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Abstract

Practical Implementation of a Dependently Typed Functional Programming
Language
Edwin C. Brady

Types express a program’s meaning, and checking types ensures that a program has the
intended meaning. In a dependently typed programming language types are predicated on
values, leading to the possibility of expressing invariants of a program’s behaviour in its
type. Dependent types allow us to give more detailed meanings to programs, and hence be
more confident of their correctness.

This thesis considers the practical implementation of a dependently typed programming
language, using the EPIGRAM notation defined by McBride and McKinna. EPIGRAM is
a high level notation for dependently typed functional programming elaborating to a core
type theory based on Luo’s UTT, using Dybjer’s inductive families and elimination rules to
implement pattern matching. This gives us a rich framework for reasoning about programs.
However, a naive implementation introduces several run-time overheads since the type sys-
tem blurs the distinction between types and values; these overheads include the duplication
of values, and the storage of redundant information and explicit proofs.

A practical implementation of any programming language should be as efficient as pos-
sible; in this thesis we see how the apparent efficiency problems of dependently typed pro-
gramming can be overcome and that in many cases the richer type information allows us
to apply optimisations which are not directly available in traditional languages. I introduce
three storage optimisations on inductive families; forcing, detagging and collapsing. I further
introduce a compilation scheme from the core type theory to G-machine code, including a
pattern matching compiler for elimination rules and a compilation scheme for efficient run-
time implementation of Peano’s natural numbers. We also see some low level optimisations
for removal of identity functions, unused arguments and impossible case branches. As a
result, we see that a dependent type theory is an effective base on which to build a feasible
programming language.
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Chapter 1

Introduction

Computer programs are ubiquitous. As we rely on computers more and more in all aspects
of daily life, it becomes more important to minimise errors in computer software; it is
particularly important where privacy or safety is concerned. An error-free computer program
is, however, rare — a programmer attempts to minimise the number of errors by using a
combination of techniques including formal specification, careful design, correctness proofs
and extensive testing.

Part of the difficulty in writing a correct computer program lies in the problem of con-
verting the design in the programmer’s head (which one would hope is well understood) to
a program which a computer can execute. Over the last fifty years increasingly powerful
programming languages have been developed to allow the programmer to express a design
as a program in more familiar terms; more modern languages feature more powerful type
systems, which allow the programmer to specify more precisely the intended semantics of
the program and provide more powerful paradigms for modelling.

Dependent type systems [ML71, Luo94] allow types to be predicated on values and have
traditionally been applied to reasoning and program verification. More recent research, how-
ever [Aug98, Xi98, McB00a, MMO04b], has led to the use of dependent types in programming
itself. The principle is that the richer type system allows a more precise type to be given to
a program so that more errors can be detected at compile-time which would previously have
remained undetected until run-time, and even then perhaps only in unusual circumstances.
Dependent types also allow us to give types to more programs than traditional simple type
systems.

The use of dependent types in programming leads to several implementation difficulties
on the one hand, and optimisation opportunities on the other hand. One difficulty is that
the distinction between types and values is blurred so it is less clear how to erase types at
run-time. Types can also express relationships between values — such relationships may
mean one value can be computed from another, so we need not store both. With rich type

information, we know more about the possible inputs and outputs of a program and ought
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to be able to use this information to optimise a program. In this thesis, I begin to explore
techniques for removing the run-time overheads of dependent types and gaining run-time

benefits from our richer type information.

1.1 Types in Programming

Following Mitchell [Mit03], we identify three main purposes which types serve in modern

programming languages. These are:

1. Naming and organising concepts. The type of a function or data structure reflects
the way that structure is used in a program. In this way, types provide documentation
to programmers and aid maintainability.

2. Ensuring that the machine interprets data consistently. Types ensure that
operations are applied to objects of the correct form. For example, typechecking
prevents an operation which expects an integer being given a floating point number,
which would then be interpreted incorrectly. An object will always be treated in a

way consistent with its representation.

3. Providing information to the compiler about data. A compiler uses the type
of an object to decide how to lay out that object in memory. Two objects of the same
type will always be represented in the same way.

These purposes assist the programmer, the machine and the compiler respectively. The
importance of data types in programming languages has been acknowledged throughout the
history of programming. Originally, languages attached types to values out of necessity —
different types are laid out in memory in different ways, so the programmer was required
to declare the purpose of a variable. As such, the first of the major computer languages,
FORTRAN [IBM54], included primitive types for describing integers and real numbers and
basic support for data structures with arrays.

Modern functional programming languages such as Haskell [P*02] and the ML fam-
ily [MTHM97, Ler02] take this idea much further, allowing user defined data structures and
function types. Primitive types, which effectively give an interpretation to bit patterns (for
the benefit of the machine), are combined into compound types which give a higher level
understanding of data (for the benefit of the programmer).

The development of more advanced type systems has led to two further purposes for
types; in modern languages types are not only present because they are a necessity for
the compiler, but because they provide documentation for the programmer and consistency
checking for programs — giving a type to a function effectively gives a specification to that
function, which serves as documentation for the programmer, and which the compiler verifies
by typechecking.
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1.2 Dependent Types in Programming

The characteristic feature of a dependent type system, as opposed to the “simple” type
systems of Haskell and ML, is that types can be predicated on values. This allows the
programmer to give a more precise type to a value, with the effect that more errors can
be caught at compile-time, rather than manifesting themselves only when the right circum-
stances arise at run-time. As an introductory example, we shall consider the following simple
Haskell function which appends two lists:

append :: [a]l -> [a]l —> [a]
append [] xs = xs

append (x:xs) ys = x:(append xs ys)
We can compute the length of a list as follows:

length :: [a] -> Int
length [] =0
length (x:xs) = 1+(length xs)

The append function, if written correctly, satisfies the property that the length of the
output is the sum of the lengths of the inputs:

length (append zs ys) = lengthzs + lengthys

This is not checkable directly in Haskell, although we could use a tool such as QuickCheck
[CHOO0] to generate random test cases, or write a correctness proof externally. With a
dependent type system, we can give this function a more precise type which reflects the
property directly in the type. This helps avoid a common class of error (using the wrong
list) by giving each input list a distinct type. Although such an error is unlikely in a small
function such as this, in a large system it may not be so difficult to confuse one list for
another.

There have been various approaches to implementing dependent types in programming
languages, so the type of the function, and how the list is represented, varies from system to
system. Let us consider now some different implementations of dependent types and discuss
how they might be used to implement list append such that it provably preserves the length
property above.

1.2.1 Cayenne

Cayenne [Aug98] is a dependently typed functional language loosely based on Haskell, and
similar to the language of the Agda theorem prover [Hal01]. Cayenne allows functions to
compute types, which allows more functions to be typeable; examples given are printf,
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the type of which is computed by examining the format string, and a well-typed inter-
preter [AC99], the return type of which depends on the object level expression to be evalu-
ated.

Without going into too much detail on the syntax, let us consider how to implement
append. We can express lists of a given length (known as vectors) in Cayenne by writing
a function vect to compute an appropriate type via a recursive definition (rather than by
declaring a data structure):

vect :: (a :: #) -> Nat —> #;
vect a (Zero) = Unit;

vect a (Succ x) = (Pair a (vect a x));

An empty vector is represented by the unit type, and a non-empty vector by a pair of
the head and tail. Peano style natural numbers are used here to represent the length of the
vector, Zero and Succ being the constructors of a data type of natural numbers. The type
of the append function now expresses the property that the length of the resulting list is the
sum of the length of the inputs:

append :: (a :: #) |-> (n,m :: Nat) |->
(vect a n) -> (vect am) -> (vect a (n + m));
append Xs ys = ys;
append xs ys = case xs of {
(z,zs) -> (z,append zs ys)
};

Note here that pattern matching is on the length, rather than the vector itself. Pattern
matching on the vector is not allowed, since empty and non-empty vectors are represented
by different concrete types. There is a small notational overhead here (i.e., the additional
arguments a, n and m, which are required as the type of the function depends on them), but
the advantage is that we know from the type that append satisfies the property we want.

The drawback to Cayenne’s powerful type system is that typechecking becomes undecid-
able. This is because typechecking in this type system requires the evaluation of type level
programs at compile-time — if a type level program does not terminate, typechecking will
not terminate. Cayenne deals with the problem by inserting a configurable upper bound
on the number of reduction steps allowed in the typechecker; reaching this upper bound is
treated as a type error. Hence the result of typechecking is “Correct”, “Incorrect” or “Don’t

know”.

1.2.2 DML

DML [Xi98] is an extension to ML allowing a form of dependent types. It is really a family

of languages DML(C) where C is a constraint domain from which we draw the values on
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which types can be predicated. In DML, we do not write functions which compute types
— instead, we give constraints on the types which are verified by a constraint checker. In
his thesis, Xi implements the domain of natural numbers, and adds a syntax for annotating

ML types with indices. Lists can be annotated as follows:

datatype ’a list = nil | cons of ’a * ’a list
with nil <| ’a 1list(0)

| cons <| {n:nat} ’a list(n) -> ’a list(n+1)

Using this annotated list type, we can also declare the type of append in terms of anno-
tated lists. The definition is the same as the non-dependently typed version, but the type
expresses the length property which the definition must satisfy:

fun (’a)
append(nil,ys) = ys
| append(cons(x,xs),ys) = Cons x (append xs ys)

where append <| {m:nat,n:nat} List(m) #* List(n) -> List(m+n)

Here we have used a standard list type, but added annotations which describe the length.
The advantage is that we can pattern match on the list as usual, however there is not the
full dependency of Cayenne in that only types for which a constraint checker has been
implemented can be used as indices.

The original motivation for this was to catch more errors at compile-time; however,
Xi has also used dependent types to direct optimisations including array bounds check
elimination [XP98] and dead code elimination [Xi99a].

1.2.3 Inductive Families and Epigram

EPIGRAM is a platform for dependently typed functional programming based on inductive
families [Dyb94]. Inductive families are a form of simultaneously defined collections of
algebraic data types (such as Haskell data declarations) which can be parametrised over
values as well as types. For our list append example, we can declare an inductive family for
vectors, parametrised over the element type and indexed over the length. To do this, first

we declare a type of natural numbers, using the natural deduction style notation proposed
in {MMO04b]:

n_: N
0: N sn:N

data N> where

The reason for using the natural deduction style notation, rather than the more standard
Haskell style data declaration is that a constructor of a family is allowed to target a subset of
the family if desired, where the subset is given by a parametrised function which itself may

be a constructor (of another family). In the following declaration of vectors, for example,
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note that Vnil only targets vectors of length zero, and Vcons only targets vectors of length
greater than zero:
A:% n:N

Vect An : * where Vnil : Vect AD

z : A s : VectAk
Vconsz zs : Vect Ask

data

To write append, since lists are indexed over their lengths, we first need “append on
lengths”, namely plus. The type of a function is introduced with a let declaration, also
written in a natural deduction style. The function itself is written in a pattern matching
style, with elim n indicating that the function is primitive recursive over n. We will discuss
this notation in detail in Chapter 2 — elim n in particular gives access to an elimination
rule for N which implements primitive recursion over N. Elimination rules, implemented by
pattern matching, are an important feature of EPIGRAM which we will introduce in section
2.1.3. We write plus as follows:

n,m : N
plusnm : N

let
plus n m <elimn
plus 0 m — m
plus(sk)m > s (plug\k m)

We are now in a position to write the append function. The type signature of this
function is similar to the equivalent function in Cayenne, but written using the natural
deduction style notation. The two arguments n and m are implicit — since they are used in
the types of zs and ys, and we know the type of Vect, the typechecker infers that they must
also be arguments to append and so there is no need to write them down:

zs : VectAn  ys : VectAm

let append zs ys : Vect A (plus n m)
append zs ys < elim zs
append Vil ys +— ys

append (Vcons = zs) ys +— Vcons z (append zs ys)

This is similar to the DML definition, and the program itself (ignoring the type) is
similar to the Haskell definition. However we are not limited to indexing only over natural
numbers, as in DML. The disadvantage is that the checking of more complex constraints is
not automated — for example we may have to write extra functions to prove commutativity
or associativity of plus.

The length function is straightforward to write in this setting, as the length is passed
implicitly as an argument with any Vect. Since it is implicit, we subscript it in the definition
(as n):

let XS VectAn
= lengthzs : N

length, zs — n
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Even this function is redundant; we know the length is n from the type before we evaluate
this function. We effectively carry the length around with every list, trading time (computing
the length) for space, as with vectors in the C++4 STL [MSDO01].

Inductive families have been used extensively by theorem provers including Coq [Coq01],
LEGo [LP92], ALF [Mag94] and Plastic [CLO1]. In this kind of setting dependent types can
be used to prove properties of simply typed programs, for example by declaring an inductive
family to represent the desired property. A trivial example, the less than or equal relation,
can be represented as an inductive family:

z,y : N p : z<y
data <y : % where [eO : 0<y leSp : sz<sy

To construct an instance of a < b is effectively to prove the proposition that a is less
than or equal to b; hence we can prove that a program has this property by constructing
instances of a < b for appropriate a and b. We will see an example in section 2.3.2, where the
minus function is defined to take a third argument which ensures that the smaller number
is subtracted from the larger number.

The EPIGRAM notation is defined by McBride and McKinna in [MMO04b]. This nota-
tion elaborates to a dependent type theory based on Luo’s UTT [Luo9%4]. The research
documented in this thesis has been carried out in the context of a prototype back-end for
EPIGRAM and so I will discuss the notation briefly introduced here in greater detail in Chap-
ter 2. The main innovative feature of EPIGRAM is to take inductive families seriously as

data structures, rather than as a basis for describing properties of programs.

1.2.4 Benefits of Dependent Types
Types for Specification

We have seen an example, with list append, of how dependent types allow us to give a
more precise type to functions. Functions over the Vect family specify invariant properties,
namely the lengths of the vectors involved. Such invariants allow the typechecker to check
properties which would otherwise need to be verified by the programmer by hand. Another
example, red-black trees [Oka99], must maintain the invariants that a red node does not
have a red child, and all paths from the root to an empty node pass through the same
number of black nodes. Xi shows an implementation of this with dependent types [Xi99b],
so that the invariants are checked by the typechecker.

With dependent types, the programmer and compiler have more information about what
the program is intended to do prior to writing the program. This helps the programmer,
in that it aids understanding of the problem and helps them write a correct program, and
helps the compiler, in that it has more information with which to identify potential errors

and optimisations. By giving more precise types, we are giving a more precise specification.
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Therefore, implementation errors are more likely to be identified at compile-time rather than

run-time.

We prefer, therefore, to take types as the prior notion to programs, treating them as
specifications of programs. Rather than writing a program without type annotations then
allowing the compiler to infer the type afterwards (if indeed the program is well-typed) we
prefer to write the type first, restricting the number of programs we can write. In this
way, types can drive the process of program development, encouraging the programmer to
understand the problem in advance and guiding the programmer to a correct program by
refinement. With type inference, any well-typed program will do, whatever its type — with
the type as the prior notion, however, only a well-typed program of the given type will do.
Dependent types enable a programmer to say more precisely which programs are acceptable.

Proofs as Programs

Another benefit of using a dependent type system is that proofs of correctness can be
written in the language itself, such is the richness of the type system. Rather than showing
some property of a function externally (an error prone process since it depends on correctly
transcribing the program from one setting to another) a property can be shown in the
language itself. This has the advantage that the proof of a property of a function is based
on the actual implementation, rather than some external model. In this way, dependent
types can also be used to prove properties of simply typed programs. The Curry Howard
isomorphism [CF58, How80] describes the correspondence between proofs and programs.

There are two approaches to showing properties of a program within the language. The
apparently simpler approach is to represent the property as a datatype (for example the less
than or equal type in section 1.2.3). Then we can write functions which build instances of
that type to prove properties of the program. However, it is often preferable to represent
the property as an inder of a datatype. For example, Vect is indexed over its length, which
means that any well-typed function which manipulates a Vect is implicitly also a proof of the
length invariant of that function. So by using inductive families with appropriate indices,
we do not need to write proofs after writing the program — the proof is implicit in the fact
that the program is well-typed.

Dependent types are also used to extract simply typed programs from proofs of their
specifications. Program extraction in CoQ [PM89, Let02] extracts the computational parts
from the proof of a specification and generates an ML or Haskell program. We can also
consider the use of dependent types for hardware verification. In Chapter 5 we will see a
development of binary arithmetic, representing numbers as an inductive family in order to
ensure consistency of some aspects of the implementation.
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Articulacy

Aside from improving the safety of programs, dependent type systems give us more articulacy
and subsume many other sophisticated programming techniques and language extensions.
Phantom Types [Hin03] and Generic Haskell [CLO02| for example provide extensions which
are also handled in a dependently typed setting. Furthermore, there are programs we can
write in a dependently typed language which would not be typeable in a simply typed
language.

The C function printf takes a format string which determines the form of the rest of
the arguments. This is an obvious example where dependent types would be useful, and a
straightforward implementation is given in Cayenne [Aug98]. Functional unparsing [Dan98|
presents a technique for producing formatted output in a simply typed language, but this
relies ?n using sophisticated implementation techniques to get around the less sophisticated
type system.

The Haskell standard prelude includes a family of functions for applying a function of n
arguments to corresponding items in n lists. There are 8 functions defined separately for this,
zipWithl...zipWith8. Again, techniques have been proposed to allow the implementation
of this more generically [FI00, McB02], but again these rely on sophisticated implementation
tricks (and often clumsy notation) to get around the type system. Dependent types give
a more elegant approach to solving such problems — the hard work is done by the type
system, not the programmer.

With dependent types, we can implement lists with varying element type in a type safe
fashion. The interpreter example in Chapter 4 includes an example of this, where values in
the environment may be any one of several types. This interpreter, based on [AC99], uses
dependent types to avoid the need to “tag” each value with its type — instead types are
determined by the expression being interpreted.

A recent extensions to the Glasgow Haskell Compiler, Generalised Algebraic Data Types
[PWWO04], adds some of the power of dependent types to Haskell. For example, well-typed
terms can be given a more precise type as in [AC99]. However, they still do not allow types
to be predicated on values, as with a full implementation of dependent types.

Interactive Development

A potential further benefit of dependent types is that it gives more information to an in-
teractive type-directed programming system. The kind of type-directed editing used in
theorem provers, such as CoQ and LEGO, is not often seen for programming languages
(C¥NTHIA [WBBL99], for ML, is an exception). A possible reason for this is that the type
system does not give enough information for type-directed editing to be worthwhile; with
dependent types, there is both more possibility of the system being able to direct the pro-
grammer to a program, and more need of such a system since the more precise types can
make it harder to find a well-typed program without machine assistance.
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Efficiency

Dependent types give us more static information about what a program is intended to
do. Altenkirch [Alt93] mentions that this information could potentially be used to make
programs more efficient. However, this potential has been exploited very little until recently.
Xi has used dependent types to aid with array bounds check elimination [XP98] and dead
code elimination [Xi99a] in DML, and Augustsson and Carlsson’s tagless interpreter [AC99)
is an example of how dependent types allow more efficient code. However, there has been
little work on optimisation of programs built on inductive families, largely because inductive
families have not, until now, been taken seriously as an approach to programming.

Unfortunately, in a naive implementation of a dependently typed language with inductive
families there are several overheads. The separation between types and values is blurred;
types can be computed from values, and values can hold information about types. In par-
ticular, inductive families can store information about their invariants. There seem to be
several sources of overhead here; there are space overheads in storing the indices and time
overheads in the complex manipulations required on types. In a naive implementation, this
can lead to quite an overhead. However, the opposite ought to be true — the type system
tells us more about what a program is supposed to do, therefore we ought to be able to
produce more efficient code. This thesis investigates techniques for doing so.

1.2.5 Strong Normalisation

A distinctive feature of EPIGRAM is that all (well-typed) terms are strongly normalising.
A term is strongly normalising if all reduction sequences starting from that term terminate
without error at the same normal form; Goguen shows that the strong normalisation property
holds for UTT [Gog94], and as a result EPIGRAM programs (being based on a type theory
similar to UTT) are strongly normalising. This has several implications and advantages.
Firstly, we have a much stronger notion of type safety. In a type safe, but not strongly
normalising language such as Haskell, running a type correct program can have one of three
results:

e The program terminates, giving a result of the appropriate type.

¢ The program terminates with an error due to an expression not being defined for all

possible inputs. This kind of error means that reduction can not progress.

e The program does not terminate. This kind of error means that reduction will progress
infinitely.

In EPIGRAM, strong normalisation ensures that only the first possibility can apply. To
put it another way, the error value (denoted 1) is implicitly an element of all types if
non-termination and partial definitions are allowed, but it is not an element of any type in

EpPIGRAM. There is a clear advantage here, in that running a program is guaranteed to yield a



CHAPTER 1. INTRODUCTION 11

result. Strong normalisation also ensures the decidability of typechecking; we no longer have
the difficulty that type level programs may not terminate, as in Cayenne. The undecidability
of the Halting Problem for Turing complete languages means that we cannot tell for any
program whether or not it terminates, and so we write programs for which the machine
can establish termination by checking that recursive calls are on syntactically structurally
smaller values. Turner discusses this in [Tur96|; he observes that in practice most programs
are structurally recursive, and many of those which aren’t {such as quicksort) can be made
so (we will discuss the quicksort example in particular in section 2.3.4). Nevertheless, there
are some programs which it will always be impossible to write, since a strongly normalising
language can not be Turing complete.

We could imagine a hypothetical dependently typed language being on one of three levels:
o All programs terminate (Strongly normalising).
e Type level programs (those run at compile-time) terminate.

¢ No termination restriction.

Dependent type theory and EPIGRAM sit on the first level, Cayenne on the last. DML, by
having less sophisticated type level programs, sits on the second level. In practice, we might
consider relaxing the strong normalisation restriction in EPIGRAM if given an appropriate
compiler flag, to move to the second and third levels; however in this thesis I will consider
strongly normalising programs only, because we can use the strong normalisation property

to our advantage in optimisation.

1.3 Contributions

Types give us static information about a program; they tell us what a program is supposed to
do. Dependent types allow more accurate typing and hence give us more static information.
We ought to be able to make use of this not only to have more confidence about whether a
program works as planned, but also to optimise more aggressively. This thesis explores the

optimisation of dependently typed programs, the primary contributions being:

e A technique for removing redundant and duplicated information from data structures.
This technique examines type dependencies and removes terms whose values are forced
by other values. Also, it identifies and removes constructor tags which are made redun-
dant by case analysis on other values. The values which are removed are introduced
by the use of dependent types; it is therefore important that such values are identified
and removed in order for dependently typed programs to have comparable run-time
to simply typed programs.

o A compilation scheme for a dependently typed lazy functional language. I extend well-

understood technology for efficient evaluation of lazy functional languages (specifically,
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Johnsson’s G-machine [Joh84] and Augustsson’s pattern matching compiler [Aug85])
to take advantage of our detailed type information. It is not essential that we use the
G-machine; other methods for executing functional languages (whether lazy or eager)
can be adapted in a similar way.

e An optimised representation of natural numbers using an external implementation. I
consider what is required to provide external implementations of type theoretic data

structures, taking natural numbers as an example.

o Specific techniques for transforming decorated terms in a dependent type theory into
efficiently executable code which leads in particular to the removal of unreachable code
branches, identified by typing.

While this work presents several optimisations for dependently typed programs, it is
important to understand that since dependently typed programs are initially decorated
with much more static information in the program as well as in the type, we are starting at
what seems like a big disadvantage. Perhaps, then, the most significant contribution is the
removal of redundant static information from the program and its data, without affecting
the operational behaviour of the program and the meaning of its data. Having reached this
point (which merely catches up with where we start optimising simply typed programs) we
can begin to apply further optimisations based on our rich type information.

1.4 Related Work

Martin-Lof’s constructive type theory [ML71] has been the basis for much research in the-
.orem proving and programming via the Curry Howard isomorphism [CF58, How80]; other
dependent type theories are Luo’s Extended Calculus of Constructions [Luo94] and the Cal-
culus of Inductive Constructions [Coq01]. Interactive theorem provers are often based on
some form of dependent type theory — the logical language of NuPrl [C*86] is similar to
Martin-Lof’s type theory with universes [ML75); LEGo [LP92] is based on Luo’s ECC and
CoqQ is based on the Calculus of Inductive Constructions. OLEG [McB00a] builds on the
LEGO [LP92] theorem prover, introducing tactics geared towards programming with induc-
tive families as well as theorem proving. Further (unpublished) work on OLEG resulted in
tactics for interactive development of pattern matching programs — these tactics led to the
design of EPIGRAM [MMO04b)].

Recent extensions to the Haskell type system can be used to support some aspects of
programming with dependent types. McBride’s “Faking It” style of programming [McB02]
shows how Haskell type classes with functional dependencies can be used to implement some
vector operations (and some inductive families). Each constructor of the vector, Vnil and
Vcons, is a separate type, and is an instance of a type class Vect. To define a function

over vectors then involves implementing a method as part of the type class. While this




CHAPTER 1. INTRODUCTION 13

gives some of the advantages of dependent types, such as the more precise types of vector
operations, there are some big problems with this approach. Firstly, it does not generalise
to all inductive families. Secondly, the notation required to program in this way is rather
inconvenient — function definitions are distributed among several instance declarations.
Thirdly, there is a potential run-time overhead in that the implementation of type classes
necessitates the passing around of a dictionary of functions representing the methods of a
class (although this can often be inlined).

The majority of this work is concerned with the efficient execution of terms in a dependent
type theory. For this, we consider interpretation and compilation. Interpretation is based
on the normalisation by evaluation technique of Berger and Schwichtenberg [BS91], and
compilation is based on Johnsson’s G-machine [Joh84| and Augustsson’s pattern matching
compilation [Aug85]. We are therefore considering the execution of the type theory itself,
rather than translating to some other setting as is the approach of program extraction [PM89,
Let02] (which translates type theory terms to ML or Haskell) and Cayenne (which translates
Cayenne programs to Lazy ML, and compiles the resulting program with the typechecker
switched off). By compiling directly, rather than via another high level language, we have
the opportunity to take advantage of features of the type theory in implementing compilation
efficiently.

An important aspect of efficient execution is the optimisation of programs. There is
potentially a large amount of redundant information in types, and many of the optimisa-
tions of dependently typed programs we will see involve the removal of computationally
irrelevant or unused parts of code, in a similar manner to Berardi’s pruning of simply typed
A-terms [Ber96]. We will see methods for removing redundant information from dependently
typed data structures in Chapter 4. Some of the techniques we shall see here, in particu-
lar the removal of content-free data structures, have a similar effect to aspects of program
extraction in CoQ which aims to remove the purely logical parts of a proof to retrieve a
program. The advantage to the techniques we use in Chapter 4 over program extraction is
that it is not only the logical parts which are removed, but all parts which can be shown
not to be used at run-time. Nevertheless, the techniques we shall see are equally applicable
to program extraction.

Another optimisation, which we shall see in Chapter 5, involves the transformation of a
high level representation of natural numbers into a low level primitive type. A similar ap-
proach is taken by [MBO01, Mag03] for implementing numbers more efficiently in CoQ. The
Isabelle theorem prover [NPW0(2] also implements natural numbers natively, although the
techniques for doing so are not documented!. The low level implementation of natural num-
bers leads to the possibility of a further optimisation, unboxing the representation [PL91a],
in which numbers are represented directly rather than as pointers to their binary represen-
tation.

Many techniques which apply to simply typed languages can also be adapted towards

1Larry Paulson, personal communication
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optimising dependently typed programs; for example, the Glasgow Haskell Compiler’s com-
pilation by transformation approach [San95, PS98| applies correctness preserving transfor-
mation rules to an intermediate representation. Inlining in particular [PMO02] is an important
optimisation for two reasons; firstly, functional programmers use functions in much the same
way as C programmers use macros, and hence a good inliner is vital, and secondly inlining
often exposes further optimisation opportunities. We will examine some program transfor-

mations in Chapter 6.

1.5 Overview

The research documented in this thesis has been carried out in the context of an experimental
implementation of a back end for EPIGRAM. In this section I will give an overview of the
implementation and an outline of the rest of the thesis.

1.5.1 System Overview

EPIGRAM

4| |sa | . 4| |sb  Optimised Path

RunTT RunTT’ O 7

Natve Path

3
G-machine
9
Extraction/ Execution

Evaluation

Figure 1.1: System Overview

Figure 1.1 shows an outline of the system. Between the EPIGRAM program and its

execution there are several stages, and two possible paths through the system. The left path
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represents a naive approach to compilation, where no optimisation takes place and all terms
are directly compiled from their elaborated form. An understanding of this path is necessary
to explain the path on the right, which represents an optimising approach to compilation.
Along this path, we remove duplicated and redundant information from data structures and
make use of the rich type information to remove unreachable code. The phases indicated on
the diagram are briefly summarised as follows:

e Step 1 in the diagram is the elaboration phase. This is described by [MMO04b]; in this
phase, programs in EPIGRAM notation are typechecked and elaborated into a core type
theory, TT.

e We now either take a naive approach, or an optimising approach. The naive path
proceeds as follows:

— Step 2a is a transformation into an execution language for the core type theory,
called ExTT. In fact, in this approach, TT and ExTT are identical, so this is the

identity transformation.

— Step 3 is extraction of ExTT terms into Haskell, which is a simple to implement
method of executing terms, but less efficient than compilation into an abstract
machine language. It is less efficient because, to deal with terms which have an
EPIGRAM type but no Haskell type, we must use an intermediate representation
of values.

— Steps 4a and 5a are two parts of the transformation into a run-time language
of function definitions, RunTT. RunTT programs consist of supercombinator
definitions; these are function definitions with no free variables and no inner
lambdas, a form suitable for compilation to abstract machine code. Step 4a
translates user defined functions by Johnsson’s supercombinator lifting algorithm,
while step 5a translates pattern matching elimination rules into RunTT using an

adapted version of Augustsson’s pattern matching compiler [Aug85].

— Step 8a translates the supercombinator language into G-machine code [Joh84], an
efficient abstract machine language for the execution of lazy functional programs.

Some minor modifications are made to account for compiling dependent types.

The optimising path is the primary contribution of this thesis. The steps are similar to
those in the naive path, but the transformations between each stage are more involved.
This path proceeds as follows:

— Step 2b translates TT into the execution language ExTT’, which here is a marked
up version of TT. Parts of terms which are unused or duplicated (that is, consid-

ered redundant) are marked for deletion.

— Steps 4b and 5b correspond to 4a and 5a, in that they convert ExTT’ into RunTT’
by lambda lifting and pattern matching compilation. The marking of step 2b
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means that these processes are not so simple — the lambda lifting process removes
all terms which are marked for deletion; such terms must also be accounted for

by the pattern matching compiler.

— Step 6 is a compilation-by-transformation phase on the execution language ExTT'.
This makes some transformations for efficiency, in particular, making recursive

calls direct rather than via an elimination rule.

— Step 7 is a second compilation-by-transformation phase on the supercombinator
language. In this phase, source to source transformations are applied to RunTT’
which make use of the knowledge we have gained through typechecking — for
example, removal of impossible cases. Also some standard transformations are

made — inlining, and removal of unused arguments.

— Step 8b translates RunTT’ into G-machine code. I introduce some new instruc-
tions to the G-machine for this phase to take advantage of the marking optimi-
sations in ExTT'.

o Finally, step 9 involves the execution of G-machine code. There are several ways to
achieve this — either by the implementation of an interpreter for the abstract machine,
or a compiler from G-code to a more concrete target language such as C, machine code,
or C-- [PNO97|. I give state transition rules for G-machine instructions, many of which
are as originally defined by Johnsson, but some of which I introduce to implement the
optimising features of ExTT’ and RunTT'.

1.5.2 Chapter Outline

The various stages in the compilation of EPIGRAM programs, as shown in figure 1.1 are
presented in this thesis. The structure of the rest of this work is as follows:

Chapter 2 presents a background to the literature and the field of type theory and func-
tional programming, and an introduction to programming with dependent types in
the EPIGRAM notation.

Chapter 3 discusses execution environments and covers the naive compilation path into

G-machine code, adapting Johnsson’s G-machine for use with TT.

Chapter 4 covers steps 2b, 4b and 5b. In step 2b, terms are marked up for later deletion.
Marking takes place by means of three optimisations. The first of these is the forcing
optimisation, which identifies parts of terms whose value is determined by another part
of a term (and hence are redundant). Secondly, the detagging optimisation identifies
where constructor choice in an elimination is determined by another value, meaning
that the constructor tag need not be stored. The third optimisation is collapsing
which identifies types with no computational meaning, which can be deleted entirely
at run-time.
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After step 2b marks terms for deletion, these terms really are deleted in the super-
combinator lifting process in step 4b. Marking also affects the pattern matching
compilation process, step 5b — no case selection can take place on deleted terms. In
this chapter we will see a modified pattern matching compiler algorithm which takes
account of this and further takes advantage of the strong normalisation property of
EPIGRAM.

Also in Chapter 4 are several examples, including an extended example of these tech-
niques showing an inductive family based implementation of Augustsson and Carlsson’s

well-typed interpreter [AC99] and its run-time costs.

Chapter 5 considers the introduction of primitive types into the language, and the opti-
misation of the natural number representation N by transformation of ExTT’. This

occurs in step 6 of the compilation process.

Chapter 6 covers additional optimisations. Firstly, a method for removing the abstrac-
tion layer of elimination rules is presented. By this method, recursion at run-time
is implemented directly rather than by an elimination operator, effectively recovering
the declared pattern matching behaviour of functions. As well as removing a layer of
abstraction, this opens up the possibility of further optimisations such as tail recursion

optimisation.

This chapter also considers optimisations which only apply in a dependently typed
language of total functions — specifically, the elimination of impossible cases by typing
rather than by global analysis. These optimisations take place during steps 6 and 7
of the compilation process.

Chapter 7 presents some conclusions. We will see how the features of EPIGRAM’s type
system contribute to a more efficient implementation of programs and consider some
directions for further research.

Appendices A, B and C cover other technical details. Appendix A gives a detailed ac-
count of compiling a simple function, Appendix B presents some proofs of the prop-

erties of ExTT and Appendix C gives an implementation of a normalisation algorithm
for ExTT.

1.5.3 Implementation Note

At the time of writing the EPIGRAM elaborator is still in development, although an early
version has recently been released. In particular, this prototype has not implemented the
with or named with notation described in section 2.2.7. The implementation documented by
this thesis is of a prototype back-end for EpiGRAM. This includes an implementation of TT
(including a simple theorem prover with tactics for building terms in TT), compilation to
G-machine code via ExXTT and RunTT, and extraction of Haskell programs from TT. This
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prototype has served as an environment for experimentation with the implementation and
optimisation techniques described here. Nevertheless, the techniques described will also be
applicable to elaborated EPIGRAM programs, or indeed any language based on dependent
type theory.

Since the front end is still in development, there are no large, real world, examples as yet.
As a result there is no benchmark suite corresponding to Haskell’s nofib suite [Par92|, for
example, against which to compare the results of the optimisations presented here. Instead,
the results I present are in the form of comparisons between code generated by the naive
and optimised compilation paths and analysis of the run-time costs of the RunTT programs
generated. These results themselves are encouraging, and suggest that it is indeed possible
to build a feasible programming language on top of a dependent type theory.



Chapter 2

Epigram and its Core Type
Theory

This chapter gives an introduction to the background of type theory and dependently typed
functional programming and introduces the high level EPIGRAM notation along with the
core type theory to which it elaborates. In the introduction we considered the benefits of
dependent types for programming and some of the approaches taken by various languages
and systems. We saw in the introduction that the characteristic feature of a dependent type
system is the ability to predicate types on values, which leads to a more precise specification
for programs, using list append as a motivating example. In this chapter, we will see in
more detail how dependent types are used in EPIGRAM and its core language and consider
several examples of EPIGRAM programs.

We will look first at the core language of EPIGRAM, which I call TT, since this is the lan-
guage we will be compiling and optimising in later chapters. This core language, introduced
in section 2.1, is a dependent type theory similar to Luo’s ECC [Luo94] with the addition of
definitions and inductive families. Tactics for developing programs in dependent type theory
developed by McBride [McB00a] led to the design of the high level EPIGRAM notation. We
will later see several examples of EPIGRAM programs and so in section 2.2 we introduce the
high level notation and discuss some of the programming idioms this allows in section 2.3.

2.1 TT — The Core Type Theory

The first stage in the compilation of a programming language is translation to a core rep-
resentation; in the case of a functional language this is often a form of the A-calculus. For
example, the core language of the Glasgow Haskell Compiler [GHCO03], Core Haskell {TT01],
is a subset of Haskell resembling the polymorphic A-calculus. The core language of EPIGRAM

is based on a dependently typed A-calculus, similar to Luo’s ECC [Luo94] with some minor

19
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additions for practical programming. In this section, we will examine the details of the core

language and look at some example programs.

2.1.1 The Core Language

The core language of EPIGRAM, which I call TT, is based on Luo’s ECC with definitions,
inductive families and equality. The syntax of TT is shown in figure 2.1. We may also
abbreviate the function space Vz:S. T by § — T if x is not free in T. There is an infinite
hierarchy of predicative universes, *; : *;11. Universe levels can be left implicit and inferred
by the machine, as in [HP91]. As such, when showing TT terms, we will generally leave out
the universe level; for the majority of the examples in this thesis, * indicates xq.

tu= % (type universes) | =z (variable)
| Vz:t.¢ (function space) | D (inductive family)
| Az:t.t (abstraction) | ¢ (constructor)
| tt (application) | D-Elim (elimination rule)
| letz— 1t : tint (let binding)

Figure 2.1: The core language, TT

Remark: Although z, D, c and D-Elim all represent names of some form, it is convenient
in an implementation to make this syntactic distinction as each one is treated differently in
various parts of the system.

Contexts

The core language gives the syntax for both types and terms. In addition, we have a context
I' which binds names to types and values. A valid context is defined inductively as:

'S : % T'ks: S
Eklwvalid Tz : Skyalid Tz s @ SEyvalid

Where £ denotes the empty context, I'; z : S denotes a context extended by a variable
declaration z with its type S, and I';z — s : S denotes a context extended by a variable
definition z with its type S and value s. Computation and typechecking only make sense
relative to a context. We write the typing judgement, which is a relation expressing that a
term ¢ has type T relative to a context I' as follows:

't T

Where computation or typechecking takes place in the empty context, I shall write the
typing judgement as follows, eliding the &:

Ft: T
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Computation

Conceptually, computation in the core language is defined by contraction rules, given in
figure 2.2. Contraction, relative to a context I, is given by one of the following contraction
schemes:

s [3-contraction, which substitutes a value applied to a A-binding for the bound variable
in the scope of that binding. Since we have local definitions, by let bindings, then
fB-reduction is given by the scheme I' - (Az:S5.t)s ~ letz+—s : Sint.

e 7-contraction, which eliminates redundant A abstractions. 7-contraction is given by
the scheme ' Az:S. fz ~ f.

e §-contraction, which replaces a let bound variable by its value. §-contraction is given
by the scheme I';z+— s : Sz ~ s.

[—contraction

F'F(Az:S.t)s ~ letz—s : Sint
n—contraction

F'kEXz:S.fz ~ f

é—contraction

I'zw—s: S;IVFzx ~ s

Figure 2.2: Contraction schemes for TT

The terms of the form (Az:S.¢) s, Az:S.f z and z are called 3-redexes, 7-redexes
and é-redexes respectively. The termsletz : S + sint, f and s are their contractums,
respectively.

f-contraction is often presented as a substitution, i.e. I'+ (Az.t)a ~» t[z/a]. Here, we
prefer to implement it in terms of let binding as in [MMO04b|, since this simplifies presentation
of the theory; we use the following contextual closure rule to reduce a let binding by giving
rise to a 4-redex:

iz—s: SEt~ u
T'Fletz— s : Sint ~ u

Reduction (t>) is the structural closure of contraction, and computation (t>*) is the
transitive closure of reduction. We also say that if a term z contains an occurrence of a
redex y, and we replace y by its contractum, resulting in the term z’, then z one-step reduces
toz' T'Fzrqz)

Conversion, denoted ~, is the smallest equivalence relation closed under reduction and
is defined in figure 2.3. If I' - £ ~ g, then y can be obtained from z in the context I' by
a finite (possibly empty) sequence of contractions and reversed contractions. Terms which
are convertible are also said to be computationally equal. The conversion rule makes use of

syntactic equivalence, denoted =. If I' F £ = y, then the terms r and y are are identical
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up to a-conversion. We avoid name capture problems in practice by referring to bound
names by their de Bruijn indices [dB72} -— the de Bruijn index of a variable is the number

of variables bound more recently.

Definition: z is convertible to y relative to I' (I' - z ~ y)
if and only if there exist z;,...,2, (n > 1)such that T~z =5, T Fy =z,
andT >y mpor Do ym, fori=1,...,n—1

Figure 2.3: Conversion for TT

We say:

e A term is in normal form if and only if it contains no redexes. We denote the normal
form of a term ¢ relative to a context I' by I' - NF(¢). A term ¢ is strongly normalising,
denoted T' - sN(t), if every reduction sequence ¢ > t; I>1 £ ©>1 . . . reaches normal form
in a finite number of reductions.

e A term is in weak head-normal form

— If it is not a reducible expression.

— If it is of the form f a and f is a weak head-normal form.

We denote the weak head-normal form of a term relative to a context I' by I' - WHNF(¢).

Type Inference Rules

The type inference rules for TT are given in figure 2.4. Given the language and the typing
rules, there are two problems for which we would like to have an algorithm (as with any
type system):

e Type Checking (TC) Given a term ¢, a type T and a context mapping names
to types ', can we determine that the term ¢ has type T in the context I' (written
r-¢: 1)

e Type Synthesis (TS) Given a term ¢ and a context I', can we infer a type T such
that Tt ¢ : T? This is also known as type inference.

A type synthesis algorithm for TT is given in figure 2.5 (TS). We use the following

notation:

e I' -t = T means that ¢ is assigned the type T.

e 't =3 T —» T’ means that the type T assigned to term ¢ has a weak head-normal
form of T”.
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Using this algorithm, we check a judgment I' - a : A by synthesising types and checking

for conversion in the standard way [Hue89, Coq96], as follows:
e ' A= X —» x, (check A is a type)
e I'+ a = B (infer a type for a)

e I' A ~ B (check that the inferred and declared types are convertible)

I' F valid
F'_*'n okl
Tz : §;TVF valid Var

iz : S;TVbFx : S

(Similarly for ¢, D, D-Elim)
Iiz— s 0 S;IVF valid
Tizos : 5Tz 0 S

I'bf :Ve:8§.T Thks: S A
TFfs :letz : S sm7T PP

e : Ste: T THEVZ:S.T : x,

Type

Val

F'FAz:S.e : Ve:S.T Lam
iz : SET @ % 'S : x
TFVe 5.7 - wm  orel
T'Fe :§ Tixr—oe : Ste : T THS % izvwe : SET @ x, Let

I'kletz : S—ejiney : letz : S—einT

'z : A I‘Fl—I_A:; :1,} A~ A Conv

Figure 2.4: Typing rules for TT
Remark: The operational semantics of TT requires weak head normalisation — i.e., for

reduction to proceed requires the machine to know whether a term is a A or constructor

headed. Some aspects of typechecking also require weak head-normal forms (for example

checking if a term has a V form at the head). Other aspects require conversion, which relies

on reduction to normal form or weak head-normal form.

2.1.2 Inductive Datatypes

Datatypes in the core language TT are defined as inductive datatypes in the style of LEGO,
CoQ and ALF, and as presented by [Dyb94]. An inductive datatype is declared as a disjoint

union of constructors, each with zero or more recursive and non-recursive arguments. An

example of an inductive datatype is the type representing natural numbers, N, which can

be described in a natural deduction style with a type formation rule, and rules for each

constructor, as follows:
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T - valid
'k %y = *p41

I'byalid =z : Se¢T
'tz=S§
(Similarly for ¢, D, D-Elim)
I'kvalid z : S—s5el
'k = §

THFf—= X >Ve:S.T Thrs=S§ TI'FS~F
'Ffs=letz : S~ sinT

Iz : StFe=T TEVZ:S T=—X —»x,
THFA:S. e=Vz:S. T

iz : SEFT=X »%x;, TTFS=X —%,

THVZ:S. T —= X
F'FS=X »%, Thte=8 T+~
'z : S—eate=T It : S—eabtT=X »x,
FHletz : S— e inep =letz : S—einT

Figure 2.5: Type synthesis for TT

n : N

data N : x where 0: N sn : N

This type introduces three constants to the context I', representing the type constructor
(N) and the two data constructors (0 and s).

N:%el
0: NeTl
s: NoNeT

Inductive datatypes can also be parametrised over a value. Lists, for example, are
parametrised over their element type. This can be described as follows:

A * * z : A zs : ListA
data List A : * where nil : List A consz zs : List A
Note that we do not declare A : x in the premises for nil and cons, as its presence

is inferable from the type formation rule. We adopt the convention, as in [MMO04b}, that
constructor arguments with inferable types such as A need not be declared explicitly, for
the sake of readability. Nevertheless, when the constructors are added to the context, we
keep A as an argument to both nil and cons as it is required to preserve type correctness.
The constants which are added to the context are:

List : x— %€l
nil : VA:x. ListAeT
cons : VA:x. Vz:A. Vzs:List A. List A €T
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In the definition of List, the value of the parameter A does not change across the structure;
however, it is not necessary for each constructor to target the entire family as in List, nor is
it necessary for the parameter to be a type. We could, for example, parametrise lists over
their length as well as their element type. Vect is a datatype for lists parametrised over their
\Iength (vectors), and is described as follows:

A:x n:N

: z : A 75 : Vect Ak
VectAn : %

data €: Vect A0 zuzs : Vect A(sk)

where

Here we use an infix constructor for the non-empty vectors, similar to the infix constructor
: used for Haskell lists. These rules state that empty lists have length zero and non-empty
lists increase the length by one. Hence, as items are added to the vector, the length parameter
increases. We call such parameters, which do change across the structure, indices. We say
that Vect is an inductive family.

Note that each constructor targets a sub-family of Vect — this is the reason for using
natural deduction style to introduce constructors, rather than a Haskell style data declara-
tion. Again, there are implicit arguments to each constructor; the constants added to the

context are as follows:

Vect : x> N—-xeT
€ : VAix.Vect AOET
v VA VE:N.Vz: A Vzs:Vect Ak. Vect A(sk) eT

The general scheme for declaration of an inductive family D with constructors c; is given
in figure 2.6. The § are the indices, and we split the constructor arguments into @ (the non-
recursive arguments) and ¥ (the recursive arguments). The vector notation Z [dB91] denotes
the fact that there may be zero or more arguments in the form of z, and correspondingly z;
denotes the ith (zero based) entry in the vector . The constructors c; can not be reduced

further; we say that a term which is a fully applied constructor is in canonical form.

(_1'1 : Al Y11 ¢ DT‘11 coe Y1 Dle
adaiy : Ds

Gy : Ap ynl_‘: P'rnl XX Ynk DTk
Ch On Yn Ds,

Figure 2.6: Inductive family declaration

A recursive argument may also be higher order, although figure 2.6 does not show this
for the sake of clarity (i.e., it may be a function which computes a recursive argument, rather

than simply a recursive argument), provided that it satisfies a condition which ensures that
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computation over the datatype will terminate. This condition, known as strict positivity,
states that if an argument to a constructor of a family D has type T — D3, then an instance
of D may not occur in 7.

Dybjer’s presentation of inductive families [Dyb94] also identifies the parameters of a
datatype; in EPIGRAM we do not require the programmer to identify the parameters ex-
plicitly but rather look for values which cannot change across the structure. The § are the
indices and parameters of the datatype; these may be computed from or predicated on the

non-recursive arguments.

2.1.3 Elimination Rules

When we declare an inductive family D, we give the constructors which explain how to build
objects in that family. Along with this, the machine generates an elimination operator
D-Elim (the type of which we call the elimination rule) and corresponding reductions,
which we call .-schemes. These describe and implement the allowed reduction and recursion
behaviour of terms in the family. The method for constructing elimination operators is well
documented, in particular by [Dyb94, Luo94, McB00a.

Like [McB00a] I will give t-schemes in pattern matching form. The general form of
an elimination rule and its associated t-schemes is shown in figure 2.7. Elimination rules
reduce when they are fully applied and the target is in canonical form; we call this -
reduction. The arguments to the elimination rule are as follows, using the nomenclature
of [McB00a, MM04b:

e 1 is the target, preceded by its parameters and indices, i. The target is the object to
be eliminated by the rule, and corresponds to the scrutinee of a case expression in a
traditional functional language.

e P is the motive of the elimination. The motive is a function which computes the
return type of the elimination from the target. The motive allows an elimination to
return a different type depending on the value of the target, and hence distinguishes an
elimination rule from a typical fold operator, where the return type is a polymorphic
type variable.

e mc is a method for the case of the constructor c. The method for c is the reduction
chosen on elimination if the target is headed by the constructor c. The function takes
arguments for each argument to c, and for each recursive argument y; to ¢ it takes an
extra argument representing the value of the recursive call to D-Elim with y as the
target.

Remark: We call an elimination operator applied to a target an eliminator. While in
most presentations the arguments to an elimination operator are ordered motive, methods,

target, we choose to put the target first (preceded by its parameters and indices, as it depends
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D-Elim : Vi:I.Vz:Di. (target)
VYP:Vi:I.D7 — . (motive)
V’ITLCI va:A. ‘v’leﬁ ‘v’yJDF]
PAhyw— ...—» Pry — P3(cdy). (methods)
Piz

D-Elim3(cd %) P ~ mc a4 (D-Elim7 y P ) ... (D-Elim 7, y; P )

Figure 2.7: Elimination rule for D, with ¢-scheme for ¢

on them) to support EPIGRAM’s notion of eliminators for pattern matching, which we will

see in section 2.2.2.

As an example, the elimination rule for N is as follows:

N-Elim : Vn:N. Target
VP:N — *. Motive
Vmg: P 0. Method for 0
Vms:Vk:NVih:P kP (s: k). Method fors
Pn Return type (motive instance)

The t-schemes for N-Elim which implement this elimination rule are given in pattern
matching form as follows:

N-Elilm 0 Pmygms ~ my
N-Elim (s k) P mg ms ~ mg k (N-Elim k P mg m;)

A simple example of a function which can be implemented in terms of this elimination
rule is plus, defined as follows:

plus : Vn,m:N.N
plus — An, m:N. N-Elim n (An:N.N) m (Ak:N. Aéh:N. s ih)

This is defined by recursion over the first argument n. When n is zero, the return value
is m. When n = sk for some k we get an induction hypothesis ih which tells us the value of

the recursive call (plus k n). In this case, we return the successor of the recursive call, s ih.

For a datatype where a parameter does not change across the whole structure, we can
lift out the parameter from the arguments to the motive and methods. For example, the
elimination rule for List does not pass A as an argument to the methods, since A does not
change:



CHAPTER 2. EPIGRAM AND ITS CORE TYPE THEORY 28

List-Elim : VA:x. Parameter
Vi:List A. Target
VP:List A — *. Motive
Vg : P (nil A). Method for nil
YMeons : VI : A. Vas:List A. Vih: P zs.P (cons A z zs). Method for cons
Pl Return type

List-Elim A (nil A) P mpyi Meons ~> Mgl
List-Elim A (cons A © z5) P i) Meons ~* Meons Z 28 (List-Elim A zs P myj Meons)

Recall that all arguments are kept explicit in TT, hence the A appears as an argument
to nil and cons in this elimination rule. The elimination rule for Vect lifts the parameter A
out of the motive and methods, but passes the length index through as it does change across

the structure:

Vect-Elim : VA:x. Parameter

Vn:N. Index
Vv:Vect A n. Target
VP:Vn:N.Vect An — *. Motive

Yme: P 0 (e A). Method for ¢
Vm..:Vk:N.Vz:A. Vzs:Vect A k. Method for ::

Vih:P k zs.P (s k) (:: Ak z xs).
Pno Return type

Vect-Elim A 0 (eA) Pmem, ~ m,
Vect-Elim A (s k) (:: Ak = zs) P me m..
~» m, k z zs (Vect-Elim A k zs P m, m..)
EPIGRAM also generates non-recursive eliminators (case analysis rules) for each type.

These are the same as the recursive eliminators except that there are no additional arguments
in the methods for the result of recursive calls. For N, this would be as follows:

N-Case : Vn:N. Target
VP:N — *. Motive
Vmg:PO. Method for 0
Vms:Vk:N.P (sk). Method fors
Pn Return type

It is not difficult to see how to prove this from N-Elim, simply by not using the inductive
hypotheses in the method calls. However, in practice, it is more efficient to define it directly
as it removes a level of indirection. The general scheme for D-Case is shown in figure 2.8.

2.1.4 Equality

Thanks to the Curry Howard isomorphism, inductive families can represent not only data,

but also proofs of propositions. An important such proposition is propositional equality,
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D-Case : Vi:I.Vz:D7i. (target)
VP:Vi:I.Di — x. (motive)
Vme: Va:A. Vy:D7. ... Vy;:DT.P5(cady).

} {(methods)

iz
D-Cases(cdy)Pm ~ mcdy : P5(cdy)

Figure 2.8: Non-recursive Elimination rule for D, with t-scheme for c

which is defined using Martin-Lof’s identity type declared as in figure 2.9 (using an infix
notation for the type constructor =).

A:x a,b: A
a=15b: %
=-elim : VA:x.Va:A.Vb: A.
Vz:a = b.VP:a = b — *.
Vyen: P (refl Aa). Pz
=-elim Aaa(refl Aa) P myen ~> et A a

data

where * @ 21

refla : a =

Figure 2.9: Martin-Lo6f’s Equality

We can declare an equality between any two values in the same type, but we can only con-
struct a proof of equality between two values which are equal. The constructor application
refl @ is a proof that ¢ = a.

This equality relation is sufficient to describe equality between objects of the same type.
However, with inductive families it is often useful to be able to describe equality between
potentially different types. For example, it is impossible to declare an equality between two
Vects with different indices, even if those indices are propositionally equal. It is intuitively
clear that the following proposition (that :: respects equality) holds, however the definition
of propositional equality we have is insufficient to express the theorem; there are type errors
because the vectors involved have different indices.

wrong : VA:x. Vm:N.Vz: A Vzs:Vect A (s m).
Vn:N.Vy: A Vys:Vect A (s n). (%)

m=n—cr=y—ors=ys— (tAmzzs) =(:Anyys)

Instead, we use McBride’s heterogeneous definition of equality! [McB00a], declared as in
figure 2.10. Using this definition, we can declare an equality between two values in different
types, but we can only construct a proof of an equality between two identical values in the
same type. Note that we do not declare this family with a data declaration but rather

add the type formation and elimination rules to the core type theory as axioms, because

1McBride calls this “John Major” equality.
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