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On The Evolution of Phase Separation in Polymer Blends

Ian Henderson
Abstract

An investigation is undertaken into the dynamics of phase separation in
polymer blends in order to try to understand the morphologies produced via spinodal
decomposition and to identify ways to target beneficial morphologies.

Cahn-Hilliard theory is used with the Flory-Huggins free energy to model
phase separating systems undergoing spinodal decomposition for a number of
different systems. Initially a simple two component blend is studied undergoing
spinodal decomposition via a temperature quench from the one phase to the two
phase region. The model is then used to study the process of secondary phase
separation via a two-step quench process. A temperature quench from the one phase
to the two phase region is undertaken and then the system is left to equilibrate for
two different time periods before a quench further into the two phase region is
carried out.

The model is then extended to focus on the technologically useful process of
reaction induced phase separation. In this case a two component polydisperse blend
is quenched from the one phase to the two phase region via polymerisation of one
component of the blend. The phase separation process is followed for selected
reaction rates and the consequences of changing the final degree of polymerisation
are studied both with and without the formation of a network in the reacting
component of the blend.

Finally a study of the effect of adding a surface into the blend is undertaken
to show the development of a phase separated morphology at and near to the surface,
we also present a method to overcome inconsistencies found in the Cahn-Hilliard
model. The model is then used to target specific phase separated morphologies on a
6hemically patterned surface and to try and understand the processes involved in the

phase separation of a three component, A-B-C, blend at a surface.
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Introduction

The blending of two or more polymers can yield materials with properties
which are substantially greater than the sum of their parts and it is therefore
important to understand the factors which affect these properties. A great proportion
of polymer blends undergo the process of phase separation and it is known that the
morphologies produced have a considerable effect on the properties of the materials
formed. It is therefore of significant interest to attempt to understand the physical
forces involved in the process of phase separation so that we can comprehend more
fully the morphologies produced. With an understanding of the factors involved in
the phase separation process we would like to be able to target specific morphologies
and therefore give tuneable material properties. We use modelling to help us
understand these systems and as it is straightforward to alter system variables we can
probe a multitude of different situations to aid with the understanding of
experimental results. We can also use modelling to test new ideas and make
predictions about systems which are perhaps currently too difficult or expensive to
investigate experimentally and therefore give an idea of whether the system would be
worthwhile investing time and effort into developing an understanding of the physics
and chemistry involved.

The use of these systems is widespread with applications in adhesives,
coatings and in lightweight components for the automotive and aerospace industries.
Recently the use of copolymers has been of great interest for photonic and electronic
applications with block copolymers also receiving great interest. This is because the
length-scale of the morphology is dictated by the size of the polymer blocks, which
can be controlled by varying the ratio of the block lengths or architecture. However
in, for example, photonic applications the creation of copolymers with chain lengths
similar to that of the wavelength of light is currently a difficult and expensive task.
Polymer blends however phase separate over a large range of wavelengths and
therefore, with control, could be immensely useful materials in these and other

similar applications.

In the following work we model the process of phase separation for a variety
of different conditions all intended to try to further our understanding of the phase
separation process; we also attempt to suggest ways in which this process can be

controlled. Firstly an introduction to the principles used in the work is given




followed by a review of previous work undertaken in this area. This is followed by
an introduction to the model and preliminary results used to test the model in the
early stages. An investigation into multiple step quenches is then undertaken in
order to attempt to create a highly ordered phase structure within a primary
morphology. In chapter 5 we model blends which are polydisperse and include
systems undergoing reaction induced phase separation, the model is then further
extended to try to encapsulate the effects that a semi-interpenetrating polymer
network would have upon the system. Chapter 6 shows the results found when a
surface is used to try to order the morphology of the system at a hard wall surface;
this is then followed by a study of phase separation on a surface which has been
chemically patterned. Finally we extend the model to three component blends and
once again try to model the effects which placing a surface in the system has upon
the polymer morphology.

Parts of this work have been published, or have been submitted for

publication, as follows:

Two-Step Phase Separation in Polymer Blends — Henderson 1. C.; Clarke N.,
Macromolecules, 2004, 37(5), 1953

Target Morphologies in Polymer Blends — Clarke N.; Henderson 1., Mater. Res. Soc.
Symp. Proc., 2005, 856E, BB11.7.1

Reaction Induced Phase Separation of Pseudo-Interpenetrating Polymer Networks in
Multi-Component Polymer Blends: A Simulation Study — Henderson 1. C.; Clarke N.,
J. Chem. Phys., 2005, 123(14), 144903

On Modelling Surface Directed Spinodal Decomposition— Henderson 1. C.; Clarke
N., Macromol. Theory Simul., 2005, 14(7), 435

Surface Directed Spinodal Decomposition in Ternary Polymer Blends — Henderson 1.
C.; Clarke N., In Production



Chapter 1

Modelling the Dynamics of the Phase Separation Process

The modelling of polymer blends which are undergoing the process of phase
separation is an area which has been developed over many years, hence the number
of theories and studies which have been developed and undertaken is immense. Here
an attempt is made to review both the most relevant work to the current project,
including an in-depth review of the theoretical aspects of the work where it will be
necessary in future chapters, and work which may not be directly relevant to the
current study but which adds interest and understanding of the field.

Firstly, the main theories used in the study, Flory-Huggins theory and Cahn-
Hilliard theory, are reviewed so we can describe how and why the phase separation

process occurs in the systems studied.

1.1 Flory-Huggins Theory
1.1.1 The Flory-Huggins Free Energy

Flory-Huggins'? theory was developed for polymer blends which comprise
two linear monodisperse polymer chains each with Ny or N segments per polymer.
Here a polymer chain is represented, as part of a mean field theory, as a random walk

on a lattice’

. Each lattice site is occupied by one of either type of chain monomer
unit covalently bonded to an adjacent chain unit of the same polymer. The fraction
of sites occupied by monomers is denoted ¢, (¢s) and is related to concentration, c,
(number of monomers per cm®) by* ¢ = ca® where a’ is the volume of the unit cell in
the cubic lattice. The blend is said to be incompressible such that ¢a + ¢g = 1. The
free energy of the model is then described by the number of arrangements of chains
which can exist on the lattice for a given ¢, the entropic part of the free energy, and

an energy term describing the interactions between adjacent molecules, the enthalpic

part of the equation.



The mean field entropy, S, per lattice site is given by,

S b b b (1.1.1)
kB NA NA NB NB

where kg is the boltzmann constant.

It can be seen that as Ny (Np) increases the entropy will consequently
decrease, this is expected as with an increase in Nju, fewer configurations on the
lattice will be available to the chain thereby decreasing the entropy of the system.
The entropy of mixing is defined as the difference between the entropy given by
equation 1.1.1 and the weighted average of the entropies of the pure polymer
components. Instead of considering the entropy given in equation 1.1.1 we consider
the entropy of mixing because it conveniently eliminates a number of trivial terms,
such as all the contributions which are linear in, or independent of, ¢4. The entropy

of mixing is given by,

Spix =S —0,S(d, =1)-,5(d =1)
|2 /3
- k,{N ing, +2 1n¢5)

A B

(1.1.2)

It has so far been assumed that no heat or energy change occurs on mixing,
this is however an unlikely situation. By using regular solution theory it is possible
to obtain an expression for the energy arising from three separate contact energies,
those due to monomer A — monomer A, monomer A — monomer B and monomer B —

monomer B interactions. This enthalpic energy can be expressed as,
1 2 1 2
U =k,T EZAA¢A+_2—ZBB¢B+ZAB¢A¢B (1.1.3)

where y;j are the contact interactions of components i and j. The internal energy of

mixing therefore becomes’,

1

1
U,ix =kgT @05 [ZAB—EIAA _EXBB)EI‘BT¢A¢BZ (1.14)



where y is known as the Flory interaction parameter. Having calculated both the
entropy and enthalpy of mixing we can now combine the two contributions to give

an expression for the free energy of mixing from, AG™* = AH™ -TAS™*,

Foe _ &4 [
2 =4 Ing, +—2Ing, + 1.1.5
kT N, Pa N, Pp + X PPy ( )

therefore the phase behaviour of a polymer blend is a result of the compromise
between the first entropic part of equation 1.1.5, which always favours phase mixing,
and the second enthalpic part, which usually favours phase separation.

The Flory interaction parameter is a widely used quantity which characterises
a variety of polymer — solvent, polymer — polymer interactions. While originally
was proposed as a dimensionless concentration independent parameter, many
systems exhibit increases of y with polymer concentration. This is because y is in
fact a free energy component which compromises both an entropic, s, and enthalpic,
yu, contribution. The Flory interaction parameter is however assumed to be a
constant, concentration independent parameter in all our calculations. It is assumed
that the correlation between monomers in the system is due to excluded volume
effects, two monomer units cannot reside in the same lattice square, so the internal

energy is independent of temperature and therefore y oc 1/T.

1.1.2 The Coexistence Curve
By plotting equation 1.1.5 vs. ¢ for a number of different values of 7, as
shown in figure 1.1, it is possible to determine the main features of the polymer

blend phase diagram.






Free Energy

Figure 1.2

The tangent to the free energy curve for a phase separated system showing the

volume fraction of the two phases, ¢’ and ¢A".

As stated above, when the two minimum points are plotted on a temperature-
concentration axis the coexistence curve, also known as the cloud point curve or the
binodal curve is formed. The calculation of this curve is not straightforward as it is

necessary to find the solution to two simultaneous equations. The chemical

potential, p, is defined by u, =0F/0n,, where na is the number of particles of

species A, such that a change of § — ¢ + d¢ represents an increase in the number of
A monomers (equal to d$) but with an equivalent decrease of B monomers® (-d¢), is

used to calculate the coexistence curve®.

oF . oF .
=F —¢ Zmix | (]— mix 1.1.6
Ha iz — 98 24, 1-¢,) 24, ( )

A similar expression for pg can also be written, substituting in equation 1.1.5,
the Flory-Huggins free energy, and setting u, = u,; 1, = u, allows us to determine

the conditions for phase equilibrium, and therefore coexistence,



1 Al L] L} " 1 l L 2 L 2
N—Am(¢A/¢A)—(¢,,—¢A)[7v:—7\,:]+x[(l—¢A) ~(1-4,)"]=0,
(1.1.7)
and,

1
N

A

1 . e 1 S
N—Bln((l_¢A)/(l_¢A))_(¢A_¢A)[ _N—B]+Z[¢A —-1-¢, :|=0’

(1.1.8)

As stated above the coexistence curve is formed from these conditions as y is
varied, however it can be seen that a numerical solution to two simultaneous
equations is necessary to find the curve. When Na = Ng = N however the situation is
greatly simplified as the free energy diagram becomes symmetric around® ¢ = %, as
in figure 1.1, so that ¢o’ = 1-¢po"”. Upon substituting this condition into equations
1.1.7 and 1.1.8 we find,

1
Nln[%]+z(l—2¢)=0, (1.1.9)
which we can rearrange to give,
= In[(1- $)/4] (1.1.10)
=N (1—29) ’ -

The phase diagram for a symmetric blend, No = Ng = N, is shown in figure
1.3.



Coexistance Spinodal
Curve Curve

=
0.0 02 04 06 08 1.0
4,
Figure 1.3

Phase diagram for a symmetric polymer blend.

1.1.3 The Spinodal Curve

Figure 1.3 also indicates the presence of a spinodal curve on the phase
diagram, this curve represents the boundary between a state of instability with
respect to the two phase region, i.e. where the system undergoes spontaneous phase
separation via spinodal decomposition, and a metastable state, where the system
undergoes phase separation via the thermally activated process of nucleation and
growth. Figure 1.4 shows the magnification of the free energy curve just inside the

coexistence area’.



mix

Figure 1.4

Magnification of the free energy curve just inside the co-existence area.

From figure 1.4 we see that at composition ¢, small phase fluctuations
created by phase separation result in the lowering of the overall free energy from Fy
to Fy'. At this composition the system is susceptible to equilibrium thermal
fluctuations in composition which will lead to spontaneous phase separation
~occurring. However at composition ¢, these thermal phase fluctuations lead to an
increase in the overall free energy from F, to F,’ indicating that the system is locally
stable and therefore an activation energy barrier has to be overcome for phase
separation to occur. The system is said to be globally unstable but locally stable to
the process of phase separation. The spinodal curve is given by the condition that the

second derivative of the free energy with respect to ¢ is zero, d’F/d¢* =0, and is

the point of inflection between the two above cases. By taking the second derivative

of equation 1.1.5 we find that the spinodal is given by,

1( 1 1
2. == + ) (1.1.11)
Z(NA¢A NB¢B)

10



The critical value, above which phase separation occurs, corresponds to the
point at which the coexistence and spinodal curves meet, known as the critical point.

It can be seen that this critical point, in a binary mixture, is,

3
ai3‘"=O, (1.1.12)
o¢
and is given by,
N
=t 1.1.13
¢cnt N[ié +Nl}f ( )
and,
(Nf+N,}f)2
lcrit = ’ (1.1.14)
2N,N,

In the symmetric case where Na = Np = N it can be seen that the critical value
is given more simply by y., =2/N indicating that miscibility, mixing, becomes

increasingly difficult as N increases, due to the corresponding decrease in entropy.

1.1.4 Limitations to Flory-Huggins theory

Although widely used it has long been recognised that limitations to Flory-
Huggins theory exist from the comparison of the theory with experimental results.
The first of these is that in Flory-Huggins theory it is assumed that the long range
chain statistics of the polymer chains are defined by ideal random walks. In reality
however this is not the case as a polymer chain in, for example, a solvent would
collapse as solvent conditions are changed, this can induce phase separation between
the solvent and the polymer. We would expect a similar situation within a polymer
mixture upon approaching the phase separation conditions. Secondly the Flory
interaction parameter is assumed to be independent of concentration when this is
often not the case. This is because yx is derived solely from the entropy of
combinatorial contributions to the mixing term seen in equation 1.1.2 and no account
is taken for entropic non-combinatorial contributions which occur on mixing. An
example would be the change in the vibrational frequency of a monomer when it

comes into contact with a monomer of a different polymer, which acts against the

11



mixing process. We can allow for this by recognising that y is a free energy
parameter which is comprised of both an entropic, ys, and an enthalpic, yu,

contribution such that x = yy + s and,

r=a+—, (1.1.15)

Flory-Huggins theory also assumes that no change of volume is seen when
two, or more, polymers are mixed together, i.e. no extra free space is created when
the polymers are mixed together. If however two polymers have a strongly
unfavourable interaction parameter then it becomes energetically favourable for the
system to slightly lower its density, this reduces the number of unfavourable contacts
between monomer units and allows extra translational entropy to be gained by
forming vacancies. Finally the structure of each monomer may cause packing issues
that will reduce the possible number of configurations which it is possible for the
chains to adopt. This in turn affects the entropy of mixing and is most likely to be
important in polymers with large side groups or polymers with very different chain
stiffness.

The limitations to Flory-Huggins theory are well known, however the theory
is still used as a universal framework for polymer blend problems as it manages to
capture the underlying principles of the behaviour in a simple and mathematically

straightforward way.

1.1.5 Temperature Dependence of i

We expect polymer blend systems to phase separate upon cooling as with
higher temperatures greater thermal motion is available to decrease the attractive
force between like molecules and to encourage less favourable contacts. This leads
to a phase diagram as shown in figure 1.5, where the critical temperature occurs at
the maximum point of the coexistence curve; this situation is often referred to as the

upper critical solution temperature (UCST).

12



Figure 1.5

An example of the phase diagram characterised by an upper critical solution

temperature.

Many blends however are known to phase separate upon heating and the
phase diagram is inverted when compared to that shown in figure 1.5, these systems
are known to have a critical temperature at the minimum point of the coexistence
curve; known as a lower critical solution temperature (LCST) curve and an example

is shown in figure 1.6.

13



Figure 1.6

An example of the phase diagram characterised by a lower critical solution

temperature.

In this case we find that although the entropy of the system increases with T,
it is not sufficient to balance the increase in the magnitude of the enthalpy.
Therefore as T increases the free energy becomes more dependant on the enthalpic
part of equation 1.1.5 and therefore phase separation occurs. The LCST is usually at
a higher temperature than the UCST and it is possible to see both sets of behaviour in

some blends.

1.2 The Random Phase Approximation

It can be shown that the Flory-Huggins free energy for polymer blends can be
derived using a method termed the random phase approximation, without using the
lattice model”'’. The method is based on how the local composition responds when
the local chemical potentials are changed. In an ideal polymer blend, when y = 0, the

chemical potential of component A can be written as,

i, =]];—Tln¢A +C, (1.2.1)

A

14



so that,

0¢s
ou,

N
= (1.2.2)

and similarly for component B, here the blend is assumed to be incompressible such

that ¢, +¢d; =1. One chain is then chosen such that the density of monomers

belonging to that chain at distance r is known as the correlation function, g(r), or

when Fourier transformed the chain structure factor, S(q). Equation 1.2.2 can be

generalised to arbitrary wave-vectors, q°''°,

LACTI RN CY) (1.2.3)
ou @ kT

again a similar equation can be written for component B. It is now possible to define
the exchange chemical potential, Au, which is the energy change seen when a
monomer unit of component A is replaced by a monomer unit of component B.

Therefore by using 1.2.3 we find,

o4,  O¢
$:S,(@)  #S5(q)

O(Az(q)) = ou, (@) - Sptp(q) = kT[ } (1.2.4)

as the blend is assumed to be incompressible we can rearrange 1.2.4 to give,

M=L( L 1 T (1.2.5)
o(Au(Q) KT\ ¢S, (@) (1-9)Sy(q) ) ’

where ¢ = ¢a and (1 - ¢) = ¢s. The structure factor for the ideal mixture is

therefore'’,

] 1 -
S'deal = 3 126
aed (9) (¢SA(q) ¥ (1—¢>s,,(q)J (12.6)
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This function describes both the response to an external perturbation and the
equilibrium concentration fluctuations of a mixture of polymers that have no
thermodynamic interaction between them. There is however a strong interaction
which acts on all segments equally; these are the molecular forces of cohesion which
act to maintain a constant density mixture’. The treatment is extended later and used
for non-ideal systems to describe both the domain size during the phase separation
process and also to quantify the volume fraction changes during the process of phase
separation. The analogue of equation 1.2.5, derived from Flory-Huggins theory for a

system in which Y is non zero is,

o _1[1 1Y
O(Au) kT(¢NA+(1—¢)NB 27’) ’ (1.2.7)

which suggests that equation 1.2.6 can be modified to take account of non-zero x by

simply writing,

1 _ 1
S(@)  Sigew(@)

~V(q), (1.2.8)

where the latter part of equation 1.2.8 is the Fourier Transform of the net

thermodynamic interaction between chemically different monomers at small q, given

by V(qQ)=2x(1-1q’s’), and ro is a measure of the intersegment distances. In the

ideal random walk case Sa(q), and Sg(q), is given by the Debye function, fp(x), such
that,

S @=N,fp(x), (1.2.9)

where

fD(x)=2[1—-(1_8_XJ]:x=lNAb2 2
X X 6

and b is the Kuhn length in polymer A (B).

16



By combining equations 1.2.6, 1.2.8 and 1.2.9 for the Debye function at small
q it is found that,

S SRS SN b'q Ly
S(@) ¢N, (-9)N, 18¢(1-¢) 3

(1.2.10)

where we have used f(x) =1—(x/3) at small x.

It is noted that the RPA is used as a basis for determining y via neutron
scattering, however this leads to problems with the assumptions made here. Firstly
the polymer mixture is assumed to be incompressible, however as shown above this
is not likely to be the case. Secondly the model assumes that the conformations in
the blend are ideal which is again highly unlikely in any real system. These

assumptions can cause the RPA to break down, especially at higher q.

1.3 Cahn-Hilliard Theory

As shown above, Flory-Huggins theory is used extensively to understand the
reasons for phase separation in polymer blends. In the work presented a study of
phase separation via spinodal decomposition is undertaken. Here the system moves
from the one phase region, below ¥, to the two phase region, above ., for a system
which is considered to have a UCST. To understand the dynamics of this phase
separation process we turn to a model originally developed by Cahn and Hilliard"'
for binary metal alloys. The theory developed was then extended in combination

with the above Flory-Huggins theory by de Gennes'?, Pincus' and Binder'*.

1.3.1 The Cahn-Hilliard-Cook Model

The starting point for this model is a continuity equation for each component
of the blend. This continuity equation expresses the conservation of mass in the
system and relates the time and spatial dependencies of the concentration, ¢i(r,t), of
species i to the mass current ji(r,t), where the mass current is the total polymer flux at
position r at time t. In other words, the net flow of polymer i out of the volume at
position r instigates a decrease in the concentration at r. We therefore have an

equation of motion for each species of the form,
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og(r,t) _ .
Y - V.j(r,t), (1.3.1)

The mass current and the free energy functional are related through the

chemical potential, the mass current is related to the chemical potential, p, throughl5 s

n+l

jl(r’t)z_zMijV:uij +jT(l',t), (1.3.2)
j

where M;; is the mobility of species i due to j and jr(r,t) is the mass current arising
from thermal noise. The chemical potential is related to the free energy

thermodynamically by,
== (1.3.3)

Cook'® added a thermal noise term, n(r,t) to the diffusion equation for
spinodal decomposition to allow for the solute flux from thermal fluctuations
(Brownian motion). Cook found that discrepancies between theory and experimental
work during the very early stages of spinodal decomposition could be accounted for
by adding this term as the thermal driving force initiated these stages. The Cook

term satisfies the conditions,
(n(r,1)) =0, (13.9)
which states that the noise added over the entire lattice is zero, and,
(n(r,Hm'(x",t)) = 2Mk,TV*S(r -r")8(t - 1), (1.3.5)
The resultant Cahn-Hilliard-Cook nonlinear diffusion equation is,

OPr,1) _ 4 2 BAF (1)}

5 e +7(r,1), (1.3.6)
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The free energy, AF, in equation 1.3.6 is taken from Flory-Huggins theory as
described above. However it was suggested by de Gennes'’ that by combining
Flory-Huggins theory with an additional gradient term, derived from the RPA, it is
possible to account for the slow spatial variations in concentration due to

fluctuations, such that,
¢(r) J'd{ o], +x[p®]IVOOLE, (137

where the free energy, f[¢(r)], is given by equation 1.1.5 and « is given by,

2

— b 2
K(¢)——36¢(l—¢) + 247, (1.3.8)

for an incompressible blend, and A is the effective distance between monomers,
=r, / 6.

De-Gennes argued that in this way the chain connectivity within the polymer
molecules, which manifests itself as an explicit entropic contribution, can be
accounted for. He then further argued that since y is typically quite small in most
blends the entropic contribution to k will dominate over the enthalpic contribution to
the free energy. This method has also found applications in theories for simple
liquids as the addition of this square gradient contribution reflects the unfavourable
contribution to the free energy caused by the formation of interface between two
domains. Preliminary studies showed that the composition independent term in
(1.3.8) has a negligible effect on structure development and hence all calculations

presented are performed with A = 0.

1.3.2 Solving the Cahn-Hilliard-Cook Model

The functional derivative of equation 1.3.7 is given by,

5—F=[iln«s—lma—«»}—2z¢+_-(2¢‘1)2(v¢)2_ Ly,

op | N Ny 364" (1-¢) 184(1-¢)
(1.3.9)
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which when combined with equation 1.3.6 gives,

op(x,7) 1_, 1 . 1 27
Ay Ing— In(1-¢)—
or 2 | N(x-2) / Neg(xs—2) =9 xf—x¢
241 o 1 Vz]
+36¢2(1—¢2)( 2 184(1-¢) ?)
(1.3.10)

where x and 1 are rescaled spatial and temporal variables respectively given by
X =1,|Zf —l|r/b and 7= ND(y, - y)*t/b*. The noise term from equation 1.3.6 has

been neglected. Clearly the scaling is determined by ¥, which for a single step
quench is most conveniently chosen to be equal to i, the value of the Flory-Huggins
parameter at the final quench depth.

Equation 1.3.10 can then be solved using a simple finite difference scheme
and once mesh size, time step and system parameters have been set it is possible to

integrate the resulting equation of motion. This gives a finite difference scheme of

the form,
" = ;" + 22 xm__l—ln(l_#”)_%
AT N(zf z) "N - 1) Xk
¢ -1) m
36801 )<2Ax>2H¢” (Axy* (18 Al %)]Z ]

(1.3.11)

where for notational convenience,

2
L1175 = FPis +f 2+ Frim+ o =2fu i fir, + Fin S
nn

(1.3.12)

and

qu Efi+1,j +fi—1,j + Ji +fi,j—1 _4fija (1.3.13)
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In order to speed up computation it is best to choose a large mesh size and a
large time step but in order to stop such problems as “pinning”, as discussed later, it
is important to choose a mesh size which is smaller than the smallest important
length scale and a time step which is too large can generate instabilities and spurious
results.

The evolution of the phase separated morphology needs to be followed
throughout and can be quantified by the time dependent structure factor. The time
dependent structure factor is employed as it can also be found in experimental studies
from light scattering, where it is used to probe the size of polymer domains, for this
reason experimental and theoretical results can be directly compared. The time

dependent structure factor is found from,

S(q,7) = <%ZZ¢‘“ |:¢(x +X, 7)p(x",7) - (¢)2}>, (1.3.14)

where L® is the total number of lattice sites. The wave vectors are defined as q=
(2n/LAx)n, where n = 1,2,...,1./2 and <...> denotes an averaging over all possible
configurations. When the structure factor is found it can be plotted against q and the
peak in its graph gives an indication of the size of the polymer domains

corresponding to a single wavelength in the Fourier transform becoming dominant.
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Chapter 2

Extensions to Cahn-Hilliard Theory

In the following chapter a review of the areas of interest in the current work
will be performed, including extensions to the theories shown in the previous

chapter. This includes reviews of areas encompassing;

e Multi-step quenches into the two phase region;

e Reaction induced phase separation;

e Polydisperse systems;

¢ Crosslinking and semi-interpenetrating polymer networks;
e Multi-component blends;

e The addition of hard wall surfaces;

e Phase separation on a chemically patterned surface;

¢ Block co-polymers

2.1 Spinodal Decomposition
2.1.1 Domain Growth

Cahn-Hilliard theory, as described in the previous chapter, has been
extensively used over the past few decades to study the process of spinodal
decomposition in blends of two, or more, polymers'’. The spinodal decomposition
process is usually split into three distinct time regimes, these are: (i) the growth at
early times immediately following a quench into the two phase region; (ii) the
medium to late regime and (iii) the very late stage of the phase separation process
when hydrodynamic interactions dominate the coarsening of the polymer domains.
It has been shown that initially fluctuations above a critical correlation length grow
exponentially with a particular length-scale dominating; as is shown in figure 2.1.

Eventually coarsening of the domains occurs to reduce the interfacial area'®?°,
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Figure 1.3 shows the phase diagram of a critical system, where N = Np, this
produces a curve that is symmetric about the critical point y.. When phase
separation then occurs at 7., equal concentrations of species A and species B are
found giving continuous domain morphology. If a system is studied where N4 # N,

an asymmetric phase diagram is produced, as shown in figure 2.2,

Coexistence
Curve

Two
Phase

Spinodal
Curve

=
Xe Region
00 02 04 06 08 10
¢,
Figure 2.2

The phase diagram for a blend where N # Np

From figure 2.2 it can be seen that the phase curve is no longer symmetric
about y.. If a quench is undertaken into the two phase region with a 50:50 binary
blend it is possible to see that the co-continuous structure we would observe in the
symmetric case will give way to droplet type morphology®~°. It is also possible to
see that in either case if a non-critical blend, one that is not equivalent to the volume
fraction at y_, is used a droplet morphology will again form®. For example if in
figure 1.3 we undertook a quench into the two phase region using a 70:30 blend, the
final values of ¢’ and ¢’* will be equivalent to those seen in a 50:50 blend but in the
70:30 case greater overall volume of one component than the other is present. In all
cases the system moves to reduce the amount of high energy interface present
between each polymer component in order to lower the overall free energy. In the

case of the 50:50 blend a co-continuous structure is therefore seen as this is the best
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2.1.2 Pinning

' As stated previously it is important to choose a mesh size which is smaller
than the smallest important length scale in order to stop the phenomena of “pinning”
occurring within the simulations. It was originally suggested®® that there was a
regime in the phase diagram of an off-critical symmetric polymer blend where
domain growth is suppressed even though the system is thermodynamically unstable
and that this area could be seen using Cahn-Hilliard theory. It was found that the
morphology was observed to “freeze” after some time and after this point very little
phase separation was seen; the authors therefore concluded that this model contained
all the information necessary to explain pinning. Experimentally this phenomena has
also been seen’'”> however the physical reasoning for this is less well understood. It
is found that domain growth stops soon after the break-up of domains into the droplet
morphology shown in figure 2.3(b) but the mechanism which then prevents further
coarsening is still unknown. It was then found, theoretically, that with the addition
of the noise term into the free energy functional pinning was not observed?. It was
suggested that the reason for this is that the noise term does not allow the system to
become trapped in a local minima of the free energy. Castellano and Glotzer™
however showed that the pinning phenomena seen in the simulations using Cahn-
Hilliard theory was simply an artefact of the discretisation scheme. They found that
the mesh size must always be smaller than the smallest propagating length scale in
the problem and that this had not been obeyed in previous work’®. It was therefore
shown that the Cahn-Hilliard model does not contain all the information necessary to
explain the process of pinning and additional physical parameters would be needed
to properly model such a system. Further studies into the dependence of the

34,35

evolution of the morphology due to the mesh size have also been undertaken™ ™ to

try to understand this artefact of the discretisation.

2.1.3 Noise
The effect of the addition of thermal noise to the system, and its subsequent
effect on the dynamics of the phase separation process, has also received attention in

the academic literature*®’

. It is found that the magnitude of the external noise term
can have a great effect on the phase separation process in that it can enhance, or even

induce, the process of phase separation. A large noise term has also been found to
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decrease the sharp interface between components making it less well defined. In the
systems presented here noise is either added once before phase separation occurs or
continuously throughout the simulation, the amount and frequency of the noise
changes depending on which model is used and is decided upon through test
simulations to observe the effect on the final morphology. The addition of noise is a
computationally inefficient process so the aim is to add minimal noise without

effecting computational results.

2.1.4 Hydrodynamics
The late stage dynamics of polymer blends can be strongly affected by

hydrodynamic interactions®® .

Here a moving monomer generates a flow field
around itself as it diffuses through the polymer matrix. The flow field then starts to
propagate at a much greater rate than the monomer that generated it, i.e. momentum
transport instead of particle transport occurs. Other monomers then feel this field in
such a way that their dynamics become strongly correlated, leading to an increase in
the rate of phase separation especially at the late stages of the phase separation
process. As seen above, normally the late stages of phase separation scale with time
as t'”, but when hydrodynamic effects are taken into account this rate can increase
into the region of t"2. In the following work hydrodynamics are not included as the
area of interest is the early stages of the phase separation process where control is

needed to target the final morphology and where hydrodynamics have little or no
effect.

2.2 Multi-Step Quenches into the Two Phase Region

There have been many experimental reports of phase separation in a mixture
of polymeric species quenched from the single phase to a temperature inside the
spinodal region. More recently two-step temperature jumps have been studied
experimentally*'* using light scattering techniques. In these systems a quench is
undertaken from the one phase region into the two phase region, from yo to 7y in
figure 2.4, where the system is allowed to reach coexistence and a primary domain
structure is allowed to develop. A second quench is then undertaken further into the

two phase region to 2, again as shown in figure 2.4.
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region followed by a jump back into the single phase region both experimentally and
theoretically. It is suggested that this method is useful for the determination of both
the spinodal and binodal, coexistence, temperatures for a polymer blend. Clarke®’
has investigated target morphologies using a novel method. In this work a droplet of
polymer A is placed in a matrix of polymer B, the droplet is then allowed to dissolve
into the matrix. Before complete dissolution of polymer A the blend is quenched
into the two phase region and phase separation takes place, creating domains of
polymer B within the droplets of polymer A. Tanaka*** has studied the process of
secondary phase separation and found that the secondary phase separation could be
separated into three regimes. It was found that in the first two time regimes, where
the secondary structure first develops, the secondary system can be considered to be
isolated from the primary domain morphology. In the late time regime however,
when the secondary structure is incorporated into the primary structure, it was found
that the secondary system can no longer be considered to be isolated from the
primary as the two strongly interact. It is also noted that secondary structure is also
possible in a single quench system, where the diffusion cannot keep up with fast

hydrodynamic coarsening™.

2.3  Reaction induced Phase Separation

As we have seen, a common way to induce phase separation is via a
temperature jump or quench into the two-phase region of the phase diagram, this is
known as thermally induced phase separation (TIPS), however a common
technological approach is the process of reaction induced phase separation (RIPS)>’
or polymerisation induced phase separation (PIPS). Here phase separation and
polymerisation occur simultaneously. Phase separation occurs because the boundary
between the one phase (stable) and the two-phase (unstable) region moves as the
reaction proceeds, so that at a fixed temperature the blend moves from the one phase

region into the two phase region, as schematically illustrated in figure 2.5.
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most RIPS processes. Chan and Rey***> modelled RIPS in a binary trifunctional
monomer-small molecule system in order to investigate the formation of polymer
dispersed liquid crystals (PDLC’s) and found that the polymerisation had no effect
on the morphology formed during phase separation, as a similar periodic phase
separated structure developed to that which occurs during TIPS. Using two-
dimensional simulations it was found that a droplet-type structure was formed which
is consistent with experimental results. It was also found that the droplet size
depends on both the quench depth and the molecular weight; this means the droplet
size can be controlled, giving rise to target morphologies and therefore controllable
properties of the phase separated blend. We however note that the only feature of
RIPS incorporated into this model is the increase in molecular weight with time for
one of the components. Polydispersity and elasticity of a growing network have both
been neglected. Ishii et al’® and Clarke® developed a thermodynamic model in
which RIPS occurs for polydisperse systems and used it to give quantitative
predictions of the phase diagram of a curing polyphenylene ether/epoxy/amine bend.
Morphology control has also been attempted in experimental systems undergoing

reaction induced phase separation®®

. Here the morphology is controlled by either
changing the reaction temperature or by adding extra components to the blend in the
initial stages of phase separation. The blend used in this case was poly(ethyl
acrylate) (PEA) and poly(methyl methacrylate) (PMMA) with a ratio of 79:21
respectively. It was found that by changing these reaction conditions the miscibility
between components can be affected but no real control over the structure of the
morphology is seen. A computational study of PIPS under a temperature gradient
has been undertaken by Oh and Rey®. Here it is found that the evolution of the
phase separation process followed the propagation front of the temperature gradient,
as would be expected. It was however found that droplet morphologies were formed

in the hotter regions of the temperature gradient with a lamella morphology formed

in the cooler regions.

24  Polydisperse Systems

Flory-Huggins theory assumes that all the polymers in the system are
monodisperse, in reality however most polymers, especially those used in
technological applications, are polydisperse with a wide range of molecular weights.

Two averages are normally used to characterise the polydispersity of polymers, these
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are the number, n, average molecular weight and the weight, w, average molecular

weight, given by®,

N =—i—, (2.4.1)

and,

N = (2.4.2)

Flory-Huggins theory was therefore extended to polydisperse solution
systems by Scott and Magat®' as,

F. 4 B
e ~hndt 2o+ xh (-4 (24.3)

Such that Z¢, =1~ ¢, where ¢y is the volume fraction of a solvent and the subscript i

refers to the components of the polydisperse polymer. Equation 2.4.3 can be
extended for a binary polymer blend where component A is polydisperse and

component B is monodisperse as by modification with equation 2.4.2%,

Foie _ ¢ (1) [AU)
i Idr[zi: N Ing,, (r)+ N Ing, (r)+ ZZ¢Ai(r)¢B(r)+%:KMV%(r)Vgﬁm(r)],

B 14

(2.4.4)

where n and m refer to any component of the blend, V is the volume of the system

and « is now given by,

212 5
Ky =L b [—"+L} (2.4.5)
36 |4y &
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where & is the Kronica delta such that if i = then &; = 1 but if i #j then &; = 0. The
RPA is again used, as in chapter 1.2, to derive this expression. In this case the

spinodal is now given by,

Z: :l|:_ 1 + 1 :|9 (2.46)
2 NWAi¢Ai NB¢B

A key feature of reaction induced phase separation is the polydispersity of the
reacting component, recently there has been significant progress made on studying

polydisperse®%2¢7

polymer blends. The early stages of phase separation in such
blends have been studied by Schichtel and Binder®® who made the assumption that
the equation of motion for each component of the blend was only coupled to that of
the other components through the presence of vacancies. Using this method a
limited analytical solution to the equations of motion was developed. Takenaka and
Hashimoto®” investigated whether Cahn’s?' linearised theory could be used to
approximate the early stages of spinodal decomposition in a polymer blend in which
one component was polydisperse. It was found that the early stages of spinodal
decomposition in the polydisperse blend were still well described by linearised
theory. Warren®® developed a method to study the thermodynamics of the early
stages of the phase separation process. He replaced an infinite number of differential
equations with equations of motion for the first and second moments of the
distribution function, making it possible to model the later stages of the phase
separation process. Clarke® further developed Cahn-Hilliard'! (CH) theory to study
the early stages of phase separation in a mixture of a polydisperse polymer and a
monodisperse polymer. An arbitrarily large number of discrete components were
used to model polymers with continuous polydispersity. It was found that as the
number of components increased, and the computational demand increased, the
behaviour converged when a computationally reasonable number of components
were used. The shape of the growth rate curve was found to be independent of the
number of components in the polymer blend and was also indistinguishable from that
of the original Cahn-Hilliard theory. For a polydisperse blend the magnitude of the
growth rate has a more complex dependence on the quench depth than that predicted
for monodisperse blends, for example the effect of polydispersity at small quench

depths is to slow down the phase separation process. Pagonabarraga and Cates®
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supplemented the phenomenological equations of Clarke with explicit calculations of
the dynamical coefficients from a model based on tube theory. Finally Yashin and
Balazs™ developed a system to model the interdiffusion in binary polymer blends
which exhibit polydispersity in length, this system can be used to study polymer
systems in which the degree of polymerisation changes due to interfacial or bulk
reactions.

When modelling polydispersity we consider the effect which polymer
interdiffusion has on the system. Interdiffusion considers the dynamics of
concentration fluctuations throughout the system. A distinction between
interdiffusion and the self diffusion coefficient is made as the latter describes the
motion of single chains. A model for mutual diffusion was first proposed by

71,72
d

Brochar , and has found wide spread use as it can be applied to incompressible

systems. In this theory it is assumed that there exists a local flow field, common to
all polymers, that has a velocity, v(r). It is then assumed that the total flux of each
component is the sum of the flux that would occur in a fixed background and the flux

due to the flow field, such that equation 1.3.2 can be re-written as,
J,=AVu +¢.v._, (24.7)

where Ap is the mobility of component m. By incompressibly constraining the

system such that the total flux is zero, J, + ZJ 4m =0, it is possible to show that,
i

J,=2Vu, -4 AVu, (2.4.8)

where A, is the mobility of component n.
Equation 2.4.8 can then be re-written in terms of the differences between the

chemical potential of each component of the polydisperse polymer and that of

polymer B,

J = XAV (1~ 1), (2.4.9)
J

where A;; are the Onsager coefficients shown below.
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The Gibbs-Duhem equation, Z(bn H, =0, allows the flux to be written as,

Ji = Z(é‘ij’?’i _¢i’1j +gi¢j)vluj _(¢,';~B —gi¢5)vﬂ3, (2.4.10)

j

Equating equations 2.4.9 and 2.4.10 gives, g, =—4 +¢,.Z/1m, such that the

Onsager coefficients are,
Ay =(8,-8) 4, -84 +48,> 4, (2.4.11)
m=1

when s components are present and Aj = Aji. This methodology allows the mutual
diffusion in the system to be described, and will be used extensively later to describe
the mutual diffusion in both polydisperse and multi-component, greater than two,

polymer blends.

2.5  Crosslinking and Semi-Interpenetrating Polymer Networks

Polymer networks are important soft solid materials; examples include
adhesives such as epoxy resins and vehicle tyres, which undergo the well known
process of vulcanisation. During crosslinking polymer chains are linked together to
form a three dimensional network, this network will then resist deformation,
improving the dimensional stability and other material properties such as the ability
to resist solvents, reduce creep rate and make the material less prone to heat
distortion as the glass transition temperature is raised. The glass transition, Ty, is the
temperature at which a material passes from the glassy, hard rigid solid, state into a
state where it softens and becomes rubberlike. It is an important temperature in
polymer physics as it is the point at which material property changes occur, i.e. the
material may become more ductile or more easily deformed above the T,;. The glass
transition is seen in amorphous polymers, where the chains are arranged in a random
fashion, however in a perfectly crystalline polymer, one where the chains are
incorporated in areas of three dimensional order, the polymer passes through a point
known as the melting temperature, Ty, where it melts and turns to a viscous liquid.

In practise perfectly crystalline polymers are rarely seen and instead semi-crystalline
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polymers are found containing areas of both ordered and disordered polymer. In this
case both T; and T, are observed corresponding to the proportions of ordered and
disordered polymer present. As a polymer is glassy below T, clearly crosslinking
has very little effect on the properties of the material other than to increase T,,
however above T, creep, or polymer flow, can have a serious effect on the uses of
polymeric materials. Use of crosslinking in these cases can reduce, or in certain
cases eliminate, creep as its response depends mainly on the temperature of the
polymer and its crosslink density, hence an increase in crosslink density can lead to a
decrease in creep.

Phase separation in cross-linked polymer blends has been of great interest due
to the possible technological uses of such systems. Phase separation has been
predicted in systems in which two polymers are first cross-linked and then brought
into the two phase region. Here two linear polymers are crosslinked in the one
phase region of the phase diagram before being quenched into the two phase region.
A competition between the process of phase separation and the elasticity of the
network that resists the phase separation was then seen. In this case strongly
crosslinked systems were considered and good agreement between experiment and
theory was observed, however this approach assumed an ideal network with all the
linear chains crosslinked. A further study by Bettachy et al.”* then considered a
weakly cross-linked system in which not all the linear polymer chains become
crosslinked and phase separation was again seen. Experimentally the structure of
blends which have been photo-crosslinked during spinodal decomposition has also
been studied””. Here 40:60 blends of polystyrene/poly(2-chlorostyrene) were studied
and a freezing of the phase separated morphology was seen upon photo-crosslinking
with a XeF excimer laser. It was also seen that control over the morphology could be
displayed by allowing a greater amount of time before photo-crosslinking; this led to
larger morphologies as the spinodal decomposition process was allowed to occur for
longer times. The phase behaviour of crosslinked polymers with liquid crystals has
also been of interest’®. The phase diagrams for these systems exhibit a wider variety
of properties than that seen in analogous systems containing only linear polymers. It
was found that this was reflected in the larger number of parameters describing the
thermodynamics and elasticity of the crosslinked network. Clearly as a liquid crystal

is present the phase diagram is different to that seen for a linear polymer blend as a
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nematic — isotropic region is seen at higher temperatures and liquid crystal volume
fractions.

Binder and Frisch’”"®

proposed a method of simulating Interpenetrating
Polymer Networks (IPN’s) in a weakly cross-linked network. An IPN is composed
of two or more chemically distinct cross-linked polymer networks which are
prevented from macroscopically phase separating by permanent crosslinks which are
produced when each network is cured. As with any polymer blend the formation of
an IPN has the potential for combining the properties of the two types of cross-linked
polymer networks, however an IPN differs from a homo-polymer blend because
either one polymer is cross-linked in the presence of another cross-linked polymer or
both polymers are simultaneously cross-linked. This leads to a situation where one
network interpenetrates the other and constrains processes such as phase separation.
Models were also proposed for a pseudo-IPN or semi-IPN; here one species is a
cross-linked network which is swollen by linear polymer chains of a second
component. This means that we have a network component with low diffusion and
which resists deformation and a linear component which has diffusion properties like
those seen in normal linear polylher blends. It is possible to study the effect
crosslinking has on systems such as these, using the free energy of an elastically

deformed network, given by,

F, _v(4)
Y (A2 +4] +42=3)-Bv(¢y)InAA A, (2.5.1)

where A4, Ay and A, are deformation ratios defined with respect to a reference state in
which the chain dimensions are such that there do not exist any elastic forces on the
crosslinks. The value of the coefficient B is not well known, with it being absent in
certain cases. Flory’ calculated B to be 2/f where f is the functionality of the
crosslinks whilst Kuhn'® wrote B = 1. By considering a uniform deformation such
that A = A, = Ay = A, which is brought about by changing the volume fraction from ¢

to another value, ¢y, we can write,

2=(rV{r*) =(p14.)7, (2.5.2)
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where (r°) are the linear dimensions in state ¢ and . is the hypothetical volume
fraction which is chosen, after crosslinking, to eliminate the elastic forces of the
crosslinks, where ¢. = ¢«(¢o). Rewriting equation 2.5.1 with 2.5.2 for a Flory-
Huggins lattice the free energy of the network per site is therefore given by,

-3
Fzmz] _l]wm(ﬁﬂ, 053
N | 2( 4, &,

where i is the network component of the polymer blend and Ni is its degree of
polymerisation.

Schulz, Binder and Frisch®®®' investigated phase separation in simultaneously
formed interpenetrating polymer networks, here the monomers, cross-linkers,
initiators and catalysts for both species are mixed together. The reactions, leading to
two simultaneously formed networks, are followed by a quench into the two phase
region. A well developed phase transition from the disordered to the ordered phase
was observed. Schulz and Frisch® also undertook a study into the microphase
separation transition (MST), i.e. in gels. We note that in all cases, phase separation
and cross-linking reactions were not occurring simultaneously as is the case for
RIPS. There have been a large number of experimental studies using RIPS*®°8%%7,
for example morphological control of a semi-IPN undergoing RIPS has been
attempted by Kim and An’®. Linear poly(ethyl acrylate) (PEA) and crosslinked
poly(methyl methacrylate) (PMMA) were used and the effect of temperature of
polymerisation and the addition of linear PMMA to the initial mixture were studied.
Reducing the temperature of polymerisation means that the mobility of the polymer
chains is reduced which reduces the rate of phase separation. It was also found that
the addition of linear PMMA to the initial mixture helped phase separation to occur
during the IPN formation, as the onset of phase separation was shifted towards lower

conversion.

2.6 Multi-Component Blends

It is clear that the phase separation of binary polymer blends has been widely
studied but fewer studies have been undertaken into phase separation in ternary
mixtures. A number of studies have investigated di-block copolymers in the

88-90

presence of two different homopolymers both experimentally and theoretically®'”
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% where it is found that the block copolymer resides at the interface between the two
homopolymers when the system is quenched under the tri-critical point.
Investigations have also been undertaken to try and understand the internal wetting in
a three component system®*°. In multi-component systems Flory-Huggins theory is
extended to take account of the interactions between each component®’, giving for a

three component A-B-C blend,

feu(P) _ 00 b [
kT = N, Ing, + N, Ing, + N, NG+ ¥ 45PaBs + XacPabe + XocPebes

(2.6.1)

where N; is the degree of polymerisation of component i, when i = A, B or C and ¢ is
the local composition volume fraction of component i. For these systems the

spinodal is given by,

8F  &°F |

o’ 04,0

¢A ¢A ¢B :O’ (2.6.2)
&’F ’F

06,00, 04}

where it can be seen that differentiation of 2.6.1 gives,

2
6F2'= 1 + I ~2%uc (2.6.3)
o¢y, N,9, N.d
o*F O’F 1
= = + - - , 2.64
00,00, 08,0, N4, Xag —Xac ~ Xbc ( )
&’F 1
~2%ucs (2.6.5)

2= +
Oy Nypy Ncoc
when ¢. = 1 - ¢a - ¢ due to incompressibility. Numerically solving the determinant

of 2.6.2, given by 2.6.6, for various values of ¢ and ¢p therefore allows a plot of the

three component phase diagram to be produced.
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This method has been used by Huang et al” in a study of the process of
phase separation in a symmetric ternary mixture. During this study it was found that
in a ternary system with majority components A and B present the minority
component, C, would form at the interface between components A and B. If
however component C is the majority component then components A and B form
“caterpillar” type structures in a matrix of component C. In the former case however
upon domain coarsening the minority phase is seen not to coarsen and can be
considered to be purely increasing the interfacial thickness. The growth law of R ~
1" is however maintained in both the two and three component phase separation
processes. The interfacial properties of a three component system have been further
studied by Yeung et al.”> who investigated how the presence of the third phase
affected the interface between two other components. It was found that by forming
the minority phase at the interface between majority phases the interfacial tension
was significantly reduced. This effect was also seen by Liang™, who used a Monte
Carlo simulation, to confirm that a linear decrease of the interfacial tension is indeed
seen with copolymer volume fraction. Clearly this effect is important for the
production of materials as the properties depend greatly on the strength of the
interface between components. By using compatibilisers in the interface between
components, like the block co-polymers below, it is possible to tune the properties of
the materials. The dynamics of the early stages of the spinodal decomposition
process in a system which has an A-B block copolymer in the presence of a linear A
and linear B polymers have also been studied’"*®. Here a Cahn-Hilliard simulation
was undertaken to describe the early phase separation stages. The growth rates were
again found to be equal to t'° when the hydrodynamic interactions are ignored
because the random A-B copolymer acts as a solvent for both linear polymers and
therefore does not effect the interdiffusion between them. Finally the interfacial
layering in a three component system has been studied”. Here a system is set up in
which two polymers, A and B, are indifferent to each other, i.e. xag ~ 0, but with a
third which is strongly attracted to A and repulsed by B. Layered structures were

observed at the interface which could clearly lead to interesting material properties,
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2.7  Polymers at Surfaces
2.7.1 Uniform Hard Wall Surfaces
The affect of a surface on a polymer blend has been extensively studied

experimentally'?*'®

. This is because in substances such as adhesives and coatings,
surface composition plays a highly important role. Jones et al.'”! showed that by
using a blend of poly(ethylenepropylene) (PEP) and perdeuterated
poly(ethylenepropylene) (d-PEP) which was quenched into the two-phase spinodal
region on a silicone wafer it is possible to attain preferential phase segregation of one
of the two components of the blend to the surface, in this case the d-PEP, i.e. the
surface preferentially attracts one of the components of the polymer blend. The
phase rich area at the surface inevitably leads to a phase poor depletion layer just
below and a damped oscillating wave with a wavevector normal to the surface
dominates the structure development at the surface, therefore the surface wetting
behaviour affects the phase separation dynamics at and near to the surface. Ion-beam
experiments using *He nuclear-reaction analysis have been extensively used to depth

100,103,104

profile such systems perpendicular to the surface where the oscillating

morphology is seen. Using this method the growth rate of this surface layer has been
seen to grow at a rate of t'°.

The dynamics of a phase separated polymer blend at or near a surface have
also been widely studied theoretically using a method proposed by Jones et al.'®,
here a comparison with experimental results from forward recoil spectrometry was

h'%1% which is similar to that of

made. Using a model proposed by Binder and Frisc
Jones, based on the Kawasaki spin-exchange model it is possible to derive the Cahn-
Hilliard equation in the bulk with two special boundary conditions which account for
the presence of the surface. Numerous theoretical studies'®®''? have been carried out
on the process of surface directed spinodal composition. Brown and Chakrabarti'®
found good agreement between their results and those found by experiment'”’ as they
observed the formation of a damped oscillating wave from the surface into the bulk.

1/3

The thickness of the surface layer varies as t° however it has been noted that

hydrodynamic effects''®

play a major role in the growth of a surface and can lead to

faster growth of the surface layer in the late stages of spinodal decomposition.
Surface segregation has also been proposed''® for a miscible polymer blend,

i.e. a blend in the single-phase region. Here the component with the lower surface

free energy will tend to segregate to the surface to lower the overall free energy of
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the system. The surface free energy (F;) and the bulk free energy (Fy) are thought of
as two distinct components of the overall free energy, however it has been shown
that there is a coupling between F and F,'" This coupling accounts for a slower
increase in surface excess than expected as Y, the Flory interaction parameter,
increases. In experimental studies, a blend of dueterated polystyrene (dPS) and a
statistical copolymer poly(styrene-co-4-bromostyrene) (PBrS) is often used'!? as the
Flory interaction parameter, , can easily be tuned by varying the amount of BrS in
the copolymer. The advantage of this blend is that due to the ‘tune ability’ of the y
parameter it is a good representation of a model blend. PBrS has a higher surface
energy than dPS which leads the dPS to segregate preferentially at the surface. The
driving force for surface segregation depends not only on the surface parameter but
also on the bulk properties of the blend such as x and ., the Flory interaction
parameter at the critical point. The surface excess increases rapidly as x tends
towards 7.

The morphology of polymer blends in thin film systems has been of great
interest from both the fundamental and technological viewpoints. In, for example,
adhesives such as epoxy resins a thin film may occur between two surfaces, here the
morphology of the thin film can play an important role in the properties of the
adhesive and therefore control of this morphology can be very important. Puri and
Binder'"? studied a thin film in which a polymer blend undergoes phase separation
between two adjacent surfaces which both preferentially attract the same component.
It was found that for a small distance between the two surfaces it is possible to create
a system in which layers are formed perpendicular to the surface throughout the
system. As the distance between the walls was increased however this structure gave
way to the random co-continuous morphology away from the surfaces.

It is noted that the amount of noise (thermal fluctuations) applied during the
phase separation simulation will also affect the final morphology of the polymer
blend. Using a cell dynamics simulation Marko''* found that as the noise strength
was reduced the surface segregation waves formed out to greater depths in the bulk
of the polymer blend and longer times were required for the layered structure to be
replaced with disordered spinodal decomposition patterns. The effects of thermal
noise on the structure of a phase separated polymer blend have also been studied®.
It is found that increasing the strength of the noise leads to domains with broader,

more diffuse interfaces.
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To study the influence of a surface on a polymer blend the model which has
been extensively developed by Puri, Binder and Frisch'®!%!12115118 4o commonly
used. The Cahn-Hilliard equation is used to describe the evolution of the
concentration in the bulk, but a term representing the surface effect is added,

represented by the boundary condition,

0¢p(R,0,7) b —gd(R,0,0)+7 0#(R,x,7)

271
ot Ox 40 ( )

where R and x are rescaled coordinates parallel and perpendicular to the surface and

hy, g and vy characterise the static surface phase diagram such that at the surface,

¢smface - _%’ (272)

and vy is related to the correlation length.
The competition between the surface field and the energy cost associated with
a gradient in the order parameter creates an equilibrium value of the order parameter

at the surface and the above boundary condition is used to pin the surface value to

this equilibrium value. A second boundary condition, AJ L:O =0, where ] is the

polymer flux, is used to ensure that the flux of the polymer components though the
surface boundary is zero, which enforces conservation of the order parameter, where

Jxc V6F /0¢. Typically the first boundary condition, equation 2.7.1, is applied to

one surface, at x = 0, and the second boundary condition is applied to two parallel
surfaces at x = 0 and x = x’. All the above variables are rescaled into dimensionless
units. For two dimensional simulations, periodic boundary conditions are applied at
the y =0 and y =y’ surfaces.

Jones’ developed a method to calculate h; and g from experimental variables,
105

in this case the surface tension y. The surface free energy can be described by

starting with a “bare” surface free energy term,

1 (8)=-ho- 84" 2.73)
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If the energy of contact between two monomers of A is g4, that between two
monomers of B is egg and therefore the contact energy between a monomer of A and
a monomer of B is gag. The coordination number of the lattice is said to be z and z’

bonds are cut when a new surface is made, this means that the surface energy term

can now be written as,

f (b)

kT 2k, T[¢ Ean + (=)’ 65 = 20(1- P, |, 2.7.4)

f(b)

k T 2%, TI:SBB + (26,5 —2655) + B (E4p + g — 28,,8)] (2.7.5)

If equation 2.7.5 is compared to equation 2.7.3 we can define,

Z

hl =m‘(2€BB—EAB), (276)
B
z'
8 =ﬁ(2€AB_€AA_gBB)’ (277)
B
where surface energies are given by,
z'e
Va =7b+‘2", (2.7.8)
Vs = z2 'Z"f , (2.7.9)

and b’ is the surface area of the Flory-Huggins lattice cell. Rearranging equations

2.7.8 and 2.7.9 in terms of e€aa and epp and writing €ap in terms of the Flory

interaction parameter,

tuy %("BTZ e, +g,,,,), (2.7.10)

gives the coefficients h; and g in terms of y and the surface energy when substituted

into equations 2.7.6 and 2.7.7.
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—x7'  Ayb?
h1=—§z - kyT , (2.7.11)
B

g=2% (2.7.12)

where Ay, is the difference in surface energies between the two blend components,

given by,
k,T g
Ay=——|h += |, 2.7.13
Y= [hl 2) ( )

This argument however neglects any entropic factors arising from changes of
correlations near the surface and from local packing effects so is therefore clearly an

approximation.

2.7.2 Pore Confinement

As shown above studies have been undertaken into phase separation in thin
films of a polymer at a surface, another interesting area is phase separation in pores
or tubes. Here the diameter of the tube can be approximately equal to, or smaller
than, the wavelength of the fastest growing wave-vector, q in figure 2.1, in the
spinodal decomposition process. If this is the case then phase separation cannot
occur in the direction perpendicular to the surface and instead only occurs in the
direction parallel to the surface, meaning that “plugs” within a tube can form, as

schematically shown in figure 2.7.

( ) <=

a b C

Figure 2.7
Examples of the possible morphologies formed in a pore (a) a plug, (b) a capsule and

(c) a tube.
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Lui et al.'®'?! first proposed the above possible structures for binary
mixtures in a cylindrical pore. In these studies a plug system was first formed in
each case and it was found that by changing the attraction strength of the surface for
one of the blend components it was possible to move between the plug, capsule and
tube morphologies. It was also shown that these effects can be seen in more cases
than just a tube with an example of a plug at the point where three tubes meet.
Clearly if the change from the plug morphology to the tube morphology could be
controlled then this system can be used to create valves within a cylindrical pore.

The dynamics of the wetting process were then studied'**'*

with particular attention
focused on the role of hydrodynamic interactions within the system. Here it was
found that the formation of the wetting layer, the uniform layer formed at the surface
shown in figure 2.7(c), depended strongly on the spatial dimensionality of the
geometric constraint. A growth exponent of T was seen when the pore was very
narrow and hydrodynamic effects were suppressed, however upon increasing the
pore size it was found that the wetting dynamics were vastly increased as
hydrodynamic effects increased the rate of the phase separation process. It is
assumed that when the pore size is too narrow the enhanced diffusion seen from
hydrodynamic effects cannot occur due to the confinement. Lately the morphologies
of block copolymers within a cylindrical pore have been of considerable interest. By
confining block copolymers in this way it was found that a number of novel self

12126 oould be formed which in turn could be controlled

assembled layered structures
by changing the surface attraction. It has been noted however that a change in the
block lengths did in itself not change the morphologies seen; however when surface
alignment, strong surface interactions, was observed the kinetic rate of the phase

separation was increased.

2.7.3 Patterned Surfaces

If the above ideas can be used on a surface which is patterned so that different
areas of a substrate are attractive to different components of a polymer blend then
many technologically useful materials could be produced. The patterns may also be
able to direct chemical transformations, detect molecular recognition events or carry
signals which could be useful in biological and medical applications. Another

possible use of these systems could be in the area of Polymer Dispersersed Liquid
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Crystals (PDLC’s), here a liquid crystal is dispersed within a polymer matrix. In
these systems it is important to create well defined liquid crystal domains which are
highly phase separated. Recently the use of chemical patterning to grow polymer
brushes on a surface, therefore changing the polymer properties, has become an

interesting area of research'*’'%

. Here thiols can be used to pattern coated wafers
which are then used to grow polymer brushes at the surface changing the surface
properties of the wafer. Stamps are used to “print” the chemical onto the wafers,
which have been formed using AFM techniques, however focused ion beams have
also been used to create these stamps in an attempt to reduce the pattern size'*’, here
a beam of high energy ions is used to etch lines in a PDMS stamp. It has been
suggested that if one component of the blend is a liquid crystal then the brushes
grown on the surface should be liquid crystalline polymer brushes"! and it has been
shown that this is possible giving lines which are around Sum wide. This method
has been used to pattern a substrate and then phase separation has been allowed to
occur in a blend above this patterned area'*>. A circle pattern was used with a blend
of poly(9,9-dioctylfluorene) PFO and poly(9,9-dioctylfluorene-alt-benzothiadiazole)
F8BT and it was found that by patterning the substrate it was possible to control the

33

phase separated morphology to a high degree'*’. Theoretically these systems have

been studied and growth exponents have been explored'**'*®, Once again a growth

exponent of 7'

is present but if an alternating pattern is used then, due to the phase
oscillations perpendicular to the blend, a checkerboard type morphology can form
which propagates into the blend to the point at which phase separation becomes

dominant.

2.7.4 Dispersed Surfaces
Finally particles can be dispersed in a polymer blend matrix and then phase
separation can be allowed to occur around the particles. Immobile spherical

137138 and rods'? have been used and domain growth has been seen to

nanoparticles
be promoted due to the surface effects giving morphology control if the particles are
correctly placed. It is clear that a system such as this can be used to promote a rich

diversity of new morphologies and therefore potentially new materials.
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2.8  Block Copolymer

No review of current research into polymer blends would be complete
without an introduction to the work being carried out in the area of block
copolymers, the amount of research undertaken on this matter is vast and therefore it
is impossible to describe it all here. Pioneering work in the area of block copolymer
morphologies was carried out by Bates'* who first described the morphologies seen

in block copolymer blends in the well known diagram shown below:

\"" Py N R -
Y IF W
N, h?”

PI PI

PS PS PS PS, PI PI
Spheres  Cylinders 0oB0OD LLamellae 0BDO Cylinders Spheres
0.17 0.28 0.34 0.62 0.66 0. '77
’S
Figure 2.8

Effect of varying composition on the morphology in a polystyrene-polyisoprene (PS-
PI) diblock copolymer where f; refers to the volume fraction of PS.

Figure 2.8 shows the various morphologies present in a diblock copolymer
blend as the volume fraction of the polystyrene increases. The morphology moves
from a spherical structure at low PS volume fraction to a cylindrical structure then a
gyroid (OBDD) structure and then finally to a lamellae structure. By further
increasing the volume fraction we see that the “matrix” now becomes the lesser
component and the sequence is reversed. The phase diagram for such a system is

shown below.
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can then be used as templates for organic and inorganic devices such as photonic
band gap devices. The thermodynamic behaviour of these polymer systems has been

studied'®

and elegant new morphologies have been seen. When the particle size was
comparable to the radius of gyration of the minority block the particles preferentially
attracted this block and three layer micelles are seen with a particle-rich inner layer
with an A-block layer followed by a B-block outer layer. Other two and three
dimensional morphologies have been proposed'** which depend on the size of the
particles used and can form sheets, wires and dots. These systems therefore clearly
have possible applications in polymer wires, circuit boards and photonic devices as a
very ordered array structure is seen. By varying the size of the particles the

145
d

morphology of the system can be changed *~ and therefore the mechanical properties

of the material are effected. It has been shown'*

that smaller particle sizes lead to
greater clustering of the particles and can lead to, for example, increased stiffness

throughout the material.
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Chapter 3

The Phase Separation Process

In the following chapter a description of the basic model used in the
simulations, and examples of the different morphologies produced, are shown. Also
an introduction is made to the one of the main methods used to study the dynamic
growth of phase separation in polymer blends, the structure factor. For clarity
intended for the reader from this point onwards ¢ is referred to as ¢ and ¢p is

referred to as 1-¢.

3.1 The One Dimensional Model

The first step when creating a model to understand the properties of the phase
separation process is to create a one dimensional system, this is then used as a
starting point for all the following work as it is conceptually the easiest to
understand. In this initial model a one dimensional array is created of length x.
Values corresponding to the volume fraction of one of the components, ¢, are then

assigned to each position of the array at the start of the simulation, as shown in figure
3.1.

[0.5]0.5]0.5]0.5[0.5][0.5] 0.5] 0.5[0.5] 0.5] 0.5] 0.5] 0.5] 0.5] 0.5] 0.5] 0.5] 0.5]
Figure 3.1

Example of an initial array used for a one dimensional phase separation simulation.

Noise is first added to the system to account for the Cook'® term and then the
finite difference scheme shown in equation 1.3.11 is solved for each array element in

turn. The noise is calculated to obey,
(6(r,0),e(r',t))=-V’8(r-r\d(r -1, .11

By using equation 3.1.1 a more random spread of numbers is found than
when just using the random number generator, in this case, taken from Numerical
Recipes in Fortran 90", on its own. This linear congruency generator uses a

mathematical algorithm to move from one random number to the next and a random
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seed is stored at the end of each simulation to ensure that the random number
generator starts its calculation from a different point each time. To satisfy equation
3.1.1 it is necessary to generate two random numbers for each array position and then
use equation 3.1.2 to generate a third number, therefore improving the statistical

distribution of the random numbers, for example in the two dimensional case®*,

noise = (v (i +1, ))—v,(Q, j) +v,(, j +1)—v, (i, j)), (3.1.2)

where v, and v; are random numbers, between -1 and 1, for each array position,
addressed by i and j. This noise value is then multiplied by a noise magnitude, i.e.
0.001, to give a final noise value in the range +0.001.

Periodic boundary conditions are used to model an array of infinite size, here
the array is allowed to ‘wrap’ itself around from element x = 1 to element x = x. The
system is then allowed to evolve in the two phase region. This involves setting 7y in
equation 1.3.11 to be equal to ¥, the value of  on the spinodal, and ¥y is the point to
which the system is quenched. This method mimics a system which undergoes a
temperature quench from a point on the spinodal line to a point inside the two phase
region, defined by ¥. An example of this system is shown below, here the system
has an array size of 128 array elements, although not all are shown to increase
clarity, with initially ¢ = 0.5. A symmetric blend is used with Ny = Ng = 200 with
At and Ax from equation 1.3.11 set to be 0.01 and 0.5 respectively. In this case
initially % = 0.01 and the system is quenched to ¢ =0.0119.
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giving a one dimensional representation of the frequency of each bin along the q

axis.

3.2.2 Examples of Quenches into the Two Phase Region

Firstly an example of the morphology formed when a 50:50 symmetric (Ns =
Ng) blend, as shown in figure 1.3, is quenched from a point on the spinodal, y = 0.01,
to a point in the two phase region, ¥ = 0.0133, is shown. The simulation is carried

out on a 128 array with At = 0.0001 and Ax = 0.25 with a noise value of +0.001

added once at the start of the simulation.
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Chapter 4

Multi-Step Quenches into the Two Phase Region

The phase separation process shown in chapter 3 has been extensively studied
in great detail for many years and is therefore not investigated further here. The
model in chapter 3 is now used as a basis for all the following work. As described in
chapter 2.2 theoretical work on a multi-step quench process, such as that shown in
figure 2.4, is very limited and will therefore be considered in greater detail in the

following study.

4.1 Two-Step Quench Process

Firstly the elegant and ordered morphologies formed in a two step quench
system are studied. In this system we define three values of y, initially that on the
spinodal, Ty in figure 2.4, is defined as 9. We then quench to the point T, defined
as i) in this system. The simulation is then allowed to equilibrate for two different
lengths of time before being thrust further into the two phase region to the point 5,
as shown in figure 2.4. To keep the length scaling of the system consistent

throughout the simulation equation 1.3.11 is re-written as,

oo 1 2
In g ~————In(1-¢)-—~—9
Ny(x; - 20) X=X

m+l __ m

voon Z(M)ZZ N(z, Xo)

(2¢q _1)
"36ya- ¢.,)(2Ax)’H¢" (Ax)? {1s¢ "(1- ¢,,)]Z¢"}

(4.1.1)

such that y (appearing in the third term in the summation on the right hand side of

equation 4.1.1) is either y; or %2 depending on the quench being undertaken.

4.1.1 The Initial Quench into the Two-Phase Region
The first quench was undertaken from yo = 0.01 to x; = 0.0104, with
structural evolution being allowed until two different quench times, t; = 2500 and

7500. In each case a well defined initial structure develops, and then a second
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quench was applied to three different y» values of 0.0133, 0.0125 and 0.0119. To
determine structure factors, each result was averaged over 10 runs and the only case
studied was the symmetric case (Ns = Ng). These values of the interaction
parameters were chosen to allow an exploration of a similar region of the phase
diagram to that studied by Hashimoto et al.*>. Whilst the values of their interaction
parameters (s = 0.00145, x; = 0.00151 and %, = 0.00175) differ from the values
here, these parameters were chosen for computational convenience and to achieve
similar values of the equilibrium coexistence compositions at the first and second
quench depths. The work was carried out on a 256” two dimensional lattice using
periodic boundary conditions, the initial concentration of the matrix was set as ¢ =
0.5 with an initial random noise of + 0.01 applied at the start of each quench. The At
(time step) value used during the temporal discretisation was 0.0025 and the spatial
discretisation was Ax = 0.5. To keep the length scaling of the system consistent y¢
was fixed throughout the simulation, such that x¢ = x>, as seen in equation 4.1.1.
This choice of scaling ensures that the lattice size is fine enough to capture the
relevant phase separation length scales during both the first and second quenches and
also avoids the phenomenon of pinning, as described previously. The degree of
polymerisation was chosen such that y. = 0.01 for all simulations during both the

primary and secondary quenches.
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Figure 4.4(a) shows the structure factor at the start of the second quench and
after 1, = 12.5. The development of the secondary structure manifests itself as a

weak but distinct shoulder. From equation 4.1.1 growth of the form,

5(q,7,)/ S(q,7, =0) = exp{R(q)7, }, (4.1.2)

where R(q) is the growth rate of fluctuations with wavevector q, is predicted for a
quench from a homogeneous state with only very weak fluctuations. However, the
presence of the secondary structure is a consequence of the behaviour of such
fluctuations superimposed on an inhomogeneous background; hence, it seems

reasonable to factor out the structure factor at the start of the second quench. Note

that we also considered the effect of subtracting S (q,z'2 = O); however this resulted

in less well defined secondary structure factors that did not show exponential growth.
The factorisation may not however necessarily be legitimate in the later stages of the
second step phase separation in which non-linear effects in the time evolution
process become increasingly important. Figures 4.4(b) — 4.4(g) show the growth of
this secondary peak.

As T, increases, the magnitude of the secondary peak also increases.
Eventually the peak stops increasing in magnitude and decays as the secondary

structure disappears, as can be seen in figure 4.5.
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where 7, is the final ¢ value and Yy is the initial % value. By carrying out a Fourier

Transform the equation becomes,

@z_lqz 1 l: 1 :|_ 2Z + 1 q2]§¢,
ot 2 N(lf_xo) ¢(l—¢) (Zf_lo) 18¢(1_¢)

= R(q)d¢
(4.1.4)
therefore
1 1 2y 2 1 4
R == - - ’
@ 2[N(xf—zo)¢(1—¢) z,—xo}q 186(1—9) *
(4.1.5)

It is known that the fastest growing wave vector occurs at q2malx which

corresponds to,

) A
=-" 4.1.6
T =~ 75 (4.1.6)
where,
_ 1 _ 2 (4.1.7)
N(Zf _Zo)¢(1—¢) Xs—Xo
and,
B=-— L (4.18)
184(1-¢) h
and as in the second quench y = x3,
18 1
q,, =- [__ ZZ¢<2>0(1—¢<2>0)], (4.1.9)
X;—XoL2N
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by taking ¥, as shown in equation 1.1.11 and by using,

1
=== 2,80 (1-9"0),

4.1.10
N (4.1.10)

it is found that,

L =~ 18P0 - 070~ 28" 1= ") ],

X%

@4.1.11)

where ¢(')o is the volume fraction (¢(')o= '/2 for all the calculations) at the start of the
first quench, and ¢® is the volume fraction within one of the two phases at the start
of the second quench. Table 1 shows the predicted positions of the fastest growing
wavevector, based on ¢”y = 0.33, the composition on the coexistence curve for y; =

0.0104.

qmax
X Predicted | t1=2500 | 14=7500
0.0119 1.1 2.5 2.3
0.0125 1.6 2.8 2.8
0.0133 2.1 3.2 34
Table 4.1

Comparison of the predicted and observed fastest growing wavevectors as a function

of secondary quench depth.

The predicted quench depth dependence of gmax follows the same trend to that
seen in the simulations, however the values do not seem commensurate with those
predicted using Cahn’s linearised theory, and this suggests that it is not possible to
capture the true early stages of secondary domain growth, particularly for larger q. It
is noted that the above calculations assume an infinite system, whereas the secondary
phase separation is effectively occurring within restricted domains. The disparity
between the early stage theory and the results for larger q is highlighted in figure 4.8
where R(q)/q’ is plotted against q>. From equation 4.1.5 it is clear that such a plot

should be linear.
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Results Calculated

1st step ¢ x Gradient [ Intercept | Gradient | Intercept
2500 0.0133 | -0.0627 0.856 -0.116 0.8735
2500 0.0125 | -0.0575 0.795 -0.116 0.835
2500 0.0119 | -0.0617 0.736 -0.116 0.785
7500 0.0133 | -0.0717 0.877 -0.116 0.8735
7500 0.0125 | -0.0567 0.794 -0.116 0.835
7500 0.0119 | -0.0633 0.738 -0.116 0.785

Table 4.2

Summary of simulation results for two different initial steps (t; = 2500 and 7500)

quenched to y; = 0.0104 and then quenched to ¢, = 0.0133, 0.0125 and 0.0119

The results shown in this table are very sensitive to changes in ¢y and the
results again show that it is not possible to capture the very early stages of secondary

domain growth.

4.1.4 Variation of the Secondary Quench Depth

The results shown thus far have been for quenches where % is identical to g,
hence the scaling for each simulation is different. It is therefore difficult to make
quantitative comparisons of the secondary structure between the three different
secondary quenches, particularly with regards to the degree of secondary phase
separation. Hence we also conducted simulations in which the scaling (3t— o) was
fixed (yr = 0.0133, xo = 0.01) but x; i.e., the secondary quench depth, was varied.
The first quench depth (1 = 0.0104) was identical in each case. Clearly it is not to
be expected that all quenches will result in a secondary structure; not only does the
secondary quench depth have to be large enough that each domain becomes unstable

ie.,

S 1
T2NPPo(1-9P0)’

P (4.1.14)

but also the favoured secondary structure must be smaller than the length-scale of the
larger domain. This is illustrated in figure 4.9, in which the maximum value of the

structure factor with time for various secondary quench depths is shown in figure 4.9.
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Figure 4.14 shows a quench starting at Ty, corresponding to Yo, and which ends at T},

corresponding to xr. We assume a simple linear variation of y with time,
x(t)=x, tary,, 4.2.1)

So that at the start of the simulation (t = 0), x = xo but as the simulation proceeds ¥
tends (with each time step) to x = xs. In equation 4.2.1 o is a constant term which
determines the rate of quenching

The value of y is then re-calculated for each time step undertaken. The
simulations are carried out on a 256 array using a symmetric blend. Random noise
(£ 0.001) is added every 100 steps, these values are chosen from trials to asses the
effect of noise on the morphological growth within the system. It is found that the
effect of adding noise every time step is negligibly different to the effect of adding
noise every 100 steps, however the simulation is slowed considerably the more often
noise is added, it is therefore more efficient to add noise as little as possible as long
as the results are not affected. The value of At used was 0.0025, with Ax = 0.5 and
¢=0.5.

The structure factor is again studied using radial averaging to understand the
domain growth of the polymer blend. The simulation is quenched to yr = 0.0133

from yo = 0.01 continuously.
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correct conditions. The continuously quenched model is used to attempt to create a
secondary phase within a larger primary one; however secondary phase separation
has not yet been seen, figure 4.18 can be used to illustrate the reasons why. To
obtain secondary phase separation, a quench that jumps inside the spinodal region is
needed; this quench then needs to reside on the coexistence curve where domain
broadening can occur. The quench then needs to jump back inside the spinodal
region so that the secondary structure can be formed. This type of behaviour is not
seen in any of the diagrams in figure 4.18 as once a jump into the spinodal region has
occurred 7y, never drops back out of the spinodal region and into the binodal region.
To overcome this a quench depth dependent diffusion term, D, can be included in the

dynamics equations which has the form,

D =exp[- B(x(t) - x(r = 0)} (4.2.2)

where [ is a constant term which is calculated relative to the quench depth and the
total number of time steps undertaken by the simulation. The diffusion term is set
such that at low 1, D is high (= 1) and at high t, D is low (= 0). This means that at
the start of the simulation the dynamics continue as normal with the simulation
passing into the spinodal region. As the simulation continues however the diffusion
term dominates and the dynamics of the phase separation should slow down,
dropping the simulation below the spinodal line. As more time then passes ¥
increases so the simulation should be forced back into the spinodal region and
secondary structure should be seen. This is very similar to experimentally having a
blend which becomes more viscous as phase separation occurs.

Unfortunately the correct conditions have yet to be found to cause secondary
structure, as currently it is not possible to drop below the spinodal line for a great
enough time to allow the primary structure to develop adequately to allow secondary
phase separation to occur when the simulation moves back into the spinodal region.
This is probably because the difference in size between the favoured length scale and

the primary structural scale is not large enough.
43  Conclusions

We have explored the early stages of secondary phase separation following a

two-step quench process, using a finite difference scheme for a spatially and
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temporally discretised version of the Cahn-Hilliard equation. The morphology
development was probed by determining the structure factor. These results showed a
secondary shoulder, associated with secondary phase separation, appearing
immediately after the second quench, which shares features in common with the
initial time dependence expected from the linearised Cahn-Hilliard theory.
Differences arise due to the numerical difficulty of capturing the ‘true’ early stages.
In all cases the secondary structure reaches a maximum before the morphology
relaxes back to the initial structure, but with a greater difference in composition
between the two phases. As in experiments*>*, we find that the secondary structure
is absorbed back into the primary structure whilst the primary structure coarsens.
However we do not observe significant coarsening of the secondary structures, this is
probably due to the initial primary structure not having a significantly greater
lengthscale than the secondary, although another possibility is the neglect of
hydrodynamic effects. Achieving such a wide range of lengthscales with the
resultant increase in timescales is beyond the scope of this study.

From the point of view of applications, we have quantified the degree of
secondary phase separation as a function of time and quench depth by determining
the variation of the variance within one of the primary domains. The time at which
the maximum variance occurs corresponds to the optimally secondary phase
separated structure. We have found that the secondary structure does not attain the
theoretical maximum secondary structure, which would correspond to secondary
domains possessing the equilibrium compositions expected from the coexistence
curves. These predictions suggest further experiments that will enable theory to be
quantifiably tested.

A study has also been undertaken to attempt to model phase separation in a
continuously quenched process, one where the temperature is constantly changing.
In this case we find that the formation of the phase separated morphology is
restricted in the very early stages, when compared to a single quench system. At
later stages however the morphology becomes comparable to that of a single quench
system as yr is the same in each case. Attempts have been made to model the
process of secondary phase separation, however, even with the addition of diffusion

limiting terms; it has not as yet been possible to see this phenomena.
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Chapter 5

Reaction Induced Phase Separation of Pseudo-Interpenetration Polymer

Networks in Polydisperse Polymer Blends

The model i1s now developed to incorporate the process of reaction induced
phase separation in a polydisperse polymer blend. During the reaction one
component undergoes a polymerisation reaction, leading to phase separation via
spinodal decomposition. The effect that changing the final degree of polymerisation
has on the phase separation process is also studied. Finally an elastic energy term is
included mimicking the cross linking process and the generation of a semi-
interpenetrating polymer network. The effect of changing the final degree of
polymerisation is again studied and a comparison of the results is made. Finally the
scaling of the dominant lengthscale with time is shown to vary according to the

reaction conditions.

5.1 Modelling RIPS in a Polydisperse System with Crosslinking

As seen in chapter 2.4 the spinodal of a polydisperse system can be written in
terms of the weight average degree of polymerisation. By combining equations 2.4.4
and 2.4.5 with equation 1.3.7 and once again rescaling into the dimensionless form

we arrive at a dynamic equation for a polydisperse polymer blend,

2bxn) _§ NS N7 ¢ )]
Z:.: [(N;(l—xs) g Ny(x-2x,) ¢B+(Z—Zs)]

1 (1 1 &1 5
+36“(7¢3,,—77J( #) 18§(B 4 ka},

(5.1.1)

where Aj; is determined by equation 2.4.11 and 4, =1/N,.

In this chapter we explore how equation 5.1.1 can now be used to model the

process of reaction induced phase separation via polymerisation.
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5.1.1 Moeodelling the RIPS Process

During the RIPS process, temperature, and hence 7, is fixed initially below
the spinodal so that x < ys. The simplest model is one where monomers/polymers
with degree of polymerisation Na; and initial volume fraction ¢a; react to form
polymers with a higher degree of polymerisation Naz, and volume fraction ¢az, as

seen in figure 5.1, such that ¢; decreases and ¢4 increases.

A1 A2

Figure 5.1

Polymerisation of component A; to component A;.

The consequence of this is that the entropy and hence s, the value of ¢ on the
spinodal, decreases. For RIPS to occur, at some point the condition y > s needs to
be fulfilled.

During most RIPS processes, cross-linking also occurs; this prevents
macroscopic phase separation from taking place, and slows down the structural
growth significantly. In addition, vitrification often occurs, freezing the morphology;
however this effect is not investigated here. Cross-linking is incorporated into the
model by adapting the method described by Binder and Frisch’. In our case the
network is both continually evolving and locally dependant on the
polymerisation/cross-linking history. During the process component A, reacts to
form a network A; with volume fraction ¢a3. This network fraction of the A
component contributes an additional elastic term to the free energy as described by
equation 2.5.4. In the original theory, ¢ is the bulk volume fraction of the network,
however during RIPS the network is continually evolving so this parameter needs to
be carefully redefined. It is assumed that ¢ is a spatially dependant variable
representing the total amount of network generated by chemical reaction on any
given lattice site since the initiation of the process an ¢y does not include information
about the diffusion of the network between lattice sites. The justification for such a
definition is that ¢y represents the local equilibrium volume fraction of network in

the absence of interactions other than those giving rise to the elastic energy. In this
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system the “equilibrium” depends on the evolution of the system, for example if
phase separation occurs well before network formation, regions rich in component B
will have essentially no elastic energy throughout the simulation. By allowing ¢ to
be dependant on the history of the system, we incorporate this essential physics into
the model. When the volume fraction of the component in question differs from the
value of ¢y, mimicking an expansion or contraction of the network, a high energy
state ensues and the system moves to reduce this energy by bringing the network
back to its lowest energy configuration. Of course this occurs in competition with

other contributions to the free energy. Equation 2.5.3 can be re-written as,

o, __Lf(Ly k) i
6¢Ai NAi[(2¢Ai ¢0 1+B(1+]n¢f“ ln¢AO)j|’ (5.1.2)

A range of values for B have been used, we use B = )% since this minimises
the elastic energy when ¢a; - ¢o,

During the simulations in which network formation is included, we define
component A3 as the semi-IPN and therefore the evolution of ¢a3 is found by

substituting equation 5.1.3 into 5.1.1 to give,

pen) _SAv [[;)[( b0 a7 -1 ]+B(1+1n¢,,, mm)]——‘—)ln%}

j=! NA}(Z_ZS NB(Z_ZS
2(24;) L"‘(L J 1“[1 S ]V
Y-2) 36547 4 (V) 18§ s &, %
(5.1.3)

An additional characteristic of structural growth is given by the reaction

pathway, determined by the conversion of each component, P, =4, / (4, +4,). Whilst

it is easy to calculate an average value for the blend it is also useful to distinguish
between the maximum, minimum and average values of ¢ against time to monitor
how the reaction is progressing for each component of the blend in each of the phase
separated regions. This is a consequence of the fact that although we use a simple

scheme for the reaction kinetics,



— 4l gaT (5.1.4)

the phase separation might be expected to result in non-homogeneous reaction

pathways.

5.1.2 The Reaction Rate

During the simulations a study of three different rate constant values, k, is
undertaken corresponding to a “fast” reaction, a “medium” rate reaction and a “slow”
reaction. The rate of the medium reaction is set so that the kinetic rate, k, is equal to
the phase separation rate, R(qm), the rate of growth of the fastest growing
wavevector. For simplicity, we use the same rate constant for the conversion of both
Aj to A; and A; to As. By linearisation of equation 1.3.10 we find that for small
fluctuations, R(q,,) =9¢4(1-¢) %0 Linearisation of 1.3.10 gives,

% Ll 1 [ 1,1 }_ 2 & s sis
or 2 Xy = Xs N,p, Nydy Xr—Xs 18¢4(1-¢)

where from rearranging equation 1.1.11 2z, =(1/N,¢)+(1/Ny(1-¢)),such that

5.1.5 becomes,

o9 _1 z[ 2%, 2% q’

o, 5.1.6
or 2|7 -7, Zf—zs+18¢(l—¢)}¢ G160

The critical wavevector, (., below which fluctuations grow and above which

they decay can be found by equating the part of equation 5.1.6 in brackets to zero

such that,
2 2
2% o, 4 (5.1.7)
hence,
0% —x,
¢ =18¢(1—¢){—(—’—)], (5.1.8)
Zf —Zs
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The fastest growing wavevector, qm, 1S given by q,, =q, / V2 , so that,

q, =184(1-¢), (5.1.9)
Substituting 5.1.9 into 5.1.6 gives,
R(q,)=9¢(1-9), (5.1.10)

In the simulation of fast reaction kinetics ¥ = 10R(qm) and conversely for

slow reaction kinetics we set k = R(q,)/10.

5.2 The Ternary System
Firstly a simple ternary RIPS system without network formation where
component A undergoes a second order reaction to create component Ay, e.g. A} —>

A,, 1s investigated.

5.2.1 Ternary Phase Separation

Initially % = s, so that the blend lies on the spinodal line, therefore as the
reaction proceeds the blend moves immediately into the two-phase region of the
phase diagram. This is so that no computational effort is wasted on simulating a
homogeneous system for which the kinetics can be modelled analytically. We
choose Na; = 500, Na2 = 2000 and Np = 750 with A, = 0.495, ¢pa2 = 0.005 and ¢p =
0.5, i.e. a 50:50 blend, so that s = 0.00328. For 100% conversion (i.e. a2 = 0.5), %s
= 0.00183 showing that the fully reacted system is located in the two-phase region of
the phase diagram as shown in figure 5.2.
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seen that the behaviour in the later stages may be described by a power law, i.e. <q,>

oc T fits to these regimes for each of the three rates are shown in figure 5.6.
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Figure 5.6
In<q;> vs. In(7) for component B in a 50:50 blend undergoing (a) a “fast” reaction
with growth exponent of @ = 4, (b) a “medium” reaction with a growth exponent of

a =% and (c) a “slow” reaction with a growth exponent of a = ¥%.

The growth exponent above shows we do not see the more universally
recognised 1 relationship, which is due to the different dynamics involved in our
simulations when compared to a simple 2 component blend undergoing a rapid
temperature quench. We do however see a trend to a lower growth exponent when

moving to slower reaction rates, as the faster the reaction the earlier we move into

the two phase region.

5.2.3 The Reaction Pathway
It is possible to monitor the “reaction pathway” by following the mean

volume fraction of each component with time, ¢, =(g,). Since the extent of

reaction varies with composition, as phase separation occurs the two phases will have

different reaction kinetics. Hence we also follow the mean of the volume fraction
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Substitution of equation 5.2.3 into equation 5.2.2 gives,

1 by @ @ 2
= N+lng 1-2u_Pu % 5 5.2.4
a NM[ O] N, N, N, X0 24
1 by @ [ 2
= M+ing, ]- 2o _%a2 % 5 525
Hao N, [ el Ny N, N 0 ( )
1 by @ [ )
- l+Ing,|—2AL 242 _ 7B 4 o(1—g ), 5.2.6
Ha NB[ 5] N, N. N, 2(1-8) (5.2.6)

" "

On the coexistence curve, u, '=u,", Hiy'= Hyy where '

and pp' = p1g
and ” denote the two coexisting phases. By setting 1, '-,,"=0, u,,"—p,,"=0
and u,'-u,"=0 and by solving the three resulting simultaneous equations we can

find values for ¢ai’, dai”, Pa2’, ¢a2” as a function of conversion. Note that the
condition of materials balance reduces the four unknowns to three.
The spinodal curve, given by equation 1.1.11, is shown with conversion data

for the three reaction rates. These values are found using equations 5.2.7 and 5.2.8

for each reaction rate and are plotted against 1— ¢ smax ANd 1-¢ smin TESPECtively.

P = fame (5.2.7)
¢Almax +¢A2max

p, = Pomn (5.2.8)
¢Almin + ¢A2min

where P is conversion.

The phase separated composition, at each rate shown, tends towards an
equivalent value of ¢. For the fast reaction it can be seen that nearly 100%
conversion is achieved prior to any significant phase separation but for the slow
reaction only ~40% conversion is achieved prior to phase separation with the
remainder of the conversion occurring during the phase separation process. For the
medium reaction rate, where the reaction rate is of the order of the phase separation
rate, it can be seen that the maximum extent of phase separation in terms of the
difference between the compositions of the phases occurs at the same time as 100%

conversion is approached.
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From figure 5.14 it can be seen that for the 65:35 blend a greater extent of
reaction is necessary for the blend to develop significant phase separation. It is also

clear that as the rate increases the conversion also increases, as would be expected.

5.3  The Quaternary Model

The model is now extended to include a further reaction, i.e. A} > A; = Aj,
where the initial system is set such that y = xs. A “slow” reaction rate is used in each
case with Naj; = 500, Na, = 2000, Ng = 750 and Naj is varied between 500 and 4000.
A “slow” reaction rate is chosen in preference to a “fast” reaction rate as for “fast”
reactions any difference in the results are not obvious as conversion has essentially
reached 100% before phase separation occurs. The values of Na3 have been chosen
to give a broad range of results and so that they can be directly compared to the
quaternary case below where we include the formation of a semi-IPN. For

computational convenience a ternary blend is used until @,, =0.1, then the data is

transferred into a quaternary model where initially ¢a3 = 0.0. The reason for
undertaking such a process is that in the models that include network formation, to be
described in the next section, the network is only allowed to form once a particular
value of ¢4z (in this case 3 4 =0.1) has been reached. We wish to directly compare
the two cases when network formation occurs and when it does not, so the same
methodology is used in each case.

Once again all the results are averaged over 5 runs with noise of magnitude
10.0001 added every 100 time steps to mimic the thermal fluctuations found in real
systems. The simulations are carried out on a two-dimensional 1287 array with At =
0.00001 and Ax = 0.5. The value of i is determined only by the values of Naj, Na2
and Np so that the scaling of equation 5.1.1 is the same for each case when Naj is
varied. The final value of ¥ is found by assuming all of component A, is converted
to component A; and by not considering the conversion to component Aj, thus the
quench depth is the same for each simulation and a direct comparison of the effect of
varying Naj is possible. In the simulation y = x5 at 0% percent conversion, ¥s =
0.00328 for the 50:50 blend. The final value of ys at 100% conversion is 0.00183

showing that the system has moved into the two phase region.

111


















0.7
104 \'\ I
\\ @ Component8 S @ ComponentB|
~ — Linear Fit 0.64 e —— Linear Fit
0.94 s "
. 0s ™
A N A ~.
- ~ 3 d
< o ~.
\?. 084 ~a v o
A S £ 0.44 '\_‘
- N
\ l‘.
0.7 4 a .
0.3 "
\\ *» c-.
.- .y
064 \.\ . 0.2 ."\
S

Figure 5.20
In<q;> vs. In(t) for component B in the range (a) In(t) = 0.5-2.0 and (b) In(t) = 2.5-
4.5. The fitted lines have a growth exponent of (a) @ = % and (b) a = 4.

Figure 5.20(a) shows phase separation with a growth rate of a =) as
expected for late stage growth in a system with a conserved order parameter,
however at In(t) ~ 3 the growth rate undergoes a change, firstly increasing
corresponding to a decrease in the domain growth and then decreasing again with a
slower growth rate of @ = . The time at which this change occurs is around t = 70

which we can see from figure 5.17 correspohds to the point at which the reaction

becomes infinitesimal.
5.3.4 Conversion

A graph of conversion vs. 1-¢p is plotted in figure 5.21 for five different

values of Nas.
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Figure 5.37
In<q;> vs. In(t) for component B in the range (a) In(t) = 1.5-2.5 and (b) In(7) = 4.0-
5.0 The fitted lines have a growth exponent of (a) o = 0.46 and (b) o = -0.12.

Figure 5.37(a) shows a broadening of the domains with time; however the
behaviour shown in figure 5.37(b) indicates a reduction in the domain morphology

size due to the formation of the network system.

5.4.4 The 65:35 Blend

The results of conversion in a 65:35 blend are presented in figure 5.38.

133
























to follow the reaction of a component, A, undergoing a series of changes in degree of
polymerisation. This model can be used to study both ternary and quaternary blends
undergoing phase separation and is extended to consider the effect of one of the
components forming a network, creating a semi-interpenetrating polymer network
with component B.

Whilst we present here what we believe to be a minimalist model that
captures the underlying physical mechanisms involved in RIPS, we recognise that a
number of features are missing. For example, in many processes grafting or
copolymerisation between the A and B components occur; the viscosity increases can
be several orders of magnitude; morphology growth is frozen by vitrification. The
first of these could be dealt with within the framework of our model using an
appropriate free energy and kinetic equation for the reaction. The second requires a
different choice of the mobility coefficients, and the last effect could also be
incorporated.

For the termary polymer blend without network formation, we find that
although the rate of the reaction affects the time at which phase separation occurs the
system always tends to the same values of phase purity irrespective of when phase
separation becomes significant. For a quaternary system, by changing the degree of
polymerisation of component A3 the extent of phase separation is affected, as the
larger the degree of polymerisation, the greater the driving force for the phase
separation process. The model has been extended to include the elastic energy
associated with the formation of a polymer network, this energy is at a minimum
when no deformation of the network is present, and therefore phase separation
becomes a high energy process and is resisted by the network. We find that the
degree of polymerisation of the network component has no effect on the phase
separation process, because the network resists the phase separation process equally
in each case. The system seeks an equilibrium free energy which is a compromise
between the driving force for phase separation and the need for the system to resist
deformation, by increasing the amount of network present the elastic energy term
becomes more important so the system can phase mix after phase separation has

occurred. The effect on the morphology is shown to be significant.
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Chapter 6

Modelling Surface Directed Spinodal Decomposition

An important area of research into polymer blends concerns the formation of
morphologies at or near to a surface. As stated previously polymer blends find wide
ranging uses in adhesives, for example epoxies, and it is therefore important to know
how the morphology evolves at the surface as this can affect the qualities of the
adhesive. Firstly the model developed by following the method shown in chapter
2.7.1 is used to investigate the morphological formation at a uniform hard wall
surface. Discrepancies are found within this model and a method is therefore

proposed to physically remove them.

6.1  Modelling Surfaces in Polymer Blends

To simulate the effects of a surface on the polymer morphology the model
needs to be set up in a manner which is slightly different to that seen in the previous
chapters. As stated in chapter 2.7.1 two new, opposing, boundary conditions are
used in the model, one which is given by equation 2.7.1, to dictate the competition

between the surface attraction and the process of phase separation, on this wall and

on the opposing wall a boundary condition given by AJ |x=0 =0 is also used.

Typically these conditions are used for the two parallel surfaces given by x = 0 and x

= x’, periodic boundary conditions are applied at the y = 0 and y =y’ surfaces.

6.1.1 The Surface Model
To set the flux through the boundary to zero it is useful to understand in more
detail how the dynamics of the simulation are calculated. An example of the array

used in the simulation at a surface is shown in figure 6.1 and is used to illustrate how

the AJ| =0 equation is implemented.

Surface
1 2 3 4 5
| My I |2} I Ha | H4 I Hs I
Figure 6.1

One-dimensional illustration of the surface array set up
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The surface is assumed to lie in array element 2, element 1 is used for the no
flux boundary condition and p is the chemical potential at each point. The flux

between each element is given by,

Hin — Hi
J ==t 6.1.1
i : (6.1.1)

The flux between element 1 and element 2 (J;) should be equal to zero such

that,

=t (6.1.2)

and therefore the boundary condition needed to implement the no flux condition is,

0d. hence
ai"=0:>¢l =4, (6.1.3)
X

The change in ¢ with each time step at the surface is given by,

%=Ji_‘]i—l =lui+l+:ui—2l_2lui’ (6.1.4)
or Ax Ax

so that at the surface,
O, _M+ih =24, _th—t, (6.1.5)
0T Ax® A

as i, = 1. The same method is used to set the flux through the surface at the other
side of the array to zero, i.e. so that AJ |l=x =0. In order to check that no flux passes
through the two surfaces at x = 0 and x = x’ and in order to test the periodic
boundary conditions of the y = 0 and y = y’ surfaces test simulations were

undertaken on a 1287 array with At = 0.0025 and Ax = 0.5 for a 50:50 blend where
Na = Np = 200, an example of which is shown in figure 6.2.
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Here the first two surface terms in the free energy are related to parameters in
the FH lattice model by equations 2.7.11 and 2.7.12. This leads to an equation to

describe the evolution of the surface term,

0(x,7) _
or

[-hl—g¢+7%

]J(x) (6.1.8)

which is used with equation 1.3.10 to describe the evolution of the polymer phase
separation at or near a surface. Here 8(x) is the Dirac-delta function which ensures
that the surface free energy only affects the x = 0 boundary. For consistency with
previous models also included is a third term, dependent on vy, in the surface free
energy which accounts for the energy cost of gradients in composition at the surface,

and was derived on the basis of the Kawasaki spin-exchange model.

6.2  Morphological Development at and near to a Surface

The development of the morphology at a surface and in the bulk at small ©
can be seen in more detail below when At = 0.0025, Ax=0.50n a 1282 array with h;
= 1.5, g = 0.1 and y = 0.1 with a noise value of £ 0.00001 added every 100

computational time steps.
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alternative approach is proposed which involves substituting the full free energy,

equations 6.1.6 and 6.1.7, into the dynamic equation of motion, i.e.,

a¢(x,r)=lvz[ L, b 2 4, Wl gue L gy
or 2 |2Ax-x) 1-4 z-x. 364°0-¢) 18¢(1-¢)
+[—’a—g¢+7%x=o]5(x)}
(6.1.9)

Equation 6.1.9 is solved using the finite difference approach seen in the
previous chapters with the additional implementation of the Dirac-delta function only
at the surface, therefore contributing to the free energy in the lattice sites at the
surface layer only. At all other lattice sites, including at the neutral surface layer (x =
x’), only the bulk free energy terms are evaluated. In the following work we
compare the evolution of structure due to equation 6.1.9 supplemented by the second
boundary, which we denote model A, with that due to equation 1.3.9 supplemented
by equation 6.1.8 which we denote model B.

As discussed in detail below we also believe that, due to discretisation, the
values of h;, g and y should be divided by Ax, the finite difference spatial step. In
order to verify our theoretical argument, we compare results when h,, g and y are (1)
divided by Ax and, (2) are not divided by Ax for both model A and model B. Hence
we compare 4 different types of simulation which we will refer to as, A(1), A(2),
B(1) and B(2).

In each of the following sections h; =-1.5, g = 0.1, y = 0.1 and N = 200, the
blend is a 50:50 mixture and all results are averaged over 10 runs. This choice of
variables is, of course, arbitrary but these values are typical of those used in surface-
directed spinodal decomposition studies. In each case an average of ¢ is taken

parallel to the surface for each value of x.

6.3.1 Estimating the Surface Concentration

In order to gain an insight into the importance of the length-scales chosen for
the numerical simulations, the surface concentration for a system undergoing
equilibration without phase separation can be estimated using equation 6.1.9 if we

assume that the composition perpendicular to the surface varies according to,
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¢=gexp{-£(Z}+¢, (6.1.10)

where ¢; is the surface concentration and ¢ is the bulk concentration. Here we have
two unknowns, ¢; and &, the correlation length. By minimising the free energy with
respect to both ¢, and &, we can determine the equilibration profile, as shown in
figure 6.9. As we shall see equation 6.1.10 is an oversimplification since there must
be some depletion layer between the surface enriched layer and the bulk in order to

conserve material.
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Figure 6.9
Variation of composition with distance from surface according to equation 6.1.10

with ¢, = 0.436 and & = -3.862. We have used ¢o = 0.5, x = 0.00958 and N = 200.

During simulations of phase separation generally''’ Ax = 1 however from
figure 6.9 it is clear that in order to capture the full surface behaviour much smaller
values of Ax are required. The value used for Ax will affect the surface behaviour as
a consequence of discretising simultaneously a 1D effect and a 2D effect (the bulk
free energy). The key point here is that the surface free energy only arises from cut-

bonds at the molecular scale layer in contact with the surface.
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Hence the ratio of bulk to surface FH sites at a surface CH site is
(Ax/b)*/(Ax/b) = Ax/b. Therefore if we decrease Ax, then within a CH site the
relative number of surface sites increases, increasing the effect the surface has on the
overall free energy of the system. In order to account for this effect it is necessary to

scale the surface terms h;, g, and y by Ax according to

h1 —> hl/AX
g — g/Ax
Y — Y/Ax

hence as Ax decreases the surface terms become more significant but within a
smaller volume, as is required from the argument above. The effect of this method is
to create a surface which has a consistent free energy value for any value of Ax.
Note that the same arguments and outcomes apply for a 2D surface and a 3D bulk

system.

6.4  Equilibration

In this section the results of equilibration for all 4 models are shown with y =
0.00958 and At = 1x10™. Since for this mixture, s = {c = 0.01, we are in the
miscible region of the phase diagram where no phase separation occurs. During
equilibration the system is allowed to evolve in the one-phase region, as the surface
attracts one component of the blend a layer of this component forms along the
surface. We allow this layer to evolve until a stable state is formed at which point
the system is said to have equilibrated. We illustrate the influence of Ax by allowing
the system to reach an equilibrium state for various values of Ax. The time scale for
each simulation is not consistent in each case, the equilibrium position is identified
and then the simulation is allowed to run to at least twice this period of time. A 1D
simulation is used as it is numerically more efficient and we are not interested in the
competition between the surface driving force and phase separation. Noise was

added continuously during the equilibration step as it was found that this decreased
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This result shows that the factor used to spatially discretise the surface term is
important in creating an accurate simulation. Figures 6.11(c) and 6.11(d) for models
B(1) and B(2) respectively also show significant behaviour. In both cases, the
surface effect becomes negligible as Ax is decreased, although obviously for B(1) the
effect is less dramatic than for B(2). This highlights the problems associated with
using equation 1.3.9 supplemented by equation 6.1.8 to model surfaces consistently

which is necessary if results are to be quantitatively compared with experiment.

6.5  Phase Separation

In this section we study the Ax dependence of the surface effects of a polymer
blend which undergoes phase separation without equilibration. The blend is
quenched to y = 0.0104 so that the mixed phase is now unstable for both Ax = 0.5
and Ax = 0.25. These simulations are undertaken with a time step of At = 1x10™ in
each case. Noise is only added once at the start of the quench and has a magnitude of
+1x10>. All the simulations are undertaken to T = 100 and averaged over 10 runs.
To ensure consistency, when Ax = 0.5, the simulation is performed on a 64° array

and when Ax = 0.25 the simulation is undertaken on a 1287 array.
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physically reasonable. However our work highlights the problem that in order to
simulate surface-directed spinodal decomposition, finer length scales than it is
desirable, or possible, to utilise are important if favourable wetting of one compound
takes place prior to phase separation (as it almost certainly must). In other words the
details of the wetting layer influence the subsequent phase separation.

The difference in the development of the morphology, in a system
undergoing both equilibration and phase separation when compared to a blend which
has undergone only phase separation, is due to the fact that the equilibration step
induces a surface which is therefore already apparent at the start of the quench into
the two-phase region and which seems to promote earlier phase separation in the
bulk. Hence, the smaller the value of Ax the more accurate the surface composition
profile. This does raise the question however of how small the Ax value can be made
as this decrease requires an increase in the array dimensions, a decrease in the time
step used in the simulation to ensure numerical stability, and a subsequent increase in
the number of time steps, all of which are computationally expensive.

A comparison of the development of the morphology for two blends is shown
in figure 6.17, one of the polymer blends has undergone only phase separation and

the other has undergone both equilibration and phase separation.
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It can be seen from figures 6.17(b) and 6.17(f) that, by carrying out
equilibration prior to phase separation, a surface is created earlier in the process.
This surface appears to promote phase separation at smaller t. After the
equilibration step a surface has been created in figure 6.17(¢e), which is not present in
figure 6.17(a). During the phase separation process the surface grows in each
simulation, however the surface layer in the simulation which has undergone prior

equilibration appears to be broader throughout the simulation.
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Figure 6.18 shows that any difference in morphology during the growth
following both equilibration and phase separation and just following phase
separation is minimised by reducing Ax. It can be seen that the difference in the
surface morphology is greatly reduced when compared to figure 6.17. The reason for

the greater layering shown in this case is discussed later.

6.7 Noise

Marko'"* undertook a study into the effect noise has upon the morphology
produced in a simulation where surface terms are included. Here we recreate and
extend that work in order to stress how imperative this term is to the simulations and
to highlight the need to use the correct magnitude and frequency of noise within the
simulations.

To study the effect of noise upon the system both the magnitude of the noise
term was changed, when the frequency was constant, and the frequency of the noise

was changed, with the magnitude kept constant.

6.7.1 The Effect of Altering the Noise Magnitude

Firstly we describe the morphologies formed when the noise magnitude is
changed, here the noise is added continuously every 100 computational time steps
and its magnitude is varied from £1x10 to +1x10°®. Here At = 0.0025, Ax = 0.5, h,

=1.0, g=0.1, y= 0.1 and the simulations are carried out on a 128 array.
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random co-continuous morphology, as seen in figure 6.19(d). As the magnitude of
the noise is increased further the process of phase separation becomes dominating
throughout the system and the oscillating morphology is lost with only a surface and
depletion layer being formed before the random co-continuous morphology, as seen

in figure 6.19(a).
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added increases we see that the spinodal decomposition process becomes dominating
and surface and depletion layers are followed by a co-continuous structure in figure
6.20(a).

Figures 6.19 and 6.20 highlight the inconsistencies present when the noise
term is altered, it is clear to see that if theoretical results are to be quantitatively
compared to experimental results then this inconsistency needs to be overcome.
Presently no physical or numerical solution to this problem presents itself so
comparison of theoretical results with experimental results would seem to be the only
way of deciding the levels of noise needed to give accurate simulation results.
Clearly the competition between phase separation and the surface forces, i.e. the
influence each has on the overall free energy, can be affected by the change in y used
to initiate the phase separation process. By increasing the quench depth the system
phase separates to greater volume fractions of each component, the penalty for the
creation of interface between the two components therefore increases as the gradients
become larger and the system moves to reduce the overall free energy by broadening
the domains to a greater extent. This process means that the bulk free energy
component of the overall free energy has a greater effect than if a smaller quench
was used and therefore the phase separation process will become more dominant, an

example of this is seen in the following chapter.

6.8  Conclusions

We have explored the dynamics of phase separating polymer blends at and
near a surface, using a finite difference scheme for a spatially and temporally
discretised version of the Cahn-Hilliard equation. We have shown how the method
developed by Binder can be used to model the dynamics of phase separation in a
polymer blend at and near a surface and how depth profiling, comparable with He’
ion beam analysis, can be used to follow the phase separation of the blend. Here we
see an oscillating morphology growing perpendicular to the surface whilst random
phase separation occurs in the bulk. We find that by controlling the attraction which
the surface has for one component of the blend we can control the effect this
oscillating morphology has on the system.

We have then highlighted the difficulty of using the Cahn-Hilliard equation,

with boundary conditions designed to represent the surface effect, to model surfaces
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consistently which is necessary if the results are to be quantitatively as well as
qualitatively compared with experiment.

We find that anomalies are present when varying length scales are used
within the simulation which affects the growth kinetics of the phase separated
morphology. We therefore propose a minimal model to physically remove these
anomalies. The method involves the scaling of the surface free energy parameters by
the finite difference spatial step, which is needed to ensure that the balance of the
magnitude of the surface and bulk free energy terms is unaffected by the choice of
lattice size. The issue arises because the effect of the surface contribution to the free
energy is felt throughout the discretised surface lattice sites, and our method
therefore facilities the removal of the spatial anomalies. We show that (in the
absence of an equilibration step to create a surface enriched layer prior to phase
separation) our method leads to consistent results irrespective of the choice of lattice
size; thus showing that artefacts can be removed by the careful choice of physical
input.

We also show results from blends which have also undergone both surface
equilibration, in the one phase region, and then phase separation. We see a
difference in the development of the morphology in these two cases as the
equilibration step results in a surface being present at the start of the phase separation
step and which therefore promotes earlier phase separation in the bulk. In this
instance we show that there are further problems due to the discretisation arising
from the mismatch of lengthscales associated with the equilibration and the phase
separation.

We also show that the level of noise added to the simulations has a great
effect on the final morphology and if results are to be quantitatively compared with
experimental results then care needs to be taken with this variable. Here we find that
by changing either the magnitude of noise or the frequency with which it is added
has a marked effect on the final morphology. This is because in these systems the
final morphology is a compromise between the need for the system to phase separate
via spinodal decomposition, to form a random co-continuous morphology, and for
the surface forces to affect the morphology. Noise is clearly therefore not as
important if no surface forces are present as the spinodal decomposition process is

the only, and therefore dominating, process.
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Chapter 7

Targeting Morphologies via Surface Patterning

The investigation presented in the previous chapter is extended to account for
systems with patterned surfaces, both at a hard wall, as in the previous chapter, and
when viewing, for example, a thin film on a wafer from above. Firstly the effect that
altering the pattern size has on the system is investigated at a hard wall surface using
the model proposed in chapter 6. The model is then extended to investigate a surface
patterned using the printing methods described in chapter 2.7.3. Use is made of the
interface counting method, first described in chapter 5, to follow the phase

separation.

7.1  The Patterned Wall Model

The model is extended such that two different h; values can be implemented
in the simulation; this means that different areas of the wall can be set to be attractive
to different components of the blend. The simulations shown below are undertaken
on a 64x128 array, this mimics a thin film blend and increases computational

efficiency as our main interest is with occurrences at the surface and not in the bulk.

7.1.1 Morphology Growth at a Patterned Surface

Initially we investigate the growth of the morphology at the surface when the
surface has been patterned such that each component is alternatively attracted to the
surface in areas of 32 array units along the y axis. Here h; = 0.75 and -0.75
alternatively and g = 0.1, y = 0.1, At = 0.0025 and Ax = 0.5, initially y = 0.01, the
system is quench to x = 0.0119 and the simulations are allowed to evolve to T =
2500.

173















7.2  Phase Separation on a Chemically Patterned Surface

As patterned surfaces at hard walls have been studied in detail in the literature
the model is further developed to explore interesting morphologies formed on
chemically patterned substrates, as described in chapter 2.7.3. As above, the
patterning is expected to direct the spinodal decomposition process to form
morphologies similar to those of the patterning on the surface. The system is again
set up with a two-dimensional model thus neglecting effects that may occur in the
direction normal to the substrate, such as surface directed spinodal decomposition
and film height variations. For this reason the y term introduced in equation 2.7.1
can be ignored as the model cannot take account of the correlation length normal to

the surface, hence equation 6.1.9 becomes,

L . b 2 2-1 _ v
Vi 2x-x) 1-¢ Z—Zs¢ 36¢4°(1- ¢)2( 9 18¢(1 9) ¢,
+(~h — g¢)

op(x,7) 1
or

(7.2.1)
where h; and g are dependent on x.

7.2.1 Regular Circular Pattern

The surface is regularly patterned with circles of equal diameter and spacing,
as shown in figure 7.5, and phase separation is allowed to occur via the temperature
jump method. In this case No = 1105 and Ng = 913 to model a 116K MW
poly(vinylpyridine) (PVP) 949K MW polystyrene (PS) blend, as used by the group
of Wilhelm Huck to experimentally undertake such work. The blend is quenched
from y = 0.002 on the spinodal to y = 0.00204 in the two phase region,
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7.2.2 Forming Controlled Structures on a Regular Patterned Surface

If the circles in the above pattern were placed close enough together we
propose that it should be possible for the excess polymer around the pattern to form a
single structure throughout the system, for this reason we now change the spacing
between the patterned areas. Initially a 160x128 array is used such that the distance
between the centres of the patterned circles is 24 array units in the x direction,
secondly a 128 array is used such that the distance between patterned circles is 16
array units in the x direction; the radius of the pattern is 4 array units and the distance
between the centre of each patterned circle is 32 array units in the y direction in each
case. The interface counting method is used and a contour plot is taken whenever a
signiﬁcant change is seen within the interface count. Here h; = 0.5 in the patterned
areas and the matrix is set to be neutral, g = 0.1, No = Ng = 500 with At = 0.0025, Ax

= (.5 and a 40:60 blend composition is used.
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structures to be formed along the x direction in figure 7.14(i); this transition can be
seen to be favourable from figure 7.14(a) as the amount of interface significantly
reduces between points h and i. Between points f and g the amount of interface is
seen to increase, as is the case at points d and h. We believe this occurs by creating
transient structures to either allow the system to reduce the overall interface, and
therefore free energy, as in points d and h, or when the system has reduced its free

energy significantly and an equilibrium state is being resolved, as in point f.

7.2.3 Patterning to Control Phase Separated Structure

Using this method we believe that it is now possible to target a vast number
of different phase separated morphologies. By setting the patterned points close
enough together it is possible to repeatedly form the above structure and therefore
give a targeted morphology. Experimentally the use of inkjet printing is being
developed to create such patterns and therefore to give the possibility of forming the
pattern in a repeatable manner and with little error. The uses of such systems can at
this time only be imagined but if, for example, one polymer, the red polymer in our
case, was conductive and the second polymer were insulating then conductive lines
of polymer can be laid near to each other with a high degree of accuracy but on a
nano-meter length scale. This could lead to the development of Phase Separated
Circuit Boards (PSCB’s) for use in a large array of different products. To show
control is possible over the final structures in these systems a different pattern has

been used to that shown above, it is shown in figure 7.15.
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A, the red component, is present. We see no domain broadening occurring between
figures 7.17(d) and 7.17(f) which shows a great contrast to the amount of domain
broadening seen in 7.16(d) to 7.16(f). This comparison highlights the importance of
controlling the system variables as very different final morphologies are seen in each
case which from a technological point of view could have very different properties.
We therefore believe that this is an exciting way to target morphologies for
many technological applications. The above examples show however that careful
control is needed over the conditions, i.e. quench depth and blend composition, used
when phase separation occurs in these systems. We note that although the above
systems are limited to patterns made up from circles it is possible to pattern any
shape onto the surface in our model and should be possible for most patterns

experimentally.

7.3  Conclusions

In the current chapter the model developed in chapter 6 for polymer phase
separation at and near a surface has been used to investigate phase separation both
adjacent to and above a patterned surface. Initially a hard wall surface is patterned to
be attractive to two components of a blend in an alternating fashion. We find that
interesting alternating structures propagate throughout the system due to the
interaction with the surface, as in the previous chapter. However the structures no
longer alternate solely in a direction perpendicular to the wall but also parallel to the
wall due to the patterning present there.

We also study the process of phase separation above a patterned surface; here
we consider a system where a surface has been altered in specific areas to change the
surface properties. We investigate patterns made from a series of circles and find
transient structures develop that do not mimic the pattern but are a consequence of
the wavelength selection process and the intrinsically dynamic nature of phase
separation. In other words, although the final state may be a phase separated film
whose morphology mimics that of the pattern, unusual transient structures develop.
Such non-equilibrium structures may be undesirable, or may even be exploitable; in
either case, an understanding of the underlying physical mechanisms is essential if
control is to be gained. By changing the surface properties, quench depth and blend
composition we believe it is possible to control these systems and show that we can

either stabilise or remove these transient structures. By changing the distance

194



between the circle patterns we find that we can also form controllable lines of
polymer between our patterned area and feel that such a system could have vast
technological uses, for not only does it lead to target morphologies but also with the
use of sophisticated conducting polymers it could lead to applications in organic

semi-conducting technologies.
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Chapter 8

Surface Directed Spinodal Decomposition in Ternary Blends

The methods used in chapters 5 and 6 are now further extended to model a
three component (A, B and C) polymer blend undergoing phase separation at and
near to a hard wall surface. Firstly the equations used in chapter 6 are developed to
account for the third component of the blend and the ternary phase diagram is then
found by calculating the spinodal. Phase separation of this three component blend is
studied by altering the interaction parameters between the A and B components of
the blend and by changing the attraction of each component to the surface to propose
a number of different surface morphologies. These morphologies are then studied
via parallel and perpendicular correlation functions, where it is found that layers of
each polymer can be formed perpendicular to the surface or by surface competition,

alternating morphologies can be seen parallel to the surface.

8.1 Modelling Surface Directed Spinodal Decomposition in a Three
Component Polymer Blend
We initially develop the theory shown previously for three component
polymer blends. Firstly we follow the method of Huang et al.”’ to construct the free
energy functional for each component of the polymer blend from the Flory-Huggins

free energy per lattice site for a three component polymer blend,

(P _ ¢ I o
kT = N, Ing, + N, Ing, + N, Ing. + ¥ 45PuBs + XacPabe + XocPsfc>

(8.1.1)

where N; is the degree of polymerisation of component i, when i = A, B or C and ¢); is
the local composition volume fraction of component i.

Equation 5.1.1 has been developed to describe the morphological evolution of
a two component polydisperse polymer blend, here we consider an incompressible

system where ¢. =1-¢, — ¢, so by combining equations 5.1.1 and 8.1.1 we are able

to produce equations for components A and B to describe the morphological

196



evolution of a three component polymer blend in the bulk when A, is now

determined by
A, =(8,-4)-8;,+284,, (8.1.2)

and for simplicity we use for the degree of polymerisation Ny = Ng= N¢c = N. In

equation 5.1.1 x and 1 are rescaled spatial and temporal variables respectively, now
given by x=r/N"?b and 7 = At/N’b*, where b is the Kuhn length of species i and

A is its mobility component. It is noted that equation 8.1.2 varies from equation
2.4.11 as Aa = A = Ac = A since the degree of polymerisation for each component is
the same; this is now incorporated into the rescaled temporal variable.

We define the equations needed to model the effects of a surface added into
the system in a three component polymer blend. We start by composing an equation

for the “bare” surface free energy’,

1@ = fieun + Bt + Bcc + 200+ e sc+ Wbt ]

(8.1.3)

where z’ bonds are cut when a new surface is made. It is useful to rewrite the above

equation in the form,

fsb(¢) =-h,@, _%8A¢j —hyfp _%ga¢; _%gAB¢A¢B’ (8.1.4)

The competition between the surface field and the energy cost associated with
a gradient in the order parameter creates an equilibrium value of the order parameter

at the surface and the above boundary condition is used to pin the surface value to
this equilibrium value. The first boundary condition used in chapter 6, AJ |x=o =0,
where J is the polymer flux, is used to ensure that the flux of the polymer

components though the surface boundary is zero; this enforces conservation of the

order parameter, where J c VOF /5¢.

As before a second boundary condition, from equation 8.1.4, is applied to one

surface, at x = 0, and the first boundary condition is applied to two parallel surfaces
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“atx=0and x =x’. For two dimensional simulations, periodic boundary conditions
will be applied at the y = 0 and y =y’ surfaces. The equations used to evolve the

phase separation process in such are blend are now given by,

6¢A6(: 2 =A,V,, [(ln¢A_ln(l_¢A_¢B)+NZAc(1—2¢A‘¢3)+N¢B(ZAB_ZBC))
1 1
(e A = i)

1 1 1
N R [ +—V?
(18((1—@ ~$5) ¢,,J bt (1-¢,~¢5) "’H

+AABV2AB[(1n¢B_]n(l_¢A_¢ )+NZBC(1_¢A_2¢ )+N¢A(ZAB_ZAC))
1 1
+§6’(((l—¢A—¢) ¢’ )( h) + (1- ¢A 2( ¢")J

1 1 1
SN I R f—V?
18[(0—@ ~¢5) ¢B] RIS ¢H
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(8.1.6)

198



where 8(x) is the Dirac-delta function, ensuring that the surface free energy only
affects x = 0. For consistency with previous models we also include a third term,
dependant on v, in the surface free energy which accounts for the energy cost of
gradients in composition at the surface, and was derived on the basis of the Kawasaki
spin-exchange model. The surface term is added into the dynamic equation of
motion. In the simulations we again scale the surface terms by 1/Ax to ensure
consistency when discretising the equations of motion. We relate h,, hy, g, g» and
gab to real systems using the following which has been determined from the “bare”

surface free energy’ following the methodology see previously,

ho= 2 Xac _ Ay ucb’

, 8.1.7
“ 2z kT G17
' 2
=L Hoc _BVach” (8.1.8)
27 kT
g, = Z Xac ’ (8.1.9)
z
7 (8.1.10)
z
gAB=Z.(ZAC+Z§c_ZAB), (8.1.11)

where z is the coordination number of the lattice, z’ bonds are cut when a new
surface is made and Ay; is the difference in surface tension between components i

and j.

8.1.1 Phase Separation in a Three Component Blend

In the following we investigate two regions of the phase diagram by altering
the various x parameters. To do this we first show phase diagrams for a number of
different variables in figure 8.1, where the spinodal curve is given by the

determinant’’ of equation 2.6.2.
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Figure 8.1
The phase diagrams, spinodal curve, of symmetric ternary systems where N = 200
for (a) xaB = Yac = xsc = 0.0135, (b) xas = Xac = xsc = 0.0137, (c) xaB = XAcC = XBC
=0.015 and (d) yas = 0.018, xac = xsc = 0.015.

We use blend parameters corresponding to figures 8.1(c) and 8.1(d) during
our simulations with surface variables and will undertake the work with a blend
composition of ¢4 = 0.4, ¢p = 0.4 and ¢c = 0.2, represented by e on the above phase
diagrams, this allows us to probe a similar area of the phase diagram to Huang®’ et
al. Figures 8.2 and 8.3 show example morphologies of the systems when no surface

is present.
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increases and the formation of droplets of component C is reduced, this is due to the
increased “dislike” of each other components A and B experience when yagp is

increased.

8.1.2 Phase Separation at a Surface

In the following investigation a matrix of size 128 x 256 is used, where the
surface resides along the longer dimension, with At = 0.001, Ax = 0.5 and an initial
random noise of £0.001. Four different surface attraction conditions are investigated
with h, = +0.5 and h, = £0.5 so that we probe the morphology when h, = hy, > h, h, >
h; > hy, hy > h, > h, and h; > h, = h,. In each case component C is neither attracted

nor repelled by the surface and is said to be in a neutral state. Following the
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methodology of Puri and Binder ° we probe g_é,. , the average value of the volume

fraction for each component of the blend perpendicular to the surface, and the point

at which the morphology first intersects ¢,

i

when moving perpendicular to the

surface. We also define both a perpendicular and parallel correlation function,

respectively using,

G, =((#(2=0)-4,)(¢(z=2)-4,)). (8.1.12)
G, =(d(x)d(x+ D) - ((x))’, (8.1.13)

and a characteristic length in each case, defined as [, =)/G (Z=0) and
l, = ¥,G,(x=0), where x is the distance parallel to the surface and Z is the distance

perpendicular to the surface.

We define four different surface parameter cases for each set of ¢ parameters,
i.e.in case 1 h, = 0.5 and hy, = 0.5, in case 2 h, = 0.5 and hy, = -0.5, in case 3 h, = -0.5
and hy, = 0.5 and finally in case 4 h, = -0.5 and h, = -0.5, the resultant surface

segregation is shown in figure 8.4 for each case.
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equally compelled to form at the surface on the left hand side of the diagram and a
pseudo random morphology is formed. Upon setting component A to form at the
surface and component B to be repelled by the surface (corresponding to h, = 0.5 and
h, = -0.5) we see A-C-B layers forming in figure 8.4(c), as component C is the minor
phase its layer is thin, residing between the layers of components A and B. The
opposite is seen in figure 4(¢) where a B-C-A layer is formed by reversing the signs
of the h values for components A and B. Finally in figure 8.4(g) we see that because
both components A and B have negative h values component C forms at the surface
and is also present at the interface between components A and B, only at a reduced
volume fraction. Figures 8.4(a) — 8.4(f) show results consistent to those seen in
previous studies for binary blends where layers are formed perpendicular to the
surface, in figure 8.4(g) we model a situation which is dissimilar to any system

possible with a binary blend and which could have important technological uses.

8.2  Simulation Results

The following simulations were undertaken to T = 3000 on a 128 x 256 array
where the surface is placed along the longer axis of the system. A non square array
was used so as to increase the computational efficiency of the system as our main
interest is with the processes occurring at the surface and not in the bulk. All
simulations were undertaken with At = 0.001, Ax = 0.5 and were averaged over 5
runs with different initial random noise each time. The simulations were carried out

with a blend composition of ¢ =0.4, ¢s =0.4 and ¢ =0.2.

8.2.1 Variation of ¢ with Depth from the Surface
Firstly we show plots of ;5,., the average of phi, for each component vs. depth

into the system perpendicular to the surface, r. The plot is only taken to 50 units
from the surface as a random morphology is formed at larger depths, as seen in
figures 8.3 and 8.4, and as stated above our main interest is in the interactions each
component undergoes due to the surface and the other blend components. We

present results for xas = xac = xsc = 0.015 for each case as defined above and for

each component of the blend. We also follow ;5,. for each component with time and

then find the depth, r, at which ¢y first intersects Z,., where i = A, Bor C.
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seen by analysing figures 8.6(a) and 8.6(b). In figure 8.6(a) we see that at the surface
da = 0.95 whereas ¢p = 0.00 and ¢¢ = 0.05. In this system a small amount of surface
broadening occurs, however we see a large broadening of the depletion layer with

time and the propagation of a sinusoidal structure into the bulk. We note that, for
components A and B, the value at which ¢; first intersects (75,. increases rapidly as 1

increases (in each case) before becoming almost constant with little positional
change. Component C however has a large increase in r for a short time before

reducing to a position consistent with the other components present; this is due to the
phase separated structure of this component not intersecting 5,. in the first depletion

layer, as shown in figure 8.9.
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Figure 8.9

¢c vs. r when (s = xac = xsc = 0.015 and h, = h, = -0.5

We see that ¢c does not intersect ac (0.2 in this case) until r =~ 23, as the first

depletion layer is damped to a maximum value of ¢c = 0.14, leading to the
corresponding increase seen in figure 8.6(d). Here the reduction in the magnitude of
the initial depletion peak is only temporary as the system attempts to reach

equilibrium.
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perpendicular to the surface and also by defining correlation functions both parallel
and perpendicular to the surface.

The blend used during the simulations is a 40:40:20 blend and therefore
component C, the minority phase, forms at the interface between components A and
B. We find that when yap is increased from 0.015 to 0.018 a greater volume fraction
of component C is resident in the interface between components A and B and also
that the A and B domains broaden to a greater extent to further minimise the high
energy interface. In the case where components A and B are equally attracted to the
surface we see an alternating A-B morphology form at the surface with very little
component C present, and a random tri-continuous morphology is formed in the
bulk. However when component A is preferentially attracted to the surface, and
component B is repulsed by the surface we see that a three layered A-C-B structure is
formed with a damped periodic sinusoidal structure forming perpendicular to the
surface, as seen in the binary case. Upon the reversal of the surface parameters a B-
C-A layered structure is formed and in both cases a random tri-continuous
morphology is again seen in the bulk region. Finally we modelled the novel situation
where components A and B are repulsed by the surface. We find that in this case a
layer of component C forms at the surface followed by an altemating A-B
morphology in the depletion layer. When moving further into the bulk region, when
the surface effect has been damped to such an extent that the phase separation
process becomes dominant, we see the tri-continuous random morphology once
again appear. The effect of increasing yag in this case is an interesting one as the
volume fraction of component C at the surface is reduced so that a greater amount of
component C can be resident in the A-B interface, we also see that the domains of
components A and B in the surface depletion layer penetrate further into the surface
layer of component C. In each of the four above cases component C was neither

attracted nor repulsed by the surface.
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Chapter 9

Conclusions and Future Work

In this section a brief overview of the work described above is shown with

the main conclusions of the study, this is followed by suggestions for future work.

9.1 Conclusions

The above study helps to further our understanding in the area of phase
separation in polymer blends via spinodal decomposition. Initially the reasons for
and process of phase separation were described with the method used to model a
phase separating system to aid with the understanding of the physics involved in the
work.

Studies were then undertaken into phase separation in the two component
(binary) blend undergoing initially phase separation after a rapid temperature quench
and then phase separation after a controlled two-quench process. Here a primary
structure was observed after the first quench which was allowed to coarsen with
time. A second quench was then undertaken further into the two phase region where
secondary domains were observed in the larger primary structure, these domains then
aggregate together before being annihilated due to interfacial tension. The time
dependence of the growth of this secondary structure was found to share features in
common with that expected from Cahn’s linearised theory. This model was then
extended to form a system that is continuously quenched, i.e. the quench depth
changes continuously in a controlled manner throughout the simulation. The
morphologies formed via this method were then compared to the morphologies
formed via a simple one-step temperature quench and little difference is seen in the
size of the final morphology however the morphologies formed in the early stages
appear restricted.

This simple continuous quench system was then extended to model Reaction
Induced Phase Separation (RIPS) systems in which the phase separation is induced
when a reaction, in this case polymerisation, occurs within the system. Initially a
ternary system was studied with different reaction rates and although the rate of
reaction was found to effect point of phase separation it was not found to affect the

degree of phase separation. A quaternary system was then studied where the state of
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polymerisation of one of the components is altered to try to understand the effect on
the final extent of phase separation. It was found that the greater the degree of
polymerisation of the final system the more rapidly phase separation occurred due to
the increase in the driving force for the phase separation process. A network was
then included in the system, it grew during the polymerisation process and had a
substantial effect on the final morphology formed. In this case the network resists
the high-energy deformation of the phase separation process and an equilibrium is
created to balance the two forces. In this case the final degree of polymerisation of
the polymerising component did not affect the final morphology as the network
resists the phase separation process equally in each case.

A surface was then added into the binary blend and the system was set up
such that one component of the blend was preferentially attracted to this surface over
the other component. Here we find alternating structures form perpendicular to the
surface into the bulk region. The difficulty with using Cahn-Hilliard theory to model
surfaces consistently was highlighted and a minimum method to physically
overcome length scale anomalies is presented. The effect of surface equilibration
prior to phase separation is also shown to highlight the difference in morphological
development during spinodal decomposition and the importance of incorporating this
step in order to create more realistic simulations. Here the importance of the addition
of noise to simulations that include a surface is highlighted. In this case both the
magnitude and frequency of the noise are altered in a controlled manner and it is
found that the level of noise has an effect on the equilibrium between the phase
separation process and the surface attraction forces, and therefore the final
morphology. It should possible to compare these systems by experiment and by
using trial and error it could then be possible to understand the level of noise needed
for each simulation, this however may be a long and difficult process. It may
therefore be possible to calculate the thermal fluctuations occurring in each blend at
any given temperature so that this information can be input into the model and used
to improve accuracy.

Phase separation in a binary blend on a patterned surface was then
investigated. Initially a hard wall surface has an alternating pattern set and we see
interesting alternating patterns form into the bulk region not only perpendicular to
the surface but also parallel to it. The phase separation process above a patterned

surface, e.g. a silicone wafer that has been altered to give differing surface properties,
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is also shown. An investigation into different surface patterns is shown where
interesting transient structures, which are stable under certain conditions, appear. By
changing factors such as surface attraction, quench depth and blend composition we
have shown that it should be possible to control the morphologies of these structures
to give targeted morphologies.

Finally an investigation into phase separation at a hard wall surface in a three
component, ABC, blend was undertaken. In this case the surface attraction was
altered to create four systems in which each component was resident at the surface.
Two different blend interaction values were used to further change the phase
separation properties and correlation function perpendicular and parallel to the
surface were used to follow the spinodal decomposition. We find when one
component is the minority phase it resides at the interface between the other
components, however when it is the major component it becomes a matrix within
which are the other two components. In each case we find it is possible to tune the
properties of the system to create a number of novel, interesting and possibly
technologically useful structures which could not be easily formed by another

method.

9.2  Future Work

This study has elucidated a number of interesting features and methods to
attempt to control and target the final morphology of a polymer blend that is
undergoing phase separation via spinodal decomposition. Further studies are
however clearly possible and the work described here could be extended in a great
number of ways, a few examples of which are given here. The first method to
develop the work could be to include viscoelastic properties into the simulation, here
the system acts neither as a perfectly elastic solid or a viscous fluid but maintains
some properties of both systems. The inclusion of these properties would lead to a
system that may phase separate to create very different structures, if these structures
could be controlled in some way this could lead to systems with very interesting
properties. The interaction between a system which forms a network component, is
trying to phase separate but is constrained by a wall could be easily developed using
the theories above but would have three systems competing to dominate the
equilibrium composition. If the conditions were therefore changed correctly a

number of different morphologies may be accessible. An investigation into the uses
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of block copolymers in systems such as those shown above would also create an
interesting study at both a surface but also in the bulk, if for example two-step phase
separation were attempted. At a surface however great ordering could be created, as

block copolymers tend to form a lower range of morphologies.
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