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Abstract 

We consider several random spatial graphs of the nearest-neighbour type, including the k-

nearest neighbours graph, the on-line nearest-neighbour graph, and the minimal directed 

spanning tree. We study the large sample asymptotic behaviour of the total length of these 

graphs, with power-weighted edges. We give laws of large numbers and weak convergence 

results. We evaluate hmiting constants expUcitly. 

In Bhatt and Roy's minimal directed spanning tree (MDST) construction on random 

points in (0,1)^, each point is joined to its nearest neighbour in the south-westerly direc

tion. We show that the limiting total length (with power-weighted egdes) of the edges 

joined to the origin converges in distribution to a Dickman-type random variable. We 

also study the length of the longest edge in the MDST. 

For the total weight of the MDST, we give a weak convergence result. The limiting 

distribution is given a normal component plus a contribution due to boundary effects, 

which can be characterized by a fixed point equation. There is a phase transition in the 

limit law as the weight exponent increases. 

In the second part of this thesis, we give criteria for ergodicity, transience and null 

recurrence for the random walk in random environment (RWRE) on Z"*" = { 0 , 1 , 2 , . . . } , 

with reflection at the origin, where the random environment is subject to a vanishing 

perturbation from the so-called Sinai's regime. Our results complement existing criteria 

for random walks in random environments and for Markov chains with asymptotically 

zero drift , and are significantly different to these previously studied cases. Our method is 

based on a martingale technique — the method of Lyapunov functions. 
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Chapter 1 

Introduction 

Random spatial graphs (randomly distributed points in space, connected by edges accord

ing to some deterministic rule) are of considerable interest in applied probability, with 

applications to network modelling and statistical procedures. In particular, those graphs 

in which edges join nearby points, and which are therefore locally determined in some 

sense, have been the subject of study for some time. Examples include the Euclidean 

minimal spanning tree, the nearest-neighbour graph and its variants, and the geometric 

graph. 

A related class of probabilistic objects is that of Euclidean combinatorial optimization 

problems, in which, typically, one considers a minimal-length combinatorial structure over 

random Euclidean points. Famous examples include the travelling salesman problem, 

minimal spanning tree, and minimal matching problem. The travelling salesman problem 

can be stated as follows: a salesman has to visit a given set of locations by making a 

journey in which he visits each location exactly once and returns to his starting point 

having visited each location. What is the shortest such journey? 

The probability theory of such graphs is now well-developed, while several major open 

problems remain. In this thesis, we consider several examples of 'nearest-neighbour type' 

graphs, on random point sets in d-dimensional Euclidean space, R^. Our main focus 

will be obtaining limit theorems for the total length (with power-weighted edges) of these 

graphs, as the number of points becomes large. Our main results are of two types: laws 

of large numbers (LLNs) and convergence in distribution results. 

In this chapter we discuss some of the history and motivation behind the study of 

such random spatial graphs, and describe known results in several important cases. For a 

review of some essential graph theoretic and probabilistic background, see Appendix A. 



1.1. Random spatial graphs 

1.1 Random spatial graphs 

In this section we give some examples of random spatial graphs. By N we denote the set 

of natural numbers { 1 , 2 , 3 , . . . } . 

For d G N, let y C R*̂  be a finite point set in Euclidean space. Let || • || denote some 

norm on R''; subsequently we will take the Euclidean norm, that is, for x = {xi,... ,Xd) G 

R'̂  

/ a \ 1/2 

| |x | |= • (1-1) 

Given a graph G = {V,E), let w : E ^ [0,oo) be a weight function on edges of the 

graph G — {y,E) (with undirected or directed edges). For example, for V C R'', with 

{x, y} G one may take t«(x, y) = | |x -y | | for the norm || • ||. A case of particular interest 

is when the weight function on edges is given by power-weighted Euclidean distance, that 

is, we take || • || to be the Euclidean norm on R'' (given by (1.1)), and, for a > 0, consider 

the weight function w = Wa given by 

w«(x,y) := | | x - y | r . (1.2) 

If G = {V, E) is a graph, denote the total weight of the graph under weight function w by 

w{G):^Y.'^{e). 

We now list some examples of random spatial graphs. Some of these emerge from the study 

of combinatorial optimization problems; see [136] and [142] for relevant monographs. Note 

that all these graphs can be defined for general vertex sets V; we focus here on V C R*̂ . 

1.1.1 Probabilistic setting 

Our spatial graphs will be random in that they will be defined on random point sets. Let 

X i , X 2 , . . . be a sequence of independent identically distributed (i.i.d.) random vectors 

on R*̂  with common density function / . Then, for ?i G N, we set 

; f „ : = { X i , X 2 , . . . , X „ } . (1.3) 

That is, is a point process consisting of n i.i.d. random vectors on R*̂ . 

A particular choice for Xn that we will sometimes use is to take the density / to be 

the indicator of the unit d-cube, that is / (x) = 1 for x G (0,1)'' and / (x) = 0 otherwise. 
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In this case, each X^, z e N , is uniformly distributed on (0,1)'', and we write Ui = for 

all i. In this case, we denote 

Z ^ „ : = { U i , U 2 , . . . , U „ } , (1.4) 

and call Un the binomial point process consisting of n independent uniform random vectors 

in (0,1)'^. 

For a bounded A C R*̂ , and X C K"^ a locally finite point set, let N{X; A) denote 

the number of points of X that lie in A {X being locally finite means that this number is 

finite for bounded sets A) , i.e. 

N{X;A) —cardiXnA), (1.5) 

where card denotes cardinality. Then one sees the origin of the terminology 'binomial' for 

Un- if A C (0, l) '^, then the number of points of Un that fall in A is binomially distributed 

Bin(n, \A\), where \A\ is the d-dimensional volume of A. 

We also consider P„, the homogeneous Poisson process of intensity n on (0,1)*^. For 

the general definition and theory of Poisson processes, see Kingman's book [84]. One may 

characterise Vn as follows - "P̂  is a random countable subset of (0,1)'' such that 

(i) for any disjoint (Borel) subsets A j , . . . , of (0,1)< ,̂ iV(P„; Ai),N{Vn] Ak) are 

mutually independent, and 

(ii) for each i, N{Vn] Ai) has the Poisson distribution Po(n|Ai|). 

The following simple relationship between Vn and Un is very useful. This is the 

fact that the conditional distribution of Vn given N{Vn\ (0,1)'') = m is the same as the 

distribution oiUm- Or, from the other direction, if A'̂ (n) is a Poisson random variable with 

mean n, then ZY/v(,i) = Vn- Thus Vn has the same distribution as a binomial point process 

consisting of N{n) ~ Po(n) independent uniform random points. See, for example, p. 21 

of [84 . 

We now give some important examples of spatial graphs. 

1.1.2 The travelling salesman problem (TSP) 

This famous problem in combinatorial optimization can be posed as follows: what is 

the length of the shortest closed path spanning V, such that each point of V is visited 

exactly once? Formally, a dosed tour (or Hamiltonian cycle) is a closed path traversing 
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each vertex in V exactly once. Let T'^'"'(y) be the weight of the shortest closed tour on 

V C R'', under weight function w. Thus 

'7' ' '" '(V'):= n.in y ] ^ e ) , (1.6) 

where the minimum is over all closed tours T = (V, ET)-

1.1.3 The minimal matching (MM) 

Suppose n is an even integer, and V = { x i , X 2 , . . . , x„} C R''. Let A'^''^{V) denote the 

weight of the minimal matching on V, under weight function w. Let 5„ denote the set of 

all permutations on the integers 1, 2 , . . . , n. Then, 

n/2 

A'^''"{V) := min Vw(x^(2i-i) ,x^(2i)). 

i=l 

That is, the minimal matching pairs up points of V so that the total weight of the edges 

between paired points is minimal. I f V consists of an odd number of elements, then the 

usual convention is that the minimal matching on V is given by the minimum-weight 

minimal matching on each of the n subsets of V consisting of ?i - 1 vertices. 

1.1.4 The minimal spanning tree (MST) 

Given a finite vertex set V, we say the graph T = (Vr, ET) is a spanning tree on V if T 

is a tree, VT = V and T spans V (i.e. every member of V lies in an edge of ET)- Then 

a minimal spanning tree (MST) on V is a spanning tree on V with minimal total weight, 

under weight function w. Let M'^''"{V) denote the weight of a MST on V C R'̂  under 

weight function w. Thus, if, T = {V, ET) is a MST on V, then 

M''-{V) := J2 ^(e) < E ^(^ ' ) (1-7) 
eeEr e'eEj,, 

for all spanning trees T' = (V, ET') on V. The MST is unique if the weights of each edge 

in the complete graph on V are distinct (see Proposition 1.1.1 below). Figure 1.1 below 

shows a realization of the MST on 50 simulated uniform random points in (0,1)^. 

The MST has applications in computer science, biology, physics and biochemistry (see 

e.g. [46,47]), as well as in statistics; see, for instance, [92] and the references therein. For 

statistical applications to multivariate non-parametric tests, see in particular [55,56,123 . 

For an early probabilistic paper on the MST, see [60 . 
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The minimal spanning tree, as the travelling salesman problem and the minimal match

ing, is defined as a solution to a global optimization problem. However, the MST on finite 

vertex set V can be constructed in an essentially local manner, via the following 'greedy 

algorithm' due to Kruskal [88]. For practical implementation of MST algorithms, see [141 . 

(1) Let fc = 1, E'o = 0 and E'Q = E, the edge set of the complete graph G = {V,E) on 

V. 

(2) Choose Cfc G such that w{ek) = min{w;(e) : e G E'^_^}. Let E^ = Ek-i U {efc}. 

Take 

El = {ee El_-^ \ {ek} : Ek U {e} has no cycles} . 

(3) If = 0 then set ET = Ek and stop. Else update k ^-^ k + 1 and return to (2). 

The algorithm chooses edges (from the complete graph on V) one at a time from the 

shortest available provided no cycles are formed. When the algorithm is done, the graph 

T — {V, ET) is produced. Clearly T will be a spanning tree. 

We assume that all the edges in the complete graph on V have distinct weights under 

w (as will occur with probability 1 in the random setting with weight function Wa, a > 0, 

as given by (1.2)). Without this assumption, Kruskal's algorithm still produces an MST, 

but this MST may no longer be unique. The following result is due to Kruskal [88 . 

Proposition 1.1.1 Suppose that the complete graph G = {V,E) on V is such that the 

edges in E all have distinct weights under w. Then T = {V,ET) produced by the greedy 

algorithm above is the unique MST on V. 

Proof. Suppose T' = {V, ET') is a MST on V which has as many edges in common with 

T = {V,ET) as possible. Suppose that T' ^ T. Let e = {^1,^2} denote the first edge of 

T which is not an edge of T'. Then T' contains a unique path from u i to U2. This path 

contains at least one edge, / = { v i , U2} , say, that is not in T since T has no cycles. When e 

was selected via the algorithm as an edge of T, / must also have been a candidate. Hence 

wie) < w { f ) , by construction. But then T* = {V,ET'), where ET* := {ET' U {e}) \ { / } , 

is a spanning tree of V, and w{T*) = w{T') - w { f ) + w{e) < w{T') so T* must also be 

an MST. This tree T* has more edges in common with T than T' does, contradicting the 

choice of T'. Hence T = T' and T is an MST. • 
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1.1.5 The nearest-neighbour graph (NNG) 

In the nearest-neighbour (directed) graph on vertex set V, each point v of V is connected, 

by a directed edge (v, u), to a nearest-neighbour u e of v\ that is w{v, u) < w{v, u') 

for all u' ^V \ {v} (with u chosen arbitrarily to break any ties). In the nearest-neighbour 

(undirected) graph on V, two vertices u and v are joined by an edge {u,v) if ?x is a 

nearest-neighbour of v and/or t; is a nearest-neighbour of u. 

Figure 1.1 shows a realization of the nearest-neighbour (directed) graph on 50 simu

lated uniform random points in (0,1)^. Nearest-neighbour graphs and related graphs are 

the main subject of this thesis. They will be introduced in detail in Chapter 2. 

Figure 1.1: Realizations of the MST (left) and NNG (right), each on 50 simulated uniform 

random points in the unit square. 

1.1.6 The geometric graph 

In the specific sense employed in [104], a geometric graph is an undirected graph on vertex 

set V" C R'' with an edge between any two vertices u, v G F if ||u - v|| < r , for a fixed 

r > 0, and || • || some norm on R''. 

The book [104] presents many results on random geometric graphs, as well as history 

and motivation. 
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1.1.7 Motivation and a brief history 

Motivation for studying spatial graphs has originated in many areas. The most obvi

ous motivation is the modeUing of real-world spatial networks, such as communications 

networks, social networks, and, more recently, the internet. 

An alternative set of random network models are the 'classical' random graphs of 

Erdos and Renyi, which have no spatial structure. In a typical Erdos-Renyi type scheme, 

a random graph on vertex set V is constructed by, independently for each pair of vertices, 

tossing a coin to determine whether an edge is included. Thus there is no spatial structure 

to the graph - an edge between two vertices is equally likely. Graphs with spatial content 

are often more desirable as models for real-world networks. For a thorough account of the 

theory of Erdos-Renyi random graphs, see [26]. See also [58 . 

An early paper on infinite random geometric graphs (in the plane) is [59]. Such models 

are now part of the modern theory of continuum percolation; see [97] for a survey. 

The probabilistic limit theory of random spatial graphs began with the famous paper 

of Beardwood, Halton and Hammersley [18]. They proved a law of large numbers result 

for the TSP. 

Theorem 1.1.1 [18] Suppose d e {2, 3 , . . . } . Let Xn denote the point process consisting 

of n independent random points on (0,1)'', with common density f supported by (0,1)'^ (a 

special case of (1.3)). Then, with weight function w ~ Wi as defined at (1.2) (i.e., simple 

Euclidean length) and T'^''" the TSP length functional as defined at (1.6), as n oo 

nM/ ' ^ r^ ' ^H-^n ) ^ C(d) / /(x)('^-^)/''dx, (1.8) 

where C{d) is a positive constant that depends only on d. 

Building on the ideas of [18], an extensive theory for proving results along the lines 

of (1.8) for a large number of problems in Euclidean optimization has been developed. 

This theory often makes use of a form of subadditivity. The general theory and several 

applications are presented in the monographs [136] and [142]. In particular, results of the 

form (1.8) are shown to also hold for the MST and minimal matching, and other problems 

in combinatorial optimization. The literature in this area is extensive; see [136,142] for 

surveys, and also [3,134,135 . 

Convergence in distribution results are generally harder to obtain than laws of large 

numbers like (1.8). Avram and Bertsimas [11] give central limit theorems and rates of 
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convergence for the NNG (amongst other graphs) using a dependency graph technique of 
Baldi and Rinott [14]. Here, the crucial idea is that the structure of the graph is essentially 
locally determined in some sense, and so, with high probability, the dependency structure 
of the graph has a finite range. 

At first, the MST and TSP appear more complicated. Alexander [4] proved a central 

Umit theorem (CLT) for the total length of the MST on Poisson points in o? = 2, by 

a continuum percolation approach suggested by Ramey [119]. Kesten and Lee gave the 

following more general CLT for d > 2 and power-weighted edges. For > 0 let A/'(0, a"^) 

denote the normal distribution with mean 0 and variance a^. 

Theorem 1.1.2 [82] Suppose d e { 2 , 3 , . . . } , and the weight function w = Wa, o; > 0, 

as given by (1.2). Then, with M'^''^ as defined by (1.7), as n oo, 

^{2a-d)/i2d) ^M''''"''{Un)-E[M''''"''{Un)]) A A A ( 0 , C7̂ ,J , (1.9) 

for some cr̂  ^ > 0. 

The CLT for the TSP is, in general, still open. 

Kesten and Lee's approach is based on a martingale difference method, and a notion 

of stabilization - on the addition of a new point, only the 'nearby' configuration of the 

MST is aff'ected. This fact has its roots in Kruskal's algorithm mentioned above. The 

methodology of stabilization was subsequently used by Lee [92,93] to give an analogous 

result to (1.9) for the number of vertices with fixed degree in the MST. 

Several papers by Penrose and Yukich [105,106,111-114] extended the stabilization 

technique to give general results in geometric probability. These include laws of large 

numbers [112] and central hmit theorems [111,113], with appUcations to a wide class 

of stabilizing functionals, including those concerned with the MST, nearest-neighbour 

graph, percolation, and Boolean models. More recent results deal with convergence of 

random measures in geometrical probability based on stabilization techniques, see for 

example [17,107,114'. 

In recent years, interest in random graph models has been considerable with regard 

to the modelling of real-world networks, and in particular the internet. The search for 

realistic models of the world wide web often involves replication of certain empirically 

observed characteristics, such as the so-called 'small worlds' phenomenon (see Watts [139]) 

and observed degree distributions, often involving some form of power law. Many of 

these models have a spatial component, and many models that hope to describe network 
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evolution have an on-line structure; that is, vertices are added one at a time. A simple 

model along these lines is the on-line nearest-neighbour graph, which we study in this 

thesis (see Chapter 2). 

For extensive surveys on network modelling (including some not completely rigorous 

results) see [103] and [44]. For recent rigorous mathematical results on world wide web 

graphs, see for example [19,27-29,36]. Motivation also comes from other communications 

networks (e.g., telecommunications) and drainage networks (see [122] for a hydrological 

overview). We describe this in more detail in Chapter 2, in connection with the so-called 

minimal directed spanning tree. 

1.2 Random walk in random environment 

Given an infinite sequence u) = {po,Pi,P2, • • •) such that, for some (small) 6 > 0, 5 < Pi < 

1—5 for all i € { 0 , 1 , 2 , . . . } , we consider {r]t{oj); t £ Z"*") the nearest-neighbour random 

walk on Z"*" := { 0 , 1 , 2 , . . . } defined as follows. Set r7o(w) = a for some a € Z"*", and for 

n = l , 2 , . . . , 

P[rit+i{cu) = n - l\rit{u) = n] = p„, 

P[rit+i{u) = n + l|??t(w) = n] = 1 - p„ = : g„, 

and P[rjt+i{uj) = 0\rit{uj) = 0] = po, P[?7t+i(u;) = l|??f(a;) = 0] = 1 - po = : go- The given 

form for the reflection at the origin ensures that the Markov chain is aperiodic, which 

eases some technical complications. 

We call the sequence of jump probabilities LO our environment. As an example, the 

case Pi = 1/2 for all i gives the symmetric simple random walk on Z"*". 

Of interest here is the case in which the sequence oj itself is random - in this case rit{io) 

is a random walk in random environment (or RWRE for short). Suppose the random 

environment u) is specified by random variables {po,Pi,P2, • • •) on some probability space 

{n,T,F). Write E for expectation under P. 

The RWRE was first studied by Kozlov [87] and Solomon [133], in the case where the 

Pi, i > 0 form an i.i.d. sequence; in this case the random environment is homogeneous. 

(In fact, Kozlov and Solomon considered the RWRE on the whole of Z rather than Z+). 

Subsequently, the RWRE has been extensively studied; see for example [121] or [143] for 

. surveys. The higher dimensional RWRE has also received much interest; it is not so well 

understood as the one-dimensional case. See [143 . 
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Here we will be primarily concerned with the behaviour of r]t{uj) in terms of recurrence 
and transience. Recall that (given uj) r]t{uj) is recurrent if it eventually returns to 0 with 
probability one. Otherwise, it is transient. Let TQ denote the time of the first return of 
I'lti'^) to 0, i.e. 

To := mf{t > 1 : 7?,,(u;) = 0}. 

Then, given u, recurrence corresponds to P[TO < OO] = 1, while transience corresponds 

to P[ro < oo] < 1. I t follows that, given to, if rit{iu) is transient, then E[TO] = oo and 
/ \ a.s. Tlt[U}j y O O . 

Also recall that, given u>, if r]t{to) is recurrent, then it is null-recurrent if E[TO = 

oo and positive recurrent (or ergodic if also irreducible and aperiodic) if -E'[ro] < oo. 

Equivalently, 7?t(u;) is positive recurrent if and only if there exists a (unique, non-zero) 

stationary distribution 'Kj,j e Z+. See any standard text on Markov chains, e.g. [52 . 

In the case of the i.i.d. random environment on Z"*", Solomon [133] showed (essentially) 

that the transience/recurrence properties of rjt{ui) depend on d = E[log(pi/( l — pi))]. I f 

Ci < 0, Ci = 0, Ci > 0 rit{u}) is respectively transient, null-recurrent, ergodic for P-almost 

every u. 

The case Ci = 0 is often known as Sinai's regime. Sinai [132] showed that, under 

this condition, roughly speaking, in the RWRE on Z, rjtiu)) is of the order of (logt)^. 

Analogous results for the RWRE on Z"*" were given by Golosov (see [63-65]). 

Here we are primarily concerned with recurrence/transience criteria for the RWRE 

on Z+ in which the environment is a perturbation of Sinai's regime. We study this in 

Chapter 8. 

1.3 Thesis outline 

In this thesis we present limit theorems for several nearest-neighbour type graphs in R''. 

Most of our results are concerned with large-sample asymptotics for the total weight of the 

graph (with power-weighted edges) or of certain special subgraphs. These results include 

laws of large numbers, analogous to Theorem 1.1.1, and central hmit theorems, analogous 

to Theorem 1.1.2. In several cases, our methods enable us to evaluate limiting constants 

(the analogues of C{d) in (1.8) and a^ ̂  in (1.9)) explicitly. This work is presented in 

Chapters 2-7. 

We also present results on the limiting behaviour of the random walk in an asymptoti-
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cally homogeneous random environment on { 0 , 1 , 2 , . . . } ; we give a complete classification 
in terms of transience, null-recurrence and ergodicity. This is presented in Chapter 8. 

The particular graph that receives most attention is the minimal directed spanning tree 

(MDST), first studied by Bhatt and Roy [21], as a potential model for telecommunications 

or drainage networks. We present some new results, and potential avenues for further 

investigation. The MDST is described fully in Chapter 2; the version introduced by 

Bhatt and Roy places a (directed) edge from x e (0,1)^ to y e (0,1)^ if x 7̂  y and 

both components of x — y are nonnegative. The MDST bears similarities to the standard 

minimal spanning tree and the nearest neighbour graph, and some analogous results can 

be obtained, as well as some rather more specific results. Interesting boundary effects in 

the MDST can lead to strikingly different behaviour from other graphs. 

The overview of the remainder of this thesis is as follows. In Chapter 2 we introduce 

the nearest-neighbour type graphs that we will consider for the remainder of the thesis, 

as well as some background, motivation and further references. We also present our laws 

of large numbers (along the fines of Theorem 1.1.1). Some of the material in this chapter 

is adapted from joint work with Mathew D. Penrose [109,110 . 

In Chapter 3 we present some general results in geometric probability concerned witfi 

stabilizing functionals, which we then use to prove the laws of large numbers given in 

Chapter 2. We also give general central limit theorems, which we will use later (in 

Cfiapter 6). Some of tfie material in tfiis chapter is adapted from joint work with Mathew 

D. Penrose [109 . 

Chapter 4 is concerned with the MDST on Un and 7̂ „ in c? = 2, in particular, the total 

weight of the 'rooted' edges, and the length of the longest edge. I t turns out that the limit 

theory for these quantities can be described in terms of so-called Dickman distributions 

(which are discussed in Appendix C along with the Poisson-Dirichlet distribution from 

which they emerge; many of the results given there are well known). Chapter 4 concludes 

by proving weak convergence results for the 'rooted' edges and longest edge of the MDST 

on Un and P„ in d = 2, stated in terms of Dickman-type distributions. Some of the 

material in this chapter is adapted from joint work with Mathew D. Penrose [108 . 

In Chapter 5 we consider one dimensional nearest-neighbour type graphs, on uniform 

random points in the unit interval [0,1]. These graphs are of interest in their own right, 

as they admit more detailed analysis than their higher dimensional counterparts, but also 

wifi prove to be essential to the analysis of the boundary effects in the MDST on the 

unit square [0,1]^, which we undertake in Chapter 6. In Chapter 5, amongst our results 
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are weak convergence results for the total weight of the graphs considered. The limits 
arising in these results are not necessarily normal; some are given in terms of solutions 
to distributional fixed-point equations. Thus we begin Chapter 5 with a discussion of the 
'contraction method' for proving such 'divide-and-conquer' convergence results, as well 
as a discussion of the theory of Dirichlet spacings, which is an underlying theme in these 
one-dimensional nearest-neighbour type problems. Some of the material in this chapter 
is adapted from joint work with Mathew D. Penrose [109,110 . 

Chapter 6 deals with convergence in distribution of the total weight of the random 

MDST in [0,1]^. There are essentially two competing contributions to the hmiting total 

weight - a normal component arising from those points away from the boundary, and 

a non-normal boundary effect. To analyse the boundary effects, we use the results of 

Chapter 5; the normal component is handled by the stabilization methodology of Chapter 

3. The final hmit theorem (Theorem 6.1.1) demonstrates a phase transition at a particular 

choice of weight exponent (that is, a = 1 in vua given by (1.2)). For 0 < a < 1, the 

normal contribution dominates, and we have a central limit theorem, while for a > 1, the 

boundary effects dominate and we have a non-normal limit. When a = 1, both effects 

contribute to the limit law. Some of the material in this chapter is adapted from joint 

work with Mathew D. Penrose [109 . 

In Chapter 7 we present some auxiliary results, some conclusions, and some possible 

directions for further investigation with respect to the material in Chapters 2 to 6. 

Chapter 8 is concerned with a rather different topic - that of the complete classification 

of the one dimensional random walk in random environment (RWRE) in a perturbation 

of the so-called Sinai's regime. Some of the material in this chapter is adapted from joint 

work with M.V. Menshikov [99 . 

The Appendix contains complementary material of an auxiliary or technical nature, 

including essential technical background (Appendix A), as well as proofs that would oth

erwise interrupt the flow of the text (Appendix B). Some of this is adapted from joint 

work with Mathew D. Penrose [108,109 . 



Chapter 2 

Nearest-neighbour type graphs and 

laws of large numbers 

2.1 Introduction 

Graphs constructed on random point sets consisting of independent random points in the 

unit d-cube {d E N ) , formed by joining nearby points according to some deterministic rule, 

have recently received considerable interest. Such graphs include the geometric graph, 

the minimal-length spanning tree, and the nearest neighbour graph and its relatives. 

Many aspects of the large-sample asymptotic theory for such graphs, which are locally 

determined in a certain sense, are by now quite well understood. See for example [104, 

111,113,136,142 . 

In this chapter we introduce the nearest-neighbour type graphs in which we are inter

ested and present laws of large numbers (in the sense) for the total length (with power-

weighted edges) of the /c-nearest neighbours (directed) graph, the j - t h nearest neighbour 

(directed) graph, the minimal directed spanning tree, and the on-line nearest-neighbour 

graph in R'', c? € N . We give the limiting constants, in the case of uniform random points 

in (0,1)*^, explicitly. We prove our laws of large numbers in Chapter 3, after introducing 

some general methodology. 

In Chapter 5 we deal specifically with the case d = 1. In the one-dimensional case, 

we can often obtain more detailed results, including weak convergence results. The one-

dimensional cases are of interest in their own right, in relation to certain fragmentation 

or interval splitting problems, as we shall see in Chapter 5. 

Given a locally finite point set X C R'', d G N , and a positive integer A;, the A;-nearest 

13 
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neighbours (undirected) graph on X, denoted fc-NNG(A:'), is the graph with vertex set X 
obtained by including {x, y] as an edge whenever y e A! is one of the k nearest neighbours 
of X e X, and/or x is one of the k nearest neighbours of y. The A;-nearest neighbours 
(directed) graph on X, denoted A;-NNG'(A'), is the graph with vertex set X in which each 
point is connected (by a directed edge) to each of its k nearest neighbours. 

Nearest-neighbour graphs and nearest-neighbour distances in R*̂ , d > 1, are of interest 

in several areas of applied science, including the social sciences, geography and ecology, 

where proximity data are often important. In the analysis of multivariate data, in partic

ular by non-parametric statistics, nearest-neighbour graphs and near-neighbour distances 

have found many applications, including goodness of fit tests, classification, regression, 

noise estimation, density estimation, dimension identification, and the two-sample and 

multi-sample problems; see for example [22,31,48,56,68,69] and references therein. 

We also consider the on-line nearest-neighbour graph (or ONG for short). This can 

be described as follows. The ONG is constructed on n points arriving sequentially in R'' 

by connecting each point to its nearest neighbour amongst the preceding points in the 

sequence. 

The ONG was apparently introduced in [19] as a simple growth model of the world 

wide web graph (for d = 2). When d = 1, the ONG is related to certain fragmentation 

processes, which are of separate interest in relation to, for example, molecular fragmenta

tion (see e.g. [20], and references therein). The ONG in d = 1 is dealt with in more detail 

in Chapter 5. A central limit theorem for the ONG is given in [106 . 

In this chapter (Theorem 2.3.1) we give new LLNs for the random ONG in (0,1)'', 

d G N . Later on, in Chapter 5, we also give some more detailed properties of the 

random ONG when d = 1, and identify the limiting distribution of the centred total 

length of the graph. This distribution is described in terms of a distributional fixed-

point equation reminiscent of those encountered in, for example, the analysis of stochastic 

'divide-and-conquer' or recursive algorithms. Such fixed-point distributional equalities, 

and the recursive algorithms from which they arise, have received considerable attention 

recently; see, for example, [2,102,124,125 . 

The minimal directed spanning tree (or MDST for short) was introduced by Bhatt 

and Roy in [21]. In its structure, the MDST on n random points in the unit square 

resembles both the standard minimal spanning tree and the nearest neighbour graph for 

point sets in the plane, with the extra twist that all edges must be oriented in a south-

-westerly direction^ so that there exists a unique directed path from each vertex to the 
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root placed at the origin. This feature gives rise to significant boundary effects and hence 
to asymptotic properties which are qualitatively different from those for many of the 
previously considered graphs. 

In this chapter (Theorem 2.4.1) we give laws of large numbers for the total length 

of the random MDST in (0,1)'', d e N. Other results on the MDST are presented in 

subseciuent chapters. We also give some preliminary results on the construction of the 

MDST in Section 2.4.1 of this chapter. 

In Chapter 4 we identify the limiting distributions (for large n) for the total length 

of rooted edges, and also for the maximal length of all edges in the tree. These limit 

distributions have been seen previously in analysis of the Poisson-Dirichlet distribution 

and elsewhere; they are expressed in terms of Dickman's function, and their properties 

are discussed in some detail in Chapter 4. In Chapter 6 we give results for the total length 

of the MDST in the unit square. 

We formally define the graphs of interest and present our laws of large numbers in the 

following sections. Let X he a. finite point set in R'', and let || • || be the Euclidean norm. 

Write card (A*) for the cardinality (number of elements) of X. Let 0 denote the origin of 

R'̂ . For e N , let 

V,-.^ TT'^^T {1 + {d/2))]-\ (2.1) 

the volume of the unit d-hall (see, e.g., [73], equation (6.50)). 

Define to be a weight function on Euclidean edges, assigning weight w(x,y) to the 

edge between x e R'̂  and y e R'', such that w : x R'^ ^ [0,oo). We will take 

the weight function to be power-weighted Euclidean distance, as given by (1.2), for some 

a > 0. 

We will take the point set X to be random, in particular we take X — Xn, where 

Xn = (Xi, X2 , . . . , X„), for X i , . . . , X„ independent random vectors in R'' with common 

density function / . For some of our results, we assume one of the following conditions on 

/ - either 

(CI) / is supported by a convex polyhedron in R'̂  and is bounded away from 0 and 

infinity on its support; or 

(C2) For 0 < a < d, f^^ /(x)(''-")/'^dx < 00, and J^^ |x | '7(x)dx < 00 for some r > 

d/{d-a). 
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In many cases, we take / ( x ) = 1 for x € (0,1)'' and / ( x ) = 0 otherwise, in which case we 

denote A'„ = Wn, the binomial point process consisting of n independent uniform random 

vectors on (0,1)''. 

Note that, with probability one, Xn has unique inter-point distances so that all the 

nearest-neighbour type graphs on Xn that we consider are almost surely unique. 

2.2 /t-nearest neighbours, j-th nearest-neighbour graphs 

Let j G N. A point x G A" has a j - t h nearest neighbour y E X \ { x } if card({z : z G 

A ' \ { x } , | | z - x | | < | | y - x | | } ) = j - l . 

Let j G N . In the j - t h nearest neighbour (directed) graph on X, denoted j - t h NNG'(A'), 

each point of X is joined by a directed edge to its j - t h nearest neighbour only. 

Let A; G N . In the A;-nearest neighbours (directed) graph on X, denoted A;-NNG'(/f), 

each point of X is joined by a directed edge to its first k nearest neighbours in X (i.e. each 

of its j - t h nearest neighbours for j = 1,2,..., k). Clearly the 1-th NNG' and 1-NNG' 

coincide, and in this case we have the standard nearest neighbour (directed) graph. 

Figure 2.1 shows realizations of the j - t h NNG' (with j = 3) and fc-NNG' (with A; = 5) 

each on 50 simulated uniform random points in (0,1)^. 

Figure 2.1: Realizations of the 3-rd NNG' (left) and 5-NNG' (right), each on 50 simulated 

uniform random points in the unit square. 
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We also consider the A;-nearest neighbours (undirected) graph on A", denoted A;-NNG(A:'), 

in which an undirected edge is placed between points x , y e ^ if x is one of the k nearest 

neighbours of y , and/or y is one of the k nearest neighbours of x . 

The total length of the random fc-nearest neighbours (directed) graph satisfies a central 

limit theorem; see [22] for k = 1, and [11,17,111,114] for general k. Laws of large 

numbers for the total length of the random k-ne&rest neighbours (directed) graph are 

given by McGivney [96] and Yukich (Theorem 8.3 of [142]), and with more general results 

by Penrose and Yukich [113], but the limiting constants are not given. Here we evaluate 

these constants explicitly. Partial and related results also appear in [11,49,101,115 . 

Let Afj'^{Xn), J^^'ki'^n) denote respectively the total weight of the j-th nearest neigh

bour (directed) graph, A;-nearest neighbours (directed) graph on Xn C R'', for d e N, 

under weight function w^, ior a > 0. Note that 

A / ' < t W = E < ' " W - (2-2) 
j=i 

Theorems 2.2.1 and 2.3.1 below feature the constant C{d,a,k), defined for d G N, 

a > 0 and A: G N by 

d r{k + l + ja/d)) 
C{d,a,k) :-- (2.3) 

d + a r(A;) 

In Table 2.1 below we present some values for C{d, a, A;) with a = 1 and d G N for some 

small values of k. Also, C{l,a,l) = 2" '^r(l + a). Proposition 2.2.1 below gives some 

C{d,l,k) d= 1 d = 2 d = 3 d = 4 

k = 1 0.5 0.5 0.553960 0.608140 

k = 2 1.5 1.25 1.292574 1.368315 

k = 3 3 2.1875 2.154290 2.223512 

k = A 5 3.28125 3.111752 3.149976 

k = 5 7.5 4.511719 4.149003 4.134343 

Table 2.1: Some values of C{d, 1, A;) for smah d, k, given to six decimal places, 

asymptotic formulae for C{d, a, k). 
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Proposition 2.2.1 Let k eN, a>0 anddeN. We have 

}^J-"'C(d,a,k) = (2.4) 

\\m \im d-''l'^k-^-^''l'^^C{d,a,k) = Mm Urn d-''^^k-^C{d,a,k) 

(2.5) 

= (2e7r)-'^/l (2.6) 

Proof. First we prove (2.4), and so consider the case where k e N and a > 0 are fixed 

and d —)• oo. Recall that Stirling's formula gives, for a; € R , as x oo 

r ( l + x) - (27r)l/2x"+(l/2)e-^ (2.7) 

where ~ means that the ratio of the two sides tends to 1 in the limit. From (2.7) we have, 

as d —> oo 
r ( l + (d/2))(°/<^) ~ (2e)-"/2d"/2_ 

Since T{x) is continuous for x > 0, we have 

r{k + l + {a/d)) r{k-\-l) , 
fini — = ———T— = A;, 

d^oo r{k) r{k) 
so from (2.3) we obtain 

C{d,a,k) ~ (2e7r)-"/'ci"/2/c, 

as d ^ oo, which gives (2.4). 

Next we prove (2.5). Suppose that c/ G N and a > 0 are fixed and let —> oo. Then, 

by (2.7), 
r(fc + 1 + {a/d)) {k - f (a/d))'=+W'^)-^(^/2) 

r{k) ' (A : - l )Mi /2 ) 
Then we have 

{k + (a/d))'=+("/'^)+(i/'^ ~ f.k+(m+{a/d)^a/d^ 

and 
(fc _ 1)^-1/2 ^ '̂=-1/2 . ((^. _ i)//,)'=-i/2 ^ k'-'/'e-\ 

Thus we obtain 
C(d,Q',fc) ~ A;i+("/'^'r(l - f (d/2))"/ '^7r-'^/2_l_ 

d + a ' 

as A; —> oo, which gives (2.5). 

Finally, (2.6) follows from (2.4) and (2.5). • 
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Our first main result is Theorem 2.2.1 below, in which we give laws of large numbers 
for A/]̂ '"(<%'„) and ^f^f{Xn), complete with explicit expressions for the hmiting constants 
in the case where Xn — Un- We prove Theorem 2.2.1 in Section 3.3.1. 

Let supp(/) denote the support of / . RecaU the conditions (Cl) and (C2) given just 

before the start of this section. Under (Cl ) , supp(/) is a convex polyhedron; under (C2), 

supp(/) is R'̂ . 

Theorem 2.2.1 Let d E N. Suppose the weight function is Wa given by (1.2). The 

following results hold, with p = 2, for a > 0 if the density function f satisfies condition 

(Cl), and, with p = 1, for 0 < a < d if f satisfies condition (C2). 

(a) For j - t h NNG' on R*̂  with weight function Wa, we have, as n —)• oo, 

n^'^-'^I'Mf'^iXn) ^ ^--I'^^SllM^ f /(x)(' '-")/^dx. (2.8) 

r ( j ) ^supp( / ) 

In particular, 

^ ( c . - . ) / ^ A / ; ^ , c . ( ^ ^ ^ i ^ ^ - . / . r ( j + 

(b) For /c-NNG' on Tif with weight function w^, we have, as n oo, 

^{a-<i)/d_^a,a^^^) ^^^^ ^) I / ( x ) { ^ - ) / ' ' d x . (2.9) 

In particular, 

n^^-'^I'M'^^iUn) C{d, a, k). (2.10) 

Remarks, (a) If we use a different norm on R'' than the Euclidean, Theorem 2.2.1 

remains valid with v^ appropriately redefined to be the volume of the unit d-ball in the 

chosen norm. 

(b) Laws of large numbers for the /c-NNG' total length functional can be found in [96 . 

Theorem 8.3 of [142] gives a LLN (with complete convergence) for M<^{Xn). Our Theorem 

2.2.1, without the exphcit constants, follows from Theorem 2.4 of [113]. In none of these 

are the limiting constants evaluated explicitly. Avram and Bertsimas (Theorem 7 of [11]) 

attribute a result on the limiting expectation (and hence the constant in the law of large 

numbers) for the j - t h NNG'(W„) in ci = 2, with a = 1, to Miles [101] (see also page 101 

of [142]). From (2.8) we have 

, - a / . r ( j + Wd))_ ^2.11) 
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The constant in [11] is given as 

which simplifies to 7r"^/^r(j - f ( l / 2 ) ) / r ( j ) , and so agrees with the ct = 1, d = 2 case of 

(2.11). 

(c) Related results are the asymptotic expressions for expectations of j - t h nearest 

neighbour distances in finite point sets given in [115] and [49]. The results in [115] are 

consistent with the a = 1 case of our (2.10). The result in [49] includes general a and 

certain non-uniform densities, although their conditions on / are more restrictive than 

our (CI); the result is consistent with (2.9). Also, [49] gives (equation (6.4)) a weak LLN 

(with convergence in probability) for the empirical mean A;-nearest neighbour distance. 

With Theorem 2.4 of [113], the results in [49] yield LLNs for the total weight of the 

j - t h NNG' and A;-NNG' only when d - 1 < a < d (due to the rates of convergence given 

in [49]). Our methods yield LLNs for any a > 0 under (CI), and also encompass a wider 

class of density functions / . I t may be possible to obtain rates of convergence in (2.8) 

and (2.9) by adapting the methods of [49 . 

(d) Finally, we note that when we take o; = 0, the functional A/]^'°(A'„) simply counts 

the number of points in Xn with j - t h nearest neighbours, and so A/'j^'°(A'„) = n a.s. for 

j < n - 1, and A/'j^'°(A'„) = 0 a.s. for j > n. Similarly, J^^f{Xn) counts the total number 

of j - t h nearest neighbours for j = 1, 2 , . . . , A; for all points of Xn, and so A/'j^'°(A'„) = kn 

a.s. provided A: < n - 1, and J\ff'°{Xn) = n{n-l) a.s. provided k > n. These observations 

are consistent with the a = 0 cases of (2.8) and (2.9). 

From our results on nearest neighbours (directed) graphs, it is possible to obtain results 

for nearest neighbours (undirected) graphs, in which if a; is a nearest neighbour of y and 

vice versa, then the edge between x and y is only counted once. As an example, we give 

the following result for the total weight of the standard nearest neighbour (undirected) 

graph in R"". 

Let Z^'°'{Xn) denote the total weight, with weight function Wa ct > 0, of the nearest 

neighbour (undirected) graph on Xn C R'', d G N. Recall the definition of Va, the volume 

of the unit d-ball, from (2.1). For d G N, let tUd be the volume of the union of two unit 

d-balls with centres unit distance apart. 
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Theorem 2.2.2 Let d G N. Suppose the weight function is Wa as given by (1.2). Suppose 
a >0 and that the density function f satisfies condition (CI). Then, as n ^ oo, 

^(a-d)/<i^<i,a^;j.j A r ( l + ( t t /d) ) f ^ ; " / ' - ^Wd^;'"^"/'^) / / ( x ) ( ' ' - ° ' / ' ' d x . (2.12) 

In particular, when d = 2 we have, for a > 0 

and when d = 2, a ^ 1, we get 

n-'/^Z^'\Un) i - 7 ( ~ 0.377508. (2.14) 
3 v 3 / 2 4V87r + 

Finally, when d = 1, a = 1, we have Z'^'^{Un) —-> 7/18 as n —>• oo. 

We give the proof of Theorem 2.2.2 following the proof of Theorem 2.2.1 in Section 

3.3.1. 

Remark. I t should be possible to obtain more general results for the undirected graphs 

/c-NNG(A:'„) (A; = 2, 3, . . .) using our methods, and by modifying the methods of Henze [68 

for the fraction of points that are the l-ih nearest neighbour of their own fc-th nearest 

neighbour. 

2.3 The on-line nearest-neighbour graph 

We now consider the on-line nearest-neighbour graph (or ONG for short). Let d be a 

positive integer. Suppose X i , X2, . . . are points in (0,1)'', arriving sequentially; the ONG 

on vertex set { X i , . . . , X„} is formed by connecting each point X j , i = 2, 3, . . . , n to its 

nearest neighbour amongst the preceding points in the sequence (i.e. X i , . . . , Xi_ i ) , using 

the lexicographic ordering on R'' to break any ties. The resulting graph is a tree, which 

we cah the ONG on (Xi , X2, . . . , X„). 

For our results on the ONG, we restrict our analysis to the case in which the points 

X i = Ui ,X2 = U2,. . . are uniformly distributed on (0,1)''. One could consider more 

general distributions, as in the previous section. 

The ONG is of interest as a natural growth model for random spatial graphs; in 

particular it has been used (with d = 2) in the context of the world wide web graph 
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(see [19]). In [106], stabilization techniques were used to prove that the total length 

(suitably scaled) of the ONG on uniform random points in (0,1)'' for d > 4 converges in 

distribution to a normal random variable. It is suspected that a central limit theorem 

also holds for d = 2,3,4. On the other hand, when d = 1, the hmit is not normal, as 

demonstrated by Theorem 5.2.2 (h) in Chapter 5. 

Figure 2.2 shows a realization of the ONG on 50 simulated uniform random points in 

the unit interval. Figure 2.3 below shows realizations of the planar and three-dimensional 

ONG, each on 50 simulated random points. 

Figure 2.2: Realization of the ONG on 50 simulated random points in the unit interval. 

The vertical axis gives the order in which the points arrive, and their position is given by 

the horizontal axis. 

In order to obtain our law of large numbers (Theorem 2.3.1 below), we modify the setup 

of the ONG slightly. Let Un be a marked random finite point process in R'*, consisting 

of n independent uniform random vectors in (0,1)'', where each point of Un carries 

a random mark T ( U j ) which is uniformly distributed on [0,1], independent of the other 

marks and of the point process Un- The points are listed in increasing order of mark, 

i.e. the marks represent time of arrival. With this ordering, we connect each point of 

Un to the nearest point that precedes it in the ordering, if such a point exists, to obtain 

a graph that we call the ONG on the marked point set Un- This definition extends to 

infinite but locally finite point sets. 

Clearly the ONG on the marked point process Un has the same distribution as the 

ONG (with the first definition) on a sequence U i , U 2 , . . . , U„ of independent uniform 
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Figure 2.3: Realizations of the ONG on 50 simulated uniform random points in the unit 

square (left) and the unit cube (right). 

points on (0,1)''. 

For d eN and a > 0, let C*''"(ZY„) denote the total weight, with weight function Wa, of 

ONG{Un). Our results for the ONG in general dimensions are as follows, and constitute 

a law of large numbers for a < d, a distributional convergence result for a > d, and 

asymptotic behaviour of the mean for a = d. 

Theorem 2.3.1 Suppose c? € N, and the weight function is Wa as given by (1.2). 

(i) Suppose 0 < a < d. For the ONG, as n oo, with C{d, a, k) as given by (2.3), we 

have 

d — a 
C{d,a,l) (2.15) 

(a) Suppose a > d. Then, as n ^ oo. 

0'''''{Un)^Wid,a), (2.16) 

where the convergence is in L^, (p e N), and almost sure, and W{d,a) is a nonde-

generate, nonnegative random variable with E[{W{d,a)Y] < ^ /or = 1,2,3, 

(Hi) Suppose a = d. Then, as n ^ oo, 

E[0'''{Un)]=v^'\ogn + Oil). (2.17) 
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In particular (2.17) implies that E[0^'\Un)] = (1/2) log(n) + C>(l), a result given more 

precisely in the convergence of expectations version of Theorem 5.2.2 (ii) in Chapter 5. 

We prove Theorem 2.3.1 (i) in Section 3.3.2 and Theorem 2.3.1 (ii) and (iii) in Section 

3.3.3. 

2.4 The minimal directed spanning tree (MDST) 

In Bhatt and Roy's MDST construction [21], each point x of a finite (random) subset S of 

(0,1)*^ (in [21], d = 2) is connected by a directed edge to the nearest y E SUO such that 

y 7̂  X and y x, where y =4* x. means that each component of x — y is nonnegative (=^* 

is the "coordinate-wise" partial order on R''). Of interest is the behaviour of the length 

of the graph, or of various parts of the graph. 

The original motivation for studying the MDST comes from communications and 

drainage networks (see the discussion at the end of this section, and also [21,108,122]). 

The constraint on the direction of the edges can lead to significant boundary effects due 

to the possibility of long edges occurring near the lower and left boundaries of the unit 

square (see Chapter 6). Another difference between the MDST and the standard minimal 

spanning tree and nearest-neighbour graph for point sets in the plane is the fact that 

there is no uniform upper bound on vertex degrees in the MDST. 

Figure 2.4: Realizations of the MDSF (left) and MDST on 50 simulated uniform random 

points in the unit square, under the partial ordering :^*. 

We consider a more general definition of the MDST than that used by Bhatt and Roy. 
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In particular, we consider a general class of partial orderings, including 4*, and take d 
to be any nonnegative integer. We consider properties of the MDST on random points 
in (0,1)'' as the number of points becomes large. We also consider the minimal directed 
spanning forest (MDSF), which is the MDST with the edges incident to 0 removed; this 
model seems more appropriate for general partial orders. In [21], Bhatt and Roy mention 
that the total length of the graph is an object of considerable interest, although they 
restrict their analysis to the length of the edges joined to the origin (see also Chapter 4). 
A first order result for the total length of the MDST or MDSF is a law of large numbers; 
we present this in Theorem 2.4.1 for a family of MDSFs indexed by partial orderings on 
R' ,̂ which include =<;* as a special case. 

Second order results, i.e., weak convergence results for the distribution of the total 

length, suitably centred and scaled, in the case where d = 2 and the partial order is =<;*, 

are presented in Chapter 6. 

In Chapter 4, we give results dealing with the weight of the edges joined to the origin 

(with d = 2 under =<;*), including weak convergence results, in which the limiting distribu

tions are given in terms of some generalized Dickman distributions. Subsequently, it has 

been shown [12] that this two dimensional case is rather special - in higher dimensions the 

corresponding limits are normally distributed. Chapter 4 also deals with the maximum 

edge length of the MDST, and the maximum edge length of those edges incident to the 

origin (which was also dealt with in [21]). 

The MDST is defined formally in the next section. Motivation comes from the mod

elling of communications or drainage networks. The communications model considered 

in [21] goes as follows. Consider a network of radio masts, each of which can receive 

signals only from masts to the south-west. Suppose a source transmitter is positioned at 

the origin of the plane, and a network of masts is positioned in the first quadrant. Then 

the graph of the transmission network can be viewed as a directed spanning tree. For 

convenience, the direction of the edges is taken to be from receiver to transmitter, so that 

all the directed paths eventually meet at the origin. We restrict the model to a single link 

into each receiver, which we may justify by asserting that once the first connection has 

been established, further links may be ignored for many purposes. Various characteristics 

of the resulting graph are then of interest. 

The same graph may be considered as a model for drainage networks, following the 

spirit of Rodriguez-Iturbe and Rinaldo in [122]; again, see [21]. The idea is that water 

is allowed to run off an inclined bounded field, forming several drainage channels. These 
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channels eventually merge so that all the water flows out of the field at the lowest point on 
the boundary. Given any particular landscape geometry, this situation is fairly unpleasant 
to model directly, so we study a model that maintains the essential features of the above 
system while being much simpler to handle. 

In one model proposed in [122], given a fixed number n of points which the stream 

network (graph) must contain as nodes, the optimal configuration is achieved by minimiz

ing the quantity Q]^^Li where Li is the length and Qi the discharge of stream (edge) 

i. If we assume that Qi is fixed for all i (and so the flows are non-additive), and flow 

is constrained to be in a south-westerly direction, the optimum configuration on a set of 

points is given by the construction we consider here. Another viewpoint is to consider the 

catchment of the network, which will depend on the total length of the channels. 

Understanding these networks for large systems may be difficult: by investigating 

the behaviour of the MDST on random points we hope to shed light on their 'typical' 

behaviour. 

2.4.1 Construction and basic results 

Suppose V is a finite nonempty set endowed with a partial ordering ^ , that is a binary 

relation =̂  between elements of V such that (see e.g. [86]) 

(i) ^ is reflexive, i.e. u 4 u for all u eV; 

(ii) ^ is transitive, i.e. if u 4 v and v =4 w then u 4 w for all u,v,w e V; 

(iii) If, for u,v E V , u 4 V and v 4 u then u = v. 

The partial ordering induces a directed graph G = {V,E) on V, with vertex set V and 

edge set E consisting of aU elements (directed edges) {v,u) E E,u ^ v that are ordered 

pairs of elements of V such that u =4 v. 

Definition 2.4.1 A minimal element, or sink, is a vertex VQ e V for which there exists 

no V e V \ {vo} such that v 4 VQ. Let VQ denote the set of all sinks ofV; observe that VQ 

cannot be empty. 

Definition 2.4.2 A directed spanning subgraph (DSS) of G is a subgraph H = {V,EH) 

of {V,E), such that, for each vertex v E V \ VQ, there exists at least one directed path in 

H that starts at v and ends at some sink u EVQ. 
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Definition 2.4.3 A directed spanning forest (DSF) T on V is a DSS on V such that, 
for each vertex v G V \VQ, there exists a unique directed path in T that starts at v and 
ends at some sink u E VQ. In the case where VQ consists of a single sink, we refer to any 
DSF on V as a directed spanning tree (DST) on V. 

We can show easily that the DST is in fact a tree and the DSF is in fact a forest, and 

that the DST and DSF have other graph-theoretic properties. We do this by proving the 

following equivalence result. 

Proposition 2.4.1 The following properties of a DSS H — (V, E//) of G = {V,E) are 

equivalent: 

(i) H is a DSF (or DST), i.e., for each vertex v G V\VQ there exists a unique sequence of 

directed edges in EH of the form ( f , f fc) , {vk,Vk-i),..., ( f i , Vo) where A; G ( 0 , 1 , . . . } , 

and some G V Q . 

(ii) For each vertex v E V \ VQ there exists exactly one edge of the form {v,u) G EH 

(where u =4 v). 

(Hi) Ignoring the orientation of the edges, H is a forest whose components are in one-

to-one correspondence with the elements ofVo (in particular, ifVo contains a single 

sink, H is a tree). 

In the case where V has a single sink, the following is also equivalent to any one of the 

above statements; otherwise it is implied by any one of the above: 

(iv) There are no cycles (disregarding the directedness of the edges) in H. 

Proof, Consider (i). By uniqueness, we must have that any two vertices vi, V2 that are 

joined to the same sink VQ must lie in the same connected component of H, rooted at VQ. 

Hence, ignoring orientation, condition (i) implies (iii). 

Condition (ii) can be restated as there exists no branching point in H, i.e., there do 

not exist distinct vertices u,u',v G V such that {v,u) and {v,u') are both edges of H. 

Since, by definition of a DSS, H contains at least one directed path from w to a sink, we 

have that (ii) is equivalent to (i) - this path is unique. 

I t also clear that (hi) implies (ii). Also, it is easy to see that (ii) implies (iv), and in 

the case of a single sink, (iv) implies (iii), for example. • 
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Recall that a weight function on the edges of a (directed) graph {V, E) is a function 

w : E [0,00). 

Definition 2.4.4 Suppose that V is a partially ordered finite set and that the induced 

graph G = {V, E) carries a weight function w. A minimal directed spanning forest 

(MDSF) on V (or, equivalently, on G), is a directed spanning forest T on V with edge 

set ET ^ E such that 

w{T) := w{e) = min \ J ] w{e) : T = {V^ET) a DSF o n v \ . (2.18) 

// V has a single sink, then any minimal directed spanning forest on V is called a minimal 

directed spanning tree (MDST) on V. 

Thus, a MDSF on V is defined as a solution to a global optimization problem. However, 

the following simple result shows that, when all edge weights are distinct, a MDSF can 

be constructed simply in a 'local' manner, reminiscent of Kruskal's greedy algorithm [88 

for finding the minimal spanning tree in an undirected graph. 

Definition 2.4.5 We say that v E V has a directed nearest neighbour u E V \ {v} if 

u 4 V and w{v, u) < w{v, u') for all u' EV \ [v] such that u' =4 V-

Note that in the random setting (see below), the directed nearest neighbour of a point is 

almost surely unique, and so the MDSF (or MDST) is almost surely uniquely defined. 

Proposition 2.4.2 Suppose that V is a partially ordered finite set with set of sinks de

noted VQ and that the induced graph G = {V,E) carries a weight function w. For each 

V G V\Vo, let Hy denote a directed nearest neighbour of v (chosen arbitrarily if v has 

more than one directed nearest neighbour). Let M = {V, EM) be the DSS of V obtained 

by taking 

EM:={{v,n,):veV\Vo}. 

Then M is a MDSF on V. 

Proof. Let T = (V, ET) be an arbitrary DSF on V. Then, for every v e V \ VQ, there 

exists a unique element of V, denoted Uy such that {v,Uy) e ET (uniqueness follows from 

Proposition 2.4.1). Necessarily Uy 4 v, and by definition of directed nearest neighbours 

we have 

w{M) = ^ w{v,ny) < ^ w{v,Uy) = w{T) 
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for every DSF T. Thus, M is a MDSF on V. • 

From the properties described above, it is clear how to construct the MDSF (or MDST) 

on a given a finite point set V: Join each point v eV\Vo to a directed nearest neighbour 

Uy by the edge ( f ,n^ ) . Given a MDSF on V, it is therefore easy to construct a MDSF 

on V := V U {v'} for some v' ^ V , via an 'add and delete' procedure. Let M = {V,EM) 

be a MDSF on V (for example, as obtained by the procedure in Proposition 2.4.2). Then 

the following add/delete procedure produces a MDSF M' — ( V , EM') on V: we add the 

edge from v' to a directed nearest neighbour (if one exists), and replace previous edges 

from points that now have v' as a directed nearest neighbour in V with the edge from 

those points to v'. More precisely, let Uyi denote a directed nearest neighbour of v' in V, 

if one exists. If such an exists, let e' := {v',nyi). Denote by W the (possibly empty) 

set of vertices v £ V such that a directed nearest neighbour of v in V is v'. For v eW, 

let Uy denote the directed nearest neighbour of v in V (that is, not including v'). Then 

E M' 
( \ ( \ 

^ M U { e ' } u | J { ( t ; , ^ ; ' ) } \ U{(^'«^)} • (2.19) 

Then (by Proposition 2.4.2) M' is a MDSF on V. 

While the statements above apply to any partially ordered set V with weights defined 

for all induced edges, we will be subsequently concerned only with the case where V is 

a randomly generated subset of R*̂ , d G N , and where the partial ordering and weight 

function are as follows. 

The partial order 
e,<j> 

For what follows, we consider a general type of partial ordering of R^, denoted = ,̂ specified 

by the angles, 9 € [0, 2TT) and 0 G (0, TT ] . For x G R^, let Ce,4>{'x) be the closed cone with 

vertex x and boundaries given by the rays from x at angles 9 and 9 (p, measuring 

anticlockwise from the upwards vertical. The partial order is such that, for X i , X 2 E R^, 
9,4> 

Xi X 2 iff Xi G Ce,<^(x2). 

7r /2 ,7r /2 

We shall use 4* as shorthand for the special case =̂  , which is of particular interest, 

as in [21]. This is the coordinate-wise partial order on R^, for which u ^* v for u = 

{ui,U2),v = {vi,V2) if and only if ui < Vi and U2 < v^- Many of our results are specific 

to as in Chapters 4 and 6. 
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For general d G N we consider two special partial orders on R''. The first we again 

denote for which we have y =<:* x for x , y 6 R'' if and only if each component of 

X — y is nonnegative - this is the coordinate-wise partial order, coinciding with the above 

definition of =<;* in d = 2. 

The second we denote by such that y x for x , y e R*̂  i f and only if the first 

component of x - y is nonnegative. We refer to this as the single-coordinate partial order. 
0,7r 

In d = 2, this corresponds to =<(. For aesthetic reasons, however, we will take to be 
7r/2,7r 

instead the (for our purposes equivalent) partial order ^ in = 2, so that all edges 

run north-south in (0,1)^. Note that when d > 2 the binary relation =<;* is not, strictly 

speaking, a partial order on R** (z =<;» x and x =<;̂ , z does not imply that x = z) . However, 

in the random setting we consider, will be a true partial order on our point sets, with 

probability one. 

Figure 2.5: Realizations of the MDST under (left) and MDSF under ^* on 50 simulated 

uniform random points in (0,1)^. 

Note that in d = 1, =<;* and both equate to the total order relation < . Where 

required, the symbol =̂  will denote an arbitrary partial order on R' .̂ 

e,<f> 

Remarks. Outside the given ranges of 9 and 0, the relation =<; is no longer a partial 

order, and we do not consider this case in this thesis. I f we allow TT < 0 < 27r we obtain a 

directional relation between points in the plane, but this will not be a partial order, since 

we do not have that if u 4 v and v 4 w then u 4 w for all u,v,w E V. This follows from 
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the fact that the statement 

CeA^i) ^ Ce,4>{^2) Vxi G Ce,4,(^2) 

holds if and only if 0 < 0 < TT . We do not consider vr < 0 < 27r in detail. However, one 

could define a graph, by analogy with the MDSF, such that each point -u G VyVo is joined 

to a 'directed nearest neighbour' with the relation replacing the partial order. In fact, 

our laws of large numbers (Theorem 2.4.1) will still hold in this case. However, the graph 

in general will not be a forest (it may contain cycles, for instance) and the graph theoretic 

results given above will not hold. One particular case of interest is the case 0 — 27r, which 

leads in fact to the standard (directed) nearest neighbour graph (as described in Section 

2.2); in this case. Theorem 2.4.1 coincides with the d = 2 case of Theorem 2.2.1. We do 

not permit here the case 0 = 0, in which case we almost surely have a disconnected point 

set. 

2.4.2 The random M D S T / F in R'̂  

The weight function is given by power-weighted Euclidean distance, as defined at (1.2). 

From now on, we shall assume that y C R'' is given by V = S, or sometimes V = 

where S is generated in a random manner and 5° := <S U {0}. The random point set S 

will usually be either the set of points given by a homogeneous Poisson point process Vn 

of intensity 71 on the unit cube (0,1)'', or the point process A'„ consisting of n independent 

random vectors in R'' with common density function / . In the case where / is the indicator 

function of (0,1)*^, we write W„ for Xn, now the binomial point process consisting of n 

independent uniformly distributed random vectors on (0,1)''. 

We sometimes consider the MDST on 5° rather than S when the partial order is 

and S = Un ov S = Vn (following Bhatt and Roy in the d = 2 case). 

I t follows from Proposition 2.4.2 and the discussion thereafter (see (2.19)) that, under 

partial order =<;*, if V C (0,1)'' with set of minimal elements VQ, and M = {V,EM) is a 

MDSF on V, we have that M' = {VU {0}, EM') is a MDSF (in fact, a MDST) on V U {0} 

if 

EM'=EMU U{(^.0)}-
v€Vo 

Note that in this random setting, with probability one each point of S has a unique 

directed nearest neighbour, so that V has a unique MDSF, which does not depend on the 

choice of a. 
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Denote by C''''^{V) the total weight of all the edges in the MDSF on V C R'^, under 
weight function Wa, a > 0 as given by (1.2). Also (when V is random) let C'^'°'{V) : = 
£<^'"(y) - ElC^'^iV)], the centred total weight. 

Our first result presents laws of large numbers for the total edge weight in d = 2 for 

the general partial order =<; and general 0 < a < 2. Recall that is the point process 

of n independent random points in R*̂  with common density / , and that when / is the 

indicator function of (0,1)'' we write i 4 = Xn for the binomial point process. 

Theorem 2.4.1 Suppose d = 2, and the weight function is Wa as given by (1.2). Suppose 

0 < a < 2, and that the density function f satisfies condition (Cl). Under the general 
o,<t> 

partial order ^ , with 0 < 9 < 2IT and 0 < (p < TT, it is the case that, as n oo, 

n(" / ' ) - i£2 ' " (A '„ ) A (2/./.)"/2r(l + a/2) /" / ( x ) ( ' - " ) / 2 d x . (2.20) 
Jsupp(f) 

In particular, as n ^ oo 

,^(a/2)-i^2,a(^^) A (2/0)"/2r( l + a/2), (2.21) 

and when the partial order is =^*, (2.21) remains true with the addition of the origin, 

i.e. with Un replaced by U^. 

Remark. In the special case a = 1, the limit in (2.21) is \JTX/{24>). This limit is 1 when 

(p = T T / 2 . Also, for (p = 2n we have the standard nearest neighbour (directed) graph 

(that is, every point is joined to its nearest neighbour by a directed edge), and this limit 

is then 1/2. This result (for a — l , ( f ) = 27r) is stated without proof (and attributed to 

Miles [101]) in [11]. See Theorem 2.2.1 and Remark (b) thereafter. 

The next result presents laws of large numbers for the total edge weight in general 

d eN for the special partial orders and with 0 < a < d. 

Theorem 2.4.2 Suppose d G N , and the weight function is as given by (1.2). Suppose 

also that 0 < a < d, and the density function f satisfies condition (Cl). Under the partial 

order =4* we have that, as n oo, 

^^{a/d)-i^d,a^^^^ A 2 " r ( l + {a/d))v-''^' f /(x)('^-")/''dx. (2.22) 

In particular, as n —>• cxo, 

^Hd)-i^d,a^y^^ A 2 " r ( l -)- {a/d))v-'''\ (2.23) 
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and in addition (2.23) remains true with the addition of the origin, i.e. with Un replaced 
by U^. Also, when the partial order is we have that, as n -> oo, 

^(a/<i)-i^d,a(^j A 2"/'^r(l + (Qf/d))^;;"/' / /(x)('^-")/'^dx. (2.24) 
Jsuppif) 

In particular, as n oo, 

,^(a/c/)-l^d,a(^^^ 2"/ ' 'r(l + (a/d))^;"/' ' . (2.25) 

Remark. In the uniform case, when d = 2, a — 1 the limits on the right hand side of 

(2.23) and (2.25) are 1 and l / \ /2 respectively (agreeing with the relevant cases of Theorem 

2.4.1). When d= 1, the limits on the right hand side of (2.23) and (2.25) both reduce to 

r ( l -I- a) (the partial orders both reduce to the total order < here). 

2.4.3 Record values and rooted vertices in the M D S T 

Here we consider the minimal elements, under =<;*, of random points in R''. There is a 

natural link with the theory of record values when d = 2, we discuss this here. Note 

that the minimal elements in the point set X C (0, l)'^ are exactly those vertices that 

are connected to the origin in the MDST on X U {0}. This fact will help to explain the 

appearance of the so-called Dickman distribution in Chapter 4. 

For d G N , let MJ(A') denote the number of minimal elements under the ordering 

=:̂ * of a point set X C R''. When d = 2, there is a well-known connection (see, for 

example, [21]) between M2{X) and the record values in a sample of size n. Given a 

sequence of real numbers (x i , X2,. •., Xn), we say that Xi is a lower record value if Xi < Xj 

for j = 1,..., z — 1 (thus Xi is always a lower record). Note that often the notion of records 

is defined with a strict inequality. For continuous distributions, as we will consider, the 

two definitions are equivalent, almost surely. 

Let Nft{{xi,X2,... ,Xn)) denote the number of lower records in {xi,...,Xn) G R". 

The following well-known result gives the connection between and NR. The result is 

essentially the same as Lemma 2.1 in [21 . 

Lemma 2.4.1 Let yn be a finite point set in R^ with card(3^„) = n, consisting of points 

{xi,yi), i = l,...,n. Let i{xi,yi),.. .,{xn,yn)) be an arrangement of the points of yn, 

such that yi < y2 < • • • <yn- Then 

M*2{yn)^Na{{xuX2....an)). 
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Proof. To see the relationship between record values and M2*(-), consider the second 

dimension of R^ to be time. Then, for x = {x,ta;), y = {y,ty) points of 3^„, x =<!* y is 

equivalent to a; < y and t^ < ty. Arrange the points of in order of nondecreasing 

^/-coordinate ('time') as {{xi,ti), {x2, ^2)1 • • • > (^^n, tn))- Then, for x^, z G N a record value 

of (0:1,3:2, . . . ,Xn), we have Xi < Xj for aU I < j < i. That is, {xi,ti) ^* {xj,tj) for all 

j , i.e. {xi,ti) is a minimal element of 3^„. Thus M2(>'„) is exactly the number of lower 

records in {xi,X2, • . . , a:„). • 

When the components of { X i , . . . ,X„) are i.i.d., many properties of the number of 

records are known, and hence (when Xn is the point process consisting of n i.i.d. random 

vectors in R^) the corresponding properties of M^(.Y„) follow immediately. For example, 

the following result of [120] (see also Theorems 1.1 and 2.1 of [21]): 

Lemma 2.4.2 Let {Ui, U2, •. •, Un) be a sequence of independent uniform random vari

ables on (0,1). Let Un be a binomial point process on (0,1)^. Then the following results 

hold, with Yn := NR{{U,, Un)) or K := M;{lln): 

(i) As n ^ 00, 

(ii) As n ^ 00, 

{\ogn)-'Yn ^ 1. 

( l o g n ) - i / 2 ( y „ - l o g n ) Aa/ '(0,1) 

(m) 

(iv) 

lim sup 

lim inf 

Yn - logn 
(2logn)i/2(logloglogn)i/2 

y „ - l o g n 

= 1, a.s. 

- 1 , a.s. 
(2 log 7i) 1/2 (log log log ?i) 1/2 _ 

Note that Lemma 2.4.2 holds for general i.i.d. random variables with continuous dis

tribution. For example, that this is true in the Nn case can be seen by the following 

argument. Let Xi,...,Xn be independent random vectors in R with common distri

bution F. Suppose that the inverse F~^{x) of F is well-defined for all x G (0,1). Let 

t / i , . . . , t/„ be i.i.d. uniform on (0,1). Then {F-^[Ui),F-^{Un)) has the same distri

bution as { X i , . . . , Xn) (and any permutation thereof). Also, by the properties of 

NR{{F-'{U,),...,F-'{Un))) is the same as i V « ( ( t / i , [ / „ ) ) . Thus iV«( (Xi , . . . , X j ) 

has the same distribution as NR{{UI, . . . , Un)). 
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See also [45], p. 45 and p. 102, for proofs of parts (i) and (ii) of Lemma 2.4.2. For 
further results on records, see, for example [30]. We will revisit record values in Chapter 
4, where sums of records will be related to some of our Dickman-type distributions. 

For this section, we need results about E[M^{Un)] for general d > 2. I t is worth 

noting that M^{Xn) and related statistics are of independent interest (see e.g. [15]) as 

a so-called distribution-free quantity - the distribution of Mj {Xn) does not depend on 

the underlying common (continuous) distribution of the points of X^, provided that the 

underlying f/-dimensional density / is a pure product, i.e. the coordinates of each point 

are independent. 

From the records argument given above, we can immediately get the following for d = 

2. For k E N, and for a < b and c < d let Uk,(a,b]x(c,d] denote the point process consisting 

of k independent random vectors uniformly distributed on the rectangle (a, b] x (c, d . 

Then 

E[M;{U,^^aMx{c,d])] = E[M;{Uk)] = 1 + (1/2) + • • • + (1/A;) < 1 + log A;. (2.26) 

The first equality in (2.26) comes from some obvious scaling which shows that the distri

bution of (Wfc,(a,6]x(c,(/]) does not depend on a,b,c,d. For the second eciuality in (2.26), 

we note that in an i.i.d. sample from a uniform distribution, the kth observation will be 

a (lower) record with probability l/k; see Theorem 2.3 of [15] or the proof of Theorem 

1.1(a) of [21 . 

The next result deals with E[M^{Un)] for general d. The result was first obtained 

in [15] (Lemma 2.4.3 below is the case r = 1 of (3.39) in [15]); an asymptotic expression 

of the from (2.27) was also given in [89], see the discussion and references in [13]. For 

more sophisticated asymptotic results on E[M^{l(n)], see [13]. The asymptotic result in 

(2.27) is also true (but not very informative) when d = 1, for in that case Mj*(W„) = 1 

almost surely. 

Lemma 2.4.3 let d e {2, 3 , . . . } . Then, for n E N, with ii := n, 

E[Mm:)\ = E E • • • E i j ^ . = iP^+o({iog„r-), (2^27) 
. . , . i2t3---id {d-fV-
12 = 1 23 = 1 l j = l 

as n ^ 00. 

Proof. The idea is similar to that used in [15], but here we proceed by induction. Assume 

.that (2.27) holds for d = k for soiiie k E { 2 , 3 , . . . } . Let ( U i , , , , , Un) be a list of the points 
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of Un in R' '+\ in order of nondecreasing first co-ordinate. Write = (t /{, . . . , Ul^{), 
i = l , . . . , n . Then Ul < < • • • < C/f. We have that ^* U , in (0,l)'=+i is 
then equivalent to i < j and {U^,... ,Ul) ^* {U^,... ,Ul) in (0,1)*^. That is, U j is a 
minimal element of Un in (0,1)*^+^ if and only if {U^,..., Ul) is a minimal element of 
{{U2,. •., U^), I < i < j}- Thus the probability that \Jj is minimal in Un is the same 
as the probability that a randomly chosen element of j i.i.d. uniform random vectors in 
(0,1)'' is minimal. By assumption, that probability is 

- E E - - - E — 

Thus 

12 

j = l J i2 = lh = l ik=l ^ 

= E E - - - E — ^ 
12 = 113 = 1 «fe + l=l 

after a suitable relabelling. Hence, if (2.27) holds for d = A;, it also holds for d = k + 1. 

Further, (2.27) holds for c? = 2 by a simple argument (see (2.26)). Hence the exact 

statement in (2.27) follows for d G { 2 , 3 , . . . } . The asymptotic statement then follows 

easily (or can be seen to hold inductively by the above argument). • 



Chapter 3 

General results in geometric 

probability and proofs of laws of 

large numbers 

Notions of stabilizing functionals of point sets have recently proved to be a useful basis for 

a general methodology for establishing limit theorems for functionals of random point sets 

in R''. In particular, Penrose and Yukich [111,113] provide general central hmit theorems 

and laws of large numbers for stabilizing functionals. In fact we shall obtain our laws of 

large numbers presented in Chapter 2 (Theorems 2.2.1, 2.2.2, 2.3.1 (i), 2.4.1, and 2.4.2) 

by application of a result from [113]. Also, one might hope to apply the results in [111 

to obtain the central limit theorem (see Chapter 6) for edges away from the boundary in 

the MDSF and MDST. However, the results of [111] are not directly apphcable in this 

case; we need an extension of the general result in [111]. I t is these general results that 

we describe in the present section. 

For our general results, we use the following notation. Let d e N. For X C IV^, 

constant a > 0, and y G R*̂ , let y + aX denote the transformed set {y- l -ax : x 6 X}. Let 

cham(A'') := sup{| |xi - X 2 I I : x i , X 2 G X}, and recall that card{X) denotes the cardinality 

of X. Recall that 0 denotes the origin of R'*. 

For X G R'' and r > 0, let 5 (x ; r) denote the closed Euclidean ball with centre x and 

radius r, and let (5(x; r ) denote the corresponding loo ball, i.e., the d-cube x-l- [—r, r ]^ . For 

bounded measurable i? C R*̂  let \R\ denote the Lebesgue measure of R, let dR denote the 

topological boundary of R and for r > 0, set drR := UxeaiiQ(x;r), the r-neighbourhood 

of the boundary of R. 

37 
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3.1 A general law of large numbers 

Let (̂ (x; X) be a measurable R+-valued function defined for all pairs (x, X), where X C 

R'' is finite and x E X. Assume ^ is translation invariant, that is, for all y G R'', 

^(y + x; y + A') = ^(x; X). When x ^ X, we abbreviate the notation ^(x; X U {x}) to 

^(x;A-'). 

For our general law of large numbers, we use a notion of stabilization defined as follows. 

For any locally finite point set X Clf^ and any £ G N define 
/ \ 

:= sup esssup{^(0; (A'nB(0;^)) U ^ } , and 
A;eN \ e,k J 

(-{X- e) := mf (̂ ess inf {^(0; {X n S(0; £)) U A} 

where esssup^jt is the essential supremum, with respect to Lebesgue measure on R*"̂ , over 

sets A C R''\-S(0;^) of cardinality k. Define the limit of ^ on A" by 

^ooW :=limsup^+(;i:';A;). 
fc—>oo 

We say the functional ^ stabilizes on X if 

lim ^+{X; k) = lim Ci^; k) = Ui^)- (3.1) 
fc->oo fc—>oo 

We say that ^ is homogeneous of order a if for all finite A" C R'' and all r G (0,oo), 

arx;rX) = r^a^;X). 

For T G (0,oo), let Tir be a homogeneous Poisson process of intensity r on R''. The 

following general law of large numbers is due to Penrose and Yukich, and is obtained from 

Theorem 2.1 of [113] together with equation (2.9) of [113] (the homogeneous case). We 

shall use it to prove our Theorems 2.2.1, 2.2.2, 2.3.1 (i), 2.4.1, and 2.4.2. 

Lemma 3.1.1 [113] Suppose q = 1 or q = 2. Suppose ^ is almost surely stabilizing 

on %i, with limit ^oo('Hi), and suppose that ^ is homogeneous of order a. Let f be 

a probability density function on R' ,̂ and let X^ be the point process consisting of n 

independent random d-vectors X i , X 2 , . . . , X„ with common density f . If ^ satisfies the 

moments condition 

sup E k (n^/'^Xi; n^^'^XnY] < oo, (3.2) 

for some p > q, then as n ^ oo, 

n-' Yl ^ ( " ' ^ ' ^ i ^ ' ^ ' ' ^ " ) ^ ^[^oo(^i)] f fixY'-^y^dx, 

and the limit is finite. 
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3.2 General central limit theorems 

In the course of the proof of Theorem 6.1.1, we shall use a modified form of a general 

central limit theorem obtained for functionals of geometric graphs by Penrose and Yu-

kich [111]. We recall the setup of [111]. As in Section 3.1, let ^{x;X) be a translation 

invariant real-valued functional defined for finite ^ C R'' and x e X. Then ^ induces a 

translation invariant functional H{X;S) defined on all finite point sets X C IV^ and all 

Borel-measurable regions 5 C R'' by 

H{X;S):= ^ (x ; -^ ) . (3.3) 
xe-vns 

It is this 'restricted' functional that interests us here, while [111] is concerned rather with 

the global functional i /(<^;R' ' ) . In our particular application (the length of edges of the 

MDST on random points in a square), the global functional fails to satisfy the conditions 

of the central limit theorems in [111], owing to boundary effects. Here we generahze the 

result in [111] to the 'restricted' functional H{X;S). I t is this generalized result that we 

can apply to the MDST, when we take 5 to be a region 'away from the boundary' of the 

square in which the random points are placed. 

We use a notion of stabilization for H which is related to, but not equivalent to, the 

notion of stabilization of ^ used in Section 3.1. Loosely speaking, ^ is stabilizing if when 

a point inserted at the origin into a homogeneous Poisson process, only nearby Poisson 

points affect the inserted point; for H to be stabilizing we require also that the inserted 

point affects only nearby points. 

For B C R'', let A{X; B) denote the 'add one cost' of the functional H on the insertion 

of a point at the origin, 

A(A'; B) := H{X U {0}; B) - H{X; B). 

Let V := %i (a homogeneous Poisson point process of unit intensity on R''). Let Q„ := 

V n Rn (the restriction of V to i?„). Adapting the ideas of [111], we make the following 

definitions. 

Definition 3.2.1 We say the functional H is strongly stabilizing if there exist almost 

surely finite random variables R (a radius of stabilizationj and A(oo) such that, with 

probability 1, for any B D B{0] R), 

A{V n 5(0; R) U A\ B) = A(oo), V finite ^ C R'̂  \ B{0; R). 
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We say that the functional H is polynomially bounded if, for all B 3 0, there exists a 
constant /3 such that for all finite sets ^ C R'', 

HiX; B)\<p (diam(A') + card(<r))^ . (3.4) 

We say that H is homogeneous of order a if for all finite X C'W'^ and Borel B C R*̂ , 

and all r G R, H{rX; rB) = r'^H{X- B). 

Let (/?„, 5 „ ) , for n = 1,2,..., be a sequence of ordered pairs of bounded Borel subsets 

of R*̂ , such that S„. C. Rn for all n. Assume that for all r > 0, n~'^\drRn\ 0 and 

n^^l^r^nl —> 0 (the vanishing relative boundary condition). Assume also that \Rn\ = n 

for all n, and \Sn\/n ^ 1 as n oo; that Sn tends to R'^, in the sense that U„>i 

Sm = R*̂ ; and that there exists a constant P such that diam(i?„) < /?n^ for all n (the 

polynomial boundedness condition on {Rn, 5 '„)„>i). Subject to these conditions, the choice 

of {R,r,Sn)n>i IS arbitrary. 

Let U i , „ , U 2 , n , •. • be i.i.d. uniform random vectors on i?„. Let 

(a binomial point process), and for Borel A C R'' with 0 < |A| < oo, let U„I^A be the 

binomial point process of m i.i.d. uniform random vectors on A. 

Let n be the collection of all pairs {A, B) with A, S C R*̂  of the form (A, B) = 

(x + X + Sn) with X G R'̂  and n e N. That is, 7̂  is the collection of all the (i?„, Sn) 

and their translates. 

We say that the functional H satisfies the uniform bounded moments condition on Tl 

if 

/ \ 
sup sup {E[l\{Um,A\Bf]} <oo . (3.5) 

{A,B)en:QeA \\A\l2<m<i\A\l2 J 

We now state the general results, which extend those of Penrose and Yukich (Theorem 

2.1 and Corollary 2.1 in [111]). 

Theorem 3.2.1 Suppose that H is strongly stabilizing, is polynomially bounded (3.4), and 

satisfies the uniform bounded moments condition (3.5) on Tt. Then there exist constants 

ŝ , t^, with 0 < < ŝ , such that as n ^ oo, 

(i) n-'Vav {H {Qn, Sn)) ^ s\-

(n) {H ( Q „ ; 5,„) - E [ H ( Q „ ; 5 „ ) ] ) -A Af (0 ,5^); 
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(iti) n-'YiiviH{Un,n;Sn))^t^; 

Also, and t'^ are independent of the choice of the {R,i,Sn). Further, if the distribution 

of A{oo) IS nondegenerate, then s"^ >t^ > 0. 

We present the proof of Theorem 3.2.1, which is similar to the proof of Theorem 2.1 

in [111], in Appendix B. 

Let i?o be a fixed bounded Borel subset of R'' with |i2o| = 1 and |5i?o| = 0. Let 

(S'o.n,/!. > 1) be a sequence of Borel sets with 5o,„ C i?o such that \SQ^n\ —>• 1 as n ^ oo 

and for all r > 0 we have \d^-\/dySQ^n\ 0 â  n —>• oo 

Let ltd be the collection of all pairs of the form (x + U^I'^RQ, X + n^/'^5o,n) with n > 1 

and X G R''. Let Un be the binomial point process of n i.i.d. uniform random vectors on 

i?0) and let Vn be a homogeneous Poisson point process of intensity n on i2o-

Corollary 3.2.1 Suppose H is strongly stabilizing, satisfies the uniform bounded mo

ments condition on TZQ, is polynomially bounded and is homogeneous of order a. Then 

with ŝ , t'^ as in Theorem 3.2.1 we have that, as n ^ oo 

(i) n (2- / ' ^ ) - lVar (^f (P„ ;5o ,„ ) )^5^• 

(it) n^-l>^^-"^ {H {Vn, Sn,n) -E[H 5o,„)]) ^ Af (0, s'); 

(ill) 7^(2"/'^)-iVar {H {Un, 5o,„)) ^ ^^• 

(iv) n('^/'^)-i/2 {H {Un, So,n) -E[H 5o,„)]) Af (0, t'). 

Proof. The corollary follows from Theorem 3.2.1 by taking i?„ = n^^'^Ro and 5„ = 

n^^'^So^n (or suitable translates thereof), and scaling, since H is homogeneous of order a. 

• 

3.3 Proofs of laws of large numbers 

In this section we prove the laws of large numbers given in Theorems 2.2.1, 2.2.2, 2.3.1 

(i), 2.4.1 and 2.4.2, by applying the general result presented in Section 3.1. Although not 

a LLN result, we also prove (in Section 3.3.3) Theorem 2.3.1 (ii) and (iii). 
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3.3.1 Proof of Theorems 2.2.1 and 2.2.2 

We now derive our law of large numbers for the total length of the random /c-NNG' and 

j - t h NNG', and the nearest neighbour (undirected) graph. 

We apply Lemma 3.1.1 to obtain a law of large numbers for A/"<^°(A'„), with certain 

conditions on / , a. This method enables us to evaluate the limit explicitly, unlike methods 

based on the subadditivity of the functional (see [142]). 

For j e N, let dj{x; X) be the (Euclidean) distance from x e X to its j - t h nearest 

neighbour, if such a neighbour exists, or zero otherwise. For each j, dj is translation 

invariant. 

In the proofs that follow, we make use of the following integral. For a, b, c nonnegative 

real constants, 

poo -1 

/ r^e-^^'dr = Ac-(«+i)/''r ((a + l)/b). (3.6) 
Jo 0 

Proof of Theorem 2.2.1. In applying Lemma 3.1.1 to the j-th NNG' and A;-NNG' 

functionals, we take ^{x;Xn) to be [dj(x; Xn)]°', where a > 0. Note that ^ is translation 

invariant and homogeneous of order a. I t was shown in [113] (see Theorem 2.4 in [113]) 

that the j - t h NNG' total weight functional ^ satisfies the conditions of Lemma 3.1.1 in 

the following two cases: (i) with g = 2, if the function / satisfies condition (Cl ) , and 

a > 0; and (ii) with q = 1, if the function / satisfies condition (C2), and 0 < a < d. (In 

fact, in [113] this is proved for the fc-NNG' functional J2'j=i[d'j{^', ^n)]"", but this implies 

that the conditions also hold for the j - t h NNG' functional [dj{x] A'„)]"). 

First we take ^ to be the j - t h NNG' functional ^(x; Xn) — [dj{x; <%'„)]". Our functional 

^ is stabilizing on Tii, with limit ^oo('Hi) = [dj{0; Tii)]". Also, the moment condition (3.2) 

is satisfied for some p > 1 (if / satisfies condition (C2) and a < cZ) or p > 2 (if / satisfies 

(Cl) ) , and so we can apply Lemma 3.1.1 with q — 1 ov q = 2 respectively. So by Lemma 

3.1.1, using the fact that ^ is homogeneous of order a, we have that 

^ W d ) - i _ ^ c / , a ( - ^ ^ ) = n-'J^an'^'x-^n'^'X^) 

^ E[Uni)] I fixf'-'^^I'dx. (3.7) 

We now need to evaluate the expectation on the right hand side of (3.7). With Vd the 
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volume of the unit d-ball as given by (2.1), 

i - i 

P[U{'Hi)>r] = P[ci,(0;-Hi) > r i / " ] = 5 ^ P [ c a r d ( { B ( 0 ; r ^ / " ) n H i } ) = ( 

So 

i - i /•CO />oo J ^ / d/ay 

Jo Jo • n •̂ 
CAP t/rf/ • 

i=0 

Then, interchanging the order of summation and integration, and using (3.6), we obtain 

i=0 

-a,d^aT{i-l + {ald)) _ - . / , r ( j + (a/d)) 
- "'̂  (TTT)! r ( , ) • ^'-'^ 

Now from (3.8), (2.1) and (3.7) we obtain the j - t h NNG' result (2.11). 

By (2.2), the A;-NNG' result (2.9) follows from (2.11) with 

C(d a k) - ^-<^/'i^Lil±MM- d r{k + l + {a/d)) C{d,a,k)-v, ^ ^^.^ - V , ^^^^ . • 

Proof of Theorem 2.2.2. Observe first that the nearest neighbour (directed) graph 

counts the weights of edges from points that are nearest neighbours of their own nearest 

neighbours twice, while the nearest neighbour (undirected) graph counts such weights 

only once. Hence the total weight of the undirected graph is given by the weight of the 

directed graph, minus half of the contribution to the directed graph from edges between 

points that are mutual nearest neighbours. 

Let g(x; X) be the functional that is the distance from x E X to its nearest neighbour 

in A' \ { x } if X is a nearest neighbour of its own nearest neighbour, and zero otherwise. 

Recall that di{x; X) is the distance from x G A" to its nearest neighbour. Then define 

r ( x ; A ' ) = [ d i ( x ; < ^ ) ] " - ^ [ g ( x ; ^ ) ] ^ 

Then Yl,-x.^x ^'(^' totsl weight of the edges in the standard nearest neighbour (di

rected) graph on X, minus half of the total weight from points that are nearest neighbours 

of their own nearest neighbours; this is then the total weight of the nearest neighbour 
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(undirected) graph. Note that ^' is translation invariant, and it is homogeneous of order 
a. 

One can check that the functional ^' is stabilizing on the Poisson process %i, using 

similar arguments to those for the j - t h NNG' and /c-NNG' functionals. Also (see [113]) if 

condition (Cl) holds then ^' satisfies the moments condition (3.2) for some p > 2, for all 

a > 0. 

Let ei be a vector of unit length in R'̂ . For d 6 N , let Ud := \B{0; 1) U 5(e i ; 1)|, the 

volume of the union of two unit ci-balls with centres unit distance apart. 

Now we apply Lemma 3.1.1 with q = 2. We have 

(a/<i)-l^ci,a(;t '„) = n ' ^ J ] ^ {n'^'^; u'^'^n) 

E[cm,)] [ f{x)^'-'^y'dx, (3.9) 

where 

m L m ] = ^ [ ( r f i ( 0 ; - H i ) ) 1 - lEMO;n^))^]. 

We need to evaluate E[{q{0;'Hi))°']. Let X denote the nearest point of 7ii to 0. Then 

P[g (0 ; -Hi ) 6 d r ] = P [ { | X | G d r } n { T ^ i n (5(0; r ) U J5(X; r ) ) = { X } } ] 

= dvy-^e-'''''''e-^'''-''''^''dr = dvy-^e-'''"'''dr. 

So using (3.6) we obtain 

E[{q{0; -Hi))"] = r dvy-'+'^e-'^'^'dr = i ;dw;'-*"/ ' '^r(l + (a/d)). (3.10) 
^0 

Then from (3.9) with (3.10) and the j = 1 case of (3.8) we obtain (2.12). By some 

calculus, we obtain LO2 = (47r/3) + {V3/2) (the area of the union of two unit discs with 

centres unit distance apart in R^), which yields (2.13) and (2.14) from the d = 2 case of 

(2.12). Finally, we obtain the statement for Z^'^(Z4) from the = 1 case of (2.12) with 

the fact that LUI = 3. • 

3.3.2 Proof of Theorem 2.3.1 (i) 

We now derive our law of large numbers for the total weight of the random ONG{Un), 

where Un is the binomial point process of n independent uniformly distributed points 

( U i , U 2 , . . . , U „ ) on (0, l) '^, for d = 1,2,..., each point bearing a mark T ( U i ) dis

tributed uniformly in the interval [0,1], independently of the other marks and the distri

bution of the points. 
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We apply Lemma 3.1.1 to obtain a law of large numbers for C'^'"(Z^„), 0 < a < d. 
Once again, the method enables us to evaluate the limit explicitly. In applying Lemma 
3.1.1 to the ONG functional, we take / ( x ) (the underlying probability density function 
in the lemma) to be 1 for x E (0,1)'' and zero elsewhere. Define D(x; <%") to be the 

distance from point x with mark r(x) to its nearest neighbour in X amongst those points 
y G A" that have mark T(y) such that T(y) < T(x) , if such a neighbour exists, or zero 
otherwise. We take C{x;X) to be [D{x;X)]°'. Note that again ^ is translation invariant 
and homogeneous of order a. 

Lemma 3.3.1 The ONG functional ^ is stabilizing on %i. 

Proof. Although the notion of stabilization there is somewhat different, the lemma 

follows by the same argument as given at the start of the proof of Theorem 3.6 of [106]. 

• 

Lemma 3.3.2 Let Q < a < d, and let p > 1 with ap < d. Then the ONG functional ^ 

satisfies the moments condition (3.2). 

Proof. Let J7„ denote the rank of the mark of U i amongst the marks of all the points 

of Un, so that Un is distributed uniformly over the integers 1,2,... ,n . Setting Sd,n '•= 

{0,n^^^Y, we have, by conditioning on Un, 

n 

E [^{n^l''\]un^'''UnY] = n'^J^^ [d,{n'/''V,-n^l'^UY'^' 
i=i 
n 

= n-^Y.^nliY''l''E[di{i}l''\5i,i^'''UiY'']. (3.11) 
i= l 

The last expectation in (3.11) is bounded by a constant independent of i, by the argument 

for equation (6.4) of [106]. Hence the final expression in (3.11) is bounded by a constant 

times n 
^ ( p a - < i ) / < / ^ . - W < i , 

i= l 

which is bounded by a constant. • 

Proof of Theorem 2.3.1 (i). Let d G N. Set / ( • ) to be the indicator of the unit cube 

(0, l)'^. Take ^ to be the ONG functional C(x;W„) = [D(x;W„)]". By Lemmas 3.3.1 and 

3.3.2, with this choice of / , our functional ^ is homogeneous of order a, stabihzing on "Hj, 
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with limit ^oo = [D{0]7ii)]°', and satisfies the moment condition (3.2) for some jO > 1, 
and so we can apply Lemma 3.1.1 with q = 1. So by Lemma 3.1.1, we have that 

,^(a/d)-i(pd,a^^j = n-' ^[L>(ni/''x;n^/'^ZY„)]" A E[^^{ni)]. 

Now, for 0 < M < 1, the points of Hi with lower mark than u form a homogeneous Poisson 

point process of intensity u, and hence by conditioning on the mark of the point at 0, we 

have 

Eiuini)] = E[di{0;nur]du 
Jo 

= f u-''^''E[di{0-ni)^]du = -^C{d,a,l), 
Jo d-a 

since we saw in the proof of Theorem 2.2.1 that E[di{0; Hi)'^] = C{d, a, 1). • 

3.3.3 Proof of Theorem 2.3.1 (ii) and (iii) 

Suppose d eN. Fovn e N, let Z„(d) := 0'^'\Un) - O'^'H^n-i), setting 0'^'\Uo) := 0. 

That is, Zn{d) is the gain in length of the ONG on a sequence of independent uniform 

random points in (0,1)'' on the addition of the nth point. Again we denote by Vd the 

volume of the unit d-ball (see (2.1)). 

First we need a technical lemma. 

Lemma 3.3.3 Suppose c G (0,oo), /? G (0,oo), x G (0,oo). Then, as cx^ —)• oo 

j^^ exp{-ct^)dt = + O {c-'/f'icx^Y'/^^'' exp{-cx^)) . (3.12) 

Proof. By the change of variable y = ct^, we have that 

I I exY){-ctf^)dt = / y^'/f^^-'e-ydy 
0 P Jo 

-1/13 foo r-'^IP 
yWP)-^e-^dy - / i/^^/^^-^e-My. (3.13) 

/5 Jo " ^ P 
This first integral in the last line of (3.13) is given by (see e.g. [1], 6.1.1) 

poo r-'-fP 
ya//5)-ie-Mt/ = ^ r ( i / ^ ) . 

For the second integral in the last line of (3.13), we have, for ^ >1, 

P 
poo r°° 

/ y(i//?)-ie-My < ^ ( c x ^ ) ( i / / ' ) - i / e'^dy 
JcxC P Jcxl> 
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as required. Now suppose /? G (0,1). Then /? G [ ; ^ , ^ ) for some m G N, and m-fold 
integration by parts yields 

— l i p fOO 

as cx^ oo, where C is a finite constant. This completes the proof of the lemma. • 

Lemma 3.3.4 For a > 0 and d EN, as n ^ OO, 

E[{Zn{d))^] = ^(nt; ,)-"/ '^r(a/d) + o(n-"/'^). (3.14) 
a 

Proof. Suppose d G N. For r G (0, oo) and x G (0,1)'', let A{d; x; r) denote the volume 

of the region (0, l)'^ f i B{x;r), where B{x;r) is the Euclidean d-bah with centre x and 

radius r. Then, for n = 2, 3,. . . , 

P[{Zn{d))'^ > r\Vn] = (1 - A{d; U„; r i / " ) ) " - \ 

Fix 0 < e < a/{2d). Let R{d;a;n) denote the region [n^-(°/'^),l - n^-W'i)]'^. In co

ordinates, set X = {xi,X2, •.. ,Xd), and for x G (0,1)*^ let m(x) := min(a;i , . . . , x^, 1 — 

xi,... ,1 - Xd), i.e. the shortest distance from x to the boundary of (0,1)''. First of all, 

consider x G R{d]a;n). Then, if 0 < r < m(x), we have that A((i; x; r^/") = Vdv'^^^. For 

r > m(x), we have Vdm{y.)'^l'^ < A{d- x; r^/") < Wdr"̂ /". So a lower bound for E[{Zn{d))% 

given Un G R{d; a; n), is given by 

/ . m ( U „ ) nn'-^^/d) 

£ ; [ (2 ' „ (d ) ) " |U„Gi? (d ;a ;n ) ]> / (1 - i ; , r '^/")"-Mr > / (1 - y,r'^/")"-M(?.15) 

since if U„ G R{d; a; n) we have m(U„) > n^~^°'/'^K For x G (0, oo), Taylor's Theorem with 

the Lagrange form for the remainder implies that = I — x + Cx'^ where C G [0,1/2], 

so for r G (0, n^-^"/'')), we have that 

\ ^ J 

= exp(-t;,nr'^/") (^1 - Uy/''exp{vdr''^'')^ 

> exp(-^;,nr'^/«) ( l - f O (n(2<i./a)-2 exp(i;,n(' '^/")-i)))" 

= e x p ( - w ' ' / " ) ( l + o(l)) , 

as n ^ oo, since e < a/{2d). So from (3.15) we have that 

E[{Zn{d))''\\Jn e R{d; a; n)] > (1 + o(l)) / exp_(-^;d?^^''/")dr. (3.16) 
Jo 
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Using (3.12), we obtain from (3.16) that 

E[{Zn{d)Y\Un e R{d;a;n)] > ^{nvd)-''^''T{a/d) + o{n-''^'') + 0{exp{-Vdn'''/^)), 
a 

since e < a/{2d). For the upper bound, we have 

E[{Zn{d)r\Un e R{d- a- n)] < I (1 - A{d- U„; r"")Y-'^r 
Jo 

pm(Vn) rd'/^ 
< / exp(-^;dnr'^/")dr + / exp(-i;dnm(U„)'^/")dr. (3.17) 

Jo ^ m ( U „ ) 

- .m(Un) fd'/^ 

t (U„) 

For the second term on the right hand side of (3.17), using the fact that here 7n(U„) > 

we have 

Jm{Vn) 

Then, using (3.12) for the first term on the right hand side of (3.17), we obtain 

E[{Znid)Y\Un e R{d- a; n)] < ^{nvd)-'''''V{ald) + o{n'''l'') + 0(exp(-t;,n^'^/<^)). 
a 

So combining the upper and lower bounds we obtain 

E[{ZMT\^n e R{d; a; n)] = {nvdy"^''^T{a/d) + o(n-°/ ' ' ) . (3.18) 

Now consider x G (0, iy\R{d;a;n). Here, for 0 < r < 2"", ( 2 " % ) ^ / " < A{d;x;r^^'') < 

Vdr'^l'^. For r > 2"", we have Ci < A{d;x\r^/°') < 1 for some 0 < Cj < 1 (depending on 

d). Then, by similar arguments to above, we obtain 

E[{Zn{d)Y\Vn i R{d; a; n)] = ©(n-"/"^). (3.19) 

And so, since P [ U n ̂  R[d;a\n)] = 0{n'-^''/'^^), we obtain from (3.18) and (3.19) that 

E[{Zn{d)r] = E[{Zn{d)r\Un ^ R{d; a; n)]P[U„ i R{d- a; n)] 

+E[{Zn{d)Y\Un e R{d;a;n)]P[\Jn G R{d;a;n)] 

= ( n t ; , ) - " / ' ' ^ r ( « / d ) + o(n-<^/''). 

and so we have (3.14). • 

Remark. By Lemma 3.3.4, for 0 < a < d, we have 

E\0'''''{Un)] = ^ ^ t ; ; " / ' r ( a / d ) n ( ' ^ - " ' / ' ^ + o(n('^-'^)/''), 
d — a 
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which complements the law of large numbers given in Theorem 2.3.1. 

Proof of Theorem 2.3.1 (ii) and (iii). With the definition of Zi{d) in this section, let 

oo 

W{d,a) = J2W)r. 
i= l 

The sum converges almost surely since it has non-negative terms and, by (3.14), has finite 

expectation for a > d. Let k e N. By (3.14) and Holder's inequality, there exists a 

constant 0 < C < oo such that 
oo oo oo 

E[{w{d,a)r] = J2T.•••J2E^(^n(d)r(^^Mr•••{z^M)r] 
11 = 112 = 1 ik=l 

OO OO oo 

il=li2 = l ik = l 

since a/d > 1. The L'' convergence then follows from the dominated convergence theorem, 

and we have part (ii) of Theorem 2.3.1. 

Finally, for part (iii) of Theorem 2.3.1, we have, when a = d, (3.14) imphes that 

n 
E[0'''{Un)] - v^' Y l + ^ (1) = 1°S(") + ^ ( 1 ) ' 

i=i 

and so we have (2.17), completing the proof of Theorem 2.3.1. • 

3.3.4 Proof of Theorems 2.4.1 and 2.4.2 
We first prove Theorem 2.4.1, our law of large numbers for the total weight of the random 

6,<f> 
MDSF on the unit square, under the general partial order for 0 < 0 < 27r and 

o,<i> 

0 < 0 < TT. RecaU that y ^ x if y G Cg^^{x), where Ce,<f>{x) is the cone formed by the 

rays at 9 and 6 + (p measured anticlockwise from the upwards vertical. 

We consider the random point set Xn, the point process of n independent random 

points on (0,1)^ with common density function / . We suppose that / satisfies the con

dition (CI) of Section 2.1. For the general partial order given by 9,4> we apply Lemma 

3.1.1 to obtain a law of large numbers for £"(A:'„). This method enables us to evaluate 

the limit explicitly, unlike methods based on the subadditivity of the functional which 

may also be applicable here (see the remark at the end of this section). 

In applying Lemma 3.1.1 to the MDSF functional, we take the dimension d in the 

lemma to be 2. We take ^(x; X) to be dg-^{x; X)"^, where d0,,/,(x; X) is the distance from 
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point X to its directed nearest neighbour in X under =^, if such a neighbour exists, or 
zero otherwise. Thus in our case ^(x; X) = {de,^{x; X)Y where 

f e,4, "I 
de,^(x; X) := min <̂  ||x - y| | : y G A' \ { x } , y ^ x ^ (3.20) 

with the convention that min{} = 0. We need to show this choice of <̂  satisfies the 

conditions of Lemma 3.1.1. As before, Ki denotes a homogeneous Poisson process on R'' 

of intensity 1, now with d = 2. 

Lemma 3.3.5 With ^ as defined by (3.20), ^ is almost surely stabilizing on Hi, in the 

sense of (3.1), with limit ^oo(^i) = {deA^'^^i)T-

Proof. Let R be the (random) distance from 0 to its directed nearest neighbour in %i, 

i.e. R = de^^{0;T-Li). Since 0 > 0 we have 0 < < oo almost surely. But then for any 

i> R,we have ^(0; CHi n 5(0; i)) U A) = R'^, for any finite C R^ \ B(0; i). Thus ^ 

stabiUzes on Hi with hmit ^oo('Hi) = 

Before proving that our choice of ^ satisfies the moments condition for Lemma 3.1.1, 

we give a geometrical lemma. For 5 C R^ with B bounded, and for x e B, write 

dist(x; dB) for sup{r : B{x; r) C B}, and for s > 0, define the region 

Ae,^{x, s; B) B{x; s) n B n Ce,^(x). (3.21) 

Lemma 3.3.6 Let B be a convex bounded set in R^, and let x G B . / / Ae^^{x, s; B) n 

9B(x; s) ^ 0, and s > dist(x, dB), then 

A0^^{x,s;B)\ > ssm{(t>/2)dist{x,dB)/2. 

Proof. The condition Ae^4,{x, s; B)ndB{x; s) 7̂  0 says that there exists y G Bf\Ce,4>{x, s) 

with | | y - x | | = s. The line segment x y is contained in the cone Ce,4>{x)\ take a half-line h 

starting from x, at an angle 0/2 to the line segment x y and such that h is also contained 

in Ce,4,{x). Let z be the point in h at a distance dist(x, dB) from x. Then the interior of 

the triangle xyz is entirely contained in A0,<^(x,s), and has area ssin(0/2)dist(x, 9B)/2. 

• 

Lemma 3.3.7 Suppose o; > 0, and f satisfies condition (CI). Then ^ given by (3.20) 

satisfies the moments condition (3.2) for any p G ( l / a , 2/a . 



3.3. Proofs of laws of large numbers 51 

Proof. We give the proof in the case / ( x ) = 1 for x G (0,1)^ and zero otherwise. However, 
the result also holds (with virtually the same proof and a monotonicity argument) if / is 

arbitrary satisfying condition (Cl) . Setting i?„ := {0,n^^'^Y, we have 

E [an'^'Vi-n'^'UnY] = f E [^(x; ^ 1 / ^ - 1 ) ^ (3.22) 
jRr, " 

For X G Rn set m(x) := dist(x, 5i?„). Let us divide i?„ into three regions 

R^[l) := [xe Rn:m{x) <n-^l^)- -R„(2) := { x G i^„ : ?n(x) > 1}; 

i2„(3) := { x G : n'^''^ < m(x) < 1}. 

For all X G Rn, we have ^(x; n^/^ZJ„_i) < (2n)°/^, and hence, since Rn{l) has area at most 

4, we can bound the contribution to (3.22) from x G Rn{l) by 

/ E [(e(x; n^/U-i))1 — < 4n-\2ny^^' = 22+ '̂"/27̂ ('̂ "-2)/̂  (3.23) 

which is bounded provided pa < 2. 

Now, for X G Rn, with Ae,4>{-) defined at (3.21), we have 

P [deA^; n'^^Un-i) > s] < P [n'^^Un-i n Ag,^{x, 5; Rn) = 0 

^ _ \Ag^^{x,s;Rn)\^ 

n 

< exp( l - |Ae ,^(x , s ; i?„) | ) , (3.24) 

since \Ae^^{x, s; Rn)\ < n. For x E Rn and s > m(x), by Lemma 3.3.6 we have 

Ag,^{x, s; Rn) I > sin((^/2)5?n(x)/2 if ^^.^(x, s; Rn) n dB{x; s) 7̂  0, 

and also 

P[d,,^(x; n'^^Un-i) >s] = 0 if >l0,^(x, s; Rn) n aB(x; s) = 0. 

For s < m(x), we have that \Ag^^{x, s; Rn)\ = > sin((/)/2)s^. Combining these obser

vations and (3.24), we obtain for all x G i?„ and 5 > 0 that 

P [dg^^{x; n^^'^Un-i) > s] < exp (1 - sin(0/2)s min(s, m (x ) ) /2) , x e Rn-
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Setting c = (1/2) sin(0/2), we therefore have for x e Rn that 

poo 
E[ax-n'/'Un-i)P] = / P [e(x;n^/2W„_i)">r]dr 

Jo 
= HP [deA^; n'^^Un-i) > r ^ / ( "P ' l dr 

Jo 

< / drexp ( l - cr2/("P)) 
Jo 

+ j drexp ( l - cm(x)r^/("p)) 

poo 

= 0 ( 1 ) + / e'~'''apu''P-'m{x)-'"'du 
Jm(x)2 

= 0 ( l ) + 0 (m (x ) -^P) . (3.25) 

For x G Rn{2), this bound is 0(1) , and the area of Rn{2) is less than n, so that the 

contribution to (3.22) from P„(2) satisfies 

limsup / E 
n-^oo J R„{2) 

{a^;n'/'Un-r)Y 
dx 

< oo. 
n 

(3.26) 

Finally, by (3.25), there is a constant c' such that l^ ap > 1, the contribution to (3.22) 

from Rn{3) satisfies 

'1 
E 

/ in (3) n . / „ = „ - i / 2 j/=n 

< 
c'n-1/2 

n 
(ap-l)/2 

ap - 1 

which is bounded provided ap < 2. Combined with the bounds in (3.23) and (3.26), this 

shows that the expression (3.22) is uniformly bounded, provided 1 < ap < 2. • 

Proof of Theorem 2.4.1. Suppose 0 < a < 2. By Lemmas 3.3.5 and 3.3.7, our 

functional ^, given at (3.20), satisfies the conditions of Lemma 3.1.1 with p = 2/a and 

q = I, with / satisfying (Cl ) . So by Lemma 3.1.1, we have that 

n 

^ ElWHi)] [ /(x)(2-")/2dx. (3.27) 

Since the disk sector 06i,<̂ (x) n B{x;r) has area ((/)/2)r^, by Lemma 3.3.5 we have 

- P[^oo{'Hi)>s] = P[^inO , ,^(O)nS(O ;s i /")=0] =exp( - ( (^ /2 ) s2 /") . 
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Hence, on the right hand side of (3.27) 

E [U{n,)] ^ r P [U m >s]ds = a2("-2) /V-"/'r(a/2), 
Jo 

0,4> 

and this gives us (2.20). Finally, in the case where Xn = Un and (2.21) remains 

true when Un is replaced by W^, since 

E[?z(°-2)/2|£°(i^0) - C''{Un)\] < 2"/2?i("-2)/2£;[M(Z^„)], (3.28) 

where M2(iY„) denotes the number of minimal elements of Un- By (2.26), E[M2{Un)] < 

1 + logn, and hence the right hand side of (3.28) tends to 0 as n —)• oo for 0 < a < 2. 

This gives us (2.21) with U° under =^*. • 

Remark. A law of large numbers for Euclidean functional of many random geometric 

structures can be treated by the boundary functional approach of Yukich [142]. I t can be 

shown that the MDSF satisfies some, but possibly not all, of the appropriate conditions 

that would allow this approach to be successful. The MDSF functional is subadditive, its 

corresponding boundary functional is superadditive, and the functional and its boundary 

functional are sufficiently 'close in mean'. However, it is not clear that the functional is 

'smooth', since the degree of the graph is not bounded. 

We now prove Theorem 2.4.2. In this case, we consider R'', d G N , and take the 

partial order to be or on R"̂ . Recall that for x, y in R' ,̂ y =<!* x if each component 

of X — y is nonnegative, while y x if the first component of x — y is nonnegative. 

Let d*{x;X) and d*{x;X) denote the distance from x E X to its directed nearest 

neighbour in X under partial order =<;* and respectively. For a > 0, set 

r (x ; X) = d*{x; X r , U^; X) = d.{x; X y . (3.29) 

Lemma 3.3.8 The functional ^* and ^* as given by (3.29) are both almost surely sta

bilizing on %i, in the sense of (3.1), with limits Cxi{'H\) = d*{0;'Hi)°' and .^•oo('Hi) = 

d^{0]T-Li)°' respectively. 

Proof. Let R denote rf*(0;7^i) or d^{0;7ii) as appropriate. Then, R is finite, almost 

surely. Let ^ denote ^* or as appropriate. Then for any £> Rwe have that ^(0; {Ki n 

B{0;i))uA) = R", for any finite A C R ' ^ \B (0 ;£ ) . Thus ^ is stabilizing on Ki with limit 
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Proof of Theorem 2.4.2. Suppose d e N and 0 < a < d. By Lemmas 3.3.8 and 3.3.9, 
our functionals ^* and given at (3.20), both satisfy the conditions of Lemma 3.1.1 with 
p = d/a and q = I, with / satisfying (CI). So by Lemma 3.1.1, we have that 

£"(A'„) = n-' J2 an'^'^;n'^''Xn) A E[U{n,)] f /(x)(''-")/'^dx, (3.32) 

where ^ is either ^* or here. We have, for the case, 

P[Coo{'Hi)> s] = P [ ? ^ i n { x G R ' ' : x ^ * O } n B ( O ; s ^ / " ) = 0; 

= exp(-2-%5'^/"). 

Hence, 
/•oo 

Jo 
and with the =<!* case of (3.32) this gives us (2.22). Also, for the case, 

P[^*oo{n,)> s] = P [ ? ^ i n { x G R ' ' : x ^ . O } n B ( O ; s i / ° ) = 0 ; 

= e x p ( - ( w , / 2 ) / / - ) . 

Hence, 
/"OO 

E i^.M)] = / P [e,oo (^i) >s]ds = 2'^^\''^'T{1 + (a/d)), 
Jo 

which yields (2.24) with the case of (3.32). 

Finally, in the case where Xn = U„ and the partial order is (2.23) remains true 

when Un is replaced by ZY°, since 

£;[^("-'i)/'i|£^,«(^0) _ £'*'"(Z^„)|] < d"/2n("-'^)/''E[M;(W„)], (3.33) 

where MJ(i/„) denotes the number of minimal elements of W„ under =<;*. By (2.27), 

E[M^{Un)] = O((log7i)''~^), and hence the right hand side of (3.33) tends to 0 as ?i oo 

for 0 < a < ci. This gives us (2.23) with under 4*. • 



Chapter 4 

Dickman-type distributions and the 

MOST 

4.1 Introduction 

For this chapter, we consider the random minimal directed spanning tree on uniform and 

Poisson points in (0,1)^, under the coordinate-wise partial order (as considered by 

Bhatt and Roy [21]). We consider the limiting behaviour of the total length of some 

subsets of the edges in the MDST. In particular, we deal with the edges incident to 

the origin and the longest edge. Limiting distributions for these quantities are given in 

terms of certain Dickman-type distributions, which emerge from the Poisson-Dirichlet 

distribution. 

The edges joined to the origin in the MDST in (0,1)^ with partial order were 

the principal object of analysis in [21], in which Bhatt and Roy established (amongst 

other things) existence of a weak limit for the total length of such edges, without fully 

describing that limit. We use a different method to characterize the limiting distribution 

(see Theorem 4.2.1) as a variant of the Dickman distribution which has previously arisen in 

such fields as probabilistic number theory, population genetics, and the theory of random 

search trees (see Appendix C). We also extend the result to power-weighted edges. 

In addition, we derive a weak convergence result for the maximum of all edge lengths 

in the MDST (Theorem 4.2.3). In this case, the limiting distribution is related to the 

distribution of the largest component of the Poisson-Dirichlet distribution with parameter 

1. The latter distribution has also sometimes been called a 'Dickman distribution' (see 

7, 42]) and we shall call it the max-Dickman distribution. In Appendix C, we shall 

56 
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discuss both types of Dickman distribution in some detail; they are related, and intimately 
connected with the Poisson-Dirichlet distribution, which we review in Appendix C also. 
The material in Appendix C is therefore of a supplementary nature and may be omitted 
on a first reading. 

We remark that as a supplementary result, we can re-derive Bhatt and Roy's result 

(Theorem 4.2.2) for the weak limit of the maximum length of edges incident to the origin 

using a similar method to that used in this chapter. 

4.2 Main results 

We work with the partial order ^* and weight function Wa as given by (1.2). For S a 

finite subset of (0,1)^, and a > 0, let 

X e 5 , X minimal 

Thus CQ{S) is the total weight of the edges incident to the origin in the MDST on 5 u { 0 } . 

We will take S to be the binomial point process consisting of n independent 

uniform random points on (0,1)^, or P„, the homogeneous Poisson point process with 

intensity n on (0,1)^. 

Bhatt and Roy [21] showed that, as n —> oo, 

where Y is a random variable with E[Y] = 2 and Var[y] = 1. As a consequence of 

Theorem 4.2.1 below, we will fully characterise the distribution of Y (it is what we call a 

'generalized Dickman' random variable with parameter 2; see below). 

Our first main result describes the limiting distribution, as Ji -> oo, of -Co(^") 

C^iVn) more fully in terms of a Dickman distribution. Given ^ > 0, we shall say a 

random variable X has a generalized Dickman distribution with shape parameter 9 (or 

X ~ GD(^) for short) if it satisfies the distributional fixed-point identity 

X = U'^'{1 + X), 

V where U is uniform on (0,1), and is independent of the X on the right, and where 

denotes equality in distribution. For further information on Dickman distributions, see 

Section C. 
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Theorem 4.2.1 Let a > 0. Let Z{6) denote a random variable with the generalized 
Dickman distribution with shape parameter 9. Then as n oo, 

mVn) A Z{2/a) (4.2) 

and 

QiUn) A Z{2/a). (4.3) 

The limiting distribution has Laplace transform 

In the special case a = 1, the distribution of the limiting variable Z{2) has mean 2 and 

variance 1, and moments m2 = 5, ms = 44/3, = 293/6, — 

Remarks. Perhaps the most natural case is a = 1 (i.e., simply take the Euclidean length 

of edges). By considering the more general case allowing for any a > 0, we get the whole 

range of possible generalized Dickman distributions as limits. 

Bhatt and Roy [21] use a different approach based on the method of moments to prove 

the weak convergence (4.3) (only for a = 1). Their argument is compHcated and they 

give only values for the first two moments of Z{2), not the higher moments. Nor do they 

say anything about the density, distribution or moment generating functions of Z(2). 

Thus, even for a = 1 our approach gives a good deal of extra information beyond that 

provided in [21]. Conversely, since Bhatt and Roy prove convergence of all moments of 

Cl{Un) to the corresponding moments of Z{2), this combined with our characterization 

of Z{2) means we can identify the limit of the k-ih. moment of Cl{Un), for any fixed k, 

by computing the kth moment of Z{2) recursively using the formula (C.4.9) below. 

In [12], Bai, Lee and Penrose show that this two dimensional case is rather special -

for d > 3 the corresponding hmits for the length of the rooted edges in the MDST (under 

=4*) are normally distributed. On the other hand, when d = 1, we simply have the first 

Dirichlet spacing - see Section 5.1.1. 

Our second main result (Theorem 4.2.3 below) concerns the maximum edge length of 

the MDST; when considering maxima we consider only the case with a = 1 (results on 

maxima for other values of a are easily deduced from results for this case). 
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Bhatt and Roy [21] considered the maximum length of edges joined to the origin, for 
the MDST on ZY„ U {0}. We denote the maximum length of the edges joined to the origin 
in the MDST on 5 U {0} by Mo{S), so that 

Mo{S) = max | |X | . 
X G 5 , X minimal 

Bhatt and Roy [21] proved the following result: 

Theorem 4.2.2 As n oo, 

A max{t/i,C/2} = Ul'^- M,{Vn) A t / ^ ' , (4.4) 

where Ui, U2 are independent uniform random variables on (0,1). 

Here, we consider in addition the global maximum of all Euclidean edge lengths in the 

MDST on <S U {0}, not just those joined to the origin. Denote this maximal edge length 

hyM{S). 

The limit variable for maximum edge length is given in terms of what we shall call the 

max-Dickman distribution. We define this to be the (unique) distribution of a random 

variable M which satisfies the distributional identity 

M = max{ l - U, UM} (4.5) 

where U is uniformly distributed on (0,1) and independent of the M on the right. 

Theorem 4.2.3 Suppose M and M' are independent max-Dickman random variables. 

As n ^ 00, 

M{Vn) - A max{M, M ' } (4.6) 

and 

M{Un) A max{M, M ' } . (4.7) 

We prove Theorem 4.2.3 in section 4.4. 

The generalized Dickman GD(1) and max-Dickman distributions are more closely 

related than might at first be apparent. In probabilistic terms, they can both be ex

pressed in terms of a Poisson point process on (0,1) with mean measure given by 

d/,( = (l/x)dx. Suppose the points of this Poisson point process are listed in decreasing 

order as Fi, V2,.... Then the sum Yi has the GD(l ) distribution, while the maximum 

spacing max{l — Yi,Yi — ^2,^2 — ^3 , • • •} has the max-Dickman distribution. The latter 
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is also the distribution of the largest component of the Poisson-Dirichlet distribution; see 
Section C.7. 

In more analytical terms, both the GD(1) and the max-Dickman probability density 

functions are defined in terms of the Dickman function, which appeared in the 1930 paper 

of K. Dickman [41] on large prime factors of large integers (for a more recent reference, see 

Donnelly and Grimmett [42]). In Appendix C, the Dickman function and the generalized 

Dickman and max-Dickman distributions are described in more detail. 

4.3 Proof of Theorem 4.2.1 

The intuition behind Theorem 4.2.1 goes as follows. I f there exists a minimal point of 

Vn (or Un) near to the origin, then there is no minimal point lying to the north-east of 

that point. Hence, the minimal points are likely to all lie near to either the a;-axis or the 

y-axis, and the contributions from these two axes are nearly independent. Near the x-axis, 

the x-coordinates of successive minimal points (taken in order of increasing ^/-coordinate) 

form a sequence of products of uniforms Ui, U1U2, U1U2U3,... and summing these gives a 

Dickman distribution. Similarly for the y-axis. 

In the course of the proof we shall use Slutsky's Theorem repeatedly (see Lemma 

A.2.1). We shall also use the following coupling lemma relating the point processes Ẑ „ 

and Vn-

Lemma 4.3.1 There exist point processes Kn,Vn defined on the same probability space 

as each other for each n, such that: 

• U'n has the same distribution as ZY„. 

• V'^ has the same distributioii as Vn-

• With probability tending to 1 as n 00, the set of minimal elements of V'^ is 

identical to the set of minimal elements ofU'^. 

Proof. Let U i , U2, U3,... be independent and uniformly distributed on (0,1)^, let 

N{n) be Poisson with parameter n and independent of (Ui, U2, U3,. . .) , let V'^ := 

{ U i , . . . , U;v(n)}, and for m e N set U'^ := { U i , . . . , U ^ } . Then V'^ = Vn and U'^ = Un-

Let Am be the event that is a minimal element of U'm, and let 5m be the number 

of minimal elements of U'^. By exchangeability, each point U j , i < m is equally likely 
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to be minimal in U^, so that E[6m] = mP[Am]- By (2.26) (see also [15], or the proof of 
Theorem 1.1(a) of [21]) we have E[5m] ~ log(??2) as m —)• oo. Hence, P [Am] ~ ( logm)/m 
as m ^ oo, and therefore 

P K_n3/4<^<„+„3/4A„] < 3n^/\\ogn)/7i 0. (4.8) 

Let En denote event that the set of minimal points in If^ differs from the set of minimal 

points of V'n- By the coupling of Z//,'„ ("^ > 1) and V'^, En occurs only if occurs for 

some 771 with A''(n) < m < n (if N{n) < n) or with n < m < N{n) (if A''(n) > 7i). Hence, 

P[En] < P[\N{n) -n\> n'^'] + P[U„_„3/4<^<„+„3/4yl^]. 

In the right hand side, the first probability tends to zero by Chebyshev's inequality while 

the second tends to zero by (4.8), and hence P[En] ^ 0 as asserted. • 

We now work towards a proof of (4.2). Let be the set of minimal elements of the 

point set P„ , i.e., the set of elements of P„ which are joined to 0 in the MDST on P „ u { 0 } . 

Lemma 4.3.2 As n ^ oo, we have (log?i)~^card(3^„) 1. 

Proof. The corresponding result for the number of minimal points of binomial point pro

cess Un (actually with almost sure convergence) is part (i) of Lemma 2.4.2 (or Theorem 

1.1(a) of [21]). Using Lemma 4.3.1, we can deduce the result for the Poisson point process 

Vn. • 

Fix a constant 6 lying in the range (0,1/2) but otherwise arbitrary. Define the point 

sets 

y: := yn n ((O, l ) x (O, n-^]) ; y^, := n ((0, n"^] x (0,1)) . 

Fix a > 0, as given in the statement of Theorem 4.2.1. Define the variables 

Ln ••= E^ey, l | X r ; LI := ^ | | X | | - (4.9) 

iV„-:=card(3^^); 7 V ^ = card(J^„^). 

Thus, Ln is the total weight of a-power-weighted edges of the MDST on P„ which are 

incident to the origin and lie entirely in the horizontal strip (0,1) x (0,n~'^], while A^̂  is 

the number of such edges; and N-( are defined analogously in terms of a vertical strip. 
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Proposition 4.3.1 Let S ~ G D ( 1 / Q ; ) , i.e. let S be a generalized Dickman random vari
able with parameter 6 = 1/a. Then as n oo, 

LI A 5, and Lf, A S. 

Proof. We give the proof only for L^; the argument for L'^^ is entirely analogous. 

List the minimal points 3̂ ,̂ in order of increasing ^/-coordinate, as X ^ , . . . , X ^ ^ . In 

co-ordinates we set = (XJ, Y-"). Since the points X | are minimal, 

Yif <Y^ <•••< y ^ . , and X"^ > > • • • > X%^. 

Then L^ = - ^ j ^or each n, let be the estimate for L^ obtained by counting 

only the projections of the edge lengths onto the x-axis, i.e., set 

= E ( ^ i 
i=i 

If {x,y) e ( 0 , 1 ) ^ then | | (x,y) | | < x + y, and by the Mean Value Theorem, 

| (x ,y) | | " - < (x + y)" -x" < a2"-^y {a > 1 ) 

whereas by the concavity of the function t ^ t" for a < 1, 

| ( x M / ) f < {x + y^-x" < (0 < a < 1) . 

Hence, there is a constant C{a) such that with probability 1, 

Q<Ll-Sl < C(a) ^ ( y / ) ™ " ( ^ ' " ) 
i=i 

< C(a)n-^'™"(^'")iV^ (4 .10) 

Since iV,̂  = O(log(?i)) in probability by Lemma 4 .3.2, it follows that n-'^"^'"(i'")iV^ con

verges in probabihty to zero as n oo, and hence so does L^^-S^. Therefore, by Slutsky's 

theorem it suffices to prove that 

S l ^ S as n ^ oo. ( 4 . 1 1 ) 

We prove this by a coupling argument in which we construct (copies of) the random 

variables 5^ (n > 1 ) on a common probability space. 

Let "H be a homogeneous Poisson process of unit intensity on the infinite strip ( 0 , 1 ) x 

(0, oo). Let %n be the image of U under the linear mapping r„ : R^ given by 

Tr.{{x,y)) = {x,n-'y). (4 .12) 
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By the Mapping Theorem [84], Hn is a homogeneous Poisson process of intensity n on 
the same strip (0,1) x (0,oo). Since we are interested only in proving a convergence 
in distribution result (4.11), we may assume without loss of generahty that Vn is the 
restriction of the Poisson process 7^„ to the unit square (0,1)^. 

List the minimal elements of 7i in order of increasing y-coordinate as X i , X2,..., with 

coordinate representation X^ = {Xj,Yj). Then Yi < Y2 < and Xi > X2 > • • •. 

Define Ui = Xi, and set 

Uj = ^ , J = 2,3,.... 

It is not hard to see that Ui,U2,... are mutually independent and are each uniformly 

distributed over (0,1). Therefore, setting 

^ ^ = E ^ " = E f r i ^ " ) ' (4.13) 

i=l i=l \i=l / 
we see from Proposition C.4.1 that S has a generalized Dickman distribution GD(1/Q;) . 

The set of minimal elements of a point set in is invariant under the linear transfor

mation r„(-) defined at (4.12), as is the relative order of the y-coordinates of the minimal 

elements. Therefore, under our assumption that Vn is the restriction of r„(7{) to the unit 

square, we see that XJ = r„ (Xj ) for 1 < j < A'^. Hence, since the mapping T„ leaves 

x-coordinates unchanged. 

Since A^̂  is the number of minimal elements in the restriction of Ti to the set (0,1) x 

(0,71^"*], it is the case that A^ —> 00 almost surely as n ^ 00 . Therefore, with this par

ticular coupled construction of the point processes Vn,n > 1, the variables converge 

to S SLS Ji 00, almost surely and hence in distribution. In other words, (4.11) holds as 

required. • 

The random variables and are not quite independent since they both depend 

on the configuration of points of Vn in (0,n~'^]^. Our argument to deal with this fact 

requires some further terminology. Fix a further constant /5 with 0 < p < 6 < 1/2, and 

define the following rectangular regions, as shown in Figure 4.1 below: 

R-{n) := {n-f^,!) x {0,n-% Rl{n) : - (0,^-^] x {n-'^,!); 

i^^(,^) := {n-\n->^] x {0,n-% R\{n) := {0,n~^] x ( n - ^ n - ^ ] ; 

Ro{n) := (0,n-^]^; R,{n) : - ( n ' ^ 1)^ 
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Rl{n) 

R\{n) 

Rfin) R^in) 

Figure 4.1: The regions of (0,1)^. 

Let N^{n), Nl{n), iVf (n), iVi'(n), iVo('^), and N^{n) be the number of elements of yn 

that fall in the regions R\{ri)-, Rl{n), Ri{n), R\{n), Ro{n) and -R3(n) respectively. 

Similarly, let Lf (7T) , L2(n) , ivf(7z), L\{n), Lo{n), and Lz{n) be the total weights of 

edges that are incident to the origin in the MDST on Vn U {0} and start from points that 

fall in the regions R2{n), Rl{n), Ri{n), R\{n), Ro{n) and i?3(n) respectively, i.e., set 

mn):= Yl l l ^ l l " ' ^i('')--= E i l ^ l l ^ ^o (n ) := ^ H^H"' (4.14) 
xey„nR^(n) xe3^„nitf(n) xey„nRo{n) 

Ll{n):= Y l l ^ l l " ' ^ i ( " ) ^ = E l l ^ l l " ' ^ 3 ( n ) : = E H^H"- (^-l^) 
XeynnRiin) 

Then 

C^{Vn) = Ll{n) + Ll{n) - f L\{n) + L\{n) + Lo(n) - f L^{n). (4.16) 

The next result shows that most of the terms in (4.16) are asymptotically negligible. 

Lemma 4.3.3 v4s n oo, 

Llin) - f L\{n) + Lo(n) + L^{n) A 0. 

Proof. Observe first that 

Ll{n) + L\{n) + Lo(n) < (2n-^)"(iVf (n) + N\{n) + N^{n)) 
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and since N^{n) + Nf{n) + No{n) = O(logn) in probability by Lemma 4.3.2, 

L ^ ( n ) + Lf(n) + Lo(n) A o . (4.17) 

If card(7'„ n Ro{n)) > 0 then L^in) = N^in) = 0. However, card(P„ n Ro{n)) is Pois

son with parameter n^~'^^, which tends to infinity since we assume 6 < 1/2. Hence, 

P[L3{n) / 0] —)• 0, so that ^3(71) —> 0. Combined with (4.17), this gives us the result. 

• 

Define Vn to be the point process Vn with all points in the corner region Ro{n) removed, 

i.e., set 

Vn-=Vn\Ro{n). (4.18) 

Let yn be the set of minimal elements of Vn- Define the point sets 

Z::^yr.nR^,{n); i ^ = n i ?^ (n ) ; 

Zy-.^y^nRlin); i ^ = > ' „ n i ? | ( n ) . (4.19) 

Then C Z^, since adding the points in i?o(n) cannot cause any new minimal points in 

i ?2 (" ) to be created, although it can cause previously minimal points in R^{n) to cease 

to be minimal. Using the convention min0 = -|-oo, set 

Yo-{n) := m i n { y : X = (X, K) e P„ n i?o(n)}, 

which is the y-coordinate of the lowest point of Vn in Ro{n) (or +00 if no such point 

exists). Let 

Y f i n ) := min{F : X = {X,Y) e VnO RUn)}, 

which is the y-coordinate of the lowest point of P„ in Ri{n) (or -t-oo if there are no such 

points). 

Lemma 4.3.4 I f Y f { n ) < Yo-{n), then Z^^Z^. 

Proof. If X = ( X , y ) G Rl{n) and X ' = { X ' X ) G ^o(") U i ?^ (n ) , then X ' ^* X 

if and only if y < Y. Hence, Z^ consists of those minimal elements of P„ n Rl{n) 

that have a lower y-coordinate than (n). Likewise, Z^ consists of those minimal ele

ments of Vn n I^{n) that have a lower y-coordinate than m i n ( y f ( n ) , Kg"("-))• Thus, if 

(n) < YQ{n), then the sets Z^^ and Zf^ must be identical. • 



4.3. Proof of Theorem 4.2.1 66 

Lemma 4.3.5 As n ^ oo, P[Yf{7i) < Fo"(n)] 1. 

Proof. Assume without loss of generality that Vn is the restriction to (0,1)^ of a Poisson 

process Tin of intensity n on (0,1) x (0, oo) . List the points of Tin H ((0, n ~ ^ ] x (0, oo) ) in 

order of increasing y-coordinate as V", V 2 , V 3 . . . . In coordinates, write V " = (F" , M^"). 

Then is uniform on (0,n"'^] and is independent of W". Also H^" is exponential with 

parameter n^"^. Since p < 5 and 5 < 1/2 < 1 — P, 

P[{Vi e (?^-^ n-^]} n{Wi< 71-^}] 1 as ?x ^ 00 . 

However, if this event occurs then Yf{n) < YQ~{n) so the proof is complete. • 

Define the random variables 

£ ^ ( n ) := J ] | |X||", Clin) := ^ | | X | r . 

In other words, £f(?2), CKn) are the total weight of edges from points in R^in), Rlin) 

respectively joined to the origin in the MDST on Vn U {0}. 

We assert that €2(71) and CUn) are independent. This follows because £.2(7%) is de

termined by the configuration of Vn n (i?i(n) U R2{7i)), whereas C'^ is determined by the 

configuration of P „ n ( ^ ^ ' ( n ) U P | ( n ) ) . Since the regions R^{n.)uR^{7i) and R\{n)LiRl{7%) 

are disjoint, the independence asserted follows from the standard spatial independence 

properties of the Poisson process. 

Proof of Theorem 4.2.1. By the earlier definitions at (4.9) and (4.14), = L^{n) + 

Ll{7i) + Lo{7i). Hence, 

^{n) = [LI - L ^ n ) - Lo(n)) + (£^(n) - (n)). 

By Lemma 4.3.3, Lf (?i)+Lo(n) 0. Also, by Lemmas 4.3.4 and 4.3.5, £ | ( ? i ) -L^(n) 

0. Hence, by Proposition 4.3.1, and Slutsky's theorem, 

ciiTi) A s, 

where 5 ~ G D ( l / a ) , and by an analogous argument we obtain £2(71) —> S. 

Let S and 5' be independent G D ( l / a ) variables and let Z{2/a) ~ GD{2/a). Since 

C2{77.) and £2(71) are independent, we obtain 

C^2{n) + &2{n)^S + S' = Z{2/a), (4.20) 
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where the last distributional equality follows from Proposition C.4.2 (b). By (4.16), 

^0 (n̂ ) - {t,{n) + Clin)) = min) - £^(n)) -1- (Ll(n) - £^(n)) 

-^mn) + L\{n) + Loin) + L,{n). 

In this expression, the right hand side tends to zero in probability by Lemmas 4.3.3, 4.3.4 

and 4.3.5. Hence, by (4.20) and Slutsky's theorem we obtain (4.2). 

Next we prove (4.3). To do this we use the coupled copies and V'„ of Un, Vn 

respectively, given by Lemma 4.3.1. That result shows that 

- Q{K) A 0, as n ^ oo. (4.21) 

Since V'^ = Vn, we see from (4.2) that C^iV'^) converges in distribution to the GD(2/Q;) 

variable Z(2/Q;). By (4.21) and Slutsky's theorem, the same is true of £ o ( ^ n ) ' ^^^d (4.3) 

follows since 

In the case a = 1, the limiting variable Z(2) is GD(2); its moments and moment 

generating function are obtained by apphcation of Proposition C.4.2. • 

4.4 Proof of Theorem 4.2.3 

The intuition behind Theorem 4.2.3 is that the longest edge is likely to be near either the 

X-axis or y-axis. Near the a;-axis, the a;-coordinates of the points of Vn (or tin), taken in 

order of increasing y-coordinate, form a sequence of uniforms with each uniform joined to 

its nearest predecessor lying to its left. Similarly for the y-coordinate. 

The proof of Theorem 4.2.3 follows similar lines to that of Theorem 4.2.1 (see Section 

4.3). Fix a constant 5 G (1/2,1). Define the point sets 

VI := Vn n ((0,1) X (0, n-']) ; VI := Vn n ((0, n-'] x (0,1)) . (4.22) 

For X e "Pn, if X ' is the directed nearest neighbour of X in 7^„, write c/(X) for the 

length of the edge from X in the MDST, i.e. t i(X) = | |X - X ' | | . Define 

:= max d(X); Ml •= max d(X). (4.23) 

Thus, is the length of the longest edge in the MDST on Vn from points in the 

horizontal strip (0,1) x (0,?2~^]; is defined analogously in terms of a vertical strip. 
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Proposition 4.4.1 Let M have the max-Dickman distribution given by (C.7.29). Then 
as n ^ CO, 

M, and M. 

Proof. We give the proof only for M^; the argument for is entirely analogous. 

Define the random variable v{n) := card('P^). List the points of V^, in order of 

increasing y-coordinate, as X^, Xg, X 3 , . . . , X^^„ .̂ In co-ordinates we set XJ = {XJ, Y-"). 

T h e n y ; - - < F i ^ < . . . < y ; ( „ ) . 

For each n , let be the estimate for obtained by considering only the projections 

of the edge lengths onto the x-axis, i.e., set 

= - S S I ( ^ " i i ^ - ^ - . ' ' ) } • (^-24) 

where we set XQ := 0. 

By construction of the MDST and the triangle inequality, with probability 1, 

0 < M: - e < n - ^ 

so that M,j - converges to 0 almost surely. Therefore, by Slutsky's theorem it suffices 

to prove that 

M as ?z -> 00 . (4.25) 

As in the proof of Proposition 4.3.1, let ?̂  be a homogeneous Poisson process of unit 

intensity on the infinite strip (0,1) x (0,oo), and let H„ be the image of TL under the 

linear mapping r„ defined at (4.12). Again, we may assume without loss of generality 

that Vn is the restriction of the Poisson process %n to the unit square (0,1)^. 

List the elements of "H in order of increasing y-coordinate as X i , X2, X3 . . . , with coor

dinate representation X^ = {Xj, Yj). Since the linear mapping r„ preserves x-coordinates 

and the relative order of y-coordinates, our coupling of Vn to TL means that the sequence 

, . . . is identical to the first v[n) terms in the infinite sequence (Xi , X2,- - -)-

An upper record value (compare Section 2.4.3) in the sequence X i , ^2, X3,.. . is a 

value Xi which exceeds m a x j ^ i , . . . , (the first value A î is also included as a 

record value). Let j ( l ) , j (2) , j ( 3 ) , . . . be the values of i E { 1 , 2 , 3 , . . . } such that Xi is 

a record value, arranged in increasing order so that 1 = < j{2) < j{3) < 

Let Rn := max{A; : j{k) < vin)} be the number of record values in the finite sequence 

{Xi,X2 . . . , Xi^(n))-
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Since each non-record Xi lies in an interval between preceding record values, the first 
maximum in the definition at (4.24) is achieved at a record value, so that 

m a x _ { X , ( , ) - X , ( , _ i ) } , (4.26) 

where we set j (0) = 0 and Xo = 0. Define Ui = 1 — Xi, and set 

1 - Aj( ,_i) 

It is not hard to see that Ui,U2,... are mutually independent and are each uniformly 

distributed over (0,1). Therefore, setting 

M := max {1 - U,{1 - U^), U ^ l - ^73), U,U2U^{1 -U,),...}, (4.27) 

we see that M indeed has the max-Dickman distribution as described in Proposition C.7.1 

(b). Furthermore, 

(1 - u,) n u . = n ( T ^ ^ # ^ ) = - ^ , < . - . ) . (4 .28) 

for A; = 2,3, . . . . 

With our chosen coupling of Vn to H, i^{n) := card('P^) is the number of points in the 

restriction of K to the set (0,1) x {0,n^~^], so that i'{n) 0 0 almost surely as n -> 0 0 . 

Therefore, since there are almost surely infinitely many records, 0 0 almost surely 

as 7T, - > 0 0 . Hence by (4.26), (4.27) and (4.28), -)• M as n 0 0 , almost surely with 

this coupHng. Hence, (4.25) holds as required. • 

Let M3(?^) denote the maximum edge length of edges of the MDST on Vn starting in 

(n~^, 1)^, i.e., set 

Mz{n) := max{||ci(X)|| : X e P„ n ( n ' ^ 1)^}. (4.29) 

Lemma 4.4.1 It is the case that M3{n) —> 0 as n ^ 00. 

Proof. Recall that (1/2) < 5 < 1. Choose a second constant e e {0,1-6). Consider a 

collection of overlapping horizontal and vertical rectangles of the form 

{{i - l)n-',i7i-'] X {{j - l)n-',jn-% e N x N , i < [n'\,j < [n'\, 

{{i - l ) 7 ^ - ^ m - ^ ] X {{j - l)n-',jn-% G N x N,z < [n^\,j < [n'\. 
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For each rectangle, the number of points of Vn in the rectangle is Poisson with parameter 
SO that the probability that at least one subsquare contains no point of Vn is 

bounded by 

2n*+^ exp{-7i^-^-') 0. 

However, if each rectangle contains at least one point of Vn then Mz{n) is bounded by 

371'^, and the result follows. • 

Proof of Theorem 4.2.3 It is a little easier to deal with the non-independence of 

and My than with the corresponding problem in the proof of Theorem 4.2.1. Define 

to be the maximal edge-length of edges starting in (0,1) x (0,7i~^] for the MDST on the 

point set 

( P „ n ( ( 7 ^ - ^ l ) X ( O , n - ^ ] ) ) U { 0 } . 

In other words, is the same as except that Poisson points in (0, n~^]^ are ignored 

in defining M^. By independence properties of the Poisson process, is independent 

of 

I t is not hard to see that 

- M^l < 2n-\ almost surely. (4.30) 

Let M, M' be independent random variables both having the max-Dickman distribu

tion. By Proposition 4.4.1, equation (4.30), and Slutsky's theorem, 

M and A M , 

and since and are independent, 

max(M^, M^) max(M, M'). (4.31) 

By (4.30), with probability 1, 

I max(M^, M^) - max(M^, M,^)| < 2n'\ 

so by (4.31) and Slutsky's theorem, 

max{A4^, Ml) max(M, M'). (4.32) 

Also, 

A4(^„) = max(M^,M„^M3(n)) , 
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so that 

0 < MiV^) - max(M„^ M^) < M,in), 

which tends to zero in probabihty by Lemma 4.4.1. Hence, a further application of 

Slutsky's theorem to (4.32) shows that M{Vn) ^ max(M, M ' ) , i.e., (4.6) holds. 

To deduce (4.7) from (4.6), consider the coupled point processes and "P̂  described in 

Lemma 4.3.1, given in terms of a sequence of independent uniform points in (0,1)^ and 

an independent Poisson variable N{n) as given in the proof of Lemma 4.3.1. Let B„ be the 

event that at least one point of the symmetric difference U^AV'^ lies in (0,1)^ \ {n'^, 1)^. 

Then 

P[Bn] < P[\N{n) -n\> n(V4)+W2)] ^ 2n^^/^^+^mp[u^ e (0, i ) ^ \ i)2] 

0, as n -> oo, (4.33) 

where the convergence follows by Chebyshev's inequality and the fact that we took d > 

1/2. 

Recall that M3(n) denotes the maximum length for edges of the MDST on P„ starting 

in (7?r'^,l)^; similarly, let M!i{n), respectively M^in), denote the maximum edge length 

for edges of the MDST on V'^, respectively on U^, starting in (?^-^ 1)^. Then M^(?i) 0 

by Lemma 4.4.1, and a similar proof shows that Ms{n) —> 0 as well. Using also (4.33) 

we obtain 

\M{K) - < 2l5„ + M'.in) + M,{n) A 0, 

and since M{Un) = M{K) and M{Vn) = M{V'J, equation (4.7) follows from (4.6) by 

yet another application of Slutsky's theorem. • 



Chapter 5 

One dimensional nearest-neighbour 

type graphs 

In this chapter we concentrate on the one dimensional case of our nearest-neiglibour type 

graphs. Further, we restrict ourselves to uniform random points. Thus our graphs are 

defined on uniform random points in the unit interval [0,1]. The one dimensional case 

has some special features which allow a rather more detailed analysis than in higher 

dimensions. In particular, these are the connection to the well-known theory of Dirichlet 

spacings, and, especially in the case of the on-line graphs, a form of self-similarity which 

enables one to use a 'divide-and-conquer' approach. 

In Section 5.1 we describe the theoretical background we will need. Then in the 

subsequent sections we deal with each of our four graphs in turn: the nearest-neighbour 

(directed) graph, the on-line nearest-neighbour graph, and the so-called 'directed linear 

tree', which is an on-line version of the MDST. 

We endeavour to make this Chapter largely self-contained. However, for the main re

sults on the MDST presented in Chapter 6, we only require the results presented in Section 

5.2. The preliminary material presented in Section 5.1, and the subsequent analysis in 

Sections 5.3, 5.4 and 5.5, may therefore be omitted on a first reading. 
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5.1 Preliminaries 

5.1.1 Spacings 

All of the one-dimensional models in this chapter can be viewed in terms of the spacings 

of points in the unit interval. The theory of so-called Dirichlet spacings will be useful 

in the analysis of the one-dimensional graphs considered in the sequel. For some general 

references on spacings, see for example [116]. A large number of statistical tests are based 

on spacings, see e.g. [38] for a few examples. 

Recall that ZY„ denotes the binomial point process consisting of n independent uni

form random variables on (0,1), Ui,U2,... ,Un- Given {Ui,... ,Un} Q (0,1), denote 

the order statistics of Ui,..., i7„, taken in increasing order, as U^^^, U^l^y ..., U^l^y Thus 

( t / " j j , . . . , [/(^^) is a nondecreasing sequence, forming a permutation of the original (i7i , . . . , [ / „ ) . 

The points Ui,... ,Un divide [0,1] into n + 1 intervals. Denote the intervals between 

points by / ; := (U^.i), t^(")) for j = 1,2,..., n + 1, where we set U^^^ := 0 and Ul]^^^^ := 1. 

Let the widths of these intervals (the spacings) be 

for j = 1, 2, . . . ,n 4- 1. Recall that for n e N , A„ C R" is the n-dimensional simplex, 

as given by (C.1.1). By the definition of 5", we have that 5" > 0 for j = 1,... ,n + 1 

and X]j=i '^^ — 1- So we see that the vector (5", • . . , S'^^J is completely specified by 

any n of its n + 1 components, and any such n-vector belongs to the simplex A„. Any 

such 7i-vector is, in fact, uniformly distributed over the simplex. To see this, observe that 

{U^Y), • • •, UJ^n)) miiformly distributed over 

{{Xi, ...,Xn):0<Xi<X2<---<Xn<l}. 

Now 
I 0 0 

1 0 

- 1 1 

0 0 \ 

0 0 

0 0 

\ s i j V 0 0 0 

The n by n matrix here has determinant 1. Hence ( 5 " , . . . , 5 '̂) is uniform over the simplex 

A„, and5,':^i = l - E r = i 5 r -
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Thus {S\\ S2,..., has the symmetric Dirichlet distribution with parameter 1 (see 
Section C. l , or [24], p. 246), and any 7i-vector of the SJ has the Dirichlet density 

f{xu...,Xn) =n\, {xi,...,Xn) e An. (5.1) 

In particular, the spacings 5", j = 1 , . . . , n + 1 are exchangeable - the distribution of 

(5", S2, •. •, 'S'^+i) is invariant under any permutation of its components. 

By integrating out over the simplex, from (5.1) one can readily obtain the marginal 

distributions for the spacings. Thus, for n > 1, a single spacing has density 

/ ( x i ) = n ( l - X i ) " - \ 0<x,<l, (5.2) 

while for n > 2, any two spacings have joint density 

f{xuX2) = n{n-l){l-x,-X2r-\ (x i , 0:2) E A2, (5.3) 

and for n > 3 any three spacings have joint density 

f{xuX2,X3)^n{n-l){n-2){l-Xi-X2-X3)''-\ (x i , xs, X 3 ) € A 3 . (5.4) 

I t then follows from (5.2) that, for /3 > 0, n > 1 

pr^on^/31 r ( n + i)r( /? + i ) (5.5) 

and from (5.3) that for /3 > 0, n > 2 

^ L ( ^ ) {^2) \ - r ( n +2/3 + 1) • ^^-^^ 

When considering nearest-neighbour graphs, we will encounter the minimum of two (or 

more) spacings. The following results will be useful. 

Lemma 5.1.1 For n > 1, 

min{5i",52"} = 5i"/2. (5.7) 

For n > 2, 

{S^,mm{S^,Sn) = (5r,5272). (5.8) 

Finally, for n> 3 

{mm{Sl\ S^}, min{Sl S^^}) ^ (5^/2, (5.9) 

and 

mm{S{\Sl,Sn = SU3. (5.10) 
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Proof. We give the proof of (5.7). The other results follow by very similar calculations 
based on (5.3) and (5.4). Suppose n > 2. From (5.3), we have, for 0 < r < 1/2 

P[min{5i", S^} >r] = P[S^ > r, > r 
nl-r pl~xi 

= n{n - I ) dxi / (1 - xi - X2T-^Ax2 

= (1 - 2r)" = F [5 f > 2r], 

and so we have (5.7). • 

5.1.2 The contraction method for distributional recurrences 

Suppose that, for d G N , a sequence of random d-vectors F„, n e N , satisfies 

k 

K = E ^ ^ ( " ) ^ M i ) + ^ W ' (5-11) 
r = l 

where A; e N , Yn^\ r = 1,..., k, are independent copies of the random vector F„, Ir{n) G 

{ 0 , . . . , n} for r = 1 , . . . , are random cardinalities, Ai{n),..., Ak{n) are random dxci ma

trices, B{n) is a random ci-vector, and the random vector {Ai{n),..., Ak{n), B{n), / i ( n ) , . . . , /fc(n)) 

is independent of {Yy\ ..., Y^''^). 

The equation (5.11) is an example of a recursive distributional equation (see [2]) or 

divide-and-conquer recurrence. Examples of such equations appear in random recursive 

structures, such as trees or divide-and-conquer algorithms, where the random variable 

of interest can be decomposed into a sum of copies of itself - that is, some sort of self-

similarity is present. 

In recent years, there has been considerable interest in equations like (5.11), in partic

ular, convergence in distribution results for y„. That is, to prove that K„ Y, where 

Y satisfies some fixed-point equation of the form 

k 
Y = ^ArY^'^ -i-B, (5.12) 

r = l 

where A; € N , V and B are random vectors, Ai,..., A^ are random d x d matrices, 

y { r } ^ = 1 are independent copies of the random vector Y, and ( ^ i , . . . , Ak, B) is 

a random vector, independent of {Y^^\ ..., Y^''^). 

One method for analysing the conditions on (5.11) such that some limit of the type 

(5.12) exists, now developed in considerable generality, is the so-called contraction method. 

The name of the method comes from the fact that i t relies on the property that, under 
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some appropriate choice of metric on probability distributions, the map from the law of 
some Y to the law of Ylt=i A^^ '"^ +B is a contraction. Hence there exists some fixed-point 
distribution, and under some appropriate conditions that fixed-point is unique. 

We appeal to a general result of Neininger and Riischendorf [102] for our results. For 

further background on the contraction method and divide-and-conquer recurrences, see 

also the references in [102], and in particular [40,124,125] and Chapter 9 of [118 . 

The metrics that turn out to be most useful here are the Zolotarev (s metrics, s > 0. 

See [144], and also [102,117,118]. For our purposes, we need only s = 2 (however, 

s = 3 seems to be required for Conjecture 5.2.1 below). The metric C2 is defined for 

d-dimensional random vectors X , y by 

(:2{X,Y):=sup\E[f{X)-f{Y)]\, (5.13) 

where for is the set of all continuous once-dilTerentiable functions / : R'' ^ R such 

that II/'(x) - f'{y)\\ < \\x - y\\ for all x,y e R''. For some properties of see [102, l l 7 . 

In particular (see [117] Chapter 14), convergence in Cs implies convergence is distribution. 

Suppose the sequence of random variables ( K ) satisfies (5.11) as described. Suppose 

d e {1,2}. Define the normalised quantities, for n > 0 

y ; := y„ - E[Yn]. (5.14) 

Then (F„) satisfies the modified recurrence 

Yr,^J2'^r{n)Y};l^+B{n), (5.15) 
r = l 

where, given / i ( n ) , . . . , 4 {n) and Ai{n),...,Ak (n), 

/ k 
B{n) = B{n) - E[F„] + J] Mn)E[Yj^^n)] 

\ r = l 

Let II • Hop denote the d-dimensional operator norm, that is for a d x d matrix A, v a, 

d-vector and || • || the Euclidean norm, 

||A||op := sup \\Av\ . 
v:\\v\\=l 

When d = l, we have ||A||op = \\A\\. 

The following result is contained in Theorem 4.1 of [102 . 
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Lemma 5.1.2 [102] Let (y„) he given by (5.14), and suppose J5'[|y„p] < oo. Suppose 
the following conditions on the random variables in (5.15) hold: 

{Ai{n),...,Ak{n),B{n)) {A^,..., Ak, B), (5.16) 
k 

r = l 

E[l{i,{n)<t}u{ir[n)=n)\\Ar{n)\\l^] ^ 0, for aU £ G N , r = 1 , . . . , fc, (5.18) 

as n -+ oo. Then (y„) converges to a limit Y, 

C 2 ( > ; , K ) ^ o , 

05 n ^ oo, where C{Y) is the unique law for twice-integrable random d-vectors with zero 

mean satisfying the fixed point equation 
k 

r = 5 ] A y W - f S , (5.19) 
r = l 

where {Ai,... ,Ak,B) is independent of {Y^^\ ..., Y^''^) and Y^'\ i = 1,... ,k are inde

pendent copies ofY. 

Note that this result says that, under the conditions of the lemma, the fixed-point 

solution to (5.19) is unique. This is essentially a consequence of the contraction mapping 

theorem; see Theorem 3 of Rosier [124] (proved using the contraction mapping theorem 

in the case s = 2; see also [102,125]). This result will guarantee uniqueness of solutions 

to all the distributional fixed-point equalities considered in the sequel. 

Some of our convergence in distribution results in Sections 5.2.2 and 5.2.3 are stated 

in terms of distributions that are (unique) solutions to fixed-point equations of the type 

(5.19). We define these random variables in the appropriate sections. 

5.2 Results 

Here we state our results for the one-dimensional nearest-neighbour type graphs we con

sider (see Chapter 2 for definitions and notation). We prove these results in the subsequent 

sections of this chapter. 

5.2.1 The nearest-neighbour graph in one dimension: results 

Our next result gives exact expressions for the expectation and variance of the total 

weight Ml'"'{U-n) of the nearest neighbour (directed) graph on n independent uniform 



5.2. Results 78 

random points in the unit interval. Let 2-^i(', S S ") denote the (Gauss) hypergeometric 
function. For n e {2,3,...}, a > 0, set 

•= ^"'''(^^^Urlo^V^lu 1 + « + 2; 1/3). (5.20) [a + 1)1 {2a + n + 1) 

Also, for a > 0, set 

:= 8 hm {n"^Jn,a) = 8 • ^ t ^""^ 2F i ( - a , 1 + a; a + 2; 1/3). (5.21) 
n->oo (1 + CVj 

Theorem 5.2.1 For n e {2, 3 ,4 , . . .} and a > 0 

E[AA^°(iY„)] = ((n - 2 ) 2 - + 2 )^^" + ^ ^ + ^) ^ 2 - ° r ( a + iW'^, (5.22) 
1 (n + a + 1) 

05 n -> oo. Also, for n G {4, 5, 6 , . . .} and a > 0 

Var[A/'/'"(W„)] = — ^ ^ ^ ^ ^ ^ ^ ^ [r(2a + l ) ( 2 - 2 - 3 - ' " + 4-"n + 2-3-^- '"n) 
1 (n + 2q; + 1) 

+ r ( a + 1)2(4 + 12 • 4-̂ ^ - 12 • 2-" + 22-"n - 7 • A'^n + 4-"^^)" 

- (E[< '"(Z^„)] ) ' + 8(n - 3) J„, , , (5.23) 

where E[J\fl'"{Un) is given by (5.22) and Jn,a is given by (5.20). Further, as n ^ oo, we 

have, for a > 0 

n2"-iVar[A/-/'"(W„)] V^, (5.24) 

where 

:= (4-" + 2 • 3-^-2")r(2a + 1) - 4-'^(3 + a^)r(a + 1)^ + j „ (5.25) 

with ja given by (5.21). 

Using (5.23), with (5.20), one can obtain, for instance 

ri,in> M _ 2n2 + 17n + 12 _ I 

and 

^ - W ' = 12(n+ 1 ) ^ + 2) = 6" 

, , / i 2 „ , > , SSii" + 3645i»^ + 7154n - 456 85 
^^'•1^' (""'1 = 108(n + l F ( n + 2P(n + 3)(n + 4) = 108" ^ >' 

Also, the limiting constants ja can be evaluated explicitly, so that one can obtain values 

for Va as given by (5.25). Table 5.1 below gives some values of V^,. We prove Theorem 

5.2.1 in Section 5.3.1. In Section 5.3.2 we give a brief discussion on the values of the 

corresponding limiting variances in the Poisson case, and give a "Poissonized" version of 
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1/2 1 2 3 4 

\ + \/2arcsin(l/\/3) - 0.094148 1 
6 

85 
108 

149 
18 

135793 
972 

Table 5.1: Some values of VQ-

(5.24) (see (5.58)). 

Remark. One can obtain similar results to those given for the one-dimensional NNG 

for the one-dimensional MDST (in fact, the MDST is simpler). We do not go into detail 

here. 

5.2.2 The on-line nearest-neighbour graph in one dimension: re

sults 

In Theorem 5.2.2 below, we present results on the total weight of ONG in d = 1. These 

complement the d = \ cases of the results in Section 2.3 (Theorem 2.3.1). Our results 

include convergence in distribution results for the total weight (suitably centred and 

scaled, in some cases) of the graph. The limiting distributions are of different types 

depending on the value of a. For 0 < a < 1/2, we believe that the limits are normal (see 

Conjecture 5.2.1); for a > 1/2 we define these limiting distributions in Theorem 5.2.2, in 

terms of distributional fixed-point equations (see Section 5.1.2). 

Define the random variable Gi to have the unique distribution that is the solution to 

the distributional fixed-point equation 

Gi = mm{U, 1-U} + UG^^ + (1 - U)G\'^ + ^ log C/ + {2} U 1 - U 
log(l - U), (5.26) 

2"''' ' 2 

where U is uniform on (0,1) and independent of the other variables on the right. We shall 

see later (Proposition 5.4.2) that E[Gi] = 0. 

For Q; > 1/2, Q' 7̂  1, let GQ denote a random variable with distribution characterized 

by the fixed-point equation 

G^= t/"Gi^>+ (1 - [ / ) " G i ' ' + min{C/, 1 - ( t /" + (1 - t / ) " - 1), (5.27) 
a — 1 

where again U is uniform on (0,1) and independent of the other variables on the right. 

We shall see later that, for ct > 1, the G ^ arise as centred versions of the random variables 

GQ, satisfying the slightly simpler fixed-point equation (5.28) below, and E[Ga] — 0 (see 



5.2. Results 80 

Propositions 5.4.3 and 5.4.4). For a > 1, we have 

Ga = U'^Gj'^ + (1 - C/)"G„^'> -t- mm{U, 1 - [ / } " , (5.28) 

where again U is uniform on (0,1) and independent of the other variables on the right. 

The expectation of Ga is given in Proposition 5.4.4. 

Define the random variable Hi to have the unique distribution that is the solution to 

the distributional fixed-point equation 

Hr = UGi - f (1 - U)Hi + ^ + I f / l ogC/ + ^(1 - t/) log(l - U), (5.29) 

where Gi has the distribution given by (5.26), the Gi and Hi on the right are independent, 

and U is uniform on (0,1) and independent of the other variables on the right. We shall 

see later (Proposition 5.4.7) that E[Hi] = 0. 

For a > 1/2, a 7̂  1, let denote a random variable with distribution characterized 

by the fixed-point equation 

Ha= U^Ga+ (1 - UrHa+ f 1 + + ((1 - Ur + -^—-r^\ , (5.30) 

where G^ has the distribution given by (5.27) and U is uniform on (0,1) and independent 

of the other variables on the right. We shall see later that, for cv > 1, the Ha arise as 

centred versions of the random variables Ha, satisfying the slightly simpler fixed-point 

equation (5.31) below, and E[Ha] = 0 (see Propositions 5.4.6 and 5.4.8). For a > 1, we 

have 

Ha = U'' + U''Ga + {l-UTHa, (5.31) 

where again U is uniform on (0,1) and independent of the other variables on the right. 

The expectation of Ha is given in Proposition 5.4.8. 

Theorem 5.2.2 below gives our main results for the ONG(W„) in one dimension for 

a > 1/2. In Section 5.4.1 we present similar results for the shghtly modified graphs 

ONG(ZY°'i) and ONG(W°), in Theorems 5.4.1 and 5.4.2 respectively. Let 0'^'°(ty„) := 

0'^'°'{Un)-E[0'^'''{Un)]. We write Af{0, a^) for the normal distribution with mean zero and 

variance a .̂ The following conjecture is a central limit theorem in the case 0 < a- < 1/2. 

Conjecture 5.2.1 Suppose 0 < a < 1/2. Then there exists Sa with 0 < < oo, such 

that, as n oo, 

^a- ( l /2 ) (5 l , a (^^) A^(0, Sl). (5.32) 
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Also, there exists Si/2 with 0 < Si/2 < oo, such that, as n oo, 

i\ogn)-'/'d'''/\K) Af{0, sl^,). (5.33) 

It should be possible to prove this conjecture using the contraction method of [102 

(as discussed in Section 5.1.2). In this case, however, unlike the other cases considered 

here, it seems that we need to use s = 3 rather than s = 2, and this in turn requires 

calculation of the variance of the cjuantity of interest. We hope to address this in future 

work. 

Recall from (C.3.5) that 7 ^ 0.57721566 denotes Euler's constant. 

Theorem 5.2.2 (i) For 1/2 < a < 1, we have that, as n 00, 

O^'^^iUn) A -f (1 - C/)"#P> 

+ iU'' + { l - U r - , (5.34) 

where Hi^\ are independent with the distribution given by the fixed-point equa

tion (5.30). 

(a) For a = 1, we have that, as n 00, 

O''\Un)-l{7 + \0g7i) ^ UHi'^ + {l-U)Hi'^ 

+^logC/ + ^ l o g ( l - t / ) , (5.35) 

where 7 is given by (C.3.5) and hI^\ H^^^ are independent with distribution given 

by the fixed-point equation (5.29). Also, (5.35) holds in the sense of convergence of 

expectations. 

(Hi) For a > 1, the distribution of the limit W{l,a) of (2.16) is given by 

W{1, a) ^ U"Hj'^ -f (1 - UrHj^K 

where Ho}^\Ho}^^ are independent with the distribution given by the fixed-point 

equation (5.31). 

We prove Theorem 5.2.2 in Section 5.4. 

Remarks, (a) In Theorem 3.6 of [106], a central limit theorem is obtained for the case 

0 < Q: < d/A. In the context of Theorem 2.3.1, the result of [106] implies that, provided 
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0 < a < d/4, as n oo, n'^'^^'^^'^^^^^d'^'^iUn) is asymptotically normal. In [106], it is 
remarked that it should be possible to extend the result to the case 0 < a < d/2. Equation 
(5.32) would be such a result when d = 1. 

On the other hand, when a = d/2, (5.33) shows that (logn)-^/2d'^''^/2(ZY„) is asymp

totically normal for d = 1. It would be of interest to determine whether the same result 

holds for d > 2. 

(b) Of interest is the hmit behaviour of 0'^''^{JAn) (i.e., when a = d). When d = \, 

we have that 0^'^{Un) — E[0^'^{Un)] converges in distribution to a non-normal limiting 

random variable (see Theorem 5.2.2 (i)). It would be interesting to determine whether 

0'^''''{Un) - E[0'^''^{Un)\ converges in distribution to a nondegenerate random variable for 

general d = 2, 3, 4 , . . . , and whether or not this distribution is normal. 

(c) Figure 5.1 is a plot of the estimated probability density function of the limit on 

the right hand side of (5.35). This was obtained by performing 10^ repeated simulations 

of the ONG on a sequence of 10^ uniform (simulated) random points on (0,1). For each 

simulation, the expected value of C '̂̂ (Z^io3) was subtracted from the total length of the 

simulated ONG to give an approximate realization of the distributional limit. The density 

function was then estimated from the sample of 10^ approximate realizations, using a 

window width of 0.0025. The simulated sample from which the density estimate was 

taken had sample mean ?a 3 x 10~^ and sample variance 0.0425, which are reasonably 

close to the expectation and variance of the limit on the right hand side of (5.35). 

(d) In addition to the total weight result, we can also obtain convergence in distribution 

results for quantities such as the total weight of the edges joined to 0, or the length of the 

longest edge incident to the origin, both for the ONG on Un but with initial points at 0 and 

1. These limiting distributions admit characterisations in terms of fixed-point equations 

and properties such as moments and probability density functions can be obtained in 

some cases. However, since these quantities are not of direct interest to us here, we omit 

such results for reasons of space. 

5.2.3 The directed linear forest and tree: results 

The directed linear forest (DLF) and directed linear tree (DLT) are similar to the ONG 

m d = I, with the difference that edges can only run to the left of a newly added point. 

Once more, we are mainly concerned with establishing second order results, i.e., weak 

convergence results for the distribution of the total length, suitably centred and scaled. 
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Figure 5.1: Estimated probability density function for the limit on the right hand side of 

(5.35). 

The D L F will also be important for analysis of the MDSF in (0,1)^ under =<;* - near the 

boundary the MDSF can be approximated by the D L F . In the present section we derive 

the properties of the D L F that we need (in particular, Theorem 5.2.3); subsequently, 

in Theorem 6.3.1, we shall see that the total weight of edges from the points near the 

boundaries, as n oo, converges in distribution to the limit of the total weight of the 

D L F . 

In the D L F , each point in a sequence of independent uniform random points in an 

interval is joined to its nearest neighbour to the left, amongst those points arriving earlier 

in the sequence. Thus the D L F can be seen as a directed variant of the ONG, or as an 

on-line version of the MDSF under <. 

The DLT is also of some intrinsic interest. It is constructed via a fragmentation 

process similar to those seen in, for example, [20] and references therein; the tree provides 

a historical representation of the fragmentation process. 

For any finite sequence Tn = {xi,X2,..., Xn) e (0,1)", we construct the directed linear 

forest (DLF) as follows. We start with the unit interval (0,1) and insert the points Xi 

in order, one at a time, starting with i = 1. At the insertion of each point, we join the 

new point to its nearest neighbour among those points already present that lie to the 
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left of the point (provided that such a point exists). In other words, for each point Xi, 
i > 2, we join x, by a directed edge to the point ma,x{xj : 1 < j < i, Xj < x j . If 
{xj • I < j < i, Xj < Xi} is empty, we do not add any directed edge from Xi. In this way 
we construct a 'directed linear forest', which we denote by DLF(7^). We denote the total 
weight (under weight function with exponent a) of DLF(7^) by D°'{Tn), that is, we set 

n 
D^iTn) := ^ { X i - m<ix{Xj : 1 < j < i,Xj < Xi})'^l{min{xj:l<j<i}<x,}-

Further, given 7^, let 7^ be the sequence (XQ, Xi,..., Xn) where the initial term is XQ := 0. 

Then the DLF on is constructed in the same way, where now for each i > 1, we join 

Xi by an edge to the point max{a;_, 0 < j < i, Xj < Xi}. But now we see that Xi will 

always be joined to XQ = 0, and X2 will be joined either to Xi (if X2 > Xi) or to X Q , and so 

on. In this way we construct a 'directed linear tree' (DLT) on vertex set {XQ, Xi,... ,Xn} 

with n edges. Denote the total weight of this tree with weight exponent a by D"'{T^)\ 

that is, set 
n 

D'^ [T^] := ^ { x i - max{xj -.0 < j <i,Xj < Xij^. 
i=l 

We shall be mainly interested in the case where 7^ is a random vector in (0,1)". In 

this case, set D°'{T„) := D'^{Tn) - E[D'^{Tn)] the centred total weight of the DLF, and 

D''{T^) = D"{7^) - E[D"{T^)] the centred total weight of the DLT. 

We take 7^ to be a vector of uniform variables. Let {Ui, U2, C/3, . . .) be a sequence of 

independent uniformly distributed random variables in (0,1), and for n G N set 14 — 

{Ui,U2,. • • ,Un)- We consider D°'{Un) and Z)°(Z^°). For these variables, we establish 

asymptotic behaviour of the mean value in Propositions 5.5.1 and 5.5.2, along with the 

following convergence results (Theorems 5.2.3 and 5.2.4), which are the principal results 

of this section. 

Some of our weak convergence results are given in terms of distributional fixed-point 

equations of the form (5.19). Here we collect here all the fixed-point distributions that 

appear in this section. 

Define the random variable D i , to have the distribution that is the unique solution to 

the distributional fixed-point equation 

Di = UD\^^ -t- (1 - [/)Dp^ + U\ogU + {1-U) log(l -U) + U, (5.36) 

where U is uniform on (0,1) and independent of the other variables on the right. We shall 

see later (in Propositions 5.5.7 and 5.5.8) that E[Di] = 0 and VarfDi] = 2 - higher 

order moments are given recursively by (5.45). 
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For a > 1/2, a ^ 1, let Da denote a random variable with distribution characterized 
by the fixed-point equation 

Da = u^Di'^ + (1 - uyDi^^ + -^u'' + ^ - ( 1 - uy — ~ , (5 .37) 

a — 1 a — 1 a — 1 

where again U is uniform on (0,1) and independent of the other variables on the right. 

For a > 1/2, a 7̂  1, let FQ denote a random variable with distribution characterized 

by the fixed-point equation 
h = U'^Fa + (1 - UTDa + + i l : ^ - ^ (5.38) 

a{a - 1) a - 1 a(a - 1) 

where U is uniform on (0,1), D^ has the distribution given by (5.37), and the U, D^ and 

Fa on the right are independent. 

In Section 5.5 we shall see that for a > 1 the random variables Da, Fa arise as centred 

versions of random variables (denoted Da, Fa respectively) satisfying somewhat simpler 

fixed point equations (see below). Thus Da and Fa both have mean zero; their variances 

are given by (5.151) and (5.152) below. 

For a > 1, \et Da denote a random variable with distribution characterized by the 

fixed-point equation 

Da = - f (1 - U^Di^^ + U", (5.39) 

where U is uniform on (0,1) and independent of the other variables on the right. Also for 

a > 1, let FQ denote a random variable with distribution characterized by the fixed-point 

equation 

Fa = U^Fa + (1 - UYDa, (5.40) 

where U is uniform on (0,1), Da has the distribution given by (5.39), and the U, Da 

and Fa on the right are independent. The corresponding centred random variables Da := 

Da — E[Da] and F^ := F^ — F[Fa] satisfy the fixed-point equations (5.37) and (5.38) 

respectively. The solutions to equation (5.37) and equation (5.38) are unique by Lemma 

5.1.2, and hence the solutions to equation (5.39) and equation (5.40) are also unique. 

We conjecture that a central limit theorem analogous to Conjecture 5.2.1 holds for 

F>"(^/°) and b'^iUn) in the case 0 < a < 1/2. 

Theorem 5.2.3 (i) For 1/2 < a < 1, we have that, as n oo, 

b'^iUl) - A Da, (5.41) 

where Da has the distribution given by the fixed-point equation (5.37). 
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(%i) For a = 1, we that, as n —)• oo, 

D\Ul)^D„ (5.42) 

where Di has the distribution given by the fixed-point equation (5.36). Also, the 

variance of Di is 2 — 7T'^/6 ^ 0.355066. 

(m) For a > 1, as n ^ oo we have D"(iY°) —> Da, almost surely and in L"^, where 

the distribution of is given by the fixed-point equation (5.39). Also, E[Da = 

[a — and Vox^Da) is given by (5.151). 

Proof. Part (i) of Theorem 5.2.3 follows from Proposition 5.5.3. Part (ii) follows from 

Propositions 5.5.7 (i) and 5.5.8. Part (iii) follows from Proposition 5.5.5. • 

Theorem 5.2.4 (i) For 1/2 < a < 1, we have that, as n —>• oo, 

D-{U^) A Fa, (5.43) 

where Fa has the distribution given by the fixed-point equation (5.38). 

(ii) For a = 1, we that, as n —)- oo, 

D\Un)^Fu (5.44) 

where Fi has the distribution of Di as given by the fixed-point equation (5.36). Thus, 

the variance of Fi is 2 — Tr^/e 0.355066. Further, with Di the limit in (5.42), we 

have that Cov(Di, Fi) = (7/4) - TT^G ^ 0.105066. 

(iii) For a > 1, as n ^ oo we have D°'{Un) —> Fa, almost surely and in L^, where 

the distribution of Fa is given by the fixed-point equation (5.40). Also, E[Fa = 

{a{a — 1))~^ and Yax{Fa) is given by (5.152). 

Proof. Part (i) of Theorem 5.2.4 follows from Proposition 5.5.4. Part (ii) follows from 

Propositions 5.5.7 (ii) and 5.5.9. Part (iii) follows from Proposition 5.5.6. • 

Of particular interest is the distribution of the variable Di given by (5.36), which 

appears in Theorems 5.2.3, 5.2.4, and also in Theorem 6.1.1. In Section 5.5.5, we give 

a plot (Figure 5.2) of the probability density function of this distribution, estimated by 

simulation. Also, we can use the fixed-point equation (5.36) to calculate the moments of 

bi recursively. Writing 

f{U) := U\ogU + { l - U) log(l - f / ) + C/, 
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and setting := E[D'[], we obtain 

m, = EHmr] + E H E OElUm'-'Wil - Uy-^]m,m,^,. (5.45) 

, - 9 VV , _ n \3/ 
The fact that mi = 0 simphfies things a Uttle, and we can rewrite this as 

m, = E[{fiU)r] + E miE[{fiU)r-'{U' + (1 - Uy)] 

i-2 . 
+ E '.]E[{f{U))'-'W{l - Uy-^]m,m,. 

J=2 

So, for example, wlien A; = 3 we obtain rris !^ 0.15411, which shows Di is not Gaussian 

and is consistent with the skewness of the plot in Figure 5.1. 

An interesting property of the DLT, which we use in establishing fixed-point equations 

for limit distributions, is its self-similarity (scaling property). In terms of the total weight, 

this says that for any t G (0,1), if Y i , . . . , y„ are independent and uniformly distributed 

on (0, t], then the distribution of D'^(Yi,..., y„) is the same as that of r D " ( t / i , . . . , [/„). 

5.3 The NNG in one dimension: analysis 

5.3.1 P r o o f of T h e o r e m 5.2.1 

We make use of the theory of Dirichlet spacings as discussed in Section 5.1.1. 

Proof of Theorem 5.3.1. Since the nearest-neighbour (directed) graph joins each vertex 

(which sits at the endpoint of each spacing apart from the points 0 and 1) to its nearest 

neighbour, we have, for n > 3 

n - l 

<-"(w„) = {s^r + {s:r + E i^^Ms^^^ 5̂  j ) - . (5.46) 

Now, from (5.46), using exchangeability we have that 

^ K ' ^ R ) ] = 2E[{Sm + {n- 2)E[{mm{S[\S^}n 

where, from (5.7) and (5.5) we have 

E[{min{S^,Snr] = 2 - g [ ( 5 n i = 2 -^^^^ ;^ | ^^^^ + (5.47) 
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Then (5.22) follows. We now prove (5.23). Squaring both sides of (5.46) and taking 
expectations, we have 

,2 

= Y.E[{nMSl,Sl,,}f"] +2X;E^[ (min{5r ,5 , 'VJ ) ' ^ (min{5 ; ,5^J)T 
i=2 i=Z j=2 

n-1 

+E[iS^)^''] + £ ; [ (5 : )2" ] + 2Y,E[{S^r{mm{S^,S]'^,m 
i=2 

n - 1 

+2'£E[{s:nmm{sr,sr^,}r]+2E[{s^ns:n 
1=2 

Then, using exchangeability, 

E 

= (n - 2)E [(min{5i", 52"})'"] + 2E[(5f5̂ )̂"] 
+ (?2 - 3)(n - A)E [(min{5i", S^})" {mm{S^, S ^ j f ] 

+2{n - 3)E [(min{5i", ̂ 2"})" (min{52", S^})"] + 2E[{S'^f''' 

+4(11 - 3)E[{S^r{mm{Sl + 4E[{S'^r{mm{Sl 3^}^]. (5.48) 

Now, by (5.6) and (5.8) we have 

E[is^nmm{s-,snr] = 

and, using (5.6) this time with (5.9) we obtain 

E[{min{S^, 52"})"(min{53", 5^)1 = 2 ' ^ "^ r (n + 1 + ' 

Also we have that 

E[{S{r{mm{S^,S^}r] = E[{S^r"l{sn<s^}] + E[{S^nS^ri{s^ys'i}] 

= ^-E[{mm{S^,Sn?''] + \E[{SmS2n 

Hence from (5.47) and (5.6) we obtain 

E[(5r)"(min{51\ S^m = ^ (2-2"r(l + 2a) + r(l + a f ) ^^'^ ^ 
2^" -y- ' ' - y- ' J r ( n + l + 2a) ' 

The final term on the right hand side of (5.48) that we need to evaluate is 

E[{mm{S'^^S^}nmin{SlSnr] = EUS^f^l^s^^s?, s^<ss}] 

+4E[{S'^nS^ri{s?<s^<S"J- (5.49) 
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Now, for the first term on the right of (5.49), we have 

EliS^rn^sn^s^, sn<ss]] = lE[{mm{S^,S^,S^})'-] 

^_,_,,r(l + 2c.)r(n + l) 
r ( n + l + 2a) ' 

the last equahty foHowing from (5.10). Now consider the second term on the right of 

(5.49). By a direct computation, we have 

£;[(5")"(52)"l{s^<sj<5j}. 
/.1/3 r{l-y)/2 r l - x - y 

= n{n-l){n-2) dy dx dza;"?/"(l - a; - y - 2)""^ 
JQ Jy Jx 

/-1/3 / • ( l - y ) / 2 

= n{n - 1) / dy I a ;° i /"( l - y - 2a;)""^dx, 

which, via the change of variables w = y + 2x and Fubini's theorem is the same as 

1̂ pw/3 

n ( n - l ) 2 - " - M dw(l-«;)"-M y''{w-y)"dy, 
Jo Jo 

which yields the expression for J„,Q as given by (5.20). Then, by (5.48) and the subsequent 

calculations, we obtain (5.23). 

Finally, (5.24) follows from (5.23) by some routine asymptotic calculations involving 

Stirling's formula, using the fact that, for any > 0, as ?i. - > 00, 

J^l":]^,, - - IpiP + l)n-^-' + 0{n-^-'). (5.50) 
i (71 + 1 + p j 2 

This completes the proof of the theorem. • 

5.3.2 N N G variances: the Poisson case 

Let Vn denote the homogeneous Poisson point process of intensity n on (0,1). In addition 

to the variance of A/'/'"(ZV„), as covered in Theorem 5.2.1, we may also be interested in 

the variance of A/'î '"(P„). Here we provide some partial results in this direction, using 

the results in [107 . 

One can verify that A/'/'"(Pn) satisfies the conditions of Theorem 2.2 of [107]. From 

Theorem 2.2 in [107], we have that 

lim n2"-^Var[A/;''"(P„)] = C„, (5.51) 
ti—foo 

for some constant Ca given in terms of expectations of nearest-neighbour distances in a 

homogeneous Poisson point process of unit intensity on R. These integrals are in -general 
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difficult (even in one dimension; the higher dimensional analogues seem harder still), but 
progress can be made in some cases. 

Recall that di{x; A!) denotes the distance from x to its nearest neighbour in X. Let 

Til denote the homogeneous Poisson process of unit intensity on R, and for y € R write 

n\ for Ki U {y}. From (2.15) of [107], we have that 

= E[d i (0 ; -Hi ) ' " ]+ [ [E[d,{0;nirdi{z-,nly]-{E[d,{0-,nir]f]dz. (5.52) 
JK 

We have that, for /? > 0, 

E[di{0;'Hi)'^] = 2-f^T{l + p). (5.53) 

We now need to calculate E[di{0;Hl)°'di{z;'Hl)°']. Consider points at 0 and z, where 

z > 0. Let RQ, LQ and i ? 2 , L j be the right and left nearest-neighbour distances of 0 in Til 

and z in respectively. Then LQ and are independent and exponentially distributed 

with parameter 1. Conditioning on the position of the first point to the right of 0 in "Hi, 

we have 

Eid.io^nTd.iz-n'.r] 

= f e- ' 'E[(min{Lo,r})"] X 
Jo 

I e-^£;[(min{s, i?J)"]ds + e'-'E[{mm{z - r, R,]Y\\ dr 

+e" '^ [ (min{Lo, z]Y]E[{mm{R,, z]Y]. (5.54) 

Now, for H an exponential random variable with parameter 1, and / i > 0, for a > 0 

nh 

E[{i-mn{H,h]T] = / r ^ e - ^ r +/ i^e" ' ' 

= r(l + a) - r( l + a,/i) + / i"e- ' ' , (5.55) 

where r(-,-) is the incomplete Gamma function. Therefore, one can in theory compute 

the right hand side of (5.54). However, the required integrals are rather hard, and only 

appear reasonably tractable (with the help of Mathematica) for positive integer values of 

a. In particular, 

E\xnm{H,h}] = 1 - e - \ 

So, using (5.54), we have 

1 / ^ K\ 
2z I -3z E[d,{0; n{)d,{z- nl)] = \+('7;-l) e-'' + e 

4 \2 4 / 
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Hence from (5.52) and (5.53) we obtain 

- - - -t- e-^' d . = - . 

In a similar way, one obtains C2 — 28/27 and C3 = 379/36. 

In order to "de-Poissonize" these results to obtain the corresponding limits in the 

binomial case, where we have Un rather than P„, we apply a further result from [107 . 

According to Theorem 2.4 of [107], we have that 

lim n2"-iVar[A/;^'"(iy„)] = C„ - 5 

with Ca as given here by (5.52), and in this case 6a is given by 

5, = E[di(0;7^x)"]+ / E[d^{Q;U\Y - di(S>]'HiT\dy. (5-56) 

We have that 

Eid^iQ-nlY - di{Q-niT] = [ 2 ( | y | " - r " ) e x p ( - 2 r ) d r 
J\y\ 

= | t / r exp ( -2 | ? / | ) - 2 - ' ^ r ( l + a,2|y|), 

so, with (5.53), we have 

/.oo 

5^ = 2 - " r ( l + a) H-2 / ( y ° e x p ( - 2 y ) - 2 - " r ( l + cv,22/))di/ 
Jo 

= 2 - " ( 2 r ( l + a ) - r ( 2 + a')) = 2 - " ( l - a ) r ( l + QO. (5.57) 

Thus (5i = 0, 62 = —1/2 and 3̂ = —3/2. Thus we obtain 

Ca - {Saf 

1/6 a = l 

85/108 a = 2 

149/18 a = 3 

in agreement with Theorem 5.2.1. Note that we can also, therefore, obtain "Poissonized" 

results from Theorem 5.2.1. In particular, we have that as n 00 

(5.58) 

where is given by (5.25) and 6a is given by (5.57). Table 5.2 below gives some values 

oiVa + 6l. 
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a 1/2 1 2 3 4 

I + \ /2arcsin(l/\/3) - f ~ 0.192323 1 
6 

28 
27 

379 
36 

38869 
243 

Table 5.2: Some values of 14 + 5 .̂ 

5.4 The ONG in d = 1: analysis 

5.4.1 Notat ion and results 

In this section we analyse the ONG on a random sequence of points in the interval (0,1). 

Our final aim is to prove Theorem 5.2.2. To work in this direction, we study two slightly 

different models for the ONG. In the first, we choose our first two points to be 0 and 1, 

and take the rest to be random. In the second, we choose our first point to be 0, and take 

the rest to be random. By studying these two simpler cases, where the root of the tree is 

fixed, we will later (in Section 5.4.5) be able to prove Theorem 5.2.2. For this section, our 

main results are Theorems 5.4.1 and 5.4.2 below, which give results for the two special 

cases of the one-dimensional ONG that we study in the remainder of this section. 

For any finite sequence of points % = {xi,X2,. • • ,x'„) C (0,1)" with distinct inter-

point distances, we construct the ONG as follows. We start with the unit interval (0,1) 

and insert the points Xi in order, one at a time, starting with i = 1. At the insertion of 

each point, we join the new point to its nearest neighbour among those already present, 

provided that such a point exists. In other words, for each point Xi, i > 2, we join Xi by 

an edge to the point of {a,'j : 1 < j < i} that minimises \xi — Xj\. In this way we construct 

a tree rooted at Xi, which we denote by 0NG(7^). Denote the total weight (under weight 

function a > 0) of 0NG(7^) by 0^''^{Tn), to be consistent with our previous notation. 

Also, given Tn, let 7^ be the sequence {XQ, x i , . . . , X„) where the initial term is XQ = 0. 

Then the ONG on 7^ is constructed in a similar manner as before, where now for each 

z > 1 we join Xi by an edge to its nearest neighbour in {xj • 0 < j < i}. In this case we 

see that xi will always be joined to XQ = 0, and our tree is rooted at 0. Let 0^'"(7^) 

denote the total weight (under weight function Wa, a > 0) oi the ONG on 7^. 

Further, given Tn, let 7^'^ be the sequence ( a ; _ i , X Q , x i , . . . ,a;„) where we set x-i = 0 

and XQ = I. Then the ONG on 7^'^ is constructed as before. This time we connect XQ 

to x _ i by an edge (of length 1), and for each i > 1 we join Xi by an edge to its nearest 

neighbour in {xj : -I < j < i}- Now, xi will be joined to XQ or to and once more 
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we have a tree rooted at 0. Let 0^'"(7^'^) denote the total weight (under weight function 
Wa,a>0) of the ONG on 7^'\ 

For what follows, our main interest is the case in which 7^ is a random vector in 

(0,1)". In this case, set 0^'"(7;) := C^'"(7;) - E[0^'''{Tn)], the centred total weight 

of the ONG on Define O^'^'iT^) and O^'^il^'^) similarly Let {UuU2,Uz,...) be a 

sequence of independent uniformly distributed random variables in (0,1), and for n e N 

set Un := {UuU2,t/„), so that = (0, U,,..., [/„) and U^l'' = (0,1, t / i , . . . , t/„). We 

consider ONG{U^-') and ONG(W°). 

The main results of this section are the two theorems below. 

Theorem 5.4.1 (i) For 1/2 < a < 1, we have that, as n ^ oo, 

a i . " ( Z ^ y ) ^ G „ (5.59) 

where Ga has distribution given by the fixed-point equation (5.27). 

(a) For Q' = 1, we have that, as n —)• oo, 

0''\Ul'') - ^(logn + 7 + 1) Gi , (5.60) 

where Gi has the distribution given by the fixed-point equation (5.26). Also, E[Gi = 

0, VarfGi] = ((1 + log2)/4) - (7rV24) ^ 0.012053, and E[Gl] -0.00005732546. 

Also, (5.60) holds in the sense of convergence of expectations. 

(Hi) For a > 1, we have that, as n ^ oo, 0^''^{U^'^) ^ 1 + Ga, almost surely and in 

E^, where the distribution of G^ is given by the fixed-point equation (5.28). Also, 

E[Ga] = 2-^{a-l)-\ 

Theorem 5.4.2 (i) For 1/2 < a < 1, we have that, as n oo, 

ai."(iY°) A Ha, (5.61) 

where Ha has distribution given by the fixed-point equation (5.30). 

(a) For a — 1, we have that, as n oo, 

0''\K)-\{\ogn + ̂ ) ^ H , , (5.62) 

where Hi has the distribution given by the fixed-point equation (5.29). Also, E\Hi = 

Q, Var[.^i] = ((3 + log2)/8) - (7rV24) w 0.050410 and E[Hf] w 0.00323456. 
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(tii) For a > 1, we have that, as n —>• oo, 0^'°'{U^) —> Ha, almost surely and in Li^, where 
the distribution of Ha is given by the fixed-point equation (5.30). Also, E[Ha = 
{l/a) + 2-"a-\a~l)-\ 

An interesting property of the ONG, which we use in establishing fixed-point equations 

for limit distributions, is its self-similarity (scahng property). In terms of the total weight, 

this says that for any t e (0,1), if Y i , . . . , K are independent and uniformly distributed on 

(0, t), then the distribution of 0^'"{Yi,..., K ) is the same as that of r C i ' " ( t / i , . . . , C/„). 

In Section 5.4.2, we study the total weight of the ONG on and give a proof of 

Theorem 5.4.1. We deal with the ONG on W° and the proof of Theorem 5.4.2 in Section 

5.4.4. 

5.4.2 T h e total weight of ONG{U^'^) 

For ?7 = 1, 2, 3,... denote by Z„ the random variable given by the gain in length of the tree 

on the addition of one point (f7„) to an existing n — 1 points in the ONG on a sequence 

of uniform random variables U^'li, i.e. with the convention 0^'^{UQ'^) = 1 we set 

Z„:=0'''iU'J)-0'''{U'^'\). (5.63) 

Thus, with weight exponent a, the nth edge to be added has weight Z" . 

Lemma 5.4.1 (i) Z„ has distribution function F„ given by Fn{t) — 0 fort < 0, Fn{t) — 

I fort > 1/2, and F^it) = 1 - (1 - 2i)" forO<t< 1/2. 

(ii) For P>0, 

, ^ , r ( n + i ) r t f + i ) 
^ r{n-{-p + l) ^ ' 

In particular, for A; e N , 

(Hi) For P > 0, as n ^ oo 

E[Z^] = 2-^r(/? + l ) n - ^ + 0{n-^-'). (5.66) 

(iv) As n oo, 

2nZn Exp(l) , 

where Exp(l) is an exponential random variable with parameter 1. 
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Proof. For (i), we have 

P[Zn >t] = P [none of 1, 0, C/ i , . . . , Un-i within t of C/„ . 

This probabihty is zero for t > 1/2, and 1 for ^ < 0. Suppose 0 < t < 1/2. Then we have 

P[Zn>t] = P[{Uu...,Un-,^iUn-t,Un-\-t)}n{t<Ur,<l-t}] 

= ( l - 2 t ) " . 

Thus we have proved (i). For (ii), we now have 

E[Z^] = / P[Zn>t'^^]dt= / {1 - 2t'^^)''dt 

" ^ r(n + /3 + l) • ^̂ -̂ ^̂  
Part (iii) then follows from (5.67) by Stirling's formula. For (iv), we have that, for 

t E [0,oo), and n large enough so that t/{2n) < 1/2, 

P[2nZn >t\ = P[Zn > t/{2n)] = {1 - {tln)Y e"', 

as n —>• oo, but 1 — e~', f > 0 is the distribution function of an exponential random 

variable with parameter 1. • 

Recall that 7 ^ 0.57721566 is Euler's constant, defined at (C.3.5). 

Proposition 5.4.1 As n —> 00, the expected total weight of ONG(iY°'^) under weight 

function lUa, oc> Q, satisfies 

J5[Oi'"(Wy)] = ^ ^ ^ ^ ^ 2 - V - " + l - - ^ + 0(n-"); (0<a<(B)68) 
1 — Q' 1 — a 

E[O''\U'/)]-\\0gn = i ( 7 + l ) + 0 ( n - ^ ) ; (5.69) 

^ p i , a ^ ^ o , i ) j = 1 + + 0 ( „ i - « ) (a > 1) (5.70) 
a — 1 

Proof. Counting the first edge from 1 to 0, we have 
n n 

Ep^'^'iui'')] = 1 + E - ^ [ ^ ' • " ( ^ ^ f - i ) ] ) = 1 + E ^ [ ^ ^ ] -
i=l i=l 

In the case where a = 1, E[Zi] = {2{i + 1))"^ by (5.65), and (5.69) follows by (C.3.5). 

For general a > 0, a ^ 1, from (5.64) we have that 
r ( i + i) 

E[o''-{U^-^)] = 1-f 2-"r(l-t-a) E ^ ^ ( l + a + )̂ 
2 - 2 - " r ( l + a)r(n + 2) 

« - l ( a - l ) r ( n + l - f a) • ^ ' ' 
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By Stirling's formula, the last term satisfies 

( Q ' - l ) r ( n + 1 + a) a-1 ^ v v / 

which tends to zero as n —>• oo for a > 1, to give us (5.70). For a < 1, we have (5.68) 

from (5.71) and (5.72). • 

5.4.3 P r o o f of T h e o r e m 5.4.1 

We now address the proof of Theorem 5.4.1, by first proving the following lemma and 

propositions. We make use of the theory of Dirichlet spacings (see Section 5.1.1). 

We will make use of the following discussion for the proof of Lemma 5.4.2 below, and 

also for Lemma 5.4.6 later, and so we consider general a > 0. For n = 1, 2, 3, . . . let Z„ 

and Hn denote the random variable given by the gain in length, on the addition of the 

point J7„, of the ONG on ZY°'̂  and respectively. Then, for a > 0, 

11 

0i ,a (^o , i ) _ 01," ( ^ ^ 0 ) = 1 + 5 ^ (Zf - / / f ) • (5-73) 

i=i 
Consider the arrival of the point Ui. For any i, Zi and H are the same unless the point 

Ui falls in the right hand half of the rightmost spacing Denote this latter event by 

Ej . Given the probability of Ei is Sl~^/2. Given Sl~^, and given that Ei occurs, 

the value of Z, is given by (1 - Vi)Si-'^/2 and the value of Hi by (1 + Vi)Si-^/2, where 

= 1 + 2{Ui - 1)/Si~^ is uniform on (0,1) given E^. So we have that 

Hr-zr = i e . (%^) ((1 + u.r - ( i - u,r), (5.74) 
\ 2 / 

where Ei is an event with probability S]'^/2. 

Remark. In the context of Dirichlet spacings, we see that the variable Z„ as defined at 

(5.63) satisfies, for n > 1, Z„ = min{5i" ,5^}. Thus, from (5.7), Z„ = 5i"/2. This fact 

also follows from the equivalence of the distribution functions (see Lemma 5.4.1). 

Lemma 5.4.2 For a sequence of uniform random variables Un, we have that 

E[0'\Uy) - 0''\U:)] = I + (5.75) 

Proof. From the a = 1 case of (5.74), we have that 

E[Hi-Z^] = \E[{Sl~'n 
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By (5.5), we have that E[{Sr^y] = 2i-\i + Thus, from (5.73), 

which gives (5.75). • 

From (5.74) and (5.75), we see that X ] " = i ( ' ^ i ~ - ^ j ' ) converges almost surely to Y^'i^ii^i" 

Hi). Proposition 5.4.2 below studies this in some more detail. First, we need the following 

result. We use the notation log"*" x := max{logx,0} for x > 0. 

Lemma 5.4.3 Let U be uniform on (0,1) and, given U, let N{n) ~ Bin(?i — 1, U). Then, 

as n oo, 

U{log^ N{n) -logn) UlogU; (5.76) 

( l - i 7 ) ( l o g + ( n - l - A ^ ( n ) ) - l o g n ) [1 - U) log{l - U). (5.77) 

Proof. For n G N, let M„ := log+ iV(n) - logn - logU. First, suppose A^(n) > nU/2. 

We have that 

- l o g 2 < M„ l{Ar („ )>„ [ / / 2} l{„c />2} < -logU. 

Hence 

U'M^l{^^n)>nu/2}l{nU>2} < ma.x{{log2)\ {logUf}. (5.78) 

The expected value of the right hand side of (5.78) is finite. Also, U'^M^ 0 as n oo, 

by continuity and the strong law of large numbers for N{n). Hence, by the dominated 

convergence theorem, 

E[U^M^1 { A f ( n ) > n f / / 2 } l { n £ / > 2 } ] ~^ 0- (5.79) 

Also, we have 0 < log"*" N{n) < logn, so that 

— log n < Mn < — log U. 

Hence 

C/^M„^<(logn)^-t-(logC/)\ (5.80) 

so that ElU'^M^] = 0{{lognY). Since P[nU < 2] = 2n-\ we then obtain, by Cauchy-

Schwarz, that there exists a finite positive constant C such that 

E[U^Mll{N{n)>nu/2}l{nu<2}] < C{logn)^n-'^^ ^ 0, (5.81) 
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as n oo. Now, suppose 0 < N{n) < nU/2. In this case, from (5.80), and Cauchy-
Schwarz again, for some finite positive constant C 

F[C/2M^{^(„)<„t;/2}] < C{\ozn)\P[N{n) < nUl2]fl^ ^ 0, (5.82) 

as n ^ oo, since 

P[N{n) < nU/2] < P[U < n'^^^] + P[U > n-^^^, N{n) < nU/2], 

which is o((log?7)'') as n —>• oo, using standard bounds for the tail of a binomial distribution 

(see, e.g.. Lemma 1.1 in [104]) for the final probabihty. The results (5.79), (5.81), and 

(5.82) then give (5.76). The argument for (5.77) is similar. • 

Q 
(5.83) 

Proposition 5.4.2 As n oo, 

where {Gi,Q) satisfies the fixed-point equation 

Gi\ V 

^ ' i [ / l o g t / + i ( l - [ / ) l o g ( l - [ / ) + m i n { t / , l - C / } ^^g^^ 

(1 - 2U)l{u>ii2} + \U 

In particular, Gi satisfies the fixed-point equation (5.26), and Q satisfies 

Q = (1 - [/)Q + (1 - 2U)l{u>i/2} + \u. (5.85) 

Further, E\Gi] = E[Q] = 0, 

1 TT̂  

Var[Gi] = - (1 + log 2) - — Si 0.012053, (5.86) 

and E[Gl] ^ -0.00005732546. 

Proof. We make use of Theorem 4.1 of [102], which is a general result for 'divide-and-

conquer' type recurrences. For ease of notation, write Yn •= 0^'^{U^'^) — 1, where we 

subtract 1 so that Yn does not include the length of the edge from 1 to 0, and let 
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again discounting the edge from 1 to 0. Write U = Ui for the position of the first arrival. 

Given U, let N{7i) ~ Bin(n - 1, U) be the number of points of U2, U^,... ,Un that arrive 

to the left of Ui = U. Using the self-similarity and scaling properties of the ONG, we 

have that {Yn,Qn) satisfies 

Yn 

Qn 

V n-l-N{n) 

+ 

'N(n) 

min{t/, 1 - U) 

^ n - l - A f ( n ) 

(5.87) 
(1 - 2U)l^u^,,2) 

where, given U and N{n), F^J^j, y |5i_7v{n) ^"^^ independent copies of YNI^U), K - i - A r ( n ) 

respectively, and similarly for the Qs. 

This equation is of the form of (21) in [102]. We now renormalise (5.87) by taking 

{Yn,Qn) ••= iYn-E[Yn],Qn-E[Qr,]) (in the notatiou of [l02], we take C„ = 1). By (5.69) 

we have 

E[Y,] = E[0'^'{U','')] - 1 = 1 logn + (7 - l ) / 2 -1- h{n), 

where h{n) = o(l) , while by (5.75) E[Qn] = - (1 /2 ) + k{n), where k{n) = 0(? | - i ) . Then 

by (5.87) 

0 0 

where 

y{2} 

^n-l-N{n) 

^ n - l - A ' ( n ) 

+ 
An 

(5.88) 

+ 

mm{U, 1-U} + 1 {U{\og+ N{n) - logn) + (1 - t/)(log+(n - 1 - N{n)) - logn)) 

(1 - 2U)l[u>i/2} + \U 

Uh{N{n)) - f (1 - U)h{n - 1 - A^(n)) - h{n) 

{1 - U)k{n - 1 - N{n)) - k{n) 

In order to apply Theorem 4.1 of [102], we need to verify the conditions (24), (25) and 

(26) there. Writing || • ||op for the operator norm, we have that, for condition (24) in [102], 

it follows from Lemma 5.4.3 that, as n —>• 00, 

A„ 

Br, 

\U\ogU + \{l-U) log(l - [/) - f min{C/, 1 - U) 

(1 - 2U)l{u>ii2) + \U 
(5.89) 
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Also, for condition (25) in [102], 

- / \ 2 

-f-

1° op 

2 -1 

op. 

2/3 < 1. (5.90) 

Finally, for condition (26) in [102], we have that for any £ G N, as n —> oo, 

E [l{N{n)<e]U{N{n)=n}U'^] 0] E [l {n-\-N {n)<e}u{n-l-N(n)^n] {1- " U)'^] ^ 0. (5.91) 

Taking s = 2 in Theorem 4.1 of [102], apphed to the equation (5.88), with the conditions 

(5.90), (5.89) and (5.91), implies that (y„, Qn) converges in the Zolotarev (2 metric (which 

implies convergence in distribution; see e.g. Chapter 14 of [117]) to {Y,Q), where E[Y = 

E[Q] = 0 and the distribution of {Y, Q) is characterized by the fixed-point equation 

V 

0 0 

+ 

y { i } \ i-u 0 \ 

logU + l { l - U) log(l -U) + min{t7,1 - U] 

{l-2U)l^u>ii2)^\U 
(5.92) 

That is, Y satisfies (5.26), so that Y has the distribution of Gi , and Q satisfies (5.85). 

Then setting F = Gi in (5.92) gives (5.84). Since Yn = O^'^iU^) and Q„ = d^'\U^^^) -

d^'^{Ul), we have (5.83). 

I t remains to prove the results for the higher moments of G i . For the variance of Gi, 

squaring both sides of (5.26), taking expectations, and using independence and the fact 

that E[Gi] = 0, we obtain 

E[G]\ = \E\G\]^E[m:ixv{U,l-UY] + \E[U''{logUf] 

^-\E\U{\ - U) logUlog{l - U)] + 2E[UlogUmm{U, 1 - U}]. 

The integrals required for the expectations are standard, and we find that E\G\ = 

((1 -I- log2)/4) - (7r^/24), which yields (5.86). Similarly, we obtain the third moment 

E\&^ = -0.00005732546... from (5.26), although in this case numerical methods are 

required for some of the integrals. • 

Let U be uniform on (0,1), and given U, let A''(n) ~ Bin(n — 1, ?7). Set 

:= (n - 1)1/2 
A^(n) l-Q 

+ ( l - t / ) ' 
n - 1 

l-Q 
1 . (5.93) 
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Lemma 5.4.4 Suppose 0 < a < 1. Then, as n ^ oo. 

Bain) 0. (5.94) 

Proof. The result is trivial when a = 1 or a = 0. Suppose 0 < ct < 1. Suppose n > 1. 

To ease notation, for the duration of this proof, set m = n — 1. Then we have that for 

any U G (0,1) and 0 < iV(n) < m, 

.,<W m ) " ° + {1 - Vr f ! ! i ^ y " ° - 1 < 0. (5.95) 

so that in particular |i?a(?i)| < n^/^ almost surely for 0 < a < 1. Let 

^ _^ N{n)-mU 
" • y/mU{l-Uy 

so that E[Wn] = 0, E[W^] = 1, and 

mU ' "V m?7 ' m{l-U) " V " ^ ( l - ^ ) ' 

Then, by Taylor's theorem, 

U ^ ( ^ r = 4 ^ ^ i ^ - < ^ ) ^ r . ^ - M n ) W l ' - ^ ] (5.96) 

= u\^ + R^{n)Wnsj^-^y (5.97) 

for remainder terms R\{n), R2{n) (which depend on Wn and U). Similarly, we have 

' m 

l - a 

98) 

[1-U) 1 - R4{n)WnJ ^J. (5.99) 

By the Lagrange form of the remainder in Taylor's theorem and a continuity argument 

at x = 0 there exists a constant B G (0, oo) such that for/9 = I — a, 

0 > i l ± ^ l ^ ^ l ^ > - f l , and 0 < ( i ± ^ l ^ < B . 
X^ X 

for all X > —1. Thus we we have, for i e { 1 , 2, 3, 4}, 

0 < Ri{n)-< C, (5.100) 
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for a finite positive constant C. 

For n> l,m = n - l , let E„ denote the event m'^l^ <U <1- m~^l^. From (5.96) 

and (5.98) we obtain 

\Ba{n)lE^ = \-Ri{n)Wl{l-U)m-"^-R,{n)WlUm-'l^)loilE„ 

< Cm-'I'WllE^, 

for some 0 < C < oo. By a standard moment generating function calculation, 

E[{N{:n)-mUf\U\ = mU{l - U) [lbm^U^{l - Uf - l2>QmU'^{l ~ Uf 

+25?nt/(l - U ) - 30f / ( l - f / ) ( l - 2Uf + l " 

< mUil - U){15m^U\l - Uf + 25mt/(l - [/) + 1)(5.101) 

By (5.101) we have that 

E[WllE^ < E[{N{n) - mUfm-^U-^{l - U)-^\En] = 0(1), 

as n —>• oo, so from (5.102) we have that 

Ba{n)lE^-^0. (5.102) 

Also, from (5.97) and (5.99) we have, 

\Bain)lEc\ = |(i?2(n) - R,{n))WnU'^'{l - Uy/'\ 1̂ ;̂ , 

and so using (5.100) we have 

Ba{n)lEc \ <CWn - UY^HEC. (5.103) 

Now, from (5.101) we have that 

E[{WnU'/^{l - Uy/^)'] = m-'E[{N{n) - mUf] = 0(1), 

as n ^ oo, so by Cauchy-Schwarz and the fact that P[E^] = 0{n'^^'^) we obtain from 

(5.103) that as n oo 

| 3 1 
E Ba{n)l ^ 0. (5.104) 

So (5.102) and (5.104) complete the proof. • 
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For the next few results, we will make use of the following. Suppose a > 0. For ease 
of notation, denote = - 1, where by subtracting 1 we discount the length 

of the edge from 1 to 0. Then, writing U = Ui for the position of the first arrival of ZV„, 

and using the self-similarity of the ONG, we have 

K ^ (min{C/, 1 - U]r + U-Y^l^ + (1 - (5-105) 

where, given [/, N{n) ~ Bin(n — and, given U and ^ ( n ) , ^ ^ j ^ j and are 

independent with the distribution of Fiv(„) and Yn-i-N{n), respectively. 

Proposition 5.4.3 Suppose 1/2 < a < 1. Then, as n oo, 

where Ga satisfies the fixed-point equation (5.27), and E[Ga] = 0. 

Proof. Suppose 1/2 < a < 1. For n > 0, let 

and 

YN(n) ••= - E [YN^n)\N{n)] , 

y-n-l-Nin) '•= yn-l-N{n) - E [Yn-l-N{n)\N{n) . 

Then, using (5.68), we can rewrite the 1/2 < a < 1 case of (5.105) as 

yn = + (1 - f / ) "y ;^ !U(„ ) + (min{t/, 1 - ^^^^ 

+ ( [ / " + (1 - Uy - 1) + U"h{N{n)) + (1 - Urh{n - 1 - N{n)) -{ktm) 

1 — a 

where h{n) ^ 0 as rz ^ oo and ^^(n) is as defined by (5.93), and C is a constant. From 

Lemma 5.4.4, for 1/2 < a < 1, n^^^^^'^'Bain) tends to 0 in Also 
E + (1 - C/)2"] = < 1, 

for a > 1/2. So we can apply Theorem 4.1 of [102] to (5.106), with s = 2, to obtain that 

Yn Ga in the Zolotarev C2 metric, and hence in distribution, where Ga satisfies (5.27). 

• 

Proposition 5.4.4 Let Of > 1. Then there exists a random variable Ga such that as 

n 00 we have 0-''^{U°'^) ->• 1 + almost surely and in L^. .4/50, the random variable 

Ga satisfies the distributional fixed-point equality (5.28). Further, E[Go\ = 2~°'/{a - 1). 
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Proof. Let Zi be the length of the i th edge of the ONG on as defined at (5.63). Let 

:= Y^=\ ^i- The sum converges almost surely since it has non-negative terms and, 

by (5.66), has finite expectation for a > 1. Then 
oo oo 

= J ] 51 (5.107) 
i=i j= i 

By (5.107), (5.66) and Cauchy-Schwarz, there exists a constant 0 < C < oo such that 

oo oo 

i=l 3 = 1 
since a > 1. The convergence then follows from the dominated convergence theorem. 

Once again, we have (5.105), this time for a > 1. As n oo, N{n) and n — N{n) 

both tend to infinity almost surely, and so, by taking n -)• oo in (5.105), we obtain the 

fixed-point equation (5.28). 

The identity E[Ga] = 2"°(af — 1)"^ is obtained either from (5.70), or by taking expec

tations in (5.28). Next, if we set G„ = - E[Ga\, (5.28) yields (5.27). • 

Proof of Theorem 5.4.1. Part (i) of the theorem follows from Proposition 5.4.3. Part 

(ii) follows from Proposition 5.4.2 with (5.69), and part (iii) follows from Proposition 

5.4.4. • 

5.4.4 T h e total weight of O N G ( Z Y O ) 

As well as considering the ONG on we consider the ONG on Z//°, since our final 

results on 0^'°'{Un) (in Theorem 5.2.2) are described in terms of distributional limits of 

For n = 1, 2, 3 , . . . denote by the random variable given by the gain in length of 

the tree on the addition of one point (f/„) to an existing n - 1 points in the ONG on a 

sequence of uniform random variables i.e. with the convention 0^'^{1(Q) = 0 we set 

/ / „ : = O i - i ( W ° ) - O i ' i ( W ° _ J . (5.108) 

Thus, with weight exponent a, the nth edge to be added has weight H^. 

Lemma 5.4.5 (i) i f„ has distribution function G„ given by G„(i) = 0 for t < 0, 

Gn{t) = 1 fort>l, and 

Gn{t) = 1 - - ( 1 - 0 " - ^ ^ ( 1 - 2^)" ( 0 < t < l / 2 ) ; (5.109) 
n n 

Gnit) = l - ^ ( l - i ) " ( l / 2 < i < l ) . (5.110) 
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(ii) For p>0, 

In particular, 

E[Hn] = Var[//„] = . , ' ' ' ' ^ ^ (5.112) 
2n 4n(n + l ) ( n + 2) 

(in) For P > 0, as n ^ oo 

E[H^] = 2-^V{f3 + 1)11-" + O(n -^ - i ) . (5.113) 

(iv) As n -> oo, 

2nHn Exp(l) , 

where Exp(l) is an exponential random variable with parameter 1. 

Proof. First we prove (i). With Z„ as defined at (5.63), we liave i/„ > Z„ with equaUty 

except in some cases where C/„ is the rightmost point of W„. So for 0 < i < 1, 

P[Hn >t] = P[Zn > + P[{(1 - Un) < t) H {H„ > t}]. (5.114) 

When 0 < t < 1/2, using part (i) of Lemma 5.4.1 for the first term on the right hand side 

of (5.114), and by conditioning on 1 — Un for the second, we obtain 

P[Hn >t] = {l- 2tY + j\l - t - s)"-Ms, 

which yields (5.109). On the other hand, for 1/2 < i < 1, we have P[Z„ > t] = 0 and, by 

conditioning on 

P[Hn>t]= j \ s - t r - ' ^ S , 

which yields (5.110), completing the proof of (i). For (n), we have 

E[H^,\ = f P[H^>t'l^]dt 
Jo 

1 
= / l ( l _ f i / / 5 ) " d ^ + / ! l Z L l ( i _ 2 t i / ^ ) " d i . (5.115) 

Jo Jo ''^ 

Using the substitutions y = t^^'^ in the first integral in (5.115) and y = 2t^^^ in the second 

yields 

E m = - (1 + ^-'(n - 1)) \ \ \ - y ) " / - M y , 
" Jo 
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and the fact that 

[1 - yTy^-'dy = 
T{n + l + (3) 

then gives the result (5.111), from which (5.112) follows by taking /? = 1,2. Part (iii) 

follows from (5.111) by Stirling's formula. Part (iv) follows from (iv) of Lemma 5.4.1, 

along with the fact that P[Zn ^ Hn] —> 0 as ?i —> cso. • 

Proposition 5.4.5 As n ^ oo, the expected total weight o/ONG(Z^°) under weight func

tion Wa, o: > 0, satisfies 
) - Q 

E[0''''{U^)] = ^ ^ ^ ^ ^ 2 - V - " + - - r + 0 ( n - " ) ; (0 < «(S.1|6) 
I — a a a[l — a) 

E\0'\Ul)\~\\o^n = \^ + 0{n-')- (5.117) 

Ep^'^^iUl)] = - + + 0(n^-") (a > 1) (5.118) 
a aya — 1) 

Proof. We have 
n n 

i=i i=i 

In the case where a = 1, E[Hi] = {2i)-^ by (5.112), and (5.117) follows by (C.3.5). 

Suppose a > 0. Then from (5.111) we obtain for cv > 0, a 7̂  1, 

^ _r (n + i ) r ( . - i) J ^ ^ 1 ^ 2:^ 
r(n + a + l ) ' ^ a a{a-l) ^ ' 

Using the fact that a{a - l)T{a - 1) = r ( l + a), and that, by Stirling's formula 

?̂ -" + 0(?^-^-"), 
r(n + a + 1) 

we obtain (5.116) and (5.118) from (5.119). • 

The next result will prove useful in relating our results on 0^'"(t/°'^) to 0^'''{U^). We 

make use of the discussion above Lemma 5.4.2. 

Lemma 5.4.6 For a sequence of uniform random variables lAn, we have that, for 0 < 

a <1, as n 00 

0i,a(^o,i) _ C)1."(ZYO) _^ (5 120) 

where the convergence is in and almost sure, and Qa is a nonnegative finite random 

variable. 
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Proof. Recall that we can decompose C^'"(iY^'i) and C^'"(W°) into the increments Zi 
and Hi respectively, for i = 1 , . . . ,n , as described at (5.73). From the 0 < a < 1 case of 
(5.74), we have 

E - zf s\-^] = ^— ^ [(1 + uy - (1 - u y . 
V 2 y 

By (5.5), ^[(5;-^) ' ' ] = C>(i-'=) for /c> 0. So we have that, for 0 < a < 1, i / f - Zf are 

nonnegative random variables with expectation 0( i~^~") . Thus we have that 

n oo 

as n -)• oo, where the convergence is almost sure and in L \ and so we have (5.120). • 

For the next few results, we will make use of the following fact. Writing U = Ui for 

the position of the first arrival, by the self-similarity of the ONG we have that 

0'''^K) ^ t/"Oi-"(WjJ„)) + (1 - t/)"0^'"(Z^°_i_A,H), (5.121) 

where, given U, N{n) ~ Bin(n — 1, U) gives the number of points of U2, C/3,..., C/„ that 

arrive to the left of Ui = U, and, given U and A''(n), the terms on the right are indepen

dent. Note that the term [/°C>^'"(iYj;J„)) on the right hand side of (5.121) includes the 

edge of weight J/" from Ui to 0. 

Proposition 5.4.6 Suppose 1/2 < a < 1. Then, as n ^ 00, 

a^'"(W°) A He,, (5.122) 

where He, satisfies the fixed-point equation (5.30), and £"[.^0] = 0. 

Proof. By Lemma 5.4.6, and the fact that the convergence in (5.120) implies 

E [e)^'°(W°'i)] - E [0^'''{Ul)\ 0, 

as n 00, we have from Proposition 5.4.3 that for 1/2 < a < 1, there exists a random 

variable Ha such that as n ^ 00 

O^'^'iK) A Ha. (5.123) 

We now need to demonstrate that Ha satisfies the fixed-point equation (5.30). Renormal-

izing the 1/2 < a < 1 case of (5.121) by subtracting off̂  expectations, -using (5.69) and 
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(5.116), we obtain 

(i - ^ ] + ((1 - ur -1) ( - ^"^ 
l ~ a j ' ' \a a ( l - a ) 

+^7"/^(iV(n)) + ( l - f / ) " / ^ ( ? ^ - l - A ^ ( ? ^ ) ) - / ^ ( n ) , (5.124) 

where h{n) —> 0 as n -> oo, C is a constant, and Ba{n) is as defined by (5.93). By 

Lemma 5.4.4, for 1/2 < a < 1, n(^/2)-"5„(n) tends to 0 in L^. Given U, we have 

that A''(n) and n — 1 — N{n) tend to infinity almost surely. So, by Proposition 5.4.3, 

we have that 0i'"(Wj;f„)) converges in distribution to G Q as n —> oo. Since by (5.123) 

O^'^^il^n-i-Nin)) converges in distribution to Ha, we deduce from (5.124) that Ha does 

indeed satisfy the fixed-point equation (5.30). Finally, the fact that E[Ha\ = 0 fohows by 

taking expectations in (5.30). • 

Proposition 5.4.7 As n -> oo, 0^''^{U^) converges m distribution to a random variable 

Hi, where Hi satisfies the fixed-point equation (5.29). Further, £^[.^1] = 0, 

1 TT̂  
Var[i / i] = - (3 + log 2) ^ 0.050410, (5.125) 

8 24 

and E[Hl] ^ 0.00323456. 

Proof. The fact that 0^'^{U^) converges in distribution follows from writing 

d''\U^,) = d''\U'/) - (d''\Ul'') - a^'i(W°)) , (5.126) 

and using Proposition 5.4.2. From Proposition 5.4.2 and (5.126), we have that as n -> 00, 

0''\K) = (1, - 1 ) { ^ ' " ^ ^ " " ^ _ 1 ^ (1, - 1 ) i ^:\=Gi-Q. 

By (5.84) we have that the term on the right of the above expression is equal in distribution 

to 

Gp} \ / 1 - ^ 0 \ l G f > 

Q^i> ) l - U ) [Q^^} 

- f ( l - 1 ) I ^ f ^ l o S ^ + K l - ^ ) l o g ( l - f / ) + m i n { [ / , l - C / } 

= UG\'^ + [/)(Gp^ - g^2>) + i [ / l o g t/ -t- i ( l - U) log(l - u ) + ^ . 
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That is, the distribution of the limit Hi := Gi-Q satisfies the fixed-point eciuation (5.29). 

The fact that E[Hi] = 0 follows by taking expectations in (5.29). For the variance, we 

square both sides of (5.29) and take expectations, using independence and the fact that 

E[Gi] = E[Hi] = 0 to give 

E[Hl] = \E[GI] -\- \E[Hf] + E[Uy4] + ^^[C/'(log U)^] + IE[U^ log U] 

+ ^E[U{1 - U) log(l - U)] + ^E[U{1 - U) log [ / log( l - U)]. 

The integrals required for the expectations are standard, yielding (5.125). Similarly, we 

obtain the third moment E[Hf] = 0.00323456 . . . , although in this case numerical methods 

are required for some of the integrals, using the results for E[Gl] and E[Gl] in Theorem 

5.4.1. • 

Proposition 5.4.8 Let a > 1. Then there exists a random variable Ha such that as n ^ 

oo we have (9^'"(iY°) Ha almost surely and in L^. Also, the random variable Ha satisfies 

the distributional fixed-point equality (5.31). Further, E[Ha] = ( l / a ) + 2~°'/{a{a — 1)). 

Proof. The convergence almost surely and in follows by a similar argument to that in 

the proof the corresponding result of Proposition 5.4.4, but using Hi rather than Zi and 

with (5.113) in place of (5.66). 

Consider the a > 1 case of (5.121). As n oo, A''(n) and n-N{n) both tend to infin

ity almost surely, and so, by taking n -)• oo in (5.121), and using the fact that C'^'"(^^(„)) 

converges almost surely to l - f (see Proposition 5.4.4), and that C^'"(ZY°_i_;v(n)) "̂ O"̂ " 

verges almost surely to Ha (by the argument above) we obtain the fixed-point equation 

(5.31). 

The identity E[Ha] = ot'^ + 2""a~HQ; - 1)~^ is obtained either from (5.118), or by 

taking expectations in (5.31). Next, if we set Ha = Ha - E[Ha\, (5.31) yields (5.30). • 

Proof of Theorem 5.4.2. Part (i) of the theorem follows from Proposition 5.4.6. Part 

(ii) follows from Proposition 5.4.7 with (5.117), and part (in) follows from Proposition 

5.4.8. • 

5.4.5 P r o o f of T h e o r e m 5.2.2 

In order to prove Theorem 5.2.2, we make use of our results from Section 5.4, in particular 

Theorems 5.4.1 and 5.4.2. 
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Proof of Theorem 5.2.2. Write U = Ui for the position of the first arrival. There is 
no edge from Ui (as it is the first point), so using the self-similarity of the ONG, we have 
that 

O^'-iUr.) ^ C/"0;i'J(WV)) + (1 - Uro\:,]{Ul,_^^^^), (5.127) 

where, given U, N{n) ~ Bin(n - l,U) gives the number of points of U2,U3,... ,Un that 

arrive to the left of = U, and, given U and A^(n), 0\["^{U^^^^^) and 0\:^"^{U^_^_^^^^) 

are independent copies of C'^'°(Z^^(„)) and C'^'"(W°_i_A'(n)) respectively We will use the 

notation 

O^'^'iKin)) (O^'"(W^(„))-^[Oi'"(W^(„))|iV(n)])l{^(„)>0}, (5.128) 

Now, we prove part (i) of the theorem. Suppose 1/2 < o < 1. Then, taking expectations 

in (5.127), from (5.116) we have, recalUng the definition of Ba{n) from (5.93), for 1/2 < 

cv < 1 

E[0''''iUn)\U,N{n)] = ^ ^ ^ ^ ^ 2 - " ( n - l ) ( i / 2 ) - " 5 , ( n ) 

( \ 2"" \ 
+ (t /° + ( l - t / ) < ^ ) - - - - - -

\ Q ; Q;(1 — O.) J 
+[/"/i(iV(?i)) + (1 - UYh{n - 1 - A^(n)) + o( l ) , 

where h{n) = o(l) as n -)• oo. Now, by Lemma 5.4.4 E\{n - l)(^/^'~°Bc,(n)] 0 as 

71 -> oo for 1/2 < Q' < 1, so we have 

£;[0^-«(ZY„)] = { - - I " , ) + 0(1). (5.129) 

Then, subtracting off expectations in (5.127), using (5.129) and (5.116), with the notation 

of (5.128), gives for 1/2 < a < 1 

0^-(Z^„) ^ t/"a{;';(W«(„,) + (1 - Ur&^^{Ul_,_^^^^) + ^ ^ ^ ^ 2 - " n ( i / 2 ) - ° 5 j n ) 

1 + a J \a a ( l - a) 
+t/°/i(iV(n)) + (1 - Uyh{n - 1 - iV(n)) + o( l ) , 

where again h{n) = o(l) as n -> oo. Now, letting n ^ oo and using Lemma 5.4.4 yields 

(5.34). 
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Now, to prove part (ii) of the theorem, suppose ci = 1. From the a = 1 case of (5.127), 
using (5.117), we have 

E[0''\Ur.)\U,N{n)] = i l o g n + i 7 - l - ^ [ / ( l o g 7 V ( n ) - l o g n + / i ( iV(n ) ) )+o( l ) 

-f ^ (1 - U){log{n - 1 - iV(n)) - logn + h{n ~ 1 - N{n))), 

where h{n) —>• 0 as n -> oo. Thus, using Lemma 5.4.3 we have 

E[0''\K)]-Uogn -> ^^ + ^E[U\ogU] + ^E[{l-U)\ogil-U)] 

= (5.130) 

Now, subtracting off the expectations from both sides of the a = 1 case of (5.127), using 

(5.130) and (5.117), with the notation of (5.128), gives 

= t/C^|l\(i^V)) + ( 1 - ^ ) ^ 1 2 } (^n-l-yV(n)) + ^ + C.(l) 

+ - ( l og+ A^(n) - logn) + i ^ ( l o g + ( n - 1 - N{n)) - logn) 

+Uh{N{n)) + (1 - U)h{n - 1 - N{n)), (5.131) 

with h{n) -)• 0 as n -)• oo. We now use the fact that ^ ( n ) and n - A''(n) tend to 

infinity almost surely, the independence given U and A''(n), Lemma 5.4.3, and the conver

gence in distribution of 0^'^{U^) (Proposition 5.4.7) to obtain (5.35). The convergence of 

expectations version also follows from (5.130). 

Finally we prove part (iii) of the theorem. Suppose ct > 1. Consider the a > 1 case of 

(5.127). Now we use the fact that iV(n) and n - ^ ( n ) tend to infinity almost surely, the 

independence given U and A'^(n), and the convergence in and almost surely of 0^'°'{U^) 

(for Q; > 1) to obtain the stated result. This completes the proof of the theorem. • 

5.5 The D L F and DLT: analysis 

5.5.1 T h e mean total weight of the D L F and D L T 

First we consider the rooted case, i.e. the DLT on U^. For n G N denote by Z„ the 

random variable given by the gain in length of the tree on the addition of one point (C/„) 

to an existing n - 1 points in the DLT on a sequence of uniform random variables 

i.e. with the conventions D^{UQ) = 0 and UQ = 0, we set 

Z„ D\U^„) - D\U^,_,) = f/„ - max{f/y : 0 < i < n, f/,- < f/„}. (5.132) 
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Thus, with weight exponent a, the nth edge to be added has weight Z^. 

Lemma 5.5.1 (i) Z„ has distribution function Fn given by Fn{t) = 0 fort < 0, F„(i) = 

I forty I, and Fn{t) = 1 - (1 - i ) " /or 0 < t < 1. 

(ii) For P > 0, Z„ has moments 

In particular. 

E[Zn] = ^—; Var[Z„] = " (5.134) 
n-t-1 (n 4-l)^(n-I-2) 

(tii) For P > 0, as n ^ oo we have 

E[Z^] ^ r{p-\-l)n-^. (5.135) 

(iv) As n oo, nZn converges in distribution to an exponential random variable with 

parameter 1. 

Proof. For 0 < ^ < 1 we have 

P[Zn >t] = P[Un > t and none of C/ i , . . . , lies in ([/„ - t, Un)] = (1 - t ) " , 

and (i) follows. We then obtain (ii) since for any P > 0 

E[Z^] = f P[Zn > t'^^]dt = f \ l - t^ll'Tdt. 

Jo Jo 

Then (hi) follows by Stirling's formula. For (iv), we have from (i) that, for t e [0,oo), 

and n large enough so that {t/n) < 1, 
t \ . t P[nZn <t] = Fn =1- [1- - j 1 - e-\ as n ^ oo. 

But 1 — e~*, f > 0 is the exponential distribution function with parameter 1. • 

Remark. Note that Z„ has the same distribution as the spacing S" (see Section 5.1.1). 

In Lemma 5.5.3 we get some further insight into this. 

The following result gives the asymptotic behaviour of the expected total weight of 

the DLT. Recall that 7 denotes Euler's constant, as at (C.3.5). 



5.5. The D L F and D L T : analysis 113 

Proposition 5.5.1 As n oo the expected total weight of the DLT under a-power 
weighting on satisfies 

E[D"{Ul)] - ^ 1 ^ 7 ^ " ' " " ( 0 < a < l ) ; (5.136) 

E[D\Ul)]-\ogn - ^ 7 - 1 ; (5.137) 

£[D"(W°)] = - i _ + 0 ( n i - " ) ( a>l ) . (5.138) 
a — 1 

Proof. We have 

i=l i=\ 

In the case where a = 1, E[Zi] = (i + 1)~^ by (5.134), and (5.137) follows by (C.3.5). For 

general a > 0, a 7̂  1, from (5.133) we have that 

E[D-H)] = r(l^a)± ^I<i±i) - = ^ ^ , ^ " + f ^ ' ,. (5^139) 
' ^ ^ ( l + a + ^) a-1 {a - l)r{n + 1 + a) ^ ^ 

By Stirling's formula, the last term satisfies 

( a - l ) r ( n + l-t-a) a-1 ^ v \ j 

which tends to zero as n ^ 00 for a > 1, to give us (5.138). For o; < 1, we have (5.136) 

from (5.139) and (5.140). • 

Now consider the unrooted case, i.e., the directed linear forest. For Un as above the 

total weight of the DLF is denoted D"(W„), and the centred total weight is D°'{Un) •= 

Let Do (^n) denote the total weight of the edges incident to 0 in the DLT on Then, 

given Un, by the construction of the DLF and DLT we have that 

D<^{U'J = D'^{K) + D^{U'J. (5.141) 

The following lemma says that DQ{U^) converges to a random variable that has the gener

alized Dickman distribution with parameter 1/a (see Chapter 4, in particular Propositions 

C.4.1 and C.4.2). 

Lemma 5.5.2 Let a > 0. There is a random variable DQ with the generalized Dickman 

distribution with parameter 1/a, such that asn 00, we have that (Z n̂) —>• DQ, almost 

surely and in . 
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Proof. Let 5D{U^) denote the degree of the origin in the directed linear tree on U^, so 
that 5D{U^) is the number of lower records in the seciuence {Ui,..[/„). Then 

D M ) = ^ i " + {Viy^T + • • • + (Vi • • • l/^,(t.o))^ (5.142) 

where (Vi, • • •) is a certain sequence of independent uniform random variables on (0,1), 

namely the ratios between successive lower records of the sequence (t/„). The sum + 

(^1^2)" + (^iV'2V3)" + • • • has nonnegative terms and finite expectation, so it converges 

almost surely to a limit which we denote D^. Then DQ has the generalized Dickman 

distribution with parameter l / a (see Proposition C.4.1). 

Since 5D{U^) tends to infinity almost surely as n —>• co, we have DQ{U^) -4 DQ almost 

surely Also, E[iD^)^] < 00, by (C.4.9), and {D^ - D'^{U^)f < {D^f for all n. Thus 

E[{DQ{U^) - DQY] ^ 0 by the dominated convergence theorem, and so we have the 

convergence as well. • 

Proposition 5.5.2 As n ^ 00 the expected total weight of the DLF under a-power 

weighting on Un satisfies 

E[D°(Un)] ~ r (a + l ) ^ i _ , (0 < Q < 1); (5.143) 
1 — Q' 

E[D\Un)]-logn 7 - 2 ; (5.144) 

E[D"{Un)] ^ -r^-T^ ( a>l ) . (5.145) a'(Q; — I j 

Proof. By (5.141) we have £;[D«(W„)] = £;[D"(W°)] - E[D^{U^)]. By Lemma 5.5.2 and 

(C.4.9), 

E[D^{U'J] E[D^] = l / a . 

We then obtain (5.143), (5.144) and (5.145) from Proposition 5.5.1. • 

In the following sections we analyse the limiting behaviour of the total weight of the 

DLT and DLF. In some cases, we follow the contraction method for establishing fixed-

point limits as employed in the analysis of the ONG in Section 5.4. In the particular case 

Q = 1, a more direct approach is enabled by the special covariance structure of the DLT 

(see Section 5.5.3). In all cases, the self-similarity of the DLF and DLT will be of central 

importance. 

Taking U = Ui (the first arrival) here, by the self-similarity of the DLT we have that, 

for n € N , 

D ^ ) ^ C/"i5fi}(^/^(„)) + (1 - C/)"£'f2}(WLi_;v(n)) + t^", (5.146) 
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where N{n) ~ B i n ( n - 1 , U), given U, and, given U and iV(n), Dfi}(i^^(„)) and I)f2}(^n-i-yv(„)) 

/°(„)) and D-{Ul,_^^^;, are independent with the distribution of D"(WL„J and D"{U^_^_^,s), respectively. 

5.5.2 L i m i t behaviour for 1 / 2 < a < 1 

Proposition 5.5.3 For 1/2 < a < 1, we have that, as n ^ oo, 

D^iU'J^Da, 

where Da has the distribution given by the fixed-point equation (5.37), and E[Da] = 0. 

The proof of Proposition 5.5.3 follows similar lines to that of Proposition 5.4.3; we do not 

give the details this time round. 

Proposition 5.5.4 For 1/2 < a < 1, we have that, as n-^ oo, 

D-(U^) A Fa, 

where Fa has the distribution given by the fixed-point equation (5.38), and E[Fa] = 0. 

Proof. This follows from Proposition 5.5.3 and Lemma 5.5.2, in the same manner as the 

proof of Proposition 5.4.6. • 

5.5.3 Orthogonal increments for a = 1 

In this section we shall show (in Lemma 5.5.5) that when o; = 1, the variables Zi,i > 1 

are mutually orthogonal, in the sense of having zero covariances, which will be used later 

on to establish convergence of the (centred) total length of the DLT. We use the spacings 

notation of Section 5.1.1. 

We can arrange the spacings themselves (5", 1 < j < n -f-1) into increasing order to 

give 5"̂ ,̂ • • . , 'S'("„+i)- Then let denote the sigma field generated by these ordered 

spacings, so that 

. ^ = a ( 5 ( ' \ ) , . . . , 5 ( V i ) ) . (5.147) 

The following interpretation of JF̂  may be helpful. The set (0,1) \ {Ui,..., consists 

almost surely of n -|- 1 connected components ('fragments') of total length 1, and is 

the a-field generated by the collection of lengths of these fragments, ignoring the order in 

which they appear. 
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By definition, the value of Z„ must be one of the (ordered) spacings 5^"^,..., 'S'"„_^ij. 
The next result says that, given the values of these spacings, each of the possible values 
for Zn is equally likely. 

Lemma 5.5.3 For n > 1 we have 

P [Zn = S^^)\y^^] = a . s . , / o r i = l , . . . , n - H l . (5.148) 

Hence, 

i=l 

Proof. We have (see Section 5.1.1) that ( 5 " , . . . , J has the symmetric Dirichlet 

distribution with parameter 1. In particular, the SJ are exchangeable. Thus given 

5"^^,..., S""̂ .,.!), i.e. J^g, the actual values of 5" , . . . , are equally likely to be any 

permutation of S'^"^,..., ̂ ^J^+i), and given 5" , . . . , the value of Z„ is equally likely to 

be any of 51^ , . . . , (but cannot be 5;^+i). 

Hence, given . . . , >S'"„̂ i) the probabihty that Z„ = 5"-j is (1/n) x n/(r i -t- 1) — 

l / ( n - f 1), i.e. we have (5.148), and then (5.149) follows since J^'jll S^j) = 1- • 

Lemma 5.5.4 Let 1 < n < i. Given Tg, Zt and Z„ are conditionally independent. 

Proof. Given J^g, we have 5"^^,..., and by (5.148), the (conditional) distribution 

of Zn is uniform on {•S'^"^,... ,S^^_^^^}. The conditional distribution of Ze, I > n, given 

Tg, depends only on 5̂ " j , . . . , 'S'"̂ ^̂ ^ and not which one of them Z„ happens to be. Hence 

Zn and Zc are conditionally independent. • 

Lemma 5.5.5 For 1 < n < i, the random variables Zn, Zc satisfy Gov [Zn, Zc] = 0. 

Proof. From Lemmas 5.5.4 and 5.5.3, 

E\ZnZc\T^\ — E\Zn\T^\E\Z(\T^\ = —-—E\Z^T^\, 
TX I J . 

and by taking expectations we obtain 

E[ZnZc] = ——E[Zc] = — — • J—-= E[Zn] • E[Zc]. 

Hence the covariance of Z„ and Zc is zero. • 
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Remarks, (a) Calculations yield, for example, that E[D\U°)] = E[Zi] = 1/2, E[D\U^) 
5/6, and Var[Zi] = 1/12, VarfZs] = 1/18, Ya.v[D\U^)] = 5/36. 

(b) The orthogonality structure of the Z" is unique to the a = 1 case. For example, 

it can be shown that, for a > 0, 

Then 
p r r^a - 2)r(2Q + 3) + 2{a + 2)r{a + 2f 
C o v [ Z i , Z 2 j - 2 ( t . + l )2 ( a + 2)r(2a-f3) 

and this quantity is zero only if a = 1; it is positive for a > 1 and negative for 0 < a < 1. 

5.5.4 L i m i t behaviour for o; > 1 

We now consider the limit distribution of the total weight of the DLT and DLF. In the 

present section we consider the case of a-power weighted edges with a > 1; that is, 

we work towards part (iv) of Theorem 5.2.3. To describe the moments of the limiting 

distribution of D"{U^) and D"(Z//„), we introduce the notation 

J{a) := / \ " ( l - « ) " d u = 2-^- ' "V^- + (5.150) 
r(aH-3/2) ' 

We start with the rooted case {D°'{U^)), and subsequently consider the unrooted case 

Proposition 5.5.5 Let a > 1. Then there exists a random variable such that as 

n ^ oo we have D°'{U^) —>• Da almost surely and in D^. Also, the random variable Da 

satisfies the distributional fixed-point equality (5.39). Further, E[Da] = l / ( a — 1) and 

_ a{a-2 + 2{2a + l)J{a)) 
[ a - m 2 a - l ) ' ^^'^^^^ 

Proof. Let Zi be the length of the i th edge of the DLT, as defined at (5.132). Let 

Da := Yl^i •^t- The sum converges almost surely since it has non-negative terms and, 

by (5.135), has finite expectation for a > 1. By (5.135) and Cauchy-Schwarz, there exists 

a constant 0 < G < oo such that 
GO OO 

E[Di] = E E ] ^ ^ E E "̂"̂ "̂  < 
i=l j=l i=l j=l 

since a > 1. The convergence then follows from the dominated convergence theorem. 
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Consider the a > 1 case of (5.146). As n oo, N{n) and n - N{n) both tend to 
infinity almost surely, and so, by taking n —)• oo in (5.146), we obtain the fixed-point 
equation (5.39). 

The identity E[Da] = (a — 1)~^ is obtained either from (5.138) of Proposition 5.5.1, or 

by taking expectations in (5.39). Next, if we set D^^ D^- E[Do\, (5.39) yields (5.37). 

Then, using the definition (5.150) of J{Q), the fact that E[Da\ = 0, and independence, 

we obtain from (5.37) that 

_ 2E[bl] g^ + l 2aJ{a) 1 
E[Da\ - o„, , 1 + TT T\^7^TrTTT + 2 a + 1 ( a - l ) 2 ( 2 a + l ) {a-lY ( a - 1 ) 2 ' 

and rearranging this gives (5.151). • 

Recall from Lemma 5.5.2 that is the limiting weight of edges attached to the origin 

in the DLT on uniform points. Combining this fact with Proposition 5.5.5, we obtain a 

similar result to the latter for the unrooted case as follows: 

Proposition 5.5.6 Let a > 1. There is a random variable Fa, satisfying the distribu

tional fixed-point equality (5.40), such that D°'{Un) —>• Fa, as n oo, almost surely and 

in L^. Further, E[Fa] = ll{a{a — 1)), and 

where J{a) is given by (5.150) andVKx[Da] by (5.151). 

Proof. By Lemma 5.5.2 and Proposition 5.5.5, there are random variables Da and D^ 

such that as 71 - ) • oo we have I>"(/i°) D^ and DQ{U°) D^, also with almost sure 

convergence in both cases. Hence, setting Fa := Da — DQ, we have by (5.141) that 

D^iUn) = D"{U^) - D^{U°) Fa, a.s. and in L\ (5.153) 

Next, we show that Fa satisfies the distributional fixed-point equality (5.40). The 

self-similarity of the DLT implies that 

D"(W„) ^ t/"D"(W;,(„)) + (1 - t/)"i5«(iY«_i_^(„)), (5.154) 

where N{n) ~ B i n ( 7 i - 1 , U), given U, and D'̂ (W;v{n)) and i^°(W°_i_jv(„)) are independent, 

given U and N{n). As n oo, N{n) and n- N{n) both tend to infinity almost surely, so 

taking n oo in (5.154), using Proposition 5.5.5 and (5.153), we obtain the fixed-point 

equation (5.40). 
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The identity E[Fa\ = a~^{a - 1)"^ is obtained either by (5.145), or by taking ex
pectations in (5.40) and using the formula for E[Da] in Proposition 5.5.5. Then with 
Fa •= Fa - E[Fa], wc obtaiu (5.38) from (5.40), and using independence and the fact that 
E[Fa\ = E[Da] = 0 we obtain 

2« E[p^ 2aJ{a)-l , a'+1 
2 a + l ' 2 a + 1 a^{a - 1)^ a^{a - iy{2a + 1)' 

which yields (5.152). • 

Examples. When a = 2 we have that ^[Ds] = 1 and J{2) = 1/30, so that VarfDa] = 2/9. 

Also, E[F2] = 1/2 and VarfFs] = 7/72 ^ 0.0972. 

5.5.5 Limit behaviour for a = 1 

Unlike in the case a > 1, for a = 1 the mean of the total weight D^(U^) diverges as 

n —)• CO (see Proposition 5.5.1), so clearly there is no limiting distribution for D^{U^). 

Nevertheless, by using the orthogonality of the increments of the sequence {D^{U^),n > 

1), we are able to show that the centred total weight D^(ZY°) does converge in distribution 

(in fact, in L^) to a limiting random variable, and likewise for the unrooted case; this is 

our next result. 

Subsequently, we shall characterize the distribution of the limiting random variable 

(for both the rooted and unrooted cases) by a fixed-point identity, and thereby complete 

the proof of Theorem 5.2.3 (i). 

Proposition 5.5.7 (i) As n ^ oo, the random variable D^{U^) converges in to a 

limiting random variable Di, with E[Di] = 0 and Var[Di] = 2 —7r^/6. In particular, 

Var [D^iK)] -> 2 - 7r76 as n ^ oo. 

(a) As n oo, D^{Un) converges in to the limiting random variable Fi := Di — 

Dl + l. 

Proof. Adopt the convention D^{UQ) = 0. By the orthogonality of the Zj (Lemma 5.5.5) 

and (5.134), for 0 < £ < n. 

Var b \ K ) - b \ U ' A = Var 5 ] ( Z , - - F[Z,]) 

7 Sr, r —^ 0 as n, £ —> oo. 
a + 1)^0-+2) 
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Hence D\{IA^) is a Cauchy sequence in L^, and so converges in to a limiting random 
variable, which we denote Di. Then E[Di] — lim„_).oo-S[-Di(ZY°)] = 0, and 

oo 

Var[Di] = Hm Var \d\U°)] = V — — — -

Z> 2 2 V 1 I I 

I t remains to prove part (ii), the convergence for the centred total length of the DLF 

D\Un). We have by (5.141) that 

D\Un) = D\Ul) - DlK) + E[Dl{Ul)\ -^D,-Dl + 1, 

where the convergence follows by Lemma 5.5.2 and part (i). Thus D (̂ZY„) converges in 

as n ^ oo. • 

For the next few results (which we will need, in particular, in Chapter 6) it is more 

convenient to consider the DLF defined on a Poisson number of points. Let ( f / i , U2,...) 

be a sequence of independent uniformly distributed random variables in (0,1), and let 

{N{t),t > 0) be the counting process of a homogeneous Poisson process of unit rate in 

(0, 00), independent of {Ui, U2, • •.). Thus N{t) is a Poisson variable with parameter t. As 

before, let ZY„ = {Ui,..., Un), and (for this section only) let Vt := l(N{t)- Let Vf := ZY^(t), 

so that P ° = {0,UuU2,...,UN(t)). 

We construct the DLF and DLT on t / i , f/2,..., [//v{t) as before. Let D\V^) = D^V^)-

E [D^{V^)\ and D^{Vt) = D^{Vt)-E [D^{Vt)]. We aim to show that the limit distribution 

for D^{Vf) is the same as for D^{U^), and likewise in the unrooted case. We shall need 

the following result. 

Lemma 5.5.6 As t ^ 00, 

^^E[D\Vt)] = + 0{t-'); and f^E[D\V^)] = j + 0{t-'). (5.155) 

Proof. The point set {Ui,... ,UN{t)} is a homogeneous Poisson point process in (0,1), 
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so we have 

dt 
~E[D^{Vt)] = -E[length of new arrival 

/ duE[dist. to next pt. to the left of u in Vt 
Jo 

f du r ste-''ds = l + ^ ( e - ' - l ) + -
Jo Jo i t 

t 
f 

i + 0 ( i - ) . 

Similarly, 

E[D^{Vt)] = / duE[d\st. to next pt. to the left of uinVt^ {0} 
Jo 

= du P[dist. to next pt. to the left > s]ds 
Jo Jo 

du / e 'Ms = - + 
0 ^0 t t"^ 

= \ + o(t-').a 

Lemma 5.5.7 (i) As t ^ oo, D^iV'^) converges in distribution to Di, the large-n 

limit ofb\U^). 

(a) Ast ^ CO, D^{Vt) converges in distribution to Fi, the large-n limit of D^{Un). 

Proof, (i) From Proposition 5.5.7, we have D^{U°) D i as n ^ oo. Let at := 

E[D'{V^)] and Ân := E[D\U^)]. Since /i„ = E ^ t i Z^ = Zlii^ + 0 " ' by (5.134), for 

any positive integers n we have 

" " ^ ' ^ 1 , /max(n,^) + l \ / n + l \ 
l^n-lie= 22 ^ ^ ^ l ° g • ) ' , = log y — • 5.156 

Note the distributional equalities 

C{D\V^)\N{t) = n)^C{D\U'J)-

C {D\Vf) - ^Numt) = n) = £ [ D ' m ) . (5.157) 

First we aim to show that at - /X[tj 0 as t ^ oo. Set Pmit) := e" '^. Then we can 

write 
oo 

at-/W[tJ = y^Pm(0(/ im - A^[tj) 
m=0 

^ Pmit){ll,n~ l-^[t\) + Pm{t){Hm- l^[t\)- (5.158) 
\m-[t\\<t3/* \m-[t\\>t^/'* 
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We examine these two sums separately. First consider the sum for |?n — [t\ \ < t^/'^. By 
(5.156), we have 

A [[t\+l + t'"\ , / [t\+l w 
sup Aim - ^Ltj ^ "^a^ log — r - n — ' log -T~^^—^ 

= O ( r ^ / ^ ) 0 as i ^ cx). 

Hence the first sum in (5.158) tends to zero as t -> oo. To estimate the second sum, 

observe that 

Pm{t){Hm - l^\t\) < X I Pm{t){'m + t) 
|m-[tJ|>t3/4 |m-[tJ|>f3/4 

= E [{N{t) + ^)l{|Ar(()_LtJ|>t3/4} 

< {E[{Nit) + ty]P[\N{t)-[t\\>t'^^]y^^. (5.159) 

By ChernofF bounds on the tail probabilities of a Poisson random variable (e.g. Lemma 

1.4 of [104]), the expression (5.159) is 0(iexp(—i^/18)) and so tends to zero. Hence the 

second sum in (5.158) tends to zero, and thus 

at — /i[tj —)• 0 as ^ —>• oo. (5.160) 

Now we show that D^{Vf) Di as t ^ oo. We have 

D \ V f ) = {D\V't) - Aiiv(t)) + (/iiv(t) - m ) + [m - at) . (5.161) 

The final bracket tends to zero, by (5.160). Also, by (5.157) and the fact that N{t) 

oo a.s. as t —oo, we have 

Finally, using (5.156), we have 

N{t) + 1 
log 

t\ +1 
A o , 

as ^ ^ oo, since iV(^)/L^J 1. So Slutsky's theorem applied to (5.161) yields D^{V^) - A 

D i as i oo, completing the proof of (i) 

The proof of (ii) fohows in the same way as that of (i), except that in (5.156) the first 

equals sign is replaced by an inequality < . This does not affect the rest of the proof. • 

Proposition 5.5.8 The limiting random variable Di of Proposition 5.5.7 (i) satisfies the 

fixed-point equation (5.36). 
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Proof. For integer n > 0, let T„ := min{s : N{s) > n } , the nth arrival time of the 
Poisson process with counting process A''(-). Set T := T i , and set U := Ui (which is 
uniform on (0,1)). 

By the Marking Theorem for Poisson processes [84], the two-dimensional point process 

Q := {(f/„,T„) : n > 1} is a homogeneous Poisson process of unit intensity on (0,1) x 

(0, oo) . Given the value of {U,T), the restriction of Q to (0, {7] x (T, oo) and the restriction 

of Q to [U, l ) X (T, oo) are independent homogeneous Poisson processes on these regions. 

Hence, by scaling properties of the Poisson process (see the Mapping Theorem in [84]) 

and of the DLT, writing D| . j ( - ) , i = 1,2 for independent copies of D^{-), we have 

D \ V f ) ̂  {UDl){V'^^,_r)) + (1 - ^ ) i ^ j 2 } ( n V ^ ) ( . - T ) ) + U) l{t>T}. (5.162) 

Let a, = 0 for s < 0, and a, = E[D\V°J] for s > 0. Then D\V^) = D^{Vf) - at, so that 

by (5.162), 

D\V^) ^ (yb\,^{V'a^t-T)) + (1 - t / )^j2}(^(i- t / ) ( t -T)) + U) l{t>T) 

+U {au(t-T) - at) + {l-U) (a(i 

-u){t-T) — at) • (5.163) 

From Lemma 5.5.6 we have ^ = \ + 0{t-^). Hence, if T < t, then 
at - auit-T) = f ^ d s = \ogt- \og{U{t -T)} + 0 {{U{t - T))-') , 

Ju{t-T) 
and hence as i —> oo, 

at - au{t-T) - log U, a.s.. (5.164) 

Since P[T < t] tends to 1, by making ^ —>• oo in (5.163) and using Slutsky's theorem we 

obtain (5.36). • 

Proposition 5.5.9 The limiting random variable Fi of Proposition 5.5.7 (ii) satisfies the 

fixed-point equation (5.36), and so has the same distribution as Di. Also, Cov{Fi, Di) = 

(7/4) - TrVe. 

Proof. The proof follows similar lines to that of Proposition 5.5.8. Once more let 

a, = E[D^{V^)], for 5 > 0, and a, = 0 for s < 0. Let b, = E[D\Vs)] for s > 0, and 

bs = Oiov s< 0, and let T := min{^ : N{t) > 1}, Then 

D\Vt) = {UDl^{Vuit-T)) + (1 - C/)i?;2}(7^(i-c/)(t-r))) Mt>T}, (5-165) 
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where D\^-^{-) and D^^^i-) are independent copies of D^{-). Then D^{Vt) = D\Vt) - h 
and b \ V f ) = D\Vf) - at, so that (5.165) yields 

D'iVt) ^ ( f / ^{ i} (7 ' a ( t - r ) ) + ( l - f / ) ^ { 2 } ( ^ ( V t / ) ( . - T ) ) ) l { ^ > n 

+U {bu(t-T) - bt) + { l - U ) (a(i_[/)(i_T) - bt) . (5.166) 

From Lemma 5.5.6 we have ^ = 7 + 0( i~^) . Hence, by the same argument as used at 

(5.164), 

bt - bu{t-T) -logU a.s. 

Also, at - bt = E[DQ{Vf)] by (5.141), so that limt_^oo(at - ^t) = 1, by Lemma 5.5.2 and 

the fact that E[Dl] = 1, by (C.4.9). Using also (5.164) we find that as t ^ 00, 

a(i_c/)(t_T) -bt = (a(i_[/)(t_T) - at) + {at - bt) -> I + log ( l - U ) , a.s. 

Taking t —)• 00 in (5.166), and using Slutsky's theorem, we obtain 

Fi = UFi + (1 - U)Di + UlogU + { l - U)\og{l - U ) + {1- U). (5.167) 

The change of variable [1 — U) U then shows that Di as defined at (5.36) satisfies 

(5.167), and so by the uniqueness of solution, Fx has the same distribution as and 

satisfies (5.36). 

To obtain the covariance of Fi and Di, observe from Proposition 5.5.7 (ii) that DQ = 

Di - Fi + 1, and therefore by (C.4.9), we have that 

1/2 = Var[D^] = Var[£»i] + Var[Fi] - 2Cov(Di, F i ) . (5.168) 

Since Var[Fi] = Var[F>i] = 2 — 7r^/6 by Proposition 5.5.7 (i), rearranging (5.168) we find 

that Cov(F)i, Fi) = (7/4) - 7rV6. • 

Remark. One may obtain convergence in distribution results along the lines of Propo

sitions 5.5.8 and 5.5.9 using the contraction method as in Proposition 5.4.2. In this way, 

one can also obtain joint convergence results for {D"(U^), D"(Un))• 

Remark. Figure 5.2 is a plot of the estimated probability density function of Di. This 

was obtained by performing 10^ repeated simulations of the DLT on a sequence of 10^ 

uniform (simulated) random points on (0,1). For each simulation, the expected value of 

D^Uioi) (which is precisely (1/2) + (1/3) • • • (1/1001) by Lemma 5.5.1) was subtracted 

from the total length of the simulated DLT to give an approximate realization of Di. 
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Figure 5.2: Estimated probability density function for Di. 

The density function was then estimated from the sample of 10^ approximate realizations 

of Di, using a window width of 0.0025. The simulated sample from which the density 

estimate for Di was taken had sample mean fa —2 x 10^^ and sample variance « 0.3543, 

which are reasonably close to the expectation and variance of Di. 



Chapter 6 

The total length of the minimal 

directed spanning tree 

6.1 Introduction and main results 

In this chapter we give weak convergence results for the total weight of the minimal 

directed spanning tree/forest (suitably centred and scaled) on random points in (0,1)^. 

Our results concern the two special partial orders and as given in Section 2.4.1. 

Recall that in the MDST introduced by Bhatt and Roy in [21], the partial order is 

=:<;*. Here, each point x of a finite (random) subset S of (0,1)^ is connected by a directed 

edge to the nearest y G 5 U {0} such that y / x and y =<;* x, where y =<;* x means that 

each component of x — y is nonnegative. We refer to =<;* as the "coordinate-wise" partial 

order. The second partial order we consider, is the so-called "one coordinate" partial 

order. In o? = 2, we take this to be such that y x means that the second (i.e. vertical) 

component of x - y is nonnegative. 

In [21], Bhatt and Roy mention that the total length of the MDST under is an 

object of considerable interest, although they restrict their analysis to the length of the 

edges joined to the origin (see also Chapter 4). A first order result for the total length of 

the MDST or MDSF is a law of large numbers; see Theorem 2.4.1 for a LLN for a family 

of MDSFs indexed by partial orderings on R^, which include ^* and ^* as special cases. 

For the length of edges from points in the region away from the boundary, we prove 

a central limit theorem. The boundary effects are significant, and near the boundary the 

MDST can be described in terms of a one-dimensional, on-line version of the MDST; thus 

we will encounter the on-line nearest-neighbour graph (ONG) and directed linear tree 

126 
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(DLT) which we studied in Chapter 5. 

We consider power-weighted edges. Our weak convergence results (Theorem 6.1.1) 

demonstrate that, depending on the value chosen for the weight exponent of the edges, 

there are two regimes in which either the boundary effects dominate or those edges away 

from the boundary are dominant, and that there is a critical value, or phase transition, 

(when we take simple Euclidean length as the weight) for which neither effect dominates. 

Our main result (Theorem 6.1.1) presents convergence in distribution for the cases 

where the partial order is or =<;,; the hmiting distributions are of a different type in 

the three cases Q; = l , 0 < a < l , and a > 1. We define these hmiting distributions in 

Theorem 6.1.1, in terms of distributional fixed-point equations (see Section 5.1.2). 

Recall from Section 2.4.2 that £^^'"(5) denotes the total weight of the MDSF on S C 

(0,1)'' under weight function Wa, a > 0, as given by (1.2), and that £'^'"(<S) denotes 

the centred version. For the remainder of this chapter, we take d = 2 and suppress this 

notation by setting £ " ( • ) : = jC'^'^'i-) and £"(•) := £^'"(-)-

For ease of notation, we define the random variables Z Q , a > 1, as follows. Set 

Z, ^ UH\'^ + (1 - U)H\'^ + hj\ogU + ]^{l - U)\og{l - U), (6.1) 

where U is uniform on (0,1), and HI^\ H[^\ independent of U, are independent copies 

of the random variable with distribution given by (5.29). Also, for Of > 1, let 

^ + (1 -uym^^ + f + (1 - u r - ( - - ,\, (6.2) 
\ I + a J \a a{l — a) J 

where U is uniform on (0,1), and ^ i ^ ^ Ha \ independent of U, are independent copies 

of the random variable Ha with distribution given by (5.30). 

Note that from the properties of . ^ Q , a > 1 (see Section 5.4) i t follows that E[Za] = 0 

for a > 1 and 

The main result of this chapter is as follows. 

Theorem 6.1.1 Suppose the weight exponent is a > 0. 

(a) Suppose that the partial order is =<;*. Then there exist constants 0 < < 2̂ ^^^^ 

that, for normal random variables ~ ^/'(O, s^) and ~ A/'(0, t^).- as n oo, 

^(a-i)/2^a(p0) ^ Ya and n("-i)/2^"(W°) A VF, (0 < a < 1); (6.3) 

C\Vl)^b\'^ ^-b^^ +Yi and £i(W°) A + + l ^ i ; (6.4) 

^cv(pO) ^ ^{1} ^ ^{2} £"(ZY«)-A£>W+Di2> ( a > l ) . (6.5) 
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Here all the random variables in the limits are independent, and Da \ i = 1,2 are 
independent copies of the random variable Da defined at (5.36) for a = 1 and (5.37) 
for a > 1. Also, as n ^ oo, 

£"(7^„) A Ya and n("-^^ / '£"(W„) {0 < a < 1); (6.6) 

C ' { V n ) ^ D l ' ^ + Di'^ + Y , and (Un) ^ D\'^ + DI''^ + W,; (6.7) 

£ " ( P „ ) A F W - f F P > and £°(Z^„) A F j ^ ^ - f F ^ ) (« > 1) . (6.8) 

Here all the random variables in the limits are independent, and D\^\ i = 1,2, are 

independent copies of Di with distribution defined at (5.36), and for a > 1, Fa\ 

i = 1,2, are independent copies of Fa with distribution defined at (5.38). 

(b) Suppose that the partial order is Then there exist constants 0 < < such 

that, for normal random variables Ya ~ A/'(0, s^) and Wa ~ A/'(0, ta): as n ^ oo, 

,^(a- i ) /2^a(pj ^ Ya and n^'"''^ {Un) -^Wa{0<a< 1); (6.9) 

C'{Vn) - ^ Z i + Yi and C\Un) A Z i + Wv, (6.10) 

>C"(P„) A Za and £"(Z^„) A Z„ (a > 1). (6.11) 

Here all the random variables in the limits are independent, and Za, oc > 1 has the 

distribution given by (6.1) for a = 1 and (6.2) for a > 1. 

Remarks. The normal random variables Ya or Wa arise f rom the edges away f r o m the 

boundary (see Section 6.2). The non-normal variables (the Ds, Fs and Zs) arise f rom the 

edges very close to the boundary, where the MDSF is asymptotically close to the directed 

linear forest ( in the case) or the on-line nearest-neighbour graph (in the case), as 

discussed in Chapter 5. See Section 6.3. 

Theorem 6.1.1 indicates a phase transition in the character of the l imi t law as a 

increases. The normal contribution ( f rom the points away f rom the boundary) dominates 

for 0 < a < 1, while the boundary contributions dominate for a > 1. I n the critical case 

a = l, neither effect dominates and both terms contribute significantly to the asymptotic 

behaviour. 

Noteworthy, under =<;*, in the case a = 1 is the fact that by (6.4) and (6.7), the l imi t ing 

distr ibution is the same for C}{Vn) as for C}{V^), and the same for C}{lin) as for C}{Ul). 

Note, however, that the difference C^{Vn) - C}{Vl) is the (centred) total length of edges 

incident to the origin, which is not negligible, but itself converges in distr ibution (see The

orem 4.2.1, or [108]) to a non-degenerate random variable, namely a centred generalized 
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Dickman random variable with parameter 2 (see Chapter 4). As an extension of Theorem 
6.1.1, i t should be possible to show that the joint distribution of (£^('P„), £^(P°)) con
verges to that of two coupled random variables, both having the distribution of Di, whose 
difference has the centred generalized Dickman distribution with parameter 2. Likewise 
for the joint distribution of {C^(Un), C\U^)). 

The remainder of this chapter is organized as follows. The proof of Theorem 6.1.1 

is prepared in Sections 6.2 and 6.3, and completed in Section 6.4. In these proofs, we 

repeatedly use Slutsky's theorem (see Lemma A.2.1). The material in Section 6.2 draws 

on Chapter 3, while that in Section 6.3 draws on Chapter 5. 

6.2 Central limit theorem away from the boundary 

For each n G N , define the region S'o.n := (n^"^''^, 1)^, where e G (0,1/2) is a small 

constant to be chosen later. Similarly, set S'^^^ := (0,1) x (n^~^/^, 1). 

In this section, we use the general central limit theorems of Section 3.2 to demonstrate 

a central limit theorem for the contribution to the total weight of the MDSF, under =<;*, 

from edges away from the boundary, that is from points in the region So^n- We state the 

analogous result for and the region 5Q „, but do not go into details with the proof - it 

is very similar to the case. 

Given a > 0, consider the MDSF total weight functional H = C" on point sets in R ^ . 

For X e X, let the directed nearest neighbour distance d(x; X) and the corresponding 
0,4> 

a-weighted functional ̂ (x;^) be given by (3.20), where now we take to be :^*. For 

R C R 2 , set 

£ - ( . Y ; i ? ) = Yl ^('^i''^'')' (6.12) 
xe^nR 

and set £"(A') := £ " ( A ' ; R ^ ) . The main result of this section is the following. 

Theorem 6.2.1 Suppose that a > 0. 

(a) Suppose that the partial order is =<;*. Then there exist constants 0 < ta < Sa, not 

depending on the choice of e, such that, as n —>• oo, 

(i) n " - i V a r [ £ " ( W „ ; 5 o , J ] ^ ^ 2 . 

(tt} n("- i ) /2£" (ZY„; So,n) A M (0, tl); 



6.2. Central limit theorem away from the boundary 130 

(ill) n"- iVar[£"(7 '„ ;5o ,„) ] ->sL-

(tv) n ( - - i ) / 2£" (P„ ;5o , J ^ A A ( 0 , 5 2 ) . 

(b) Suppose that the partial order is =^*. Then there exist constants 0 < ta < Sa, not 

depending on the choice of e, such that, as n —> oo, 

(i) 7^"-iVar [C- (ZY„;5^,„)] ^ ^ 2 . 

(n) n ( - i ) / 2 £ " {Un;S',^^)^Af{0,tl); 

(ill) n '^- iVar [ £ - (P„;5^,„)] ^ s^; 

(tv) n ( " - i ) /2£" {Vn.S',^„) -^M{Q,sl). 

The following corollary states that Theorem 6.2.1 (a) remains true in the rooted cases 

too, i.e. with Un replaced by and Vn replaced by 

Corollary 6.2.1 Suppose that o; > 0 and the partial order is =<;*. Then, with ta, s^ as 

given in Theorem 6.2.1, we have that as n ^ oo, 

(i) n" - iVar [£"(WO;5o,n) ] ->^L-

(tt) n(°-i)/2£"(W«;5o,„) A A^(0,^2); 

^ m ; n " - i V a r [ £ - ( P ° ; 5 o , „ ) ] ^ 5 2 ; 

(tv) n ( - - i ) /2£"(pO;5o,n) - A A A ( 0 , 4 ) . 

Proof. For each region R C [0,1)^ and point set S C [0,1)^ with 0 G 5, let C^{S; R) 

denote the total weight of the edges incident to 0 in the MOST on S from points in R. 

Then £ ° ( P ^ ; 5o,„) equals £" (P„ ; 5o,„) + £^ (P° ; 5o,„), so that 

Var[£"(P°; 5o,„)] - Var[£"(7'„; So,n)] 

= 2Cov[£"(P„;5o,„) ,£?(P°;5o,J] + Var[£°(P°;5o,„)]. (6.13) 

Let Nn denote the number of points of Vn, and let En denote the event that at least one 

point of Vn n So,n is joined to 0 in the MDST on V^. Then 

P[En] < P [ (0 ,n^-i /Y p ^ 0] ^ exp{-n^'), 

and Co{Vn,So,n) < 2°/^iV„lE„. Thus by the Cauchy-Schwarz inequality, for some finite 

constant C we have 

Var [£^(7^°; So,„)] < E [£^(P°; So,n)'] < Cn^ exp{-n'^/2), (6.14) 
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and combining this with ( 6 . 1 3 ) , Theorem 6 . 2 . 1 (iii) and the Cauchy-Schwarz inequahty 
shows that 

n"-i(Var [£°(P«; 5o,„)] - Var [£°(P„; 5o,„)]) ^ 0 , 

so that from Theorem 6 . 2 . 1 (iii) we obtain the corresponding rooted result (iii). Also, 

since ( 6 . 1 4 ) implies n""^Var [£3 ("^n;'S'o,„)] tends to zero, from Theorem 6 . 2 . 1 (iv) and 

Slutsky's theorem we obtain the corresponding rooted result (iv). 

The binomial results (i) and (ii) follow in the same manner as above, with slight mod

ifications. • 

As remarked above, we give the proof of Theorem 6 . 2 . 1 (a) only; the proof of part 

(b) is analogous (and often simpler, in fact). To prove Theorem 6 . 2 . 1 , we demonstrate 

that our functional £ " satisfies suitable versions of the conditions of Theorem 3 . 2 . 1 and 

Corollary 3 . 2 . 1 . First, we see that £ ° is polynomially bounded (see ( 3 . 4 ) ) , since 

CiXiB) < (diam(A'))°card(A'). 

Also, is homogeneous of order a. 

Lemma 6.2.1 Suppose the partial order is =4*, o-f^d cv > 0 . Then LP" is strongly stabiliz

ing, in the sense of Definition 3.2.1. 

Proof. To prove stabilization it is sufficient to show that there exists an almost surely 

finite random variable R, the radius of stabilization, such that the add one cost is unaf

fected by changes in the configuration at a distance greater than R from the added point. 

We show that there exists such an R. 

For s > 0 construct eight disjoint triangles Tj(s), 1 < j < 8, by sphtting the square 

Q(0; s) into eight triangles via drawing in the diagonals of the square and the x and y axes. 

Label the triangle with vertices ( 0 , 0 ) , ( 0 , s ) , (s,s) as Ti(s) and then label increasingly in 

a clockwise manner. See Figure 6 . 1 . Note that Tj{t) C Tj{s) for t < s. Let the random 

variable S be the minimum s such that the triangles T j ( s ) , l < j < 8, each contain at 

least one point of V. Then S is almost surely finite. 

We claim that i? = 3 5 is a radius of stabilization for that is any points at distance 

d>'iS from the origin have no impact on the set of added or removed edges when a point 

is inserted at the origin. 

First, 0 can have no point at a distance of at least 3 5 away as its directed nearest 

neighbour, since there will be points in T5 and TQ within a distance of at most y/2S of 0. 
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(O.s) 

T7{s) \ 

0 y 
\ 3̂(3) 

(.,0) 

Figure 6.1: The triangles T i ( s ) , . . . , r8(s), s > 0. 

We now need to show that no point at a distance at least 3 5 from 0 can have the 

origin as its directed nearest neighbour. Clearly, for the partial order =<;*, we need only 

consider points in the region (0, oo)^. 

Consider a point {x,y) in the first quadrant, such that ||(a;,y)|| > 33. Consider the 

disk sector 

D(^,y) := B {{x,y),\\{x,y)\\) n {w: w ^* {x,y)} . 

We aim to show that given any {x,y) of the above form, at least one of the Tj{S), 

J = 1 , . . . ,8, is contained in i^(x,3/), which implies that the origin cannot be the directed 

nearest neighbour of {x,y). To demonstrate this, we show that given such an {x,y), D(^x,y) 

contains all three vertices of at least one of the Tj{S). 

First suppose x > S, y > S. Then we have that Ti{S) and T2{S) are in £>(x,j/), since 

we have, for example, 

\\{x,y)-Or-\\{x,y)-{0,S)r = {x'+ y') - {x'+ {y - S)') 

= S{2y - 5 ) > 0. 

By symmetry, the only other situation we need consider is when 0 < x < S. Then 

?/2 > 9 5 2 -x'^> 8S'\ soy> 2V2S. Then we have that Ts{S) is in D^^^y), since 

\\ix,y)-0\\'-\\{x,y)-{-S,S)r = {x'+ y') - {{x + + {y - S)') 

2S{y - x - S ) > 4S^{V2 - 1) > 0. 

This completes the proof. • 

Lemma 6.2.2 Suppose the partial order is 4* and a > 0. Then the distribution 0/A(oo) 

is non-degenerate. 
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Proof. We demonstrate the existence of two configurations that occur with strictly 

positive probability and give rise to different values for A{oo). Note that adding a point 

at the origin causes some new edges to be formed (namely those incident to the origin), 

and the possible deletion of some edges (namely the edges from points which have the 

origin as their directed nearest neighbour after its insertion). 

Let ?7 > 0, with 77 < 1/3. Later we shall impose further conditions on rj. Again we 

refer to the construction in Figure 6.1. Let Ei denote the event that for each i, 1 < i < S, 

there is a single point of V, denoted W^, in each of Ti{ri), and that there are no other 

points in [-1,1)^. Suppose that F i occurs. Then, on addition of the origin, the only 

edges that can possibly be removed are those from W i and from W 2 (see the proof of 

Lemma 6.2.1). These removed edges have length at most 7]V^, and hence 

A > -2(77\/8)" := 5i, on F i . (6.15) 

Now let F 2 denote the event that there is a single point of V, denoted Z i , in the 

square (77,277) x (0,77), a single point denoted Z2 in the square (0,77) x (77,277), a single 

point denoted W in the square ( - 1 - 77, - 1 ) x (-77, 0 ) , and no other point in [-3, 3]^. See 

Figure 6.2. 

Figure 6.2: A possible configuration for event F 2 . 

Suppose that F 2 occurs. Now, on addition of the origin, an edge of length at most 

H - 277 is added from the origin to W . On the other hand, for i = 1, 2 the edge from Zj to 

W (of length at least 1) is replaced by an edge from Z, to the origin (of length at most 
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3ri). It is also possible that some other edges from points outside [ -3 ,3 ]^ are replaced by 
shorter edges from these points to the origin. Combining the effect of all these additions 
and replacements of edges, we find that 

A < ( l + 2r7)" + 2( (37?)" - l ) :=(52, o n £ ; 2 . (6.16) 

Given a, by taking ?? small enough we can arrange that Si > —1/4 and 82 < —3/4. With 

such a choice of 77, events Ei and E2 both have strictly positive probability which shows 

that the distribution of A is non-degenerate. • 

For the next lemma, we set RQ := (0,1)^, recalhng that 5o,n : = {n^~^^'^, 1)^ throughout 

this section, and let TZQ be as defined just before Corollary 3.2.1. 

Lemma 6.2.3 Suppose the partial order is =4* and a > 0. Then Cf^ satisfies the uniform 

bounded moments condition (3.5) on IZQ. 

Proof. Choose some [A, B) G T̂ o such that 0 G A, i.e., such that for some 6 N the set 

/ I is a translate of (0,72^/^)^ containing the origin and B is the corresponding translate of 

771/25̂ ,̂ ^ = ^,^£^^^1/2^2 ^Yv&t \A\ = n, and choose m G [7i/2,37i/2 . 

Denote the m independent random vectors on A comprising Um,A by V i , . . . , V m - For 

contributions to /S.(Um,A'-i B) we are only interested in edges from points in the region B 

away from the boundary of A, although the origin can be inserted anywhere in A. Con

tributions to A{Urn,A;B) come from the edges that are added or deleted on the addition 

of 0. We split A{Um,A',B) into two parts: the positive contribution from added edges, 

A'^{l^ni,A] B), and the negative contribution, A~{Um,A'i B), from removed edges. 

By construction of the MDSF, the added edges are those that have 0 as an end-point 

after it has been inserted. Thus an upper bound on A'^{Um,A', B) is L'^^^6{0) L^, where 

Lmax is the length of the longest edge from a point of Um,A r\ B to 0, and S{0) is the 

number of such edges (or zero if no such edge exists), and LQ is the length of the edge 

from 0, or zero if no such edge exists. 

For w e A and x G with w x, define the region 

i?(w,x) := {y G A : y ^* x, ||y - x|| < | | w - x | | } . 

Since points in B are distant at least 1 from the lower or left boundary of A, by Lemma 

3.3.6 there exists a constant 0 < C < 00 such that 

i?(w,x)| > C||x - w||, for all w G A, x G B with w ^* x and ||x - w|| > 1. (6.17) 
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Suppose there is a point at x with 0 =<;* x. Then, the probabihty of the event E{x) that 
X is joined to the origin in the MDSF on l{m,A U {0} is 

P[E{x)] = P[R{0, x) empty] = (^1 - ^^j^p) 

< e x p f ( l - 7 n ) (^I-^(Q '^)I^^ < e x p ( l - | f i ( 0 , x ) | / 2 ) , (6.18) 
V \ ri J J 

since m > n/2 and | i?(0 ,x) | < n. 

We have that L^^^^S{0) < maxj=i,...,r„ ly^, where 

HA = | | V , f card(5(0; ||V,||) n Um,A n {y : 0 ^* y}) 1{V, joined to 0 and V , G B}. 

Let A'̂ (x) denote the number of points of Um-i^A in B{0\ | |x||) n {y : 0 y} . Tlien we 

obtain 

r dx 
EiL'ZJm <EY.Wt = mJ^ | |x | r '^^[( iV(x) + iri{E{x)}] — . 

By the Cauchy-Scliwarz inequaUty and the fact that m < 3\A\/2 by assumption, 

E[L'ZJ{0)']<1 [ \\x\\'"'{E[iN{x) + lf]y/^P[E{x)Y^^dx. (6.19) 

The mean of iV(x) is bounded by a constant times ||x|p so £'[(A''(x)+l)^] = 0(max(||x||^^, 1)). 

This follows from the binomial moment generating function for Bin(n,p), from which we 

have for p > 0 that E[X^] < ki{E[X])^ ii pn > 1 and < k2E[X] if pn < I, for 

some constants ki,k2 > 0. 

Combined with (6.17), (6.18) and (6.19), this shows that ElL^^^JiO)"^] is bounded by 

a constant times 

/ | | x | | ' "+ ' exp( -C | | x | | / 4 )dx+ / llxll '^dx, 

which is bounded by a constant that does not depend on the choice of {A, B). 

We need to consider LQ only when 0 G B. For x G with x =:<;* 0, let E'{x) denote 

the event that i?(x, 0) is empty (i.e., contains no point of l(m-i,A)- By (6.17) and (6.18), 

for 0 G -B we have 

E[Lr] < mf | | x | r " P [ E ' ( x ) ] ^ 

I 11x11"" e x p ( l - C | | x | | / 2 ) d x + I 
Vxe^:x=^*0,||x||51 Jx 

3 
< 
- 2 

llxll'^^dx 
xe>i:x=?;'o,||x||<i 
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which is bounded by a constant. Thus A'^{Um,A',B) has bounded fourth moment. 

Now consider the set of deleted edges. As at (3 .20) , let d{-x;Um,A) denote the distance 

from X to its directed nearest neighbour in Um,A, or zero if no such point exists. Again 

use E{x) for the event that x becomes joined to 0 on the addition of the origin, and let 

E"{V^) := E{Vi) n {Vi e B}. Then 

m m m m 

i=i j=i k=i e=i 

xd{Y,-Um,ATd{Yt\Um,ATl{E"{\^) H E"(V,) n ^"(V, ) n ^"(V,)}] . (6 .20) 

For k, i distinct, the k, £)th term of (6 .20) is bounded by 

[ f [ f ^ ^ ^ ^ E [ d „ _ 4 ( w ) " c / „ _ 4 ( x ) " d „ _ 4 ( y ) ' ^ d „ - 4 ( z ) " 
JBJBJBJB n n n n 

xl{^,„_4(w) n £;^-4(x) n Em-i{y) n ^„^-4(z)}], ( 6 . 2 1 ) 

where dm-i['x) := d{^,Um-i,A U {w,x, y ,z} ) (using the notation of (3 .20) ) , and Em-ii^) 

is the event that 0 is the directed nearest neighbour of x in the set Um-i,A U {0 ,x} . 

Let Im-A (x) denote the indicator variable of the event that x is a minimal element of 

Um-\,A U {x} . An upper bound for dm-ii'x) is provided by d{yi\Um-i,A U x) except when 

this is zero, so that 

rfm-4(x)'" < d(x;iY^_4,.4U{x})«" + d(x;{w,x,y,z})«"/^_4(x). (6 .22) 

For X G B , it can be shown, by a similar argument to the one used above for LQ, that 

there is a constant C such that 

E[{d{^- U^.,^A U {x}))«"] < C. (6 .23) 

Moreover, if w G / I with w =<; x and ||x — w|| = ^ > 0, then by a similar argument to that 

at (6 .18) , and (6 .17) , we have that 

E[Im-A{^)] < exp(4 - | / ? (w,x ) | / 2 ) < exp(4 - 01/2), t > 1, 

and hence, uniformly over A, B and {w,x, y , z } C A with x 6 B, we have 

E[d{^- {w, X , y, z})«"/„._4(x)] < max (sup exp(4 - Ct/2)) , 1 

Combining this with equation (6 .23) , we see from equation (6 .22) that £'[dm-4(x)^"] is 

bounded^by a constant. Also, by a similar argument to (6 ;18) and (6 .17) , i t can be shown 
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that P[Em-A{yi)] < exp(4 - C||x||/2) for ||x|| > 1. Therefore, by Holder's inequaUty, the 
expression (6.21) is bounded by a constant times 

and therefore is 0{n'^). Since the number of distinct {i,j,k,i) in the summation (6.20) 

is bounded by in^, and hence by {3/2^71'^, this shows that the contribution to (6.20) from 

i, j, k, £ distinct is uniformly bounded. 

Likewise, the number of terms {i,j,k,i) with only three distinct values (e.g., i = j 

with i, k, i distinct) is 0{n^). Such a term is bounded by an expression hke (6.21) but now 

with a triple integral, which by a similar argument is 0{n~^). Hence the contribution to 

(6.20) of these terms is also bounded. Similarly, the contribution to (6.20) from k,£) 

with two distinct values has O(n^) terms which are 0(n~^), and so is bounded. Likewise 

the contribution to (6.20) from terms with i = j = k = lis bounded. Thus the expression 

(6.20) is uniformly bounded. 

Hence A{Um^A',B) has bounded fourth moments, uniformly in A,B,m. • 

Proof of Theorem 6.2.1. By Lemmas 6.2.1, 6.2.2, 6.2.3 and the fact that is ho

mogeneous of order a, we can apply Corollary 3.2.1, taking Rq := (0,1)^ and So^n '•= 

( n ^ - i / ^ 1)2, to obtain Theorem 6.2.1 (a). • 

Remark. An alternative method for proving central limit theorems in geometrical prob

ability is based on dependency graphs. Such a method was employed by Avram and 

Bertsimas [11] to give central limit theorems for nearest neighbour graphs and other ran

dom geometrical structures. A general version of this method is provided by [114]. By 

a similar argument to [11], one can show that, under the total weight (for a > 2/3) 

of edges in the MDST from points in the region (£„, 1)^ satisfies a central limit theorem, 

where 
n 

clogn_ 

Such an approach can be suitably adapted to show that a central limit theorem also holds 

under the more general partial order specified by 9,(f), in the region (£„ , ! — ^n)^- The 

benefit of this method is that it readily yields rates of convergence bounds for the CLT. 

The martingale method employed has the advantage of yielding the convergence of the 

variance. 
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6.3 The edges near the boundary 

Next in our analysis of the MDSF and MDST on random points in the unit square, 

we consider the length of the edges close to the boundary of the square. The limiting 

structure of the MDSF and MDST near the boundaries is described, in the =<;* case, by 

the directed linear forest model discussed in Section 5.5, and in the case, by the on-line 

nearest-neighbour graph discussed in Section 5.4. 

In the =<;* case we have two sub-cases: initially we consider the 'rooted' case where 

we insert a point at the origin. Later we analyse the multiple sink (or 'unrooted') case, 

where we do not insert a point at the origin, in a similar way. 

Fix a e (1/2, 2/3). Let i3„ denote the L-shaped boundary region (0, l )2 \ (n"°" , 1)^. Let 

- B ; denote the lower boundary region (0,1) x (0,n-'"]. Recall from (6.12) that £"(A';/i!) 

denotes the contribution to the total weight of the MDST on X from edges starting at 

points of A:DR. When is a random point set, set £"(A'; R) := £°(A'; R) - E£"(A' ; R). 

Theorem 6.3.1 (a) Suppose the partial order is =4*. Then as n oo we have 

C'-iVl-B„) A Di^J + } {a > 1); (6.24) 

£"(W°; B„) ^ Di^J + Di'^ (a > 1), (6.25) 

where Di^\ Di^^ are independent random variables with the distribution of Da 

given by the fixed-point equation (5.36) for a = 1 and by (5.37) for a > 1. Also, as 

n —>• oo, 

£"(7'„; B^) A Fi^} + F p } (a > 1); (6.26) 

£"(W„; S„) ^ Fj^} + FP) (a > 1), (6.27) 

where Fa^\ F^^ are independent random variables with the same distribution as 

Di for a = 1 and with the distribution given by the fixed-point equation (5.38) for 

a> I. Also, as n-^ oo, 

^(a-i)/2^a^P^. JL^ 0 (0 < a < 1); (6.28) 

^(a-l)/2^a(^0. B^) A 0 (0 < a < 1). (6.29) 

(b) Suppose the partial order is Then as n ^ oo we have 

C''{Vn;B'J-^Za ( a > l ) ; (6.30) 

£ " ( W „ ; 5 ; ) A Z , ( a > l ) , (6.31) 
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where Za is given by (6.1) for a = \ and by (6.2) for Of > 1. Also, as n oo, 

^(a-l)/2^a(^^. (0 < a < 1). (6.32) 

We present the proof of Theorem 6.3.1 (a). Part (b) is proved in a similar manner, but 

is rather more straightforward (since there is only one boundary contribution to consider), 

and we omit the details. 

The idea behind the proof of Theorem 6.3.1 (a) is to show that the MDSF near each 

of the two boundaries is close to a DLF system defined on a sequence of uniform random 

variables coupled to the points of the MDSF. To do this, we produce two explicit sequences 

of random variables on which we construct the DLF coupled to P„ , a Poisson process of 

intensity n on (0,1)^, on which the MDSF is constructed. 

Let be the rectangle [n-", 1) x (0, n-"], let be the rectangle (0, n'"] x {n'", 1), 

and let be the square (0, n'^'Y; see Figure 6.3. Then B^ = B^U B^U B^. Define the 

Figure 6.3: The boundary regions 

point processes 

V: := Vn n {B: U B'J, VI n {Bl U Bl), and V° := P„ n 5 ° . (6.33) 

Let Nl := card(V^), Nl := card(V^) and := card(V^). List in order of increasing 

y-coordinate as U?, i = 1, 2 , . . . , A''^. In coordinates, set = (Xf ,y -^ ) for each i. 

Similarly, list in order of increasing x-coordinate as U f = ( X f , y / ) , i = 1,...,A^^. 

Set = {Xr,i = 1,2,...,N^) and - (y,^^ = 1,2,..., A^^). Then and Uy 

are sequences of uniform random variables in (0,1), on which we may construct a DLF. 

-Also, we write for the sequence (0, , , . . . , X ^ ^ ) , and for the sequence 

( e r ^ r ' . i f , . . . , } ^ . ) . 
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With the total DLF/DLT weight functional D°'{-) defined in Section 5.5 for random 
finite sequences in (0,1), the DLF weight D°'{U^) is coupled in a natural way to the MDSF 
contribution ^{V^), and likewise for D'^iUl) and / :"(V^) , for D''{U^^^) and £"(V^U{0}), 
and for i:>"(W^'°) and £"(V^ U { 0 } ) . 

Lemma 6.3.1 Suppose the partial order is =<;*. For any a > 1, as n oo, 

£<^(V:) - D'^iK) A 0, and £"(V„^) - D"(W„^) A 0; (6.34) 

£"(V^ U {0} ) - D°(W:''') -A 0, and £"(V^ U {0}) - D'^(W^'°) A 0. (6.35) 

Further, forO<a<l, as n ^ oo, 

E [|£"(V^) - / ^" ( i^ : ) ! ' ] = O (n'-^"-'""^) , (6.36) 

and the corresponding result holds for and U^, and for the rooted cases (with the 

addition of the origin). 

Proof. We approximate the MDSF in the region B„ by two DLFs, coupled to the MDSF. 

Consider V^; the argument for VI is entirely analogous. 

We have the set of points = { ( X f , Y-^), i = 1 , . . . , iV^}. We construct the MDSF 

on these points, and construct the DLF on the rc-coordinates, = { X f , i = 1,..., N^). 

Consider any point (A^, Y-"^). For any single point, either an edge exists from that point 

in both constructions, or in neither. Suppose an edge exists, that is suppose A f is joined 

to a point A | , ( . j , D{i) < i in the DLF model, and { X i , Y f ) to a point (X^^^yY^^--^) in 

the MDST (we do not necessarily have N{i) = D{i)). By construction, we know that 

X f - A:^(j)l < l ^ f - A:^(i)|, since N(i) < i by the order of our points. I t then follows 

that 

and so we have established that, for all a > 0, 

D'^iU:) < C^m- and D^{U:'') < /:"(V„^ U { 0 } ) . 

Now, by the construction of the MDST, we have that 

\\{Xr,Yn - (X^„,K;?w)ll < I K ^ f , ^ , ^ ) - {X^Dii),Y^i^))\\• (6.37) 

If {x, y) G (0,1)2 then ||(a;, y)\\<x + y, and by the Mean Value Theorem for the function 

t ^ r , for a > 1, 

||(a;, y ) | | " - rr" < (a; + y)" - a;" < a2"-^2/ {a > 1). 
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Hence, for a > 1, 

- [Xl^).YE^))r - ( ^ r - X^^^r < a2--\yt - YE^i)). (6.38) 

Then (6.37) and (6.38) yield, for a > 1, 

\\{xr,Yn - (x^(,),r^(,))ir - (^r - ^Sw)" < ^ s - ^ r , ^ - Y^^,^). 

Hence, for a > 1, 

0 < £"(V„-) - D'^iK) < a2"- i Y.iYr - Y^^^^). 
i=i 

Thus, for a > 1, 

0 < £"(V^) - D'^iU^) < a2''-^N^n"'; 

and 0 < £"(V^ U {0}) - F'°(iY:'°) < a2" -^A^>-^ (6.39) 

We have ~ Po {n^~'^), so that since a > 1/2, we have 

F[(£'^(V: U {0}) - F»"(W:'°))'] < a 2 2 2 ° - 2 n - 2 ' ^ F [ ( i V : ) 2 ] ^ 0 , a> 1. 

An entirely analogous argument leads to the same statement for and V^, and we obtain 

(6.34), and (6.35) in identical fashion. 

We now consider 0 < cv < 1. By the concavity of the function t i-> for a < 1, we 

have for X > 0, y > 0 that 

(x, y) " - .T° < (x + yy - x° < (0 < a < 1). 

Then, by a similar argument to (6.39) in the Q > 1 case, we obtain 

0 < £"(V^) - D'^iU^) < N^n-'^r 

Then (6.36) follows since A','̂  ~ Po (n^"*^), and the rooted case is similar. • 

Lemma 6.3.2 Suppose the partial order is Suppose Di has distribution given by 

(5.36), Da, a > 1, has distribution given by (5.37), and Fa, cv > 1, has distribution given 

by (5.38). Then as n -> oo, 

C\V:u{0})^Du and C\V:) ^ D,; (6.40) 

£ " ( V : u { 0 } ) A D . , and £'^(V:) A F„ (a > 1). (6.41) 

Moreover, (6.40) and (6.41) also hold with V,i replaced by V^. 
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Proof. As usual we present the argument for only, since the result for follows in 
the same manner. First consider the a > 1 case. We have the distributional equality 

C {D'^{Uf)\K = m) = £ {D'^iU'J) ; C { D ^ { K ) \ = m) = C (D'^iUj). 

But A^̂  is Poisson with mean n^~'^, and so tends to infinity almost surely. Thus by 

Theorem 5.2.3 (ii), £>"(Z^^'°) ^ and D'^iU^) ^ F„ as n oo, and so by Lemma 

6.3.1 and Slutsky's theorem, we obtain 

£"(V^ U {0}) A and /:"(V^) ^ F„ as n oo. (6.42) 

Also, E[D'^{U^^^)] {a - l)'^ by (5.138), so by Lemma 6.3.1 and Proposition 5.5.5, 

£;[/:"(V^U{0})] {a-l)-^ = E[Da\. Similarly, by (5.145), Lemma 6.3.1 and Proposition 

5.5.6, E[C°{V^)] -4- {a{a - 1))"^ = E[Fa]. Hence, (6.42) stih holds with the centred 

variables, i.e., equation (6.41) holds. 

Now suppose a; = 1. Since A'^ is Poisson with parameter n^~'^, Lemma 5.5.7 (i), with 

t = n^^", then shows that D^{U^'°) —> as n oo. Slutsky's theorem with Lemma 

6.3.1 then implies that C\V^ U {0}) D^. In the same way we obtain ^^(V^) A , 

this time using part (h) instead of part (i) of Lemma 5.5.7, along with Proposition 5.5.9. • 

Note that D°'{U^) and i?"(ZY^) are not independent. To deal with this, we define 

V::=VnnB:, and V ^ = P „ n B ; ; . 

Also, recall the definition of at (6.33). Let := card(V^) and iV^ card(V^). Since 

and B^ are disjoint, £"(V^) and >C"(V^) are independent, by the spatial independence 

property of the Poisson process Vn-

Lemma 6.3.3 Suppose the partial order is 4* and a > 0. Then: 

(i) As n oo, 

£"(V^) - £"(K) A 0, and £"(V^) - C"{Vl) A 0; (6.43) 

£"(V^ U {0}) - £"(V^ U {0}) A 0; £"(V^ U {0}) - £"(V^ U {0}) A 0. (6.44) 

(ii) Asn^oo, we have £"(V°) 0, and £"(V^ U {0}) A 0. 



6.3. The edges near the boundary 143 

Proof. We first prove (i). We give only the argument for V^; that for is analogous. 
Set A := £°(V^) - >C"(V^). Let P = {a + ( l /2 ) ) /2 . Then 1/2 < p < a. 

Assume without loss of generality that Vn is the restriction to (0,1)^ of a homogeneous 

Poisson process Tin of intensity n on R^. Let = (A"~,F~) be the point of Hn H 

((0,n"'''] X (0,oo)) with minimal y-coordinate. Then X~ is uniform on (0,n~'^]. Let En 

be the event that X~ > Sn'"; then P[E^] = Sn^'" for n large enough. 

Let A i be the the contribution to A from edges starting at points in (0, n'^] x (0, n~'^ . 

Then the absolute value of A i is bounded by the product of {\/2n~^)'^ and the number 

of points of Vn in {0,n'^] x (0,n"' '] . Hence, for any a > 0, 

£ [ | A i | ] < ( \ / 2 n - ^ ) " ^ [ c a r d ( P „ n ( ( 0 , n - ' ' ] x (0,n-"])); 

= 2'^/2,^i-/3-.-a^ ^ (5 45) 

Let A 2 := A — A i , the contribution to A from edges starting at points in {n"'^, 1) x 

{'0,n~'^]. Then by the triangle inequality, if En occurs then these edges are unaff'ected by 

points in B°, so that A 2 is zero if En occurs. Also, only minimal elements of P„n(n~^ , 1) x 

{0,11'"] can possibly have their directed nearest neighbour in (0,n"'^] x {0,n''^]; hence, 

if Mn denotes the number of such minimal elements then IA2I is bounded by 2 ° /2M„. 

Hence, using (2.26), we obtain 

£ ; [ | A 2 | ] < 2"/2p[£;^]E[M„] = 0(n^- ' ' logn) 

which tends to zero. Combined with (6.45), this gives us (6.43). The same argument 

gives us (6.44). 

For (ii), note that 

E [>C"(V°)] < {V2n-'')"E[N^] - 2''^^n^-^''-'"' ^ 0 , as n -> 00, 

for any a > 0. Thus £°(V^) A 0, and similarly £"(V^ U {0}) A 0. • 

In proving our next lemma (and again later on) we use the following elementary fact. 

If A''(n) is Poisson with parameter n, then as n —00 we have 

S[|A^(n) -n | logmax(A^(n),n)] = 0{n^^Hogn). (6.46) 

To see this, set y„ := \N{n) - n | logmax(N(n), n). Then ynl{jv(n)<2n} < \N{n) -

n\ log(2?z), and the expectation of this is 0{n^^'^ log?z) by Jensen's inequality since Var(A^(n)) 
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n. On the other hand, the Cauchy-Schwarz inequahty shows that E[Ynl{N{n)>2n}] 0, 
and (6.46) follows. 

We now state a lemma for coupling Un and P„. The a > 1 part will be used in the 

proof of Theorem 6.3.1. The 0 < a < 1 part will be needed later, in the proof of Theorem 

6.1.1. As in Section 6.2, let So,n denote the 'inner' region (n^-^/^, 1)^, with e e (0,1/2) a 

constant. The boundary region B„ is disjoint from 5o,n; let C„ denote the intermediate 

region (0,1)^ \ (5„ U 5o,„), so that B„ U C„ = (0,1)^ \ 5o,„. 

Lemma 6.3.4 Suppose the partial order is =4*. There exists a coupling of Un and Vn 

such that: 

(i) For 0 < a < 1, provided e < (1 - a)/2, we have that as n oo, 

and 

„(a- l ) /2£;[ |£a (^0. u C„) - £ " ( P ° ; 5 „ U Cn)\] 0. (6.48) 

(a) For a > 1, we have that as n oo, 

F[|£"(W„; B„) - C^iVn, Bn)\] -> 0 (6.49) 

and 

F[|£"(W°; 5„ ) - £ " ( P ° ; S„)|] ^ 0. (6.50) 

Proof. We couple Un and Vn in the following standard way. Let U i , U 2 , U 3 , . . . be 

independent uniform random vectors on (0,1)^, and let iV(n) ~ Po(n) be independent 

of ( U i , U 2 , . . . ) . For m G N (and in particular for m = n) set Km '•= { U i , . . . , Um}; set 

Vn:= { U I , . . . , U A , ( „ ) } . 

For each in E N , let y,„ denote the in-degree of vertex in the MDST on U^-

Suppose U,n = X . Then an upper bound for Y^ is provided by the number of minimal 

elements of the restriction of Um-i to the rectangle {y £ (0,1)^ : x ^* y} . Hence, 

conditional on \Jm = x and on there being k points of i Y ^ - i in this rectangle, the expected 

value of y„i is bounded by the expected number of minimal elements in a random uniform 

sample of k points in this rectangle, and hence (see (2.26)) by 1 -\-logk. Hence, given the 

value of U„i, the conditional expectation of Ym is bounded by 1 -t- logm. 
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First we prove the statements in part (i) (0 < a < 1). Suppose e < (1 — a)/2. Then 
|£'̂ (ZY„,; B„ U Cn) - r{Um-i\B^ U C J I < 2'''\Ym + 1)1{U^ G B„ U C^}. (6.51) 

Since Bn U C„ has area 2n^~^/^ — n^^~^ we obtain 

E[{Ym + 1)1{U^ € 5„ U C„}] < (2 + logm)2n^-^/2_ 

Hence, by (6.51) there is a constant C such that 

n{--mE[{\C^{Vn; Br, U Cn) - C"{Un; Bn U C„)|)|A^(?2)] 

< C|A^(n) - n| log(max(iV(n),n))n("+2e-2)/2^ 

and since we assume a + 2e < 1, by equation (6.46) the expected value of the right hand 

side tends to zero as n ->• oo, and we obtain (6.47). Likewise in the rooted case (6.48). 

Now we prove part (ii). For a > 1, we have 

|£"(Z^„,;B„) - £'^(W^_i;5„)| < 2"/2(y^ + 1)1 |U^ ^ (6.52) 

Since B„ has area 2n~'^ - n''^", by (6.52) there is a constant C such that 

E[ ( |£" (P„;5„) - / :°( i /„ ;B„) | ) |N(n)] < C|A^(n) - n| log(max(A^('n),r^))7^-^ 

and since a > 1/2, by equation (6.46) the expected value of the right hand side tends to 

zero as n —> 00, and we obtain (6.49). We get (6.50) similarly. • 

Proof of Theorem 6.3.1. We prove part (a). Suppose a > 1. We have that 

The final bracket converges to zero in probability, by Lemma 6.3.3 (i). Thus by Lemma 

6.3.2 and Slutsky's theorem, we obtain £"(V,^) ^ F„ (where we have Fi= Di). Now 

£"(V,:) + = £ n K ) + 'C"(V„^) + (£"(V:) - C^iK)) + (£"(V^) - £"(V„^)). 

The last two brackets converge to zero in probability, by Lemma 6.3.3 (i). Then the 

independence of £"(V^) and £"(V^) and another application of Slutsky's theorem yield 

£"(V„^) + £"(V„^) -A F j i } + F p } , 

where Fa^^ and Fi^^ are independent copies of F^. Similarly, 

c'^iv: u {0}) + c^ivy U {0}) A Di'^ + Di'l 
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Finafiy, since C'^{Vn\-B„) = £ " ( V ^ ) + £ " ( V ^ ) - £ " ( V ° ) (with a similar statement including 
the origin) Lemma 6.3.3 (ii) and Slutsky's theorem complete the proof of (6.24) and (6.26). 

To deduce (6.25) and (6.27), assume without loss of generality that Un and Vn are 

coupled in the manner of Lemma 6.3.4. Then >C°'('P„; 5„) — £"(W„; -B„) tends to zero in 

probability by (6.49), and £ " ( P ° ; 5„) - £"(iY°; 5„) tends to zero in probability by (6.50). 

Hence by Slutsky's theorem, the convergence results (6.24) and (6.26) carry through to 

the binomial point process case, i.e., (6.25) and (6.27) hold. 

Now suppose 0 < a < 1. Then (6.36) gives us 

E ^(a-i)/2 (£" (v - ) _ D"(^/„^))f] = O (n("+i)(i-2-)) , (6.53) 

which tends to 0 as ?i oo, since a > 1/2. Likewise for the rooted case, 

E [|n("-^'/2 (^a(yx u _ £)"(^x,0)^|2l ^ ^ ^^^(a+l){l-2<.)-) ^ 

By Proposition 5.5.2 we have 

^[„(a- l ) /2^a(^x)] ^ C»(n("-l'/2£;[(yV^)l-«]) = 0(7i('^-l)('^-l/2)) -> Q, 

and combined with (6.53) this completes the proof of (6.28). Similarly, by Proposition 

5.5.1, 

^[^^(a-i)/2^a^^x,0)| ^ 0(n("-^)/2E[(iV^)i-"]) = 0{n^''~^^^''-'l^'^) 0, 

and combined with (6.54) this gives us (6.29). • 

6.4 Proof of Theorem 6.1.1 (a) 

Throughout this section, we take the partial order to be Let a G (1/2,2/3). Let 

£ > 0 with 

e < min(l /2 , (1 - a)/3, (3 - 4a)/10, (2 - 3a)/8). (6.55) 

In addition, if 0 < a < 1, we impose the further condition that e < {1 — a)/2. As in 

Section 6.2, denote by 5o,„ the region (n^~^/2,l)2. As in Section 6.3, let 5„ denote the 

region (0,1)^ \ {n-", 1)^, and let C„ denote (0,1)^ \ (B„ U 5o,„). 

We know from Sections 6.2 and 6.3 that, for large n, the weight of edges starting 

in ^o.n satisfies a central limit theorem, and the weight of edges starting in B^ can be 
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approximated by the directed hnear forest. We shall show in Lemmas 6.4.2 and 6.4.3 
that (with a suitable scaling factor for ct < 1) the contribution to the total weight from 
points in C„ has variance converging to zero. To complete the proof of Theorem 6.1.1 
in the Poisson case, we shall show that the lengths from Bn and So^n are asymptotically 
independent by virtue of the fact that the configuration of points in C„ is (with probability 
approaching one) sufficient to ensure that the configuration of points in Bn has no effect 
on the edges from points in So,n- To extend the result to the binomial point process case, 
we shall use a de-Poissonization argument related to that used in [111 . 

First consider the region C„. We naturally divide this into three regions. Let 

Q (n^-i/2,1) X (n-^n^-l/2]^ := {n-\n'-'^^] x ( n ^ - ^ / ^ l ) , 

C ° : = ( n - ^ n ^ - l / T • 

Also, as in Section 6.3, let 

B ^ = ( n - % l ) x ( 0 , n - ' ^ ] , 5^=(0,7^- '^] X ( n - ^ l ) , B° := (0,72"'^]^ 

We divide the C„ and Bn into rectangular cells as follows (see Figure 6.4.) We leave C° 

undivided. We set 

kn := [n'-''-^'\ (6.56) 

and divide C,̂  lengthways into k„ cells. For each cell, 

width = (1 - _ „2e+a-i. height = 7 1 ^ - ^ / ' - n-"^ - n^-^/^ (6.57) 

Label these cells Pf for i = 1, 2 , . . . , A;„ from left to right. For each cell Pf, define the 

adjoining cell of B^, formed by extending the vertical edges of Pf, to be /3f. The cells /3f 

then have width (1 - n'-^^^)/kn ~ n'^'^"-'^ and height n'^. 

In a similar way we divide into kn cells Pf of height (1 - n'-^l'^)/kn and width 

i|£-i/2 _ divide B^ into the corresponding cells /3f, i = 1 , . . . , kn-

For i = 2,...,kn, let Ex,i denote the event that the cell contains at least one 

point of Vn, and let Ey^i denote the event that Pf_-^^ contains at least one point of Vn-

Lemma 6.4.1 For n sufficiently large, and for 1 < j < i < kn with i — j > 3, if 

E^^i (respectively Ey^i) occurs then no point in the cell Pf (respectively V\) has a directed 

nearest neighbour in the cell P | or /?J (T^ or p^). 
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(l-n^->/2)/fc„ 

-3; 

5o,. 

Figure 6.4: The regions of [0,1)^. 

Proof. Consider a point X, say, in cell in C,̂ . Given E^^i, we know that there is a 

point, Y say, in the cell to the left of the Pf cell immediately below F f , such that 

Y =<;* X, but the difference in x-coordinates between X and Y is no more than twice the 

width of a cell. So, by the triangle inequality, we have 

\X - Y\\ < 2(1 - n'-^l^)/kn + n ^ - ' / ' - 2n''+''-\ (6.58) 

since a > 1/2. Now, consider a point Z in a cell FJ or /3J with j < i - 4. In this case, 

the difference in x-coordinates between X and Z is at least the width of 3 cells, so that 

\X - Z\\ > 3(1 - n'-^l^)/kn ~ 3n'^+'^-^ (6.59) 

Comparing (6.58) and (6.59), we see that X is not connected to Z, which completes the 

proof. • 

Recall from (6.12) that for a point set 5 C and a region /? C R^, £"(5; /?) denotes 

the total weight of edges of the MDSF on S which originate in the region R. 

Lemma 6.4.2 .4s n oo, we have that 

Var[£"(nn C„)] ^ 0 and Var[£"(P^; C„)] 0 (a > 1); (6.60) 
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V&x[n^''-^^'^C'{Vn\ Cn)\ ^ 0 (0 < a < 1); 

Var[?2("-^)/2£"(P°; C„)] ^ 0 (0 < a < 1). 

(6.61) 

(6.62) 

Proof. For ease of notation, write X, = £° (P„ ; r f ) and = £" (P„ ; r f ) , for i = 

1, 2 , . . . , A;„. Also let Z = £" (P„ ; C°). Then 

Var[£°(7^„;C„)] = Var 
i=l 

(6.63) 

Let Af , Af , AOJ respectively, denote the number of points of Vn in Ff, F-', C^, respectively. 

Then by (6.57), Nf is Poisson with parameter asymptotic to n^^+^-^n^ while A f̂ + Af+A^o 

is Poisson with parameter asymptotic to 2n^^+'̂ ~^/^; hence as ?7 ̂  oo and we have 

Edges from points in F^ U Ff U (7° are of length at most 2n^^'^"'^, and hence, 

Var[Xi + Yi+Z] < (27i '^+"-^) '"F[(A^f + A^f + A ô)1 

(6.65) 

For a > 1, since e is small (6.55), the expression (6.65) is 0(n^°^+'''' ^) and in fact tends 

to zero, so that 

Var(Ai + Fi + Z) ^ 0 (a > 1). (6.66) 

By Lemma 6.4.1 and (6.58), given E^^i, an edge from a point of Ff can be of length 

no more than 3n^^"'"'̂ ~^ Thus using (6.64) we have 

V a r [ A a { F . , } ] < E[Xfl{E,,}] < {3n''+''-')''^E[{Nn'] 

(6.67) 

Next, observe that Cov[Xil{Ex,i}, Xjl{E^j}] = 0 for z - j > 3, since by Lemma 6.4.1, 

Xil{Ej:^i} is determined by the restriction of Vn to the union of the regions F^U/3^, i - 3 < 

£<i. Thus by (6.56), Cauchy-Schwarz and (6.67), we obtain 

= ^ V a r [ A a { F . , } ] Var 
i=2 1=2 

+ J l C o v [ X a { F , , , } , X , l { F , , , } ] 
i=2 i ; l< | j - i |<3 

Q^^4£+<r+2a{2e+<T-l)y (6.68) 
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For a > 1, the bound in (6.68) tends to zero as n —>• oo, since 1/2 < cr < 2/3 and e is 

small (6.55). 

By (6.56), the cells P f , i = l,...,kn, have width asymptotic to n?^'^"''^ and height 

•n~'^, so the mean number of points of Vn in one of these cells is asymptotic to n^^; hence 

for any cell /?f or /?f, i = 1 , . . . , the probability that the cell contains no point of Vn 

is given by exp{—^^^(1 + o( l ) )} . Hence for n large enough, and i = 2 , . . . , we have 

P[E'^i\ < exp{-n'), and hence by (6.64), 

Var[Aa{£^,,}] < E[Xf\El,]P[El,] < 2^Em?]P[El.] 

(6.69) 

Hence by Cauchy-Schwarz we have 

Var 
i=2 

^ Var[Aa{£^:,J] + ^ C O V [ X M E : , } , X M E : , } ] 

i=2 

o{kl n exp(-n^)) -> 0, (6.70) 

as n oo. Then by (6.68), (6.70), and the analogous estimates for Yi, along with the 

Cauchy-Schwarz inequality, we obtain for a > 1 that 

kn 

Var 0, (6.71) 
_i=2 i=2 i=2 1=2 

as n oo. By (6.63) with (6.66), (6.71), and Cauchy-Schwarz again, we obtain the first 

part of (6.60). The argument for V° is the same as for Vn, so we have (6.60). 

Now suppose 0 < a < 1. We obtain (6.61) and (6.62) in a similar way to (6.60), since 

(6.65) implies that 

Var(n("-i)/2(Ai + Y, + Z)) = o(n6^+2.-2+a(4.+2.-i)) 

and (6.68) implies 

Var n^'^-i)/^ Aa{£^x,} = o(n''^+'^-i+"("^+2'^-i)). 

i=2 

and both of these bounds tend to zero when 0 < a < 1, 1/2 < a < 2/3, and £ is small 

(6.55). • 

To prove those parts of Theorem 6.1.1 which refer to the binomial process W„, we need 

further results comparing the processes Un and Vn when they are coupled as in Lemma 

6.3.4. 
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Lemma 6.4.3 Suppose a > 1. With Un and Vn coupled as in Lemma 6.3.4, '^^ have that 
as n ^ Qo 

C'^{U^-Cn)-C-{Vn;Cn)^0 and C„) - £"(pO; C„) A 0. (6.72) 

Proof. Let Vn and Km {m G N) be coupled as described in Lemma 6.3.4. Given n, for 

m G N define tlie event 

Em,n := f^l<r<kA{^m-l H /^f / 0} D {U^-l H /3f ^ 0}), 

with the sub-cells Pf and /3f of B„ as defined near the start of Section 6.4. Then by 

similar arguments to those for P[E^ j\ above, we have 

P[E'rn,n] = 0{n'-''-^' exp{-n'/2)), m>n/2 + 1. 

As in the proof of Lemma 6.3.4, let Ym denote the in-degree of vertex Um in the MDST 

on Urn. Then 

iC'iK.^; C„) - C„)| < {Ym + 1 )1{U„ G C„} ((3n^^+<^-^)" + 2-/H{E^^J) . 

Thus, given A''(n), 

X 

Since C„ has area less than 2n^ -̂ Ẑ , by equation (2.26) there exists a constant C such 

that, for n sufficiently large and iV(n) > n/2 + 1, 

S[( |£"(W„;C„) - £ " ( P „ ; a ) | ) | i V ( 7 ^ ) ] < 2''^^nl{r,^n)<n/2+i} 

+C\N{n) - n\ log(max(iV(n), n))n"(2^+'^-^)+^-^/'l{yv(n)>„/2+i}. (6.73) 

By tail bounds for the Poisson distribution, we have nP[N{n) < n/2 +1] —> 0 as n oo, 

and hence, taking expectations in (6.73) and using (6.46), we obtain 

E [iC^iU^; C„) - C^iVn, C„)|] = 0(n"(2^+''-i)+^ logn) + o( l ) , 

which tends to zero since a > 1, 1/2 < cr < 2/3 and e is small (see (6.55)). So we obtain 

the unrooted part of (6.72). The argument is the same in the rooted case. • 
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Lemma 6.4.4 Suppose Un andVn are coupled as described in Lemma 6.3.4, N{n) := 
card(P„). Let A(oo) be given by Definition 3.2.1 with H = , and set a i := E[A{oo) . 
Then as n oo we have 

C\Vn\5o,„) - C\Un-, 5o,„) - n-i/2«x(7V(n) - n) ^ 0; (6.74) 

C\Vl 5o,„) - C\Ul-5o,„) - n-'l^a,{N{n) - n) A 0. (6.75) 

Proof. The proof of the first part (6.74) foUows that of equation (4.5) of [111], usmg our 

Lemma B.2.3 and the fact that the functional is homogeneous of order 1, is strongly 

stabilizing by Lemma 6.2.1, and satisfies the moments condition equation (3.5) by Lemma 

6.2.3. 

As shown in the proof of Corollary 6.2.1 (see in particular equation (6.14)), we have 

that £i(7'°;5o,„) - C^Vn, So,n) converges to zero in L^ and ^H^^i^o.n) - C\Un\Sa,n) 

converges to zero in L^. Therefore the second part (6.75) follows from (6.74). • 

We are now in a position to prove Theorem 6.1.1. We divide the proof into two cases: 

a 7̂  1 and a = 1. In the latter case, to prove the result for the Poisson process P„, we 

need to show that >C^('P„; 5„ ) and £^('P„; S'cn) are asymptotically independent; likewise 

for V^. We shall then obtain the results for the binomial process W„ and for lA^ from those 

for Vn and via the couphng described in Lemma 6.3.4. 

Proof of Theorem 6.1.1 for 1. First suppose 0 < a < 1. For the Poisson case, we 

have 

+n(" -^ ) / ' £" (P„ ;C„) . (6.76) 

The first term in the right hand side of (6.76) converges in distribution to A/'(0, s^) by 

Theorem 6.2.1 (iv), and the other two terms converge in probability to 0 by (6.28) and 

(6.61). Thus Slutsky's theorem yields the first (Poisson) part of (6.6). To obtain the 

second (binomial) part of (6.6), we use the couphng of Lemma 6.3.4. We write 

^ (a - i ) /2^a(^ j = n("-i)/2£"(iY„; 5o,„) + n('^-i'/2(£"(7^„; 5 „ U C„)) 

+n("-^)/2(£"(W„; B„ U a ) - £" (P„ ; B„ U C„)). (6.77) 

The first term in the right side of (6.77) is asymptoticaUy A/'(0,i^) by Theorem 6.2.1 (h). 

The second term tends to zero in probability by (6.28) and (6.61). The third term tends 

to zero in probability by (6.47). Thus we have the binomial case of (6.6). 
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The rooted case ( 6 . 3 ) is similar. Now, for the first (Poisson) part of ( 6 . 3 ) , we use 
Corollary 6 . 2 . 1 (iv) with ( 6 . 2 9 ) and ( 6 . 6 2 ) , and Slutsky's theorem. The second part of 
( 6 . 3 ) follows from the analogous statement to ( 6 . 7 7 ) with the addition of the origin, using 
Corollary 6 . 2 . 1 (ii) with ( 6 . 2 9 ) , ( 6 . 6 2 ) , ( 6 . 4 8 ) , and Slutsky's theorem again. 

Next, suppose Q > 1 . We have 

C'-iVn) = t{Vn\5o,n) + >C"(7^„; C „ ) + r{Vn\^n)- ( 6 . 7 8 ) 

The first term in the right hand side converges to 0 in probability, by Theorem 6 . 2 . 1 (in). 

The second term also converges to 0 in probability, by the first part of ( 6 . 6 0 ) . Then by 

( 6 . 2 6 ) and Slutsky's theorem, we obtain the first (Poisson) part of ( 6 . 8 ) . To obtain the 

rooted version, i.e. the first part of ( 6 . 5 ) , we replace P„ by in ( 6 . 7 8 ) , and combine 

( 6 . 2 4 ) with Corollary 6 . 2 . 1 (iii) and the second part of ( 6 . 6 0 ) , and apply Slutsky's theorem 

again. 

To obtain the binomial versions of the results ( 6 . 5 ) and ( 6 . 8 ) , we again make use of 

the coupling described in Lemma 6 .3 .4 . We have 

t{Un) = >C"(W„; 5 o , „ ) + £ " ( Z Y „ ; + £ " ( W „ ; B „ ) . ( 6 . 7 9 ) 

The first term in the right hand side converges in probability to zero by Theorem 6 . 2 . 1 

(i). The second term converges in probability to zero by the first part of ( 6 . 6 0 ) and the 

first part of ( 6 . 7 2 ) . The third part converges in distribution to F^^ + Fa^^ by by ( 6 . 2 7 ) . 

Hence, Slutsky's theorem yields the binomial part of ( 6 . 8 ) . 

Similarly, by replacing P„ by and ZY„ by in ( 6 . 7 9 ) , and using Corollary 6 . 2 . 1 

(i), the second part of ( 6 . 6 0 ) and of ( 6 . 7 2 ) , ( 6 . 2 5 ) and Slutsky's theorem, we obtain the 

binomial part of ( 6 . 5 ) . This completes the proof for a ^ 1 . 

Proof of Theorem 6,1.1 for a = 1 : the Poisson case. We now prove the first part 

of ( 6 . 4 ) and the first part of ( 6 . 7 ) . Given n, set g„ := 4[n^+^-^/2j gpijj. g^ch cell Ff 

of into 4gn rectangular sub-cells, by splitting the horizontal edge into (?„ segments 

and the vertical edge into 4 segments by a rectangular grid. Similarly, split each cell 

by splitting the vertical edge into g„ segments and the horizontal edge into 4 segments. 

Finally, add a single square sub-cell in the top right-hand corner of C°, of side ( l /4)n^~^/^, 

and denote this "the corner sub-cell". 

The total number of all such sub-cells is 1 -f- SknQn ~ 

32r^(l/2)-^ g^^,]^ ^^le sub-cells 

has width asymptotic to (l /4)n^~^/^ and height asymptotic to ( l / 4 ) n ^ ' ^ / ^ , and so the 



6.4. Proof of Theorem 6.1.1 (a) 154 

area of each cell is asymptotic to (l/16)n^^~^ So for large n, for each of these sub-cells, 
the probability that it contains no point of Vn is bounded by exp(— 

Let En be the event that each of the sub-cells described above contains at least one 

point of Vn- Then 

P[E^n\ = O {n^^'^^-' exp(-nO) ^ 0. (6.80) 

Suppose X lies on the lower boundary of S'o.n. Consider the rectangular sub-cell of Ff 

lying just to the left of the sub-cell directly below x (or the corner sub-cell if that lies just 

to the left of the sub-cell directly below x) . Al l points y in this sub-cell satisfy y ::̂ * x, 

and for large n, satisfy ||y — x|| < (3/4)n^"^/^, whereas the nearest point to x in S„ is at 

a distance at least (3/4)n^~^/^. Arguing similarly for x on the left boundary of ^ ^ n , and 

using the triangle inequality, we see that if £"„ occurs, no point in S'o.n can be connected 

to any point in 5 „ , provided n is sufficiently large. 

For simphcity of notation, set Xn := >C^('P„;B„) and Yn := £^('P„; S'o,„). Also, set 

X := + D^^ and Y ~ A/'(0,5?), independent of X, with Si as given in Theorem 

6.2.1. We know from Theorem 6.3.1 and Theorem 6.2.1 that Xn ^ X and K ^ F as 

n —> oo. 

We need to show that Xn + K —> X ^ Y , where X and Y are independent random 

variables. We show this by convergence of the characteristic function, 

£:[exp {it[Xn + Yn))] —> ^[exp {itX)]E[e^^ {itY)]. (6.81) 

With u denoting the configuration of points in C„, we have 

E[ex^{it{Xn + Yn))] = [ E[e'*^"e^*^'"|a;]dP(a;) + i5[e'*(^"+^")l£.' 

= [ E [e''^"] E [e'*^" | uj] dP{Lu) + E [e^*(^"+^")l£;c] , 

where we have used the fact that Xn and Yn are conditionally independent, given u) e En, 

for n sufficiently large, and that X„ is independent of the configuration in C„. Then 

E[e'*(^"+^")lEc] ^ 0 as n ^ oo, since P[E^] 0. So 

E [exp {it{Xn + Yn))] - E [e**^"] E [C'̂ '̂-IEJ ^ 0, 

and we obtain (6.81) since E[e' '^"l£;J = E[e'*^"]-£;[e^*^"lire], E[e**^"l£;c] 0, E[e^*^"] ^ 

-E[e'^^], and E[e''^"] -> E[e'*^] as n -> cx). 
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We can now prove the first (Poisson) part of (6.7). We have the a = I case of (6.78). 
The contribution from C„ converges in probability to 0 by the first part of (6.60). Slut
sky's theorem and (6.81) then give the first (Poisson) part of (6.7). The rooted Poisson 
case (6.4) follows from the rooted version of (6.78), this time applying the argument for 
(6.81) taking X„ := jC.^{V^;Bn), F„ := C^{V^;SQ^^) and X, Y as before, and then using 
the second part of (6.60) and Slutsky's theorem again. Thus we obtain the first (Poisson) 
part of (6.4). 

Proof of Theorem 6.1.1 for a = 1: the binomial case. I t remains for us to prove the 

second part of (6.4) and the second part of (6.7). To do this, we use the coupling of Lemma 

6.3.4 once more. Considering first the unrooted case, we here set X„ := £^(W„;fi„) and 

Yn := £\Un]So,n). Sct X'„ := C\Vn;Bn) and := £H^n;5o,„) (note that all these 

random variables are uncentred). 

Set Y ~ Ar(0, s\) with si as given in Theorem 6.2.1. Set X := \ independent 

of Y. Then by equation (6.81) we have (in our new notation) 

X ; - EX'^ + Y;- EY;^ X + Y. (6.82) 

By (6.49), we have Xn - X'^ ^ 0 and EXn - EX'^ 0. Also, with as defined in 

Lemma 6.4.4, equation (6.74) of that result gives us 

K - r „ - n - i / ' a i{N{n) - n) A 0 (6.83) 

so that — £'[y„] —>• 0. Combining these observations with (6.82), and using Slutsky's 

theorem, we obtain 

Xn - EXn + Yn- EYr, + n-^/^ttj {N{n) - n ) ^ X + Y. (6.84) 

By Theorem 6.2.1 (ni) we have Var(y^) -> as n ^ oo. By (6.83), and the independence 

of A''(n) and y„, we have 

si = lim VavlYn + n-^^^ai{N{n) - n)\ = lim (Var[y„] + a\) 
n->oo n->oo 

SO that a\< s\. Also, n~^l'^ax{N{n) - n) is independent of X„ -|- y„, and asymptotically 

A/'(0,Qfi). Since the A/'(0,s^) characteristic function is exp(-s^^^/2), for a l H G R we 

obtain from equation (6.84) that 

E[exp(?i(Xrt - EXn + K - EYn))] exp(-(s2 - ot\)t^l2)E\&yi^{%tX)\ 
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so that 

Xr, - EXn + Yn- E Y ^ ^ X + W, (6.85) 

where W ~ ^f{0, sf - aj), and W is independent of X. 

We have the a = 1 case of (6.79). By the first part of equation (6.60) and the first 

part of (6.72), the contribution from C„ tends to zero in probability. Hence by (6.85) and 

Slutsky's theorem, we obtain the second (binomial) part of (6.7). 

For the rooted case, we apply the argument for (6.85), now taking X„ := 0{U^\ i?„), 

K := rn^ni-^cn) , with X, Y and W as before. The rooted case of (6.82) follows from 

the rooted case of (6.81), and now we have X„ — X'^ —> 0 and EXn — EX'^ —)- 0 by 

(6.50). In the rooted case (6.83) still holds by (6.75), and then we obtain the rooted case 

of (6.85) as before. 

To obtain the second (binomial) part of (6.4), we start with the rooted version of the 

a = 1 case of (6.79). By the second part of equation (6.60) and of (6.72), the contribution 

from C„ tends to zero in probability. Hence by the rooted version of (6.85) and Slutsky's 

theorem, we obtain the second part of (6.4). 

This completes the proof of the a = 1 case, and hence the proof of Theorem 6.1.1 is 

complete. • 



Chapter 7 

Conclusions and discussion 

7.1 Discussion of Chapters 2-6 

7.1.1 Vertex degrees 

The cjuestion of vertex degress in random spatial graphs is of considerable interest with 

respect to models of networks, and the world wide web in particular (see, for example, 

28,44,103]). Questions of interest include the degree distribution of the MDST, DLT 

and ONG. Some results on degrees in the ONG appear in [19]. Degrees of vertices in 

the MDST are of particular interest, for while there is no uniform upper bound on vertex 

degrees, simulations suggest that typically the vast majority of vertices have very small 

degree (less than 3). 

7.1.2 The on-line nearest-neighbour graph 

In this thesis, we study the total weight of the ONG. We give laws of large numbers for 

the ONG in R'' for d € N (see Chapter 2), and weak convergence results for the ONG in 

the unit interval (0,1) (see Chapter 5). I t would be of interest to obtain weak convergence 

results for general d. In [106] it was shown that there is a central limit theorem provided 

a < d/A. Thus the question as to whether a central limit theorem holds for the total 

length (suitably centred and scaled) of the ONG (i.e. a- = 1) is resolved in the affirmative 

for d = 5, 6, 7,. . . , while in d = 1 the hmit is non-normal, by Theorem 5.2.2. As stated 

in [106], it is likely that a technical refinement of the methods of [106] could be achieved, 

leading to a CLT also in d = 3 and d = A. The case d = 2 seems to need some new 

technique. 

157 
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In d = 1, for Of < 1/2 -we have Conjecture 5.2.1. The proof of this conjecture seems 
within reach using the 'contraction method' of Chapter 5. One might hope that the d = 1, 
a = 1/2 result conjectured in Conjecture 5.2.1 would shed some light on the d = 2, or = 1 
case. So one might further conjecture that 

{\ogn)-'^'d''\Un)^Af{0,a'), 

for some 0 < cr < oo. On the other hand, the one dimensional case appears to be cjuite 

special, and simulations suggest that the correct result may instead be 

for some 0 < a < oo. The resolution of this question appears to require a new idea, which 

may help with other open questions in geometrical probability. 

The c[uestion is also of interest in higher dimensions. For example, we might conjecture 

the following. 

Conjecture 7.1.1 Suppose Q > 0. Suppose d EN. 

(i) For 0 < Q' < d/2, there exists 0 < Sa < oo such that as n ^ oo 

(ii) For a > d/2, there exists a random variable Q{d, a) such that as n ^ oo 

d'^'^{Un)-^Q{d,a). 

Part (i) of Conjecture 7.1.1 has been shown to hold for 0 < a < d/4 in Theorem 3.4 

of [106]. As stated for d = 1, this is Theorem 5.2.2 with Conjecture 5.2.1. Part (ii) holds 

for d G N and a > d (see Theorem 2.3.1) with Q{d,a) = W{d,a) - E[W{d,a)]. I t also 

holds for d = 1 as stated (see Theorem 5.2.2 (n), (iii), (iv)). The case a = d/2 is unclear 

for general d; see the above discussion. 

7.1.3 Further M D S F limit theorems 

For the total weight of the MDSF on Un or Vn in (0,1)^, we have complete weak limit 

theorems under partial orders ^* and (see Chapter 6). Our corresponding law of large 
9,<p 

numbers (Theorem 2.4.1) covers the family of partial orders =<; with 0 < d < 2Tr and 
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0 < 0 < TT. I t should be possible to obtain weak convergence results for these general 
partial orders also. We believe that in almost all cases, boundary effects are insignificant, 
and the limit is purely normal. For some particular partial orders (including and 
for example), boundary effects will be significant. 

There are essentially four types of partial order =<;. We classify these as follows. 

Definition 7.1.1 We classify the partial order =<;, ^ G [0,27r), (p G (0,7r], as follows. 

(a) We say the partial order is Type A if 9 E {0,7r/2, TT, 37r/2} and 0 = 7r/2. 

(b) We say the partial order is Type B if 9 E {0,7r/2, vr, 37r/2} and 4> = n. 

(c) We say the partial order is of Type C if <f> E (0,7r/2) U (7r/2,7r) and exactly one of 

e + (p,9 belongs to {0,7r/2, TT, 37r/2, 27r, 57r/2}. 

(d) We say the partial order is of Type D if it is not of Type A,B, or C. 

Note that by symmetry, it suffices to consider only particular cases of Type A, B and 

C partial orders as described above. Thus it suffices to consider =<;* for Type A, for 

Type B, and the case 9 = 7r/2 of Type C above. 

Note that when the partial order is Type B (the "one-coordinate" case), there is almost 

surely a single minimal element of Un or Vn, so the MDSF is almost surely an MDST (see 

Figure 2.5 for an example). 

Weak convergence results for Type A and B partial orders are covered by Theorem 

6.1.1. The following conjecture gives corresponding results for Type C and D partial 

orders. We state the binomial case l/„ only. 

e,<p 
Conjecture 7.1.2 Suppose the weight exponent is a > 0 and the partial order is =^. 

(i) Suppose the partial order is Type C. Then there exists t\> Q such that, for a normal 

random variable Wa ~ A/'(0,t^), as n o o : 

^ ( a - i ) / 2 ^ 2 , a ^ ^ ^ ) A VF, (0 < a < 1); 

C?'\Un)^Dr^-Wv, 

C?''^{Un)^Fa {col). 

Here all the random variables in the limits are independent, Di with distribution 

defined at (5.36), and, for a> I, with distribution defined at (5.38). 
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(ii) Suppose the partial order is Type D. Then there exists t'^ > 0 such that, for a normal 
random variable Wa ~ ^^(0,^^), as n —)- oo.-

^ ( a - l ) / 2 ^ 2 , a ( ^ j ^ W ,̂ (ft > 0); . 

The normal random variables Wa arise from the edges away from the boundary. Part 

(ii) says that boundary eff'ects are insignificant under Type D partial orders. Part (i) says 

that significant boundary effects arise (for a > 1) from close to a single boundary under 

Type C partial orders, where the MDSF is close to the DLT considered in Chapter 5. 

It should be possible to prove Conjecture 7.1.2 using the same methods as the proof of 

Theorem 6.1.1. We aim to address this in future work. 

I t is also of interest to obtain weak convergence results for the total weight of the 

MDSF on Un or Vn in (0,1)'', d > 3. Here, the most natural partial orders to consider 

are and =<!*. 

Consider =^*. I t should be possible, using the methods of Chapter 6, to show that a 

central limit theorem holds for edges away from the 'boundary', that now being the d - 1 

dimensional face of the unit d-cube in the 'downwards' direction according to The 

MDSF close to this boundary, however, should be 'close' to a d — 1-dimensional ONG on 

the boundary. Thus, if Conjecture 7.1.1 holds, we might conjecture the following (again, 

we state the binomial case Un only). 

Conjecture 7.1.3 Suppose a > 0, d EN, and the partial order is Then there exists 

a constant 0 < < oo such that, for normal random variables Wa ~ A/"(0, ta), as n —)• oo.-

,^(2a-<i)/(2d)^</,a(^J A VF̂  (O < CV < d/2)-

£ < i , ^ / 2 ( i Y „ ) ^ V F i + Q ( r f - l , r f / 2 ) ; 

C'^^'^iUn) ^ Q { d - l , a ) {a>d/2). 

Here all the random variables in the limits are independent, and Q{d, a) is the limit arising 

m Conjecture 7.LI (ii). 

We may also conjecture a similar result for the MDSF under =^*, but in this case we 

would expect the boundary effects to be manifest as d independent contributions from 

on-line versions of the MDSF (under =<;*) on (0,1)*^"^ (which we have not studied in this 

thesis). We hope to address some of these questions in future work. 



Chapter 8 

Random walk in random 

environment wi th asymptotically 

zero perturbation 

8.1 Introduction 

In this chapter we study a problem with a classical flavour that lies in the intersection 

of two well-studied problems, those of random walks in one-dimensional random environ

ments and Markov chains with asymptotically small drifts. Separately, these two problems 

have received considerable attention, but the problem considered in this chapter has not 

been analysed before. Further, our results show that the system studied here exhibits 

behaviour that is significantly different to that of those previously studied systems. 

The random walk in random environment (or RWRE for short) was first studied 

by Kozlov [87] and Solomon [133], and has since received extensive attention; see for 

example [121] or [143] for surveys. Here we analyse the behaviour of the RWRE for which 

the random environment is perturbed by a vanishingly small amount. 

The analysis of zero drift random walks in two or more dimensions by the method of 

Lyapunov functions demonstrated the importance of the investigation of one-dimensional 

stochastic processes with asymptotically smaU drifts (see [10]). For example, if (Zt), with 

t = 0,1, 2, 3 . . . time is a random walk (with zero drift) in the nonnegative quarter plane, 

analysis of the stochastic process \\Zt\\, where || • || denotes the Euclidean norm, involves 

the study of stochastic processes on the half-line with mean drift asymptotically zero. 

Early work in this field was done by Lamperti [90,91]. Criteria for recurrence and 

161 
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transience are given in [98], where the behaviour in the critical regime that Lamperti did 
not cover was also analysed. Passage-time moments are considered in [10]. In much of 
this work, Lyapunov functions play a central role. 

In this chapter we demonstrate the essential difference between a nearest-neighbour 

random walk in a deterministic environment, perturbed from its critical (null-recurrent) 

regime, and a nearest-neighbour random walk in a random environment, also perturbed 

from its critical regime (sometimes called Sinai's regime - see below). Our results quantify 

the fact that in some sense the random environment is more stable, in that a much larger 

perturbation is required to disturb the null-recurrent situation. In particular, we give 

criteria for ergodicity (i.e. positive recurrence here), transience and null-recurrence for 

our perturbed random walk in random environment. We will show that in our (random 

environment) case the critical magnitude for the perturbation is of the order of (see 

Theorem 8.2.6), where n is the distance from the origin (in fact, our more general results 

are much more precise than this). This compares to a critical magnitude of the order of 

in the non-random environment case (see [98], and Theorem 8.2.2 below). 

Our method is based upon the theory of Lyapunov functions, a powerful tool in the 

classification of countable Markov chains (see [50]). Such methods have proven efl'ective 

in the analysis of random walks in random environments (see e.g. [34]), in addition to 

Markov chains in non-random environments. 

Loosely speaking, motivation for our model comes from some one-dimensional physical 

systems, such as a particle performing a random walk in a homogeneous random one-

dimensional field, subject to some vanishing perturbation (such as the presence of another 

particle). Under what conditions is the perturbation sufficient to alter the character of 

the random walk? 

We now introduce the probabilistic model that we consider. First, we need some 

notation. We introduce the function x as follows, which determines our perturbation as 

described below. Let x '• [0) oo) —>• [0, oo) be a function such that 

lim x{x) = 0. (8.1) 

As we shall see below, the property (8.1) means that our perturbation is asymptotically 

small. 

Here, we are interested in the one-dimensional RWRE on the nonnegative integers (we 

use the notation Z+ := { 0 , 1 , 2 , . . . } ) , with reflection at the origin. One can readily obtain 

results for the one-dimensional RWRE on whole of Z in a similar manner. Formally, we 
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define our RWRE as follows. 

We define sequences of random variables ^i, i = 1,2,... and y , i — 1,2,..., on some 

probability space (0,.F, P), with the following properties. 

Fix £ such that 0 < £ < 1/2. Let ^i, i = 1, 2 , . . . , be a sequence of i.i.d. random 

variables such that 

1P[£ < 6 < 1 - £ ] = 1- (8.2) 

The condition (8.2) is sometimes referred to as uniform ellipticity. 

Let y , i = 1,2,..., be another sequence of i.i.d. random variables taking values in 

— 1,1], on the same probability space as the (i. We allow y to depend on ^i, but any collec

tions {Yi^,Yi^,... , y j , {^n,^j2, • • -^^jy) are independent if { i i , . . . , n { j i , . . . Jk>} = 0-

For a particular realization of the sequences {^i; i = 1,2,,..) and ( y ; i — 1,2,...), we 

define the quantities p„ and n = 1,2,3,... as follows: 

^n + YnX{n) if e/2<^n + Ynx{n)<l-{e/2) 

Pn := { e/2 if ^n + YnX{n)<£/2 

l-{£/2) if a - f y , x ( n ) > 1 - (6/2) 

Qn := l-Pn- (8.3) 

We call a particular realization of {pn,Qn), n = 1, 2 , . . . , our environment, and we denote 

it by w. A given UJ is then a realization of our random environment, and is given in terms 

of the and y as in (8.3). 

For a given environment UJ, that is, a realization of {pn,qn), n = 1,2,..., we define 

the Markov chain {rit{uj);t G Z"*") on Z+, starting at some point in Z" ,̂ defined as foUows: 

r}o{uj) = r for some r G Z+, and for ??. = 1, 2 , . . . , 

P[r]t^i{u) = n - l\r]t{uj) = n\ = p„, 

P[77(+i(a;) = n + l|77f(a;) = n] = g„, (8.4) 

and P[??(+i(w) = l\vt{oo) = 0] = 1/2, P[vt+iito) = 0\rit{u) = 0] = 1/2. The given form for 

the refiection at the origin ensures that the Markov chain is aperiodic, which eases some 

technical complications, but this choice is not special; it can be changed without affecting 

our results. 

Recall that, from (8.1), x(n) 0 as n oo. Thus, there exists no E (0,oo) such 

that, for all n > UQ, x(n) < e/2. Hence, under condition (8.2), for P-almost all (C„)„>„o 
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we have (e/2) < ^n + Ynx{'n) < 1 - (e/2) (since the K are bounded). Thus, for all n > no, 
(8.3) implies that, P-almost surely, 

Pn = ^n + YnX{n), g„ = 1 - ^„ - x ( " ) K , n>no. (8.5) 

Note that our conditions on the variables in (8.3) ensure that (e/2) < p„ < 1 — {s/2) 

almost surely for all n, so that for almost every (a.e.) environment, p„ and g„ are true 

probabilities bounded strictly away from 0 and from 1. 

For n = 1, 2 , . . . , we set 

Cn := log f . (8.6) 

Write E for expectation under F. 

In our model, under (8.1), x ( ^ ) 0 as n —)• oo. Thus, from (8.5), in the hmit 

n —>• oo, we approach the well-known random walk in i.i.d. random environment as studied 

in [87], [133] and subsequently. In addition, when E[Ci] = 0, in the limit as n ^ oo we 

approach the critical case often referred to as Sinai's regime after [132]. Our results show 

that despite this, the behaviour of our model is, in general, very different to the behaviour 

of these hmiting cases, depending on the nature of the perturbation x-

In the next section we state our results. Theorems 8.2.1, 8.2.2, and 8.2.3 are special 

cases of the model in which some of the random variables and Yi are degenerate (that is, 

equal to a constant almost surely). In particular. Theorems 8.2.1 and 8.2.2 include some 

known results, when our model reduces to previously studied systems. In Theorem 8.2.4, 

the underlying environment is not in the 'critical regime'. Our main results, Theorems 

8.2.6 and 8.2.7, deal with the main case of interest, in which the underlying environment 

is truly random and is, in a sense to be demonstrated, critical. 

8.2 Main results 

Most of our results will be formulated for almost all environments u (in some sense, for 

all 'typical' environments), that is P-almost surely over (n,jr, P). 
If Ki = 0 P-a.s., then our model reduces to the standard reflected one-dimensional 

random walk in an i.i.d. random environment. In this case p„ = and Qn = 1 - ^n, 

72 = 1, 2 , . . . , and so (with the definition at (8.6)) Cn = log(Pn/9n)- Criteria for recurrence 

of the RWRE r]t{u) in this case were given by Solomon [133], for the case where {^i;i = 
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1,2,...) is an i.i.d. sequence, and generalised by Ali l i [5]. For the case in which larger 
jumps are permitted, see, for example, [80 . 

The following well-known result dates back to Solomon [133 . 

Theorem 8.2.1 Let {r]t{uj);t G Z"*") be the random walk in i.i.d. random environment, 

with r[Yi = 0] = 1. Suppose Var[Ci] > 0. 

(i) / /E[Ci] < 0, then r]t{u)) is F-a.s. transient. 

(ii) / /E[Ci] = 0, then r]t{uj) is F-a.s. null-recurrent. 

(Hi) / /E[Ci] > 0, then rit{uj) is ¥-a.s. ergodic. 

The critical (null-recurrent) regime E[log(pi/gi)] = 0 is known as Sinai's regime, af

ter [132]. This regime has been extensively studied; see, for example, [35,72,79,81]. For 

an outline proof of Theorem 8.2.1 using Lyapunov function methods, similar to those em

ployed in this chapter, see Theorem 3.1 of [34]. In this chapter we extend the classification 

criteria of Theorem 8.2.1 to encompass the case in which the p„ are not i.i.d. and in which 

E[\og{pn/qn)] is asymptoticaUy zero, as n ^ oo. Our results are, in some sense, a random 

environment analogue of those for Markov processes with asymptotically zero mean drift 

given in [98] (see below). 

For the remainder of the chapter we suppose F[Yi = 0] < 1. This includes the 

interesting case where Yi = b P-a.s., for some b e [-1,1] \ {0} . Our techniques do, 

however, enable us to allow Yi to be random. 

Although not as famous as the RWRE, another system that has been well studied 

is the rather classical problem of a Markov chain with asymptotically zero drift. This 

problem was studied by Lamperti [90,91]. General criteria for recurrence, transience and 

ergodicity were given by Menshikov, Asymont, and lasnogorodskii in [98 . 

Theorem 8.2.2 below is a consequence of their main result, Theorem 3, applied to our 

problem when Var[Ci] = 0 and Var[yi] = 0; that is, the distributions of and Yi are both 

degenerate (i.e. equal to a constant almost surely). In particular, we have a non-random 

environment LO. If, on the other hand, is degenerate but Yi is not, then we have a 

random (asymptotically small) perturbation on an underlying non-random environment, 

and we have Theorem 8.2.3 below. 

We use the notation logi(x) := log(a;) and log^ix) := log(log^._i(a;)) for /c = 2, 3,.. . . 
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Theorem 8.2.2 Suppose P[Fi = b] = 1 for some 6 G [ - 1 , 0) U (0, l ] . Suppose P[6 = c = 
1 for some c G (0,1). 

(i) If c < 1/2, then r]t{u)) is transient. 

(ii) If c> 1/2, then rit{uj) is ergodic. 

(iii) Suppose c = 1/2. Suppose there exist s G Z+ and K e N such that, for all 

n G [K, oo) and some h > 1 the following inequality holds: 

bx{n) + — ^ + •••+ ^ . (8.7) 

4n 4nlogn 4nni=ilogin 
Then rit{uj) is ergodic. 

(iv) Suppose c = 1/2. Suppose there exist s,t G Z"*" and K E N such that, for all 

n G [K, oo) and some h < 1 the following inequality holds: 

1 1 h 

An An log n An Yli=i l o g i " 
< bx{n) 

-An 4nlog?i 4n log, 

Then rit{tu) is null-recurrent. 

(v) Suppose c = 1/2. Suppose there exist s G Z+ and K e N such that, for all 

n G [K, oo) and some h > 1 the following inequality holds: 

bxin) < - - r FFA • (8.9) 
An Anlogn 4 n j | . ^ ^ l o g j n 

Then ?7t(w) is transient. 

Theorem 8.2.2 follows directly by applying Theorem 3 of [98] to our case, with m(x') = 

-2x{x) and b{x) - 1. 

Remark. In the case c = 1/2 the critical case in terms of the recurrence, transience and 

ergodicity is when the perturbation xi'i^') is, ignoring logarithmic terms, of order n~^; we 

say that the 'critical exponent' is —1. This contrasts with our results in the case where 

Var[^i] > 0 (see Theorems 8.2.6 and 8.2.7), in which the critical exponent is - 1 / 2 . 

The following result deals with the case in which the distribution of is degenerate, 

but that of Yi is not; in this case we have a homogeneous non-random environment subject 
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to an asymptotically small random perturbation. In particular, parts (i i i) and (iv) of the 

theorem deal w i th the case when the underlying environment is that of the simple random 

walk. Here, = stands for equality in distr ibution. 

T h e o r e m 8.2.3 Suppose P[^i = c] = 1 for some c G (0,1), anĉ  Var[yi ] > 0. 

(i) If c < 1/2, then •qt{io) is V-a.s. transient. 

(ii) If c> 1/2, then rit{u)) is F-a.s. ergodic. 

(lit) If c = 1/2 and Yi = — Y i , then rit{uj) is F-a.s. null-recurrent. 

(iv) Suppose c = 1/2 and E fVi ] ^ 0. Suppose x(?^) = an~^ for a > 0 and 0 > 0. 

(a) IfO<P<l and E[Yi] > 0 then 7?t(u;) is F-a.s. ergodic. 

(h) If P > 1 then rit{u)) is F-a.s. null-recurrent. 

(c) IfO<P<l an( iE[Yi] < 0 then rit{oj) is F-a.s. transient. 

We prove Theorem 8.2.3 along wi th our main results in Section 8.3. 

R e m a r k s . Note that in part ( i i i ) , Yi = — Yi implies that all odd moments of Yi are 

zero. By minor modifications to the proof of Theorem 8.2.3 one can obtain a more refined 

result, specifically that w i th p :— m i n { j € { 1 , 3, 5 , . . . } : E [ y / ] ^ 0}, for p > 1 we have a 

statement analogous to part (iv) but w i th E[Yi] replaced by E [ y / ] and wi th the critical 

value of P being l / (2(p — 1)) for p > 1, rather than 1. We do not go into further detail 

here. 

Theorem 8.2.3 (iv) demonstrates that in the case of a randomly perturbed simple 

random walk, the critical exponent for the perturbation is —1, as in the case of the non-

random perturbation (Theorem 8.2.2). I t may be possible to refine Theorem 8.2.3 (iv) to 

obtain more delicate results analogous to those of Theorem 8.2.2. 

For the remainder of the chapter, we ensure that the underlying environment is ran

dom, by supposing Var[Ci] > 0. First we consider the case E[^i] ^ 0. Here we have the 

following result, which we state without proof, but which follows by similar methods to 

those used in [34] or later in this chapter. In this situation, the perturbation introduced 

by X ( ' ^ ) K T does not affect the criteria given in (i) and ( i i i ) of Theorem 8.2.1. 

- T h e o r e m 8.2.4 Suppose Var[Ci] > 0, E[Ci] ^ 0, and F[Yi = 0] < 1. 
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(i) / / E [ ( i ] < 0, then rit{u>) is F-a.s. transient. 

(ii) / /E [Ci ] > 0, then 7?t(w) is f-a.s. ergodic. 

For the remainder of the chapter we consider the more interesting case where E[Ci] = 0, 

so that we have a random walk in a random environment that is asymptotic to Sinai's 

regime. We prove general results about this R W R E w i t h asymptotically zero perturbation 

that are analogous to Theorem 8.2.2, but significantly diff'erent. 

I f P[Yi = 0] < 1 (and permit t ing the case that f[Yi = c] = 1 for some c wi th 

0 < |c| < 1) we define 

Yi 
A : = E (8.10) 

Also, we use the notation 

: = Var[Ci]. (8.11) 

Note that, under the condition (8.2), we have cr̂  < cxj and, since Yi is bounded, |A| < oo. 

We also draw attention to the fact that, given (8.2), P-a.s., 

a fact that we shall use later. For what follows, of separate interest are the two cases 

A = 0 and A 7̂  0. We concentrate on the latter case for most of the results that follow 

(but see the remark after Theorem 8.2.7). However, our first result deals w i th the case 

in which F i / ^ i = - F i / ( 1 - 6 ) - This implies A = 0 (see (8.10)), but is a rather special 

case; Theorem 8.2.5 demonstrates that in this case the detailed behaviour of x is not 

important: as long as x(^) —>• 0 as n 00, then rit{uj) is null-recurrent for a.e. u>. 

T h e o r e m 8.2.5 With a as defined at (8.11), suppose that F i / ^ = - i ^ i / ( l - ^i), 1P[>1 = 

0] < 1, E[Ci] = 0, and > 0. Then rit{oj) is f-a.s. null-recurrent. 

A n example of ( ^ 1 , ^ 1 ) for which Theorem 8.2.5 holds is when Yi and .̂ 1 are independent 

uniform random variables on (—1,1) and (e, I — e) respectively. 

Our remaining results deal w i th the case A 7̂  0 (but see also the remark after Theorem 

8.2.7). In our next result (Theorem 8.2.6), we give some rather specific conditions on the 

asymptotic behaviour of the function x- Theorem 8.2.6 is a special case of our general 

result, Theorem 8.2.7. 
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T h e o r e m 8.2.6 With A and a defined at (8.10) and (8.11) respectively, suppose that 
A ^ 0, P[y i = 0] < 1, E[Ci] = 0, and > 0. Let c„it : = 02'^'"^. 

(i) If there exist constants c > Cent o-nd UQ 6 Z"*" such that Ax(n) > cn~^/^(loglogn)^''^ 

for all n > UQ, then rit{io) is F-a.s. ergodic. 

(a) If there exist constants c < CcHt anduQ G Z + such that |A|x(n) < cn"^/^(loglogn)^/^ 

for all n > no, then rit{uj) is F-a.s. null-recurrent. 

(Hi) If there exist constants c > CcHt anduo G Z"*" such that Xxin) < —cn~-^/^(loglog?i)^/^ 

for all n > no, then r}t{u)) is f-a.s. transient. 

R e m a r k . Theorem 8.2.6 shows that in our case the critical exponent for the pertur

bation is - 1 / 2 . This contrasts w i t h the deterministic environment case (as in Theorem 

8.2.2, and see [98], Theorem 3), in which the critical exponent is — 1 . When the pertur

bation is smaller than this critical size (as in part ( i i ) ) , i t is insufficient to change the 

recurrence/transience characteristics of the Markov chain f r o m those of Sinai's regime. I f 

the perturbation is greater than the critical size, i t changes the behaviour of the Markov 

chain f rom that of Sinai's regime, making i t either transient or ergodic depending on the 

sign of the perturbation. This feature is present in our most general result. Theorem 8.2.7. 

Theorem 8.2.6 wi l l follow as a corollary to Theorem 8.2.7, below. Theorem 8.2.7 

is more refined than Theorem 8.2.6. In order to formulate our deeper result, we need 

more precise conditions on the behaviour of the perturbation funct ion x(n). To achieve 

this, we define the notions of k-supercritical and k-subcritical below. First, we need some 

additional notation. 

Recall the notation logi(a;) : = log(x) and log^.(a;) : = log(logfc_i(a;)) for A; = 2 ,3 , . . . . 

Let nfc denote the smallest positive integer such that log;t+i(''^fc) ^ 0. Let : = 2 for 

/c G N \ { 3 } and : = 3. For each k e N we define the [0, oo)-valued function as 

follows (we use the given fo rm for the ipk due to the appearance in the sequel of the Law 

of the Iterated Logari thm). For x G [e, oo) and ci G R , let 

and for k = 2,3,..., w i th x G [n^, oo) and d G R , let 

iPk{x;d):= V a i + i l o g ^ + i X - f (a^+i-|-(i)logfc+ia; . (8.13) 
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We shall see that the behaviour of the Markov chain T]t{u!) is determined by the driving 
funct ion x- By applying the Law of the Iterated Logari thm, we shall see that the critical 
form of X is related to an iterated logarithm expression of the fo rm of iph-

In order to formulate our main result we make the following definitions of k-supercritical 

and k-suhcritical. 

Defini t ion 8 .2 .1 Recall the definitions of X and a at (8.10) and (8.11) respectively. Sup

pose A 7̂  0. For k EN, we say x is A:-supercritical if there exist constants c E (0, oo) and 

UQ G Z"*", such that, for all n > no, 

x ( n ) > ^ ? i - ' / V f c ( n ; c ) . (8.14) 

For k eN, we say x is A;-subcritical if there exist constants c e (0,oo) and no G Z"*" such 

that, for all n > UQ, 

x W < ^ n - i / V f c ( n ; - c ) . (8.15) 

R e m a r k s . Impl ic i t in x being fc-subcritical or /c-supercritical is the constant c, a fact 

that we make repeated use of in the proofs in Section 8.3. Whenever we consider a k-

subcritical or A:-supercritical funct ion in what follows, we understand this to imply the 

existence of such a c, and often refer to the constant c in this context. 

Also, observe that i f for some /c e N , x is A;-supercritical, w i t h implici t constant 

c G (0, oo), then for any c' G (0, c) we have that (8.14) implies 

X{n) > ^ n - i / V f c ( n ; c ) > ^^n-'^^Mn;c'). 

Similarly i f for some A; G N , x is fc-subcritical, w i th implici t constant c G (0, oo), then for 

any c' G (0, c) we have that (8.15) implies 

X{n) < ^ n - i / V f c ( n ; - c ) < ^ w ' ^ ^ M n ; - c ' ) . 

Finally, we note that Definit ion 8.2.1 excludes functions that oscillate significantly 

about the critical region n~^/^. 

Our most general result is as follows. 

T h e o r e m 8 . 2 . 7 With A and a defined at (8.10) and (8.11) respectively, suppose that 

A ^ 0, P[y i = 0] < 1, E[Ci] = 0 and > 0. 
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(t) I f , for somek G N , x is k-supercritical (8. IJ^) and X > 0, thenr]t{Lo) isF-a.s. ergodic. 

(ii) I f , for some k E N , x is k-subcritical ( 8 . 1 5 ) then rit{u) is F-a.s. null-recurrent. 

(Hi) I f , for some k EN, x is k-supercritical (8.14) ^.''^d A < 0, then r}t{uj) is F-a.s. tran

sient. 

R e m a r k . I n the general case A = 0, i t turns out that higher moments contribute, and 

we obtain a slightly more general fo rm of Theorem 8.2.7. I t is straightforward to modify 

the proof of Theorem 8.2.7 to obtain such a result. Specifically, i f for ?• 6 N we set 

and p : = m i n { j e N : Xj ^ 0 } , then for p > 1 a statement of the fo rm of Theorem 8.2.7 

holds but w i th A replaced by Ap and the conditions on x being replaced by conditions on 

X^- We do not pursue the details here. 

We wi l l prove Theorem 8.2.7 in the next section. The idea behind the proof of the 

recurrence and transience conditions is to construct a funct ion / of the process i]t{uj) 

such that f{rit{u)) is a 'martingale' everywhere except in a finite region, and determine 

the cases in which this funct ion is finite or infinite. The proof of ergodicity relies on the 

construction of a stationary measure and determining its properties. 

8.3 Proofs of main results 

Before embarking upon the proof of Theorem 8.2.7, we need some preliminary results. 

First we present the criteria for classification of countable Markov chains which we wi l l 

require. 

Let {Wt; t € Z"*") be a discrete, irreducible, aperiodic, time-homogeneous Markov chain 

on Z+ . We have the following classification criteria, which are consequences of those given 

in Chapter 2 of [50]. The following result, which we state without proof, is a consequence 

of Theorem 2.2.2 of [50], and is slightly more general than Proposition 2.1 of [34 . 

L e m m a 8.3.1 Suppose there exist a function / : Z"*" ^ [0,oo) which is uniformly bounded 

and nonconstant, and a set A C Z"*" such that 

E[f{Wt+,) - f{Wt)m = = 0, (8.16) 
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for all X eZ+\A, and 

f { x ) > s u p f { y ) , (8.17) 

for at least one x e \ A. Then the Markov chain {Wt) is transient. 

Proof . We have f{n) < C for all n G Z+, where C G (0,oo). For each n, set g{n) = 

C - f{n) > 0. For some x eZ+\A,we have by (8.17) that 

g{x) = C - f i x ) < C - sup f { y ) = inf giy). 
yeA y^^ 

The funct ion g thus satisfies the conditions of Theorem 2.2.2 of [50], proving the lemma. • 

The following result is contained in Theorem 2.2.1 in [50 . 

L e m m a 8.3.2 Suppose that there exist a function / : Z"*" [0, oo) and a finite set 

A C Z+ such that 

E[fiWt+i) - fiWt)\Wt = ^] < 0, (8.18) 

for all x G Z + \ A, and f { x ) —>• -foo as x oo. Then the Markov chain (Wt) is recurrent. 

We wi l l need Feller's refined fo rm for the Law of the Iterated Logari thm [51]. The following 

result is a consequence of Theorem 7 of [51]. 

L e m m a 8.3.3 Let Xi, i = 1,2,..., be a sequence of independent random variables with 

E[Xi\ = 0 for all i, and E[Xf] — of < oo for i = 1,2, Suppose the Xi are bounded, 

that is P[\Xi\ > C] = 0 for all i and some 0 < C < oo. Let 

s l : = Y . a l (8.19) 

Suppose that s„ oo asn oo. Let Sn : = Yl'Li ^i- some G N and e G ( -oo , oo), 

define Lpk{n;e) as at (8.13). Then 

1 f 1 i f e < 0 , , 
P[Sn> s^^k{sl;e)i.o] = I (8.20) 

I 0 i f e > 0 

In particular, if the Xi are i.i.d. and bounded random variables with E[Xl] = cr ,̂ we have 

P\Sn> on^'^^k{n;e) \.o] = I ^ ^ < ° (8.2i) 
' 0 i f £ > 0 
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We wi l l also need the following result. Recall the definition of (pk{i;d) at (8.13). 

L e m m a 8.3.4 For /c G N , let be the smallest positive integer such that logf._^_i Uk > 0. 

For any d eH, we have 

n 

J2 i-"^^k{i\ d) = 2n i /Vfc (n ; d) + a „ , (8.22) 

where | Q ' „ | < 6?i^/^ for all n sufficiently large. 

Proof . We have, for /c G N , 

^ [x'l\,{x;d)) = \x-'l^^,{x-d) + x'l''^',{x;d), 

where 
1 . . . . - 1 f 2 3 \ 1 

for X sufficiently large. Thus, for any /c e N , 

r x-'^^iPk{x;d)dx = 2[x'^^M^;d)]l^-2 r x'^^if',{x;d)dx 

= 2n^/Vfc(";c?) + ^ n , (8.23) 

where 

bn\<2 I x^/^ip'k{x; d)(\x + 2n]!^ipk{nk; d)<Ck + 2 / x'^^^^dx, 

Jni. Jo 
for some 0 < < oo, which depends on k (and d). Thus, for each A;, < 5?i^/^ for all 

n sufficiently large. Since x~^^^ipk{x; d) is a decreasing function for ah x sufficiently large 

(depending on k but not d), we have that there exist finite positive constants C'f. and C'/. 

such that 

f2^-'^'M^•,d) + C',> r x-'l\,{x;d)dx> i-"''^k{i;d) - Cl 
i=nk "^"^ i=nk + l 

So we have 

0 < ^ i-'^^Mi\ d ) - I a ; - i /Vfc(x; d)dx < % ' ^ V f e K i d) + C, (8.24) 

for some 0 < C < oo, that does not depend on n. Then f rom (8.24) and (8.23) we obtain 

(8.22). • 
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For a given realization u of our random environment, w i t h pi and g ,̂ i — 1 ,2, . . . 
defined by (8.3), let 

oo 
^ M - y - n - = - + ^ + ^ + - - - - (8-25) 

L e m m a 8.3.5 //, for a given environment u>, the quantity D{u>) as defined at (8.25) is 

finite, then the Markov chain rit{u)) is ergodic. On the other hand, if D{ui) — 00, then the 

Markov chain r}t{u)) for this u is not ergodic. 

Proof . For fixed environment u, i.e., given a configuration of {pi;i = 1 ,2 , . . . ) , r]t{uj) 

is a reversible Markov chain. For this Markov chain one has the stationary measure 

A< = ( / io ,Ai i , - - - ) . where 

1 1 
^0 = 2, Ail = - , and ^„ = - T T ^ n > 2. (8.26) 

Pi Pi fj[ Pi+i 

Then, w i t h the definition of D{uj) at (8.25), we have 

00 

Thus, i f , for this u, D{LO) is finite, then the Markov chain r]t{uj) is ergodic, since we can 

obtain a stationary distr ibution. On the other hand, i f D{u!) = 00 for this to, the Markov 

chain ??t(< )̂ is not ergodic. • 

Our next useful result, Lemma 8.3.6 below, uses the Law of the Iterated Logari thm 

to analyse the behaviour of sums of i . i .d . random variables weighted by the function x-

L e m m a 8.3.6 Let Zi, i = 1,2,..., be a sequence of i.i.d. random variables which are 

bounded (so that P[\Zi\ > B] = 0 for some 0 < B < 00), such that 0 < E[Zi] < 00. Let 

X : [0,00) -)• [0,00) such that x (n) 0 as n ^ 00. With A defined at (8.10), suppose 

A / 0. 

(a) Suppose E[Zi] > 0. Suppose that, for some k eN, x is k-subcritical as defined at 

(8.15). Then with probability one, for any e > 0, for all but finitely many n, 

-n^ < j^Z^xii) < ^ ^ n ' ^ ' M n ; - c / 3 ) . (8.27) 
i= l 
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(b) Suppose E[Zi] > 0. Suppose that, for some /c G N , x is k-supercritical as defined 
at (8.14). Then with probability one, for all but finitely many n, 

jZz.x{i) > ^ ^ n ^ / V . ( n ; c / 3 ) . (8.28) 

i=i 

(c) Suppose E[Zi] = 0. Then for any £ > 0 with probability one, for all but finitely 

many n, 

n 
^ Z , x ( ^ ) < £ ( n l o g l o g n ) i / 2 . (8.29) 
i=l 

R e m a r k . When we come to apply Lemma 8.3.6 later in the proofs of the theorems, the 

configuration {Zi, i > 1) that we wi l l use w i l l be specified by the realization of the random 

environment LO, so that the qualifier ' w i t h probabili ty one' in the lemma translates as 'for 

a.e. w.' 

P r o o f of L e m m a 8.3.6. Recall the definitions of A and a at (8.10) and (8.11) respec

tively. Suppose X^ 0. For the proofs of parts (a) and (b), suppose that E[Zi] > 0. First 

we prove part (a). Suppose that for some k G N x is /c-subcritical. Wri te 

n 
Sr.:=^{Z,-E[Z,Mi). (8.30) 

1=1 

Then 

n 
Var[5„] = Var[Zi] ^ ( x ( ^ ) ) ' - (8.31) 

i=i 

Suppose that Var[5'n] —>• 00 as n —> 00. Then, by Lemma 8.3.3, taking Xi = {Zi — E[Zi]), 

we have that w i t h probability one the configuration of {Zi,i > 1) is such that 

5„ > (Var[5„])i/2(3loglog(Var[5„]))i/2^ 

for only finitely many n . (The constant 3 appears for the sake of simplicity, any constant 

strictly greater than 2 wi l l suffice). That is, w i th probability one, for all but finitely many 

n, 

Sn < (Var[5„])^/2(3loglog(Var[5„]))i/2 < (Var[5„] )^ /2(31oglog(n) )^ /^ 

the second inequality following f rom (8.31) and (8.15). Thus, w i t h probabili ty one, using 

(8t31) and (8.15) once more, we have that for any e > 0 and for all but finitely many n . 
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Sn < • Thus, w i t h probabihty one, for all but finitely many n, since E[Zi] > 0 and x 
is a nonnegative funct ion, 

n n 

i= i i=i 

The lower bound in (8.32) establishes the lower bound in (8.27). We now need to prove 

the upper bound. By (8.15), we have that there exist c G (0, oo) and /c G N such that for 

all n sufficiently large 

E x ( ^ ) < ^ E r V V . ( ^ ; - c / 2 ) . (8.33) 
i=l i=l 

Then f rom (8.33) w i t h (8.22) we obtain, for all n sufficiently large 

E X(0 < ^ n ^ / V . ( n ; - c / 2 ) + ^ n ^ / ^ (8.34) 
^=l \^ ^ 

Hence f rom (8.34) and the upper bound in (8.32), we have that, w i th probabili ty one, for 

ah but finitely many n . 

Then we can absorb the final two terms on the right hand side to give (8.27), given that 

Var[S'„] -> oo as ?2 ^ oo. On the other hand, suppose that Var[5„] < C for all n and 

some C < oo. Then, by (8.31), we have that YA=i{x{i)f < C for some 0 < C < oo. So, 

by Jensen's inequality, and the boundedness of the Zi, we have that for all n. 

i=i 
nY,Zf{x{i)y<n'^'B, J2(x{i))' < Cn'l\ (8.35) 

\ j i = l \ i=l 

for some 0 < C < oo. Hence we obtain (8.27) in this case also. This proves part (a). 

Now we prove part (b). Suppose that for some /c G N x is A:-supercritical. Again, we 

use the notation of (8.30). By (8.14), we have that Var[5„] oo as n —)• oo. Then, by 

Lemma 8.3.3, taking Xi = — (Zj — E[Zi]), we have that, w i th probability one, 

Sn < - (Var [5„ ] )^ /2 (31og log(Var [5„ ] ) ) l / ^ 

for only finitely many n . But x ( n ) - ) • 0 as n oo, so wi th probabili ty one there exists a 

sequence Ci, C2,. . . such that c„ - ) • oo as 7i ̂  oo and Var[5„] < n / c „ for all n. Thus, w i th 

probabili ty one, 

Sn>-n"'c-'l\Z\og\og{n)YI\ (8.36) 
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for all but finitely many n. So, w i t h probability one, for all but finitely many n, 

j 2 Z^X{^) > E[Z,] j 2 Xii) - n^/^c-i/2(3 l o g l o g ( n ) ) i / ^ (8.37) 
i=l i=l 

By (8.14), we have that there exist c G (0, oo) and /c G N such that for n sufficiently large 

E x ( 0 > ^ E ^ - ^ ' ' V . ( ^ ; c / 2 ) . (8.38) 
i=i i=i 

Then f rom (8.38) w i t h (8.22) we obtain, for all n sufficiently large 

E ^ « ^ m " ' ^ V ( n ; c / 2 ) - ^ n V ^ (8.39) 
i=i |A| - '^^•^ '^ ' -^ |A 

Hence, w i t h probabili ty one, f rom (8.37) and (8.39) we have that, for all but finitely many 

n 

j^Zaii) > ^ ^ n i / V . ( n ; c / 2 ) - ^ ^ ^ n ^ / ^ _ n'f^c-J^'{3\oglog{n)Y^\ 
i=i ^ ^ 

which yields (8.28). Thus we have proved part (b). 

Finahy, we prove part (c). Suppose now that E[Zi] = 0. Again use the notation 

of (8.30). First, suppose that Var[5„] < C for all n, for some 0 < C < oo. Then, we 

have that (8.35) holds. On the other hand, suppose that Var[5'„] —> oo as n —>• oo. But , 

since x(?^) -> 0 as ?i —)• oo, we have that Var[5„] = o(n). Applying Lemma 8.3.3 wi th 

Xi = Zix{i) then yields (8.29). Thus the proof of the lemma is complete. • 

P r o o f of T h e o r e m 8.2.7. First we examine the recurrence and transience criteria for 

rit{u)). For the recurrent cases, we proceed in the second part of the proof to analyse the 

stationary measure given in Lemma 8.3.5, in order to distinguish between null-recurrence 

and ergodicity (positive recurrence). We work for a fixed environment u, that is, a given 

realization of pi and for i = 1, 2 , . . . , as given by (8.3). 

We aim to apply Lemmas 8.3.1 and 8.3.2, and so we construct a Lyapunov function / , 

that is, a funct ion / : Z+ —>• R + such that f{rjt{uj)) behaves as a martingale (wi th respect 

to the natural filtration) for ?7t(u;) ^ 0. To do this, we proceed as follows. 

For a given environment uj, set A i : = 1 and for i = 2, 3 , . . . let 

i-l i-l 
A , : = \{{p,lqj) = exp log ( p . / ^ i ) , (8-40) 

]=i j=i 
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and then set /(O) : = 0 and for n = 1, 2, 3 , . . . let 

n 

f{n):=J2^^- (8.41) 

Note that /(?^) > 0. Then, for fixed a;, for t G Z+ and n = 1, 2 , . . . , 

E[firit+i{^)) - f{Vt{co))\vt{uj) = n] = p,J{n - 1) + g „ / ( n + 1) - / ( n ) 

i.e. f(rit{ijj)) is a martingale over 1, 2, 3 , . . . . 

We need to examine the behaviour of / ( n ) as n —>• oo, in order to apply Lemmas 8.3.1 

and 8.3.2. Recall f rom (8.5) that there exists no G N such that for any j > UQ and almost 

every realization of the random environment to, pj = ( j + Yjx{j) and qj = 1 — — Yjx{j)-

Then, for j sufficiently large, and a.e. u 

logp, = log(^, + Y,xU)) = \og{Q + ^-%xU) + O {(xU)?) , 

and 

logq, = l og ( l - - Y,x{j)) = l og ( l - Q - (1 - Q-%x{j) + O ( ( x ( i ) ) ' ) , 

so that for j sufficiently large and a.e. u) 

logipM = log ( - ^ ) + , ( ^ \ . X { J ) + O [{x{3)?) . (8.42) 

Note that E[log(p„/(/„)] = 0(x(?^)) —> 0 as ?i —)• oo, so that in this sense we asymptotically 

approach Sinai's regime. 

Recall f rom (8.6) that for i = 1, 2 , . . . , Ci = log (^ i / ( l - 6)). From (8.41), (8.40) and 

(8.42) we have, for n sufficiently large, for a.e. u) 

(8.43) 0 + ^ - ( ^ ^ x ( j ) + o ( ( x ( j ) n 

Note that for what follows the 0{{x{j)Y) terms in (8.43) can be ignored, since, when 

A 7̂  0 (where A is given by (8.10)), the other two terms are dominant. Thus we need to 

examine the behaviour of the two terms 0 and YTi=\ ^•(i-^^)X{i)- This behaviour 

depends upon the sign of A, and the magnitude of the perturbation x-

First suppose that for some /c G N x is A;-subcritical (8.15). In this case, we show 

that in (8.43) the term involving the Q is essentially dominant. We can apply Lemma 
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8.3.6 wi th Zi = K i C ^ l - (if A > 0) or = -Y^i~^{\ - 6)~^ (if A < 0), and the 
boundedness property (8.12), so that (8.27) implies that, for any £ > 0, for all but finitely 
many n, for a.e. a; 

-n' < sign(A) ^ , ( , ' . x { i ) < crn'^^M^; - c / 3 ) , (8.44) 
i=i ^̂ ^̂  

w i t h c G (0, oo) as given in (8.15). Also, f rom the Law of the Iterated Logari thm (Lemma 

8.3.3), we have that, for a.e. co, there are infini tely many values of n for which 
n 

Y,Q>an'l^ipk{n--cl^). (8.45) 
1=1 

So f rom (8.44) and (8.45), we have that , for a.e. a;, there are infini tely many values of n 

such that, i f A > 0, 

E * ^ ' + E 7 ( V ^ ^ ^ ^ ) ^ on'l\M. - c / 4 ) - n\ 
1=1 1=1 ^^^^ 

and i f A < 0, 
n n y 

E * ^ ' + E T h ^ ^ ( ' ^ ^ on'l\ipk{n; - c / 4 ) - v?,(n; - c / 3 ) ) . 
1=1 1=1 ^iy^ 'ii) 

Thus, by choosing e to be small, we have that for a.e. w, there are infini tely many values 

of n such that 

(8.46) 

for some C w i t h 0 < C < oo. Thus f r o m (8.46), (8.40), and (8.42), there are, for a.e. u, 

infini tely many values of n for which A „ > 1, and hence as ?z - ) • oo f{n) 4-oo for a.e. u. 

Thus, by Lemma 8.3.2, r]t{ijo) is recurrent for a.e. u. 

Now suppose that for some A; G N x is A;-supercritical (8.14). I n this case, we show 

that the term in (8.43) involving Yj^~^{\ — ^j)~^ is essentially dominant, and thus the sign 

of A determines the behaviour. This time, f rom Lemma 8.3.6 wi th Zi = y ' j ^~^( l — 

(if A > 0) or = - K i C ^ l - ( i f A < 0), and the boundedness property (8.12), we 

have that (8.28) implies that, for a.e. u>, for all but finitely many n, 

sign(A)f; ^ X(^) > ani /Vfc(n;c /3) . (8.47) 
1=1 ^ ' ^ ^ 'i'l 

Also, f rom the Law of the Iterated Logari thm (Lemma 8.3.3), we have that, for a.e. w, 

there are only finitely many n such that 
n 

Y,Q>an"\k{n-c/A). (8.48) 
i=i 
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I f A < 0, f rom (8.47) and (8.48), we have that, for a.e. uj, there are only finitely many n 
such that 

E + E c J l . ^ x i i ) > on"' (Mn; c/4) - (^^(n; c /3 ) ) . (8.49) 

So i f A < 0, f rom (8.49), (8.40), and (8.42), we have that for a.e. ui there are only finitely 

many values of 7i for which 

A „ > exp ( - C i n i / 2 ) , 

for some Ci, not depending on u, w i th 0 < C i < oo. Thus for a.e. to there exists a 

constant C2 (depending on u) w i th 0 < C2 < 00 such that 

00 

/ ( n ) < C 2 + ^ e x p ( - C i i ^ / 2 ) , 
i=l 

which is bounded. So in this case, by Lemma 8.3.1, we have that, for a.e. cu, rit{u) is 

transient. 

On the other hand, i f A > 0 then Lemma 8.3.3 w i t h (8.47) implies that for a.e. u there 

are infini tely many values of n for which 

E C . + E , ,X(^) > on'^' {Mn;c/3) - Mn;c/4)) > C^n'l\ (8.50) 
i^i i=i ^^^^ 

for some Ci, not depending on a;, w i th 0 < C i < 00. So i f A > 0, f rom (8.50), (8.40), and 

(8.42) for a.e. u there are infini tely many values of n for which 

A„ > exp (Cin^/^) . 

Thus f{n) +00 P-a.s., and in this case we have that, for a.e. UJ, rit{u>) is recurrent, by 

Lemma 8.3.2. 

We now classify the recurrent cases further into ergodic (positive recurrent) and null-

recurrent. To determine ergodicity, we apply Lemma 8.3.5. Given UJ, and wi th D{iu) as 

defined at (8.25), we have 

00 ^ / i \ °° 1 

where A j is as defined at (8.40). By a similar argument to (8.42), we have that for n 

sufficiently large, for a.e. ou 

n—l n—1 /n—1 

\ i=l i=l ^'^'^ \i=l 
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We use similar arguments as in the proof of recurrence and transience to analyse D{u>). 

First suppose that for some A; G N x is A;-subcritical. Then, by a similar argument to 

(8.46), we have that for a.e. u there are infini tely many values of i for which 

for 0 < C < oo. Thus for a.e. u; there are infinitely many values of n for which ( l / A „ + i ) > 

1 and {l/{An+iqn)) > L Hence D{u) = -hoo for a.e. u. So, for a.e. u, by Lemma 8.3.5, 

ijti^) is not ergodic. 

Now suppose that for some A: G N x is /^-supercritical. I f A > 0, using similar 

arguments to before, we have that for a.e. u) there are only finitely many n for which 

^=l i=l 

So for a.e. to there are only finitely many values of n for which 

( 1 / A „ ) > exp {-C,n'/'), 

for some 0 < Ci < oo. Thus for a.e. to there exists a constant C2 (depending on uj) w i th 

0 < C2 < 00 such that 
00 

D{u) < C2 + Eexp {-Cii'^^), 
i=i 

which is bounded. So in this case, for a.e. cu, by Lemma 8.3.5, ?7t(a;) is ergodic. 

On the other hand, i f A < 0, we have that for a.e. LO there are infinitely many n for 

which 

for some Ci , not depending on u, w i th 0 < Ci < 00. So for a.e. UJ there are infinitely 

many values of n for which 

( 1 / A „ ) > exp (Cm^/^) . 

Thus D{u}) = -\-oo F-a.s., and once again by Lemma 8.3.5, r]t{uj) is P-a.s. not ergodic. 

This completes the proof of Theorem 8.2.7. • 

P r o o f of T h e o r e m 8.2.6. First we prove parts (i) and (ni) . Suppose that, for all n 

sufficiently large, Ax(n) > cn~i /2( loglogn)i /^ , for some c > CcHt where Ccdt = cr2~i/^ 



8.3. Proofs of m a i n results 182 

Then we see that x is /c-supercritical (8.14) for /c = 2, 3,..., since, for example 

- ^ n - V 2 ( l o g l o g n ) V ^ = —^n-'l\2\og\ognYI' 

> - ^ 7 1 " ^ / ^ (2 log log 71 + 4 log log log n f ^ , 
2 A 

for n sufficiently large and c > Cent- Hence (i) follows f rom part (i) of Theorem 8.2.7. 

Similarly, ( i i i) follows f r o m part (ni) of Theorem 8.2.7. 

For part ( i i ) , suppose that |A|x(«) < c7i~^/^(loglog72)^/^ for all n sufficiently large, 

c < Ccrit . Then we see that x is A;-subcritical (8.15) for A; = 2,3, . . . , since, for example 

J^n-^/^(loglog7^)^/^ < ^ n - i / ^ ( 2 1 o g l o g 7 z ) ^ / ^ 

< YX^-^''' (2 log log 72 + 2 log log log n) ^''^, 

for n sufficiently large. Then part (ii) of Theorem 8.2.7 gives part (ii) of Theorem 8.2.6, 

and the proof of Theorem 8.2.6 is complete. • 

P r o o f of T h e o r e m 8.2.5. From Lemma 8.3.3, we have that for a.e. uj there are infini tely 

many values of n for which 
n 

Y,^,>an'l\\og\og{n)f'\ (8.51) 
i=\ 

By a similar argument to (8.42), but keeping track of higher order terms in the Taylor 

series, we have that now 

log(p./g.) = + E [ j y ^ r + ^^^"^y- (^-^2) 

By the condition Yi/(i = -Yi/{1 - ^ i ) , we have that the expectation of the sum on the 

right of (8.52) is zero. Hence we can apply part (c) of Lemma 8.3.6 wi th 

to obtain that for all but finitely many n, for a.e. to 

E E - ^ n T T ^ T v + M ^ w ) " ^ - ^ " ' / ' ( l o g l o g ( n ) ) ^ / ^ (8.54) 

and by choosing e sufficiently small we have f rom (8.52), (8.51) and (8.54) that, for a.e. u 

there are infini tely many values of n for which 
j i 

Y^\og{p./q^) > Cn'^'iloglogn)'/', 
i=i 
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for 0 < C < oo. Thus wi th A „ defined at (8.40), we have that for a.e. cu there are infini tely 

many values of n for which 

A „ > e x p {Cn'^H\og\og{7i)y/') , 

and so f{n) -> +oo P-a.s., and so, by Lemma 8.3.2, rjtiuj) is recurrent for a.e. u. 

To prove null-recurrence, i t remains to show that the Markov chain is not ergodic. 

Consider D{uj) as defined at (8.25) again. From Lemma 8.3.3, we have that for a.e. oo 

there are infinitely many values of n for which 

n 

i=i 

From part (c) of Lemma 8.3.6 w i t h Zi as at (8.53) we have that for all but finitely many 

n, for a.e. LO 

- f ] Z a ( ^ ) > - ^ n l / 2 ( l o g l o g ( n ) ) ^ / ^ 
i= i 

and by choosing e sufficiently small we have that for a.e. u there are infinitely many values 

of 71 for which 
( 1 / A , „ ) > e x p (Cni /2 ( log log(n) ) i /2 ) , 

for some 0 < C < oo, and so D{LU) = +oo P-a.s. Thus, by Lemma 8.3.5, the Markov 

chain is P-a.s. not ergodic. Thus, for a.e. ui, T}t{u) is null-recurrent. • 

P r o o f of T h e o r e m 8.2.3. Parts (i) and (ii) follow easily w i t h the methods used in the 

proof of Theorem 8.2.7. We prove part ( i i i ) . By a similar argument to (8.42), we have 

that now 

^ogiM = ^ ^ y i '-\x{i)r-' = 4Ya{r) + Oiixm. (8.55) 

Since Yi = —Fi, we have that all odd powers of Yi have zero expectation, so that the 

expectation of the right hand side of (8.55) is zero. Thus i t is clear that for a.e. w there 

are infini tely many values of n for which Yl'i=i ^^ziPihd > 0) ^i^d hence A „ > 1, and so 

f{n) -\-oo for a.e. and we have P-a.s. recurrence, by Lemma 8.3.2. 

To prove null recurrence, i t remains to show that the Markov chain is not ergodic. 

Once more, consider D{uj) as defined at (8.25). By a similar argument to above, for a.e. UJ 

there are infinitely many values of n for which Yll=i ^^s{Pi/li) < 0 ^'^d hence ( l / A ^ ) > 1, 
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and so D{UJ) = +00 for a.e. uj. Thus, by Lemma 8.3.5, the Markov chain is P-a.s. not 

ergodic. This completes the proof of part ( i i i ) . 

We now prove part ( iv) . Once again we analyse the properties of the expression (8.55). 

Suppose that x( '^) = o.n^'^ for a > 0, /3 > 0. Now suppose that 0 < (3 < 1 and that 

E[y i ] < 0. Then f rom (8.55), we have that there exist 0 < C i < 00, 0 < C2 < 00 such 

that 
n 

-C^n'-^ < E J ] l og (p , / g , ) < - C a n ^ - ^ 

< 00, 

li P > 1/2, then, by the boundedness of Y i , we have 

n n 
supE J2^og{p,/qi) - E ^ l o g ( p , / g , ) 

i = i i= i 

for all G N , so that P-a.s., 

n n 
^ l o g ( p , / g i ) - E ^ l o g ( p i / g , ) 
i=l i=l 

for all but f ini tely many n , and any e > 0. So, for all but finitely many n, for a.e. u 

An < exp ( - C n ^ - ^ + n") , 

for some C w i th 0 < C < 00, so that, for e small enough, 

/ ( n ) = E A , 
1=1 

is bounded for a.e. which implies that rit{uj) is P-a.s. transient, by Lemma 8.3.1. Also, 

i f 0 < /3 < 1/2, f rom (8.55), we have that there exist 0 < C i < 00,0 < C2 < 00 such that 

00, C,n'-'^ > Var ^ \og{p,/q,) > C^n'-^f" 
i=\ 

as 71 ̂  00, and then we can apply Lemma 8.3.3 to obtain, for a.e. a; 
n 

Y.^og{p,/qi) < - C i n i - ^ + C2n( i /2) -^ loglogn, 
1=1 

for constants 0 < C i < 00, 0 < C2 < 00 (depending on UJ) and all but finitely many n. So 

once again we have / ( n ) is P-a.s. bounded, and so we have P-a.s. transience by Lemma 

8.3.1. This proves part (c). 

To prove part (a), we apply Lemma 8.3.5. Suppose that 'E[Yi\ > 0. By similar 

arguments to above, this t ime we have that for a.e. u 

E log(p./gO > Cn'-'^, 
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for some 0 < C < oo and all but finitely many n . Thus, for a.e. w, for all but finitely 

many n, 
^ / n - l \ 

— = exp - J ] ] log(pi /g i ) < exp {-Cn^ ^) , 

and so, for D{uj) as defined at (8.25), D{LO) < oo P-a.s., and so, by Lemma 8.3.5, the 

Markov chain is P-a.s. ergodic, proving part (a). 

Finally, we prove part (b). Suppose that /? > 1. Now, since -I < Yi < 1 and 

Y(n) = an"^, we have f rom (8.55) that there exists a constant Ci (not depending on LO) 

wi th 0 < C i < oo such that, for a.e. u), 

< C i ^ r ^ < C 2 , 

for finite positive C2, not depending on ui or n , this last inequality following since /? > 1. 

Thus for a.e. w, for each n , 

0 < exp(-C2) < exp (^log{p^/q,)^ < exp(C2) < 00, 

so that for each 7i, A„ and 1/A„ are each bounded strictly away f rom 0 and f rom 00, so 

that P-a.s. f{n) +00 as n ^ 00, and D{uj) = +00 P-a.s. Thus by Lemma 8.3.1 the 

Markov chain is P-a.s. recurrent, and by Lemma 8.3.5 P-a.s. not ergodic. Thus, for a.e. u, 

i1t{uj) is null-recurrent. This completes the proof of Theorem 8.2.3. • 

8.4 Discussion 

Having classified completely the recurrence/transience of our RWRE, a further question 

would be: how far away f rom the origin, typically, is the random walker? More precisely, 

can we determine the almost sure and/or ' in probabili ty ' behaviour of ??t(a;) as t 00? 

I n Sinai's regime for the RWRE on Z"^, Comets, Menshikov and Popov (see [34], 

Theorem 3.2) give the following almost sure result: 

T h e o r e m 8.4.1 Suppose E[Ci] = 0, P[yi = 0] = 1, and 0 < Var[Ci] < 00. Then, for 

almost every environment, as t ^ 00, 

{\ogty 

for all but finitely many t. 

< ( loglog^)^+^ 
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This result (for the R W R E on Z) dates back to Deheuvels and Revesz [39]. A n exact 

upper Umit result is given in [72]. See also [35 . 

The following convergence in distr ibution result for the R W R E on Z"*" is due to Golosov 

63]. The result is stated in terms of the so-called annealed law Q of [rjt), given by 

/ P{-)dF{u). 
Jci 

T h e o r e m 8.4.2 Suppose E[Ci] = 0, P[y i = 0] = 1, and 0 < Var[Ci] < oo. Then as 

t ^ oo, 

<u] ^ F{u), 

where F{u) is a given distribution function (see [63]). 

In future work, we aim to investigate analogues of Theorems 8.4.1 and 8.4.2 in the 

case of our R W R E perturbed f r o m Sinai's regime - of interest are both the almost sure 

and ' in probabili ty ' (see, for example, [35,132]) behaviour. 

In work in preparation [100], we study the long-run l imi t ing behaviour (as t oo) of 

our random walk i]ti^) in terms of its distance f r o m the origin. I n [100] we give almost 

sure results analogous to Theorem 8.4.1 (in both null-recurrent and transient cases) for 

our perturbed RWRE. For example, in the P-almost sure transient case of the RWRE 

perturbed f r o m Sinai's regime (that is, E[Ci — 0], Var[Ci] > 0, A < 0, w i t h x ( " ) = n~" for 

some fixed 0 < a < 1/2), we have that for a.e. ui, for any e > 0, as t ^ oo, 

( l o g l o g l o g t ) - ( ^ / " ) - < j ^ ^ ^ < {loglogtf/-^^^, 

for all but finitely many t. Thus in this case, we see that the random walk, for almost 

every environment, is contained in a window about ( logt )^ /" . This aspect of the problem 

requires additional techniques, however, and we do not discuss this further in this thesis. 



Appendix A 

Technical background 

A . l Graph theory 

Here we outline some of the fundamental notions of graph theory. For a more complete 

and extensive introduction, see for example [25 . 

A graph G is an ordered pair G : = (V, E ) , consisting of a vertex set, V, and an edge 

set, E. F is a countable set of vertices (points). In our examples, V w i l l often be a 

finite subset of EucUdean space, i.e. V = {v\,V2, • •., Vn] C R* .̂ We wi l l also usually take 

V to be random. The edge set E \s a. collection of unordered pairs of members of V. 

Each unordered pair {u,v} G E indicates an edge between vertices u,v ^ V . The graph 

G = (V, E) can thus be represented diagrammatically as a set of points V connected by 

edges (line segments) according to E. 

For our purposes, we do not permit loops - we disallow edges of the form {v, v) for 

f G V , and also disallow multiple edges between the same two points. Thus we assume 

each element of E is distinct and consists of two distinct members of V. 

We say that two vertices f i , V 2 G V are adjacent in G i f {vi,V2} G E. The graph 

G = {V, E) is said to be complete (on V) i f all the vertices in V are pairwise adjacent, 

that is E contains all distinct unordered pairs of elements of V. A graph H = {VH,EH) 

is said to be a subgraph of G = (V, E), wri t ten as i f C G, if / / is a graph and C V, 

EH ^ E. If H C G, H ^ G and H is not the empty graph (0, 0), H is said to be a proper 

subgraph of G. I f the graph G = {V, E) is such that every element of V appears at least 

once in edges in E', we say the graph G spans the vertex set V. 

A path in G = (V, E) between VQ and Vfc G K is a nonempty subgraph P{VQ, Vk) = 

{Vp,Ep) of G, w i t h set of distinct vertices Vp := {vo,Vi,V2, • • • ,Vk} C V and edge set 

187 
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Ep : = {{vo,Vi},{vi,V2},... ,{vk-i,Vk}} C E. A path P{v,v) = {Vp,Ep) w i th nonempty 
edge set Bp m G = (F, E) between v eV and itself is called a (closed) cxjcle. 

A graph G = (V, E) is connected i f there exists for every pair ui,U2 G V d. path between 

them in G. The degree of a vertex u G V , is the number of edges in E that contain u, 

that is the number of adjacent vertices to v m G = {V, E). I f a vertex has degree 0, we 

say that i t is isolated. 

A n acyclic graph contains no cycles and is called a forest. A connected forest is called a 

tree. The terminology arises since the connected components of a forest are trees. Observe 

that i f T = (VV, ET) is a tree, then any two vertices in VT are linked by a uniciue path in 

T . 

A directed graph G = {V,E) consists of a vertex set V, and a set of directed edges, 

E. Now E is a collection of ordered pairs of members of V. Each ordered pair {u,v) G E 

indicates a directed edge f rom u to v. Most of the terminology discussed about for 

undirected graphs carries over into the directed case in a natural way, simply wi th directed 

edges replacing undirected edges. 

A.2 Probabilistic preliminaries 

Here we collect some probabilistic terminology and results that we wi l l use throughout. 

For a random variable X and a sequence of random variables X „ , we use the notation 

Xn ^ X, Xr, ^ X, Xn ^ X to dcnotc the convergence of Xn to X in distribution, 

in probability, and almost surely, respectively. 

The following result is sometimes referred to as Slutsky's theorem (see for example [45], 

p. 72). 

•p 

L e m m a A.2 .1 Suppose that Xn,Yn o-re sequences of random variables such that X „ — > 

X and Yn 0 as n ^ oo for some random variable X. Then Xn + Yn X as n -> oo. 

Proof . Suppose G R is a continuity point of F, where F{x) : = P[X < x]. For any 

£ > 0, we have 

P[Xn < X - e ] - P[\Yn\ >£]< P[Xn + Yn < x] < P[Xn < X + s] + P[\Yn\ > € . 

Since a; is a continuity point of F and X „ X , for e sufficiently small we have P[Xn < 
p 

X - e] F{x - e) and P[Xn < a: -t- e] ^ F{x + e) as n ^ oo. Also, since F„ —> Y, we 
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have P [ | y „ | > e] —> 0 for any s > 0 as n ^ oo. The fact that e > 0 is arbitrary and x a 
continuity point of F then completes the proof. • 



Appendix B 

Technical complements 

B . l Proof of Theorem 3.2.1: the Poisson case 

Let P be a Poisson process of unit intensity on R'^. We say the functional H is weakly 

stabilizing on TZ i f there is a random variable A(oo) such that 

A ( P n A ; B ) A ( o o ) , ( B . L l ) 

as {A,B) -> R'^ through TZ, by which we mean (B.1.1) holds whenever {A,B) is an TZ-

valued sequence of the form (A„, 5 „ ) „ > i , such that Lin>if^m>nBm = R''- Note that strong 

stabilization of H implies weak stabilization of H. 

We say the functional H satisfies the Poisson bounded moments condition on 7Z i f 

sup {E[A{VnA;B)^]}<oo. (B .L2) 
{A,B)eTt.oeA 

T h e o r e m B . 1 . 1 Suppose that H is weakly stabilizing on TZ (B.1.1) and satisfies (B.1.2). 

Then there exists > 0 such that as n —)• oo, n~^Vdx[H{Qn\ 5„)] —>• andn~^/'^{H{Qn\ Sn)-

E[H{Q^-Sr,)])^M{Q,s^). 

Before proving Theorem B.1.1, we require further definitions and a lemma. Let V' be an 

independent copy of the Poisson process V. For x G Z*̂ , set 

P " ( x ) =• {V \ Q(x ; 1/2)) U {V n g ( x ; 1/2)) . 

Then given a translation invariant functional H on point sets in R'', define 

A x ( A ; B) := H{V"{x) D A; B) - H{V nA-B)-

this is the change in H{V n A\ B) when the Poisson points in Q{'x; 1/2) are resampled. 
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L e m m a B.1 .1 Suppose H is weakly stabilizing on IZ. Then for all x G Z'', there is a 
random variable Ax(oo) such that for all x G Z'^, 

A^iA-B)^/\^{oo), (B.1.3) 

as {A,B) IV^ through Tl. Moreover, if H satisfies (B.l.2), then 

sup E [{A^{A-B)Y] < oo. (B.1.4) 

Proof . Set Co = (5(0; 1/2). By translation invariance, we need only consider the case 

X = 0, and thus i t suffices to prove that the variables H{V f] A; B) - H{V n A\Co;B) 

converge almost surely as {A, B) ->• R' ' through TZ. 

The number A'' of points of V in Co is Poisson wi th parameter 1. Let V i , V 2 , . . . , V^^ 

be the points of P n Co, taken in an order chosen uniformly at random f rom the A^! 

possibilities. Then, provided Co C ^ , 

N-\ 

H{V f ^ A ] B ) - H{V r\A\C^]B) = Y^ 5,{A- B), 
i=0 

where 

5,{A; B) : = Hi{V n A \ Co) U { V i , . . . , V , + i } ; B) - H{{V n A\Cu) U {V,,... ,V,}; B). 

Since TV is a.s. finite, i t suflSces to prove that each 6i(A] B) converges almost surely as 

{A,B) —>• R'^ through TZ. Let U be a uniform random vector on Co, independent of V. 

The distr ibution of the translated point process — V i + i - I - { V i , . . . , V j U (P \ Co) is the 

same as the conditional distr ibution of V given that the number of points in — U + Cq 

is equal to i , an event of str ict ly positive probability. By assumption, this satisfies weak 

stabilization, which proves (B.1.3). 

Next we prove (B.1.4). I f (5(x; 1/2) n / I = 0 then A^{A; B) is zero w i t h probability 1. 

By translation invariance, i t suffices to consider the x = 0 case, that is, to prove 

sup E[{Ao{A-B)f]<oo. (B.1.5) 
(^,B)eTC:Con45i0 

The proof of this now follows the proof of (3.4) of [111], but wi th 5i{A) replaced by 

5i{A]B) everywhere. • 

P r o o f of T h e o r e m B.1 .1 . Here we can assume, without loss of generality, that Q„ = "Pn 

For X G Z*̂ , let Ĵ x denote the cr-field generated by the points of V in Uygzd.y<x(5(y; 1/2), 

where the order in the union is the lexicographic order on Z''. 
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Let R'^ be the set of points x G Z'' such that Q(x; 1/2) n K ?̂  0- Let /c„ = c&vd{R'J. 
Then we have that 

Rn C U Q ( x ; l / 2 ) C i ? „ u a i ( i ? „ ) , 

so that 

\Rn\ <kn< \Rn\ + \dl{Rn)l 

The vanishing relative boundary condition then implies that k^/n —> 1 as ?i ^ oo. 

Define the filtration {Go,Gi, • • • ̂ QkJ as follows: let Qo be the t r iv ia l a-field, label the 

elements of R'^ in lexicographic order as X i , . . . , Xfc„ and let Qi = J'̂ x, for 1 < z < Then 

H{Qn; Sr^) - E[H[Qn] 5„)] = Yili A , where we set 

A = E[H{Qr,-Sn)\Qi] - E[H{Qn\Sn)\Q^-l\ = E[-^^XRn\Sn)\T^]. (B.1.6) 

By orthogonality of martingale differences, V a r [ i / ( Q „ ; 5„)] = EY^'^^^Df. By this fact, 

along wi th a C L T for martingale differences (Theorem 2.3 of [95] or Theorem 2.10 of [104]), 

i t suffices to prove the conditions 

21 
sup E 
n > l 

max {k-'/'\Di\y 
i<i<k„ 

< oo, (B.1.7) 

k-^^^ max l A j A 0, (B.1.8) 
l<i<kn 

and for some > 0, 

,12 L\ 2̂ 

i=\ 

Using equation ( B . l . 4 ) , and the representation equation (B.1.6) for Di, we can verify 

equation (B.1.7) and equation (B.1.8) in just the same manner as for the equivalent 

estimates (3.7) and (3.8) in [111 . 

We now prove (B.1.9) . B y ( B . l . 3 ) , for each x G Z*̂  the variables A X ( ^ ; J B ) converge 

almost surely to a l imi t , denoted Ax(oo), as {A,B) -)• R'' through TZ. For x G Z'' and 

{A,B) G 7^, let 

F x ( A ; B ) = E [ A x ( A ; 5 ) [ J - x ] ; Fx = E[A^{OD)\T^]. 

Then ( F x , x G Z'^) is a stationary family of random variables. Set s^ = E[FQ]. We claim 

that the ergodic theorem implies 

J2 ^ (B-1-10) 
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The proof of this follows, w i th minor modifications, the proof of the corresponding result 
( 3 . 1 0 ) in [ 1 1 1 . 

We need to show that Fx(i?„;5 '„)^ approximates to F^. We consider x at the origin 

0. For any {A, B) e TZ, by Cauchy-Schwarz, 

E[\Fo{A- Bf - F^W < {E[{Fo{A; B) + Fof])"^ [E[{Fo{A- B) - Fof])"^ . ( B . 1 . 1 1 ) 

By the definition of FQ and the conditional Jensen inequality, 

E[{Fo{A-B) + Fof] = E[{E[^o{A]B) + ^o{oo)\To]f' 

< E[E[{^o{A;B) +^o{oo)f\J'o]] 

= F [ ( A o ( A ; f i ) + Ao(oo))2], 

which is uniformly bounded by ( B . l . 3 ) and ( B . l . 4 ) . Similarly, 

E[{Fo{A- B) - Fof] < F [ ( A o ( A ; B) - Ao(oo))2], ( B . 1 . 1 2 ) 

which is also uniformly bounded by (B .1 .3 ) and ( B . l . 4 ) . For any 7^-valued sequence 

{An,Bn)n>i w i t h U„>i n ^ > „ B^ = R'^, the sequence ( A o ( A „ ; S „ ) - Ao(oo))2 tends to 

0 almost surely by ( B . 1 . 3 ) , and is uniformly integrable by ( B . l . 4 ) , and therefore the 

expression ( B . 1 . 1 2 ) tends to zero so that by ( B . 1 . 1 1 ) , E[\Fo{An\Bnf - F^W 0 . 

Returning to the given sequence [Rn, Sn), let e > 0. By the vanishing relative bound

ary condition, we can choose so that hm„_^oo Kn = oo and |5k„S'„| < en for all n. Let 

S'^ be the set of x G Z'̂  such that Qi/2(x) has non-empty intersection w i t h Sn \ dx^iSn). 

Using the conclusion of the previous paragraph and translation invariance, i t is not hard 

to deduce that 

l im sup E[\F^{Rn; Sn)^ - F^l ] = 0. ( B . l . 1 3 ) 

Also, since we assume \Sn\ ~ n we have card(5^) > |S'„| - en > ( 1 - 2e)n for large enough 

?i. Using this w i th ( B . l . 1 3 ) , the uniform boundedness of £ '[ |Fx(/?„; S'n)^ - F^l] and the 

fact that e can be taken arbi trar i ly small in the above argument, i t is routine to deduce 

that 

Y . ^ F ^ ^ ^ ; S n f - F l ) ^ ^ , 

xeK 

and therefore ( B . l . 1 0 ) remains true wi th Fx replaced by Fx(i?„; 5 ^ ) ; that is, ( B . l . 9 ) holds 

and the proof of Theorem B . 1 . 1 is complete. • 
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B.2 Proof of Theorem 3.2.1: the non-Poisson case 

I n this section we complete the proof of Theorem 3.2.1. The first step is to show that the 

conditions of Theorem 3.2.1 imply those of Theorem B.1.1, as follows. 

L e m m a B.2.1 If H satisfies the uniform bounded moments condition (3.5) and is poly-

nomially bounded, then H satisfies the Poisson bounded moments condition (B.1.2). 

Proof . The proof follows, w i t h minor modifications, that of Lemma 4.1 of [111]. • 

I t follows f rom Lemma B.2.1 that i f H satisfies the conditions of Theorem 3.2.1, then 

Theorem B.1.1 applies and we have the Poisson parts of Theorem 3.2.1. To de-Poissonize 

these l imits we follow [111]. Define 

We use the following coupling lemma. 

L e m m a B.2 .2 Suppose H is strongly stabilizing. Let e > 0. Then there exists 5 > 0 and 

UQ > 1 such that for all n > no and all m, m' G [(1 - 5)n, (1 - I - 5)n] with m < m', there 

exists a coupled family of variables D, D', R, R' with the following properties: 

(i) D and D' each have the same distribution as A ( o o ) ; 

(a) D and D' are independent; 

(iii) {R,R') have the same joint distribution as {Rm,n, Rm',n); 

(iv) P[{D ^ i?} U {£»' 7̂  R!}] < 6. 

Proof . Since we assume iS'nI/l/inI -> 1, the probabili ty that a random d-vector uniformly 

distributed over Rn lies in 5 „ tends to 1 as n ^ oo. Using this fact the proof follows, 

w i t h some minor modifications, that of the corresponding result in [111], Lemma 4.2. • 

L e m m a B.2 .3 Suppose H is strongly stabilizing and satisfies the uniform bounded mo

ments condition (3.5). Let ( / i (n))„>i be a sequence with n~^h{n) —> 0 as n ^ oo. Then 

l i m sup | £ ; i ? ^ , „ - £ : A ( o o ) | = 0; (B.2.14) 
\n-m\<h{n) 

l i m sup \ERm,nR^',n-{EA{cx^)f\ = Q- (B.2.15) 
n - / i ( n ) < m < m ' < n + / i ( j i ) 

l i m sup ERl^n<oo. (B.2.16) 



B . 2 . P r o o f of T h e o r e m 3.2.1: the non-Poisson case 195 

Proof . The proof follows that of Lemma 4.3 of [111]. • 

P r o o f of T h e o r e m 3.2.1 Theorem 3.2.1 now follows in the same way as Theorem 2.1 

in [111], replacing H{ • ) w i t h i / ( • ; 5 „ ) . • 



Appendix C 

Dickman-type distributions 

This section is supplementary to the main argument of this thesis, and so may be omitted 

on a first reading. 

In this section, we review some of the properties of the distributions arising as l imits 

in Theorems 4.2.1 and 4.2.3, before returning subsequently to the MDST. Some of these 

properties can be found in the literature (see, e.g., [6,7,24,40,61,66,71,75,77,138]); we 

endeavour to make most of the current presentation self-contained. To begin wi th , we 

review the Dirichlet and Poisson-Dirichlet distributions. 

C . l The Dirichlet distribution 

The Dirichlet distr ibution w i l l be needed later on in the theory of spacings and one-

dimensional nearest-neighbour type graphs, see Section 5.1.1. For the moment, the 

Dirichlet distr ibution serves as the foundation of the Poisson-Dirichlet distr ibution which 

is central to this chapter. 

Here we follow Billingsley [24], p. 246. For n G N , let A „ C R " denote the n-

dimensional simplex, that is 

A „ : = | ( a ; i , . . . , a : „ ) G R " : a ; , > 0 , 1 < i < n; X J ^ i < l | . ( C l . l ) 

The random vector [Xi,..., Xn) has the Dirichlet distribution w i t h parameters a i , . . . , Q : „ 

i f X „ = 1 - ^"^d ( ^ 1 ' • • • 1 ^n-i) is distributed on the simplex A „ _ i w i th density 

^rr^r'rrf""" • ••<rr\i — x - . _ , ) - - . (c.1.2) 
r ( a i ) • • • r ( a „ ) 
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I f ai = aj for some i,j, then f rom (C.1.2) on sees that the distr ibution of ( X i , . . . ,Xn) 

remains the same i f Xi and X j are interchanged. 

I f cvi = a for alii, then {Xi,..., Xn) is said to have the symmetric Dirichlet distr ibution 

(wi th parameter a), and in this case all the Xi are exchangeable. I n particular, i f a = 1, 

the density in (5.37) is (n - 1)! - the uniform distr ibution over the simplex A „ _ i . 

C.2 The Poisson-Dirichlet distribution 

Two excellent references on the Poisson-Dirichlet distr ibution are Chapter 9 of [84] and 

Section 4 of [24]. See also [7,71,83]. Here we give a brief indication of the standard way in 

which the Poisson-Dirichlet distr ibution may be arrived at; for further characterizations, 

see for example [7 . 

Suppose {Xi,... ,Xn) is a random vector w i th symmetric Dirichlet distr ibution w i t h 

parameter a = A / n , for some A > 0. For some fixed k (less than n) let (X( i ) , • . . ,X(^k)) 

be the vector of the first k order statistics of {Xi,... ,Xn), where 

The Poisson Dirichlet distr ibution emerges in the l imi t as n oo (and so a -> 0), w i th 

na = A fixed. More precisely, we have (see Kingman [84], p. 94) that as n ^ oo, for each 

k, 

( A ' ( i ) , . . . , X(fc)) —y [Zi, Z2,. •., Zk), 

where the infinite sequence {Z\,Z2, • • •) satisfies 

Z i > Z 2 > - - , ^ Z , = l. 
j=l 

The distr ibution of {Zi, Z2,. •.) then depends only on A, and is called the Poisson-Dirichlet 

distr ibution w i t h parameter A. 

For what follows, we wi l l be mostly concerned wi th Zi, the first (and largest) compo

nent of the Poisson-Dirichlet distr ibution wi th parameter 1 - this is our so-called max-

Dickman distr ibution (see Section C.7). 

The Poisson-Dirichlet distr ibution has appeared in numerous places. The first is in 

relation to the dis tr ibut ion of largest prime factors of random integers [23] (see also [41]). 

For more recent proofs, see [42] and Section 4 of [24]. The literature on the Poisson-

Dirichlet distr ibution and its place in applied probabili ty is considerable; here we fist a 
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few examples. The Poisson-Dirichlet distr ibution also appears in population genetics (see 
e.g. [66,78,138]), in relation to random covering of the circle (see e.g. [54,74]), random 
polynomials (see e.g. [8]), and random permutations (see e.g. [131]). The relationships 
between these various applications, and general structures, are discussed in , for example, 
7,9,43,71 . 

C.3 The Dickman function 

Dickman's equation, which appears in analytic number theory, is the differential-difference 

equation: 

Mp'(w) + p(u - 1) = 0 {u>l). (C.3.3) 

The Dickman function is defined as the (unique) continuous solution p{u) to (C.3.3) w i th 

p{u) = 1 for 0 < « < 1 and wi th p differentiable on ( l , o o ) . I t is convenient to extend 

p over all of R by setting p{u) = 0 for i t < 0. See [137] for analytic number theory 

background. 

I t is known (see [137]) that the Dickman function is positive and decreasing on the 

whole interval (1 , oo); that i t satisfies p{u) < 1 /r{u + 1) for u > 1; and that i t integrates 

to 

p{x)dx = e ,̂ (C.3.4) 

where 7 denote Euler's constant, so that 7 ^ 0.57721566 and 

/ A: \ 

J 2 - - l o g A ; = 7 + 0 ( ^ - 1 ) . (C.3.5) 

Thus ^ 1.78107. 

C.4 ProbabiUstic properties of the GD distributions 

Propos i t ion C.4 .1 Let 6 > 0. The following random variables X are distributionally 

equivalent. 

(a) A random variable X satisfying the fixed point equation 

X = U'^'{1 + X ) , (C.4.6) 

where U is uniform on (0,1) and independent of the X on the right hand side. 
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(b) A random variable X given by 

ex. / j \ 

^ = E n ^ ^ ^ ' = Ul^'+ {U.U^y^'+ {U.U^U.y^o + • • • , (C.4.7) 
j=l \i=l J 

where Ui, U2, U^,... are independent uniform random variables on (0,1). 

(c) A random variable X given by 
00 

X = ^ e x p ( - r „ ) 
n=l 

where T i , T 2 , . . . are the successive arrival times of a homogeneous Poisson process 

of rate 9 on the half-line (0,oo). 

(d) A random variable X given by X — YlT=i^ri, where Yi,Y2,Ys, • • • are the points 

of a non-homogeneous Poisson point process on (0,1) with mean measure {9/x)dx, 

taken in decreasing order. 

We say that a random variable X given by any of the conditions (a), (b), (c) or 

(d) in Proposition C.4.1 has the generalized Dickman distribution with parameter d (or 

X - GD(0) for sliort). 

The term Dickman distribution has previously been used for the GD(1) distribution, 

i.e. that of a variable X satisfying X = U{l-\- X) (see e.g. [77]), and this is the usage we 

favour. The same term has also been used [40] for the distribution of a random variable 

Y satisfying the distributional fixed point equation Y = UY + 1, where (naturally) U is 

uniform on (0,1), and independent of Y, and also for other distributions; see [7]. I t is 

easy to see that such a Y can be obtained by taking Y = \ X with X ~ GD(1). 

We shall see later (Corollary C.5.1) that \i X GD(1) then its density function sat

isfies Dickman's equation. 

Remark. The GD(^) distributions appear in many contexts in applied probability (par

ticularly for ^ = 1 and 9 = 2). Examples include the limits of certain random variables 

in random algorithms (such as Hoare's FIND algorithm on random permutations and its 

variants), see e.g. [77], [94] and [33], Theorem 31). They also appear in the study of 

perpetuities (see [61]). For a method of simulating GD(^) random variables, see [32]. We 

also discuss simulating Dickman-type random variables in Section C.8. 

The natural connection to the length of the rooted edges in the MDST is via the sums 

of-uniform records., see Section 6 of [6] (although note the typo 7 for I / 7 after (6.9) there). 
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The connection between record values and rooted vertices in the MDST is discussed in 
Section 2.4.3; we exploit this in the proof of Theorem 4.2.1 (see Section 4.3). 

Proof of Proposition C.4.1. First, suppose that X is given by the sum of the infinite 

random series (C.4.7), which converges almost surely because i t has nonnegative terms 

and finite expectation. By factorizing (C.4.7), 

X = Ul^' ( l + Ul" + {U^U^fl' + {U2U^U,fl' + • • • ) . (C.4.8) 

The second factor in the right-hand side of (C.4.8) has the same distribution as 1 + X , 

and is independent of Ui] hence, X satisfies the distributional identity (C.4.6). 

Conversely, suppose that X satisfies (C.4.6). Suppose Ui,U2, • • • are uniform on (0,1), 

independent of X and of each other, and set Vi := Uf^^, for each i. Then X has the 

same distribution as Vi{l + X) = Vi + V^X, and hence the same distribution as V i ( l + 

12(1 + X)) = Vi + V1V2 + V1V2X, and so on. Repeating this process, the term involving 

X converges in probability to zero and we see that X has the same distribution as Vi + 

V^V2 + ViV2V^^---. 

Next, suppose that X is given by definition (c), i.e. X = ^ „ e~ "̂ where the T„ are 

successive arrival times of a Poisson process of rate 9 on (0,oo). Set Yi = Ti and y„ = 

Tn - Tn-i for n>2. The inter-arrival times Yi,Y2,. • • are independent and exponentially 

distributed with parameter 9, so for each z, and for 0 < t < 1, 

P[e-^^ < = P[Yi > - \og{t)] - e^'°st = te 

so that e~ '̂ has the same distribution as U^^^, where U is uniform on (0,1). Since 

00 00 / n 

e 
n=l n=l 

it follows that X has the same distribution as given in part (b). 

Finally, definition (d) is distributionally equivalent to definition (c) by the Mapping 

Theorem [84], because the image of the uniform (Lebesgue) measure on (0,oo) with den

sity 9, under the mapping x e~ ,̂ is the measure on (0,1) with density {9/x). • 

We now collect some further properties of the generalized Dickman distribution. Most 

of these are scattered throughout the literature. See, for example, [24,71,75,77 . 
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Proposition C.4.2 (a) If X ^ GD(^), 9 > 0, then the Laplace transform ip of the 

distribution of X is given by 

/ ft p-s _ I \ / e~'" - 1 \ 
ip{t) = E [e-*^l = exp d d5 = exp 9 du , teH. 

\ Jo s J \ Jo u ) 

(b) For 6,9' G (0, oo) if X and Y are independent random variables with X ~ GD(^) 

and Y ~ GD(^'), then X + Y ^ GD{9 + 9'). 

(c) For 9 > 0, The GD{9) distribution is infinitely divisible. 

(d) If X ^ GD{9), 9 > 0, then the k-th cumulant of X is equal to |. 

(e) If X ^ GD{9), 9 > 0, then the moments ruk := jEfX''] satisfy mo = 1 and, for 

integer k > 1, 

In particular, X has expected value 6 and variance |. 

( f ) The moments iiik CLS in part (e) have the following alternative representation, for 

keN, 

oo ^ / / '"^ \ \ 

j=k * i=i W e=i J J 
- , , f > ^ (fcg + l)-'{{k -b,)9 + 1)-' • • • {b,9 + 1)-^ 

~ ( & i O M - - - ( V ) ' ^ ^ 

where the sum indexed by * is taken over all values of bi,b2, • • • ,bj such that hi + 

62 + \-bj = k and fci + 262 H h jbj = j. 

Proof. Suppose X ~ GD(^) and set 1^(1) = E[e~^-^], the Laplace transform of the 

distribution of X. Then by definition, X = U^I\X + 1) and so 

E 
0 

Jo 

g - t u i / » g - t u i / « A ' 

Jo 

from which it follows that 

9w'-' 
aw, 

'^P{t)=9 f e-'"^{w)w'-'dw, 
Jo 
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and so 

hence 

-1. 

We have the initial condition ip{0) = 1 and so 

- 1 

Jo 
-ds = 9 

Jo u 

This completes the proof of part (a). Parts (b) and (c) follow at once from (a), or 

alternatively by a more probabilistic argument based on the Poisson process representation 

of X in part (d) of Proposition C.4.1. 

Since the A;th cumulant of X is defined to be the kth derivative of logip{—t), evaluated 

at t = 0, part (d) can also be deduced from (a). 

To prove part (e), suppose X ~ GD(^), and write for E[X'']. Then by (C.4.6), 

mfc = E[X''] = E[U''/^]E[{1 + X f 

which implies that 

and so 

ruk = k + e 1^0^^^ 
m 3 , 

j=o 

Now we turn to part ( f ) . Suppose X ~ GD(6'), 6* > 0. Again let nik := E[X''] be the A:th 

moment of X. X admits the representation (C.4.7). Raising both sides of (C.4.7) to the 

power k and taking expectations gives (via multinomial theory) 

ElX''] = E 
L i=k * mm---{b,\) 

where the sum indexed by * is taken over all values of 6 1 , 6 2 , . . . , 6 j such that 61 + 62 + 

\-bj = k and 61 + 262 + h jbj = j. Collecting terms, and using the independence 

of the Ui, we have 

•E[u';^] ^ E[U',']E[U'^^''-''^]E[Ul^''-''-'"^] 

j=k * 
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Then, since the Ui are uniform on (0,1), we obtain (C.4.10). This completes the proof of 
the proposition. • 

Remark. By part (b) of Proposition (C.4.2), we see that for any 9, we can represent 

X - GD(^) as the sum 

X = YO + J2Y, 
1=1 

where Y ~ GD(l ) for i > 1 and Fq ~ GD(^ - [^J). I t follows that, as ^ ^ oo, 

f ^ 1 , and ^ A A r ( 0 , l / 2 ) . 

C.5 G D probability density and distribution func

tions 

In this section we derive further properties of generahzed Dickman distributions, including, 

among other things, a partially explicit form of the probability density and distribution 

functions for these distributions. 

We show first that the GD(^) distribution has a probability density function that 

is continuous except at 0, is piecewise differentiable and satisfies a certain differential-

difference equation, which generalizes Dickman's equation. 

Proposition C.5.1 The generalized Dickman distribution with parameter 9 > 0 has a 

probability density function QQ which is identically zero on (—oo,0), is continuous on 

(0, GO), and is differentiable on (0, l ) u ( l , oo), satisfying the differential-difference equation 

tg',{t) = {9- l)ge{t) - 9gg{t - 1). (C.5.12) 

Proof. Let X ~ GD(^). Let GQ be the cumulative distribution function of X. By (C.4.6), 

we have that 

Gg{t) = P[X <t]= f P [u'/\l + X)<t] du 
Jo 

= / Ge ^ - 1 dn. (C.5.13) 

Make the substitution s = ^ - 1, so that u = • This gives 

Gg{t) = - J^^ Ge{s)^^ds. 



C.5. G D probability density and distribution functions 204 

Integrating by parts, we obtain 
poo 

Gg{t) = Ge{t-l)^t' (s + l)-^dG',(s). (C.5.14) 

Jt-i 

By the characterization of X in part (b) of Proposition C.4.1, P[X > 0] = 1; hence, 

Gg{t) = 0 for t < 0. By (C.5.14), 

Ge{t) = Ket\ 0 < i < 1, (C.5.15) 

where Ke := E[{X + 1)-^;. 

By (C.5.14) and induction on n, Gg is continuous on the interval (-oo,n) and con

tinuously differentiable on the interval (n — l , n ) for n = 1,2,3, (the case n = l i s 

covered by (C.5.15)). Setting ge{t) = G'g{t), for non-integer i > 0 we may differentiate 

(C.5.14) to obtain 

g,{t) = 9t'-' {s + l)-'dGe{s). (C.5.16) 
Jt-i 

Rearranging (C.5.16) and then differentiating once more yields that 

and so 

t'-'g',{t) + (1 - 9)t-'ge{t) = -9t-'ge{t - 1), 

and further rearrangement gives us (C.5.12) for non-integer t. Finally, since probability 

density functions are defined only modulo a set of measure zero we may define the density 

function go by (C.5.16) for integer t\ with this definition we see from (C.5.16) and (C.5.12) 

that ge is continuous on the whole interval (0, oo) and differentiable on the interval (1, oo). 

• 

Remark. From (C.5.12), we see that, for i > 1, g'Q{t) is negative when {9 - l)ge{t) -

6ge{t-l) < 0. This is true for a lH > 1 if ̂  < 1 , and so, for 0 < 6' < 1, gg is a decreasing 

function for ^ > 1. For ^ > 1, gr̂  is eventually decreasing. 

Corollary C.5.1 The generalized Dickman distribution with parameter 9 = 1 has a prob

ability density function given by 

g,{x)=e-^p{x), x e R , (C.5.17) 

where p is the Diekm,an function. 
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Proof. By the case ^ = 1 of Proposition C.5.1, the probability density function gi of the 
GD(1) distribution satisfies Dickman's equation (C.3.3), and since gi must be normalized 
to be a probability density function, by (C.3.4) it is given by (C.5.17), as required. • 

Returning to the case of general 6 > 0, define the constant Kg by 

Ke := E[{1 + X)-'^], X^GD{e). 

The constant Kg, 9 > 0, is actually given by 

= fWTTy 

see, for example, [67] or [138]. In particular, KI = e"^ and ^2 = e.''^'^j2. We also note 

that Kg = K'[/T{9 + 1). 

The next result gives expressions for the GD(^) density and distribution functions 

obtained piecewise on the unit intervals of the positive real line, where the piecewise 

components are given recursively by an integral recursion relation, which can sometimes 

be solved explicitly. 

Proposition C.5.2 Let gg and Gg denote the probability density and cumulative distri

bution function, respectively, of the GD(^) distribution. Then gg{t) = Gg{t) — 0 for 

t < 0, and the functions gg{t) and Gg{t) can be expressed piecewise over the unit intervals 

t G [n, n + 1] for 7i G N as 

J 9Kgt'^-^ ifO<t<l 

^'^^^ ^ 1 i-nY'" 9e{n) - 9t^-' C \ ^ d s zfn<t<n + l{neN) ^'^'^^ 
and 

Kgt" ifO<t<l 
Gg{t) ={ J - (C.5.20) 

Ge{t-l) + lge{t) i f t > l 

Proof. For both gg and Gg, the case t < 0 follows from Proposition C.5.1, and the case 

0<t<l follows from (C.5.15). 

Suppose n < t < n + 1 for n G N. Then equation (C.5.16) yields that 

f t - i 
t'-%e{t) - n^-'gg{n) = -9 f ' j ^ d s . 

Jn-l W + ̂ ) 
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Rearranging this gives us (C.5.19). Substituting in for the integral in equation (C.5.14) 

from equation (C.5.16) gives 

9{Ge{t)-Geit-l)) = tge{t), 

and (C.5.20) follows. • 

The integrals that we are required to perform to obtain expressions for g0{t) and G0{t) 

with t e [n, n +1] and n > 1 get successively more complicated as n increases, and appear 

to be intractable for n > 2. However, one can make progress in the n = 1 case. By 

(C.5.19) we have that for 1 < i < 2, 

geit) = 9Kgt'-' - 9t 
^0 

9Kes'-' 
ds = 9Kgt^ 

\ Jl {s + iy 

In particular, for ^ = 1 we see that equation (C.5.21) reduces to 

gi{t) = Ki{l-\ogt), l<t<2 

and using (C.5.20) we obtain 

Gi{t) = Ki{2t-t\ogt-l), l<t<2, 

while for 9 = 2 and 1 < i < 2 we obtain 

/ rt \ ( ( 1 
g^it) = 2K2t 1-2 \ — — d u = 2K2t 1-2 logt + - - 1 

\ Jl J V V t 
= 2K2{3t-2t\ogt-2), 

and then 

G2{t) = /«2(4t^ - 4 t - 2t'^logt + l), l<t<2. 

For general 9, we have that 

,61-1 
-ds E r{9 + k){-sy 

{s + i y - {9 + k)k\ ' 

so that for 1 < i < 2, 

ge{t) = 9Ket'-' - 9^Ket''' 
( t - i y ^ r { e + k){-{t-i)y 

m {9 + k)k\ 

du) .(C.5.21) 

(C.5.22) 

(C.5.23) 

(C.5.24) 

(C.5.25) 

(C.5.26) 
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C.6 The generalized Dickman function 

The density function ge also appears in connection with the Poisson-Dirichlet distribution 

with parameter ^ > 0 and with a generalization of Dickman's function; see e.g. [24,71 . 

Define the function pg such that pg [t] = 1 when 0 < ^ < 1 and pg satisfies the differential-

difference equation 

t'p'e{t) + 9{t - iy-'pg{t - 1) = 0, ^ > 1. (C.6.27) 

Then 

9e{t) = f ^ / - ' P o i t ) = 9Kgt'-'pg{t), (C.6.28) 

where we can check that gg{t) is indeed the probability density function of our GD(^) 

random variable, as it satisfies the Dickman-type equation (C.5.12). Also, notice that if 

we integrate (C.6.27) between 1 and oo, making use of (C.6.28) we obtain ^ ^ ( l ) = Kg 

(compare Proposition C.5.2). One can often deduce results about pg{x) by studying gg{x), 

which is often easier to handle. 

As Hoist remarks [71], gg is the density of an infinitely divisible distribution with 

Levy-Khinchine measure ^1{0 < x < l]{l/x)dx. See also Section 6.3 of Goldie and 

Griibel [61], which is concerned with the tail behaviour of a class distributions obtained 

as sums of products, including the GD distributions. 

In fact, the largest component of the Poisson-Dirichlet distribution with parameter 9 

has distribution function pe{l/x). We return to this in section C.7, where we discuss this 

distribution when 9 = 1 (which we call the max-Dickman distribution), since it turns out 

to describe the limiting distribution of the maximum edge length in the MDST. 

C.7 The max-Dickman distribution 

As in the case of the GD(^) distributions, there are many characterizations of the max-

Dickman distribution. 

Proposition C.7.1 The following random variables are distributionally equivalent, 

(a) A random variable M satisfying the fixed point equation 

M = max{ l - U, UM}, (C.7.29) 

where U is uniform on (0,1) and-independent of the M on the right hand side. 
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(b) A random variable M given by 

M = max {1 - C/i, [ / i ( l - U2), U ^ l - C/3), U^UiU^il - C/4), • • • } , (C.7.30) 

where Ui, i = 1,2,3,... are i.i.d. uniform random variables on (0,1). 

(c) A random variable M given by M = max{l — Yi,Yi — Y2,Y2 — Y3,...}, where 

Y i , y 2 , ^ 3 ) - - o.f^ the points of a Poisson point process on (0,1) whose intensity 

measure has a density 1/x (taken in decreasing order). 

(d) A random variable M given by the largest (and first) component of the Poisson-

Dirichlet distribution with parameter 1. 

(e) A random variable M with distribution function P[M < x] = p{l/x), where p is the 

Dickman function. 

( f ) A random variable M with the size-biased distribution of 1/{Z + 1), where Z ~ 

GD(1). 

We shall say that a random variable given by any of the conditions (a) - (f) in Proposition 

C.7.1 has the max-Dickman distribution. Like the GD{9) distribution, the max-Dickman 

distribution on (0,1) has arisen in various contexts. In particular, due to the characteri

zation (c) above, it accompanies Poisson-Dirichlet limits, which arise in numerous combi

natorial structures. A selection of examples are interval splitting problems (see e.g. [16]), 

the distribution of large prime factors (see e.g. [24,41,42,85]), random polynomials and 

polynomial factorization algorithms (see e.g. [8,53]), mathematical population genetics 

(see e.g. [138]), and the distribution of cycles in random permutations (see e.g. [62,131]). 

See also [7,9 . 

Proof of Proposition C.7.1. The proof of equivalence of (a) and (b) is similar to that 

given in the proof of Proposition C.4.1, and is omitted this time round. 

Let Yi,Y2,Yj„... be the points of a Poisson point process on (0,1) whose intensity 

measure has a density 1/x (taken in decreasing order). We have seen in the proof of 

Proposition C.4.1 that the variables Yi,Y2/Yi,Yz/Y2,... are independent and uniform on 

(0,1). I f we set Ui := Yi and Ui := Yt/Yi^i for i > 2, then the U^ are independent f/(0,1) 

variables, and with this definition of the UiS the definitions (b) and (c) are identical. 



C.7. The max-Dickman distribution 209 

The equivalence of (c) and (d) follows from the fact that the vector of variables 
1 — Yi,Yi — Y2,Y2 — ^ 3 , . . . , rearranged in decreasing order, has the Poisson-Dirichlet 
distribution with parameter 1; see e.g. [42 . 

Suppose now that M is given by the definition in part (e). Then, following [71], we 

have for 0 < i < 1 that if U is uniform on (0,1) and independent of M , then 

du P[max{l - U, UM} < t] = f P M < - du = [ p (-] 
Ji-t I uj \tJ 

rl/t 
= t / p{y)dy = pil/t), 

>i/f 

' ( i / t ) - i 

where the last equality follows from (C.5.20) and Corollary C.5.1. Thus, M satisfies 

(C.7.29). 

To check the equivalence of definitions (f) and (e), let Y = {Z + iy^ with Z ~ GD(1), 

and let f y denote the probability density function of Y. Then, when 0 < ^ < 1, 

P[Y <t] = l-Gi{t-^ -1), 

which implies, by Dickman's equation, that 

fy{t) = r V ( r ^ - 1) = -t-'g[{t-'), 

so that the size-biased distribution of Y has a probability density function on (0,1) pro

portional to —t'''^g[{t~^). 

On the other hand, M given by definition (e) has probability density function —x~'^p'{l/x). 

These two distributions are the same. • 

Let h and H respectively denote the probability density and distribution functions of 

the max-Dickman distribution. We can obtain expressions for h and H from the GD(1) 

density function gy. Again, we obtain a piecewise description of the functions, but now 

the intervals are [ l / ( ? 2 + 1), 1/n], n e N. Note that the cumulative distribution of the 

limiting variable in Theorem 4.2.3, namely that of the maximum of two independent max-

Dickman variables, is given by H{-y, so the next result provides some partial information 

about this distribution function. 

Proposition C.7.2 The max-Dickman density and distribution functions h and H are 
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given in terms of the GD(1) density function gi as follows: 

h{x)={ 

0 i f x > l 

1 1 < a; < 1 
1 i f x > l 

andH{x)=\ 1 + logx i f \ < x < l 

for all n G N , and with h{x) = H{x) = 0 for x < 0. 

Proof. By part (e) of Proposition C.7.1, H{x) = p{l/x). Differentiating, we obtain 

h{x) = - \ p ' { l / x ) = - p ( - - l 
x^ x \x 

( l - x 
—9i 
X \ X 

where the second eciuality follows from Dickman's equation. Using the fact that ^1(2;) = 

e~'' for 0 < X < 1 and gi{x) = €'^{1 — \ogx) for 1 < 2; < 2 then yields that 

h{x) = - (1 > .T > 1/2); h{x) = - f 1 - log , (1/2 >x> 1/3), 
x X \ X J 

and 

H{x) = 1 - log (1/x) = 1 + logx, (1 > X > 1/2). 

This completes the proof. • 

A graph of h{x) appears on the cover of [24] (and also on p. 49 of [24]). In fact. 

Theorem 4.3 of [24] says (within a more general result) that, for 0 < a; < 1, 

x ^ k\ 
0<k<x-^-\ 

- J , 

In (C.7.31), we set JQ{X) := 1 and for /c G N 

Jk{x) := / t^^ •••tl^dt^---dtk, 
JCuix) 

where Ck{x) C R*' is the region 

Ck{x) := <^ {tu...,tk) G R ' ^ - ,tk > 1, < X 

(C.7.31) 

One can check that (C.7.31) agrees with our Proposition C.7.2; for example, if 1/2 <x< 

1, (C.7.31) yields h{x) = \/x. 
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Our form of H{x) appears to disagree with Proposition 2.1 of [71], and also the discus
sion in Appendix D of [74]. These state (with a typo in [74] corrected) that for 0 < x < 1, 

j=^ •'' 

I t appears these results are incorrect, since the range of integration in the derivations 

exceeds the simplex; compare Theorem 2 of [138 . 

Of interest (beyond the context of the MDST) is the largest component M of the 

Poisson-Dirichlet distribution with parameter 9, for general ^ > 0. See, for example, 

24,66,71,138]. Then P[M < x] = pg{l/x), where the function pg, related to gg, is as 

introduced in Section C.6. 

Let Ei{y) denote the exponential integral function, 

r°° p-x poo -yx 

Then, Proposition 2.2 of [71] (with a minor correction to the denominator there) shows 

that for k = 1,2,3,..., 

E[M'] = f ^ ^ / ° ° 2 / ' - ^ e x p ( - y - ^ E i ( y ) ) . (G7.32) 

In particular, for the 9 = 1 case this leads to E[M] = JQ°° e"^~^^^ '̂dy, which can be 

evaluated numerically to give E[M] ^ 0.6243299 (see e.g. [138]). E[M] is sometimes 

known as Golomb's constant, or the Golomb-Dickman constant (see [41] p. 9, [62]; see 

also [140]). 

Griffiths [66] tabulates values for P[M > x] for several values of 9. 

Returning to the case with 0 = 1, we note that one can show that E[{M + 1)"^ = 

E[M], and that E[M~'^] = ke'^irtk-i for A: G N , where (mfc)fc>i are the moments of the 

GD(1) distribution. Thus, using (C.4.9) one can recursively generate the moments of the 

distribution of M ~ \ which is yet another distribution that has on occasion been given 

the term 'Dickman distribution' (see [7]). 

C.8 Simulating Dickman-type random variables 

Dickman-type distributions are simple to simulate efficiently, due to the distributional 

fixed-point equation representation. For some results on simulating GD(^) random vari

ables, see [32]. For some results on perfect simulation in this context, see [40. 
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Consider the following algorithm to simulate a GD(^) random variable: 
Fix n G N. Set i = 1, := 0. Run the following: 

(1) Generate Ui, a uniform random var iable on (0,1). Set Xi = Ul^'^{l + X i _ i ) . 

(2) If i = n, stop and output X„, else update i ^ i + I and return to (1). 

Then, it is clear that the random variable X„ generated by the above algorithm converges 

almost surely as n —> oo to the random variable X where 

X = Ul^'' + {U,U2y^' + ---^GD{9), 

by (C.4.7). Further, we have that 

X - X r , = {U,U2---Uny^'W, 

where 

W = U'J+l + {Un+lUn+2Y'' + • • — GD(^), 

by (C.4.7). Thus using (C.4.9) we can obtain rate of convergence results such as 

\9^lJ V /̂ 
The max-Dickman distribution can be simulated equally efficiently. Consider the following 

algorithm to simulate a max-Dickman random variable: 

Fix n G N. Set i = 1, XQ : = 0. Run the following: 

(1) Generate Ui, a uniform random variable on (0,1). Set Xi = m a x j l - Ui, UiXi^i}. 

(2) If i = n, stop and output X „ , else update i ^ i + 1 and return to (1). 

This time, it is clear that the random variable X „ generated by the above algorithm 

converges almost surely as n oo to the random variable X where (after a relabelling) 

X = max{l-U,,U,{l-U2),...}, 

which has the max-Dickman distribution by (C.7.30). 
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