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On The Evolution of Phase Separation in Polymer Blends 

Ian Henderson 

Abstract 

A n investigation is undertaken into the dynamics of phase separation in 

polymer blends in order to try to understand the morphologies produced via spinodal 

decomposition and to identify ways to target beneficial morphologies. 

Cahn-Hill iard theory is used wi th the Flory-Huggins free energy to model 

phase separating systems undergoing spinodal decomposition for a number of 

different systems. Initially a simple two component blend is studied undergoing 

spinodal decomposition via a temperature quench from the one phase to the two 

phase region. The model is then used to รณdy the process o f secondary phase 

separation via a two-step quench process. A temperature quench from the one phase 

to the two phase region is undertaken and then the system is left to equilibrate for 

two different time periods before a quench further into the two phase region is 

carried out. 

The model is then extended to focus on the technologically useful process of 

reaction induced phase separation. In this case a two component polydisperse blend 

is quenched from the one phase to the two phase region via polymerisation of one 

component o f the blend. The phase separation process is followed for selected 

reaction rates and the consequences of changing the final degree o f polymerisation 

are studied both wi th and without the formation of a network in the reacting 

component o f the blend. 

Finally a study of the effect o f adding a surface into the blend is undertaken 

to show the development of a phase separated тофһо1о§у at and near to the surface, 

we also present a method to overcome inconsistencies found in the Cahn-Hilliard 

model. The model is then used to target specific phase separated morphologies on a 

chemically patterned surface and to try and understand the processes involved in the 

phase separation o f a three component, A-B-C, blend at a surface. 
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Introduction 

The blending o f two or more polymers can yield materials wi th properties 

which are substantially greater than the sum of their parts and i t is therefore 

important to understand the factors which affect these properties. A great proportion 

of polymer blends undergo the process of phase separation and i t is known that the 

тофЬо1о§іе8 produced have a considerable effect on the properties of the materials 

formed. It is therefore o f significant interest to attempt to understand the physical 

forces involved in the process o f phase separation so that we can comprehend more 

ful ly the morphologies produced. Wi th an understanding o f the factors involved in 

the phase separation process we would like to be able to target specific morphologies 

and therefore give tuneable material properties. We use modelling to help us 

understand these systems and as it is straightforward to alter system variables we can 

probe a multiณde o f different siณations to aid with the understanding o f 

experimental results. We can also use modelling to test new ideas and make 

predictions about systems which are perhaps currently too diff icult or expensive to 

investigate experimentally and therefore give an idea o f whether the system would be 

worthwhile investing time and effort into developing an understanding o f the physics 

and chemistry involved. 

The use o f these systems is widespread with applications in adhesives, 

coatings and in lightweight components for the automotive and aerospace industries. 

Recently the use o f copolymers has been o f great interest for photonic and electronic 

applications wi th block copolymers also receiving great interest. This is because the 

length-scale o f the morphology is dictated by the size o f the polymer blocks, which 

can be controlled by varying the ratio of the block lengths or architecture. However 

in, for example, photonic applications the creation o f copolymers wi th chain lengths 

similar to that o f the wavelength o f light is currently a diff icult and expensive task. 

Polymer blends however phase separate over a large range of wavelengths and 

therefore, wi th control, could be immensely useful materials in these and other 

similar applications. 

In the fol lowing work we model the process o f phase separation for a variety 

of different conditions all intended to try to fiirther our understanding o f the phase 

separation process; we also attempt to suggest ways in which this process can be 

controlled. Firstly an introduction to the principles used in the work is given 



fol lowed by a review o f previous work undertaken in this area. This is followed by 

an introduction to the model and prelimmary results used to test the model in the 

early stages. A n investigation into multiple step quenches is then undertaken in 

order to attempt to create a highly ordered phase structure within a primary 

тофһо1о§у. In chapter 5 we model blends which are polydisperse and include 

systems undergoing reaction induced phase separation, the model is then further 

extended to try to encapsulate the effects that a semi-mterpenetrating polymer 

network would have upon the system. Chapter 6 shows the results found when a 

surface is used to try to order the morphology o f the system at a hard wal l surface; 

this is then followed by a study o f phase separation on a surface which has been 

chemically patterned. Finally we extend the model to three component blends and 

once again try to model the effects which placing a surface in the system has upon 

the polymer moφhology. 

Parts of this work have been published, or have been submitted for 

publication, as follows: 

Two-Step Phase Separation in Polymer Blends 一 Henderson I. C ; Clarke N., 

Macromoleculeร, 2004, 37(5), 1953 

Target Morphologies in Polymer Blends - Clarke N.; Henderson I., Mater. Res. Soc. 

Symp. Proc, 2005, 856E, B B l l . 7 . 1 

Reaction Induced Phase Separation of Pseudo-Interpenetrating Polymer Networks in 

Multi-Component Polymer Blends: A Simulation Study - Henderson I. C ; Clarke N., 

J. Chem. Phys., 2005, 123(14), 144903 

On Modelling Surface Directed Spinodal Decomposition- Henderson I. C ; Clarke 

N . ， Macromol. Theory Simul., 2005, 14(7), 435 

Surface Directed Spinodal Decomposition in Ternary Polymer Blends - Henderson I. 

C ; Clarke N . ， In Production 



Chapter 1 

Model l ing the Dynamics of the Phase Separation Process 

The modelling o f polymer blends which are undergoing the process o f phase 

separation is an area which has been developed over many years, hence the number 

of theories and รณdies which have been developed and undertaken is immense. Here 

an attempt is made to review both the most relevant work to the current project, 

including an in-depth review of the theoretical aspects o f the work where it w i l l be 

necessary in future chapters, and work which may not be directly relevant to the 

current study but which adds interest and understanding o f the field. 

Firstly, the main theories used in the study, Flory-Huggins theory and Cahn-

Hil l iard theory, are reviewed so we can describe how and why the phase separation 

process occurs in the systems studied. 

1.1 Flory-Huggins Theory 

1.1.1 The Flory-Huggins Free Energy 

Flory-Huggins ՚՛^ theory was developed for polymer blends which comprise 

two linear monodisperse polymer chains each wi th N A or N B segments per polymer. 

Here a polymer chain is represented, as part o f a mean field theory, as a random walk 

on a lattice 3. Each lattice site is occupied by one o f either type o f chain monomer 

unit covalently bonded to an adjacent chain unit o f the same polymer. The fraction 

of sites occupied by monomers is denoted Ф А (фв) and is related to concentration, c, 

(number o f monomers per cm^) by4 ψ = ca^ where is the volume o f the unit cell in 

the cubic lattice. The blend is said to be incompressible such that ΦΑ + фв = 1. The 

free energy o f the model is then described by the number o f arrangements o f сһашร 

w h i c h can exist on the latt ice for a g iven Ф, the entropie part o f the free energy, and 

an energy term describing the interactions between adjacent molecules, the enthalpic 

part o f the equation. 



The mean field entropy, ร, per lattice site is given by, 

N. N. N. Nn 
(1.1.1) 

where кв is the boltzmann constant. 

I t can be seen that as N A ( N B ) increases the entropy w i l l consequently 

decrease, this is expected as wi th an increase in N A , fewer configurations on the 

lattice w i l l be available to the chain thereby decreasing the entropy of the system. 

The entropy o f mixing is defined as the difference between the entropy given by 

equation 1.1.1 and the weighted average o f the entropies o f the pure polymer 

components. Instead o f considering the entropy given in equation 1.1.1 we consider 

the entropy o f mixmg because it conveniently eliminates a number o f tr ivial terms, 

such as all the contributions which are linear in, or independent of. Ф А . The entropy 

of mixing is given by, 

ร.^ =S֊ΦASİΦA='^)-φвSİΦв-՝^) 

= — Â ： 。 
(1-1.2) 

It has so far been assumed that no heat or energy change occurs on mixing, 

this is however an unlikely situation. By using regular solution theory it is possible 

to obtain an expression for the energy arising from three separate contact energies, 

those due to monomer A - monomer A , monomer A - monomer в and monomer в -

monomer в interactions. This enthalpic energy can be expressed as, 

บ =ksT \ ХААФІ + \ ХввФІ + ХАВФАФВ շ շ ՛ 
(11-3) 

where Xij are the contact mteractions o f components і and j . The internal energy o f 

mixing therefore becomes^, 

Սաս=կ1՝փյց XAB-11XAA-\XBB ^КТ^ФАх (1·1·4) 



where χ is known as the Flory interaction parameter. Having calculated both the 

entropy and enthalpy o f mixing we can now combine the two contributions to give 

an expression for the free energy o f mixing from, AC" ' " = ΔH"^-TΔS^^^ 

なά _ΦΑ л^^. , Фв 
\ η φ , + ^ \ η φ , + χ φ , φ , (1.1.5) 

KT Ν, NB 

therefore the phase behaviour o f a polymer blend is a result o f the compromise 

between the first entropie part o f equation 1.1.5, which always favours phase mixing, 

and the second enthalpic part, which usually favours phase separation. 

The Flory interaction parameter is a widely used quantity which characterises 

a variety of polymer 一 solvent, polymer - polymer interactions. While originally χ 

was proposed as a dimensionless concentration independent parameter, many 

systems exhibit increases o f χ wi th polymer concentration. This is because χ is in 

fact a free energy component which compromises both an entropie, χร, and enthalpic, 

XH, contribution. The Flory interaction parameter is however assumed to be a 

constant, concentration independent parameter in all our calculations. It is assumed 

that the correlation between monomers in the system is due to excluded volume 

effects, two monomer units cannot reside in the same lattice square, so the internal 

energy is independent of temperature and therefore χ oc l/T. 

1.1.2 The Coexistence Curve 

By plotting equation 1.1.5 vs. ψ for a number o f different values of χ, as 

shown m figure 1.1, it is possible to determine the main features of the polymer 

blend phase diagram. 
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Figure 1.1 

The free energy of a polymer blend for χ = 0.0133 (—), χ = 0.0119 (―),χ = 0.0110 

(一) and χ = O.Ol (一) corresponding to equation 1.1.5, with N A = N B = 200. 

We see from figure 1.1 that the free energy curve when χ is less than a 

critical value, Xc has a single potential well, a single free energy minimum, 

indicatmg a phase mixed system is present. Upon increasing χ a double potential 

well form of the resultant free energy curve is present and the system forms two 

phases of volume fraction ФА' and ФА"; as illustrated ш figure 1.2. Constructing the 

tangent to the curve, as shown in figure 1.2, for a number of free energy curves 

allows us to plot the positions of these minima on a temperature-concentration axis, 

thus forming the coexistence curve. The tangent between the two points is used as 

this defines the lowest possible free energy of the phase separated composition, i.e. it 

is the condition which must be satisfied for two or more phases of different 

compositions to coexist in that the chemical potentials within each phase must be 

equal, these two limits therefore define the composition within which a single phase 

is not present. 
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Figure 1.2 

The tangent to the free energy curve for a phase separated system showing the 

volume fraction o f the two phases, Ф А ' and Ф А " . 

As stated above, when the two minimum points are plotted on a temperature-

concentration axis the coexistence curve, also known as the cloud point cwrve or the 

binodal curve is formed. The calculation o f this curve is not straightforward as it is 

necessary to find the solution to two simultaneous equations. The chemical 

potential, μ, is defined by =õF/dn^, where П А İS the number o f particles o f 

species A , such that a change o f φ ֊> φ + d(ļ) represents an increase in the number of 

A monomers (equal to άφ) but wi th an equivalent decrease o f в monomers'* (-άφ), is 

used to calculate the coexistence curve^. 

(1.1.6) 

A similar expression for Цв can also be written, substiณting in equation 1.1.5， 

the Flory-Huggins free energy, and setting μ՝^ = //д;//д = μ՝Β allows us to determine 

the conditions for phase equilibrium, and therefore coexistence, 



^ Խ ( Հ / Հ ) ֊ ( Հ - Հ ) +յ [( l֊Հ)^-( l-Հ)ๆ = 0, 

(1.1.7) 

and, 

֊֊๒((1֊Հ ) / (1֊Հ))֊(Հ-Հ )^–^ - ք յ [ Հ ^ - 1 - Հ ๆ = 0, 

(1.1.8) 

As Stated above the coexistence cxarve is formed from these conditions as χ is 

varied, however it can be seen that a numerical solution to two simultaneous 

equations is necessary to find the curve. When N A = N B = N however the siณation is 

greatly simplified as the free energy diagram becomes symmetric around^ ψ = ՚/շ, as 

in figure 1.1, so that Ф А ' = І-фл". Upon substituting this condition into equations 

1.1.7 and 1.1.8 we f ind, 

į ๒ 
N 

Ф 

l - f 
+;r (1 -2ฬ = о, (1.1.9) 

which we can rearrange to give, 

(1.110) 

The phase diagram for a symmetric blend, N A = N B = N ， is shown in figure 

1.3. 



Spinodal 
Cuive 

Coexstance 

Figure 1.3 

Phase diagram for a symmetric polymer blend. 

1.1.3 The Spinodal Curve 

Figure 1.3 also indicates the presence o f a spinodal curve on the phase 

diagram, this curve represents the boundary between a state of instability wi th 

respect to the two phase region, i.e. where the system undergoes spontaneous phase 

separation via spinodal decomposition, and a metastable state, where the system 

undergoes phase separation via the thermally activated process o f ทนcleation and 

growth. Figure 1.4 shows the magnification o f the free energy curve just inside the 

coexistence area'. 



IL· 

Ф 
A 

Figure 1.4 

Magnification o f the free energy curve just inside the co-existence area. 

From figure 1.4 we see that at composition фь， small phase fluctuations 

created by phase separation result in the lowering o f the overall free energy from Fb 

to Fb'. A t this composition the system is susceptible to equilibrium thermal 

fluctuations in composition which w i l l lead to spontaneous phase separation 

occurring. However at composition фа these thermal phase fluctuations lead to an 

increase in the overall free energy from Fa to Fa' indicatmg that the system is locally 

stable and therefore an activation energy barrier has to be overcome for phase 

separation to occur. The system is said to be globally unstable but locally stable to 

the process o f phase separation. The spinodal curve is given by the condition that the 

second derivative o f the free energy wi th respect to ψ is zero, d^F I άφ^ = 0 , and is 

the point o f inflection between the two above cases. By taking the second derivative 

o f equation 1.1.5 we find that the spinodal is given by, 

미 

1 1 、 

( l i l l ) 
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The cr i t ica l value, above w h i c h phase separation occurs, corresponds to the 

po in t at w h i c h the coexistence and spinodal curves meet, k n o w n as the cr i t i ca l po in t . 

I t can be seen that this cr i t ica l po in t , i n a b inary mix tu re , is , 

d'F. 
mix 

a ダ 
= 0, (1.1.12) 

and is g i ven by , 

and. 

Λ · crit ― 
2Лしめ 

(1-1.13) 

(1-1.14) 

I n the symmetr ic case where NA = NB = n i t can be seen that the cr i t ica l value 

is g i ven more s imp ly b y χ ^ ^ , - I I N ind icat ing that m isc ib i l i t y , m i x i n g , becomes 

increasingly d i f f i cu l t as N increases, due to the corresponding decrease i n entropy. 

1.1.4 L i m i t a t i o n s to F l o r y - H u g g i n s t h e o r y 

A l t hough w ide l y used i t has long been recognised that l imi ta t ions to F lo ry -

Hugg ins theory exist f r o m the compar ison o f the theory w i t h exper imental results. 

The first o f these is that i n F lo ry -Hugg ins theory i t is assumed that the long range 

chain statistics o f the po lymer chains are def ined by ideal random wa lks . I n real i ty 

however this is not the case as a po lymer chain i n , fo r example, a solvent w o u l d 

collapse as solvent condi t ions are changed, this can induce phase separation between 

the solvent and the po lymer . W e w o u l d expect a s imi lar s i tuat ion w i t h i n a po lymer 

m ix tu re upon approaching the phase separation condi t ions. Secondly the F lo ry 

interact ion parameter is assumed to be independent o f concentrat ion w h e n this is 

o f ten not the case. Th is is because χ is der ived solely from the entropy o f 

combinator ia l contr ibut ions to the m i x i n g term seen i n equat ion 1.1.2 and no account 

is taken fo r entropie non-combinator ia l contr ibut ions w h i c h occur on m i x i n g . A n 

example w o u l d be the change i n the v ibra t iona l frequency o f a monomer when i t 

comes into contact w i t h a monomer o f a d i f ferent po lymer , w h i c h acts against the 

11 



m i x i n g process. W e can a l l ow fo r this b y recognis ing that χ is a free energy 

parameter w h i c h is compr ised o f bo th an entropie, χร, and an enthalpic, Хн, 

cont r ibu t ion such that χ = Хн + χร and, 

Z = a+Ļ (1.1.15) 

F lo ry -Hugg ins theory also assumes that no change o f vo lume is seen w h e n 

t w o , or more , po lymers are m i x e d together, i.e. no extra free space is created w h e n 

the po lymers are m i x e d together. I f however t w o po lymers have a strongly 

unfavourable interact ion parameter then i t becomes energet ical ly f a v o r a b l e fo r the 

system to s l ight ly lower its density, th is reduces the number o f unfavourable contacts 

between monomer uni ts and a l lows extra translat ional entropy to be gained b y 

f o r m m g vacancies. F ina l l y the structure o f each monomer may cause pacWng issues 

that w i l l reduce the possible number o f c o n f i g ^ a t i o n s w h i c h i t is possible fo r the 

chains to adopt. Th is i n tu rn affects the entropy o f m i x i n g and is most l i ke l y to be 

important i n po lymers w i t h large side groups or po lymers w i t h very d i f ferent chain 

s t i f&ess. 

The l imi ta t ions to F lo ry -Hugg ins theory are w e l l k n o w n , however the theory 

is s t i l l used as a universal framework fo r po l ymer b lend problems as i t manages to 

capture the under ly ing pr inc ip les o f the behaviour i n a s imple and mathemat ica l ly 

s t ra ight forward way . 

1.1.5 T e m p e r a t u r e Dependence o f χ 

W e expect po lymer b lend systems to phase separate upon coo l ing as w i t h 

h igher temperatures greater thermal m o t i o n is avai lable to decrease the attractive 

force between l ike molecules and to encourage less favourable contacts. Th is leads 

to a phase d iagram as shown i n figure 1.5, where the cr i t i ca l temperature occurs at 

the m a x i m u m po in t o f the coexistence curve; this s iณat ion is o f ten referred to as the 

upper critical solution temperature ( U C S T ) . 

12 
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Figure 1.5 

A n example o f the phase d iagram characterised b y an upper cr i t i ca l so lu t ion 

temperature. 

M a n y blends however are k n o w n to phase separate upon heat ing and the 

phase d iagram is inver ted w h e n compared to that shown i n figure 1.5， these systems 

are k n o w n to have a cr i t ica l temperature at the m i n i m u m poin t o f the coexistence 

curve; k n o w n as a lower critical solution temperature ( L C S T ) curve and an example 

is shown i n figure 1.6. 
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Figure 1.6 

A n example o f the phase d iagram characterised b y a lower cr i t ica l so lut ion 

temperature. 

I n this case we find that a l though the entropy o f the system increases w i t h T , 

i t is not suf f ic ient to balance the increase i n the magni tude o f the enthalpy. 

Therefore as Т increases the free energy becomes more dependant on the enthalpic 

part o f equat ion 1.1.5 and therefore phase separation occurs. The L C S T is usual ly at 

a h igher temperature than the U C S T and i t is possible to see both sets o f behaviour i n 

some blends. 

1.2 T h e R a n d o m Phase A p p r o x i m a t i o n 

I t can be shown that the F lo ry -Hugg ins free energy fo r po lymer blends can be 

der ived us ing a method termed the random phase approx imat ion , w i thou t us ing the 

latt ice m o d e ť ' " . The method is based on h o w the local compos i t ion responds when 

the local chemica l potent ials are changed. I n an ideal po l ymer b lend, when χ = 0， the 

chemical potent ia l o f component A can be wr i t t en as, 

(1.2.1) 
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so that, 

(1.2.2) 

and s im i la r l y f o r component B , here the b lend is assumed to be incompressible such 

that Փ^-\-Փը=\. One chain is then chosen such that the density o f monomers 

be long ing to that chain at distance r is k n o w n as the correlat ion func t ion , g ( r ) , or 

wh e n Four ier t ransformed the chain structure factor, ร(q). Equat ion 1.2.2 can be 

generalised to arbi trary wave-vectors, q^''", 

(1·2·3) 

again a s imi la r equat ion can be wr i t t en fo r component B. I t is n o w possible to def ine 

the exchange chemical potent ia l , Δμ， w h i c h is the energy change seen when a 

monomer un i t o f component A is replaced b y a monomer un i t o f component B. 

Therefore b y us ing 1.2.3 w e find, 

0Фв 
(1.2-4) 

as the b lend is assumed to be incompressible we can rearrange 1.2.4 to g ive , 

(1.2.5) 

where φ = ΦΑ and (1 - φ) = фв. The structure factor fo r the ideal m ix tu re is 

therefore ' " , 

SiäeaձԳ) = 

、―' 

(1·2·6) 
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This func t ion describes bo th the response to an external per turbat ion and the 

equ i l i b r ium concentrat ion fluctuations o f a m ix tu re o f po lymers that have no 

thermodynamic interact ion between them. There is however a strong interact ion 

w h i c h acts on a l l segments equal ly ; these are the molecular forces o f cohesion w h i c h 

act to main ta in a constant density m i x tu re ' . The treatment is extended later and used 

for non- ideal systems to describe both the domain size dur ing the phase separation 

process and also to quant i fy the vo lume fraction changes dur ing the process o f phase 

separation. The analogue o f equat ion 1.2.5, der ived from F lo ry -Hugg ins theory fo r a 

system i n w h i c h χ is n o n zero is, 

ą ᅀ ฬ = พ ิ + (1-Φ)Ν, —2ズ 
(1.2.7) 

w h i c h suggests that equat ion 1.2.6 can be mod i f i ed to take account o f non-zero χ by 

s imp ly w r i t i n g . 

' ร ิ ( 4 ) ^ รшеЛч)'^^"^^' 
(1.2.8) 

where the latter part o f equat ion 1.2.8 is the Four ier T rans fo rm o f the net 

thermodynamic interact ion between chemica l ly d i f ferent monomers at smal l q, g iven 

by V(q) = 2;^(l֊-ģ-qV(f), and Го is a measure o f the intersegment distances. I n the 

ideal random w a l k case SA(q)， and SB(q)， is g iven b y the Debye f unc t i on , /D(X ) , such 

that, 

where 

SÁ4) = N M x ) , (1.2.9) 

V ^ ノ 

and b is the K u h n length i n po lymer A (B ) . 
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B y comb in ing equations 1.2.6, 1.2.8 and 1.2.9 for the Debye fiinction at smal l 

q i t is found that, 

4 ^ = _ j 그 + 1 、 . -2.^ y ^ վ ֆ ւ 
Տ{գ) ΦΝ, (ί֊φ)Ν, ん \m-<lh з ՚ 

(1.2.10) 

where we have used ƒ (X) -1—(дะ /3) at smal l JC. 

I t is noted that the R P A is used as a basis for determin ing χ v ia neutron 

scattering, however this leads to prob lems w i t h the assumptions made here. F i rs t ly 

the po lymer m ix tu re is assumed to be incompressib le, however as shown above this 

is no t l i ke l y to be the case. Secondly the mode l assumes that the conformat ions i n 

the b lend are ideal w h i c h is again h i gh l y un l i ke l y i n any real system. These 

assumptions can cause the R P A to break d o w n , especial ly at h igher q. 

1.3 СаЬп -Н іШаг (1 T h e o r y 

A s shown above, F lo ry -Hugg ins theory is used extensively to understand the 

reasons fo r phase separation i n po lymer blends. I n the w o r k presented a study o f 

phase separation v ia spinodal decomposi t ion is undertaken. Here the system moves 

from the one phase reg ion , be low Xc to the t w o phase reg ion, above Xc, for a system 

w h i c h is considered to have a U C S T . T o understand the dynamics o f this phase 

separation process w e t u m to a mode l o r ig ina l l y developed b y Cahn and H i l l i a r d " 

fo r b inary meta l a l loys. The theory developed was then extended i n combinat ion 

w i t h the above F lo ry -Hugg ins theory b y de Gennes'^, Pincuร'^ and Binder'"*. 

1.3.1 T h e C a h n - H Ü U a r d - C o o k M o d e l 

The start ing po in t for this mode l is a cont inu i ty equat ion for each component 

o f the b lend. Th is cont inu i ty equat ion expresses the conservat ion o f mass ш the 

system and relates the t ime and spatial dependencies o f the concentrat ion, фі(г,1), o f 

species і to the mass current j i ( r , t ) , where the mass current is the to ta l po lymer flux at 

pos i t ion r at t ime t. I n other words , the net flow o f po l ymer і out o f the уо їшпе at 

pos i t ion r instigates a decrease in the concentrat ion at r. W e therefore have an 

equat ion o f m o t i o n fo r each species o f the f o r m , 
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dt = - V . j , ( r , ř ) , (1.3.1) 

The mass current and the free energy ftmctional are related through the 

chemica l potent ia l , the mass current is related to the chemica l potent ia l , Ці, t h r o u g h ' ^ 

j , ( r ,o = ֊XM,̂ V//,̂  + j , ( r , 0 , (1.3.2) 

where M i j is the m o b i l i t y o f species і due to j and jT ( r , t ) is the mass current ar is ing 

from thermal noise. The chemica l potent ia l is related to the free energy 

thermodynamica l ly b y , 

ÕF 
め = 근 dn; (1.3.3) 

C o o k ' 6 added a thermal noise te rm, ๆ ( r , t ) to the d i f f us ion equat ion fo r 

spinodal decomposi t ion to a l l ow fo r the solute flux f r o m thermal flueณations 

(B rown ian mo t i on ) . Cook found that discrepancies between theory and exper imental 

w o r k dur ing the very early stages o f spinodal decomposi t ion cou ld be accounted fo r 

by adding this term as the thermal d r i v i ng force imt ia ted these stages. The Cook 

te rm satisfies the condi t ions, 

(1-3.4) 

w h i c h states that the noise added over the entire latt ice is zero, and, 

( / / ( r , ։ ) η ' ( r ' , t ·)> = - I M k J V ' ő i r - ť ) 0 ( t - 1 г (1.3.5) 

The resultant Cahn-H i l l i a rd -Cook nonl inear d i f f us ion equat ion is, 

(1.3.6) 

18 



The free energy, AF , i n equat ion 1.3.6 is taken from F lo ry -Huggms theory as 

described above. However i t was suggested b y de Gennes'^ that b y comb in ing 

F lo ry -Hugg ins theory w i t h an addi t ional gradient term, der ived from the R P A , i t is 

possible to account for the s low spatial var iat ions i n concentrat ion due to 

flueณations, such that, 

ғ{ф(г)} 

кТ кТ 
(1.3.7) 

where the free energy, л ф ( г ) ] , is g i ven b y equat ion 1.1.5 and к is g iven by , 

fo r an incompressible b lend, and λ is the ef fect ive distance between monomers , 

De-Gennes argued that i n this w a y the chain connect iv i ty w i t h i n the po l ymer 

molecules, w h i c h manifests i tse l f as an exp l ic i t entropie cont r ibu t ion, can be 

accounted for. He then fiirther argued that since χ is typ ica l ly qui te smal l i n most 

blends the entropie cont r ibut ion to к w i l l dominate over the enthalpic cont r ibu t ion to 

the free energy. Th is method has also found appl icat ions i n theories fo r s imple 

l iqu ids as the add i t ion o f this square gradient cont r ibu t ion reflects the unfavourable 

cont r ibut ion to the free energy caused by the fo rmat ion o f interface between t w o 

domains. Pre l iminary รณdies showed that the compos i t ion independent te rm ш 

(1.3.8) has a negl ig ib le effect on structure development and hence a l l calculat ions 

presented are per fo rmed w i t h λ = 0. 

1.3.2 So l v i ng the C a h n - H i l U a r d - C o o k M o d e l 

The fimctional der ivat ive o f equat ion 1.3.7 is g iven by , 

δφ 
J _ b ^ _ J _ b ( i ֊ ^ ) -Ιχφ-^ Ղ է ^ Հ յ ^ Փ ք 一 ֊ - î ֊ V V , 

(1-3.9) 

19 



w h i c h when combined w i t h equat ion 1.3.6 gives, 

ÕT = 2 

1 

+-

NAZf֊Z) 

( 2 Φ - 1 ) 

Ыф-
1 

36φ\ι֊φ') 
(УФУ ― 

Ν six f ֊ χ) 

1 

Щ{\֊ф) 

(1.3.10) 

where χ and τ are rescaled spatial and tempora l variables respect ively g iven b y 

X = y į j z f - x r i b and て = ND{Xf - x f t / b ^ . The noise te rm from equat ion 1.3.6 has 

been neglected. C lear ly the scal ing is determined b y Xf, w h i c h for a s๒g le step 

quench is most convenient ly chosen to be equal to χ , the value o f the F lo ry -Hugg ins 

parameter at the final quench depth. 

Equat ion 1.3.10 can then be solved us ing a s imple f in i te d i f ference scheme 

and once mesh size, t ime step and system parameters have been set i t is possible to 

integrate the resul t ing equat ion o f mo t i on . Th is gives a finite d i f ference scheme o f 

the f o r m , 

Ճ m + l Ճ m ᅀて ՝ γ ՝ 

化І 2(Δχ)^ t r 

1 . > ( 1 ֊ C ) ֊ ^ ^ 
^віх f - χ ) 

+ 
1 8 ^ ( l -С) 

Xf-X 

nn 

(1.3.11) 

where fo r notat ional convenience, 

nn 

and 

(1-3.12) 

՝ Σ f i j ^ f ш , j + f i - ^ , j + Լ n ^ + А н - 4 Ą ' (1.3.13) 
nn 
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I n order to speed up computat ion i t is best to choose a large mesh size and a 

large t ime step but i n order to stop such problems as " p i n n i n g " , as discussed later, i t 

is impor tant to choose a mesh size w h i c h is smaller than the smallest impor tan t 

length scale and a t ime step w h i c h is too large can generate instabi l i t ies and spurious 

results. 

The evo lu t ion o f the phase separated m o φ h o ю g y needs to be f o l l o w e d 

throughout and can be quant i f ied b y the t ime dependent structure factor. The t ime 

dependent strucณre factor is employed as i t can also be found i n exper imental รณdies 

f r o m l igh t scattering, where i t is used to probe the size o f po lymer domains, for th is 

reason exper imental and theoret ical results can be d i rect ly compared. The t ime 

dependent structure factor is found from, 

ร(Գ, 0 = / — Σ Σ ^'"^ [ゆ+χ'， ̂ Жх ' ' て ) - {փք (1-3.14) 

where is the total nximber o f latt ice sites. The wave vectors are def ined as q = 

( 2 ո / Լ ձ ճ ) ท , where ท = 1,2,...,L/2 and ぐ…> denotes an averaging over a l l possible 

conf igurat ions. W h e n the s trueณre factor is found i t can be p lot ted against q and the 

peak i n its graph gives an ind icat ion o f the size o f the po lymer domains 

corresponding to a smgle wavelength i n the Four ier t ransform becoming dominant . 
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Chapter 2 

Extens ions to С а Ь п - Н Ш і а г 0 T h e o r y 

I n the f o l l o w i n g chapter a rev iew o f the areas o f interest i n the current w o r k 

w i l l be per fo rmed, inc lud ing extensions to the theories shown i n the previous 

chapter. Th is includes rev iews o f areas encompassing; 

• Mu l t i - s tep quenches into the t w o phase reg ion; 

• React ion induced phase separat ion; 

• Polydisperse systems; 

• Cross l ink ing and semi- interpenetrat ing po lymer networks ; 

• Mu l t i - componen t b lends; 

• The add i t ion o f hard w a l l surfaces; 

• Phase separation on a chemica l ly patterned surface; 

• B l o c k co-polymers 

2.1 S p i n o d a l Decompos i t i on 

2.1.1 D o m a i n G r o w t h 

Cahn-H i l l i a rd theory, as described i n the previous chapter, has been 

extensively used over the past f ew decades to รณdy the process o f spinodal 

decomposi t ion i n blends o f t w o , or more , po lymers '^ . The spinodal decomposi t ion 

process is usual ly spl i t in to three dist inct t ime regimes, these are: ( i ) the g row th at 

early t imes immedia te ly f o l i o พ m g a quench into the t w o phase reg ion ; ( і і ) the 

m e d i u m to late reg ime and ( і і і ) the very late stage o f the phase separation process 

wh e n hydrodynamic interactions dominate the coarsening o f the po lymer domains. 

I t has been shown that i n i t i a l l y flueณations above a cr i t ica l corre la t ion length g row 

exponent ia l ly w i t h a part icular length-scale dominat ing ; as is shown i n f igure 2 . 1 . 

ЕуепШа І Іу coarsening o f the domains occurs to reduce the in ter fac ia l area'^ ^*'. 
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Deep Quench 

Shallow Quench 

q 

Figure 2.1 

Rate of growth, R(q) vs. wavevector, q， for both a deep and shallow quench. 

Figure 2.1 shows a plot of growth ftmction vs. the wavevector found from 

Cahn'ร linear t h e o r y * a s described later, where = (1/V2jq^. Here we see that 

wavevectors larger than the critical wavevector, Qc, decay whereas wavevectors 

which are smaller than Qc grow, with the wavevector (ļm dominating. Therefore 

during the phase separation process the length-scale which dominates is proportional 

to qm， known as the fastest growing wavevector. The difference between a deep and 

shallow quench can also be seen in figure 2.1. Here it can be seen that the position 

of (ļm is found at larger q in the case of a deep quench. Since я ex 1/q, where λ is the 

wavelength of the phase separated domains, deeper quenches imply smaller 

characteristic lengthscales of the phase separated domains during the "early stages". 

Initially the growth rate of the late stage dynamics, without hydrodynamic 

effects, were thought to scale either with time^ '̂̂ ^ as て o r as After a number of 

տաժւշտ* ՛̂* ՛̂՛̂ ՛̂ ^^ it was confirmed that in the absence of hydrodynamic effects the 

growth of the domains in the medium to late stages of the spinodal decomposition 

process do indeed scale with time as τ'̂ ^ It is also found that during the late stages 

the growth law is independent of thermal noise^^ whilst pioneering analytical รณdies 

of the intermediate and late stages have also been carried out by Langer^^ and 

Аксаรน and Klein^^, 
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Figure 1.3 shows the phase d iagram o f a cr i t ica l system, where N A = N B , this 

produces a curve that is symmetr ic about the cr i t i ca l po in t Xc. W h e n phase 

separation then occurs at Xc, equal concentrations o f species A and species в are 

found g i v ๒ g contmuous doma in т о ф һ о 1 о § у . I f a system is studied where N A 5r N B , 

an asymmetr ic phase d iagram is produced, as shown i n fígгՄe 2.2, 

Coexistence 
Curve 

Curve 

îベ 

0.0 0.2 0.4 

Ф 

0.6 0.8 1.0 

A 

Figure 2.2 

The phase d iagram fo r a b iend where N A ネ N B 

F r o m figure 2.2 i t can be seen that the phase curve is no longer symmetr ic 

about Xc. I f a quench is undertaken into the t w o phase reg ion w i t h a 50:50 b inary 

b lend i t is possible to see that the co-contmuous structure w e w o u l d observe i n the 

symmetr ic case w i l l g ive way to droplet type moφho logy^ ' ' ^ ' ' . I t is also possible to 

see that i n either case i f a non-cr i t ica l b lend, one that is not equivalent to the vo lume 

fraction at Xc, is used a droplet т о ф һ о 1 о § у w i l l again form^^. For example i f i n 

f igure 1.3 w e under took a quench in to the t w o phase region us ing a 70:30 b lend , the 

final values o f Ф' and Ф" w i l l be equivalent to those seen i n a 50:50 b lend but i n the 

70:30 case greater overa l l vo lume o f one component than the other is present. I n a l l 

cases the system moves to reduce the amount o f h igh energy interface present 

between each po lymer component i n order to l ower the overa l l free energy. I n the 

case o f the 50:50 b lend a co-cont inuous structure is therefore seen as this is the best 
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2.1.2 P i n n i n g 

A s stated prev ious ly i t is impor tant to choose a mesh size w h i c h is smaller 

than the smallest important length scale i n order to stop the phenomena o f " p i n n i n g " 

occurr ing w i t h i n the simulat ions. I t was or ig ina l l y suggested^" that there was a 

regime i n the phase d iagram o f an o f f -c r i t i ca l symmetr ic po lymer b lend where 

doma in g row th is suppressed even though the system is thermodynamica l ly unstable 

and that this area cou ld be seen us ing Cahn-H i l l i a rd theory. I t was found that the 

morpho logy was observed to " f reeze" after some t ime and after this po in t very l i t t le 

phase separation was seen; the authors therefore concluded that this mode l contained 

a l l the in fo rmat ion necessary to exp la in p inn ing . Exper imenta l l y this phenomena has 

also been seen^''^^ however the phys ica l reasoning fo r this is less w e l l understood. I t 

is f ound that doma in g row th stops soon after the break-up o f domains in to the droplet 

morpho logy shown i n figure 2.3(b) bu t the mechanism w h i c h then prevents further 

coarsening is s t i l l unknown . I t was then found , theoret ical ly, that w i t h the add i t ion 

o f the noise te rm into the free energy fimctional p inn ing was not observed^". I t was 

suggested that the reason fo r this is that the noise te rm does not a l l ow the system to 

become trapped i n a local m i n i m a o f the free energy. Castellano and Glotzer^^ 

however showed that the p inn ing phenomena seen i n the simulat ions us ing Cahn-

H i l l i a r d theory was s imp ly an artefact o f the discret isat ion scheme. They found that 

the mesh size must always be smal ler than the smallest propagat ing length scale i n 

the p rob lem and that this had not been obeyed i n previous work^*^. I t was therefore 

shown that the Cahn-H i l l i a rd mode l does not conta in a l l the in fo rmat ion necessary to 

exp la in the process o f p inn ing and addi t iona l phys ica l parameters w o u l d be needed 

to proper ly mode l such a system. Further studies into the dependence o f the 

evo lu t ion o f the т о ф һ о 1 о £ у due to the mesh size have also been mdertaken^"*'^^ to 

t r y to understand this artefact o f the discret isat ion. 

2.1.3 No ise 

The effect o f the addi t ion o f thermal noise to the system, and its subsequent 

ef fect on the dynamics o f the phase separation process, has also received attent ion i n 

the academic literature^^'^'. I t is f o i m d that the magniณde o f the exteraal noise te rm 

can have a great ef fect on the phase separation process i n that i t can enhance, or even 

induce, the process o f phase separation. A large noise te rm has also been found to 
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decrease the sharp interface between components making it less wel l defined. In the 

systems presented here noise is either added once before phase separation occurs or 

continuously tføoughout the simulation, the amount and frequency of the noise 

changes depending on พЫсһ model is used and is decided upon through test 

simulations to observe the effect on the final moφhology. The addition o f noise is a 

computationally inefficient process so the aim is to add minimal noise without 

effecting computational results. 

2.1.4 Hydrodynamics 

The late stage dynamics o f polymer blends can be strongly affected by 

hydrodynamic տէշքՅօէւօոտ^^"*՛^. Here a moving monomer generates a flow field 

around itself as it diffuses through the polymer matrix. The flow field then starts to 

propagate at a much greater rate than the monomer that generated it, i.e. momentum 

transport instead o f particle transport occurs. Other monomers then feel this field ш 

such a way that their dynamics become strongly correlated, leading to an increase ш 

the rate o f phase separation especially at the late stages of the phase separation 

process. As seen above, normally the late stages of phase separation scale wi th time 

as て 1'3， but when hydrodynamic effects are taken into account this rate can increase 

into the region o f ւ ՚ Ղ In the fol lowing work hydrodynamics are not included as the 

area of interest is the early stages o f the phase separation process where control is 

needed to target the final тофһо1о§у and where hydrodynamics have little or no 

effect. 

2.2 MuM-Step Quenches into the Two Phase Region 

There have been many experimental reports o f phase separation in a mixture 

o f polymeric species quenched from the single phase to a temperature inside the 

spinodal region. More recently two-step temperature jumps have been studied 

experimentaUy"* ' using light scattering techniques. In these systems a quench is 

undertaken from the one phase region into the two phase region, from χο to χ ι in 

figure 2.4， where the system is allowed to reach coexistence and a primary domain 

structure is allowed to develop. A second quench is then \mdertaken further into the 

two phase region to X2, again as shown տ figure 2.4. 
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Two 

Region 

ФА 

Figure 2,4 

Phase diagram illustrating the two-step quench phase separation process in a 

symmetric binary polymer blend. 

Using a binary blend of deuterated polybutadiene and protonated 

polyisoprene at the critical composition Hashimoto et al.43 found that large primary 

domains grew after the first quench from χο to χ ι . Using small angle light scattering 

it was then possible to fol low the growth o f the secondary domains after a quench 

from χ ι to %շ. It was found that small secondary domains grew within the larger 

primary domains. The scattering peak for both the primary and secondary domains 

next shifted towards small q， indicating that both domains grew in size. It was then 

found that although the primary domain continued to grow in size the peak for the 

secondary domain tended to shift to larger q and reduce in magnitude. This indicates 

that the secondary domains were reducing in size and annihilating. It was suggested 

that this decrease in the secondary domains was due to them being absorbed into the 

primary domains to reduce the interfacial energy in the system. The same group then 

characterised the time evolution o f the structure factor"^^ *̂̂  and the early-stages of the 

second step, which they found to be wel l characterised by linearised theory. It was 

also noted that, after the second temperature jump, the structure grew according to 

the scaling laws that are relevant to a single-step spinodal decomposition 

experiment^^. Theoretical studies in this area are limited, Fiałkowski and Holysť*^'"*^ 

have recently studied the relaxation o f strucณres during quenches into the two phase 
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region followed by a jump back into the single phase region both experimentally and 

theoretically. It is suggested that this method is useful for the determination o f both 

the spinodal and binodal, coexistence, temperatures for a polymer blend. Ciaľkó*^ 

has investigated target morphologies using a novel method. In this work a droplet of 

polymer A is placed in a ma t ì x o f polymer B, the droplet is then allowed to dissolve 

into the matrix. Before complete dissolution of polymer A the blend is quenched 

into the two phase region and phase separation takes place, creating domains o f 

polymer В within the droplets o f polymer A . Tanaka''^''*^ has รณdied the process o f 

secondary phase separation and found that the secondary phase separation could be 

separated into three regimes. It was found that in the first two time regimes, where 

the secondary structure first develops, the secondary system can be considered to be 

isolated from the primary domain morphology. In the late time regime however, 

when the secondary structure is іпсофогаїесі into the primary structure, it was found 

that the secondary system can no longer be considered to be isolated from the 

primary as the two strongly interact. It is also noted that secondary strucmre is also 

possible in a single quench system, where the diffusion cannot keep up wi th fast 

hydrodynamic coarsening^". 

2.3 Reaction Induced Phase Separation 

As we have seen, a common way to induce phase separation is via a 

temperature jump or quench into the two-phase region o f the phase diagram, this is 

known as thermally induced phase separation (TIPS), however a common 

technological approach is the process of reaction induced phase separation (RIPS)^' 

or polymerisation induced phase separation (PIPS). Here phase separation and 

polymerisation occur simultaneously. Phase separation occurs because the boundary 

between the one phase (stable) and the two-phase (unstable) region moves as the 

reaction proceeds, so that at a f ixed temperature the blend moves from the one phase 

region into the two phase region, as schematically illustrated ш figure 2.5. 
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Figure 2.5 

Temperature (T)/Volume Fraction (ФА) phase diagram as polymerisation o f 

component A proceeds. N A = 10, 50 and 100 and N B = 10. In the above example the 

blend phase separates when N A > 10 

This technique to induce phase separation is used as a common technological 

method to produce materials wi th phase separated тофЬо1о§іе8. This is because it 

is not necessary to start the process with two polymers but instead monomers can be 

used. This leads to greater mixing in the one phase region. Either one or both 

components o f the blend can then be polymerised in siณ leading to a phase separated 

structure. It has long been known^^ in the area o f mbber toughened plastics that this 

method leads to improved properties over a TIPS system as the greater mixing in the 

initial stages leads to final morphologies wi th greater structure. 

Previous studies on such a process have been undertaken by Glotzer et a l 5 3 

who considered a simple two component system with a mixture o f molecules, A and 

B. The system then undergoes a reaction, where A and в react to form c , which has 

temperatore dependant forward and backward rates. Using this method the initial 

long-wavelength instability, which is characteristic o f spinodal decomposition, was 

suppressed by the chemical reaction and this restricted the domain growth to 

intermediate length scales even in the late stages of spmodal decomposition. 

However the reversibility o f the reaction results in the model being inappropriate for 
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most RIPS processes. Chan and Rey 5 4 ' 5 5 modelled RIPS in a binary trifunctional 

monomer-small molecule system in order to investigate the formation o f polymer 

dispersed l iquid crystals (PDLC's) and found that the polymerisation had no effect 

on the morphology formed during phase separation, as a similar periodic phase 

separated зЇгасІже developed to that which occurs during TIPS. Using two-

dimensional simulations it was found that a droplet-type structure was formed which 

is consistent wi th experimental results. It was also found that the droplet size 

depends on both the quench depth and the molecular weight; this means the droplet 

size can be controlled, giving rise to target moφhologies and therefore controllable 

properties of the phase separated blend. We however note that the only feature o f 

RIPS incorporated into this model is the increase in molecular weight wi th time for 

one of the components. Polydispersity and elasticity o f a growing network have both 

been neglected. Ishii et al56 and Clarke^^ developed a thermodynamic model in 

which RIPS оссгхгร for polydisperse systems and used it to give quantitative 

predictions of the phase diagram of a curing polyphenylene ether/epoxy/amine bend. 

Morphology control has also been attempted in experimental systems undergoing 

reaction induced phase separation^^. Here the т о ф һ о ю д у is controlled by either 

changing the reaction temperature or by adding extra components to the blend in the 

initial stages o f phase separation. The blend used in this case was poly(ethyl 

acrylate) (PEA) and poly(methyl methacrylate) (PMMA) wi th a ratio o f 79:21 

respectively. It was found that by changing these reaction conditions the miscibil ity 

between components can be affected but no real control over the structure o f the 

тофһо1о£у is seen. A computational study o f PIPS under a temperature gradient 

has been undertaken by Oh and Rey 5 9 . Here it is found that the evolution o f the 

phase separation process followed the propagation front o f the temperature gradient, 

as would be expected. It was however found that droplet morphologies were formed 

in the hotter regions of the temperature gradient wi th a lamella morphology formed 

in the cooler regions. 

2.4 Polydisperse Systems 

Flory-Huggins theory assumes that all the polymers in the system are 

monodisperse, in reality however most polymers, especially those used in 

technological applications, are polydisperse with a wide range o f molecular weights. 

Two averages are normally used to characterise the polydispersity o f polymers, these 
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are the number, ท, average molecular weight and the weight, พ , average molecular 

weight, given by^°, 

and. 

իլ = 
Σ 하 

(2.4.1) 

(2.4.2) 

Flory-Huggins theory was therefore extended to polydisperse solution 

systems by Scott and Magat^' as, 

ķ ^ i ī J o ๒ + Х ^ ๒ χ φ , { \ - φ , ) , (2.4.3) 
F, 

kJ 

Such that 》 乂 = 1 一み where фо is the volume fraction o f a solvent and the subscript і 

і 

refers to the components o f the polydisperse polymer. Equation 2.4.3 can be 

extended for a binary polymer blend where component A is polydisperse and 

component В is monodisperse as by modification wi th equation 2.4.2^", 

՚ ՚ (2.4.4) ՜ 

Ф Л г ) 

where ท and m refer to any component o f the blend, V is the volume o f the system 

and к is now given by, 

36 
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where ôij is the Kronica delta such that i f і = j then Su = 1 but i f i փ j then Sij = 0. The 

RPA is again used, as in chapter 1.2， to derive this expression. In this case the 

spinodal is now given by, 

X s ― 2 
1 1 

(2.4.6) 

A key feature of reaction induced phase separation is the polydispersity o f the 

reacting component, recently there has been significant progress made on รณdying 

polydisperse^"'^^" ' polymer blends. The early stages o f phase separation in such 

blends have been studied by Schichtel and Binder^^ who made the assumption that 

the equation of motion for each component of the blend was only coupled to that o f 

the other components through the presence o f vacancies. Using this method a 

limited analytical solution to the equations o f motion was developed. Takenaka and 

Hashimoto^^ investigated whether Cahn's 2 ' linearised theory could be used to 

approximate the early stages of spinodal decomposition in a polymer blend in which 

one component was polydisperse. It was found that the early stages o f spinodal 

decomposition in the polydisperse blend were stil l wel l described by linearised 

theory. Warren^*'*^ developed a method to รณdy the thermodynamics of the early 

stages o f the phase separation process. He replaced an infinite number o f differential 

equations wi th equations o f motion for the first and second moments o f the 

distribution function, making it possible to model the later stages of the phase 

separation process. Clarke^'' further developed Cahn-Hil l iarď 1 (CH) theory to study 

the early stages o f phase separation in a mixture o f a polydisperse polymer and a 

monodisperse polymer. A n arbitrarily large number o f discrete components were 

used to model polymers wi th continuous polydispersity. It was found that as the 

number o f components increased, and the computational demand increased, the 

behaviour converged when a computationally reasonable number o f components 

were used. The shape of the growth rate curve was found to be independent of the 

number o f components in the polymer blend and was also indistinguishable from that 

o f the original Cahn-Hilliard theory. For a polydisperse blend the magnitude o f the 

growth rate has a more complex dependence on the quench depth than that predicted 

for monodisperse blends, for example the effect o f polydispersity at small quench 

depths is to slow down the phase separation process. Pagonabarraga and Cates^^ 

33 



supplemented the phenomenological equations of Clarke wi th explicit calculations of 

the dynamical coefficients f rom a model based on tube theory. Finally Yashin and 

Balazs^^ developed a system to model the interdiffiision in binary polymer blends 

which exhibit polydispersity m length, this system can be used to study polymer 

systems in which the degree o f polymerisation changes due to interfacial or bulk 

reactions. 

When modelling polydispersity we consider the effect which polymer 

interdiffusion has on the system. Interdiffusion considers the dynamics of 

concentration fluctuations throughout the system. A distinction between 

interdiffusion and the self diffusion coefficient is made as the latter describes the 

motion o f single chains. A model for тиШа І diffusion was first proposed by 

Brochard^*'^^, and has found wide spread use as it can be applied to mcompressible 

systems. In this theory it is assumed that there exists a local flow field, common to 

all polymers, that has a velocity, v ( r ) . I t is then assumed that the total flux o f each 

component is the sum of the flux that would occur in a fixed background and the flux 

due to the flow field, such that equation 1.3.2 can be re-written as, 

κ=κ^μ.^φ.^.^ (2.4.7) 

where ληι is the mobil i ty o f component m. By incompressibly constraining the 

system such that the total flux is zero, / β + Jд^д = о, it is possible to show that. 

Jn.=^ท.^М.-ф^^УМп (2.4.8) 

where λη is the mobil i ty of component ท. 

Equation 2.4.8 can then be re-written in terms o f the differences between the 

chemical potential o f each component o f the polydisperse polymer and that of 

polymer B, 

/ , = Ç A , V ( / / ^ . ֊ / İ « ) , (2.4.9) 

where Aij are the Onsager coefficients shown below. 
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The Gibbs-Duhem equation, ^ՓոԲո = 0， allows the flux to be written as, 
ท 

Λ = Σ ( ν . ֊Փ^յ+8էՓյ)^Բյ֊{Փ^֊8^)՝^^տ, (2-4.10) 

Equatmg equations 2.4.9 and 2.4.10 gives, g¡ --Ą + ^ 2 _ , Λ „ , such that the 

m 

Onsager coefficients are, 

Λ , = ( s , - Φ > ) Л յ - φ,λ,+φ,φ. Σ 4 , (2.4.11) 
m=l 

when ร components are present and Aij = Aji. This methodology allows the тиШа І 

diffusion in the system to be described, and w i l l be used extensively later to describe 

the mutual diffusion in both polydisperse and multi-component, greater than two, 

polymer blends. 

2.5 Crosslinking and Semi-Interpenetrating Polymer Networks 

Polymer networks are important soft solid materials; examples include 

adhesives such as epoxy resins and vehicle tyres, which undergo the wel l known 

process o f vulcanisation. During crosslinking polymer chains are linked together to 

form a three dimensional network, this network w i l l then resist deformation, 

improving the dimensional stability and other material properties such as the ability 

to resist solvents, reduce creep rate and make the material less prone to heat 

distortion as the glass transition temperature is raised. The glass transition, Tg, is the 

ІетрегаШге at which a material passes from the glassy, hard rigid solid, state into a 

state where it softens and becomes rubberlike. It is an important temperatoe in 

polymer physics as i t is the point at which material property changes occur, i.e. the 

material may become more ductile or more easily deformed above the Tg. The glass 

transition is seen in amorphous polymers, where the chains are arranged in a random 

fashion, however in a perfectly crystalline polymer, one where the chains are 

іпсофогаїесі in areas o f three dimensional order, the polymer passes through a point 

known as the melting ІетрегаШге, Tm, where it melts and tums to a viscous liquid. 

In practise perfectly crystalline polymers are rarely seen and instead semi-crystalline 
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polymers are found containing areas o f both ordered and disordered polymer. In this 

case both Tg and Tm are observed corresponding to the proportions o f ordered and 

disordered polymer present. As a polymer is glassy below Tg clearly crosslinking 

has very little effect on the properties o f the material other than to increase Tg, 

however above Tg creep, or polymer flow, can have a serious effect on the uses o f 

polymeric materials. Use of crosslinking in these cases can reduce, or ш certam 

cases elimmate, creep as its response depends mainly on the temperature o f the 

polymer and its crosslink density, hence an increase in crosslink density can lead to a 

decrease in creep. 

Phase separation in cross-linked polymer blends has been o f great interest due 

to the possible technological uses o f such systems. Phase separation has been 

predicted in systems in which two polymers are first cross-linked and then brought 

into the two phase region'^. Here two linear polymers are crosslinked in the one 

phase region o f the phase diagram before being quenched into the two phase region. 

A competition between the process o f phase separation and the elasticity o f the 

network that resists the phase separation was then seen. In this case strongly 

crosslinked systems were considered and good agreement between experiment and 

theory was observed, however this approach assumed an ideal network wi th all the 

linear chains crosslinked. A further รณdy by Bettachy et aìJ'* then considered a 

weakly cross-linked system in which not all the linear polymer chains become 

crosslinked and phase separation was again seen. Experimentally the structure o f 

blends which have been photo-crosslinked during spinodal decomposition has also 

been รณdied^^. Here 40:60 blends o f polystyrene/poly(2-chlorostyrene) were รณdied 

and a freezing o f the phase separated morphology was seen upon photo-crosslinking 

wi th a XeF excimer laser. It was also seen that control over the тофһо1о£у could be 

displayed by allowmg a greater amount o f time before photo-crossliiปcing; this led to 

larger тофЬо1о§іе8 as the spinodal decomposition process was allowed to occur for 

longer times. The phase behaviour o f crosslinked polymers wi th l iquid crystals has 

also been o f interest^^. The phase diagrams for these systems ехЫЬк a wider variety 

o f properties than that seen in analogous systems containing only linear polymers. It 

was found that this was reflected in the larger number o f parameters describing the 

thermodynamics and elasticity o f the crosslinked network. Clearly as a l iquid crystal 

is present the phase diagram is different to that seen for a linear polymer blend as a 
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nemātie - isotropic region is seen at higher temperatures and l iquid crystal volume 

fractions. 

Binder and Frisch'^'^^ proposed a method o f simulating laterpemtxating 

Polymer Networks (IPN'ร) in a weakly cross-linked network. A n IPN is composed 

o f two or more chemically distinct cross-linked polymer networks which are 

prevented from macroscopically phase separating by permanent crosslinks which are 

produced when each network is cured. As wi th any polymer blend the formation o f 

an IPN has the potential for combining the properties o f the two types o f cross-linked 

polymer networks, however an IPN differs from a homo-polymer blend because 

either one polymer is cross-linked in the presence o f another cross-linked polymer or 

both polymers are simultaneously cross-linked. This leads to a situation where one 

network Іп1ефепеіга1е8 the other and constrains processes such as phase separation. 

Models were also proposed for a pseudo-IPN or semi-IPN; here one species is a 

cross-linked network which is swollen by linear polymer chains o f a second 

component. This means that we have a network component wi th low diffusion and 

which resists deformation and a linear component which has diffusion properties like 

those seen in normal linear polymer blends. It is possible to study the effect 

crosslinking has on systems such as these, using the free energy of an elastically 

deformed network, given by, 

^1="-ψ(^+^+^-3)֊Βν{φ,)]ηλ^λ^, (2.5.1) 

where λχ, Xy and λζ are deformation ratios defined wi th respect to a reference state in 

which the chain dimensions are such that there do not exist any elastic forces on the 

crosslinks. The value o f the coefficient в is not wel l known, wi th it being absent in 

certain cases. ҒюгуЗ calculated в to be 2/f where ƒ is the fimctionality o f the 

crosslinks whilst Kuhn79 wrote в = 1. By considering a uniform deformation such 

that λ = λχ = = λζ which is brought about by changing the volume fraction from ψ 

to another value, фо, we can write. 
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where <r̂ > are the linear dimensions in state ψ and φ。 is the hypothetical volume 

fraction which is chosen, after crosslinking, to eliminate the elastic forces o f the 

crosslinks, where ψ. = φ.(φο). Rewriting equation 2.5.1 wi th 2.5.2 for a Flory-

Huggins lattice the free energy o f the network per site is therefore given by, 

" Ν; 

Փլ 
-К 

+ 5 ๒ (2.5.3) 

where і is the network component o f the polymer blend and Ní is its degree o f 

polymerisation. 

Schulz, Binder and Frisch**''^' investigated phase separation in simultaneously 

formed interpenetrating polymer networks, here the monomers, cross-linkers, 

initiators and catalysts for both species are mixed together. The reactions, leading to 

two simultaneously formed networks, are followed by a quench into the two phase 

region. A well developed phase transition from the disordered to the ordered phase 

was observed. Schulz and Frisch 82 also undertook a study into the microphase 

separation transition (MST), i.e. in gels. We note that in all cases, phase separation 

and cross-linking reactions were not occurring simultaneously as is the case for 

RIPS. There have been a large number of experimental รณdies using R i p s 5 6 , 5 8 , 8 3 - 8 7 ^ 

for example тофһо1о§1са1 control of a semi-IPN imdergoing ผ P S has been 

attempted by K i m and A n 5 8 . Linear poly(ethyl acrylate) (PEA) and crosslinked 

poly(methyl methacrylate) (PMMA) were used and the effect of temperature of 

polymerisation and the addition o f linear P M M A to the mitial mixture were studied. 

Reducing the temperature o f polymerisation means that the mobil i ty o f the polymer 

chains is reduced which reduces the rate of phase separation. It was also found that 

the addition o f linear P M M A to the init ial mixture helped phase separation to occur 

during the IPN formation, as the onset o f phase separation was shifted towards lower 

conversion. 

2.6 Multi-Component Blends 

I t is clear that the phase separation o f binary polymer blends has been widely 

รณdied but fewer studies have been undertaken into phase separation in ternary 

mixtures. A number o f studies have mvestigated di-block copolymers in the 

presence o f two different homopolymers both experimentally^^ and theoretically^^՜ 
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94 where İt İ S found that the block copolymer resides at the interface between the two 

homopolymers when the system is quenched under the tri-critical point. 

Investigations have also been undertaken to try and understand the internal wetting in 

a three component system^^՚^^. In multi-component systems Flory-Huggins theory is 

extended to take account o f the interactions between each convponenr^, giving for a 

three component A-B-C blend, 

KT քկ ՚ " NB ·- Ne 

(2-6.1) 

where Nj is the degree o f polymerisation o f component i, when / = A , в or с and фі is 

the local composition volume fraction o f component i. For these systems the 

spinodal is given by, 

(2-6.2) 

where it can be seen that differentiation o f 2.6.1 gives, 

(2-6.3) 

— が Ғ が Ғ 一 1 
ЛАВ ~ ХАС ― Хвс> (2.6.4) 

(2.6.5) 

when фс = 1 - ФА - фв due to incompressibility. Numericallv solvmg the determinant 

of 2.6.2, given by 2.6.6, for various values o f ФА and фв therefore allows a plot o f the 

three component phase diagram to be produced. 
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This method has been used by Huang et аїЛ in a study o f the process o f 

phase separation in a symmetric ternary mixture. During this study it was found that 

in a ternary system with majority components A and в present the minority 

component, c, would form at the interface between components A and B. I f 

however component с is the majority component then components A and в form 

"саІефіИаг" type structures in a matrix o f component c. In the former case however 

upon domain coarsening the minority phase is seen not to coarsen and can be 

considered to be purely increasing the interfacial thickness. The growth law of R « 

て І'з is however maintained տ both the two and three component phase separation 

processes. The interfacial properties o f a three component system have been further 

studied by Yeung et al.95 who investigated how the presence o f the third phase 

affected the interface between two other components. It was found that by forming 

the minority phase at the interface between majority phases the interfacial tension 

was significantly reduced. This effect was also seen by Liang^^, who used a Monte 

Carlo simulation, to confirm that a linear decrease o f the mterfacial tension is ๒deed 

seen with copolymer volume fraction. Clearly this effect is important for the 

production o f materials as the properties depend greatly on the strength of the 

interface between components. By using compatibilisers in the interface between 

components, like the block co-polymers below, it is possible to tune the properties o f 

the materials. The dynamics o f the early stages o f the spinodal decomposition 

process in a system which has an A -B block copolymer in the presence o f a linear A 

and Ішеаг в polymers have also been sณdied^'''^. Here a Cahn-Hilliard simulation 

was xmdertaken to describe the early phase separation stages. The growth rates were 

again found to be equal to てレ 3 when the hydrodynamic interactions are ignored 

because the random A-B copolymer acts as a solvent for both linear polymers and 

therefore does not effect the interdifíusion between them. F๒al ly the interfacial 

layering ш a three component system has been տա(Ս6ժ^ .̂ Here a system is set up in 

which two polymers, A and B， are mdifferent to each other, i.e. XAB « 0, but wi th a 

third which is strongly attracted to A and repulsed by B. Layered structures were 

observed at the interface which could clearly lead to interestmg material properties, 
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for example multi-layered films formed purely by diffusional processing. Example 

morphologies seen when the blend composition in a three component (A-B-C) is 

altered are shown in figure 2.6， 

a 

Figure 2.6 

Example morphologies when χ AB = ХАС = Хвс = 0.015 at τ = 1250 for a three 

component system where • represents component A , • represents component в and 

• represents component с wi th blend composition (a) 40:40:20, and (b) 25:25:50. 

In figure 2.6 each value o f χ is set to be equal so no two components 

preferentially "disl ike" each other to a greater extent than any other two components 

do. In figure 2.6(a) we see that component с is the minority component and is 

therefore seen to form a continuous phase at the interface between components A and 

B. By increasing the amount of component с within the blend composition it is 

possible to create a matrix o f component с as in figure 2.6(b), here we see small 

droplets o f components A and в forming an altematmg "саїефіИаг" structure in 

order to reduce the amount o f interface wi th component c. 
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2.7 Polymers at Surfaces 

2.7.1 Uniform Hard Wall Surfaces 

The affect o f a surface on a polymer blend has been extensively รณdied 

experimentally""՚՜'"^. This is because in substances such as adhesives and coatings, 

surface composition plays a highly important role. Jones et a l . " " showed that by 

using a blend o f poly(ethylenepropylene) (PEP) and perdeuterated 

poly(ethylenepropylene) (d-PEP) which was quenched into the two-phase spinodal 

region on a silicone wafer it is possible to attain preferential phase segregation of one 

of the two components o f the blend to the surface, in this case the d-PEP, i.e. the 

surface preferentially attracts one o f the components o f the polymer blend. The 

phase rich area at the surface inevitably leads to a phase poor depletion layer just 

below and a damped oscillating wave wi th a wavevector normal to the surface 

dominates the structure development at the s\uface, therefore the surface wetting 

behaviour affects the phase separation dynamics at and near to the surface. Ion-beam 

experiments using 3 He nuclear-reaction analysis have been extensively used to depth 

profile such systems՚*"՛՛"՛^՛"^ рефеп<1іси1аг to the surface where the oscillating 

тофһою§у is seen. Using this method the growth rate o f this surface layer has been 

seen to grow at a rate o f ւ ՚Ղ 

The dynamics o f a phase separated polymer blend at or near a surface have 

also been widely studied theoretically using a method proposed by Jones et al. '"^, 

here a comparison wi th experimental results from forward recoil spectrometry was 

made. Using a model proposed by в๒der and Frisch'^^''^*', which is similar to that o f 

Jones, based on the Kawasaki spin-exchange model it is possible to derive the Cahn-

Hil l iard equation in the bulk wi th two special boundary conditions which account for 

the presence o f the surface. Numerous theoretical studies'"* "^ have been carried out 

on the process of surface directed รpmodal composition. Brown and Chakrabarti'^^ 

found good agreement between their results and those found by experiment'°' as they 

observed the formation o f a damped oscillating wave from the surface into the bulk. 

The thickness of the surface layer varies as τ 1,3 however it has been noted that 

hydrodynamic effects' '0 play a major role in the growth o f a surface and can lead to 

faster growth o f the surface layer in the late stages o f spinodal decomposition. 

Surface segregation has also been proposed"^ for a miscible polymer blend, 

i.e. a blend ш the single-phase region. Here the component wi th the lower surface 

free energy w i l l tend to segregate to the surface to lower the overall free energy o f 
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the system. The surface free energy (Fs) and the bulk free energy (Fb) are thought of 

as two distinct components o f the overall free energy, however it has been shown 

that there is a coupling between Fs and Fb'13. This coupling accomts for a slower 

increase in surface excess than expected as χ， the Flory interaction parameter, 

increases. In experimental studies, a blend o f dueterated polystyrene (dPS) and a 

statistical copolymer poly(styrene-co-4-bromostyrene) (PBrS) is often used"^ as the 

Flory interaction parameter, χ， can easily be tuned by varying the amount of BrS in 

the copolymer. The advantage of this blend is that due to the 'tune abil i ty' o f the χ 

parameter it is a good representation o f a model blend. PBrS has a higher surface 

energy than dPS which leads the dPS to segregate preferentially at the surface. The 

driving force for surface segregation depends not only on the surface parameter but 

also on the bulk properties o f the blend such as χ and %c, the Flory interaction 

parameter at the critical point. The surface excess increases rapidly as χ tends 

towards Xc. 

The тофһо1о£у o f polymer blends in thin film systems has been of great 

interest from both the fundamental and technological viewpoints. In , for example, 

adhesives such as epoxy resins a thin film may ОССШ between two surfaces, here the 

тофһо1о£у o f the thin film can play an important role in the properties o f the 

adhesive and therefore control o f this morphology can be very important. Puri and 

Binder' '^ studied a thin f i lm in which a polymer blend undergoes phase separation 

between two adjacent surfaces which both preferentially attract the same component. 

It was found that for a small distance between the two surfaces it is possible to create 

a system in which layers are formed perpendicular to the surface tfeoughout the 

system. As the distance between the walls was increased however this structure gave 

way to the random co-continuous тофһою§у away from the surfaces. 

I t is noted that the amount o f noise (thermal flueณations) applied during the 

phase separation simulation w i l l also affect the final morphology o f the polymer 

blend. Using a cell dynamics simulation МгЛа^^^ found that as the noise strength 

was reduced the surface segregation waves formed out to greater depths տ the bulk 

o f the polymer blend and longer times were required for the layered structure to be 

replaced with disordered spinodal decomposition patterns. The effects o f thermal 

noise on the structure o f a phase separated polymer blend have also been տէսժւշճ^՛*. 

It is found that increasing the strength o f the noise leads to domains wi th broader, 

more diffuse interfaces. 
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To study the influence o f a surface on a polymer blend the model which has 

been extensively developed by Puri, Binder and Frisch*"' '" '^ '"^'"^" ' '^ is commonly 

used. The Cahn-Hill iard equation is used to describe the evolution o f the 

concentration in the bulk, but a term representing the surface effect is added, 

represented by the boundary condition, 

ϋτ õx 
(2-7.1) 

where R and χ are rescaled coordinates parallel and perpendicular to the sxirface and 

h i , g and γ characterise the static surface phase diagram such that at the surface, 

Ф ^ и і а с е ^ - - ^ (2-7.2) 

and γ is related to the correlation length. 

The competition between the surface field and the energy cost associated wi th 

a gradient in the order parameter creates an equilibrium value o f the order parameter 

at the surface and the above boundary condition is used to pin the surface value to 

this equilibrium value. A second boimdary condition, ճ յ լ ^ ^ = 0 , where J is the 

polymer flux, is used to ensure that the f lux o f the polymer components though the 

surface boundary is zero, which enforces conservation of the order parameter, where 

/ oc VŐF Ідф. Typically the first boxmdary condition, equation 2.7.1, is applied to 

one surface, at X = 0, and the second boundary condition is applied to two parallel 

surfaces at X = 0 and Ճ = Ճ ՛ . A l l the above variables are rescaled into dimensionless 

units. For two dimensional simulations, periodic boundary conditions are applied at 

the у = 0 and у = y ' surfaces. 

Jones^ developed a method to calculate hi and g from experimental variables, 

in this case the surface tension γ. The surface free energy can be described by ' " ' 

starting wi th a "bare" surface free energy term. 

ք^>'ՀՓ) = -հ,Փ-կտՓ\ (2.7.3) 
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I f the energy of contact between two monomers o f A is Є А А , that between two 

monomers o f в is Євв and therefore the contact energy between a monomer o f A and 

a monomer o f в is ε A B - The coordination number o f the lattice is said to be ζ and z' 

bonds are cut when a new surface is made, this means that the s ^ a c e energy term 

can now be written as, 

f ľ z՝ 
ksT 2k,T 

(2.7.4) 

=> — = — + ФС^^АВ - 2 ど ) + Ф ' { ^ Л А + £ в В ֊ ՜なAB ) ] ， (2-7.5) 

I f equation 2.7.5 ıs compared to equation 2.7.3 we can define, 

8 ~ к Ţ ІР'^АВ ~ どA4 ~ ^ВВ ) ， 

(2.7.6) 

(2.7.7) 

where surface energies are given by, 

ГА 2 ๙ 

Z ε BB 

շ ծ 2 

(2.7.8) 

(2-7.9) 

and b is the surface area o f the Flory-Huggins lattice cell. Rearranging equations 

2.7.8 and 2.7.9 in terms o f ЄАА and Євв and wr i t๒g Єдв in terms of the Flory 

interaction parameter, 

1 
ど ДВ 一 г 

квТХ 
(2.7.10) 

gives the coefficients hl and g m terms o f χ and the surface energy when substituted 

into equations 2.7.6 and 2.7.7. 
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g = ― , (2.7.12) 

where Δγ， is the difference in surface energies between the two blend components, 

given by, 

Ar = ะ ^ , (2.7.13) 

This argument however neglects any entropie factors arising from changes o f 

correlations near the surface and from local packing effects so is therefore clearly an 

approximation. 

2.7.2 Pore Conflnement 

As shown above studies have been undertaken into phase separation in thin 

films o f a polymer at a surface, another interesting area is phase separation in pores 

or ณbes. Here the diameter o f the tube can be approximately equal to, or smaller 

than, the wavelength o f the fastest grow๒g wave-vector, qm in figure 2.1， in the 

spinodal decomposition process. I f this is the case then phase separation cannot 

occur in the direction рефеп(ііси1аг to the surface and instead only occurs in the 

direction parallel to the surface, meaning that "plugs" within a tube can form, as 

schematically shown in figure 2.7. 

a b с 

Figure 2.7 

Examples o f the possible morphologies formed ш a pore (a) a plug, (b) a capsule and 

(c) a tube. 
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Lui et a l . " ^ '^' first proposed the above possible structores for binary 

mixtures in a cylindrical pore. In these studies a plug system was first formed in 

each case and it was found that by changing the attraction strength o f the surface for 

one o f the blend components it was possible to move between the plug, capsule and 

tube morphologies. It was also shown that these effects can be seen in more cases 

than just a tube with an example o f a plug at the point where three tubes meet. 

Clearly i f the change from the plug тофһо1о§у to the tube тофһо1о£у could be 

controlled then this system can be used to create valves wi thm a cylindrical pore. 

The dynamics o f the wetting process were then รณdied'^^՜՛^՛* wi th particular attention 

focused on the role o f hydrodynamic interactions within the system. Here it was 

found that the formation o f the wetting layer, the uniform layer formed at the surface 

shown in figure 2.7(c), depended strongly on the spatial dimensionality o f the 

geometric constraint. A growth exponent o f て 1'̂  was seen when the pore was very 

narrow and hydrodynamic effects were suppressed, however upon mcreasing the 

pore size it was found that the wetting dynamics were vastly increased as 

hydrodynamic effects increased the rate o f the phase separation process. It is 

assumed that when the pore size is too narrow the enhanced diffusion seen from 

hydrodynamic effects cannot occur due to the confinement. Lately the тофЬоюд іев 

of block copolymers within a cylindrical pore have been o f considerable interest. By 

confining block copolymers in this way it was found that a number o f novel self 

assembled layered structures'^^''^^ could be formed which in turn could be controlled 

by changing the surface attraction. I t has been noted however that a change in the 

block lengths did in itself not change the morphologies seen; however when surface 

alignment, strong sxirface interactions, was observed the kinetic rate o f the phase 

separation was increased. 

2.7.3 Patterned Surfaces 

I f the above ideas can be used on a surface which is patterned so that different 

areas o f a substrate are attractive to different components o f a polymer blend then 

many technologically useful materials could be produced. The patterns may also be 

able to direct chemical transfonnations, detect molecular recognition events or carry 

signals which could be useful in biological and medical applications. Another 

possible use of these systems could be in the area o f Polymer Dispersersed Liquid 
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Crystals (PDLC's), here a l iquid crystal is dispersed within a polymer matrix. In 

these systems it is important to create well defined l iquid crystal domains which are 

highly phase separated. Recently the use o f chemical patterning to grow polymer 

brushes on a รггіасе, therefore changing the polymer properties, has become an 

interesting area o f research'^^ '^^. Here thiols can be used to pattern coated wafers 

which are then used to grow polymer brushes at the surface changing the surface 

properties of the wafer. Stamps are used to "pr int" the chemical onto the wafers, 

which have been formed using A F M techniques, however focused ion beams have 

also been used to create these stamps in an attempt to reduce the pattern size'^°, here 

a beam of high energy ions is used to etch lines in a PDMS stamp. It has been 

suggested that i f one component o f the blend is a l iquid crystal then the brashes 

grown on the surface should be l iquid crystalline polymer brashes'^' and it has been 

shown that this is possible giving lines which are around 5μιη wide. This method 

has been used to pattern a substrate and then phase separation has been allowed to 

occur in a blend above this patterned area'^^. A circle pattern was used with a blend 

of poly(9,9-dioctylfluorene) PFO and poly(9,9-dioctylfluorene-a/ř-benzothiadiazole) 

F8BT and it was found that by patterning the substrate it was possible to control the 

phase separated тофһо1о£у to a high d e g r e e ' T h e o r e t i c a l l y these systems have 

been studied and growth exponents have been explored'^^ '^^. Once again a growth 

exponent o f て1。 is present but i f an alternating pattern is used then, due to the phase 

oscillations рефеп(ііси1аг to the blend, a checkerboard type morphology can form 

which propagates into the blend to the point at which phase separation becomes 

dominant. 

2.7.4 Dispersed Surfaces 

Finally particles can be dispersed in a polymer blend matrix and then phase 

separation can be allowed to occur around the particles. Immobile spherical 

nanoparticles'^^"'^^ and rods'^^ have been used and domain growth has been seen to 

be promoted due to the surface effects giving moφhology control i f the particles are 

correctly placed. It is clear that a system such as this can be used to promote a rich 

diversity o f new moφhologies and therefore potentially new materials. 
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2.8 Block Copolymer 

No review o f current research into polymer blends would be complete 

without an introduction to the work being carried out in the area o f block 

copolymers, the amount o f research undertaken on this matter is vast and therefore it 

is impossible to describe it all here. Pioneering work in the area o f block copolymer 

morphologies was carried out by Bates ՚՛"՛ who first described the morphologies seen 

in block copolymer blends in the wel l known diagram shown below: 

PS PS 
Spheres Cyl inders 

1 

OBDD 
PS, PI 

Lamel lae OBDO 

mm 
PI PI 

Cy l inders Spheres 

+ 0.17 0.28 0.34 0.62 0.66 0.77 
'ร 

Figure 2.8՛"° 

Effect o f varying composition on the morphology in a polystyrene-polyisoprene (PS-

PI) diblock copolymer where/ร refers to the volume fraction o f PS. 

Figure 2.8 shows the various тофЬо1о§іе8 present in a diblock copolymer 

blend as the volume fraction o f the polystyrene increases. The moφhology moves 

from a spherical structure at low PS volume fraction to a cylindrical structure then a 

gyroid (OBDD) structure and then finally to a lamellae structure. By ftirther 

increasing the volume fraction we see that the "matr ix" now becomes the lesser 

component and the sequence is reversed. The phase diagram for such a system is 

shown below. 
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Figure 2.9 

Phase diagram for a diblock copolymer blend. 

Figure 2.9 shows the areas of the phase diagram which lead to each 

moφhology, it can be seen that the area for the gyroid structure is very small wi th 

the lamellar and cylinder structures being the most easily seen. The interesting 

structures shown above have led to a great interest m to research in the area o f block 

copolymers as these highly order structures can lead to interesting applications. 

The first studies into block copolymers were focused on examining the 

effects o f adding a small amount o f block copolymer into a binary blend, here the 

block copolymer is expected to reside at the interface and compatibilise the system. 

Hashimoto^*'^^ studied the kinetics in such a system and found that the interfacial 

tension between the two polymeric components was affected by the addition of small 

amoimts o f copolymer however it was noted that on changing the amount of 

copolymer the kinetics remained constant throughout the system. It can be seen that 

this sort o f compatibilisation can be used to improve properties by increasing the 

strength of polymer blend interfaces. Recently however there has been considerable 

interest in blending nanoparticles wi th diblock copolymers, here hard walled 

particles are placed in a polymer blend, as ш 2.7.4, but here the blend is formed 

using diblock copolymerร''*''''*^. The reason for making use of block copolymers in 

these systems is that, as seen above, more structures can be formed which can be 

better controlled and which self assemble into usefixl moφhologies. These materials 
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can then be used as templates for organic and inorganic devices such as photonic 

band gap devices. The thermodynamic behaviour o f these polymer systems has been 

տէսճւշճ՛՛*^ and elegant new morphologies have been seen. When the particle size was 

comparable to the radius o f gyration of the minority block the particles preferentially 

attracted this block and three layer micelles are seen with a particle-rich inner layer 

wi th an A-block layer followed by a B-block outer layer. Other two and three 

dimensional тофЬо10£Іе8 have been proposed^"^ which depend on the size of the 

particles used and can form sheets, wires and dots. These systems therefore clearly 

have possible applications in polymer wires, circuit boards and photonic devices as a 

very ordered array structure is seen. B y varying the size o f the particles the 

тофһоюду of the system can be changed''*^ and therefore the mechanical properties 

of the material are effected. It has been shown'"*^ that smaller particle sizes lead to 

greater clustering of the particles and can lead to, for example, increased stiffiiess 

throughout the material. 
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Chapter З 

The Phase Separation Process 

In the fol lowing chapter a description o f the basic model used in the 

simulations, and examples o f the different moφhologies produced, are shown. Also 

an introduction is made to the one o f the mam methods used to study the dynamic 

growth o f phase separation ш polymer blends, the structure factor. For clarity 

intended for the reader from this point onwards ФА is referred to as ψ and фв is 

referred to as 1-ф. 

3.1 The One Dimensional Model 

The first step when creating a model to understand the properties o f the phase 

separation process is to create a one dimensional system, this is then used as a 

starting point for all the fol lowing work as it is conceptually the easiest to 

understand. In this initial model a one dimensional array is created o f length X. 

Values corresponding to the volume fraction o f one o f the components, Ψ, are then 

assigned to each position o f the array at the start o f the simulation, as shown in figure 

3.1. 

0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.ธ ิ เ 0.5 

Figure 3.1 

Example o f an init ial array used for a one dimensional phase separation simulation. 

Noise is first added to the system to account for the Cook'^ term and then the 

finite difference scheme shovra m equation 1.3.11 is solved for each array element in 

ณra. The noise is calculated to obey, 

(sir, て)， ど ( r \ τ ๅ ) ^ -ν'δ(Γ - r ๅδ{τ 一 0 ， (3.1.1) 

By using equation 3.1.1 a more random spread o f numbers is found than 

when just using the random number generator, in this case, taken from Numerical 

Recipes in Fortran 90՛՛*^, on its own. This linear congruency generator uses a 

mathematical algorithm to move from one random number to the next and a random 
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seed is stored at the end of each simulation to ensure that the random number 

generator starts its calculation from a different point each time. To satisfy equation 

3.1.1 it is necessary to generate two random numbers for each array position and then 

use equation 3.1.2 to generate a third number, therefore improving the statistical 

distribution o f the random numbers, for example in the two dimensional case "̂̂ , 

noise = (Vi (/ +1， ք} - Vi (¿， j ) ֊Ւ V2 0·， У +1) — v, (/， j ) l (3.1.2) 

where V i and V2 are random numbers, between -1 and 1， f o r each array position, 

addressed by і and ƒ This noise value is then multiplied by a noise magmtude, i.e. 

0.001, to give a final noise value in the range ±0.0^^ 

Periodic boundary conditions are used to model an array o f infinite size, here 

the array is allowed to 'wrap' itself around from element X = 1 to element X = X. The 

system is then allowed to evolve in the two phase region. This involves setting χ in 

equation 1.3.11 to be equal to χร, the value o f χ on the spinodal, and Xf is the point to 

which the system is quenched. This method mimics a system which undergoes a 

ІетрегаШге quench from a point on the spinodal line to a point inside the two phase 

region, defined by χ. A n example o f this system is shown below, here the system 

has an array size o f 128 array elements, although not all are shown to increase 

clarity, wi th init ial ly ψ = 0.5. A symmetric blend is used with N a = N b = 200 with 

Δτ and Δχ from equation 1.3.11 set to be 0.01 and 0.5 respectively. In this case 

initially χ = 0.01 and the system is quenched to χ = 0.0119. 
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Figure 3.2 

Мофһо1о§у found i n a İ D simulation at τ = 1000. 

Figure 3.2 shows an example morphology for component A at ^ 1000, 

where τ = number o f computational steps * Δτ, and in figure 3.2 X is the array size. 

We see a periodic structure has formed with coexistence values o f Ф ' = 0.3 and Φ " = 

0.7. It is possible to fol low the growth o f this strucณre wi th time, 

-Θ-

Figure 3.3 

Growth o f the morphology with time for three values o f τ. 

In figure 3.3 we see very little structure at τ = 1 but after greater phase 

separation we see an oscillating structure formed which then broadens wi th time at τ 

= 1000. This process can be characterised by using the structure factor, given by 
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equat ion 1.3.14; this is the Four ier T rans fo rm o f the array w i t h t ime and is shown i n 

figure 3.4. 
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Figure 3.4 

G r o w t h o f the structure factor w i t h t ime 

where q is a dimensionless var iable w h i c h corresponds to the exper imental quant i ty , 

q = (3.1.3) 

, - 2л-
and q = -

M x 

I n figure 3.4 the peak i n the structure factor grows and shifts to l ower q w i t h 

t ime. A s stated above q oc 1/Я so the shi f t o f the peak to the lef t i n f igure 3.4 

indicates a broadening o f the phase separated т о ф һ о 1 о § у . 

3.2 The Two Dimensional Model 

A l t h o u g h the one d imensional mode l can be used e f fec t ive ly to study the 

process o f phase separation i t is usefu l to extend the mode l to the t w o d imensional 

case. The method used for the one d imensional mode l is f o l l o w e d w i t h the addi t ion 

o f per iodic boundary condi t ions on the у axis. 
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3.2.1 Radial Averaging 

When a two dimensional simulation is undertaken the structure factor is 

calculated using a two dimensional Fast Fourier Transform (FFT) and can be 

compared to the scattering pattern found from Small Angle Light Scattering (SALS). 

A comparison o f a SALS scattering pattern and the two dimensional Fast Fourier 

Transform is shown below, 

(a) (b) 
Figure 3.5 

Comparison o f scattering patterns from (a) a SALS experiment''*' and (b) a two 

dimensional Fast Fourier Transform, also shown is the radial averaging array. 

A comparison o f figures 3.5(a) and 3.5(b) shows similar scattering patterns in 

each case, however the two dimensional scattering patterns needs to be converted 

into the one dimensional structure factor, this is done by radial averaging which is 

the method used both experimentally and theoretically. Radial averaging may be 

performed since the structure factor depends only on the magnitude o f q, this is a 

consequence of the phase separation being isotropic. The process of radial averaging 

has been graphically described in figure 3.5(b), here 5 'radial bins' can be seen along 

the q axis, within each bin the magnitude o f each point is considered and is added to 

the total b in value. This 'b innmg' method gives a number o f bins wi th values 

corresponding to the sum of the magnitude o f each point within the bin, therefore 
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giving a one dimensional representation o f the frequency o f each bin along the q 

axis. 

3.2.2 Examples of Quenches into the Two Phase Region 

Firstly an example o f the morphology formed when a 50:50 symmetric (Na = 

Nb ) blend, as shown in figure 1.3, is quenched from a point on the spinodal, χ = 0.01, 

to a point in the two phase region, χ = 0.0133, is shown. The simulation is carried 

out on a 1282 array with Δτ = 0.0001 and Δχ = 0.25 with a noise value o f ±0.001 

added once at the start o f the simulation. 
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Figure 3.6 

Spinodal decomposition in a 50:50 symmetric blend at (a) τ = 1, (b) τ = 5, (с) τ = 10, 

(d) τ = 50， (e) て = 100 and (f) τ = 150. Extra colours have been added to improve 

picture contrast wi th the maximum and minimum phase concentration shown in the 

legend. 

From figure 3.6 we see that at small τ , phase separation results in domains 

with coexistence volume fractions of Ф' = 0.1 and Φ" = 0.9， as shown in the legend. 

As the simulation progresses however it can be seen that the small co-continuous 

domains aggregate together and domain broadening occurs, this reduces the overall 

free energy o f the system and is therefore a favourable process. The phase separation 
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and d o m a m g row th process is f o l l o w e d us ing the structure factor, found as described 

above and shown i n figure 3.7. 
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Figure 3.7 

G r o w t h o f the strucณre factor at var ious t imes as shown in the legend and 

corresponding to the тофЬо1о§ іе8 i n figure 3.6. 

The ma in structure factor peak can be seen to increase i n magni tude and shi f t 

to smal ler q w i t h t ime, the sh i f t ing to lower q o f ร(q,T)max, the m a x i m u m o f the 

structure factor peak, indicates doma in broadening is occurr ing. The change i n the 

value o f s ( q ， て ) is a consequence o f the phase separation process. T o fiirther i l lustrate 

the process o f domain broadening a compar ison o f typ ica l morpholog ies taken from 

the same s imula t ion, at t w o d i f ferent t imes, after a quench is also shown i n f igure 

3.8. 
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a 

Figure 3.8 

Compar ison o f doma in size at (a) τ = 2500 and τ = 7500 o n a 256^ array. 

I n the above s imula t ion a co-cont inuous structure is fo rmed as equal amounts 

o f each component are present, however figure 3.8(b) has had a greater amount o f 

t ime to undergo doma in broadening to reduce the overa l l free energy and therefore 

larger domains o f each component are present w h e n compared to figure 3.8(a). I f 

however a 70:30 b lend is used, so w e have a greater vo lume fraction o f one 

component than the other, then a droplet morpho logy is seen i n figure 3.9. 
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Figure 3.9 

Spinodal decomposi t ion ш a 70:30 symmetr ic b lend at (a) τ = 1, (b) τ = 5, (с) τ = 10, 

( d ) τ = 50, ( e ) τ = 1 0 0 a a d ( f ) x = 150. 

I n this system N A = N B = 200 and the b lend is agam quenched from the 

spinodal, χ = 0.0119， to χ = 0.0133 such that Ф' = 0.1 and Φ" = 0.9 with Δ τ = 0.0025, 

Δχ = 0.5 and a noise value o f ± 0 · ^ ^ Here w e again observe doma in broadenmg; 

however droplets are fo rmed as this structure creates the smallest amount o f A - B 

interface. A g a i n the structure factor can be p lo t ted fo r a number o f d i f ferent t imes 

and its m a x i m u m is again seen to g r o w and shi f t to lower q w i t h t ime ind icat ing 

phase sq jara t ion and doma in broadening. Note that a l though the structure is droplet 
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l ike the under ly ing length-scale f r o m spinodal decomposi t ion is retained as 

h igh l igh ted by the existence o f the peak i n the structure factor i n f igure 3 .10. 
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Figure 3.10 

G r o w t h o f the strucmre factor at var ious t imes as shown i n the legend and 

correspondmg to the тофЬо10£ ІЄ8 shown i n f igure 3 .9 . 

A n example o f a quench i n an asymmetr ic system is also shown, here N A 本 

N B SO a phase d iagram such as that seen i n figure 2.2 is present and for easy 

compar ison w i t h the results for a symmetr ic b lend a 50:50 compos i t ion is again used. 

Here N A = 2 0 0 and N B = 4 0 0 and a quench f r o m the spinodal , χ = 0 . 0 0 6 2 5 , to χ = 

0.0108 is mder taken . Once again Δ τ = 0.0025 and Δχ = 0.5 w i t h a noise value o f 

±0.001 is added at the start o f the s imula t ion and the results are shown i n f igure 3 . 1 1 . 
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Figure 3.11 

Spinodal decomposi t ion in a 50:50 asymmetr ic b lend at (a) τ = 1, (b) τ 

10， (d) τ = 50， (e) τ = 100 and ( f ) τ = 150. 

5 , ( с ) т = 

The equ i l i b r ium composi t ions i n this case depend on the b inoda l curve and as 

stated i n equations 1.1.7 and 1.1.8 i n a system such as th is , where N A 本 N B , the curve 

is found b y equat ing the chemical potent ials i n each phase, i.e. ЦА' = ЦА" and Цв' = 

Цв". B y compar ison w i t h f igure 3.6 i t can however be seen that the co-cont inuous 

s t r ac toe present i n that example is not apparent ш the current case. Here phase 

separation occurs to Ф' = 0.2 and Ф" = 0.9 with the volume in each case being given 

by the lever ru le , equat ion 2 .1 .1 . Th is means a droplet type structure once again 

forms as the vo lume f ract ion o f each phase is not equal, however a compar ison o f 
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figures 3.9 and 3.11 shows that the structures are very d i f ferent as w e do not have a 

s imple case o f d i f f e r ing vo lume fract ions. Once again domain broadenmg is 

observed as the system attempts to reach its m i n i m u m energy state and the structure 

factor can be p lot ted, as shown i n figure 3.12. 
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Figure 3,12 

G r o w t h o f the structure factor at var ious t imes as shown i n the legend and 

corresponding to the тофЬо1о§ іе8 shown i n figure 3 .11 . 

I n th is case the m a x i m u m i n the structure factor is again seen to g r o w and 

shi f t to l ower q as an ind icat ion o f the phase separation and domain broadening 

processes. 
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Chapter 4 

M u l t i - S t e p Quenches i n t o the T w o Phase Reg ion 

The phase separation process shown i n chapter 3 has been extensively studied 

i n great detai l fo r many years and is therefore not invest igated ftirther here. The 

mode l ш chapter 3 is n o w used as a basis for a l l the f o l l o w i n g wo rk . A s described i n 

chapter 2.2 theoret ical w o r k on a mul t i -s tep quench process, such as that shown i n 

f igure 2.4, is very l im i t ed and w i l l therefore be considered i n greater detai l i n the 

f o l l o w i n g study. 

4.1 T w o - S t e p Q u e n c h Process 

Fi rs t l y the elegant and ordered тофЬо1о§ іе8 f o rmed i n a t w o step quench 

system are รณdied. I n this system w e def ine three values o f χ , i n i t i a l l y that on the 

spinodal , To i n f igure 2.4, is def ined as χο. W e then quench to the po in t T i , def ined 

as χ ι i n this system. The s imula t ion is then a l lowed to equi l ibrate fo r t w o d i f ferent 

lengths o f t ime before be ing thrust fur ther in to the t w o phase reg ion to the po in t %2, 

as shown i n figure 2.4. T o keep the length scal ing o f the system consistent 

throughout the s imula t ion equat ion 1.3.11 is re-wr i t ten as. 

+-

^Α(Χ/-ΖΟ) ^ B İ Z f - Z o ) Zf֊Zo 

3 6 ( С Г ( 1 ֊ С ) ( 2 Μ ' 

(4.1.1) 

such that χ (appearing i n the th i rd te rm i n the summat ion on the right hand side o f 

equat ion 4.1.1) is either χ ι or %2 depending on the quench be ing xmdertaken. 

4.1.1 T h e I n i t i a l Q u e n c h i n t o the Two-Phase Reg ion 

The first quench was undertaken from χο = 0.01 to χ ι = 0.0104, w i t h 

structural evo lu t ion be ing a l l owed un t i l t w o d i f ferent quench t imes, Xi = 2500 and 

7500. I n each case a w e l l def ined in i t ia l structure develops, and then a second 

65 



quench was appl ied to three d i f ferent 12 values o f 0.0133, 0.0125 and 0.0119. T o 

determine s t r u c t o e factors, each result was averaged over 10 runs and the on ly case 

studied was the symmetr ic case (NA = NB) . These values o f the interact ion 

parameters were chosen to a l l ow an explorat ion o f a s imi lar reg ion o f the phase 

d iagram to that studied b y Hash imoto et a l ^ ^ . W h i l s t the values o f thei r interact ion 

parameters (χร = 0.00145, χ ι = 0.00151 and 1г = 0.00175) d i f fe r from the values 

here, these parameters were chosen fo r computat ional convenience and to achieve 

s imi lar values o f the equ i l i b r i um coexistence composi t ions at the first and second 

quench depths. The w o r k was carr ied out on a 256^ t w o d imensional latt ice us ing 

per iodic boundary condi t ions, the in i t ia l concentrat ion o f the mat r i x was set as φ = 

0.5 w i t h an in i t ia l random noise o f 土 0.01 appl ied at the start o f each quench. The ᅀτ 

( t ime step) value used dur ing the tempora l discret isat ion was 0.0025 and the spatial 

discret isat ion was Δχ = 0.5. T o keep the length scal ing o f the system consistent Xf 

was fixed throughout the s imulat ion, such that Xf = X2, as seen ш equat ion 4 .1 .1 . 

Th is choice o f scal ing ensures that the latt ice size is fine enough to capture the 

relevant phase separation length scales dur ing bo th the f i rst and second quenches and 

also avoids the phenomenon o f p inn ing , as described prev ious ly . The degree o f 

po lymer isa t ion was chosen such that Xc = 0.01 fo r a l l s imulat ions dur ing both the 

p r imary and secondary quenches. 
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Figure 4.1 

Deve lopment o f the т о ф һ о 1 о £ у f o l l o w i n g a quench into the t w o phase reg ion w i t h 

χ ι = 0.0104. Quench t imes after the quench are (a) T| = 625, (b) Xi = 1250, (c) て 1 = 

2500 and (d) Xi = 7500. The in i t ia l condi t ions ( random noise) were d i f ferent fo r (c) 

and (d) ; hence, the structure i n (d) is not s imp ly a coarsened version o f the structoire 

i n (c) . 

I n f igure 4.1(a) - (с) a series o f snapshots can be seen w h i c h show the g row th 

and broadening o f t w o domains f r o m the single-phase po lymer ic mix tu re in to a t w o -

phase system. Due to symmetry the strucณres exh ib i t the characteristic co-

cont inuous morpho logy . 

The quench depth corresponds to an equ i l i b r i um т о ф һ о 1 о § у w i t h Ф' = 0.33 

i n the B- r i ch phases, and due to symmetry , Ф" = 0.67, i n the A - r i c h phases. Figures 

4.1(c) and 4.1(d) show a compar ison o f the typ ica l тофЬо1о§ іе8 fo r the t w o 

d i f ferent t imes at w h i c h the second quench was appl ied. The equ i l i b r i um 

compos i t ion w i t h i n each phase has been reached b y Ti = 625. 

A s already noted, the g row th process can be quant i f ied b y determin ing the 

evo lu t ion o f the structure factor w i t h quench t ime, as shown in f igure 4.2， 
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Figure 4.2 

The rad ia l ly averaged strucณre factor, ร ( q , T ) vs. q fo r several values o f Ti and χ ι 

0.0104. 

F r o m figure 4.2 w e see that at て1 = 0 negl ig ib le structure is present since the 

system is s t i l l homogeneous, but as the т о ф һ о 1 о £ у develops and broadens w i t h 

quench t ime, the structure factor increases i n intensi ty w i t h a part icular wave vector 

domina t ing ( q m a x ) , and as expected the pos i t ion o f Qmax decreases w i t h quench t ime. 

The results thus far have prev ious ly been considered i n detai l b y a number o f 

authors'^ and i n the previous chapter; hence the single quench case w i l l not be 

discussed ñir ther. 

4.1.2 Second Q u e n c h i n t o the Two-Phase Reg ion 

The second step was carr ied out to three d i f ferent quench depths, X2 = 0.0133, 

0.0125 and 0.0119, and was again averaged over 10 runs i n order to determine the 

strucณre factor. A n example o f the d o m a m g row th can be seen in f igure 4.3. 
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Figure 4.3 

Development o f the po lymer m o φ h o l o g y f o l l o w i n g a second quench in to the t w o 

phase reg ion w i t h %շ = 0.0133. Quench t imes after the second quench correspond to 

(a) X2 = 0， (b) て2 = 3.75, (с) て2 = 6.25, (d) Հշ = 12.5 (e) Հշ = 50 and ( f ) 375. 

No te that a l though exper imenta l ly the m o b i l i t y is t empera toe and hence 

quench depth dependent, i t is not necessary to exp l i c i t l y account fo r this since the 

t ime steps are scaled b y the mob i l i t y . Hence the di f ference between m o b i l i t y dur ing 

the first and second quench can be ref lected i n a d i f ferent scal ing factor f r o m 
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numer ica l t ime to real t ime for each o f the t w o stages. Impor tan t ly , the structural 

g row th is not af fected b y this assumption. 

A s the s imula t ion proceeds, smal l secondary domains o f each po lymer appear 

i n the larger p r ima ry domains. Th is is a consequence o f the in i t i a l l y favoured 

lengthscale (the fastest g r o w i n g flueณation), as determined from l inearised theory, 

be ing smaller than the p r imary strucณral scale. A l t h o u g h these secondary domains 

are in i t i a l l y dynamica l l y favourable, they 'd isso lve ' in to the surrounding phases 

since they create large inter fac ia l areas and a large increase i n free energy. The 

structure i n f igure 4.3(c) is par t icu lar ly notewor thy : not on ly are the secondary 

domains strongly phase separated, the droplets are apparent ly regular ly spaced (as 

revealed quant i tat ive ly b y the scattering m a x i m u m from the mterference o f the 

scattering f r o m secondary domains) . Th is h igh l ights the possib i l i ty o f us ing such 

quench sequences to develop regular т о ф Ь о ю д і е з that may have unusual phys ica l 

propert ies. Eventua l ly , the or ig ina l т о ф һ о 1 о § у is returned but w i t h concentrations 

o f Ф' = 0.1 and Ф" = 0.9. Th i s is c lear ly seen b y compar ing f igures 4.3(a) and 4 . 3 ( f ) ; 

the strucณres are very s imi lar but the contrast between phases has increased. The 

po in t at w h i c h the second quench step is started to the po in t at w h i c h the or ig ina l 

т о ф һ о ю д у (i.e. no secondary structure) is returned depends on quench depth. The 

deeper the depth o f the quench the longer i t takes to г е Ш т the m o φ h o l o g y to its 

or ig ina l state. I f the p r imary т о ф һ о 1 о £ у is broader then more t ime is needed to 

return to this o r ig ina l m o φ h o l o g y . 
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ťigure 4.4 

Development o n the strucณre factor: (a) a compar ison o f ร ( q ) immedia te ly p r io r to 

the second quench at て2 ^ and at Հշ = 12.5, fo r X2 = 0.0133 and τ ι = 7500, (b-g) for 

var ious values o f て2 as shown m the legend, after a p r imary quench o f Ti = 2500 fo r 

( b ) x 2 = 0.0119, (c) X2 = 0.0125, (d) X2 = 0.0133, and τ , = 7500 for (e) X2 = 0.0119, 

( f ) X2 = 0.0125, (g) X2 = 0.0133. I n (b -g ) , ร ( q ) at each t ime step has been d iv ided b y 

the values o f ร ( q ) when the second quench was in i t ia ted. 
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Figure 4.4(a) shows the structure factor at the start o f the second quench and 

after て2 = 12.5. The development o f the secondary strucณre manifests i t se l f as a 

weak but d ist inct shoulder. F r o m equat ion 4.1.1 g row th o f the f o r m , 

5 ( q , r , ) / 5 ( q , r , = 0 ) = e x p { i ? ( q ) r , } , (4.1.2) 

where R ( q ) is the g row th rate o f flueณations w i t h wavevector q , is predicted fo r a 

quench from a homogeneous state w i t h on l y very weak flueณations. However , the 

presence o f the secondary structure is a consequence o f the behaviour o f such 

fluctuations superimposed on an inhomogeneous background; hence, i t seems 

reasonable to factor out the structure factor at the start o f the second quench. No te 

that w e also considered the ef fect o f subtract ing 5՝(q，て2 = о); however this resulted 

i n less w e l l def ined secondary structure factors that d i d not show exponent ia l g row th . 

The factor isat ion may not however necessari ly be legi t imate i n the later stages o f the 

second step phase separation i n w h i c h non- l inear effects i n the t ime evo lu t ion 

process become increasingly important . Figures 4.4(b) 一 4.4(g) show the g row th o f 

this secondary peak. 

A s て2 increases, the magni tude o f the secondary peak also increases. 

Eventua l ly the peak stops increasing i n magniณde and decays as the secondary 

s t r uc toe disappears, as can be seen i n figure 4.5. 
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Decrease i n magni tude o f secondary strucณre factor for three values o f て2， w i t h %2 = 

0.0133 and τ ι = 7 5 0 0 . 

4.1.3 T h e S t r u c t u r a l G r o w t h w i t h T i m e 

D u r i n g the early stages o f g row th i t was found that the strucณre factor 

in i t ia l l y increased exponent ia l ly w i t h t ime as shown i n f igure 4.6. 
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Figure 4.6 

G r o w t h o f the strucณre factor, ร ( ς , τ ) , w i t h t ime, て 2， fo r var ious wavevectors, q , as 

indicated i n the legend, after τ ι = 2500 and w i t h X2 = 0.0119. The l ines show the 

fitting used to determine the g row th rates dur ing the early stages. 

B y f i t t i ng the numer ica l results to equat ion 4.1.2, the g rowth rates R ( q ) have 

been determined i n f igure 4.7. 
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Figure 4.7 

Early stage growth and decay of secondary strucณre analysed using linearised theory 

for (a) て1 = 2500 and (b) て1 = 7500 and three quench depths of χ2 = 0.0119 (พ),χ2 = 

0.0125 ( · ) and X2 = 0.0133 ( À ) . 

Using Imearised theory it is possible to predict the growth rate during the 

early stages of the second quench in a two step process, i f equation 1.3.10 is 

linearised with N A = N B = N this gives, 
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dt " շ 7 " ' w . 

2z 1 

(;ІГ/֊;ІГО) 18(Í(1֊Í/J) 
-V 2 δφ. 

( 4 . 1 . 3 ) 

where X2 is the final χ value and χο is the initial χ value. By carrying out a Fourier 

Transform the equation becomes. 

dt = 2 ^ 
δφ. 

( 4 . 1 . 4 ) 

therefore 

1 2 j 1 

q 2 — — - ^ գ \ 
\т֊ф) 

(4.1.5) 

It is known that the fastest growing wave vector occurs at q max which 

corresponds to, 

q 
A 

IB 
(4.1.6) 

where, 

and, 

A = ——\ ^ ， ( 4 . 1 . 7 ) 

^ ( ； } Τ / - Ζ ο ¥ ( 1 - ฬ Xf-Xa 

в = ֊-
1 

Щ{1֊ФУ 
(4.1.8) 

and as in the second quench χ = %2, 

q ' 
18 

Xf ~ Zo 2N 
(4.1.9) 
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by taking χο as shown in equation 1.1.11 and by using, 

IN 
(4.1.10) 

it is found that, 

q ^ ^ - - - ^ พ \ ( 1 - ^՚՚^օ) ֊ x.ł\(\ - Փ'\)\, (4.1.11) 
Հք Zo 

where is the volume fraction (Փ՚^՚^օ^ ՚/շ for all the calculations) at the start of the 

first quench, and փ ( 2 )0 is the volume fraction within one of the two phases at the start 

o f the second quench. Table 1 shows the predicted positions of the fastest growing 

wavevector, based on փ ( 2 )0 = 0.33, the composition on the coexistence curve for χ ι = 

0.0104. 

Ятах 

X Predicted τι=2500 

0.0119 1.1 2.5 2.3 

0.0125 1.6 2.8 2.8 

0.0133 2.1 3.2 3.4 

Table 4.1 

Comparison of the predicted and observed fastest growmg wavevectors as a function 

of secondary quench depth. 

The predicted quench depth dependence of զ腿 follows the same trend to that 

seen in the simulations, however the values do not seem commensurate wi th those 

predicted using Cahn's linearised theory, and this suggests that it is not possible to 

capณre the trae early stages of secondary domain growth, particularly for larger q. It 

is noted that the above calculations assume an infinite system, whereas the secondary 

phase separation is effectively occurring within restricted domams. The disparity 

between the early stage theory and the results for larger q is highlighted in figure 4.8 

where R(q)/q^ is plotted against q 2 . From equation 4.1.5 it is clear that such a plot 

should be linear. 
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Plot of R(q)/q^ vs. q 2 , showing that linearity is observed only for smaller values of q. 

Figure 4.8 shows however that the results are not linear throughout and are 

only linear at low q. The behaviour at lower values of q is however well 

characterised by linearised theory. 

From equation 4.1.5 it is possible to calculate the theoretical gradient and 

intercept for a set o f data when R(q)/q^ vs. q2 is plotted. 

Gradient 
1 

Intercept 

(4.1.12) 

， (4.1.13) 

The results during the early stages for each simulation are summarised in table 4.2， 
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Results Calculated 

1st step τ Χ Gradient Intercept Gradient Intercept 

2500 0.0133 -0.0627 0.856 -0.116 0.8735 

2500 0.0125 -0.0575 0.795 -0.116 0.835 

2500 0.0119 -0.0617 0.736 -0.116 0.785 

7500 0.0133 -0.0717 0.877 -0.116 0.8735 

7500 0.0125 -0.0567 0.794 -0.116 0.835 

7500 0.0119 -0.0633 0.738 -0.116 0.785 

Table 4.2 

Summary of simulation results for two different initial steps (τι = 2500 and 7500) 

quenched to χ ι = 0.0104 and then quenched to X2 = 0.0133, 0.0125 and 0.0119 

The results shown in this table are very sensitive to changes in φ̂ ^̂ ο and the 

results again show that it is not possible to capture the very early stages of secondary 

domain growth. 

4.1.4 Variation of the Secondary Quench Depth 

The results shown thus far have been for quenches where %2 is identical to Xf, 

hence the scaling for each simulation is different. It is therefore diff icult to make 

quantitative comparisons of the secondary structure between the three different 

secondary quenches, particularly wi th regards to the degree of secondary phase 

separation. Hence we also conducted simulations in which the scaling ( x f - χο) was 

fixed (Xf = 0.0133, χο = 0.01) but %շ i.e., the secondary quench depth, was varied. 

The first quench depth (χ ι = 0.0104) was identical in each case. Clearly it is not to 

be expected that all quenches w i l l result in a secondary structure; not only does the 

secondary quench depth have to be large enough that each domain becomes unstable 

ie . , 

І2 
1 

(2)„ 
(4.1.14) 

but also the favoured secondary strucณre must be smaller than the length-scale of the 

larger domain. This is illustrated տ figure 4.9， in which the maximum value of the 

structure factor with time for various secondary quench depths is shown in figure 4.9. 
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Figure 4.9 

Plot showing (a) the change in the maximum value of the secondary structure factor 

wi th time for various values of X2 and (b) the peak value of the secondary strucณre 

factor for varying values of %շ. 

It can be seen from figure 4.9 that the deeper the quench the greater the 

change of the structure factor wi th time. When the secondary quench depth is only 

slightly deeper than the primary quench no secondary structure is observed, and only 

a slight growth in the strucณre factor is seen due to continued domain broadening. In 

figure 4.10, the тофһо1о§у at a time corresponding to the peak in the secondary 

strucmre factor is shown for various quench depths. Clearly, as would be expected, 

the greater the quench depth, the greater the degree of secondary phase separation 

and the finer the secondary тофһо1о§у. 
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Figure 4.10 

Secondary structure: (a) %շ = 0.0133, T2 = 9; (b) X2 = 0.0124, T2 = 21; (c)x2 = 

0.01119, T2 = 33; (d) X2 = 0.01115, էշ = 65; (e) X2 = 0.01111, էշ = 112; (f) %շ = 

0.01106, էշ = 166 corresponding to the time of the maximum вїшсШге factor (figure 

4.9). 

To quantify the secondary process further, we isolated domains in which ψ > 

՝/շ at the start o f the second quench, and probed the dynamics by considering the time 

dependence of the variance defined by, 
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variance = ֊ - Ę խ յ ( յ - շ ) ֊ ^ ( 7 շ ) ] ^ , (4.1.15) 

т ^,(քշ=0)>1/2 

The average 꺄 (て շ ) was also only determined for lattice sites in which φ(τ = 

0) > ՚/շ, and N T corresponds to the number o f such lattice sites. The advantage of 

equation 4.1.15, which can also be easily measured experimentally with image 

analysis techniques, is that we remove factors due to the primary strucณre. In 

particular, when no secondary phase separation occurs, the variance only varies 

slightly from zero due to the random flueณations. 
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Figure 4.11 

Variance of ψ for various different second quench depths as indicated by the numbers 

in the inset. The numbers 1， 2 and 3 refer to the three stages of the second quench, as 

discussed in the text. 

As can be seen in figure 4 . Π , increases the variance goes through three 

distinct stages. A t stage 1 the maximum degree of secondary phase separation 

occurs, after this the secondary phase disappears; hence the subsequent reduction in 

the variance. By stage 2, the secondary phase separation has been "absorbed" back 

into the larger phases and the original тофһо1о§у has been returned. Between 

stages 2 and 3 the domains continue to broaden so the variance again increases with 
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て2 since the originally isolated regions wi th ψ > ւ/շ no longer correspond to the 

primary morphology. It can be seen that the deeper the quench the greater the 

changes in variance. When no secondary phase separation occurs the variance still 

increases due to the domain broadening effects, but there is no peak. 
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Figure 4.12 

Comparison o f (a) the maximum variance and (b) the time o f the maximum variance 

with secondary quench depth X2 for a first quench of τ ι = 2500 and 7500. 

The increased degree of secondary phase separation, as measured by the 

variance, is illustrated clearly in figure 4.12(a); as X2 increases so does the maximum 

value of the variance. Similar trends can be seen for both て 1 = 2500 and Xi = 7500, 

although the degree of secondary phase separation is greater for the latter case when 

X2 > 0.0120. We also show ш figure 4.12(b) that the time at which the greatest 

secondary structure occurs decreases as the quench depth increases. It is interesting 

to note that there appears to be an abrupt change in behaviour at %2 « 0.0120 fOT ^ = 

7500, and X2 « 0.01225 for τ ι = 2500 but the reasons for this are unclear. 

The absolute value of the variance as illustrated in figure 4.12, is clearly a 

useful tool for qualitative comparisons between quench depths, however, it is 

possible to ftirther quantify the process since we can determine the maximum 

theoretical variance. We reasonably assume that the maximum degree of secondary 

phase separation corresponds to the two secondary phases attaining the coexistence 

compositions, Ф' and Φ", associated with the secondary quench depth as determined 
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by the binodal curve. First we need to determine the theoretical area that would be 

occupied by each o f the two secondary phases using the Lever rule, v V + v * ' ^ " = νφ, 

where, as shown previously, the total area of the domain is V， and V՛ and v" are the 

areas of the phases with compositions Փ՛ and Φ" respectively. Since V = v՝w\ 

^՝=^^-Փ^1[Փ՝-ՓՎ and ν՝՝^ν^>-φ)ΐ{φ'՝-φ՝) 

Hence, i f we further assume รһаф interfaces, the maximum theoretical 

variance corresponds to, 

variance„_ = (4.1.16) 

The minimum and maximum polymer concentrations (Փ՛ and փ՛ ՛) are 

determined from equation 1.1.10. 
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Figure 4.13 

Comparison of the maximum theoretical variance and the maximum variance found 

by simulation for (a) first quench of Ti = 2500 and (b) τ ι = 7500. 

Whilst the theoretical variance and the variance determined from the 

simulation fol low the same trend, as shown in figure 4.13, the secondary phase 

separation is unable to reach 'completion' before penalties due to interfacial energy 

become too costly, and diffusion enables larger scale rearrangement. It is also clear 

from figure 4.13, that the larger the initial structure the smaller the difference 
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between the theoretical variance and the actual variance, in agreement with the 

observations of Hayashi et al."*^. This is due to the secondary phases being able to 

develop ftirther before 'interaction' with the primary structure becomes significant. 

Again there appears to be an abrupt change in behaviour at J2 « 0.0120 for て 1 = 750^^ 

and X 2 « 0.01225 for T ļ = 2500. 

4.2 Continuously Quenched Phase Separation 

The next step in the evolution of the modelling of spinodal decomposition is 

to investigate a contmuously quenched system^^. During this process χ is constantly 

increased with time and the noise term, removed from equation 1.3.10, is replaced. 

The phase behaviour expected for this process is shown in figure 4.14. 

Spinodal Coexistence 

Figure 4J4 

Phase diagram of a symmetric monodisperse polymer blend undergoing a continuous 

quench from the single phase region into the two phase region. 

The dynamics and array set-up does not change from that seen previously, 

however in the current case with each time step χ is recalculated to correspond to an 

increase in χ on the phase diagram and random noise is added every 100 time steps. 
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Figure 4.14 shows a quench starting at To, corresponding to χο, and which ends at T ] , 

correspondmg to Xf. We assume a simple linear variation of χ wi th time, 

Հ{1^) = Հօ+^4ք, (4.2.1) 

So that at the start o f the simulation (て = 0), χ = χο but as the simulation proceeds χ 

tends (with each time step) to χ = Xf. In equation 4.2.1 α is a constant term which 

determines the rate of quenchmg 

The value of χ is then re-calculated for each time step undertaken. The 

simulations are carried out on a 256^ array using a symmetric blend. Random noise 

( 土 0.001) is added every 100 steps, these values are chosen from trials to asses the 

effect of noise on the тофЬою§ іса1 growth within the system. It is found that the 

effect o f adding noise every time step is negligibly different to the effect o f adding 

noise every 100 steps, however the simulation is slowed considerably the more often 

noise is added, it is therefore more efficient to add noise as little as possible as long 

as the results are not affected. The value of Δτ used was 0.0025, with Δχ = 0.5 and 

φ = 0.5. 

The structure factor is agam studied using radial averaging to understand the 

domain growth of the polymer blend. The simulation is quenched to Xf = 0.0133 

from χο = 0.01 contmuously. 
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Figure 4.15 

Growth o f the structure factor for a continuous quench for various values of τ as 

shown in the legend. 

The graph of the growth of the structure factor, figure 4.15, again shows the 

maximum of the peak increasing as one wave vector becomes dominant. The peak 

shifts to lower q, however this shift seems to be less apparent than in the single 

quench system and the peak appears to have a narrower distribution. This could be 

because the peak does not arise until a greater time has passed in this system and 

because fewer growing wavelengths are present when compared to the single quench 

system. 
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Figure 4.16 

Comparison of the growth of a single quench process (a)-(e) wi th a contmuous 

quench (f)-( j). (a) and (f) τ = 12.5， (b) and (g) τ = 50， (с) and (h) τ = 75, (d) and (і) τ 

= 100 and (e) and (j) τ = 125 when Xf= 0.0133 
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Figure 4.16 clearly shows the difference in the early stages of growth 

between the single and continuous quench process. In the continuous quench no 

phase separated moφhology is seen until τ = 50， however in the single quench phase 

separation is seen almost immediately, by て = 12.5. At the end of the simulation the 

domain morphology of both systems becomes comparable as Xf is the same in each 

case. I f the simulation is undertaken to larger τ the domain тофЬо1о§іе8 broaden to 

similar sizes, as seen in figure 4.17. 

Figure 4.17 

Comparison of final тофЬо1о§іе8 for (a) a single step quench and (b) a continuous 

quench at τ = 2500 and where Xf = 0.0133 

The continuous quench process has a greater magniณde of phase separation 

when the simulation is undertaken to larger τ. To explain the difference in 

compositions between short and long simulation run times it is usefiil to understand 

how the quench depth is changing compared to the χ value of the quench depth and 

the χร value o f the spinodal curve. For this reason we define three values of χ, the 

first is χร given by equation 1.1.11, the second is Xa which is again found using 

equation 1.1.11, however the value of φ used is taken as the maximum of the 

composition in the phase separated structure. Finally we define χ as the value taken 

from equation 4.2.1 at each time, χ and χร are shown diagrammatically in figure 

4.14. In simpler terms, χร is the spinodal line, χ is the quench set in the system and 

Xa is the true phase position of the system. 
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Simulations were carried out for long shallow (τ = 2500, X f = 0.0101) 

quenches, for long deep (て = 2500， X f= 0.0133) quenches, for short shallow ( て = 125, 

X f= 0.0101) quenches and for short deep ( て = 125， X f= 0.0133) quenches, the results 

are summarised in figure 4.18. 
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0.0104 

0.0103 

0.0102 

0.0104 

0.0103 

0.0102 

0.0101 

b 

900 

с d 

Figure 4.18 

Comparison of Xa ( 園 ) ， x ( « ) a n d X s ( À ) for (a) τ =125, Xf = 0.0101, (b) τ = 125, Xf = 

0.0133, (с) τ = 2500, X f = 0.0101 and (d) τ = 2500， X f = 0.0133. 

Figure 4.18 can now be used to explain the results found in figure 4.16, here 

we find that when the simulation is undertaken to low τ, Xa does not pass far enough 

into the spinodal region to see phase separation unti l τ is around 50. This is why no 

moφhology is present at the start o f the simulation, Xa then increases rapidly and at 

this point domains start to appear in the blend. It can be seen that limited time is 

available for domain broadening in this case, which is why the domains in the single 

step system have larger domain morphologies. When large τ is used however Xa 

passes into the spinodal region at relatively low τ so much more time is available for 

domain broadening and simultaneous phase separation. 

Secondary phase separation in a continuously quenched process is seen 

experimentally, and is theoretically possible ш this contmuous model given the 
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correct condi t ions. The cont inuously quenched mode l is used to attempt to create a 

secondary phase w i t h ๒ a larger p r imary one; however secondary phase separation 

has not yet been seen, figure 4.18 can be used to i l lustrate the reasons w h y . T o 

obta in secondary phase separation, a quench that j u m p s inside the spinodal reg ion is 

needed; this quench then needs to reside on the coexistence curve where doma in 

broadening can occur. The quench then needs to j u m p back inside the spinodal 

reg ion so that the secondary structure can be fo rmed. This type o f behaviour is not 

seen i n any o f the diagrams i n f igure 4.18 as once a j u m p in to the spinodal reg ion has 

occurred %a never drops back out o f the spinodal reg ion and in to the b inoda l reg ion. 

T o overcome this a quench depth dependent d i f f us ion te rm, D , can be inc luded i n the 

dynamics equations w h i c h has the f o r m , 

D = e x p [ - β ( χ ( τ ) - χ{τ = 0)1 (4.2.2) 

where β is a constant te rm w h i c h is calculated relat ive to the quench depth and the 

total number o f t ime steps xxndertaken b y the s imulat ion. The d i f fus ion te rm is set 

such that at l o w τ , D is h i gh ( « 1) and at h i gh τ , D is l o w ( « 0) . Th is means that at 

the start o f the s imula t ion the dynamics cont inue as normal w i t h the s imu la t ion 

pass๒g in to the spinodal reg ion. A s the s imula t ion continues however the d i f f us ion 

te rm dominates and the dynamics o f the phase separation should s low d o w n , 

d ropp ing the s imula t ion be low the spinodal l ine. A s more t ime then passes χ 

increases so the s imula t ion should be fo rced back into the spinodal reg ion and 

secondary structure should be seen. Th is is very s imi lar to exper imenta l ly hav ing a 

b lend w h i c h becomes more viscous as phase separation occurs. 

Unfor tunate ly the correct condi t ions have yet to be found to cause secondary 

structure, as current ly i t is not possible to drop be low the spinodal l ine fo r a great 

enough t ime to a l l ow the p r imary strucณre to develop adequately to a l l ow secondary 

phase separation to occur when the s imula t ion moves back in to the spinodal reg ion. 

Th is is probably because the di f ference i n size between the favoured length scale and 

the p r imary structural scale is not large enough. 

4.3 Conclusions 

W e have explored the early stages o f secondary phase separation f o l l o w i n g a 

two-step quench process, using a finite d i f ference scheme for a spat ia l ly and 
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tempora l ly discretised vers ion o f the Cahn-H i l l i a rd equat ion. The т о ф һ о 1 о § у 

development was probed b y determin ing the structure factor. These results showed a 

secondary shoulder, associated w i t h secondary phase separation, appearing 

immedia te ly after the second quench, w h i c h shares features i n c o m m o n w i t h the 

in i t ia l t ime dependence expected from the l inearised Cahn-H i l l i a rd theory. 

Di f ferences arise due to the numer ica l d i f f i cu l t y o f capณr ing the ' t r ue ' early stages. 

I n a l l cases the secondary structure reaches a m a x i m u m before the т о ф һ о ю д у 

relaxes back to the in i t ia l structure, bu t w i t h a greater d i f ference i n compos i t ion 

between the t w o phases. A s i n experiments'*^"^, w e find that the secondary structure 

is absorbed back in to the p r imary structure wh i l s t the p r imary structure coarsens. 

Howeve r we do not observe s igni f icant coarsening o f the secondary structures, this is 

probably due to the in i t ia l p r imary structure not hav ing a s igni f icant ly greater 

lengthscale than the secondary, a l though another poss ib i l i ty is the neglect o f 

hydrodynatn ic effects. Ach iev i ng such a w i d e range o f lengthscales w i t h the 

resultant increase i n t imescales is beyond the scope o f this study. 

F r o m the po in t o f v i e w o f appl icat ions, we have quant i f ied the degree o f 

secondary phase separation as a func t ion o f t ime and quench depth by determin ing 

the var ia t ion o f the var iance w i t h i n one o f the p r imary domains. The t ime at w h i c h 

the m a x i m u m variance occurs coffesponds to the op t ima l l y secondary phase 

separated structure. W e have found that the secondary s t rac toe does not attain the 

theoret ical m a x i m u m secondary structure, w h i c h w o u l d correspond to secondary 

domains possessing the equ i l i b r ium composi t ions expected from the coexistence 

curves. These predict ions suggest fur ther experiments that w i l l enable theory to be 

quant i f iab ly tested. 

A study has also been undertaken to attempt to mode l phase separation i n a 

cont inuously quenched process, one where the temperature is constant ly changmg. 

I n this case w e find that the fo rmat ion o f the phase separated т о ф һ о 1 о § у is 

restr icted i n the very early stages, when compared to a single quench system. A t 

later stages however the morpho logy becomes comparable to that o f a single quench 

system as Χι is the same i n each case. A t tempts have been made to mode l the 

process o f secondary phase separation, however , even w i t h the add i t ion o f d i f f us i on 

l i m i t i n g terms; i t has not as yet been possible to see this phenomena. 
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Chapter 5 

Reaction Induced Phase Separation of Pseudo-Interpenetration Polymer 

Networks in Polydisperse Polymer Blends 

The mode l is n o w developed to incorporate the process o f react ion induced 

phase separation i n a polydisperse po lymer b lend. D u r i n g the react ion one 

component undergoes a po lymer isa t ion react ion, leading to phase separation v ia 

spinodal decomposi t ion. The effect that changing the final degree o f po lymer isa t ion 

has on the phase separation process is also stodied. F ina l l y an elastic energy te rm is 

inc luded m i m i c k i n g the cross l i n k i ng process and the generat ion o f a semi-

іпЇЄфепе0"аЇ іп§ po lymer network . The ef fect o f changing the final degree o f 

po lymer isa t ion is again รณdied and a compar ison o f the results is made. F ina l ly the 

scal ing o f the dominant lengthscale w i t h t ime is shown to vary according to the 

react ion condi t ions. 

5.1 Modelling RIPS in a Polydisperse System with Crosslinking 

A s seen i n chapter 2.4 the spinodal o f a polydisperse system can be wr i t ten i n 

terms o f the we igh t average degree o f po lymer isat ion. B y comb in ing equations 2.4.4 

and 2.4.5 w i t h equat ion 1.3.7 and once again rescal ing in to the dimensionless f o r m 

we arr ive at a dynamic equat ion fo r a polydisperse po lymer b lend , 

ΜΞΙΙ)֊ 
ÕT 

, , ν ' ——і——\Άφ. і — — ๒ íž>o+֊^ х(2фв) 

i x - X s ) 

VV* 

(5.1.1) 

where Лу is determined b y equat ion 2.4.11 and λ. = 1/իկ. 

I n this chapter w e explore h o w equat ion 5.1.1 can n o w be used to mode l the 

process o f react ion mduced phase separation v ia po lymer isa t ion . 
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5.1.1 Modemng the MPS Process 

D u r i n g the RIPS process, temperature, and hence χ , is fixed m i t i a l l y be low 

the spinodal so that χ < χร . The simplest mode l is one where monomers/po lymers 

w i t h degree o f po lymer isat ion N A I and in i t ia l vo lume f ract ion Φ Α Ί react to f o r m 

po lymers w i t h a higher degree o f po lymer isa t ion NA2 , and vo lume f rac t ion ΦΑ2, as 

seen i n figure 5 . 1 , such that Φ Α Ί decreases and ΦΑ2 increases. 

A i A2 

Figure 5.1 

Polymer isat ion o f component A l to component Α 2 · 

The consequence o f this is that the entropy and hence χร , the value o f χ on the 

spinodal , decreases. For RIPS to occxir, at some po in t the cond i t ion χ > χร needs to 

be fu l f i l l ed . 

D u r i n g most RIPS processes, cross- l ink ing also occurs; this prevents 

macroscopic phase separation f r o m tak ing place, and slows d o w n the structural 

g r o w t h s igni f icant ly . I n addi t ion, v i t r i f i ca t ion of ten occurs, f reezing the т о ф һ о 1 о § у ; 

however this ef fect is not invest igated here. Cross- l ink ing is іпсофога Іе( і in to the 

mode l b y adapt ing the method described b y B inder and Fr isch ՚՛^. I n our case the 

ne twork is bo th cont inua l ly e v o l v m g and loca l ly dependant on the 

polymer isat ion/cross- l ink ing h is tory. D u r i n g the process component A 2 reacts to 

f o r m a ne twork A 3 w i t h vo lume f ract ion ФАЗ . Th is ne twork f ract ion o f the A 

component contr ibutes an addi t ional elastic te rm to the free energy as described b y 

equat ion 2.5.4. I n the or ig ina l theory, фо is the b u l k vo lume f rac t ion o f the ne twork , 

however dur ing RIPS the ne twork is cont inua l ly evo lv ing so this parameter needs to 

be carefu l ly redef ined. I t is assumed that фо is a spat ial ly dependant var iable 

representmg the total amount o f ne twork generated by chemical react ion on any 

g iven latt ice site since the in i t ia t ion o f the process an фо does not inc lude in fo rmat ion 

about the d i f fus ion o f the ne twork between latt ice sites. The jus t i f i ca t ion fo r such a 

de f in i t i on is that фо represents the local equ i l i b r i um vo lume fraction o f ne twork i n 

the absence o f interactions other than those g i v i ng rise to the elastic energy. I n this 
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system the " e q u i l i b r i m n " depends on the evo lu t ion o f the system, for example i f 

phase separation occurs w e l l before ne twork fo rmat ion , regions rich i n component в 

w i l l have essential ly no elastic energy throughout the s imula t ion. B y a l l ow ing фо to 

be dependant on the h is tory o f the system, w e іпсофога їе this essential physics in to 

the mode l . W h e n the vo lume fraction o f the component i n quest ion d i f fers from the 

value o f фо, m i m i c k i n g an expansion or contract ion o f the ne twork , a h igh energy 

state ensues and the system moves to reduce this energy b y b r i ng ing the ne twork 

back to its lowest energy conf igurat ion. O f course this occurs i n compet i t ion w i t h 

other contr ibut ions to the free energy. Equat ion 2.5.3 can be re-wr i t ten as, 

Ł 丄 

дфм N Ai 

(5.1.2) 

A range o f values for в have been used, w e use в = !/շ since this min imises 

the elastic energy when флі = фо, 

D u r i n g the s imulat ions i n w h i c h ne twork fo rmat ion is inc luded, we def ine 

component Аз as the semi - IPN and therefore the evo lu t ion o f ФАЗ is found b y 

subst iณt ing equat ion 5.1.3 in to 5.1.1 to g ive, 

1 

NAÁX-%S)V 

+-
f 1 ^ , . ไ . „ , ^ շ 1 

1 

〜되 

๒ ^ 

(5.1.3) 

A n addi t ional characterist ic o f structural g row th is g i ven b y the react ion 

pathway, determmed b y the convers ion o f each component , ？. - Фіііфі + も ) . W h i l s t 

i t is easy to calculate an average value for the b lend i t is also usefu l to d is t inguish 

between the m a x i m u m , m i n i m u m and average values o f ψ against t ime to mon i to r 

h o w the react ion is progressing fo r each component o f the b lend i n each o f the phase 

separated regions. Th is is a consequence o f the fact that a l though we use a s imple 

scheme for the react ion k inet ics, 
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ÕT 
(5.1.4) 

the phase separation m igh t be expected to result i n non-homogeneous react ion 

pathways. 

5.1.2 The Reaction Rate 

D u r i n g the s imulat ions a study o f three d i f ferent rate constant values, Ķ is 

undertaken corresponding to a " f as t " react ion, a " m e d i u m " rate react ion and a " s l o w " 

react ion. The rate o f the m e d i u m react ion is set so that the k inet ic rate, Ķ is equal to 

the phase separation rate, R ( q m ) , the rate o f g row th o f the fastest g row ing 

wavevector . For s imp l i c i t y , we use the same rate constant for the convers ion o f bo th 

A l to A 2 and A 2 to A 3 . B y l inear isat ion o f equat ion 1.3.10 w e find that fo r smal l 

flueณations, /？(q„) = 9 ^ ( 1 - ^ ) L inear isa t ion o f 1.3.10 gives, 

όδφ 1 ᄀ 

ÕT 2^ 

1 

Zf ՜ Xs 

な / , q 2 

X f - X ร Щ{\֊ф) 
δφ, (5.1.5) 

where from rearranging equat ion 1.1.11 2χ^ = ( l /л^д^ ) + ( l / iVg (1 ֊ ^ ) ) , such that 

5.1.5 becomes, 

ÕT 1^ 

^Xs 2ズ/ , q2 

X f - X s X f - X s Щ ( \ - Ф ) 
δφ, (5.1.6) 

The cr i t ica l wavevector , q c , be low w h i c h fluctuations g r o w and above w h i c h 

they decay can be found b y equat ing the part o f equat ion 5.1.6 i n brackets to zero 

such that, 

+ ֊ ֊ ^ ֊ = 0, (5.1.7) 
X f - X s X f - X . \ т - ф ) 

hence, 

21 Ζ f ~ Z s 

X f - X s 

(5.1.8) 
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The fastest g r o w i n g wavevector , ( ļ m , is g iven by = q ^ / V 2 , so that, 

զ Լ = \ % Փ { \ - Փ ) , (5.1.9) 

Subst i tut ing 5.1.9 in to 5.1.6 gives, 

Ա { զ „ ) = 9 Փ { \ ֊ Փ ) , (5.1.10) 

I n the s imula t ion o f fast react ion Wnetics к = l O R ( q m ) and conversely for 

s low react ion k inet ics w e set к = R ( q m ) / 1 0 . 

5.2 The Ternary System 

Firs t ly a s imple ternary RIPS system w i thou t ne twork fo rmat ion where 

component A l undergoes a second order react ion to create component А г , e.g. A l 

А г , is invest igated. 

5.2.1 Ternary Phase Separation 

In i t i a l l y χ = χร , so that the b lend l ies on the spinodal l ine, therefore as the 

react ion proceeds the b lend moves immedia te ly in to the two-phase reg ion o f the 

phase d iagram. Th is is so that no computat ional e f for t is wasted on s imula t ing a 

homogeneous system fo r w h i c h the k inet ics can be mode l led analyt ical ly . W e 

choose N A I = 500， NA2 = 2000 and N B = 750 w i t h Φ Α Ί = 0.495, ΦΑ2 = 0.005 and фв = 

0.5， i.e. a 50:50 b lend, so that χร = 0.00328. For 100% convers ion ( i .e. ΦΑ2 = 0.5), χร 

= 0.00183 showing that the f u l l y reacted system is located i n the two-phase reg ion o f 

the phase d iagram as shown i n figure 5.2. 
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Figure 5.2 

Spinodal curves o f a three component po lymer b lend w i t h N A I = 500, NA2 = 2000 

and N B = 750, for 0 % convers ion ( 1 0 0 % N A I ) , 5 0 % convers ion ( 5 0 % N A I and 5 0 % 

N A 2 ) and 100% convers ion ( 1 0 0 % NA2) . The react ion po in t for our s imula t ion is 

indicated b y · . A b o v e the respective curves, the b lend is unstable and w i l l phase 

separate v ia spinodal decomposi t ion. 

A l l the results are averaged over 5 rans w i t h noise o f magniณde ± 0 . ^ ^ 

added every 100 t ime steps to m i m i c the fluctuations found i n real systems. The 

simulat ions are carr ied out on a two-d imens iona l 128^ array w i t h Δ τ = 0.00001 and 

Δχ = 0.5. 

5.2.2 Phase Separation in the 50ะ50 Blend 

D u r i n g phase separation the domains f o r m cont inua l ly changing 

composi t ions i n order to reach the evo lv ing coexistence values as described b y f igure 

5.3. 
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100 

Figure 5.3 

Мофһо1о§у o f b lend at τ = 60 for (a) component A ) , (b) component А г and (c) 

component В fo r a s low (k = R ( q m ) / 1 0 ) conversion rate. 

The т о ф һ о 1 о £ у fo r components A l and A 2 are ident ica l but obv ious ly the 

vo lume f ract ion is d i f fe rent i n each case, as shown by the contrast i n the colours m 

f igure 5.3. The corresponding s trueณre factor for each component is shown i n f igure 

5.4. 
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Figure 5.4 

Growth o f the s trueณre factor w i t h t ime fo r (a) component A ] , (b) component A 2 and 

(c) component В fo r the s low ik = R ( q m ) / 1 0 ) convers ion rate. 

I t can be seen that the peak height increases w i t h t ime and the pos i t ion o f the 

m a x i m u m peak shifts to lower q as phase separation occurs and the domains broaden 

w i t h t ime. For component A ] i t can be seen that the m a x i m u m value o f the strucณre 

factor decreases at larger て v a b ^ Th is is because as convers ion increases the 

average vo lume fraction o f component A l rap id ly decreases therefore reducing the 

m a x i m u m o f the structure factor. 

For analysis o f the strucณre factor the method proposed b y Glotzer i 4 8 is 

f o l l owed , here w e def ine the func t ion < q i > as be ing, 

ぐ 仏 >--

į ร ิ ( ฟ ิ ՜ ՛ 

(5.2.1) 

B y f o l l o w i n g the m a x i m u m value o f the strucณre factor, ร ( q , T ) m a x , and < q i > 

at each t ime in terva l w e are able to mon i to r the length-scale o f the т о ф һ о 1 о § у and 

also to g ive an ind icat ion o f the extent o f phase separation, this process is undertaken 

in f igure 5.5. 
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Figure 5.5 

S(も^^ vs. τ fo r (a) component A | , (b) component А г and (c) component B. < q i > 

vs. τ fo r (d) the " f as t " react ion, (e) the " m e d i u m " react ion and ( f ) the " s l o w " react ion 

fo r a 50:50 b lend. 

F r o m f igure 5.5 w e see that for the fast react ion the value o f ร ( q , T ) m a x fo r 

component A l асณally decreases w i t h t ime i n the very early and later stages. Th is is 

because i n the early stages very l i t t le phase separation is occur r ing but the average 

value o f A I is rap id ly decreasing, g i v i ng a reduct ion i n ร ( q , T ) m a x - I n the late stages 

the m a x i m u m amount o f phase separation has occurred but < Ф А 1 > , the mean value o f 

component A l , is s t i l l decreasing. I n f igures 5.5(e) and 5.5(f) w e see that < q i > fo r 

component A 2 is m i t i a l l y at a much lower value than that o f components A l and B , 

this is because very l i t t le o f component A 2 is in i t ia l l y present i n the b lend. I t can be 
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seen that the behaviour i n the later stages may be described b y a power law, i.e. < q i > 

oc τ"" ; fits to these regimes fo r each o f the thiQQ rates are shown i n figure 5.6. 

Component В 

Unoar Fit Coraporant в 

Linear Fit 

Componente] 

UnearFtt 

С 

Figure 5.6 

ln<qi> vs. 1η(τ) fo r component в i n a 50:50 b lend undergo ing (a) a " f as t " react ion 

w i t h g row th exponent o f a = x , ( b ) a " m e d i u m " react ion w i t h a g row th exponent o f 

a = % and (c) a " s l o w " react ion w i t h a g row th exponent o f « = X . 

The g row th exponent above shows w e do not see the more universa l ly 

recognised ť " 3 re lat ionship, w h i c h is due to the d i f ferent dynamics i nvo l ved in our 

simulat ions when compared to a s imple 2 component b lend undergo ing a rap id 

tempera toe quench. W e do however see a t rend to a lower g row th exponent when 

m o v i n g to s lower react ion rates, as the faster the react ion the earl ier w e move in to 

the t w o phase reg ion. 

5.2.3 The Reaction Pathway 

I t is possible to mon i to r the " react ion pa thway" b y f o l l o w i n g the mean 

vo lume fraction o f each component w i t h t ime, = { Φ η ) · Since the extent o f 

react ion varies w i t h compos i t ion , as phase separation occurs the t w o phases w i l l have 

d i f ferent react ion k inet ics. Hence w e also f o l l o w the mean o f the vo lume fraction 
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above ф れ, i.e. ф れ龍 = 〈も > ん〉 and the mean o f the vo lume fraction be low Ф п , i.e. 

՜ Փ ո ա ո = { Փ ո < Փ ո ] ^ this is shown i n f igure 5.7. 
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Figure 5 . 7 

React ion pathway for (a) component A i， (b) component кг and (c) component в fo r 

a s low {k = R ( q m ) / 1 0 ) convers ion rate. (Լ is represented by •， 0 „顯 is represented 

b y · and え ^ D is represented by 

Figure 5.7 shows that as the react ion proceeds, the average vo lume f ract ion o f 

component A l decreases at the same rate as the average vo lume f ract ion o f 

component A 2 mercases, w i t h the average vo lume fraction o f component в 

remain ing constant throughout . The po in t at w h i c h phase separation occurs for the 

system can c lear ly be seen as the values o f ん匪 and んmin rap id ly deviate from . 

Phase separation does not rap id ly occur at the start o f the s imula t ion because the 

system is on ly s l ow ly m o v i n g in to the two-phase reg ion o f the phase d iagram and the 

phase separation process is l im i ted b y the mob i l i t y o f each component , determined 

b y the Onsagar coef f ic ient A i j . The cr i t ica l length-scale is also very large for shal low 

quenches requ i r ing d i f f us ion over large distances. 
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A s stated above three values o f Ķ the rate constant, are used i n the s imula t ion 

and the react ion pathway can be used to show the ef fect o f d i f ferent rates o f react ion, 

as i l lustrated i n f igure 5.8. 

醫 Fast - B - F a t t 

• Medium 1 Medium 

• H f P ^ ^ ^ ^ ^ I Ã Stow O's' ^ ^ ш ^ щ т I ¿ Wo* 

I E ง 0.01 0.1 1 10 100 I E ง 0.01 0.1 1 10 100 

Figure 5,8 

React ion pathway fo r (a) タД1 and (b) փ^շ fo r the three d i f ferent react ion rates. 

B y f o l l o w i n g fo r each component i t can be seen that an increase in rate 

constant leads to an increase i n the rate o f react ion and therefore the rate o f 

conversion. I t can also be seen that fo r Φ Α Ί as convers ion increases phase separation 

i n component A I is constrained because <1կ approaches zero. For the s low 

convers ion rate w e see that seems to become almost constant at Φ Α Ί = 0.1 and ΦΑ2 

- 0.4, this is not however seen i n the fast and med ium reactions w h i c h bo th reach Φ Α Ί 

= 0.0 and ΦΑ2 = 0.5 w i t h i n the t ime scale o f the s imula t ion. I f however the 

s imulat ion was a l lowed to cont inue to much greater τ the s low react ion w o u l d also 

reach 100% convers ion, not seen here because the change has become in f in i tes imal ly 

smal l and to r un the s imula t ion for such a great length o f t ime is computat ional ly 

expensive. The results shown i n figure 5.8 are again shown i n figure 5.9 but here w e 

have scaled the τ axis b y к fo r each rate o f react ion. 
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Figure 5 . 9 

React ion pathway for (a) ф\ and (b) fo r the three d i f ferent react ion rates where 

the τ axis is scaled b y к fo r each react ion rate. 

F igure 5.9 shows that fo r each react ion rate the curves collapse onto a master 

curve, suggesting that the overa l l react ion is unaf fected by the phase separation 

process and the resultant heterogeneous chemical Wnetics. The same process is also 

undertaken for ん 隨 and 么 ^ 。 fo r components A ļ and A 2 i n f igure 5.10. 
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React ion pathway for (a) ^ 4 腳 い (b) (с) ん2隨 and (d) ф ^ ^ , ^ fo r the three 

d i f ferent react ion rates where the τ axis is scaled b y к fo r each react ion rate. 

I n figure 5.10 w e see that the curves are equivalent at smal l τ， however at 

h igher τ w e find that the curves fo r each react ion rate start to deviate from one 

another. Th is indicates that the react ion rate in each phase is af fected by the process 

o f phase separation because i n the phase separated regions the rate o f react ion 

increases or decreases as more or less o f each component is avai lable for 

po lymer isat ion. The dev iat ion is greatest for the s low react ion as a greater extent o f 

phase separation occurs at l ower convers ion, as described be low. 
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5.2.4 C o n v e r s i o n 
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Figure 5.11 

Convers ion vs. 1-фв for three rates o f react ion. 

The coexistence curve for tnis system, as shown in f igure 5 . 11 , was founa by 

e q u a t k g the chemical potent ia l o f each b lend component. The chemical potent ia l i n 

a polydisperse system is related to the free energy by60， 

FH (5.2.2) 

where ท and m refer to any component o f the b lend a n d / r ø is def ined by , 
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Subst i tut ion o f equat ion 5.2.3 in to equat ion 5.2.2 gives, 

N 
Al 

N N N 
バ Л1 バ/12 バ fl 

μ. Α2 

(5.2.4) 

(5.2.5) 

(5.2.6) 

O n the coexistence curve, ՝ = ИА\՝՝ •> MA2՝ = MAI " and թց՝ = թց՝՝ where ՚ 

and " denote the t w o coexist ing phases. B y sett ing ՝-Բձւ " = 0 , / / д 2 ' - / І Д 2 " = о 

and Բց՝–Բց" = 0 and by so lv ing the three resul t ing simultaneous equations we can 

find values for ΦΑΙ', ΦΑΊ", ΦΑ2'， ΦΑ2" as a func t ion o f conversion. No te that the 

cond i t ion o f materials balance reduces the four unknowns to three. 

The spinodal curve, g iven by equat ion 1.1.11, is shown w i t h conversion data 

fo r the three react ion rates. These values are found us ing equations 5.2.7 and 5.2.8 

fo r each react ion rate and are p lot ted against 1 — ん 腳 í and 1 - Фвтп respectively. 

p „ „ =• 
Φ, Almax 

^ДІтах + ん 顯 

(5.2.7) 

(5.2.8) 

where ρ is conversion. 

The phase separated composi t ion, at each rate shown, tends towards an 

equivalent value o f Φ. For the fast react ion i t can be seen that near ly 100% 

convers ion is achieved pr ior to any s igni f icant phase separation but fo r the s low 

react ion on l y ֊40% conversion is achieved pr io r to phase separation w i t h the 

remainder o f the conversion occurr ing dur ing the phase separation process. For the 

m e d i u m react ion rate, where the react ion rate is o f the order o f the phase separation 

rate, i t can be seen that the m a x i m u m extent o f phase separation i n terms o f the 

d i f ference between the composi t ions o f the phases occurs at the same t ime as 100% 

convers ion is approached. 
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5.2.5 Phase S e p a r a t i o n i n the 65:35 B l e n d 

A po lymer b lend พ һ е г е ш N A I , NA2 and N B are as above but w i t h (d i f ferent) 

in i t ia l composi t ions, φι = 0.645, Փշ = 0.005 and фв = 0.35, i.e. a 65:35 b lend, is also 

รณdied. Here the interact ion parameter χ is again equal to χร w h i c h for 0 % 

convers ion fo r the 65:35 b lend is 0 .00341. A f t e r 100% convers ion χ = 0.00229 so 

that the b lend again moves immedia te ly in to the t w o phase reg ion w i t h increasing 

conversion. 

F igure 5.12 shows the react ion pathway fo r the three react ion rates, fast, 

med ium and s low as above, when a b lend w i t h a 65:35 compos i t ion is used. The 

results shown are analogous to those shown i n f igure 5.8. F igure 5.13 shows a p lo t 

o f convers ion vs. 1-фв for these three reactions w i t h the 65:35 b lend composi t ion. 
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Figure 5.12 

React ion pa thway for (a) component A l and (b) component A 2 fo r three react ion 

rates. 
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Figure 5.13 

Convers ion vs. 1-фв for three rates o f react ion. 

T o quant i fy the ef fect o f react ion rates w e determine the value o f convers ion 

at w h i c h 10% phase separation has occurred for var ious rates for the 50:50 b lend and 

also for the 65:35 b lend. Wh i l s t this choice is pure ly arbi t rary i t does a l l ow insight 

in to the relat ive behaviour o f the blends and the results are shown i n f igure 5.14. 
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Figure 5.14 

Convers ion at w h i c h 10% phase separation has occurred vs. rate fo r a 50:50 b lend 

and a 65:35 b lend. 
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From figure 5.14 i t can be seen that for the 65:35 b lend a greater extent o f 

react ion is necessary fo r the b lend to develop s igni f icant phase separation. I t is also 

clear that as the rate increases the conversion also increases, as w o u l d be expected. 

5.3 T h e Q u a t e r n a r y M o d e l 

The mode l is n o w extended to inc lude a fur ther react ion, i.e. A l ^ A 2 —> A 3 , 

where the in i t ia l system is set such that χ = χร. A " s l o w " react ion rate is used i n each 

case w i t h N A I = 500, NA2 = 2000, N B = 750 and NA3 is var ied between 500 and 4000. 

A " s l o w " react ion rate is chosen i n preference to a " fas t " react ion rate as for " fas t " 

reactions any d i f ference i n the results are not obv ious as convers ion has essential ly 

reached 100% before phase separation оссг ігร. The values o f NA3 have been chosen 

to g ive a broad range o f results and so that they can be d i rect ly compared to the 

quaternary case be low where we include the fo rmat ion o f a semi - IPN. For 

computat ional convenience a ternary b lend is used un t i l ^ Д 2 = 0.1， then the data is 

transferred into a quaternary mode l where in i t ia l l y ФАЗ = 0.0. The reason fo r 

undertak ing such a process is that i n the models that inc lude ne twork fo rmat ion , to be 

described in the next section, the ne twork is on ly a l lowed to f o r m once a part icular 

value o f ФА2 ( i n this case փ^շ = 0 . 1 ) has been reached. W e w i s h to d i rect ly compare 

the two cases w h e n ne twork fo rmat ion occurs and when i t does not, so the same 

methodo logy is used i n each case. 

Once again a l l the results are averaged over 5 rans w i t h noise o f magniณde 

± 0 . 誦 added every 100 t ime steps to m i m i c the thermal fluctuations found i n real 

systems. The s imulat ions are carr ied out on a two-d imens iona l 128^ array w i t h ᅀ て = 

0.00001 and Δχ = 0.5. The value o f χ is determined on ly by the values o f N A I , NA2 

and N B SO that the scal ing o f equat ion 5.1.1 is the same fo r each case w h e n NA3 is 

var ied. The final value o f χร is f ound by assuming al l o f component A l is converted 

to component A 2 and by not consider ing the convers ion to component A 3 , thus the 

quench depth is the same fo r each s imula t ion and a direct compar ison o f the effect o f 

va ry ing NA3 is possible. I n the s imula t ion χ = Xs at 0 % percent conversion, χร = 

0.00328 fo r the 50:50 b lend. The final value o f χร at 100% convers ion is 0.00183 

showing that the system has moved in to the two phase region. 
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5.3.1 M o r p h o l o g y G r o w t h i n the 50:50 B l e n d 

The g row th o f the т о ф һ о ю д у as the s imula t ion proceeds is shown i n f igure 

5.15 and we can compare the morpho logy o f each component o f the b lend at 

d i f ferent t imes, as i n figure 5.16. 

0 

1 0 0 

Figure 5.15 

M o m h o l o g y o f component в at (a) τ = 0.1, (b 40, (e) τ = 80 

and ( f ) τ = 120 fo r a b lend i n w h i c h N A I = 500, N A 2 = 2000, NA3 = 4000 and N B = 

750. 
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Figure 5.16 

M o r p h o l o g y o f b lend at τ = 120 for (a) component A l , (b) component A 2 , (с) 

component A 3 and (d) component в for a s low (k = R ( q m ) / 1 0 ) convers ion rate where 

N A I = 500, NA2 = 2000, N A 3 = 4000 and N B = 7 5 0 . 

F igure 5.16 shows that very l i t t le o f components A l and A 2 remain at the end 

o f the s imulat ion. 

5.3.2 T h e Reac t i on P a t h w a y 

W e can once again f o l l o w the react ion pathway fo r the b lend to quant i fy this 

siณat ion, as shown i n f igure 5.17. 
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Figure 5.17 

React ion pathway for (a) component A ] , (b) component А г , (с) component Аз and 

(d) component в fo r a s low (k = R ( q m ) / 1 0 ) convers ion rate where N A I = 500， N A 2 = 

2000, N A 3 = 4000 and N B = 750. ф„ is represented by •， (Լ 職 is represented by · 

and ^ „ ^ n is represented by Ճ . 

F r o m f igure 5.17 w e can again see a decrease i n the amount o f component A l 

w i t h t ime as i t undergoes a react ion to component A 2 . The amount o f component A 2 

increases in i t ia l l y but after て = 1 0 this values decreases due to the convers ion to 

component A3. F r o m the react ion pa thway the po in t o f phase separation can again 

clearly be seen at around て = 1 0 as the values o f ん 舰 and rap id ly deviate f r o m 

ф„ at this բ օ ա է . 
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5.3.3 T h e S t r u c t u r a l G r o w t h Ra te 

The structure factor is shown i n figure 5.18 for the case where NA3 = 4000. 

๙ d 
Figure 5.18 

G r o w t h o f strucณre factor w i t h t ime for (a) component A l , (b) component A 2 , (с) 

component A 3 and (d) component в for s low {k = R (qm ) / 10 ) convers ion rate when 

N A I = 500， N A 2 = 2000, N A 3 = 4000 and N B = 750. 

F igure 5.18 shows the peak ш the structure factor sh i f t ing to the le f t i n each 

case, ind icat ing domain broadening. A t late t imes the magniณde o f the peak also 

decreases i n figures 5.18(a) and 5.18(b), this cou ld be due to reduct ion i n the vo lume 

fraction o f components A l and Α 2 · The m a x i m u m value o f the s trueณre factor 

ร(q,T)max and < q i > are shown ш figure 5.19. 
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Figure 5.19 

s(q,"r)max vs. τ anđ (b) /ท<q i> vs. ln ( τ ) f o r each component o f the po lymer b lend 

when N A I = 500, N A 2 = 2000, NA3 = 4000 and N B = 750. 

B y examin ing figure 5.19 i t can be seen that at the start o f the react ion very 

l i t t le phase separation occurs i n each component o f the po lymer b lend. A s τ 

increases, the value o f ร(q,T)max also increases, however because components A | and 

А г are be ing converted by the react ion to create components A 2 and A 3 respect ively, 

the value o f ร(q,T)max i n each case reaches a m a x i m u m value before decreasing and 

then becoming constant. The values o f s ( ^ ^^ fo r components A3 and в increase 

as the domains i n the т о ф һ о 1 о § у increase their composi t ional pur i ty . The graph o f 

๒ < q i > vs. 1η(τ) shows that the domain g row th is m i n i m a l to start w i t h , as l i t t le phase 

separation has occurred, but then as we move deeper in to the t w o phase reg ion the 

doma in g row th rap id ly increases. The t w o t ime regions around 1η(τ) = 0.5-2.0 and 

๒ ( て ^ = 2.5-4.5 have been isolated and the g row th rates i n each case for component в 

have been found i n figxjre 5.20. 
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Figure 5.20 

l n < q i > vs. ๒ ( τ ) fo r component в i n the range (a) 1η(τ) = 0.5-2.0 and (b) 1ιι(τ) = 2.5-

4.5. The fitted l ines have a g row th exponent o f (a) a = y¡ and (b) α = X . 

F igure 5.20(a) shows phase separation w i t h a g rowth rate o f o r = x as 

expected fo r late stage g rowth i n a system w i t h a conserved order parameter, 

however at 1η(τ) « 3 the g rowth rate undergoes a change, firstly increasing 

correspondmg to a decrease i n the doma in g rowth and then decreasing again w i t h a 

s lower g rowth rate o f α = X . The t ime at w h i c h this change occurs is a ro imd τ = 70 

w h i c h w e can see f r o m figure 5.17 corresponds to the po in t at w h i c h the react ion 

becomes in f in i tes imal . 

5.3.4 C o n v e r s i o n 

A graph o f conversion vs. 1-фв is p lot ted i n figure 5.21 for five d i f ferent 

values o f NA3. 
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Convers ion vs. 1-фв fo r f i ve d i f ferent NA3 values. 

The ternary s imulat ion is shown i n f igure 5 .21 , here the s imula t ion is a l l owed 

to run f r o m 0 % convers ion to the po in t at w h i c h փ^շ = 0 .1, after this po in t 

component Аз is fo rmed i n the quaternary s imulat ion. W e see that an increase i n N A 3 

leads to a quicker phase separation process; this is expected because an increase i n 

NA3 creates a greater d r i v i ng force fo r phase separation to occur. The greater d r i v i ng 

force is due to the fact that w i t h a larger NA3 value w e have longer po lymer chains 

interact ing w i t h the other po lymer ic components, these chains have lower m o b i l i t y 

so they d i f fuse at a reduced rate but the d r i v i ng force for phase separation becomes 

the dominat ing effect, leading to a more rap id phase separation process. For interest, 

f igure 5.21 also shows the ร imat ion when N A 3 = 500, as component Аз is fo rmed the 

phase separation process reverses and the system starts to phase m i x again. Th is is 

because the value o f N A 3 is now less than that o f N A 2 , s impl is t ica l ly representing 

chain scission fo r example. However the ma in reason for inc lud ing the scenario is 

that du r ing the cross l ink ing process i t is possible fo r the degree o f po lymer isa t ion 

between crossl inks to be less than the degree o f po lymer isa t ion o f the precursor 

po lymers i f there are mu l t i p le cross l ink ing sites per chain. The spinodal curves fo r 

the system when 100% o f component Аз is fo rmed are shown i n figure 5.22, f r o m 

this i t is clear that the d r i v i ng force for phase separation increases w i t h increasing 

N A 3 , and w h y phase re -m ix ing occurs when NA3 = 500. 
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Figure 5.22 

Spinodal curves for systems w i t h 100% component Аз f o rmed for five d i f ferent 

values o f N A 3 . The value o f χ for our s imulat ions is represented b y · . 

I t is w o r t h not ing that the values attained fo r the m a x i m u m amount o f phase 

separation i n each phase o f the b lend refer to the coexistence (b inodal) curve (not 

calculated fo r the quaternary b lend) i n each case, not the spinodal curve shown i n 

f igure 5.22, i t is also noted that 100% convers ion is never reached i n these 

s imulat ions. 

5.3.5 M o r p h o l o g y G r o w t h i n the 65:35 B l e n d 

A s w i t h the results fo r the ternary b lend w e again mode l an o f f c r i t ica l 

(65:35) b lend undergo ing phase separation v ia the same mechanism as that shown 

above. Here N A I = 500, N A 2 = 2000, N B = 7 5 0 and NA3 is var ied as before, χ = 

0.00362 = χร o f the гш-reacted b lend and at 100% react ion o f component A 2 χร = 

0.00279. The results are averaged over 5 runs w i t h noise o f magniณde ± 0 . 画 

added every 100 t ime steps to m i m i c the thermal flueณations found i n real systems. 

The s imulat ions are carr ied out on a two-d imens iona l 128^ array w i t h Δて = 0.00001 
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and Δχ = 0.5. The " react ion pa thway" o f the system is shown i n f igure 5.23 and the 

results m i r ro r those o f the 50:50 b lend. 

_<՜ 
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Figure 5.23 

React ion pathway fo r (a) component A ] , (b) component A 2 , (c) component A 3 and 

(d) component в fo r a 65:35 b lend w i t h a s low (k = R (qm ) / 10 ) convers ion rate where 

N A I = 500， N A 2 = 2000, N A 3 = 4000 and N B = 750. ф„ is represented by •， is 

represented b y · and んmin is represented by Ճ . 

The po in t o f phase separation can c lear ly be seen, but appears to occur at 

greater τ than i n the 50:50 b lend, around て = 20 i n this case, this is due to the change 

i n the values o f χ used w h e n changing from a 50:50 b lend to a 65:35 b lend and 

agrees w i t h the result shown i n f igure 5.14. 

The corresponding strucณre factors are shown i n f igure 5.24. 
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Figure 5.24 

G r o w t h o f stmcture factor w i t h t ime fo r (a) component A ] , (b) component A 2 , (c) 

component A 3 and (d) component в fo r a 65:35 b lend us ing a s low (k = R (qm ) / 10 ) 

conversion rate when N A I = 500， N A 2 = 2000, N A 3 = 4000 and N B = 750. 

W h e n the results i n figure 5.24 are compared to those i n f igure 5.18 w e see 

that ร ( q , x ) fo r て = 10 i n this case seems to have a lesser value than i n the case o f the 

50:50 b lend, this again leads us to the conclus ion that the fo rmat ion o f the 

morpho logy in the 65:35 b lend takes a greater amount o f t ime. The m a x i m u m value 

o f the structure factor and < q i > are shown i n figure 5.25. 
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(a) ร ( q , T ) vs. τ fo r each component o f the po lymer b lend and (b) և ւぐqi〉 vs. 1η(τ) for 

component B o f a 65:35 po l ymer b lend w h e n N A I = 500, N A 2 = 2000, N A 3 = 4000 

and N B = 750. 

The results shown here are comparable to those shown i n figure 5.19, t w o 

regions around 1η(τ) = 1.0-3.0 and ๒ ( τ ) = 3.0-4.5 are again isolated and the g rowth 

rates i n each case for component в are found. The g row th exponents found are 

ひ = X and űf = x respect ively and are shown i n f igure 5.26. 
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Figure 5.26 

๒ < q i > vs. 1η(τ) fo r component в i n the range (a) 1η(τ) = 1.0-3.0 and (b) 1η(τ) = 3.0-

4.5. The f i t ted l ines have a g row th exponent o f (a) a = x and (b) a = /(,. 
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Fina l ly a p lo t o f conversion vs. compos i t ion o f the two phases is shown i n 

f igure 5.27. 
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F igure 5.27 

Convers ion vs. 1-фв for four d i f ferent N A 3 values i n a 6 5 : 3 5 po lymer b lend. 

I t can be seen f r o m figure 5.27 that the t rend observed for the 50:50 b lend is 

again present, i.e. as N A 3 is increased the d r i v i ng force for phase separation is 

increased and phase separation occurs at a lower conversion. I t seems f r o m the 

graph that the conversion decreases at h igh phase separation, this result seems to 

arise as a consequence o f preferred segregation o f the h igh molecular we igh t 

component in to the A - r i c h phase. 

5.4 The Quaternary Model Including Semi-IPN Interactions in Component 

Аз 

F ina l l y s imulat ions i n w h i c h component Аз includes the elastic free energy 

and entropy associated w i t h a cross- l inked po lymer ne twork are undertaken. Th is is 

bel ieved to be a m i n i m a l mode l fo r most technologica l ly relevant RIPS processes. 

A s w e have one cross- l inked po lymer ne twork fo rmed in the presence o f a l inear 

po lymer , B, we create a semi interpenetrat ing po lymer network. The methodo logy 

used for the quaternary b lend above is again used here w i t h a ternary s imula t ion 
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undertaken un t i l փ^շ = 0 . 1 , at w h i c h t ime a ne twork is a l lowed to start f o rm ing . The 

s imula t ion is carr ied out on a 128^ array w i t h Δχ = 0.5 and Δ τ = 0.00001 w i t h noise 

o f ± 0 . 0 ^ ^ added every 100 t ime steps. The mob i l i t y , λ , o f the ne twork component 

i n equat ion 2 .4 .11 , is set to be zero as the ne twork is considered to be in f in i te ly large 

and d i f fus ion is not possible. Equat ion 5 .1 .3 is used i n place o f equat ion 5 . 1 . 1 when 

the dynamics o f component Аз are model led. As a reminder, N A 3 represents the 

degree o f po lymer isat ion between crossl ink 's . 

5.4.1 Morphology Growth in the 50:50 Blend 

The g rowth o f the т о ф һ о 1 о £ у can be seen i n f igure 5.28 and the final 

тофЬо1о£ ІЄ8 o f each component i n f igure 5.29. 
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Figure 5.28 

M o r p h o l o g y o f component в at (a) τ = 10, (b) τ = 40， (с) τ = 80 and (d) τ = 120 for a 

b lend i n w h i c h N A I = 500, N A 2 = 2 0 0 0 , N A 3 = 4 0 0 0 and N B = 7 5 0 . 
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Figure 5.29 

Morpho logy o f b lend at τ = 120 fo r (a) component A l , (b) component А г , (с) 

component Аз and (d) component в where N A I = 5 0 0 , N A 2 = 2 0 0 0 ， N A3 = 4 0 0 0 and 

N B = 7 5 0 . 

Figures 5.28 and 5.29 can be compared to figures 5.15 and 5.16 as al l the 

variables are equal; i t can be seen that the morpho logy o f the ne twork s imulat ion is 

s igni f icant ly less developed when compared to the m o φ h o l o g y w h e n no ne twork is 

present, this suggests that the fo rmat ion o f a ne twork is, as expected, constraining the 

process o f phase separation. 

A compar ison o f the final morpho logy for the two cases is shown in f igure 

5.30. 



Figure 5.30 

Compar ison o f the т о ф һ о ю д у o f component в for a 50:50 b lend when (a) no 

ne twork is present and (b) a ne twork is present i n component A 3 . N A I = 500, N A 2 = 

2000, N A 3 = 4000 and N B = 750. 

The compar ison above shows that not on ly has the size o f the domains been 

constrained because the mob i l i t y o f the network is zero but also the amount o f phase 

separation is reduced w h e n a ne twork is present because phase separation w o u l d 

mean the fo rmat ion o f a h i g h energy state i n component A 3 . A l so seen is d israpt ion 

o f the co-cont inuous nature o f the m o φ h o l o g y by ne twork fo rmat ion , w i t h the B- r ich 

phase breaWng up into discrete but elongated droplets. 

5.4.2 Interface Count 

W e have determined the amount o f interface present է Խ օ ս § հ օ ս է the 

s imulat ion as this gives a direct measure o f doma in size w i t h i n the system and is 

shown in figure 5 .31 . 
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Figure 5.31 

Interface count for a b lend where no ne twork fo rmat ion (so l id l ine) occurs and a 

b lend where ne twork fo rmat ion (dashed l ine) does occur. 

The d i f ference i n the amount o f interface generated i n each case can clear ly 

be seen m figure 5 .31 , when no ne twork is present the amount o f interface 

cont inual ly reduces as the domains broaden w i t h t ime. W h e n network fo rmat ion 

does occur w e see m u c h less reduct ion i n the amount o f interface present as the 

domains cannot broaden due to the elastic energy cont r ibut ion to the free energy. T o 

determine the interface count each array po in t is examined and i f i t is f ound to l ie 

between two points w h i c h are either side o f the array average then this po in t is 

counted as interface. 

5.4.3 Conversion in the Presence of a Network 

A graph o f conversion vs. compos i t ion o f the t w o phases fo r a b lend 

undergoing ne twork fo rmat ion is shown in figure 5.32. 
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Figure 5.32 

Convers ion vs. 1-фв fo r five d i f ferent N A 3 values i n a 50:50 po lymer b lend w h i c h 

forms a s e m i - I P N . 

A compar ison o f the phase separation w h i c h occurs w i t h conversion shows 

the same results for va ry ing N A 3 values, we bel ieve this is because the phase 

separation shown i n figure 5.32 results f r o m the g rowth o f the N A 2 component and is 

therefore the same w i t h i n random noise considerations. A s component A 3 g rows the 

phase separation is constrained by the ne twork and therefore the phase separation 

process can no longer occur. W e show a compar ison o f a system wh i ch does not 

f o r m a ne twork and one that does i n f igure 5.33. 
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Figure 5.33 

Compar ison o f conversion vs. 1"фв fo r a system in w h i c h a ne twork is fo rmed and 

one where no network is f o rmed when N A 3 = 4000 i n each case. 

The amount o f phase separation can be seen to be much greater i n the case 

where no ne twork is present; this result is comparable w i t h the morphologies shown 

in f igure 5.30. 

The react ion pathway o f the system is shown in figure 5.34. 
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Figure 534 

React ion pathway fo r (a) component A i , (b) component A2, (c) component A3 and 

(d) component в fo r a s low {k = R(qm)/10) convers ion rate where N A I = 5 0 0 , NA2 = 

2000, N A 3 = 4000 and N B = 750. 

The trend shown above is analogous w i t h that shown in figure 5.17 but the 

extent o f phase separation i n each phase is shown to be greatly reduced due to the 

fo rmat ion o f the network, i.e. phase separation to фв' = 0.9 and фв" = 0.1 i n the case 

o f no ne twork and phase separation to фв' = 0.65 and фв" = 0.35 i n the case where a 

ne twork is present. The corresponding s trueณre factors are shown i n f igure 5.35. 

130 



σ 

й" » ， 

Т ~ ~ Î ՜ 누 4 q é ՜ᅲ" 

a 
• t»» 

Α . ж i-iī 
ψ ՛՛էք 

๙ d 
Figure 5.35 

Grow th o f structure factor w i t h t ime for (a) component A ļ ， (b) component A2, (с) 

component A3 and (d) component в fo r s low (k = R(qm)/10) convers ion rate when 

N A I = 500， N A 2 = 2000, N A 3 = 4000 and N B = 750. 

I t can be seen that the pos i t ion o f the peak does not seem to move to lower q, 

this is because domain g rowth does not occur, as seen i n figure 5.25. The m a x i m u m 

value o f the structure factor and < q i > are shown in f igure 5.36. 
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Figure 5.36 

(а) ร(q,T)max vs. τ fo r each component o f the po lymer b lend and (b) ๒ < q i > vs. 1η(τ) 

for each component o f a 50:50 po lymer b lend when N A I = 500, N A 2 = 2000, N A 3 = 

4000 and N B = 750. 

I f we compare figure 5.19(a) to figure 5.36(a) w e find that the trend appears 

to be the same in each case but due to the reduced amount o f phase separation i n the 

latter case we find that the value o f ร(q,T)max is s ign i f icant ly smaller for components 

Аз and B. The m a x i m u m value also starts to drop s l ight ly in f igure 5.36(a), this 

suggests that the system is start ing to phase m i x due to the elastic energy i n the 

ne twork becoming the key factor i n the system. A compar ison o f figures 5.19(b) and 

5.36(b) shows that a ve ry d i f ferent process is occurr ing, the po in t o f rap id phase 

separation can be seen at Խ ( 1 ^ = 1 but at ve ry late t imes we see an upward trend i n 

the results, ind icat ing domain nar rowing . W e f o l l o w the g rowth rate for two areas o f 

f igure 5.36(b) corresponding to ๒ ( τ ) = 1.5-2.5 and 1η(τ) = 4.0-5.0 i n f igure 5.37. 
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Figure 5.37 

ln<qi> vs. 1η(τ) for component в in the range (a) 1η(τ) = 1.5-2.5 and (b) Խ(ւ ) = 4.0-

5.0 The fitted lines have a growth exponent of (a) α = 0.46 and (b) α = -0.12. 

Figure 5.37(a) shows a broadening of the domains with time; however the 

behaviour shown in figure 5.37(b) indicates a reduction in the domain тофһо1о§у 

size due to the formation of the network system. 

5.4.4 The 65ะ35 Blend 

The results of conversion in a 65:35 blend are presented in figure 5.38. 
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Figure 5.38 

Convers ion vs. 1-фв for five d i f ferent N A 3 values i n a 65:35 po lymer b lend w h i c h 

forms a semi - IPN. Note the scales on the composi t ion axis. 

W e see a marked di f ference i n the fo rmat ion o f the b lend i n this case; figure 

5.38 shows us that as convers ion increases very l i t t le phase separation takes place 

compared to previous systems. The phase separation w o u l d again be due to the 

fo rmat ion o f component A2 but ш this system we have more o f the ne twork 

component fo rmed than i n the previous case, therefore as the ne twork forms the 

elastic energy becomes dominant i n the system. The elastic energy therefore forces 

the system ๒ t o its lowest energy state w h i c h i n this case means undertak ing phase 

m i x i n g to reach a less phase separated equ i l i b r ium state. A compar ison o f the system 

w i t h and w i thou t the ne twork interactions is shown i n figure 5.39, i t can be seen that 

m in im a l phase separation takes place before the system moves to reduce the elastic 

energy by phase m i x i n g . 
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Figure 5.39 

Compar ison o f conversion vs. 1-фв fo r a system in w h i c h a ne twork is fo rmed and 

one where no ne twork is fo rmed when N A 3 = 4 0 0 0 ш each case. 

B y f o l l o w i n g the react ion pathway the amount o f phase separation w i t h t ime 

can be moni tored. 
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Figure 5.40 

React ion pathway fo r (a) component A l , (b) component A2, (с) component A3 and 

(d) component в fo r a s low (k = R ( q n i ) / 1 0 ) conversion rate where N A I = 5 0 0 , N A 2 = 

2000, N A 3 = 4000 and N B = 750. is represented by • ， ん 議 is represented by · 

and is represented by Ճ . 

F igure 5.40(d) shows phase separation occurr ing i n component B， at around τ 

= 60 the elastic energy i n component A 3 becomes dominant and the amount o f phase 

separation rap id ly decreases i n component в to a m i n i m u m value before 

equi l ibrat ion due to a compromise between the d r i v ing force for phase separation and 

the elastic energy term in the free energy o f the b lend. W e also see that very l i t t le 

phase separation is able to occur i n any component o f the b lend due to the ne twork 

fo rmat ion . 
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Figure 5.41 

G r o w t h o f structure factor w i t h t ime fo r (a) component A l , (b) component A2, (с) 

component A 3 and (d) component в for s low (k = R(qm)/10) conversion rate w h e n 

N A I = 500, N A 2 = 2000, N A 3 = 4000 and N B = 750. 

The peak o f the structure factor i n figure 5.41 again does not shi f t to smal ler 

wave-vectors ind icat ing l i t t le domain g rowth i n the system but the m a x i m u m value 

does increase as phase separation takes place. W h e n compared to f igure 5.17 i t can 

be seen that the value o f ร(q,T)max is greatly reduced and the plots show greater 

amounts o f noise, this is due to the m i n i m a l phase separation tak ing place as seen i n 

f igure 5.35. A t て = 60 the structure factor decreases considerably i n each case, 

notably i n f igure 5.41(a) ร(q,T) at て = 120 is be low that o f て = 1 i n d k the phase 

m i x i n g we see elsewhere. 
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tigure 5.42 

(a) ร(q,T)max vs. τ f o r each component o f the po lymer b lend and (b) ๒ < q i > vs. 

1η(τ) fo r each component o f a 6 5 : 3 5 po lymer b lend when N A I = 500, N A 2 = 2000, 

N A 3 = 4000 and N B = 750. 

F igure 5.42 shows that the m a x i m u m value o f s ( ^^^ once again rap id ly 

decreases at around て = 60 but the value o f ร(q,T)max is s ign i f icant ly smaller than the 

corresponding values i n figure 5.25. Un l i ke i n previous systems the value o f 

ร (q ,x)max fo r component A l also decreases w i t h t ime to a value w h i c h is around the 

same as its start value. The results shown in figure 5.42(b) are comparable to those 

shown i n f igure 5.36, however they seem more pronounced i n this case. Here we 

again see an ind icat ion o f phase m i x i n g i n the later stages o f the s imula t ion, 

characterised i n figure 5 . 4 3 . 
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Figure 5,43 

l n < q i > vs. 1η(τ) fo r component в i n the range (a) 1η(τ) = 1.0-2.3 and (b) 1η(τ) = 4.5-

4.8. The fitted lines have a g row th exponent o f (a) α = 0.13 and (b) α = -0.29. 

The g r o w t h exponent from figure 5.43(b) indicates phase m i x i n g at a greater 

rate than that seen in figure 5.37， this result is i n agreement w i t h the other results 

presented here and adds further p r o o f to our conclus ion that the elastic energy 

interact ions associated w i t h the ne twork fo rmat ion constrain, and oppose, the phase 

separation process. 
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Figure 5.44 

M o r p h o l o g y o f component в at (a) τ = 0^ 40 , (e) τ = 80 

and (り τ = 12^ for a b lend ш w h i c h N A I = 500, N A 2 = 2000, NA3 = 4000 and N B = 

750. 

I n f igure 5.44 w e see smal l domains have developed b y τ = 80 but the system 

then starts to phase m i x and at τ = 120 the domains, a l though st i l l present, have 

decreased i n size and phase pur i ty . 

5.5 Conclusions 

W e have developed a mode l to understand blends undergo ing react ion 

induced phase separation, us ing theories developed fo r polydisperse po lymer blends 
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to f o l l o w the react ion o f a component , A， undergoing a series o f changes i n degree o f 

po lymer isat ion. Th is mode l can be used to study both ternary and quaternary blends 

undergo ing phase separation and is extended to consider the effect o f one o f the 

components f o rm ing a ne twork , creat ing a 8ет і - іп Іефепе Ігаг іп§ po lymer ne twork 

w i t h component B. 

Wh i l s t w e present here what w e bel ieve to be a m in ima l i s t mode l that 

captures the under ly ing phys ica l mechanisms invo lved i n R IPS, we recognise that a 

number o f features are miss ing. For example, i n many processes graf t ing or 

copolymer isat ion between the A and в components occur; the v iscosi ty increases can 

be several orders o f magniณde; m o φ h o l o g y g rowth is frozen b y v i t r i f i ca t ion . The 

first o f these cou ld be dealt w i t h w i t h i n the framework o f our mode l us ing an 

appropriate free energy and k inet ic equat ion fo r the react ion. The second requires a 

d i f ferent choice o f the m o b i l i t y coef f ic ients, and the last ef fect cou ld also be 

incorporated. 

For the ternary po l ymer b lend w i t hou t ne twork fo rmat ion , w e find that 

a l though the rate o f the react ion affects the t ime at w h i c h phase separation occurs the 

system always tends to the same values o f phase pur i ty irrespective o f when phase 

separation becomes signi f icant . For a quaternary system, b y changing the degree o f 

po lymer isa t ion o f component A3 the extent o f phase separation is af fected, as the 

larger the degree o f po lymer isa t ion , the greater the d r i v i ng force fo r the phase 

separation process. The mode l has been extended to inc lude the elastic energy 

associated w i t h the fo rmat ion o f a po lymer ne twork , this energy is at a m i n i m u m 

when no deformat ion o f the ne twork is present, and therefore phase separation 

becomes a h igh energy process and is resisted b y the network . W e find that the 

degree o f po lymer isat ion o f the ne twork component has no effect on the phase 

separation process, because the ne twork resists the phase separation process equal ly 

i n each case. The system seeks an equ i l i b r i um free energy w h i c h is a compromise 

between the d r i v i ng force fo r phase separation and the need fo r the system to resist 

de format ion , b y increasing the amount o f ne twork present the elastic energy te rm 

becomes more impor tant so the system can phase m i x after phase separation has 

occurred. The ef fect on the т о ф һ о ю д у is shown to be s igni f icant . 
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Chapter 6 

Modelling Surface Directed Spinodal Decomposition 

A n impor tant area o f research into po lymer blends concerns the fo rmat ion o f 

morphologies at or near to a surface. A s stated prev ious ly po lymer blends find w ide 

ranging uses i n adhesives, fo r example epoxieร, and i t is therefore impor tant to k n o w 

how the morpho logy evolves at the surface as this can affect the qual i t ies o f the 

adhesive. F i rs t ly the mode l developed b y f o l l o w i n g the method shown i n chapter 

2.7.1 is used to investigate the m o φ h o l o g i c a l fo rmat ion at a u n i f o r m hard w a l l 

surface. Discrepancies are found w i t h i n this mode l and a method is therefore 

proposed to phys ica l ly remove them. 

6.1 Modelling Surfaces in Polymer Blends 

T o simulate the effects o f a surface on the po lymer morpho logy the mode l 

needs to be set up i n a manner w h i c h is s l ight ly d i f ferent to that seen i n the previous 

chapters. A s stated i n chapter 2.7.1 t w o new, opposing, boundary condi t ions are 

used i n the mode l , one w h i c h is g iven by equat ion 2 .7 .1 , to dictate the compet i t ion 

between the surface attract ion and the process o f phase separation, on this w a l l and 

on the opposing w a l l a boundary cond i t ion g i ven b y ճ / լ ^ ց = 0 is also used. 

Typ i ca l l y these condi t ions are used fo r the two para l le l surfaces g iven by X = 0 and X 

= x，， periodic boundary condi t ions are appl ied at the y = 0 and y = y ' surfaces. 

6.1.1 The Surface Model 

T o set the flux through the boundary to zero i t is useful to understand i n more 

detai l h o w the dynamics o f the s imula t ion are calculated. A n example o f the array 

used i n the s imula t ion at a surface is shown i n f igure 6.1 and is used to i l lustrate h o w 

the AJ\^^^ = 0 equat ion is implemented. 

Surface 

1 2 3 4 5 
μι Ц2 Ц4 Ц5 

Figure 6.1 

One-d imensional i l lust rat ion o f the surface array set up 
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The surface is assumed to l ie i n array element 2， element 1 is used fo r the no 

flux boundary cond i t ion and μ is the chemical potent ia l at each po in t . The flux 

between each element is g i ven by , 

(6.1.1) 

The flux between element 1 and element 2 (J i ) should be equal to zero such 

that, 

(6.1.2) 

and therefore the boundary cond i t ion needed to imp lement the no flux cond i t ion is, 

dx 

hence 

(6.1.3) 

The change i n ψ w i t h each t ime step at the surface is g iven by , 

дф. ^J.֊J._, ^ / / , „ + / / , , ֊ 2 / / , 

0τ~ Δχ A r 2 

(6.1.4) 

so that at the surface, 

(6.1.5) 

as μ ι = Ц2. The same method is used to set the flux through the surface at the other 

side o f the array to zero, i.e. so that ᅀ7| = 0 . I n order to check that no flux passes 

through the t w o surfaces at X = 0 and X = X ՛ and i n order to test the per iodic 

boundary condi t ions o f the у = 0 and у = y ' surfaces test s imulat ions were 

undertaken on a 1282 array w i t h Δ τ = 0.0025 and Δχ = 0.5 fo r a 50:50 b lend where 

N A = N B = 200, an example o f w h i c h is shown i n f igure 6.2. 
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Figure 6.2 

Example m o φ h o l o g y fo rmed when no flux cond i t ion is appl ied on t w o opposing 

sides o f the s imula t ion (X = 0 and X = 128) and per iodic boundary condi t ions are used 

on the remain ing sides o f the array (y = 0 and y = 128) 

I t can be seen in figure 6.2 that i n the hor izonta l d i rect ion the array is not 

per iodic un l i ke i n the ver t ica l d i rect ion. 

T o implement the addi t ional te rm to account fo r the surface attract ion i n the 

system, i.e. for a т і х Ш г е i n w h i c h the surface causes an excess surface free energy, 

we need to find the tota l free energy g i ven b y F = Ғв + F s " ' ' . B y comb in ing 

equations 1.3.7 and 2.7.3 w e arr ive at t w o free energy equations, one fo r Ғв and one 

for Fs. 

+ 一 
1 

(6.1.6) 

(6.1.7) 
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Неге the first t w o surface terms i n the free energy are related to parameters i n 

the F H latt ice mode l b y equations 2.7.11 and 2.7.12. Th is leads to an equat ion to 

describe the evo lu t ion o f the surface te rm, 

ÕT 

л 

み (X) (6.1.8) 

1=0 У 

w h i c h is used w i t h equat ion 1.3.10 to describe the evo lu t ion o f the po lymer phase 

separation at or near a surface. Here δ(χ) is the Dirac-del ta func t ion w h i c h ensures 

that the surface free energy only affects the X = 0 boundary. For consistency wi th 

previous models also inc luded is a th i rd te rm, dependent on γ, i n the surface free 

energy w h i c h accounts fo r the energy cost o f gradients i n compos i t ion at the surface, 

and was der ived on the basis o f the Kawasak i spin-exchange mode l . 

6.2 Morphological Development at and near to a Surface 

The development o f the morpho logy at a surface and i n the b u l k at smal l τ 

can be seen i n more detai l be low when Δ τ = 0.0025, Δχ = 0.5 on a 128^ array w i t h h i 

= 1.5, g = 0.1 and γ = 0.1 w i t h a noise value o f 土 0.00001 added every 100 

computat ional t ime steps. 
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6.2.1 The Initial Phase Separation at a Surface 

Figure 6.3 

Development o f the morpho logy at (a) τ = 1.25， (b) τ = 2.5, (с) τ 

τ = 10 and ( ί ) τ = 12.5 

5, (d) τ = 7.5, (e) 

I t can be seen i n figure 6.3 that i n the ear ly stages o f phase separation an 

oscillating morphology is seen to form рефЄП(ііси1аг to the surface outwards, this is 

because a depletion layer forms next to the surface layer which then leads to another 

layer o f h igh vo lume fraction. Spinodal decomposi t ion then occurs i n the b u l k and 

the osc i l la t ing surface т о ф һ о 1 о § у is seen to broaden to create fewer layers. Th is 
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process can be f o l l owed using depth p ro f i l i ng as undertaken exper imenta l ly us ing i o n 

beam ma\ysis՝'''''''՝'\ 

1.0η 

0.9-

0.8· 

0.7-

0.6· 

0.5· 

0.4-

0.3-

0.2-

1.25 

τ = 2.5 

τ - 5 

— τ · 
7.5 

— — τ β 10 

— — χ ร 12.5 

Ο 5 10 15 20 25 30 35՜ 

Depth from surface 

Figure 6.4 

Depth p ro f i l e o f morpho logy at var ious t imes corresponding to the t ime intervals 

seen i n f igure 6.3 

The depth p ro f i l e presented i n f igure 6.4 shows the g row th o f the morpho logy 

w i t h t ime, the pro f i le has been curta i led at X = 32 to improve c lar i ty . The osc i l la t ing 

т о ф һ о 1 о § у near the surface can be seen to broaden and the phase separated 

morpho logy away from the surface can also be seen to g r o w w i t h t ime. 
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6.2.2 Phase Separation at Greater τ 

Figure 6.5 

Development o f the m o φ h o l o g y at (a) τ = 25 , (b) τ = 125, (с) 

(e) τ = 1250 and ( f ) τ = 2500 

250， (d) τ = 500, 

Figure 6.5 again shows the development o f the po lymer т о ф һ о 1 о £ у , in this 

case fo r larger て. Here w e see a dist inct broadening o f the random co-cont inuous 

morpho logy i n the bu l k and a layered structure f o rm ing f r o m the surface outwards. 

Here again the dynamics o f the b lend can be f o l l o w e d b y depth p ro f i l i ng i n f igure 

6.6. 
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Figure 6.6 

Depth p ro f i l e o f m o φ h o l o g y at var ious t imes corresponding to the t ime intervals 

seen i n f igure 6.5 

F igure 6.6 shows a l im i ted increase i n the surface but a large broadening ш 

the layered structure, as seen i n f igure 6.5. 

6.2.3 The Effect of Altering the Surface Attraction 

For compar ison the m o φ h o l o g i e s fo rmed when h i = 0.6, g = 0.1 and γ = 0.1 

are shown i n figwe 6.7, here the attract ion to the swface has been s ign i f icant ly 

decreased. 
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Figure 6.7 

Development o f the morpho logy at (a) τ = 2.5， (b) τ = 25 , (с) τ = 125， (d) τ = 250, (e) 

τ = 1250 and ( f ) τ = 2500 

I n figure 6.7 we again see an osc i l la t ing т о ф һ о 1 о £ у f o r m near the surface i n 

the early stages but as the surface attract ion is reduced, i n this case the phase 

separation process becomes more dominant than before and this osc i l la tmg 

morpho logy is lost. I t is replaced b y the random co-cont inuous т о ф һ о 1 о § у k n o w n 

from spinodal decomposi t ion. W e do however s t i l l see the surface layer f o l l owed b y 
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a deplet ion layer and this g row th is once again f o l l o w e d using depth p ro f i l i ng i n 

figure 6.8. 
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Figure 6.8 

Depth p ro f i l e o f morpho logy at var ious t imes corresponding to the t ime intervals 

seen i n f igure 6.7 

I n this case the surface attract ion is weaker but we see a marked di f ference i n 

the broadening o f the surface when compared to figure 6.6. I n f igure 6.6 the surface 

undergoes rap id g row th i n the early stages, i.e. before τ = 25 , and then this g row th 

rate d is t inct ly decreases at later t imes, as seen i n figures 6.4 and 6.6. I n f igure 6.8 

however w e see that the surface takes longer to undertake this in i t ia l broadening and 

the s low broadening on ly starts to occur at around τ = 1250. I t is also noted that the 

surface layer seems smal ler i n the case o f a st rongly attractive surface; this is 

expected because the increased attract ion means the attracted component is more 

l i ke l y to want to reside at the surface. 

6.3 Overcoming Inconsistencies in the Cahn-HUUard Model 

Equat ion 6.1.7 has been used b y D ieh l and Janssen^'*^ but here i t is shown that 

i t leads to inconsistencies when d i f ferent spatial discretisations are used to 

numer ica l l y solve the equations o f mo t ion . T o overcome these inconsistencies an 
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alternative approach is proposed w h i c h invo lves subst i tut ing the f u l l free energy, 

equations 6.1.6 and 6.1.7, in to the dynamic equat ion o f mo t i on , i.e., 

ÕT 2 
Ґ 

2 i z - Z s ) ι - φ χ-Zs ъьфพ-ΦΫ^ り \т-ф) 

+ 

дф、 、 

【=0 ノ 
ゆ) 

(6.1.9) 

Equat ion 6.1.9 is solved us ing the finite di f ference approach seen i n the 

previous chapters w i t h the addi t ional implementat ion o f the Dirac-del ta func t ion on ly 

at the surface, therefore cont r ibut ing to the free energy i n the latt ice sites at the 

surface layer on ly . A t a l l other latt ice sites, inc lud ing at the neutral surface layer (x = 

x，), on l y the b u l k free energy terms are evaluated. I n the f o l l o w i n g w o r k we 

compare the evo lu t ion o f structure due to equat ion 6.1.9 supplemented b y the second 

boundary, w h i c h w e denote mode l A , w i t h that due to equat ion 1.3.9 supplemented 

b y equat ion 6.1.8 w h i c h w e denote mode l B. 

A s discussed i n detai l be low w e also bel ieve that, due to discret isat ion, the 

values o f h i , g and γ should be d iv ided b y Δχ , the f in i te di f ference spatial step. I n 

order to ve r i f y our theoret ical argument, w e compare results when h i , g and γ are (1) 

d iv ided by Δχ and, (2) are not d iv ided b y Δχ for bo th mode l A and mode l B. Hence 

we compare 4 d i f ferent types o f s imula t ion w h i c h we w i l l refer to as, A ( l ) , A ( 2 ) , 

B ( l ) and B(2 ) . 

I n each o f the f o U o w m g sections h] = -1.5, g = 0 . 1 , γ = 0.1 and N = 200, the 

b lend is a 50:50 mix tu re and a l l results are averaged over 10 rans. Th is choice o f 

variables is, o f course, arbi t rary but these values are typ ica l o f those used i n surface-

directed spinodal decomposi t ion studies. I n each case an average o f ψ is taken 

parallel to the surface for each value of X. 

6.3.1 Estimating the Surface Concentration 

I n order to gain an insight in to the importance o f the length-scales chosen fo r 

the numer ica l s imulat ions, the surface concentrat ion fo r a system undergoing 

equi l ibrat ion w i thou t phase separation can be estimated us ing equat ion 6.1.9 i f w e 

assume that the compos i t ion рефеп( і іси1аг to the surface varies according to , 
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(6.1.10) 

where φι is the surface concentrat ion and Փշ is the bu l k concentrat ion. Here we have 

t w o lonknowns, φι and ξ , the corre lat ion length. B y m i n i m i s i n g the free energy w i t h 

respect to bo th φι and ξ， w e can determine the equi l ib ra t ion p ro f i l e , as shown i n 

figure 6.9. A s w e shal l see equat ion 6.1.10 is an overs imp l i f i ca t ion since there must 

be some deplet ion layer between the surface enriched layer and the b u l k i n order to 

conserve mater ia l . 

- Θ - 0.7 

๙0 0:2 ๙4 ๙6 0:8 1:0 1'2 1:4 1:6 1:8 2:0 

Distance from Surface 

Figure 6.9 

Var ia t i on o f compos i t ion w i t h distance from surface according to equat ion 6.1.10 

w i t h φι = 0.436 and ξ = -3.862. W e have used фо = 0.5, χ = 0.00958 and N = 200. 

D u r i n g simulat ions o f phase separation genera l l y " ' ' Δχ = 1 however from 

figure 6.9 i t is clear that i n order to capture the filli surface behaviour m u c h smaller 

values o f Δχ are required. The value used fo r Δχ w i l l af fect the surface behaviour as 

a consequence o f d iscret is ing s imul taneously a I D ef fect and a 2 D ef fect (the b u l k 

free energy). The key po in t here is that the surface free energy on l y arises from cut-

bonds at the molecu lar scale layer i n contact w i t h the surface. 
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Figure 6.10 

Over lay o f a F lo ry -Hugg ins latt ice and a Cahn-H i l l i a rd latt ice. 

Howeve r dur ing Cahn-H i l l i a rd discret isat ion the area represented by a latt ice 

site is m u c h greater than jus t the surface layer. Th is is i l lustrated i n f igure 6.10; a 

Cahn-H i l l i a rd latt ice is shown where a l l the latt ice sites are o f size ( Δ χ ) 2 and a F lo ry -

Hugg ins latt ice site is over la id where a l l the latt ice sites are o f size b^, where b is 

approx imate ly the monomer length. The effect o f the surface free energy phys ica l ly 

on ly contr ibutes w i t h i n the F lo ry -Hugg ins latt ice sites at the surface; however the 

discret isat ion ensures that its effect is fe l t throughout a Cahn-H i l l i a rd latt ice site. 

Hence i t is necessary to account fo r , and to remove, this discret isat ion effect. A s 

noted already the to ta l free energy, F， o f a m ix tu re is deteraimed s imp ly b y summing 

the bu lk , Fb, and siorface, Fs, free energ ies"^ , w h i c h fo r a discretised system becomes 

F= 5] F/"''" + ^ F/"'"' ， where Fb and Fs are assumed to be independent. 

FHsites FHsuiface 

However , i n the simulat ions the compos i t ion is b y de f in i t ion constant w i t h i n each 

Cahn-H i l l i a rd latt ice site, and some care is required. W i t h i n each Cahn-H i l l i a rd 

latt ice site there are ( Δ χ / b ) 2 b u l k F lo ry -Hugg ins latt ice sites and at the surface there 

are (Δχ/b) surface latt ice sites, so w e can wr i te , 
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ん'= Σ き^̂  Σ 

CHsites V b J CHSurface 
乂 ծ ノ 

F/""" (6.1.11) 

Hence the rat io o f b u l k to surface F H sites at a surface C H site is 

(АхЛ)ү/(АҡЛ)) = Ах/๖. Therefore i f w e decrease Δχ , then w i t h i n a C H site the 

relat ive number o f surface sites increases, increasing the ef fect the sxuface has on the 

overa l l free energy o f the system. I n order to accoimt for this effect i t is necessary to 

scale the surface terms h i , g , and γ b y Δχ according to 

h i —> h i /Δχ 

g - > g / A x 

γ ֊> γ /Δχ 

hence as Δχ decreases the surface terms become more s igni f icant bu t w i t M n a 

smal ler vo lume, as is requi red from the argument above. The ef fect o f this method is 

to create a surface w h i c h has a consistent free energy value fo r any value o f Δχ. 

Note that the same arguments and outcomes apply fo r a 2 D surface and a 3 D bu l k 

system. 

6.4 EquiUbration 

I n this section the results o f equi l ib ra t ion fo r a l l 4 models are shown w i t h χ = 

0.00958 and Δ τ = 1x10՜^. Since for this т і х Ш г е , Xs = Xc = 0 . 0 1 , w e are i n the 

misc ib le reg ion o f the phase d iagram where no phase separation occurs. D u r i n g 

equi l ib ra t ion the system is a l lowed to evolve i n the one-phase reg ion, as the surface 

attracts one component o f the b lend a layer o f this component fo rms along the 

surface. W e a l l ow this layer to evolve un t i l a stable state is fo rmed at w h i c h po in t 

the system is said to have equi l ibrated. W e i l lustrate the inf luence o f Δχ b y a l l ow ing 

the system to reach an equ i l i b r i um state fo r var ious values o f Δχ. The t ime scale fo r 

each s imula t ion is not consistent i n each case, the equ i l i b r i um pos i t ion is ident i f ied 

and then the s imula t ion is a l lowed to run to at least tw ice this per iod o f t ime. A I D 

s imula t ion is used as i t is numer ica l ly more e f f ic ient and w e are not interested ш the 

compet i t ion between the surface d r i v i ng force and phase separation. Noise was 

added contmuous ly du r ing the equi l ib ra t ion step as i t was found that this decreased 
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the requi red t ime to reach equ i l i b r ium. Noise o f magni tude ±1x10—3 was added every 

100 steps to m i m i c thermal flueณations found i n the b lend. The results are shown i n 

figure 6.11 fo r d i f ferent Δχ and are rescaled to the smallest Δχ fo r compar ison. 
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Figure 6.11 

Compar ison o f equi l ib ra t ion for var ious Δχ fo r (a) mode l A ( l ) , (b) mode l A ( 2 ) , (c) 

mode l B ( l ) and (d) mode l B ( 2 ) . 

I t is clear that i n a l l four models Δχ has a dramatic ef fect on surface 

composi t ion. The var ia t ion o f the surface compos i t ion w i t h distance on ly converges 

as Δχ is reduced for mode l A l . A deplet ion layer appears as Δχ is lowered, this layer 

appears to be par t ia l ly absorbed into the b u l k over t ime; however fo r the lowest Δχ 

values the t ime scale o f this аЬзоф І іоп is computat iona l ly too demanding to be 

established. F igure 6.11(b) shows h o w the omiss ion o f the 1/Δχ factor i n the surface 

te rm affects the surface composi t ion. I t is clear that w i thou t this te rm there is no 

convergence o f the behaviour as Δχ is decreased. A s expected f r o m our earlier 

discussion, th is is due to the relat ive magni tude o f the surface tern i decreasing as Δχ 

decreases, w h i c h is ref lected i n the reduced ef fect i t has on the surface composi t ion. 
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This result shows that the factor used to spat ial ly discretise the surface te rm is 

impor tant i n creat ing an accurate s imula t ion. Figures 6.11(c) and 6.11(d) fo r models 

B ( l ) and B ( 2 ) respect ively also show signi f icant behaviour. I n both cases, the 

surface ef fect becomes negl ig ib le as Δχ is decreased, a l though obv ious ly fo r B ( l ) the 

ef fect is less dramatic than fo r B (2 ) . Th is h igh l ights the problems associated w i t h 

us ing equat ion 1.3.9 supplemented b y equat ion 6.1.8 to mode l surfaces consistent ly 

w h i c h is necessary i f results are to be quant i ta t ive ly compared w i t h exper iment. 

6.5 Phase Separation 

I n this section w e study the Δχ dependence o f the surface effects o f a po l ymer 

b lend w h i c h undergoes phase separation w i thou t equi l ibrat ion. The b lend is 

quenched to χ = 0.0104 so that the m i x e d phase is n o w unstable for bo th Δχ = 0.5 

and Δχ = 0.25. These simulat ions are undertaken w i t h a t ime step o f Δ τ = 1x10՜^ i n 

each case. No ise is on l y added once at the start o f the quench and has a magniณde o f 

± l x l 0 - 3 . A l l the s imulat ions are undertaken to て = 100 and averaged over 10 runs. 

T o ensure consistency, when Δχ = 0.5, the s imu la t ion is per fo rmed on a 64^ array 

and when Δχ = 0.25 the s imula t ion is undertaken on a 128^ array. 
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tigure 6.12 

Compar ison o f phase separation fo r Δχ = 0.5 and Δχ = 0.25 for (a) mode l A ( l ) , (b) 

mode l A ( 2 ) , (c) mode l B ( l ) and (d ) mode l B ( 2 ) at τ = 100. 

F igure 6.12(a) shows the expected result w i t h the compos i t ion o f the 

morpho logy be ing almost the same for both Δχ values un t i l w e l l in to the b u l k reg ion, 

thus va l idat ing our theoret ical discussion. F r o m f igure 6.12(b) i t can be seen that 

omi t t i ng the 1/Δχ factor from the surface variables introduces di f ferences between 

the results for the t w o d i f ferent values o f Δχ. Figures 6.12(c) and 6.12(d) also show 

that mode l в does not show consistent convergent behaviour between d i f ferent 

values o f Δχ. Such di f ferences are, o f course, unphys ica l , and are due to the use o f 

equat ion 2.7.1 as a boundary cond i t ion . W e also note that an addi t ional p rob lem 

arises w i t h equat ion 2 .7 .1 , i n that i t does not conserve tota l compos i t ion w i thou t 

addi t ional constraints; i.e. a smal l amount o f mater ia l is a r t i f i c ia l l y generated since 

equat ion 2.7.1 is not a conservat ion equat ion. Wh i l s t , o f course, the surface 

compos i t ion is not a conserved quant i ty , the overa l l composi t ion must be conserved. 

T o fixrther support our argument i n figure 6.13 w e also i l lustrate the k inet ics 

o f the process b y f o l l o w i n g the pos i t ion o f the first peak, label led ξ i n figure 6.12(a). 
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Figure 6.13 

The pos i t ion o f ξ vs. t ime fo r (a) mode l A ( l ) ， (b) mode l A ( 2 ) ， (c) mode l B ( l ) and (d) 

mode l B (2 ) . 

F igure 6.13(a) shows that i n the case o f mode l A ( l ) the pos i t ion o f this peak 

remains consistent when d i f f e r i ng Δχ are used, however w e see that w h e n models 

A ( 2 ) , B ( l ) and B (2 ) are used the pos i t ion o f the peak diverges fo r d i f ferent values o f 

Δχ. 

6.6 ՏգսահքՅէւօո and Phase Separation 

The system is first a l lowed to equi l ibrate and is then quenched in to the t w o 

phase reg ion such that phase separation, fo r the t w o values o f Δχ used ш sect ion 6.5， 

occurs. The t ime step ᅀて = 1х1(ґ* is again used i n a l l 4 models, w i t h χ = 0.0096 for 

the equi l ib ra t ion and χ = 0.0104 fo r the phase separation. Here noise is added bo th 

cont inuously i n the equi l ib ra t ion step, as i n section 6.4, and at the start o f the phase 

separation step, as i n section 6.5 w i t h a magniณde o f ±1x10—3. 

The results are compared fo r d i f f e r i ng Δχ i n each o f the four models and a 

compar ison w i t h a po lymer b lend w h i c h undergoes on ly phase separation and no 

equi l ib ra t ion (as i n Sect ion 6.5), is made. A s i n the previous sect ion, to ensure 

consistency, when Δχ = 0.5 the s imula t ion is undertaken on a 6 4 2 array and when Δχ 

= 0.25 the s imula t ion is undertaken on a 1282 array. 
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The equi l ib ra t ion is undertaken to τ = 500 and the phase separation to て = 

100. I t is expected that the equi l ib ra t ion step w i l l have an ef fect on the development 

o f the morpho logy o f the strucณre when compared to a b lend w h i c h has not 

undergone an equi l ib ra t ion process as we are not start ing from a u n i f o r m phase 

m i x e d m o φ h o l o g y , however this ef fect should be m in im ised w i t h decreasing Δχ. 

Disiânce from Surftte* Distance from Surfftct 

b 

Dislance from Surface Distance from Surface 

e d 
Figure 6.14 

Compar ison o f phase separation for Δχ = 0.5 and Δχ = 0.25 for (a) mode l A ( l ) ， (b) 

mode l A ( 2 ) , (c) mode l B ( l ) and (d) mode l B (2 ) after an equi l ib ra t ion o f τ = 500 and 

a phase separation o f τ = 100. 

I t is clear f r o m figure 6.14 that the same trend as found i n f igure 6.12 is not 

present ing this case, this shows that the equi l ib ra t ion step has an effect on the 

m o φ h o l o g y o f the phase separating structure. Indeed տ contrast to the previous 

sect ion, i t appears that f igure 6.14(d) shows the best consistency between the results 

for d i f ferent Δχ. However , this is because the equi l ib ra t ion i n this case has very l i t t le 

ef fect on the surface ψ value. I n other words , du r ing the phase separation step, the 

t w o simulat ions are start ing from a morpho logy w h i c h is more al ike than is the case 

fo r the other models. Th is hypothesis is fur ther corroborated by compar ing figures 

6.12(d) and 6.14(d) w h i c h are very s imi lar . 
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I n f igures 6.15 and 6.16 a compar ison o f the results w i t h those from section 

6.5 are shown for Δχ = 0.5 and Δχ = 0.25 respect ively. 
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Figure 6.15 

Compar ison o f a phase separated b lend morpho logy vs. an equi l ibrated and phase 

separated b lend т о ф һ о 1 о が fo r Δχ = 0.5. For equi l ib ra t ion て = 500, for phase 

separation τ = 100 fo r (a) mode l A ( l ) , (b) mode l A ( 2 ) , (c) mode l B ( l ) and (d) mode l 

B ( 2 ) . 
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Figure 6.16 

Compar ison o f a phase separated b lend т о ф һ о 1 о £ у vs. an equi l ibrated and phase 

separated b lend т о ф һ о 1 о § у fo r Δχ = 0.25. For equi l ib ra t ion て = 500, for phase 

separation τ = 100 fo r (a) mode l A ( l ) , (b) mode l A ( 2 ) , (c) mode l B ( l ) and (d) mode l 

B ( 2 ) . 

I t can be seen f r o m figure 6.16 that the т о ф һ о 1 о £ у i n the bu l k is o f greater 

u n i f o r m i t y for models A l , A 2 and B Í when Δχ = 0.25 compared to w h e n Δχ = 0.5, 

w h i c h suggests that for smal l enough Δχ equi l ib ra t ion has no effect on subsequent 

phase separation. I t is expected that i f the simulat ions were undertaken w i t h much 

smaller Δχ , around 0 .01 , then the t w o results i n figures 6.15 and 6.16 w o u l d be 

ident ical . However results f o r Δχ = 0.01 w o u l d mean that Δて w o u l d need to be 

decreased s ign i f icant ly by at least one order o f magniณde to create a numer ica l ly 

stable system. 

Figures 6.15 and 6.16 show that the surface compos i t ion is equal for the 

simulat ions w h i c h have undergone on ly phase separation and those w h i c h have 

undergone bo th equi l ib ra t ion and phase separation. Th is shows that the equ i l i b r ium 

surface value o f the compos i t ion is not af fected b y the equi l ib ra t ion step and that 

on ly the m o φ h o l o g y o f the develop ing b lend is af fected. Th is is, o f course. 
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phys ica l ly reasonable. However our w o r k h igh l ights the p rob lem that i n order to 

simulate surface-directed spinodal decomposi t ion, finer length scales than i t is 

desirable, or possible, to ut i l ise are impor tant i f favourable wet t ing o f one compoxmd 

takes place p r io r to phase separation (as i t a lmost certa in ly must) . I n other words the 

details o f the we t t i ng layer inf luence the subsequent phase separation. 

The di f ference in the development o f the т о ф һ о ю д у , i n a system 

undergoing bo th equi l ibrat ion and phase separation when compared to a b lend w h i c h 

has undergone on ly phase separation, is due to the fact that the equi l ib ra t ion step 

induces a surface w h i c h is therefore already apparent at the start o f the quench into 

the two-phase reg ion and w h i c h seems to promote earl ier phase separation i n the 

bu lk . Hence, the smaller the value o f Δχ the more accurate the surface compos i t ion 

pro f i le . Th is does raise the quest ion however o f h o w smal l the Δχ value can be made 

as this decrease requires an increase i n the array d imensions, a decrease i n the t ime 

step used i n the s imulat ion to ensure numer ica l s tabi l i ty , and a subsequent increase i n 

the number o f t ime steps, a l l o f w h i c h are computat iona l ly expensive. 

A compar ison o f the development o f the morpho logy fo r t w o blends is shown 

i n figure 6.17, one o f the po lymer blends has undergone on ly phase separation and 

the other has undergone bo th equ i l ib ra t ion and phase separation. 
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Figure 6.17 

Development o f the po lymer тофһою§у on a 64 X 64 array w i t h Δχ = 0.5 fo r mode l 

A ( l ) f o l l o w i n g a quench in to the two-phase reg ion for (a) τ = 0, (b) τ = 1, (c) τ = 10 

and (d) て = 100. Results are also shown fo r an equi l ib ra t ion o f τ = 500 f o l l o w e d b y a 

phase separation o f (e) τ = 0, ( f ) τ = 1, (g) τ = 10 and (h) τ = 100. 
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I t can be seen from f igures 6.17(b) and 6.17(f) that, b y car ry ing out 

equi l ib ra t ion p r io r to phase separation, a surface is created earl ier i n the process. 

Th is surface appears to promote phase separation at smaller て . A f t e r the 

equi l ib ra t ion step a surface has been created i n figure 6.17(e), w h i c h is no t present i n 

figure 6.17(a). Du r i ng the phase separation process the surface grows i n each 

s imula t ion, however the surface layer i n the s imulat ion w h i c h has undergone pr io r 

equi l ib ra t ion appears to be broader throughout the s imulat ion. 
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Figure 6.18 

Development o f the po lymer m o φ h o l o g y on a 128^ array w i t h Δχ = 0.25 fo r mode l 

A ( l ) f o l l o w i n g a quench into the two-phase reg ion fo r (a) τ = 0, (b) τ = 1, (c) τ = 10 

and (d) て = 100. Results are also shown fo r an equi l ib ra t ion o f τ = 500 f o l l o w e d b y a 

phase separation o f (e) τ = 0, ( f ) τ = 1， (g) τ = 10 and (h) τ = 100. 
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Figure 6.18 shows that any di f ference i n morpho logy dur ing the g row th 

f o l l o w i n g bo th equi l ib ra t ion and phase separation and jus t f o l l o w i n g phase 

separation is m in im ised b y reduc ing Δχ. I t can be seen that the di f ference i n the 

surface morpho logy is great ly reduced w h e n compared to f igure 6.17. The reason for 

the greater layer ing shown i n this case is discussed later. 

6.7 Noise 

M a r k o " ' * under took a study into the effect noise has upon the morpho logy 

produced i n a s imula t ion where surface terms are inc luded. Here w e recreate and 

extend that w o r k i n order to stress h o w imperat ive this te rm is to the s imulat ions and 

to h igh l igh t the need to use the correct magni tude and frequency o f noise w i t h i n the 

s imulat ions. 

T o study the ef fect o f noise upon the system bo th the magni tude o f the noise 

term was changed, w h e n the frequency was constant, and the frequency o f the noise 

was changed, w i t h the magni tude kept constant. 

6.7.1 The Effect of Altering the Noise Magnitude 

Firs t ly w e describe the тофЬо1о§ іе8 fo rmed w h e n the noise magniณde is 

changed, here the noise is added cont inuously every 100 computat ional t ime steps 

and its magniณde is var ied from ±1x10—3 to ±1x10—8. Here Δ τ = 0.0025, Δχ = 0.5, h l 

= 1.0, g = 0 . 1 , γ = 0.1 and the simulat ions are carr ied out on a 128^ array. 
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Figure 6.19 

Examples o f d i f ferent тофЬою§іе8 at τ = 1000 fo rmed w h e n noise magniณde is (a) 

± 1 x 1 ๙ (b) ± 1 x 1 ๙ (с) ± 1 x 1 ๙ (d) ± 1 x 1 ๙ (e) ± 1 x 1 ๙ and ( f ) ± 1 x 1 ๙ w h e n 

noise is added cont inuously every 100 t ime steps. 

B y compar ing figures 6.19(a) and 6.19(f) i t is clear to see that changing the 

magniณde o f the noise, w h e n a l l else is constant, has a great ef fect on the resultant 

morpho logy . I n figure 6.19(f) a random т о ф һ о 1 о § у is not seen to occva as a 

gradient large enough to destabil ise the b lend i n the bu l k is not present, this means 

that the osci l la t ing т о ф һ о 1 о § у fo rmed due to the surface propagates throughout the 

system. A s the noise magni tude is increased รpmodal decomposi t ion can be seen to 

occur away f r o m the surface leading to an osc i l la t ing тофһоюду f o l l o w e d b y a 
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random co-cont inuous morpho logy , as seen i n f igure 6.19(d). A s the magni tude o f 

the noise is increased fur ther the process o f phase separation becomes dominat ing 

throughout the system and the osc i l la t ing т о ф һ о 1 о § у is lost w i t h on ly a surface and 

deplet ion layer be ing fo rmed before the random co-cont inuous т о ф һ о 1 о § у , as seen 

i n figure 6.19(a). 
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6.7.2 The Effect of Altering the Noise Frequency 

Figure 6.20 

Examples o f d i f ferent тофЬо1о§іе8 at て = 100^ f o ^ when noise o f magniณde 

± Ի է 1 0 ՜ 5 is added every (a) 1 computat ional step, (b) 100 computat ional steps, (c) 500 

computat ional steps, (d) 1000 computat ional steps, (e) 10000 computat ional steps 

and ( f ) 50000 computat ional steps. 

A g a i n the effect o f noise is clear i n tMs case, when noise is added 

in f requent ly , as i n f igure 6.20( f ) , the surface force dominants the morpho logy o f the 

b lend and an osc i l la t ing structure is seen. A s the f requency w i t h w h i c h noise is 
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added increases w e see that the spinodal decomposi t ion process becomes dominat ing 

and surface and deplet ion layers are f o l l o w e d b y a co-cont inuous structure i n f igure 

6.20(a). 

Figures 6.19 and 6.20 h igh l igh t the inconsistencies present w h e n the noise 

term is altered, i t is clear to see that i f theoret ical results are to be quant i ta t ive ly 

compared to exper imental results then this inconsistency needs to be overcome. 

Presently no phys ica l or numer ica l so lu t ion to th is p rob lem presents i tse l f so 

compar ison o f theoret ical results w i t h exper imental results w o u l d seem to be the on l y 

way o f dec id ing the levels o f noise needed to g ive accurate s imula t ion results. 

C lear ly the compet i t ion between phase separation and the surface forces, i.e. the 

in f luence each has on the overa l l free energy, can be af fected b y the change i n χ used 

to in i t ia te the phase separation process. B y increasing the quench depth the system 

phase separates to greater vo lume fractions o f each component , the penal ty for the 

creat ion o f interface between the t w o components therefore increases as the gradients 

become larger and the system moves to reduce the overa l l free energy b y broadening 

the domains to a greater extent. Th is process means that the b u l k free energy 

component o f the overal l free energy has a greater effect than i f a smaller quench 

was used and therefore the phase separation process w i l l become more dominant , an 

example o f this is seen i n the f o l l o w i n g chapter. 

6.8 Conc lus ions 

W e have explored the dynamics o f phase separating po lymer blends at and 

near a s\irface, us ing a finite d i f ference scheme fo r a spat ial ly and tempora l ly 

discretised vers ion o f the Cahn-H i l l i a rd equat ion. W e have shown h o w the method 

developed b y B inder can be used to mode l the dynamics o f phase separation i n a 

po l ymer b lend at and near a surface and h o w depth p ro f i l i ng , comparable w i t h He^ 

ion beam analysis, can be used to f o l l o w the phase separation o f the b lend. Here we 

see an osc i l la t ing m o φ h o l o g y g row ing perpendicular to the surface wh i l s t random 

phase separation occurs i n the bu lk . W e find that b y cont ro l l ing the attract ion w h i c h 

the surface has fo r one component o f the b lend w e can contro l the effect this 

osc i l la t ing m o φ h o l o g y has o n the system. 

W e have then h igMigh ted the d i f f i cu l t y o f us ing the Cahn-H i l l i a rd equat ion, 

w i t h boxmdary condi t ions designed to represent the surface effect, to mode l surfaces 
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consistent ly w h i c h is necessary i f the results are to be quant i tat ive ly as w e l l as 

qua l i ta t ive ly compared w i t h exper iment. 

W e find that anomalies are present w h e n va ry ing length scales are used 

w i t h i n the s imula t ion w h i c h affects the g row th kinet ics o f the phase separated 

m o φ h o ю g y . W e therefore propose a m i n i m a l mode l to phys ica l ly remove these 

anomalies. The method involves the scal ing o f the surface free energy parameters b y 

the finite d i f ference spatial step, w h i c h is needed to ensure that the balance o f the 

magni tude o f the surface and bu l k free energy terms is unaf fected b y the choice o f 

latt ice size. The issue arises because the ef fect o f the surface cont r ibut ion to the free 

energy is fe l t throughout the discretised surface latt ice sites, and our method 

therefore faci l i t ies the remova l o f the spatial anomalies. W e show that ( i n the 

absence o f an equi l ib ra t ion step to create a surface enr iched layer p r io r to phase 

separation) our method leads to consistent results irrespective o f the choice o f latt ice 

size; thus showing that artefacts can be removed by the careful choice o f phys ica l 

input . 

W e also show results f r o m blends w h i c h have also undergone bo th surface 

equi l ib ra t ion, i n the one phase reg ion , and then phase separation. W e see a 

di f ference i n the development o f the т о ф һ о ю § у in these t w o cases as the 

equi l ib ra t ion step results in a surface be ing present at the start o f the phase separation 

step and w h i c h therefore promotes earl ier phase separation i n the bu lk . I n this 

instance w e show that there are fur ther problems due to the discret isat ion ar is ing 

from the mismatch o f lengthscales associated w i t h the equi l ib ra t ion and the phase 

separation. 

W e also show that the level o f noise added to the simulat ions has a great 

ef fect on the final m o φ h o l o g y and i f results are to be quant i tat ively compared w i t h 

exper imental results then care needs to be taken w i t h this var iable. Here w e find that 

b y changing either the magniณde o f noise or the frequency w i t h w h i c h i t is added 

has a marked effect on the f i na l т о ф һ о 1 о § у . Th is is because i n these systems the 

final m o φ h o l o g y is a compromise between the need for the system to phase separate 

v ia spinodal decomposi t ion, to f o r m a random co-cont inuous morpho logy , and fo r 

the surface forces to affect the morpho logy . Noise is c lear ly therefore not as 

important i f no surface forces are present as the spinodal decomposi t ion process is 

the on ly , and therefore dominat ing , process. 
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Chapter 7 

T a r g e t i n g M o r p h o l o g i e s ฟ a Sur face P a t t e r n i n g 

The invest igat ion presented i n the previous chapter is extended to account fo r 

systems w i t h patterned surfaces, bo th at a hard w a l l , as i n the previous chapter, and 

when v i e w i n g , fo r example, a th in f i l m on a wafer from above. F i rs t l y the effect that 

a l ter ing the pattern size has on the system is invest igated at a hard w a l l surface us ing 

the mode l proposed i n chapter 6. The mode l is then extended to investigate a surface 

patterned us ing the p r i n tmg methods described i n chapter 2.7.3. Use is made o f the 

interface count ing method , first described i n chapter 5, to f o l l o w the phase 

separation. 

7.1 T h e P a t t e r n e d W a l l M o d e l 

The mode l is extended such that two d i f ferent h i values can be implemented 

i n the s imula t ion; th is means that d i f ferent areas o f the w a l l can be set to be attractive 

to d i f ferent components o f the b lend. The s imulat ions shown be low are undertaken 

on a 64x128 array, this m im ics a է հ ա film b lend and increases computat ional 

e f f i c iency as our m a i n interest is w i t h occurrences at the surface and not i n the bu lk . 

7.1.1 M o r p h o l o g y G r o w t h a t a P a t t e r n e d Sur face 

I n i t i a l l y w e invest igate the g r o w t h o f the m o φ h o l o g y at the surface when the 

surface has been patterned such that each component is al ternat ively attracted to the 

surface i n areas o f 32 array uni ts a long the y axis. Here h] = 0.75 and -0.75 

al ternat ively and g = 0.ᄂ 0.00^ and Δχ = 0.5, in i t i a l l y χ = O.Ol, the 

system is quench to χ = 0.0119 and the simulat ions are a l lowed to evolve to τ = 

2500. 

173 



1 5 

8 5 

Figure 7.1 

G r o w t h o f the т о ф һ о 1 о £ у at and near a patterned surface at (a) τ = 1.25, (b) て = 2.5, 

(с) τ = 5, (d) τ = 7.5, (e) τ = 10 and ( f ) τ = 12.5. 

The т о ф һ о 1 о § у at l o w て is shown m figure 7 . 1 ; the osc i l la t ing structure 

present i n the previous chapter is again present here. The patterning o f the surface is 

clear but we also note that the pattern at the surface propagates, v ia the deplet ion 

layer, in to the bu lk . 
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Figure 7.2 

Deve lopment o f the morpho logy at (a) τ = 25, (b) τ = 125， (с) τ = 250, (d) τ = 500, 

(e) τ = 1250 and ( f ) τ = 2500. 
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Figure 7.2 shows h o w the т о ф һ о ю § у develops at later t imes, i n each part o f 

figure 7.2 a surface layer f o l l o w e d b y a deplet ion layer is s t i l l seen, however , the 

propagat ion o f the surface pattern into the bu l k is lost to a great extent as the bu l k 

free energy component o f the overa l l free energy becomes dominant . 

7.1.2 E f f e c t o f A l t e r i n g the P a t t e r n Size a n d Sur face M a g n i t u d e 

The size o f the pattern can also be altered as shown ш figure 7.3. 

Figure 7.3 

Compar ison o f d i f ferent pattern sizes at て = 5 ^ ^ where the pattern is set at X = 0 on a 

64x128 array, the pattern size is (a) 128 array uni ts, (b) 64 array uni ts , (c) 32 array 

uni ts and (d) 16 array uni ts. 

B y reducing the pattern size i t can be seen that the order produced b y the 

surface i n the b u l k is somewhat reduced. Th is is because as the pattern size is 

reduced more interface between components is present leadmg to a h igher energy 
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system, therefore the system moves to reduce the free energy b y reducing the effect 

o f the pattern i n the bu lk . F igure 7.3(c) shows that, at the surface, a smal l w e l l 

def ined pattern can exist and i f the film is th in enough i t is possible to see that this 

pattern may propagate throughout the film. 

I n the above examples the surfaces are set to be equal and opposite, i.e. w i t h 

h i values o f 0.75 and -0.75, however i t is also possible to set the surface to be 

attractive to the same component , but by d i f fe r ing amounts, e.g. h i = 1.5 and 0.75, or 

attractive to d i f ferent components but b y va ry ing amounts, e.g. h i = 1.5 and -0.75, 

examples o f these situations are shown b i n f igure 7.4. 

Figure 7.4 

Example morphologies fo rmed when (a) h i = 1.5 and 0.75 and (b) h i = 1.5 and -0.75 

at て = 500 on a 64x128 array w i t h a pattern o f 32 array un i ts . 

The di f ference i n co lour at the surface i n figure 7.4(a) c lear ly shows h o w the 

surface is patterned, w i t h greater phase separation at the more attractive surfaces and 

a more def ined deplet ion layer i n the bu lk . I n figure 7.4(b) w e see encroachment o f 

one phase, where h i = 1.5, onto the area o f reduced attract ion fo r the second phase, 

where h i = -0.75. 
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7.2 Phase Sepa ra t i on on a C h e m i c a l l y P a t t e r n e d Sur face 

A s patterned surfaces at hard wa l ls have been studied i n detai l i n the l i terature 

the mode l is fur ther developed to explore interest ing тофЬо1о§ іе8 f o rmed on 

chemica l ly patterned substrates, as described i n chapter 2.7.3. A s above, the 

pat terning is expected to direct the spinodal decomposi t ion process to f o r m 

morpholog ies s imi lar to those o f the patterning on the surface. The system is again 

set up w i t h a two-d imens iona l mode l thus neglectmg effects that may occur i n the 

d i rec t ion no rma l to the substrate, such as surface directed spinodal decomposi t ion 

and film height var iat ions. For this reason the γ te rm in t roduced i n equat ion 2.7.1 

can be ignored as the mode l cannot take ассогшЇ o f the corre lat ion length no rma l to 

the surface, hence equat ion 6.1.9 becomes, 

0φ(χ,τ) ^ 1^2 

ÕT 2 

— ^ ๒ - І ֊ — ֊ + I t ^ , ы — J — w " 

2{Z-Zs) Ι-φ Հ֊Հտ Ъ6ф\\-фү^ " 18ί^(1֊^) у 

+ и ֊๗) 
(7.2.1) 

where h l and g are dependent on X. 

7.2.1 R e g u l a r C i r c u l a r P a t t e r n 

The surface is regular ly patterned w i t h circles o f equal diameter and spacing, 

as shown i n f igure 7.5, and phase separation is a l l owed to occur v ia the temperature 

j u m p method. I n th is case N A = 1105 and N B = 9 1 3 to mode l a 116K M W 

po ly (v iny lpy r id ine ) (PVP) 9 4 9 K M W polystyrene (PS) b lend, as used b y the group 

o f W i l h e l m H u c k to exper imenta l ly undertake such w o r k . The b lend is quenched 

from χ = 0.002 on the spinodal to χ = 0.00204 i n the t w o phase reg ion, 
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Figure 7.5 

Circ le pattern over w h i c h phase separation occurs. 

Phase separation is undertaken over this pattern and the evo lu t ion o f the 

тофһоюду is f o l l o w e d w i t h t ime. The patterned areas above (circles) are set to 

attract one component o f the b lend , w i t h h i = 0.5, g = 0.1 and the non-patteraed area 

is set to be neutra l , attract ing neither component. The simulat ions are undertaken on 

a 128^ array w i t h Δ τ = 0.0025 and Δχ = 0.5 w i t h a 50:50 b lend, 
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35 

65 

Figure 7.6 

Development o f the morpho logy f o l l o w i n g a quench into the two phase reg ion at (a) 

τ = 1， (b) ^ 12.5， (c) τ = 25， (d) τ = 125, (e) τ = 500 and ( f ) τ = 2500. 

b i i t ía l l y , i n figure 7.6(a) phase separation occurs most prevalent ly at the 

pattern areas, f o l l owed b y the corresponding deplet ion layer. Transient structures are 

then seen i n the mat r ix around the pattern w h i c h are clear ly a consequence o f the 

pattern and the wave length select ion process associated w i t h spinodal 

decomposi t ion. A s stated prev ious ly , du r ing spinodal decomposi t ion the b lend phase 

separates to f o r m a sinusoidal structure, and this is c lear ly seen i n figures 7.6(b)-( f ) . 

The circles o f po lymer seen i n the ma t r i x are re lat ive ly stable w i t h t ime and very 

l i t t le degradat ion is seen between f igures 7.6(d) and 7.6(f) . Th is is because 

sinusoidal structures are seen throughout the system, bo th hor izonta l ly , ver t ica l ly and 
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diagonal ly and the system resides i n a local free energy state. The cost o f d i f f us ion 

from the mat r i x to the patterned area is therefore h igh , mak ing the structure seen i n 

f igure 7.6(f) loca l ly stable. I f w e use a h igher value o f h i on the circles, as shown i n 

f igure 7.7, or w i thou t changing h i on the pattern, w e make the mat r i x attractive to the 

second b lend component, as shown i n f i g w e 7.8, then w e find that these trapped 

stracณres do not persist. 
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35 

70 

f 
Figure 7.7 

Development o f the morpho logy w h e n h i = 1.5 on the patterned areas and the mat r i x 

remamร neutral a t ( a ) T = 1, (b) τ = 12.5, (с) τ = 25, (d) τ = 125, (e) τ = 500 and ( f ) τ 

= 2500. 
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Figure 7,8 

Development o f the m o φ h o l o g y when h i = 0.5 on the patterned areas and h i = -0.5 

on the mat r i x at (a) τ = 1， (b^ 12.5， (c) τ 二 25 , (d) τ = 125, (e) τ = 500 and ( f ) τ = 

2500. 

B y al ter ing the surface propert ies, i n f igxireร 7.7 and 7.8, i t has been possible 

to destabil ise the m o φ h o l o g y seen i n figure 7.6( f ) , essential ly w e have increased the 

rate o f the phase separation process, and we n o w find that, f o l l o w i n g the transient 

s trueณres, the т о ф һ о 1 о £ у is directed b y and m im ics the pattern. A s a 50:50 b lend is 

used the area o f the pattern is not large enough to a l l ow the ent irety o f the favoured 

component to f o r m above i t , however because the m i n i m u m inter fac ia l area is 

required between components w e find the system a l lows the fo rmat ion o f the 

favoured component around the patterned area, even when the mat r i x is favourable to 

the second component. 
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Exper imenta l l y i f a structure such as that seen i n f igure 7.6(f) were present i t 

may be d i f f i cu l t to change the favourab i l i t y o f the patterned area and the mat r i x , the 

easiest way to then remove these structures w o u l d be to alter the b lend compos i t ion , 

as seen i n figure 7.9 a smal l al terat ion i n the b lend composi t ion can have a great 

effect on the outcome o f the phase separation process. 
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Figure 7.9 

Development o f the morpho logy f o l l o w i n g a quench into the two phase reg ion w h e n 

h i = 0.5 on the patterned areas and the mat r i x is neutral at (a) τ = 1, (b) τ = 12.5， (с) τ 

= 25， (d) τ = 125, (є) τ = 500 and ( f ) τ = 2500 for a 47.5:52.5 b lend. 

The Stณcture seen i n f igure 7.6(f) becomes imstable and decays to m i m i c the 

pattern, c lear ly b y reduc ing the vo lume o f the component w h i c h is favoxtfable to the 

pattern we have reduced the stabi l i ty o f the sinusoidal structure seen i n figure 7.6(f) 
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： น w e s t free energy value. For completeness, 

in figure 7.10, we show the effect OI 

b i n t o the t w o phase reg ion when 

一 
：p:r.o.p.asesepa.aüonne.asurface. 
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I f the system used i n figure 7.6 n o w undergoes a deeper quench, to χ = 

0.00272, i t is expected that the surface w i l l have less o f an affect on the final 

т о ф һ о 1 о § у due to the increased gradient i n the mterface between components. The 

results o f this hypothesis are shown i n f igure 7 .11 . 

Figure 7.11 

Development o f the т о ф һ о 1 о § у f o l l o w i n g a quench into the t w o phase reg ion at (a) 

τ = 1， (b) ^ 12·5， (с) τ = 25， (d) τ = 125, (e) τ = 500 and ( f ) τ = 2500 when χ = 

0.00272. 

A s suggested, w h e n the quench depth is increased the surface at t ract ion has a 

reduced inf luence on the f ina l т о ф һ о 1 о § у , again interest ing and elegant transient 
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structures are seen w h i c h are c lear ly in f luenced b y the presence o f the patterned 

surface. A t later t imes however the greater extent o f phase separation, and therefore 

greater di f ference i n vo lume fraction between phases, forces the system to reduce the 

free energy o f the bu l k , w i t h obvious costs to the surface free energy. Th is result re-

enforces previous conclusions that the system is cont ro l led b y a balance between 

surface and bu lk free energy. I t is also clear from the above results that the 

m o w h o l o g y is def in i te ly " tuneab le" us ing this method, a l though a number o f factors 

need to be considered when at tempt ing to target specif ic m o φ h o l o g i e s . 

The interface count ing method is used to compare the amount o f interface 

present w i t h t ime fo r the examples shown i n figures 7.6 and 7.7. 
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Figure 7.12 

T i m e dependence o f the total in ter fac ia l area corresponding to the phase separation 

kinet ics shown i n f igures 7.6 and 7.7. 

F igure 7.12 shows that b y use o f this method i t is clear to see that the final 

m o φ h o l o g i e s o f the examples shown i n figures 7.6 and 7.7 are very d i f ferent . A t τ = 

500 we see a reduct ion i n the amount o f interface present i n example 7.7 when 

compared to example 7.6, corresponding to the t ime at w h i c h the circles i n the mat r ix 

d i f fuse to the patterned areas. However w e see l i t t le reduct ion i n the interface count 

fo r figure 7.6 after て « 100 ind icat ing the pattern seen is indeed loca l ly stable over 

t ime. 
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7.2.2 Forming ControUed Structures on a Regular Patterned Surface 

I f the circles in the above pattern were placed close enough together we 

propose that it should be possible for the excess polymer around the pattern to form a 

single strucณre throughout the system, for this reason we now change the spacing 

between the patterned areas. Init ially a 160x128 array is used such that the distance 

between the centres o f the patterned circles is 24 array units in the X direction, 

secondly a 128^ array is used such that the distance between patterned circles is 16 

array units in the X direction; the radius o f the pattern is 4 array units and the distance 

between the centre of each patterned circle is 32 array units in the y direction in each 

case. The interface counting method is used and a contour plot is taken whenever a 

significant change is seen within the interface count. Here hi = 0.5 in the patterned 

areas and the matrix is set to be neutral, g = 0 .1 ,NA = N B = 500 wi th Δτ = 0.0025， Δχ 

= 0.5 and a 40:60 blend composition is used. 
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Figure 7.13 

(a) Interface count vs. time for a 160x128 system with points o f interest shown 

corresponding to (b) τ = 15, (с) τ = 26, (d) τ = 44 and (e) τ = 75. 

By making use of the interface count plot we are able to choose the most 

appropriate time points to create contour plots to help understand the occurrences 

during phase separation. Figure 7.13 shows the phase separation process occurring 

in a similar fashion to that in figure 7.9, however in this case the distance between 

the pattern in the у direction is greater than that in the X direction. Again interesting, 

and potentially useful, transient structures are seen between the patterned areas 
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which then give way to a system in which the morphology is directed by the surface 

patterning. Unfortunately however the phase separated morphology above the 

patterned areas do not jo in together to form a s๒gle structure as hoped so the 

distance between patterned areas is reduced in the next example to 16 array units and 

the simulation occurs on a 1282 array wi th all other variables remaining constant. 
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Figure 7.14 

(a) Interface count vs. time for a 1282 system with points of interest shown 

correspondmg to (b) τ = 15,(c)x = 25, (d) τ = 85, (e) τ = 118, ( ί ) τ = 126, (g) τ -

138, (h) τ = 190 and ( і) τ = 206. 

Figure 7.14 again shows an interface count and examples o f the тофһо1о§у 

at a number o f mterestmg points. Here the pattern is close enough to allow single 
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structures to be formed along the X direction in figure 7.14(i); this transition can be 

seen to be favourable from figure 7.14(a) as the amount o f interface significantly 

reduces between points һ and i. Between points f and g the amount o f interface is 

seen to increase, as is the case at points d and h. We believe this occurs by creating 

transient structures to either allow the system to reduce the overall interface, and 

therefore free energy, as in points d and h， or when the system has reduced its free 

energy significantly and an equilibrium state is being resolved, as in point f. 

7.2.3 Patterning to Cont ro l Phase Separated Structure 

Using this method we believe that it is now possible to target a vast number 

of different phase separated moφhologies. By setting the patterned points close 

enough together it is possible to repeatedly form the above stracณre and therefore 

give a targeted moφhology. Experimentally the use o f inkjet printing is being 

developed to create such patterns and therefore to give the possibility o f forming the 

pattern in a repeatable manner and wi th little error. The uses o f such systems can at 

this time only be imagined but if, for example, one polymer, the red polymer in our 

case, was conductive and the second polymer were insulating then conductive lines 

o f polymer can be laid near to each other wi th a high degree of accuracy but on a 

nano-meter length scale. This could lead to the development of Phase Separated 

Circuit Boards (PSCB，S) for use in a large array o f different products. To show 

control is possible over the final structures in these systems a different pattern has 

been used to that shown above, it is shown in figure 7.15. 
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Figure 7.15 

Circle pattern over which phase separation occurs. 

The above pattern is produced on a 138^ array and phase separation for two 

blend compositions is carried out, these are a 35:65 blend and a 30:70 blend with hi 

= 0.5 in the patterned areas and the matrix is set to be neutral, g = 0 . 1 , N A = N B = 

500, Δτ = 0.0025 and Δχ = 0.5. 
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Figure 7.16 

Growth о£тофһо1о§у for a 35:65 blend at (a) τ = 2.5, (b) τ = 125, (с) τ = 250, (d) τ 

= 1250, (e) τ = 2500 and (f) τ = 12500. 

Init ially in figure 7.16 the phase separated moφhology can be seen to mimic 

the patterned background, however wi th time the system broadens the structure, to 

reduce the overall free energy, and the pattern is seen to become lost by figure 

7.16(f). A number o f solutions to this problem present themselves from the above 
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investigation, including altering the attraction o f each component to the surface, 

however the simplest is to alter the blend to a 30:70 composition; the results of such 

a change are shown in figure 7.17. 

о ' ճ \ о 
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Figure 7.17 

Growth o f т о ф һ о ю е у for a 30:60 blend at (a) τ = 2.5, (b) τ = 125, (с) 

= 1250, (e) τ = 2500 and (f) τ = 12500. 

250, (d) 

We see in figure 7.17 that the morphology mimics the pattern throughout the 

simulation and no more broadening can occur as only a limited amount o f component 
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A, the red component, is present. We see no domain broadening occurring between 

figures 7.17(d) and 7.17(f) which shows a great contrast to the amount o f domain 

broadening seen in 7.16(d) to 7.16(f). This comparison highlights the importance o f 

controlling the system variables as very different final morphologies are seen in each 

case which from a technological point o f view could have very different properties. 

We therefore believe that this is an exciting way to target тофЬо1о§іе8 for 

many technological applications. The above examples show however that careftxl 

control is needed over the conditions, i.e. quench depth and blend composition, used 

when phase separation occurs in these systems. We note that although the above 

systems are l imited to patterns made up from circles it is possible to pattern any 

shape onto the surface in our model and should be possible for most patterns 

experimentally. 

7.3 Conclusions 

In the current chapter the model developed in chapter 6 for polymer phase 

separation at and near a surface has been used to investigate phase separation both 

adjacent to and above a patterned surface. Initially a hard wal l surface is patterned to 

be attractive to two components of a blend ш an alternating fashion. We find that 

interesting alternating structures propagate throughout the system due to the 

interaction wi th the surface, as in the previous chapter. However the structures no 

longer altemate solely in a direction рефеп(ііси1аг to the wal l but also parallel to the 

wal l due to the patterning present there. 

We also study the process o f phase separation above a patterned surface; here 

we consider a system where a surface has been altered in specific areas to change the 

surface properties. We investigate patterns made from a series o f circles and find 

transient structures develop that do not mimic the pattern but are a consequence of 

the wavelength selection process and the intrinsically dynamic nature o f phase 

separation. In other words, although the final state may be a phase separated f i lm 

whose тофһо1о£у mimics that o f the pattern, unusual transient structures develop. 

Such non-equilibrium structures may be undesirable, or may even be exploitable; in 

either case, an understandmg of the xmderlying physical mechanisms is essential i f 

control is to be gained. By changing the surface properties, quench depth and blend 

composition we believe it is possible to control these systems and show that we can 

either stabilise or remove these transient strucณres. By changing the distance 
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between the circle patterns we find that we can also form controllable lines o f 

polymer between our patterned area and feel that such a system could have vast 

technological uses, for not only does it lead to target тофЬо1одіе8 but also wi th the 

use o f sophisticated conducting polymers it could lead to applications in organic 

semi-conducting technologies. 
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Chapter 8 

Surface Directed Spinodal Decomposition in Ternary Blends 

The methods used in chapters 5 and 6 are now further extended to model a 

three component (A， в and C) polymer blend undergoing phase separation at and 

near to a hard wall surface. Firstly the equations used in chapter 6 are developed to 

account for the third component of the blend and the ternary phase diagram is then 

found by calculating the spinodal. Phase separation o f this three component blend is 

studied by altering the interaction parameters between the A and в components of 

the blend and by changing the attraction o f each component to the surface to propose 

a number o f different surface тофЬо1о§іе8. These moφhologies are then studied 

via parallel and рефепШсиІаг correlation fiinctions, where it is found that layers of 

each polymer can be formed рефеп0іси1аг to the surface or by surface competition, 

alternating moφhologies can be seen parallel to the surface. 

8.1 Model l ing Surface Directed Spinodal Decomposition in a Three 

Component Polymer Blend 

We initially develop the theory shown previously for three component 

polymer blends. Firstly we fol low the method o f Huang et al.^^ to construct the free 

energy functional for each component o f the polymer blend from the Flory-Huggins 

free energy per lattice site for a three component polymer blend, 

(8.1.1) 

where Ni is the degree o f polymerisation o f component i, when í = A , в or с and фі is 

the local composition volume fraction o f component i. 

Equation 5.1.1 has been developed to describe the morphological evolution o f 

a two component polydisperse polymer blend, here we consider an incompressible 

system where Фҫ = \ - ф ^ - ф д so by combining equations 5.1.1 and 8.1.1 we are able 

to produce equations for components A and в to describe the тофЬо1о§іса1 
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evolution of a three component polymer blend in the bulk when Ay is now 

determined by 

\ j = ( ร , ֊Փ^)-Փյ + 2Փ,Փյ, (8.1.2) 

and for simplicity we use for the degree o f polymerisation N A = N B = Nc = N. In 

e q u a t i o n 5.1.1 Ճ a n d τ are r e s c a l e d s p a t i a l a n d t e m p o r a l v a r i a b l e s r e s p e c t i v e l y , n o w 

given by x = r/N՝'^b and て = Åt/N^b^, where b is the Kuhn length of species і and 

λ is its mobil i ty component. It is noted that equation 8.1.2 varies from equation 

2.4.11 as λ Α = λβ = λο = λ since the degree of polymerisation for each component is 

the same; this is now іпсофогаЇесІ into the rescaled temporal variable. 

We define the equations needed to model the effects o f a surface added into 

the system in a three component polymer blend. We start by composing an equation 

for the "bare" surface free energy'', 

ƒ / ІФ) = ― [ФІЄАЛ + Φ Ι ^ Β Β + Ф с ^ с с + ^ Ф л Ф в ^ А В + Җ Ф с ^ А С + Җ Ф с ^ В С ] , 

(8.1.3) 

where z ' bonds are cut when a new surface is made. It is useful to rewrite the above 

equation in the form, 

ƒ / ІФ) = - Һ А ― ł 8АФІ ― Һ А ֊ԿտտՓւ-կ 8АВФАФВ , (8.1.4) 

The competition between the surface field and the energy cost associated with 

a gradient in the order parameter creates an equilibrium value o f the order parameter 

at the surface and the above boundary condition is used to pin the surface value to 

this equilibrium value. The first boundary condition used in chapter 6, ճ^լ^^յ = 0 ， 

where J is the polymer flux, is used to ensure that the flux of the polymer 

components though the surface boundary is zero; this enforces conservation o f the 

order parameter, where J cc VŐF/δφ. 

As before a second boundary condition, from equation 8.1.4, is applied to one 

s u r f a c e , at X = 0, a n d t h e first b o u n d a r y c o n d i t i o n is a p p l i e d t o t w o p a r a l l e l su r f aces 
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at х = о and х = x ' . For two dimensional simulations, periodic boimdary conditions 

w i l l be applied at the у = 0 and у = y ' surfaces. The equations used to evolve the 

phase separation process in such are blend are now given by, 

and, 

^^'—ปี-= ^ΑΑ'^"ΑΑ[ΜΑ֊Η^֊ΦΑ֊ΦΒ) + Νχ,,^-2φ,֊φ,) + Νφ,{χ^-χ,,)) 
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where δ(χ) is the Dirac-delta function, ensuring that the surface free energy only 

affects X = 0. For consistency wi th previous models we also include a third term, 

dependant on γ, in the surface free energy which accounts for the energy cost o f 

gradients in composition at the surface, and was derived on the basis o f the Kawasaki 

spin-exchange model. The surface term is added into the dynamic equation of 

motion. In the simulations we again scale the surface terms by 1/Δχ to ensure 

consistency when discretising the equations o f motion. We relate h a , hb, g a , gb and 

gab to real systems usmg the fol lowing which has been determined from the "bare" 

surface free energy' fol lowing the methodology see previously, 

һ = ピムс ^ГАҪЬ^ 

" İz кТ 

b İz кТ 

8а 

8b = 

z 

Z՝XBC 

z 

8AB=Z 
ZAC + ZBC ~ ZAB 

(8.1.7) 

(8.1.8) 

(8.1.9) 

(8.1.10) 

(8.1.11) 

where z is the coordination number o f the lattice, z' bonds are cut when a new 

surface is made and Ayij is the difference in surface tension between components і 

and j . 

8.1.1 Phase Separation in a Three Component Blend 

In the fol lowing we investigate two regions of the phase diagram by altering 

the various χ parameters. To do this we first show phase diagrams for a number o f 

different variables in figure 8.1， where the spmodal curve is given by the 

determinant^' o f equation 2.6.2. 
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Figure 8.1 

The phase diagrams, spinodal curve, of symmetric ternary systems where N = 200 

f o r (a ) χ AB = ХАС = Хвс = 0 . 0 1 3 5 , ( b ) ХАВ = ХАС = Хвс = 0 . 0 1 3 7 , (С) ХАВ = ХАС = Хвс 

= 0.015 and (d) ХАВ = 0.018, ХАС = Хвс = 0.015. 

We use blend parameters corresponding to figures 8.1(c) and 8.1(d) during 

our simulations wi th surface variables and w i l l undertake the work wi th a blend 

composition of ФА = 0.4, фв = 0.4 and фс = 0.2, represented by ® on the above phase 

diagrams, this allows us to probe a similar area of the phase diagram to Huang^^ et 

al. Figures 8.2 and 8.3 show example тофЬо1о£ІЄ5 o f the systems when no swface 

is present. 
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Figure 8,2 

Example moφhologies when χ AB = ХАС = Хвс = 0.015 atx = 2500 for (a) the three 

component system where • represents component A， • represents component в and 

• represents component c , and (b) the т о ф һ о ю £ у o f component с wi th phase 

separation described by the legend. 

Figure 8 J 

Example moφhologies when XAB = 0.018, ХАС = Хвс = 0.015 at て = 2500 for (a) the 

three component system where • represents component A， • represents component 

В and • represents component c， and (b) the тофһою§у of component c . 

A comparison of figures 8.2(b) and 8.3(b) shows that when XAB is increased 

the volume fraction o f component c , at the interface between components A and B， 
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increases and the formation o f droplets o f component с is reduced, this is due to the 

increased "disl ike" of each other components A and в experience when XAB is 

increased. 

8.1.2 Phase Separation at a Surface 

In the fol lowing investigation a matrix o f size 128 X 256 is used, where the 

surface resides along the longer dimension, wi th Δτ = 0.001, Δχ = 0.5 and an initial 

random noise of ±0.001. Four different surface attraction conditions are investigated 

wi th h a = ± 0 . 5 and hb = ± 0 . 5 so that we probe the morphology when ha = hb > h e , h a > 

he > h b , h b > he > ha and he > ha = h b . In each case component с is neither attracted 

nor repelled by the surface and is said to be in a neutral state. Following the 

methodology o f Puri and Binder"^ we probe Փ լ , the average value of the volume 

fraction for each component of the blend рефеп(ііси1аг to the surface, and the point 

at which the mowhology first intersects (に when moving рефепсіісиїаг to the 

surface. We also define both a perpendicular and parallel correlation function, 

respectively using, 

G _ , = ( ( í 2 J ( Z = 0 ) - ^ ) ( í í ( Z = Z ) - ^ ) ) , ( 8 . 1 . 1 2 ) 

С,={ф{х)ф{х + \))-{ф{х))\ (8.1.13) 

and a characteristic length in each case, defined as /_| = )^G_ļ(Z = 0) and 

Կ =ХС||(д: = 0), where X is the distance parallel to the surface and ζ is the distance 

рефеп(ііси1аг to the surface. 

We define four different surface parameter cases for each set o f χ parameters, 

i.e. in case 1 ha = 0.5 and hb = 0.5, in case 2 ha = 0.5 and hb = -0.5, in case 3 ha = -0.5 

and h b = 0.5 and finally in case 4 ha = -0.5 and h b = -0.5, the resultant surface 

segregation is shown in figure 8.4 for each case. 
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Figure 8.4 

M o φ h o ю g i e s when X A B = Х А С = Хвс = 0.015 at て = 1000 where • represents 

component A , • represents component в and • represents component с i n (a), ( c )， 

(e) and (g) and the morpho logy o f component с is shown i n (b ) , (d ) , ( f ) and (h) . I n 

(a) and ( b ) ha = 0 .5 and hb = 0 .5， i n (c) and (d) ha = 0 .5 and hb = - 0 . 5 , i n (e) and ( f ) ha 

= -0.5 and hb = 0.5 and i n ( g ) and ( h ) ha = -0.5 and hb = -0.5. 

B y sett ing the value o f h, to be posi t ive w e see that component і becomes 

attracted to the surface, such that i n figure 8.4(a) bo th components A and в are 
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equal ly compel led to f o r m at the surface on the lef t hand side o f the d iagram and a 

pseudo random morpho logy is fo rmed. U p o n sett ing component A to f o r m at the 

surface and component в to be repel led b y the surface (corresponding to ha = 0.5 and 

hb = -0.5) we see A - C - B layers f o rm ing i n f igure 8.4(c), as component с is the m ino r 

phase its layer is th in , res id ing between the layers o f components A and B. The 

opposite is seen i n figure 4(e) where a B - C - A layer is f o rmed by reversing the signs 

o f the һ values for components A and B. F ina l l y i n figure 8.4(g) w e see that because 

both components A and в have negative һ values component с forms at the surface 

and is also present at the interface between components A and B , on ly at a reduced 

vo lume fraction. Figures 8.4(a) - 8.4(f) show results consistent to those seen i n 

previous studies for b inary blends where layers are fo rmed perpendicular to the 

surface, in f igure 8.4(g) w e mode l a si tuat ion w h i c h is d iss imi lar to any system 

possible w i t h a b inary b lend and w h i c h cou ld have important technological uses. 

8.2 S i m u l a t i o n Resul ts 

The f o l l o w i n g simulat ions were undertaken to τ = 3000 on a 128 X 256 array 

where the surface is p laced a long the longer axis o f the system. A non square array 

was used so as to increase the computat iona! e f f ic iency o f the system as our m a i n 

interest is w i t h the processes occurr ing at the surface and not i n the bu lk . A l l 

s imulat ions were undertaken w i t h ᅀ て = 0 .001 , Δχ = 0.5 and were averaged over 5 

runs w i t h d i f ferent in i t ia l random noise each t ime. The s imulat ions were carr ied out 

w i t h a b lend compos i t ion o f Φ Α =0 .4 , фв =0.4 and фс =0.2. 

8.2.1 V a r i a t i o n o f φ w i t h D e p t h f r o m the Su r face 

Firs t ly w e show plots o f φ . ， the average o f ph i , fo r each component vs. depth 

in to the system perpendicular to the surface, r. The p lo t is on ly taken to 50 uni ts 

from the surface as a random morpho logy is fo rmed at larger depths, as seen i n 

f igures 8.3 and 8.4, and as stated above our ma in interest is i n the interactions each 

component undergoes due to the surface and the other b lend components. W e 

present results fo r X A B = Х А С = Хвс = 0.015 for each case as def ined above and for 

each component o f the b lend. W e also f o l l o w Փ լ fo r each component w i t h t ime and 

then find the depth, r, at w h i c h фі first intersects , where í = A, в or c. 
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Figure & 5 

Φι vs. r fo r t imes shown i n the legend when χ A B = Х А С = Хвс = 0.015 and ha = hb = 

0.5 for (a) component A , (b) component B , (c) component с and (d) the value o f r ' 

at w h i c h фі first intersects Ф і , where í = A , в or c. 
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Figure 8.6 

՜Փւ V S . r f o r t imes shown i n the legend when X A B = Х А С = Хвс = 0.015 and ha = 0 . 5 , hb 

= -0.5 fo r (a) component A , (b)component B , (c) component с and (d) the value o f r ' 

at w h i c h фі first intersects ф į , where / = A , в or c. 
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Figure 8.7 

ф. vs. r fo r t imes shown i n the legend w h e n X A B = Х А С = Хвс = 0.015 and ha = -0 .5 , 

hb = 0.5 for (a) component A , (b)component B， (c) component с and (d) the value o f 

r ' at w h i c h фі first intersects Փ ր where / = A , в or c. 
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Figure 8.8 

Փչ V S . r fo r t imes shown i n the legend when X A B = Х А С = Хвс = 0.015 and ha = hb = -

0.5 for (a) component A , (b)component B, (c) component с and (d) the value o f r ' at 

w h i c h фі first intersects ф-い where / = A , В or c . 

Figures 8.5 - 8.8 show a number o f notable reatares o f the s imulat ions. I n 

f igures 8.5(a), 8.5(b) and 8.5(c) w e clear ly see the g rowth o f the surface into the b u l k 

w i t h t ime, w e also see the fo rmat ion o f a s inusoidal structure рефепс1іси1аг to the 

surface, consistent w i t h the spinodal decomposi t ion process, f o rm ing i n each case 

and then broadening w i t h t ime. W e note that i n f igure 8.5 the value o f r ', the value 

o f r at w h i c h фі first intersects increases for both components A and с as the 

surface broadens w i t h t ime, however fo r component в the pos i t ion increases to a 

m a x i m u m at around て = 500， then starts to reduce again. I t can be seen from f igure 

8.5(b) that the magniณde o f фв at the surface reduces w i t h t ime, therefore reduc ing 

the pos i t ion at w h i c h фі first intersects ф լ . I n this system the component w h i c h 

dominates at the surface is dictated by the random noise at the start o f the s imula t ion 

on ly as a l l other variables are the same and w e therefore bel ieve this result to be due 

to the random fo rmat ion o f the surface segregation. The surface i n figure 8.6 has 

been set to be attractive to component A but repuls ive to component B， this can be 
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seen by analysing f igures 8.6(a) and 8.6(b). I n figure 8.6(a) w e see that at the surface 

Ф А « 0.95 whereas фв « 0.00 and фс « 0.05. I n this system a smal l amount o f surface 

broadenmg occurs, however w e see a large broadening o f the deplet ion layer w i t h 

t ime and the propagat ion o f a sinusoidal structure into the bu lk . W e note that, for 

components A and B , the value at w h i c h фі f i rs t intersects ^ , increases rap id ly as τ 

increases ( i n each case) before becoming almost constant w i t h l i t t le posi t ional 

change. Component с however has a large increase i n r fo r a short t ime before 

reducmg to a pos i t ion consistent w i t h the other components present; this is due to the 

phase separated structure o f this component not mtersect ing i n the first deplet ion 

layer, as shown i n figure 8.9. 
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Figure 8.9 

фс vs. r when Х А В ХАС = Хвс = 0.015 and һа = hb = - 0 . 5 

W e see that фс does not intersect (0.2 i n this case) un t i l r « 23 , as the first 

deplet ion layer is damped to a m a x i m u m value o f фс = 0.14, leading to the 

corresponding increase seen i n f igure 8.6(d). Here the reduct ion i n the magni tude o f 

the in i t ia l deplet ion peak is on ly temporary as the system attempts to reach 

equ i l i b r ium. 
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The trends for components A and в seen i n figure 8.7 are the reverse o f those 

seen i n figure 8.6， corresponding to the exchange o f the values o f ha and hb. The 

results fo r component с i n this case are concordant w i t h those seen i n figure 8.6 as 

the system is undergo ing the same interactions. Figure 8.8 corresponds to the 

siณat ion where component с fo rms at the surface; here w e see a g row th i n the 

surface layer i n a l l three components. A g a i n the pos i t ion, r ', at w h i c h фі f i rst 

intersects φ.ι fo r component A appears to " j u m p " to a h igher value and then return to 

a s imi lar area to the other components, this is again due to the process seen i n f igure 

8.9. 

-Θ-
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¿ сГ 

Figure 8Л0 

φ , vs. r w h e n X A B = 0.018, Х А С = Хвс = 0.015 and ha = 0.5， hb = -0.5 fo r (a) 

component A , (b) component B， (c) component с and (d) the value o f r ， at w h i c h фі 

first reaches ん where / = A , в or c. 

Figure 8.10 shows the results o f a s imula t ion i n w h i c h ident ica l surface 

parameters to figure 8.6 are used but w h e n X A B = 0.018， Х А С = Хвс = 0.015, 

0ՕՄ6Տթօո (Սո§ to an increase i n X A B . a compar ison o f f igures 8.6 and 8.10 shows 

s imi lar trends occur r ing , but i n the latter case greater phase separation i n components 

A and В is present, corresponding to the increase in X A B . W e also note the phase 
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separated sinusoidal structure appears to have developed further i n f igure 8.10, again 

due to the increase i n X A B - I n figure 8 .11 X A B is again increased but fo r the case 

when ha = hb = -0.5. 

•Ө-

-•—I'M 

a b 

с ๙ 
Figure 8.11 

タ, vs. r w h e n X A B = 0 . 0 1 8 , Х А С = Хвс = 0 . 0 1 5 and ha = - 0 . 5 , hb = - 0 . 5 fo r (a) 

component A , (b) component B , (c) component с and (d) the value o f r at w h i c h фі 

first reaches Փ ր where է = A , в or c. 

A compar ison o f f igures 8.11 and 8.8 again shows a more developed s t rucณre 

рефеп(1іси1аг to the surface due to the increase i n X A B - W e see a large increase i n 

figure 8.11(d) when Ф А f i rst reaches at around τ = 500 corresponding to a result 

s imi lar to that shown i n figure 8.9 fo r component A . Th is is an artefact o f the 

domain broadening process as domain broadening invo lves d i f fus ion o f po lymer ic 

mater ia l f r o m one pos i t ion to another, therefore one peak i n the above d iagram w i l l 

broaden wh i l s t another is annihi lated, this is seen i n figure 8.12. 
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Figure 8.12 

Φ Α V S . r when X A B = 0.018, Х А С = Хвс = 0.015 and ha = hb = -0.5 at t w o d i f ferent 

t imes, as shown i n the legend. 

A s shown i n equat ion 8.1.12 and 8.1.13 we also f o l l o w the perpendicular and 

paral le l corre lat ion funct ions for each set o f var iables, f i rs t ly w e discuss the results 

f r o m the рефеп( і іси1аг correlat ion ftinction. 

8.2.2 T h e P e r p e n d i c u l a r C o r r e l a t i o n F u n c t i o n 

W e show results from X A B = ХАС ՜ Хвс = 0.015 and ha = hb = 0 . 5 for 

components A , в and с at three d i f ferent t imes w i t h a p lo t o f the corre lat ion func t ion 

vs. distance into the surface and w e also show the pos i t ion at w h i c h G-I reaches ՚/շՕ. 

Imax- The results are created f o l l o w i n g the method o f Pur i and Binder'15 where z is 

def ined as the distance from the surface at w h i c h correlat ion begins and fo r 

component A are shown i n f igure 8.13. 
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Figure 8.13 

G-I vs. r when Х А В = Х А С = Хвс = 0.015 and ha = hb = 0.5 for component A when (a) て 

= 100， (b) τ = 500， (с) τ = 3000 and (d) the pos i t ion at w h i c h G-I reaches '/2G.|max-

A s expected the results fo r component в are commensurate to those shown 

for component A i n f igure 8.13 and w i l l therefore not be shown here. The 

рефепсііси1аг correlat ion indicates greater phase accumulat ion at the surface 

f o l l owed by a random morpho logy , as seen i n f igure 8.4, and a g row th i n the surface 

layer w i t h t ime. The expected sinusoidal wave g row ing рефеп<1іси1аг to the surface 

can however c lear ly be seen w i t h the surface compos i t ion be ing f o l l o w e d b y a 

deplet ion layer, as seen f requent ly i n t w o component blends. A t z 5̂  0, i.e. when the 

correlat ion is per fo rmed f r o m a distance other than the surface, the in i t ia l corre lat ion 

value is seen to be decreased, as w e no longer reside at the attractive surface and the 

vo lume fraction o f component A ( B ) is reduced. The results for component с are 

also shown տ f igure 8.14. 
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Figure 8.14 

G-l vs. r when Х А В = Х А С = Хвс = 0.015 and ha = hb = 0.5 fo r component с when (a) 

τ = 100, (b) τ = 500, (с) τ = 3000 and (d) the pos i t ion at w h i c h G-I intersects '/гО-ітах-

I f w e note the scale o f G-I i n f igure 8.14 and compare this to the scale i n 

figure 8.13 we see that the correlat ion magniณde i n this case i n s ign i f icant ly smaller, 

this is because very l i t t le o f component с is resident at the surface and also because 

the vo lume fraction o f component с i n the b lend is reduced when compared to 

components A and B. In i t i a l l y G-I fo r z = 0 has the greatest magniณde as at smal l て 

l i t t le phase separation i n the b u l k has occurred but components A and в have been 

attracted to the surface. The fo rmat ion o f components A and в at the surface means 

that component с is also forced to f o r m here as i t resides ш the interface between 

components A and B. A s て incr^ i n f igure 8.14(c) w e see that the correlat ion at z 

= 12 becomes dominant , this is to be expected as the greatest vo lume fraction o f 

component С l ies i n the bu l k т о ф һ о ю § у , a l though the correlat ion is s t i l l smal l when 

compared to that for components A and B. 
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Figure 8,15 

G-l vs. r when X A B = 0.018 Х А С = Хвс = 0.015 and ha = hb = 0 . 5 for component с 

when (a) τ = 100, (b) τ = 500， (с) τ = 3000 and (d) the pos i t ion at w h i c h G.| reaches 

V2G-|max. 

F igure 8 . 1 5 presents results f r o m the si tuat ion where X A B = 0.018 Х А С = Хвс = 

0.015, here we see a s l ight increase i n the values o f G.| away f r o m the surface, 

presumably because a greater vo lume f ract ion o f component с is resident at the 

interface between components A and B. I t is again w o r t h no t ing the scale o f G-ļ i n 

figure 8.15 as i t shows that very l i t t le corre lat ion is present. 

W e n o w investigate the case where ha = 0.5 and hb= -0.5, here component A 

is attracted to the surface and component в is repulsed b y the surface g i v i n g an A - C -

B layered structure. W e show results analogous to those i n figures 8.13 and 8.14 for 

each component o f the b lend. 
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Figure 8.16 

G-l vs. r when ХАБ = Х А С = Хвс = 0 . 0 1 5 , һа = 0.5 and hb = -0 .5 for component A when 

(a) τ = 100, (b) τ = 500， (с) τ = 3000 and (d) the pos i t ion at w h i c h G—I reaches 

'/2G.|max-

Figure 8.16 shows that the correlat ion is greatest at the surface when z = 0, a 

large deplet ion layer is then seen for each value o f z and i t can be seen that bo th the 

surface and deplet ion layer g row w i t h t ime w i t h a sinusoidal strucณre be ing fo rmed 

рефеп( і іси1аг to the surface. I n figure 8.16(c) w e see that w h e n z 0 the corre lat ion 

at smal l distances f r o m the surface is seen to be equivalent i n each case, th is is 

because i n this case w e in i t ia l l y reside i n the deplet ion layer and the magniณde o f 

component A is s imi lar fo r each value o f z. W e see a great increase i n Lļ i n the cases 

where Ζ Φ Ο , this is because, as above, i n these cases the correlat ions start i n an area 

where very l i t t le o f component A is present, i.e. i n a layer o f component в or с and 

therefore do no t reach 1-І un t i l they are a great distance into the bu lk m o φ h o l o g y , this 

also explains w h y L| for ζ = 12 is lower than that o f ζ = 6 or ζ = 9, as the distance to 

the b u l k is smaller. 
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Figure 8.17 

G-l vs. r w h e n X A B = Х А С = Хвс = 0 . 0 1 5 ， ha = 0 . 5 and hb = - 0 . 5 for component в when 

(a) τ = 100, (b) τ = 500, (с) τ = 3000 and (d) the pos i t ion at w h i c h G-I reaches 

Figure 8.17 shows the рефепс і іси1аг s t r u c t o e factor fo r component B. I n 

f igure 8.17(a) w e see no trend i n the magni tude o f G-I at smal l r, this w e bel ieve is 

due to the layered fo rmat ion o f the phase separated system near to the surface 

leading to va ry ing amounts o f component в be ing present at any distance f r o m the 

surface. A t larger r however w e see a sinusoidal structure is present w h i c h alternates 

around G-I = 0, as expected from spinodal decomposi t ion. A t て = 3000 the sinusoidal 

s t rueณre w h i c h altemates around G-I = 0 is s t i l l present, ind icat ing phase separation 

i n the bu lk . The vo lume f ract ion o f component в at smal l r appears to be equal for 

a l l values o f z in i t ia l l y but a rapid decrease i n G-I is seen when z = 0， whereas when 

Z Φ 0 a d i f ferent structure is seen. I n the latter case ζ is located i n the layer o f 

components A and в and therefore is constant un t i l the bu lk reg ion is reached. Th is 

reasoning also explains the t rend seen i n f igure 8.17(d). 
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Figure 8.18 

G-l vs. r when Х А В = Х А С = / В С = 0.015, ha = 0.5 and hb = -0.5 for component с when 

(a) τ = 100, (b) τ = 500， (с) τ = 3000 and (d) the pos i t ion at w h i c h G-I reaches 

'/2G.|max-

I n f igure 8.18 G-I is shown for component c, once agam the magniณde o f G-l 

is much smaller i n component с than i n either components A or в as there is a lower 

vo lume fraction o f component с i n the b lend. A s component с is n o w present 

between layers o f A and в w e see much greater structure i n each part o f figure 8.18 

than that seen i n f igure 8.14, here w e see a layer o f component с occurr ing around r 

= 10, the deplet ion layer i n figures 8.16 and 8.17. A g a i n a damped sinusoidal 

structure develops from the surface outwards but in this case the per iod is much 

smaller due to the pos i t ion o f component с i n the A - B interface. In i t ia l l y , ш figures 

8.18(a) and 8.18(b) this structure is great ly damped and reduces to almost zero due to 

the very smal l vo lume fraction o f component с present i n the bu l k т о ф һ о 1 о § у and 

because at very early t imes most o f the phase separated vo lume o f component с w i l l 

reside in the surface deplet ion layer. 

W h e n X A B = 0.018 and Х А С = Хвс = 0.015 the results for components A and в 

and С are very s imi lar to those seen i n figures 8.16-8.18; but w i t h greater broadening 

due to the greater d r i v i ng force for phase separation produced by increasing χ . 
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W h e n ha = -0 .5 and hb = 0.5 component в becomes attracted to the surface 

and a layer is fo rmed , f o l l o w e d b y a layer o f component с and finally a layer o f 

component A , the results from this s imula t ion are analogous to that shown above 

w i t h the results fo r components A and в interchanged. 

W e finally note the more interest ing, and nove l , results produced when ha = 

hb = - 0 . 5 , see figure 8.4(g) and 8.4(h), here a s i tuat ion w h i c h is not possible i n a 

b inary b lend at a surface is found w i t h a layer o f component с at the surface 

fo l l owed b y equal areas o f components A and в becoming a random т о ф һ о 1 о § у i n 

the bu lk , G-I is shown for components A , в and с i n f igures 8.19-8.21 respect ively. 

С d 

Figure 8.19 

G. | vs. r when %AB = ХАС = Хвс = 0 . 0 1 5 , ha = hb = - 0 . 5 fo r component A w h e n (a) て 

100, (b) τ = 500, (с) τ = з о ฒ and (d) the pos i t ion at w h i c h G-I reaches '/гО-ітах-
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Figure 8,20 

G-l vs. r when ХАВ = ХАС = Хвс = 0 . 0 1 5 , ha = hb = - 0 . 5 for component в when (a) て = 

100， (b) τ = 500， (с) τ = 3000 and (d) the pos i t ion at w h i c h G-I reaches Y z G - i m a x . 

For components A and в we f i n d that G-I tends to the fo rmat ion o f equivalent 

curves when z = 9 and z = 12, this is because at these points we move out o f the 

in i t ia l layer o f component с and into the area where components A and в al temate 

w i t h equal vo lume fractions. A t z = 0 however , G-I starts from a h igh value and 

becomes almost zero w i t h increasing r， due to the l o w vo lume f rac t ion o f each 

component at the surface when compared to the bu lk . W e also see that L| is almost 

equivalent fo r the cases when z 9Íะ 0 ind icat ing that after the in i t ia l layer o f 

component С equal vo lume fract ions o f components A and в are present at each 

distance рефепс1іси1аг to the surface. A g a i n i n each case G.| reduces and alternates 

around G-I = 0 ind icat ing a randomly phase separated system. 
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Figure 8.21 

G-l vs. r w h e n ХАВ = ХАС = Хвс = 0.015, һа = hb = -0.5 for component с w h e n (а) て = 

100, (b) τ = 500, (с) τ = 3000 and (d) the pos i t ion at w h i c h G-I reaches '/îG-imax-

A compar ison o f figures 8.21 and 8.18 mdicates d iss imi lar results, i n the case 

o f f igure 8.21 we have a very large surface enr ichment i n component с so therefore 

w h e n Z = 0, G—I is large. Howeve r as component с is the m inor component i n the 

b lend l ow vo lume fractions o f component с are present i n the bu lk so l o w values o f 

G-I are seen at greater r. W h e n z 0 l i t t le corre lat ion is seen; again this is due to the 

l im i ted vo lume fraction o f component с res id ing i n the bu lk . I n f igure 8.21(d), w h e n 

Z = 0,1.1 increases w i t h t ime as the surface layer broadens, however when z = 6 w e 

see a rapid reduct ion i n 1-І at around て = 1000. Th is corresponds to the t ime that the 

surface layer broadens to z = 6, w h i c h therefore br ings a rap id increase i n the in i t ia l 

va lue o f G-|， as seen i n f igure 8.21(c), and therefore a reduct ion i n 1-卜 

A compar ison o f the m o φ h o l o g i e s fo rmed when χ AB = 0.015 and 0.018 is 

made i n figure 8.22. 
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Figure 8.22 

МофЬо10£ Іе8 where • represents component A , • represents component в and • 

represents component с in (a) and (c) and the morpho logy o f component с is shown 

i n (b) and (d) . I n each case h a = hb = - 0 . 5 and i n (a) and (b) XAB = ХАС = Хвс = 0.015 

but i n (c) and (d) XAB = 0.018 and ХАС = Хвс = 0.015. 

F igure 8.22 shows larger A and в domains present when χΑΒ = 0.018 but a 

greater vo lume f ract ion o f component с i n the interface between components A and 

B , this means a smaller amount o f component с is able to f o r m at the surface and 

components A and в penetrate fiirther in to the component с resident at the surface, 

this can be seen by compar ing 1-І i n figures 8.21 and 8.23. 
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Figure 8.23 

G-l vs. r when XAB = 0.018, ХАС = Хвс = 0.015, ha = hb = - 0 . 5 for component с when 

(a) τ = 100, (b) τ = 500， (с) τ = 3000 and (d ) the pos i t ion at w h i c h G-I reaches 

'/гО-ітах-

I n f igure 8.23 w e see not on ly a large reduct ion i n the magniณde o f 1-І but the 

values o f 1-І when z = 6 and 12 start to reduce at large て， this w o u l d be not on ly 

ind icat ive o f the fact that a greater amount o f component с is present i n the b u l k 

morpho logy but also that, as seen i n figure 8.22, components A and в penetrate 

fur ther in to component с at the surface fo rc ing component с fur ther in to the b u l k 

reg ion. Th is reasoning can be used to exp la in the large increase i n the in i t ia l values 

o f Z = 6 i n figure 8.23(c) as a greater vo lume o f component с is f ound at this 

distance when compared to figure 8.21(c). 

F ina l l y G.| for components A and в are shown i n figures 8.24 and 8.25. 
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Figure 824 

G-l vs. r when ХАВ = 0.018, ХАС = Хвс = 0.015, һа = hb = " 0 . 5 for component A w h e n 

(a) τ = 100^ 500， (с) τ 二 3000 and (d) the pos i t ion at w h i c h G-I reaches 

ViG-lmax. 
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Figure 8.25 

G-l vs. r w h e n ХАВ = 0 . 0 1 8 , ХАС = Хвс = 0 . 0 1 5 , һа = hb = - 0 . 5 fo r component в w h e n 

(а) τ = 100， (b) τ = 500， (с) τ = 3000 and (d) the pos i t ion at w h i c h G-I reaches 

'/zG-imax-

A compar ison o f figures 8.24 and 8.25 w i t h f igures 8 . 1 9 and 8.20 

respect ively shows an increase in the in i t ia l values o f G-I when z φ 0 ind icat ing an 

increase i n the vo lume fraction o f each component at these points, this can be 

explained b y the greater degree o f doma in broadening, due to the increase i n χ , 

resul t ing i n less interface being present at each po in t рефеп(1іси1аг to the surface. 

8.2.3 T h e Pa ra l l e l C o r r e l a t i o n F u n c t i o n 

Nex t w e prov ide results fo r G||, the para l le l corre lat ion funct ion. For the case 

where ha = hb = 0.5 w e show G|| fo r components A and с i n f igures 8.26 and 8.27 

respectively. 
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Figure 8.26 

Gļ| vs. х w h e n ХАВ = ХАС = Хвс = 0.015, һа = hb = 0.5 for component A when (a) て = 

100, (b) τ = 500, (с) τ = 3000 and (d) the pos i t ion at w h i c h G|ļ reaches '/гОцшах-

F r o m f igure 8.26 we see that at ear ly t imes a greater magni tude o f G|| is 

present at the surface, z = 0， than is present fur ther into the b u l k region. A s て 

increases the magniณde o f G|| fo r z ^ 0 increases as the surface effects are fe l t at 

greater distances. W e also see a broadening i n the sinusoidal pattern as τ increases, 

this is due to the broadening o f the A and в domains w i t h t ime, also the values o f Iļļ 

increase s im i la r l y i n each case as the domains broaden w i t h t ime. The results fo r 

component В i n this case are again very s imi lar and therefore are not displayed here. 
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Figure 827 

G|| vs. х when Х А В = ХАС = Хвс = 0 . 0 1 5 , һа = hb = 0 . 5 for component с when (а) て = 

100， (b) τ = 500, (с) τ = 3000 and (d) the pos i t ion at w h i c h G|| reaches ViGymax. 

The magni tude o f G|| for component с is once again vast ly reduced when 

f igures 8.26 and 8.27 are compared ind icat ing the reduct ion i n vo lume f ract ion o f 

component c. W e see that G|ļ at z = 0 is almost zero for the entire per iod o f the 

s imula t ion ; this is expected as in this case very l i t t le o f component с is resident at 

the surface. U p o n m o v i n g fiirther in to the bu lk , at greater distances f r o m the surface, 

w e see the magni tude o f the corre lat ion increasing, as the fixrther from the surface the 

greater the amount o f component с present. W h e n z 9̂  0 we see that 1||， and indeed 

the t rend i n G||, becomes almost equivalent i n each case ind icat ing that away from the 

surface the s iณat ion becomes s imi lar i n each case. In i t i a l l y at smal l X fo r the cases 

w h e n Z 0 the magni tude o f G|| is equivalent i n each case, however w i t h increased τ 

the magni tude at smal l X fo r ζ = 6 is seen to decrease. The reasoning fo r this is due 

to the broadening o f the surface layer, as this layer broadens the vo lume fraction o f 

component С at Ζ = 6 decreases leading to the corresponding decrease i n the 

magni tude o f G|ļ at this point . The broadening o f the structures ш the b u l k regions o f 

f igure 8.27 again indicates that the domains are broadening w i t h t ime to t ry and 

reduce the presence o f the h igh energy interface. 
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Figure 8.28 

G|| vs. χ when XAB = Хкс = Хвс = 0 . 0 1 5 , ha = 0 . 5 , hb = -0.5 fo r component A when 

(a) τ = 100^ (b) τ = 500, (с) τ = 3000 and (d) the pos i t ion at w h i c h G|| reaches '/гОцтах-

Figure 8.28(a) on ly shows corre lat ion when z = 12 as a layer o f component A 

has fo rmed paral le l to the surface w h i c h has constant vo lume fraction a long its 

length, therefore i n this layer a G|| o f around zero is seen. In i t i a l l y , as in figure 

8.28(a) this layer has not broadened to z = 12， however we see that by τ = 500 the 

magni tude o f G|| i n the ζ = 12 layer has decreased to a po in t w h i c h is equivalent to 

the magni tude o f the other layers, ind icat ing that the surface has broadened to this 

po in t . I n f igure 8.28(c) no corre lat ion is seen for any value o f z, note the scale o f Gļ | 

i n figure 8.28(c). The values o f Iļļ are h igher than i n previous examples but the t rend 

is also o f a more random паШге; obv ious ly as the values o f G|ļ are in f in i tes imal the 

value o f 1|| is more susceptible to random fluctuations throughout the m o φ h o l o g y . 

For components A and в the results are c lear ly very s imi lar , as is the case when XAB 

= 0.018 since i n each case a layered structure is also seen. W h e n ha = -0.5 and hb = 

0.5 w e find a layered B - C - A structure and f i n d that G|| for each component fo l l ows 

the t rend seen i n figure 8.28. 
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W h e n ha = hb = -0.5 and a si tuat ion where component с fo rms at the surface 

f o l l owed b y bo th components A and в w e find G|| varies as i n figure 8.29 for 

component A ， and s im i la r l y for component B. 
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Figure 8.29 

G|ļ vs. X when XAB = ХАС = Хвс = 0 . 0 1 5 , ha = hb = - 0 . 5 fo r component A when (a) τ = 

100， (b) τ = 500, (с) τ = 3000 and (d) the pos i t ion at w h i c h G|| reaches '/zGiimax-

I n f igure 8.28 w e see l i t t le corre lat ion at z = 0, as a layer o f component с has 

fo rmed, however as the value o f z increases a greater magni tude o f G|| is observed 

ind icat ing an increase i n the amount o f component A , or B , present. I n f igures 

8.29(a) and 8.29(b) when z φ 0 the structure is s imi la r i n each case ind icat ing that 

after the in i t ia l layer o f component с the strucณre does not va ry much w i t h r and is 

therefore equivalent fo r each value o f z. Here the g row th o f the surface layer can be 

fo l l owed as in f igure 8.29(c) the magniณde to G|ļ at z = 6 decreases as a 

homogeneous layer is f o rm ing . The structure seen i n figure 8.29 can be seen to 

broaden w i t h t ime as expected due to doma in broadening w i t h i n the system. 
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Figure 8.30 

Corre lat ion func t ion vs. r when XAB = ХАС = Хвс = 0.015, ha = hb = -0.5 for 

component С when (a) τ = 100， (b) τ = 500, (с) τ = 3000 and (d) the pos i t ion at 

w h i c h G|| reaches '/гОцтах-

W h e n examin ing component c, i n f ig i i re 8.30, w e see complete corre lat ion 

since ф(х) is constant for a l l X due to the layered structure. A s て inere G|| 

increases i n magniณde on ly fo r the s iณat ion where z = 6, however a smaller increase 

is see for larger z. W e bel ieve that the surface layer o f component с extends out to 

around Z = 6 i n figure 8.30(c), and then the A - B structure is in i t ia ted g i v i ng an 

increase i n G|| fo r component с as w e now have large concentrat ion flueณations. A t 

larger Z however on ly smal l vo lume fract ions o f component с are present meaning 

that much smaller concentrat ion fluctuations are present g i v i ng a smaller increase i n 

G||. The value o f Iļļ is greatest for the case w h e n z = 0, w e bel ieve this is due to the 

value being so smal l that a s i tuat ion s imi lar to the one shown i n figure 8.28 is 

observed. 
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Figure 

Corre la t ion func t ion vs. r when Х А В = 0.018, ХАС = Хвс = 0.015, ha = hb = -0.5 for 

component A when (a) τ = 100， (b) τ = 500， (с) τ = 3000 and (d) the pos i t ion at 

w h i c h G|| reaches '/гОцтах-
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Figure 8.32 

Corre lat ion func t ion vs. r when XAB = 0.018, ХАС = Хвс = 0.015, ha = hb = -0.5 fo r 

component С w h e n (a) τ = 100, (b) τ = 500, (с) τ = 3000 and (d) the pos i t ion at 

w h i c h G|| reaches '/гОцтах-

A compar ison o f figures 8.31 and 8.29 w i t h 8.32 and 8.30 respect ively shows 

s imi lar trends appearing, however w i t h greater l ine broadening and a larger 

magniณde o f G|ļ as a consequence o f the increase in XAB-

8.3 Conc lus ions 

W e have der ived a mode l to simulate the effect on morpho logy o f a surface i n 

a three component A B C po lymer b lend us ing Cahn-H i l l i a rd theory. W e use our 

methodology to mode l four d i f ferent si tuations, namely the case w h e n bo th 

components A and в are attracted to the surface, the case where component A is 

attracted to the swface and component в is repulsed, the opposite case where 

component В is attracted to the surface and component A is repulsed and f i na l l y the 

case where components A and в are both repulsed b y the surface. W e also simulate 

t w o situations where χ , the F lo ry mteract ion parameter, is var ied i.e. i n the f i rst case 

XAB = ХАС = Хвс = 0.015 and i n the second XAB = 0.018, ХАС = Хвс = 0.015. The 

s imulat ions are f o l l owed b y observ ing the average vo lume fraction at po in t ' s 
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perpendicular to the surface and also b y de f in ing corre lat ion funct ions bo th paral le l 

and рефепс1іси1аг to the surface. 

The b lend used dur ing the s imulat ions is a 40:40:20 b lend and therefore 

component c, the m ino r i t y phase, forms at the mterface between components A and 

B. W e find that when XAB is increased from 0.015 to 0.018 a greater vo lume f ract ion 

o f component С is resident i n the interface between components A and в and also 

that the A and в domains broaden to a greater extent to fur ther m in im ise the h igh 

energy interface. I n the case where components A and в are equal ly attracted to the 

surface w e see an al ternat ing A - B т о ф һ о ю д у f o r m at the surface w i t h ve ry l i t t le 

component С present, and a random t r i - con t inuouร morpho logy is f o rmed in the 

bu lk . Howeve r w h e n component A is preferent ia l ly attracted to the surface, and 

component В is repulsed by the surface w e see that a three layered A - C - B s t ructwe is 

fo rmed w i t h a damped per iodic s inusoidal structure f o rm ing рефеп( і іси1аг to the 

surface, as seen i n the b inary case. U p o n the reversal o f the surface parameters a Β 

Ο Α layered structure is fo rmed and i n both cases a random t r i -cont inuous 

т о ф һ о 1 о § у is again seen i n the buUc region. F ina l ly w e mode l led the nove l s iณat ion 

where components A and в are repulsed b y the surface. W e find that i n this case a 

layer o f component с fo rms at the surface f o l l owed b y an a l tematmg A - B 

m o φ h o l o g y i n the deplet ion layer. W h e n m o v i n g fur ther in to the bu l k reg ion , when 

the surface ef fect has been damped to such an extent that the phase separation 

process becomes dominant , w e see the t r i -cont inuous random morpho logy once 

again appear. The ef fect o f increasing X A B i n this case is an interest ing one as the 

vo lume fraction o f component с at the surface is reduced so that a greater amount o f 

component С can be resident i n the A - B interface, w e also see that the domains o f 

components A and в i n the surface deplet ion layer penetrate ftirther in to the surface 

layer o f component c. I n each o f the fou r above cases component с was neither 

attracted nor repulsed by the surface. 
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Chapter 9 

Conc lus ions a n d F u t u r e W o r k 

I n this section a b r i e f overv iew o f the w o r k described above is shown w i t h 

the ma in conclusions o f the รณdy, this is f o l l owed by suggestions for future w o r k . 

9.1 Conc lus ions 

The above รณdy helps to fur ther our understanding i n the area o f phase 

separation i n po l ymer blends v ia spinodal decomposi t ion. In i t i a l l y the reasons for 

and process o f phase separation were described w i t h the method used to mode l a 

phase separating system to a id w i t h the understanding o f the physics i nvo l ved i n the 

wo rk . 

Studies were then undertaken in to phase separation i n the t w o component 

(b inary) b lend undergo ing in i t ia l l y phase separation after a rap id temperature quench 

and then phase separation after a cont ro l led two-quench process. Here a p r imary 

structure was observed after the f i rst quench w h i c h was a l lowed to coarsen w i t h 

t ime. A second quench was then undertaken fur ther in to the t w o phase reg ion where 

secondary domains were observed i n the larger p r imary structure, these domains then 

aggregate together before be ing annihi lated due to inter facia l tension. The t ime 

dependence o f the g row th o f this secondary structure was found to share features i n 

c o m m o n w i t h that expected from Cahn 'ร l inearised theory. Th is mode l was then 

extended to f o r m a system that is cont inuously quenched, i.e. the quench depth 

changes cont inuously i n a contro l led manner throughout the s imulat ion. The 

тофЬо1о§ іе8 f o rmed v ia this method were then compared to the morpholog ies 

fo rmed v ia a s imple one-step tempera toe quench and l i t t le d i f ference is seen i n the 

size o f the final т о ф һ о 1 о § у however the morpholog ies fo rmed i n the early stages 

appear restr icted. 

Th i s s imple cont inuous quench system was then extended to mode l React ion 

Induced Phase Separation ( ผ P S ) systems i n w h i c h the phase separation is induced 

w h e n a react ion, i n this case po lymer isa t ion , occurs w i t h i n the system. In i t i a l l y a 

ternary system was studied w i t h d i f ferent react ion rates and al though the rate o f 

react ion was found to ef fect po in t o f phase separation i t was not f ound to af fect the 

degree o f phase separation. A quaternary system was then studied where the state o f 
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polymerisation of one of the components is altered to try to imderstand the effect on 

the final extent of phase separation. It was found that the greater the degree o f 

polymerisation o f the final system the more rapidly phase separation occurred due to 

the increase in the driving force for the phase separation process. A network was 

then included in the system, it grew during the polymerisation process and had a 

substantial effect on the final тофһо1о§у formed. In this case the network resists 

the high-energy deformation o f the phase separation process and an equilibrium is 

created to balance the two forces. In this case the final degree of polymerisation o f 

the polymerising component did not affect the final morphology as the network 

resists the phase separation process equally in each case. 

A surface was then added into the binary blend and the system was set up 

such that one component of the blend was preferentially attracted to this surface over 

the other component. Here we find alternating structures form рефепШси1аг to the 

surface into the bulk region. The dif f iculty wi th using Cahn-Hill iard theory to model 

surfaces consistently was highlighted and a minimum method to physically 

overcome length scale anomalies is presented. The effect of surface equilibration 

prior to phase separation is also shown to highlight the difference in morphological 

development during spinodal decomposition and the importance o f mcorporating this 

step ш order to create more realistic simulations. Here the importance o f the addition 

o f noise to simulations that melude a surface is highlighted. In this case both the 

magniณde and frequency o f the noise are altered in a controlled manner and it is 

found that the level of noise has an effect on the equilibrium between the phase 

separation process and the surface attraction forces, and therefore the final 

тофһоюду . It should possible to compare these systems by experiment and by 

using trial and error it could then be possible to understand the level of noise needed 

for each simulation, this however may be a long and difficuU process. It may 

therefore be possible to calculate the thermal flueณations occurring in each blend at 

any given temperatoe so that this information can be input into the model and used 

to improve accuracy. 

Phase separation in a binary blend on a patterned surface was then 

investigated. Init ially a hard wal l surface has an alternating pattern set and we see 

interesting alternating patterns form into the bulk region not only рефеп(ііси1аг to 

the surface but also parallel to it. The phase separation process above a patterned 

surface, e.g. a silicone wafer that has been altered to give differing surface properties, 
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is also shown. A n investigation into different surface patterns is shown where 

interesting transient strucณres, which are stable under certain conditions, appear. By 

changing factors such as surface attraction, quench depth and blend composition we 

have shovm that it should be possible to control the morphologies of these structures 

to give targeted morphologies. 

Finally an investigation into phase separation at a hard wal l surface in a three 

component, ABC, blend was undertaken. In this case the surface attraction was 

altered to create four systems in which each component was resident at the surface. 

Two different blend interaction values were used to further change the phase 

separation properties and correlation function ρεφεηάϊουΙαΓ and parallel to the 

surface were used to fol low the spinodal decomposition. We find when one 

component is the minority phase it resides at the interface between the other 

components, however when it is the major component it becomes a matrix within 

which are the other two components. In each case we find it is possible to tune the 

properties of the system to create a number o f novel, interesting and possibly 

technologically useful structures which could not be easily formed by another 

method. 

9.2 Future W o r k 

This รณdy has elucidated a number of interesting features and methods to 

attempt to control and target the final morphology of a polymer blend that is 

imdergoing phase separation via spinodal decomposition. Further รณdies are 

however clearly possible and the work described here could be extended in a great 

number o f ways, a few examples o f which are given here. The first method to 

develop the work could be to include viscoelastic properties into the simulation, here 

the system acts neither as a perfectly elastic solid or a viscous fluid but maintains 

some properties of both systems. The inclusion o f these properties would lead to a 

system that may phase separate to create very different structures, i f these structures 

could be controlled in some way this could lead to systems wi th very interesting 

properties. The interaction between a system which forms a network component, is 

trying to phase separate but is constrained by a wal l could be easily developed using 

the theories above but would have three systems competing to dominate the 

equilibrium composition. I f the conditions were therefore changed correctly a 

number o f different moφhologies may be accessible. An investigation into the uses 
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of block copolymers in systems such as those shown above would also create an 

interesting study at both a surface but also in the bulk, i f for example two-step phase 

separation were attempted. A t a surface however great ordering could be created, as 

block copolymers tend to form a lower range of morphologies. 
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