u r n f a l s e ; } 

p r i v a t e : 

Value *m_f, *m_a; 

>; 

Function nodes cannot be reduced further. They contain a pointer to the code implementing 

the function. Each function itself returns a code pointer, which is used to implement tail 

recursion (by returning the address of the function to call next). 

typedef v o i d * ( * f u n c ) ( ) ; 

c lass FunNode : p u b l i c Value 

{ 

p u b l i c : 

FunNode(func f ) ; 

v i r t u a l bool canonica l ( ) { r e t u r n t r u e ; } 

p r i v a t e : 

fxmc m_fun; 

i n t m_ar i ty ; 

} ; 

Constructor nodes contain a tag and an array of their arguments. On construction, the 

arguments are taken from the stack. We know, from the design of ExTT, that constructors 

are always fully applied, so there is no need to take into account arguments which may be 

added later. 

c lass ConNode : p u b l i c Value 

i 
p u b l i c : 

ConNode(int m_tag, i n t a r i t y ) ; 

v i r t u a l bool canonica l ( ) { r e t u r n t r u e ; } 

p r i v a t e : 

i n t m_tag; 

Value **m_args; 

} ; 

Tuple nodes represent detagged constructors, and as such are implemented like ConNode, 

but without a tag. 
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class TupNode : p u b l i c Value 

- c 
p u b l i c : 

TupNode(int a r i t y ) ; 

v i r t u a l bool canon ica l ( ) { r e t u r n t r u e ; } 

p r i v a t e : 

Value +*m_args; 

} ; 

D.2 Machine State 

The G-machine state is a tuple ((7, S, G, E, D), holding the code, stack, heap, environment 

and dump respectively. Each of these components are implemented as follows: 

• Code is simply C-|—|- code. References to code within the G-machine are implemented 

by function pointers. 

• The stack is represented as an array of Value pointers, together wi th pointers to the 

base and the top of the stack. 

• The heap is managed by the Boehm-Demers garbage collector, wi th local variables 

and the stack holding pointers to Values in the garbage collected heap. 

• The environment is handled by the C+-t- compiler; each supercombinator becomes a 

C-|—I- function, so mapping functions to code can be achieved by means of a function 

pointer. 

• The dump is effectively a call stack, and can therefore be managed by the C-|—t- call 

stack. Nevertheless, we also need to remember the stack state at the time the call was 

made, via the following Dumpltem structure: 

s t r u c t Dumpltem { 

Value** stack_base; 

Value** s t ack_p t r ; 

} ; 

We therefore maintain a stack of Dumpltem pointers, and whenever a heap node is 

evaluated, record the current stack state. 
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D.3 Evaluation 
Each G-machine instruction is implemented by a C + + function, and so each supercombi-

nator is translated to a sequence of C + + function calls. Of these, most are straightforward 

direct implementations of the operational semantics. The main difficulty is wi th tail calls, 

which are implemented using a trick similar to the "tiny interpreter" described in [Pey92]. 

Each function returns a pointer to the code block to which i t would like to jump, rather 

than calling i t . 

v o i d run ( func cont) { 

while(cont!=NULL) { 

cont = ( • c o n t ) ( ) ; 

> 

} 

In a real implementation designed to get the most out of the target machine, we might 

prefer to use a portable assembly language, such as C— [PRR99] as the target language, 

rather than C or C + + , reserving C or C + + for some of the higher level details of the run­

time system. C— in particular has useful features such as a lightweight calling convention, 

tail recursion and multiple return values, giving low level control without having to worry 

about the details of different architectures. 
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