
Durham E-Theses

An experimental Rayleigh laser guide star ground layer

adaptive optics system for the William Herschel

telescope

Morris, T. J.

How to cite:

Morris, T. J. (2005) An experimental Rayleigh laser guide star ground layer adaptive optics system for the

William Herschel telescope, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/2717/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2717/
 http://etheses.dur.ac.uk/2717/ 
htt://etheses.dur.ac.uk/policies/


Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk


An Experimental Rayleigh Laser Guide Star Ground 

Layer Adaptive Optics System for the William 

Herschd Telescope 

T. J. Morris 

The copyright of this thesis rests with the 

author or the university to which it was 

submłned. No quotaUon from It, or 

Information derived from It may be published 

without the prior written consent of the author 

or university, and any information derived 

from it should be acknowledged. 

A Thesis presented for the degree of 

Doctor of Philosophy 

Centre for Advanced Instrumentation 

Department of Physics 

University of Durham 

September 2005 

I ๅ J U L ŽOOS 



An Experimental Rayleigh Laser Guide Star Ground Layer 
Adaptive Optics System for the Will iam Herschel Telescope 

T. J. Morris 

Submitted for the degree of Doctor of Philosophy 

September 2005 

Abstract 

The design of an experimental ground layer adaptive optics (GLAO) system that uses 

a low altitude Rayleigh laser guide star as a wavefront reference source is presented. 

GLAO is a technique for achieving wide-field partial adaptive optics correction of the 

aberrations in a wavefront due to the effects of propagation through a turbulent 

atmosphere. The theoretical performance of the GLAO sub-systems, such as the laser 

launch system, wavefront sensor and optical train are analysed and compared, where 

possible, to measurements taken both under laboratory conditions and on-sky at the 

William Herschel Telescope. 
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Chapter 1 ะ Introduction 

1.1 Introduction 

Telescope design is driven by the desire to observe fainter objects in greater detail. 

The collecting area of a telescope primary mirror not only determines how many 

photons that a telescope wi l l capture from a given source, but in theory, also increases 

the angular resolution with which an object can be imaged. A steady increase in 

ground-based optical/infrared telescope diameters over the years has resulted in the 8-

10m diameter mirrors that are currently in use at locations around the world and the 

30-lOOm diameter mirrors that are being planned. The vast light-collecting power of 

these telescopes does allow astronomers to view very faint objects, but the resolving 

power at optical and near infrared wavelengths is still limited by atmospheric 

turbulence to that of a telescope with a far smaller aperture. 

Adaptive Optics (AO) systems are designed to correct wavefront distortions in light 

that has propagated through a turbulent medium, such as the Earth's atmosphere. 

Regardless of their application, all AO systems require a method to measure the 

wavefront distortions present, an adaptive optical element to correct them, and finally 

a control system linking these two components together. Each stage in this process 

can be studied and optimised separately, but the overall system design wi l l be 

determined by the application for which it is intended. Astronomy is one field where 

AO has been in use for decades, because the turbulent effects of the Earth'ร 

atmosphere (referred to as atmospheric 'seeing') causes images of stars to become 

blurred, resulting in a loss of resolution and hence, scientific information. 



It is to counter this loss of information that astronomical AO systems are used, ideally 

leading to an AO-enabled telescope with a performance not limited by the 

atmosphere, which we have no control over, but by the optics of the telescope and the 

performance of the AO system, which can be designed to almost any standard. This 

thesis describes the design and implementation of an AO system for the 4.2m William 

Herschel Telescope (WHT) on La Palma in the Canary Islands to give a partial 

compensation of atmospheric effects over a wide field with high sky coverage. To 

achieve this aim, a laser guide star (LGS) must be created at a low ( 〜 1 0 ^ altitude 

above the observing telescope so that a large percentage of the sky can be observed 

while still sampling the effect of atmospheric turbulence accurately. 

1.2 Project Description 

Using a low-altitude LGS to achieve correction over a wide-field has not to date been 

experimentally demonstrated, and this thesis details the work undertaken to prove this 

concept on the WHT. To achieve this aim, several modifications to an existing 

laboratory-based AO system had to be made. There were various constraints placed 

on this task in terms of budget, available manpower and project timescale which 

impacted the final design and performance of the fielded system, specific cases where 

these constraints have impacted the system design has been indicated at appropriate 

points throughout the text. 

As stated, the primary aim of this work is to demonstrate wide-field AO correction 

from a low-altitude LGS. As detailed further in chapters 4， 6 and 8， the major critical 

components, specifically the laser and AO system, had already been purchased and 
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partially tested. However, integrated designs for the laser launch system and LGS AO 

system had not progressed past the conceptual/preliminary design phase. Both 

systems required designing, modelling, integration and optimisation both in the 

laboratory and on-sky. Software tools for system calibration and control also required 

development. 

The hardware budget to achieve this task was limited to approximately £30K, a value 

an order of magnitude below systems attempting the same task. This budget had to 

cover the complete laser launch system, the optics for the redesigned AO system and 

electronics related to closed-loop control. Little staff effort had been officially 

allocated to this project, although technical and engineering support was provided for 

laser launch system construction. A small team of four to five people was taken out 

during on-sky commissioning primarily to provide software integration with launch 

system electronics and WFS cameras, and also for optical alignment of the AO 

system. The software tools and alignment procedures have not been extensively 

described in this work; as such, unless explicitly stated otherwise, the work, described 

in this thesis was performed solely by the author. 

The timeline for this project also injected severe constraints on the order that tasks 

were undertaken. For example, the design and integration of the AO and laser launch 

systems were undertaken before the modelling of the LGS and LGS WFS interaction. 

Constraints such as this were dictated by the allocated telescope time. The project 

timeline is shown in Table 1.1 and shows the order in which tasks were completed. 
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iJetails I Q1 І 02 І 03 I 04 Q1 І 02 ! 03 I 04 Q1 ！ Q2 03 į 04 Q1 1 02 ! 03 i 04 ๓ i Q2 
06 

03 j 04 
WHT full aperture launch design and է est mg 
First LGS Run ^VHT aperture launch) į і і 1 1 i 

j 
Laboratory AO system optinnisatton 1 ШШ ļ I ļ I ¡ ļ j 
Second LGS Run (WHT aperturs launch) • • j і I ί I I í ¡ 
Laser launch system design and manufacture 

į į j 1 
i 

LGS AO system design + testing i 
NGS WFS design, development and testing p e j 
Laser launch system commissioning 1 
Laser launch system commissioning 2 ! I ί I ! ļ 
LGS AO system commissioning 1 
LGS AO system commissioning 2 

i i l i l 
l i l l i j 

AO system • launch system interaction analysis 1 j į j I l l i l i 
AO system ทาodeHinฐ i i l i l i I i i ^ 

Table 1.1 Prototype Rayieigh LGS project timeline indicating experimental LGS runs at 
the WHT (light blue) and research and development work carried out in 
Durham (dark blue). The author o f this work joined the project in Q4 ' 01 . 

1.3 Project Aims 

As stated, this project aims to demonstrate on the WHT, AO correction using a low-

altiณde LGS as a wavefront reference. Although the ultimate test of the wide-field 

AO performance would be achieved from imaging a dense star field through the AO 

system, there are numerouร tests that should be undertaken before this step i f 

performance is to be characterised. These tests can be summarised by the following 

questions: 

• How should the launch system perform and does it perform as expected? 

• Does this performance provide a stable wavefront reference for the AO 

system? 

• Can the laboratory AO system be modified to use a LGS as a wavefront 

reference? 

• What degree of correction should we observe from the AO system using the 

LGS, and does it achieve this performance? 
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I f these questions can be answered, the viability of a low-altitude LGS as a wavefront 

reference for wide-field AO wi l l be confirmed. There are several key steps that must 

be taken to achieve this aim, and these are summarised in Table 1.2 along with the 

chapter of this thesis where the problem is studied. 

Task Sub-tasks Thesis Chđpteโ 

Optimise laboratory AO system Optimise closed-loop performance 
Remove static aberrations 

8 
Б 

AO system design Examine alternative LGS AO system designs 

Design AO system 

Closed-loop Tip-tilt correction system 

Integrate NGS and LGS closed loop systems 

Test AO system 

3 

6 

6 

В,e 

Launch system dssign Examine alternative launch system design 

Design launch system 

Test launch sjfstem j ļ*»
 

LO
 

і 

System performance estimates Model launch system 
Model AO system 
Sjjsternjวerformance from integrated model 

5 

Science verification Define verification tests 
Measure launch system performance 
Measure AO system performance 

4 
8 

Table 1.2 Table showing key project tasks and associated sub-tasks. The chapter where a 
description o f how these tasks were addressed is indicated. 

•4 Thesis Synopsis 

This thesis describes the prototype Rayleigh Laser Guide Star AO system on the 

WHT, from design through to integration and testing, both in the laboratory and on-

sky at the WHT. After an introduction detailing the physics behind atmospheric 

turbulence and how to correct for its effects, each of the subsequent chapters looks at 

a different aspect of the design and discusses the issues and physical processes that 

must be studied when designing an LGS-enabled AO system. 



1.4.1 Chapter 2 

This chapter examines the theoretical aspects and the limitations of using an LGS as a 

wavefront reference. The use of an LGS as a wavefront reference allows great 

versatility in the method that the wavefront is sensed, and two concepts are introduced 

here as examples of this. Ground Layer AO (GLAO) is a method for achieving partial 

AO correction over wide-field is one such concept. Several systems that rely on, or 

can utilise this technique examined. 

1.4.2 Chapter 3 

Chapter 3 examines in greater detail a selection of past and current AO systems that 

utilise laser guide stars, and the problems that are encountered when trying to correct 

the wavefront sensed from an LGS. Studying similar systems and examining 

successes and shortcomings of a variety of system designs can highlight critical 

aspects of the AO system design described in this work. This chapter also includes a 

discussion of the types of laser that can be used and a comparison of their relative 

merits. 

1.4.3 Chapter 4 

The specific issues that are involved in equipping the WHT with a laser guide star are 

studied in this chapter. Also included are details of the laser used and the laser 【aun^^ 
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system design as well as on-sky measurements of the laser launch system 

performance. 

1.4.4 Chapter ร 

This chapter examines the performance of the laser launch system using a model of 

the interaction between the LGS and Wavefront Sensor (WFS). Parameters that 

optimise the theoretical performance of the LGS and WFS interaction are also 

presented. This analysis provides data used to optimise the AO system design. 

1.4.5 Chapter 6 

This chapter looks at the requirements of the LGS AO system and how the design 

addressed these. Performance estimates for various parts of the system are given. 

System calibration and control techniques are discussed here. 

1.4.6 Chapter 7 

Results of numerical simulations of the end-to-end system performance of the AO 

system are given here. Simulations of the performance of two LGS concepts are made 

and analysed, showing the expected performance of the GLAO system demonstrator 

and also the performance of a related LGS novel concept. 



1.4.7 Chapter 8 

On-sky and laboratory testing results of the closed loop AO system are presented in 

chapter 8. 

1.4.8 Chapter 9 

Conclusions are presented in Chapter 9 as well as an outline of the fuณre work and 

modifications planned for the experimental system. 

1.5 Imaging through atmospheric turbulence 

The intensity fiinction of a point source resolved by a circular aperture is an Airy 

pattern (Figure 1.1). The angular resolution of a circular aperture is defined as 

- น 

where R is the minimum angular distance in between two resolved point sources of 

equal magnitude and D is the diameter of the circular aperture, λ is the wavelength at 

which the observation is being made. Two sources are said to be resolved when the 

peak of the intensity function of one source lies in the first minimum of the other. This 

is the Rayleigh diffraction criterion. Note that this is a definition of a 'resolved 

image', and in practice, sources that are separated by less than 122X1D can be 

discerned in actuality, both by eye and using post-processing techniques. 



Figure L I Diffraction limited Airy pattern formed at the focus of a telescope with circular 
aperture. The central obscuration present ๒ most astronomical telescopes causes a 
slight increase in the diameter of the central core and a suppression of the intensity of 
the diffracted rings in comparison with the image presented above. 

The plane wavefront that wou ld form the image shown in Figure 1.1 is given a 

random phase prof i le by passage through the atmosphere. I f the time-averaged 

wavefront collected by a telescope is examined (by looking at a long exposure image), 

the random phase fluctuations present w i l l produce a blurred image, the resolution o f 

wh ich w i l l be l imi ted not only by the size and shape o f the aperture, but also by the 

properties o f the atmosphere. Dependent on atmospheric condit ions, typical exposures 

between 30 seconds and 2 minutes must be used to image the time-averaged 

wavefront. Analysis o f the time-averaged image shows the atmosphere reduces the 

resolving power o f the telescope in a way that is directly analogous to decreasing the 

size o f the telescope aperture, g iv ing Equation 1.2: 

RJ-^ - 1 .2 

where դ is the so-called Fried parameter, wh ich w i l l be described in section Figure 

1.2. A t visible wavelengths in premier observing sites, Го ranges between 5 and 20cm 

depending on atmospheric conditions. 
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Shorter camera exposure times (o f the order o f 1ms) give an instantaneous snapshot o f 

the current effect o f the atmosphere on a propagating plane wavefront. A typical short 

exposure image is shown in Figure 1.2. The l ight has been scattered inside an 

envelope funct ion (identical to the intensity prof i le o f the long-exposure image) w i th 

the size o f the individual speckles determined by the di f f ract ion l imi t o f the telescope. 

Figure 1.2 Long (left) and short (right) exposure images of a point source taken through a 
turbulent atmosphere. Intensity has been scaled in short exposure image to enhance 
speckle pattern visibility. A Dlľo value of 6 was used to generate the speckled image. 

1.6 Atmospheric turbulence profiles 

Because Го is a statistical property o f the atmosphere it does not describe the precise 

structure o f atmospheric turbulence itself. However, Го is an extremely useful 

parameter w i th wh ich to characterise the overal l effect o f the atmosphere on an 

incoming plane wavefront. Whi le simple models o f A O system performance can be 

made w i th knowledge o f Го alone, to ftilly predict A O system performance the 

structure o f turbulence w i th in the atmosphere must be described in far greater detail. 

Turbulence in the atmosphere is caused by the cascade o f thermal energy f rom large 

to smaller scales. Ko lmogorov [1] introduced the idea o f structure functions to 
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describe non-stationary random functions, such as the changing refractive index 

prof i le that is characteristic o f atmospheric turbulence. The velocity structure function 

describes the spatial and temporal properties o f turbulence w i th in the atmosphere. 

Tatarskii [2] introduces the effect o f ЇетрегаШге as a "passive addi t ive" to the system. 

A passive additive is one that does not change the statistical properties o f the observed 

strucmre funct ion. 

The local temperature variations lead to refractive index fluctuations in the air wh ich 

can distort an incoming stellar wavefront. The magnitude o f the refractive index 

fluctuations is greatest at lower altitudes, where air density is higher, and decreases 

exponential ly wi th alt itude. This is the reason why most astronomical observatory 

sites are at a high alt i tude. The fluctuations are greatest dur ing dayl ight hours, when 

solar heating causes large temperature variations, and hence creates a highly turbulent 

medium. The refractive index fluctuations act as a random array o f irregular lenses in 

the sky, introducing a random optical phase into the wavefront. Being a turbulent 

system, the phase fluctuations (and hence transmitted wavefront) change 

continuously. The power spectrum o f Ko lmogorov turbulence in one dimension is 

given by 

ф{к) a ¿—% - 1.3 

where Ķ the spatial wave-number for a turbulent eddy o f scale size I is defined as 

к = 2π/1. Obviously this approximation breaks down at very small and very large 

values o f /, so this relation is only val id in the range lo< I < Lo, where lo and Lo are the 

so-called inner and outer scales o f turbulence respectively. When the size o f a 

turbulent eddy falls below lo, the viscosity o f the air dissipates the fluctuation. The 
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outer scale, Lo must also be specif ied; the power spectrum o f turbulence on the larger 

scales would otherwise tend towards inf in i ty . This implies inf ini te energy input, 

wh ich is clearly unphysical. The actual size o f the outer scale is not we l l characterised 

at present w i th model values ranging f rom 10m to 300m [3] . The effect o f Lo on an 

atmospheric turbulence profi le can be physical ly interpreted as the magnitude o f the 

overall wavefront slope in a wavefront. The larger the Lo, the greater the global slope 

in a perturbed wavefront can be. Higher spatial frequency terms w i l l be superimposed 

on this slope, unt i l the spatial scale reaches lo, below which the atmosphere induces no 

ณrbulence. 

The inclusion o f the outer scale has a large effect on the optical properties o f the 

atmosphere. The effect o f the outer scale Ís too complex to include in many o f the 

simple approximations presented here (and frequently used in A O literature). Under 

identical seeing conditions, the seeing measured by a telescope w i th large aperture can 

be far better than a telescope w i th small aperture. The magnitude o f this effect is 

given by [4 ] : 

f / N 0 . 3 5 6 ՜ 

1.4 

where dyK is the F W H M diameter o f the seeing l imi ted image f rom a von Karman­

type atmosphere that includes the effect o f an atmospheric outer scale on the power 

spectrum o f turbulence, and dfc is the F W H M diameter o f the seeing l imi ted image 

f rom a Kolmogorov- type atmosphere. By measuring the strength o f refractive index 

fluctuations at all altitudes, an accurate map o f the vertical structure o f atmospheric 

turbulence can be made. 
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The structure funct ion, Dn(r), is defined as the average difference between two values 

that describe a random process. In the case o f atmospheric turbulence, the two 3D 

vectors describing a posit ion (x) in the atmosphere, and the refractive index {ri) at a 

point a distance r f rom X on an incoming wavefront. 

оЛгЦп{х)֊п{.^г}') = С„'гУ^ ֊1.5 

(ľ"2 is the refractive index (vertical) structure parameter and is derived by integrating 

the strength o f the refractive index fluctuations over all altitudes, f rom the telescope 

aperture to the edge o f the atmosphere. Once Cn is known, the precise instantaneous 

effect o f the atmosphere on an incoming wavefront can be determined. 

Cn is, not a simple th ing to measure f rom a telescope aperture. The vert ical 

distr ibution o f the turbulence cannot be determined by measuring the phase at the 

pupi l plane o f the telescope as this encodes no information on the altitude at wh ich the 

phase change was induced. Bal loon measurements [6 ] , analysis o f di f ferential 

intensity patterns [7] or wavefront measurements f rom binary stars [8] are al l methods 

that have been used to determine the Cn prof i le. 

Simi lar ly to the spatial structure funct ion defined above, we can define a temporal 

structure funct ion for the evolut ion o f the wavefront at any single point above a 

telescope aperture between t ime t = 0 and / = r, 

Dձr)=կՀx.t)-n{xJ^rf) - 1 . 6 

A l though the structure o f the turbulence evolves w i th t ime due to temperature 

fluctuations, these changes are small when compared w i th the far greater variat ion in 

a wavefront caused by w ind b lowing atmospheric inhomogeneities across the 
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telescope aperture. This leads to equation 1.7， showing the effect o f the w ind velocity 

on the structure funct ion. 

D^vT) = ^4x,t)-n{x + v T j f ) = Գ ๆ v r | % - 1.7 

where V is the velocity w i th which the turbulence is changing and г the t ime taken for 

the turbulence to move a distance r. I f the turbulence is contained w i th in a single 

layer, V is the w ind speed at that layer. When the entire atmosphere is collapsed into a 

single invariant (frozen) layer mov ing across a telescope aperture, this is called the 

Taylor approximation. 

Mode l l ing al l atmospheric turbulence as a single turbulent phase screen translating 

across a telescope aperture is an oversimpl i f icat ion o f the chaotic nature o f the 

atmosphere, as both w ind speed and direction o f mot ion o f turbulence can evolve w i th 

altitude. Studies [8,9] o f the atmosphere above observatory sites have shown that the 

turbulence w i th in the atmosphere is pr imar i ly contained w i th in a set o f discrete 

turbulent layers. When dealing w i th adaptive optics system design and model l ing, the 

approximation that al l turbulence w i th in the atmosphere is stratified into a set o f 

layers each w i th separate velocit ies and directions is made. 

The optical effects o f turbulence can be calculated by integrating the Cn prof i le over 

height wi th several dif ferent weight ing functions. These functions can be expressed as 

foil and partial turbulence moments. The ftill turbulence moment o f order m is defined 

as: 

Mrr։=^\dhCl(h)h'" - 1 . 8 

0 
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This can be separated into partial turbulence moments at an altitude H, by integrating 

between 0 and н for the so-called lower turbulence moment, μ, and н and oo for the 

upper turbulence moment, μ . By changing the order o f the turbulence moment, 

different atmospheric properties can be defined. Zero-order (พ=0) turbulence 

moments are used for calculating դ. Five-thirds order (m=5/3) turbulence moments 

are used for calculating anisoplanatic and temporal errors (see section 1.10), whi le 

second-order (m=2) moments are used for calculating overall t i l t errors. 

Atmospheres modelled using the equations given above, having a power spectrum 

indicative o f a Ko lmogorov structure funct ion, are said to be Kolmogorov 

atmospheres. The optical effect o f turbulence is characterised by the three 

dimensional refract ivi ty power spectrum, wh ich for Ko lmogorov turbulence, 

バ ; - 1.9 

where һ is the altitude. For atmospheric turbulence w i th a Ko lmogorov power 

spectram, the structure function across a telescope pupi l is given by: 

DAr) = 6M 1.10 

where r is a 2D displacement across the telescope pupi l and 

、-V5 

1.11 

θ is the zenith angle at wh ich observations are being made that must be induded to 

account for the effect o f changing airmass w i th telescope elevation. Го ( introduced in 

equation 1.2) has the useful property that it is the diameter over wh ich the wavefront 
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phase variance has a mean-square value o f 1 rad 2 for a given wavenumber k' This 

approximately corresponds to a λ/4 peak-to-valley (P-V) wavefront error, assuming 

that the 3σ deviation f rom the mean describes the root-mean-square (rmร) wavefront 

error. A residual wavefront variance o f 1 rad^ is signif icant for the performance o f the 

system as it describes the max imum wavefront variance o f a system that is classically 

'd i f f ract ion- l imi ted ' . I f the wavefront variance exceeds the cri t ical value o f 1 rad^ the 

image quali ty rapidly degrades. This value defines the level o f correction that an A O 

system must provide to achieve 'd i f f ract ion- l imi ted ' performance. The effect o f 

wavefront error on image qual i ty is quantif ied in section 1.10. 

The power spectrum o f the atmosphere may be obtained by performing a Fourier 

transform o f the atmospheric Cn prof i le. Studies have shown [10,11,12] that the fit o f 

measured atmospheric power spectra to theoretical Ko lmogorov turbulence profi les 

shows a good correlation. However, as was mentioned, the Ko lmogorov power 

spectrum must be modi f ied to take into account the f ini te size o f the outer scale. The 

outer scale is included in the Mod i f ied V o n Karman ( M V K ) power spectrum. The 

power spectrum o f the phase fluctuations in the M V K spectrum is given by [13] 

Φ 隱 {к, h) = 0.033С„\һ)(к + L^y^ cxĄ֊ ^ ՚ ձ 

where Lo and lo are the atmospheric outer and inner scales previously defined. 

- 1.12 

1.7 Temporal Properties of the Atmosphere 

The Taylor hypothesis describes how a translation o f a phase screen across the 

aperture o f a telescope affects Jh^phase structure funct ion. Using equations 1.7 and 
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1.10 it can be shown that the t ime for the rmร o f the change o f a wavefront perturbed 

by atmospheric turbulence to reach the 'crit ical value' o f 1 radian is given by: 

Го = 0 . 3 1 4 - ^ -1 .13 

Equation 1.13 assumes that turbulence is concentrated in a single layer that moves 

w i th a velocity V across the telescope aperture. To, the coherence time o f the 

atmosphere, can be thought o f as being the t ime over wh ich the atmosphere w i l l not 

change an image. A qualitative way o f describing the effect o f To on an image 

distorted by ШгЬиІепсе is as fo l lows: I f an observation lasts for a t ime less than or 

equal to the coherence t ime, the atmosphere w i l l have a single refractive index prof i le 

and the incoming l ight w i l l form a static, albeit distorted, image. 

1.8 Modal representation of turbulence 

A n y wavefront perturbed by the atmosphere can be represented by a series o f 

orthogonal modes o f increasing spatial frequency. A set o f orthogonal 2D fonctions, 

called Zemike polynomials are wide ly used in optical systems to describe wavefront 

shape. Low-order Zernike modes correspond to famil iar and correctable wavefront 

aberrations, such as wavefront t i l t , defocus, astigmatism and coma. Zernike 

polynomials are defined in polar coordinates on a unit circle as functions o f both 

azimuthal and radial frequency, denoted by m and ท respectively. N o l l [14] defined a 

numbering scheme that is commonly used when describing atmospheric turbulence 

using Zernike polynomials. The set o f Zernike polynomials is defined as: 
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where 

Ze^en = V ^ Ä ™ ( r ) V 2 c o s ( พ ( 9 ) , 
Zodd = ir)42sin(me). 0̂ 

, = 0 - 1.14 

¿ Җ(п + т)/2֊8՝]\[{п-т)/2-ร}. 
1.15 

Figure 1.3 Zernike modes 2-8. Mode 1 is a piston of the wavefront. Low order modes 
correspond to classical wavefront aberrations. Modes 2 and 3 correspond to 
wavefront tip and tilt, 4 is focus, 5 and 6 are wavefront astigmatism. Modes 7 and 8 
represent coma. 

Zemike modes are described over a circular and not the annular aperture that exists at 

most telescopes. This al lows for some ambiguity in the measurement o f zemike 

modes f rom a wavefront e.g. d i f fer ing higher-order radial ly symmetric terms can 

appear identical i f the central 2 5 % o f a circular aperture is removed. A n equivalent 

annular set o f Zemike modes [15] can be used to reduce this error. However, both 

annular and circular Zemikes are not statistically independent when being used to 

describe Ko lmogorov turbulence. This means that subtracting a given number o f 

modes f rom a Kolraogorov wavefront w i l l result in a residual wavefront error that is 

higher than opt imal . A s such, a related set, based on Karhunen-Loeve ( K L ) fonctions 

[16] was defined to create an orthonormal set o f modes that were configured to be 

statistically independent o f each other when describing wavefronts distorted by 

Kolmogorov turbulence. K L modes give the m in imum residual wavefront error for a 
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f ixed number o f f i tted modes when compared to any other orthonormal set, such as 

circular or annular Zemike modes. 

1.9 Adaptive Optics system architecture 

A t the most basic level, an A O system requires a method for sensing an incoming 

wavefront, a method for control l ing the wavefront and a control system to l ink the 

two. A O systems are normal ly designed as a closed feedback loop where the 

wavefront sensor (WFS) measures the wavefront after the wavefront corrector 

(normal ly a deformable mirror, or D M ) has applied a correction. The WFS requires a 

reference source that is bright enough to a l low WFS exposures w i th a suff icient 

signal-to-noise ratio (SNR) at integration times less than Го, the coherence t ime o f the 

atmosphere. This layout is shown in Figure 1.4. 

Beamsplitt 

Control Sys tem 

Residua! wavefront shape after 

correction is measured by W F S 

Figure 1.4 Closed-loop feedback AO system using a Shack-Hartmann WFS and piezo-stack 

DM. Red lines denote the data-flow providing closed-loop feedback 
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ї л о Error Sources in AO 

One commonly used metric to indicate the performance o f an A O system is the Strehi 

ratio. I t is defined as the ratio between peak intensity o f the di f f ract ion l imited PSF 

and the peak intensity o f the long-exposure image. A Strehi ratio o f 1 describes a 

di f f ract ion l imi ted image. A O system performance is often given in terms o f Strehi 

ratio improvement. For wavefront errors below approximately 1 rad^ rmร, the Strehi 

ratio is given by Equation 1.16. 

5 = 6 χ ρ ( - σ ' ) , - 1.16 

where c r M s the wavefront variance in square radians. The Strehi Ratio is highly 

sensitive to small wavefront er ror ร. However, a Strehi ratio o f 0.8 sti l l gives 

performance corresponding to the Rayleigh di f f ract ion l imi t . This corresponds to an 

rmร wavefront error o f λ/13.3. Strehi ratio is not always the best metric w i th wh ich to 

define the performance o f an A O system when coupled to a scientif ic instrument. 

Other metrics, such as image F W H M , or in the case o f a spectrograph, in-slit energy 

can be used. ' 

The sources o f error in an adaptive optics system that contribute to the wavefront 

variance, σ 2， are numerous and depend on both the properties o f the atmosphere and 

the components that make up the A O system as is shown in Figure 1.5. 
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. WFS SNR 

- Centroid Anisoplanatisกา 

Figure 1.5 Sources of Error เท an AO system using an NGS as a wavefront reference. Diagram 
adapted from Hardy [17]. 

To arrive at the global system error, the magnitude o f each error source shown in 

Figure 1.5 must be combined. When errors in an adaptive system are calculated in 

terms o f wavefront variance, the system performance is described by the sum o f the 

wavefront variances due to each individual error source. A system error calculated in 

this way often gives a pessimistic impression o f system performance as errors 

(particularly spatial errors) can be counted mult ip le times [18] . Analysis o f A O 

system performance in terms other than wavefront variance produces a system error 

that easily demonstrates the scientific potential o f the A O system, but introduces 

dif f icult ies in system error budgeting as the sensitivity o f a metric to a specific error 

source can decrease [19] . One example o f this is the use o f in-sl i t energy, wh ich is a 

standard design parameter for describing the operation o f a spectrograph. Insl i t energy 

is defined as the ratio o f energy w i th in the slit to the total energy incident on the slit 

and slit mask i.e. the energy in the PSF.. As an example, an AO- fed spectrograph has 
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a slit w id th o f 0.2". Under seeing-limited condit ions, a small fraction o f the energy in 

the PSF w i l l pass through the slit. I f the A O system is turned on the inslit energy w i l l 

increase. However, i f the sources o f error in the A O system are then reduced, there 

w i l l come a point where the inslit energy reaches 1, but there may st i l l be some 

residual error in the system. A t this point, further reduction o f system enor does not 

improve the performance in terms o f inslit energy and alternative metric wou ld have 

to be used. 

1.10.1 Wavefront Fitt ing Error 

The wavefront f i t t ing error is a measure o f how we l l the wavefront correcting 

element, usually some k ind o f D M , can match the shape o f the wavefront caused by 

turbulence present in the atmosphere. Obviously, as the strength o f the turbulence 

increases i.e. Го decreases, the D M must recreate a higher spatial frequency wavefront. 

There are many different types o f deformable mirror, each w i t h a different way o f 

recreating a wavefront. Here, the f i t t ing error for a D M wi th inter-element spacing o f 

d to a Ko lmogorov turbulence prof i le is given. 

l v 
- 1.17 

The scaling factor α depends on the type o f corrector being used. The inter-element 

spacing o f a D M is also defined by the corrector type and normal ly cannot be varied 

wi thout changing D M . Typica l values o f a range f rom 0.14 to 1.26 whi lst inter-

element spacings range between lOOum and 7mm. To achieve the Strehi ratio o f 0.8 

that indicates classical Rayleigh.di f f ract ion- l imited perfoiTnance,-for an or o f 0.28, (the 
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value for a continuous phase sheet deformable mirror, such as those manufactured by 

Xinetics Inc. and o f the type used in this project), the ratio d/ro must be less than 

0.873. For an original Xinetics-type mirror w i th 11x11 actuators, (i.e. 10x10 

corrective segments), deployed on a 4.2m telescope each segment w i l l correct a 42cm 

'patch' o f the atmosphere. To achieve the ratio o f d/ro given above requires an 

atmospheric Го o f 36.75cm, wh ich is a typical value for atmospheric Го at Near-

Infrared (NIR) wavelengths. N I R wavelengths cover the so called J-band at 1 .25цт, 

H-band at 1.65μηι, and K-bands centred at 2.2μιη. Di f f ract ion- l imi ted A O correction 

at shorter wavelengths therefore requires a D M w i th a greater number o f corrective 

elements. In the above example, a Xinetics-type D M wou ld require an actuator 

spacing o f approximately 9cm across the telescope pupi l to correct strong atmospheric 

turbulence w i th an Го o f 10cm. A n Го o f 10cm is a typical value observed in the V " 

band. This corresponds to a 48x48 actuator gr id, wh ich is an order o f magnitude 

greater than the actuator resolution available in current c iv i l ian astronomical A O 

systems. 

1.10.2 Temporal Errors 

The fact that the system cannot respond instantaneously to changes in an incoming 

wavefront gives rise to temporal error. Temporal error sources depend on many 

factors, both atmospheric and internal to the system. The characteristic frequency o f 

the atmosphere is dependant on the strength and distr ibut ion o f atmospheric 

turbulence i.e. the c„2 prof i le, as we l l as the integrated w ind speed prof i le. This is 

referred to as the Greenwood frequency and is given by 
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f a 0 . 1 Ш ' s e c ö i [ С] (ҺУ^' (h)dh 

3/5 

- 1.18 

For the case o f a single turbulent layer w i th a w ind velocity V， the Greenwood 

frequency reduces to 

- 0 . 4 2 7 ֊ - 1.19 

The error associated w i th the characteristic frequency o f the atmosphere depends on 

the response time o f the A O system. The wavefront error due to a f inite t ime delay o f 

duration, てs between the end o f the WFS exposure and the corrective shape being 

displayed on the D M is given by 

^ delay 

Σ느 

7o, 
1.20 

where Го is defined in equation 1.13. For a single layer o f turbulence, て0 can be 

expressed in terms o f the Greenwood frequency, 

The wavefront error can then be expressed as 

σ1^=28 .4 ( τ , ^ ) ^ -1 .22 

A t a good astronomical site, the magnitude o f the Greenwood frequency is typical ly 

o f the order o f tens o f Hz. To achieve a closed loop correction bandwidth that 

approaches this value, the system loop frequency, given by \Ιτร, must be many times 
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greater than the Greenwood frequency. A O systems run w i th loop speeds ranging 

f rom lOOHz for low-order wavefront correction, up to 3kHz for proposed E x A O 

('Extreme' Adapt ive Optics) systems that wou ld be capable o f provid ing true 

di f f ract ion- l imi ted performance at visible wavelengths. 

The closed loop bandwidth that w i l l be achieved by an A O system also helps to define 

what spatial frequency o f turbulence can be corrected. Higher spatial frequency 

turbulence has a short characteristic l i fet ime when compared w i th low spatial 

frequency turbulence (such as a global t i l t across a wavefront) [20] . Determining the 

closed loop bandwidth o f a system involves carefti l study o f the performance o f all 

elements o f the A O system, and in particular, the predicted performance o f the control 

system. 

1.10.3 WFS Errors 

Sensing the wavefront introduces forther sources o f error, wh ich are due in part to the 

very short exposure times that are required to a l low the system to run w i th loop 

speeds o f up to 3 kHz, and also due to the very faint wavefront reference sources that 

must be used. WFS ing in astronomical A O usually operates in a photon-sparse 

environment, w i th typical WFS signals o f the order o f 100 photons per control 

channel. Accurately measuring the phase o f an incoming wavefront f rom a source 

other than the รนท therefore requires very sensitive detectors w i th very low noise 

levels. 

The errors associated w i th WFSing are particular to each type o f WFS. Throughout 

this work , only the errors associated w i th the Shack-Hartmann WFS (SH-WFS) w i l l 
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be discussed. A SH"WFS works by placing an array o f lenslets at a point in the l ight 

path conjugate to a given alt i tude. Each lenslet then samples a fraction o f the total 

incoming wavefront. In the absence o f any wavefront aberrations, i.e. a plane 

wavefront, a regularly spaced array o f spots is created in the focal plane o f the 

lenslets. I f a wavefront gradient is present across a lenslet, then the corresponding 

focussed spot becomes offset by an amount proportional to the wavefront gradient. 

This is shown in Figure 1.6. A detector array, normal ly a C C D , is placed at the focal 

plane o f the lenslets to measure the offset positions o f the spots. A cluster o f four (or 

more) Avalanche Photodiodes (APDs) can be placed behind each lenslet instead o f a 

C C D pixel array. Large A P D arrays are costly, fragile and in quad-cell mode, provide 

a less accurate measure o f spot offset than a higher-resolution array o f C C D pixels. 

Figure 1.6 A Shack-Har tmann W F S wo rks by measur ing the slope o f a wave f ron t across an 
array o f lenslets. I f an i n c o m i n g turbu lent wave f ron t ( s h o w n in y e l l o w ) exh ib i ts a 
s lope across a lenslet, the resu l t ing focused spot f o rmed by the lenslet w i l l be of fset 
by an amount p ropor t i ona l to the wave f ron t slope. 

By recombining the slopes f rom each lenslet, the entire wavefront can be 

reconstructed. Obviously, the extent to which the reconstructed wavefront matches the 

actual wavefront depends on the number o f lenslets present in the array. Because the 
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wavefront contains a small f ini te number o f photons, as the number o f lenslets 

sampling a wavefront is increased, the signal-to-noise (SNR) decreases 

correspondingly. The SNR is further reduced as the photons w i th in each subaperture 

must then be distributed across a number o f C C D pixels. 

There are three main error sources in CCDs; photon shot noise in the signal, noise 

generated in the C C D readout electronics, and noise derived f rom the product ion o f 

thermal electrons in the C C D substrate. Thermal noise can be minimised by cool ing 

the C C D to the point where it is a small fraction o f the total noise level. Photon shot 

noise is a fundamental property o f the quantum nature o f l ight, g iv ing rise to a 

Poissonian distr ibution in the total number o f photons incident onto the C C D over a 

given t ime interval. The noise on a signal associated w i th a Poissonian distr ibut ion is 

equal to the square root o f the populat ion. Due to the low numbers o f photons that are 

present in a WFS image, the error associated w i th photon noise can be large. 

Noise generated in the readout electronics, particularly in the on-chip preampli f ier is a 

large factor in the accuracy w i th wh ich a wavefront can be determined. The job o f the 

readout electronics is to convert the charge stored in each C C D pixe l to a digi tal 

value. Scientific-grade astronomical CCDs have around 2 K x 2 K pixels and a readout 

t ime o f around 100s, corresponding to a readout rate o f 40kPixelร/ร. Typical ly , a few 

electrons rms readout noise per p ixel wou ld be observed on a C C D image. A WFSing 

C C D requires far fewer pixels (〜80^ pixels for low-order N I R A O systems on a 4-

8m telescope), but using a 40kPixelร/ร readout rate wou ld add a delay o f 160mร 

before a WFS exposure could be fu l l y analysed by the A O control system. This would 

be the dominant error term affect ing the system performance (see equation 1.20). 

Faster readout electronics must therefore be used, but increasing the reaclout speed 
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also increases the level o f readout noise observed. Mul t ip le readout ports from a 

single C C D can also be employed to effect ively increase the readout rate [24] , and 

frame transfer CCDs used to maximise the C C D duty cycle [25] . Frame-transfer 

CCDs have a charge storage area wh ich is an array o f masked pixels identical to the 

photosensitive section o f the chip. The photoelectrons present in the light-sensitive 

hal f o f the chip at the end o f an exposure can be rapidly transferred to the masked 

port ion o f the chip almost noiselessly. The next WFS exposure can then start 

immediately whi le the charge is being read out o f the masked section o f the chip. 

Typical WFS CCDs exhibit a readout delay o f 1ms or less, and have read noise levels 

o f between 3 and 8 electrons rms. 

Temporal errors associated w i th the integration t ime o f the WFS, although present, 

are small as long as the texp « To. The readout speed o f the C C D can introduce an 

appreciable latency into the system. Latency is a major source o f error in an A O 

system and is caused due to the fact that al l operations w i th in the A O system take a 

f inite amount o f t ime. WFS exposure t ime, readout t ime and wavefront reconstruction 

in the control system are not instantaneous, and any t ime taken during these steps 

means the atmosphere has changed and the correction applied to the D M w i l l be 

incorrect. The effect o f increasing system latency on performance is modelled in 

Chapter 7. 

The f inal source o f error that is present w i th in a wavefront sensor observing a natural 

guide star is centroid anisoplanatism. Centroid anisoplanatism is caused by wavefront 
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modes w i th in a subaperture^ causing an apparent wavefront gradient. A simple 

example o f this is coma, wh ich causes a centroid offset due to the resulting non-

gaussian intensity pattern. This offset is іпЇефгеІесІ by the centroiding algori thm as an 

extra component o f the wavefront t i l t . Yura et al [21] calculated the effect o f centroid 

anisoplanatism and showed that the effect is small. The effect o f centroid 

anisoplanatism is inversely proport ional to the detected wavelength o f the reference 

source. 

^entroid = —In 1 + 0.015Í^^ 1.23 

where for a SH-WFS, d is the effective diameter o f each WFS subaperture projected 

onto the telescope pr imary aperture. 

Moda l decomposit ion o f a wavefront (Section 1.8) can be used as a basis to control an 

A O system. Modal control (rather than zonal where the wavefront is analysed as a 

series o f discrete zones, as is the case w i t h a SH-WFS) is better suited to some types 

o f corrector /DM and WFS than zonal control . This is brought about the inabi l i ty o f 

the WFS to sense wavefront distortions at the order o f spatial correction being 

displayed on the D M . The combination o f a curvature sensor w i th a b imorph D M s is a 

common example o f a situation where the modal control o f an A O system wou ld 

show an improvement in performance over the zonal control o f the Ы т о ф һ D M 

using a SH-WFS. 

1 N o t e that modes across a subaperture are no t Zern ike modes, as these are de f ined over a c i rcu lar 

aperture, not the square (or somet imes hexagonal ) subaperture geometry o f a S H - W F S 
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1.10.4 Anisoplanatìc E r rors 

Angular anisoplanatism is caused by inadequate sampling o f the atmosphere. Figure 

1.7 demonstrates the cause o f angular anisoplanatism. 

I f the object under study i.e. the science target, is bright enough to act as a wavefront 

reference (a condit ion referred to as self-referencing A O ) the path that a wavefront 

travels through the atmosphere is identical for the reference and science beams. I f the 

science object is too d im to be used as a wavefront reference source, either an off-axis 

guide star or LGS must be used. As the angle between the science target and guide 

star increases, the variance between the wavefront f rom the science target and that 

f rom the guide star also increases. The A O system only corrects aberrations observed 

in the wavefront f rom the reference source, wh ich w i l l not be exactly the same as 

those that are present in the science target wavefront. 

On-axis light path Off-axis light path 

At high altitudes paths sample separate 
atmospheres, Тһөгө is a large wavefront 
variance between on and o í axis beams. 

At low altitude, on and off-axis paths overlap 
Therefore ธ correction applied to the on-axis 
reference pĮSth will prov ide a gooa correct ion to 
the off-axis light path irrespective of field angle, ť 

F igu re 1.7 Cause o f angular anisoplanat ism in A O 
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The isoplanatic angle, Өо, is a property o f the turbulence distr ibution wi th in the 

atmosphere and is defined as [22] 

1.24 

where һ is the height o f a turbulent layer, θ is the telescope elevation angle, and к is 

the wavenumber. For a single layer o f turbulence, equation 1.24 reduces to 

๙0 = 0 . 3 1 4 ( c o s ^ ) ^ - 1.25 

The wavefront error due to angular anisoplanatism for any off-axis angle, Θ, may be 

expressed as 

_ θ 
-1 .26 

Angular anisoplanatism l imits the f ield o f v iew that can be corrected by an A O 

system. Once the angular offset between an object and the bright NGS increases 

beyond the isoplanatic angle, the degree o f correction falls o f f rapidly. The l imited 

corrected field o f an A O system can be overcome by using mult ip le reference sources 

located in and around the scientific f ie ld o f interest in order to measure wavefronts 

through many different turbulent paths through the atmosphere. Using mult ip le 

wavefront reference sources provides data about the vertical distr ibution o f turbulence 

as shown in Figure 1.8. 
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оก-axis light path 
(Reference Source 1 ) 

Off-axis light path 
(Reference Source 2) 

A wavefront component measured on a single path only 
comes from อก altitude above the point of path separation 

The altitude of two partially overlapping 
wavefronts can be dete โกา і ned using 
geometry and a cross-correlation of the 
observed/measured wavefronts 

At low altitude, on and off-axis paths overlap. 
Wavefronts common to all fiela angles must 
come from a common turbulent source i.e. 
a layer at low altitude 

F igure 1.8 Wave f ron ts f r o m t w o reference sources be ing used to determine ver t i ca l d is t r ibu t ion 
o f tu rbu lence. Reference source 1 is on-ax is , and reference source 2 is o f f -ax i s . 
Observed wave f ron t f r o m each source is c o m m o n where wave f ron ts over lap. 

1.11 Multiple Conjugate AO 

B y correlating the wavefronts f rom two or more reference sources, mult ip le D M s can 

be control led. The WFS signals can be analysed to determine what proport ion o f the 

observed wavefront is common to all paths through the atmosphere (i.e. the 

turbulence that is concentrated in the lowest layer o f the atmosphere), and that which 

is specific to a single path through the atmosphere (i.e. turbulence that exists at higher 

layers in the atmosphere). As the geometry o f the guide stars is known, a tomographic 

picture o f distr ibution o f turbulent layers w i th in the atmosphere can be determined. 
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For a mult ip le D M system, the D M s are normal ly conjugated to dif ferent altitudes 

w i th in the atmosphere, w i th the A O control system performing analysis o f the WFS 

signals to split the turbulence between low and high altitude D M s . This technique is 

commonly referred to as Mult ip le-Conjugate A O ( M C A O ) . 

Figure 1.9 W F S geomet ry and associated beam footpr in ts o f a 3- layer M C A O system w i t h D M s 

con jugated to l o w , m i d and h igh a l t i tude lay ers. A 4-star aster ism is used. 

There are two flavours o f performing M C A O that are called 'star-oriented' and ' layer 

oriented' [26] . Star-oriented (SO) M C A O has a number o f guide stars (four are shown 

in Figure 1.9)， each observed by a dedicated WFS. Knowledge o f the geometric 

overlap o f the reference wavefronts at the layers in the atmosphere conjugate to each 

D M provides knowledge o f the vertical distr ibution o f the turbulence. The observed 

turbulence is separated into a set o f discrete layers that are conjugated to the set o f 

D M s , In a star-oriented M C A O system, the control system performs the task o f 

discretising the turbulence prof i le into layers by comparison o f the measured 

wavefront f rom each source (see Section 1.10.4). 
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Layer-oriented (LO) M C A O is similar in concept to S O - M C A O , except that the l ight 

from al l guide stars are opt ical ly [27] co-added on a single WFS rather than processed 

in the control system to provide the M C A O correction.. In L O - M C A O , for each 

turbulent layer that requires correction, there must exist a WFS that is conjugated to 

that layer. Each turbulent layer is then re-imaged onto the WFS plane wh ich al lows a 

WFS to control a single D M wi thout the complex control algorithms that are required 

for tomographic reconstruction o f the turbulent atmosphere and the mapping o f 

dif ferent turbulent layers onto separate D M s . The L O - M C A O concept is shown in 

Figure 1.10. 

Guide Stari Guide star2 

Guide Star 1 Guide Star 2 

Telescope Aperture 

Pyramid W F S 

j į ) Collimating Lens 

High-altitude WFS 
Low-alt i t ideWFS 

Layers are reimaged onto W F S planes 

F igure 1.10 Layer -or ien ted M C A O show ing W F S geometry and re - imag ing o f a tu rbu lent laye 
onto a con jugated W F S C C D . 
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Layer-oriented M C A O holds several advantages over S O " M C A O in that the control 

system is greatly s impl i f ied w i th a single WFS required to control each D M , creating 

an independent closed loop system for each W F S " D M pair ing. The optical co-adding 

o f l ight also increases the signal on the WFS, a l lowing fainter objects to be used and 

thereby increasing sky-coverage. I t is also possible to tune both the temporal and the 

spatial sampling for the temporal (to) and spatial frequencies (ľo) characteristic o f the 

layer wh ich the detector is conjugated to, thereby improving performance by 

min imiz ing both p ixel scales and WFS integration times. It is also possible to co-add 

the indiv idual wavefronts numerical ly [28] . Each WFS in a L O - M C A O system can 

use a di f ferent f ie ld-of-v iew. I f the field o f v iew o f the ground-conjugated l aye r is 

signif icantly increased, sky-coverage can be greatly increased. This technique is 

called m u l t i p l e - f i e l d " O f - v i e w (mFoV) L O - M C A O [29] . 

Both SO and L O M C A O can provide wide- f ie ld correction. Using the so rather than 

the L O approach improves A O correction across the field, although in all M C A O 

cases the magnitude and distr ibution o f available guide stars w i l l determine the degree 

o f correction across the field. Numerous รณdies have shown [30,31,32] that A O 

corrected fields that measure arcminutes in diameter can be created w i th l i t t le angular 

anisoplanatism, and M C A O has been demonstrated [33] in the photon-r ich 

environment o f solar A O , where the รนท can be used as a bright wavefront reference. 

1Л2 Sky Coverage 

As most astronomical A O systems currently in use do not employ M C A O , angular 

anisoplanatism often becomes the l im i t ing factor in the scientif ic use o f many NGS 
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A O systems, as the fo l lowing example demonstrates. As a typical A O system requires 

approximately 100 photons per Го element for high-order wavefront sensing, the 

choice must be made between the order o f correction (or alternatively the m in imum 

wavelength where adequate correction w i l l be observed) and the required magnitude 

o f the guide star. For example, wavefront sensing for a 48 element SH-WFS system 

requires a guide star w i th ha l f the apparent intensity o f a 96 element system, yet this 

increase in wavefront resolution only corresponds to increasing the WFS geometry 

f rom 8x8 to 10x10 elements (defined across a circular pupi l w i th a central 

obscuration). From equation 1.17, the increased resolution corresponds to a 

respectable decrease in wavefront f i t t ing error o f 45%. However, by doubl ing the 

required brightness o f the guide star, the number o f NGSs that are suitably bright is 

more than halved [34] . The decrease in NGS density means that either the search 

radius for a bright N G S must be expanded, increasing the error due to angular 

anisoplanatism, or that a fainter NGS must be used, increasing WFS error as longer 

exposures are used or lower SNR wavefronts are detected. Indeed, the lack o f a 

suitable NGS near the target object means that many objects o f scientific interest are 

unobservable w i th A O systems as the errors become so great that l itt le or no image 

improvement is seen. 

For a given l im i t ing magnitude, the distr ibution o f suitably bright NGSs is 

concentrated towards the galactic core. Figure 1.11 shows the probabi l i ty o f f ind ing a 

star brighter R=18 wi th in 1.5' o f the science object, showing almost 100% sky 

coverage in and around the galactic plane, but fal l ing to approximately 2 0 % sky 

coverage near the galactic poles. NGS A O systems generally require guide stars 

brighter than 15th magnitude, wh ich wou ld reduce the probabil i ty o f f ind ing a suitably 
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bright NGS even near the galactic plane. A guide star w i th an R-band magnitude o f 18 

is not suitable for a conventional N G S A O system, so an alternative means o f 

provid ing a high-order wavefront reference must be found. 

a g 10 4 ал 

ป็0 
80 
?0 

as 

60 
50 û,7 

40 
ЗО 

20 

10 ^ 

0 å 

- ю л CM 

一 20 

֊30 cu 
-40 
一 50 

OJ 

-ÔO 

-70 

-ao 
-90 

Figure 1.11 Sky coverage map show ing probab i l i t y o f f i n d i n g a star b r igh ter R = 1 8 m a g star 

w i t h i n 1.5' o f science object . The sky coverage map was creced by locat ing and 

exam in ing the area o f sky around R - 1 8 and br ighter stars f r o m sky survey data 

(Cour tesy R. S tu ik , Le iden Un i ve rs i t y ) 

The solution to the problem o f sky coverage is to generate a non-natural reference 

source. The creation o f a bright, art i f ic ial laser guide star (LGS) that can be 

superimposed over, or posit ioned near, to the target object solves the problem o f sky 

coverage. A perfect example o f this is the N A O M I A O system that has a 10% sky 

coverage in the galactic plane when using an NGS. N A O M I should achieve 100% sky 

coverage w i th in 30° o f the galactic plane when using an LGS, fa l l ing to 〜30y^ near 

the galactic poles. Whi ls t increasing sky coverage, the use o f an L G S as a wavefront 
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reference does introduce many addit ional sources o f error into an A O system. Laser 

Guide stars are studied in more detail in Chapter 2. 
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Chapter 2ะ LGS AO Systems 

2.1 Introduction 

As was demonstrated in Chapter 1, NGS A O systems suffer f rom the shortcoming o f 

poor sky coverage. To improve sky coverage, an LGS that is bright enough to act as a 

high-order wavefront reference can be created near to the object o f interest. 

The most common ways o f creating a wavefront reference source in the atmosphere 

using a laser rely on photon scattering processes w i th in the atmosphere. Elastic 

scattering processes wi th in the atmosphere give rise to so-called Rayleigh LGSs, 

sometimes also called Rayleigh beacons. A n alternative and commonly used method 

creates a sodium guide star by st imulating emission f rom a th in layer o f sodium atoms 

that are present between 80 and 100km above the Earth's surface. Sodium LGSs are in 

use as wavefront references for A O systems at various astronomical [1,2] and mi l i tary 

sites [3] around the wor ld . The concept o f using an LGS as a wavefront reference for 

an A O system [4] was in i t ia l ly classified as part o f a mi l i tary investigation into h igh-

energy laser propagation, although the idea was independently introduced into the 

astronomical communi ty at a later date [5 ] . 

2.2 LGS types 

Al though this work is pr imar i ly concerned w i th the study o f Rayleigh LGSs, an 

examination o f the relative merits o f both Rayleigh and sodium guide stars points to 

many applications where one type o f beacon is more suitable than the other. 

- 4 1 -



2.2.1 Sodium LGS 

Sodium LGSs are created by i l luminat ing a layer o f sodium atoms situated between 

80 and 100km above the surface o f the Earth w i th l ight tuned to an electronic 

transition w i th in the sodium atom. The strongest o f these lines for the sodium atom is 

the D2 line, centred at 589nm. The generation o f a laser tuned to the sodium 589nm 

line is complex, making current sodium lasers bulky and expensive. Fibre-based lasers 

do not currently output 589nm l ight w i th the required power to create a suitably-bright 

LGS. Approximately 5"10W o f laser power are required to create a sodium LGS. 

The return f lux f rom a sodium beacon is dependent on numerous factors which result 

in highly variable return f rom a sodium LGS on a night-to-night basis. The sodium 

density at 90km varies w i th season, w i th a greater sodium density observed during the 

winter than the summer [6,7,8]. The sodium layer can also separate into distinct 

layers, reducing WFS performance. A n upper l im i t on the flux that can be obtained 

f rom a sodium L G S is reached when the excited states o f the sodium atoms being 

i l luminated becomes saturated [9,10]. Further increases in return flux f rom the sodium 

layer can be found through techniques such as matching the Doppler broadened 

l inewidth o f sodium at the LGS focal altitude, and control l ing the output polarisation 

state o f the laser. However, there is a f ini te l im i t on the sodium return flux that is 

dependent on the sodium column density. To increase the return flux beyond the 

saturation point, a larger number o f sodium atoms must be excited. This involves 

increasing the LGS spot size, but this can have an adverse effect on the WFS 

performance, as discussed in Chapter 5. 
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2.2.2 Rayleigh LGS 

A Rayleigh LGS is formed when photons are elastically backscattered f rom molecules 

w i th in the atmosphere. By using a pulsed laser, a temporal range gate can be 

employed to select a small vert ical section o f the Rayleigh plume. A high-speed WFS 

shutter is used to create the range gate. Many methods o f creating a high-speed shutter 

exist [11,12]. Normal ly , Pockelร cells that switch at the laser repetit ion rate (usually 

5- lOkHz) are used to rotate the polarisation state o f an incoming wavefront and hence 

provide a means for modulat ing the amplitude o f the beam into the WFS. The cells 

are placed between crossed polarisers to form a high-speed shutter. The range gate 

depth and distance f rom the launch aperture o f the LGS are products o f the t imings 

input to the shutter. Each pulse f rom the laser is not emitted instantaneously, but has a 

pulse w id th that is defined by the F W U M o f the pulse energy. A typical pulse has a 

prof i le as shown in Figure 2 .1 . 

Time 

ω, '95 

Figure 2.1 T y p i c a l pulse p ro f i l e o f a pu lsed laser. The pulse w i d t h is no rma l l y quoted as a 

F W H M value. T y p c i a l va lue for the pulse w i d t h range in va lue from 

femtoseconds to hundreds o f nanoseconds. 

The F W H M pulse w id th is dependent on the laser gain medium used. The standard 

gain medium used in commercial ly available lasers suitable for the creation o f a 
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Rayleigh LGS is normal ly Nd:YAG， although other materials, such as Y b : Y A G can 

be used. A N d : Y A G has a pulse w id th o f approximately 120ns F W H M , whi le 

Y b : Y A G has a longer pulse w id th o f 400ns F W H M . For a Rayleigh LGS, the pulse 

width defines the m in imum range gate depth that can be achieved before the shutter 

system starts to chop the tai l o f the pulse, decreasing signal on the WFS. It is better to 

specify the pulse w id th o f a Rayleigh laser in terms o f a fu l l w id th at a given 

percentile o f the total pulse energy. 

To create a 200m range gate at 20km requires the shutter to open after the outgoing 

l ight pulse has travelled to the lowest point o f the range gate, i.e. 19.9km distant, and 

the backscattered l ight has had t ime to return. The shutter must then remain open for 

the t ime taken for the pulse to travel the 200m to the top o f the range gate in the 

atmosphere and return the same distance. Table 2.1 describes the system t iming 

required to create the above range gate where the shutter is opened after the pulse has 

travelled a distance o f 39.8km and closes after the l ight has travelled a distance o f 

40.2km 

Time f ļ i secs ļ Event Description 
Ū.Ū 

0.02G 

0.087 

0.62G 

Ο.Β87 

66.42ն 
B7.02ū 

G7.087 

67.687 

132.853 

133.453 

134.187 

134.787 

շօօտօ 

Laser • - รพ i t с һ opens (laser pulse starts) 
Leading 9 5 % percentile energy point exits laser aperture 
Leading 9 5 % percentile energy point exits в LT launch aperture 

Trailing 9 5 % percentile energy point exits laser aperture 

Trailing 9 5 % percentile energy point exits BLT launch aperture 

Leading edge reaches bottom of range gate at 19.9km 

Trailing edge reaches bottom of range gate at 19.9km 

Leading edge reaches top of гапдө gate at 20.1 km 
Trailing edge reaches top of range gate at 2ū.1kกก 

Leading edge backscatters from bottom of range gate into shutter (shutter opens) 
Trailing edge backscatters from bottom of range gale into shuttsr 
Leading edge backscatlers from top of range gate into shutter (shutter closes) 
Trailing edge backscatters from top of range gate into shutter 
Next pulse generated (Initial pulse at Bûkm) 

Table 2.1 Laser pulse ch rono logy fo r an L G S created at a distance o f 20k in w i t h a range 

gate depth o f 2 0 0 m . The laser pulse rate is 5 K h z and there is a 2 0 m path length 

between laser head and beam launch telescope. 
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The photon return f rom a Rayleigh LGS is dependent on the molecular density in the 

atmosphere. The exponential decay o f atmospheric pressure w i th increasing altitude 

results in a lower photon return as the Rayleigh LGS altitude is increased. This l imits 

the max imum altitude for a Rayleigh LGS to approximately 35km above sea level 

using currently available commercial lasers. This altitude can be increased i f more 

powerf t i l lasers are used. A l though the output power o f lasers is continually 

increasing, there is a power level where the laser i tself can induce turbulence in the 

atmosphere. A t this level the suitabil i ty o f a Rayleigh LGS A O system for the 

correction o f an astronomical wavefront is reduced. 

2.3 LGS Error Sources 

The comparison o f Rayleigh w i th sodium beacons first requires an examination o f the 

sources o f error associated w i th using a LGS. 

2.3.1 Finite Altitude of the LGS 

The creation o f an LGS w i th in the atmosphere means that there w i l l always be a 

proport ion o f the turbulent atmosphere above the LGS. This is not a problem i f the 

object one is t ry ing to observe lies w i th in the atmosphere, but for astronomical A O 

where the object o f interest always lies outside the atmosphere, unsensed atmosphere 

above the LGS can introduce signif icant errors between the turbulence-induced 

wavefront f rom the LGS and the object o f interest. Most aberrations in a turbulent 

wavefront are induced at altitudes below 20km in the atmosphere, and the further 

above this altitude that the LGS can be created, the smaller the difference between the 
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wavefront measured from the LGS and wavefront o f the target object. The error 

source brought about by the l imited altitude o f atmospheric sampling and projection 

effects due to conical rather than cyl indr ical i l luminat ion is called focal 

anisoplanatism. Figure 2.2 illustrates the cause o f focal anisoplanatism, wh ich is also 

referred to as the 'cone effect'. 

Upper Turbulent 
Layer 

Lower Turbulent 
Layer 

Light cone from LGS at 3 finite altitude 

Science wavefront poorly sampled at 
higher turbulent layers leading to error 
between LGS and science wavetronts 

LGS and Science beam footprints 
are matched at lower turbulent 
layers atlowing more accurate 
wavefront measurement 

F igu re 2.2 Cone E f fec t caused by us ing a wave f ron t reference at a finite a l t i tude 

Focal anisoplanatism (FA) is caused by parts o f the turbulent atmosphere that are 

sensed by a wavefront originating from an astronomical source (effect ively in f in i ty ) 

and the turbulence sensed by a wavefront originating from the LGS. FA is the major 

source o f error present between science and LGS wavefronts. The wavefront variance 

between the measured LGS wavefront, and actual wavefront incoming f rom the target 

object is dependent on the vert ical distr ibution o f ณrbulence, given by the Cn^ prof i le. 

The wavefront variance due to focal anisoplanatism is given by [13] : 
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σ',Α = 0207k' ] c ' „ mh\f{K)g{Y, ζ)άκ - 2 . 1 

where к is the temporal wavenumber o f the propagating wave, 

к is the spatial wavenumber transverse to the һ direct ion, 

/ ( к ) is the two-dimensional turbulence spectrum (normal ly Ko lmogorov) . 

The wavefront variance due to the cone effect can be added to the overall system 

wavefront variance (Equation 1.15) to determine the system Střehl ratio. A n 

alternative form for this equation was derived by Fried and Belsher [14] reducing the 

effect o f focal anisoplanatism to a single parameter, do, the LGS equivalent o f the 

Fried parameter, դ. 

^H%J -2 -2 

It was shown by Sasiela [15] that do can be expressed in terms o f turbulence moments 

(introduced in Chapter 1) by 

0.057K ( я ^ ) + 0 . 5 0 0 우 ^ ֊0.452 バ; (めGS ) 

TT ^¡^ ŕ/ 
LGS ^ LGS 

-2 .3 

where HLGS İ s the focal altitude o f the L G S . The basic concept o f an L G S involves 

creating an art i f ic ial star at as high an altitude in the atmosphere as possible to 

increase do and therefore l im i t the cone effect. However, this approach does not 

provide good off-axis performance as the corrected field o f v iew is l imited by the 

effects o f angular anisoplanatism and the isoplanatic patch size. 
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2.3.2 WFS Spot Elongation 

Both sodium and Rayleigh LGSs have a finite depth in the sky. In the case o f a 

sodium LGS, this depth is dependent on the sodium column depth, wh ich is o f the 

order o f lOkm. For a Rayleigh LGS, the depth is usually externally defined through 

temporal range gating o f the Rayleigh plume. When using a SH-WFS, the f ini te depth 

o f the LGS exhibits i tself as an elongation o f the WFS spot w i th in a subaperture in the 

direction o f propagation. Spot elongation o f a z-extended LGS is a geometrical 

problem and can be modelled. Chapter 5 examines the error associated w i th wavefront 

sensing f rom a z-extended reference. The optical z-axis is a common def ini t ion in 

optics describing the direction o f propagation o f a beam. 

2.3.3 WFS Launch Jitter 

Launch j i t ter is the name given to any global LGS spot mot ion that is observed on the 

LGS WFS. Launch j i t ter is caused by vibrations in the launch optics, point ing stabil ity 

o f the laser, and differential t i l t between the launch and return paths the laser travels 

through the atmosphere. The effect o f launch j i t ter is to place a spurious t i l t across the 

LGS wavefront. Launch j i t ter can be simply removed using a closed-loop t i l t 

correction system control led by the t ip/ t i l t signal f rom the LGS WFS. A fast-steering 

mirror (FSM) correcting the launch j i t ter is normally placed ๒ the optical train o f the 

laser launch system [16] , g iv ing rise to pre-launch j i t ter correction. However, the 

WFS j i t ter can also be corrected w i th a F S M that corrects the LGS wavefront only. 

This is known as post-launch launch j i t ter correction. 
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Performance o f a SH-WFS can be seriously degraded when the magnitude o f the 

launch j i t ter approaches the boundary o f a subaperture, as vignett ing can occur. The 

field o f v iew o f the lenslet must then be further increased beyond that required to 

accommodate any spot elongation. However, this can degrade the accuracy o f 

subaperture centroid determination, and hence reduce WFS performance. 

2.3.4 LGS Tilt Reciprocity 

One o f the major sources o f error in the wavefront coming f rom an L G S is caused by 

the double propagation o f the laser through the atmosphere. This problem is 

demonstrated when the fu l l aperture o f the telescope is used to project and observe the 

LGS. 

Actual Position 
of NGS 

Actual Position 
of LGS 

พ 
/ Apparent position 

of NGS 

On-axis projecti on of LGS 
causes angular offset of θ 

in actual LGS position 
Turbulence induces a tilt 

in a transmitted wavefront 

NGS is imaged 

at an off-a)0S 

angle of φ 

Figure 2.3 D iag ram show ing cause o f atmospher ic t i l t rec ip roc i ty . I f the L G S is launched 

us ing the f u l l aperture o f the telescope, the angle θ is ident ica l on both u p l i n k 

and d o w n l i n k L G S paths ( s h o w n by the green ar rows) and no L G S spot m o t i o n 

is observed, θ can not therefore be de termined. For tu rbu lent lay ers where the 

L G S and N G S beam diameters are not equal θ φφ . 
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For the simple case shown in Figure 2.3, a single turbulent layer injects a t i l t on the 

LGS on the upl ink, offsett ing the LGS spot on the sky in relation to the wavefront 

coming f rom the science object at inf in i ty. The offset in the LGS posit ion is cancelled 

by the double pass through the turbulent layer when the LGS l ight is collected by the 

telescope. The LGS therefore w i l l appear stationary when observed by the telescope. 

The science l ight however, only makes a single pass through the atmosphere so 

experiences the filli atmospheric t i l t . To determine the wavefront t i l t for science 

objects, a separate N G S must be used to measure t ip-t i l t . Sensing only atmospheric 

t ip- t i l t reduces the required N G S intensity as the l ight does not need to be separated 

between individual subapertures, as is the case w i th a high-order NGS A O system, 

and longer integration times can be used. Longer integration times w i l l not increase 

wavefront temporal errors as wavefront t ip- t i l t changes at a much lower rate than 

higher spatial frequency modes. The combination o f an LGS w i th t ip- t i l t NGS can 

give near 100% sky-coverage for A O correction. 

The above example, whereby the wavefront t i l t is completely reciprocal, is not a true 

description o f A O systems that util ise a secondary B L T to create the LGS. The 

dif ferential t i l t on up l ink and downl ink LGS paths results in apparent LGS mot ion and 

an NGS is st i l l required to stabilise the posit ion o f the science image. The dif ferential 

spot motion means that any global t i l t observed by the LGS WFS should be ignored 

by the A O system, although in many cases it is used to stabilise the posit ion o f the 

LGS spot on the sky using an independent closed-loop LGS fast steering system. 
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2.4 Ground Layer AO 

As w i th NGS M C A O systems, mult ip le LGSs can be used to give wide- f ie ld A O 

correction. However, as an LGS can be posit ioned at any point in the sky, an LGS 

M C A O system can provide a far more un i form degree o f A O correction across a 

given f ield o f v iew. A l l M C A O systems are complex and expensive, requir ing 

mul t ip le WFSs, D M s and i f being used, mult ip le LGSs. 

The technique o f correcting the lowest layers o f turbulence only was proposed as 

'restricted-conjugate' A O by Sharpies et al [17] and later by Rigaut [18] under the 

name 'ground-layer' A O , which has been adopted as the term used to describe the 

technique ever since. Correcting low-alt i tude turbulence only provides a low-level o f 

A O correction over a wide f ie ld o f v iew because low-alt i tude turbulence is common 

to al l field angles. Whi ls t Ground-Layer A O ( G L A O ) does not provide the high-strehl 

correction over a wide field that a filli M C A O system wou ld , it is often refened to as 

a 'seeing-improvemenť system, greatly improving the eff iciency o f telescope 

observations. 

The def in i t ion o f the atmospheric ground layer is site-dependent. A t Cerro Paranal in 

Chi le, the site o f the Very Large Telescope ( V L T ) , there is a good indication that the 

ground layer is normal ly contained w i th in the first 100m above the observatory [19] , 

however at sites such as La Palma it can be found at altitudes up to 500m [20] . A t 

these altitudes the surrounding topology can influence the max imum altitude o f the 

ground layer and can be dependent on w ind direction. Obviously, the lower the 

altitude o f the ground layer, the wider the G L A O corrected f ie ld becomes. The 

suitabil i ty o f G L A O to a particular site, or at least particular weather condit ions, is 

increased whenever low-alt i tude turbulence becomes dominant . 
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There are various methods for achieving selective correction o f the ground-layer. The 

first is to use a low-alt i tude LGS that only samples the lowest layers o f turbulence. 

This is the simplest method, using only a single LGS, D M and WFS, but is sensitive 

to the maximum altitude o f the ground layer. The second method is a by-product o f an 

M C A O system as the ground layer wavefront can be obtained by co-adding the WFS 

images f rom each guide star sampled w i th in the A O control system. This process 

'b lurs ' the high-layer turbulence unique to each f ie ld angle, leaving only the ground-

layer component o f the observed turbulence. 

2.4.1 Rotating LGS 

A novel methodof measuring a ground layer wavefront, presented here for the first 

t ime, is to change the posit ion o f the LGS on the sky during a single WFS frame, and 

to correct the resulting apparent t i l t w i t h an LGS F S M conjugated to the telescope 

pupi l on the return path. The performance o f an A O system ut i l is ing this technique 

has not been studied prior to this work. I f the phase and amplitude o f the LGS on-sky 

rotation is matched by the correction o f the LGS F S M , this w i l l result in an apparently 

static LGS. The LGS wavefront w i l l then be dominated by the wavefront terms that 

are common to al l return paths o f the LGS i.e. ground layer turbulence. Obviously the 

LGS F S M cannot receive a control signal from the LGS WFS as the frequency o f 

LGS mot ion is, by def in i t ion, higher than the closed-loop speed o f the WFS. This 

means the F S M must receive an open-loop signal from the LGS offset system, as 

shown in Figure 2.4. 
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LGS rotates once per WFS frame 
\ around science field of interest 

Upper Turbulent 

Layer <ΪΖΖ 

Lower Turbulent 

Layer 

Higher layer turbulence is averaged 

by sampling several non-correlated 

régi ons of high-laye r turbulence 

Rotation of LGS does not alter 

position of return beam footprint 

at low altitude turbulent layer 

Apparent wavefront tilt is removed by an LGS FSM such 

that LGS rotati on is removed. High layer turbulence 

is averaged, leaving a ground-layer biased wavefront 

Figure 2.4 Scheme fo r ro ta t ing gu ide star to achieve ground layer on ly cor rec t ion f r o m a 

s ing le , h igh-a l t i tude L Ü S 

The simplest scheme for the launch offset and then post-correction o f the LGS 

described above is to rotate the LGS around the centre o f the science field. This 

al lows two sinusoidal D C offsets to the F S M (w i th a suitable а т р і і ш д е and phase 

delay) to correct for the launch offset signal. A simple scheme for adapting the 
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demonstrator launch system (described in Chapter 4) is shown in Figure 2.5. This 

scheme then approximates the opt imum LGS configurat ion for G L A O correction on 

an E L T [21] . 

LGS rotates 
on sky 

aeam Launch 
System 

Rotating Window 

Rotating LGS 

Large Telescope 
Aperture 

Science Light 

Axis of Rotation of 
LGS Offset Window 

NGS/LGS 
Beamsplitter 

Phase Signal from encoder 
split and offset to provide DC 

signa! to FSM actuators 

Fast Steering 
Mirror 

Figure 2.5 Launch system concept to generate ro ta t ing guide star. The L G S of fset w i n d o w 
w o r k s by m o v i n g the v i r tua l focus f o rmed by the d i ve rg ing lens around the 
opt ica l ax is o f the launch lens. Th i s moves the foca l pos i t i on o f the L G S on the 
sky in a c i rcu lar path on the sky. 

The performance o f a rotating laser guide star for measuring a ground-layer wavefront 

is determined by several factors, including angular magnitude o f offset, vert ical 

distr ibution o f turbulence, laser launch and return aperture diameters, and frequency 

o f LGS rotation. The effect o f the LGS rotation reduces WFS SNR as the spot mot ion 

due to high layer turbulence is blurred w i th in a subaperture. A performance model o f 

a rotating LGS was made and the results o f this study are presented in the Chapter 7 

wh ich concentrates on A O system model l ing. 
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Each o f the three methods described above can determine a ground-layer wavefront, 

although in the case o f the two simplest methods, this may be more accurately 

described as a ground-layer biased wavefront. The method chosen for achieving 

ground-layer A O w i th the Durham demonstrator system was to create a low-alt i tude 

guide star. This is the least technically demanding implementation o f a G L A O system, 

and was chosen pr imar i ly for the relative simpl ic i ty o f the technique, although the 

power o f the Rayleigh laser also l imited the altitude from which the signal on the 

WFS would provide an accurate measure o f the wavefront. A n analysis o f the LGS 

parameter space is presented in Chapter 5. 

2.4.2 LGS GLAO performance 

Several analyses o f the performance o f G L A O wavefront determination have been 

published [22,23] as we l l as the results f rom several G L A O simulations [24,25]. More 

recently, the results o f on-sky analysis o f ground-layer wavefronts f rom M C A O 

systems have been presented [26,27], although on-sky G L A O correction has not been 

demonstrated. As w i th any G L A O system, regardless o f G L A O method, the off-axis 

performance o f the system is highly dependent on the vert ical distr ibution o f 

turbulence. For a low-level LGS, the opt imum case is found when there is a single 

layer o f turbulence at the ground, and high-layer turbulence exists at an altitude above 

the focal altitude o f the LGS. Turbulence that exists at altitudes between the ground 

layer and the focal altitude o f the LGS contaminates the WFS signal, causing poor 

correction o f the in f in i ty focused science f ie ld. The opt imum altitude o f a low-level 

LGS is therefore (atmospheric) condit ion dependent, wh ich in turn is dependent on 

"tKe"observatory site. 
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Characterisation o f the atmosphere on La Palma [28] has shown that a 3-layer 

atmosphere, w i th layers at 0km, 2.5km and 7.5km w i t h a 0.4:0.4:0.2 ШгЬиІепсе 

strength split, can be used to describe a 'standard' La Palma atmosphere. The 

opt imum altitude at wh ich a low-level LGS can determine a ground layer wavefront is 

determined in Chapter 7 as a result o f running numerical simulations. 

The numerical simulations o f G L A O performance have shown that whi le G L A O w i l l 

not provide anything near di f f ract ion l imi ted performance, some correction w i l l be 

observed. Once the ground layer correction is coupled w i t h the fact that, for long 

exposure images, the corrected F O V exhibits an extremely un i form PSF across a large 

field o f v iew (as described at the start o f section 2.4), G L A O becomes an attractive 

technique for astronomical observations. The performance o f G L A O has often been 

referred to as a seeing-improvement system as is has the potential to turn a 'bad-

seeing' night into a 'good-seeing' night, thus greatly increasing the eff ic iency o f 

telescope observation programs. As has been observed by site-monitoring campaigns 

[29,30] that have examined low-alt i tude turbulence, the 'g round ' layer can vary in 

strength and mean altitude considerably, requir ing carefi i l scheduling to optimise 

telescope eff ic iency. 

2.4.3 GLAO systems 

Al though G L A O has not been successfiilly demonstrated on-sky yet, several 

experimental and facil i ty-class G L A O systems have been proposed are in various 

stages o f development. This wo rk describes the first instrument to attempt G L A O 

correction on-sky. 
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ESO are bui ld ing the Mult iconjugate Adapt ive Optics Demonstrator ( M A D ) [31] . 

M A D was due to be commissioned on one o f the V L T UTs (บทi t Telescopes) in the 

summer o f 2005, although the system is st i l l in laboratory testing phase. M A D takes 

the wavefronts f rom 3 to 8 NGSs to perform atmospheric tomography and correct the 

observed wavefront using two D M ' ร . One D M is conjugated to the ground layer and 

therefore G L A O can be tested. M A D has both star-oriented and layer-oriented M C A O 

configurations. 

M A N U - C H A O [32] is a G L A O demonstrator for the T N G (Telescope Nazional 

Gali leo) wh ich uses four pyramid wavefront sensors to optical ly co-add the l ight f rom 

4 NGSs wi th in the telescope f ield o f v iew. The measured wavefront w i l l be corrected 

using a single 96 actuator D M conjugated near to the telescope pupi l provid ing 

ground-layer correction. 

The 4.2m SOAR (Southern Astrophysical Research) telescope is currently in the 

design phase for a G L A O system that utilises a low-alt i tude RLGS. S A M (SOAR 

Adapt ive Module) , [33] w i l l project a 2 0 พ 355nm laser to 10km and correct the 

return using a 97"actuator D M . The S A M project bears many resemblances to this 

work, although it w i l l deliver a facil i ty-class G L A O system, rather than a 

experimental system. S A M is planned to be operational in 2007-2008. 

Both ESO and Gemin i observatories are studying almost identical G L A O systems 

using a 4"Star sodium L G s asterism. Gemini have completed an extensive model l ing 

o f the problem [25] showing that they w i l l be able to achieve a 0.3" 土 0,0r F W H M 

across a 10' field under typical atmospheric condit ions for Cerro Pachón. Median 

seeing at Cerro Pachón is 0.717". Important ly, the study also suggested that the 
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eff iciency o f the Gemin i telescope w i l l be increased by 50%, thereby increasing 

science product iv i ty. 

A G L A O WFS is being tested on the Magel lan telescopes [34] to examine the 

correction across the 23 ' Magel lan FOV. The WFS w i l l be made using relatively 

coarse 0.6m subapertures at a lOOHz frame rate. 

The 6.5m M M T (Mul t ip le M i r ro r Telescope) is being f i t ted w i th a RLGS which 

creates a 5"Star asterism. The M M T RLGS system incorporates a dynamic refocus 

mechanism that al lows the 5 guide stars to be created at a distance o f 20km using 

3 0 พ o f laser power at 532nm. The M M T w i l l use a deformable secondary mirror to 

correct the wavefront. On-sky WFS tests have shown that the 5 Rayleigh LGS 

asterism can expect to correct a field o f 2 arcminutes in diameter using G L A O 

correction. 

2.5 Conclusion 

The error sources associated w i th using an LGS at a f ini te altitude have been 

presented and the concept o f G L A O has been introduced. Various methods o f 

determining a ground-layer wavefront have also been presented. 

As can be seen by the large number o f proposed instruments that w i l l util ise G L A O , 

the concept is one that is attractive to the astronomical communi ty as a method o f 

improving seeing, and thereby increasing telescope scientif ic output. A l l observations 

w i l l benefit f rom the increased resolution and uni form PSF that G L A O can provide. 
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Chapter Зะ AO Systems 一 Past and Present 

3.1 Introduction 

The astronomical use o f A O to correct for atmospheric turbulence was first proposed 

in 1953 by Horace Babcock [1], and even though the technology required to achieve 

partial A O correction was available, a system that was able to compensate real-time 

high-order atmospheric turbulence was not realised unt i l the 1970ร. Since then, many 

astronomical A O systems have been bui l t , using a wide variety o f technologies. This 

chapter describes the basic layout o f any A O system and then goes on to examine the 

designs o f many past and present NGS and LGS A O systems. Solar A O systems are 

also studied. For each example presented, aspects o f the system design that are 

applicable to the low-level G L A O system design are identif ied and analysed. 

3.2 Generic AO system 

This section describes a generic A O system that could be employed at any 2-10m 

class telescope, whi le ignoring telescope-specific issues such as the optical input, 

space constraints, telescope diameter etc. The generic A O system introduces many o f 

the concepts that are present in most astronomical A O systems and is a useful 

yardstick against wh ich to compare an exist ing A O system. 

A n A O system consists o f three elements, a wavefront sensor (WFS), a wavefront 

corrector (normal ly a deformable mirror, or 'DM' ) and a control system l ink ing the 

two. A O systems generally operate in a closed-feedback loop, where the WFS is 

positioned after the D M in the optical train such that any change that the D M makes 

to the wavefront is observed by the WFS. A secondary corrective element is usually 
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included in the optical train to take out global atmospheric t ip and t i l t out o f the 

wavefront. This is necessary as DM 'ร cannot be manufactured to run at the 

frequencies required for high-order atmospheric correction i f they have a mechanical 

stroke large enough to correct t ip and t i l t . Figure 3.1 shows the general layout o f an 

A O system. 

Light froทา 
Object 

Telescope 
Aperture 

WF ร/รcience 
Beamsplitter 

High-order 
Signal ^ 

C o n t r o l 

Figure 3.1 Gener ic A O system 

A D M consists o f a number o f separate corrective elements that a l low phase distort ion 

o f a wavefront. The optical design o f an A O system is driven by the D M aperture and 

corrective element density. L ight entering the A O system is collimateci to f i l l a central 

part o f the D M . The fu l l aperture o f a D M is not normal ly used due to either effects at 

the D M edge that are caused by corrective elements that are not bound on al l sides, or 

because there may not be enough l ight incident on the WFS to al low higher-order 

correction. Normal ly , matched off-axis parabolic (OAP) mirrors are used to col l imate 

the beam onto the D M and refocus the beam into the WFS. O A P elements give an 

63 



unvignetted field o f v iew and di f f ract ion- l imi ted on֊axis performance. A Fast Steering 

Mi r ro r (FSM) is placed before coUimation optics to remove gross t ip- t i l t f rom the 

system. Placing the F S M at this point reduces any off-axis angle present in the beam, 

thus reducing any static aberration caused by the of f-axis propagation o f the beam 

through the col l imat ion optics. 

The D M is then placed at the point in the collimateci beam conjugate to the pr imary 

mirror o f the telescope. The conjugation o f the D M to the telescope aperture 

accomplishes two tasks. First, any point in the optical system conjugate to the pupi l 

plane o f the telescope is fixed in X and y directions (z is the direction o f l ight 

propagation) so the return beam does not wander over the surface o f the D M . 

Secondly, at most astronomical sites turbulence due to the ground layer can contribute 

up to 60% o f the fu l l turbulence strength [2] Placing the D M conjugate to the ground 

layer (or the telescope pupi l ) al lows for the best optical registration to the observed 

turbulence (Figure 3.2). 

Figure 3.2 D M con jugat ion to g round and al t i tude 
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After the wavefront has been corrected by the D M , the l ight is focused by the second 

OAP. This removes the aberrations imposed on the wavefront by the first of f-axis 

parabolic mirror. A f te r this, the l ight is separated using a dichroic beamsplitter. 

Vis ible (or LGS, i f used) wavelengths are directed towards the WFS, whi le the longer 

wavelengths are directed towards the science camera. Longer wavelengths are 

affected less by passage through a turbulent atmosphere. Al though they exhibit almost 

the same amount o f optical path difference in metres as a wavefront at shorter 

wavelength, image quali ty is dependent on the optical path difference in terms o f 

wavelengths. This means a ш distort ion present in a visible wavefront at a 

wavelength o f 500nm results in a ÅJA distort ion at a wavelength o f І ц т . A quarter-

wave distortion is the classical def ini t ion o f a di f f ract ion l imited system. Conversely, 

correction applied to a wavefront in the visible results in better correction in the IR. 

For this reason, most A O systems sense wavefront distortions in the visible, where the 

system eff ic iency is highest, and apply this correction to a longer wavelength 

observation. This al lows small degrees o f correction at visible wavelengths to provide 

di f f ract ion- l imi ted observations at longer wavelengths. 

Astronomical A O systems operate in a photon-sparse environment because the rate at 

wh ich the WFS must run to compensate for atmospheric turbulence dictates a very 

short exposure t ime (〜 l rns). Thus there is a requirement for a high optical throughput 

to the WFS, as we l l as the obvious requirement o f a high science throughput. For this 

reason, the number o f surfaces in the system must be kept to an absolute m in imum. 

LGS A O systems have an advantage over N G S A O systems in this respect, as the 

WFS only works at a single wavelength, so al l optical components can use a 

narrowband coating, a l lowing efficiencies greater than 99%, whi le the broadband 
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coatings required by NGS A O systems have a max imum 9 8 % eff ic iency, although 

this eff iciency w i l l not be available across the entire wavelength range o f operation. 

Many optical components that would be present in a facil ity-class astronomical A O 

system were not included in the description o f the generic A O system above. Items 

such as the derotator and atmospheric dispersion compensator ( A D C ) were not 

mentioned, as although they may be essential for scientif ic observations, their 

presence is not integral to the performance o f the A O system. Other components may 

be required to a l low for the optical design to f i t into a particular space envelope. Due 

to their complexity, A O systems are generally housed at a dedicated focus o f the 

telescope, or as is becoming the case, are integrated into the original telescope design. 

The space envelope wou ld not be a constraint in this case, but many telescopes sti l l 

have quite stringent weight and space l imits, so this must be taken into consideration. 

The presence o f any extra elements in the system only reduces optical throughput to 

the WFS and consequently reduces on-sky A O performance. 

3.2.1 Control System 

The tasks carried out by the A O control system l ink ing the WFS to the D M are 

analysis o f the WFS image, reconstruction o f the wavefront and calculation o f the 

correct form to display on the D M . The primary requirement is that this takes place 

w i th in a t ime less than the coherence t ime o f the atmosphere. To, otherwise temporal 

errors can dominate system performance. 

In the past, the above set o f tasks has been carried out by customised Digi ta l Signal 

Processor (DSP) hardware. To minimise processing t ime, several DSPs are used in 

parallel to carry out the calculations. The parallelisation over several DSPs results in a 
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complex hardware architecture that is often d i f f i cu l t and expensive to maintain and 

update. Recently, continuing advances in the processing power o f PC microprocessors 

have al lowed the control system to be placed w i th in a single x86 architecture PC, 

vastly reducing control system cost and complexi ty, and often reducing latency too. 

This also al lows fiirther system development to be undertaken by anyone w i th general 

programming skil ls, rather than requir ing a DSP specialist for system modif icat ions, 

reducing running and training costs. 

For more complex A O systems, such as M C A O where extra wavefront processing is 

carried out, or an E L T A O system where the data volumes are extremely large, 

parallelised control systems are st i l l used, although normal ly a parallelised PowerPC" 

based architecture. Future advances involve using Field Programmable Gate Arrays 

(FPGAs) as a high-speed (re)configurable maths co-processor. Processor intensive 

applications that can be parallelised (examples include centroiding, Fourier transfers 

and matr ix mult ipl icat ions) benefit f rom large speed increases when carried out inside 

an F PGA. Tak ing the process a step fiirther, an entire control system wi th in an FPGA 

has been demonstrated, including WFS interface and D M control [3] . 

One required input that the control system requires is an interaction matr ix that 

measures the WFS response to changes in D M shape. In the case o f a SH-WFS and 

Xinet ics D M , this involves offsett ing each actuator in turn from the default mirror 

value and measuring the resulting spot mot ion on the WFS. The W F S - D M interaction 

matr ix produced by this process can then be inverted so that the control system has 

knowledge o f what correction to apply to the D M when a spot mot ion is measured 

during closed loop operations. A n inverted interaction matr ix is called the control 

matr ix. 
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Measuring the interaction matr ix can be complicated, especially i f i t is d i f f i cu l t to f ind 

a suitable calibration source. This is the case w i th telescopes that w i l l employ an 

adaptive secondary mirror, where only on-sky calibrations or theoretical models o f 

D M performance can be used to generate the interaction matr ix. Interaction matrices 

for M C A O systems are also complicated through offset beam footprints on D M s 

conjugated to an altitude above the ground-layer. 

3.3 NGS AO Systems 

NGS A O systems use l ight f rom a bright star (normal ly brighter than 15̂ *̂  magniณde 

[4]) to determine the wavefront distortions caused by the atmosphere. N G S A O 

systems are in common use at many observatories around the wor ld , and a fu l l study 

o f each one is not required to illustrate all the design options/trade-offs that can be 

made. There is no 'perfect' A O system design, although al l A O systems are designed 

to optimise science performance for a particular telescope and often, a particular 

instrument. The optimisation o f science performance is less o f an issue for a technical 

demonstrator system, where optical throughput to science cameras is not o f pr imary 

concern. 

3.3.1 PUEO 

PUEO was installed on the 3.6m Canada-France-Hawaii Telescope (CFHT) in 1996. 

PUEO consists of a 19"Subaperture curvature sensor coupled to a 19-element bimorph 

D M , A iUll description o f the design and performance o f PUEO is given in Chapter 9 

o f Roddier 'ร book. Adaptive Optics in Astronomy [5 ] , and is not required here, 
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although several results are presented f rom the above reference source. The design o f 

PUEO is shown below. 
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Figure 3.3 P U E O A O system schematic. Taken f r o m 'Adaptive Optics in Astronomy' [5 ] 

The performance o f PUEO is obviously l imi ted to a relatively small f ie ld o f v iew, 

employing only a single D M conjugated to the ground layer, as is shown by off-axis 

measurements o f PUEO performance. The correction is also o f a very low-order due 

to the l imi ted number o f D M elements and 19-element WFS. Large degrees o f 

correction are restricted to longer wavelength observations only. 
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The PUEO design is 'transparent' to telescope operations in that the insertion o f the 

two central fo ld ing mirrors into the beam path (see Figure 3.3) does not affect the 

f/ratio or focal length o f the telescope. This al lows the A O system to be used w i th any 

telescope instrument or removed to maximise throughput i f high-angular resolution 

observations are not required. 

The ini t ial design o f PUEO used a 52-actuator piezo-stack D M , but this mirror 

required a secondary SH-WFS and reference source to ini t ia l ly flatten the mirror, 

therefore this design was rejected due to the added expense. A SH-WFS being 

required to calibrate the deformable mirror such that it could be used closed-loop w i th 

a curvature based WFS demonstrates the necessity o f matching D M and WFS 

geometries for opt imum A O performance. 

3.3.2 ALTA IR 

Al ta i r is the Gemin i Nor th A O system and consists o f a 177 actuator D M wi th 208 

subaperture WFS. L ike PUEO, it is transparent to telescope operations, having an f/16 

input and output beam, so can provide an A O corrected f ield to any current Gemini 

instrument. 

The design o f A l ta i r was based around the idea o f conjugating the D M to an altitude 

other than the ground layer. Characterisation o f the atmospheric turbulence above 

Mauna Kea had been іпЇЄфгеЇес1 as showing that the strongest layer o f turbulence was 

found at an altitude approximately 6.5km above the telescope. By optical ly 

conjugating the D M to this layer, the off-axis performance would theoretically be 

improved [6 ] . Signif icant t ime and effort was invested in opt imising the control 

system to cope w i th the non-pupi l conjugation o f the D M however, the evenณal of f -
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axis performance o f A l ta i r d id not reach the level simulations predicted. Further site 

characterisation suggests that whi le strong turbulent layers existed at high altitude, 

turbulence at the ground layer was st i l l significant. The apparent mis-conjugation 

demonstrates the importance o f accurate site characterisation when designing an A O 

system that corrects for large fields o f v iew. 

For an M C A O system, the altitudes at wh ich D M s should be conjugated can only be 

determined by site characterisation [7 ] . For an A O system w i th single D M , whi lst 

conjugating the D M to an average height o f turbulence w i l l improve performance 

(e.g. two equal strength layers exist at the ground layer and 2km above ground; the 

average height to conjugate the D M to wou ld be around 1km) the hour-to-hour 

variation o f the altitude o f turbulent layers that al l site characterisation campaigns 

have shown [8,30] mean an A O system w i l l , in general, perform better i f the D M is 

conjugated to the ground layer. Obviously for a G L A O system, the D M should always 

be conjugated to (or as near as possible to) the telescope pupi l . 

Another important point to note in the design o f A l ta i r is that the D M does not util ise 

al l the D M actuators present, increasing the wavelength at wh ich di f f ract ion- l imi ted 

correction can occur. The f irst reason for this is to optimise sky-coverage, as larger 

WFS subapertures increase l ight col lect ing area, therefore a l lowing fainter guide stars 

to be used. Secondly, as the D M is not conjugated to the telescope pupi l , the WFS and 

science beam footprints do not completely coincide. This means that the correction 

has to be extrapolated for some acmators, resulting in a highly complex control 

system, wh ich w i l l introduce further latencies and system errors, although these w i l l 

have been accounted for in the error budget. 
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3.3.3 NAOMI 

Due to the involvement o f Durham University in the development o f the N A O M I 

(Natural guide-star Adapt ive Optics system for М и І Ї і - р и ф 0 8 е Instrumentation) real­

t ime control system, both the hardware and software in use in the N A O M I control 

system is similar to that used for the Durham experimental G L A O system. Coupled 

w i th the fact that N A O M I is also deployed on the Wi l l i am Herschel Telescope 

( W H T ) , and therefore subject to the same optical constraints and atmospheric 

conditions that the G L A O system w i l l encounter, a close study o f N A O M I is essential 

before an A O system is designed for the W H T . 

N A O M I is installed at one o f the Nasmyth foci on the 4.2m W H T on La Palma in the 

Canary Islands. The system uses a 76-element segmented mirror, arranged in a 10x10 

matrix, w i th each segment having filli t ip/ t i l t and piston control. A SH-WFS is used to 

determine the wavefront slopes across each mirror segment. 17 parallel C40 DSP's 

control the system. To improve sky-coverage, the current configuration uti l ised 8x8 

segments o f the D M . 

Segmented DM 

NGSFSM 

(0AP1) IR Beamsplitter 

From ᄂ 
Telescope 

Corrected IR 
Beam Path 

Folding 
Flat 

0 A P 2 

ADC 

Figure 3.4 Op t i ca l layou t o f N A O M I 

The optical layout o f N A O M I (Figure 3.4) di f fers from the generic A O layout in 

several important ways. The first o f these is that the col l imat ing O A P also acts as the 
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F S M . This injects a small optical aberration into the system that is observed by the 

NGS WFS, and can therefore be corrected when running closed-loop, but this reduces 

D M stroke. 

The second important point to note about N A O M I is that it uses a segmented D M to 

achieve high-order wavefront correction. Each segment on the D M is aligned to a 

single WFS subaperture. This al lows the D M to achieve a closer f i t to a given 

turbulent wavefront as edges o f segments need not necessarily be aligned. The 

improvement in D M performance for a given number o f WFS subapertures that a 

segmented mirror al lows over a 'convent ional ' continuous phase sheet D M (e.g. 

S ILAS, Xinet ics, OKOTech) is balanced by the added complexi ty o f having three 

actuators per segment. Un l ike continuous phase sheet D M s , mirror segmentation can 

also a l low piston errors to occur between adjacent segments wi thout registering on the 

WFS. A secondary strain-gauge sensing control loop is employed to detect and correct 

actuator hysteresis and solve the piston problem. 

The control system for the opt imal D M - W F S geometry that D M segmentation al lows 

is greatly s impl i f ied and scales we l l to larger aperture telescopes as the conventional 

actuator-subaperture interaction matr ix does not have to be determined and then 

inverted to find a system control matr ix. This al lows the wavefront to be reconstructed 

f rom the WFS image using a technique called Successive Over-Relaxation (SOR) 

although at present an interaction matr ix is used for wavefront reconstruction. SOR is 

computationally less intensive that the conventional method o f wavefront 

reconstruction, and scales we l l to high-order A O systems w i th many control channels. 

A l though the segmented D M is also inf in i te ly scalable, the costs are prohibi t ive for a 

large aperture telescope. M E M S (Micro-Electro-Mechanical Systems) [10] devices 
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can give a similar D M response to a segmented mirror wi thout the high cost and 

complexi ty. 

Another effect o f segmentation is on the output PSF. The small gaps in between 

segments effect ively create a di f f ract ion grating resulting in the di f f ract ion pattern 

shown below. The percentage o f energy in the extended di f f ract ion pattern is small 

compared to the energy in the central core o f the PSF, but can cause problems, 

part icularly i f faint objects are being observed near to a bright guide star. 

Figure 3.5 NAOMI theoretical diffraction-limited PSF showing diffraction pattern caused 
by DM segmentation. Intensity has been scaled to enhance diffracted orders. 

3.4 LGS AO Systems 

Most current LGS-enabled A O systems util ise the photon return generated by excit ing 

atoms in the sodium layer at 901aท. A LGS created at this altitude samples a greater 

volume o f the atmosphere between the LGS and the telescope aperture, a l lowing for 
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better correction. Because o f this, Rayleigh guide stars have not been used for 

wavefront reference sources since the 1980ร. It is only recently that cheap h igh-

power, high-qual i ty lasers have become available, and it is only w i th this avai labi l i ty 

that there has been a resurgence o f interest in Rayleigh LGS'ร. 

Two Rayleigh LGS-enabled A O systems are studied here. As w i l l be seen, the 

presence o f a LGS not only extends the operational l im i t o f these systems, but also 

introduces a whole set o f technologies and technical challenges that an N G S A O 

system need not consider. 

3.4.1 UnlSIS 

บทISIS is unique in the f ield o f astronomical A O in that it is the only A O system that 

employs a Rayleigh LGS as a closed-loop wavefront reference source. บทISIS is 

employed on the 2.5m M t . Wi lson telescope and uses a 177-acณator Xinetics D M and 

13x13 WFS. A n excimer laser, outputt ing 351nm l ight at a pulse rate o f ЗЗЗН2 is used 

to create the LGS. W i th a 90mJ output per pulse this gives the laser an output power 

o f 3 0 พ . A sub-arcsecond LGS is created at a f ixed distance 18km away f rom the 

telescope w i th a range gate depth o f 2.2km. 

The บทISIS system uses a shared-launch technique to create the LGS. A shared 

launch refers to the use o f the telescope primary mirror to both launch the outgoing 

and observe the return beam f rom the LGS. Using a secondary launch telescope was 

not an opt ion due to the large beam divergence output by the excimer laser. The 

output divergence o f the laser is approximately ЗООцгасІ, wh ich corresponds to an 

LGS spot size o f 238" - far too large to use as a conventional LGS. The diameter o f 

the launch optic must therefore be large in order to reduce the beam divergence. By 
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expanding the 24mm output beam to f i l l the 2.5m diameter pr imary mirror, the beam 

divergence can be reduced by a factor o f 100 and an LGS w i th a spot size o f 0.62" on-

sky can be created. 

Wi th a shared launch, the al ignment between LGS and telescope should be retained 

over all zenith angles although slight misalignments can easily occur and require 

slow-loop beam steering that can update at a rate similar to the telescope tracking rate. 

The effect o f launch j i t ter due to telescope vibrations is common to both paths and 

therefore not observed. The shared launch also means that the LGS is t i l t reciprocal, 

reducing differential upl ink/return path j i t ter. The reduction in apparent LGS mot ion 

means that no high-speed t ip- t i l t correction is required in the LGS return beam path 

and the WFS pattern is stable on the WFS CCD. 

There are several problems w i th the technique used to generate the บทISIS LGS that 

any shared launch system must address. The first o f these is the fluorescence o f any 

optical components in the shared path. In the case o f Un lSIS, this includes the coudé 

beam path relay mirrors and the pr imary and secondary mirrors. Dust on each o f these 

surfaces w i l l absorb the high-intensity laser l ight and fluoresce. Structures in the beam 

path such as the secondary mirror spider can also absorb laser l ight. Fluorescence o f 

shared components by def in i t ion occurs at longer wavelengths that the uv photons 

output by the laser, and dust (pr imar i ly sil ica compounds) fluoresce mainly in the IR 

region o f the spectnim. Fluoresced l ight can contaminate science images, although 

suitable fi l ters can reduce this effect. 

A n eff ic ient method o f mul t ip lex ing the launch and return beams is essential to the 

operation o f the shared launch system. Mul t ip lex ing w i th in บทISIS is performed by a 

transparent spinning disk w i t h small reflective spots that rotates in synchronisation 

w i th the output laser pulses. The synchronisation between laser and disk ensures that 
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when a pulse f rom the laser reaches the spinning disk, a reflective spot directs the 

pulse into the main coudé beam path and hence to sky. When the pulsed l ight is 

backscattered f rom the LGS focal alt itude, the spot has rotated out o f the coudé beam 

path and the return pulse passes through the transparent disk. This al lows the return 

photons to pass into the A O system where they can be detected by the WFS. The 

presence o f the spots in the return beam path reduces throughput to the science 

camera by approximately 5%. 

บทISIS is a very high order system for a 2.5m telescope w i th 0.19m subapertures, 

wh ich should theoretically provide di f f ract ion l imi ted correction in the I-band 

(~850nm). However, due to the effects o f focal anisoplanatism this w i l l not be 

achieved. A t 355nm, each subaperture can create a di f f ract ion- l imi ted LGS spot w i th 

F W H M 0.03" - far smaller than the LGS diameter. The WFS operates in quad-cell 

mode, w i th the l ight f rom each WFS subaperture being divided between 4 pixels. For 

small centroid offsets, a quad-cell w i l l provide an accurate a determination o f centroid 

posit ion. However, for large centroid offsets, detector arrays w i th greater number o f 

pixels provide a more linear response as the WFS subaperture image w i l l not be 

concentrated w i th in a single quadrant, but rather over several pixels. A quad-cell w i l l 

provide better performance at low- l ight levels as the photons are distributed over the 

m in imum number o f pixels, resulting in increased SNR. A n 8x8 pixel array behind 

each subaperture is normal ly used [11] as this achieves a good balance between linear 

response to centroid offsets and WFS SNR. 
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3.4.2 starfire Optical Range Generation I and I I Systems 

The first LGS A O systems were bui l t by the United States A i r Force at the Starfire 

Optical Range (SOR) [14] . Their first generation (Gen I) system used a 1.5m aperture 

telescope to observe and then a 149-actuator continuous phase sheet mirror to correct 

the return from a Rayleigh LGS formed by focussing the output o f a 7 5 พ copper 

vapour laser at an altitude o f lOkm. The LGS range gate depth was 2.4km. Copper 

vapour lasers emit at S l l n r n (green-blue) and 578nm (orange). The beam quali ty o f 

the copper-vapour laser meant that l ike บทISIS, a shared launch must be used to 

geometrically reduce the beam divergence. The system suffered from the problems o f 

fluoresced and scattered l ight f rom the launch pulse. Launch return mul t ip lex ing was 

carried out using a polarising beamsplitter cube. A l though successful, this early 

attempt at mul t ip lex ing highl ighted the problems o f shared optic fluorescence which 

was overcome by the spinning mult iplexer used in บทISIS. 

The Gen I system used an intensified 64x64 pixel Reticon array in a Shack-Hartmann 

configuration for WFSing. Range-gating the Rayleigh plume was achieved by turning 

the intensifiers on and o f f at the required times to created the 2.4km LGS at a distance 

o f 10km. Reticon arrays are not normal ly used due to their l ow QE o f 0.1 compared to 

a C C D QE o f 0.85 around the wavelength 500-550nm, but the Gen I system was 

constructed before C C D technology had matured to the point where it could be used 

as a WFS. 

The use o f image intensifiers to range gate the signal can introduce errors into the 

wavefront measurement. A t the t ime o f the Gen I system, image intensifiers had a low 

QE, even current intensifiers have at best, a QE o f 0.7. A n image intensifier 

introduces noise into the WFS signal due to decay l i fet ime o f the intensified image on 
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the phosphor screen. Polarisation dependent range gates and electronically shuttered 

systems have replaced the use o f intensified CCDs in LGS A O . The Reticon array was 

replaced w i th a C C D array in the second generation (Gen I I ) system that increased the 

return optics throughput from 0.075 to 0.25. 

The Gen П system upgraded several components including the D M , WFS and laser. 

The copper vapour laser was upgraded f rom 7 5 พ to 2 0 0 พ , although the range gate 

depth and distance to LGS remained the same. The number o f subapertures was 

increased f rom 124 to 208, requir ing a reduction in subaperture size f rom 10.8cm to 

9.2cm on each side. The photon flux that was detected f rom the Gen I LGS was 50-80 

photons/subaperture for every six pulses o f the laser. The Gen п system measured a 

photon flux o f 190 photons/subaperture for every f ive pulses o f the laser. As the 

photon return f rom a Rayleigh LGS is h ighly dependent on altitude, these numbers 

cannot be compared to one another unless the zenith angles at wh ich each 

measurement was made are known. 

Both Gen I and I I systems made use o f pre-launch correction o f the LGS beam. Pre-

launch correction al lows the spot size o f the LGS to be minimised on-sky by 

reflecting the laser o f f the D M and F S M before it has been launched. This causes 

shared path fluorescence f rom a far greater number o f components, but w i l l increase 

WFS SNR. Use o f this technique was essential due to the poor seeing conditions that 

are often observed at the SOR. 2.5-3" seeing is quoted, whereas values greater than 

1.5" w i l l rarely be observed at a good astronomical site. 

The performance o f the Gen I I system signif icantly exceeded the best performance o f 

the Gen I system on the f irst night o f operation. That this was achieved on the first 

night o f L G S observations ably demonstrates the importance o f experience when 

work ing w i th LGS A O systems. 
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The measured Strehi ratio o f the Gen I I system using the LGS was 0.321±0Ю at 

880nm. This was w i th in the predicted performance range o f the LGS system, although 

correction using the NGS was worse than predicted. Whether this was due to changes 

in the atmosphere or inaccuracy w i th in the model cannot be determined f rom the 

provided data. 

3.5 Solar AO 

Solar A O operates using the same principles as night-t ime A O , except it can use the 

surface o f the sun as a wavefront reference. Many o f the technical challenges 

associated w i th night-t ime A O , such as WFS SNR and sky coverage are removed. The 

large number o f photons al lows rapid development o f advanced A O concepts. Indeed, 

whi le the first experimental night-t ime M C A O system is progressing towards being 

commissioned, M C A O systems have already been implemented at solar observatories 

[16] . 

Using the รนท as a wavefront reference is not as simple as using a sub-arcsecond point 

o f l ight observed w i th an N G S or LGS. To f ind a wavefront reference point on the 

รนท, solar A O observers use dark sunspots or filaments that appear on the surface o f 

the รนท and track their mot ion. This is achieved by reimaging the dark spot using a 

lenslet array and cross-correlating the subaperture image w i th al l other subaperture 

images. The output o f the cross-correlation resembles a standard SH-WFS spot 

pattern. This spot pattern can then be used to control a D M in an identical manner to a 

night-t ime A O system. The intensity variation between the bright photosphere o f the 

รนท and the dark fi laments is o f the order o f 13%. To accurately perform a cross-

correlation, between 8x8 and 32x32 pixels per subapeiture are used. As the WFS 

photon flux is so high, this large number o f pixels does not reduce WFS SNR. 
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The other great advantage o f the large photon flux is the high SNR in the WFS. This 

al lows both the higher resolution subaperture images and very fast frames rates. The 

science detector can also take exposures at the same frame rate as the WFS wi thout 

concern about the penalty o f increased read-noise when the images are co-added. 

Each science frame can therefore be associated w i th a residual wavefront and a 

correction can be applied, based on the stored wavefront during post-processing. 

Phase-diverse speckle imaging also wo rk we l l to correct the residual aberrations 

present after A O correction and can be used to increase f ie ld o f v iew [17] . 

3.6 Conclusions 

The design o f several commissioned A O systems ut i l is ing both LGS and NGS as 

wavefront references have been studied and compared to a generic A O system design. 

Several aspects o f each design have been highl ighted as novel, or areas where caution 

must be taken when designing an A O system. These points are summarised in Table 

3.1. 

Sy_รtern Type Telescope Reasons fo r s tu i udy 
Curvaฬre W F S — Ä bimorph mirror - demonstrates importance ๙.matching DMMÍFS geometry 
Example qf a transparenť AG system abte to feed any telescope instrumerrt 
DM conjugated to non-zero altitude for wide field imaging 
Demonstrates trade-off between increased correction and sky covergae 一 一 — 

Installed on. theWHT — ՜ ― ՜ ~ ~ ՝ ~ ՜ 
Simpjifiod contro! system allowed by theiUse of a segmentediDM (application to MEMS devices) 
Effect of DM segmentation on PSF 

PUEO 

Altair — ՜ 

ÑAOMI 

Unisīริ —-

Štari īre(Gen I) 

NGS 

NÖS 

CFKT 

Gemmi N 

NGS WHT 

starfire (Gen II) 

Solar AO 

LGS 

LÖS 

LGS 

'รนก 

Mount Wilson 

starfire — 

šlarfirē 

Var io i^ ' 

Uses a Rayleigh LGS 

Full-aperture shared launch system required for generating LGS 

High-order correction allowed (֊20cm diameter subapertures) fram LGS 
Subaperture offsets provided by a quad-cell of CCD pixels - non-linear response to offsets 
First LGS AO System ՜ 
LGSiprojected toa towa№tude (10km) 

[Very-high order system, not diffraction limited due to focal anisop!anatism 

Demonstrates an alternative method of range sating a Rayleigh plume 

Upgraded Gen I system with higher-order correction 

Errors in modelling AO system performance · careful definition of problem required 

Demonstrates Itmits 0Ī current technoloqy when a brípht reference is available 

Table 3.1 Table of examined systems, giving type of wavefront reference, telescope (c 

observatory) the system is installed and reasons for study. 
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Whi le not al l aspects o f the studied designs are directly applicable to the G L A O 

system demonstrator (e.g. use o f a segmented D M , or a curvature-based WFS), 

several conclusions can be drawn that w i l l influence the design o f the A O system: 

• Most astronomical A O systems are designed around the same basic 

concept described in section 3.2， wi th differences brought about due to 

different types o f WFSX, D M and wavefront reference. The generic A O 

system design is therefore an adequate start point for the conceptual 

design. 

• The D M and WFS geometries must be matched for opt imum performance. 

For the G L A O system, this means careful alignment o f the D M to the SH-

WFS. A n alignment procedure w i l l have to be implemented. 

• A transparent A O system allows current telescope instruments to benefit 

f rom an AO-corrected feed. The A O system output should mimic the 

W H T Nasmyth focus to take advantage o f commissioned W H T 

instruments, i f required. 

• The D M must be conjugated to the telescope pupi l i.e. the ground layer. 

• Focal ansioplanatism w i l l be the l imi t ing performance factor when using a 

low-alt i tude LGS. 

• Shared-launch LGS WFSing is possible, although scattered/fluoresced 

l ight f rom common path optics can saturate the WFS 

• The number o f pixels to use per subaperture must be defined, along w i th 

the subaperture FOV. 
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• More advanced A O concepts, such as M C A O , and therefore by def ini t ion 

G L A O , are possible using similar equipment. 

These conclusions w i l l be fed into the G L A O system design and analysis, presented in 

the fo l low ing chapters. 
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Chapter 4: Laser Launch System 

4.1 Introduction 

This chapter describes the overal l design o f the demonstrator LGS system on the 

W H T . The laser launch system (LLS) is one o f the two main components o f the 

G L A O system that this thesis describes. The L L S consists o f three main components; 

the laser itself, the beam relay system (BRS) for transporting l ight f rom the laser to 

the main launch optics, and the actual launch optics, which is normal ly referred to as a 

beam launch telescope ( B L T ) . The fo l low ing is a description o f the laser launch 

system and the factors affect ing the performance o f each subsystem. 

4.2 Laser 

The choice o f laser is one that determines many aspects o f the laser launch system, 

and the G L A O system as a whole. For the creation o f a Rayleigh LGS, the laser must 

satisfy a number o f criteria. First ly, the laser must output enough power at the correct 

wavelength for a suff icient ly bright LGS to be generated at a suitable altitude. 

Secondly, the laser must exhibi t a high beam quali ty and low beam divergence. 

Unless the beam quali ty requirements are met, the LGS spot created at the focal 

altitude wou ld not be t ight ly focused enough to a l low WFSing. Final ly, the laser must 

also be pulsed w i th a repetit ion rate that does not l imi t the altitude at wh ich the LGS 

can be created. Unless the laser l ight is pulsed at a suitable frequency, the altiณde at 

wh ich the LGS is to be created may not be able to be selected. The pulse length o f 

each laser pulse can also affect the performance o f the LGS. I f the pulse is too long, 

l ight may be lost in the system range gate, or i f the pulse length is too short, higher 
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peak powers are encountered in the system and al l o f these points are addressed in 

greater detail below. This is fo l lowed by a technical description o f the laser selected. 

4.3 Photon return from the LGS 

The first, and most important question to address is the altitude at wh ich the LGS can 

be created. This determines how much o f the atmosphere is sampled and sets l imits on 

the performance requirements o f the LLS， which then help define the performance o f 

the LGS-enabled A O system as a whole. The starting point for any Rayleigh LGS 

system is the L I D A R equation [ Լ 2 , 3 ] governing the photon return due to Rayleigh 

backscattering in the atmosphere. The L I D A R equation and photon return f rom a 

Rayleigh LGS are examined in greater detail in Chapter 5. 

ト! Q^T^sysQ^CD^H^^sliced 
- 4 . 1 

where Νγ is the number o f detected photons for a single pulse, 

Q is the output laser power in watts, 

σ is the molecular scattering cross-sectional area in m 2 , 

Tsys is the end-to-end system optical throughput, 

QEccD is the QE o f the WFS C C D at the LGS wavelength, 

PH is the atmospheric scattering particle density at a height HLGS, 

Dsiice is the scattering depth in the atmosphere, 

A is the diameter o f the collecting area o f the WFS subaperture being studied, 

քւ is the laser repetit ion rate. 
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The amount o f l ight that is backscattered f rom the plume via the process o f Rayleigh 

scattering is proport ional to λ—4. This appears to make the choice o f laser wavelength 

simple, w i th shorter wavelengths g iv ing a better photon return for the same output 

power. However, what must be kept in mind is that by using an LGS we are t ry ing to 

increase the signal on the WFS. So any study o f photon return must also take into 

account the eff ic iency o f al l the optical elements that are used to observe the LGS and 

direct l ight into the WFS. These display a dependency on wavelength that is a 

funct ion o f the material used to coat the optical surfaces. Whi ls t any optical system 

can be optimised for a particular wavelength o f l ight, achieving a broadband 

throughput optimisation f rom the uv to the N I R is complex and expensive. 

The repetit ion rate o f the laser pulses determines the max imum altitude at wh ich an 

LGS can be created. A range gate shutter is synchronised to the laser pulses such that 

the altitude o f the LGS is selected by opening the shutter after the l ight has travelled a 

distance twice that o f the desired focal height o f the LGS. I f the laser pulses too 

rapidly, the shutter w i l l open at the correct moment to a l low l ight returning f rom the 

LGS alt i tude, but w i l l also transmit l ight f rom the subsequent pulse. As the 

subsequent pulse is by def ini t ion at a lower altitude than the LGS, the result ing photon 

return f rom the lower altitude pulse is greater than that f rom the LGS. Preceding 

pulses at a higher altitude cannot be observed as the photon return is negligible. 

A l though this effect can be reduced by introducing optical elements into the beam that 

cause l ight entering the system f rom the incorrect focal altitude to be vignetted, 

overlapping o f the laser pulses in this manner is obviously a situation that should be 

avoided. 

The lower l im i t on the pulse rate is set by the coherence t ime o f the atmosphere. For 

opt imum sampling o f the turbulence, the WFS must run at a rate greater than the 
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Greenwood frequency (defined in Chapter 1). The min imum pulse rate o f the laser 

must therefore be greater than this frequency, otherwise there w i l l be insuff icient 

pulses to provide correct temporal sampling o f the atmosphere. L o w pulse rates also 

imply high peak intensities in each laser pulse for a given laser power. This introduces 

extra safety considerations and costs to the system. 

The final aspect o f the pulsed laser system is the length o f the laser pulse. The 

min imum range gate depth is defined by the pulse length. I f the range gate shutter 

opens for a t ime less than the laser pulse length a port ion o f the return pulse is blocked 

by the range gate, and the signal detected by the WFS is reduced. The pulse length o f 

the laser must therefore be short enough so that the desired range gate depth can be 

achieved wi thout loss o f l ight to the WFS. The pulse must not be so long as to require 

an increase in range gate depth, resulting in an increase in apparent LGS spot size, but 

long enough so that the peak intensity in the pulse does not require the use o f custom 

high-power optics. 

Wi th al l these issues in mind, a model describing the photon return f rom the LGS was 

made. Atmospheric optical transmission for LGS at dif ferent altitudes was determined 

by extrapolation from data measuring the V-band atmospheric extinction at the W H T . 

[5 ] . Figure 4.1 gives the resulting wavelength dependency o f the LGS photon return. 

This model includes the transmission o f al l components in the system, using data on 

the throughput o f the W H T and wavelength dependency o f transmission for the 

G L A O system design as detailed in Chapter 6. 
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and an E E V 3 9 W F S C C D . A tmospher i c t ransmiss ion is inc luded and assumes 
that the L G S al t i tude is above 2 0 k m . 

The wavelength dependency of the photon return shows the optimum wavelength for 

a Rayleigh LGS is limited by the optical transmission of the atmosphere and the 

reflectance curves of the return optics, rather than the wavelength dependence of the 

Rayleigh backscatter. Although the number of photons which are Rayleigh 

backscattered is greater at shorter wavelengths, the optical transmission of the 

atmosphere is also reduced via the same process. Below a wavelength of 400nm, the 

poor intrinsic uv reflectance of the silver-coated optics effectively cancels the 

advantages of using a short wavelength laser. This effect can be reduced by coating 

the main optics of the telescope with aluminium, but this then reduces the visible and 

IR throughputs of the telescope. A reduction in system efficiency at the main 

observational wavelengths of the telescope in this way, purely for optimisation of the 
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LGS photon return was not an option for this demonstrator system, and effectively 

precluded the use of a uv laser for the LGS. 

The probability of multiple scattering is also increased for shorter wavelengths, and 

photons with an arbitrary polarisation state may be observed. However, multiple 

scattering events are rare as the cross section of Rayleigh scattering is very small [6] 

i.e. 5 . 4 5 x i 0 " ^ ^ m - 5 r " ' a t 550nm. 

The laser that had been purchased for the generation of the LGS was a frequency-

doubled Nd:YLF laser, which outputs a nominal 5 พ of 523ททา light at a 7kHz 

repetition rate. The 7kHz repetition rate limits the maximum altitude for LGS to 

21.43km otherwise consecutive pulses start to overlap on the sky. This range can be 

slightly increased by the use of low altitude baffling of the return beam and also by 

taking advantage of the vignetting of the WHT from low altitude photon return when 

the laser is launched from behind the WHT secondary mirror. Before determining the 

maximum altitude at which the LGS can be created the WFS geometry and optical 

design must first be examined. This is because increasing the range gate depth is a 

very simple way to increase the return number of photons (doubling the range gate 

effectively doubles the photon return from the LGS). However, a larger range gate 

also affects the spot geometry on the WFS in several ways. The lenslet array 

transforms the pupil of the primary telescope into an array of smaller telescopes. For a 

10 X 10 lenslet array on a 4.2m telescope, each lenslet effectively creates a 42cm 

telescope positioned at the primary mirror. The position of the lenslet in the pupil 

plane means that lenslets always view the LGS off-axis, with the off-axis angle 

increasing with increasing lenslet distance from the centre of the primary m i r r o r . The 

off-axis angle transforms the z-extension of the LGS spots into an օքքտշլօո the plane 

o f the WFS CCD, This causes the LGS spots to appear elongated, spreading the LGS 
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light over more pixels. Furthermore, the WFS CCD can only be conjugated to a single 

altitude so the extremities of the LGS appear defocused on the WFS. The degree with 

which increasing the gate depth degrades the performance of a WFS depends on the 

lenslet geometry, lenslet focal length, the plate scale at the WFS CCD and WFS pixel 

size. 

The WFS optical design is detailed in chapter 6 of this thesis, while a study of the 

maximum permissible spot elongation is included in Chapter 5. Using the LIDAR 

equation (equation 4.1), the required range gate depth to detect a given number of 

photons within a WFS subaperture can be determined for each altitude. Any range 

gate depth can then be expressed as a spot elongation when viewed from a point on 

the WHT pupil. The maximum spot elongation is observed at a subaperture positioned 

at the pupil edge. For a 10x10 Shack-Hartmann WFS on a 4.2m pupil, each 

subaperture has a 0.42m diameter. Square subapertures positioned around the edge of 

an annular aperture have a fill factor defined by the area of overlap between the 

telescope pupil and subapertures. I f only subapertures that are over 60% filled are 

included in the WFS pattern, the maximum off-axis pupil position is approximately 

2m. The maximum elongation within the WFS spot pattern is shown in Figure 4.2. 
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Figure 4.2 Observed spot e longat ion at a g i ven L G S distance for a subaperture pos i t ioned 

at the edge o f the 2 .1m radius W H T p r ima ry aperture. 

4.4 Launch Methods 

There are various methods for projecting the light from the laser onto the sky. The 

simplest, conceptually, is to share the laser launch and return optics by projecting the 

laser from the primary mirror of the telescope being used (in this case the 4.2m 

primary mirror of the WHT). This method does not require any separate launch optics 

and the laser can be quickly and easily aligned to the optical axis of the telescope at a 

Nasmyth focus. This method also allows the return system to be physically close to 

the laser pulse timing controller so no long cabling is required to link the laser to the 

range-gate system. 

However, the use of a shared laser launch introduces problems. With the high laser 

powers that are associated with the generation of a Rayleigh LGS, the amount of light 

that is scattered from all the surfaces in the launch path becomes much greater than 
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the photon return from the LGS itself. Off-axis or scattered light from the telescope 

mirrors and the vanes of the spider supporting the secondary mirror cell can defeat the 

range gate and enter the WFS. Figure 4.3 shows a composite Photomultiplier Tube 

(PMT) trace of the photon return from a Rayleigh LGS created using a shared 

launch[8]. The intensity of the scattered launch pulse is far greater than the light 

returning from the LGS itself. One final point to note about this trace is that the bright 

launch pulse does not vanish instantly, but decays over the course of ΙΟμร. Two 

broadband filters centred on 500nm and 630nm were used to determine the 

wavelength of the decay. These measurements showed the slow decay was far greater 

at the red end of the visible spectrum suggesting the decay was due to fluorescence 

from dust on the primary, secondary and Nasmyth mirrors. 

File Control getup 10:04 PM 
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r i g u r e 4 . 3 Compos i te trace o f P M T show ing the decay o f fluoresced l i gh t from opt ics 
shared by the launch and return paths. The peaks mark the b r igh t photon return 
f r o m t w o c loud layers at 2 .85km and 4 .74km from the telescope p u p i l . 

Suppression of light scattered and/or fluoresced as part of the launch pulse can be 

achieved through the use of a mechanical shutter that physically blocks the fluoresced 
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light observed within the first ΙΟμร after the initial launch pulse. This must be 

separate from the range gate, as the high speed range gate (normally a Pockelร cell 

placed between crossed polarisers) may not have an extinction ratio capable of 

blocking the large number of photons scattered from the inside of the dome and from 

any optical components shared between the launch and return paths. Having a 

separate shutter on the return path also blocks the scattered light from entering any 

detectors in the system used to observe non-laser wavelengths, such as NGS tip-tilt 

sensors or the science camera itself. 

I f a shared launch is ruled out, a separate Beam Launch Telescope (BLT) must be 

employed to project the laser onto the sky. Although the use of a separate BLT 

removes the problems of scattering and fluorescence, it introduces a number of 

separate difficulties that must be overcome. BLT'ร can essentially be subdivided into 

two groups: those siณated on the optical axis of the main telescope, and those situated 

off-axis. Each type of BLT has merits over the other such that, for single guide stars, 

the use of off-axis BLT 'S is biased towards sodium guide stars, and on-axis BLT'ร 

towards Rayleigh guide stars. 

Off-axis BLT'ร have been more widely used in past LGS enabled AO systems, mainly 

due to the complexity and size of the equipment required for laser generation. The 

creation of high power laser light tuned precisely to the sodium D2 line is especially 

difficult requiring complex dye or sum-frequency mixing systems. By housing the 

laser head in an off-axis location away from the main observing telescope, both space 

and operational constraints of these complex systems can be eased. Projecting the 

guide star from an off-axis location to a point in the field of view of the main 

observing telescope also has the effect of hiding most of the Rayleigh plume (Figure 

4.4). This can be advantageous for sodium LGS'ร, as the sodium LGS spot is spatially 
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separated from the unwanted return light from the Rayleigh plume, and therefore no 

complex baffling or range-gating is required for its removal. This aspect of an of f axis 

launch is less beneficial for Rayleigh LGS'ร where the ability to observe the plume 

a l o n g its e n t i r e l e n g t h i s o f t e n b e n e f i c i a l f o r t e s t i n g a n d a l i g n m e n t р и ф 0 8 Є 8 . 

Orvaxis LGS launch Off-axis LGS launch 

Narrow FOV LGS 
W F S can observe 
whole LGS plume 

LGS Focal Attitude 

Significant fraction of 
LGS plume lies outside 
narrow FOV of LGS W F S 

F igure 4.4 Shadow ing o f Ray le i gh p lume by o f f -ax i s B L T . W i t h an on-ax is launch, the 
L G S p lume ( s h o w n in green) t ravels w i t h i n the F O V o f the L G S W F S (shown 
in b lue) , therefore a l l o w i n g some l igh t from any a l t i tude in to the W F S . W i t h the 
o f f -ax i s launch , a s ign i f i cm i t f rac t ion o f the L G S p lume lies outside the F O V o f 
the W F S and cannot be observed. 

The main disadvantage of an off-axis guide star is spot elongation on the WFS. Unlike 

a star, LGSs have a physical depth on the sky. For a sodium LGS, this is the depth of 

the sodium column in the atmosphere, while for a Rayleigh LGS, it is set by the depth 

of the range gate. An on-axis guide star projects this range along the optical axis of 

the observing telescope, whilst an off-axis guide star projects the range across the 

pupil of the observing telescope. Using the Shack-Hartmann WFS as an example, the 
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elongated LGS spot is re-imaged onto the WFS CCD, and therefore each Shack-

Hartmann spot is also elongated. I f the degree of elongation causes the WFS spot to 

approach, or even overlap an adjacent spot, the accuracy with which the WFS can 

measure the wavefront is impaired. In principle, any enlargement or elongation of a 

subaperture spot may degrade the signal-to-noise ratio of the wavefront measurement. 

By using an on-axis guide star, spot elongation is reduced because the projected depth 

of the LGS now lies along the optical axis of the observing telescope. I f the BLT were 

positioned at the edge of the mirror (as is the case with the Keck observatory BLT), 

then not only would the maximum off-axis distance double, but the maximum spot 

elongation would also double accordingly. 

The creation of an on-axis LGS requires the BLT to be positioned behind the 

secondary mirror of the primary telescope. This constraint means a method for getting 

laser light to this pomt must be found. One method is to situate the laser behind the 

secondary mirror, giving a very short, and therefore stable, light path into the BLT. 

This method is complicated by the resultant need to provide services (power, coolant, 

controllers, etc.) to a point behind the secondary mirror without compromising the 

clear aperture of the observing telescope. The laser head itself must also exhibit 

insensitivity to the variable gravity vector that is present at the secondary mirror. I f 

the laser head is mounted behind the secondary mirror, the space envelope must also 

be considered because the BLT and laser compete directly for the limited space that is 

available. Modern Rayleigh lasers are relatively compact, and placing the laser head 

in this limited space is not an overly complex issue. Sodium lasers are (currently) 

rather complex systems, and they require significantly more space than their Rayleigh 

соипЇефагІ8. The physical size of a sodium laser system often precludes positioning 

the laser head behind the secondary mirror. Where this is the case, a method of 
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relaying the beam from the point where the laser light is generated to the BLT must be 

found. 

4.5 Beam Relay System 

The рифозе of the Beam Relay System (BRS) is to transport the laser light from the 

point where it is generated to the BLT. A 'perfect' BRS does not adversely affect the 

laser beam in any way and provides a motion-stable input to the BLT with a high 

optical throughput. Both optical fibres and relay mirrors have been used in the past, 

although difficulties are encountered with both methods. 

Optical fibres are an attractive solution to the BRS problem as they only require 

alignment at the two fibre ends, and are insensitive to telescope orientation. 

Alternatively, using relay mirrors to steer the beam requires active compensation for 

telescope structural vibrations and orientation. However, it is not a simple task to 

transmit through optical fibres the high laser powers that are inherent to LGS 

generation. High power transmission within optical fibres is simpler within fibres that 

have large core diameters. I f the core is too small, non-linear optical effects can be 

stimulated within the waveguide, and this leads to a drop in throughput. Conversely, i f 

the core is too large, the output beam quality suffers because a greater number of 

transverse modes are guided. The basic requirement is that the fibre must have a core 

large enough to transmit the power without exhibiting any non-linear effects or beam 

quality degradation. The use of fibres in a Rayleigh LGS relay system is fiirther 

complicated by the fact that Rayleigh lasers must be pulsed, and that non-linear 

effects within optical fibres (such as Stimulated Brillouin Scattering, SBS) [9] depend 

on peak power. Rayleigh LGS require pulsed lasers, which greatly increases the 

power density at the coupling point to the fibre. New technologies, such as Photonic 
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Crystal Fibres (PCF), [10] may allow higher-power densities to be transmitted within 

fibres. 10พ of С W 2 laser at 532nm has been transmitted through PCF with a core 

diameter of 30 microns [11,12]. At this core diameter and wavelength a PCF exhibits 

single mode wave-guiding, whereas conventional step-index fibres do not exhibit 

single-mode operation with core diameters greater than approximately 5 microns. 

However, the dependency of non-linear effects that are present in optical fibres on 

peak input power have until now precluded their use as pulsed laser relay systems. 

Air-guiding hollow-core PCF'ร may allow pulsed laser light [13] to be relayed in the 

future, but the use of high-power reflective mirrors is currently the only realistic 

option to relay light to a в LT situated behind the secondary mirror of a telescope. 

The use of a reflective relay system has a completely separate range of problems that 

must be overcome i f a stable input to the BLT is to be provided. Fortunately, these 

problems are not due to physical limitations of the technology in use, such as the non­

linear effects that were encountered with the use of optical fibres, but instead are opto­

mechanical, and simple solutions exist for their compensation. The simplest place to 

situate the laser is at a gravity stable point on the telescope structure that rotates with 

the azimuthal axis of the telescope e.g. at a Nasmyth platform. This ensures that the 

BRS only observes motion in one dimension (telescope elevation), and greatly 

simplifies the opto-mechanical design. I f the laser is placed on the Nasmyth optical 

cw, or cont inuous wave lasers d i f f e r from pulsed lasers in that the photons are output f r o m the lasing 

m e d i u m con t inuous ly at a l o w rate. A pulsed laser bu i lds up the electron popu la t ion in the exc i ted state 

before releasing them in a short burst. Pulsed lasers therefore have m u c h h igher peak power than an 

equ iva lent power cw laser. Some cw lasers are actual ly ' q u a s i - C W \ in that they have a pulse 

repet i t ion rate o f several M H z , therefore appear ing to be cw lasers to most opt ica l detectors. 
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axis, then a simple mirror attached to the primary mirror support structure wi l l 

automatically direct the light to the top end of the telescope (Figure 4.5). The problem 

with this simple method is due to the Serrurier truss, which is used in most large 

telescopes to ensure that alignment is maintained between the primary and secondary 

mirrors over all elevation angles. Such a truss does not keep the telescope top-end, 

(where the BLT is mounted) stationary with respect to the primary mirror cube, where 

the rotating fold mirror that directs light from the Nasmyth optical axis towards the 

top-end is positioned. When the WHT is horizontal, the sag that is observed [14] 

between the top-end ring and the primary mirror cube is 2mm. There are two solutions 

for this. 

BLT Focus 
Lens 

Relay >շ? 
Mirror 2 ^ 

BLT Secondary 

G R A C E Nasmyth Platform GHRIL Nasmyth Platform 

Beam-shap ing 

AO System 

Relay 
Mirror 1 W H T Pr imary 

W H T Mirror 
Cube 

F igure 4.5 B R S schemat ic show ing pos i t ion o f laser and relay m i r ro rs in respect to 
telescope and A O system. Laser is housed in a temperature con t ro l led 
env i ronment in the G R A C E N a s m y t h p l a t f o r m . T h e Laser and Relay m i r r o r 1 
are a l igned to the N a s m y t h opt ica l ax is. Relay M i r r o r 1 rotates w i t h changes in 
the telescope a l t i tude ax is . T h e return l i gh t ( shown in b lue) enters the A O 
system housed ๒ the G H R I L N a s m y t h p l a t f o r m . 
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The first method is attractive, i f somewhat complex. By including active beam 

steering elements in the BRS, not only can the effects of telescope sag be removed, 

but also of any telescope vibrations, e.g., vibrations due to wind-shake. This method 

requires closed-loop tip-tilt correction of the beam at one or two points in the BRS 

structure, and also a reasonably complex diagnostics package to determine the beam 

position at the input to the BLT and provide a control signal to the steering mOTors. It 

is due to this complexity that the second, and simpler method, may be considered. 

This method involves limiting the operational angle over which the LGS would be 

used. Up to 30 degrees from zenith the WHT top-end sag is approximately 1mm. A 

sag this small, although it wi l l affect the apparent position of the LGS on the sky, can 

be compensated by increasing the off-axis tolerance of the BLT, over sizing any BRS 

optics, and also by aligning the BLT at a 70 degree elevation angle. Aligning the BRS 

at this angle gives the smallest range of sag between 60 and 80 degrees, while still 

giving reasonable sky coverage. This method is obviously not suitable for a facility-

class LGS, which would require a far greater operational range of elevation angles, 

and also provide greater pointing stability of the LGS on the sky. However, for a 

demonstration GLAO system, such as that described in this thesis, the trade-off 

between cost, complexity and operational range was deemed acceptable and the 

passive BRS was employed. 

4.6 Beam Quality 

The size and intensity profile of the LGS is highly dependent on the output beam 

quality of the laser. The BLT is essentially a magnification system that re-images a 

small input focal point to a large focal point a long distance away. Therefore the 
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minimum input spot size, as well as the BLT objective diameter, determines the 

angular diameter of the LGS on the sky. The requirements on laser beam quality are 

therefore extremely stringent. 

For a frequency-doubled Diode-Pumped Solid-State (DPSS) laser, the starting point 

for the processes determining the output beam quality of the laser is the generation of 

the IR beam to be doubled. The IR beam quality is sensitive to thermal effects inside 

the solid-state lasing crystal rod. Figure 6 shows a typical DPSS layout for the 

generation of an IR laser beam. The pump diodes either side of the crystal rod provide 

photons to create a population inversion in the lasing medium. The pump diodes are 

extremely powerful (up to 4 0 พ in each diode bar) and so heatsinks at the top and 

bottom of the rod are used to remove excess heat from the crystal. Unfortunately, the 

non-uniform temperature gradient across the crystal results in differential expansion. 

This causes thermal lensing, and affects output beam quality. 

Output 
Coupler 

Water-cooled 
Pump Diodes 

Gain Medium 
(Nd:YLF Rod) 

Q-switch 

Figure 4,6 QPeak DPSS Q-sw i tched cav i t y schemat ic. T w o p u m p diodes exc i te electrons 
w i t h i n the ga in m e d i u m . T h e laser cav i ty is f o rmed between the ou tpu t coupler 
and m i r ro r beh ind the Q-sw i t ch . M a x i m u m ga in is ach ieved by m a k i n g mu l t i p le 
passes th rough the N d : Y L F r o d . Outpu t λ is 1046nm 4 0 W @ 7 k H z pulse rate. 

T h e cav i ty has a TEMoo e l l i p t i ca l output . 

The transverse electric modal (ТЕМ) structure of a laser beam is generated inside the 

crystal rod also. Several mode structures are shown in Figure 4.7. The simple TEMoo 
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mode is generated when the optical cavity containing the rod only efficiently 

amplifies a single path through the crystal. I f the optical cavity allows further paths, 

the laser exhibits further modes. I f multiple paths are amplified through the crystal, 

the output beam no longer resembles the 2-dimensional gaussian of the TEMoo beam, 

but exhibits a complex modal structure. A laser beam focuses to the smallest spot size 

when in TEMoo mode. High power TEMoo DPSS lasers are jfrequently used as micro-

machining tools, whilst the yet higher power, multimode DPSS lasers are generally 

employed in industrial cutting/welding applications. 

TEMoo TtMci TEMio ТЕМท TEMoa 

Axitymm«trle ТЕМ modM 

THMoo TCMoi T E M M 

F igure 4.7 Lowes t order rectangular and ax i symmet r i c Transverse E lec t r ic Modes ( Т Е М ) . 

As can be seen in Figure 4.7， a perfect TEMoo output beam exhibits a Gaussian 

intensity profile in both dimensions. The M 2 value is the ratio of the laser beam's 

multimode diameter-divergence product to the ideal diffraction limited TEMoo beam 

diameter-divergence product. Thus for a TEMoo beam, the ΑΓ value is defined as 1. 

The minimum diameter to which a laser beam can be focused is determined not only 
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by the focusing optics but, as a first order approximation, is also proportional to the 

value of the beam. An analytical description of M 2 is defined in Chapter 5. 

Beam divergence describes how the diameter of the collimateci laser beam 

(irrespective of the intensity value defining the beam diameter) changes as the laser 

propagates. Diffraction causes light waves to spread transversely, so a perfectly 

collimateci laser beam can never be produced and wi l l always diverge slightly. 

However, unlike light beams examined using classical geometric optics, Gaussian 

beams do not diverge linearly. Close to the laser, the beam divergence is extremely 

small, but as the propagation distance increases, so does the beam divergence until it 

approaches an asymptotic limit. The beam radius along a focused laser beam is given 

in equation 4.2 

リ ( z ) = 0̂0 1 + 
λζ 

勸 Ì 
-4.2 

where ωο is the minimum beam waist, я IS the laser wavelength, and ζ is the distance 

from the focused beam waist. 

A focus term can be introduced into the wavefront to partially compensate for the 

observed asymptotic cone, optimising the beam diameter over a given range. Creating 

an LGS is an interesting problem, as a near-field diffraction pattern is created at what 

would normally be considered a far-field position i.e. 4km from the BLT objective, 

resulting in a very large diffraction limited spot at the focal point of the BLT. A ftill 

analysis of the propagation of a Gaussian laser beam through the atmosphere is 

presented in Chapter 5. 
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4.7 Beam Launch Telescope 

The function of the BLT is to re-image an input focal point (real or virtual) at a given 

distance from the BLT to create a suitable LGS. Many factors must be considered in 

the design of the BLT. The first point, and arguably the most important of all, is the 

primary objective diameter. Larger diameter objectives generate smaller focal spots 

on the sky, but are heavier and require a larger space envelope for mounting. A larger 

diameter launch apertures also means the focusing laser beam samples a greater 

volume of atmosphere along the path to the LGS altitude (referred to hereafter as the 

'uplink path' of the laser). I f the launch aperture is too large, the turbulence sampled 

on the uplink can induce distortions in the laser wavefront great enough to increase 

the focused LGS spot size. Smaller diameter launch optics are far lighter, so mounting 

them on the main telescope structure would not affect balance, and reduces overall 

BLT cost. 

The optimum BLT objective diameter is defined by the required LGS focal size in the 

sky, and the strength of the turbulence the propagating LGS beam wi l l encounter on 

the LGS uplink. The effect of altering atmospheric conditions on the observed LGS 

spot size created by differing launch apertures was determined analytically using an 

atmospheric LGS propagation model The results of this model are given in Chapter 5. 

One of the initial decisions that must be made in the design of a BLT is the choice of a 

reflective or refractive design. Each has advantages over the other. An on-axis 

refractive design, e.g. a Newtonian telescope, is attractive because retro-reflection can 

be used for initial optical alignment of the BLT to the BRS. On-axis projection of the 

LGS through a Newtonian, Cassegrain or similar telescope does remove the central, 

highest intensity part of the laser beam due to the requirement for a secondary mirror. 
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Therefore the output laser power is reduced. However, the di f f ract ion pattern f rom a 

truncated Gaussian beam w i th central obscuration does give a higher contrast ratio 

between peak intensity and intensity o f the first d i f f ract ion r ing o f the airy prof i le than 

that observed f rom an unobscured truncated Gaussian source. Projecting f rom an off-

axis reflective component removes the issues associated w i th the on-axis launch, but 

the cost and complexi ty o f designing large off-axis components is often prohibi t ive. 

The effect o f the central obscuration on the relative intensity o f the di f f ract ion pattern 

is shown in Figure 4.8. The relative intensity o f the f irst di f f ract ion r ing o f the airy 

pattern decreases w i th an increase in central obscuration diameter unt i l the beam is 

completely obscured. A l though a Gaussian intensity beam forms a Gaussian intensity 

image when focused, the output intensity prof i le must be truncated at some intensity 

level by the clear aperture o f the B L T . Truncation can cause di f f ract ion rings to be 

formed around the Gaussian intensity central core. Truncation o f the Gaussian prof i le 

is not desired in a B L T as i t reduces power on sky. A focussed Gaussian beam w i t h a 

central obscuration has a large fraction o f the l ight in the central peak, w i th a small 

fraction o f the remaining l ight distributed over a far greater area. The presence o f a 

diffuse airy pattern around the LG s wou ld have l i t t le effect on any measurement o f 

LGS spot size, as any signal from the first airy r ing wou ld be swamped by read noise 

present on the WFS. In practice, the airy r ing is rarely present around the LGS, as 

atmospheric turbulence on the upl ink means the LGS never reaches the di f f ract ion 

l imi t o f the B L T . Therefore, the diameter o f a central obscuration in a B L T should be 

minimised, or the obscuration avoided altogether, because it has no discernable effect 

on the angular diameter o f the LGS, and only serves to reduce LGS intensity. 
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Figure 4.8 Focal points from obscured versus unobscured Gaussian input beams. Gaussian 
beams have been truncated at their M é intensity points. Central obscuration 
diameter is 29% that of pupil diameter. The obscured pupil image formed by a 
uniformly illuminated intensity profile is included for comparison. 

Refractive designs have no central obscuration to contend w i th and as such are often 

preferred for launch optics because laser power is a crit ical factor ๒ the performance 

o f an LGS A O system. The large lens can also act as a w indow for the в LT , reducing 

the need for cleaning o f any internal components. 

A B L T must be designed w i th a method to a l low for the B L T to be aligned to the 

main telescope. This process is referred to as 'bore-sight ing' the B L T . Af te r bore-

sighting has been completed, the B L T points w i th the main telescope. Including a 

method for remote bore-sighting into a B L T design can be rather d i f f icu l t as al l 

optical elements in the B L T must rotate round a common point during adjustment to 

the main telescope, whi lst retaining internal alignment, as we l l as al ignment to the 

beam relay system. This requires reasonably complicated optical systems (which 

reduce overall eff iciency o f the B L T by including extra surfaces) and/or actively 

steered components (which require computer control systems, hence increasing cost 

and system complexi ty) . Wi thout any o f these methods included in the B L T design, 

changing the bore-sighting o f the B L T to the main telescope requires a realignment o f 
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the B L T to the BRS. This can be a t ime-consuming operation requir ing many 

alignment iterations before the B L T is near bore-sighted. 

When t ry ing to posit ion the LGS w i th sub-arcsecond accuracy, mechanical backlash 

can be observed. I f the optic being moved is large, very powerfu l motors must be used 

in combination w i th a mechanical ly-st i f f kinematic mount to counter backlash. 

Powerful motors require large currents for operation and generate large amounts o f 

heat, wh ich is not a desirable feature for a telescope observing at IR wavelengths. The 

effect o f backlash was reduced on-sky by adopting an alignment procedure whereby 

the LGS was steered from a point w i th large angular offset onto the W H T optical axis 

wi thout reversing the direct ion o f the B L T motors. This procedure was repeated i f the 

LGS overshot the on-axis f ie ld point o f the W H T . 

Bore-sighting can be simpl i f ied by bui ld ing off-axis tolerance into the B L T optics. 

Once the LGS points to a posit ion wi th in the tolerance o f the B L T launch optics, a 

steering mirror can be used to bore-sight the LGS beam w i th arcsecond accuracy and 

wi thout compromising the LGS spot size. This split bore-sighting method al lows the 

use o f a very s t i f f B L T structure thus reducing LGS mot ion due to B L T flexure and 

vibrat ion. This can also be accomplished w i th very small steering components that do 

not suffer f rom backlash. 

The focal altitude o f the LGS can easily be control led by a movable optical element in 

the B L T . For a sodium LGS, the focal alt iณde o f the B L T must change w i t h telescope 

elevation to ensure the B L T always focuses on the sodium layer at 901cm altitude. 

Focal altitude for a Rayleigh LGS can be set at a f ixed distance f rom the telescope, 

and as such can be a simple 'set and forget' system. The accuracy w i th which the focus 

must be set is dependent on both the required focal altitude and the B L T launch 

aperture diameter. For example, a 300mm B L T pr imary creates a 1" LGS at an 
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altitude 20km above the B L T . The L G s at this altitude has a physical beam waist o f 

approximately 100mm. However, a 1.5 arcsecond LGS can sti l l be used as a 

wavefront reference for most applications. Mode l l ing the beam purely geometrically 

and ignoring any beam divergence or near-field effects, the beam described above st i l l 

creates a 1.5" LGS between 13.5km and 38.5km altitude above the B L T launch 

aperture. This simple example demonstrates that there is a large degree o f focus 

insensitivity for an LGS launched f rom a small aperture B L T . Figure 4.9 shows the 

altitude range that gives a 1.5" LGS diameter for a given LGS altitude. 
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Figure 4.9 Altitude range for a 1.5" LGS modelling the LGS plume as a cone focused at 

the LGS focal altitude of 4km. To approximate diffraction effects when the 

cone diameter is less than the FWHM diffraction limit of the BLT (given by 

2AÆ)BLT), the LGS plume is replaced by a column of constant diameter that has 

an apparent diameter of 2АУОвьт. Telescope defocus is not included, but the 

perspective nmrowing of the beam is included. 

For the opt imum 4km range gate determined in Chapter 7, the 1.5" altitude range 

stretches between 3.65km and 4.43km. This implies that a coarse ini t ial focus need 
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only posit ion the LGS to w i th in a few hundred metres o f the required altitude before 

the WFS can be used to observe the LGS. A t this point, determination o f the LGS 

focal altitude can be accomplished using the fu l l range gate system and a precise 

minimisat ion o f the observed LGS diameter can be undertaken. Without the use o f the 

range gate system for final focal altitude adjustment, the Rayleigh plume 

contaminates the WFS image, and the LGS is imaged along w i th an unwanted photon 

return f rom any non-range-gated altitude, thus increasing the apparent spot size as is 

shown in Figure 4.10. 

Apparent diameter of LGS plume narrows 
at large distances due to perspective 

Ungated plume Range-gated plume 

Observed signal defined 
by defocused plume 

image diameter in plane 
of WFS CCD 

Intensity profile / \ 
in image plane ^ ^ ^ ^ լ ^ 

Figure 4.10 Diagram showing effect of viewing a non-gated Rayieigh plume versus range-
gating of the plume on image intensity and apparent diameter. The apparent 
diameter of the LGS is greater for a non-gated plume. 

A detailed model o f B L T performance and LGS interaction w i th the WFS is presented 

in Chapter 5. 
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4.8 Laser Launch System Description 

The laser was installed on the G R A C E (GRound-based Adapt ive optics Control led 

Environment) Nasmyth plat form o f the W H T in the space envelope that is reserved 

for instrumentation using the N A O M I optical science port (Figure 4.11). The G R A C E 

Nasmyth platform is a temperature and humidi ty control led environment. When the 

laser is running, the temperature is set to the maximum available value o f 19°c, as the 

laser power output has been observed to drop from the nominal 5 พ i f the ambient 

ЇетрегаШге falls below 23°c. A t 19°c, the max imum output laser power was 

measured using a Coherent L M - 1 0 H T D thermopile sensor as 4.50±0.09W. The laser 

was aligned to the Nasmyth optical axis o f the telescope by using a dielectric fo ld 

mirror. A t this point the laser passed into the opposite Nasmyth plat form where the 

G L A O system was situated. 

Rear ๙ 
NAOMDM 

Mirror aligned ю WHT 
cal »d s MInror ๗gned 

МАОМ WFS 

Diode Bare and 
laser cavity 

•r«quwicy<loui)lng 
ayitBl 

Figure 4.11 Laser sitting in space aHocated to the optica! science port of NAOMI 

The ini t ia l laser divergence was determined by placing a lens at the exit o f the laser 

head (Relay Lens 1). A pair o f cyl indr ical lenses placed at this point also al lowed for 

reformatt ing o f the beam from the normal el l ipt ical output to a circular intensity 

prof i le. Once the laser was aligned to the optical axis o f the W H T using the Nasmyth 
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targets ( two opaque concentric r ing targets that are accurately positioned on the W H T 

optical axis), a fo ld mirror (ք6ք6Մ6(1 to as 'Relay M i r ro r 1') was attached to the pr imary 

mirror cell o f the W H T such that i t rotated w i th a change in telescope elevation angle 

(Figure 4.12). Relay M i r ro r 1 was mounted on an optical rai l such that it could be 

moved to a l low the laser to be used as a calibration source in G H R I L . The l ight was 

directed by Relay M i r ro r 1 through two 25mm holes dr i l led in the mirror cube and 

into a l ightproof pipe w i th an internal diameter o f 50mm. This bore encompasses the 

l ight path to the top end o f the telescope (Figure 4.13). 

Ugttpfltfi 
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Figure 4.12 View along WHT optical axis in the GRACE Nasmyth platform to Relay mirror 
1 in mirror cell that directs the light towards the top end of the BLT. 
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Figure 4.13 Enclosed beam path from WHT mirror cube to the BLT. Relay Mirror 2 is 
supported using the yellow-coloured structure attached to the top-end ring. 

The l ight passed through two further holes ( in this case bored through the top-end r ing 

o f the W H T ) to a Relay mirror 2 posit ioned approximately 1.5m from the top-end r ing 

surface on a r ig id support structure (the yel low-coloured structure shown in Figure 

4.13). Vibrat ions in this support structure were reduced in amplitude by cross-bracing 

tension cables. Relay M i r ro r 2 was enclosed in a l ight-t ight neoprene box and directed 

l ight across the aperture o f the W H T through a second 50mm diameter pipe. The 

introduction o f this pipe reduced the l ight col lect ing area o f the W H T by 0.075m 2 , 

wh ich is an overal l reduction in clear aperture o f 0.6%. The effect o f this 5& vane on 

the image produced at the W H T focus is shown in Figure 4.14. 
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Figure 4.14 Theoretical spot pattern with (left) and without (right) 5'h vane. Total intensity 

drops by 0.6% if 5"" vane is included. Relative energy within the diffraction 

limited core increases with the inclusion of the 5* vane as energy is taken away 

from the diffi-action spikes. 

A f te r passing through the final l ight pipe the beam entered the coarse focus 

mechanism. This consisted o f a 100mm focal length 523nm AR-coated singlet lens 

(Relay Lens 2) o f 25mm diameter mounted on a micrometer-driven translation stage. 

The divergence o f the beam was adjusted by moving Relay Lens 1 such that the beam 

expanded inside the BRS f rom an ini t ial 2mm diameter to the 12mm diameter 

required to produce an ÍI6 beam upon exi t ing the Relay Lens 2. This f/ratio was 

required to f i l l the fu l l aperture o f the B L T . Relay M i r ro r 3 (diameter 25mm) was 

placed on the optical axis o f the B L T pr imary mirror. This mirror was glued to a 

miniature t ip/ t i l t stage using a two-part epoxy adhesive to a l low for easy alignment 

wi thout any undue vignett ing o f the outgoing LGS beam. The support structure for 

this mount was an a luminium bar that created a 2mm wide obscuration across the 

B L T pr imary aperture. The support al lowed Relay M i r ro r 3 to be centred above the 

B L T pr imary aperture, thus ensuring a good internal alignment o f the B L T . Total 

vignett ing o f the B L T beam caused by Relay M i r ro r 3 and the support structure was 

calculated as 1.49% o f the B L T primary aperture. In terms o f power on-sky 

transmitted by the B L T , the actual vignett ing factor is higher as the laser exhibits a 
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Gaussian intensity prof i le, whereas the above percentage would translate into a power 

on-sky only i f a un i form intensity prof i le were assumed. Taking the non-uni form 

intensity into account, and assuming the 1/e^ diameter o f the Gaussian intensity 

prof i le is 300mm, the actual transmitted power on-sky f rom the BRS input by the 

B L T becomes 4.06% 

The B L T primary was an on-axis parabolic mirror, 300mm in diameter and w i th a 

focal length o f 1833mm. This mirror was chosen as it al lows a reasonable LGS to be 

created (1.4" LGS F W H M at 4km), and had been inherited f rom a previous project. 

The mirror was mounted on three wo rm drives powered by geared stepper motors to 

give fine t ip/ t i l t and focus adjustment. Springs were used to balance the action o f the 

motors. The springs were in i t ia l ly too s t i f f to a l low the stepper motors to move freely 

and so were replaced w i th springs that provided enough resistance to a l low the mirror 

to move wi thout the motors sl ipping. However, the combination o f the weaker 

replacement springs coupled w i th the mechanical design o f the motor housings, wh ich 

al lowed the motors to twist sl ight ly, meant the mirror drives could exhibit backlash. 

This only became apparent when the LGS was projected onto the sky and the fine 

t ip/ t i l t adjustment was used. The degree o f backlash was o f the order o f 3 " and could 

not be observed wi thout the very sensitive posit ion adjustments that were visible w i th 

the LGS at 4.5km. Di f f icu l t ies in posit ioning the LGS w i th arcsecond accuracy 

required many attempts before a good boresighting was achieved. Solving this 

problem by increasing the stiffness o f the system required replacing the motors and 

springs, which was not a feasible opt ion w i th the t ime and budget available, but twist 

supports were added to the motors to reduce any backlash present in the system f rom 

this source. 
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Figure 4.15 Photograph showing internal BLT structure. 

The throughput o f the system at the exit o f the focus lens (i.e. the throughput o f the 

BRS), and the reflectance o f the B L T pr imary mir ror were measured. The BRS power 

output was 3 . 6 พ f rom an input o f 4 . 4 พ at 523nm. Relay M i r ro r 3 had a quoted 

reflectance o f 99.5%, and the reflectance o f the B L T pr imary was measured at 93%. 

Using 9 0 % o f the Gaussian intensity prof i le as the cut -o f f for the 300mm aperture, 

and w i th the B L T vignett ing factor described above, the overall throughput o f the 

laser launch system was 68%. As determined in Chapter 5， the opt imum alt iณde that 

the LGS should be generated at is 4km. This meant that the posit ion o f the input focal 

point to the B L T f rom the BRS must be 1833.84mm from the B L T pr imary. From the 

relative magnif icat ion o f the B L T input and output beams, to create a 1 " focused LGS 

spot on the sky, the beam diameter at this point must be 8.73μηι. The only beam 

prof i l ing camera that was available had a p ixel scale o f 17μηใ, whi le scanning the 

focused beam waist w i th a kni fe edge wou ld not have provided an accurate prof i le 
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due to the vibrations present in the telescope strucmre and dome. The input beam 

waist could not be measured using the equipment that was available for this project. 

The launch system design presented above was one that al lowed us to generate an on-

axis LGS from a centre launch using the equipment and resources available. A l though 

the design had several shortcomings ( l imi ted operating range, backlash, etc.), it 

overcame many o f the problems o f a shared launch system. I t also provided a safe and 

easy-to-align system that wou ld a l low us to test the LGS on the sky w i th in the project 

timescale. A description o f the B L T optical input/outputs and associated parameters is 

given in Table 4.1 below. 

Launch System LGS focus (4km) Units 

BLT Primary Diameter 300 mm 

Resolution 0.438 arcsec 

BLT input f-number 6.0027 

BLT output f-number 13333.33 

Magnification 2221.222 

1" LGS requires input spot of diameter 8.73 μทา 
Throughput (on-axis) 0.68 

Table 4.1 Optical inputs/outputs of BLT. 

4.9 Laser Safety 

The safety precautions that must be taken when using high-power lasers are we l l 

defined when being used w i th in a laboratory [7 ] , and these were fo l lowed at al l t imes 

when work ing w i th the laser, both in the laboratory and installed on the telescope. 

Creating the LGS required launching a focused high-power laser into the atmosphere, 

requir ing consideration o f several other safety aspects. 

The first o f these involves aircraft. Any aircraft passing through the beam w i l l be 

i l luminated by an output beam that has a min imum diameter o f approximately 1 " at a 

fixed distance o f 4.5km from the W H T . When the W H T is point ing at zenith, this 

equates to a 22mm diameter beam at an altitude o f 7km. I f an aircraft cruising at 
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900km/h at this altitude is i l luminated by a 5 พ laser w i th these parameters, the speed 

o f the aircraft ensures that approximately 30 consecutive laser pulses could enter the 

aircraft cockpit (assuming a I m length cockpit w indow) . This gives a 20mJ flash 

lasting for 0.004ร in the cockpit. The laser power becomes more hazardous i f an 

observer is looking directly down the beam, but w i th a ftilly dilated pupi l diameter o f 

7mm, at most, a single laser pulse could be observed and 1.4mJ w i l l enter the eye. 

This is above the defined М Р Е (max imum permissible exposure) level. There is a no-

fly zone in place above La Palma prohib i t ing aircraft f rom overnight flights w i th in 

approximately 20km o f the island and local air t raf f ic control is informed and gives 

permission for the laser to be used. These safeguards ensure no planes w i l l fly through 

the laser plume as long as the telescope does not track below 35"\ 

Similar problems exist for satellites in low-earth orbit at an altitude o f 〜300km above 

the surface o f the Earth. However, a laser beam projected f rom a 300mm aperture and 

focused at 4.5km w i l l be approximately 19.5m in diameter at an altitude o f 300km. A t 

this power density, the laser l ight does not pose a risk to the eye, although sensitive 

C C D cameras on satellites may become saturated. 

4.10 Laser Launch System Alignment 

Al ignment o f the L L S is a mult ip le stage process. The first stage, which has already 

been described, was alignment o f the laser to the optical axis o f the W H T . A t low 

powers (below lOOmW) this produced a very useftil on-axis l ight source at the correct 

wavelength for the A O system in the opposite G H R I L Nasmyth plat form, and by 

increasing the laser output power to 5 0 0 m w , scattering at al l the surfaces in the 

system made the beam footprint easily visible (Figure 4.16). This greatly s impl i f ied 
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the task o f A O system alignment. Care was taken when running the laser at higher 

power not to damage any optical components in the G L A O system. 

Figure 4.16 Beam footprint on NGS FSM demonstrating use of high-power laser to align 

large diameter colHmated beam path. 

Af ter the laser had been aligned to the W H T optical axis, the next stage was the BRS 

alignment. Relay M i r ro r 1， l ike the laser itself, must also be very accurately 

posit ioned to the optical axis o f the W H T , otherwise the beam point ing drif ted as the 

telescope changed elevation angle, rather than just exhibi t ing vert ical displacement 

due to the top-end sag. Af te r al ignment, Relay M i r ro r 2 directed l ight across the W H T 

aperture into the B L T . A f te r the two relay mirrors were aligned, adjustments to the 

B L T and Relay M i r ro r 2 had to be undertaken whi lst the W H T was horizontal. By 

removing Relay Lens 2， laser l ight could be retro-reflected from the B L T pr imary 

back down the relay system and an accurate alignment o f the telescope to the BRS 

input achieved. The focus lens was then replaced at the approximate posit ion to create 

a 4km LGS, and the B L T pupi l pattern was projected onto the inside o f the W H T 

dome. The W H T was then pointed 30 degrees from zenith and as expected, the top-

end sag caused misal ignment in the BRS. Af ter re-alignment o f relay mirror 1， the 

pupi l pattern from the B L T pr imary aperture was again projected onto the inner 
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surface o f the W H T dome. Changing elevation between 60 and 80 degrees at this 

point had litt le effect on the uni formi ty or position o f the pupi l pattern and the L L S 

was ready for on-sky alignment o f the B L T to the optical axis o f the W H T . 

Bore-sighting the B L T and W H T can only be accomplished accurately w i th an on-sky 

alignment procedure. As previously mentioned, there are two stages to the on-sky 

alignment. The first stage was a coarse alignment procedure that required altering the 

point ing o f the B L T structure, the second stage was carried out when the B L T 

point ing was w i th in a small angle o f being bore-sighted to the W H T . The f irst step 

was to choose a bright (mv = 2) reference star and project the laser f rom the B L T . As 

the B L T had no bore-sight camera for al ignment, the only way to determine the 

alignment was to uti l ise parallax to see where the LGS was point ing. B y mov ing from 

one side o f the open dome to the other and examining the apparent posit ion o f the 

laser on the sky relative to a star tracked by the W H T , the B L T could be bore-sighted 

to we l l w i th in an arcminute. This task was s impl i f ied by using binoculars. A t this 

point, the return could be observed w i th in the G H R I L Nasmyth plat form and the 

rough parallax alignment method was no longer required. 

To change the ini t ia l al ignment o f the B L T , the telescope was lowered unt i l it was 

horizontal. The B L T was then shimmed, and at this point required re-alignment to the 

BRS using the retro-reflection method described above. This was because re-pointing 

the B L T structure moves Relay M i r ro r 3 away f rom the BRS output. Thus the B L T 

was no longer in the retro-reflection condit ion and the pr imary mirror o f the B L T was 

being used off-axis. This affected projected spot qual i ty, w i th highly aberrated LGS'ร 

being created i f the alignment was not accurate. A l ign ing the B L T to the W H T in this 

way required much t ime, but was the only method that was possible wi thout including 

bore-sighting camera(ร) and a means for remotely altering the point ing o f the B L T . 
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The B L T retained bore-sighting over the course o f the 5-day run w i th no need for 

further alignment. 

Once the coarse bore-sighting had been achieved, the fine t ip/ t i l t motors were used to 

move the LGS onto the optical axis o f the W H T as observed in the Nasmyth p lat form. 

This was achieved despite the di f f icul t ies experienced w i th backlash on the motors. A 

wide-f ie ld (2.5 arcminute) acquisition T V camera was placed on a rai l at the bare 

Nasmyth focus o f the telescope to help w i th this task. 

The next task was to tune the focal altitude o f the LGS f rom the coarse ini t ial focus 

that was defined by the posit ion o f Relay Lens 2. Previous experience o f launching 

the LGS f rom a fu l l aperture shared launch [8] had shown that the LGS focal point 

could be easily observed w i th the naked eye and standing approximately 6m f rom the 

optical axis o f the telescope when the LGS was created at 4km. When the LGS focus 

could be directly observed f rom the 300mm aperture launch, the focal altitude was 

measured f rom off-axis observations as being below 500m. A n increase in LGS plume 

intensity at the LGS focal altitude cannot be observed w i th the naked eye f rom a 

300mm diameter beam focused at 4km. 

The simplest means o f determining the focal altitude o f the LGS was achieved by 

moving the acquisit ion camera along the optical axis. This al lowed the whole 

Rayleigh plume between 2km and 10km to be imaged. As the wide-f ie ld camera by 

def ini t ion has a small depth o f f ie ld, the LGS at the altitude conjugate to the posit ion 

o f the T V camera was imaged. The image o f the LGS was surrounded by a defocused 

image o f the plume f rom altitudes non-conjugate to the posit ion o f the T V camera. 

The focal altitude o f the LGS was clearly visible as the point where the LGS image 

was narrowest. Using this simple technique wou ld not be possible i f the laser were 

focused at a higher altitude because the distance between conjugate altitudes on the 
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telescope optical axis is much greater for low altitude rather than for high-altitude 

LGS'S. The focus was then adjusted by returning the W H T to the horizontal posit ion 

and adjusting the posit ion o f the top end lens. The B L T pr imary mirror drives were 

not used for f inal focusing as LGS mot ion was observed when the motors were 

moved. This was once again due to backlash in the mirror mount drives. 

Four alternative methods o f determining LGS focal altitude were used. B y using the 

range gate system the conjugate altitude o f the range gate could be moved up and 

down the Rayleigh plume unt i l the LGS spot size was minimised. A second method 

used an off-axis moni tor ing telescope to image the LGS plume whi le the W H T was 

pointed at zenith. In this way, a direct and simple correlation existed between the 

elevation angle o f the off-axis moni tor ing telescope and the altitude o f the image o f 

the plume. The LGS focus was then determined by f ind ing the point where the imaged 

plume was narrowest. This method o f focal altiณde determination was used in the 

Ap r i l 2004 observing run and the results are shown in Figure 4.17. 

2 483kกา 3 320km 

:3 4 Уะ'Okfii 'J Оว9km 

Figure 4.17 Off-axis images of the Rayleigh plume taken from a point 350m away from and 
20m above the WHT. A 16" Meade telescope with Andor Ixon 128 camera was 
used. WHT (and hence BLT) was pointed at zenith and not tracking during 
these exposures. This allowed the zenith angle of the off-axis telescope to be 
easily translated into an altitude above tiie telescope. 
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The th i rd method was to use a P M T w i t h a small entrance aperture to determine the 

focal alt itude. I f the P M T is moved along the optical axis o f the W H T (along the same 

rail as the acquisition T V camera to ensure optical alignment is retained) the P M T 

aperture acts as a f ie ld stop and blocks most l ight f rom all altitudes other than a small 

altitude range around the conjugate posit ion o f the P M T aperture. I f this aperture is 2" 

in diameter (i.e. 〜0.5mm in diameter) it is only when the LGS is below 2" in diameter 

that the return beam is unvignetted. The max imum return through the aperture can 

also be t imed and compared to the trigger pulse from the laser. In this way a very 

accurate determination o f the focal height was obtained. 

The final focal altitude method is one that was not in i t ia l ly envisaged and involved 

ut i l is ing high layer cloud. On nights where th in cloud was present, the P M T registered 

a large return f rom the cloud layer. This altitude was measured by t im ing the return 

pulse. Then by v iewing the LGS beam through the acquisit ion camera, the B L T pupi l 

pattern projected onto the cloud was observed. The angular size o f the pupi l pattern on 

the cloud was measured f rom this observation and then the distance to the focal point 

o f the LGS beam could be calculated. Another method that could be used in a cloudy 

sky is to decrease the telescope elevation unt i l the cloud is 4.5km from the B L T 

aperture as measured by the P M T , and then minimise the LGS spot size in the 

acquisit ion camera, as the M i e scattered photon return f rom the cloud is far greater 

than that o f the Rayleigh scattered photon return f rom the LGS plume. This is usefti l 

as it al lows preparatory work to be carried out on the しLS even though the night may 

be completely useless for astronomical observations. However, it wou ld o f course be 

unwise to discard the other methods o f altitude determination in favour o f using the 

intense photon return from high-alt i tude clouds. 
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4.11 LGS Quality Testing 

Once the focal altitude and boresighting o f the B L T were set, the next task was to 

characterise the quality o f the LGS, and hence the L L S . A series o f tests were 

performed, including photon return, LGS spot size, LGS spot mot ion, polarisation 

tests, long-exposure images and LGS stabil i ty compared w i t h elevation angle. The 

results are given below. 

6000 images o f the un-gated LGS plume were taken using the W H T on the 24 th 

September 2004 between 0114 and 0121 G M T . The images were taken as 2 sets o f 

1000 and 2 sets o f 2000 images, each image w i th an exposure o f 1ms. The frame rate 

was l imited by the readout speed o f the camera and was measured at a later stage as 

29.6Hz. The W H T was tracking SA049528, but the 2nd magnitude star did not 

contaminate the observed photon flux o f the LGS as the defocused inf in i ty image was 

approximately 35mm across. This al lowed the LGS image to be positioned inside the 

secondary obscuration o f the stellar image. The camera, a Qimaging Retiga 1300, was 

conjugated to a distance o f 5km from the W H T . A t the 5km focus, the W H T has a 

plate scale o f 4.41arcsec/mm. A single lens was used to increase the f ie ld o f v iew o f 

the camera, although this was at the expense o f f ie ld un i formi ty . Field uni formi ty and 

pixel scale were determined by imaging a piece o f graph paper (see Figure 4.18) The 

pixel scale at the mean LGS posit ion in the f ield was determined at 0.47arcsec/pixel. 
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Figure 4.18 Calibration chart for LGS plume camera showing uniformity across CCD FOV. 
Pixel scale at the image centre is 9.37 pixels/mm. 

4.11.1 LGS Spot Size 

Images o f the Rayleigh plume were taken at the bare Nasmyth focus o f the W H T . 

A l though the photon return at this point is not range-gated, a bright central core can 

be observed that is surrounded by a diffuse halo, and not a sharp spot that is required 

for high-order WFSing through a lenslet array. A sample LGS image f rom the data set 

is shown in Figure 4.19. 

Figure 4.19 A 1ms exposure image and associated profile of the un-gated Rayleigh plume 
taken at the bare Nasmyth focus of the WHT. Pixel scale is 0.47 arcsec/pixel. 
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The mean F W H M was 2.29" w i th a standard deviation o f 0.28". The F W H M was 

calculated by azimuthally averaging the image around the spot centroid. The mean 

spot 1/e^ diameter was 5.33" w i th a standard deviation o f 0.34". For a pure Gaussian 

intensity prof i le, the ratio between F W H M and 1/e2 diameter is constant given 

by ^ - ๒ ( 0 . 5 ) / 2 = 0.588 . The ratio measured f rom the LGS images is 0.425, showing 

that the intensity prof i le is not Gaussian, and has more energy w i th in the wings o f the 

beam. 

Without using a range gate, the LGS spot diameter cannot be measured directly when 

observing on-axis. The off-axis plume data shown in Figure 4.17 was analysed to 

determine plume diameter. The C C D used to take the off-axis images had a scale o f 

1.21" per p ixel . The 122/i/D d i f f ract ion l imi t o f the 16" Meade telescope used for 

observation was 0.32". The camera had been focused on the plume at a zenith angle 

corresponding to 4km, and the degree o f defocus observed on the C C D as the zenith 

angle changes can be simply calculated w i th knowledge o f the telescope optics and 

camera pixel scale. 

Laboratory testing o f the Retiga 1300 C C D w i th a 1ms pulsed l ight source conf irmed 

that when a 1ms exposure t ime was set using the camera internal electronics, a 1ms 

exposure t ime was achieved on-sky. The frame rate returned by the control software 

was 0.2Hz slower than the true frame rate o f the camera. This discrepancy is due to 

the overhead o f transferring and processing the data w i th in the computer. 

A f te r accounting for the degree o f defocus in each image, a plot o f plume F W H M 

versus altitude was made and is shown in Figure 4.20. 
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Figure 4.20 Plot of 1/e2 plume diameter versus altitude taken from the off-axis plume 

images. Telescope defocus has been corrected over the altitude range shown. 

Theoretical plot was created using the method presented in Chapter 5. 

For the focused plume image at an altitude o f 3.989km, the ratio between F W H M and 

diameter was measured as 0.412. The actual F W H M values after correcting for 

defocus only matched over the small altitude range shown in Figure 4.20. Without 

correcting for the telescope focus, the F W H M measured from the of f-axis telescope 

was far greater than the F W H M measured using the W H T . Several external factors 

were thought to cause this. First, telescope j i t ter f rom both the W H T and off-axis 

telescope would mercase the apparent plume diameter. The effect o f atmospheric 

turbulence must also be considered as this would increase the apparent diameter o f the 

plume. 

4.11.2 LGS spot motion 

A high-speed camera was used to record the centroid posit ion o f the LGS. This value 

is affected by both the atmospheric conditions but also by any vibrations that are 

present w i th in the L L S . 
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Figure 4.21 X and Y centroid values in terms of CCD pixels plotted for each set of 1000 

images. Mean position of each set is indicated by a green circle. 

The general trend in mean centroid posit ion shown in the figure above was due to the 

effect o f telescope sag on BRS alignment. The telescope altitude angle at the midpoint 

o f each run is given in Table 4.2, along w i th the associated top end sag o f the 

telescope. A second order polynomial was fitted to the measurements taken o f the 

W H T top-end sag so that the small changes in elevation angle could be determined. 

Over the entire altitude range o f the W H T , the f i t ted polynomial matched the 

observed sag o f the W H T to w i th in 2 5 ц т . 

Set Al t i tude Sag (mm) 

1 51.6 0 .601212 

2 51.4 0.607369 

3 50.6 0.631915 

4 50.5 0.634975 

5 50.2 0.64414 

6 50.1 0.647191 

Table 4.2 Telescope altitude axis angle and modelled top-end sag for the sets of LGS 

plume images. WHT modelled sags match measured sags across a 0" to 90° 

elevation angle to ±25μΐΒ. 

A l though over a very short baseline, the modelled sag can be compared to the LGS 

spot offset to determine the point ing stabil i ty o f the LGS whi le tracking. A n analysis 
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o f these two sets o f data shows that the LGS moves on-sky by 51 ·^^ ^ 1.4^^^ for every 

mi l l imetre o f top-end sag. 

Wi th the BRS aligned at 70°, the telescope can track unt i l the top end sag has moved 

the LGS outside the F O V o f the LGS WFS. I f the loop is closed, the LGS F S M can 

then correct for the dr i f t o f the LGS. The F O V o f the LGS WFS is 2 .11 " , meaning 

that the top end can sag by 0.041mm. This corresponds to a change in telescope 

elevation angle o f ±3° i f the LGS has been aligned at a 70° elevation angle. 

A t the latitude o f the W H T , the LGS dr i f t observed when the telescope tracks an 

object w i l l result in the LGS moving across the WFS F O V in approximately 20-30 

minutes, depending on the declination o f the star being tracked. The loop must be 

closed w i th in this period, or a new star must be found. 

4.11.3 LGS Launch Jitter 

Once the LGS spot mot ion due to telescope sag had been measured and calibrated, the 

instantaneous spot j i t ter could be measured. A histogram showing the magnitude o f 

observed instantaneous spot j i t ter is plotted in Figure 4.22. 
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Figure 4.22 Histogram of LGS spot jitter observed from a 4km LGS. Slow spot motion due 
to telescope sag has been removed. 1,2,3 and 4σ points on the histogram are 

indicated. 3σ spot jitter is ±0.51" 

The observed ±3σ spot j i t ter is close to the predicted spot j i t ter o f 0.74", as detailed in 

Chapter 5. As the atmospheric C n 2 prof i le was not known at the time the 

measurements were made, the launch j i t ter model cannot be ver i f ied. However, that 

the observed LGS j i t ter was less than 0.8" shows that a г LGS w i th up to 0.3" o f 

elongation can be observed by the L G S WFS wi thout contamination o f adjacent 

subapertures. 

4.11.4 LGS Photon Return 

The intensity o f the un-gated plume images was measured. The gain o f the camera 

used for determining the photon return was established such that an absolute photon 

return count could be established. The effect on photon return o f changing telescope 

elevation angle was also examined. 

A plot o f the total intensity measured in each image was made for each set o f 

exposures as shown in Figure 4.23. A l l images exhibited an approximate 2 4 % 
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fluctuation in observed signal that had a characteristic frequency o f 1.3Hz. This was 

thought to be partly due to aliasing between the 1ms exposures and the 7kHz pulse 

rate o f the laser as the photon flux f rom 6 or 7 pulses was measured. Sampling 6 or 7 

pulses should only reduce the observed intensity by 14%, so another cause o f the 

fluctuation must be present. Jitter in the C C D exposure t ime meaning 5， 6 or 7 pulses 

had been sampled could give rise to the intensity variat ion, but the intensity plotted 

below does not exhibit 3 distinct intensities. This effect was therefore ruled out. 

Time (seconds) 

Figure 4.23 Plot of LGS plume intensity versus time for 1000 images taken with an 

exposure time of 1ms at a frame rate of 29.6Hz. 

The intensity variat ion was not present at the laser output, where a 1.3Hz 2 4 % power 

fluctuation wou ld have been observed on the power meter output. The only other 

possible cause o f error was due to telescope vibrations inducing misalignment in the 

BRS, causing vignett ing and a drop in output power. 
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Figure 4.24 Observed mean image intensity versus telescope zenith angle. Each point 

represents the mean intensity of 1000 images. Error bars show the ±1σ intensity 

point. 

As can be seen f rom Figure 4.24, the mean intensity changes w i th telescope zenith 

angle, and hence also w i th top-end sag. This can cause large variations in observed 

power that are o f a similar magnitude to account for the 2 4 % observed power 

f luctuation. A 2 4 % power drop corresponds to change in the altitude angle o f the 

telescope by 0.9° from an ini t ial value o f 5 に A t this altitude angle the top-end sags 

by approximately 27.6μηι . I f the observed drop in power is caused solely by telescope 

j i t ter, the top-end exhibits a v ibrat ion that has an amplitude o f 27.6μιη at a frequency 

o f 1.3Hz. 

We were unable to accurately calibrate the Qimaging Retiga 1300 camera in the 

laboratory to determine the detected photon flux f rom the LGS plume due to a lack o f 

calibrated photon sources and/or a calibrated power meter. This is one outstanding 

piece o f work that w i l l be undertaken at the earliest opportunity when the correct 

equipment becomes available. 
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4.11.5 Polarisation Tests 

The polarisation o f the Rayleigh photon return was รณdied and compared w i th 

outgoing polarisation pur i ty. As Rayleigh backscattering retains the polarisation state 

o f the launch beam, any deviation f rom this ini t ial polarisation state is due to either 

mult ip le Rayleigh scattering w i th in the atmosphere, or other scattering processes. 

Qualitative tests were carried out by v iewing the plume by eye through a linear 

polariser on each o f the three nights that the LGS was launched. A t the t ime o f 

checking on the first and f inal nights that the plume was l inearly polarised and would 

disappear almost completely when the polarisation state o f the laser and polariser 

were crossed. On the second night, rotating the polariser had no visible effect on the 

plume, suggesting that the backscattered photons were unpolarised. There were no 

visible or detected changes in atmospheric conditions between each night, w i th no 

visible clouds in the sky, and meteorological data showed only a slight increase in 

humidi ty. 

The supposed reason for this was due to other scattering processes w i th in the 

contr ibuting to the observed photon геШга. Scattering f rom atmospheric aerosols 

(particularly ice crystals and dust particles) does not retain the polarisation state o f a 

backscattered photon e.g. see Ref. 15 (and references therein). A l though the degree o f 

random polarisation was not measured, the fact that polarisation could not be 

discerned visual ly using the simple method outl ined above suggests that the observed 

beam was only very sl ightly polarised. This degree o f random polarisation have not 

been observed at other sites, although L I D A R measurements have never been made at 

the O R M where changes in the aerosol densities show very large variat ion, dependent 

upon atmospheric calima. I t is not thought that changes to the launch system and laser 
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between observing runs caused a random output polarisation. These qualitative tests 

showed that the photon return o f a Rayleigh LGS is not guaranteed to be linearly 

polarised, and a range gate system that can shutter unpolarised l ight must be 

employed i f detected photon flux in the WFS is to be maximised. A fUll study o f the 

return polarisation o f the backscattered l ight would require a comprehensive 

moni tor ing campaign and specialised L I D A R equipment and was therefore not 

possible w i th in the scope o f this project. 

4.12 Conclusions 

The design and performance o f the laser launch system used for the G L A O system 

has been described and characterised. A l though a calibrated measure o f photon flux 

was not derived, several other LGS quali ty metrics were analysed. The LGS plume 

diameter f rom the off-axis moni tor ing matched that predicted by the LGS WFS 

propagation model (presented in Chapter 5) to w i th in 2 4 % at the LGS focal altitude. 

L G S spot mot ion highl ighted the effect o f telescope sag on the laser launch system. 

For a common-user instrument, this wou ld have to be compensated for, or minimised 

in some other way. The magnitude o f the observed launch j i t ter was also close to that 

predicted, although a direct comparison cannot be made wi thout ftill knowledge o f the 

C n 2 prof i le. 

There are many ways in which this experimental L L S could be improved, pr imar i ly 

through the use o f a closed loop j i t ter correction system in the beam relay system. 

Design decisions that have compromised the performance o f the system, such as the 

use o f an on-axis Newtonian launch telescope and 5th vane across the W H T pupi l have 

been examined. 
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Chapter 5ะ LGS WFS Model 

5.1 Introduction 

The LGS WFS model, which is described below, was developed in order to examine 

the performance o f the WFS w i t h an LGS, and to optimise the system optical design 

parameters. 

The LGS WFS model comprised three modules that col lect ively described the 

dependence o f the WFS performance on many LGS parameters. The first component 

used an analytical model o f the propagation o f the laser through the atmosphere to 

examine the performance o f the Beam Launch Telescope ( B L T ) . This module then 

calculated the beam diameter at any point along the focused LGS plume. The second 

module calculated the Rayleigh photon return observed by the W H T f rom a given 

slice o f the Rayleigh plume. The f inal module used geometric optics to produce a 

WFS image, and then added random photon noise and read noise. By combin ing these 

three modules, an accurate determination o f the WFS centroiding performance was 

produced whi lst exploring the parameter space o f the B L T , LGS and WFS. 

Each module w i l l be described in turn, fo l lowed by a section detai l ing the results o f 

the model l ing, and the conclusions drawn. 

5.2 BLT Modelling 

The analyses o f A O system performance presented in Chapters 1 and 2 used purely 

statistical means to determine A O performance. Whi le statistical methods have been 

-used to analyse A O system performance since the first A O systems, several problems 

are better described using analytic, rather than statistical, models. One such example 
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is the model l ing o f the BLT /LGS/WFS interaction, which is described pr imar i ly using 

a geometric model o f the LGS plume and optics. The advantages o f using a geometric 

model are that the WFS image can be created w i th a reduced computational load and 

then analysed using exactly the same algorithms as those used w i th in the control 

system. The technique presented below uses a semi-analytic model that combines a 

statistical representation o f the effect o f the atmosphere on the laser beam propagation 

w i th a geometric model o f the LGS and WFS interaction. 

The B L T propagation model used an approach similar to that taken in Parenti and 

Sasiela [1] to determine the short exposure Strehi ratio and f rom that, the spot 

diameter. For a Gaussian beam being focused by a di f f ract ion- l imi ted lens, the 

diameter o f the focussed beam waist, ωο, in metres, is 

๙ 0 = Κ χ λ χ ƒ / # - 5 . 1 

where к IS a constant dependant on where the truncation point o f the Gaussian beam 

and the intensity point at wh ich the beam waist is to be measured [2 ] . To determine 

the focused beam waist at the 1/e^ intensity point, the factor к is given by 

^ . 1 . 6 4 4 9 . ！f,t!vs..֊. ֊ 5 · 2 

(г ֊0.2816)"" (г-0.2816)' 

where τ is the so-called trancation ratio o f the input Gaussian beam. Eq. 5.2 is not 

val id for determining the focused beam waist at other intensity points e.g. F W H M . 

The truncation ratio is defined as 

T = ֊노 - 5 .3 

DBLT 
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w h e r e Db is t he 1/e^ d i ame te r o f the i npu t Gauss ian b e a m and DBLT is t he c lear 

aper ture d i ame te r o f t h e lens . F o r the purposes o f t h i s ana l ys i s , t he Gauss ian b e a m 

d iame te r is a l w a y s m e a s u r e d at t he B L T p r i m a r y aper tu re . 

G l o b a l t i l t s accoun t f o r t he m a j o r i t y o f phase va r i ance w i t h i n any series o f w a v e f r o n t s 

p e r t u r b e d by the a tmosphere . T h e t i l t c o m p o n e n t o f the w a v e f r o n t a lso var ies s l o w l y 

in c o m p a r i s o n w i t h h i g h e r - o r d e r m o d e s . B y c a l c u l a t i n g the va r i ance o f a w a v e f r o n t 

w i t h the t i l t c o m p o n e n t s r e m o v e d , the ins tantaneous w a v e f r o n t va r i ance o f the h i g h e r 

spat ia l o rde r Z e m i k e m o d e s can be d e t e r m i n e d . T h i s res idua l v a r i a n c e de te rm ines the 

ins tantaneous shape o f t he f ocused L G s spot , i r respec t i ve o f i ts ac tua l p o s i t i o n o n the 

sky . A s s u m i n g tha t the t i l t c o m p o n e n t o f the L G S w i l l be r e m o v e d b y a c l osed - l oop 

fas t -s teer ing s y s t e m , th i s res idua l va r i ance the re fo re descr ibes the m i n i m u m spot s ize 

o f the L G S as w o u l d be obse rved b y the W F S . F o r a beam l a u n c h te lescope w i t h a 

l a u n c h aper ture o f d i ame te r DBLT, a n d an a tmosphe r i c coherence l e n g t h o f Го, the t i l t -

r e m o v e d ШгЬи Іеп Ї w a v e f r o n t v a r i a n c e f o r K o l m o g o r o v t u r b u l e n c e is g i v e n b y [ 2 ] 

= 0 . 1 3 4 
V "0 

.4 

T h e t o t a l w a v e f r o n t v a r i a n c e o f t he f o c u s i n g L G S b e a m w i l l a lso i n c l u d e a c o m p o n e n t 

due t o the q u a l i t y o f the l a u n c h op t i cs . A s s u m i n g tha t the op t i c s are des igned t o g i v e 

d i f f r a c t i o n - l i m i t e d p e r f o r m a n c e , the M a r é c h a l a p p r o x i m a t i o n g i ves a w a v e f r o n t 

va r i ance due t o the l a u n c h op t i cs o f 0 . 2 2 3 r a d 2 , c o r r e s p o n d i n g t o a S t reh i ra t io o f 0.8 at 

the laser w a v e l e n g t h . T h e to ta l w a v e f r o n t va r i ance is 

^Totai ՜ ปี'm + ^Optics 

T h e shor t exposu re coherence l e n g t h , Po, is d e f i n e d b y Y u r a [ 4 ] as 
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A ) = Г о 1 + 0.37 

T h e app roach o f Paren t i and Sasie la a l l o w s a sho r t -exposu re S t reh i r a t i o , StrehlsE, t o 

be ca l cu la ted u s i n g the quan t i t i es d e t e r m i n e d i n equa t ions 5.1 -5 .6 . 

Strehi,, ^^χρ[-σΙ,^,)+ ( ΐ - ε χ ρ ( - σ ^ . + 
D 

BLT 

Po 

T h e sho r t -exposu re S t reh i de f ines a scale fac tor , F, w h i c h re lates to the spot s ize . 

StrehL 
5.8 

such tha t t he L G S spot rad ius , DLGS, i n rad ians , is g i v e n by 

D լ , s = { ω , F I H , , , ) , - 5 . 9 

w h e r e HLGS is the d is tance f r o m the l a u n c h te lescope to the L G S focus . 

T h e B L T m o d e l m u s t i nc l ude the p e r f o r m a n c e o f a r e a l - w o r l d laser b y і п с о ф о г а Ї І п д a 

measure o f the laser b e a m q u a l i t y . A pe r fec t Gauss ian i n tens i t y b e a m has a 

T ransverse E l e c t r o n i c M o d e ( Т Е М ) o f 0 0 , c o m m o n l y no ta ted as T E M o o . Т Е М m o d a l 

s t ruc tu re i n a laser b e a m is caused b y m u l t i p l e pa ths w i t h i n the laser c a v i t y 

s t i m u l a t i n g e m i s s i o n . T h e m u l t i p l e pa ths m u t u a l l y in te r fe re w i t h one ano ther , 

r e s u l t i n g i n an o u t p u t laser b e a m that e x h i b i t s s t ruc tu re . A se lec t ion o f Т Е М p r o f i l e s 

w e r e s h o w n in F i g u r e 4 .7 [ 2 ] . 

A laser su i tab le f o r c rea t i ng a t i g h t l y f o c u s e d L G S in the sky o b v i o u s l y requ i res a 

T E M o o s t ruc tu re . H o w e v e r , e v e n a T E M o o laser w i l l no t e x h i b i t the b e a m d i v e r g e n c e 

and m i n i m u m b e a m w a i s t equa l to tha t o f a p e r f e c t l y Gauss ian b e a m . A s p r e v i o u s l y 

d e f i n e d , t he laser b e a m q u a l i t y , o r M 2 v a l u e , descr ibes h o w c lose l y a laser resembles a 

138 



pe r fec t Gauss ian b e a m . M is t he ra t io o f the p r o d u c t o f t he b e a m d i v e r g e n c e , Ө, and 

m i n i m u m b e a m w a i s t , ωο, f o r b o t h beams and is g i v e n b y 

M ' = ^ ^ , - 5 . 1 0 

w h e r e the s u f f i x R deno tes the p r o p e r t y o f the rea l laser b e a m . 

A laser tha t has a focussed b e a m w a i s t and d i ve rgence p r o d u c t equa l to tha t o f an 

idea l Gauss ian i n tens i t y b e a m has an л / o f 1 . V a l u e s b e t w e e n 1.2 and 1.5 are t y p i c a l 

f o r h i g h - p o w e r T E M o o lasers, whereas h i g h - p o w e r m u l t i m o d e lasers can have > 

3 0 . I n the spec i f i c case o f L G S A O , the laser i v r v a l u e e f f e c t i v e l y descr ibes the 

m i n i m u m d iame te r o f the f o c u s e d L G S spot i n the absence o f a tmosphere [ 2 ] . A 

m i x e d - m o d e beam tha t has a w a i s t M (no t ΑΓ) t i m e s la rger t h a n the e m b e d d e d 

Gauss ian w i l l p ropaga te w i t h a d i ve rgence M t i m e s greater t han the b e a m d iame te r o f 

t he e m b e d d e d Gauss ian . C o n s e q u e n t l y , the b e a m d i a m e t e r o f the m i x e d - m o d e beam 

w i l l a l w a y s be M t i m e s the b e a m d iame te r o f the e m b e d d e d Gauss ian , w h i c h w a s 

d e t e r m i n e d i n e q u a t i o n 5.9. T h e e f fec t o f b e a m q u a l i t y on the L G S spot rad ius is 

t he re fo re g i v e n b y 

D լ , , = { ω , F M / H , ^ , ) " 5 , 1 1 

W i t h the o p t i c a l p e r f o r m a n c e o f the B L T m o d e l l e d , a m o d e l o f t he sys tem can be 

m a d e tha t de te rm ines the angu la r d iamete rs o f the p l u m e at a l l p o i n t s a l o n g the ax is o f 

p r o p a g a t i o n . T h e d i a m e t e r o f the R a y l e i g h p l u m e , Ą ， at an a l t i t ude Hi above the 

l a u n c h aper tu re o f the te lescope can be d e t e r m i n e d g e o m e t r i c a l l y i f the f o c a l a l t i t ude 

o f t he L G S and l aunch aper tu re d i ame te r are k n o w n u s i n g E q 5 .12 . 

Đi=D BLT \ /^LGS. 
.12 
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H o w e v e r , once the b e a m approaches the f oca l a l t i t ude o f the L G S , the b e a m w a i s t 

d i ame te r w i l l n o t app roach 0, as p r e d i c t e d b y E q 5 .12 , b u t eooF, as s h o w n i n F i g u r e 

5 . 1 . 

GS 

Figure 5.1 Cross section of Rayleigh plume showing the deviation from the geometrical 
model (shown in red) of a focused real laser beam (shown ๒ green) The 
Rayleigh range, Z r , and minimum beam diameter, Шоғ are indicated 

T h e R a y l e i g h range o f a rea l f ocused laser b e a m , ZR, is d e f i n e d as the d is tance 

be tween the p lane o f the f o c u s e d b e a m w a i s t and the p lane at w h i c h the d iame te r has 

increased to 1/e^ the m i n i m u m beam w i d t h . F o r a rea l b e a m , th is R a y l e i g h range is 

g i v e n b y 

πω: 
Կ =• 

λ 
5.13 

T h e d i a m e t e r o f t he b e a m at a d is tance , z , f r o m the focus o f the p l u m e i n a v a c u u m is 

g i v e n b y 

ö v a c { - ) = 2ö>0 1 + 5.14 
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T h e above equa t i on does no t i n c l u d e the e f fec ts o f a tmosphe r i c t u r b u l e n c e o n the 

p r o p a g a t i o n o f the b e a m . T h e R a y l e i g h range o f a b e a m p r o p a g a t i n g t h r o u g h 

a tmospher i c t u r b u l e n c e does n o t change , so the t e r m ins ide the square roo t rema ins 

constant i r respec t i ve o f t he e f f ec t o f the a tmosphere . A t z = 0 i.e. t he f ocused beam 

wa i s t , the b e a m d iame te r f r o m equa t ions 5.1 and 5.14 increases to ωοΡΜgiving. 

КЛҒНМ 

D 
BLT 

1 + 

πω: 

Уг 

.15 

coo is d e r i v e d b y e q u a t i n g the 1/e b e a m rad ius at the l aunch aper tu re t o the l a u n c h 

aper ture o f t he B L T i.e. w h e n ζ = нլ^տ, D^,„ {Ηլըտ ) = 7ռ,լ^. 

KÅFHM 1 + TD, 5.16 

у ^ о ノ 

TD 
ви- ― 

KÅFHM 
- l 

π 

λΗΜ' 
5.17 

E q u a t i o n 5.17 a lso p red i c t s w h e n a b e a m w i l l no t f o r m a focused R a y l e i g h p l u m e in 

the a tmosphere . ๓0 becomes c o m p l e x , and the re fo re u n p h y s i c a l , w h e n 

TD BLT 

ΚλΡΗΜ 
< 1 - 5 . 1 8 

5.3 Photon Return 

T h e p h o t o n flux obse rved by the W F S is a p r o d u c t o f the sys tem t h r o u g h p u t and the 

p h o t o n re tu rn flux genera ted by the R a y l e i g h beacon . T h e t h r o u g h p u t o f the sys tem 

(at t he L G S w a v e l e n g t h ) can be o p t i m i s e d b y m i n i m i s i n g the n u m b e r o f sur faces tha t 
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are present i n the sys tem, and c h o o s i n g su i t ab l y h i gh - re f l ec tance and t r ansm i t t ance 

coa t i ngs . 

T h e prec ise re tu rn p h o t o n flux o f a R a y l e i g h L G S is dependen t o n the exact 

c o m p o s i t i o n o f the a tmosphere , and is t he re fo re d i f f i c u l t t o d e t e r m i n e . T h e d o m i n a n t 

source o f e las t i ca l l y backscat te red p h o t o n s w i t h i n the a tmosphere is t h r o u g h c o l l i s i o n s 

w i t h m o l e c u l a r n i t r o g e n and o x y g e n . T h e n u m b e r o f backsca t te red p h o t o n s is 

dependen t o n the sca t te r ing cross sec t ion and n u m b e r dens i t y o f sca t te r ing par t i c les 

w i t h i n the v o l u m e o f the L G S . These m o l e c u l a r sca t te r ing p roper t i es can be ca l cu la ted 

e i ther u s i n g m e t e o r o l o g i c a l data o r es t ima ted u s i n g an a tmosphe r i c m o d e l . 

A l t h o u g h the n i t r o g e n and o x y g e n m o l e c u l e s are the n u m e r i c a l l y d o m i n a n t species in 

the a tmosphe re , o the r m o r e c o m p l e x species can have a fa r la rger sca t te r ing cross 

sec t i on , and the re fo re the d i s t r i b u t i o n and n u m b e r dens i t y o f m o r e c o m p l e x m o l e c u l e s 

m u s t be i n c l u d e d to get an accura te represen ta t ion o f the f u l l R a y l e i g h backscat ter . 

T h e i n c l u s i o n o f m o r e c o m p l e x m o l e c u l e s , c o m m o n l y ca l l ed aeroso ls , requ i res 

k n o w l e d g e o f t he i r v e r t i c a l d i s t r i b u t i o n . T h e i n c l u s i o n o f aeroso l backscat te r in the 

re tu rn p h o t o n flux is p a r t i c u l a r l y d i f f i c u l t i n L a P a l m a w h e r e the c lose p r o x i m i t y o f 

the Sahara desert can fill the a tmosphere w i t h fine sand. D u r i n g a so -ca l l ed 'calimď 

event , the re tu rn f r o m a R a y l e i g h L G S w i l l be a f f ec ted . T h e e f f ec t o f aeroso l 

backsca t te r i ng is r e l a t i v e l y s m a l l c o m p a r e d to the n u m b e r o f p h o t o n s r e c e i v e d t h r o u g h 

R a y l e i g h backscat te r a lone . F o r t h i s reason, the e f f ec t o f aeroso ls w a s no t i n c l u d e d in 

the n u m b e r o f p h o t o n s backsca t te red . 

T h e p h o t o n re tu rn flux (due to a s ing le e last ic sca t te r ing process w i t h i n the 

a tmosphe re ) f o r a s ing le laser pu l se can be ca l cu la ted u s i n g the L I D A R e q u a t i o n 

[ 5 , 6 , 7 ] . 
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^ ^ Q^ŢsysQEcCoHHLGsÎDsn^eÂ 
.19 

w h e r e Ny is t he n u m b e r o f detected p h o t o n s f o r a s ing le pu lse , 

Q is the ou tpu t laser p o w e r in wa t t s , 

σ is t he m o l e c u l a r sca t te r ing c ross -sec t iona l area in m 2 ， 

Tsys is the e n d - t o - e n d sys tem o p t i c a l t h r o u g h p u t , 

QEccD is the Q u a n t u m E f f i c i e n c y ( Q E ) o f the W F S C C D at the L G S 

w a v e l e n g t h , 

pH is t he a tmosphe r i c sca t te r ing pa r t i c l e dens i t y at a h e i g h t HLGS, 

Dsiice is the sca t te r ing dep th in the a tmosphe re , 

A is t he d iame te r o f the c o l l e c t i n g area o f t he W F S subaper tu re b e i n g s tud ied , 

քւ is the laser r e p e t i t i o n rate 

Tsys is t he c o m b i n e d o p t i c a l sys tem t h r o u g h p u t g i v e n b y E q 5 .20 . 

Τ sys ՜՜ ^ telescope '^optics "^launch "^atmos — 5 ·20 

Tteiescope is t he t r a n s m i s s i o n o f the W H T te lescope t o the N a s m y t h f o c a l p o i n t , w h i c h 

has been measured [ 8 ] as 0.8 f o r a n e w l y c leaned and coa ted m i r r o r . 

T h e n u m b e r o f e lements i n the G L A O des ign presented i n Chap te r 6 c o u l d n o t be 

m i n i m i s e d w i t h i n the budge t ava i l ab le i n o rde r t o o p t i m i s e Toptics' T h e ca l cu la ted 

t h r o u g h p u t t o the L G S W F S w a s 2 2 % , w h i c h is v e r y l o w , bu t the v e r s a t i l i t y o f a 

R a y l e i g h L G S is tha t t he d is tance to the L G S can be reduced to increase s igna l leve l 

on the W F S . T h i s o b v i o u s l y increases the e r ro r b e t w e e n L G S and N G S w a v e f r o n t s , 
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and the re fo re the degree o f A O c o r r e c t i o n a t ta inab le , bu t f o r t h i s d e m o n s t r a t o r sys tem, 

th is t r a d e - o f f w a s d e e m e d accep tab le . 

The l a u n c h sys tem had a measu red t h r o u g h p u t o f 0 .64 at the o u t p u t aper ture o f the 

l aunch te lescope. T h i s f i g u r e i nc l udes the e f fec ts o f t r u n c a t i o n o f the Gauss ian w i n g s 

o f the b e a m so is an accura te measure o f the o u t p u t p o w e r to sky . 

T h e processes g o v e r n i n g the o p t i c a l t r ansm iss i on o f the a tmosphere f o r l o w p o w e r 

lasers are s i m i l a r t o those g i v i n g r ise t o the backscat te r tha t t he sys tem u t i l i ses , 

n a m e l y R a y l e i g h and M i e sca t te r ing . T o p rec i se l y ca lcu la te the a tmosphe r i c 

t r ansm iss i on , once aga in one m u s t k n o w the f u l l c h e m i c a l d i s t r i b u t i o n o f aerosols i n 

the a tmosphere . O n L a P a l m a , k n o w l e d g e o f the a l t i t ude , dep th and pa r t i c l e dens i t y o f 

the calima is p a r t i c u l a r l y i m p o r t a n t f o r c a l c u l a t i n g the o p t i c a l t r a n s m i s s i o n , espec ia l l y 

i f the laser beam is f ocused above the calima layer . 

A s the ve r t i ca l d i s t r i b u t i o n o f aeroso ls above the obse rva to r y w a s n o t k n o w n , the 

o p t i c a l t r ansm iss i on w a s es t ima ted b y u s i n g ca l cu la ted va lues f o r the op t i ca l 

t r a n s m i s s i o n per u n i t a i rmass a b o v e the te lescope and sca l i ng th i s va lue b y the 

c u m u l a t i v e dens i t y o f the a tmosphe re t raversed b y the laser. T h e a t m o s p h e r i c dens i t y 

at a g i v e n a l t i t ude is g i v e n b y , 

w h e r e Po is the pa r t i c l e d e n s i t y o f t he a tmosphere at sea l e v e l , 

Н is the a l t i t ude o f t he L G S above sea l eve l i n me t res , 

Sam is t he charac te r i s t i c scale he igh t o f the a tmosphere i n met res , 

θζ is the z e n i t h ang le at w h i c h the obse rva t i on is t a k i n g p lace . 

- 1 4 4 -

; .21 



T h e c u m u l a t i v e dens i t y b e t w e e n t w o a l t i t udes , H I and H 2 is the re fo re g i v e n b y 

" j p { H ) õ H = p,ร^^ 5.22 

F o r an obse rva to r y at a l t i t ude Hobs, t he c u m u l a t i v e dens i t y o f a s ing le a i rmass . PA, is 

g i v e n b y 

.23 

T h e a tmosphe r i c e x t i n c t i o n f o r a u n i t a i rmass ca l cu la ted f o r t he R o q u e de los 

M u c h a c h o s O b s e r v a t o r y ( O R M ) at 5 2 5 画 is 0 .11 mag /a i rmass [ 9 ] . T h i s v a l u e is 

ca l cu la ted u s i n g an a tmosphe r i c scale h e i g h t [ 1 0 ] o f 7 4 0 0 m , and at a z e n i t h ang le o f 

0 ° . A s a t m o s p h e r i c e x t i n c t i o n is d i r e c t l y p r o p o r t i o n a l t o a tmosphe r i c dens i t y the 

o p t i c a l t r a n s m i s s i o n b e t w e e n l a u n c h and L G S focus at any a l t i t ude is g i v e n b y 

/ ไ _ e v n f ~ i^LGS + Hobs ) / 

ร „ . θ , ex 카 7 5 _ ö , 

w h e r e KA İs a cons tan t ( f o r 5 2 5 n m l i g h t i equa l to ւ օ օ ՜ " ՛ ՛ ՛ ՛ ^ ( = 0 .9036 ) 

T h e response c u r v e f o r the E E V - 3 9 C C D is g i v e n b e l o w [ 1 1 ] . 
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TYPICAL SPECTRAL RESPONSE (At —20 c, no window) 
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figure 5.2 Ε2ν back-iiluminated CCD 39 spectral response curve. The CCD used was 

water cooled to approximately -20°c and was broadband coated giving a QE at 

523nm of 0.82 

T h e sca t te r ing cross sec t iona l area, σ, is dependen t o n the re l a t i ve p r o p o r t i o n s o f the 

m a j o r sca t te r ing species i n the a tmosphere , σ ί ร g i v e n b y [ 1 2 ] 

10000 
- 5 . 2 5 

w h e r e the pa ramete rs À, B, с and D are w a v e l e n g t h dependen t and are g i v e n i n the 

tab le b e l o w . I t m u s t be no ted tha t the w a v e l e n g t h s are d e f i n e d i n μπα, and σ m u s t be 

scaled to square-met res , hence the fac to r o f 10000 . 

ճ < 5ūūnm Ճ > 5ūūnm 

A 3,01577E-28 4,Ū1061E-28 

В 3,55212 3.99668 

С 1,35579 O.ŪOllū 

D ū. 11563 0,02714 

rable 5.1 Table showing the Rayleigh scattering coefficients for laser wavelengths less 

than and greater than 500nm 
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5.4 WFS Model 

T h e W F S response w a s m o d e l l e d b y a s s u m i n g the W F S w a s p e r f e c t l y c o n j u g a t e d t o 

the f o c a l a l t i t ude o f the L G S and tha t the p i x e l scale across the 8 p i x e l s o f t he 

subape i tu re w a s cons tan t . T h i s mean t tha t i f the f o c a l p o i n t o f the R a y l e i g h p l u m e w a s 

i m a g e d by the W F S , the resu l t i ng W F S spot w o u l d f o r m at t he cen t re o f t he 

subaper tu re . T h e angu la r o f f se t f r o m the f oca l a l t iณde to a g i v e n a l t i t ude o f the 

R a y l e i g h p l u m e w a s t hen d e t e r m i n e d and th is o f f se t w a s c o n v e r t e d to a p i x e l o f f se t o n 

the W F S u s i n g a d e f i n e d p i x e l scale. T h i s m e t h o d is i l l us t ra ted in F i g u r e 5 .3 . 

Plane of WFS CCD 

Telescope 
primary 

Figure 5.3 Schematic diagram showing the method used to calculate subaperture spot 
elongation to create a model of the WFS. The angular offset IS preserved 
through the telescope optics, translating to a pixel offset (and defocus) on the 
WFS CCD. 

B y c o - a d d i n g s l ices o f the R a y l e i g h p l u m e from a range o f a l t i t udes and gene ra t i ng a 

Gauss ian i n tens i t y spo t f o r each s l ice w i t h t he p i x e l o f f se t ca l cu la ted above , t he 

d i a m e t e r d e t e r m i n e d i n sec t ion 5.2， a n d the i n tens i t y d e t e r m i n e d in sec t ion 5.3, an 

accura te m o d e l o f the W F S c o u l d be m a d e . 

T h e e f f ec t o f the cont ras t r a t i o o f the W F S shut ter sys tem w a s also i n c l u d e d i n th i s 

m o d e l b y c a l c u l a t i n g the p h o t o n re tu rn from a range o f a l t i t udes and d i v i d i n g the 

ca lcu la ted p h o t o n re tu rn from each s l i ce b y the shut ter con t ras t r a t i o w h e n the s l i ce 

l ay ou ts ide the p re -de f i ned range gate d e p t h . T h e shu t te r -open t h r o u g h p u t is i n c l u d e d 
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i n the op t i ca l t r a n s m i s s i o n o f the W F S sys tem. I n th is w a y , e i the r a Pocke l ร C e l l 

shut ter sys tem o r c o n i c a l r o d pass ive range gate c o u l d be s i m u l a t e d . M e t h o d s o f range 

ga t i ng are i nves t i ga ted i n sec t ion 6 .6 . 

T h e a b i l i t y f o r a h i g h l y - e l o n g a t e d W F S spot (o r a spot w i t h a la rge o f f se t ) t o 

con tam ina te ad jacen t W F S subaper tures w a s a lso i n c l u d e d in the m o d e l . 

Po isson ian shot ( p h o t o n ) no ise and read no ise w a s added t o the W F S i m a g e to 

s imu la te the e f fec ts o f C C D read no ise . T h e i m a g e w a s t hen c l i p p e d at a s igna l l eve l 

equa l t o 

Sig^,,=R{e-)(\ + R(e-)) " 5 . 2 6 

w h e r e R(e') is t he r m s C C D read no ise i n e lec t rons . 

5.5 LGS Spot Motion 

A n g l e o f a r r i v a l s ta t is t ics f o r the a tmosphere d e t e r m i n e the m a g n i t u d e o f spot o f f se ts 

that s h o u l d be obse rved f o r a g i v e n a tmosphe r i c t u r b u l e n c e p r o f i l e and te lescope 

d iamete r . T h i s s h o u l d a l l o w us to l i n k the i npu t spot o f f se ts t o an a tmosphe r i c Го. 

H o w e v e r , ang le o f a r r i v a l s ta t is t ics do n o t t ake i n to accoun t the L G S spot j i t t e r , (due 

to v i b r a t i o n s w i t h i n the laser l a u n c h sys tem and the d i f f e r e n t pa ths tha t the laser l i gh t 

takes o n the u p l i n k and re tu rn pa ths ) and n o n - c o m m o n pa th e r ro rs tha t w i l l be present 

b e t w e e n the sc ience c a m e r a and W F S . 

T h e ( K o l m o g o r o v ) t u r b u l e n c e - i n d u c e d angu la r t i l t va r i ance o f an i n c o m i n g w a v e f r o n t 

is g i v e n b y [ 2 ] 

5 / 3 

í ^ Ì 
V 尸0 J 

.27 
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w h e r e ร depends on the aper tu re g e o m e t r y . F o r a c i r c u l a r aper tu re , ร is 0.164， f o r a 

square aper tu re , ร is 0 .184 . B o t h the B L T and W H T have c i r c u l a r l aunch aper tures . 

W h e n e x a m i n i n g the e f f ec t o f a t u r b u l e n t a tmosphe r i c p r o f i l e w h e r e the t u r b u l e n c e is 

con ta i ned w i t h i n d iscrete layers , the v e r t i c a l d i s t r i b u t i o n o f the layers a lso a f fec ts the 

observed L G S o f f se t . L o w e r layers have m o r e o f an e f f ec t o n the L G S spot o f f se t t han 

h i g h e r lay ers. T o i n c l u d e th is e f fec t , the d is tance b e t w e e n layers m u s t be i n c l u d e d i n 

E q . 5 .27 t o g i v e 

5 / 3 í ^ Ì 
、 化 . 

).28 

w h e r e z is the d is tance b e t w e e n a laye r and the nex t . F o r the h ighes t t u r b u l e n t layer , 

t h i s is the r e m a i n i n g d is tance to the L G S . 

F r i e d ' s pa ramete r is dependen t o n the v e r t i c a l d i s t r i b u t i o n o f t u r b u l e n c e . A n L G S 

p ropaga ted to some a l t i t ude above the l aunch te lescope samples a cone o f the 

a tmosphere equa l t o the v o l u m e o c c u p i e d b y the R a y l e i g h p l u m e p r o f i l e d e t e r m i n e d 

i n E q . 5 .15 . T h e t i l t va r i ance present i n the b e a m o n bo th u p l i n k and d o w n l i n k can be 

m o d e l l e d b y c a l c u l a t i n g the s t reng th o f t u r b u l e n c e and the d iamete r o f the R a y l e i g h 

p l u m e at each ШгЬи Іеп ї layer . 

T h e v a l u e o f Го f o r a g i v e n t u r b u l e n t l aye r i n the a tmosphere , ГОҺ is g i v e n by , 

' • o . - ^ o ^ r " ' - 5 . 2 9 

w h e r e Si is t he re la t i ve s t rength o f the t u r b u l e n c e at layer i. 

T h e ac tua l L G S o f f se t i n d u c e d i n the w a v e f r o n t at each layer , σ , ' , on the u p l i n k is 

g i v e n by , 

00 

Σ びァ 

ż=0 

= > . ^ ľ - 5 . 3 0 
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w h e r e af is g i v e n b y E q . 5 .28 , w i t h a l aye r a l t i t ude o f Zi. 

T h e re tu rn b e a m d iame te r a l o n g the pa th f r o m the L G S focus t o the o b s e r v i n g 

te lescope o f d i a m e t e r Dtel can be ca lcu la ted u s i n g the g e o m e t r i c a l r e l a t i onsh ip 

^down,і ՜ Dfe¡ 
1 一 Ун, .31 

W h e n Dam « Ddowm t he t i l t va r i ance b e t w e e n u p l i n k and d o w n l i n k is essent ia l l y 

unco r re la ted [ 1 3 ] a l l o w i n g the t i l t va r i ance o n u p l i n k and re tu rn pa th t o be added . T h e 

to ta l t u r b u l e n c e - i n d u c e d t i l t cova r i ance is g i v e n b y , 

*アミ = (^L·ii^í ^ปี'ieturn ՜ 5 .32 uplink 

T h e cova r i ance b e t w e e n σ,1/^„^ and σ^^^ m u s t be cons ide red as D^,^ D^^ปี . 

H o w e v e r , the i n c l u s i o n o f t he u p l i n k and d o w n l i n k t i l t cova r i ance o n l y has the e f f ec t 

o f r e d u c i n g the o v e r a l l t i l t - v a r i a n c e , so e q u a t i o n 5.32 g i v e s a ' w o r s t - c a s e ' v a l u e . 

O n e f u r t h e r e r ro r source t h a t m u s t be i n c l u d e d i n the o v e r a l l t i l t s i gna l is the e f f ec t o f 

l a u n c h j i t t e r . T h e m a g n i t u d e and e f f ec t o f te lescope v i b r a t i o n s and w i n d - s h a k e o n the 

apparent p o s i t i o n o f the b e a m can be d e r i v e d , b u t r equ i re p rec ise measu remen ts o f a l l 

te lescope and b e a m re lay sys tem v i b r a t i o n s at a l l t e lescope e l e v a t i o n ang les , u n d e r a l l 

w i n d c o n d i t i o n s and a l l te lescope l oad ings . D u e to t h i s , a p p r o x i m a t i o n s m u s t be m a d e 

t o get a r o u g h o rde r o f m a g n i t u d e es t imate f o r the l a u n c h j i t t e r . I f the m a g n i t u d e o f 

v i b r a t i o n s b e t w e e n the p o i n t w h e r e the laser is m o u n t e d ( i n the case o f the D u r h a m 

G L A O sys tem, at the N a s m y t h f ocus o f the W H T ) and the p o i n t w h e r e the B L T is 

m o u n t e d ( b e h i n d the W H T seconda ry ) , a w o r s t case v a l u e can be d e r i v e d b y 

c o n v e r t i n g a l l t he obse rved v i b r a t i o n a l m o t i o n i n to a p o i n t i n g t e r m that is dependen t 

o n the d is tance b e t w e e n the l aunch aper tu re and cent re o f r o t a t i o n . T h i s va r i ance o f 

t h i s t e r m c o u l d t h e n be ca l cu la ted from th i s angu la r d i s p l a c e m e n t and the v i b r a t i o n a l 
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data and expressed as w a v e f r o n t va r i ance . T h i s t e r m can then be i n c l u d e d i n E q . 5.32 

g i v i n g , 

Հ լ = ՀբԽเ + σ ^ „ , „ + σ ] ; , „ , - 5.33 

U s i n g the above equa t ions , the s tandard d e v i a t i o n o f t i l t across the L G S W F S can be 

d e t e r m i n e d f o r a g i v e n a tmosphe r i c t u r b u l e n c e p r o f i l e . A l t h o u g h t h i s o n l y g i ves the 

1σ angu la r d i sp l acemen t across the p u p i l , f o r one t o be c o n f i d e n t tha t the W F S w i l l 

p e r f o r m under a g i v e n a tmosphe r i c p r o f i l e , i t m u s t be expec ted t o r e tu rn an accurate 

c e n t r o i d f o r a 3 σ d i s p l a c e m e n t ; t he re fo re the d e t e r m i n e d r m s v a l u e m u s t be m u l t i p l i e d 

b y a fac to r o f 3 to g i v e the m a g n i t u d e o f spot m o t i o n tha t w i l l be obse rved . F o r 

e x a m p l e , i f the t i l t va r i ance across the p u p i l g i ves r ise t o a s tandard d e v i a t i o n o f 

±0 .3a rcseconds , the W F S m u s t be ab le to r e tu rn an accurate c e n t r o i d f o r angu la r 

d i sp lacemen ts o f ±0 .9a rcseconds . T h i s w i l l a l l o w a fast s teer ing m i r r o r to l o c k on to 

the W F S spot pa t te rn and r e m o v e the m a j o r i t y o f the t i p and t i l t tha t are p resent i n the 

L G S w a v e f r o n t . A s t i p and t i l t accoun t f o r the m a j o r i t y o f w a v e f r o n t v a r i a n c e across 

an aper tu re [ 2 ] , c l o s i n g the L G S T T ( T i p / T i l t ) l o o p r e m o v e s m u c h o f the spot m o t i o n 

obse rved o n the W F S . T h e m a g n i t u d e o f the g l o b a l spot m o t i o n tha t w i l l be obse rved 

b y the L G S W F S is t he re fo re g i v e n b y , 

LGS Քւ - 5 . 3 4 

T h e m a g n i t u d e o f angu la r c o r r e c t i o n tha t tha t the L G S F S M m u s t p r o v i d e is t hen h a l f 

t h i s v a l u e and is g i v e n b y [ 1 4 ] , 

« г а м = 士 つทั๊^e—ζ CCLGS - 5.35 
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5.6 Results 

T h e m e t h o d s desc r ibed in sec t ions 5.2-5.5 w e r e used to o p t i m i s e the p e r f o r m a n c e o f 

l a u n c h and re tu rn sys tems. I t shou ld be no ted tha t m a n y o f the o p t i c a l c o m p o n e n t s 

present in the sys tem w e r e pu rchased f o r a l abo ra to ry A O sys tem, and w e r e n o t f u l l y 

o p t i m i s e d f o r use w i t h an o n - s k y G L A O sys tem, as w o u l d be the case f o r a f a c i l i t y 

i ns t rumen t . T h e s tandard L a P a l m a a tmosphere [ 1 5 ] w a s used as the m o d e l f o r a l l 

ca l cu la t i ons . 

T h e s tandard a tmosphere de f ines layers at 0 k m , 2 . 5 k m and 7 . 5 k m . I n i t i a l p h o t o n 

r e t u r n ca l cu la t i ons s h o w e d the 5 พ laser c o u l d n o t create an e f f e c t i v e L G S at a l t i t udes 

above ֊6km, so the h ighes t l aye r c o u l d n o t a f f ec t the p e r f o r m a n c e o f t he L G S i n any 

w a y . T h e g r o u n d and m i d d l e layers have a c u m u l a t i v e s t reng th o f 0.8 o f the t o ta l 

a tmosphe r i c Го v a l u e . F r o m equa t i on 5 .29 , t h i s means tha t t he Го e xpe r i enced b y the 

L G S o n u p l i n k and d o w n l i n k w a s increased b y the fac to r 0 .8՜^ '^ and the re la t i ve 

s t rengths o f each layer w e r e m a d e equa l at 0.5. 
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Parameter Value Unit Description 

Atmosphere 74ŪŪ ทา Characteristic scale height of atmosphere 
Го Ū.14 ทา Atmospheric Fried parametBr 
Ң զ 2.5, 7,5 km Turbulent layer altitudes 
Si ն.4, 0,4, 0.2 Turbulent layer relative strengths 
Va.m Ū.11 mag Atmospheric extinction ratio 

Telescope Dtel 4.2 m Telescope diameter 

Dindary 1.2 m Telescope obscuration diametsr 

Ttel ն.67 Transmission of telescope optics 
Hobs 2269 m Altitude of observatory 

WFS Nsubap 8 Number of WFS subapertures 
f*subap 2.11 arcsec Field of view of individual subaperture 
^subap e pixels Pixels per subaperture 
FRwFS 3Q0 Hz WFS frame rate 
QEcCD Q.84 WFS CCD quantum efficiency 

6 electrons WFS CCD read noise 
Contrast lūūū Contrast ratio of shutter system 

LGS HLGS 45ūū ทา Distance to focus of LGS 
HRGD 50 ทา Range Gate Depth 

D Zenith ang๒ 
Laser Ճ 523 nm Laser wavelength 

Q 4.5 W Output laser power 
քլ 7000 Hz Laser pulse rate 
т launch Ü.64 Launch system transmission 

Slaunch ն.8 Strehi Ratio of launch system 
DBLT 0.3 ոո Diameter of launch tElescope 
Т|аนกch Ū.83 Gaussian beam truncation ratio 

๙ 1.3 Laser fvr value 

AO SystB ทา Toptics ն.շշ Transmission of AO system optics 
DRSM 0.1 m Diameter of LGS F S M 

Table 5.2 G L A O system base parameters. 

The WFS images output by the model were analysed by examining each WFS 

subaperture in turn and calculating the position of the centro id within a subaperture. 

This value was then compared with the known centroid to determine an angular 

offset. The angular offset of the subapertures was assumed to wholly correspond with 

a wavefront tip/tilt across a subaperture. The measured-actual angular tilt discrepancy 

could therefore be scaled to give a corresponding subaperture wavefront variance. The 
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rms value of all subaperture wavefront variances gives a global wavefront variance, 

and therefore Strehi ratio. 

• • 
龜 : • 

TL » • 

• • • 

— 翻 β ι • 

• 

• • 

m 

• 

Figure 5.4 Simulated WFS images for a 10x10 subaperture Shack-Hartmann system 

imaging 10m, 25m and 50ทา sections o f a Rayleigh plume focused at 4.5km 
with a lenslet field o f view of 2.11" from a 523nni 5 พ laser with an Nť value o f 
1.3, an end to end system throughput of 0.22, with an atmospheric Го o f 0,19m 

(La Palma median seeing) corresponding to an LGS Го o f 0.20m. 

5.6.1 LGS Spot Size 

The on-sky İAJS spot size for different truncation ratios and atmospheric conditions 

was determined from equation 5.15. The launch telescope aperture was fixed at 

300mm, as this component had already been procured, although alternative launch 

aperture diameters are examined. 
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Figure 5.5 Effect o f changing atmospheric Го on the LGS plume diameter from the B L T 

launch aperture to twice the LGS focal distance. Geometric plume diameter is 

shown as a comparison 
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Figure 5.6 Effect o f changing atmospheric Го on focused LGS beam waist 
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Figure 5.7 Effect o f decreasing laser beam quality (i.e. increasing .M^) on focused LGS 
beam waist 

The importance of a high-beam quality laser is emphasised by Figure 5.7. Lasers with 

large values cannot create a low-altitude sub-arcsecond LGS, irrespective of the 

BLT launch aperture. Lower-quality lasers can however create LGSs at higher 

altiณdes i f the launch aperture diameter is increased to counter the increased beam 

divergence of the laser. 
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Figure 5.8 Effect of increasing transmitted wavefront quality on focused LGS beam waist 
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Figure 5.9 Effect of increasing launch aperture diameter on focused LGS beam waist 
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Figure 5.10 Effect o f changing truncation ratio on focused LGS beam waist 

As can be seen from the figures above, the 0.3m BLT primary aperture wi l l be able to 

create a sub-arcsecond LGS at 4.5km under median to good seeing conditions. 

One interesting feature is demonstrated in Figure 5.9. Although the BLT is focused at 

a distance of 4.5km, the smallest apparent diameter for the plume from the 0.2m 

launch aperture is placed at 4.6km. This effect is caused by perspective narrowing of 

the beam having a greater effect than the divergence of the Gaussian beam. This has 

implications for telescopes using similar launch apertures to those described here 

(< lm) that create a focused spot at higher altitudes. The apparent LGS focus wi l l not 

be at the set focal point of the BLT, and the change must be accounted for in the BLT 

design. 

Truncation ratio has very little effect on minimum LGS diameter, as does moving 

from a 0.3 to 0.4m BLT launch aperture. One interesting point to note is that as the 

beam geometric cone angle decreases, either by focusing at a higher altitude, 
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launching from a smaller BLT aperture or decreasing the truncation ratio, the 

maximum range gate depth can increase. Figure 5.10 demonstrates that even though 

the minimum LGS diameter increases, the range gate depth where the diameter stays 

below a threshold of 1.4" increases. This has important implications for LGS AO 

systems that employ dynamic refocus mechanisms. A dynamic refocus mechanism 

increases the range gate depth that can be used by tracking the laser pulse as it 

propagates along the Rayleigh beam path. To achieve this, the dynamic refocus 

mechanism must continuously reconjugate the LGS WFS to the instantaneous 

position of the laser pulse in the atmosphere. 

5.6.2 LGS FSM 

The LGS FSM corrects for any global tip-tilt that is observed on the LGS WFS. The 

degree of spot motion that would be observed was derived տ section 5.4. Using 

equations 5.27 to 5.33, a relationship between atmospheric conditions (in this case, Го) 

and maximum observed spot offset can be found. 

The effect of launch jitter is not included in this analysis as no accurate data on the 

degree of jitter in the launch system, or in the WHT structure were available. 
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Figure 5.11 Effect o f changing atmospheric Го on observed LGS spot motion 

Under median seeing conditions of 0.14m, the observed spot motion should be 0.74 

arcseconds. This means that a tip-tilt mirror with a diameter of 0.05m must have a full 

range of at least 士31.08" to correct for LGS motion under median seeing conditions, 

rising to 士37,84" for 75th percentile seeing of 0.1 Im. The actual degree of correction 

required wi l l be greater than this value, as launch jitter must also be corrected by the 

FSM. An F SM correction range of ±50" should suffice for most atmospheric 

conditions. 

After the LGS TT loop is closed and the global LGS jitter is removed, the range gate 

depth can be increased to take advantage of the stabilised WFS spots and provide a 

greater SNR. For a RLGS, this can be achieved by opening the Pocke Is cell shutter for 

a longer time period. This effect is studied in section 5.6.4. 
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5.6.3 Optimum LGS Parameters 

A wide parameter space must be examined in order to optimise the system as the 

effect of range gate depth, contrast ratio, subaperture field of view, LGS spot size and 

LGS focal altitude are interlinked, with all affecting WFS performance in some way. 

The subaperture field of view is defined by the Shack-Hartmann lenslet array focal 

length and lenslet pitch. The lenslet array being used was a commercially-available 

188цт pitch 8mmm focal length lenslet from Adaptive Optics Associates (AOA )， 

which gives a field of view of 2.11 arcseconds per subaperture. This is a smaller field 

of view than would normally be used for an LGS WFS as the subaperture must 

accommodate any elongation present due to the finite depth of the range gate, but an 

alternative lenslet could not be purchased with the budget available for the project. 

This set stringent limits on the performance of many aspects of the system. 

To determine the optimum LGS altitude requires three pieces of information. First the 

minimum WFS signal level must be determined. This allows range gate depth and 

LGS focal distance combinations that can provide adequate return flux to the WFS to 

be determined. Due to the exponential decay of atmospheric pressure with altitude, to 

get a constant signal level on the WFS, the range gate depth must be increased at a 

faster rate than the LGS focal distance increases. This means at higher altitudes the 

angular magnitude of WFS spot elongation increases. 
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Figure 5.12 Range Gate Depth and LGS focal distance combinations thai provide a given 
detected photon flux to a 10x10 SH-WFS on a 4.2m telescope using the 
parameter defined in Table 5.2. Telescope is pointing at zenith. 
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Figure 5.14 Effect o f increasing spot elongation on WFS performance. Each line plots the 

Strehi ratio returned by a 10x10 SH-WFS when the spots are globally offset 

from the centre o f the subaperture for an average flux o f 800 photons per 

subaperture per WFS frame. To retain the signal level as the LGS focal distance 

is increased, the range gate depth must increase also, increasing apparent spot 

elongation. After introducing read noise into the WFS image 250 frames were 

averaged to create the plots shown above. 

Figure 5.14 demonstrates the effect of spot elongation on WFS performance. The 

performance was studied by globally offsetting all the LGS spots by a small amount, 

i.e. introducing a ti lt across the LGS wavefront, and reconstructing the measured 

wavefront. I f the WFS can measure the tilt, there wi l l be no difference between the 

measured LGS wavefront and true LGS wavefront and a zero wavefront variance 

between the two wavefronts wi l l be returned. For this discussion, the term WFS Strehi 

ratio has been used as the metric with which to define the LGS WFS performance. 

The global spot offset introduced emulates the LGS launch jitter as this is observed as 

a global spot offset on the WFS. As is to be expected, increased spot elongation 

reduces the global spot offset, and hence the magnitude of launch jitter at which the 
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wavefront measured by the WFS wi l l match the true LGS wavefront to a given Strehi 

Ratio (SR). 
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Figure 5.15 Effect o f increasing detected photon flux on WFS performance for an LGS at 
4km distance. This shows the effect o f increasing spot elongation at a single 
altitude. After introducing read noise into the WFS image 250 frames were 
averaged to create the plots shown above. 

Figure 5.15 shows the effect of increasing the photon flux (and elongation) while the 

LGS focal distance is a constant 4km. As can be seen, an average signal level of 200 

photons cannot provide optimum performance from an LGS WFS with 6๙ read noise. 

Optimum performance is not seen until photon flux is increased to 600 photons. 

However, mcreasing the return flux by increasing range gate depth as is shown in 

Figure 5.15 also reduces the magnitude of LGS spot jitter that can be observed before 

wavefront variance between the measured and true LGS wavefronts increases. For 

each LGS altitude, there is an optimum signal level that draws the best compromise 
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between WFS SNR and contamination öf adjacent subapertures caused by elongated 

spots. This is demonstrated by Figure 5.16 and Figure 5,17. 
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Figure 5.16 shows that for an LGS created 4km from the telescope pupil, an average 

signal of 800 photons per subaperture gives the best performance between WFS SNR 

and spot elongation. For an LGS created at 8km from the telescope pupil, as shown in 

Figure 5.17 this flux has dropped to 600 photons per subaperture. This is because a 

longer spot elongation is required to provide the same photon flux, therefore 

decreasing the WFS Strehi ratio for a given spot offset. Figure 5.17 shows that even 

small global spot motions wi l l impair WFS performance. An 8km LGS with the 

demonstrator system is therefore not a viable option. Plotting Figure 5.16 and Figure 

5.17 for all LGS altitudes between 3km and 10km shows that the optimum photon 

flux is between 600-800 photons over this range of LGS altitudes. 

To allow the LGS tip/tilt loop to close and the gross spot motion due to launch jitter to 

be removed from the wavefront, the WFS Strehi ratio must be greater than zero. 

Numerical simulations [16] of the loop closing on offset spot patterns have shown that 

a WFS Strehi ratio of 0.05 wi l l always allow the LGS tip/tilt loop to close. Combining 

this Strehi Ratio with the 0.74" spot jitter that was determined in section 5.6.2 allows 

us to determine a set of range gate depth and detected photon flux combinations that 

wi l l allow the LGS FSM loop to close. These combinations are plotted in Figure 5.18 

and show that there are a wide range of possible LGS focal altitudes that can be used 

with the GLAO WFS system. 
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Figure 5.18 LGS Focal distance and detected photon flux combinations that provide a 

Strehi ratio o f 0,05 or greater at a global spot offset o f 0.74" 

Once the LGS tip/tilt loop is closed, the residual spot motion is reduced and the WFS 

Strehi ratio improves. As previously stated, the optimum photon flux is between 600 

and 800 photons per subaperture for LGS focal altitudes between 3km and 10km. 

From the analysis presented in chapter 7, the optimum LGS altitude is at 4km. This 

allows us to define an optimum range gate depth of 69m. The resulting optimised 

WFS pattern is shown in Figure 5.19. 

The performance of the optimised WFS, with the effect of the 6e- read noise is shown 

in Figure 5.20. It can be seen that for residual spot motions below 0.25", the WFS 

achieves a 'diffraction-limited' Strehi of 0.8, irrespective of the effects of noise in the 

WFS signal. Once both the LGS tip/tilt loop and LGS high-order loop have closed, 

the LGS WFS spot motion wi l l be reduced to a minimum. I f the spots are stabilised to 

within ±0.25，\ the WFS wi l l have a diffraction limited performance. In reality, the 

WFS Strehi should be higher than 0.8， as other error sources wi l l also reduce the 
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overall system performance, but the extent of these errors cannot be determined 

without a full system error budget. 
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Mgure 5.19 Optimum LGS WFS spot pattern for a 4km LGS with a 69m range gate. 
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5.6.4 Variable Range Gate 

Temporal control o f the range gate depth o f a Rayleigh LGS allows the photon flux to 

be optimised depending on the regime that the A O system is currently operating 

under. Three stages, and a set o f associated conditions, can be defined before high-

order correction o f the LGS wavefront can occur. 

The first stage involves correcting the apparent mot ion o f the LGS. As was seen in 

Chapter 2， the apparent mot ion o f the LGS at a f ini te altitude bears no (or at most, a 

min imal) relationship to the wavefront coming f rom a N G S situated at inf in i ty . The 

observed LGS mot ion is a combination o f dif ferential t i l t on the LGS upl ink and 

return paths and launch j i t ter due to telescope vibrations. For the LGS fast-steering 

loop to close and suppress the observed LGS mot ion, the LGS WFS must be able to 

detect global t ip/ t i l t f rom the WFS pattern. The field o f v iew o f the lenslet must be 

great enough that the elongated spots do not contaminate adjacent subapertures and 

degrade the WFS perfonnance. For a given subaperture F O V , the magnitude o f 

al lowed spot elongation is dependent on the magniณde o f launch j i t ter and the LGS 

angular diameter. 

Once the LGS fast-steering loop is closed, the observed mot ion o f the WFS spots is 

reduced and the second stage is reached. The reduced WFS spot mot ion al lows the 

range gate depth to be increased to f i l l pixels that are no longer used. Al ternat ively, 

the altitude and range gate depth can be increased to reduce the effects o f focal 

anisoplanatism, although this requires reconjugating the WFS to the new LGS focal 

distance. This increases the WFS SNR and improves performance. For a given 

subaperture diameter, the elongation al lowed in this second stage is dependent who l ly 

on the turbulent properties o f the atmosphere. 
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The f inal stage is the spot mot ion that is observed once the loop has been closed. The 

residual spot mot ion at this stage is the smallest and therefore the range gate depth and 

LGS altitude can be increased to its max imum value. The spot elongation al lowed in 

this final stage is dependent on the atmospheric turbulence prof i le and the closed-loop 

A O performance. 

One drawback to the use o f a variable range gate is that as LGS range gate depth is 

increased, the non-uni form i l luminat ion o f the LGS plume on the WFS C C D biases 

the centroid away f rom the centre o f the subaperture. This is interpreted by the WFS 

and control system as a wavefront focus term, and the appropriate correction w i l l be 

applied to the D M . This w i l l cause the science image to become defocused. 

Fortunately, this effect is purely geometrical and can easily be modelled. The 

geometry is assured by the accurate control o f the range gate depth and LGS focal 

altitude. Sodium LGSs cannot rely on the geometry o f the LGS remaining f ixed and 

so rely on a secondary low-bandwidth NGS WFS that takes time-averaged exposures 

to determine focus errors in the wavefront and apply correction to the LGS WFS. A 

similar method can be used to determine the correction to apply Rayleigh L G S WFS 

image. 

A n alternative method to increasing the range gate depth in three closed-loop steps is 

to use only the least elongated spots to close the LGS fast-steering loop. These w i l l be 

the WFS subapertures closest to the telescope pupi l centre. As wavefront t ip and t i l t 

are part ial ly correlated in adjacent subapertures, stabil ising the inner r ing o f 

subapertures w i l l reduce spot mot ion on the next r ing o f subapertures. The process is 

repeated, adding more subapertures unt i l the fu l l WFS pattern is used to sense t i l t . 

Using this method, launch j i t ter can be removed using the optimised range gate depth 

as a starting point. 
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The techniques presented in this section, including varying the LGS range gate depth 

and focal distance during different stages o f closed loop operation and using only the 

central WFS subapertures to in i t ia l ly close the LGS loop, have not to the author'ร 

knowledge, been presented before this work . 

5.7 Conclusions 

Using a model o f the semi-analytical model o f the LGS, B L T and atmosphere, the 

opt imum photon flux was determined. B y including the result o f numerical model l ing 

o f A O system performance given in Chapter 7, an opt imum LGS distance o f 41cm w i th 

a range gate depth o f 69m was determined. This LGS focal altiณde and range gate 

depth combination optimises both WFS performance and PSF uni formi ty across the 

f ield o f v iew o f the experimental G L A O design presented in Chapter 6. The study has 

shown that there exist many other LGS focal distance and range gate depth 

combinations that wou ld a l low the LGS WFS to funct ion, albeit w i th reduced 

performance. The freedom this gives al lows some redundancy in the system design in 

case photon fluxes are not as bright as predicted, LGS spot j i t ter is greater than 

predicted, or atmospheric turbulence increases the LGS spot size. 

The use o f novel techniques to improve LGS WFS SNR, such as variable range gates 

and the concept o f staggered loop closing introduced. Both these methods a l low for 

increased SNR in the WFS as a longer LGS range gate can be used. 
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Chapter 6ะ GLAO design 

6.1 Introduction 

This chapter describes the design o f the G L A O system used and looks at factors that 

affect performance, and how they were minimised w i th in the scope o f the budget and 

project timescale. Much o f the hardware and software uti l ised in the G L A O design 

was developed in conjunction w i th the N A O M I system that is deployed on the W H T , 

and so many o f the issues that have been studied in order to optimise N A O M I apply 

directly to the G L A O system. 

The main риф08е o f this chapter is not to detail the work done by others on many 

aspects o f the G L A O system (especially the real-time control software), but more 

detailed description o f some technical aspects o f the system w i l l in some cases be 

required. 

As w i th the previous chapter, this chapter f irst examines the technical issues that must 

be addressed w i th any G L A O optical design, then goes on to detail the design itself. A 

conventional A O system comprises o f three main components, a wavefront sensor 

(WFS), a wavefront corrector, normal ly some form o f deformable mirror ( D M ) , and a 

control system l ink ing what the WFS senses to what shape must be employed on the 

D M surface to flatten the incoming wavefront. Each part w i l l be examined in detail 

along w i th a study o f theoretical performance. The system performance itself, both 

on-sky and in the laboratory, are รณdied in chapters 7 and 8 respectively. 
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6.2 GLAO Overview 

G L A O is a method o f correcting only the lowest altitude ШгЬиІепсе present in the 

atmosphere above a telescope in order to provide a wide-f ie ld partial correction o f 

image quali ty due to atmospheric effects. To achieve this, either tomographic 

sampling o f the atmosphere must be employed to determine the ground layer 

turbulence prof i le, or more simply, a laser guide star can be projected to an altitude 

where only the lowest level turbulence is sampled. The latter was the method 

employed for this system. 

The use o f a low-alt i tude LGS introduces the problem o f pupi l misrepresentation on 

the deformable mirror ( D M ) surface that is not present in any LGS-enabled A O 

systems currently in routine operation, as they all rely on the excitation o f sodium 

atoms to fo rm a wavefront reference at an altitude o f 90-lOOkm. Wi th a low-alt i tude 

beacon, the difference in positions between the LGS focus (conjugate to 

approximately 4.5km) and the inf ini ty-focused starlight (hereafter referred to 'NGS' or 

'Science' l ight) can be large (Figure 6.1), whereas the difference in posit ion between 

the sodium LGS and the in f in i ty focus N G S l ight is small. I f this extra path length is 

not compensated for, although the optics w i l l ensure that the pupi l is re-imaged onto 

the D M surface, the footprint o f the N G S and LGS beams w i l l be o f dif ferent sizes at 

all optical surfaces that are not conjugated to the telescope pupi l . This w i l l introduce 

static aberrations between the LGS and NGS paths that w i l l increase as the LGS 

altitude is reduced. Other than this problem, the low-alt i tude G L A O design shares 

many design considerations w i th a conventional LGS-enabled A O system. 
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Figure 6.1 Focal shift between NGS and LGS foci. For 4km and 4.5km LGSs on the WHT 
the focal shifts are 48cm and 54cm . 

6.3 Wavefront Correction 

The performance and design o f the wavefront corrector are at the heart o f an A O 

system, and drive many other aspects o f an A O system design such as WFS 

resolution, physical size o f the optics, and the complexi ty o f the control system to 

name just a few. The most important specification for a wavefront corrector, from an 

optical design standpoint at least, is the diameter o f the phase control l ing surface. For 

the control system, the number o f actuators, and thus control channels, is the most 

important specification. The WFS design is affected by both the actuator geometry 
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and number o f actuators. As this demonstrates, once the wavefront corrector has been 

chosen, much o f the design is defined along w i th it, so the choice o f wavefront 

corrector is one that defines system performance as a whole. 

Many components o f the G L A O system described here were previously purchased 

before wo rk on this thesis had commenced, so many aspects o f the design were 

already defined. The wavefront corrector, wavefront sensor and control system were 

already in place as part o f a laboratory A O simulator, so a comparative study o f 

dif ferent wavefront corrector and WFS technologies is outside the scope o f this work, 

but it is shown how the G L A O system was designed to maximise performance o f each 

o f the components w i th in the budget and timescale possible. 

6.4 System Components 

As was seen in Chapter 2， the most commonly used type for astronomical A O is a 

continuous phase sheet D M . The primary manufacturer o f these DM 'ร is Xinet ics Inc. 

in the United States o f Amer ica. A Xinet ics D M was inherited for use w i th this 

project. The Xinet ics D M has a regular gr id actuator geometry w i th a 7mm actuator 

pi tch. A long w i th the number o f actuators, the actuator pi tch defines the physical size 

o f the D M . The Xinet ics D M used has 97 actuators in an 11x11 square array as shown 

in Figure 6.2. This gives the reflective phase surface o f the D M a 78mm clear 

aperture. The WFS is based around a 4"port EEV-39 C C D , using a controller designed 

and bui l t by Rutherford Appleton Labs. A 25mm diameter square-lenslet array w i th 

an actuator pi tch o f 188 microns and a focal length o f 8mm creates the Shack-

Hartmann spot pattern. The control system is a parallel 8"processor Texas Instruments 

C40 DSP system, w i th a 9th DSP for diagnostics and moni tor ing purposes. The real" 
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t ime control software was developed in-house [1]， but system calibration tools st i l l 

required development to maximise performance. 

Figure 6.2 Actuator map of Xinetics 97. The acmators are arranged ш an 11x11 regular 

array with a 7mm pitch. The edges of the phase sheet are not secured. The clear 

aperture is 78mni. 

6.5 AO system design 

The optical design o f any A O system must accomplish four main tasks. First, it must 

accept l ight f rom the main observing telescope. Secondly, it must expand this beam 

onto the surface o f the wavefront corrector. Thi rd ly , it must provide inputs to both 

WFS and science camera. Final ly, it must do this w i th a high optical throughput, 

basically meaning the fewer the surfaces, the better. 

The starting point for the optical design o f an A O system is the clear aperture 

diameter o f the wavefront corrector, in this case a Xinet ics D M . To correct for the 
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most complex wavefronts, the wavefront corrector needs to have as many degrees o f 

freedom as is possible, and this means using al l the actuators. The highest-order A O 

systems have wavefront correctors w i th 941 actuators, but use a guard r ing o f 

actuators around the main active area that tracks nearby actuators in order to minimise 

edge effects. Edge effects are caused by the mirror not being constrained outside the 

outer r ing o f actuators at the edge o f the pupi l . Without this guard r ing, the response 

o f the unbound mirror edge w i l l reduced system performance. Actuator response can 

also be affected by their prox imi ty to the edge o f the phase surface due to tension 

w i th in the phase sheet. W i th D M ' S that have fewer actuators, ut i l is ing a guard r ing 

reduces the number o f actuators by such an amount that the performance 

improvement that should be observed is countered by the fact that the D M has a 

reduced number o f degrees o f freedom. Interferometrie measurements o f the D M 

showed that edge effects were not noticeable i f the used aperture o f the D M did not 

exceed the outer r ing o f actuators. This condit ion is shown in Figure 6.3 and resulted 

in a D M clear aperture o f 77mm. 

- 178 -



77mm 

Figure 6.3 Usable area of Xinetics DM shown in green. I f the Fried WFS-DM geometry is 
enforced, then subapertures at the pupil edges become highly vignetted. 

The clear aperture o f the D M also defines the physical size o f the optics that must be 

used to direct the beam around the A O system. A generic A O system takes the 

focusing l ight beam output by the telescope and coUimates it at the correct size to fill 

the clear aperture o f the D M . I f the D M is 10mm in diameter, this is a simple optical 

design and cheap off- the-shelf optics can be used. However a 10mm diameter D M , 

using current technologies cannot contain more than a few corrective elements, and 

would not be able to correct the complex wavefronts seen at visible or N I R 

wavelengths. For an 11x11 Xinet ics D M , the clear aperture is 78mm, meaning all 

surfaces must be at least 80mni in diameter, and even larger i f a large f ie ld o f v iew is 

to be transmitted through the A O system. For the next generation o f E L T A O systems, 

DM 'ร may measure meters in diameter requir ing signif icantly large, heavy and 

expensive optics. 
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The use o f a collimateci beam in the system al lows the D M to be placed at a height 

that is conjugate to the most ШгЬиІепЇ layers in the atmosphere. The effect o f D M 

misconjugation on the performance o f an A O system has been studied in several 

papers [2,3]. For a G L A O system correcting ground layer turbulence only, regardless 

o f the altitude o f the turbulent layers in the atmosphere, the D M must be conjugated to 

the pupi l o f the telescope. 

A f te r the wavefront has been corrected, the collimateci beam is then refocused into the 

WFS and science cameras. The normal method for doing this is to use a pair o f 

matched off-axis parabolic mirrors to col l imate and refocus the beam. Large diameter 

off-axis parabolic mirrors w i t h a h igh surface accuracy are both expensive and 

d i f f i cu l t to al ign, as they require a 6-axis alignment procedure, whi le on-axis 

components only require 5-axis al ignment as they are rotationally symmetric. On-axis 

parabolic mirrors are not usually used as they require an extra surface to feed the l ight 

onto the optical axis o f the parabolic mirror, and this extra surface can not only l im i t 

the f ield o f v iew o f the system but also reduce overal l throughput. 

The optical design must also include dichroic elements for separating different 

wavelengths o f l ight into the WFS and science cameras. For N G S A O systems, the 

wavefront is usually sensed over a small bandpass at visible wavelengths, w i th N I R 

l ight being fed into the science camera. Chromatic separation o f the visible l ight f rom 

the N I R maximises throughput to both the WFS and science CCD. A O correction is 

simpler at longer wavelengths as the atmosphere has less effect on longer wavelength 

l ight. A small apparent improvement in image qual i ty at a visible wavelength can give 

a di f f ract ion- l imi ted image i f the same wavefront is studied at N I R wavelength o f 1 

micron or longer. For an LGS A O system, only a very small wavelength bandpass is 

required o f maybe +/- I n m . Dichro ic beamsplitter technology has improved greatly in 
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recent times. Rugate notch filters capable o f transmitt ing wavelengths f rom uv to 

N I R w i th an average 9 5 % eff iciency except for a lOnm bandpass positioned almost 

anywhere w i th in the wavelength range that reflects nearly 100% o f the l ight [4,5] . The 

avai labi l i ty o f this technology al lows LGS l ight to be removed wi th great ease f rom 

the system and fed into an LGS optimised WFS wi thout adversely affecting visible or 

N I R throughput. 

The field o f v iew o f the A O system is also a consideration for the optical design. As 

discussed in Chapter 1, as the angle between the wavefront reference source and the 

object being studied is increased, the A O correction degrades. For most conventional 

A O systems, the wavefront reference is either a N G S or a high-alt i tude LGS, and so 

the A O corrected f ield is very small, o f the order o f an arcminute at the very most, so 

the field o f v iew o f the system need not be much greater than this. LGS A O system 

also require a separate faint NGS wavefront reference to determine global t ip/ t i l t from 

the atmosphere (see Chapter 2) wh ich must be positioned w i th in a small radius o f the 

LGS, so the transmitted f ie ld o f v iew must also a l low for this. For a G L A O system, 

depending on atmospheric conditions, the corrected f ield o f v iew can be far greater 

than either an NGS or LGS-enabled A O system, so G L A O includes the requirement 

for a far larger field o f v iew in the optical design. 

6.6 Range-gating the Rayleigh return 

The range gate is an essential part o f a Rayleigh LGS A O system, as an altitude at 

wh ich the LGS is to be created must be selected. Wi thout this, the Rayleigh plume 

contaminates the WFS image and using the Rayleigh backscatter as a wavefront 

reference source becomes impossible. The type o f range gate used is dependent on the 
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pulse rates o f Rayleİgh lasers that vary between 200Hz and lOkHz, depending on the 

type o f laser being used. For the slower, 200Hz pulse rate lasers, the complexi ty o f the 

system is obviously reduced, as it becomes feasible to use mechanical devices to 

assist w i th shuttering, but for the high repetit ion rate lasers, an electro-optic range gate 

becomes necessary to select a required depth around the LGS focal altitude. 

Electronically shuttered CCDs are also available. These include elements on the C C D 

that drain photoelectrons when a trigger is set, such that an external range gate is not 

required. Obviously, i f on-chip range-gating can be achieved, the use o f an external 

range gate becomes redundant, and including a range gate in the design is not 

necessary. A l though the gated C C D described above is available and in use in 

Rayleigh LGS observations, it was not available for this project so an external range 

gate was needed. 

Electro-optic range gates wo rk by altering the polarisation state o f l ight passing 

through it. B y placing the electro-optic cell between crossed polarisers, a shutter 

capable o f very fast on /o f f switching times and w i th very high (10000:1) extinction 

ratios is achievable. The problem w i th using an electro-optic range gate is 

іпсофога Ї іп§ it into the optical design. The d i f f icu l ty and expense o f growing large 

crystals suitable for use as an electro-optic cel l means the cell is often long and 

narrow and extended in the z-direction, wh ich severely l imits the field o f v iew that the 

cel l can transmit. I f the aperture o f the cel l is increased, then a higher electric field is 

required to induce the π/2 polarisation change that is required for shuttering. Higher 

electric fields not only require higher voltage power supplies and electronics for their 

generation, but the rapidly changing rate ( lOkHz) o f the electric f ie ld can also 

introduce piezoelectric effects inside the crystal, introducing aberrations in the 

transmitted wavefront. The piezoelectric effect also causes oscil lations in the angle o f 
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retardation immediately after the cel l is switched. This behaviour is known as 

' r ing ing ' and reduces the shutter contrast ratio. The piezoelectric effects can be 

reduced, or even removed entirely, by changing the type o f electro-optic crystal, but 

this comes at a price and often the piezoelectric effect free crystal cannot be found 

w i th suitable apertures and lengths. 

The reliance o f the system on the electro-optic cell to create the range gate can be 

relieved by the use o f sophisticated baf f l ing systems in the return path. Figure 6.4 

shows a schematic o f a conical rod Rayleigh noise suppression system that can be 

used to passively vignette the returning LGS beam before it enters the WFS. By using 

a passive optical baff le, most unwanted return l ight f rom the Rayleigh plume can be 

removed f rom the system wi thout introducing any further wavefront aberration into 

the system or a reduction in throughput to the WFS. A Z E M A X model o f the 

performance o f this system was made, and the results o f this are given later in this 

chapter. 

LOS return from 
aMtude above 

range Qeto 

LGS return from 
«mixto 

range gate 
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Figure 6.4 Optical baffling scheme used to suppress Rayleigh plume around LGS focal 
distance 

6.7 LGS WFS 

The WFS must also be positioned w i th great accuracy, as for best performance it must 

be aligned not only to the return beam, but also to the wavefront corrector. The type 

o f wavefront corrector used and wavefront sensor geometry are closely l inked. For 

example, the actuator geometry present in a Xinetics-style D M is very similar to the 

geometry present in a normal square-geometry Shack-Hartmann WFS, whi le the 

curvatures applied to the wavefront by a bimorph mirror are better measured by a 

curvature sensing system. Similarit ies between the corrector and sensor geometry can 

improve the performance o f a system, as cross-talk between control channels is 

reduced. This al lows simpl i f icat ion o f the control system, as performance can be 

tuned by using sparse-matrix methods for example [6 ] . 

In the case o f the Xinet ics D M and SH-WFS used for this system, the actuator and 

lenslet geometry required careful al ignment. The ideal al ignment requires posit ioning 

an actuator at the comer o f each WFS subaperture such that adjustment o f an actuator 

affects only the four adjacent WFS spots. This al ignment is known as the Fried 

geometry. In the event that a lenslet lies directly above an actuator, a change in 

posit ion o f the actuator does not affect the posit ion o f the WFS spot. I f this occurs, the 

WFS spot experiences a focus/defocus term and becomes blurred. For a SH-WFS that 

works by determining wavefront slopes, this is a situation that needs to be avoided. 

This can not generally be achieved in a conventional reflective astronomical A O 

system using regular actuator/lenslet geometries, due to the need for the l ight to 

reflect o f f the wavefront corrector at an angle. This angle means that the apparent 
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actuator density wi l l be different in X and y dimensions and the actuator/lenslet 

alignment condition described above cannot be met. 

Spot elongation is caused by imaging the LGS from an off-axis position. The degree 

of spot elongation observed on a WFS image is a product of LGS altitude, range-gate 

depth, the distance from the BLT to the optical axis of the observing telescope and the 

position of the subaperture from the centre of the pupil plane. For a LGS projected 

from behind the secondary mirror of the observing telescope, the maximum spot 

elongation is observed at subapertures at the edge of the WFS. Although this example 

describes spot elongation as it is observed on a SH-WFS, all WFS are affected by spot 

elongation. On a curvature sensing system, spot elongation is observed as a blurring 

of the pre- and post-focal images. The blurring is due to the difference in focal 

positions between the return from the lowest altitude of the range-gate to the highest. 

The field of view of each WFS subaperture must be taken into account when 

determining the maximum allowed range gate depth for the LGS. Without taking this 

into account, larger and larger range-gates can be selected to allow a greater photon 

return, but the defocused return from the extremes of the range gate wi l l separate and 

can overlap adjacent WFS subapertures. At this point, wavefront determination is 

affected and AO system performance is reduced. A model of the LGS was made to 

examine the performance of the LGS-WFS and the impact of changing LGS 

parameters on the optical design and is presented in Chapter 5. 
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6.8 System Design 

6.8.1 Optics 

The GLAO system was to be situated on the GHRIL Nasmyth platform of the WHT 

and had to accept the photon return from a low-altitude Rayleigh LGS. The space 

envelope available within the GHRIL Nasmyth platform is shown in Figure 6.5. The 

optical axis is 150mm above the optical bench surface. As has previously been 

mentioned, a GLAO design must observe both the infinity and LGS focal points. At 

the WHT Nasmyth focus, the difference between focal points at the optimum LGS 

altitude of 4km (determined in Chapter 7) and the infinity focus was 540mm. The 

difference in focal positions also precludes the use of the field derotator as it 

possesses too small an aperture to pass the low-altitude return without vignetting. The 

field derotator was therefore removed. The removal of the derotator meant that the 

field would rotate around its centre as the telescope tracked. For the AO system to 

retain alignment to the NGS while the telescope was tracking either the NGS had to 

be on-axis, or short exposures where field rotation would not be apparent would have 

to be used. For off-axis science objects, exposures times had to be long enough such 

that the seeing was averaged, but short enough such that field rotation was not 

apparent. 
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Figure 6.5 GHRIL bench space envelope 

An overview of the optical design used is shown in Figure 6,6 and a description of the 

optical components given in Table 6.1. The first element used in the system was a 

dichroic beamsplitter that separates the 4km focused LGS light and the infinity 

focused NGS/science light. The beamsplitter used was a 110mm dichroic that reflects 

all wavelengths between 650nm and 850nm and transmits all others. The dichroic 

beamsplitter was 10mm thick and had been borrowed from the OASIS spectrograph 

feed, thus saving the expense of a high-quality custom dichroic, although a custom 

dichroic would have been a preferable solution. 

At 523nm at an incident angle of 45 degrees, the dichroic transmission was measured 

as 85%. At NIR wavelengths (λ > 1 micron), the dichroic transmission was not 

known, but was estimated to have 20% efficiency. The true reflectance of NIR 

wavelengths by the dichroic beamsplitter was not important as a brighter reference 
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source could always be found. For this demonstrator system, improving sky-coverage 

or IR throughput was not feasible with the available project budget. At longer 

wavelengths than the J-band, the increase in isoplanatic patch size in the atmosphere 

meant that the wide field performance of the system could not be studied due to the 

limited field of view of the GLAO design. 

Off-axis Toroidal Mirror 

Parabolic Mirror ToWFS and 
Science cameras 

Mirrors with 20mm 
centrฟ aperture 

Minor 

Parabolic Mirror 
Beamsplitte 

OKOTech DM 

lnout from 

Xinetics DM conjugated 
to NGS and LGS pupils 

LGS Tipsilt Mirror 200.00 Mエ^^ 

Figure 6.6 GLAO optical design. Red lines denoted return beam from LGS focus, green 

beam shows infinity focused beam. LGS path length compensation occurs after 

the initial LGS/NGS beamsplitter. 

AO path from: Infinity Focus LGS focus (4knn) Units 

Input f-number 11 11.13 

Output f-number 11.74 11.64 

Input plate scale 4.44 4.46 arcs^^ 

Output plate scale 4.16 4.26 arcs^^ 

Magnification 1.067 1.047 

FOV (unvignetted) 84.24 87.12 arcsec 

Pupil Diameter at DM 73 72.6 mm 

Throughput Unknown 0.34 

Wavefront Quality (optimised) 200 Unknown nm 

ГаЫе 6,1 Overview of designed optical performance in GLAO system optical train shown 

in Figure 6.6. 
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Table 6.2 Optical Description of powered components in Figure 6.6 

The LGS light then entered a reconjugation system that removed the excess path 

length between the LGS and NGS light. Three reflective elements were used in the 

reconjugation system. The first was a 37-element OKOTech electrostatic deformable 

mirror. This mirror was included in the design as it allowed the LGS wavefront to be 

manipulated independently from the visible NGS light. Using the OKOTech D M in 

this way allowed for repeatable, calibrated turbulence profiles to be injected into the 

system both for alignment and closed-loop system testing. Software was written to 

convert atmospheric phase maps into actuator values that took into account the 45 

degree angle of incidence that was present in the optical design. The OKOTech mirror 

was also used to remove any static aberrations present in the LGS-specific parts of the 

AO system to present as flat a wavefront into the LGS WFS as was possible. By 

doing this, the spot elongation only varies due to the factors detailed in Chapter 5， and 

the LGS WFS wi l l only see slopes that are present in the wavefront due to 

atmospheric turbulence, and not due to aberrations in the optics. 

The final function of the OKOTech D M was to change the focal ratio of the LGS 

beam to match the NGS beam. The input fľratio of the NGS beam was 10.96, while 

the LGS beam was f / l l . l l . This difference was small and only required a small 

wavefront curvature to be added, but the ability of the OKOTech D M to approximate 

a toroidal surface was used to change the LGS beam f7ratio without introducing the 

extra wavefront aberration that would be added i f an off-axis parabolic mirror were 

used. To decrease the f/ratio of the LGS beam, the D M could only be placed before 

the LGS focus as the default mirror shape of the electrostatic D M is parabolic and so 

can only place a focus term on a reflected wavefront. 
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The next element in the LGS reconjugation system was a fast-steering mirror (FSM) 

for tip/tilt correction of the LGS wavefront. This mirror was used to correct for any 

global spot motion that was observed on the LGS WFS without affecting the tilt 

across the NGS wavefront. This mirror had to correct for the dual effects of 

atmospheric tip-tilt on both the uplink and return paths of the laser, and also any spot 

motion due to vibration in the LLS and telescope structure. The maximum spot 

motion due to the atmosphere was of the order of twice the seeing limit. Any spot 

motion observed over this limit was thought to be due to telescope vibrations affecting 

the position of the generated LGS. 

The design of the LGS FSM therefore had to allow for correction for angles at least 

twice those produced by the worst seeing conditions that could be reasonably 

expected, and with an extra allowance for the correction for telescope vibrations. 

When the expected wavefront tilt is scaled from the 4.2m WHT aperture to the 50mm 

diameter of the LGS FSM the maximum angular offset value was estimated (see 

Equation 5.35) as ±50". Figure 6.7 shows an image of the completed LGS FSM. Two 

Physik Instrument (PI) actuators with a maximum stroke of 15 microns were 

positioned equidistant to a central pivot point, with one actuator vertically below and 

the other horizontally level with the pivot. The maximum angular deviation of the 

mirror was defined by the stroke of the actuators and their distance from the pivot. 

The actuators were 20mm from the pivot point defining the maximum angular 

deviation as ±77". The output 14-bit DAC used to control the actuator gave an LGS 

FSM resolution of 0.037". Two compression springs were placed in opposition to 

each actuator to provide a countering force. By increasing the stiffness of these 

springs, the resonant frequency of the FSM could be increased, but at the cost of an 

increase in hysteresis effects. The resonant frequency of the FSM had to be above the 
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loop speed of the WFS and control system, as this would determine the update rate of 

the mirror pointing. 

Figure 6.7 Side view of LGS FSM. 

The lowest resonant frequency of the mirror was measured by placing a high speed 

camera at a point Im from the FSM. A laser beam was then reflected from the mirror 

and into the high speed camera. A sinusoidally varying voltage was applied to each 

actuator in turn and the filli range of spot motion was recorded. The frequency of the 

sine wave was then increased, taking care to avoid aliasing with the frame rate of the 

camera, until the foil range of motion decreased by 1/e^ of the full range of spot 

motion. This was observed at 450Hz. 

The final element in the LGS reconjugation optics was a simple fold mirror that 

directed light back through the dichroic beamsplitter, where the reconjugated LGS 

beam was recombined with the NGS beam. The LGS reconjugation path can 

reconjugate light from different altitude LGSs by moving the D M and FSM along the 
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optical axis of the GHRIL bench. The altitude limits of the LGSs that can be observed 

with this system are imposed by the clear aperture of the dichroic beamsplitter. The 

clear aperture of the 110mm beamsplitter (tilted at 45。) was placed ЗООтш from the 

NGS focus and therefore limited the lowest possible altitude of the LGS to 

approximately 2km. The focal point of a 2km beam is 1.09m from the NGS focal 

point. 

The beamsplitter and electrostatic membrane D M were also easily removable such 

that the bare Nasmyth focus could be easily accessed. This was useful, as explained in 

Chapter 4， for studying the Rayleigh photon return over all LGS altitudes. 

The LGS F SM could not be conjugated to the WHT pupil, therefore LGS pupil 

footprint would wander over the surface of the D M once the LGS FSM loop was 

closed. The LGS FSM was conjugated to a distance of 19.1km from the telescope 

primary. As determined in section 5.6.2, the observed spot motion under median 

atmospheric conditions wi l l be 0.74". Using the LGS FSM at a conjugate distance of 

19.1km to correct for a tilt of this magnitude wi l l cause the WHT pupil to shift by 

6.8cm. This corresponds to a pupil shift on the D M of approximately l/6th of the 

interactuator distance. In terms of LGS closed-loop stability, changing the position of 

the LGS pupil on the D M in this manner essentially means that the WFS"DM 

interaction matrix^ becomes inaccurate, thereby affecting performance. There was 

insufficient time available to fully quantify or measure this effect, however, empirical 

evidence from laboratory-based closed-loop testing showed that the AO loop would 

still close and provide some degree of correction with this offset. 

see section 8.5 for further description of the WFS-DM interaction matrix 
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Once the LGS and NGS beams had been recombined, both beams were expanding 

and were too large to pass through the central aperture of the first Newtonian fold 

mirror. An off-axis toroidal mirror, originally used in the MARTINI AO system [7], 

was placed 1.2m from the NGS focus. The toroidal mirror served a dual purpose of 

not only refocusing the beam into the main AO path (comprising the beam 

expander/collimator mirror, D M , refocusing mirror and annular fold mirrors), but it 

also created the first of two approximately 70mm diameter WHT pupil images that 

were present in the system. As the WHT pupil image is, by definition, conjugated to 

the ground layer, the NGS FSM and high-order Xinetics D M were placed at these 

points. 

The NGS FSM (Figure 6.8) was of a similar design to the LGS FSM, but required a 

much larger active element to avoid vignetting the 70mm diameter beam. To 

compensate for this, PI actuators with twice the stroke of those used in the LGS FSM 

were used. The actuators and springs were placed twice the distance from the pivot 

such that a similar angular range as the LGS FSM could be achieved. The 

compression of the springs could be tuned to increase the resonant frequency of the 

mirror. The resonant frequency of this mirror did not have to reach the closed loop 

update speed of the high-order LGS loop, as it was driven from a separate closed loop 

NGS system that ran at a maximum of 1 OOHz, due to a combination of slower speed 

tip-tilt sensor and a simple control system. The resonance of the NGS FSM was 

determined as above 300Hz, at which point measurements were stopped, as the 

maximum update rate was limited to lOOHz, and so resonance should not be 

encountered. 
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Figure 6.8 NGS FSM. Brass cylinder is central pivot point. Actuators (silver and white) 

and соишефоізесі springs can be seen. Clear aperture of mirror was 90mm. 

The main AO path was a double Newtonian system that expanded the beam to the 

75mm diameter required to fill the Xinetics DM clear aperture. The on-axis parabolic 

elements were stock items from Edmund Optics and as such, the position of the pupil 

plane was defined by what focal length mirrors were available. This led to a very long 

path that the collimated beam must traverse above the optical bench. Turbulence on 

the bench was observed, so baffling was used to disrupt air currents flowing across the 

bench surface. The main design consideration, other than the choice of collimating 

mirror, is to reduce the angle of incidence of the light onto the D M surface. This was 

achieved as far as possible by minimising the size of the optical mounts. 
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Although using a double Newtonian collimation/refocusing system reduces cost and 

complexity of alignment, the 20mm central aperture of the two fold mirrors limits the 

field of view of the AO system to 80". Increasing the system field of view by 

increasing the size of the central aperture increases vignetting for off-axis field angles. 

The maximum aperture size is defined by the ratio of the WHT central obscuration to 

the WHT primary mirror. The WHT central obscuration is 28% of the diameter of the 

full beam. For a 75mm collimated beam with the same vignetting ratio, this maximum 

diameter of the fold mirror central aperture is 21mm. Due to the tilt of the Newtonian 

fold mirror, vignetting occurs due to this aperture when an off-axis angle of 5" is 

reached. This gives a 10" unvignetted field of view for the system. The portion of the 

wavefront obscured by the central aperture of the Newtonian fold mirrors is the major 

source of vignetting until the maximum off-axis angle of 40" is reached. Past this 

point, the pupil edge also becomes vignetted by the central aperture of the Newtonian 

fold mirrors and system throughput rapidly diminishes. 

After exiting the main AO path, the light is split into three wavelength bands, as 

shown in Figure 6.9. An IR dichroic beamsplitter is used to reflect wavelengths longer 

than 900nm into the NIR science camera. An achromatic IR lens is used at this point 

to focus light onto the CCD. The remaining visible wavelengths are then separated by 

a 500nm +/- 40nm bandpass filter from Andover, which has a broadband reflective 

coating. This filter was chosen as it has a nominal maximum 75% throughput at 

normal incidence, whereas filters with a smaller pass band were quoted as having a 

maximum transmission of only 55%. The 523nm transmission of the bandpass filter 

was examined over a wide range of incident angles and the results are plotted in 

Figure 6.10. By tilting the bandpass filter, the optimum angle to maximise throughput 

to the LGS WFS was found and the reflected visible wavelengths (650-850nm) could 
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be directed into the two visible wavelength cameras present in the system with a 

minimal impact on the throughput to the WFS. The optimum transmission of 0.86 was 

found at filter tilt angles between 15° and 35°. 

523ททา Light 

A ま 

LGS/N<3ร 
Beamsplitter 

牟 

All Wavelengths 

Visible Output 

NIR Dichroic i , ク 

Mirror NIR Output 

AO Path 

Flat Mirror 

Figure 6.9 Diagram showing separation of wavelengths into NIR for science imaging, 

visible wavelengths for NGS Tip/Tilt WTS, and 523nm light into the LGS 

WFS. 
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Filter tilt angle (degrees) 

Figure 6.10 523nm transmission curve of Andover bandpass filter when tilted over a range 
of incident angles from 0^ to 5 5 ՝ Optimum ü^smission of 0.86 is found at any 
angle between 15。 and 35° . 

The 523nm light then entered the range gate system. This was a two-stage process 

comprising of a passive optical baffle and a pockelร cel l The passive optical bafกing 

system is shown in Figure 6.11. Two conical rods were manufactured by stackmg and 

then gluing hypodermic needles together (in a similar fashion to a car aerial) and 

spray-coating with Nextel. Black Nextel absorbs 99.5% of visible light that is incident 

Upon it [8]. The needles were cut such that the assembled rod would fit exactly inside 

the secondary obscuration that would be present in an on-axis f / 1 0 beam output from 

the AO system. The focal ratio of the input beam to the conical rods was tuned by 

moving a lens to ensure the rods worked at peak сГПсіепсу. 
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Figure 6.11 Photograph of conical rod optical baffle. Light path has been shown in green. 
Each rod was mounted on an independent XY stage. Rods were suspended on a 
fine wire. 

The next element in the LGS beam was the pockelร cell electro-optic range gate. As 

the initial polarisation state of Rayleigh backscattered light is preserved i f the 

backscattering angle is 180 degrees from the direction of propagation, a half"wave 

plate on a rotation stage was placed so as to orient the polarisation state of the linearly 

polarised light vertically. Due to the on-axis elements in the Beam Relay System and 

the removal of the field derotator, the polarisation state output from the laser was 

preserved on observation in GHRIL and did not vary with a change in WHT elevation 

angle. This meant that the half-wave plate would not require active control. 

Light then passed through the 4mm aperture Pockelร cell where the polarisation state 

was unchanged i f the range gate was closed, or rotated 90 degrees i f the range gate 

was open. A linear polariser, oriented horizontally, was placed at the output of the 

Pockelร cell. The efficiency of the range gate is determined by the accuracy with 

which the polariser and Pockelร cell can be aligned to each other, and the incoming 

beam, as well as their respective contrast ratios, and contrast ratio of the initial 

polarisation state of the laser. Laboratory tests of the Pockelร cell system at 633nm 

showed that the contrast ratio between the open and the closed states was 
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approximately 150:1. The 1/e transmitted altitude range of the conical baffle 

(conjugated to an altitude of 4.5km with a rod separation of 6mm and a 0.6mm 

aperture placed at the focus) was determined using ZEMAX as between 4.39km and 

4.61km. The peak throughput of the baffle at 4.5km was 0.89. However, an off-axis 

deviation of r， from axis of the rods and aperture increased the 1/ê  transmitted 

altitude range to between 4.38km and 4.63km with a peak throughput of 0.52. 

Increasing the LGS off-axis angle past this point rapidly increased the 1/e2 transmitted 

altitude range (a 2.5" offset had a 1/e^ transmitted altitude range of over 2km). The 

LGS had to be stabilised to within 1" of the optical axis for the conical rod range gate 

to function, although optimal performance would only be achieved once the LGS fast-

steering loop had been closed. 

A trigger signal to open the shutter was provided by relaying the launch pulse signal 

from the laser in the GRACE Nasmyth platform to the GHRIL Nasmyth platform. 

The length of cable that was required to relay the signal introduced a large delay 

between the time of the laser pulse firing, and the time the pulse was received at the 

timing electronics. This delay was measured during calibration and alignment when 

the laser was firing into GHRIL. The pulse was registered on a PMT as this was the 

only nanosecond resolution photon detector available. The time delay between the 

optical PMT pulse registering and the electronic trigger signal was measured as 114 

microseconds. Without this calibration data, the range gate could not be set to an 

altitude accurately. The overall throughput of the Pockelร cell system was highly 

dependent on alignment of all the polarisation optics. After the range gate had been 

cleared, the LGS light enters the LGS WFS. 

The LGS WFS was mounted on a 3-axis translation stage for accurate positioning. 

The lenslet array could also be moved in 3 axes independently of the WFS CCD to 
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simplify alignment of the lenslets to the mirror actuators. To detect the ground layer 

turbulence accurately, the lenslet had to be conjugated to the WHT pupil. ZEMAX 

modelling of the optical design showed that the subaperture formed by each lenslet 

had a 2.11" field of view before overlapping an adjacent subaperture. However, guard 

pixels around the edge of each subaperture limit active area of each subaperture on the 

CCD and therefore reduced the field of view of on the CCD to 1.58". This determined 

the maximum spot elongation that could be useñilly observed, and thus helped 

determine the maximum altitude at which an LGS could be created (given in Chapter 

5). 

The NGS light reflected by the dichroic beamsplitter over 650-850nm was directed 

into a secondary 10 X 10 SH-WFS. The secondary NGS WFS was aligned to the LGS 

WFS to allow a direct comparison between the motion of LGS spots and NGS spots. 

The camera used for this was a Qimaging Retiga 1300EX that connected via a 

firewire camera to a desktop PC (Pentium I I I 議 M h z running Windows 2000). The 

10 X 10 SH spot pattern was analysed in the desktop PC at a frame rate of 7 0 t ì z , 

although this rate was limited by the frame rate of the camera. Analysis of the 

wavefront in this manner allows the overall tip and tilt of the NGS wavefront to be 

determined and fed to the NGS FSM. Global spot motion of the NGS WFS was 

measured and a closed-loop 'leaky box' accumulator was used to determine the 

correction to apply to the NGS FSM. The readout speed of the CCD was the limiting 

factor in the speed of the close loop system. 

The NGS WFS was also used as a low-bandwith WFS (LBWFS) [9] to continually 

study a time-averaged wavefront from the NGS. As a time-averaged wavefront wi l l 

not observe any high speed fluctuations caused by atmospheric turbulence, but instead 

wil l see the seeing-limited image, the LB WFS gives a continuous measure of how the 
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alignment o f the entire A O system is changing. A n y deviations observed in this 

wavefront f rom the ini t ia l optimised wavefront could be fed back into the control 

system to ensure that the optimised wavefront was always being transmitted to the 

science camera no matter what was occurring w i th regards to W H T flexure, LGS 

quality, or any other o f the factors that could affect system performance. The primary 

source o f error that the L B W F S was expected to observe was due to W H T top-end sag 

causing aberrations in the LGS spot on the sky during star tracking. Thir ty seconds o f 

NGS WFS was co-added to generate the L B W F S data. A scaling ratio between the 

offsets observed on the LGS WFS and L B W F S was measured by studying the effect 

o f perturbing single actuators and comparing the resulting spot mot ion on each WFS. 

The scaling ratio was determined using of f -sky calibration sources. A L B W F S was 

used on both the SOR sodium LGS and Keck I/II A O systems to correct for changes 

in the LGS due to the change in apparent distance o f the sodium layer (which is at a 

f ixed height above the observatory) as the telescope tracked. 

6.9 Optical Optimisation 

The ini t ia l input state o f a closed loop A O system is cri t ical to A O operation as the 

system always attempts to flatten the wavefront as sensed by the WFS. However, 

optical elements that are present in the path to the science camera can introduce 

aberrations that are unsensed by the WFS. I f the ini t ia l state o f the A O system is not 

optimised, the aberrations present in the science path degrade the science image 

quality, even i f the wavefront at the WFS is flat. 

The presence o f two wavefront correctors w i th in the system al lowed the removal o f 

any static aberrations present between the science l ight path and LGS l ight path. 
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Optical optimisation to remove these non-common path errors involves altering the 

shape o f the two wavefront correctors to input flat wavefronts into the science camera. 

This is a two-stage process, first involv ing flattening the D M s present in the system, 

then using an image รЬафепіп§ algori thm to optimise the output at the science 

camera. 

6.9.1 D M Flattening 

In the laboratory at Durham, the ini t ia l surface flatness o f the Xinet ics D M w i th all 

actuators at ov was measured as 127nm peak-to-valley using a F I S B A interferometer. 

However, the surface flatness measured whi le the mirror was installed at the G H R I L 

Nasmyth plat form o f the W H T was 220nm P-V. This change was due to a difference 

o f 10°c in the ambient temperatures between the two locations causing a พ а ф in the 

actuator support strucณre. The ambient temperature in the Durham labs was 

approximately 22°c, whi le the ambient temperature present at the G H R I L Nasmyth 

p lat form was approximately 1 P C . The only other environmental differences between 

the two locations were the air pressure and humidi ty . Because the Xinet ics D M is not 

air t ight, changes in pressure could not cause the change in surface flatness observed. 

The performance o f the actuators was also changed by the cooler temperatures present 

in G H R I L . Tests on similar Xinet ics D M s have shown [10] that the max imum stroke 

o f the mean actuator increases from 5 ц т to 6 . 5 ц т for a drop in temperature f rom 

20°c to lO^C. The actuator response curve to an input voltage becomes increasingly 

non-linear as temperature falls below 20°c. Non-l inear response o f the actuators 

introduces an error in the shape placed on the D M . 
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The temperature dependence o f the performance o f the D M was determined as one o f 

the l imi t ing factors in the performance o f the system as a whole. Temperature 

variations between (ГС and 10°c are routinely observed over the course o f a night, 

which using the figures taken f rom the manufacturer'ร own analysis [10] , changes the 

average actuator stroke by up to 1.5μηไ. The ov D M surface has a 127nm P-V at 

20°c, a l lowing one to measure the manufacturing accuracy o f the system. When the 

midrange voltage is placed on al l the actuators the D M surface exhibits a 310nm P-V. 

This gives an error in the actuator stroke o f ± (310 — 127^ ± 9 2 ա ո over the 

midrange actuator stroke o f 2.5μηι . Extrapolat ing this accuracy to the extended stroke 

o f 6.5μηι at the D M average operating temperature o f 10°c, the D M w i l l have a 

midrange surface o f 3,25pm±120nm or a wavefront P-V o f 240nm. This result is 

close to the observed P-V surface accuracy o f 220nm at a temperature o f lÔ C and 

w i th in the measurement accuracy (±2^^ o f the F ISBA interferometer used. 

Assuming that the D M was flattened and calibrated at 20°c and the loop closed on the 

system at lÔ Ĉ the D M wou ld exhibit a P-V wavefront error o f 56nm, or an rms error 

o f approximately 16nm. As the wavefront is reflected f rom the front surface o f the 

D M , this wavefront error must be doubled. For observations at 850nm, this 

corresponds to a wavefront accuracy o f approximately λ/27. 

To compensate for the effect o f changing temperaณre on the D M , the calibration o f 

the D M should be performed several times over the course o f a night before observing 

is due to begin. The temperature o f the calibration can then be recorded and the 

calibration recalled at any t ime. Due to t ime constraints at the telescope, only a single 

calibration was made at the night-t ime ambient temperature o f 8°c. The small 
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wavefront error (<λ/27) any change in temperature causes w i l l min imal ly affect A O 

performance. 

The calibration o f the Xinet ics D M fo l lowed the basic method outl ined by 

Sivaramakrishnan and Oppenheimer [11] that iterates towards a flat mirror. A n 

attempt was made to use this method to flatten the wavefront through the entire 

optical train by injecting l ight f rom the interferometer into the system. A mirror 

placed at the system focus retroreflected the l ight back into the interferometer and so a 

double pass was made through the entire system. However, vibrations present on the 

G H R I L optical bench meant that optimisation o f the output wavefront in this fashion 

was impossible. The flattening procedure could st i l l be carried out i f the D M and 

interferometer were t ight ly fastened to one another. This ensured that all vibrations 

experienced by the D M and interferometer were common, and stable wavefront 

measurements were possible. 

6.9.2 Simplexing 

The second stage o f optical optimisation was undertaken by placing a camera at the 

IR output and examining the image qual i ty o f an on-axis focused spot. A n image o f 

the focused spot was fed into one o f two image quali ty metrics (equations 6.1 and 

6.2). The shape placed on the surface o f the high-order Xinet ics D M is then adjusted 

and a new image obtained. Through the process o f iteration, a mirror shape is 

eventually arrived at that cancels out al l static aberrations in the system that the D M 

can correct. A simplex algori thm [12] was used to control the shape on the D M . The 

simplexing algorithm works by generating a set o f mirror shapes and examining their 

effect on the metric. The worst stored mirror shape (as defined by the metric) is then 
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compared to the best stored mirror shape, and a new mirror shape is generated through 

a series o f geometrical transformations. Over the course o f many iterations, the best 

and worst mir ror shapes slowly converge to a solution. The operation o f the simplex 

metric is described in Numerical Recipes [13] . 

<=0 M = - 6 . 1 

where r is the distance in pixels o f the ŕ p ixel to the image centroids, Pi is the number 

o f counts detected in the ŕ p ixe l and M denotes the value o f the image metric. When 

M = 0 al l the l ight w i l l be concentrated w i th in a circle o f radius a pixels. Note that i f 

the defined radius used in equation 6.1 is reduced, both metrics essentially accomplish 

the same task (concentrating the l ight inside a small area). However, the first metric 

was used in i t ia l ly as it gave far better results when dealing w i th a more aberrated spot 

as was present after ini t ial optical alignment. Care must be taken w i th the use o f the 

metric given in equation 6.1 as l ight that leaves the C C D image plane also registers as 

an improvement in image quali ty. A case where the above metric fails is where the 

D M shape concentrates a small fraction o f l ight inside the circle o f radius a pixels on 

the C C D and the rest o f the l ight is directed out o f the C C D f ie ld-of-v iew. This causes 

numerator o f equation 6.1 to equal zero and the simplexing algori thm w i l l observe no 

further reduction in the value o f the metric. Fortunately, the C C D was large when 

compared to the init ial focused spot size, so by posit ioning the spot in the centre o f the 

C C D this siณation could be avoided. Equation 6.2 examines both the intensity and 

l ight-concentration o f the focal point. 
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M V ' = o 6.2 

Equation 6.2 describes the final image sharpening metric where M is the metric value. 

M = 1 when al l the l ight is concentrated inside a single p ixe l . M>\ if any l ight falls 

outside a single p ixe l . Use o f this metric not only concentrates l ight around a given 

point, but the metric also improves w i th an increase in peak intensity. This was useful 

as i t registered the extra presence o f photons that wou ld normal ly be lost in the noise. 

For example, 1000 photons spread across 100 pixels could easily be 'lost' in the 

background noise, and their presence would not affect the metric in any way, but an 

accurate solution could not be converged upon. 1000 photons concentrated across a 

few pixels wou ld make a large difference to the second metric, even i f they were 

ini t ial ly lost in the background noise. The results o f the simplexing algori thm are 

shown in Figure 6.12. 

Figure 6.12 Effect of simplexing on the image quality at the science focus. First diffraction 
ring is visible in simplexed image. 

Once the simplex algori thm has converged to a solution, the mirror is said to be 

's implexed' . The simplexed mirror shape gives the opt imum spot quali ty at the focal 
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posit ion o f the IR science camera. The process was repeated at the focal point input to 

the LGS WFS, but this t ime using the OKOTech D M as the wavefront corrector. The 

523nm calibration source was used as the reference for this optimisation. Running a 

second simplex was deemed necessary as the Andover f i l ter was not o f a h igh optical 

quality, and a flat wavefront transit ing through this component wou ld become very 

aberrated, to the point where using it for WFSing would become d i f f i cu l t and contain 

inaccuracies. The actuator values present on the OKOTech D M were then recorded 

and not altered. 

Once both Simplexes had been completed, the WFS image itself was studied and the 

spot offset f rom the centre o f each subaperture was recorded. A l though the two 

Simplexes should remove most aberrations from the system, some residual offsets wi l l 

st i l l be present due to higher order static aberrations w i th in the system. The offsets 

present at this point define the wavefront that the D M / W F S coupl ing is t ry ing to 

reproduce, and hence a flat wavefront into the IR science camera. The simplexed 

mirror shape is also the starting point for al l calibration procedures, as the atmosphere 

produces a turbulent prof i le that fluctuates around a flat wavefront wh ich this mirror 

shape recreates. 

Whi le simplexing both mirrors, care was taken not to approach the l imits o f the linear 

response regime o f the actuators. The Xinet ics D M uses piezo-magneto-restrictive 

actuators that only have a linear response over a small voltage range. Each actuator in 

the OKOTech D M also exhibits a response that is not just proport ional to the applied 

voltage, but is also related to the posit ion o f that actuator relative to the edge o f the 

electrostatic membrane. The linearity o f actuator response is not a cri t ical issue in this 

case, as the OKOTech D M input a static aberration during A O operations. However, 
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using the linear regime o f the Xinetics D M actuators is cri t ical to the closed-loop 

operation o f the A O system as the control system relies on a linear actuator response. 

Af ter s implexing, a phase map o f the Xinet ics mirror surface was made, showing an 

increase from the 20nnใ rms surface value o f the flattened D M to approximately 

200nm rms. This value combines wavefront errors due to the quality o f the optics 

used in the A O system and how we l l the A O system has been aligned. M in im is ing 

this value is essential because any D M stroke used for correcting static aberrations 

cannot be used to correct for turbulence, essentially decreasing the dynamic range o f 

the D M . For a Xinet ics D M w i th a stroke o f 6.5μηι, a 200nm rms wavefront error 

uses only 3% o f the D M stroke, leaving up to 12 .6цт o f ful l-range correction 

(doubled due to reflection f rom the mir ror surface) available to the A O system. This is 

suff icient to correct for strong atmospheric turbulence observed at the LGS 

wavelength at a good astronomical site. A phase map o f the OKOTech D M could not 

be made as there was not suff icient space on the optical bench to posit ion the 

interferometer, however, as the OKOTech D M is used to inject static aberrations only, 

the D M stroke used to correct for these aberrations is irrelevant, just so long as the 

aberrations can be corrected. 

Assuming that al l mirrors used in the system have a transmitted wavefront quali ty 

(TWQ) o f 126.6nm (corresponding to a λ/10 surface measured at 633nm), al l lenses 

and beamsplitters have a T W Q o f 158.25nm (λ /4) , the combined wavefront qual i ty to 

the LGS and N G S WFSs are given in Table 6.3 below. The combined wavefront 

errors shown are relatively large, but these are a consequence o f the l imited project 

budget, and are al l w i th in the correction range o f the Xinet ics and око D M ' s . 
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Path į Mirrors [Lenses Beamsplitters RMS Error(nm) 
LGS WFS 1 12 1 5 4 704 
NGS WFS 1 8 1 2 3 558 
Science 1 8 1 1 2 492 

Table 6.3 Optical quality of optical design assuming mirrors have a λ/10 rms surface 

accuracy, and lenses and beamsplitters have a λ/4 rms transmitted wavefront 

quality. Total RMS error was calculated from the root of the quadratic sum of 

errors from each component. 

The simplexed D M surface o f 200nm rms shows that either the optical quality o f the 

system was better than that predicted above. 

6.10 On-sky performance 

This section discusses the optical performance o f several components in the A O 

system when used on-sky w i th the LGS. 

6.10.1 Range Gate 

Al though the conical rod baff le worked, and a dark annuluร was observed around the 

br ight core o f the LGS, the top-end telescope sag whi le tracking the NGS caused the 

LGS to dr i f t away f rom the centre o f the alignment o f the rod system, and the contrast 

ratio between LGS and plume dropped. The finite diameter o f the LGS also meant 

that the contrast ratio was lower than expected. The rod system could wo rk as a range 

gate i f the A O loop was already closed and the LGS spot was di f f ract ion l imited and 

j i t ter/sag corrected. 

The Pockelร cells were o f l imited use due to their small clear aperture (4mm) and 

length (130mm). The physical dimensions o f the crystals l imi ted the field o f v iew o f 

the Pockelร cel l to approximately 1 " on-sky at the LGS alt i tude. As was seen เท 
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Chapter 4, the on-sky F W H M diameter o f the Rayleigh plume was 2.45" at 

approximately 4km when viewed through the W H T . Even though the diameter o f the 

LGS embedded wi th in this plume should be sub-arcsecond, to range gate this plume 

the Pockelร cells must have a clear aperture o f at least 3 " in order to cope w i th the 

f inite size o f the LGS and LGS j i t ter. When the Pocke Is cells were used on the LGS, 

they achieved a contrast ratio o f 343:1, but only on the subsection o f the LGS that 

could be imaged through the clear aperture o f the Pockelร cel l . 

6.10.2 WFS 

Dur ing the course o f the LGS A O run, one quadrant o f the WFS fai led, and could not 

be repaired in the t ime available. A l though this failure did not rule-out attempting 

closed-loop operation, the A O system performance could no longer match predicted 

performance. 

A l though simplexing the Xinetics D M could optimise the image quali ty in the science 

camera, the OKOTech D M did not have the range to correct for the aberrations that 

were observed in the LGS WFS. The poor image qual i ty to the WFS was caused 

pr imar i ly by the dichroİc used to separate visible l ight from the LGS wavelength. A 

higher qual i ty dichroic could not be purchased w i th the budget available. 

The 188μηι pi tch o f the lenslet required an input 1.88mm diameter collimateci beam. 

Wi th the poor LGS WFS wavefront qual i ty that was observed, intensity variations due 

to aberrations w i th in the collimateci beam were increased resulting in a very poor 

WFS image. A l though several attempts to improve the LGS wavefront were made, the 

combination o f the small f ie ld o f v iew o f the range gate system, the small lenslet pitch 

requir ing col l imat ing optics to be placed near the aberrated focus, and the l imi ted t ime 

available for system commissioning prevented any improvement over the WFS image 
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presented in Figure 6.13. The LGS WFS image shown obviously cannot provide a 

wavefront to an A O system expecting a 10x10 spot pattern, and this ult imately 

prevented closed loop operations on-sky. Analyses o f the section o f the L G S 

wavefronts that could be measured were undertaken and the results presented in 

Chapter 8 o f this work . 

Figure 6.13 Sample LGS WFS image showing failed quadrant and poor wavefront quality. 

6.11 Conclusion 

This chapter presented the optical design o f the A O system as commissioned on the 

telescope. The performance o f several system components was analysed. Due to both 

the l imited commissioning t ime and available project budget several non-opt imal 

optical components were used. The combined wavefront errors f rom these 

components resulted in a poor-quali ty LGS wavefront being observed by the LGS, 

and ult imately prevented stable closed loop operations. However, LGS wavefronts 

were reconstructed f rom the LGS WFS data and these w i l l be compared to wavefronts 

reconstructed f rom simultaneous N G S data in Chapter 8. 
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Chapter 7ะ System Modelling 

7.1 Introduction 

This chapter details the numerical model l ing o f the A O system. Monte Carlo 

simulation code, or iginal ly developed by Richard Wi lson o f the Universi ty o f Durham 

and similar in approach to that described by El lerbrock et al [1 ] , was used to model 

the fu l l A O system. The Monte Carlo simulation is referred to hereafter as the 

numerical s imulat ion. A n analytic WFS model was also created (by the author) that 

can quickly and accurately determine the performance o f a particular LGS concept. 

A O system model l ing forms an essential part o f the design process for any A O 

system, and impacts the system design by quant i fy ing the effect o f design tradeoffs on 

system performance. This chapter first details the models used, fo l lowed by a 

presentation o f the simulat ion results and the predicted system performance. 

7.2 Numerical AO Model Overview 

The simulation i tsel f is a modular, parallelised code capable o f handling diverse A O 

system setups. Each module describes a dif ferent component o f the experimental 

setup and al lows complete conf igurabi l i ty o f the LGS, NGS, atmosphere, D M , WFS 

and A O control system. The software architecture is il lustrated in Figure 7 .1 . 
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Figure 7.1 Model AO System overview. The modular makeup of the system allows 
multiple paths to be defined, allowing multiple NGSs, LGSs and field points to 
be sampled in a single simulation run. The uncorrected path verifies the 
simulated atmospheric turbulence accurately represents the requested 
conditions. 

7.2.1 Atmosphere 

The atmospheric model used was a 3-layer model , w i t h 4 0 % o f the turbulence placed 

at the ground layer, 4 0 % o f the ШгЬиІепсе placed at a layer 2.5km above the 

telescope, w i th the remaining 2 0 % at an altitude o f 7.5km i.e. the "standard" La 

Palma atmosphere [2] . Atmospheric seeing was l imi ted to 2 cases, w i th Го'ร equating 

to median La Palma V-band seeing o f 0.74", and good V-band seeing o f 0.54". 

System stabil i ty tests were carried out by gradually reducing Го to investigate the point 

where the A O system wou ld fai l to work. 

The system t ime-period, or 'heartbeat' frequency, was defined by the speed at which 

the phase screen moves across the telescope. A l l t imings w i th in the system, including 

WFS integration periods and system latencies are by necessity, integer mult iples o f 
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the heartbeat frequency. For a system running at approximately 300Hz, a 3mร system 

time-period wou ld be acceptable. I f a faster A O frame rate, w ind speed, or sub-3mร 

system latencies are required, a shorter t ime period must be used. 

7.2.2 NGS 

The NGS was modelled as a single wavelength point source o f f ixed brightness. The 

flux ( in photons/sec/WFS subaperture) detected by the WFS was set to match 

reasonable throughputs expected from the system model. For this demonstrator 

system, the NGS magnitude was arbitrary. I f system performance was seen to be 

l imited by the signal on the NGS t ip- t i l t WFS, a brighter NGS could be selected. The 

flux to the NGS WFS was therefore set at 100000 photons per N G S WFS frame. This 

0ՕՄ6տթօոօտ to approximately a 6'h magnitude star at the NGS wavelength o f 600nm. 

This flux is at a level we l l above the predicted signal threshold for the NGS WFS. The 

N G S could be posit ioned at any angular distance f rom the on-axis LGS. Three cases 

were studied, w i th the NGS positioned on the W H T (and hence LGS) axis, and 4 0 " 

and 120" of f-axis. 

7.2.3 LGS 

The LGS is modelled by placing an NGS at a f ini te altitude w i th in the atmosphere. 

The turbulence sampled by the LGS wavefront is then given by the geometrical cone 

that the returning beam samples on the path f rom the LGS to the ftjll telescope 

aperture. 
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The model o f the LGS that was presented in Chapter 5 was integrated into the 

simulation to provide an accurate depiction o f the B L T - L G S interaction. The effects 

o f launch j i t ter and centroid anisoplanatism [3] on the LGS upl ink were not included 

in the model . To accurately model upl ink effects requires a filli physical optics 

propagation model [4,5] wh ich would increase simulat ion run-times to the point 

where numerical simulations o f the atmosphere wou ld become unfeasible to 

accomplish w i th in an acceptable timescale. Across a 300mm aperture, such as that o f 

the B L T , the dominant wavefront aberrations are t ip and t i l t . The effect o f upl ink j i t ter 

was examined in Chapter 5 and showed that the G L A O WFS performance should not 

be impaired by L G S launch j i t ter . The effect o f centroid anisoplanatism on the LGS 

upl ink also introduces an apparent t i l t on the wavefront as the intensity prof i le o f the 

LGS can be distorted f rom a Gaussian. Over a 300mm aperture, this effect w i l l be 

small when compared to the effect o f launch j i t ter. 

7.2.4 D M 

complex (and therefore computationally costly) code that uses finite element analysis 

to determine the shape o f the D M surface that has been deformed by the influence o f 

an actuator. A simple mathematical approximation to the surface o f the Xinet ics D M 

can be used that util ises cubic іпЇефоІаїіоп to approximate the phase surface. 

A n 11x11 actuator grid is passed to the іпЇСфоlator that rescales the grid to a 

predefined number o f pixels ( in the case o f this simulation 80x80). The resulting D M 

phase map is then scaled to the foil linear range o f the D M and applied to the 

incoming wavefront. A n ini t ia l investigation into the accuracy o f this approach 
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showed that an іпЇСфоІаїесі D M can reproduce the response of the DM to a given 

actuator pattern to better than an rmร wavefront error of λ/3 at 633nm when the DM 

lies within its linear range. This match can be enhanced by improving the accuracy of 

interferometrie measurement and through modification of the іпЇефоІаІіоп geometry. 

A comparison of an interferometer image of the Xinetics phase sheet with the output 

of the interpolated model phase sheet is shown in Figure 7.2. 

Figure 7.2 Model D M phase surface produced by іпїефоіаііоп and D M phase surface as 
measured by a FISBA interferometer. Zemike mode 7 corresponding to 
classical wavefront coma was both modelled and measured. After 
normalisation, the rms error between the two wavefronts was λ/3.08 at 633nm. 

For comparative purposes, the original D M model was constructed using either a 

linear รนрефозіЇіоп of Zemike terms up to a given radial order approximating the 

response of the D M , or a segmented mirror with each segment capable of independent 

tip/tilt and piston movements. Whilst a Zemike-based analysis comparison favours a 

Zem ike-type DM, the only true measure of D M model suitability is a comparison 

between a measured DM phase profile and a modelled D M phase profile. The project 

timescale did not allow for this comparison to be made, as a ftill calibration of each 

DM actuator had not been undertaken, and was not required for closed-loop operation. 

The fact that the AO loop was able to close and provide correction proved the concept 

" 2 1 7 -



of using an іпїефоІаЇесІ D M in a closed-loop AO simulation. Further work is required 

to fully characterise the performance of the interpolated-DM technique and compare it 

to both the performance of current D M models and the measured performance of a 

real Xinetics D M . 

7.2.5 WFS 

The WFS module defined an 80x80 pixel CCD, divided into 10x10 8 pixel 

subapertures. Each subaperture has a 1 pixel guard ring, giving a 6x6 WFS ing 

element. The effect of a read noise of 6๙ was included in the WFS image. 

The elongated WFS spot pattern created by the LGS model presented in Chapter 5 

was convolved with the output of the LGS propagation through the atmosphere on a 

subaperture by subaperture basis to give an elongated spot pattern. The pixel scales 

output by the WFS model and the LGS simulation were matched so this convolution 

was accurate. The 188μηι pitch, 7.6mm focal length WFS lenslet, defined a pixel 

scale of 0.263" per pixel 

7.2.6 AO control system 

The control system processed the WFS data and reconstructed the wavefront to 

display on the DM. This was achieved by measuring the system WFS"DM interaction 

matrix and using Singular Value Decomposition (SVD) to create a pseudo-inverse 

system control matrix. Poorly sensed modes were removed from the control matrix at 

this point using a threshold value on the SVD diagonal matrix. This concept is 

discussed ftirther in Chapter 8. 
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The AO control system also included the ability to define subsystem latencies to 

accurately simulate the response of the system. Latencies were simulated by 

withholding data from the control system to the D M for a given period of time. 

Although in reality latencies occur at all stages where data must be transferred or 

processed, the total latency between end of WFS exposure and the correct shape 

settling on the D M encompasses all sub-system latencies. As such, it is the only the 

total system latency that requires definition. 

The G L A ^ system had the added complexity of having two control systems, one 

controlling the high-order LGS system and LGS jitter correction mirror, and the other 

controlling the NGS tip/tilt loop. The two loops could potentially compete with one 

another. The NGS tip/tilt would be observed by the LGS WFS as an additional 

component of the launch jitter. Provision was included in the on-sky system to 

feedback the NGS signal into the high-order LGS loop so the NGS"induced jitter 

would not be observed by the LGS WFS, but the added complexity this introduced 

into the simulation meant this provision was not included here. 

7.3 LGS WFS Model 

A model that was able to rapidly determine the performance of a particular WFS 

concept using real atmospheric profiles and simulated turbulent phase screens was 

developed. This model generated an atmosphere in an identical fashion to the full 

closed loop AO simulation detailed in section 7.2.1. Vertical slices through the 

atmosphere were used to create LGS wavefronts. The finite altiณde of the LGS was 

simulated by projecting the light from the LGS onto each turbulent layer. The 

illuminated area of a turbulent layer was selected and then the selection was rescaled 
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to the diameter (in pixels) of the telescope pupil, as is shown in Figure 7.3. Wavefront 

rescaling was performed using bicubic interpolation. Wavefronts at any points across 

the science field could also be created by slicing vertically through the atmosphere. 

Global tip and ti lt were subtracted from the wavefront to simulate the effect of using a 

separate NGS as a tip/tilt reference source. Wavefront piston terms were also ignored. 

The model then calculated the variance between the WFS wavefront and science 

wavefront. This process was repeated for several hundred randomly generated 

atmospheres with the same Cp profile to determine mean Wb ̂  performance. The 

LGS WFS model was far simpler, and therefore less computationally intensive, than 

the full numerical simulation AO model, allowing rapid analysis of a given WFS 

geometry. The performance predicted by this model is obviously an optimistic 

measure of WFS performance as many sources of AO system error are ignored. 

Wavefront at 
Telescope Pupil 

LGS Plume Geometry Sliced Auฑosphere Ιηίθφ0ΐθίθ(1 Phase screens 

Figure 7.3 WFS model method of operation. The plume is modelled geometrically and the 

diameter o f the plume determined at each turbulent layer. A section o f the phase 

screen is sampled and then scaled by pixel іпїефоіаііоп to the same diameter in 
pixels as the telescope pupil. The іпіефоіаіесі phase screens are then summed 
(after removing piston terms) to create wavefront that the telescope would 
observe. Science paths are determined using the same method but require no 
іпіефоіаїіоп as the slices are always the same diameter as the telescope pupil. 
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7.4 Results 

The choice of analysis metric is dependent on the AO system application. As was 

shown by Ellerbrock et al [6], performance metrics (the specific case of slit coupling 

versus Strehi ratio was examined in the given reference) can be insensitive to different 

levels of AO correction, demonstrating that the choice of performance metric can 

affect the system optimisation. The system Strehi ratio was the preferred performance 

metric for system analysis/error budgeting, allowing simple experimental verification 

of AO performance, and could be compared with the equations presented in Chapter 1 

and 2 detailing error sources in terms of residual wavefront variances. However, due 

to the partial wavefront correction achieved by a GLAO system, the Strehi ratios 

achieved were very low and not indicative of the GLAO system performance as a 

method of improving astronomical performance. The FWHM of the AO-corrected 

image was therefore used to describe and optimise performance in the numerical 

simulation, although this metric is not directly comparable with the methods presented 

in Chapters 1 and 2. 

The wavefront variance, which is related to the Strehi ratio by the Marechal 

approximation for small wavefront variances, was used as a metric for the LGS WFS 

analyses in sections 7.4.1 and 7.4.3. This was primarily because it allowed rapid and 

simple anałysis of the LGS WFS performance without hav mg to form an image of the 

AO-corrected PSF. 
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7.4.1 GLAO with a low-altitude LGS 

Simulations of the performance demonstrator GLAO system on the WHT were made 

to determine the optimum altitude to which the low-altitude LGS should be projected. 

The distance between telescope pupil and LGS was increased from 2m to 10km in 

1km steps to determine the optimum altitude for a low-level GLAO LGS. The 

optimum altitude is defined as the altitude that gives the lowest overall wavefront 

variance across the instrument rov. The science field of view of the demonstrator 

system was approximately 80". 

From Figure 7.4 it is clear that when using a 3-layer La Palma atmosphere with an 

instrument that has a field of view of 80", the best performance is achieved by 

minimising the wavefront error due to focal anisoplanatism and using a sodium LGS. 

However, the variance between LGS and science wavefronts increases rapidly as 

angular anisoplanatism is increased. For comparison, the average tilt-removed 

wavefront variance of the science path, before the LGS wavefront was subtracted was 

28rad^. The results presented below are all modelled at a wavelength of 500nm with 

an Го of 0.11m. This corresponds to a 'bad-seeing' case on La Palma. 
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Figure 7.4 Performance o f several low-altitude LGSs on the W H T using the standard La 
Palma 3-layer atmosphere. Field angles up to 180" from the LGS position are 
plotted. A 20km ('conventional' Rayleigh) and 90km (sodium) LGS are shown 
for comparative рцфозез. Uncorrected wavefront variance was 28 rad". 

This performance is highly dependent on the input turbulence profile. The middle 

layer at 2.5km was dropped to 1km to examine this effect. A change of this magnitude 

is one that could be observed over the course of a night. Figure 7.5 shows that, as one 

would expect, the overall performance increases as the mid-altitude layer is moved 

from 2.5km to 1km. 

An 2' FOV is obviously too small to make full use of the potential of GLAO with the 

turbulence profiles used to create the plots in Figure 7.4 and Figure 7.5. A field-

averaged wavefront variance could be used to determine optimum LGS altitude for 

maximising performance across a given field. The field averaged wavefront across a 

6' FOV is plotted for both test atmospheres in Figure 7.6. 
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Figure 7.5 Performance o f several low-altitude LGSs on the W H T using a 3-layer 
atmosphere with 40% o f the turbulence at the ground layer, 40% at l k m , and 
20% at 7.5km. Field angles up to 180" from the LGS position are plotted. A 
20km ('conventional' Rayleigh) and 90km (sodium) LGS are shown for 
comparative purposes. Uncorrected wavefront variance was 28 rad 2. 

The optimum altitude depends on the degree of PSF uniformity that is required and 

the FOV it is to be corrected over. In the specific case of the demonstrator system 

with an 80" FOV, the optimum altitude is defined by the return photon flux, as an 

increase in altitude wi l l always improve performance. However, with a 4km LGS, 

very little change in PSF should be observed across the 80" field. From Figure 7.6 it 

can be seen that a 4km-distant LGS wi l l not perform as well as a more distant LGS. 

The metric for examining field uniformity was defined as the standard deviation of the 

wavefront variance across the field of interest, described by 

( « - l ) ї й -
タ=0 

σ .1 

where (Tvar İS the PSF uniformity metric, ո is the number of field sampling points, and 

σ\ is the wave front variance between the LGS wavefront and the NGS wavefront that 
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is sampled at a field angle of θ arcseconds. Figure 7.7 shows that for an LGS created 

at an altitude above 4km, the field uniformity drops rapidly, irrespective of changes in 

the altitude of the middle turbulent layer. The LGS altitude should therefore not be 

increased above 4km because, although this wi l l improve on-axis performance, off-

axis performance wi l l begin to degrade rapidly beyond an off-axis angle of 90". 
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Figure 7.6 Field-averaged wavefront variance over a 6' FOV for two 3 layer atmospheres. 
40% of the Uirbulence is at the ground layer, 20% at 7.5km. Tne two plots show 
the effect of changing the middle layer rrom an altitude of 2.5km to 1km. 

For the maximum 40" off-axis field (80" FOV) which the experimental system wi l l 

allow without vignetting, the PSF wi l l be fairly uniform across the field irrespective 

of Rayleigh LGS altitude as is shown in Figure 7.8. optimum PSF uniformity across 

the 80" field wi l l be observed i f the LGS is projected to 4km. At distances less than 

4km, PSF uniformity across this field actually decreases. 
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An indication of the potential of low-altitude LGSs to provide GLAO correction is 

when performance is studied over a wider field than 2'. As can be seen from Figure 

7.4, although the 90km (sodium) and 20km (high-altitude Rayleigh) LGS perform 

well over a narrow field, for field-angles greater than approximately 2，， a 8-lOlcm 

altitude LGS on La Palma would provide a better degree of correction. The 

performance of a low-altitude LGS below 5km can provide extremely uniform 

correction across wide fields, up to the 6' modelled here. 

7.4.2 GLAO System Performance 

The closed loop performance of the experimental GLAO system was modelled using 

the full numerical simulation. The simulation parameters are given in Table 7.1 and 

were used unless stated otherwise. LGS WFS flux was calculated using the model 

described in Chapter 5 using the optimal LGS altitude of 4km and a range gate depth 

of 69m. 

Two simulations runs were undertaken to examine the performance of the low altitude 

LGS under more realistic conditions. Test runs were made to determine the number of 

SVD modes to use in the control matrix and examine loop stability with the standard 

La Palma atmospheric turbulence profile. The outcome of the tests showed that the 

photon flux within partially illuminated subapertures, even at the optimised values 

determined in Chapter 5， resulted in closed loop instability. It was observed that the 

subapertures at the edge of the telescope pupil could not be tracked by the centroiding 

algorithm due to the smaller collecting area of these partially illuminated subapertures 

and the greater spot elongation causing lower SNR. Although the analysis presented 

in Chapter 5 suggested that this WFS should work, the effect of atmospheric 
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turbulence coupled with the elongation reduced the SNR to a point where centroiding 

became inaccurate. 

Variable Value Description 
Simulation Pa rams 

LGS į NGS 1 ! 2 І 3 Uncorrected 

source_aft 
sourcetheta 

523 і 600 
4000 I χ 

0 Į 0 

1250 1 1250 ļ 1250 

。 I 4。 ļ 12。 

1250 

0 

Source wavelength {กก1) 
Source Altitude (กา) 
Source off-axis angle (arcsec) 

gate_depth 
sim_duration 
tstep 

69 
60 

O.OOS 

LGS Range gate depth (m) 
Simulation run tím๙Integration time (sec) 
Simulation time step (sec) 

TolBscopfl 
при p 
teldiam 
tel_5ec 

80 
42 
1.2 

Pupil airay size (pixel) 
Tel aperture diam (m) 
Tel secondary diam (๓) 

Atmosphere 
3 

1024 
0.14 

ЗО 
1 2І 3 

Number of phase screen layers in model 
Phase screen size (pixels) 
Го (m @ SOOnni) 
Outer scale (m) 

strjayer 
v_wind 
theta_wind 
altitude 

0.4 
6.6 
45 
0 

04ļ 0.2 
8.8ļ 12.4 
oj -80 

10001 7500 

Layer relative strengths 
Layer พเก d velocity (m/s) 
Layer wind direction (degrees) 
Layer attitude (ทา) 

NGS Tilt Sensor 
Ы[_РМ 
tilt_nimg 
tiltjnt 
tift_mag 
tiltjhmput 
tilt_read 
tiK_กceก 
tiK_ga¡ก 

8 
8 

0.01 

0,22 
8 
6 

0.5 

Number of pixels in FFT 
Number of pixels in tilt sensor 
Titt Sensor Exposure ทme {sees) 
NGS Reference source magnitude 
TliroughpLJt to tilt sensor 
Tilt sensor read noise (e-) 
Centr이d box size (pixel ร) 
FSM Closed loop gain 

LGS WFS 

•g ^ 
ք՝ 

«gl ·|| 
ք՝ 

^ 

2.11 
8 

0.6 
0.005 

6 
0.005 

LGS WFS SH array size (pixels) 
Subaperture FOV (arcsec) 
Subaperture size (pixels] 
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Table 7.1 Model AO system parameters used for simulation runs. 

Once one subaperture has become unstable, the poor correction spreads to adjacent 

subapertures due to the continuous phase sheet of the DM. This instability was 

apparent irrespective of the number of modes of the SVD used. To increase the 

photon flux to the WFS without changing the 4km altitude of the LGS, the frame rate 
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of the WFS was reduced from 300Hz to 200Hz. The lower SNR of the most elongated 

spots can be observed in the image of the WFS taken whilst running closed loop 

shown in Figure 7.9. 

200Hz WFS Frame Roto 
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Figure 7.9 WFS image taken from the closed loop simulation, demonstrating stability o f 
A O loop with increased WFS SNR. The 200Hz WFS runs stably and all spots 
are wel l defined and within an 8x8 pixel subaperture. Several subapertures 
around the edge o f the telescope pupil (marked in red) on the 300Hz WFS have 
been Most', or are poorly defined, due to an incorrect mirror figure on the D M . 

The effect of cancelling singular value decomposition modes in the control matrix 

performance was studied and the results shown in Figure 7.10. Optimum performance 

of the AO system both on-axis and at a field angle of 40" was found when the loop 

was closed with all but 2 modes cancelled. 
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Figure 7.10 Effect of cancelling SVD modes in the control matrix on AO system 

performance in terms o f corrected image F W H M at a closed loop gain o f 0.2 

The closed-loop gain was then increased until the loop became unstable. Although the 

loop was able to close with a gain o f 1， increasing the gain beyond this point resulted 

in a bistable WFS pattern as the wavefront became over-corrected. Increasing WFS 

read noise also reduced the stable closed-loop gain, although this effect was not 

quantified. The results of these simulations are shown in Figure 7.11. The optimum 

gain was determined as 0.6. It must be mentioned that running the real system closed 

loop with a gain of 0.6 had not been achieved in the laboratory closed loop tests. The 

maximum stable gain had been between 0.1 and 0,2. The difference between the 

theoretical optimum gain and real maximum gain highlights the inherent problems of 

using an idealised system to describe a real-life system. 

With the optimum closed loop parameters determined by following a similar method 

to that which would be used on-sky, the performance of the AO system was analysed. 

The simulation results showing the effect on FWHM of decreasing the mid-altitude 

layer from 2.5km to 1km are shown in Figure 7.12. 
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Figure 7,12 Plot of AO-corrected FWHM versus field angle for standard 3-layer La Palma 
atmosphere and 3-layer atmosphere with middle layer placed at 1km at a 
wavelength of 1250nm. Error bars on uncorrected FWHM indicate 1σ point 

returned from all simulations, 

As predicted by the analysis presented in section 7.4.1, the F W H M o f an image 

corrected by a 4km distant LGS remained relatively constant at field angles up to 40", 

but dropped when a wide field of 120" was examined. One point to note is that 

performance apparently improved as one increased the field angle between LGS and 
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science path for the initial case of placing the mid-altiณde layer at 2.51aท. This 

however was within the statistical accuracy of the simulation as indicated by the ±1σ 

error bars plotted on the uncorrected FWHM. The effect of dropping the mid-altitude 

layer to 1km from 2.5km showed an overall improvement in performance. However 

the uniformity of correction decreased as the sampling of mid-altitude layer increased. 

The effects on system performance of changing the vertical distribution of turbulence 

without changing the overall strength of the turbulence highlight the need for an 

accurate Cn profiles i f a real-life AO system is to be compared with a simulated 

version of itself. While Го can be determined from WFS data, off-axis performance is 

wholly dependent on the vertical structure of turbulence, and no comparison is valid 

unless the same distribution of turbulence is used for the simulation as was 

encountered by the AO system while on-sky. 

The effect of changing atmospheric conditions on system performance was further 

studied by changing the value of Го, Fried's parameter. 
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Figure 7.13 Effect o f changing Го on A O system performance. 
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A s expected, increasing the strength o f the turbulence increases corrected F W H M at 

all field angles. The system remained stable down to an Го o f 0 .1 I m , conf i rming that 

A O correction should be achieved under all but the worst atmospheric condit ions at 

the W H T . A n Го o f 0 . 1 l m corresponds to the 75 th percentile seeing value at the W H T . 

The loop was closed on an atmosphere w i th an Го o f 0.09m, but d id not remain stable 

for the duration o f the 60 seconds o f simulated t ime. The on-axis correction observed 

here was as a result o f the period o f t ime that the wavefront remained stable. Sample 

PSFs from across the field are shown in Figure 7.14. A l though the F W H M o f the PSF 

remains relatively constant out to an of f-axis angle o f 40"， elongation o f the PSF in 

the direction o f the L G S and NGS can be observed. This is pr imar i ly due to angular 

anisoplanatism caused by the on-axis N G S reference source. 

On-axis 40" off-axis 120" off-axis Uncorrected 

Figure 7.14 Sample PSFs taken from points i n the f i e l d o f fse t from the L G S and N G S by 0"， 

4 0 " and 120" at a wave leng th o f 1250nm. A tmosphe r i c Го is 0 .14m. T h e 

uncorrected PSF is also shown. The square root o f the intensi ty has been p lo t ted 

to show fine structure in ha lo o f the PSF, Intensi t ies are to scale. P ixe l scaie is 

0.031arcsceonds/p ixe l . 

The effect o f system latency on A O performance was examined. The base system 

latency depends on the exact algorithms used in the control system, but was set to a 

high-range value o f 5ms for these simulations. This value is comparable w i th the 

closed-loop latency o f N A O M I (3mร), wh ich uses the same C C D and similar control 

architecture. The value o f 5 m s was used to reduce the simulat ion run t ime as this 

corresponded to 1 i teration o f the simulation at a WFS frame rate o f 2 0 0 H z . The 
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latency was increased f rom 0 to 20ms and the results o f the simulations are shown in 

Figure 7.15. 
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F igure 7.15 E f fec t o f increasing system latency on A O system per fo rmance. 

The apparent improvement o f off-axis performance w i th increasing latency that is 

shown by Figure 7.15 is due to the effect o f the velocity o f the ШгЬиІепЇ layer and the 

f ie ld sampling point. For equal correction o f the PSF at any rotational angle around 

the f ie ld, the latency o f the control system must be zero. This effect could be 

measured in an A O system to determine the velocity and altitude o f the most turbulent 

layer i f the system latency is known. 

7.4.3 GLAO with a Rotating LGS 

The rotating LGS introduced in Chapter 2 as a technique that wou ld measure a G L A O 

wavefront was modelled using the LGS WFS code. To simulate the effect o f the 

- 2 3 4 -



rotating LGS, the model calculated the number o f laser pulses per WFS frame. This 

was rounded to the nearest integer value wh ich in the case o f a 5kHz laser and 300Hz 

WFS, was 17 pulses per frame. The rotational angle o f each pulse was then defined as 

2π/17. The sliced wavefront for each pulse was determined and then summed to 

create the rotating LSG wavefront. The resulting summed phase was divided by the 

number o f pulses in the frame for scaling to the science wavefront. The rotating LGS 

wavefront was then subtracted f rom the wavefront f rom science paths out to 60 " 

arcseconds off-axis, and the residual wavefront variance measured. This process was 

repeated for 1000 separate atmospheres to ensure a good statistical sample. The 

diameter o f the circle traced out on the sky by the LGS rotation was increased f rom 0" 

to 120". The atmosphere used was the standard 3-layer La Palma atmosphere. The 

LGS was created at a distance o f 20km f rom the 4.2m W H T telescope pr imary. 

A n g u l a r D i a m e t e r 

o f L G S ro ta t ion 

( a r c s e c o n d s ) 

0 

20 

40 

60 

80 

- • " 1 0 0 

— ^ 1 2 0 

0 20 40 60 80 100 120 140 160 180 

Of f -ax is field ang le ( a r c s e c o n d s ) 

F igu re 7.16 Per formance o f a ro ta t ing L G S created at a distance o f 2 0 k m from a 4 .2m 

telescope p u p i l . The d iameter o f the c i rc le traced out on the sky by the ro ta t ing 

L G S was increased f r o m 0"， cor respond ing to a convent iona l L G S , to 100" in 

2 0 " steps. The ro ta t ing L G S wave f ron t was subtracted from the wave f ron t from 

several f i e l d angles up to 180" away from the centre o f ro ta t ion o f the L G S . 
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As can be seen f rom Figure 7.16, the off-axis performance increase introduced by 

rotating the LGS is substantial. One interesting point to note is that once the LGS is 

rotated, on-axis performance improves. This is thought to be due to anti-correlation 

between the highest layer o f turbulence at 7.5km and the wavefront coming f rom the 

science target at in f in i ty . A t the 7.5km layer, the i l luminated cone f rom an LGS at 

20km is 62.5% o f the telescope pupi l diameter. Only t ip and t i l t across the wavefront 

w i l l be correlated between the science and LGS wavefronts at this layer. Wavefront 

t ip and t i l t are removed in the model, as they wou ld be in reality by using a separate 

NGS t ip / t i l t reference source. 

The observed on-axis improvement should decrease w i th increasing LGS altitude as 

the highest layer is sampled we l l . The effect o f rotation o f a sodium LGS at 90km 

distance was also modelled and the results are shown in Figure 7.17. 

A n g u l a r D i a m e t e r 
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F igure 7.17 Per fo rmance o f a ro ta t ing sod ium L G S at 90knไ up f ie ld angles o f 180 ' ( i .e. a 
6 ' F O V ) . D iamete r o t the c i rc le t raced by the ro ta t ion o f L G S has been 
increased f r o m 0 " to 120" . 
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The on-axis performance increase seen by rotating the 20km LGS is not observed 

when the L G S distance is increased to 90km. This shows that there is a good 

correlation between NGS and L G S wavefronts at the highest turbulent layer in the 

atmosphere for a sodium LGS. A comparison o f the performance o f a rotating LGS at 

201cm and 90km is shown in Figure 7.18. The off-axis improvement achieved by the 

rotating the LGS is comparable for both a 20km and 90km LGS. Once a rotational 

diameter o f 120" is achieved, the performance o f the 90km LGS across the f ield is 

particularly uni form out to a f ie ld angle o f 90" , showing that wide- f ie ld correction can 

be achieved using a single rotating sodium LGS at a distance o f 90km. 
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Figure 7.18 Per formance o f ro ta t ing sod ium L G S at a distance o f 9 0 k m (orange l ines) 
compared to a ro ta t ing Ray le igh L G S at 2 0 k m (green l ines) . The per formance 
o f ro ta t ing L G S s w i t h angular diameters o f 6 0 " and 1 2 0 " are comparab le in 
terms o f PSF u n i f o r m i t y across the f i e ld and overa l l degree o f concction. 

Figure 7.19 compares the performance o f a low-alt i tude LGS method for creating a 

G L A O wavefront to a rotating LGS at 20km using four example systems. The 

example systems were chosen to have a similar PSF uni formi ty across a 4 ' F O V . A 

rotating LGS can provide a un i form PSF across a f ie ld that shows as much variat ion 
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as the correction provided by low-alt i tude LGS, as is shown by the similar curvature 

o f the two blue lines and the two red lines in Figure 7.19. This demonstrates the 

v iabi l i ty o f rotating LGSs as a tool for wide- f ie ld imaging. The rotating LGS however 

has a far lower wavefront variance, imply ing that better correction wou ld be observed 

i f the technique were employed instead o f a low-alt i tude LGS. 
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Figure 7.19 Compar i son o f l ow-a l t i t ude L G S per formance to ro ta t ing L G S per formance 
over a 4 ' F O V . So l id l ines show the per formance o f the low-a l t i t ude L G S 
system. Dashed l ines show the per formance o f a ro ta t ing L G S system. The t w o 
blue l ines compare low-a l t i t ude and ro ta t ing L G S systems that have a l owe r 
PSF u n i f o r m i t y across the f i e l d . Red l ines compare low-a l t i t ude and ro ta t ing 
L G S systems that have poor on-ax is per fo rmance, but better PSF u n i f o r m i t y 
across the f i e l d . 

7.5 Conclusions 

The opt imum altitude at wh ich to project a low-alt i tude LGS, using the standard 3-

layer La Palma atmosphere, to minimise PSF variat ion across fields o f v iew up to 6' 

in diameter is 4km when observing w i th the 4.2m W H T . However, the overal l 
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performance w i l l be improved at the expense o f PSF uni formi ty i f the distance to the 

L G S is increased. 

Creating a low-alt i tude Rayleigh LGS is technically less complex than creating a 

Rayleigh or sodium LGS at h igh altitude, simply as power requirements on the laser 

are reduced. This makes the system far cheaper to bui ld , and as such, maybe a 

comparison between the two techniques is unfair. However, rotating a 20km or 90km 

LGS w i l l provide better of f -axis performance, albeit at the cost o f reducing on-axis 

performance in the case o f a sodium LGS. Corrected fields o f up to 3' in diameter w i l l 

exhibit a un i form PSF i f the LGS traces a circular path w i t h an angular diameter o f 2 ' 

for both 20km Rayleigh and 90km sodium LGS. 

On-axis performance o f a Rayleigh LGS w i l l be improved by rotating the LGS as 

poor ly sampled higher layers are averaged and only global t ip and t i l t (which is 

removed through referencing to an NGS and therefore ignored by the LGS WFS) w i l l 

be observed. This feature depends upon high layer turbulence being at an altitude 

where the diameter o f the actual area sampled by the cone f rom the f ini te altitude しGS 

is a small fraction o f the ftill diameter o f the telescope pupi l . Further work model l ing 

the effect o f the rotating LGS on WFS performance, and not just through the 

comparison o f rotating LGS and science wavefronts, is required to folly explore this 

concept. 

The filli A O system simulation analysis presented in section 7.4.2 showed the 

theoretical on-sky performance o f the experimental G L A O system. A comparison 

between the closed-loop gains at wh ich the theoretical and laboratory systems could 

provide stable correction conf i rmed that the simulation is more stable than in reality, 

and that other differences between the simulation and reality could we l l exist. The 

simulation can be said to describe opt imum system performance, but the val id i ty o f 
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this statement cannot be tested wi thout comparison o f theoretical to actual results 

under identical atmospheric conditions. 
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Chapter 8ะ System Performance 

8.1 Introduction 

This chapter exam ines the performance o f the A O system during both on-sky and 

laboratory testing. The laboratory tests are pr imar i ly concerned w i th the stabil ity o f 

the closed-loop control system, whi le the on-sky tests examine both the feasibi l i ty o f 

G L A O correction, as we l l as the performance o f the separate elements o f the L L S and 

A O design. A n on-sky demonstration o f closed-loop G L A O correction was not 

possible due to reasons that w i l l be outl ined later. 

The ini t ia l state o f the G L A O system on starting the work for this thesis was as a 

laboratory demonstration N G S A O system. The optical layout is identical to one 

previously used in an N G S A O demonstrator on the W H T [1 ] , except that the 

segmented mirror was replaced by the Xinetics D M . In this state, the lab A O system 

wou ld vignette most l ight f rom the LGS and wou ld be unusable on-sky. Therefore a 

complete redesign o f the system was essential, and these modif ications were 

presented in chapter 4. The ini t ia l A O design, referred to hereafter as the A O design 

(as opposed to the G L A O design presented in chapter 4) was in a state such that it 

should achieve closed-loop turbulence correction, but A O correction had never been 

achieved. The first task therefore was to examine the control system to attempt stable 

closed-loop operation. The ini t ia l A O system layout is presented in Figure 8 .1 . 
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Figure 8.1 Labora tory A O system layout s h o w i n g ณrbu lence emulator and F S M locat ion 

8.2 Laboratory AO system design 

Al though the A O system design used for laboratory testing shows similarit ies w i th the 

design presented in chapter 6， there are a few important differences that must be 

highl ighted. 

8.2.1 Turbulence Emulation 

A 256x256 pixel spatial l ight modulator ( S L M ) was used in place o f the OKOTech 

D M for turbulence emulation [1] . A distorted phase grating representing the turbulent 

phase screen was placed on a pixellated binary S L M . Each pixel was capable o f 
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producing a О or π phase shift. The S L M was i l luminated by a laser and the distorted 

grating caused a di f f ract ion pattern. The wavefront o f the first diffracted order could 

be control led in this manner. Using the S L M as a turbulence emulator al lowed for 

repeatable turbulence profi les to be injected into the system, so that changes made to 

the control system or optical al ignment could be examined under identical 

atmospheric conditions. The S L M was replaced in the final A O system design by the 

OKOTech D M for various reasons. First, the S L M can only work at a single 

wavelength o f l ight, therefore di f f ract ion effects are enhanced at the science focus. 

This can have a large effect on spot optimisation routines, such as simplexing. 

Secondly, the use o f the first order d i f f ract ion pattern means that the l ight source is 

very d im and d i f f icu l t to al ign opt ical ly. This meant a secondary laser had to be 

employed for alignment purposes. Final ly, due to hardware l imitat ions, only 128 

frames o f turbulence could be uploaded to the device at a single t ime. This gave 

approximately 1 second o f real-time turbulence before looping, although this t ime was 

dependent on the turbulence being emulated (faster turbulence requir ing faster frame 

rates). The OKOTech D M suffered no such l imitat ions, a l lowing polychromatic real­

t ime playback o f turbulence, using the same l ight source that was used for alignment. 

The response o f the OKOTech D M did require calibration before turbulence could be 

accurately emulated. 

8.2.2 Optics 

None o f the optical components that were required to reconjugate the LGS to the N G S 

focus, or deal w i th range-gating o f the LGS were used in the original laboratory 

design as they simply added complexi ty to the system, and had no effect on the 
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control system performance. The off-axis toroid and NGS F S M were also not used in 

the A O system. The first coUimating mirror was placed on the LGS F S M stage to test 

the stability o f the control loop w i th the presence o f a secondary wavefront t ip-t i l t 

corrector. Aberrations caused by the off-axis use o f the first parabolic element were 

not detected by the WFS. 

8.3 D M Characterisation 

The Xinetics D M had 97 P M N (lead magnesium niobáte) electrostrictive ceramic 

actuators arrayed on a square gr id 7mm apart. The actuators were capable o f 

del ivering a 5 ц т mechanical stroke w i th a lOOV change in applied drive voltage. I t is 

possible that i f adjacent actuators are set to ov and lOOV, the bond between the 

actuator and the deformable phase sheet could break. The maximum interactuator 

stroke was therefore l imi ted to 1.25)uyฑ by zener diodes l ink ing each actuator channel 

to its neighbours. The zener diodes accomplish this by l imi t ing the max imum voltage 

difference between neighbours to no more than 26V. 

The performance o f P M N actuators in terms o f range o f mechanical stroke, the 

l inearity o f actuator response and hysteresis is h ighly dependent on temperature. A t 

room temperature o f 20°c, the hysteresis o f the actuators is quoted in literature [3] 

provided by the manufacturer as 2 % from OV-IOOV-OV. The response o f the actuators 

is linear between 40V and 90V, g iv ing a midrange value o f 65V. The midrange 

voltage should be applied to all actuators as a starting point before optimisation o f the 

optical performance o f the A O system. This way the optimised D M surface after 

simplexing should be as close as possible to the middle o f the linear range o f the D M , 

a l lowing maximum dynamic range for correction. 
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The electronics control l ing the D M require digi tal input values between 1 and 4095. 

This value is passed through a digital-to-analogue converter ( D A C ) and a h igh-

voltage ampli f ier ( H V A ) that scales this value to a voltage between 0 and 100 volts. 

4095 gives an output o f ov, whi le 1 gives an output o f 95.8V. There are 4 D A C cards 

that each controls up to 25 actuators. There is a possibi l i ty that the actual voltage 

across an actuator could then exceed lOOV during the very rapid changes that occur in 

actuator settings dur ing closed loop operation. The actuators themselves are rated to 

120V. The midrange value o f 65V, measured interferometrical ly as the centre o f the 

linear range o f the D M , corresponds to a D A C value setting o f 1400. 

The shape o f the phase screen was studied using a Zygo PTI phase-shifting 

interferometer. The Zygo PTI can be used to measure surfaces to very high accuracy 

that was quoted on delivery as λ /20; our specific model o f Zygo PT I uses a He-Ne 

laser w i th a wavelength o f 633.9nm, g iv ing a measurement resolution o f 3 L 6 9 n m . 

The interferometer beam reflects o f f a flat mir ror t i l ted at 45° to strike the phase 

screen o f the D M face-on as shown in Figure 8.1. A n y surface map made o f the D M 

also includes phase changes that are introduced by reflection f rom the t i l ted flat. 

Whi le studying the shape o f the D M phase screen, it was noted that setting all D A C 

values to give H V A outputs other than ov resulted in large wavefront changes in the 

peak-to-val ley and rms wavefront error values across the D M phase map. The two 

images in Figure 8.2 show the phase map o f the D M surface measured w i th al l 

actuators set to a D A C value o f 4000 and then w i th each actuator set to 1000. These 2 

global D A C values correspond to mean H V A outputs o f 2.1 and 75.0 volts 

respectively. The residual peak-to-valley wavefront error increases by a factor o f 2.5 

between these two mirror ' f la ts ' . 

" 245 -



Figure 8.2 Phase screen at actuator average values o f 2 .1V and 7 5 V respect ive ly show ing 
change in ๚ a ť m i r r o r shape b rough t about b y non- l inear i t ies in the D M and 
cont ro l e lect ronics. P -V wave f ron t distances are 0 .2λ and 0 .49λ repsct ive ly . 

To determine the source o f error, the voltage that was passed across each actuator was 

measured for a range o f D A C values. Figure 8.3 plots the mean H V A output from 

each D A C card, showing D A C card 2， wh ich controls actuators 26 to 50， consistently 

output a higher voltage. 

R e q u e s t e d DAC V a l u e 

Figure 8.3 M e a n requested D A C va lue and resu l t ing H V A outpu t vo l tage p lo t ted fo r each 

o f the f o u r D A C cards. 
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Figure 8.4 H V A outpu t mapped onto D M actuator g r i d f o r a requested D A C va lue o f 1000, 
0ՕՄ6Տթօոճւո£ to an average H V A output o f 74 .92V . Image has undergone 
b icub ic in terpo la t ion í r o m 11x11 actuators t o 500x500 p ixe ls to approx imate 
phase sheet. Be fo re іп Їефо Іа І іоп , R M S Er ro r ๒ vo l tage was 1.06V, 
cor respond ing to an R M S error on the D M phase sheet o f 0 .08λ at 6 3 3 n m . 

Cor respond ing P-V error is 0 .47λ. The actuators con t ro l led by D A C card 2 can 

c lear ly be seen as a t h i c k ver t ica l band across the m i r r o r surface 

Smaller errors between dif ferent channels on the same D A C card were noticed. As 

each channel has its own dedicated H V A these aberrations are most l ikely to be 

caused by differences between components w i th in these. Look ing at the H V A outputs 

at high voltage ( D A C value o f 750), there are 8 channels that register voltages greater 

than 2 % from the D A C mean value. 

Errors in output D A C voltages do not affect closed-loop performance as information 

on the acmator-to-actuator response o f the D M is observed by the WFS and encoded 

w i th in the system calibration matr ix. They can however affect the open-loop 

performance o f the system as known aberrations cannot be placed upon the D M phase 

surface. A n optical calibration o f each actuator must be made in order to use the D M , 

as an example, to inject calibrated turbulence into the WFS. 
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The effect o f the zener diodes on adjacent actuators was also measured. A single 

actuator was poked f rom a D A C value o f 1 to 2900 (corresponding to a voltage range 

o f 95.8V down to 29.6V) whi le keeping adjacent actuators set at 1400 (-65พ). The 

graph in Figure 8.5 shows the effect o f the zener diodes l imi t ing the voltage between 

adjacent actuators. It was noted that as the 26V l imi t was reached, non-diagonal 

adjacent actuators were also affected by the voltage difference, w i th their actuator 

voltages changing by up to 1.2 volts. Actuators that were diagonally adjacent to the 

poked actuator were not affected by any reverse voltage leak. 

100 

๐ 60 

500 1000 1500 2000 2500 3000 
DAC Value 

Reference 

F igu re 8.5 E f f e c t o f zener d iode l inks between actuators o n H V A output vo l tage l i m i t i n g 
inter-actuator vol tages to 2 6 V fo r non-d iagona l l y adjacent actuators. D iagona l 
actuators (not p lo t ted) are not l i nked by zener d iodes. The reference l ine was 
created by increasing al i actuators. 

The effect o f the zener diodes is not encoded wi th in the pokematr ix (defined in 

section 8.5)， and can affect the corrective performance. A 1.2V change in output 

voltage corresponds to a 1.46λ path length increase in a reflected beam at the LGS 

laser wavelength, wh ich w i l l have a large effect on the observed WFS spot mot ion, 

and A O corrected PSF. However, for current leakage through the zener diode l ink to 

occur, the difference in voltage between adjacent subapertures must equal 26V. This 
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corresponds to an optical path length difference greater than than 5λ. Dislocations o f 

this magnitude are possible between adjacent subapertures [4 ] , but only under the 

poorest seeing condit ions. The effect o f the zener diode l inks should be min imal under 

normal atmospheric conditions. 

8.4 WFS Performance 

Plane wavefronts w i th a gradually increasing t i l t value were created using the S L M 

turbulence generator w i th a 633nm laser. The X - and y-centroid mot ion o f all the WFS 

spots was then measured and plotted. 

-Ό 

0.00 

-0,05 

-ОЛО 

-0.1ธ 

-Û.2Û 
10 20 зо 40 50 60 

Wavefront Tilt (waves) 

Figure 8.6 Effect of increasing vertical offset (wavefront 'tip') on recorded centroid values 
in the horizontal (wavefront 4i lť) plane 
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Figure 8.7 Effect of increasing vertical offset (wavefront Чір') on recorded centroid values 
in the vertical plane 

The centroid mot ion o f spots in the horizontal (x-) plane was not affected by changing 

the wavefront t i l t values as is shown in Figure 8.6, conf i rming that the WFS lenslet 

array and S L M turbulence generator were aligned accurately. The slope in Figure 8.7 

was clearly linear across the range o f values o f wavefront slopes displayed on the 

S L M . A least squares fit to this plot showed a 0.00295 p ixe l mot ion for a l"Wave 

change in t i l t across the aperture. 

8.5 Cont ro l System Operat ion 

A DSP (Dig i ta l Signal Processor) control r ing interfaces the WFS to the Xinet ics D M 

actuators. A DSP is a specialised microprocessor designed to rapidly analyse digital 

data, such as the digit ised pixel intensities output by the WFS. The calibration o f the 

DSP l ink is cri t ical to the operation o f the closed loop system. One o f the most 
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important factors in the calibration o f the A O system is the interaction matr ix that 

measures the WFS spot mot ion for a known actuator mot ion. This matr ix is produced 

by placing a known shape on the mirror and examining the effect o f this shape on the 

WFS. In this way, a matrix l ink ing actuator mot ion to wavefront is produced. A linear 

model o f the WFS is assumed that l inks the incoming phase o f the wavefront, jí, to the 

set o f gradients representing the WFS measurements, ร, such that 

8 = Аф " 8.1 

The normal method o f creating the interaction matr ix, A, using a SH-WFS and 

Xinetics D M is to increase (or decrease) each actuator value in turn by a known 

amount f rom its flat mirror value and record the corresponding effect o f this 

aberration on the WFS. We refer to an interaction matr ix produced by poking the 

actuators in this fashion as a pokematrix. A n example pokematrix is shown in Figure 

8.8. 

Figure 8.8 Example pokematrix with each row describing the response of the WFS 
subapertures to the action of a single actuator. Each pair of columns give X and 
Y pixel centroid motion within a single subaperture. Red pixels denote positive 
centro і d motion in the pokematrix; blue pixel ร denote negative centroid motion 
in the pokematrix. Grey pixels denote a measured centroid motion that was less 
than 5% of the maximum centroid motion, effectively describing WFS channels 
that did not exhibit a response upon poking an actuator 
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The х and y mot ion o f each spot (numbered 1 to 76) is scaled by the D A C value that 

each actuator has been poked by (e.g. When poking actuator 1 by a D A C value o f 

100， spot 1 moves in the positive x-direct ion by 4 pixels. The pokematr ix value for 

actuator 1 and the spot 1 x-mot ion becomes 4/100). The scaling process assumes that 

the response o f each actuator is linear over the entire range o f possible actuator 

setting. This is not the case for voltages outside the 40 to 90 vol t linear range o f the 

D M . These voltages correspond to a pathlength change o f over 15λ in a reflected 

beam at a wavelength o f 0.5μηι. Actuator values when running closed loop should not 

approach these l imits, unless signif icant t i l ts are being corrected using the D M . From 

running the system closed-loop on emulated turbulence (using the holographic 

turbulence emulator described in Section 8.2.1), it has been seen that actuator D A C 

values rarely d i f fer by more than 700 f rom the ini t ia l mir ror D A C value o f 1400. The 

effect o f WFS noise was reduced by setting large poke values, as spot motions are 

larger compared to random noise motions. A f te r scaling down by the large poke 

value, noise in the pokematr ix was reduced. 

The pokematr ix in Figure 8.8 shows the response o f all WFS spots to each single 

mirror acณator. Under closed loop operation however, we need the inverse o f this 

information, as we measure the mot ion o f a single WFS spot and must derive f rom 

this the mot ion o f many actuators. The generated pokematr ix (which has encoded 

wi th in it measurements o f the actuator response and W F S / D M co-alignment) must be 

inverted to give a control matr ix, B， such that 

ф = вร - 8 .2 

When applied to a Xinet ics D M and SH-WFS, the phase, Ф, is described as a set o f 

actuator values, and s， a set o f wavefront slopes across each WFS subaperture. A t no 
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point in the control loop is the true phase o f the wavefront determined, w i th the 

physical surface o f the D M provid ing the mathematical transform f rom actuator space 

to phase space. From a simple comparison o f equations 8. l and 8.2， it can be seen that 

В is the inverse of A. As neither matr ix is square, the simple inverse cannot be made 

and В has to be calculated by the singular value decomposit ion (SVD) o f the 

interaction matr ix A, creating a least-squares control matr ix that minimises wavefront 

measurement error. A least-squares control matr ix attempts to minimise the 

measurement error Sm o f a wavefront when a correction is applied to the D M . 

Sr.=\\ร-ΑΦΙ' "8 .3 

Every m X ո (where m> ո) matr ix, such as the асШаЇог interaction matr ix, A, has a 

S V D that is given by 

A=UDV'^ - 8.4 

The process o f S V D generates two orthogonal matrices, บ and V， l inked by a diagonal 

matr ix, D. บ isan mxn matr ix and F a n d D are both nxn matrices. The inverse o f A, 

which in this case is B, the system control matr ix can therefore be given by 

B = VD~^^ - 8.5 

The inverse o f the diagonal matr ix D represents the gains o f each o f the system modes 

in the control loop, wh ich themselves are represented by columns in the two 

orthogonal matrices บ and V. H igh values in the inverted diagonal matr ix correspond 

to system modes that are poor ly sensed by the WFS. H igh values are typical ly one to 

two orders o f magnitude greater than the majori ty o f values in the inverted diagonal 

matr ix. Setting these values to zero prevents the control system t ry ing to correct these 

modes on the D M . I f the large gains are not zeroed, the system could effect ively 
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attempt to correct for random noise whi le ignoring the large spot motions caused by 

true wavefront slopes. 

Figure 8.9 and Figure 8.10 show control matrices generated w i th no modes cancelled 

and the control matr ix generated w i th the 13 poorest sensed modes removed. The 

matrix in Figure 8.10 somewhat resembles the original pokematrix, wh ich is 

preferable as there is an obvious direct relationship between the motion o f a spot and 

its 4 surrounding actuators. I t is obvious that this relationship between actuator 

displacement and subsequent WFS spot mot ion should be dominant in both the poke 

and control matrices and not masked by noise w i th in either matr ix i f the system is to 

perform we l l . 

As further system modes are zeroed, the system becomes less sensitive to small 

signals on the WFS. I f this is taken to the extreme and al l modes are cancelled, the 

control system becomes insensitive to al l observed modes on the WFS and the D M 

does not respond, irrespective o f the measured wavefront. The response o f the system 

to an input control matrix can be optimised by removing enough modes to cancel 

noise, but retain those modes that are associated w i th real WFS signals. The opt imum 

performance point can be defined as a gain threshold in the S V D diagonal matr ix. The 

gain threshold for a given system is dependent on optical alignment between D M and 

WFS, WFS SNR, closed-loop gain and calibration accuracy. 

When the system is aligned in a known geometry the points in the interaction matr ix 

where a WFS subaperture should register a mot ion when an actuator is displaced can 

be theoretically determined. One such alignment is the so-called 'F r ied ' geometry [5] 

wh ich describes a W F S - D M alignment where an actuator is positioned at the vertex o f 

four lenslets. A pokematr ix measuring a WFS and D M in the Fried geometry sees a 

max imum o f 4 spots only move for each actuator, and the points in the interaction 
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matrix where these signals w i l l be placed are defined. This knowledge al lows signals 

that lie outside the points o f interaction to be zeroed, reducing noise, although the 

values in the interaction matr ix wou ld st i l l require determination. In reality, WFS 

signal noise w i l l cause errors on al l the centroid positions and these w i l l be іпіефгеїесі 

by the control system as an actual effect o f mov ing an actuator. Averaging spot 

mot ion over many WFS frames reduces the effect o f noise on a pokematrix, but it is 

sti l l a problem as can be seen by the slight variations seen in the background (grey) 

pixels in Figure 8.8. Further frame averaging could reduce these variations, but the 

generation o f an interaction matr ix can take a significant amount o f t ime. Dur ing this 

t ime period, several factors that can affect the stabil ity o f the system, pr imar i ly due to 

temperature variations affect ing both actuator response and system alignment, can 

reduce the accuracy o f the interaction matr ix, and invalidate the assumption o f a linear 

WFS response. A theoretical mask that maps which WFS subapertures should 

measure a response for a given D M actuator can be placed over the pokematr ix to 

remove spurious noise entirely, but this requires knowledge o f the actuator influence 

functions and precise alignment between WFS and D M . A f i l ter can also be used that 

zeros al l small signals, but care must be taken not to zero true spot motions. Even 

using a masked pokematrix, genuinely affected subapertures st i l l measure a wavefront 

slope that is affected by noise, and there w i l l always be some error that propagates 

through to the control matr ix. 

A O correction o f an aberrated point source was measured for a set o f control matrices. 

The set o f control matrices was created by sequentially cancell ing system modes f rom 

the S V D and closing the loop on the point source. Results o f this study are presented 

in section 8.6.2. Two example control matrices generated using the pokematr ix in 

Figure 8.8 are presented in Figure 8.9 and Figure 8.10. 
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Figure 8.9 Control matrix generated by inverting the pokematrix shown in Figure 8.8. No 
system modes have been cancelled. Each pair of columns give X and Y pixel 
centro і d motion within a single subaperture. Red pixels denote positive centro id 
motion in the pokematrix; blue pixels denote negative centroid motion in the 
pokematrix. Grey pixels denote a measured centroid motion that was less than 
5% of the maximum centroid motion, effectively describing WFS channels that 
did not exhibit a response upon poking an actuator 

Figure 8.10 Control matrix generated by inverting the pokematrix shown in Figure 8.8. The 
13 system modes with the highest gains have been cancelled. Each pair of 
columns give X and Y pixel centroid motion within a single subaperture. Red 
pixels denote positive centroid motion in the pokematrix; blue pixels denote 
negative centroid motion in the pokematrix. Grey pixels denote a measured 
centroid motion that was less than 5% of the maximum centroid motion, 
effectively describing WFS channels that did not exhibit a response upon 
poking an actuator 

- 2 5 6 



A qualitative visual comparison o f Figure 8.9 to Figure 8.10 al lows several 

conclusions to be drawn. The control matr ix should show a clear l ink between WFS 

spot motions and actuator mot ion, and should therefore resemble the input pokematrix 

and show a set o f clear points where WFS spot mot ion is l inked to movement o f an 

actuator. A n actuator/subaperture pattern can be seen in Figure 8.9, but is masked by 

noise (blue pixels). By cancell ing system modes w i th the highest gain (13 in this 

example), Figure 8.10 is derived. Here a clear l ink between WFS and D M can be seen 

above the background noise as demonstrated by the similar i ty between Figure 8.8 and 

Figure 8.10. 

Figure 8.10 also shows that by cancell ing modes, the average value o f the control 

matr ix changes. By looking down the first co lumn, one can see that most acณators 

have a small posit ive reaction (denoted by the red pixels) to the particular spot mot ion 

the first column describes. Each iteration o f the closed loop system w i l l therefore add 

a small piston term to the mirror. This w i l l quick ly take the mirror to the point where 

the actuators become non-linear and system performance w i l l decrease. Simply 

subtracting a constant offset f rom the control matr ix wou ld reduce the accuracy o f the 

control matrix fiirther, so the control system was modi f ied to include a 'piston bleed' 

algor i thm. 

The piston-bleed algorithm worked whi le the loop was closed by attempting to 

maintain the average D A C value at the default midrange level o f 1400. I f the average 

D A C value deviated f rom this norm, the difference between true average and 

midrange was mul t ip l ied by a gain term and subtracted from al l D A C outputs. This 

ensured that any large offsets that were bui l t up by the non-zero average o f the control 

matr ix were removed before being displayed on the D M . Without an input calibration 

the piston bleed algori thm has no knowledge o f actuator l inearity therefore reduces 
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system performance. This can be minimised by reducing the piston bleed gain to the 

point where the piston bleed corrections are small enough that the WFS cannot 

observe the difference that removing the piston makes to the wavefront. This value is 

o f the order o f 10 D A C units per closed loop operation which corresponded to a 12nm 

actuator movement. To the author'ร knowledge, the use o f a piston-bleed algori thm as 

a method for keeping the D M wi th in its linear regime has not been suggested before. 

8.6 Cont ro l System Performance 

A study o f the performance o f the A O system under closed loop-control was made in 

the laboratory. 

8.6.1 Single Actuator Response 

A simple test o f closed loop performance is to record D A C values for a single actuator 

when that actuator value is changed externally. Figure 8.11 demonstrates the system 

correcting this exteraal change in асШаїог value. 
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Figure 8.11 Plot of DAC Value versus WFS frame number for a closed loop run. The loop 
is closed at point A. The actuator value is changed externally at point B. The 
system corrects the actuator to return the mirror to a flat state by point c. The 
loop is opened at point D and the mirror reset to a global ov. The frame rate of 
the system was ~300Hz. Closed Loop gain was 0.1. 

As can be seen in Figure 8.11, after the actuator impulse the system does not return 

the actuator to its ini t ial value, but to a sl ightly lower value. This shows the D M 

settling to a new average value, and that the poked actuator has been corrected to this 

new average mirror value. This demonstrates the need for a Xinet ics D M to 

implement some k ind o f piston-correction. The piston-bleed algori thm had not been 

implemented at this stage, a l lowing the D M piston to float in this manner. 

From points В to С in Figure 8.11 is a t ime period o f 55ms. A correction on this 

timescale corresponds to a closed loop bandwidth o f 18Hz, wh ich is slow for an A O 

system t ry ing to correct atmospheric turbulence. From looking at the D A C units, it 

can be seen that the requested D A C value o f the poked actuator exceeded the voltage 

l imi t set by the zener diode, therefore the actual voltage on the actuator wou ld have 

been l imi ted to 26V, wh ich would correspond to a D A C value o f - 3000 . The t ime 

taken for the actuator to change from 3000 D A C units to point с is 30mร, 
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corresponding to a closed loop bandwidth o f 33Hz. This corresponds to the closed 

loop gain o f 0.1 that was being used. 

8.6.2 Cont ro l M a t r i x performance 

A study o f the effect o f cancell ing modes in the control matr ix on system performance 

was undertaken. A set o f 97 control matrices was created by decreasing the number o f 

zeroed S V D modes f rom 97 (all modes cancelled) to 0 (all modes used). The loop was 

closed using each control matr ix and the resulting A O corrected image f rom a non-

turbulent point source was examined. Non-common path errors between the science 

camera and WFS had been removed, and the simplex algori thm used to maximise the 

science image quali ty. 
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Figure 8.12 Normalised Total and Peak intensity of AO corrected science image versus 
number of SVD modes cancelled ๒ the control matrix modes. 

Using a bright, non-turbulent point source as a wavefront system means there is l i t t le 

correction for the A O system to perform. A i r cu^ents through the A O beam path w i l l 
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be corrected, but the effect o f these are l ikely to be small on output image quality. 

Wi th all modes cancelled, the system has no response when the A O loop is closed. 

The first point plotted in Figure 8.12 therefore shows the measured peak and total 

intensities o f the uncorrected PSF. The system should not be able to improve on the 

image qual i ty o f the di f f ract ion- l imi ted point source once the loop is closed, 

irrespective o f control matr ix used, as sources o f noise in the WFS and error in the 

control matr ix w i l l introduce distortions, albeit small, into the wavefront. This is 

exhibited in Figure 8.12 as a drop in science image peak (and average) intensity 

between the closed-loop performance w i th al l modes cancelled, i.e. no correction, and 

the best closed-loop performance achieved w i th only a single mode cancelled. Figure 

8.12 shows that very few modes should be cancelled in order to optimise 

performance. These results also suggest that cancell ing no modes w i l l achieve almost 

opt imal performance, however, an A O system using a ftill control matr ix is highly 

unstable. The above experiment can only be performed w i th a non-turbulent, h igh­

l ight level point source and requires very carefi i l alignment o f the D M to the WFS to 

minimise sources o f noise in the system. The normal method o f operation on a 

turbulent point source wou ld be to start w i th no-modes cancelled and remove modes 

unt i l the loop became stable. Using the emulated ณrbulent source w i t h an Го o f 0.14ทา 

and a frame rate o f lOOHz, which corresponded to a ground layer w ind speed o f 5m/s, 

the loop was closed and remained stable using 90 modes and a closed-loop gain o f 

0 .1 . 
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8.7 On-sky performance 

On-sky performance was to be measured at several points across the f ie ld using an IR 

sensitive camera at the AO-corrected feed. However, a quadrant o f the WFS camera 

suffered a failure at the start o f the observing run and could not be repaired, leaving 

the A O system w i th three quarters o f a wavefront camera. The large degree o f static 

aberrations present in the LGS WFS path also reduced the fraction o f the wavefront 

that could be reconstructed. 

The measured LGS and NGS wavefronts were reconstructed using an SOR algori thm. 

The average centroid offset was removed as we l l as the global t ip and t i l t across the 

wavefront. This removed the effects o f static aberrations and dif ferential t i l ts from 

both wavefronts. Sample NGS and LGS output wavefronts are shown in Figure 8.13 

Figure 8.13 Sample LGS (left) and NGS (right) reconstructed wavefronts. 

The recorded wavefront data had been synchronised by interrupting both beams twice. 

This also al lowed the frame rates o f the two WFS to be compared relative to one 

another. To mercase SNR the exposure o f the LGS WFS had been increased to 50ms. 

The N G S WFS was run at its max imum possible frame rate o f approximately 60Hz. 
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A comparison was made between the two sets o f WFS data to determine the 

correlation between the X and Y centroids returned by the LGS and NGS WFS. 

Global t ip and t i l t and static aberrations were removed f rom the wavefronts before 

comparison. Two methods for synchronising the LGS and NGS WFS frames were 

used. The f irst synchronisation method averaged the centroids f rom a number o f NGS 

frames corresponding to a single LGS frame. Two or three N G S frames were 

averaged for each LGS frame. The second synchronisation method performed the 

correlation using a single N G S frame taken at the midpoint o f the LGS exposure. 

Correlation between the X any Y centroid mot ion on a subaperture by subaperture 

basis was not observed using either synchronisation method. There are some possible 

reasons why the correlation between the LGS and N G S WFS frames was not 

observed. The most obvious o f these is that the LGS WFS F O V was too restricted and 

vignetted the LGS. The lack o f correlation could also have been due to inaccuracy in 

the NGS WFS, although this is less l ikely because the image f rom the N G S WFS 

showed a we l l separated spot pattern. N G S WFS SNR was not a major source o f error 

w i th the 2"^ magnitude star that was being used as the N G S . Another possibi l i ty is that 

during the course o f the observations, the majori ty o f the atmospheric mrbulence was 

at a high altitude. This theory cannot be conf irmed wi thout knowledge o f the vertical 

distr ibution o f turbulence but could mask any small correlation between NGS and 

LGS wavefronts. 

The correlation o f global t i l ts across the wavefront was examined but also showed no 

instantaneous correlation between LGS and NGS ti l ts, but this was as predicted. For 

two sets o f data, it was observed that the global t i l t o f the LGS wavefront had changed 

in magnitude w i th t ime f rom its ini t ia l value, suggesting that the LGS WFS was 

tracking the slow LGS dr i f t caused by the W H T top-end sag. This is shown in Figure 
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8.14. The fact that the gradients o f the two independent measurements are we l l 

matched lends support to this theory. 
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launch telescope. The time between the two sets of data being taken was 

approximately 5 minutes. 

Figure 8.14 illustrates the problem o f the restricted F O V o f the LGS WFS. The global 

t i l t changes f rom a value approximately 0.1 pixels to "0.1 pixels over the course o f 4 

seconds then stabilises. This corresponds to an LGS dr i f t o f 0.04" over this t ime 

period. The instantaneous LGS spot j i t ter measured from the un-range gated plume 

(see Chapter 4) taken using 1ms exposures showed a 3σ spot j i t ter o f 0.5", suggesting 

that the LGS was vignetted and what is actually being tracked is the movement o f the 

peak intensity o f the Gaussian LGS intensity prof i le through the central 0.04" section 

o f the LGS WFS FOV. 
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8.8 Conclusion 

The on-sky performance o f A O system was restricted by the l imi ted F O V o f the range 

gate system and no correlation was observed between the NGS and LGS centroid 

mot ion. A change in global t i l t was observed for two sets o f LGS WFS data that was 

consistent w i th the LGS WFS tracking the slow LGS dr i f t caused by the top-end sag 

o f the W H T . 

Laboratory characterisation o f the closed loop performance on a non-turbulent point 

source showed that due to effect o f noise in the WFS and error in the control matr ix, 

the corrected PSF wou ld not match the peak intensity o f the optimised PSF w i th the 

A O loop open. The effect o f cancell ing S V D modes in the control matr ix on the 

closed loop performance o f the A O system showed that opt imum performance is 

achieved when a m in imum number o f modes are cancelled. 

Open-loop calibration o f the D M and characterisation o f the D M electronics showed 

that the high-voltage signal output from one o f the D A C cards was approximately 2V 

higher than the average D A C output across the linear range o f the actuator response 

curve. This caused a section o f the D M to become offset as voltages were increased, 

and this offset was observed both in an interpolated model o f the D M phase surface 

and f rom interferometrie data. This suggested that the major source o f open loop 

wavefront error in the D M surface was due to the offset input voltage o f the second 

D A C card. 

A piston bleed algori thm was created to force the D M surface to move towards the 

midrange value once the A O loop was closed. This ensured that the D M actuators 

remained w i th in their linear range and thus the control matr ix remained va l id . 
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Chapter 9ะ Conclusions 

9.1 Introduction 

The large number o f systems that are currently being designed that w i l l rely on, or can 

uti l ise, G L A O correction, means that an on-sky demonstration o f a G L A O system is 

an event the adaptive optics communi ty is eagerly await ing. This work presented the 

design and performance o f the first dedicated G L A O system to be fielded on a 

astronomical telescope, and the first to use the backscattered l ight f rom a very юพ" 

altiณde Rayleigh L G s as a wavefront reference. This thesis also described the 

performance optimisation o f a laboratory-based A O system upon which the G L A O 

design was based. Numerical simulations o f the G L A O system were made to 

determine the theoretical system performance and provide a comparison for the tests 

undertaken dur ing commissioning at the W H T . 

Wi th reference to the project aims (defined in Chapter 1), this chapter draws 

conclusions made as a result o f the wo rk on the demonstrator G L A O system, and 

describes the scientific lessons learned from the project. Final ly, possible 

modif ications to the G L A O system have been outl ined that use the experiences gained 

during this project that w i l l a l low a fiirther modif ied/upgraded system to achieve 

wide-f ie ld G L A O correction using a Rayleigh LGS 

9.2 System Performance 

A n overview o f the system performance is given in Table 9 .1 . 
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Parameter Designed/ Actual Units Comments 

Model led 

LGS 

Altitude 4 3.9 km Determined from off-axis viewing and 

observed return through WHT primary 

Range Gate Depth 70 N/A m Narrow FOV of range-gate system 

LGS plume diameter at 0.65 0,75 arcsec L G S plume diameter measured from off-

4km axis obesrvations of LGS plume 

LGS spot size >2 2.29 aircsec Designed LGS spot size dependent on 

Flux 800 Unknown (a) Calibration of camera not possible with 

±3σ LGS spot motion 0.74 0.51 arcsec 

Output power 5 3.5 พ Combined effect of LGS system 
throughput and thermal effects on laser 

A O System 
Frame Rate 300 200 Hz Low-light level in partially illuminated 

subapertures caused loop instability 
Field of view 80 80 arcsec 
LGS Throughput ひ 34 Unknown บทcalibrated LGS WFS camera 
Wavefront Quality 

(LGS) 704 Unknown nm (RMS) Full reconstruct ion of LGS wavefront not 
possible using 3/4 of LGS W F S 

(NGS) 492 400 ทกา (RMS) Actual RMS error is twice that of DM 
SVD Optimisation 91 96 Nu^ modes used in control 
Closed Loop per formance (with 91 SVD modes used, uncorrected 

on-axis 0.21 Unknown arcsec Loop closed in laboratory, Unable to close 
40" off-axis 0.18 Unknown arcsec Unable to close loop on sky 

120" off-axis 0.35 Unknown з гс^^ Outside AO system FOV 

Table 9.1 Designed or modelled performance compared with actual system performance (where 

possible) บทits for (a) are in photons per subaperture per 5ms frame 

The first two project aims were concerned w i th the laser launch system performance 

and the characteristics o f the resulting LGS. The theoretical performance o f the юพ-

altiณde G L A O system showed that across the 80" F O V o f the experimental system, 

an LGS projected to a distance o f 4km f rom the telescope pr imary optimised f ie ld 

uni formity when using the "standard" La Palma 3-layer atmosphere. The 5 พ laser 

and launch system design presented in Chapter 4 were capable o f projecting an LGS 

at this altitude that wou ld create a Rayleigh plume w i th a m in imum apparent diameter 

o f 0.65 arcseconds. When viewed wi th a 10x10 subaperture Shack-Hartmann WFS 

running at a frame rate o f 200Hz, an average signal o f 800 photons per frame wou ld 

be observed i f a n LGS range-gate depth o f 70m was used. The interaction o f the laser 

launch system w i th the LGS WFS was examined in Chapter 5 and showed that even 
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wi th the restricted F O V imposed by the available lenslet array, a SH-WFS pattern that 

would provide stable closed loop correction was possible, and that LGS launch j i t ters 

o f up to ± 1 " wo^^ not prevent a provide a signal that wou ld a l low the LGS fast 

steering loop to close. Numer ical simulations o f the G L A O system presented in 

Chapter 7 using this LGS as a wavefront reference showed that such an LGS could 

provide a stable wavefront reference for a closed-loop A O system. Wi th these 

analyses, it was shown that the aims relating to the laser lauch system performance 

were met, although on-sky conf irmation o f several o f these parameters was not 

possible w i th the equipment available for this project. 

The restricted operational parameters (operating only w i th 60-80 degrees elevation) 

al lowed a relatively simple launch system design. The launch system ut i l is ing both 

Nasmyth platforms o f the W H T al lowed an on-axis LGS to be created at the correct 

focal altitude w i th in a few hours o f going on-sky. The measured performance o f the 

laser launch system matched the modelled performance in several areas, including 

LGS plume diameter near the focus, and the observed LGS launch j i t ter. A complete 

comparison o f the launch system model to the actual LGS plume was not fu l ly 

possible due to a malfunct ion o f the LGS WFS C C D , low contrast ratio achieved by 

the passive range-gate system and large static aberrations w i th in the system. However, 

as the G L A O system did not include instruments for the determination o f the 

atmospheric Cn prof i le, an accurate comparison o f model to system performance 

would have had to have to been based on the assumption o f the standard La Palma 3-

layer atmosphere. 

The G L A O system design presented in Chapter 6 al lowed simultaneous N G S and 

LGS WFS over an 80" F O V that was restricted by the entrance aperture o f the double 

Newtonian beam expander. The modif ications that were required to al low the original 
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laboratory NGS A O system to be fielded on a telescope using a low-alt i tude LGS 

were extensive, necessitating a complete redesign o f the system. The design presented 

in Chapter 6 conf irmed that project aim o f determining i f the laboratory-based A O 

system could be modi f ied had been achieved; however, the system could only provide 

a single 10" di f f ract ion- l imi ted F O V at any f ie ld point in the fu l l 80 " patrol f ie ld. The 

performance o f the on-bench implementation o f this system was impaired due to the 

budgetary l imitations imposed on the project and did not meet the di f f ract ion- l imited 

optical design. A large number o f surfaces had to be included w i th in the design that 

reduced the system throughput and resulted in a poor qual i ty wavefront being 

presented to the LGS WFS. This ult imately prevented closed-loop G L A O system 

veri f icat ion on-sky. Assuming that suitable optical quali ty components could be 

procured, the design i tself was capable o f using a low-alt i tude LGS as a wavefront 

reference, thereby fu l f i l l i ng the third project aim. 

The f inal aim o f the project was to determine both the theoretical and actual 

performance o f the G L A O system itself. The system did perform closed loop 

correction in the laboratory and al lowed control matr ix performance to be investigated 

using a real system under control led conditions. For a wel l -al igned system w i th l itt le 

or no sources o f noise w i th in the WFS, the control matr ix that generated the smallest 

reduction in PSF peak and total intensity when compared to the optimised (simplexed) 

PSF was found w i th only a single mode cancelled. This result was conf irmed using 

the numerical simulat ion in Chapter 7， where opt imum control matr ix performance 

was found when only 2 modes were cancelled, albeit w i th a much higher closed-loop 

gain than was achieved w i t h the laboratory system. The similar effect o f cancell ing 

modes in the modelled and actual S V D ' ร show that the performance o f the laboratory-
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based A O system matched the response o f the modelled system in terms o f system 

stability and optimisation techniques. 

Closed loop simulations o f the G L A O system demonstrated that a higher SNR than 

predicted f rom the inclusion o f WFS read noise only in the simulation was required 

when the effects o f seeing w i th in a subaperture were simulated. This necessitated 

reducing the frame rate o f the LGS WFS from 300Hz, as was or iginal ly planned, to 

200H2. Using the standard La Palma atmosphere and values o f Го ranging between 

0.11m and 0.19m, corresponding to 75th and 2 5 ^ percentile seeing on La Palma, 

showed the F W H M o f the corrected PSF was approximately ha l f that o f the 

uncorrected PSF, although the associated improvement in Strehi ratio was mmima l . 

The Střehl ratio only shows large improvements when describing near di f f ract ion 

l imited performance. The G L A O corrected PSF was st i l l far from di f f ract ion l imited 

as was seen f rom the simulated PSFs shown in Chapter 7. 

The і п Ї Є ф 0 І а Ї Є ( і model o f the Xinetics D M that was used was, to the author'ร 

knowledge, a novel method for rapidly generating a D M surface w i th in a closed loop 

numerical simulat ion. Mode l l ing o f a Xinet ics D M wi th in simulations is usually 

achieved using simplist ic linear models, or a modal representation o f the D M , but 

these do not model the f i t t ing error o f a Xinet ics D M w i th the accuracy o f the 

іпЇеф0ІаЇес1 D M . As was noted w i th in the text, the accuracy w i th which the 

іпЇеф0ІаЇе(1 D M matches Xinet ics D M performance w i l l be further compared w i th 

alternative D M models to determine the benefits o f this method. 

Several results o f this project have directly influenced the design o f the facil ity-class 

Rayleigh laser system for the W H T called G L A S (Ground Layer Adapt ive optics 

System). The unpolarised photon return observed during one night o f the A O run 

necessitated modif icat ions to the G L A S launch and range gate systems, wh ich had 
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assumed that the l inearly polarised l ight output by the laser wou ld be preserved on 

return into the shutter system. The experience gained using the demonstrator system 

on-sky has proved invaluable in many areas o f G L A S system design and model l ing. 

The models used in the work have also been used to simulate G L A S performance and 

determine the system error budget. 

The LGS WFS model presented in Chapter 5 has also formed the basis for a design 

study commissioned by ESO to examine the feasibil i ty o f performing G L A O 

correction for the M U S E spectrograph and H A W K - I N I R imager using Rayleigh 

beacons. 

The presented system design was capable o f ftilfilling al l the project aims as defined 

in Section 1.3， but was let down by poor-quali ty optics, a lack o f telescope 

commissioning t ime and the inter-dependence o f characterisation tests on system 

components (requir ing the LGS range gate system to wo rk before the LGS spot size 

could be determined is an example o f this problem). As such, the project aims were al l 

met to d i f fer ing degrees o f success. Many o f the di f f icul t ies that were encountered on-

sky wou ld have been discovered and investigated i f extensive system testing had been 

performed in a laboratory environment, proving the need for adequate testing when 

commissioning a complex instrument such as this. 

9.3 System Development 

After the final LGS G L A O run, the decision was made to upgrade the A O system to 

create a more general LGS A O system test-bed for the W H T . Testing new LGS 

concepts is essential to the development o f LGS A O systems for proposed E L T A O 
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systems. A сопсершаї design was made, drawing on experiences gained f rom using 

and al igning the laser launch system and demonstrator A O system. 

Wi th the failure o f the WFS camera, a new gated C C D is being procured to a l low the 

LGS WFS system to be greatly s impl i f ied through the removal o f the Pockelร cell 

shutters. The double Newtonian beam col l imating/focusing system is also being 

replaced w i th a single, large, parabolic mirror that w i l l greatly increase the ease o f 

alignment and the F O V o f the demonstrator system. A new LGS/NGS dichroic 

beamsplitter is being purchased that has excellent transmitted and reflected wavefront 

quality. The proposed system w i l l have a very h igh throughput to both the L G S and 

NGS WFSs, a l lowing the altitude o f the LGS to be increased or range gate depth 

reduced. The wide f ie ld o f v iew o f the сопсерШаІ design w i l l also a l low off-axis data 

to be collected w i th far greater ease. A n integrated S L O D A R turbulence prof i ler is 

also being included in the system to provide a real-time atmospheric Cn prof i le for 

system analysis. 

This work has shown that a low-alt i tude LGS w i l l not perform as wel l as a rotating 

LGS, and w i t h the purchase o f a high-power laser for the G L A S project, the concept 

o f wide- f ie ld correction using a low-alt i tude LGS for G L A O is being abandoned, at 

least for the fijture o f this project. The G L A S laser launch system w i l l be modi f ied to 

create a rotating LGS at a distance o f 20km f rom the W H T primary and therefore 

should match the performance o f the rotating LGS presented in Chapter 7. The G L A S 

laser also has a fu l ly engineered launch system that w i l l automatically compensate for 

the W H T top-end sag, reducing one o f the major di f f icul t ies discovered during LGS 

tests. The upgraded A O system, using a rotating LGS created using the G L A S laser 

launch system should achieve substantially flat field correction across the entire W H T 

Nasmyth f ield o f v iew. 
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This project has conf i rmed that commissioning an LGS A O system requires a lot o f 

dedicated telescope t ime. A l though the t ime allocated to the project by the I N G has 

been very generous, the total t ime on-sky used for this project was approximately 6 

filli nights o f telescope t ime (over the course o f 4 years), wh ich is not long enough to 

fu l ly commission and characterise such a LGS-based G L A O system such as this. 
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