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Abstract 

Single localized polaron (quasiparticle) states are considered in structures relating to 

carbon nanotubes. The hamiltonian is derived in the tight-binding approximation 

first on a hexagonal lattice and later on a general carbon nanotube with specifi

able chirality, and shares close links with the Davydov model of excitations of a 

one-dimensional molecular chain. First-order interactions of the lattice degrees of 

freedom with the electron on-site and exchange terms are included. The system 

equations are shown, under certain approximations, to share a close relationship 

with the nonlinear Schrodinger equation - an equation that is known to possess 

localised solutions. The ground state of system is investigated numerically and is 

found to depend crucially upon the strengths of the electron-phonon interactions. 
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Chapter 1 

Introduction 

There exists within crystals a fascinating interplay between the electrons and the 

lattice of ions. The electronic and atomic states are intricately connected in a very 

complex manner. A change in the electronic state alters the configuration of the ions 

and vice-versa. Since the quantum of the vibrational field is the phonon, these effects 

are known as electron-phonon interactions. The strength of this interaction turns 

out to be of crucial significance in determining the ground states of the conduction 

electrons in the crystal. In order to find the eigenstates of such a complicated 

system in a crystal with a huge number of sites one must turn to a whole host of 

approximations. The aim of the work presented here was to investigate the effect of 

the electron-phonon interaction upon the electronic and lattice ground states under 

a host of well founded simplifications in novel structures known as carbon nanotubes. 

In solid-state physics one usually segregates the electrons in the crystal into 

two catergories. Firstly, the core electrons are assumed to be tightly bound to the 

individual nuclei. Secondly, the valence electrons are less bound, and due to the 

bringing together of the atoms into the periodic lattice and therefore the overlap of 

the electronic wavefunctions, these electrons are free to move around the crystal [1], 

2]. It is the conduction electrons which are of principle importance in determining 

the electrical properties of the crystal. When a conduction electron moves through 

the crystal it may be accompanied by a local lattice distortion, occuring due to 

the electron-phonon interaction [3]. This entity, consisting of the electron and its 

related lattice deformation, can be considered as a composite quasiparticle with its 
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Chapter 1. Introduction 

own characteristics sucii as energy, effective mass, momentum etc. [4 . 

An extremely interesting and novel effect may occur in crystals where the electron-

phonon interaction is particularly strong. Under such circumstances a localisation 

or self-trapping effect may occur. The lattice distortion that existed due to the 

presence of the conduction electron itself is then responsible for the spatial captur

ing of the electron. The minimum energy configuration is then one in which the 

electron moves in some spatially localized region, accompanied by a permanent lat

tice distortion. This quasiparticle (localized electron -I- lattice distrotion) is known 

as the polaron. The technology used to describe this localized quasiparticle has 

been extremely important in other areas of science, particularly in describing the 

dispersionless transport of energy within organic materials [5 . 

When physicists began their quest for a description of the energy levels of con

duction electrons in crystals, captivating phenomena such as the polaron were undis

covered. The electron energy levels were solved in the field of a static array of atoms. 

One of the foundations of solid-state theory is Bloch's theorem. This is related to 

the description of single electrons in a perfectly periodic potential due to the static 

atoms. The theorem states that the electronic eigenstates can be chosen to be of 

the form of a plane wave multiplied by a function with the periodicity of the crys

tal [1], [6]. The Schrodinger equation can then be solved in certain regimes such as 

in the tight-binding approximation or for a weak periodic potential. Such arguments 

form the basis of modern solid-state theory and lead to the concept of an energy 

band. 

Energy bands are a result of the Pauli-exclusion principle, which states that only 

one fermion may occupy a given quantum state. When a large number of degenerate 

systems, such as isolated atoms, are brought together to form a crystal there must 

be some removal of the degeneracy in order to create consistent occupiable electron 

states. In a crystal this is achieved by the broadening of the energy levels into 

bands. Calculations involving Bloch states show that there exists a hierarchy of 

quasi-continuous levels, each containing 2N electron states (where N is the number 

of atoms in the crystal) [6], [7], [8]. Each individual electron state is labelled by 

three parameters: a wavevector k, a band index m and a spin index a (The effects 
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Chapter 1. Introduction 

of the spin of the electron are neglected in this text). The allowed wave-vectors 

in macroscopic crystals are usually determined by the Born-von Karman condition, 

which takes the form of a three-dimensional periodic boundary condition. It is 

assumed that the bulk properties of the solid will not depend upon the boundary 

conditions, and furthermore this method gives the correct number of electron states. 

The band index m simply denotes which of the hierachy of energy bands the electron 

state is situated within. 

One of the crowning achievements of the early band calculations was the success

ful justification of the classification of substances into the three catergories: insula

tor, metal and semiconductor. In an insulator the energy bands are either entirely 

filled or completely empty. No electrical conduction can occur since in an applied 

field the electrons are unable to change their wavevector - the Pauli exclusion princi

ple forbids them from doing so since there are no empty states in the band. In order 

to achieve conduction an electron must gain enough energy to move into a higher 

band, where there are many free k-states. In an insulator the energy required to do 

this is much greater than the thermal energy at room temperature. In a metal there 

exists at least one partially filled band, and so by the previous argument conduction 

is always possible. The semiconductor describes the intermediate regime where the 

energy gap is of the order of the thermal energy at room temperature, which is 

typically around an electron-volt. In fact, it is semiconducting substances to which 

the work in this document applies. 

In a more complete model of crystal dynamics one must consider the vibrations of 

the atoms around their equilibrium positions [6]. Since the interatomic potential is 

complicated, the usual treatment is to expand it in a Taylor series dependent upon 

the individual site displacements. Since the gradient of the potential vanishes in 

equilibrium the first order term vanishes. In the harmonic approximation, only the 

second order terms are included. In such a model one assumes that the deviations 

of the atoms from their equilibrium positions in the perfect crystal are small. The 

normal modes of vibration are then found by transforming to collective coordinates 

in wavevector (q) space, and any vibrational pattern can then be described in terms 

of a superposition of these normal modes. In a quantum mechanical context one 
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Chapter 1. Introduction 

talks about the excitation of a vibrational mode of frequency v in terms of the 

creation of a phonon with the same frequency. This analogy gives the particle 

description of the crystal vibrational field. In order to describe phonon interactions 

one must consider the anharmonic terms in the potential. Such terms are important 

in describing accurately, for example, the crystal specific heat, or neutron scattering 

effects [10]. However these interactions can often be ignored, in the limit of small 

displacement as is the case with the work presented here. For ideas relating to 

anharmonic potentials in these models see for example [60 . 

These arguments allow the understanding of the individual electronic levels and 

possible vibrational patterns of the crystal. However it is evident that there must 

exist an intricate interplay between these seperate phenomena within the crystal lat

tice. As previously discussed, the conduction electron moving through the crystal 

creates a lattice distortion because of its charge field. Likewise a slightly deformed 

crystal produces a perturbation on the electronic Bloch states, thus modifying in 

some way the electron energy levels. In the scenario where the number of conduc

tion electrons is very small, electron-electron interactions may be neglected. To the 

crystal hamiltonian one must then add only a potential term describing the inter

action of the electrons with the ions. Written in k-space, this naturally leads to the 

concept of the Frolich hamiltonian (see chapter 2) [6,9]. Such an equation can be 

treated perturbatively and predicts the existence of the polaron. 

In a seemingly unconnected area of research, Alexander Davydov and co-workers 

were investigating the possible mechanisms that could describe the dispersionless 

transport of energy in alpha-helical proteins [14], [12], [13]. Thermal efltects were far 

too small to account for the magnitude of the energy transfer. This was a problem 

that was deemed important enough to earn the title of the 'crisis in bioenergetics' 

15]. Davydov argued that vibrational energy could distort the structure of the 

alpha-helix, and through a phonon-coupling effect the oscillation energy could be 

trapped. Through this mechanism the vibrational energy would become localized 

and hence would not undergo dispersion. It was shown that in the stationary limit 

Davydov's equations led to a discrete nonlinear Schrodinger equation describing the 

excitation field. Such an equation is well known to contain localized solutions, or 
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Chapter 1. Introduction 

solitons, which can be interpreted as describing a trapping of the excitation energy. 

The relevance to the study of the polaron problem lies in the hamiltonian utilized by 

Davydov, which is almost identical to the Frolich hamiltonian when written down 

in the k-space representation. 

The eigenstates of this hamiltonian can be found approximately by way of the 

adiabatic approximation [1]. Its validity originates from the huge difference in mass 

between the light and mobile electrons and the relatively immobile heavy ions. The 

adiabatic approximation states that since the electrons react almost instantaneously 

to any deformation of the crystal, the electrons will effectively be in their ground 

state for a particular lattice configuration. More rigorously, the wavefunction sepa

rates into a product of that for the stationary ions and that for the mobile electrons 

in the field of the ions. This is often stated as the Born-Oppenheimer approxi

mation. In the adiabatic approximation the task of finding the eigenstates becomes 

considerably simpler. Under the condition of large enough electron-phonon coupling 

it has been shown that a further dramatic simplification can be introduced. The 

eigenstates of the hamiltonian may be found by perturbative methods, and in the 

zeroth-order adiabatic approximation (valid for high enough electron-phonon cou

pling) the system equations are identical to the case where the lattice degrees of 

freedom are treated classically [17], [19], [18]. This is known as the semi-classical 

approximation. Under this scheme it is straightforward to derive the equations of 

motion. These take the form of a system of nonlinear equations, with a single equa

tion describing the evolution of the electron field and one equation for each lattice 

dimension. The strength of the nonlinearity is determined by the electron-phonon 

coupling parameter and it is therefore this parameter that determines the degree of 

locaUzation of the quasiparticle state [15]. Note that the problem of energy local

ization in helical chains is far from solved, with plenty of on-going studies (see for 

example [16]). 

The localized, or quasiparticle solutions are extremely interesting because of the 

interplay between the localization of the excitation energy and the lattice deforma

tion. Davydov's hamiltonian was set up originally to describe interactions in the 

alpha-helix, which can be considered in terms of three interacting one-dimensional 
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Chapter 1. Introduction 6 

molecular chains. The hamiltonian contained one electron-phonon coupling param
eter describing the coupling of the on-site excitation energy to the local chain defor
mation. Inter-chain electron-phonon interactions were ignored. As the value of the 
coupling parameter tened towards zero the ground state was found to tend towards 
a state that is completely delocalized. This means that the probability density for 
the excitation is spread over the entire lattice and the average site displacement 
is equal to zero. For non-zero values of the electron-phonon coupling the ground 
state is localized or soliton-like, and hence describes the polaron. Accompanying 
the localized excitation is a lattice distortion, in which sites are displaced towards 
the centre of the soliton. As the electron-phonon coupling increases, the state be
comes more and more localized and the crystal distortion is more violent [20]. Any 
semi-permanent lattice distortion that accompanies a trapped state will effect the 
other electronic levels in the crystal. Furthermore, these effects are even more im
portant in small structures such as carbon nanotubes, which have only one spatially 
extended dimension. 

One further simplification that is frequently made in the field and indeed through

out this work is the tight-binding description [1,6,7]. This simplification is invalu

able in calculating the electronic energy levels of substances in which the overlap of 

electronic wavefunctions centred upon neighbouring atoms is small. In these materi

als the individual atomic description of electron energy levels requires modification, 

however it is still useful. The wavefunctions are then expansions of a relatively small 

number of the individual atomic wavefunctions. This simplification allows the calcu

lation of the full electronic band structure of materials in which the approximation 

is reasonable. The aim of the work presented here was to examine self-trapped po

laron states in planar graphite and ultimately carbon nanotubes, which meant that 

the equations would describe hexagonal arrangements of carbon atoms. The ground 

state of an individual carbon atom is ls^2s^2p^. In two-dimensional graphite it is 

energetically favourable for one of the 25 electrons to move into a 2p state. Two of 

the three p electrons then undergo a process called hybridization with the remaining 

2s electron [22]. This involves the mixing of the s and p wavefunctions in such a 

way to create, through covalent bonding, the honeycomb arrangement that is seen 
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Chapter 1. Introduction 

in graphite. 

The overlap of the electronic wavefunctions between the atoms is small enough 

in graphite that the tight-binding approximation provides a reasonably accurate de

scription. The implementation of such a method means that complicated long-range 

interactions may be ignored. In fact, only nearest neighbour interactions are consid

ered. The energy band structures of various carbon nanotubes have been calculated 

in the tight-binding approximation [22]. Recently more accurate calculations have 

been performed using ab-initio (or first principles) methods. They have predicted 

electron energy dispersions that are qualitatively the same as those produced in the 

tight-binding approximation. However there are some small modifications [23], [24 . 

As is evident wi thin this work, for the more challenging problem of electron-phonon 

interactions the tight-binding model gives valuable insight into the possible localized 

quasiparticle states. 

Such considerations have already been made wi th regards to the two-dimensional 

square lattice [25], [29]. The work involved a generalisation of Davydov's model to 

the two-dimensional case, where the aim was to describe the behaviour of single 

conduction electrons in interaction wi th the lattice phonons. Models used a single 

electron-phonon coupling parameter describing the effect of the on-site electron en

ergy upon the local crystal deformation. The two dimensional case was found to 

yield results that shared similarities wi th the one-dimensional chain. The electron 

ground state became localized above a certain critical magnitude of electron-phonon 

coupling and the degree of localization was once again found to increase wi th the 

coupling parameter. Some other ideas were also investigated, such as the effect of 

anisotropy upon the the groundstate. The importance of studying such effects in 

two-dimensional materials has increased in recent years because of our ability to cre

ate low dimensional systems [31], [32], and one very special class of low-dimensional 

system is the carbon nanotube. 

Carbon nanotubes exhibit some extremely interesting and individual character

istics [21]. Their intrinsic properties depend upon their size and chirality [22], [33], 

[34], and also upon the level of doping wi th impurity atoms [36]. The usual way that 

people think about these structures is to picture a single sheet of planar graphite, i.e. 
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Chapter 1. Introduction 8 

a hexagonal or honeycomb lattice. Next imagine rolling this sheet into a cylinder, 
so that equivalent lattice sites coincide consistently where the two sides of the plane 
join. The diameter of a carbon nanotube is of nanometre size, however the lengths 
of such tubes can be over a thousand times greater. 

Carbon nanotubes originated f rom a field of research that stretches back over 

one hundred years. The first man-made carbon fibre was created by Thomas Edison 

in his efforts to invent the first electric light-bulb. Ever since then researchers 

have sought to create smaller fibres. Carbon fibres have since been found to be 

invaluable in forming strong and lightweight materials, most notably for use in the 

aerospace industry [22] [35]. The emphasis in experimental research was to produce 

greater yields of fibres wi th fewer defects, so that materials wi th the maximum 

possible strength could be consistently produced. As time passed people began 

to wonder i f there was some minimum sized fibre that could be produced. After 

the discovery of the 'buckyball' Ceo, researchers started to consider tubes of carbon 

atoms arranged as in graphite, w i th the ends capped by Ceo like structures [33]. The 

real breakthrough arrived in 1991, when l i j ima experimentally discovered carbon 

nanotubes using transmission electron microscopy [37]. The types of tubes produced 

in that research were actually multi-walled, meaning that the structures observed 

were made of multiple concentric nanotubes. Recent improvements in experimental 

procedures have allowed more efficient production of single-walled carbon nanotubes 

38], [39], [40]. The impact of commercially available carbon nanotubes on a large 

scale would be enormous due to their remarkable properties. 

Perhaps the most amazing attribute of carbon nanotubes is that they may be 

semiconducting or metallic, depending upon their geometrical structure. Returning 

to the thought experiment of carbon nanotube construction, imagine rolling the two-

dimensional sheets of graphite at some angle (this angle is referred to as the chiral 

angle). I t turns out that the choice of this angle, together wi th the tube radius, de

termines the nature of the electronic band structure. A simple explanation for this 

effect comes from the so-called zone folding technique [22], [44]. Consider once again 

the two-dimensional graphite sheet. Graphite exhibits metallic behaviour, however 

i t is actually a zero-gap semiconductor (fig 1.1). This means that there is no overlap 
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between the valence band and the conduction band, however, they do coincide at 

a special point on the Bril louin zone boundary in the electron wavevector space. 

This is known as the K-point of the Brillouin zone. When the sheet of graphite is 

rolled into a carbon nanotube, the electron wavefunction obeys the relevant bound

ary conditions around the tube circumference. These periodic boundary conditions 

restrict the allowed conduction electron wavevectors to a subset of those involved 

in the structure of planar graphite. I f this subset includes the K-point then the 

nanotube behaves like a metal. I f the K-point is not included the nanotube wi l l ex

hibit semiconducting behaviour. The studies involved wi th this research neglected 

electron-electron interactions. This approximation is valid if there exists a small 

number of conduction electrons that are on average spatially well separated from 

each other. For this reason our attention is restricted to semiconducting tubes at 

low temperature, so that very few electrons have gained enough thermal energy to 

be excited across the energy gap. 

2O;0 

10.0 

M 0.0 

-10.0 

-20 0 
M K 

Figure 1.1: Electronic band structure of graphite [22]. In this case the Fermi level 

is OeV. 

Another attribute of a carbon nanotube involves its extremely high mechanical 

strength along the tube axis (i.e. parallel to the extended dimension). Simulations 

in molecular dynamics predict that tubes could undergo an increase in length of 

serveral percent before permanent deformation occurs [50]. Nanotubes also show 

great flexibility in the direction perpendicular to the nanotube axis and are resiliant 

to twisting distortions. Single-walled tubes can be bent around sharp corners or 
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Chapter 1. Introduction 10 

coiled into circles without breaking [46]. The potential uses from the very small 
to the massive scales are endless. On the t iny scale, nanotubes could contribute to 
modern nanoscopics [48] or nanolithography [47]. On the very large scale i t has been 
suggested that a rope made of carbon nanotubes could form a tether for an elevator 
into space [49]. Whether or not this is science fact or fiction is irrelevant, carbon 
nanotubes wil l surely revolutionise twenty-first century electronics and mechanics. 

As emphasised already in this chapter, self-trapped polaron or quasi-particle 

states are accompanied by a characteristic lattice deformation. Such a distortion 

effect could doubtless affect both the mechanical and electrical properties of the tube, 

and so a fu l l understanding of the possible self-trapped states wi l l form an integral 

part of carbon nanotube research. Preliminary studies into self-trapped states in 

the hexagonal lattice have already been published [51]. The system hamiltonian 

was an adaptation of that considered in earlier studies of self-trapped states upon 

the square lattice. The authors considered a model of a two-dimensional graphite 

plane wi th one of the dimensions much smaller than the other. Periodic boundary 

conditions were imposed upon the lattice and electron fields along the shortened 

dimension. The aim of this was to provide a first glimpse into the properties of 

self-trapped states in carbon nanotubes. Variation of the single electron-phonon 

coupling parameter showed that the system contained a rich variety of both localized 

and delocahzed ground states. The degree of localization depended as before upon 

the electron-phonon coupling parameter. The work undertaken in order to produce 

this document used these studies as a starting point for investigation. 

The method employed to analyse self-trapping in this work is valuable in de

termining the type of ground state of the system for a given set of parameters 

that describe the physical properties of the solid in question. However the study of 

self-trapping is not restricted to such models. Self-trapping was first suggested by 

Landau [52], and subsequent advances were made by Rashba [53] and Toyozawa [54 . 

In general, one is led to consider two regimes. In the weak coupling l imi t the ground 

state corresponds to a polaron band describing a free conduction electron in the 

crystal under a slight perturbation. In the strong coupling l imi t the ground state 

corresponds to the self-trapped state which has an energy below the bottom of the 
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Chapter 1. Introduction 11 

conduction band, approximately independent of k. For details of the techniques 
used in studying self-trappin in different coupling regimes see for example [55], or 
for interesting work relating to honeycomb structures see [56]. Due to the massive 
expansion in computing potential over the last decade, numerically intensive ab ini
tio or first principle calculations, which involve no underlying assumptions, have also 
advanced the understanding of self-trapping [57], [58]. We note here only that other 
such methods exist to study self-trapping effects in carbon nanotubes and encourage 
the reader to refer to the literature cited above. We now describe the structure of 
the thesis. 

In chapter 2 the groundwork necessary for an understanding of the material in 

the thesis is discussed. A model is presented that is formally similar to Davydov's 

model for excitons in molecular chains. However in this context we aim to describe 

the self-trapping of conduction electrons in one-dimension. The derivation of the 

hamiltonian is discussed wi th reference to the various approximations that must be 

imposed. In chapter 3 the formalism is adapted to the hexagonal lattice. In an 

advancement of the model considered in [51], two electron-phonon coupling parame

ters are used to specify the dependence of the electron on-site and hopping energies 

upon the lattice deformation. The meanings of these terms wi l l become clearer after 

progression through the sections. Chapter 4 presents some interesting numerical 

results of the system equations derived in chapter 3, showing the dependence of the 

electronic and lattice ground state upon the electron-phonon coupling parameters. 

The generalisation of the model to a carbon nanotube is presented in chapter 5. The 

complications relating to the three-dimensional lattice displacements are discussed, 

and the equations of motion for the system are analysed under various approxima

tions. The numerical solutions to the equations are presented in chapter 6, which 

show some extremely interesting features of the kinds of trapped and untrapped 

quasiparticle states in carbon nanotubes. Finally in chapter 7 all conclusions are 

drawn and scope for future work considered. 
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Chapter 2 

Preliminaries - Trapped electron 

states in one-dimensional chains 

In this chapter we introduce the concepts that featured in conducting research work 

into localised electron states in hexagonal lattices and carbon nanotubes. Much of 

the work can be found in the references by Brizhik and Eremko [17], and the original 

ideas by Davydov [5]. There exists a wealth of research into these systems. For some 

alternative work on the I d chain, see for example [11], [79] or [61]. We consider a 

tight-binding prescription for the coupling of conduction electrons to phonons in the 

I d atomic chain. The chapter focusses upon the tools that may be used to find the 

adiabatic eigenstates of such a system, both polaronic and delocalized in nature. 

This section is intended to ensure a smooth transition to the description of such 

effects in more complicated lattices relating to carbon nanotubes. 

2.1 Tight-binding Hamiltonian 

2.1.1 Tight-binding electron states 

In a crystal lattice, the bringing together of a large number of degenerate systems 

(i.e. the individual atoms) results in the broadening of the energy levels into a 

band. As previously discussed, the tight-binding approximation is an extremely 

useful tool in attempting to describe materials in which the overlap of the individual 

12 



2.1. Tight-binding Hamiltonian 13 

atomic wavefunctions is small. In this section we wi l l consider the model of a one-

dimensional chain of N atoms, each pair being separated by a distance d in the pure 

crystal. For the time-being we assume that each atom is fixed to lie at its equilibrium 

position, i.e. we have a static crystal model. The electronic wavefunctions therefore 

obey the Bloch condition, and are labelled by a wavenumber k and a band index 

m. The transformation of the Bloch states into a spatial representation allows their 

representation in a complete basis of states |n) defined at the lattice sites labelled 

by the integer n. We can write the hamiltonian operator in this representation in 

second quantised form by performing the following expansions: 

H = "^\n'){n'\H\n){n\ 
n,n' 

= 22Hn'n\n'){0e\0e){n\ 
n,n' 

= ^ i / „ ' „ a ^ , a „ , (2.1) 

n,n' 

where ajj(a„) is the creation (annihilation) operator for the electron at site n in the 

one-dimensional crystal and |0e) is the electron vacuum state. The creation and 

annihilation operators obey the usual fermionic anticommutation relations [6]: 

{an, an'} = {al, a^,} = 0; {a„, a^} = (5„„.. (2.2) 

In the complete analysis one must consider the electron spin, and therefore include 

the spin index a, however in our models we neglect the effects of spin and thus omit 

the spin index. One must simply remember that the occupation number of each of 

the respective electron states can be 0,1 or 2. 

Next we make the extremely simplifying assumption that the matrix elements 

{n'\H\n) are negUgable for non-nearest neighbour interactions, i.e. Hn'n ~ 0 {\n' — 

n\ > 1). This is valid if the overlaps of the electronic wavefunctions on non-

neighbouring sites are small, and this leads to the tight-binding electron hamil

tonian: 

Eoa^an - J ( 4 a „ + i + 4 a „ _ i ) (2.3) 

where EQ is the on-site electron energy and — J gives the strength of the exchange in

teraction. The tight-binding electron hamiltonian may be diagonalized by switching 
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2.1. Tight-binding Hamiltonian 14 

to the representation in wavenumber (k) space by use of the Fourier transform: 

^ ^ e ' ' = " ^ a f e , (2.4) 

and the expression: 

which leads to: 

(2.5) 
n 

k 

E{k) = Eo-2Jcos{kd). (2.6) 

The wavenumber k obeys the Born-von Karman boundary condition, and so may 

take on the N values where 1 < ni < N. E{k) is the tight-binding electron 

energy dispersion relation. This procedure describes the usual Bloch prescription 

for the calculation of electronic levels in the static crystal. Of course, in order 

to describe real physical crystals, one must consider the effects of vibrations and 

therefore phonons. 

2.1.2 Phonons in the I d atomic chain 

We now consider the crystal vibrations. Each atom is allowed to move about its 

equilibrium position, wi th u„ being the classical atomic displacement of the atom 

at site n. In the tight-binding model we can again make the simplifying assumption 

that non-nearest neighbour interactions are neglected. Considering first the classical 

case, the potential between neighbouring atoms can be expanded as a Taylor series 

in the displacements u„ . In the l imit of small displacement one can consider terms 

up to second order. Higher order terms are neglected. Since the gradient of the 

potential vanishes when the lattice sites are at their equilibrium positions, the first 

order terms vanish and we are left wi th: 

V = V, + \Y.^^''n-Un-i)\ (2.7) 
n 

where K is the coefficient of elasticity. This is simply the usual expression describing 

the potential of the classical harmonic oscillator. The anharmonic terms that in the 
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2.1. Tight-binding Hamiltonian 15 

quantum regime are necessary to describe phonon interactions are neglected in this 

model (see [60] for information). Switching to a quantum description, ignoring the 

additive constant Vo and rearranging slightly: 

V = J2 Ki^i^n - luiUn-1 - \ui-iUn]. (2.8) 
n 

Just as in the case of the electron hamiltonian, the lattice potential is diagonalized 

by transforming into wavenumber (q) space: 

The complete phonon hamiltonian also includes the kinetic terms, and in its diagonal 

form is given by: 

2 M 

The wavenumbers q again satisfy the Born-von Karman boundary condition, and 

the Uq are the normal coordinates. The lattice state labelled by q describes the 

collective excitation of all sites in the crystal, corresponding to the normal mode of 

vibration of wavenumber q. Any general vibrational pattern may be represented as 

a superposition of the normal modes. In the quantum mechanical case i t is usual to 

refer to the particle like description of the vibrational field by linking the excitation 

of the mode of wavenumber q w i th the creation of a phonon of the same frequency. 

In following the usual procedure in quantising the harmonic oscillator, we introduce 

the bosonic annihilation and creation operators of phonons of wavenumber q [6]: 

2Muj(q) 

^ ( i l - K ) . (2.11) 

This procedure transforms the hamiltonian into the usual form describing the quan

tum harmonic oscillator: 

^ , , = 5 ^ M 9 ) ( & ; & . + 0 , (2-12) 
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2.1. Tight-binding Hamiltonian 16 

which is simply a sum of A'̂  hamiltonians describing independent harmonic oscil
lators. So far we have diagonalized the tight-binding electron and phonon models 
individually. As emphasized in the introduction, the electronic and lattice states 
are intricately connected. I t is therefore important to consider the electron-phonon 
interaction. 

2.1.3 Tight-binding electron-phonon interactions 

We now discuss the coupling of the lattice displacements to the electron on-site and 

exchange interaction energies given in (2.3). The constants EQ and J now become 

functions of the lattice separations in such a way that we arrive at a total hamiltonian 

of the form: 

H = He + Hph + Hi„u (2.13) 

where He and Hph are the respective tight-binding electron and phonon hamiltoni

ans considered in the previous two sub-sections. The new part to the hamiltonian 

describes the electron-phonon interaction: 

Hint = 53 Xalan{u„+i - U n - l ) + 

+G[ala„+i{Un+l - Un) + a\an-l{Un - Un-l)] (2.14) 

In this form of the electron-phonon interaction we have only considered corrections 

to the electron energy up to first order in the lattice displacements. Just as in the 

case of the phonon hamiltonian we are working in the l imi t of small displacement. 

The constants x and G couple the respective on-site and exchange electron energies 

to to the lattice. Note that translational invariance is in buil t due to the fact that 

Hint is a function only of the interatomic separations. 

2.1.4 FroHch Hamiltoni8in 

The transformations (2.4,2.9) that were used to diagonahze the electron and phonon 

hamiltonians are now applied to the interaction hamiltonian. This process results 
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2.2. The adiabatic approximation 17 

in the following form for the interaction hamiltonian: 

= ^ 51 ^^^U"^^? (2.15) 

where 

F{k,q) = 2i[xsin(g)-I-Gsin(A;) cos((j')] — 2Gsin(fc)[l-I-sin(g)], 

The total hamiltonian in its transformed incarnation is: 

H = Y.E{kraia, + Y,Mq)blk 
k q 

)=^{k, q) + ^-«)- (2-18) 
k,q 

This is of the same form as the Frolich hamiltonian, often used in studying electron-

phonon interactions in condensed matter physics [62], [6]. The function ^(k,q) 

contains all details of the interaction. We now consider one particular method in 

order to look for the eigenstates of this hamiltonian. 

2.2 The adiabatic approximation 

When an electron is in the conduction band i t may be energetically favourable for 

i t to move in a spatially localized region. Accompanying the localized electron is a 

cloud of phonons, that produce a local deformation in the lattice. This deformation 

screens the electron field and thus reduces its electrostatic energy. In order to look 

for such quasiparticle solutions to the Frolich hamiltonian (2.16), we use the tr ial 

wavefunction [17]: 

l * ) = l*) l^e) . (2.19) 

Which is a product of the electron wavefunction and a coherent phonon state |$) = 

U\Oph)- \Oph) is the phonon vacuum state and U is a coherent operator of molecular 
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2.2. The adiabatic approximation 18 

displacements [63], [64] given by the expression: 

U = exp (2.20) 
L q J 

where there is one coefficient P{q) corresponding to each phonon operator The 

electron state is: 

m = Y.r,{k)ai\0)=Ci\Oe). (2.21) 
k 

Note that the normalisation of the state \ipe) leads to the following condition upon 

the coefficients: 

J2\Uk)\'=^ (2.22) 
k 

In seeking solutions in the form of the wavefunction (2.19), we are invoking the 

adiabatic approximation, where i t is assumed that because the mobile electrons react 

to external fields much more rapidly than the lattice of heavy ions, one is essentially 

solving for the levels of an electron in a static arrangement of ions. One can think 

of this choice of the ansatz in terms of an operator of quasi-particle creation. The 

quasi-particle wavefunction \ipe) has been expanded in the basis of quasi-particle 

states labelled by the quantum number A (see section 2.21). The orthonormality of 

these states is expressed by the relation X^^. i?^A(fc)^A'(^) = Accompanying the 

quasiparticle creation is the coherent phonon state specified by the unitary operator 

U. The values of the coefficients f3{q) wi thin the unitary transformation U are to 

be determined later f rom the requirement that the total wavefunction l^*) is an 

eigenstate of the hamiltonian. 

I t is informative to consider some properties of the coherent state specified by 

U. First we define the state \P{q)) as the following operator acting upon the quasi-

particle vacuum: 

|/5(g)) = exMq)bl - P*{q)k)\%h). (2.23) 

Now note that the coherent state \(3{q)) of the phonon mode specified by q, which 

is in the form of an exponential, can be writ ten in expanded form as: 

= e x p ( - ^ | / ? ( ? ) | ^ ) 5 : ^ ^ ^ | 0 , . ) , (2.24) 
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where in this case n runs f rom 0 to oo (see [63] for details). I t is then straightforward 
to show the following [65]: 

{(3iq)\bl = iPiqWiq); 

i m i b i k i m ) = iminMq)) - m<i)\^ (2-25) 

i.e. \/3{q)) is a right eigenstate of the phonon annihilation operator and therefore a 

left eigenstate of the phonon creation operator. I t is our aim to find the values of 

the coefficients that produce a consistent phonon cloud for the quasiparticle. 

I t is very useful to make a slight digression to consider the representation of the 

unitary operator in terms of base states defined at the lattice sites labelled by n. 

Using (2.11), i t is straightforward to calculate that: 

where /?„ and 7r„ are the respective Fourier transforms of the coefficients P{q) and 

7r(g). Using the property (2.25) of the coherent state \(3{q)) along wi th (2.19) and 

(2.26) we obtain: 

= 7r„. (2.27) 

This completes the connection between the representation of the unitary operator 

in g-space and in real space. The product wavefunction (2.19), wri t ten in real space 

takes the form of Davydov's ansatz [65], [15]: 

I*) = mm-, 

I * ) = S\0,n); 

S = exp --y2[(3„{t)pn-nn{t)un] , (2.28) 
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where Pn is the momentum operator conjugate to u„ . Davydov introduced this 
form of the wavefunction when attempting to describe the localization of vibra
tional energy in the alpha-helix. Davydov actually considered an exciton operator 
fit that creates a quantum of vibrational excitation at the molecule in the chain la
belled by n. (Actually the model was slightly more complicated than this, since the 
alpha-helix contains two separate chains that twist around each other, therefore i t is 
necessary to include cross-chain interactions). The Davydov hamiltonian is formally 
extremely similar to the case that we consider here. Davydov's analysis proceeded 
by attempting to minimize the average value of the energy ( ^ ' l ^ l ^ ' ) by calculating 
the Schrodinger equation for the amplitudes (^„(i) and hamilton's equation for the 
average displacement a „ ( t ) . This method involves a classical treatment of the lattice 
displacements, and hence is sometimes called the semi-classical approximation. Our 
methodology wi l l proceed in a quantum mechanical context in (/-space. As we shall 
see, this wi l l lead to a connection between Davydov's semi-classical method and a 
certain approximation, namely that of complete adiabaticity, made in g-space. 

We proceed wi th our original argument by using the unitary operator of coherent 

atomic displacement (2.20) to transform the hamiltonian into the following form: 

H = U^HU 

k 

+ W, (2.29) 

<i 

where the energy of the lattice deformation is: 

^=^EM9)| /?(9)r. (2.30) 

The extra terms in the Hamiltonian H appear due to the commutation of the unitary 

operator U through the hamiltonian. After this transformation the hamiltonian is 

in a more natural format from which to study localized solutions. The aim is to 

look for the eigenstates |*e) in the form of some fermionic creation operator acting 
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upon the quasiparticle vacuum Cj[|0). By following this method one can partially 
diagonalize the hamiltonian through the introduction of the opreators C\ via the 
unitary transformation [66], [67]: 

~ak = Y,(t>x{k)Cx, (2.31) 

which is consistent wi th (2.21). Application of the unitary transformation (2.31) to 

the hamiltonian H results in the diagonahzation of the terms containing only elec

tron operators, provided we demand that the coefficients (t)\{k) satisfy the following 

equation [17]: 

E{k)<Px{k) + ^ Y . + /?*(-9))'/'A(fc -q) = E,Uk). (2.32) 

This is the method of partial diagonalisation first introduced by Eremko, Gaididei 

and Vakhnenko [66]. I f this equation is satisfied, then the energy Ex is the eigenen-

ergy of the state labelled by A. These states include all possible consistent bound 

and continuous states, wi th the lattice state yet to be determined by the coefficients 

of the unitary operator U. The hamiltonian can then be writ ten as a sum of two 

seperate parts H = HQ + Hi. The part HQ contains all the parts that are diagonal 

w i th respect to the fermionic operators C\. 

Ho = E £;A + ; ^ 5 ] / A , A ( f c , g ) ( 6 , + 6 ^ ) 

1 
A ^ , 

b% + -^iPiq)bl + l3;b,) + W, (2.33) 

Q 

where: 

/ A , A ' = J 2 * ( ^ ' 9 ) ^ A ( ^ ) 0 A ' ( / C - q). (2.34) 
fc 

Thus the part of the hamiltonian takes the form of a Prolich hamiltonian wi th 

some extra phonon terms that are to be used to determine the consistent lattice 

configurations. The second part of the hamiltonian H^ is non-diagonal w i th re

spect to the fermionic operators, and hence refers to phonon induced non-adiabatic 

transitions between the quasiparticle eigenstates specified by the quantum number 

A: 

^ 1 = 7 ^ E fMQ)CiCAbq + bl,). (2.35) 
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I t has been shown that under certain conditions, namely large enough electron-
phonon coupling [18], the non-adiabatic corrections are small. The state vector of 
the system may then be represented in a perturbative regime as \ipo) + \ipi) + .... In 
this work, we look for the eigenstates of the zeroth-order adiabatic hamiltonian HQ. 
For details of non-adiabatic corrections to the eigenstates see [19 . 

2.2.1 Electronic eigenstates in the adiabatic approximation 

Consider the case of a semiconductor containing a small number of donor atoms. 

(Equivalently, acceptor atoms producing a model describing holes). One may then 

consider the effects of single quasiparticles. The state describing the quasiparticle 

in the band A is: 

| ^ e )=Cl | 0 ) e | 0 )p , . (2.36) 

For any individual value of the band index A, we can act w i th the creation oper

ator Cl no more than twice. This is due to the Pauli exclusion principle and the 

consideration of electron spin. In this work we consider only single quasi-particle 

eflFects. Some multi-particle states have been considered in [17]. In order to look for 

eigenstates the state (2.36) is operated on by ^o- This gives: 

HoCilO) = W + Ex + ^ J2^fuv{q)m + n,{q)]bl + h.c] Cl |0) , (2.37) 

where |0) = |0)e|0)p/i. Therefore the state (2.36) is an eigenstate of the hamilto

nian ^ 0 wi th energy W + Ex, provided that the coefficients (3{q) of the unitary 

transformation U are chosen to satisfy the relation: 

^ (9) /? (9) + /A*A (9) = 0. (2.38) 

We now have two equations (2.32) and (2.38) that determine the self-consistent 

quasi-particle states in the zeroth order adiabatic approximation. In order to trans

form these equations into a representation in real space we perform the Fourier 

transformation: 

<t>x{n) = ^ Y . ^ , { k y ' ' ' . (2.39) 
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2.3. T h e semi-classical approximation 23 

The fields (f)x{n) are to be thought of as the probability amplitude to find the quasi-

particle in the band A at the site n. The transformation of equations (2.32) and 

(2.38) results in a pair of equations that express the relationships between the elec

tron probability amplitude and the lattice displacements defined at each crystal site. 

The equations describe the self-consistent states of the electron and associated lat

tice deformation in the zeroth-order adiabatic approximation in the energy band A. 

Note that there is a similar way to arrive at the equations, to which our attention 

now turns. 

2.3 The semi-classical approximation 

We now wish to illustrate the correspondence between the zeroth-order adiabatic 

approximation, and the semi-classical treatment of the tight-binding hamiltonian 

17]. In the latter approximation one follows Davydov's original idea in minimizing 

the average value of the hamiltonian ( ^ | ^ | * ) . The semi-classical labelling of the 

method arises due to the classical treatment of the averge displacements u„ through 

the calculation of Hamilton's equations. Using the Davydov ansatz for the form of 

1 '̂) (2.26) in the site representation, and the properties of the coherent state (2.25), 

we arrive at the semi-classical hamiltonian: 

= E 

(2.40) 

where we have used the labelling m „ for the average value of the displacement of the 

site n, replacing the earlier labelling « „ . We also use <j)n to refer to the quantity 

4>x{n). The lattice potential energy is: 

1 ^ 

2 ^ 
n=l 

2 

(2.41) 

In deriving the equations of motion, the basic assumption is that iV'e) is a solution 

to the time-dependent Schrodinger equation: 

Z ^ ^ | ^ e ) = ^ | ^ e ) (2.42) 
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2.3. T h e semi-classical approximation 24 

Where H in this case is the hamiltonian (2 .13) wri t ten in the site representation. 
Acting from the left wi th (V'el on both sides of equation (2 .42) and using the com
mutation relations ( 2 .2 ) , one is led to the following equation for the coefficients 
<t>n{t): 

'^^-Qf = {Eo + W)(l)n- J(<Pn+l + (l)n-l)+X(pn{fJ-n+l-Un-l) 

+G[(t>n+l{Un+l - Un) + (An-l(Wn " Un-l)]] (2 .43) 

Utilizing the formulas for the expection values of Heisenberg operators: 

ih-{m\pn\m) = {m\\pn,mmt)) (2.44) 

We arrive at the equations of motion governing the displacement field: 

= i ^ ( « „ + l + ^ n - l - 2 « „ ) + X ( | < / > „ + l | ^ - | 0 L l l ) 

+G[<P*Jn+i-K<f>n-i+c.c.]. (2 .45) 

Looking at equation (2 .32) describing the condition on the field (j){k), one can see 

that this leads to the semi-classical hamiltonian and the Schrodinger equation for 

4>n by multiplying both sides of (2 .32) by (f)*{k) and summing over k. This equation 

then takes on a very similar form to the interaction term (2 .15) wri t ten in fc-space. 

The differences lie in the fact that the equation is now writ ten in terms of the 

averaged normal coordinates /3{q) and the amplitudes </>„. Since the coefficients 

and (pk and the electron operators ak,(^ and Ck,^ transform in the same way, the inverse 

transformation leads to the semi-classical hamiltonian (2 .40) . This can be checked by 

explicit calculation in the one-dimensional case. This illustrates the correspondence 

between the semi-classical regime and the zeroth-order adiabatic approximation. In 

order to consider the modelling of self-trapped conduction electron states in the 

zeroth-order adiabatic approximation in one dimension i t is therefore sufficient to 

approach the problem in the semi-classical approximation. 

The equations of motion (2 .44 ,2 .45) may be solved numerically, but one must 

also take into consideration the normalisation condition: 

Y^\4>n\' = l , (2 .46) 
n 
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2.4. P a t h to the nonlinear Schrodinger equation 25 

which comes from the quasiparticle normahsation (•0e|'i/'e) = 1- The stationary 
configurations can be found by either modelling the stationary equations or by 
introducing absorbative terms into the dynamic equations. Alternatively, one can 
find approximate analytical solutions to the stationary equations in I d . 

2.4 Path to the nonhnear Schrodinger equation 

Back in our representation in fc-space, one can use the constraints imposed upon the 

coefficients described by equation (2.38), and substitute these into the equation 

governing the coefficients (l)x{k) of the unitary transformation (2.32). This gives a 

single nonlinear equation governing the quasiparticle field amplitudes (t>\{k) [19], [17]: 

E{k)Mk) - ^ E ^ ' ^ ^ ; „ f ' ' r ( g ) ^ A ( f c -q) = E,Mk), (2.47) 
k,q ^ ' 

where: 

nq) = Y,Mk)4>l{k-q). (2.48) 
k 

This equation describes the electron configurations in the zeroth-order adiabatic 

approximation. We now turn to an analysis of this equation in the continuum l imit . 

To begin i t is necessary to define the function of the continuum variable x, which is 

the Fourier transform of the function (}>x{k). 

<l>x{^) = ^ Y . ^ x { k ) e ^ ' \ (2.49) 

1 /•iV/2 

0,(A;) = - = / 0A(x)e-''=-dx. (2.50) 
VA'^ J-N/2 

where the inverse transformation is: 

fAf/2 

-N/2 

Under certain conditions, namely a long-wave approximation, the equation for the 

coefficients (i)x{k) (2.32) reduces to a nonlinear Schrodinger equation [19]. By stating 

the long wave approximation, we assume that in real space the solution is given by 

a wave-packet that is sufficiently broad compared to the lattice spacing so that i t 

is localized in fc-space. Under these circumstances and setting the lattice spacing 
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d=l: 

E{k) ^ Eo-2J + Jk'^; 

F{k,q) « F ( 0 , 9 ) « 4 x V ( l - y ) ; 

Mult iplying (2.45) by e'*̂ ,̂ summing over k and taking into account (2.47) leads to 

the following equation: 

AMx) + + ^ I ^ A ( X ) | V A ( X ) = 0, (2.52) 

which is the well known nonlinear Schrodinger equation (NLSE) and K — EQ — EX — 

2 J. The nonlinearity parameter is G' = This equation in one-dimension is 

well known to possess stable localized solutions, or solitons. In fact i t is straightfor

ward to show [15] that for G = 0 the system of discrete equations reduce down to 

a single discrete version of the nonlinear Schrodinger equation [68]. I t is therefore 

evident that in the long-wave zeroth-order adiabatic approximation a conduction 

electron in interaction wi th the lattice degrees of freedom can occupy a spatially 

localized state. The eigenvalue A is: 

A = -JA 

and measures the energy of the quasiparticle in relation to the conduction band 

minimum specified in (2.6). The normalised solution to equation (2.50) is: 

(P{X) = a / ^ — r . (2.54) 
^ V 2 cosh{gox) ^ ' 

Figure 2.1 shows the quasiparticle probability density |0(x)p for two different values 

of the parameter g^. A higher value of the parameter corresponds to higher 

values of electron-phonon coupling and therefore a more strongly localized solution. 

The eigenvalue A depends quadratically upon the value of '̂o, and hence a more 

localized solution has a more significant separation in energy from the conduction 

band minimum. For small values of the electron-phonon coupling one must consider 

the effects of more significant non-adiabaticity, and hence the zeroth-order adiabatic 
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approximation is invalid. Secondly, for extremely well localized solutions wi th soliton 

width comparable to the lattice spacing, the long wave approximation is invalid, 

however this approximation is not needed for the case G = 0, where the long-wave 

approximation is not required. 

S 0.15 S 0.6 

Figure 2.1: Normalised solutions of the nonlinear Schrodinger equation (2.50) show

ing the quasiparticle probability density \(f){x)\^ in the continuum limit. The lattice 

spacing was set to d = 1, other parameters were J = 1,K ^ 1 and M — 1. The 

figures show curves for two different values of go: (a) go = 0.5, A = —0.25; (b) 

go = 2.0, A = -4 .0 . 

2.5 Summary 

To conclude this chapter we summarise the material discussed. We have described 

the formulation of a theory of a small number of conduction electrons in a crystal, 

i.e. where electron-electron correlations are neglected. The model was derived in 

the tight-binding approximation in which only nearest-neighbour interactions are 

included. Upon allowing small displacements of the atoms about their equilibrium 

positions, one was led to consider first-order corrections to the electron energy due 

to the electron-phonon interaction. This led to a hamiltonian which, when wri t -
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ten in second quantised form, depends upon the electron creation and annihilation 
operators at each site, and the operators of atomic displacement. 

A transformation of the hamiltonian into wavenumber space showed that the 

hamiltonian can be represented in the Frolich form, wi th a certain function $(A;, q) 

describing the details of the electron-phonon interaction. We then looked for quasi

particle solutions in the adiabatic approximation, following the method in [66], where 

the wavefunction separates into two parts governing the electronic and atomic de

grees of freedom. The state vector is represented by a unitary operator of coherent 

atomic displacement acting upon the quasiparticle vacuum. This process encour

ages one to consider the eigenstates of a transformed hamiltonian, which is in a more 

natural representation wi th which to consider localized states. Self-consistent eigen

states were found in the zeroth-order adiabatic approximation under the condition 

that the electron and lattice degrees of freedom were related in a certain specified 

way. The zeroth-order adiabatic approximation is valid in the l imi t of sufficiently 

strong electron-phonon coupling [18], and so such in this l imi t the models may be 

physically useful. 

A n alternative route to the self-consistent stationary equations involves the semi-

classical treatment first considered by Davydov [5]. This involves a quantum me

chanical treatment of the electron field, while the average atomic displacements 

are described classically. The analysis involves minimizing the average value of 

the hamiltonian ( ( ^ ' | ^ | ^ ' ) ) , the evolution of which is described by the Schrodinger 

equation for the electron field and Hamilton's equation for the classically described 

site displacements. In the stationary l imi t these equations are identical to the self-

consistent adiabatic equations describing the electron probability amplitude and the 

atomic displacements. 

In the continuum l imi t the system of equations lead to a nonlinear Schrodinger 

equation describing the electron field. This equation is well known to posses stable 

localized solutions, which describe the situation where i t is energetically favourable 

for the conduction electron to become spatially localized within the crystal, accom

panied by a local deformation of the lattice. 

I n this chapter we have discussed a selection of tools that prove useful in looking 
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for localized quasiparticles in atomic chains. The subject of the remainder of the 
thesis is to show how these ideas were applied to lattices relating to carbon nan-
otubes. We begin in the next chapter w i th a discussion of localized quasiparticle 
states in the two-dimensional hexagonal lattice. 
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Chapter 3 

Quasiparticle trapping in an 

hexagonal lattice 

In this chapter we formulate a model describing the interactions of a single con

duction electron wi th lattice site displacements in a hexagonal lattice. First-order 

interactions of both the electron on-site energy and the exchange interaction energy 

wi th the lattice displacements are considered. The hamiltonian, writ ten down in 

the tight-binding approximation and physical site representation, is shown to corre

spond to a Frolich hamiltonian after a transformation into k-space. The stationary 

equations are then found in the zeroth-order adiabatic approximation, and these 

are found to correspond to the semi-classical Hamiltonian and dynamic equations 

of motion in the site representation. Much of the work is similar to that intro

duced in our collaboration paper [77], which describes the case of zig-zag or arm

chair tubes. The method discussed here considers a different t i l ing of the hexagonal 

lattice, which leads to a more straightforward diagonalization of the electron and 

phonon hamiltonians and is readily generalizable to nanotubes of arbitrary chirality 

in the zone-folding approximation (see chapters 5 and 6). 

3.1 Introduction 

The main aim of this chapter is to apply the tools presented in chapter 2 to the 

case of a 2d lattice - namely the hexagonal lattice. As discussed previously, the 
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behaviour of conduction electrons in these lattices may give an init ial insight into 
the properties of carbon nanotubes, due to the close relationship between the two 
lattices. The model presented in this section is more complicated for two principle 
reasons: (a) the lattice involved is studied in two-dimensions; (b) the hexagonal 
lattice has a two-atom basis. The latter of these two is the single most complicating 
factor. The extra atom in the basis results in a more complex diagonalization of 
the electron and phonon parts of the tight-binding hamiltonian. Because of this the 
function <^{k,q), that contains the details of the electron-phonon interaction in the 
Frolich hamiltonian, is complicated. We begin wi th a discussion of the geometry 
that is the origin of these technicalities. 

3.2 Hexagonal lattice geometry 

The hexagonal lattice is an oblique lattice wi th a basis of two atoms (figure 3.1). 

This structure is found in graphite, which consists of 2d hexagonal planes of carbon 

atoms stacked on top of one another. The inter-plane separation (3.35A) is large 

compared wi th the nearest neighbour distance in the hexagonal lattice (1.42A). 

Since interactions between separate planes are weak, studying a single 2d plane gives 

significant clues as to the behaviour of conduction electrons in bulk graphite. The 

electronic configuration of an isolated carbon atom in its ground state is Is^ 2s^ 2p^ 

22]. In two-dimensional graphite, one of the 25 and the two 2p orbitals undergo 

a hybridisation in order to create three in-plane a-bonds separated by angles of 

120°. There also exists one out-of-plane 7r-bond per carbon atom. I t is this bonding 

structure that leads to the hexagonal geometry depicted in figure 3.1. 

3.2.1 Coordinates 

The primitive lattice vectors a i and a.2 are shown in figure 3.1. Note that this 

particular choice for the primitive vectors was taken to avoid confusion wi th the 

main reference for the geometry of carbon nanotubes [22]. The nearest neighbour 
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Figure 3.1: Geometry of the 2d hexagonal lattice, which is oblique and has a basis 

of two atoms. Each atom is labelled by the integers {i,j,p) 

separation is d = | a i | / \ / 3 . In terms of cartesian coordinates: 

a i = a 
\/3 1 

a 2 = a 
A /3 _ 1 
2 ' ~ 2 

(3.1) 
2 ' 2^ 

We choose a t i l ing of the hexagonal lattice such that each primitive cell is labelled by 

two integers {i,j), where the position vector of each cell is Rij = iai + j{ai - 32 ) . 

The two atoms in the basis are denoted as p = 0,1 respectively, thus each atom is 

labelled by the three integers {i, j, p). Taking the origin of coordinates to lie on the 

atom labelled by p = 0, the atomic site vectors are: 

2p 
(3.2) 

In order to ease reference to the nearest neighbours of each site, i t is convenient to 

define the following indices functions [76]: 

r{i,3,Q) = ( i , i , 1); r(z, j , 1) = (z, j , 0 ) ; 

/ ( i , j , 0 ) = {i-1,3,1); l{i,3,l) = {i + l,3,Q); 

d{i,j,0) - ( i , j - l , l ) ; d{i,j,l) = {i,j + l,0), (3.3) 

where r,l,d refer to the three nearest neighbours of each site (figure 3.2). Notice 

that the atoms labelled by p = 0 are related to the p = 1 atoms by a rotation of the 
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1 

Figure 3.2: Labelling of the nearest neighbours 

lattice by 180°, and vice-versa, so that rr{i,j,p) = dd{i,j,p) = ll{i,j,p) = {i,3,p)-

We now define the lattice vectors adjoining nearest neighbours: 

where the object 5 can represent any of the three indices operators r, I, d. In order 

to construct the hamiltonian i t is necessary to consider small displacements of the 

lattice sites about their equilibrium positions. 

3.2.2 Site displacements 

Corresponding to each nearest-neighbour pair in the lattice, we construct a displace

ment vector which measures the deviation of the lattice vectors under individual site 

displacements f rom their equilibrium positions in the pure crystal: 

dSij^p = («<5(jj,p) - '" i , j ,p)ex + {vs{ij,p) - 'Vi,j,p)^y (3-5) 

The quantities u and v are the individual site displacements in the cartesian coor

dinate system: 

Hj,P = h j j ^ y (3.6) 

We now calculate the magnitude of the nearest neighbour separations 

D6?,^^d6i 

d 
DSl^P + dSijJ ^ d + ^-^'^ = d + W5,,,p. (3.7) 
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The magnitude has been expanded to first-order in the site displacements u and v. 
Thus the quantity W5 gives the first order correction due to site displacements of the 
tight-binding bond specified by 6. This is important in allowing the construction of 
the tight-binding hamiltonian in analogy to the I d chain discussed in the previous 
chapter. The first order expressions for the WS^s can be writ ten in the compact 
form: 

( - 1 ) ^ V^(-iy 

wkj,p = ( - i ) ^ (^^ i j , p - ' " i (u ,p ) ) ; 
( - 1 ) ' ' v ^ ( - i ) ' ' 

^dij^p = - ^ { u d { i j , p ) - Uij^p) + {vij^p - Vd(ij,p)). (3.8) 

We are now in a position to turn to the formulation of the tight-binding hamiltonian 

on the hexagonal lattice. 

3.3 Hamiltonian 

3.3.1 Tight-binding hamiltonian 

The tight-binding hamiltonian is writ ten down again as a sum of three parts, the 

first part describing the conduction electron, the second the lattice potential and 

the th i rd the electron-phonon interaction. 

H = He + Hph + Hint- (3-9) 

The tight-binding electron hamiltonian is: 

i,j,p L 5 - 1 

where 0,]^ ^ and aij^p are the electron creation and annihilation operators at the site 

(^, j, p), -Bo is the on-site energy and J gives the strength of the exchange interaction. 

In this case the on-site energy EQ is equal to the 2p orbital energy. This is however 

different to the energy of the 2p orbital in an isolated atom because of the presence 

of the crystal potential. The obvious choice for the classical phonon hamiltonian 

involves a sum of terms quadratic in the displacement magnitudes WS: 

= ^ E ( i f + % + + '^'^'lu + w^L.) • (3.11) 
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where pij^p and Qij^p are the momenta conjugated to Uij^p and Vij^p respectively and 
K is the lattice elasticity coefficient. However, looking in the continuum l imi t , the 
terms and Uy appear only in the combination (v^ + Uyf, which implies that the 
phonon hamiltonian given above contains a zero-mode. This zero mode axises due 
to the fact that central forces between neighbouring sites in the hexagonal lattice 
are not enough to provide lattice stability. The zero mode corresponds to a global 
stretching in one dimension and a compression in the other dimension. In the 
physical system that we are attempting to describe, bond interactions depend in a 
complicated manner upon the geometry of the overlapping electronic wavefunctions. 
Such interactions cannot be wri t ten accurately in terms of central terms only. We 
therefore chose to add well chosen non-central terms in order to exterminate the 
zero modes and provide a stable lattice. These were chosen in such a way that when 
we look in the coninuum l imit , the first-order terms in the hamiltonian for the fields 
u and V were the square of their gradients. The added term is: 

= ^ E (^^^ ' . .P + ^^^h.P + ' (3.12) 

where: 

_ ^ / 3 ( - l ) ^ _ ^ t l ^ i _ V 

^kj,P = {-^Y{vi(i,i,p)-Vi,j,p)\ 

^dij^p = (wd(i,j,p) - Wij>) - (3-13) 

Finally we must consider the electron-phonon interaction, where we include first 

order corrections to the electron on-site and exchange interaction energies dependent 

upon the lattice displacements: 

H^nt = Yl Xal,pai,j,pY,^kj,P + GY.4,j,p(isiij,p)W6ij,p , (3.14) 
i,j,p ^ S S 

where x and G are the electron-phonon coupling constants for the respective mod

ulation of the on-site and exchange energies. Note that previous studies of electron-

phonon interactions in a hexagonal lattice [51] concentrated exclusively upon the 

term proportional to x and assumed a constant exchange interaction. However 
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there is an important dependence of the exchange energy upon the lattice displace

ments that must be considered [59]. The role of the strength of the parameter G 

in determining the ground state configuration in the adaiabatic approximation is 

explored intensively in chapter 4, where the results of numerical investigations into 

the semi-classical equations are discussed. 

3.3.2 Diagonalization of the electron and phonon hamilto-

nians 

Before the transformation of the hamiltonian into the Frolich form can take place, i t 

is imperitive that the electron and phonon hamiltonians are diagonalized. The diag

onalization procedures are slightly complicated by the two-atom ba.sis. Let us first 

turn our attention to the electron hamiltonian. The first stage is to transform the 

creation operator for the electron f rom the site representation into its representation 

in k-space. Due to the inequivalence of the sites p = 0 , 1 , the creation operators at 

each of the two basis sites must be considered individually. The first stage of the 

diagonalization is to represent the electron fermionic operators in k-space: 

= - 7 ^ T . ^ ' ' ' ' ' < P ' (3 .15) 

where Nc is the number of primitive cells in the crystal. Contrary to the case of 

the I d chain, we have two sets of fermion operators, corresponding to p = 0 , 1 . 

Performance of this Fourier transform on the electron hamiltonian (3 .10) results in 

the expression: 

fc 
-E'o(«k,o^k,o + Sj,iak,i) 

(3 .16) 

where the following relation has been used: 

^ g i ( k - k ' ) . r , , ^ ^ ^ ^ ^ _ ^ , (3 .17) 

This relation applies to all Bravais lattices, a group to which the underlying oblique 

structure of the hexagonal lattice belongs [1]. The electron hamiltonian is then ful ly 
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diagonalized by performing the following unitary transformation: 

ak,o = -^(e~5%_o + e-5^Ck,i); 

ak,i = - ^ ( e 5 % , o - e^%,i ) , (3.18) 

where the angle 0 is the argument of the complex number 1 - I - e"*'' ''^ + e~*'' (*i~*2) 

which appears in equation (3.16): 

t an^ = s i n ( k a O + s i n ( k ( a , - a . ) ) 
1 + cos(k.ai) - I - cos(k.(ai - aa)) 

After the application of the transformations (3.18), the electron hamiltonian is cast 

into the form: 

H,, = Y,E^{k)cl^c^,^, (3.20) 

where the parameter ^ = 0,1 enumerates the energy bands. The electron energy 

dispersion is: 

E^{k) = eo±J\l + 4.cos(^^kx\cos(^ky^+4cos'^(^ky\ (3.21) 
V V 2 / V2 y / 

The ± sign in this expression gives the energies of the two individual electron energy 

bands ^ = 0 ,1 . We take ^ = 0 to correspond to the band which is lower in energy. 

The next stage is to diagonalize the phonon hamiltonian. 

There are two atoms in the crystal basis, each wi th two vibrational degrees 

of freedom, hence we expect to describe four vibrational branches in the phonon 

spectrum. The addition of the terms involving 0,6 required to remove the zero modes 

from the lattice potential results in a de-coupling of the u and v displacement fields. 

This can be seen explicitly by fully expanding Hph using the expressions (3.8) and 

(3.13) for the fields W6 and fl5. The phonon hamiltonian therefore decouples into 

two separate pieces. Furthermore, the separate potentials for u and v are identical 

in their structure. The expanded phonon hamiltonian is: 

fr _ 1 / P l j , p P h j , P Qlj,p%j,P r. 

l,j,P ^ 0 

HhhP - ^s{i,j,p))Hhj,p - Mhj,p)) 

{Ui,j,p - ^i<5(i,j,p))^(«i,j,p - ^i<5(i,j,p)) 

(3.22) 
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In order to diagonalize we transform into wavevector (q) space: 

The kinetic terms remain diagonal under the Fourier transformation. Because of 

the similarity between the terms in u and v, we consider here only the terms in u. 

After Fourier transformation the terms in u become: 

Hph{u) = ^ E 

(3.24) 

This expression is formally extremely similar to the partially diagonalized electron 

hamiltonian (3.16). FuH diagonahzation therefore proceeds in an identical method 

to that considered for the electron hamiltonian: 

< o = - ^ ( e i ^ Q q , o - e t ^ Q c , , i ) ; (3-25) 

sin(q.ai)+sin(q.(ai - a a ) ) . . 
tan 7 = r -.—-. rr-. (3.26) 

1 - I - cos(q.ai) -t- cos(q.(ai - aa)) 

The diagonalization procedure transforms the phonon hamiltonian into the following 

form: 

Hpn = E^^r (q)<9i ,xQq,r , (3-27) 

where the Qq.r are the normal coordinates of the crystal vibrations and r = 0,1 enu

merates the vibrational branches relating to the diagonalization of the u coordinates. 

There are another pair of normal coordinates relating to the v diagonalization and 

these are denoted as r = 2, 3. These coordinates have identical dispersion relations 

specified by: 

Ma;̂ (q) = 2 ± W l - F 4 c o s ' q^ cos {^(ly^ + 4 cos2 {^(1^. (3-28) 

February 28, 2006 



3.3. Hamiltonian 39 

and so WoCq) = '^2(q)i<^i(q) = '^3(q)- The electrons are now specified by the 

quantum numbers ^ = 0,1 (band index) and wavevector k . The atomic quantum 

numbers are the branch number r = 0 ,1 , 2, 3 and wavevector q. These wavevectors 

obey the Born-von Karman periodic boundary condition. 

Since the phonon hamiltonian is now diagonalized, one can follow the usual 

procedure of the quantum harmonic oscillator and introduce the bosonic creation 

and annihilation operators of phonons: 

h 
(3.29) 

/ 2ML0riq) 

The operator 6^ ̂  creates a phonon of wavevector q in the vibrational branch r . Any 

crystal vibration can be expressed as a combination of these modes. Transformation 

of the phonon hamiltonian gives (ignoring the zero-point energy): 

Hph = ^hivr{q)bl/bq,r. (3.30) 

The transformations that have been applied in order to diagonalize the electron and 

phonon hamiltonians must now be performed upon the interaction hamiltonian Hint 

(2.14). This results in the following form: 

(3.31) 

The complicated function F ( k , q) depends upon the values of the couphng constants 

X i and G2 and the angles given by (3.19) and (3.26): 

F e , e , . ( k , q ) = G 2 (_!)€ '+! ^e^(^+i);^(k) + ( _ i ) - + i e ^ ( ^ - i ) / , ( k - q ) ' 

+ ( _ ! ) « + ! ( e - ( ^ - i ) / ; ( k - q) + ( - l ) - e - ( ^ + 5 ' / ; ( k ) 

+ Xi ( - l ) V x ( q ) e ^ ^ - i - l f - ^ y : { q ) e - ' i (3.32) 

where the functions / T ( k ) are: 

f r { k ) = 2e-*'̂ -̂ i - e-'^-^^i-^^^ - 1 ( r = 0 , l ) ; 
- i k . a i _ ^ - i k . ( a i - a 2 ) 

( r = 2,3). (3.33) 
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Then: 

Hint = : ^ ^ E * ( k , q ) 4 c k - q , 5 ' ( 6 L q . . + 6c,r), (3.34) 
V c q,k,e,C',r 

where 

The system hamiltonian is now completely expressed in the form of a Frolich Hamil-

tonian. Comparing this to the Prolich hamiltonian considered in the case of the I d 

atomic chain (2.16), the hamiltonian now depends upon the wave-vectors k and q 

as opposed to wavenumbers k and q. Furthermore, the function $ ( k , q) is consider

ably more complicated in the hexagonal system. The interaction hamiltonian also 

describes phonon induced transitions between the electron energy bands labelled by 

^, whereas before we had only a single energy band. As in the case of the I d chain, 

the next stage involves searching for the approximate eigenstates of the system by 

invoking the adiabatic approximation. 

3.4 Adiabatic approximation 

In order to f ind the eigenstates we follow the method of [17] and [19] that was 

introduced in chapter 2, and that has been generalized to armchair and zig-zag 

nanotubes [76]. Here we use a different t i l ing and do not separate the wavevectors 

into circumferential and axial components. By applying the adiabatic approximation 

we are looking for state-vectors in the form: 

I * ) = f/lV'e) (3.36) 

where U is a unitary operator of coherent atomic displacements induced by the 

presence of a quasiparticle: 

U = exp Y,Wrici)bl, - f3;{qK,r) (3.37) 
• q , T -I 

and \ipe.) is the wavefunction of the quasi-particle itself, which obeys the normali

sation condition {i>e\ipe) — 1- There now exists one coefficient /?r (q) of the unitary 
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transformation corresponding to each of the the allowed wave-vectors (q) in each 
vibrational branch labelled by r . These coefficients are to be determined when 
attempting to f ind the self-consistent eigenstates in the zeroth-order adiabatic ap
proximation. 

The Schrodinger equation for the total wavefunction = El'^) leads to the 

following equation governing the quasiparticle wavefunction: 

H\^Pe) = EliP,) (3 .38) 

H = U^HU = W + He + Hint + Hph + Hd (3 .39) 

where, in analogy to the I d case: 

W = Y,fi^r{ciMm' (3 .40) 

gives the energy of the lattice deformation, where the coefficients P in q-space are 

linked to the actual atomic displacements u and v in real space. Hint and Hph are 

as they appear in the untransformed hamiltonian. The part of the hamiltonian H 

that is dependent only upon the electron creation/annihilation operators, He is: 

He = x ; ^ « ( k ) 4 4 ' ^ M + 

E ^ C , e , x ( k , q ) g x ( q ) i ^ , C k - c i , € , (3 .41) 

where: 

Q x ( q ) = ( /?r (q ) |Qq,r | /? . (q)) (3 .42) 

Referring to the discussion of the coherent state in section 2.2, the state labelled by 

the coefficient /?r (q) is a right eigenstate of the phonon annihilation operator. I t is 

also a left eigenstate of the phonon creation operator: 

bq,r|/?r(q)) = (q) (q)>! 

mci)\blr = (/?r(q)|/?;(q), (3 .43) 

February 28, 2006 



3.4. Adiabat ic approximation 42 

Thus, from (3.29): 

^ ( /? ; (q)+/? . (q)) . (3.44) 
Y 2Ma;^(q) 

The other extra term that appears in the hamiltonian due to unitary operator U 

that wi l l later be used to determine the coefficients of the unitary transformation 

U, and therefore the deformational potential of the quasiparticle is: 

Hd = J2 ^ r ( q ) ( / ? ; ( q ) 6 i , , + ^ . ( q ) V ) . (3.45) 

The hamiltonian is now in a more natural from wi th which to investigate localized 

solutions. We now wish to perform a unitary transformation on the quasiparticle 

creation and annihilation operators in order to partially diagonalize the hamiltonian, 

again applying the method developed in [66]. The coefficients of this transforma

tion are determined by the condition that the part of the hamiltonian dependent 

only upon the quasiparticle creation / annihilation operators (He) is diagonal. The 

transformation is: 

c^,^ = Y,Mk)Cx, (3.46) 
A 

which converts Hg into the diagonal form: 

H, = J2ExCiC,, (3.47) 
A 

and where the subscript A refers to the energy bands of the quasi-particle in the 

deformed lattice. We therefore have a set of quasiparticle creation and annihila

t ion operators. The requirement of diagonalisation exerted upon the electron part 

of the hamiltonian results in the following equation describing the transformation 

coefficients 0A,f(k): 

+ ^ 7 ^ E q ) Q r ( q ) 0 A , e ( k - q) . (3.48) 
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The following condition on the coefficients follows from the orthonormality of the 
quasiparticle states |A): 

E '^A,c(k)<^A',€(k) = V ' - (3 .49) 

Under the unitary transformation (3 .46) the interaction hamiltonian transforms into 

the following form: 

Hin, = ^ ^ - ^ J 2 * A , A ' , r ( q ) C l C v ( 6 q , . + 0 . (3-50) 

where: 

2V2iVcA,A' ,q . . 

«'A,A',r(q) = E < / 'I ,? ' (k)$€,S' ,r(k, q )^A' ,e (k - q ) . (3 .51) 

k,e,e' 

The equation describing the interaction hamiltonian can be separated into two dis

tinct parts containing terms where A = A' and those where A 7̂  A' respectively [17 . 

As in the I d case, the second case describes phonon induced non-adiabatic transi

tions between the adiabatic states represented by (3 .53) . The Hamiltonian is thus 

represented as: 

H = Ho + Hi (3 .52) 

where Ho contains everything except for the off-diagonal terms in (3 .50) , which are 

represented by Hi. 

3.4.1 Approximate Eigenstates 

At large enough electron-phonon coupling [18] the non-adiabatic terms may be 

treated perturbatively. As in the I d case, we assume this approximation to be 

valid, although this has not been explicitly shown for this lattice. We may represent 

a system of quasiparticles by the relevant number of creation operators acting upon 

the vacuum. For the particular case of a one-particle state in the band A: 

= CimOU- (3 .53) 

The occupation number of the state A, given by the operator C^Cx may take on 

the values 0 , 1 or 2, since we are describing fermions. Operating on the one-particle 
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state (3.53) wi th the adiabatic hamiltonian Hq: 

i^ol^W) = W + EX + 

+ | ^ ( / ^ . ( q ) / ? . ( q ) + ^ ^ n A . r ( q ) ^ i , r + / ^ - C - ) ] l V ' f ) , (3.54) 

one can see that the one-particle state (3.53) is an eigenstate of the adiabatic hamil

tonian wi th energy Eg + W provided that the coefficients of the unitary operator 

(3.46) satisfy the equations: 

^ r ( q ) / 5 r ( q ) = - ^ ^ $ U . ( q ) 

= - - ^ J2 q)<Pl^,{k)Mk - q). (3.55) 

Utihsing (3.42,3.44), the lattice distortion is therefore determined by the equation: 

We have therefore seen how the ideas of chapter 2, namely the adiabatic approxima

tion and the technique of partial diagonalization can be generalized to the hexagonal 

lattice [76]. Again we can use the condition on the normal coordinates (3.56) to re

produce a nonlinear Schrodinger equation in the long-wave l imit . 

3.5 Nonlinear Schrodinger equation 

Entering the expression (3.56) for Q into the equation (3.48) governing the coeffi

cients (f), one arrives at a nonlinear equation describing the coefficients (f)g^x{{k): 

0 = {E-E^{k)M^) + 

+Y ^ Gff{kM,q)<t^Uk)<t>e,{k,+q)M^-ci). (3.57) 

This equation describes the electron probability amplitude in the self-consistent 

states of electrons and accompanying lattice deformation. In this equation: 

1 ^ Fts' (k - q, q)F^Jl* ( k i , q) 
G| , f^(k ,k„q )0 ,^ (k) = (3.58) 
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Note that in order to slightly decongest these two equations the quasi-particle band 
index A has been omitted. Equation (3.57) describes states that are superpositions 
of electron states from both energy bands. Even though the equation is extremely 
complicated, there is an approximate route to the nonlinear Schrodinger equation. 
Consider the quasiparticle state that is composed entirely of electronic eigenstates 
close to the minimum of the lowest electron energy band (i.e. ^ = 0). Then the 
nonlinear equation (3.57) simplifies to: 

0 = {E-Eo{k)M^) + 

E qWo{ki)Mki + ci)Mk - q)- (3.59) 

In order to proceed we introduce the following field of the continuum vector x: 

k 

I f the solution is a wave packet which is sufficiently broad in the spatial represen

tation, then i t wi l l be strongly localized in the representation in k-space. Prom the 

electron energy dispersion (3.21) one can see that in the ground state the function 

00 (k ) wi l l be locahzed around k = 0. In this case we make the following assumptions: 

Eoik)^Eo-3J+^kl + ^kl; (3.61) 

G ( k , k i , q ) « . G . (3.62) 

The bottom of the energy band labelled by ^ = 0 is: 

Eo{0) = Eo- 3 J. (3.63) 

I t is then possible to transform equation (3.57) into a nonlinear Schrodinger equation 

for (t>{^) by use of the Fourier transformation (3.60): 

^"^"(^^ + A d ^ + A d ^ j^JM^)Uoix) = 0, (3.64) 

where A = E — Eo{0). We have thus shown that under certain conditions the 

equations describing the self-consistent quasiparticle states in the adiabatic approx-

miation reduce to a single nonlinear Schrodinger equation for the two dimensional 

electron field $(x) . For details on solutions to the 2d nonlinear Schrodinger equation 
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see [69] in the continuum case, [70] in the discrete case and [71] for some interesting 
results relating to hexagonal lattices. We leave our argument here by noting that 
certain localized solutions do exist provided that the equation is in less than four 
dimensions. In one dimension the localized solution is stable for all values of G. In 
two dimensions the localized solution is stable only for one certain value of G. This 
localized solution is 'soft', i.e. i t can be stretched or compressed without changing 
the total energy. For D > 2 there are no stable solitons, i.e. the ground state is 
delocalized. Our main method of approaching the question of whether localized 
solutions exist is through the numerical simulation of the semi-classical hamiltonian 
and equations of motion, the subject to which our attention now turns. 

3.6 Semi-classical Hamiltonian 

Using the inverse of the unitary transformation (3.46), the eigenfunction of the 

adiabatic hamiltonian can be writ ten in the form: 

l^e) = Ci\0) = J2 M^Kcl^) = E ^i^iAj,M^ (3-65) 
k,^ i,j,p 

i.e. the fields 4> transform in a similar manner to the electron creation and annihila

t ion operators. The coefficients (^(k), transform into those defined upon the physical 

lattice sites in the following way: 

= 7 A w T . e^'""^'^"'Tp,c(k)0p,e(k). (3.66) 
k . 

Here (pij^p is the probability amphtude for the quasiparticle at the site { i , j , p ) in 

the hexagonal lattice. Taking the condition (3.48), multiplying by (l>^{li) and sum

ming over k leads to an interaction term that closely resembles that in the Prolich 

hamiltonian, but wi th the fields 0^(k) replacing the operators ĉ ,̂  and the averaged 

normal coordinates (3.44) replacing the expression (3.29) involving the phonon op

erators. Carrying out the inverse transformations therefore leads to a semi-classical 

hamiltonian of the amplitudes <pij^p and the averaged displacements Uij^p and Vij^p 
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defined at the lattice sites. The semi-classical hamiltonian is: 

H = ( $ 1 ^ 1 $ ) 

(3.67) 
5 S 

To continue the semi-classical method we calculate the equations of motion, which 

correspond to the Schrodinger equation for the quasiparticle field and Hamilton's 

equations for the averaged displacements u and v: 

= {W + Eo)(t>i,u-jY.Mj,P) + 

+X<^iJ,P E ^^(^'^'P) + ̂  E MiJ,P)^siij,p); (3.68) 

+i-'^yG[(t)lj^p(t>r{i,j,p) + ^lj,pMiJ,p) ~ + h.c]] (3.69) 

+^/^{-lYG[ct>l^Jrii,i,p) - + /i.e.]. (3.70) 

Accompanying these equations is the normalisation condition: 

E l - ^ ^ ^ ^ l ' = 1' (3.71) 

which comes from the normalisation of the quasiparticle state (V'elV'e)- Note that 

in the stationary case the Schrodinger equation is connected to the condition (3.48) 

in A;-space by the inverse transformation (3.66). We have therefore illustrated a 

connection between the semi-classical and adiabatic treatments of the hexagonal 

lattice. 

3.7 Chapter summary 

This chapter has focussed upon applying the ideas discussed in chapter 2 to the case 

of a two-dimensional hexagonal lattice. A consideration of the lattice geometry led 
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to the formulation of a tight-binding hamiltonian wi th first order couplings of the 
electron field to the lattice degrees of freedom. The electron and phonon hamilto-
nians were diagonalized by transforming into wave-vector space and taking certain 
linear combinations of the creation and annihilation operators. Applying the same 
transformations to the interaction hamiltonian led to a Frolich type hamiltonian 
wi th a complicated function $(k, q) specifying the details of the electron-phonon 
interaction. 

Solutions were then sought in the adiabatic approximation where the state vector 

is in the form of a product of a quasiparticle field and a coherent phonon state. The 

hamiltonian was then transformed into a form more natural for the consideration of 

soliton solutions. This hamiltonian was partially diagonalized by a unitary transfor

mation wi th the coefficients of this transformation being chosen so that the electron 

part of the hamiltonian is diagonal, as was the method used in [77] and [17]. This led 

to the consideration of the hamiltonian in the zeroth-order adiabatic approximation. 

The requirement that the quasiparticle be an eigenstate of this hamiltonian led to a 

set of constraints on the coefficients of the coherent phonon field. These equations 

together determined the self-consistent states of localized electron - f - phonon field in 

the adiabatic approximation. 

I t was shown that in the continuum l imit and for states exclusively constructed 

from states in the lower band the equations reduced to a single nonlinear relation 

describing the quantum amplitudes of the quasiparticle field. After a transformation 

into real space i t was found that these amplitudes obeyed a nonlinear Schrodinger 

equation - an equation known to possess localized solutions. The zeroth-order adi

abatic equations are related to the semi-classical equations, in which the site dis

placements are treated classically. The equations of motion corresponding to the 

semi-classical hamiltonian were calculated, and the numerical modelling of these 

dynamic equations is the subject of the next chapter. 
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Chapter 4 

Numerical Solutions describing 

conduction electrons in interaction 

with a hexagonal lattice 

I n this chapter we analyse the numerical solutions to the system of equations in

troduced in chapter 3 to describe the electron-phonon system in the 2d hexagonal 

lattice. The minimum energy configuration of the electron and lattice states are 

found for a wide range of values of the electron-phonon coupling constants. Both 

delocalized and localized states are found to exist for certain values of the cou

plings. The tjrpe of solution and degree of localization is explored as a function of 

the electron-phonon interaction. 

4.1 Hamiltonian parameters 

There are a significant number of parameters that could be varied wi thin the hamilto

nian for the electron-phonon system. These are: K- the lattice elasticity coefficient, 

J - the exchange interaction energy, the coupling of the electron on-site energy 

to the lattice displacements and G- the coupling of the exchange interaction to the 

lattice displacements. By suitably rescaling the parameters in the equations, i t was 

possible to reduce the number of parameters that required variation. Performing 
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the following rescalings: 

u ^ lU; v = lV; s = IS; k = ^ J ; 

X G 
Xi = -j^J; G2 = -j^J; eo = eo. (4.1) 

allows the specification of all parameters in terms of units of J. Therefore in all 

simulations we set J = 1. Next, the unit of length / was chosen to be such that the 

parameter related to the elasticity coefficient K = 1. Prom certain references, the 

physical values of some of the parameters have been calculated for carbon nanotubes 

22], [73], [74], [24]: 

d = 1.42A; J = 2 . 4 - 3 . 1 e y ; 

G « 4 . 8 - 6 4 ^ ; A; = 36.5 X 1 0 ^ ^ . (4.2) 
A cm ^ ^ 

The re-scalings were a subset of those that have been performed on the model 

describing zig-zag nanotubes [76]. Choosing K = 1 therefore leads to a lengthscale 

/ = (3.24 — 3.7) X 10~^^m, which is approximately a quarter of the size of the actual 

nearest neighbour distance in graphite. The exchange energy coupling: G = ^ 

then has a value of around 0.6 — 0.74. I t seemed from the literature that the value 

of X was somewhat unknown, and so its magnitude was varied through a range of 

values comparable to G. 

Simulation of the equations (3.68-3.70) involved the use of a fourth order Runge-

Ku t t a method. In order to represent carbon nanotubes to a first approximation, 

periodic boundary conditions were imposed upon the lattice in both the x and y 

directions. The lattice was chosen to be significantly larger in one direction than 

the other, in an attempt to represent zig-zag nanotubes. I f the lattice were mapped 

onto a cylindrical surface, i t would correspond to a nanotube wi th chiral vector 

(n, m) = (5,0) and would contain 15 unit cells stacked on top of one another, corre

sponding to a total of 300 lattice sites (see section 5.1, eqn (5.1)). Although this was 

a relatively small lattice size compared to a (5,0) tube produced in experiements, 

which have lengths approximately one thousand times greater than their circumfer

ence, i t enabled a detailed investigation of the stationary states of the system. 
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4.2 Finding the Minimum Energy 
4.2.1 Absorption of Kinetic Energy 

In order to find and then investigate the static configuration through simulation i t 

was necessary to absorb energy f rom the equations. One method of achieving this 

involved the addition of the following damping terms to the respective right-hand 

sides of the equations of motion (3.69) and (3.70): 

- i / ^ and (4.3) 

where v determines the strength of the damping. These terms have the effect of 

gradually absorbing the kinetic energy of the sites vibrating about their equilibrium 

positions. Figure 4.1 shows the descent of the system energy for three different 

values of the damping parameter v. The parameters used for simulation were K = 

1, J = 1, G 2 = 0 and Xi = 5.0. The init ial conditions involved field configurations 

corresponding to a state localised mainly around a single lattice site, which indeed 

proved to be the ground state for these and many other values of the couplings. 

In this particular case i t was found that 1.0 produced the quickest descent to 

the minimum energy, however varying the couplings had a slight effect upon the 

optimum damping coefficient. Similar effects were observed for other values of Gi 

and x i . 

4.2.2 Absorbtion of Energy from the Electron Field 

The method described in section 4.2.1 was effective in reducing the system energy. 

However, i t was found that the speed of the process could be greatly increased by 

introducing a direct absorption of energy f rom the electron field. The equation of 

motion for </> (3.68) contains only a first order derivative wi th respect to time, and 

so the introduction of a damping term similar to that in (4.3) would destroy the 

system dynamics. A n approximate method was therefore introduced so that the 

damping term could be included. 
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Figure 4.1: Variation of the system energy due to the addition to the equations 

of motion of the damping terms in (4-3). The results for three different damping 

parameters = 0.5,1.0 and 1.5 are shown. 

For a stationary quantum state, the time dependence of the wave function is 

that of a monochromatic wave. The eigenfunctions (j){x) are the stationary states of 

the system: 

= V ' i j . p e x p 
-iEt 

The variation of (j) over an infinitessimal time step t is then: 

(4.4) 

ih 
-iEt\ 

= E exp y - ^ j ^iJ.P + ^^exp j 
-iEt\ dipij,p 

dt " " " " V h y - w • - " " . ' ^ ^ ^ J (4-5) 

In the presence of damping, the stationary states '4>i,j,p have some small time de

pendence. The value of the electron energy E was calculated at all stages in the 

simulation, and the LHS of (4.5) is specified by the equation of motion (3.68). Using 

(4.4) to re-write (f) in terms of ip, and cancelling the exponential functions, yields 

the equation: 
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ih^-^ = -E^i,^p + F{i>,,,,l (4.6) 

where F{ipij) is the RHS of equation (11) wi th ip replacing (j). The right hand side 

of this equation was calculated wi th in the simulation. A damping term could then 

be introduced without destroying the system dynamics, since the time variation in 

(4.4) had been accounted for: 

(a + i h ) ^ = -Ei^i,i,, + F(^,,,-,,) (4.7) 

where the magnitude of a specifies the strength of the absorption. 

The implementation of this method resulted in an enormous reduction in the 

time taken to reach the stationary configuration. I t was found that a combination 

of the two methods for extracting the energy (4.3) and (4.7) produced the quickest 

descent to the minimum energy. Figure 4.2 shows the variation of the energy in two 

seperate cases. The first case utilises only the damping given by (3.4), the second 

curve uses a combination of the two. The differences are quite astounding. 

I t was found that the electron field absorption became less effective when the energy 

approached that of the stationary configuration. Under these circumstances the 

damping of the kinetic energy became more useful, particularly for smaller values 

of V. Throughout the remainder of the investigation, a value of = 0.4 was used in 

damping the system kinetic energy, in order to supplement the absorption from the 

electron field. 

The disadvantage in using the electron field absorption was manifest in a vio

lation of the normahsation condition (3.71). The magnitude of this violation was 

dependent upon the strength of the damping coefficient a. We were therefore careful 

to choose a damping magnitude that was small enough to have insignificant impact 

upon the simulation results. 
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Figure 4.2: Variation of the system energy due to damping. The first case involves a 

simple damping of the lattice kinetic energy with u = 1.0. The second case involves 

a mixture of damping from the electron field, and damping of the kinetic energy with 

V = 0.4. The magnitude of the electron field damping was set proportional to the 

rate of change of energy. 

4.3 Ground-state configuration as a function of x 

and G 

4.3.1 Varying x for fixed G 

The aim was to determine the minimum energy configurations for various values of 

the couplings x and G. The couplings J and K were set equal to 1, as discussed 

in section 3.1. Ini t ial ly the value of G was fixed at 0.6, in order to mimic the 

parameter values predicted by the literature. Since an estimate of x was unknown, 

this parameter was varied from 0 to 5 in increments of 0.2. For each set of values of 

the electron-phonon coupling parameters the stationary configuration was found by 

absorbing energy by use of the methods described in the previous section. Once the 

rate of change of the energy wi th time fell below some pre-determined magnitude 
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i t was determined that the state was sufficiently close to the ground state. The 

values of the lattice and electron field configurations were recorded and the value of 

X incremently increased. Upon reaching a value of 5, x was then gradually reduced 

down to 0 in order to analyze any hysteresis effects. 

2 

P 

' I 1, 1 

Idsoliton 2dsoliton 

1 1 1 

•Chi 

Figure 4.3: Energy and maximum value of the probability density \4>i,j,p\l;nax 

function of x O'^d for a fixed value of G = 0.6 

as a 

Figure 4.3 shows the variation in the groundstate energy and maximum in the elec

tron probability density wi th respect to x- The energy is calculated wi th respect 

to the bottom of the conduction band. The figure is segregated into two separate 

regimes. For 0 < x < 2 the groundstate is localized in one lattice dimension, so that 

the probability density is a function only of the y-coordinate. The region x > 2 cor

responds to a completely localized ground state probability density. The energies of 

the delocalized and I d soliton states are very similar for small values of x- In certain 

simulations the ground state was observed to be delocalized, however this was due 
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to the finite size effects of the lattice. For higher electron-phonon coupling, where 

the ground state is localized in two dimensions, the energy is a rapidly decreasing 

function of x-

An illustration of the Id soliton is given in figure 4.4 for coupling values G = 0.6 

and X = 1-6, where we follow the method of presentation in [76]. Figure 4.4 depicts 

the actual physical displacements. The electron probability density is described by 

the shaded circles, with a darker shade indicating higher probability density. 

0.018 

0.015 

0.012 

0.009 

0.006 

0.003 

Figure 4.4: Ground-state configuration for x = 1-6, G = 0.6 

The figure illustrates the extremely small site displacements in the vicinity of the Id 

soliton. In fact, there exists a drawing in of the sites towards the centre of the soliton, 

and this distortion is uniform in the x-direction, i.e. parallel to the circumference. 

The magnitude of the displacement is larger for sites closer to the soliton. The width 

of the soliton was also found to depend upon x, with the localization being more 

pronounced for higher values of x-

Two typical two dimensional solitons are shown in figures 4.5 (G = 0.6, x = 2.2) 

and 4.6 (G = 0.6, x = 3.4). These pictures illuminate the dependence of the degree 

of localization on the electron-phonon coupling parameter x- In fig 4.5, the majority 

of the electron probability density is spread symmetrically over thirteen sites, with 

the maximum of around 0.17 lying at the centre. The dragging in of the lattice sites 
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towards the centre of the polaron is much more evident than in the case of the I d 

sohton. In the case of fig 4.6, the polaron has become localized mainly around 4 sites, 

again in a symmetrical pattern. The lattice distortions around such a localized state 

are much more significant, due to the larger value of the electron-phonon coupling 

constant. I n this regime the assumption of small displacements become invalid and 

one must consider higher-order contributions to the lattice potential in order to 

successfully describe a real crystal. 

0.174 

0.145 

0.116 

0.087 

0.058 

0.029 

Figure 4.5: Ground-state configuration for x = 2.2, G = 0.6 

4.3.2 Hysteresis due to varying x, G = 0.6 

During the the simulations for G = 0.6, the value of x was both increased and 

decreased in order to observe any hysteresis eflfects in the observed stationary states. 

Figure 4.7 shows the energy and the maximum in the probability density of the 

observed stationary states. The solid line represents the observed stationary states 

for increasing x, the dotted line for decreasing x- The figure shows that there is a 

small region 2.2 < x < 3.0 where the I d soliton becomes a metastable excited state 

wi th a slightly higher energy than the groundstate (which is the 2d soliton). In order 

to analyse the stability of the one-dimensional soliton in this region, perturbations 

were performed by increasing the electron field slightly in the centre of the soliton, 
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0.456 

0.342 

0.228 

H 0.114 

Figure 4.6: Ground-state configuration for x = 3.4, G = 0.6 

and then renormalising. This practice was carried out in an attempt to move the 

system closer to the more localised ground state. However the attempts to produce 

a transition were unsuccessful, and so it seemed that the one-dimensional soliton 

may be stable in an even larger part of the x coupling space than predicted by fig 

4.3. 

Although invisible on the figure, there is also a region close to x = 0 where the 

ground state of the system is the delocalized state, and the Id soliton is again some 

metastable state. In the case of the delocalized state, this energy corresponds to 

the bottom of the conduction band. The energy of the Id soliton in this region of 

coupling space is extremely close to this value. 

4.3.3 Ground state dependence upon both x G 

So far we have analysed the possible localized and delocalized states obtained in 

the tight-binding zeroth order adiabatic approximation for values of the system 

parameters consistent with current research Iterature. It was interesting, however, 

to observe the ground state in the complete phase space of G and x- Figure 4.8 

shows the energy of the ground state over this space. The value of the energy for 

each value of the couplings is given by the degree of shading, with a lighter colour 
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Figure 4.7: Hysteresis of observed stationary states for G = 0.6 and varying x-

indicating higher energy. Complete white specifies an energy equal to zero in our 

units, and this energy corresponds to the bottom of the conduction band in the pure 

undistorted crystal. The values of \(t>i,j,p\max corresponding to the energies in fig 4.8 

are depicted in figure 4.9. 

The coupling phase space involving x and G contains three separate regions, cor

responding to the one-dimensional soliton state, and two different types of solitons 

localized in two dimensions. The darkest region in fig 4.9 represents the symmet

rically distributed localized state as in figures 4.5 and 4.6. The lightest region 

represents the less localized states, with the bottom left corner occupied by the 

completely delocalized state, and the rest of the region occupied by the Id soliton 

states. The case G = 0 was considered in [51], where similar results were found. The 

intermediately shaded region occupying the right-hand side of figure 4.10 represents 

a different type of soliton localized in two-dimensions. The form of this solution is 
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Figure 4.8: Energy of the ground state configuration as a function of G and x-

shown in fig 4.10. 

The probability density is shared mostly over 6 sites. In contrast to the 2d 

soliton already discussed (fig 4.5,4.6) where the maximum in the probability density 

is situated at a single central site, the soliton depicted in fig 4.10 has its maximum at 

two central sites. Their four nearest neighbours hold the majority of the remaining 

electron probability density. In order to determine the variation in this state with 

G, we fixed the value x = 1 and scanned a range of values of G. The findings are 

presented in figure 4.11. 

For this particular value of x, the transition between the Id and 2d soliton occurred 

at G ~ 1.3. As G was increased past this critical value, the maximum in the 

probability density was found to tend towards a value of |0i, j ,p|^aa; = 0.5. For high 

enough values of G, the probability density was almost exclusively concentrated 

around the two central sites. 
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Figure 4.9: Maximum in the probability density of the ground state as a function of 

G and x-
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Figure 4.10: Ground state configuration for G = 2.4 and X = 1-
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Figure 4.11: Energy and maximum in the probability density for x = 1-

4.4 Section summary 

This section has concentrated upon the numerical solutions to the semi-classical 

equations that refer to the tight-binding hamiltonian of electron-phonon interactions 

formulated upon the two dimensional hexagonal lattice. The equations, that are 

analagous to the case of the zeroth-order adiabatic approximation, yielded a rich 

variety of localised states. I t was found that the states could be classified into four 

distinct catergories: (a) The completely delocalized state; (b) A soliton type solution 

localised in one lattice dimension; (c) A solution localized in two dimensions wi th one 

site containing the central maximum in the probability density; (d) A second solution 

localized in both lattice dimensions wi th two central sites sharing the maximum in 

the probability density. Regimes (b), (c) and (d) were found to be the groundstate 

in different regions of the electron-phonon coupling phase space. For the values of 

parameters predicted by the literature [22], [73], [74], [24], only the states (b) and 

(c) were observed. Naively assuming a value of x approximately the same as the 

predicted value of G, the ground state lies on the boundary between the delocalized 
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state and the I d soliton state. Thus localized electron states might well be found to 
exist in graphite and nanotubes. 

The lattice distortions accompanying the electron state were also observed. In 

the case of the state (a) there should be no definite displacament, only the thermal 

vibrational energy of each atom in the crystal wi l l contribute to displacements. In 

the case (b) there is a slight distorting of the lattice which results in an average 

displacement of sites towards the maximum in the probability density distribution. 

The magnitude of the distortion gets larger as one approaches the soliton, however 

in the centre, as expected, the displacement is zero. The states (c) and (d) both 

produced a more significant lattice distortion, and for values of x, C > 3 the dis

tort ion is approaching magnitudes where higher order terms in the lattice potential 

become important. The results for the case G = 0 were found to closely agree wi th 

the results considered in [51 . 

These results were extremely interesting in providing an insight into the kinds of 

polaronic states that may exist in carbon nanotubes. However, i t was next necessary 

to remove some of the limitations of the model that involve the geometry. The 

remaining chapters focus upon this task by considering the precise three-dimensional 

geometry and displacements of a carbon nanotube. 
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Chapter 5 

Polarons in carbon nanotubes 

I n this chapter we formulate the tight-binding hamiltonian on a general nanotube. 

Both the on-site and exchange energies are corrected up to first order in the phonon 

fields. Lattice displacements are allowed in the plane of the nanotube surface and 

perpendicular to this surface. This model was first considered in collaboration on a 

zig-zag nanotube [76], [77]. We apply the model to nanotubes of any chirality and 

derive the semi-classical equations of motion that correspond to the zeroth order 

adiabatic approximation. These equations depend appropriately upon the nanotube 

parameters (n, m) . We then look at one type of approximate solution that takes on 

the form of a nonlinear Schrodinger equation. 

5.1 Geometry of Carbon Nanotubes 

5.1.1 Nanotube pairameters 

In order to formulate the tight-binding hamiltonian describing electron-phonon in

teractions on a three-dimensional nanotube i t is necessary first to consider the lattice 

geometry [22], [33]. Nanotubes are most easily thought of in terms of taking a 2d 

hexagonal lattice, the geometry of which was considered in section 3.2, and rolling 

i t into a cylinder. There are an infinite class of tubes that can be made in this way, 

by rolling the tube at different angles and wi th different sized circumferences. Each 

individual tube is specified by the chiral vector Ch, which is directed parallel to a 
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cross section of the nanotube, and has a magnitude equal to the tube circumference 

(see vector O A fig 5.1): 

Figure 5.1: The nanotube parameters 

The chiral vector is defined in the 2d hexagonal lattice and is specified by the integers 

(n, m): 

Ch = na i -I- ma2; \Ch.\ = aVn"^ +m'^ + nm. (5.1) 

A l l nanotubes belong to one of two groups: achiral or chiral tubes. The achiral 

tubes form a small subset of all nanotubes. There are only two members of this 

group corresponding to the cases m = 0 (zig-zag) and m = n (armchair). The 

lattice studied in chapters 3 and 4 of this work corresponds to the zig-zag case 

wi th nanotube parameters (n, m) = (5,0). A l l other nanotubes belong to the chiral 

class. The study of achiral tubes provides an important step in understanding the 

properties of carbon nanotubes. However since the majori ty of tubes produced in 

experiments are chiral [86] [87], i t is important to consider the effects of chirality 

upon the nanotube properties, including the excited electron states. 

The nanotube unit cell is specified by Ch and another vector, known as the 

translation vector T . This is the shortest vector that is perpendicular to the chiral 

vector (i.e. parallel to the nanotube axis) and adjoins two equivalent sites in the 
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2d graphite sheet (see vector O B fig 5.1). The nanotube structure is then invariant 
under translations by the vector T . The translation vector is specified by two 
integers (̂ 1,̂ 2), where [22]: 

T = tiai+t2Si2; (5.2) 

2m + n 2n-\-m 

= '' = ~ ^ r ' ^^-^^ 

and dn is the greatest common divisor of the numerators in (5.3). The nanotube 

unit cell is therefore given in figure 5.1 by the rectangle OACB. A nanotube of 

extended length is constructed by the stacking of such nanotube unit cells. 

5.1.2 Three-dimensional coordinates 

In order to write down the 3d cartesian coordinates of the nanotube lattice sites, we 

take the x and y directions perpendicular to the nanotube axis and z parallel to this 

axis. I t is convenient to specify the x and y coordinates of the lattice sites in terms 

of three angles ^, 7 and 9. Rotating the nanotube about its own axis by an angle of 

7 is related to translating a point by the vector a i in the two-dimensional hexagonal 

lattice (i.e. by increasing the index i by unity). The angles 6 and ^ are related 

in the same way to the respective translations q = a j — a2 and p = | ( 2 a i — a2) 

(increasing j and p respectively by unity). The 2-coordinate is calculated f rom a 

projection of rij^p on to the translation vector T . The 3d cartesian coordinates are 

then: 

Xi,j,p = Rsm{ij + j9 + PO; (5.4) 

Vij^p = Rcos{i^ + je + p^); (5.5) 

= 

The three angles 7,9 and ^ can be writ ten down in terms of the parameters n and 

m. Taking first the 3d rotation angle 7 corresponding to the translation a i in the 

2d lattice, we make / integral combinations of this vector f rom the origin. After a 

finite number of additions, the projection of the resulting vector on to C h w i l l be 

equal to an integral multiple g of \Ch\ = L: 

f ^ ^ = . g L ( / ,5 integral). (5.7) 
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There is always a solution for some / and g since eqn (5.7) involves only rational 
quantities. We also have: 

/ 7 = 2ng, (5.8) 

since a translation of in the 2d lattice represents a rotation of 27r about the 

nanotube axis in three dimensions. Eliminating / and g gives (in the non-trivial 

case): 

7r(2n + m) 

where we have used L = |Ch | = ax/n^ -|- -I- nm. Following a similar procedure 

for the angles 6 and ^ we find: 

e= ; (5.10) 
+ -I- nm 

g = , ^ 7 ^ . (5.11) 

Thus the three angles that we use to describe site coordinates are now specified in 

terms of the parameters of the chiral vector Ch- In the case of a zig-zag nanotube 

m = 0, hence ^ = 9 and 7 = 2^ = 2^ as expected. Note that there is a relation 

between the three angles: 

^ + 7 = 3^, (5.12) 

since only two angles are required to label any site wi thin the lattice. In order 

to allow the elimination of the radius R f rom the equations we again consider the 

projections of the vectors p, a i and q onto the chiral vector (figure 5.2), and arrive 

at the relations: 

o = V^d = 4RL' . f i 
sm r 

n \2 
. / 7 

sm n + m \ 2 
ARV . n - 9 \ 
^ s m i ^ ) ; (5.13) 

L' = - = \/n2 - I - m2 + mn. (5.14) 
a 
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Figure 5.2: Nanotube cross section. The vector p is projected onto the chiral vector to 

give the side AB. This allows the expression of the angle ^ in terms of the parameters 

n and m. A similar method gives a relation between a i and 7 and q and 9 

In the absence of any site displacements, the positions of the atoms are: 

R ° j , ^ = Rsm{i-i + je + pOex + i?cos(«7 + + pCjSy + 0 ( i , j , p)e^, (5.15) 

where, f rom equation (5.6): 

im + j{m + n)] + 
(n -I- 2m)p 

(5.16) 

Defining the lattice site displacement fields as Uij^p tangent to the cylinder and 

perpendicular to the nanotube axis, Sij^p perpendicular to the cylinder and the 

nanotube axis, and Vi^^p parallel to the nanotube axis gives: 

"Up = \ui,j,p\[cos{i^ + j9 + p()e^ - sm{i^ + j9 + p^)ey]- (5.17) 

^i,j,P = \si,j,p\Hn{h + + PO^X + cos{i-f + j9 + pOey]; (5.18) 

(5.19) 

Next we define the local displacement vector as: 

(5.20) 
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so that the displaced positions of the lattice sites are described by the vectors: 

R , , , , = R ° , . , + P i , - , . (5.21) 

I t is again extremely convenient to use the indices functions (3.3) to simplify the 

equations. In this notation the index 5 may refer to each of the three nearest 

neighbours of any site r,l,d. The lattice vectors adjoing nearest neighbours in the 

fixed lattice are: 

The actual nearest neighbour separation in the dynamic lattice is: 

^^hj,P — ^HiJ,p) ~ r^iJ.p- (5.23) 

The local displacement vectors are: 

dSij,p = P i ( i - Pij,p (5.24) 

so that T>6ij^p — 'D6^jp+d5ij^p. Using the above definitions, the fixed lattice vectors 

are: 

V3dn ( . A , y/ldi 
D r ° 

Di: 
0 \/3c/ 

- cos [i^ + + 2 J ex - sm (̂ *7 + + 2 J + ^ ( " + 2m)e^; 

idfi - - - ^ ( n + m) cos ( ^ ( i - 1 / 2 ) 7 + i ^ - f 0 e , 

+ ^ ( " + rn) sin (^i - 1/2)7 + jd + + ~ "^)^^! 

Dd°^,o cos (^i7 + ( j - 1 / 2 ) ^ + 0 6 , 

- ^ ^ s i n ^ i 7 - f (;• - 1/2)^ + 0 e j / - ^ ( 2 n + m)e^; 

Dr° , , i = - D r « , . o ; 

Dd°,,, = -DdS,^,,o, (5-25) 

where as expected the magnitude of each of these vectors is equal to the nearest 

neighbour separation in the 2d hexagonal lattice.: 

| D r « , J = | D 1 ° , J = |Dd° ,J = ^ = d. (5.26) 
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The local displacement vectors are: 

Uij^i cos [i^ + j9 + n + Sij^i sin [ i j + j9 + i 

( 
- U i j f i c o s | ^Z7 + j 9 ] - S i j f i s i n (27 - I - j9 

+ - M i j - 1 s i n [i-f + j9 + ^ ] + Sij^i c o s ^̂ 7 + j9 + 

+ Uijfl s i n ^̂ 7 + j9^ - S j j , o c o s + 

d l i j f l = c o s ^(z - 1)7 + j9 + ^ ) + j , i s i n ^ ( i - 1)7 + + ^ 

- Uijfl cos ^i7 - I - j9^ - S i j f i s i n 2̂7 - I - j9^ 

- « i _ i j , i s i n ^ ( i - l ) 7 + i ^ + ^ ^ - l - S i _ i j , i C o s ^ ( i - 1)7+J^ + ^ - I -

- I - Uijfi sin 1̂27 + j 9 ] - S i j f i cos (27 -t-

ddjj.o = cos 2̂7 + ( j - 1)6* + ^ ) + sin^z7 + { j -1)9 + ^ 

- U i j f i cos ^̂ 7 + j9^ - S i j f l sin ^̂ 7 + j9^ 4 

sin^z7 - I - ( j - 1)6' + )̂ + -Su-i,! cos^n -f- ( j - 1)6' - I - ^ + 

- I - Ui,ifl sin [i^-\- j 9 ) - Sij^ cos Z7 - I - j9 

+ (i^i+ij-i,i - Vijfl)ez 

= — drjj^o 

= -dli+i,j,o 

d d i j i = -ddij+1,0 (5.27) 

5.1.3 NeEirest neighbour separations 

The quantities that are required in the construction of the tight-binding hamiltonian 

are the lowest order corrections to the magnitudes of the lattice vectors due to 

site displacements. Again we employ the simplifying assumption that the atoms 

in the crystal only undergo small displacements from their equilibrium positions 
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|d(5ij_p| « d. Calculating the magnitude of the vectors |D(5jj^p 

(5.28) 

and expanding these quantities up to first order in the displacements u,v and s 

gives: 

where: 

(5.29) 

Wr 

Wi 

Wd 

i - i y cos ( iUr(iJ,p) - «ij,p) + sin ) iSriiJ,p) + SiJ,p) 
2L 

( - l ) ^ ( n + 2m) 
2L' 

\ / 3 (n + m) 
2L' 

{-l)P{n-m) 

( - l y cos — — {uij^p - M/(ij,p)) + sin — — isi^i,j,p) + Sij,p) 

2L' 

^/3m 
2L' 

( - 1 ) " cos ( — — ) {ua{i,j,p) - Ui,j,p) + sin — — ) {sd{i,j,p) + Sij,p) 

{-iy{2n + m) 
2L' 

{Vd(i,i,p)-Vi,j,p). (5.30) 

The angles | , ^ and ^ represent the angular separations about the nanotube 

axis of the three nearest neighbours r, /, d. For example, | represents the angular 

separation about the nanotube axis of the sites -Ri,j,o and For Wi and Wd the 

relevant angles are ^ and ^ respectively. The quantities W5 wi l l be used in the 

construction of the electron-phonon interaction and lattice potential terms of the 

tight-binding hamiltonian in a similar manner to in chapter 3. 

A detailed analysis of tight-binding polaronic states in zig-zag tubes is presented 

in [76]. Note that all of the formulations that appear in this chapter describing 

chiral nanotubes reduce to the expressions considered in this reference when we 

take the case m — 0. Further correspondances can be made wi th the work discussed 
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in chapter 3 if one again takes the case m = 0 and then takes the Umit of large 
tube radius. In this hmit the angles 7, ^ and 6 are set equal to zero. The equations 
describing the fields W5 then correctly reduce to those considered in chapter 3. One 
may expect to observe that the quasi-particle ground states of tubes wi th large radii 
would resemble some of those observed in the numerical analysis of chapter 4. We 
can therefore expect to observe similar solutions to those explored in chapter 4. 

5.1.4 NzQiotube bending 

In order to correctly describe the twisting motion of atoms in a single graphite sheet, 

where the displacements are out of the plane of the lattice, i t is necessary to consider 

at least up to fourth nearest neighbour interactions [22]. I f we were to consider such 

interactions in our description of the lattice potential of a carbon nanotube, the 

model complexity would be enormous. I t was therefore necessary to consider some 

other method to correctly describe the bending modes of our nanotubes. Certain 

recent work has suggested that this bending could be accounted for by expanding 

the cosines of the angles between adjacent lattice vectors up to first order in the 

lattice displacements [73]. However, the term that we chose to add depended upon 

the solid angle formed by a centre point wi th its three nearest neighbours. This 

is a generalisation of the method used to represent the effects of curvature in the 

nano-circle [27]. Either of these two choices involves a model that deals only wi th 

nearest neighbour interactions, and so each provides a tractible model. As we shall 

see, the solid angle representation leads to an elegant approximate solution to the 

stationary equations. 

The solid angle span by the three lattice vectors surrounding the site {i,j,p) is: 

+ 
i j , p l l " ' ' r j , p M " " ' i , j , p l 

where expansions up to first order in the lattice displacements have been performed. 
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The quantity S f j p, which represents the soUd angle in the undisplaced lattice, is 

given by: 

,0 _ (Dr« , , , X D / o , J . D < , , , 

D r ° , J | D / o , J | D < , , , 

[n + m) 
, 7 - ^\ 

m(2m + n) sin —-— + n(2n + m) sin -
2 1 \ 2 

+ n m ( m — n) s i n ^ ^ ^ | . (5.32) 

Performing the calculation in (5.31) yields the following expression for the solid 

angle: 

Si,3,P = Sh,p + (5.33) 

The function Ci,j,p of the local site displacements is the first-order correction to S^ ^ p. 

+{~iy[A^Vij,p + A- i ; , ( , , , - , ) + A^\,j,p) + A ' ^ n j J . (5.34) 

The coefficients A depend upon the nanotube parameters n and m and the angles 

7,6 and ^ and they take on a complicated form. Therefore the expressions describing 

these coefficients have been situated in Appendix A l . 

We now have almost all of the necessary tools to write down the tight-binding 

hamiltonian containing first order electron-phonon interactions for a chiral nanotube. 

However, one must also consider terms that are necessary in removing the zero modes 

of the phonon hamiltonian. We address these in the next section, where we formulate 

the hamiltonian. 

5.2 Tight-binding Hamiltonian in Carbon Nan

otubes 

Once again the hamiltonian is split into three parts as follows: 

H = H, + Hpu + Hi^f (5.35) 

In this section each of the three parts is examined individually, beginning wi th the 

electron hamiltonian. 
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5.2.1 Electron Hamiltonian 

The tight-binding electron hamiltonian is identical to that considered in section 3.3 

for the 2d hexagonal case. This is due to the our only considering nearest neighbour 

interactions. The first nearest neighbour equilibrium separations are identical in the 

two lattices, however those of the second nearest neighbours are not. The electron 

hamiltonian is thus writ ten as: 

He = ^ Eoalj paij^p - alj^^as[ij,p) , (5.36) 

where as before the electron on-site and exchange energies in the undisplaced lattice 

are respectively EQ and J . The diagonalisation procedure would therefore be the 

same as that in chapter 3. 

5.2.2 Phonon Hamiltonian 

The obvious choice for the classical phonon hamiltonian is to take a combination of 

the squares of the terms WS and C: 
3? . fl2 2 

2 ^ V M M M 

+k[Wrl^p + Wll^p + WdlJ + k^Cfj^^^, (5.37) 

where K and Kc are the two individual elasticity coefficients. The momenta conju

gate to It, V and s are respectively p, q and r . There is however a problem in taking 

the phonon hamiltonian in this form, since in the continuum l imi t i t contains a zero 

mode. To see this we use the approximate Taylor expansions where the nearest 

neighbour separation d —> 0: 

Ui,j,i - Uijfi = cos - + ^ u^ + sm -+^]uy; 

Vi,j,i - Vijfl = cosl-+f\v^+sml- + 'ipjVy; 

, \ • , \ Vi-i,j,i - Vijfi = cos - - ' 0 v^ + sm - - t p Vy] 

Vij-i,! - Vijfl = sm{ip)ux - cos{il))vy. (5.38) 
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Here ip is the chiral angle, defined as the angle between the chiral vector Ch and the 
lattice vector a i (i.e. the angle between the chiral vector and the zig-zag direction). 
The cosine and sine of the chiral angle are given by the scalar products: 

a i .Ch 2n + m 
| a i | |Ch | 2L'; 

|a i X C h i VSm 

and thus: 

^/3n n + 2m 

_ y/3{n + m) n — m 

V3m 2n + m 
Ui,j-i,i - «i,j,o = -^JT'^^ 2 Z ^ " ^ ' 

\ /3n n - I - 2m 

\ /3 (n -\-m) n — m 
Vi-i,j,i - Vi,j,o = =̂̂  + ~ 2 l ^ ^ ^ ' 

^/3m 2n + m 
Vi,i-i,i - Vi^j^o = -T^Vx 2 L ^ ^ ^ ' ^ ^ 

The candidate phonon hamiltonian (5.37), wri t ten in the continuum Umit is: 

iivKc<mt = \ J[3vl + 3ul +ul + vl + 2UxVy + 2UyVx 

= \ j[2(«^ + vD + iu, + Vyf + {v, Uyf] + (5.41) 

+ 2 j g("̂ a:a; + SyyY 

Notice that Ux and Vy appear in the two combinations (it^ - I - Vy) and (uy — v^f, 

however the quantities Vx and Uy occur only in the term [vx+Uy)"^, indicating that 

there is a zero mode. The problem was eliminated in a similar fashion to that in 

chapter 3, where extra fields were introduced in order to k i l l the zero modes. The 
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required prescription was to add terms that are quadratic in the following fields: 

(n + 2m) 
fin 

2L' 

( - l ) ^ x / 3 n 
2L' 

(n — m) 

(-1)''C0S ^jiUr-u) + Sm(^){Sr + s) 

(vr-v); 

2L' 
{ - l Y c o s [ ^ ) { u - u i ) + s m ( ' ^ {si + s) 

{-iyV3{n + m) 

2L' 
(2n + m) 

2L' 

2L' 

(vi-v); 

(-1)''C0S ( M d - U ) + S i n + 

(5.42) 

These terms are added into the phonon hamiltonian in the following way: 

2 ^ \ M M 

„2 I un2 

M 

(5.43) 

In the continuum l imi t the terms that depend upon Q give a contribution: 

Hq = [3vl + 3ul + ul + v l - 2u^Vy - 2uyV^ 

(5.44) 

This completes the formulation of the phonon hamiltonian. A l l that is remaining 

is to consider electron-phonon interactions, and i t is this subject to which we now 

turn our attention. 

5.2.3 Electron-phonon interaction 

The geometrical quantities W5 and C formulated in the previous section are used 

to couple the electron field 0 to the lattice site displacements. The fields W5 are 

coupled in a similar vein to the method imposed upon the hexagonal lattice in 

chapter 3. Since Cjj,p is a quantity that is symmetrical about the site {i,j,p), i t is 
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sensible to include the following coupling in the interaction hamiltonian: 

Hint{C) = X2 5Z A,j,p(^i,hpCi,j,p (5.45) 

This is the natural way to couple such a quantity, which is centred upon the site 

( i , j , p). In order to simplify matters, we chose to ignore the coupling of the exchange 

interaction to the solid angle terms. There are already enough parameters to inves

tigate in order to significantly advance our knowledge of polaron states in carbon 

nanotubes by investigating the ofF-cylinder displacements. The total interaction 

hamiltonian is: 

Hint = Xialj,p(^i,jA^^iJ.P + ^ki,P + ^dij^p) + X2alj^paij,pCij,p 

+G[{alj^par(ij,p) + a I ( i , j , p ) « i J . p ) ^ ^ ' J , p + (« l j ,P^ ' ( i , j ,P ) + (4ii,j,pfi,J,p)^kj,P 

There are now three electron-phonon couplings XiiX2 and G to consider. The ad

dit ion of yet another coupling G2 that could couple the exchange interation to the 

nanotube bending would make things even more complicated. In a moment we 

concentrate upon wri t ing down the semi-classical hamiltonian. We assume that the 

semi-classical case corresponds to the zeroth-order adaibatic approximation as in 

chapter 3. Note that much of the discussion into the zeroth-order adiabatic approx

imation in chapter 3 is valid here i f we assume the zone-folding approximation, where 

we assume that we can represent the effects of the small circumference by restricting 

the allowed electron wavevectors to a subset of those in 2d graphite. Of course, due 

to the modified potential and interaction terms there would be a morecomplicated 

diagonalization of the phonon hamiltonian, and also a more complicated interaction 

term $ (k , q) in the Frolich hamiltonian. Note that in reality the situation is much 

more complicated than this due to the effects of the curvature on the hybridisation 

of the electron orbitals [90 . 

5.3 Semi-classical treatment 

This method involves treating the lattice displacements classically and working wi th 

the average value of the hamiltonian ( * | ^ | ^ ' ) . The state \ '^) is a product of the 
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electronic and phonon wavefunctions: 

m ^ i i ^ e m (5.47) 

The displacement operators u, v and s act upon the coherent phonon state, giving 

the classical lattice displacements: 

hj,p\^) = Vi,j,p\^) 

kj,p\^) = ^ijJ^)- (5.48) 

The electron wavefunction is: 

l^e) = E ' ^ w « U p | 0 ) ' (5-49) 
i,j,P 

where |0) is the quasiparticle vacuum state. The average value of the hamiltonian 

for a system wi th state vector of this form is: 

H = ( * | ^ | * ) 

i,j,P ^ 

+K3,P^l{i,hP) + ^h,lp)^i'j'P + ^i,j,pMi,3,p) + 4>*d(i,j,p)(i>i,j,p) 

+xMi,i,p?{Wrij^p + Wk^j^p + Wdij^p) + Xi\(t>i,u?Ci,i,p 

+G'2[(</'Ij,p0r(ij,p) + (l^*r{i,j,p)(l^i,j,pWn,j,p + {<i>Up<t>l{i,j,p) + <i>*l(ij,p)4>i,hpWkj,P 

H<PljJdiij,p) + <l>kiJ,p)^iJ,p)^did,p]j • (5-50) 

The normalisation of the state \ipe) requires that the coefficients </>ij,p obey the 

normalisation condition: 

E i < ^ w r = 1- (5.51) 
i,j,P 

In modelling the semi-classical equations this condition must be taken into account 

at all times. The equations of motion corresponding to this transformed hamiltonian 

are the Schrodinger equation for the field (f) and hamilton's equations for the three 

displacement fields. The three equations describing the displacement fields are long, 
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however we present them here due to their central importance. The four equations 

are: 

dt 
(W + e)(f> - 23{<l>r + + <̂ d) + Ximr + Wi + Wd) 

(5.52) 

c»2 t,3,P = _ f t L J } l \ ^ ^ n + m)cos(^^]wi-VSncos(^]Wr 
{ L' I V 2 y \2J L' 

-\/3mcos ^ VKd + ( n - m ) cos M — ^ 
V 2 y V 2 y 

-{n + 2m) cos M + (2n + m) cos fid 
V2y V 2 y 

+A;c(-1) ' ' [A"C - A" ' 'C , - A"^Q - A^ '^Q 

x / 3 ( - l ) 

—mcos 

0 P (n + m) cos 7-e ncosi -

ncosi ^ 

+ ( n + m) cos( — — ) |(/)/|^ — mcos 

+ X 2 ( - l ) ' ' [ A " | ( / > p - A - | 0 r 

^ ( - l ) ' ' G 2 ((/)*(/>( + (l)*i(f)){n + m) cos 7-e 

-{(t)*(t>r + <j)*^)ncos 
^ - 9 

(5.53) 
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VSn sin f | + V3(n + m) sin ( 
\ 2 / V 

7 - ^ W, 

r- ( i \ 
-h V 3m sin \ Wa, + {n + 2m) sin ^ Qr 

V 2 y \2J 

+ ( n — m) sin 
i " ^ ] - (2n + m) sin ( ^ - ^ ) 

+h[A'C + A'^Cr + A^'Ci + A"^Cd\ 

2D 

-\-m sin 

(n - I - m) sin ( —^— - j - n sin f -

V 2 y 
+ nsin - ]\^r\ 

-\-{n -h m) sin{ — - — ) - h msin 

+ 0j*0)(n - I - m) sin 7-e 

(5.54) 

5 i 2 
^ ( - 1 ) " (2n -h m)VFd - (n - m)M/( - (n - f 2m)Pyr + -/SriQr 

-F\/3(n - I - m ) f i i -f- v^mQd 

+A;c(-1)' '[A'^C - A'"'Cr - A'^^Ci - A'"^Cd , vd/ 

2L' 

( - ] 
( - 1 ) ^ 0 2 

(2n + m)|(^dP - ( n - m ) | ( / « j p - (n + 2m)|(^r 

+ X 2 ( - 1 ) ' ' [ A 1 0 P - A - I ^ r l ' - ^""^^ - A ^ l ^ . n 

((/.Vd + </'d0)(2n + m) 

- ( ( / ) > / - I - (/';(/))(n - m) - ((/>>r + <l)l(t)){n + 2m) } (5.55) 

In each case the subscript 5 = r,l,d refers to the index 5{i,j,p). We also use the 

notation 0 = 4>i,j,p, u = Uij^p etc. Let us now look at the equations that describe 

tubes of large radii. 
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5.3.1 Approximate solution c.f. 

We now investigate the equations (5.52-5.55) in the approximation describing tubes 

of large radii . This is a straightforward generalisation to a chiral nanotube of the 

method presented in [51], [72]. In this l imi t i t is assumed that the angles 7,6 and ^ 

are equal to zero. This greatly simplifies the hamiltonian and equations of motion. 

We then make the further simplification that G = 0, i.e. only the electron on-site 

energy is coupled to the lattice. W i t h these considerations taken into account, the 

equations of motion become: 

— = 2K{Ur + Ui+Ud-3u) + 

(5.56) 

( - l ) ^^ /3x l 
2L' 

n|^rP - (n + 'm)\(t>i\'^ + m\(f)d\ (5.57) 

= .K,^Cr + Q + Cd-3C)+X2{m'-\<f>r\'-\<f>i\'-\U') (5.58) 

— = 2Kivr + vi+Vd-3v) + 

i-iYxi 

where: 

2L' 

Z = 

(2m + n)|(/)rp - I - (n - m)|(/),|^ - (2n -|- m)\(j)d\ (5.59) 

2L' 
\/^{nUr — {n + m)ui -\- mud) + 

(5.60) +{2m + n)vr + (n — m)vi — (2n + m)vd 

These equations are extremely interesting, since for example the quantity {ui - I - - I -

Ur — Su) is the finite difference approximation to the laplacian A4W centred upon the 

site {i,j,p). Imposing the constraint that the equations are stationary, one arrives 

at the following system of equations: 

0 = \4> - 2((l>r + 4>i + 4>d) + Xi(pZ + X2(t>C 

A4U = {n + m)\(f)i 
4L 

A 4 C = ~g2As\(t>\' 

% ({2n + m)\(t>d\^ - (n - m)\(f>i\'^ - (2m + n)\(f>r\^ A4V 

(5.61) 

(5.62) 

(5.63) 

(5.64) 
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where gi = X i / - ^ ^^id ̂ 2 — X2IKc- The stationary equations describing the dis
placement fields are now used to eliminate Z and C from the expression (5.61). 
Equations (5.62) and (5.64) describe the four-point laplacians of the respective u 
and V fields around a central site { i , j , p ) . These relations are used to calculate the 
four-point laplacian of the quantity Z: 

= ^ ( 6 | ^ i , j , 0 p - | ^ i + i j _ l , o P - | ^ i - i , j , o | ^ -

- (t>i,j+lfif - \(l)i+\,jfif - | 0 i - l j + l , O p - | 0 i , j - l , O p ) 

= -|a7|</.uoP (5.65) 

The above form is that of a seven-point laplacian that includes one central site and 

its six next to nearest neighbours. Precisely the same form of expression holds for 

the case p = 1 w i t h its six next to nearest neighbours. Therefore we have the 

expression: 

A,Z =-^Ar\(f>\' (5.66) 

There exists a simple solution to this equation (as observed in [51]). In fact, the 

four-point laplacian of the following quantity provides the remedy: 

Z^-^i\4>r\' + \(t>i\' + \M' + ̂ \<P\') (5.67) 

The stationary equation for the s field (5.63) provides us wi th the relation: 

A4C = - h ^ M ' (5.68) 

which is tr ivial ly solved by C = —g2\(f)\^. Inserting this result, along wi th (5.67) into 

the stationary equation for (j) (5.61) gives: 

X4>ij,o - 2A4</.i,,-,o - j(/'(A4|<^i,,-,o|' + 6|0i,,-on - X292(l>ijJ(f>i,j,p\'' (5.69) 

This is a two-dimensional modified discrete nonlinear schrodinger equation wi th an 

extra term (MDNLS). The discrete nonlinear schrodinger equation has been well 

studied in two dimensions [69]. Many results are available for the square lattice 

(see [70], [68] for references), and the equation has also been studied on triangu

lar and hexagonal lattices [71]. In this final reference localized solutions were found 
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which exliibited some of the properties that were discussed in chapter 4. The authors 

showed that there existed states localized in both lattice dimensions when the non-

linearity parameter lay above some critical value. A t lower values of the nonlinearity 

parameter the system was found to move into a state which is delocalized. 

5.4 Chapter Summary 

The focus of this chapter has been to formulate the models discussed in the pre

vious chapters onto a general three-dimensional chiral nanotube. We started by 

considering the nanotube geometry, each individual tube being specified by a pair 

of integers (n, m) , which define the tube chiral vector. These parameters enter the 

expressions that were formulated to describe the displacement of the lattice sites. 

The consideration of the nanotube geometry led on to the formulation of the tight-

binding hamiltonian wi th nearest neighbour interactions. The lattice potential was 

modified to contain extra terms which describe the bending modes of the lattice. 

These terms were also naturally coupled to the electron on-site energy. The final 

hamiltonian contained three electron-phonon coupling parameters. Two described 

the coupling of the electron on-site energy to the stretching and bending modes of 

the nanotube, the other coupled the exchange energy to the stretching modes. Any 

impact of the nanotube bending upon the exchange interaction was neglected for 

simplicity. 

Treating the lattice displacements classically and the electron field quantum 

mechanically led to a system of semi-classical equations. As an approximation the 

coupling of the exchange interaction to the lattice was neglected. In such a case i t 

was shown that the stationary equations could be combined into a single equation 

describing the electron field. Furthermore the form of this equation was that of a 

two-dimensional modified discrete nonlinear Schrodinger equation. This equation 

has been studied intensively [69] and has been found to admit localised solutions. 

In the following chapter we look for localized numerical solutions to the fu l l 

system of semi-classical equations (5.50-5.55) in two types of nanotube - one chiral 

and one achiral, and analyse the stability of certain excited states. 
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Chapter 6 

Numerical simulations of localized 

quasiparticles in carbon nanotubes 

In this chapter we present some numerical results obtained through simulation of the 

semi-classical equations of motion derived in chapter 5 for a chiral carbon nanotube. 

Various ground states are shown to exist for different values of the system couplings. 

We briefiy mention some attempts to describe excited polaron states. 

6.1 Introduction 

The previous chapter dealt wi th the formulation of the tools required to study 

polaron states in chiral carbon nanotubes. A number of simplifications were involved 

in the model construction. The model was based on a tight-binding approximation 

and the lattice site displacements were assumed to be small. I t was observed that in 

the case of the 2d hexagonal lattice, this second assumption was valid providied that 

the electron-phonon coupling was not too large. The th i rd assumption is that i t is 

valid to work in the zeroth-order adiabatic approximation when considering these 

systems. I t has been shown that in the one-dimensional chain this is indeed the 

case provided that the electron-phonon coupling is not too small [18]. Thus there 

exists a range of applicability of the model that may lead to predictions verifiable by 

experiment. The determination of the exact range of applicability is not our concern 

here. We simply note that there wi l l be some range of real physical applicability 
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which wil l lie in the regime where the electron-phonon coupling is significant and 
the maximum lattice distortion can still be considered small. 

I t is the aim of this chapter to investigate numerically some of the self-trapped 

electron states in carbon nanotubes, based on the semi-classical approximation. The 

chapter focusses around results for two types of tube: an (8,0) zig-zag tube and an 

(8,4) chiral tube. The main aim of this section is to present the types of states 

that are seen in the semi-classical equations. Many of these states are found to 

closely resemble those examined in chapter 4, however they have a more complex 

and interesting structure due to the presence of the off-cylindrical displacements. 

6.2 Parameters 

Here we discuss the approximate values of the parameters that one may expect to 

describe carbon nanotubes. Prom the broad spectrum of nanotube research we have 

the following predictions [22], [73], [74], [24] (chapter 4): 

eV 
d = 1A2A; J ^2A-3.1eV; G ^ 4 . 8 - 6 — ; 

K = 3 6 . 5 x 1 0 ^ ^ ; i f , = 9.8 x l O ' ' ^ . (6.1) 
cm cm 

As in the case of the two-dimensional hexagonal lattice, we represent the energies 

in units of J: 

u = lU; v = lV- s = IS; ^ = ^'^ 

Kc = -j^J; xi = ^ J ; X2 = - p J \ <^i = / j ' ^ 

eo = eoJ. (6.2) 

Again the length scale is chosen so that K = I, which gives a length scale of one 

quarter the size of the nearest-neighbour distance d. We then have approximately 

G 0.7 and Kc ~ 0.25. The values of Xi and X2 were unknown. I t has been 

estimated that reasonable values for the on-site coupling parameters are X i 0.8 

and X2 0.2 [76]. We have determined the ground state for these estimates of the 

parameters. We also present the ground states for other values of the couplings, in 

order to observe the variation in states that the model produces. 
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6.3 State Observation 

6.3.1 Energy absorption 

In order to model the stationary equations, absorbative terms were again introduced 

into the equations of motion, as discussed in chapter 4. Due to the long execution 

times of the simulations into 3d nanotubes, i t was important to discover the optimum 

damping coefficient, particularly in the case of the kinetic damping. Figure 6.1 

displays curves that describe the evolution of the system kinetic energy for three 

different values of the damping parameter v. I t was decided that the optimum 

damping corresponded to a value oi v = 1, since this produced a comparatively 

rapid relaxation to wi thin proximity of the ground state energy. This value was 

identical to that chosen when modelling the flat hexagonal system in chapter 4. 

250 500 750 1000 1250 1500 1750 2000 : 2250 2500 2750: 3000 3260 

nu=0.7 

2.825 

gj -2:835 

•2845 

2:865 

progreun time 

Figure 6.1: Kinetic energy damping curves for G = 0.7, X i = 0.8 and X2 = 0.2. 

The three curves correspond to three differing values of the damping parameter u. 

The process of absorbing energy from the electron field proved to be more de

structive than in the graphite model. This destructiveness was manifest in the 

magnitude in the violation of the normalization condition (5.51). I t was therefore 

necessary to remain careful at all times to ensure that the electron field damping 

was kept at a sufficiently low level. Note that the presence of the damping again 
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resulted in a vast decrease in the amount of time required to reach the stationary 
configuration. 

6.3.2 Quaisiparticle states in c£irbon nanotubes 

Simulations once again involved the use of a fourth-order Runge-Kutta method 

to integrate the equations of motion. Simulations were carried out on a zig-zag 

nanotube with parameters (8,0) and a chiral tube with parameters (8,4). The length 

of the zig-zag tube was set to 30 nanotube cells. This corresponded to a total of 

960 lattice sites. The length of the chiral tube was 10 cells, producing a total of 

1120 lattice sites (see section 5.1). The size of the nanotube unit cell is much larger 

for the (8,4) chiral tube than for the zig-zag tube due to the larger magnitude of 

the nanotube translation vector T. The boundary conditions in the circumferential 

direction were obviously periodic. It was decided in this case that the boundary 

conditions in the direction of the tube axis should be free, instead of periodic. This 

allowed for a stretching or compression of the nanotube along its axis due to the 

presence of localized solutions. In order to stop a global translation of the tube a 

single lattice site was fixed by a quadratic potential, as was the method used in [76 . 

In this paper the equations for zig-zag nanotubes were constructed analogously to 

those derived in chapter 5. The chiral equations utilized here form a generalization 

of the zig-zag equations. In the paper the quasiparticle ground state was investigated 

as a function of the couplings Xi, X2 and Gi. Here we simply quote some the main 

results of the investigations and further verify the results by showing some of the 

states that were observed here also. 

In order to completely represent the state of the quasiparticle in a single diagram, 

we use the method of presentation introduced in [76]. The circumferential direction 

corresponds to the x-axis. The tube is unrolled and plotted on a two-dimensional 

plane. One should then envisage the right and left hand sides of each figure to be 

connected, although in many of the figures only a small section of the full nanotube 

is plotted. The deformation fields u and v are given explicitly by showing the 

displaced positions of the lattice sites. The probability density is represented by a 

shaded circle at the centre of each nanotube site. Darker colours indicate higher 
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probability densities, however the scale varies between diagrams and is given on the 

right hand side of each picture. The off-cylinder displacements s are described by 

an arrow eminating from the centre of each site. The length of the arrow determines 

the size of the distortion. If the arrow points downwards the displacement is towards 

the nanotube axis. Upward pointing arrows represent displacements away from the 

axis. 

We begin the analysis of the observed states by examining the ground state in 

an (8,0) and an (8,4) nanotube for the values of the couplings predicted in section 

6.2. 

Predicted ground state in (8,0) nanotube 

The predicted ground state is shown in fig 6.2. This state has been named type 

I [76]. 
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Figure 6.2: Type I solution in an (8,0) nanotube for G = 0.7, X\ = 0.8 and X2 = 0.2 

The solution is in many ways identical to the Id soliton seen in the 2d hexagonal 

lattice and discussed in chapter 4. There is a uniform drawing in of the nanotube 

sites towards the soliton centre. This distortion is greatest at points in the lattice 

which are close to the soliton. The magnitude of the displacement is again quite 

small, and is invisible in the figure. The solution is uniform in the circumferential 
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direction (i.e. along the x-axis). The most interesting development upon the 2d 

hexagonal model involves the predictions for the out of plane displacements s. The 

type I solution distorts the tube in such a way that the sites in its immediate vicinity 

are dragged in towards the centre of the nanotube. This distortion is greatest along 

the central ridge of the soliton. The magnitude of the s displacement was in fact 

quite small, and the arrows were therefore magnified by a factor of twenty. They 

are scaled to fit with the y-axis, so that an arrow of length equal to unity represents 

an off cylinder displacement of d/20. 

Predicted ground state in (8,4) nanotube 

We next examine the ground state for the same parameters in the (8,4) nanotube, 

which is plotted in figure 6.3. 

10.012 

10.01 
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20 

Figure 6.3: Type I solution in an (8,4) nanotube for G = 0.7, Xi = 1.6 and X2 = 0.2 

It is straightforward to see that the states in the two differing nanotubes share 

the same characteristics. The same magnifications have been performed upon the 

displacement fields. The sites close to the soliton have again been drawn in toward 

the tube axis. The magnitudes of the displacements in the (8, 0) and (8,4) nanotubes 

are evidently very similar for this type of solution. It seems that in this case the 

chirality has no significant effect upon the ground state of the system. We now turn 
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our attention to an examination of some of the other observed states. 

Type I I solitons (Localized mainly around one site) (fig 6.4) 

The probability density is situated mostly on a single central site 0.7). 

The remaining density is distributed mostly over the three nearest neighbour sites 

(of fig 4.6). As in the case of the 2d hexagonal lattice, the surrounding sites are 

drawn in towards the centre of the soliton. In figure 6.4 the displacements are 

magnified by a factor of 2 in order to make them more visible. The magnitudes 

of the displacements around the type I I soliton increase with increasing Xi. The 

s displacements in this case are again very interesting. Most of the sites around 

the soliton centre, including the central site, are dragged in towards the tube axis. 

The magnitude of displacement is greatest at the central site and the other three 

surrounding sites. The displacement does not simply reduce in magnitude as one 

moves from the soliton centre - there are also sites which are pushed away from 

the tube axis, most notably the one directly below the central site in the figure. 

Such complex displacement patterns are a very interesting feature of the localized 

quasiparticle states in the three-dimensional model which for obvious reasons do not 

arise in the corresponding 2d model. 
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Figure 6.4: Type II solution in an (8,0) nanotubeforG = 0.7, Xi — 2.4 and X2 = 0.2 
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Figure 4.5 shows the same state observed in the chiral (8,4) nanotube. It is 

evident once again that the structures of the two states show the same character

istics. However, the s-displacement field shows an even more complex structure, 

with certain sites drawn out of the tube and others pushed inwards. In this and the 

previous case the s displacements have been magnified by a factor of 4 compared to 

the real displacements. 

0.702 

0.585 

0.468 

0.351 

0.234 

0.117 

Figure 6.5: Type II solution in an (8,4) nanotube for G = 0.7, Xi = 2.4 and X2 = 0.2 

Type I I I solitons (Localized mainly around two sites) (fig 6.6) 

This state is analogous to the state in fig (4.10) and represents a solution trapped 

predominantly around two lattice sites in the chiral tube. The u and v displacements 

have again been magnified by a factor of 2. As is evident from the figure, the two 

central sites have been drawn considerably closer towards one another. As have 

the other four nearest neighbours. All of the six central sites have been drawn in 

considerably towards the centre of the nanotube. The sites that surround these 

six have mostly then been pushed outwards, once again creating a rippling in the 

nanotube surface. 
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Figure 6.6: Type III solution in an (8,0) nanotube for G — 2.5, Xi = 1.6 and 

X2 = 0.2 

Type I V solitons (Localized mainly around three sites) (fig 6.7) 

The type IV solution is localized mainly on three lattice sites. The central site 

contains around 50 percent of the probability density, with most of the rest residing 

on the two closest neighbours. These neighbours have been drawn in considerably 

closeer to the central site than its other nearest neighbour. The value of s field 

on the three central sites is large and negative (i.e. the sites are drawn in towards 

the nanotube axis). The site directly beneath the central site in the figure however 

shows distortion away from the centre of the cylinder. Note that for the values of the 

couplings used to produce figure 6.7, the results obtained did not correspond to the 

ground state, which was known from [76] to be type I I I . Interestingly the type IV 

solution that was observed showed little willingness to decay into the lower energy 

state, indicating a fairly high degree of stability. Such a topic would be interesting 

for future investiagtion. 

In order to determine if the initial conditions would alter the pattern of defor

mation around the soliton, a number of simulations were carried out starting from 

different inital conditions. These conditions corresponded to some of the states al

ready discussed in this chapter. Two sets of parameters were chosen, which were 
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Figure 6.7: Type IV solution in an (8,0) nanotube for G = 3.5, = 1.6 and 

X2 = 0.2 

known to have respective ground states corresponding to a type I I and type I I I 

solution respectively. Two simulations were carried out for each set of couplings, 

one corresponding to delocalized initial conditions, the other to some form of 2d 

localized initial conditions. In each case the stationary configuration was observed 

to be independent of the initial conditions. 

Scanning of parcimeters 

Because of the nature of the program used to model the states presented in this 

chapter, simulation times were extremely large. This was due to use of the Runge-

Kutta method of integration. It was therefore difficult to scan the coupling phase 

space in order to observe the ground state regions, as was done for the hexagonal 

lattice in chapter 4. The Runge-Kutta method however proved to be useful in 

the modelling of excited nanotube states, for which the absorption of energy from 

the electron field was destructive (see section 6.4). The electron-phonon coupling 

parameters have however been fully scanned for a zig-zag nanotube in a separate 

procedure using a relaxation method, the results of which are presented in our 

collaboration paper [76]. We settle here for a small summary of the results presented 
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in this paper: 

First consider the case where Xi and X2 are fairly small (in the paper they were 

set to 0.6 and 0.2 respectively). At C = 0 the ground state is a t3rpe I solution. 

Upon increasing G the ground state does not change until G ^ 1.2. The ground 

state is then type I I I (localized mainly around two central sites). This remains the 

ground state until very high values of G (exceeding 5), where the type IV solution 

appears. Note that the degree of localization around the central two sites increases 

with the electron-phonon coupling. 

Now keeping G and X2 small and increasing X i , the ground state is again the 

type I solution (Davydov soliton) for Xi < 1.2. The ground state for higher values 

of Xi is then type I I . The degree of localization is again found to increase, with the 

electron probability density approaching 1 at the central site for very large values 

of Xi. 

Finally, for increasing X2 while keeping G and Xi small the system tends to 

want to move towards the type I state. In all three regimes described above, once 

localization in both lattice dimensions occurs, the energy decreases fairly rapidly 

with the electron-phonon coupling, in a similar fashion to figure 4.8. The results are 

in good agreement with those in the two-dimensional hexagonal system. However 

the off-cylinder displacements provide for a richer variability in the main catergories 

of states, and for more detail one is urged to refer to [76 . 

6.4 Excited Nanotube states 

As has already been mentioned, one of the most remarkable properties of carbon 

nanotubes is that their geometry determines whether they are semiconducting or 

metallic in nature. The reason for this is that due to the circumferential boundary 

conditions imposed upon the electronic wavefunction, the two dimensional energy 

dispersion in graphite is split into one-dimensional cross sections that determine the 

nanotube band structure. The procedure of 'chopping' the 2d graphite dispersion is 

known as the zone-folding approximation, which we now use to predict the energy 

band structure of an (8, 0) nanotube. This is a standard procedure that is available 
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in a wide range of literature (see for e.g. [22]). 

In a nanotube of circumference L, the electron wavelengths Â ; perpendicular to 

the tube axis are restricted by the following periodic condition: 

qXx = L, (6.3) 

where q is an integer. This restricts the allowed values of kx'. 

k. = '-^ (6.4) 

The number of values of kx is restricted due to the equivalence of states related by 

a reciprocal lattice vector. The energy dispersion of two dimensional graphite was 

found in section 3.32 to be: 

E^{k) = eo± + 2cos(k.ai) + 2cos(k.a2) + 2cos(k.(ai - as)). (6.5) 

which for a zig-zag nanotube becomes: 

E^{k) = eo ± J\ 1 + Acos(^^^kx^ cos(-ky^ +4cos'^(-ky\ (6.6) 
V V 2 y v2 y v2 / 

For an (8,0) nanotube with circumference given by (5.1) the conditions imposed on 

the electron wavevectors result in the band structure depicted in figure 6.8. The 

lowest band corresponds to the case A;̂ ; = 0 (i.e. A —» oo). We consider now the 

type I solutions (Davydov solitons) that were observed in the numerical procedures. 

Upon closer inspection of the quasiparticle amplitude, it was obvious that there was 

no phase in the azimuthal component of the wavefunction. This state was therefore, 

as expected, composed of electron states near the lowest band minimum. In order to 

try and simulate excited states, the wavefunction was modulated by a phase around 

the nanotube circumference. The phase was chosen so that a state was created that 

corresponded to superpositions of electron states in the second lowest band {q = 1). 

These initial conditions were supplemented by the deformation field from the state 

with kx = 0. Energy was absorbed only from the lattice kinetic terms, to ensure 

that there was no violation of the electron field normalisation that could affect the 

excited state. The resulting quaiparticle state was stable for quite a large amount 

of time, however eventually was found to decay into the state q = 0. 
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Figure 6.8: Energy dispersion of an (8, 0) carbon nanotube predicted by zone-folding 

6.4.1 States from the upper bands 

In order to investigate states from the lowest upper band, certain inital conditions 

have been predicted [77]. These conditions amount to modulating the ground state 

solution by a phase corresponding to g = 3 and inserting negative signs in front of 

amplitudes defined on selected sites. Solutions were sought that corresponded to 

these initial conditions. Unfortunately the state specified by the initial conditions 

decayed immediately. Note that in each case it was assumed that the lattice dis

placements were the same as the ground state, which may be the case, since the 

probability density for the electron is unaltered. For the time being the stability is 

unobserved. 

6.5 Summary 

In this chapter we have examined some of the numerical solutions to the equations 

of motion derived in the semi-classical case on the nanotube. Some very interesting 

states have been observed both in a chiral and a zig-zag nanotube. Firstly, there 

are obvious parallels between the states observed in the 2d hexagonal system and 

those observed here. The ground state variation in the coupling phase space [76 
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follows a very similar pattern to that presented in chapter 4. Secondly, the states 
that have been observed in the three dimensional model provide captivating new 
insight due to the presence of the out-of plane displacement field s. Numerical 
simulations showed that accompanying the localized solutions were complex patterns 
of s displacements that quite often produced 'ripples' in the nanotube surface. In 
a small scale investigation the dependence of the stationary configuration upon the 
initial conditions was examined, motivated by a rich structure in the s-field in the 
vicinity of the 2d localised solutions. As one would expect, no effect of the initial 
conditions upon the stationary states was observed. 

We have searched for excited states from the lower and upper energy bands. 

The first excited state in the lower bands (q = 1) was found to decay after a short 

time into the ground state {q = 0). The first excited state from the upper band 

disintegrated immediately, and therefore it may be possible that the predicted initial 

conditions [77] were incorrect. This is another topic for future investigation. 
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Conclusions 

The focus of the work presented in this thesis has been the analysis of self-trapped 

electron (polaron) states in structures relating to carbon nanotubes. The aim was 

to derive a system of equations that could be solved numerically in order to observe 

the dependence of the electronic localization upon the electron-phonon coupling 

parameters. 

We started from a tight-binding description of electrons and phonons and gen

eralised the ideas that have been considered in one dimensional atomic chains and 

two dimensional square lattices to the case of a hexagonal lattice. Certain com

plications arose due to the two-atom basis, however it was shown that the system 

equations lead to a Frolich type Hamiltonian, which has been long been used to 

model electron-phonon interactions. Under certain circumstances in the adiabatic 

approximation the equations were shown to reduce to the semi-classical case, just 

as with Id and simpler 2d models. The semi-classical description involves a classical 

treatment of the lattice displacement fields by calculating Hamilton's equations. 

The numerical modelling of the system of semi-classical equations led to the 

observation of a rich variety of states with different degrees of localization. The 

system ground state was explored as a function of the electron-phonon coupling 

terms on a hexagonal lattice with the dimension in the zig-zag direction considerably 

smaller than in the armchair direction. The observed solutions were found to exhibit 

differing degrees of localization. For zero, or extremely small coupling of the electron 

field to the lattice, the ground state was found to be the Id type (or Davydov) soliton, 
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locaUzed in the axial lattice direction i.e. the armchair direction. In this case the 
state looked like a Id Davydov soliton in the armchair direction, but remained 
delocalized in the short zig-zag direction. For larger coupling strengths the ground 
state was found to be localized in both lattice dimensions. There were two main 
types of this kind of solution. The first has a probability density localized principally 
upon a single central site, the second is localized mainly upon two central sites. 
In both cases the lattice contained a characteristic deformation which pulled the 
surrounding sites towards the soliton centre. Furthermore, the magnitude of this 
deformation was found to increase with the electron-phonon coupling. The ground 
state corresponding to the region of parameters predicted by the current literature 
was the solution localised in one of the lattice dimensions. 

The aim of the numerical studies was to provide a first insight into the kinds 

of self-trapped states that would be observed in carbon nanotubes. However, the 

restrictions of the model were evident in the non-zero curvature of the hexagonal 

lattice and the fixing of the lattice sites to lie in the plane. Due to the significant 

distortions that accompany the localized solutions, one would expect that out-of-

plane site displacements are important in determining the self-trapped ground states 

in carbon nanotubes, particularly since it has been shown that carbon nanotubes 

can undergo quite violent bending without permanent deformation [46]. The for

mulation of the model on a three-dimensional cylinder therefore provided a great 

advancement in our knowledge of the states that could occur in a real nanotube. The 

hamiltonian was adapted to describe interactions in this structure and the focus lay 

in establishing the semi-classical equations, which could be solved numerically. The 

complications arising due to the three-dimensional treatment resided largely in the 

choice of the terms in the lattice potential that would describe the bending of the 

nanotube surface, since usually one-must consider up to fourth-nearest neighbour 

interactions. A bending potential was chosen that depended upon the solid angle 

formed by each site with its three nearest neighbours. The equations of motion 

corresponding to this system led to a nice approximate analytical solution. 

The numerical solution of the semi-classical equations on the 3d nanotube led to 

a number of observed states with a rich structure occuring due to the presence of the 
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off-cylindrical displacements. These states were found to agree closely with the those 
discovered in the 2d hexagonal lattice. However the fine structure of these states was 
found to be much more intruiging due movements of the sites out of the plane of the 
nanotube. The states that were localised in both lattice directions caused the central 
sites to move inwards towards the centre of the tube, while in certain circumstances 
the surrounding sites were pushed outwards. For the values of the system couplings 
corresponding to physically realistic magnitudes, the ground state was once again 
observed to be the solution localised in the tube axial direction, but periodic around 
the tube circumference. This state produced a drawing in of the surrounding sites 
that was uniform around the circumference, however these displacements were small. 
There was also a small pinching of the tube in the vicinity of the soliton, whereby 
the sites are pulled slightly towards the tube axis. Al l of these displacements were 
small in magnitude compared to those surrounding the solutions that were localised 
in two dimensions. The observed states were seen not only in a zig-zag tube, but 
also in the chiral case. In fact, the states were found to be very similar, particularly 
in the case of the Id soliton, where aU of the main characteristics of the zig-zag 
solution were found in the corresponding chiral solution. In the two-dimensionally 
localised solutions the lattice deformation characteristics showed differences, which 
was somewhat expected due to the differences in the nanotube geometries. 

These solutions give a stimulating insight into the kinds of polaronic states that 

could play a part in determining the properties of carbon nanotubes. However, 

it is important to discuss in more detail the limitations of the models considered 

here. The equations are based on a host of approximations that are necessary in 

providing a solvable model. The first of these approximations is the tight-binding 

method which has been a powerful method in condensed matter theory since its 

introduction, and continues to be of considerable use today. It has been used to 

accurately predict the electronic band structure of certain carbon nanotubes [22]. We 

therefore assume that this approximation is a valid one. The introduction of next-to-

nearest neighbour interactions into the hamiltonian would be possible, however the 

complexity of the model would be extreme, with the tight-binding case considered 

here already being particularly numerically intensive. 
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Next we consider the validity of the adiabatic approximation. As has been stated 
in the text, this approximation is valid in the case of sufficiently high electron-phonon 
coupling. This assumption has been discussed in detail for the one-dimensional 
case [18] and also under certain approximations for the two dimensional case [19], 
where the non-adiabatic corrections have been calculated using perturbation theory 
and a number of substances in which the adiabatic approximation is valid were 
stated. The application of the ideas in these research papers to carbon nanotubes 
would be extremely useful future work. 

Another major approximation is that of low temperature. This assumption was 

necessary due so that the electron-electron interactions could be neglected. The 

stability of Davydov solitons at higher temperatures has been investigated in great 

detail, paticularly in relation to the life-times of locaHzed solutions in the alpha-helix. 

There has been some confusion as to the degree of stability [78], [79], [80]. However, 

more recent calculations predict a life-time sufficient for energy transport to occur 

through the Davydov Mechanism [82], [83]. If Davydov solitons have significant 

lifetimes in nanotube related structures then the applicability of these studies depend 

upon the extent to which electron-electron interactions may be neglected at higher 

temperatures. This will obviously depend upon the band gap of the particular 

nanotube under consideration. 

Other approximations relate to the treatment of the properties of the carbon 

nanotube. Those of the achiral tubes, namely the armchair and zig-zag tubes are 

well established. However it is now clear through STM [84], electron diffraction [86 

and Raman scattering experiments [87] that nanotube synthesis processes produce 

a homogeneous distribution of chiralities. This means that the vast majority of 

nanotubes are chiral. Furthermore, because of the unique caharacteristics of each 

type of nanotube, it is very difficult to make generalisations about their properties. 

For instance, the zone-folding technique is accurate in predicting the band structure 

of some nanotubes, while for others it is not [89]. The effects of curvature on the 

electronic band structure are not fully understood. The hybridisation pattern seen 

in graphite is changed due to the nanotube curvature [90], and this effect is also 

chirality dependent [90]. Another example lies in the phonon modes. For example, in 
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an (8,4) nanotube (studied in chapter 6), the eigenvectors of the very high frequency 
mode point in the circumferential direction, while in a (9,3) nanotube they point 
along one of the bond directions [91]. The direction of the eigenvectors can even in 
some cases show an angular dependence. Studies of zig-zag and armchair tubes have 
been relatively speaking straightforward due to the separation of the problem into 
axial and circumferential modes. This can not be taken for granted when dealing 
with chiral tubes. Many new properties of chiral nanotubes are therefore coming to 
light which may lead to modifications of the model considered here. 

The existence of polarons has been predicted in carbon nanotubes [93]. Photo 

luminescence experiments have also shown the existence of stable exitonic states [94 . 

An exciton can be thought of as an excited electron-hole pair and may also undergo 

self-trapping [95]. Other experiments involving laser excitations have backed up this 

research [97], concluding that exciton states showed extremely stable characteristics. 

Furthermore, ab inito calulations, examining excitonic states in a (4, 2) nanotube 

have shown localised patterns for the wavefunction that resemble extremely well 

the Davydov (or type I) solitons found in our investigations [96]. These results are 

encouraging in terms of validating the studies that have been performed here. 

Research into the solutions of the semi-classical equations in chiral nanotubes is 

on-going. A future aim is to run simulations of chiral tubes that are more suited to 

scanning a wide range of electron-phonon couplings. The coupling phase space could 

then be compared for differing chiralities. The investigation into excited states is also 

on-going. It should be noted that there are also more complex structures relating 

to carbon nanotubes that could be used to further our investigation. For example, 

it is straightforward to join various nanotubes of different size together using only a 

single pentagon and heptagon [22]. There are only therefore minor modifications to 

be made to the lattice. One would then have to consider how to alter the potential 

at these points. Such structures have sparked much interest recently due to them 

representing a simple candidate for forming a metal-semiconductor junction [92 . 

An analysis of the polaron ground states in these systems would be interesting. 

Likewise, it is possible to construct helical or toroidal patterns of tubing, which 

have been observed experimentally [22], [98]. In each case a specified small number 
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of pentagon-heptagon pairs is required to form the geometry. An analysis of the one 
dimensional soliton in these structures would be extremely interesting. It would be 
particularly interesting to observe the patterns of lattice distortion in these different 
geometries. There are thus a wide range of more complicated geometries relating to 
nanotubes to which our model could be adapted. 

The lattice models of electron-phonon intreactions that we have considered are 

nice because they allow a direct visualization of the predicted small-scale physical 

effects. The Davydov method is nice because it starts with the interactions between 

the actual neighbouring lattice sites. Such models are elegant in their simplicity due 

to the very differing degrees of localization predicted by a system that considers only 

short-ranged interactions. The solutions also predict the fine structure of the states 

such as a prediction for the average displacement of single atoms. The discussions 

undertaken in this work are a stepping stone in a long line of research, stretching 

back to the discovery of Davydov solitons in proteins, and reaching forward to 

the understanding of polaron and other electronic effects in the important field of 

nanophysics. The level of research performed on carbon nanotubes is immense, and 

the field will doubtlessly make rapid advances, part of which will hopefully build 

upon the work in this thesis. 
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Appendix A 

Basic and Auxiliary Results 

A . l Coefficients of the solid angle 

The solid angle between formed by the central lattice sites with its three nearest 

neighbours in a nanotube is: 

Si,j,P = ^ i , j , p ' ^ ~2^^i'J'P (A.1.1) 

The function Cij^p of the local site displacements gives the first-order correction to 

+ ( - l ) ' ' [ A ' ' ^ , , , , -t- A- i ; , ( , , , , ) + A^\ij,p^ + A^%(,.,-,,)] (A.1.2) 

The coefficients A are: 
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-3n^m(m -I- n) sin ( 7 3^ (A.1.12) 

A"' = 
8L'2 

{n — m){m + n) 

7 -f-n(2n -I- m) sin ( -

f 3^ m(2m -I- n) sin f 7 — ^ 

- 3mn(m -I- n)^sin 1-H (A.1.13) 

8L'2 
m{2m + n) —(2n -t- m)(n -I- m) sin( 7 

4-n(m — n) sin 
7 - 3 ^ 

-f-3m^n(m -I- n) sin 7 

3^ 

(A.1.14) 
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