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Abstract 

This study analyzes the role o f statistical signif icance testing (SST) in education. 

A l though the basic logic under ly ing SST ― a hypothesis is rejected because the observed 

data wou ld be very un l ike ly i f the hypothesis is true 一 appears so obvious that many 

people are tempted to accept it, it is in fact fal lacious. In the l ight o f its historical 

background and conceptual development, discussed in Chapter 2， the Fisher'ร 

significance test ing, Neyman-Pearson hypothesis testing and their hybrids are clearly 

distinguished. We argue that the probabi l i ty o f obtain ing the observed or more extreme 

outcomes (p value) can hardly act as a measure o f the strength o f evidence against the 

nul l hypothesis. A f te r discussing the five major interpretations o f probabi l i ty, we 

conclude that i f we do not accept the subjective theory o f probabi l i ty, ta lk ing about the 

probabi l i ty o f a hypothesis that is not the outcome o f a chance process is unintel l ig ible. 

But the subjective theory i tself has many intractable d i f f icu l t ies that can hardly be 

resolved. I f we insist on assigning a probabi l i ty value to a hypothesis in the same way as 

we assign one to a chance event, we have to accept that it is the hypothesis w i th low 

probabi l i ty, rather than high probabi l i ty, that we should a im at when conducting scientif ic 



research. More important , the inferences behind SST are shown to be fallacious f rom 

three di f ferent perspectives. The attempt to invoke the l ike l ihood ratio w i th the observed 

or more extreme data instead o f the probabi l i ty o f a hypothesis in defending the use o f р 

value as a measure o f the strength o f evidence against the nu l l hypothesis is also shown to 

be misleading because it can be demonstrated that the use o f tai l region to represent a 

result that is actually on the border wou ld overstate the evidence against the ทน11 

hypothesis. 

A l though Neyman-Pearson hypothesis testing does not involve the concept o f the 

probabi l i ty o f a hypothesis, i t does have some other serious problems that can hardly be 

resolved. We show that i t cannot address researchers' genuine concerns. B y explaining 

why the level o f signif icance must be specified or fixed pr ior to the analysis o f data and 

why a b lurr ing o f the dist inct ion between the р value and the significance level wou ld 

lead to undesirable consequences, we conclude that the Neyman-Pearson hypothesis 

testing cannot prov ide an effect ive means for reject ing false hypotheses. 

A f te r a thorough discussion o f common misconceptions associated w i th SST and 

the major arguments for and against SST, we conclude that SST has insurmountable 

problems that could misguide the research paradigm although some other crit icisms on 

SST are not real ly as jus t i f ied . We also analyze various proposed alternatives to SST and 

conclude that confidence intervals (CIs) are no better than SST for the purpose o f testing 

hypotheses and it is unreasonable to expect the existence o f a statistical test that could 

provide researchers w i t h algorithms or r ig id rules by conforming to wh ich all problems 

about testing hypotheses could be solved. Final ly, we argue that falsi f icat ionism could 



eschew the disadvantages o f SST and other similar statistical induct ive inferences and we 

discuss how it could br ing education research into a more f ru i t fu l situation in which 

teachers and other educational professionals wou ld find the research output really matters 

to their practices. A l though we pay special attention to mathematics education, the core 

o f the discussion in the thesis might apply equally to other educational contexts. 
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Chapter 1 Introduction 

Nowadays there are abundant educational studies that are claimed to be scienti f ic. 

A t one level , scient i f ic enquiry could a l low us to con f i rm the existence o f phenomena in 

the educational arena and, as a result, it should g ive teachers informat ion whether their 

teaching strategies w o u l d really enhance the learning and teaching effectiveness or 

provide po l icy makers w i th data whether a po l icy w i l l lead to better education for the 

students. A t another level, when researchers propose a theory or hypothesis, the theory or 

hypothesis has to be tested to see i f it true or not. Hypothesis testing is thus an inevitable 

process in the scient i f ic inquiry. A t both levels, we usually have to approach the analysis 

o f experimentat ion w i t h the tools o f statistics ― descriptive and inferential statistics. 

There is l i t t le controversy surrounding the use o f descript ive statistics in describing 

various states o f nature. But almost all inferential statistical methods are subject to 

serious discussions. Statistical significance test ing (SST) is one o f the controversial 

statistical methods. 

The history o f the use o f SST can date back to a paper published almost 300 years 

ago, ' A n argument for d iv ine providence, taken f r om the constant regularity observed in 

the births o f both sexes.， (Arbuthnott , 1710). SST was not prevalent unt i l the f irst hal f o f 

the twent ieth century and has dominated education research fo r the past 70 years (K i r k , 

1996). In the meant ime, various concepts under ly ing SST were developed. T o 

understand how the cluster o f concepts has been brought together in the current practice 

o f SST, we should have a proper understanding o f its histor ical development. In this 



connection, the historical background and conceptual paradigms underly ing the 

development w i l l be discussed in Chapter 2. 

The use and іпЇефгеїаї іоп o f SST have, however, increasingly come under attack 

in recent decades. For example, many recent studies have argued that the long-standing 

practice o f reliance on SST is logical ly indefensible and corrupts our research enterprise 

in social sciences (Cohen, 1990, 1994; Falk & Gréen t 1995; Schmidt, 1996; 

Schmidt and Hunter, 1997) and the theoretical bases o f SST are wide ly misunderstood by 

researchers (Macdonald, 1997). In the arena o f education, Carver (1978) has argued that 

'even properly used in scientif ic method, education research wou ld st i l l be better o f f 

wi thout statistical signif icance testing.' (p.398) The controversy has recently come to a 

head. Many clar ion calls, as Thompson (1999a) described, have been published urging 

researchers to abandon, or to at least supplement, the use o f SST. The growing 

uneasiness can also be reflected in the change o f editor ial pol icies o f some top journals. 

For instance, the previous edit ion o f American Psychological Associat ion ( А Р А ) (1994) 

style manual has prompted closer scrutiny o f contemporary analytic practices; 

Neither o f the two types o f probabi l i ty values' [statistical significance tests] 

reflects the importance or magnitude o f an effect because both depend on 

sample size. Y o u are encouraged to provide effect-size informat ion ( А Р А , 

1994, p . l 8 ) . 

1 The t w o types o f p robab i l i t y here are r e f e m n g to the " a l p h a l e v e l " ( o r " s i gn i f i cance l eve l " ) and the р 

va lue ( А Р А , 1994) . 



A group o f researchers had requested the Amer ican Psychological Association 

( A P A ) to consider banning the SST altogether in its journals (Shrout, 1997). The A P A 

Board o f Scienti f ic A f fa i r s thus launched a Task Force on Statistical Inference in March 

o f 1996 to wo rk on related recommendations for improv ing research practices. (Azar, 

1997; Shea, 1996).^ In its latest edi t ion, A P A (2001) made the fo l l ow ing remark: 

The field o f psychology is not o f a single m ind on a number o f issues 

surrounding the conduct and report ing o f what is commonly known as 

ทนน hypothesis significance testing. These issues include, but are not 

l imi ted to, the report ing and interpretation o f results o f hypothesis tests, 

the selection o f ef fect size indicators, the role o f hypothesis-generating 

versus hypothesis studies, and the relative merits o f mul t ip le degree-of-

freedom tests ( A P A , 2001,p .21) . 

This manual d id not target at resolving these issues and it merely directed the 

discussion o f these and other issues to Wi lk inson and the Task Force on Statistical 

Inference (1999)3. I t is noteworthy that before and after the publ icat ion o f this manual, 

di f ferent journa l editors began adopting requirements that authors have to report 

2 A ban o f S S T has taken p lace ๒ American Journal of Public Health. (Sh rou t , 1997) Fo r changes in 
ed i to r ia l po l ic ies or au thor gu ide l ines o f o ther j ou rna l s , see L e v i n and R o b i n s o n , 1999; T h o m p s o n , 1996, 
1999a, 1999b, 1999c, 1999cl; T h o m p s o n and Snyder, 1997. 

3 Here the reference was quo ted w r o n g l y as " W i l k e r s o n ( 1 9 9 9 ) " i n A P A ( 2 0 0 Լ р.21) ( i t shou ld be 
" W i l k i n s o n and the Task Force o n Stat ist ical In ference ( 1 9 9 9 ) " ) . Cor rec t ions c o u l d be found in A P A ' ร 
o f f i c i a l webs i te : h t t p : / /www.apas tv le .o rg /pubman- rep r in t . pd f . S i m i l a r p r o m p t f o r the repor t o f ef fect size 
and s t rength o f re la t ionsh ip c o u l d also be f o u n d in its latest ed i t i on : " N e i t h e r o f the t w o types o f p robab i l i t y 
va lues d i rec t l y re f lec ts the magn i t ude o f an ef fect or the st rength o f a re la t ionsh ip . For the reader to f u l l y 
unders tand the impor tance o f y o u r findings, i t is a lmost a lways necessary to inc lude some index o f ef fect 
s ize o r s t rength o f re la t ionsh ip in y o u r Resul ts sec t ion . " ( A P A , 2 0 0 1 , p .25) . 



in format ion in addit ional to SST. 4 Some researchers have argued that the ban is just i f ied 

because SST has v io lated the scientif ic pr inciple that a scientist should espouse whereas 

others believe that the problem stems f rom misuses o f SST, instead o f f rom SST itself. 

SST, proper ly used, can be beneficial to the development o f education research. The 

controversy, to wh ich a special lead section o f the January 1997 issue o f Psychological 

Science is devoted, continues (Shrout, 1997; Hunter, 1997; Harr is, 1997; Abelson, 1997a; 

Estes, 1997). 

The controversy is not new. A number o f cr i t ic isms o f the use and іпЇефгеІаїіоп 

o f statistical signif icance tests have been made since the 1960ร (Bakan, 1966; Morr ison & 

Henkel , 1970). ^ Perhaps very few methodological issues have generated as much 

controversy as the use and interpretation o f SST (Pedhazur and Schmelk in , 1991), and 

this issue is certainly one o f the hottest developments in methodology over the past 40 

years. I f the cr i t ic isms against the use o f SST are correct, how on earth could the use o f 

SST st i l l prevai l now? Is it s imply, as Jacob Cohen says (Shea, 1996), due to academic 

inertia? Or, are the cr i t ic isms not completely correct? Do we have good reasons to make 

our judgment on this controversy? What are the impl icat ions o f our judgment for future 

research studies in education? I f SST really has serious l imi ta t ion or is being misused, 

what practices should replace or supplement it? These are the major questions that we 

are going to address in this thesis. But before addressing these questions, we have to 

consider the di f ferent ітефгеЇаЇІ0П5 o f probabi l i ty first. As Grayson (1998) has argued, 

4 For examp le , authors have to report e f fec t sizes as ind ices o f prac t ica l s ign i f i cance in Journal of 
Experimental Education, Journal of Educational and Psychological Consultation, Research in Schools, etc. 
See K e n n e d y , 2 0 0 2 f o r a l is t o f 17 j ou rna l s n o w requi re the repor t i ng o f e f fec t sizes. 
5 T h e earl iest ser ious c r i t i c i sm on the log ic and usefulness o f SST, accord ing to K i r k ( 1996 ) , appeared in a 
1938 ar t ic le b y Joseph Be rkson ๒ the Journal of the American Statistical Association. 



a major issue under ly ing the controversy o f SST revolves around the meaning o f the 

probabi l i ty o f a hypothesis. Indeed, when using SST we often invoke the concept o f the 

probabi l i ty o f a hypothesis. But what do we mean by ' the probabi l i ty o f a hypothesis'? 

We w i l l address this question in Chapter 3. There are many di f ferent interpretations o f 

probabi l i ty o f wh ich five major interpretations, namely the classical theory, the logical 

theory, the frequency theory, the subjective theory and the propensity theory, w i l l be 

discussed in Chapter 3. We w i l l see whether some could be resistant to crit icisms and 

how the c lar i f icat ion o f the concept o f probabi l i ty is o f crucial importance to the 

understanding o f SST. 

Apar t f r o m the interpretations o f probabi l i ty , the nul l hypotheses, р value, 

statistical signif icance and Type I and Type п error are al l important concepts underly ing 

SST. Misunderstanding o f these concepts could have disastrous consequences for the use 

o f SST. These concepts w i l l be clar i f ied in Chapter 4， together w i th an in-depth 

discussion o f the dist inct ions between Fisher's signif icance test ing and Neyman-Pearson 

hypothesis testing. Only a thorough discussion o f these issues could enable us to give a 

cri t ical examinat ion o f the arguments for and against the use o f SST. We w i l l show in 

Chapter 5 that not al l arguments against SST are tenable and advance some arguments to 

show that SST has many insurmountable problems that could misguide the research 

paradigm. 

M a n y cri t ics o f SST have proposed di f ferent alternatives to SST. We w i l l see in 

Chapter 6 whether the proposals are successful. There is one deeper reason for why SST 

fai ls. We w i l l show in Chapter 6 that most crit ics o f SST ignore this deeper reason for 



the fai lure o f SST when they are t ry ing to find alternatives to SST. In order to explicate 

this reason, we made a contrast between SST and fa ls i f icat ionism. Accord ing to the 

tradit ional v iew, such as those advocated by many falsif icationists, SST is only a 

methodological rule for fa ls i fy ing statistical hypotheses. We w i l l argue, however, that 

there are indeed subtle differences between SST and fa ls i f icat ionism. 

As Menon (1993) has argued, the use o f mathematics in SST might be the reason 

that many researchers have assumed that SST is supported by rigorous mathematical 

logic. The non-mathematical ly incl ined education researchers seem to have good excuses 

for their fa i lure o f examining the logic and the sophisticated statistical techniques 

under ly ing SST. H o w about the researchers in mathematics education? Do they take a 

lead in th row ing o f f the shackles o f SST, as Menon (1993) has urged almost 12 years ago? 

In order to answer this question, although the analysis in this dissertation could be applied 

to education research in general, the focus w i l l be placed on mathematics education 

research. 

A lot o f money is spent each year on education research (Pr ing, 2000). I t is, 

however, said that this money is not we l l spent (Hi l lage, 1998; Tooley and Darby, 1998) 

and education research is continual ly being cr i t ic ized for its poor qual i ty (Lev in and 

O 'Donne l l , 1999). Cri t ic isms o f education research have been emerging for a number o f 

years. The reputation o f education research has been regarded as awfu l (Kaestle, 1993). 

There are many explanations for the existence o f these cr i t ic isms. We hope that the 

discussions o f the SST issue could throw some l ight on the methodological foundations 

o f education research so that we could posi t ively respond to the cri t ic isms o f education 



research and suggest some ways how education research could develop in a scientif ic 

way. A n d this constitutes our last task in Chapter 6. 



Chapter 2 A historical review of statistical significance testing 

Statistical signif icance testing (SST) or nu l l hypothesis signif icance testing^ has a 

long history. Under l y ing it various concepts were developed at dif ferent times and in 

dif ferent conceptual paradigms. SST is thus not a single and simple concept that a 

careful examinat ion o f its current practice could be adequate for a thorough 

understanding o f the logic underly ing it. In this connect ion, we w i l l first review the 

historical background and conceptual paradigms behind its development. 

2.1 The first published test of a statistical hypothesis 

The history o f the use o f SST can date back to John Arbuthnot t ' ร 1710 paper, ' A n 

argument for d iv ine providence, taken f rom the constant regulari ty observ'd in the births 

o f both sexes.' (Arbuthnot t , 1710^). In this short paper, wh ich is now commonly 

regarded as the first paper on the formal test o f signif icance or inferential statistics (Baird, 

1981， p.48; Campbel l , 2001， P.607; Eisenhart & В і п Л 1967, P.24; Gigerenzer et al. , 

1989, p.79; Ha ld , 1998, р.65; Tankard, 1984, p . l l ) ^ Arbuthnot t provided arguments for 

6 To be more precise, 'significance testing' (or 'significance tesť) is used to designate the approach 
developed by Ronald A. Fisher and * hypothesis testing' (or 'hypothesis test*) to that by Jerzy Neyman and 
Egon Pearson เท the twentieth century (Berger, 2003; Hubbard & Bayarri, 2003a; 2003b; Hubbard, 2004; 
Lehmann, 1993). The distinction between these two approaches w i l l be discussed later. When there is no 
need to distinguish between these two approaches, we wi l l use the term 'statistical significance testing' (or 
^SST')in this thesis. 
7 The electronic version o f the original paper is available on the Web at JSTOR and its edited version is at 
http://panoramix.univ-parisl.fi-/CHPE/Textes/Arbuthnot/arbuth.html# (the data set is not free of typos, e.g. 
in 1662, the number of females should be 4803 rather than 4823). It has also been reprinted elsewhere (e.g., 
David & Edwa^^ 2001, pp.13-17; Kendall & Pla^^ (Eds.), 1977, pp.30-34). This paper might not be 
Arbuthnott's first contribution to probability or significance tests, see Bellhouse (1989) for details o f his 
earlier manuscript on probability and significance tests. 
8 Hogben (1957) attributes, however, the earliest use o f probable error as a form o f significance test in the 
biological arena to Jules Gavarrett (1840) (p. 324), and consider Venn (1889) as one o f the earliest users o f 
the terms 'tesť and *sigฑifícanť in their now current meaning (p.325). Isolated application of statistical 
hypothesis testing could also be found centuries earlier in the Royal Mint 's Trial o f Pyx (Stigler, 1999， pp. 

383-402). 



the presence o f d iv ine providence in the determination o f the sex ratio.^ First, he 

considered the toss o f an even number (say, ท) o f fair two-sided dice (or coins) whose 

sides were marked Mand F. B y calculating the b inomia l coeff ic ients in the expansion o f 

( M + he showed that the probabil ity^^ o f gett ing exact ly as many M as F wou ld 

become very small when ท got large and thus concluded that ' i n the vast number o f 

mortals, there wou ld be but a small part o f all the possible t ime, that an equal number o f 

males and females should be b o m ' (p.187), In his words, 4 t is very improbable ( i f mere 

chance govern 'd) that they [the outcomes] wou ld never reach as far as the extremit ies' 

(p. 188). But ๒ fact the B i l l s o f Mor ta l i ty indicated that no such vast preponderance o f M 

over F, or F over M ever occurred. He thus concluded that ' this equality o f males and 

females is not the effect o f chance but div ine providence, พor tóng for a good end' (p. 186). 

Second, Arbuthnot t noticed that the sex ratio was not exactly equal to one. He 

argued further that i f only chance governed, then in a g iven year the probabi l i ty that the 

number o f male births exceeded that o f female births wou ld be smaller than or equal to V2. 

Assuming that the probabi l i ty is equal to 1/2 , he reckoned, w i th the use o f the table o f 

logarithms, the probabi l i ty o f more males than females every year over an 82 year period 

wou ld be 1/2 8 2 = ~ ֊ - — ― ( p . l 88 ) . This is certainly a very 

4 836 ООО ООО ООО ООО ООО ООО ООО 

small number, but the fact he observed was: over 82 consecutive years f rom 1629 

9 According to Hacking (1975), the 'argument' is consisting o f three inferences of which two are statistical 

and one is about the very nature of statistical stability (p.167). And, according to Bellhouse (1989), 

Arbuthnott has provided two arguments for the presence of divine providence in this paper. For detailed 

commentaries on Arbuthnott's arguments, see, for instance, Bellhouse, 1989; Hacking, 1965， 1975; Hald, 

1990， 1998; Shoesmith, 1985, 1987. 

1° In the 17th century, the terms 'probability' and 'chance' were used in way that may be different from our 

present usage. 'Probabil ity', resembling subjective probability, was related to beliefs, opinions, proposition, 

whereas ՝chance' was used to mean objective probability (Hald, 1990， p.246). For our present рифозе, 

there is no need for us to distinguish its different meanings. We w i l l defer the discussion of its different 

notions to Chapter 3. 



t o l 7 1 0 ' \ more males than females were bom (or, str ict ly speaking, christened) in London. 

The existence o f this phenomenon wi th such a minute probabi l i ty was interpreted as 

decisive evidence against the hypothesis that merely chance governs the distr ibution o f 

sexes and for the alternative o f a regular excess o f male births. This rejection o f a 

hypothesis because the observed data wou ld be un l ike ly i f the hypothesis were true is 

cited as 'the first publ ished test o f significance o f a statistical hypothesis ' . Arbuthnott 

also tr ied to j us t i f y this constant regularity (i.e. more male births than female births but 

not the converse): i t served to offset the higher death rate o f males due to more external 

accidents wh ich males were subject to, and preserving the equal proport ions o f adult 

males and females required by the inst i tut ion o f monogamy. 

Arbuthnot t 'ร arguments d id not single h im out f rom his contemporaries in the 

advancement o f rel igious argument for divine providence, nor were his observations o f 

the sex ratio innovat ive (Shoesmith, 1987). Bu t these arguments st i l l provoked 

controversy dur ing the succeeding few years amongst many reputed mathematicians, 

such as Abraham de Mo i v re , W i l l e m 'sGravesande, Pierre R de Montmor t , Nicholas (or 

Nik laus) Bernou i l l i and Bemard Nieuwent i j t (Hack ing, 1965; Eisenhart & Birnbaum, 

1967; Shoesmith, 1985， 1987). A n d , several years after the publ icat ion o f this paper, 

Daniel Bernou l l i ' ^ used Arbuthnot t 's method to test a hypothesis about the incl ination o f 

' ' Hacking (1975) thus argued that the paper must have been printed in 171ไ since it included data on births 
going to the end o f 1710. And, according to Hald'ร (1990) study, the paper was published in 1712. 
ւ շ Bernoullis are probably the most famous family in the history o f statistics. James (or Jacob, Jakob, 
Jacques) Bernoulli (1654:^^ who was regarded by Keynes (1921) as the real founder of mathematical 
probability (p.41), was the one who first proves the first l imit theorem in probability theory - the weak law 
of large numbers (Hald, 1990, p.225; Hacking, 1978, p.154) and we wi l l return to this theorem later. 
'Bernoull i triais' was named after h im (Feller, 1968, p.251). John (Johann, Jean) Bernoulli (1667-1748) 
was a brother o f James Bernoull i . John worked for many years on the same problems as James. Daniel 
Bernoulli (!700-1782) was John's son, and his elder cousin was Nicholas (Niklaus) Bernoulli (1687-1759) 
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the planetary orbits (Freudenthal, 1970). Arbuthnot t 'ร attempt in prov id ing a statistical 

proof o f his assertions, based upon a quantitative not ion o f chance, has secured h im a 

place in the history o f statistics because the structure o f his arguments is regarded as that 

o f a SST, wh ich can st i l l be identi f ied in modem statistics tex ts ' 3 (Shoesmith, 1987). 

However, are Arbu thnot t ' ร arguments really sound? In the f irst argument, although 

Arbuthnot t calculated o n 】 y the probabil i t ies for л = 2, 4 , 6, 8, 10 in his short paper and 

asserts, w i thout g i v ing any proof, that the probabi l i ty o f gett ing exactly as many M as F, 

for large «, w o u l d be vanishingly smal l , this conclusion is indeed correct. ' ' ' But as 

shown in Append ix 1, the relative frequency o f gett ing extreme outcomes, for large ท, 

w i l l also be very smal l . I t is thus incorrect to conclude that " i t is very improbable that 

the outcomes w o u l d never reach as far as the extremit ies. ' That is to say, the fact that no 

vast preponderance o f M over F, or F over M ever occurs could s imply be an effect o f 

chance, or a result o f the Bernoul l i ' s l im i t theorem. 

In his second argument, Arbuthnot t studied the hypothesis: 

H ： I t is an even chance, whether a chi ld be b o m male or female. 

He argued that i f я was true, the distr ibut ion o f births wou ld be simi lar to the outcomes 

obtained f rom the toss o f fair two-sided dice (or fair coins). Be l iev ing that there was a 

constant regular i ty in the births o f both sexes, he also admitted that there could be sl ight 

preponderance o f males over females. Instead of testing н d i rect ly, a new hypothesis HQ 

was put to the test: 

who had refined his uncle's l imit theorem. They all spent most o f their lives as professors at Basle. For 

details, see Hald, 1990, pp.220-223; 1998, p.83; Pearson, 1978, pp.221-237; Stigler, 1986, p63 

՚ 3 See, for example, Lehmann, 1986, pp.106-107; Mi l ler & 1999, pp.529-531; Smithson, 2000, 
p. 182. 
՝" The details are shown in Appendix 1. 
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Яо ： The distr ibut ion o f chances o f male years is b inomia l w i t h P{M)=\I2, 

where 'male year' denoted the year in wh ich more boys were bom than g i r l . 

He noticed that there were indeed 82 male years in London. He then calculated the 

chance o f get t ing this outcome under the assumption that Щ is true, and the chance was 

found to be extremely smal l ( l /2^^.) He then rejected HQ, and subsequently Я . The whole 

argument can be put in this way: 

(P i ) I f Яо is true, then the chance o f gett ing 82 male years happening is 

extremely smal l , i.e. 1/2 8 2. 

(P2) 82 male years happened in London. 

.'• ( С і ) Яо is rejected. 

.·· (C2) Я is rejected. 

(Рз) I f Н is rejected, then it must be art, not chance, that governed in the matter 

o f b i r th. 

Therefore, 

(C3) In the matter o f bir th i t must be art, not chance, that governed. 

Before assessing the val id i ty o f the arguments, we have to assess the truth o f the 

premises. Let us consider (P2) first. Arbuthnot t 's assertion o f (P2) was based on 

christening instead o f b i r th statistics.*^ There are at least three problems arising f rom this 

set o f data. First, since the data was based on christenings instead o f bir th statistics, on ly 

persons subscribing to the Church o f England were counted. Second, there might be t ime 

' According to Arbuthnott, the actual probability were indeed much smaller than this estimation for the 

lequality in the sex ratio had been observed in several other places and at other times (p. l88). 

' See Appendix 2 for the data. 

12 



delay between bir th and christening. Th i rd , there was no data on populat ion size and it 

w i l l certainly impose constraints on further statistical analysis. Hence, Arbuthnot t 'ร 

assertion was not so wel l - founded. Nevertheless, an excess o f male births over female 

births is now a w ide ly held bel ief that has been demonstrated in many other studies 

(Campbel l , 2001 , p.608), we could grant here the truth o f (Ր շ ) for the sake o f argument. 

A n d we w i l l , in tu rn , analyze Arbuthnot t 'ร calculat ion o f the chance in (Pi) 

A l though it seemed as i f Arbuthnot t had shown that the probabi l i ty o f the 

observed data (82 male years) was very smal l , assuming the truth o f Яо, the precise 

manner in wh ich this small probabi l i ty was to be interpreted so as to y ie ld the conclusion 

was not wel l -ar t iculated. For example, suppose the first year was male year, the next was 

female, the next to next was again male, and so on, in some definite order, g iv ing a total 

o f 60 male years and 22 female years. What is the probabi l i ty o f this outcome provided 

Ho was true? It seems that the probabi l i ty was not di f ferent f rom that o f the original data: 

1 1 1 1 

2 2 2 2 ^ ' 

I f it were the case, then Ho wou ld be rejected regardless o f the outcomes. Obviously, the 

probabi l i ty o f gett ing 60 male years and 22 female years, irrespective o f the order, should 

be greater than that o f gett ing o f 82 male years. Hence, Arbuthnot t should have given a 

more expl ic i t statement o f the calculation and the test. In other words, there are շ82 

different possible outcomes. I f order mattered, Arbuthnot t should have stated clearly 

wh ich subclass o f these results was being considered so that Щ wou ld be rejected i f and 

only i f the actual outcome lay in this subclass. In the wr i t i ng o f Arbuthnot t 's 
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contemporary mathematician Wi l l em (or Gui l laume) 'sGravesande, probably under the 

influence o f Bernard N ieuwent i j t , a clear rejection class for the test had been proposed. 

Based on this concept, 'sGravesande argued that Arbuthnot t ' ร argument could have put 

the case for d iv ine providence even more strongly than he had done i f he could engage in 

a more detailed calculat ion using the b inomia l d istr ibut ion (Shoesmith, 1987). '^ We 

could see here that the rejection subclass is the seed o f the later developed concept 

' reject ion reg ion ' in SST. 

Assuming the truth o f (P I ) and (P2)， we st i l l cou ld not establish the truth o f (С і ) 

unless the argument f r o m ( P I ) and (P2) to (C) is va l id . A l though many commentators on 

Arbuthnot t 's second argument had assumed the va l id i ty o f this argument (see, for 

example, Hack ing , 1975， P.168; Shoesmith, 1987， p.138 ) ， its va l id i ty has to be cr i t ical ly 

assessed as this sort o f argument st i l l plays a very important role in SST. We w i l l leave 

the discussion to Chapter 5.18 

2.2 Development before Fisher, Neyman and Pearson 

As argued in previous section, Arbuthnot t did not give a rigorous treatment to the 

SST. We w i l l discuss br ief ly in this section how the concept o f SST was developed 

before our modem forms o f SST emerged. 

I: The details are shown ๒ Appendix 3. 
's Besides, Nicholas Bernoulli has proposed an argument against Arbuthnott's second argument. But this 
not the point in question, we wi l l leave the details to Appendix 4. 
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James Bernou l l i ' s posthumous book Ars Conjectandi {The Art of Conjecturing, 

1713) i 9 consists o f four parts and it is the four th part that revolutionizes probabi l i ty 

theory. The revolut ion, according to Hack ing (1975), is two - fo ld . First, a 'subject ive' 

conception o f probabi l i ty was expl ic i t ly elaborated. Second, James Bernoul l i gave a 

formal treatment to the vague conception that the greater accumulat ion o f observations 

about the proport ion o f cases, the closer we are to certain knowledge about the proport ion. 

This is also the f i rst l im i t theorem proved in probabi l i ty t h e o r y . O n e o f the great 

achievements by Bernou l l i is the commencement o f the journey toward a mathematical 

quanti f icat ion o f uncertainty. Bu t whether a mathematical quant i f icat ion o f uncertainty 

could be used to j us t i f y induct ion w i l l be cr i t ical ly rev iewed in later Chapters. 

Thomas Bayes' paper ' A n essay towards so lv ing a problem in the doctrine o f 

chances'^^ was presented to the Royal Society in an edited fo rm by Richard Price in 1763, 

ha l f a century after the publ icat ion o f Ars conjectandi. In the presentation, Price br ief ly 

mentioned that al though James Bernoul l i and de Mo i v re had attained important results 

they had not demonstrated how to solve the problem o f induction.^^ Accord ing to Price, 

Bayes was the first person who provides 'a sure foundat ion for all our reasonings 

concerning the past facts' (Bayes, 1763/1958, p.296). I t is now welMcnown that Thomas 

Ars Conjectandi was only nearly completed when James Bernoull i died ๒ 1705. It was not until eight 
years later ๒ 1713 that the manuscript was published with a short preface by Nicholas Bernoulli, a nephew 
of James. The original version could be found in Speiser (Ed.), 1975, pp.107-286. No complete English 
translation of this manuscript is available (Shafer & VoC^^ 2001, p.376). English translations of the 
extracts could however be found in Adams (1974, pp.10-14), David (1962/1998, pp.130-139), Shafer (1978, 
326-339), Uspensky (1937, pp.l05֊107). 
ご See Appendix 5 tor the details o f the theorem and its implication. 

2 ' The essay was original published in Philosophical Transactions of the Royal Society of Loฑdorty 53, 370-
418 and was reprinted in BiometriM ， 45, 293-315 with commentary Dy G. A. Barnard and elsewhere (e.g., 

Pearson and Kendall (Eds.), 1970, 131-153; Swinburne (Ed.), 2002, 122-149). 
2 2 For detailed discussion o f Bayes's essay and Price's introduction, see Dale (1999). 
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Bayes and Peirre Simon Laplace^^ had independently proved di f ferent versions o f the 

inverse o f Bernou l l i ' s theorem. In modem notat ion, the theorem is usually stated as: 

P{H I E) = P、H A E) (provided P(E) іะ 0 ) 

or 

Р ( Я | £ ) = ^ ^ ^ ' 5 У ^ ^ ^ (provided P{E) փԿէ. 

I f ՛Մ and 'E, denotes a hypothesis and evidence respectively, then Bayes's 

theorem says that the posterior probabi l i ty o f н (its probabi l i ty , g iven E, i.e. P{H \ E)) 

equals its likelihood ( P{E I H) , sometimes called the 'predictive power of я나5 ) 

mul t ip l ied by its pr ior probabi l i ty ( P{H) ) d iv ided by the pr ior probabi l i ty o f E {P{E)). 

I t is controversial that al l proposit ions should have probabi l i t ies. For instance, for a 

definite hypothesis H, either it is true or false, does it make sense for us to talk about the 

prior probabi l i ty o f a hypothesis? That depends on what we mean by 'probabi l i ty ' , a 

point to wh ich we w i l l return in the next chapter.^'^ 

Pierre S imon Laplace also made a contr ibut ion to the development o f SST. His 

treatment o f test ing a simple hypothesis against a s imple alternative hypothesis was very 

" Laplace's 1774 memoir on the probability o f the causes o f events is regarded as one o f the revolutionary 

papers in the history o f statistical inference and his first proof o f в ayes's formula could be found in his 

1781 memoir (Hald, 1998, p. !64). 

" For those who think that all probabilities should be conditional probabilities, Bayes'ร theorem wi l l be 
expressed in the form: Р{ЩЕлК) = Р(НЛЕ\К)ІР{ЕАК) or РЩЕлК) = РЩНлК) P{H]K)/P{E\K), where 'ŕC 
denotes our background knowledge. 
25 'L ikel ihood' is a terminology derived from R. A. Fisher and is widely used in current literature. 
Swinburne (2002) has argued that this terminology is misleading and suggested to use 'predictive power' to 
denote this probability (p.10). 
26 For a preliminary discussion o f the relation between Bayes'ร theorem and SST, see Appendix 6. 
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simple 2 7 . Assuming equal pr ior probabil i t ies o f the two mutual ly exclusive and 

exhaustive hypotheses (say, H\ and Я2), he obtained 

^ ^ ՜ ^ ՛ 1 E) - Ճ Լ £ յ _ ւ _ where denotes the evidence. 
P{H,\E) P{E\H,) 

Later statisticians (such as Good, 1983, p.158) defined the Bayes factor in favour 

o f the hypothesis H\ provided by the evidence E as the ratio o f the f inal odds to the init ial 

odds^^ 

P{H,\E) P{H,\E) 
0{H,\E) \-P(H, \E) P{H,\E) PjHĄE) Р{Н,)_ПН,\Е) 

—0(я, ) • = ~ Р ( Я , ) ң н , ) Р{Н,\ Е) Р ( Я , ) Р{Н,\Е)՝ 

1֊Р(Я,) Р{Н,) 

The Bayes factor in favour o f Я і against H2 can thus, as Laplace has shown, be expressed 

as: 

Р{Е\н\у 

which in frequent is i terminology is called the ' l i ke l ihood rat io ' . For example, in the two-

urns example^^, the evidence E is that there are 4010 drawings in wh ich a white pebble is 

taken out when there is a total 6450 drawings have been made. The Bayes factor is thus: 

P(H、 I E) = PiE\HÕ = 1 -751243x lO ' 一 5 5 3 4 0 4 ^ 1 0 - 7 8 

Р{Н, \Е) Р{Е\Н,) 3 .164495x10- " ' ^ ， 

а very large number wh ich indicates that E is strongly in favour o f H\ or against H2 

2 7 See Hald (1998, 167-183) for a presentation of Laplace's testing of hypothesis in modem terminology. 

2 8 The odds corresponding to a probability р are defined aspi { \ ֊p ). 
2 9 One o f the two ums contains 30 white and 20 black pebbles and the other contains 10 white and 40 black 
pebbles. We first randomly select one urn and take out one pebble after another (with replacement). See 
Appendix 6 for details. 
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As Ha ld (1998) pointed out, the Bayes factor should have been called 'Laplace 

factor' since it d id not occur in Bayes'ร work . Laplace'ร test o f hypotheses was 

fundamental ly d i f ferent f rom the SST that was derived f rom direct probabi l i ty 

arguments.^'' He la id down the foundation o f the modem theory o f SST. His theory o f 

estimation and test ing was a large-sample theory based on the normal distr ibut ion. 

A l though the posterior probabil i t ies could be calculated for small samples, he did not 

give any examples o f SST for small samples. He has indeed derived large-sample tests 

for one-sided hypotheses for both one and two samples. For example, in testing the one

sided hypothesis for one sample θ ¿0。 against Ө>Өп, where θ denotes the unknown 

probabi l i ty o f success เท a series o f independent b inomial tr ials, he compared the 

posterior probabi l i ty : 

w i t h its complement, where m and c2 are respectively the mean and variance o f the 

posterior d is t r ibut ion o f θ (which is assumed to be normal for large samples) and φ is the 

standard normal cumulat ive distr ibut ion funct ion (i.e. φ{χ) = ֊ 7 = ľ e ^ du).. 
лІ2л · ᄂ " 

A n d in testing the one-sided hypothesis for two samples θշ-θ^<() against らータI > 0 , 

he used: 

p ( ą - θ , < 0 ) = Φ(ผ)， where น = ^ \ ' " \ 

where m\, Ոկ and C i 2 ， C2 2 are respectively the means and variances o f the posterior 

distr ibutions o f θ calculated f rom the two samples. These results have ramif icat ions for 

' ° Laplace also extended his analysis to more general cases. For details, see Hald (1998, pp.232-247). 
3 ' In his proof, Laplace only assumed the asymptotic normality o f the two variables. Details could be found 

in Hald (1998, pp.229-247). 
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both Bayesians and non-Bayesians since the effect o f the pr ior distr ibut ion diminishes 

sharply for large samples and the resulting distribution is normaP^ so that the parameter 

and its estimate are symmetr ical ly involved. In other words, non-Bayesians are content 

w i t h the interpretation that the result ing distr ibut ion is a distr ibut ion o f m about Ө, and 

Bayesians w i l l interpret i t as a distr ibut ion o f θ about m (Ha id , 1998， р.246). 

Before the nineteenth century, measurement d id not play much o f a role in 

sciences (even in physics and chemistry) (Kuhn , 1977, p.220). Kuhn has argued that 

only around 1840 was the practice o f measurement in b loom. The emphasis on 

measurement gave rise to the avalanche o f numbers (Hack ing, 1990, p.5). A l though 

Newtonian laws migh t st i l l be regarded as exact, measurements wou ld no longer provide 

people w i t h an exact quantitative picture o f the wo r l d . When measurements become 

more and more exact, more and more errors appear. Errors and deviations f rom the mean 

became the ' n o r m ' . The posit iv ist phi losophy o f science began spreading to the realm o f 

social sciences. Social scientists represented social facts w i t h the use o f statistics in the 

similar way that natural scientists d id . As a consequence, statistical proposit ions were 

interpreted in a more realistic way whi le the Laplacian subjective іп Їефге їа Ї Іоп began to 

fade. A n d gradual ly, science began to have a new paradigm called the 'the statistical 

model o f real i ty ' (Salsburg, 2001 , p .V I I I ) . 

Measurements have been expressed as mul t ip les o f a variety o f basic units that 

reveal the dispersion o f the range o f possible scores since the t ime de Mo iv re (Cowles, 

• For the discussion o f the nature o f normal distribution, see Appendix ' 

19 



2001 , p.127). Standard deviat ion is the one that is commonly used n o w a d a y s . I n the 

early nineteenth century, probable error, wh ich is def ined as one ha l f o f the quantity that 

encompasses the middle 5 0 % o f a normal distr ibut ion o f measurements, was first used by 

Friedrich W i l he lm Bessel^"* to reflect the dispersioni^. Gauss has subsequently developed 

several methods o f comput ing it (Cowles and Davis , 1982, p.555) and we now know that 

one probable error uni t equals approximately 0.6744898 o f a standard deviation^^. B y 

comparing probable errors, Bessel tr ied to determine i f a di f ference was genuine or due to 

observational error. I t is regarded as the earliest SST that involved the probable error 

measurement. Hermann Ebbinghaus, an experimental psychologist in the nineteenth 

century, used probable error to іп Їефге І the data he had gathered in his important study o f 

memory around 1885^^. Ebbinghaus regarded that a dif ference o f six times the probable 

error wou ld give a sol id p roof and a difference o f tw ice the probable error is noteworthy. 

Accord ing to Ebbinghaus, we should be certain that a dif ference exists i f the observed 

difference is six t imes the probable error but the observed difference is probably not the 

exact size o f the true dif ference. This is perhaps an earlier conception o f effect size that 

many researchers current ly use. 

Near the end o f the nineteenth century, Francis Edgeworth developed a test o f 

signif icance in wh i ch he compared the difference o f the means w i th the modulus M, 

which is -ร/2 t imes the standard deviation. Edgeworth has tr ied to determine how far the 

3 3 Standard deviation was first used in connection with normal distribution in 1896 by Karl Pearson. 
See Haid, 1998, pp.360֊361. 

3 5 Other notions that have been น 
square, etc. (Baird, 1981, P.123). 

Լ\ See Haid, 1998, pp.360֊361. 
3 5 Other notions that have been used include: modulus, precision, fluctuation, mean eᅲor， error of the mean 

The figure is obtained wi th the use of Maple 8: 

3 7 For details, see Stigler, 1986, pp.254-261. Weigle (1994, p.7) also gave a brief introduction to 

Ebbinghaus'ร work. 
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difference between proposed means is accidental or indicative o f a law. There are at least 

two cases that we could now be able to distinguish clearly"^^. First, for instance, i f we 

wish to test the psychics' claim that they can systematically determine the colour of a 

playing card which is out of their view (Edgeworth, 1919). Suppose the card is drawing 

from a pack of normal playing card and we can assume that the a priori probability that 

the psychics could guess correctly the colour is 1/2. We can then perform a series of 

trials to determine i f the psychics' performance could outweigh this a priori probability. 

This case is indeed a sort of goodness of fit. Having a hypothesis about how some 

observables are distributed, we deduce expectations from this hypothesis about a series of 

observations. We use goodness of fit tests to decide whether a difference observed 

between these expectations and the асШаІ observations made could arise merely from 

sampling fluctuations. 

For the second case, there are, in some situations, no such a priori probabilities on 

hand. We merely want to compare two means taken from what is supposed or 

hypothesized to be the same population. Using Edgeworth'ร terminology, we have to 

determine two a posteriori probabilities and compare them to see whether chance alone 

could give rise to the differences. Edgeworth (1885) gave this example: based on the 

observations of 65 deaths in the year, we knew that the rate of mortality amongst young 

farmers between the ages of 15 and 25 exceeded that in all other professions by 0.3 

percent. He asked 'How far is such an extent of deviation based upon such a number of 

observations significant of a real difference in respect of healthiness between the 

conditions of young farmers and the rest of the industrial community?' (p. 182). As Baird 

We have, however, no evidence that Edgeworth was able to distinguish these two types of cases. 
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(1981) noted, this question contained the earliest use of the word 'significant' with 

essentially its current sense. According to Edgeworth, a difference of twice the modulus 

(i.e. 2л/շ times the standard deviation) was regarded as 'significant' and differences of 

1.5 times the modulus was noteworthy. In a nutshell, what we concern in this case is to 

see i f the two samples could have been drawn from the same population instead of the 

exact shape of the population from which samples are taken. Student'ร է test is the first 

modem test for this problem. 

Karl Pearson was clearly influenced by the work of Francis Galton, the first 

person who provided a scientific basis to the use of fingerprinting.^^ But it was his 

competitive relationship with Edgeworth that highly motivated Pearson to work/^ As a 

result, even though Pearson had emphasized Edgeworth's significance testing methods in 

a series o f lectures held in 1893, he deliberately measured differences in terms of a new 

measure of variation which he called the 'standard deviation' instead of the modulus 

which was proposed by Edgeworth. Person's one great contribution to SST was the 

creation of the first 'goodness of f it tesť ― the chi"Square goodness of fit tesť*'. This test 

allows us to determine the probability of occurrences of discrepancies between observed 

and expected frequencies in a distribution. The expected frequencies can be calculated 

from the null hypothesis we want to test. Once the observed frequencies (O) and 

expected frequencies {E) have been determined, ;ļ^obs could be calculated by: 

39 Fol lowing Gal ton 'ร estimation, fingerprint evidence has been widely accepted as certain for more than a 
century and only until recently its reliability has become doubtful (Gigerenzer, 2002, pp. 12-13). 
4 ° According to S ti gler (1986), one incentive to Pearson's work on the generalized form o f the probability 
curve had been to do better than Edgeworth had (p.338). 
41 The Greek letter chi ( ;ļf ) is used because the distribution o f this test statistic belongs to a group of his 
skew distributions that he has designated the chi family. He called it 'chi-square' because the test statistic, 
indeed, behaves like the square or chi (Salsburg, 2001, p.96). 
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/ o b s = 2 ^ 
E 

He has proved that the chi-square statistic has a probability distribution that is 

independent of the data used (Pearson, 1900). In other words, he is able to tabulate the 

probability distribution of this statistic and uses this set of tables for any test. This 

probability density distribution depends on a single parameter called 'degrees of freedom'. 

The following figure shows, for example, the probability density distributions of £ ՜ , for 

various values of degrees of freedom (v): 

Ū.2H 

0.15 

4 6 В 1Ū 12 14 16 18 2Ū 

0.05 

Figure 1 The probability density distributions of ^ ， for various values of degrees 

of freedom (V) 

The null hypothesis is rejected i f the ^Obs is greater than the α (the ^ found 

from its probability density distribution for the given degree of freedom at the rejection 
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Ievel α) Ղ With the advent of the chi-square test statistic, the level of rejections began to 

be standardized. According to Pearson (1900), 0.1 level was regarded as 'not very 

improbable' and 0.01 level as 'very improbable'. Wil l iam Gösset, who used the pen 

name ^Student'"*to publish the paper 'The probable error of the mean' in which the now 

famous է distribution for small sampłes is developed, alleged that a level of three times 

the probable error ' for most рцфозез would be considered significant' (Student, 1908, 

p.13). Two years after the publication of Student's (1908) article, Wood and Stratton 

recommended agricultural researchers to take "30 to 1 as the lowest odds which can be 

accepted as giving practical certainty that a difference is significant' (1910， P.433). Thirty 

to one odds corresponds to 1/31, i.e. р = 0.032281 or a mean difference of 3.17 probable 

errors. Other similar standards have been proposed. For instance, three times the 

probable error was suggested to be the accepted standard for the undoubted significance 

of an obtained difference between averages (McGaught, 1924). Three times the probable 

error is equal to 2.0235 times the standard deviations or р = 0.043025. Ronald A. Fisher 

is probably the first person who mentioned explicitly the use of р =.05 level as 

determining statistical significance: 

The value o f which р = .05， or 1 in 20， is 1.96 or nearly 2; it is convenient to take this 

point as a l imit in judging whether a deviation is to be considered significant or not. 

Deviations exceeding twice the standard deviation are thus formally regarded as 

significant. (Fisher, 1973a, 4 4 ý ^ 

？ For example, i f V =5, α = 0.05, χ^α is about 11.071 which can be obtained from the table or software. 

43 For the history why Gösset used pen name in publishing papers, see, for example, Salsburg, 2001, pp.27-

28. 

44 This paragraph also appeared in the first edition o f the same book which published in 1925. Some have, 

however, regarded that the choice of the .05 was quite arbitrary and casual. For example, Cochran has 

expressed his view that Tisher sounds fairly casual about the choice o f 5% for the significance level, as the 

words 'convenient' and 'prefers' have indicated' (p.17). We wi l l return to this point later. 
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Cowles and Davis (1982) have argued that by the time Fisher published his first 

book on statistical methods, three times the probable error was a commonly adopted 

convention for determining statistical significance in different fields of scientific studies 

that employed statistical tesť*^. It is thus suggested that Fisher rounded these figures to 

0.05 to express the significance level in terms of standard deviation instead of probable 

Qvror especially when there was a need to provide a broader base for general 

understanding by those who did not have sufficient training in statistics during the time 

when statistical analysis began to extend to the social sciences (Cowles & Davis, 1982, 

p.557). There were, however, a number of problems behind this method of SST and they 

wi l l be discussed later. 

2.3 Fisher 's significance testing vs. Neyman-Pearson hypothesis 

test ing 

As we have seen in previous sections, SST can date back to the eighteenth century. 

But SST can hardly be said to be prevailing amongst researchers in different fields until 

the first half of the twentieth century during which the two rival approaches to SST were 

put forward by Ronald A. Fisher and by Jerzy Ne y man in collaboration with Egon 

Pearson^^ (Howson & Urba^ 1993; Lehmann, 1993). 

45 There were certainly researchers who did not accept the use o f .05 level. For instance, in 1917 J.E. 
Coover expressed clearly that he would not accept a р value of .00476 as a decisive indication o f some 

cause beyond chance (Coover, 1975， p.82). 

46 There were pronounced philosophical and methodological differences between these two approaches. 

Debate between these schools was thus inevitable. According to Lehmann (1993), the debate was mainly 

carried out by Fisher and Neyman as the collaboration between Neyman and Pearson had stopped before 

Ney man participated in the confrontations with Fisher. 
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In the first half of the twentieth century there was a tendency for the methodology 

of experimental procedure to shift from single-subject research that focused on 

experimental control and the a priori minimization of error to a focus on treatment group 

experimentation with comparison of aggregate means and the measurement of error after 

the fact (Danziger, 1990). This tendency provided an environment in which SST 

flourished. It was in this environment that Fisher (1925/1973a, 1935/1971) published his 

small-sample statistical procedures which in turn had an enormous impact on the research 

methodologies in the early twentieth century. The focus of Fisher's approach is to 

attempt to challenge and reject a ทนII hypothesis o f interest"*^ (e.g., a new teaching method 

does not lead to a difference in learning outcomes) in a study. According to the ทน11 

hypothesis, the observed data (e.g., difference in learning outcomes) are merely a result 

o f random sampling. Given the truth of this null hypothesis, either the observed and 

more extreme data are very unlikely to happen (e.g., the probability is smaller than 0.05), 

which wi l l lead to a rQ]QQtiorr^ of the ทน11 hypothesis, or not very unlikely to happen (say, 

not smaller than 0.05), which fails to provide sufficient evident for us to reject the ทน11 

hypothesis/^ The procedure, which is called a significance test, can be summarized as 

follows: 

1. To identify the null hypothesis, Яо, which states that a sample comes from 

a hypothetical infinite population with a known sampling distribution 

47 Some (for example, Howson & Urbach, 1989; McCIure & Suen, 1994) have argued that the focus o f 

Fisher's approach is the research hypothesis o f interest (e.g. a new teaching method leads to a difference in 

learning outcomes) instead o f the null hypothesis. We w i l l see later that it is not an appropriate 

interpretation o f Fisher's approach. 

48 According to Fisher (195o/1973b, pp.45-47), rejection o f a hypothesis involves both a policy decision to 

treat the hypothesis as i f were false and the formation o f an attitude o f incredulity towards it. And 

regarding a rejected hypothesis as objectively incredible is not taking an irreversible decision, i.e., we 

should be prepared to be ^convinced by ftiture evidence that appearances were deceptive and that a very 

remarkable and exceptional coincidence has taken place' (p.35). 

49 According to McClure and Suen (1994) the first case w i l l constitute evidence for the corresponding 

research hypothesis and the second case cast doubt upon the research hypothesis. We wi l l return to this 

point later . 

26 



շ. To determine the appropriate test statistic^^ and figure out its distribution 

under the assumption that HQ is true. 

3. To calculate the value of the chosen test statistic from the observed data. 

4. To calculate the probability, given the truth of Яо, of the statistic taking a 

value as or more extreme than the one calculated in step 3 (i.e., the р 

value). 

5. To specify a significance level51 a. When < α , the result is said to be 

significant at the a level and HQ is said to be rejected at the a level. 

The rationale for the significance testing is that i f Яо is true the probability of an 

outcome or more extreme result is small (say, less than 0.05), A logical consequence is 

the simple disjunction: 'Either the hypothesis is not true, or an exceptionally rare chance 

has occurred' (Fisher, I960, p.8^^). The outcome has occurred, thus discrediting the 

hypo t h e s i s . A c c o r d i n g to Fisher, the smaller is the value of p, the greater inductive 

evidence against Яо wi l l be. That is to say, р value is a measure of evidence against the 

null hypothesis (Berger, 2002; Johnstone, 1986， 1987; Spielman, 1974). For example, 

suppose we suspect that a particular die is unfair in the sense that not all six outcomes ๒ 

throwing the die are equally likely and the outcomes seem to favour the throwing of '6 ' 

rather than that of other numbers. I f we get 9 '6'ร in 10 throws then, according to our 

" See Cox & Hinkle 1974, P.66 for a more formal definition of test statistic. 
5 ' Fisher (1935/1971) had suggested that, ' I t is usual and convenient for experimenters to take 5 per cent, as 
a standard level o f significance, in the sense that they are prepared to ignore all results which fail to reach 
this standard, and, by this means, to eliminate from further discussion the greater part of fluctuations which 
chance causes have introduced into their experimental results' (p.13). But this suggestion has no 
implication that Fisher would support the 0.05 level so much that he did not wi l l ing to give up. Indeed, he 
had expticitly said, ' I f one in twenty does not seem high enough odds, we may, i f we prefer it, draw the line 
at one in f i f ty (the 2 per cent. Point)» or one in a hundred (the 1 per cent. Point) (1926, p.504). 
52 Similar disjunction can be found in Fisher (1956/1973b): 'Either an exceptionally rare chance has 
occurred, or the theory o f random distribution is not true' (p.42). 
53 Whether the logic behind the reasoning is fallacious wi l l be discussed in Chapter 5. 
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intuition, our conjecture seems to be true. On the contrary, the conjecture seems to be 

false i f we get only 2 '6'ร in 10 throws. How about 4 or 5 '6'ร in 10 throws? Our 

intuition is not always reliable in such intermediate cases. Fisher has thus promoted a 

more reliable and objective method for drawing inductive inference from the particular to 

the general, or from samples to populations ― using probability values rather than 

'eyeballing' the data. 

In this example, we have to pose a null hypothesis Щ which asserts that the 

probability of getting a ' 6 ' = 1/6 and the probability of getting a number other than '6 ' is 

5/6. And we are going to see i f we are able to refute it.̂ "̂  To test the hypothesis, the die 

is thrown a predetermined number of times, say 10, and we record the result. We then 

specify the results which the experiment could have produced. In this case, we choose 

the number of '6 'ร obtained as the test statistic.^^ Then it is clear that the test statistic can 

take any integral values from 0 to 10. Assuming that HQ is true, the probability of getting 

exactly r '6'ร when the die is thrown 10 times is Ը The probabilities are 

listed in the Table 1 and displayed graphically in the Figure 2: 

5 4 Our null hypothesis here should not be confused with the hypothesis that the die is fair (i.e. the 
probability ot getting a ՛ո՝ in throwing the die = 1/6, where ท= \,2, 3, 6). 
5 5 Some may suggest that we should use the chi-square goodness-of-fit test here. But i f our discussion here 
focuses only on the two outcomes: getting the number ' 6 ' and getting numbers other than '6，， then the 

statistic adopt here stil l works. There are, o f course, various random ущ-іаЬіеร that can be regarded as test 
statistic, see, for example, Howson & Urba^ 1993. We wi l l return to this point later. 
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Number of ' 6 ' ร ( r ) Probabi l i ty 

0 0.16150558 
1 0.32301117 
շ 0.29071005 
3 0.15504536 
4 0.05426588 
5 0.01302381 
6 0.00217064 
7 0.00024807 
8 0.00001861 
9 0.00000083 
10 0.00000002 

1.00000000 (TL) 

Table 1 The probability of getting r '6'ร when the die is thrown 10 times 

0.35000 
0.30000 Ą 

ğ 0.25000 
І 0.20000 
I 0.15000 1 
ä 0.10000 

0.05000 
0.00000 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Number o f 6s 

Figure 2 The probability of getting r '6's when the die is thrown 10 times 

For the sake of illustration, suppose the die, after being thrown ten times, 

produced one ' r , two '2's, one '3 ' , one '4 ' , and five '6's. From the table, we see that 

getting five ' 6 " ร occurs with probability less than 0.013 under the ทน11 hypothesis. The 

probability that the experiment would throw up any one of the results which have less or 
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equal probability to 0.013 is р = 0.015.^^ Since р < 0.05， the null hypothesis of this 

example is thus rejected at the 0.05 level. 

In this simple example, the (binomial) distribution of the test statistic under the 

null hypothesis can be easily calculated (at least theoretically). But in practice, the 

situation is different. Consider a hypothetical but more realistic example, suppose we 

want to know whether male and female students have the same mean math score in the 

same examination. But it is impracticable for us to get all students' math score and we 

are only able to select a random sample of students from the two genders and get each 

student'ร math score. The null hypothesis in this case merely asserts that their means are 

the same but it does not specify the distributions of math score in the two populations. 

The statistical test cannot be performed with test statistics whose probability distributions 

under the null hypothesis are not known. What we can do is to make further assumptions. 

For instance, i f the populations are normal, the /-statistic, developed by Student, implied 

by the data collected can be calcนlated.^^ We can establish, from the known probability 

distribution of /, how probable it is for a result expressed as a value of the ^-statistic to 

happen. The procedure then goes as that of our previous case: i f the probability of our 

result collected lies below our previously designated significance level, then the null 

hypothesis is rejected at that corresponding level. 

We can see from these examples that the Fisher's approach has not made any 

comment about the acceptance of any hypothesis. In our first example, i f the ทนน 

hypothesis is rejected, we cannot decide which rival hypotheses should be accepted. I f 

= = 0.013 + 0.002 + 0.000 + 0.000 + 0.000 + 0.000 = 0.015 
" For detail o f the calculations, see, for example, Норюпร, Hopkins, and Glass, 1996. 
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the null hypothesis is not rejected, the study is clearly inconclusive simply because 

sampling fluctuation still remains a viable rival explanation for the observed result. 

Indeed Fisher (1956/1973b) has alleged explicitly, 'A test of significance contains no 

criterion for "accepting" a hypothesis' (p.45). 

In Fisher's approach, the region of low probability is concentrated in one or both 

of the tails of the probability distributions of outcomes. According to Howson and 

Urbach (1993), i f we are merely interested in judging i f the outcome of a test fell in a 

region of low probability, there seems to be no reason to prevent us from, say, choosing a 

narrow region in the centre of the bell-shaped distribution. Moreover, there are always a 

number of random variables that may be defined on any given outcome space. Fisher's 

approach leaves open which test statistic should be used. And not all random variables 

wi l l lead to the same conclusion when they are put to use as the test statistic in a 

significance test. For example, suppose the statistic of the example of throwing a die is 

modified so that all the outcomes exhibiting zero, one '6'ร and two '6'տ， three, four and 

five '6'ร, six, seven and eight '6'տ， nine '6'ร and ten '6'ร are combined into four groups. 

The new groups may be arbitrarily renumbered from one to four, thus giving the 

following distribution of the new statistic ť ， 

Value of Statistic ( f ) Probabi l i ty 

1 (zero,one, or two '6'ร) 0.77522680 
2 (three, four, or five '6'ร) 0.22233505 
3 (six, seven, or eight '6'ร) 0.00243731 
4 (nine or ten '6'ร) 0.00000084 

1.00000000 (TL) ョ 

Table 2 The probability distribution of the ť statistic 
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It is obvious that, with this new statistic, a result of getting five '6，s is no longer 

significant at the level of 0.05 (the new /?* value is 0.222). Some may argue that the 

grouping of outcomes appears to be arbitrary. Unlike the statistic r (in our previous 

example) whose value ' r has a clear natural meaning in sentences like ' r = г (i.e. the 

number of '6,s is 1), the statistic ľ is artificial in the sense that the value of ť in 

sentences like V， = г İs void of natural meaning. But the notions of 'artificiality' and 

'lack of natural meaning' are not precise enough for us to regard ľ as an il legitimate 

statistic. As a result, we have to impose some more precise restriction on test statistic so 

as to give consistent result (Howson and บrbah, 1993). 

In order to resolve these problems that undermine Fisher'ร a p p r o a c h J e r z y 

Neyman and Egon Pearson (1928a, 1928b, 1933) proposed an alternative approach to 

SST 一 hypothesis testing, a term that they employed to distinguish it from Fisher'ร 

'significance testing' (Howson and Urbach, 1989; Gi l l , 1999; Hubbard, 2003; Hubbard 

and Bayarri, 2003a). According to this Neyman-Pearson approach, the statistical 

hypothesis is tested relative to one or more other statistical hypotheses (they need not be 

labeled as 'nul l ' or 'alternative'): 

. . . i n addition to н there must exist some other hypotheses, one of which may 

conceivably be true. Here, then, we come to the concept of the 'set of all 

admissible hypotheses' which is frequently denoted by the letter Ω. Naturally, Ω 

must contain H. Let н denote the complement, say Ω - я = н. It wi l l be 

noticed that when speaking of a test of the hypothesis Я , we really speak of its test 

Some o f the problems w i l l be discussed in later chapters. 
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'against the alternative This is quite important. The fact is that, unless the 

alternative Я is specified, the problem of an optimal test of н is indeterminate. 

(Neyman, 1977, p. 104) 

Based on considerations regarding the decision criterion, sample size and effect 

size, this approach introduces the probabilities of committing two kinds of errors. The 

first type of error (Type I) is the error made when the ทน11 hypothesis (Яо) is rejected by 

the hypothesis testing i f Яо is true, whereas the second type of error (Type II) is the error 

made when the hypothesis testing fails to reject Яо when it is false. The problem of 

hypothesis testing is the problem of selecting critical regions so as to control the rates of 

Type I and Type I I errors. Neyman (1950) maintained that the Type I error is more 

important to avoid than the Type I I error (p.265). Hence, we have to f ix arbitrarily a 

small number a called 'the level of significance' prior to the collection and analysis of 

the data,^^ and to require that the probability of committing the Type I error does not 

exceed a. Then the final choice of the test is made so that the probability of accepting 

the null hypothesis when it is false (i.e. the Type I I error) is minimized. The probabilities 

associated with Type I and Type I I errors are usually symbolized by a and β 

respectively^^ and these two error probabilities wi l l define a critical region for the chosen 

statistic. I f a result falls into the critical region, then the alternative hypothesis is to be 

accepted and the ทน11 hypothesis rejected; on the contrary, the ทน11 is to be accepted and 

the alternative rejected. 

5 9 The reason that we have to f ix the value o f a prior to the collection and analysis o f data wi l l be discussed 
in Chapter 4. 
6 ° The same symbol ' ๙ is used to denote both the significance level in Fisher's significance testing and the 
probability associated with Type I error in Neyman-Pearson hypothesis testing. That may explain, at least 
partly, why many people blur the distinction between these two notions. We wi l l return to this point in 
Chapter 4. 
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Consider our die again, suppose one has claimed that he had loaded the die with 

lead so that the probability of getting a '6， would be 1/2 and that of getting a number 

other than ' 6 ' would be 1/2 too. We shall label this hypothesis as H\ and the former 

hypothesis (which asserts that the probability of getting a '6 ' = 1/6 and the probability of 

getting a number other than '6， is 5/6) as HQ. Using the number of '6'ร obtained as the 

test statistic, we get the following table and the corresponding graph: 

Number of ' 6 ' ร Probabi l i ty (Яо) Probabi l i ty (Я,) " 

0 0.16150558 0.00097656 

1 0 32301117 0.00976563 

2 0.29071005 0.04394531 

3 0.15504536 0.11718750 

4 0.05426588 0.20507813 

5 0.01302381 0.24609375 

6 0.00217064 0.20507813 

7 0 00024807 0.11718750 

8 0.00001861 0.04394531 

9 0.00000083 0.00976563 

10 0.00000002 0.00097656 

1.00000000 (TL) 1.00000000 (TL) 

Table З The probability of getting r '6，տ when the die is thrown 10 times under two 

hypotheses 

Assuming that Ηχ is true, the probability of getting exactly r '6，տ when the die is thrown ten times is 

given by ： "̂0 ձ ՛ 上 、 ' =^1°Μ 
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Figure З The probability of getting r '6'ร when the die is thrown 10 times under two 

hypotheses 

I f we accept the following rule: when the die is thrown ten times, 

я 。 is rejected i f five or more '6'ร are obtained 

я 。 is accepted if four or less '6'ร are obtained 

we would reject Яо given our previous outcome (i.e. getting five '6'ร). With this rule, the 

probability of rejecting HQ when Ho is true is 0.015, i.e. a = 0.015, whereas the 

probability of accepting Ho when H\ is true is 0.377.62 I f we assume further that exactly 

one of the two hypotheses must be true, then 0.337 is also the probability of accepting Ho 

when Яо is false, i.e. ß= 0.337. The power of the test, which is regarded as a measure of 

the degree to which the test discriminates between the two hypotheses, is 1 - д In this 

case, the power'is 0.663, which is also the probability of rejecting HQ when Ho is false. 

• 0.205 + 0.117 + 0.044 + 0.010 + 0.001 = 0.377 
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In the Neyman-Pearson approach, as long as the space of outcomes and its 

associated probability distribution are known, the critical region for a particular 

hypothesis, say HQ, and a rival hypothesis H\ is uniquely determined for each significance 

level. It thus explains why we regard some particular region but not other as critical, and 

such a reason is lacking in the Fisher'ร approach (Howson and Urbach, 1993). 

The distinctions between Fisher's approach and Neyman-Pearson approach are 

not made consistently clear เท modem statistical writ ing and teaching and blurring the 

distinctions between measures of evidence (p value) in Fisher's significance testing and 

Type I error probability (a) in Neyman-Pearson hypothesis testing have been extensively 

reported (Hubbard, 2003). According to Royal ľs (1997) observation, textbooks on 

mathematical statistics tend to adopt Neyman-Pearson approach, while textbooks on 

statistical methodology tend to lean more towards Fisher's approach. The jargons are 

also not standard, and the same terms and symbols are often adopted in both approaches, 

thus blurring the differences between the two approaches. In fact, many researchers have 

implicitly employed some hybrid of these two approaches in their research studies 

(Thompson, 1996), and these two approaches have eventually evolved into the practice of 

the modem form o f SST (Harlow, 1997). According to Huberty'ร (1993) study, in the 

1930s, writers of statistics textbooks began to refer to Fisher's approach. The first book 

that discussed the two types of errors appeared in 1940. Later, in the 1950ร, the two 

approaches began to be unified in textbooks but it did not gain any endorsement from any 

of the originators. The unified theory was accepted by the 1960ร in a number of 

academic disciplines. According to Nix and Barnette (1998), SST had become the 

unified form that become so ubiquitous that over 90% of articles in major psychology 

36 



journals adopted SST as just i f icat ions for d rawing their COM^ from the data 

collected. 

Contrary to Fisher's approach, according to wh i ch no expl ic i t complementary 

hypothesis to the ทน11 hypothesis is ident i f ied, Neyman-Pearson approach comprises two 

r ival hypotheses, one is usually labelled as the nu l l hypothesis (Яо) ^՚^. Accord ing to 

Fisher's hypothesis test ing, the р value result ing f r om the model and the data is figured 

out as the strength o f the evidence for rejecting the nu l l hypothesis and there is no place 

for the not ion o f power o f the test nor that o f accepting alternate hypotheses. On the 

contrary, Neyman-Pearson hypothesis testing a l lows us to accept one hypothesis i f 

another one is rejected on a predetermined a level and has a precise notion o f power o f 

the test. To some researchers, SST part ial ly uses the Neyman-Pearson decision process 

but regards fa i l ing to reject the nul l hypothesis as a modest support for the ทน11 hypothesis 

(G i l l , 1999). Fisher's approach defines the signif icance level afterwards as a funct ion o f 

data whereas Neyman and Pearson approach defines the signif icance level before getting 

the data. Some advocates o f SST straddle these two approaches. It appears that the 

significance level is selected a pr ior i , but in fact р values are sometimes used to evaluate 

the strength o f evidence. Di f ferent researchers may give di f ferent accounts o f the fo rm o f 

SST. As a consequence, there is a fami ly o f akin but di f ferent procedures all under the 

name o f ' S S T ' ( E r w i n , 1998). Gigerenzer (1993) even argued that much o f the 

controversy over SST is due to its hybr id ism and d i f ferent іпЇЄфгеЇаЇІ0П8, These points 

6 3 There are at least two types o f ทนII hypothesis. One is the point-null hypothesis (or the simple null 
hypothesis) which specify the same unique value for the population statistic or states that there is no 
difference between the two population statistics (e.g. Ho : Це = Цс)- Another is the directional null 

hypothesis (or the composite ทน11 hypothesis) which specifies a different range of possible values for the 
population statistic or states an inequality between two population statistics, (e.g. Ho : Це ^ Цс)- (Liu and 

Stone, 1999; Chow, 1996) 
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w i l l become clearer when we discuss the distinctions between these two approaches in 

Chapter 4. 
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Chapter З Interpretations of probability 

From the contemporary mathematical point o f v iew, probabi l i ty is not d i f f i cu l t to 

define ֊ it is a countably addit ive set funct ion on a σ- f ie ld, normalized w i th a total mass 

o f one. This def in i t ion was f i rst introduced by Andre i N i k o l a w v i c h Ko lmogorov in 1933 

(Ko lmogorov , 1956).^՛^ There is not much controversy over the axiomatic system o f the 

probabi l i ty ca lcu lus^^ Contemporary mathematicians, w i th this axiomatic system o f 

probabi l i ty theory, can state theorems w i th clari ty and prove them w i th rigor66. To them, 

the numerical values o f probabi l i t ies and the meanings attached to the pr imi t ive terms in 

its axioms or theorems are almost o f no part icular signif icance. But to researchers in 

practical f ie lds, such as social sciences, the numerical values o f probabil i t ies and its 

meaning are what they strive for and merely an axiomatic presentation o f probabil i t ies is 

not useful. In the Section 2.2， we have discussed the pr ior probabi l i ty o f a hypothesis 

P{H). For a specific hypothesis, it is either true or false. What do we mean by saying 

64 Here is a brief introduction o f Kolmogrov'ร axiomatic system: 
A probability space is a triple {Ω, F\ P) where Ω is an arbitrary non-empty set, F is a σ-fíeid o f subsets o f 

Ω (A collection o f subsets o f Ω is called a σ-field i f it contains ե itself and it is closed under 
complements [i.e., i f £ є Ғ , then ßC є Ғ] and closed under countable unions [i.e. i f Ķ є Ғ for ； = 1， 2， …， 

then Հյ Ei є Ғ]Х and р is ã measure оп F (i.e. я is a a non-negative, real-valued function on д such that Բ 
is countably additive: i f Ķs F for і = 1， 2， ·..， and the sets are pairwise disjoint, then P{՝oEi) = Σ P{Ei) ) 

such that Ρ{Ω) = 1. Ր is called probability measure or shortly probability. 
A modem treatment could be found in elsewhere, for instance, Capmski and Kopp (1999, p.46) and 
Kolmogorov'ร original treatment could be found in Kolmogorov (1956, p.2). bor a discussion o f 
Kolmogorov'ร development o f the measure theoretic probabilities in the twentieth century, see von Plato 
(1994, pp 198-237). 
65 A main controversy over the Kolmogorov probability arises from the foundation of quantum mechanics. 
For instance, negative probabilities are postulated in almost all quantum models but only non-negative 
probabilities are allowed in Kolmogorov s probability theory. The controversy is beyond the scope of this 
thesis. For the discussion o f this issue, see Atkinson, 1998; Brody, 1993; Khrennikov, 1999. There is also 
an alternative set o f axioms for probabiJitiy proposed by Fetzer (1981)， but this non-standard probability 

theory is not consistent with the enormous body o f theorems based on Kolmogorov axioms and is thus not 

well received by the mathematical community. 

66 Measure theory is necessary to be introduced i f we want to study probability theory in a rigorous manner. 

For the explanations why it is needed, see, Rosenthal, 2000, ррЛ-5. 
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that its pr ior probabi l i ty is, for instance, 0.05? What objects in the wor ld correspond to 

probabil i t ies? 

I f we t ry to th ink about the precise meaning o f the word 'p robabi l i ty ' , we may 

find that the wo rd 'p robabi l i ty ' is ambiguous. For instance, when we say that: 

(3.1) The probabi l i ty o f gett ing a ' r in th row ing the die is 2/3, 

we are ta lk ing about the die. The sentence (3.1) is either true or false, regardless o f our 

knowledge about the die. I f it is true, it is because o f how the objective wor ld is 

( inc luding h o w the die is loaded and probably how we throw the die, etc^^). It is also 

possible for us to test (3.1). We could throw the die^^ for a number o f t imes and observe 

the relative frequencies o f the occurrences o f ' 1 ' . I f we get 200 Ч ' ร out o f 600 throws, 

we w i l l probably admit the truth o f (3.1). But i f we get 10 ' 1 ' ร out o f 600 throws, we w i l l 

be very dubious about (3.1).^^ 

On the other hand, when we say that: 

(3.2) Based on al l the available evidence, the probabi l i ty that the source o f the 

international outbreak o f Severe Acute Respiratory Syndrome (SARS) เท 

March 2003 is a doctor f rom Guangzhou is 2/3 7G， 

are we ta lk ing about the source o f the international outbreak o f SARS? The fo l l ow ing 

sentence: 

67 The conditions can hardly be ful ly stated here. And we do not intend to delve into the distinctions 

between 'tossing' and ' throwing' here although it has been argued that there are much more problems 

arising from tossing or flipping a coin. For instance, Geiman and Nolan (2002) have argued that we can 

hardly bias a coin especially when we totally ignore how the coin is flipped or tossed. 

:5 O f course we are assuming that the way we throw the die is the same (or almost the same) for each trial. 

69 We, however, wi l l not say we could prove or falsify the probability statement, like (3.1). See Chapter 6 

for fürther discussion. 

70 http://www.biomedcentral.com/news/20030320/09 
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(3.3) The source o f the international outbreak o f Severe Acute Respiratory 

Syndrome (SARS) in March 2003 is a doctor from Guangzhou, 

is either true or false, regardless o f our knowledge about the source o f the international 

outbreak o f SARS. Its t ruth depends solely on how the wo r l d is, especially what 

happened in March 2003. Bu t i f (3.2) is true, i t is not merely because o f how the wor ld is, 

but also because o f how we l l the available evidence supports (3.3). The truth o f (3.2) 

depends also on the relation between the available evidence and the truth o f (3.3). Unl ike 

(3.1), (3.2) can no longer be tested by experiments since it seems to be nonsense to do 

repeated tr ials on the source o f a particular outbreak o f a part icular disease at a particular 

t ime. It seems to suggest that the word 'p robabi l i ty ' in (3.1) and (3.2) are o f dif ferent 

meanings. 

Cou ld we a have a single theory that can explicate all o f our ordinary usages o f 

the word 'p robab i l i t y ' as we l l as regulate it? Or do we need plural ist views o f probabi l i ty 

to accommodate di f ferent interpretations each o f wh ich is val id in a particular context? 

There are many v iews o f probabi l i ty to be found in the literature and they can be div ided 

for our present purposes into f ive major categories/^ We w i l l discuss br ief ly the major 

tenet o f each іп Їефге Їа Ї іоп and leave the lengthy discussion o f the objections and 

cri t ic isms to the appendices so that we could discuss in turn the implicat ions o f the 

interpretations o f probabi l i ty for the analysis o f SST. 

՜" There are many other different classifications of theories of probabilities, see Weatherford (1982, p p . l l -
17) for a brief description. 
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3,1 The classical theory 

The classical theory o f probabi l i ty was first introduced by the thinkers o f the 

European Enl ightenment such as James Bernoul l i and Pierre Simon de Laplace. One o f 

the Enl ightenment 's characteristic ideas is admirat ion for Newton ian mechanics o f wh ich 

a consequent is the bel ie f in universal determinism. Universal determinism is the thesis 

that in our universe the past determines a unique future. O f course, many people could 

imagine or consistently describe that there are many ways in wh ich the wor ld might go on. 

But many o f these conceivable futures might be physical ly impossible. For instance, 

given the laws of nature and the past72， it is deterministic that either there must or must 

not be a lunar eclipse on 30 March 2003. Even though I could picture to mysel f what it 

wou ld be l ike for there to be a lunar eclipse tonight, this imaginable future is in fact 

physical ly impossible. 

In a determinist ic universe (or system), probabi l i t ies are not inherent in nature and 

must be relat ive to human ignorance. For example, suppose in a certain circumstance, 

there are only ท possible outcomes. Accord ing to universal determinism, one o f these ท 

outcomes (say, outcome 0 ] ) must occur. I f some persons know al l relevant laws o f 

nature and the actual past (or suff icient in i t ia l condi t ions), they could be able to predict 

the occurrence o f 0\?^ I f we, as normal humans, do not know enough about the laws o f 

nature or the in i t ia l condit ions in a suff icient degree o f բք6օւտւօո^՛^, we may not be able to 

7 շ The laws o f nature per se do not dictate when particular events like eclipses w i l l occur. For example, 
given the Newton's laws o f motion but without given sufficient init ial conditions, it is possible that no 
unique consequence can be deduced, 
" Such persons have come to be known as Lap lace's demons. See Laplace (1825/1994, p.2). 
74 In some systems (not necessarily chaotic systems), a minuscule change in initial conditions can get 
greatly amplified by later events (Smith, 1998, p. l) So even i f we know enough about the laws in these 
systems, we can still get tremendous error in predictions i f we do not know the sufficient details o f the 
initial conditions. _ 

42 



predict wh i ch o f the ո outcomes w i l l occur. In this case, according to the classical 

theorists, we should have recourse to probabi l i t ies. As Laplace (1925/1994) put it, 

'probabi l i ty is relative in part to this ignorance and in part to our knowledge. Suppose we 

know that, o f three or more events, one alone must occur, but that nothing leads us to 

believe that one o f them w i l l happen rather than the others. In this state o f indecision, it 

is impossible for us to say anything w i th certainty about their occurrence. However, it is 

probable that one o f these events chosen at w i l l (or at random), w i l l not occur, because 

there are several equal ly possible cases that exclude its 0€ՇԱՄ6Ո06 , whi le only a single 

one favours i t . ' (pp.3-4). 

In other words, according to the classical theory o f probabi l i ty , there is no 

objective chance or indeterminism. Probabil i ty is on ly a measure o f our partial ignorance. 

I f there are ท possible outcomes เท a part icular s i tuat ion, i t is deterministic that only one 

o f them must occur. Suppose we, unl ike a Laplace's demon who perfectly knows all 

laws o f nature and in i t ia l condit ions so that he knows wh ich outcome must occur, do not 

have any reason or evidence to expect that one o f the ท outcomes w i l l occur rather than 

the others, there is a pr inciple called ' the Principle o f Indif ference'^^ according to wh ich 

we have to regard the ท outcomes as equally possible. In these circumstances, although 

there is no genuine object ive chance, we do have object ive rules o f assigning or 

generating probabi l i t ies and combin ing probabil i t ies. The rule o f assigning probabil i t ies 

is as fo l lows : suppose out o f these ท possible outcomes there are m o f them are 

7 5 This is Keynes's (1921， p.41) terminology. Sometimes it is also called the 'Principle o f Insufficient 

Reason' (first suggested by J. von Kries เท 1886) (Keynes, 1921, pp.41-42; Howson & u ŕ b ^ 1993, p.52). 
In Appendix 8， we w i l l expound this principle เท detail. 
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favourable to the outcome 0， then the probabi l i ty o f о is def ined to be /พ / Л.76 This is 

the classical def in i t ion o f probabi l i ty based on equally possible cases. There are, 

however, a number o f objections or crit icisms that make the classical theory o f 

probabi l i ty discredited. For example, the term 'equiprobable ' is required in the def ini t ion 

o f probabi l i ty and that renders the іпЇефГЄЇаЇіоп circular. Moreover, the classical theory 

yields a number o f intractable inconsistencies or paradoxes and is unf i t for explicating the 

use o f probabi l i ty in common usage7^ In the next section, we w i l l consider the logical 

theory o f probabi l i ty , wh ich is the first theory o f probabi l i ty emerging in the twentieth 

century and the one very simi lar to the classical theory. 

3.2 The logical theory 

The logical t h e o r y w a s developed in the early twent ieth century by John M . 

Keynes, R u d o l f Camap^^ ， Kar l Popper and later by Haro ld Jeffreys (Gi l l ies, 2000, p,25). 

Logical theory has three major tenets: First, probabi l i ty is a logical relation between 

sentences or proposit ions. Second, the relation is completely determinable by the 

appl icat ion o f logic and the rules o f probabi l i ty to the t w o sentences. It fo l lows that 

probabi l i ty is not known by empir ical means. Th i rd , ascriptions o f probabi l i ty wi thout 

being relative to certain evidence are either el l ipt ical or nonsense. 

7 6 The rules of combming probabilities (or the probability calculus), such as the addition rule for mutually 

excเนรive events, are basically mathematics in nature. They are almost the same for all different theories o f 
probability and there is no need for us to discuss in depth here. 
Լ See Appendix 8 for details. 
78 Logicai theory o f probability is sometimes called 'A priori theory o f probability'. Some may consider 
logical theories as a sub-class o f a priori theories and Keynes's theory should be regarded as a version of a 
priori theories instead o f a logical theory (for instance, Weatherford, 1982, p.76), but these terms are not as 
precise as terms tike Keynes's logical theory and Carnap's logical theory, which w i l i be used in our 
fol lowing discussion. 
79 Carnap has indeed contended that there are two probability concepts: Probability! and P r o b a b i l i t y 2 (1945, 
pp.521-525; 1962, pp.19-51). It is his Probability! concept that corresponds to our logical theory discussed 
in this section. 
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Same as classical theorists, logical theorists regard al l proposit ions as either true 

or false. Speaking o f proposit ions as certain or probable is not because we think it so nor 

it is a characteristic o f the proposit ions in themselves, rather it is merely an expression o f 

relationship in wh ich they stand to a corpus o f knowledge, actual or hypothetical (Keynes, 

1921, pp. 3-4). In other words, when it is said that a proposi t ion с is probable, what is 

being asserted is that the proposi t ion с bears a certain relation to another proposit ion, or a 

set o f proposit ions, wh ich may also be described as con f i rm ing , or supporting, or 

prov id ing evidence for с (Ayer, 1973, p. 188). In the case o f deductive logic, the relation 

between the proposi t ion (conclusion) and a set o f proposit ions (premises) o f a val id 

argument is necessary by wh ich i t means that i f the premises are al l trae then the 

conclusion cannot be false. For example, consider the fo l l ow ing argument: 

( P I ) A l l students who know how to mu l t i p l y numbers w i l l know how to 

add ո umbers; 

(P2) Raymond is a student who knows how to mu l t ip l y numbers; 

Therefore, (C) Raymond knows how to add numbers. 

The relation between the sentences ( P I ) , (P2) and (C) is necessary — i f ( P I ) and (P2) are 

true then it is certain that (C) is true. In other words, (C) is entailed by (or fo l lows 

logical ly f r om) ( P I ) and (P2). Bu t for induct ion, the relat ion between the conclusion and 

the premises is no longer necessary. For example, consider the f o l l ow ing argument: 

( Р Г ) Six hundred students who know how to mu l t ip ly numbers are 

observed and they all know how to add numbers; 

(P2) Raymond is a student who knows how to mu l t ip l y ո umbers; 

Therefore, (C) Raymond knows how to add numbers. 
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In this case, even though ( Р Г ) and (P2) are true, (C) is possibly false. In other words, 

( Р Г ) and (P2) do not entail (C). Bu t we wou ld tend to say that ( P ľ ) and (P2) do 

partially entail (C) as ( P ľ ) and (P2) certainly give some support for (C). I f ( P ľ ) 

changes to : 

( P I " ) Six million students who know how to mul t ip ly numbers are 

observed and they al l know how to add numbers; 

the support for (C) seems to be greater. In other words, the degree o f partial entailment 

f rom ( P ľ ) and (P2) to (C) is less than that f rom ( P I " ) and (P2) to (c), wh ich is in turn 

less than that f r om ( P I ) and (P2) to (C) . A n d probabi l i ty is the degree o f partial 

entai lment (Keynes, 1921, 5-6). In Keynes's terminology, (C)/(P1)«ร:(P2) > (cy^ 

(P2) > ( C ) / ( P ľ ) & ( P 2 ) ' ° . However, it is wor th not ing that in the case o f part ial entailment 

i t should be the content o f the evidence instead o f the numbers o f students in ( P ľ ) and 

( P I " ) that matter to the support for (C) . For example, consider: 

(P3) Raymond studied under the same curr icu lum w i t h the 6 hundred 

students in ( P ľ ) 

(Ρ3 ' ) Raymond studied under a cur r icu lum that is di f ferent f rom that 

studied by the 6 m i l l i on students in ( P I " ) 

Then i t cou ld be l i ke ly that 

( C ) / ( P ľ ) & (P2) & (РЗ) > (C ) / (P1 " ) & (P2) & (РЗ^^ 

even though the number involved in ( P I " ) is much greater than that in ( P ľ ) . 

8 ° According to Keynes (1921), the value o f the symbol a/h, i f it exists, represents the conditional 
probability o f a with reference to the evidence of A (p.40). 
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One immediate consequence o f this approach is that probabil i t ies are all relative 

to given evidence^^ A t first sight, it seems that this interpretation o f probabil i t ies is not 

consistent w i t h our ordinary use o f the probabi l i ty concept, as we often speak simply o f 

the probabi l i ty o f some outcome. A standard reply is that it is because in making 

probabi l i ty statements we seldom bother to specify the evidence on which we are re ly ing 

and our probabi l i ty statements are commonly e l l ip t ica l (Keynes, 1921; Kneale, 1949), To 

logical theorists, ascriptions o f probabi l i ty w i thout being relative to certain evidence are 

thus either e l l ipt ical or nonsense. 

I f probabi l i ty is interpreted as the logical relat ion o f proposit ions, how could we 

determine the numerical values o f probabil i t ies? To Keynes (1921), not all probabil i t ies 

are measurable or they must have a numerical value. He contended further that some 

pairs o f probabi l i t ies may not even be comparable (p34) . Our knowledge o f the ๒ g k ^ ^ 

relations between proposit ions, according to Keynes (1921), is based on our direct 

acquaintance w i t h logical relations*^, wh ich are a fundamental source o f our knowledge, 

directly available to our intu i t ion, and neither can nor should be referred to anything else 

as their source or jus t i f icat ion (pp. l2 -14) . The set o f probabil i t ies is thus not l inearly 

ordered. In Keynes's o w n words: 

8 ' Formulation o f probability wi th reference to the evidence is not exactly the same as the formulation in 
the form of a conditional clause. See Carnap (1962, pp.32-33) for a thorough discussion on this point. 
82 Keynes has adopted Russell's (1912) position on knowledge ― some of our knowledge is obtained 

directly or 'by acquaintance' (such as those based on our immediate sense perception, for example, I know 

by acquaintance that the cover o f the book in front me is black ๒ colour) ― which is called 'immediate 

knowledge', and another kind o f knowledge is the general knowledge which is conjoined from immediate 

knowledge and a priori knowledge of the truths of logic and mathematics (e.g. our knowledge that Everest 

is the earth* ร highest mountain) - w h i c h is called 'knowledge by description/ See Grayling, 1996， pp.39-47 

for a brief introduction o f Russell's work on theory o f knowledge. 
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Figure 4 Keynes's conception o f probabi l i t ies (Keynes, 1921， p.39) 

Ό represents impossib i l i ty , I certainty, and A a numer ical ly measurable probabi l i ty 

intermediate between о and / ; บ, V, Җ Ճ, Y, ζ are non-numerical probabi l i t ies, o f wh ich , 

however, V is less than the numerical probabi l i ty A, and is also less than w, X, and Y. X 

and Y are both greater than พ, and greater than V, but are not comparable w i th one 

another, or w i t h A V and ζ are both less than พ, ճ， and Ķ but are not comparable w i th 

one another, U is not quanti tat ively comparable w i t h any o f the probabi l i t ies Ķ พ, X, Y, ζ. 

Probabil i t ies wh i ch are numerical ly comparable w i l l a l l belong to one series, and the path 

o f this series, wh ich we may cal l the numerical path or strand, w i l l be represented by 

ΟΑΓ (p.39). 

Keynes's complicated conception o f probabi l i ty has at least two major di f f icul t ies. 

First, the presence o f non-numerical probabil i t ies w i l l make the theory deviate f rom the 

s impl ic i ty and power o f the mathematical theory o f probabi l i ty (Gi l l ies, 2000， p.35). 

Second, for a specific probabi l i ty , how could we determine whether it has numerical 

value or not? Keynes's (1921) answer is that numerical measurement is possible only 

when we can be given a number o f equiprobable alternatives (p.41). This is clearly a 
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resort to the Principle o f Indif ference. As we have discussed in last section, the 

application o f this Pr inciple to assign ini t ia l probabi l i t ies has demonstrated to be 

unsuccessful. A s a matter o f fact, not al l the advocates o f logical theory o f probabi l i ty 

agree w i t h Keynes in regarding probabi l i ty as an unanalysable logical relat ion. Carnap is 

certainly an example. 

Carnap'ร (1945; 1962) logical conception o f probabi l i ty (or called 'p robab i l i t y ] ' 

to dif ferentiate the one in terms o f observed frequencies, or o f the l imi ts towards wh ich 

they are supposed to tend 一 probability2) is analyzable ― probabi l i ty i is a measure o f the 

partial inclusion o f the range o f one sentence i n that o f another, wh ich is o f a purely 

logical nature (p.294). W i t h the use o f mathematical logic, Carnap is able to refine this 

conception to make probabi l i ty i a rigorous mathematical relat ion between sentences in a 

restricted class o f simple languages, wh ich is called the Languages L. Bu t Carnap's 

conception st i l l suffers insurmountable d i f f icu l t ies (see Append ix 9) . For example, a 

separation f r om experience or our empir ical wor ld w i l l make logical theory not useful in 

its appl icat ion in natural sciences or social sciences. A n d it is this reason that some have 

proposed another theory o f probabi l i ty that is supposed to be able to have wider 

applications in sciences 一 the frequency theory wh ich is the topic o f our next section. 

3.3 The frequency theory 

The frequency theory o f probabi l i ty was developed largely by Richard von Mises 

and Hans Reichenbach in the twentieth century. As a major opponent o f logical theory, 

the frequency theory is the v iew that probabi l i ty is the empir ical relative frequency o f 
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occurrence o f some feature o f the real wor ld rather than the logical relation between 

sentences. Consider the f o l l ow ing sentence that has been discussed before: 

(3.1) The probabi l i ty o f getting a ' 1 ， in th row ing the die is 2/3 

We are, according to the frequency theory, making an empir ical sentence about our 

object ive w o r l d ― the die and the way we throw the die (or i f w ish , the device for 

throwing) . The probabi l i ty in (3.1) is used to describe a part icular physical property ― the 

relative frequency o f ' г in repeating throwing w i l l approach 2/3 in the long run. 

Contrary to the logical theory, the probabi l i ty value เท frequency theory is not 

relative to any evidence and is determined uniquely by the object ive wor ld . Furthermore, 

in frequency theory al l probabil i t ies are known a posterior i only, and it thus renders 

probabi l i ty theory as one on par w i th science. As von Mises (1957) elaborated, the 

concept 'probability' in the frequency theory, like many other concepts in science83， starts 

wi th the imprecise concept o f ordinary language. Bu t when we are going to construct a 

scientif ic theory it w i l l be replaced by more precise not ion. This more precise notion o f 

probabi l i ty is what the frequency theorists try to introduce by means o f expl ic i t def in i t ion. 

Just l ike dynamics wh ich is dealing w i th the mot ions o f bodies and the forces 

wh ich act on them, probabi l i ty theory, to the frequency theorists, is dealing w i th the 

problems in wh ich either the same event repeats i tsel f again and again, or a great number 

o f un i fo rm elements that are involved at the same t ime. Contrasting to the subjective 

theory that w i l l be discussed in the next section, probabi l i t ies in the frequency theory are 

8 3 He has used the concept o f *work， in mechanics as an example to illustrate this point (pp.5-6). In 

mechanics, work is defined as the scalar product of forces and displacement (or the line-integral o f force) 

and this scientific definition has no associations with the use o f 'work ' in everyday matters (such as the 

work performed by the musician). ՜ 
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associated w i th col lect ions o f events or other elements that are considered to be objective 

and regardless o f our beliefs or knowledge, jus t as masses or bodies ๒ dynamics that are 

independent o f the observers. Single events that do not share this feature w i l l be beyond 

the scope o f probabi l i ty theory (such as the probabi l i ty o f w inn ing a particular battle 

wou ld have no place in the frequency theory). Probabi l i ty theory is thus restricted to 

special problems as game o f chance, social mass phenomena, and statistical treatment o f 

mechanical and physical phenomena (von Mises, 1957, pp. 10-11) More precisely, von 

Mises has proposed the term 'col lect ive ' to formal ize this restrict ion o f the appl icabi l i ty 

o f probabi l i ty theory. The term 'col lect ive ' is used by von Mises to denote a sequence o f 

un i fo rm events or processes which d i f fer by certain observable attributes such as colours, 

numbers, or anything else (1957, p.12). For example, al l the throws o f a die made in the 

course o f a game can fo rm a col lective and the number o f points thrown can be the 

attr ibute; al l the molecules in a given volume o f gas can fo rm a col lect ive whi le the 

veloci ty o f a single molecule can be its attr ibute; the whole class o f students who were 

si t t ing for a part icular publ ic examination in 2003 is a col lect ive whi le the grade o f each 

student can be his/her attribute. Accord ing to von Mises (1957), the def ini t ion o f 

probabi l i ty is on ly concerned w i th ' the probabi l i ty o f encountering a certain attribute in a 

given col lect ive ' (p. 12). W i th an empir ical law o f probabi l i ty wh ich states that 

'experience has shown that in the game o f dice, as in al l the other mass phenomena which 

we have ment ioned, the relative frequencies o f certain attributes become more and more 

stable as the number o f observations is increased' ^՚* (von Mises, 】957， p. 12), the 

probabi l i ty o f the attribute considered w i th in the given col lect ive is defined as the l imi t to 

wh ich the relative frequency o f the observed attribute wou ld tend. 

8 4 This empirical law is sometimes called 'the Law of Stability o f Statistical Frequencies' (Keynes, 1921， 

p.336). 
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There are, however, regular cases where the relative frequencies converge 

towards def in i te l im i t i ng values, but where it is nevertheless inappropriate to talk about 

probabi l i ty (von Mises, 1957， P.23). For example, consider a road at the side o f wh ich 

there are a succession o f large milestones and small stones between the milestones at 

intervals o f 1/10 o f a mi le . The attribute large milestone and the attribute small stone w i l l 

have a l im i t i ng frequencies o f 1/10 and 9/10 respectively. But this is not a genuine 

col lective since the sequence o f results is determined rather than random^s. Hence, von 

Mises (1957) has to propose that the l im i t i ng values o f the relative frequencies o f the 

attributes must remain the same in all part ial sequences wh ich may be selected f rom the 

original one in an arbitrary way (pp.24-25)^^. In a nutshel l , the probabi l i ty o f an attribute 

is the l im i t o f the relative frequency w i th wh ich it appears in a random collective. 

L i ke the classical theory and the logical theory, the frequency theory also suffers 

some intractable dif f icult ies^^ that lead theorists to propose another objective theory o f 

probabi l i ty ― the propensity theory which w i l l be discussed in Section 3.5. 

85 A simple example to illustrate the point that probability and relative frequency are not the same is: 

suppose a coin tossing device could give Ή， and T' occurring in alternative orders. We toss for 28 times 

and get the sequence: T H T H T H T H T H T H T H T H T H T H T H T H T H T H . What is the 

probability that the next observation wi l l be 'T，? In this case, the relative frequency o f 'T， is 1/2 but we 

could predict wi th perfect certainty that a 'T， w i l l occur in the next toss. This also explains why von Mises 

requires that a collective should have random outcomes as an essential characteristic o f a collective. 

8՞ More precisely, the l imit ing value of the relative frequency o f each attribute in a collective พ is the same 
in any infinite subsequence ot พ which is determined ชy a place-selection. Tlace-selection' here means any 
effectively specifiable method of selecting indices o f members o f พ, such that the decision to select or not 
the index і is allowed to depend at most on the first і ― 1 attributes in พ. The satisfaction o f this condition 
is warranted by the other empirical law called 'the Law of Excluded Gambling Systems' (von Mises, 1957, 
pp.25-27; Gill ies, 2000, pp.95-96) by which randomness and the failure of gambling systems are related 一 

the authors o f gambling systems (for example, a gambling system ๒ roulette is something like: 'bet on 
black after a run o f four consecutive reds') have all, sooner or later, had the sad experience o f finding out 
that no system is able to improve their choices of winning in the long one. Von Mises's has not been able 
to give a precise definition o f randomness or random sequence, and only recently there has been a 
definition o f it that is free of contradiction. For reviews on this problem, see Martin-Löf, 1969; Gillies, 
2000, pp.105-109. 
87 See Appendix 10 for details. 
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3.4 The subjective theory and Bayesianism 

The subjective theory o f probabi l i ty , wh ich was f i rst developed independently by 

Frank P. Ramsey 8 8 and Bruno de Finetti^^, identif ies probabi l i ty w i th a person's degree o f 

bel ief in a proposi t ion. Un l i ke other interpretations o f probabi l i ty , this theory provides a 

straightforward іпЇефгеІаї іоп o f the probabi l i t ies o f single events. For instance, when 

we ident i fy probabi l i ty as a person's degree o f bel ief, sentences about single event l ike 

'the probabi l i ty that u s w i l l be involved in war w i t h Nor th Korea in the future (say, in 

2007) ' s imply means a person's degree o f bel ie f ๒ the outbreak o f war between u s and 

Nor th Korea in 2007. Un l i ke frequency theorists, the subjectivists need not worry about 

the appropriateness o f using the term 'probabi l i ty ' in this way, or to struggle for f igur ing 

out what the reference class is. But two immediate questions w i l l be raised: Does it 

mean that, in the subjective іпїефгеЇаІіоп o f probabi l i ty , we should no longer speak o f 

the probabi l i ty , but rather o f David 'ร probabi l i ty , Ma ry ' ร probabi l i ty? I f we wou ld l ike to 

know the probabi l i ty o f E, we have to measure a person'ร degree o f bel ief in E. But how 

could we make such a measurement and compare one's degree o f bel ief w i t h another'ร? 

To the f irst quest ion, many subjectivists (advocates o f the subjective theory o f probabi l i ty) 

w i l l answer yes. There is no need, according to the subjective іпЇСфгеІаЇіоп, to assume 

that the degrees o f bel ief w i l l be the same for al l rational persons. To the second question, 

though there is a bo ld but unrealistic proposal that degrees o f bel ief could be measured by 

a psycho-galvanometer (Ramsey, 1931, p.161), a bett ing scheme is regarded by most 

subjectivists inc luding Ramsey and De Finett i as the most reasonable way to measure 

degrees o f belief. For example, i f we want to measure the degree o f bel ief o f David in a 

8 8 The theo ry was proposed in Ramsey 's paper ' T r u t h and p robab i l i t y * w h i c h was f i rst presented in a ta lk 
he gave to a ph i l osophy c lub in Cambr idge in 1926 and later pub l i shed in Ramsey (1931) . 

D e F ine t t i f i rs t pub l i shed his papers on sub jec t ive theory o f p robab i l i t y i n 1930. For the h is tory o f 
deve lopment o f sub jec t i ve theo ry by D e F ine t t i and Ramsey, see G i l l i e s , 2000, pp .50-51 ' 
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proposit ion E, we have to get Dav id to agree to bet w i t h us on E under the fo l l ow ing 

condit ions: 

(1) Dav id has to select a number r in the closed interval [0, 1] as the betting 

rate^^ on Ķ 

(2) A f te r Dav id 's selection, we select the stake $5 and choose either one o f 

the f o l l o w i n g opt ion: 

Opt ion 1 ： Dav id pays us $rS and he w i l l get $5 f rom us i f E is true and get 

nothing i f E is false. 

Opt ion 2: We pay Dav id $rS and we w i l l get $5 f rom David i f E is true 

and get nothing i f E is false. 

Suppose Dav id knows al l these condit ions and accepts the bett ing. I f he chooses 0.2 as 

his betting quotient, then 0.2 is taken to be his degree o f bel ief in E, Three remarks must 

be made here. First, Dav id has to make his selection o f bett ing rate before knowing 

wh ich opt ion is selected. I f he knows that opt ion 1 is selected before selecting the 

betting rate, he wou ld choose r as small as possible. On the other hand, i f opt ion 2 is 

selected before his selection he wou ld choose r as large as possible. In neither case 

wou ld r represent Dav id ' s genuine degree o f bel ie f in E. On ly under this bett ing scheme, 

Dav id wou ld t ry his best to select the bett ing rate as fa i r as possible i f he doesn't want his 

opponents to impose disadvantages on h im. 

The second remark is about the stake. A l t hough the stakes here are taken to be in 

money, any other tenable media w i l l do. Indeed our subsequent discussion o f the 

subjective theory w i l l not be much affected i f one insists to take the stakes to be in ut i l i ty , 

' Be t t i ng rate means the bet per stake and i t is somet imes ca l led * be t t ing quo t ien t ' 
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or in other tenable media. Some wor ry that, i f the bets are to be in money, the magnitude 

o f the stake should not be too large or too small in compared w i th David 's fortune. Large 

stake w i l l impose an unbearable r isk o f bankruptcy on h i m and therefore induce h im to 

select a smaller bett ing rate. Small stake w i l l probably be a t r i f le to h im and is thus 

unable to make h i m consider seriously about the bet. Th is problem can be resolved i f the 

magnitude o f the stake is chosen such that the amount o f bet is small enough that it w o n ' t 

impose a r isk o f f inancia l disaster on the person but large enough to make h im ponder 

over the bett ing rate (Gi l l ies, 2000). 

We have seen how the subjectivists use the bett ing scheme to measure the degrees 

o f belief. But can any degree o f bel ief be regarded as probabi l i ty? I t seems that a 

person's degrees o f bel ie f could be quite arbitrary, how could we guarantee that the 

degrees o f bel ief must satisfy Ko lmogorov 'ร axiomatic system o f the probabi l i ty calculus? 

The subjectivists w i l l reply that not any degree o f be l ie f or bett ing rate is admissible. 

Only those coherent sets o f bett ing rates w i l l be admissible and they w i l l satisfy the 

axioms o f probabi l i ty . A set o f bett ing rates is said to be coherent i f the opponent cannot 

choose a set o f corresponding stakes and options such that the opponent w i l l w i n 

whatever happens 91. For example, suppose Dav id bets on the fo l l ow ing two 

proposit ions: 

E\ ： Mary w i l l get a pass in the mathematics examination. 

£ շ : M a r y w i l l NOT get a pass in the mathematics examination. 

I f his bett ing rates on these two propositions are 3/5 and 3/4 respectively, his opponent 

could make a Dutch book against Dav id by of fer ing stakes and options as fo l lows: 

9 I I f , on the cont rary , the opponen t o f a person is able to choose stakes and opt ions so that the opponent w i l l 
w i n whatever happens then the opponent is said to have made a Dutch book against the person. 
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For £՝!： The stake is $1000 and the opt ion is: Dav id pays the opponent 

$600 and he w i l l get $1000 f rom the opponent i f E\ is true and 

get nothing i f E\ is false. 

For Ег: The stake is $1000 and the opt ion is: Dav id pays the opponent 

$750 and he w i l l get $1000 i f £ շ is true and get nothing \i El is 

false. 

I f E\ is true, then El is false and Dav id w i l l lose $350. I f E\ is false, then Ег  is true and 

again Dav id w i l l lose $350. In other words, David w i l l be a loser no matter what happens 

and his set o f bett ing rates is thus said to be incoherent. On the other hand, i f his betting 

rates on the two propositions E\ and E\ are 3/5 and 2/5 respectively^^, it can be shown that 

nobody wou ld be able to make a Dutch book against h im and this set o f betting rates is 

said to be coherent. In fact there is a theorem called the Ramsey-De Finett i theorem (or 

the Dutch book theorem) wh ich assures that a set o f bett ing rates is coherent i f and only i f 

it satisfies the axioms of probability^^ 

As a result, i f degrees o f bel ief can be represented by coherent bett ing rates then 

they w i l l ipso facto satisfy the axioms o f probabi l i ty . I t renders the subjective theory 

looking highly plausible in ІПЇЄФГЄЇІП£ probabilities because it seems to be able to 

demonstrate why it is rational for us to accept the axioms of probability calculus. 

Furthermore, as we have discussed, subjective theory provides a straightforward 

interpretation o f the probabil i t ies o f single events. Despite these promising features, 

subjective theory suffers serious di f f icul t ies. For examples, di f ferent subjects may have 

' I ndeed, i n the present case, any pai r o f bet t ing rates w h i c h add up to 1 w i l l do. 
T h e p r o o f can be f o u n d e lsewhere, f o r instance, H a c k i n g , 2 0 0 1 , pp .165 -170 ; G i l l i es , 2000 , pp.59-65. 
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dif ferent degrees o f bel ie f or bett ing rates on the same proposi t ion, could we be sure that 

their bett ing schemes are al l coherent? I f no, does it imp ly that the incoherent subjects 

cannot 'do probabi l i ty '? On the other hand, even though their bett ing schemes were all 

coherent, how could we іпіефгеї the objective statements l ike 'the probabi l i ty o f that a 

part icular radioact ive element w i l l disintegrate in 3 years' that should be dependent on 

the object ive wo r l d rather than how we believe it? The di f f icu l t ies o f subjective theory 

w i l l be further discussed in Appendix 11 and it could be shown that the subjective 

probabi l i ty derived f rom the Dutch Book Argument and the Representation theorem, 

wh ich constitute t w o major arguments to support the subjective theory, is in fact the 

subjective estimate o f object ive chance, rather than subjective uncertainty o f the mind 

assumed by subjective interpretation (รนท, 2003). 

3.5 The Propensity theory 

The propensity interpretation o f probabi l i ty was f irst proposed by Kar l Popper 

(1957). The theory was then taken up by a number o f wri ters, some developed and 

reformulated it, and some cr i t ic ized it (Galavott i , 2005; Gi l l ies , 2000; Mei lor , 2005, 

M i l l e r , 2002). Popper maintained that probabil i t ies are completely objective features o f 

the w o r l d but he d id not agree w i t h von Mises that objective probabil i t ies for single 

events should not be admitted, since probabil i t ies for single events are inevitable in 

quantum theory. Moreover, he has presented an argument against von Mises ' frequency 

theory (Popper, 1957): Consider two dice, one is fair and another is loaded in such a way 

that in the long run ' 6 ' occurs about 1/4 o f the throws. I f we throw the loaded die for 

many t imes (say, lO 6 t imes) except the 100th th row in wh ich the fair die is thrown, the 

relative frequency o f ' 6 ' i n the sequence o f these throws w i l l be approximately 1/4. 
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Accord ing to the frequency theory, the probabi l i ty o f gett ing '6， ๒ the 100th throw, that 

is st i l l a part o f the collective for wh ich p ( ' 6 ， ) = 1/4， should be 1/4. This result is, 

however, contrary to our intui t ion that its probabi l i ty should be 1/6. Popper (1957， 1959) 

then suggested that even though probabil i t ies migh t be said to be relative frequencies, the 

frequencies w o u l d depend on the experimental arrangement. I f we repeat the experiment 

very of ten, the experimental arrangement is l iable to produce a sequence w i th relative 

frequencies w h i c h depend on these part icular generating condit ions for the experiment 

and probabi l i t ies are disposit ional properties o f these condit ions, i.e., propensities. In 

other words, according to the propensity theory, probabi l i ty is a characteristic property o f 

the experimental arrangement (or generating condit ions o f an experiment) rather than as a 

property o f a sequence or collective^'*. 

I f the probabi l i ty o f an outcome is construed as a measure o f the incl inat ion o f 

the current state o f affairs to realize that outcome (M i l l e r , 1994, p. 182), then probabi l i ty 

can be ascribed to a single event, no matter it has been realized or is merely possible. 

This interpretation underpins an indeterminist ic picture o f our wo r l d : 

*The fu tu re is open: ob jec t i ve ly open. O n l y the past is f i x e d ; i t has been actual ized and so it has 

gone. The present can be descr ibed as the con t i nu i ng process o f the ac tua l iza t ion o f propensi t ies; 

or m o r e metaphor i ca l l y , o f the f reez ing or the c rys ta l l i za t ion o f propensi t ies. W h i l e the 

propens i t ies actual ize or real ize themselves, they are c o n t i n u i n g processes. W h e n they have 

rea l i zed themselves, then they are no longer real processes' (Popper, 1990, p. 19). 

Accord ing to M i l l e r (2002), this constitutes 'a factual hypothesis that our wor ld is faced 

at any t ime w i th a range o f possible ways fo rward , and that these possibil i t ies may be 

9 4 I n 1933, K o l m o g o r o v had raised s imi la r v i e w p o i n t in assoc iat ing p robab i l i t i es w i t h generat ing condi t ions 

rather than sequences or co l lect ives เท the f i rs t ed i t ion o f his Foundations of the theory of probability 
( K o l m o g o r o v , 1957, pp .3 -4 ) . 
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dif ferent ly weighted. It is a second hypothesis that these weights or propensities conform 

to the axioms o f the calculus o f probabi l i ty. But i f propensities really are probabil i t ies, 

and are suf f ic ient ly w e l l behaved, then a bridge between propensities and frequencies is 

provided by the laws o f large numbers. Statements o f propensity are in pr inciple testable' 

(p . l 12). The propensity theory is thus not a metaphysical theory as some (e.g., Gi l l ies, 

2000; Galavot t i , 2005) have іпЇефгеЇе0. As stressed by Popper (1990), 'propensities 

should not be regarded as properties inherent in an object, but that they should be 

regarded as inherent in a situation^ (p.14). For example, the probabi l i ty for the single 

event that M r . W i l l i a m J. C l in ton is st i l l al ive 40 years f r o m today (1 September 2005) to 

occur, according to the propensity theory, is neither an intr insic property o f M r . Cl in ton 's 

present state o f health (or his genetical make-up) nor the relative frequency o f certain 

collectives (such as the l i fe expectancy for u s Presidents). The probabi l i ty w i l l indeed 

vary day by day'^ and w i l l be affected by his activit ies or l i festyle (e.g., smoking) , other 

people's act ivi t ies (e.g., assassination), and the progress o f medicine, etc. (Mei lor , 1994, 

p . l 8 1 ; Popper, 1990, p . l 4 ) . 

A major p rob lem for the propensity theory, first raised by Paul Humphreys (1985), 

is that: Cou ld Bayes'ร theorem be applicable to propensities? As tendencies to produce 

certain outcomes, propensities have a temporal or causal asymmetry that appears to be 

inconsistent w i t h the symmetry characterizing probabi l i t ies. Using Humphreys ' (1985) 

own example, there could be a disposition for a glass w indow to shatter when struck by a 

heavy object but the w indow has no disposit ion to be hi t by a rock when broken (p.558). 

9 5 For examp le , the propens i ty on 1 September 2005 o f his su rv i va l f o r another 20 years, g i ven that he w i l l 
act as a matador in t o m o r r o w ' s b u l l f i g h t i n g w i l l be d i f f e ren t from the propens i ty on 1 September 2005 o f 
the same event , g i ven that he w i l l g ive a speech in t o m o r r o w ' s lecture. 
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But ๒ probabi l i ty calculus, once PiA\Q has been def ined its inverse probabi l i ty Р(С\А) 

P(G I Ä)P(A) 

could be f igured out by using Bayes's theorem P(A I C ) = . This 

inconsistency constitutes a cr i t ic ism o f the propensity theory and is now known as 

'Humphreys ' paradox' (Fetzer, 1981, p.283). Proponents o f propensity theory have 

proposed di f ferent further іпЇефгеЇаІіоп o f propensities to circumvent the problem. '^ For 

example, Gi l l ies (2000) has argued that the adoption o f the long-run version o f propensity 

theory is able to solve the Humphreys' paradox. Gi l l ies (2000, pp.130-134) uses an 

example to argue for his point : suppose that in a factory there are two machines 

producing Frisbees, Machine 1 produces 800 pieces per day w i th 1 % defective and 

Machine 2 produces 200 pieces per day w i th 2 % defective. A t the end o f each day a 

Frisbee is selected at random f rom 1000 produced by the two machines. Let D denote the 

event that the selected Frisbee is defective, M denotes that it was produced by machine 1, 

iV denotes that i t was produced by machine 2. The condi t ional probabil i t ies P(D I M ) a n d 

P(D I N) make perfect sense, that denote respectively the propensities o f machine 1 and 

2 to produce defect ive Frisbee. But what do we mean by ' P{M 1 Ű ) ' or ' P{N I Ű ) ，? 

Does the oropensity o f the defective Frisbee selected at random at the end o f day to have 

been produced by machine 1 (or 2) make sense? First, by Bayes'ร theorem, the value o f 

P{M I D) is g iven: 

P{D I M)P{M) 
P{M I D) P{D) 

9 6 There are h o w e v e r some proponents o f propens i ty theory w h o d o not a t tempt to solve this p r o b l e m . Fo r 
example , Fetzer ( 1 9 8 1 ) has construed propensi t ies as par t ia l causes ( i .e. , P(A\C) is a measure 0 1 lhe strength 
o f the propens i ty o f the cond i t i ons С at t i m e է to produce an event A at some t ime later than ή and conceded 
that th is in te rpre ta t ion makes senses in some cases on ly . T h i s strategy is hard ly appeal ing as it leaves the 
calculus o f p r o b a b i l i t y o n l y par t ia l l y interpreted. 

60 



P{D I M ) F ( M ) 

F{D I M ) P { M ) + P(D I Ν ) Ρ { Ν ) 

800 O.Olx 
1000 

0 . 0 1 x - ^ + 0 . 0 2 x - ^ « ^ 
1000 1000 

= 3 ՜ · 

Accord ing to Gi l l ies (2000), i f propensities were іпЇефгеїесІ as partial causes, this 

condit ional probabi l i ty w o u l d mean 'the drawing o f a defective frisbee in the evening is a 

partial cause o f we ight 2/3 o f its having been produced by machine 1 earlier in the day. 

Such a concept seems to be nonsense, because by the t ime the frisbee was selected, it 

wou ld either def in i te ly have been produced by machine 1 or def in i te ly have not been 

produced by that machine ' (p.131). By adopting the long-run propensity theory, Gi l l ies 

(2000) f irst identif ies the set o f repeatable condit ions speci fy ing that the two machines 

produce their dai ly output o f Frisbees (ร). The condi t ional probabi l i ty P(M I D) is a 

short-hand o f P(M \D AS) wh ich means: 

Suppose w e repeat ร each day, but on l y note those days i n w h i c h the frisbee selected is defect ive , 

then, re la t ive to these cond i t i ons , there is a propens i ty that i f t hey are instant iated a large n u m b e r 

o f t i m e M w i l l occur , i.e. the fr isbee w i l l have been p roduced by mach ine 1, w i t h a f requency 

app rox ima te l y equa! to 2/3. (p .132) 

This іпїефгеїаЇ іоп does, however, fa i l to tackle the prob lem o f single event. For example, 

i f the Frisbees produced by machine 1 is marked w i t h a smal l ' 1 ' on its surface whi le 

those produced by machine 2 is marked w i th a smal l ' 2 ' . When a Frisbee is selected at 

the end o f day, the smal l number w i l l show that either i t is made by machine 1 or made 

by machine 2. A propensity o f 2/3 does not make sense for this single event. 

61 



Another attempt to solve Humphreys ' paradox is being developed by Dav id 

M i l l e r (1994, 2002) and 】atê  Popper (1990) through the universe version o f the single-

case propensity theory. This version accentuates a larger f ramework than that consisting 

in the generating condit ions. When we consider the condit ional probabi l i ty P{C\A), 

Mi l le r (1994, 2002) proposes to add temporal index to each o f the occurrences (e.g., A 

and Q so that they could be described by a basic statement, i.e. a single statement 

equipped w i t h coordinates o f t ime and place. For example, we have to specify the t ime 

when an occurrence A is actualized, i f i t is actualized. Suppose that メ,' denotes an 

occurrence A that is actualized, i f it is actualized at a l l , at t ime t\, and that (ľ, 2 denotes an 

occurrence С that is actualized, i f it is actualized at a l l , at t ime էշ. The propensity at t ime 

է for С to be actualized at t ime Կ given that メ is an occurrence that is actualized at t ime t\ 

should be wr i t ten as ի 4 , ւ ) . By considering the temporal sequence o f t, t\, էշ, we 

have a total o f thirteen situations that could be grouped into 4 cases97: 

(1) է<կ<կ 

This is the simplest case that the t ime o f the condi t ion ing occurrence A is earlier 

than that o f the condit ioned occurrence c. When we ta lk o f the propensity at t ime 

է for С to be actualized at էշ given that A is actualized at t\, both A and с have not 

reached their t ime for actualization. The probabi l i ty (C^^ I A^ ) can take any 

value in the interval [0， 1]. Humphreys ' paradox does not arises เท this case. 

9 7 Ou r g r o u p i n g here renders the fou r cases be ing mu tua l l y exc lus ive and exhaust ive. See M i l l e r , 2002, 
pp .113-114 fo r another f o r m o f g roup ing from w h i c h the cases generated over lap s l igh t ly . 
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(շ) է<է,<է, 

In this case, the t ime o f the condi t ioning occurrence A is not earlier than that o f c . 

But when we talk o f the propensity at t ime է for the actualization o f с at էշ given 

that A is actualized at i\, the actualization o f A at t ime /] is supposed to be given at 

է rather than た. Since the t ime է is earlier than էշ, the occurrence с has not been 

actualized when we consider the propensity at է and Ķ (C,^ 1 ) can sti l l take any 

value in the interval [0, 1]. For instance, in our previous Frisbee example, i f 

P{M I D) real ly means (M,^ I ) , where կ < / \ as the defective Frisbee must 

be selected after its product ion by the machine and the t ime է (say, the t ime very 

early in the day such that the machines has not started operating) is earlier than 

the t ime o f product ion and selection, ta lk ing o f the probabi l i ty рдл/,^ I Z),|) at է 

has no impl icat ion that the Frisbee's defectiveness has any causal influence on its 

earl ier product ion. What it means is the propensity for the present wor ld at է to 

develop into a wor ld in wh ich the Frisbee selected in the evening w i l l have been 

produced by machine 1 ( in the afternoon, say), given that the present wor ld at է is 

a wo r l d wh ich w i l l develop into one o f the wor lds in wh ich the Frisbee selected in 

the evening is defective. 

(3) կ < է ' ՛ 

I f the t ime for the realization o f с has been passed at t ime t, either с has been 

already actualized or fai led to be actualized. Hence, the value 

OÍP, (c,2 I Ą ) could be only 1 or 0. 

' Th i s case consists o f t w o s i tuat ions: ( i ) է<էշ<է1 and ( і і )  է<էշ= i ļ . 
՚ Th i s case compr ises o f 8 s i tuat ions: ( i ) էշ= ř| = ř , ( i i ) կ= ty <t, ( і і і )  էշ < /| = է, ( i v ) կ< tx< է, ( v ) էշ<է 
, ( v i ) ř , < h= է, ( v i i ) t= հ < կ , ( v i i i ) ¿1 < էշ< t. -( v i ) ř, < h=t, ( v i i ) ř = Í 2 < / , , ( , V 1 1 1 ) ¿ , < էշ<է. 
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(4) ւ < է < կ 

In this case, the t ime for the realization o f A has been passed at t ime է but the t ime 

for real ization o f с is later than t. I f A has been already actualized at or before t, 

ฟ( is a necessity at any t ime at or after t. I t means that at t, the absolute propensity 

for С to be actualized w i l l be the same as the propensity for с to be actualized 

under the condi t ion that A has been actualized, i.e. Ķ (c , 2 I ฟ , ) = F\ (c , 2 ) . On the 

other hand, i f A has fai led to be actualized at or before / [ , A wou ld become an 

imposs ib i l i ty at or after t. Accord ing to the probabi l i ty condi t ional theory (Jeffrey, 

1964; E l l i s , 1973; Adams, 1998), the probabi l i t ies o f condit ional sentences l ike 

' A ^ B' are condit ional probabil i t ies (e.g. P{A B) - P(B I A) ) . Moreover, i f 

A is false then the condit ional ' i f A then C ' w i l l be true no matter what the truth 

value o f С is. Therefore, the value o f p, (C,^ I Α,ι ) is 1.'°' 

F rom the above discussions, we see that the resolut ion o f Humphreys ' paradox rests on 

recognizing that condit ional propensities is not a measure o f the causal dependence o f the 

condit ioned occurrence upon the condi t ioning occurrence. Inverse condit ional 

propensities, as McCurdy (1996) has pointed out, do not represent inverse dispositions 

and they are wel l -def ined concepts and can take non-t r iv ia l values as demonstrated ๒ the 

above analysis. 

I t should be clear f rom the preceding discussion that although all іпЇЄфгеЇаЇІ0П5 

o f probabi l i ty suffer f rom its own di f f icul t ies, the propensity theory is the one that is most 

՝°° Th i s case compr ises o f 2 s i tuat ions: ( i ) ř , < է<էշ, ( i i ) /| - t< էշ 
' ° ՝ I t is w o r t h no t i ng that the p robab i l i t y ca lcu lus does not ho ld f o r those i n v o l v i n g cond i t i ona l probabi l i t ies 
Ր (BIA) w h e r e P(A) = 0. In other wo rds , i t is not t rue that ρ (B¡A) + ρ (-ВИ) = 1 when P(À) = 0. Hence , ¡t 

w i l l not f o l l o w f r o m this і п і ефге їа і і оп that 1 = Л ( С д И г і ) + ^i(~Ca¡A„) = 1 + 1 = 2 . 
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able to stand up to its objections. A n d we w i l l see in the next section whether we could 

explicate the concept o f ' the probabi l i ty o f a hypothesis' v iewed in this l ight. 

3.6 Implications for the probability of a hypothesis 

As learnt f rom Dav id Hume, no number o f specif ic observations or deduction can 

establish the t ruth o f a general hypothesis w i t h certainty. Induct ive inferences are 

logical ly inva l id , i.e. even i f all premises are true the conclusion is not necessarily true. 

The truth o f the premises o f the inductive argument leaves the truth o f the conclusion 

uncertain. Some thus attribute to the induced hypothesis some degree o f probabi l i ty and 

the problem o f induct ion w i l l then consist in f igur ing out the probabi l i ty o f the hypothesis 

(H) in l ight o f the observation ( 0 ) , i.e. P{H I O), wh i ch is considered to be the degree to 

which our certain knowledge o f the observation just i f ies our hypothesis. Accord ing to 

them, 

О conf i rms Я i f f Ң Н I O) > ？(Я) 

О d isconf irms я i f f Р(Н I О) < Р{Н) 

О is evident ial ly irrelevant to н i f f P{H I O) = P{H). 

I f the observation о is a logical consequence o f the hypothesis H, then Ң0 1 Я ) = 1 . We 

bave: Р ( Я | ๑ 

P(0) 

> Р(Ю ( v Р ( 0 ) < \ ) 

In other words, when we can deduce an observation f rom a hypothesis, and the 

observation real ly comes to pass, the result w i l l con f i rm н unless P{0) = 1 . I t is worth 
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not ing that even though a hypothesis is conf i rmed by an observation, the hypothesis may 

st i l l be very improbable in l ight o f the observation. For example, in a bag there are 1000 

dice o f wh i ch al l are normal except one whose six faces are al l marked w i th ' 6 , . Suppose 

a die is selected randomly f r om the bag and a ' 6 ' is obtained when it is thrown (O). Let 

Н be the hypothesis that the die selected is the one w i t h ' 6 ' marked on al l s ix faces. It is 

clear that բ(01 Я ) = 1 . A l though Ρ(β I O) = wh ich is nearly six times o f 

P{H) = ― ! — ， it is st i l l very improbable ( in compared w i t h 〜H) in l ight o f observation. 

Hence, ' c o n f i r m ' here merely means 'probabi l i ty ra is ing ' and it has no impl icat ion that 

the conf i rmed hypothesis must possess a h igh probabi l i ty wor thy o f belief. 

In this example, even though we are not Bayesians or advocates o f subjective 

interpretation o f probabi l i t ies, i t st i l l makes sense for us to ta lk about the pr ior probabi l i ty 

P(H) and posterior probabi l i ty P{H I O) since the hypothesis (the die selected is the one 

w i th ' 6 ' marked on al l six faces) is a possible outcome o f a chance process. But many o f 

the hypotheses in wh ich we are interested (e.g., al l normal chi ldren who reach age 8 

could per form the spatial reasoning task T, al l particles arise f rom the resonant osci l lat ion 

modes o f strings'^^) are by no means possible outcomes o f a chance process. Consider 

str ing theory: al though some have argued that i t is merely a theoretical model , we could 

st i l l in pr inc ip le be able to f ind evidence to con f i rm it by searching for the many new 

particles it predicts (the particles that correspond to the many possible oscil lations o f the 

string) (Randal l , 2005， p.294). I t thus makes sense to say what string theory predicts 

about observations. But what is the probabi l i ty that str ing theory is true? I f we do not 

I t is a basic hypothes is ๒ s t r ing theory (Randa l l , 2005 , p.283) . 

66 



believe that there is a God who had chosen the laws that govern our universe by a chance 

process, could we st i l l make sense o f the idea that a hypothesis has a prior probabi l i ty? 

There are at least four rejoinders to this cr i t ic ism. First, some advocates o f 

frequency theory (e.g., Reichenbach, 1949) have attempted to extend the notion o f 

relative frequency so as to include the probabi l i ty o f hypothesis. Nonetheless, according 

to Popper (1959/1980), al l proposed ways in assigning a probabi l i ty value to a hypothesis 

w i th reference to the relative frequency are shown to be unsuccessful. For example, 

suppose one counts a l l experimental ly testable statements belonging to the hypothesis and 

define the probabi l i ty o f the hypothesis as the relative frequency o f those statements that 

turn out to be true. In case the hypothesis is universal, it w i l l make an inf ini te number o f 

experimental ly testable statements. Since the number o f observations can only be f in i te, 

the relative frequency o f those statements that turn out to be true w i l l then always remain 

zero, wh ich is certainly an absurd consequence. I f there were only a finite number o f 

testable statements, the def in i t ion would make bizarre result too 一 a fa ls i fy ing observation 

w i l l only produce a very small decrease in the probabi l i ty o f the hypothesis, wh ich is 

inconsistent w i t h the fact that a fa ls i fy ing outcome w i l l suf f ice to establish the falsity o f 

the hypothesis. Moreover , i f we consider the hypothesis as an element o f a reference 

class, as we have discussed ๒ Section 3 .1 , there is a d i f f i cu l t y o f determining the 

reference class for the frequency theory. Leav ing this problem aside (say, assuming that 

the reference class is the class o f hypotheses proposed by all other researchers), 

frequency theorists have another problem engendered by ta lk ing about the probabi l i ty o f 

67 



hypothesis - the t ru th o f many hypotheses can never be ascertained, even in principle. 

I t is thus impossible for us to talk about the relative frequency o f true hypotheses in a 

particular reference class. O n the other hand, i f we define the probabi l i ty o f a hypothesis 

as the ratio o f the non-refuted (instead o f true) hypotheses to al l hypotheses in the 

reference class, then it w i l l lead to bizarre consequence: either (a) i f the number o f all 

hypotheses is inf in i te then the probabi l i ty o f the hypothesis (or any non-refuted 

hypothesis in the reference class) w i l l be 1 as the number o f refuted hypothesis must be 

finite; or (b) i f there are on ly f ini te number o f hypotheses in the reference class then for 

any refuted hypothesis in this reference class, its probabi l i ty w i l l not be zero.'""* 

Second, it seems to be less obscure for the probabi l i ty o f a hypothesis in l ight o f 

evidence. Suppose we have dif ferent r ival hypotheses each o f wh ich has certain chance 

to produce the observation o, it seems to be legit imate for some іпїефгеІаІІ0П5 o f 

probabil i t ies to attach an intel l ig ible meaning to the condi t ional probabi l i ty P{H I O) -

for example, in the long run o f repeating some part icular procedures (say, Neyman-

Perason experimental setup in control l ing Type I error), we could define the probabil i ty 

o f the hypothesis in l ight o f О as the relative frequency o f true hypotheses given the 

occurrence o f o. However , as al l probabil i t ies are condi t ional (i.e., relative to a reference 

class) according to frequency theory, the insuperable d i f f icu l t ies encountered in last 

paragraph st i l l persist in this case. 

A s Popper ( 1959 /1980 , p.259) has poin ted out: I f w e were able to k n o w the t ru th o f a hypothesis, w e had 
no point to ta lk about its p robab i l i t y . 

Cf. Popper , 1959/1980, pp .259 -260 , 316. 

68 



Th i rd , some may argue that we seldom assess the truth o f a single hypothesis. In 

case o f two o f more compet ing hypotheses, we could use Bayes'ร theorem to make 

comparisons amongst di f ferent hypotheses: 

P { 0 \ H , ) P { H , ) 
P { H , \ 0 ) = 

P{H,\0) 

PiO) 

P { 0 \ H , ) P { H , ) 

P(0) 

From these two equations, we have: 

P{H,\0)>P(H,\0) i f f P{0\H,)P{H,)>P{0\H,)P{H,) 

The posterior probabi l i t ies o f two competing hypotheses depend upon the prior 

probabil i t ies and their l ikel ihoods. In this case, advocates o f classical theory may 

argue that i f we have no reason to assign these two hypotheses di f ferent probabil it ies we 

have to assign them the same probabi l i ty and the inequali ty in RHS w i l l then become 

P{0\ Я , ) > P{0\ н շ) , wh ich should be in pr inciple easily to be computed. But 

assigning the same probabi l i ty to the two hypotheses is based on some versions o f the 

Principle o f Indif ference and in Section 3.1 we have argued in length that this Principle 

can hardly be tenable. Moreover, even though it is legit imate for us to assign the same 

pr ior probabi l i t ies to these hypotheses, we have st i l l to make sense o f the idea that a 

hypothesis has a pr ior probabi l i ty . 

The four th rejoinder is to regard the pr ior probabi l i t ies as describing a 

researcher'ร degree o f belief. The degree o f the researcher's be l ie f in str ing theory before 

observation w i l l determine what his or her pr ior probabi l i ty is. As we have argued in 

See, f o r examp le , Lap lace 's t reatment (Sect ion 2 .4) . 
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Section 3.4， the subjective theory suffers f r om serious di f f icu l t ies that it can hardly 

provide a inte l l ig ib le іп Їефге Їа Ї іоп o f probabil i t ies in objective cases. For example, 

dif ferent people may have di f ferent degrees o f bel ief in an objective hypothesis, how 

could we judge wh ich is correct? A n d in Section 3.4 we have also argued that we 

cannot assume that the process o f Bayesian condit ional izat ion must be able to provide 

rational researchers a learning strategy so that whatever pr ior probabil i t ies they assign to 

the hypothesis their posterior probabi l i t ies w i l l converge towards the same value. 

Furthermore, as Sober (2002) has argued, i f our hypothesis is about our objective wor ld , 

the subjective degrees o f pr ior bel ief เท the hypothesis do not have much scientif ic 

standing ― what we want to know when we read research reports or papers is the 

in format ion about the phenomena under study, but not autobiographical remarks about 

the authors o f the study. 

One more point for the measure o f conf i rmat ion o f a hypothesis in l ight o f 

observation: Some (e.g., Redhead, 1985) have suggested that we could use ― ֊ L ^ a s a 

measure o f the support o f н by the observation. A s we have discussed before, i f о 

fo l lows logical ly f rom H, this ratio w i l l equal ֊ - ， wh ich is independent o f H. 

Consider H\- Н AT, where r i s another hypothesis^^^. As я logical ly impl ies 0， Я і w i l l 

imply О as we l l . I t is clear that рひі I֊֊- = 1 I о) and they are thus supported to 

exactly the same degree by о i f the ratio is real ly a measure o f the support o f the 

hypothesis by the observation. This is certainly not acceptable. Hence, this construal o f 

• Cf . G i l l i e s , 1986. 
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measure of support of hypothesis needs to be revised and we will return to this point in 

Chapter 6. 

As an advocate for frequency theory, Ronald A. Fisher did not accept р {ЩО) as a 

meaningful notion. In order to assess the relative merits of rival hypotheses in light of 

observation, he developed the concept of likelihood (Edwards, 1992): The likelihood of 

the hypothesis given observation о (and a specific model) Д ( Я I О), is proportional to 

P{01 H) ， with the constant of proportionality being arbitrary. If we take the constant to 

be 1， then ԼԼՍI O) = P(01 Я) . Figuring out P(01 H) requires that probabilistic 

predictions about the observations can be derived from the hypothesis. In cases like 

tossing the coins or dice, the hypothesis itself can often be described as a probabilistic 

model/^^ in which probabilistic predictions about the outcomes can be derived directly 

from the hypothesis. However, not all hypotheses we are going to study would by 

themselves result in probabilistic predictions about the outcomes. In this connection, 

their assessment under likelihood requires further probabilistic assumptions, which are 

collectively called the 'model'. We will discuss this issue in Chapter 4. 

Apart from Fisher'ร likelihood, degree of corroboration is another concept 

developed by Popper (1957/1980, 1983) for comparing rival hypotheses in light of 

empirical observation: 

c i H \ 0 ) = ֊ ֊ Լ ( 0 \ ^ ^ - ^ ( 0 ) 
P ( 0 \ H ) - P ( O A H ) + P ( 0 ) 

՝ For instance, the d ie is fa i r , o r р ( ' i ' ) = l / 6 , f o r a l l j = 1 6. 

' For s i m p l i c i t y , here w e igno re the background i n f o r m a t i o n i n the f o r m u l a . 
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Accord ing to Popper (1983), this def in i t ion o f degree o f corroborat ion w i l l lead to some 

highly intu i t ive results (pp.241-243). First, we should note that the denominator o f the 

fraction must be non-negative for the fo l l ow ing reason: since al l probabil i t ies are not 

greater than 1 and not less than 0, we have 

Р{01 H) - Р{0 AH) + P{0) = P{0 ļ Я ) - ρφ I Н)Р{Н) + Р{0) 

= Р{01 Я ) ( 1 - Р{Н)) + Р{0) > о • 

Therefore, the sign o f degree o f corroboration C{H\0) w i l l be completely determined by 

the sign o f the numerator. I f о supports H, i.e. о fo l lows f r om я or P{0\H) = 1, then the 

numerator w i l l be posit ive. A n d the degree o f corroborat ion w i l l then be posit ive. I f о 

undermines H, i.e. n o n - 0 supports н or Р{֊^0\Н) = 1, then P{0\H) = 1 - P{֊0\H) = 0. 

A n d the degree o f corroborat ion C{0\H) w i l l thus be negative. I f о is independent o f H, 

i.e. P{0\H) = Р{0), then the numerator w i l l be zero and the degree o f corroboration w i l l 

then be zero. Second, we can observe that in the above three cases C{0\H) w i l l not be 

greater than I and in fact the denominator is chosen merely because it can normalize the 

whole fract ion. That is to say, the max imum value wh ich C{0\H) can reach is 1 i f this 

normal izat ion factor is chosen. Here is the reason: 

Since P{0 л Я ) < P{0), we have С ( Я I O) < P(0\H)-P(0) く 1 — _ Բ ( ջ ) _ ^ 1 

The max imum value 1 w i l l be attained i f and only i f P(0) = 0 because: 

Р(0\Н)-Р{0) = 1 
Р { 0 \ Н ) - Р { О А Н ) + Р { 0 ) 

о P{01 Я ) - P{0) = P{01 H) - P{0 AH) + P(0) 

о 2P(0) - P ( 0 л Я ) = 0 

о 2P{0) - р {Н I 0)Р{0) = о 
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<=> Բ Լ 0 ) { 2 - Р{Н I 0 ) ) = о 

о Р(0) = о (·.· Р ( Я | 0 ) ^ 2 ) 

Since Р{0) > Р(0 АН) = Р(0 I Я ) Р ( Я ) , we have ԲԼՕ I Я ) = Oor Р{Н) = о i f = 0. 

That is to say, i f Р(0) = 0 and P{0\H) = 1, С ( Я I o) w i l l attain its max imum value 1 and 

in this case P{H) = 0. Th is result matches w i th our in tu i t ion that only an observation о 

which is extremely improbable but become highly probable in the presence o f н can give 

Н max imum degree o f corroborat ion. Simi lar ly , the m i n i m u m value wh ich C{0\H) can 

reach is - 1 . A n d this m i n i m u m value w i l l be attained when P{01 Я ) = 0 for: 

c i H \ 0 ) = ֊ ֊ m m z m _ 

P { 0 \ H ) + P { O A H ) + P { 0 ) 

P{01 Я ) ― P{0) 

P { 0 \ H ) { \ ֊ P { H ) ) + P { 0 ) 

0 - P ( O ) 一 լ 

= 0(1 一 Р ( Я ) ) + Р ( 0 ) = 

This result is desirable because о is an evidence wh ich falsif ies н when Ң01 Я ) = 0 . 

Popper'ร idea is s imi lar to that o f Fisher: neither attempt to assign probabil i t ies to 

h y p o t h e s e s . I t is wor th not ing that Popper d id not th ink that C(H\0) is the only way to 

measure the degree o f corroborat ion and he had indeed proposed dif ferent formulae for 

measuring the degree o f coTOboration although he maintained that the above formula is 

the simplest and most luc id one (Popper, 1983, p.242) and the degree o f corroboration 

defined above does not conform to probabi l i ty calculus (Popper, 1983, p.243) and its 

impl icat ions w i l l be discussed in Chapter 6. 

See de Que i roz , 2003 ; de Que i roz and Poe, 2 0 0 1 , 2003 ; K l u g e , 1997, 2 0 0 1 ; S ida l i and K l u g e , 1997 for 
the d iscuss ion (and debate be tween de Que i roz and Poe and K l u g e ) on the s imi la r i t ies between l i ke l i hood 
and co l l abo ra t i on . 
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We wou ld l ike to make two concluding remarks before c losing this chapter. First, 

for the hypotheses that are not the outcomes o f chance processes, ta lk ing about their 

probabil i t ies is so obscure that further expl icat ion is necessary. Unl ike the truth o f a 

single event that cou ld one day, at least in pr inc ip le, be recognized and its probabi l i ty can 

thus be assigned meaningf i i l l y under the propensity іп їефге їа ї іоп, the truth o f hypothesis 

could never be ascertained and ta lk ing about its probabi l i ty is st i l l unintel l ig ible unless 

we are preparing to accept the subjective theory. Bu t in this case, one has to answer how 

the di f f icu l t ies encountered by the subjective theory could be resolved. Second, even i f 

we were able to explicate the meaning o f ' the probabi l i ty o f a hypothesis' satisfactorily, it 

wou ld not imply that the judgment o f the reasonableness o f a hypothesis wou ld be 

necessarily related to its probabi l i ty. Whether probabi l i ty is a not ion that can be used to 

characterize the degree to wh ich a hypothesis has stood up to tests is a problem that w i l l 

be discussed in Chapter 5. 
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Chapter 4 The logical foundations of SST and misconceptions 

associated with SST 

In this chapter, we w i l l examine the logical foundations o f SST and the 

fundamental not ions, such as nu l l hypothesis, р value, statistical signif icance and Type I, 

I I errors so that we could clear up a way for further discussion o f the arguments for and 

against SST in the next chapter. 

4.1 T h e logic o f hypothesis test ing 

Rather than give our examinat ion o f the logical foundations o f SST straight away, 

we w i l l first consider some pre l iminary discussions on the concept o f hypothesis testing 

wh ich might more natural ly suggest themselves. First o f a l l , a basic conf i rmat ion 

practice ՚՛*՛ i nvo lv ing hypothesis testing in science runs in this way. I f we are going to test 

a hypothesis Н ， we have to deduce observation statements f rom H. B y conducting an 

experiment or mak ing an inspection, we wou ld be able to determine i f the observation 

statements are true or not. I f all observation statements are found to be true, then н is 

said to be conf i rmed though we are not st i l l sure i f / / i s real ly true or not. On the contrary, 

i f some o f them are not true then we wou ld be able to refute н conclusively. The logic 

behind the refutat ion '^ ' is as fo l lows: 

I f Н is true, then ร is true. 

ร is not true. 

Hence, Я is N O T true. 

' The i nduc t i ve nature o f c o n f i r m a t i o n w i l l be discussed in Chapter 6. 

' R e f u t a t i o n ' and ' f a l s i f i c a t i o n ' are used in terchangeably in th is thesis. 
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This is a va l id argument fo rm called modus tollens ( M T ) " ^ . Its va l id i ty can be easily 

proved (e.g., we can use a truth table to demonstrate that the sentence 

( Я ร)A - ร Я is a tautology). 

The genuine situation is, however, more compl icated. First, even though the 

hypothesis is s imply a universal statement w i thout referr ing to any unobservable entities 

or constructs such as 'a l l metals expand when heated' or 'a l l normal chi ldren who reach 

age 8 could perform the spatial reasoning task Г , the hypothesis cannot be directly tested 

w i t h the argument as shown above. For example, let н be the hypothesis that all normal 

chi ldren who reach age 8 could per form the spatial reasoning task T. We cannot test 

direct ly i f a l l normal chi ldren who reach age 8 could really per form the task T. We have 

to include an addit ional condi t ion с such as 'Dav id is a normal ch i ld aged 8' so that н 

and С together, instead o f н alone, could entai l an observable statement: Dav id is able to 

perform T. Second, a substantive hypothesis usually refers to a number o f theoretical 

constructs, therefore it is the hypothesis in conjunct ion w i th auxi l iary theories or 

hypotheses, rather than the hypothesis alone, could entail observational statements. For 

example, consider the hypothesis that concrete manipulat ives are eff icacious in learning 

mathematics (Clements and M c M i l l e n , 1996; Sowel l , 1989; Suydam, 1986). I t cannot be 

direct ly tested because 'concrete manipulat ives' have to be specif ied and 'eff icacious in 

learning mathematics' is hardly observable. On ly when we add the auxi l iary hypotheses 

such as 'computer manipulatives l ike the software Shapes (a software version o f pattern 

"2 See, fo r examp le , C o p i and Cohen , 1998. н and s here can be subst i tu ted by the names o f any t w o 

sentences. 
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b locks) are concrete manipulat ives '^^ \ ' i f a manipulat ive M is eff icacious in learning 

mathematics then students who use M i n their mathematics classes outperform those who 

do not ' ""* , and ' the students' performance could be measured by the students' scores in a 

particular mathematics tesť , the hypothesis could be put t ing into testing. For example, 

f rom the substantive hypothesis and the above auxi l iary hypotheses, we could deduce that 

'students using the software Shapes in their mathematics classes wou ld get higher scores 

in a part icular mathematics test than those who do not use Shapes', wh ich can in pr inciple 

be direct ly tested^ 

Accord ing ly , we have to revise the argument as fo l lows: 

I f H is true and с is true, then ร is true. 

S is not true 

Hence, H is N O T true or с is N O T true, 

where С is a set o f auxi l iary hypotheses and specif ic in i t ia l condit ions. 

In other words, the premises o f the argument consists o f three components, the 

hypothesis н (the theory or hypothesis being tested), a set o f auxi l iary hypotheses and/or 

specific in i t ia l condit ions с and the observation statement เร'. I f what we expected to 

occur does not happen. Le. iS is false, then either н is false or the set o f auxi l iary 

hypotheses and specific in i t ia l condit ions с is not true. We could st i l l retain the 

hypothesis by b laming not all in i t ia l condit ions hav ing been met or not all auxi l iary 

113 W e c o u l d also regard ' compu te r man ipu la t ives are concrete m a n i p u l a t i v e ' as aux i l i a r y hypothesis and 

Чһе so f tware Shapes (a so f tware vers ion o f pat tern b locks) is a par t icu lar concrete man ipu la t i ve ' as an 

in i t ia l c o n d i t i o n . B u t there ís no need fo r us to de lve in to such in t r icate d i s t i nc t ion here. 

The aux i l i a r y hypotheses ment ioned here are ha rd ly exhaust ive . F o r examp le , w e have to assume 

fur ther that the t w o groups shou ld have the same pe r fo rmance i f there is no d i f f e rence a m o n g thei r uses o f 

M 

' 1 5 W e w i l l e laborated this po in t i n Sect ion 4.5. 
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hypotheses are true. Consider the above examples, i f Dav id is able to perform the task, 

then Н is said to be conf i rmed to a certain extent^ But i f he is unable to perform the 

task T, could we refute н conclusively? Those cogni t ive psychologists advocating н 

may argue that al though David is a chi ld aged 8, he is not a normal k id at al l . Hence the 

fact that Dav id is unable to perform the task does not necessarily entai l that н is false. 

Moreover, in our second example, even though there is a study which shows that students 

not using concrete manipulatives outperformed classes using manipulatives on a 

mathematics test, researchers l ike Clements (1999) could st i l l retain the hypothesis that 

concrete manipulat ives are eff icacious ๒ learning mathematics by rejecting the auxi l iary 

hypothesis ' i f a manipulat ive M is eff icacious in learning mathematics then the students 

who use Mm their mathematics classes outper form those who do n o ť ― Clement indeed 

contents that the manipulat ive M i s eff icacious only when the students use it properly and 

in the study students sometimes learn to use manipulat ives only in a rote manner, wh ich 

can hardly, according to Clement, be regarded as a proper use and it thus does not fu l f i l l 

his amended auxi l iary hypothesis. 

Another compl icat ion about hypothesis testing is that many hypotheses (or 

auxi l iary hypotheses) do not take the fo rm o f exact and mathematical ly formulated 

laws^^^. For example, the hypothesis that concrete manipulatives are eff icacious in 

learning mathematics (or the auxi l iary hypotheses) is clearly not in the fo rm o f exact and 

mathematical ly formulated law. Furthermore, even though we have added the auxi l iary 

Th is is a con t rovers ia l po in t that w e w i l l discuss เท later Chapters . 
117 Examp les o f exact and mathemat ica l f o rmu la ted laws i nc lude the l a w o f g rav i ta t ion , w h i c h states that 
the force be tween t w o objects is d i rec t ly p ropor t i ona l to the product o f the i r masses and inverse ly 
p ropor t i ona l to the square o f the distance between t h e m . 
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hypotheses as ment ioned above, we sti l l need procedures that could be used to compare 

the scores obtained by the group o f students who use Shapes in their mathematics classes 

(GO and the group o f students who don' t (G2) in a part icular mathematics test. The 

common practice is something l ike this: the researcher selects at random a sample o f 

students (say, 40 students) amongst al l o f the students in a part icular fo rm o f a school. 

The researcher then randomly assigns the 40 students to t w o groups and makes effort to 

check that they are almost equivalent in their previous knowledge o f mathematics and 

other known attributes that may affect their performance in the mathematics test. The 

same teacher then teaches a mathematical topic to both groups o f students for a certain 

period o f t ime. The teacher w i l l strive for keeping the teaching and learning materials as 

wel l as the teaching strategies for the two groups identical except that students in G\ use 

the software Shapes in the classes and the students in G2 do not. In other words, the 

researcher has to ensure that al l conditions except the use o f Shapes should be kept 

constant in the two groups. A t the end o f the per iod, the same mathematics test is g iven 

to both groups. The researcher could thus gather the scores obtained by the two groups o f 

students. Since there are many factors, in addit ion to the use o f concrete manipulatives, 

that can affect a student's performance in the test, students in either group w i l l not have 

the same score. The researcher has to use statistical means to determine i f the hypothesis 

has to be conf i rmed or rejected in l ight o f the col lected data. A n d SST, which has been 

discussed ๒ Chapter 2， is the usual statistical means adopted. Before discussing its 

logical foundat ion, we have f irst to disentangle the conceptual confusion over the Fisher's 

significance testing and Neyman-Pearson hypothesis test ing. 
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4.2 D is t inc t ions between F isher 's s igni f icance test ing and Neyman-Pearson 

hypothesis test ing 

In Section 2.8， we have discussed the historical development o f Fisher's 

signif icance testing and Neyman-Pearson hypothesis testing and mentioned that the 

prevalent SST is a hybr id o f these two approaches. M a n y studies show that many 

students (Falk & Greenbaum, 1995) and even researchers (Oakes, 1986) have no real 

insight into the meaning o f a SST result. A n d as many have reported (Goodman, 1999a, 

1999b; Hubbard, 2004; Hubbard & Bayar^^ 2003a, 2003b; Hubbard & Ryan, 2000), 

confusion over the report ing and іп Їефге їа І іоп o f results o f SST is widespread amongst 

researchers and many erroneously believe that SST is prescribed by a single coherent 

theory. We w i l l in this section discuss in depth the fundamental differences between 

Fisher's v iews on signif icance testing and Neyman-Pearson'ร ideas on hypothesis testing 

and expose their incompat ib i l i ty so that we could have a more clear picture about the 

other notions in SST. 

First, the need o f an alternative hypothesis cr i t ica l ly distinguishes between 

Fisher's and Neyman-Pearson approaches. In Fisher's signif icance testing the researcher 

postulates on ly the nu l l hypothesis. Exp l ic i t іпсофога ї іоп o f competing hypotheses is 

due to Neyman and Pearson. Neyman (1952) has commented that ' i f satisfactory tests 

are асша ї їу devised w i thout expl ic i t consideration o f anything beyond the hypothesis 

tested, it is because the respective authors subconsciously take into consideration certain 

relevant circumstances, namely, the alternative hypothesis that may be true i f the 

hypothesis tested is w r o n g ' (p.44). Fisher certainly denied the need for an alternative 

hypothesis and was discontented w i th the Neyman-Pearson v iew that ' the риф05е o f the 
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test is to discriminate or "dec ide" between two or more hypotheses' (1956/1973b, pp. 45-

46) and he maintained that such a purpose has greatly obscured the understanding o f SST. 

Are these conf l i c t ing v iews arising f rom the difference in questions that they suppose the 

tests are p u φ o r t i n g to address? Royal (1997) has suggested that Fisher's significance 

testing рифоЛз to measure evidence and addresses the question, ' H o w should I interpret 

these observations as evidence?' wh i le Neyman-Pearson hypothesis testing aims at 

choosing between compet ing hypotheses and addresses the question, 'What should I do, 

now that I have this observation?' (Roya l l , 1997, p.64). There is probably difference 

between signif icance testing and hypothesis testing in their purposes but we w i l l see in 

the next paragraph that the under ly ing principles behind the tests are also dif ferent. 

Second, in Fisher's signif icance testing the researcher attempts to reject the nul l 

hypothesis by establishing the probabi l i ty ip value) o f obtain ing the observed or more 

extreme outcomes under the assumption o f the ทน11 hypothesis. A small value o f р w i l l 

imp ly that the observed outcome wou ld be h ighly implausible i f the nu l l hypothesis were 

true. I f the implausible outcome has indeed occurred, i t w i l l constitute evidence against 

the nu l l hypothesis"^ . Neyman and Pearson d id not agree that the mere occurrence o f a 

rare or implausible outcome wou ld be adequate for the rejection o f the nu l l hypothesis. 

They wou ld not reject the nul l hypothesis, no matter how un l ike ly the observed outcome 

is, unless they could ascertain that there is a compet ing hypothesis under which the 

՝՝ T h e log ic beh ind th is reasoning w i l l be discussed in Chapter 5. 
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outcome w o u l d be more l ikely to occur, This is perhaps the genuine reason why 

alternative hypothesis must be included in Neyman-Pearson hypothesis testing. 

Th i r d , Fisher'ร signif icance testing provides evidence against the nul l hypothesis 

in a single experiment or study whereas Neyman-Pearson hypothesis testing is not 

concerned w i t h wh i ch indiv idual hypothesis is true or false but attempts instead to control 

mistakes in the long run. In other words, hypothesis testing centres on the inductive 

behaviour'^*^ rather than the truth o f a part icular hypothesis. In Neyman and Pearson's 

o w n words: 

W e are i nc l i ned to t h i n k that as far as a par t icu lar hypothes is is concerned, no test based upon the 

theo ry o f p r o b a b i l i t y can by i t se l f p rov ide any va luab le ev idence o f the t ru th o r fa lsehood o f that 

hypothes is . . . W i t h o u t hop ing to k n o w whether each separate hypothes is is t rue or false, w e may 

search fo r rules to gove rn our behav iour w i t h regard to t h e m , i n f o l l o w i n g w h i c h we insure that, in 

the l o n g run o f exper ience, we shal l not be too o f ten w r o n g * (1933 , p .290-291) . 

I t is wor th not ing that the process o f Fisher's signif icance testing is an inductive inference 

drawing conclusions about the nu l l hypothesis ( in a single study) f rom observation. 

Since the induct ive inference is not as formal as the logical or mathematical inference, its 

process is fluid, non-quanti f iable and includes combin ing the р value in some unspecified 

way w i th background informat ion (Fisher, 1956/1973b; Goodman, 1999). On the 

contrary, the process o f Neyman-Pearson testing is an apparently automatic way to bound 

the rate o f mistaken conclusions in the long run. Its outcome is an action or behaviour: to 

1 1 9 I n his la ter re f l ec t i on , E .ร , Pearson ( 1 9 9 0 ) remarked that W i l l i a m ร . Gösset had le f t h i m in a let ter w i t h 
the idea; "The ra t iona l h u m a n m i n d d id not d iscard a hypothes is unless i t cou ld conce ive at least one 
p laus ib le a l te rnat ive hypo thes is ' (p .82) . 

The t e r m ' i n d u c t i v e behaviour* means the habi t o f humans (o r other an ima ls , such as Russel l 
( 1912 /1980 ) ' ร ch i cken ) to adjust the i r behav iour or act ions to l i m i t e d amoun t o f observat ions, so as to 
avo id undesi rab le consequences, e.g., humans and some an imals tend to take cover whenever dark c louds 
appear in the sky ( N e y m a n , 1950; H u b b a r d , 2004 ) . For N e y m a n ' s defence o f his preference fo r induct ive 
behav iour ove r i nduc t i ve in ference, see N e y m a n , 1950, pp. 1-2. - -
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reject one hypothesis and accept the other. To reject a hypothesis н means only that the 

rule prescribes us to take an action A rather than action B， This does not imp ly that we 

have to believe that н is false. Simi lar ly , to accept a hypothesis н means only to take an 

action В and this does not mean that we believe that н is true (Neyman, 1950， pp.259" 

260). 

Apar t f r o m these three distinctions, there is one more dist inct ion between these 

two approaches ― the р value in Fisher signif icance test ing and the Type I error rate a in 

Neyman-Pearson hypothesis testing. Since the іп Їефге їа І іоп o f these notions have great 

implicat ions for the later discussion, we w i l l discuss this issue in the fo l l ow ing section. 

4.3 T h e i n t e r p r e t a t i o n o f р values and T y p e I e r r o r rates 

The р value, the signif icance level and Type I error rate a are extensively reported 

in SST, but misunderstanding o f р values and signif icance levels by researchers can often 

be revealed in the l i terature especially when more and more researchers are able to access 

computers and computer programs for statistical analysis (Sackxowitz & Samuel-Cahn, 

1999). Moreover, the use o f these terms is quite confusing. For example, the р value 

has been ք6ք6Մ6(1 to as Tcalculateď (Thompson, 1994)， 'probabi l i ty leve l ' , 'descriptive 

signif icance leve l ' , 'p rob-va lue ' , and ' ta i l p robab i l i t y ' (W i l l i ams , 1999). A n d the level 

o f signif icance is represented by the symbol a , but sometimes by Pcritical (Thompson, 

1994). O f course, the interpretation o f these concepts creates greater problems. 

A s we have discussed before, Fisher's р value is a measure o f the probabi l i ty o f 

the observed and more extreme outcomes assuming the truth o f nul l hypothesis. Based 
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on Fisher's logic, i t is an index measuring the strength o f evidence against the nul l 

hypothesis: the smaller the р value, the greater the weight o f the evidence is. For 

convenience, Fisher suggested to take 0.05 as a standard level o f signif icance by which it 

means the researchers are prepared to ignore those results that fa i l to reach this standard 

(Fisher, 1935/1971, p . l 3 ) . This 0.05 signif icance level is flexible^^', not pertaining to any 

pre-specified error rate, and has no long-run frequentisi impl icat ion that, for example, the 

researcher 'a l lows h imse l f to be deceived once in every twenty experiments' (Fisher, 

1929， p. 191), On the other hand, the signif icance level a in Neyman-Pearson hypothesis 

testirfg is the long-run relative frequency o f Type I errors condit ioned on the truth o f the 

nul l hypothesis. The lower the value we set for a, the lower the probabi l i ty o f Type I 

error. Since there are many dif ferent possibil i t ies for the alternative hypotheses (e.g. the 

difference o f means could have many dif ferent values), the probabi l i ty o f a Type I I error 

is a variable wh ich is a funct ion o f the true value o f the parameter that is unknown. 

Usual ly we are interested in some particular values for this probabi l i ty and compute this 

probabi l i ty for the most unfavorable case. Power is the complement o f β and is thus a 

measure o f the chance o f rejecting a nul l hypothesis when the nul l hypothesis is false. 

L ike Type I I error, power is also a variable wh ich depends on the value o f the parameter 

(e.g. the dif ference o f means). In general, Type I and Type I I errors are inversely related. 

The lower the value o f a、 the lower is the power o f the test. In other words, the Type I 

error control used in hypothesis testing may lead to the lack o f power in statistical 

research studies ( N i x and Barnette, 1998), L o w power w i l l have a substantial impact on 

the abi l i ty to replicate tradit ional experimental studies based on hypothesis testing 

(Ottenbacher, 1996). Suppose a researcher does not strive for significance results, the 

に 1 For F isher ' s r emark o n this po in t , see foo tnote 51 i n Chapter ： 
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l ike l ihood o f being publ ished is severely d iminished due to the publ icat ion bias that is 

present for statist ically signif icant results ( N i x and Barnette, 1998). As a consequence, a 

number o f important studies could not be published because they are not good enough 

according to hypothesis testing. W i th the consideration o f these constraints, the 

researcher has to figure out the cri t ical region and the researcher should only state i f the 

result fe l l ๒ the cr i t ical region but not where it fe l l , as might be indicated by a р value. 

A s Gigerenzer (1993, p.317) has explicated, the р value is a property o f the data or, more 

accurately, a relat ion between a body o f data and a theory and the significance level a ( in 

Neyman-Pearson hypothesis testing) is a property o f the test, not o f the data. 

Fo l l ow ing Neyman and Pearson's t radi t ion, many textbooks writers on hypothesis 

testing suggest that the significance level a must be specif ied or fixed pr ior to the 

col lect ion o f data^^^ but only a few o f them have tr ied to explain why we have to do this 

way. For example, L i n d , Marchal and Mason (2002) on ly made the suggestion wi thout 

any attempt to provide non-tautological explanation: 

W e selected the s ign i f i cance leve l , .01 in this case, before set t ing up the dec is ion ru le and 

s a m p l i n g the popu la t i on . Th is is the appropr iate strategy. T h e s ign i f i cance level should be set by 

the invest igator , but i t shou ld be determined before ga ther ing the sample ev idence and not changed 

based o n the sample ev idence, (p .345) 

Some s imply call this approach Tixed-level hypothesis test ing' as i f the name i tself could 

explain why we should not s imply report the actual probabi l i ty found as the signif icance 

level (Da ly et a l , 1995, pp .3 l4 "315 ; W i l d and Seber, 2000, p.390). A n d some merely 

՚ 2 2 In deve lop ing the i r theory o f hypothesis test ing, N e y m a n and Pearson were inspi red by the French 
mathemat i c ian E m i l e B o r e ľ s suggest ion that ' the c r i te r ion to test a hypothesis (a 's tat is t ica l hypo thes is ' ) 
us ing some observat ions mus t be selected not after the exam ina t i on o f the results o f observa t ion , bu t 
be fo re ' ( N e y m a n , 1977, р.ІОЗ). See also N e y m a n and Pearson, 1933, p.290. 
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State the rule and regard disobedience as a moral prob lem: 'Ad jus t i ng the level o f alpha to 

achieve statistical signif icance after the study has been completed is unethical ' (Drumทา, 

1995), w i thout expla in ing why ethical ly researchers should not adjust the level o f alpha 

to achieve statistical signif icance after the col lect ion and analysis o f data. 

There are also wri ters who do not completely agree w i th this rule but their reasons 

are st i l l obscure. For instance, B la ik ie (2003) has al leged: 

Set t ing p r o b a b i l i t y levels and dec id ing o n the appropr ia te test before the data are co l lec ted, and 

ce r ta in l y before the analysis is conducted, can be regarded as add ing a degree o f ob jec t i v i t y to the 

research, and as a v o i d i n g post hoc in terpretat ions. H o w e v e r , i f our u l t imate a im is to test 

theore t ica l hypotheses, . . . Set t ing a r i g i d level o f con f idence in advance may not serve th is 

р и ф о з е …， ( pp .182 -183) . 

Indeed, there are textbook writers who suggest further that 'a reasonable procedure is for 

the researcher to adopt a signif icance level but also to report the actual probabi l i ty found 

as a result o f testing Яо, regardless o f whether Яо is rejected or not ' (McCa l l , 2000, 

p.226). It seems that the actual probabi l i ty in hypothesis testing could provide important 

informat ion for the researcher, otherwise, there w i l l not be some researchers 'who disl ike 

the combinat ion o f arbitrary signif icance levels and dichotomous rejecťdo not reject 

decisions and prefer to report probabi l i t ies wi thout decis ions. . . ' (McCa l l , 2000， p.226). 

Moreover, there are wri ters l ike Moore (1997) who mainta in that: 'The ク-value is more 

informative than a statement o f signif icance, because it a l lows us to assess significance at 

any level we choose. For example, a result w i t h p =0.03 is signif icant at the a ՜ 0.05 

level, but not signif icant at the a = 0 . 0 1 leve ľ (Moore , 1997, p.490). 
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The genuine reason that the Type I error probabi l i ty α must be specified or f ixed 

pr ior to the analysis o f data and cannot be adjusted after the examinat ion o f observed data 

is that: on ly by do ing so we are able to control the long-run relative frequency o f Type I 

error at a fixed level a . The reason could be explicated w i t h an example. Consider two 

scenarios. In the first scenario, i f al l researchers in Group A agreed that a 0.05 

signif icance level is specif ied before col lect ion o f data. Out o f 10 ООО true hypotheses, 

about 500 w i l l be rejected at this 0.05 significance level. As a who le , the research reports 

in Group A wou ld , in the long run, have a Type I error rate o f 0.05. Simi lar ly, i f all 

researchers in Group в agreed that a 0.01 signif icance level is specified before col lection 

o f data, then the research reports in Group в wou ld have a Type I error probabi l i ty o f 

0 .01 . 

In the second scenario, nothing changes except that researchers in Group с decide 

not to supply the signif icance level unt i l the data are obtained. For instance, i f the value 

o f the test statistic exceeds the 0.01 cri t ical value, the result w i l l be reported as signif icant 

at 0.01 level ; whereas the test statistic falls between the 0.01 and 0.05 levels, the result 

w i l l be reported as signif icant at the 0.05 level. When the nul l hypothesis is rejected at 

the 0.01 level , i t must be rejected also at the 0.05 level. The research reports in Group с 

do have a Type I error probabi l i ty o f 0.05 rather than 0.01 despite that some o f them 

wou ld c la im that they have a Type I error probabi l i ty o f 0 .01 . It is thus misleading for 

some reports in Group с to state that they have a Type I error probabi l i ty o f 0 .01. 

As construed above, the significance level o f hypothesis testing helps control l ing 

the Type I errors in the long run. But what most researchers are eager to know is the 
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truth o f their o w n hypotheses. I f the р value in SST could on one hand l im i t our mistaken 

conclusion in the long run and on the other hand measure evidence and thus assess the 

truth o f the nu l l hypothesis f rom a single test, this hybr id w i l l be much more attractive 

than signif icance testing or hypothesis testing, each o f wh ich can serve only one role. Is 

it really possible fo r the р value to represent both the strength o f the evidence against the 

nul l hypothesis and at the same t ime the Type I error rate under the nul l hypothesis? The 

р value always lies exactly on the border o f the ta i l region represented by the р value. 

Therefore, the ta i l region represented by a particular р value (e.g. р = 0.04) w i l l not 

include future outcomes w i th smaller р values: for example, i f we get an outcome w i th р 

= 0.02, we w i l l report the р value as 0.02 rather than 0.04. This does not amount to the 

concept o f error rate wh ich requires that a result can be anywhere w i th in the tai l region. 

In other words, i f we interpret the р value as the Type I error rate, it is akin to the second 

scenario discussed in the last paragraph that the genuine Type I error rate be higher 

than the c la imed р value. I t is thus mistaken for us to use the р value to denote at the 

same t ime the evidence against the nul l hypothesis and the observed Type I error rate. 

Carver (1978) has summarized the misinterpretations o f statistical significance 

into three categories: ' (a) the probabil i ty is .05 that the results are due to chance, or the 

probabi l i ty is .95 that the results were not caused by chance; (b) the probabi l i ty is .95 that 

the results w i l l replicate, or we can be .95 percent conf ident that the results are rel iable; 

and (c) the probabi l i ty is .95 that the research hypothesis is true, or we can be .95 percent 

confident that our results are va l id ' (p.387). I t is w ide ly recognized that SST is a 

d i f f i cu l t subject to teach and learn and statistical literature shows evidence o f 

misconceptions at all ages and all levels o f expertise (Garf ie ld & Ahlgren, 1988; 
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Wil l iams, 1999). Hal ler and Krauss (2002) suggested that textbooks are one possible 

source o f these misconceptions. For example, in Nuna l l y (1975)， eight interpretations'^^ 

o f a signif icant test result have been provided in three pages (pp.194-196) and they are 

regarded as d i f ferent ways to say the same thing/^"* Despite textbooks, journals also have 

wrong interpretations o f signif icance, exp l ic i t ly given by, as Sedlmeier and Gigerenzer 

(1989) reported, authors and editors o f journals o f these journals. Moreover, Hal ler and 

Krauss (2002) found in a recent study that, despite publ icat ion o f numerous articles on 

the misunderstandings about SST, l i t t le seems to have changed ― 'Near ly 9 0 % o f the 

scientific psychologists perceive at least one o f the false "meanings" o f a p-value as true. 

However, our novel f i nd ing that even among the methodology insԾนcîors 8 0 % share 

these тІ5ІпІЄфгеЇаіІ0П8 is flabbergasting' (p.7). These misunderstandings w i l l be 

discussed in turn. 

In Neyman-Pearson hypothesis testing, the level o f signif icance (or the Type I 

error rate) a is the probabi l i ty o f rejecting a nu l l hypothesis Ho provided Яо is true. One 

common misinterpretat ion o f the level o f signif icance arises f rom the confusion o f two 

condit ional probabi l i t ies: P(RH I Яо) and P{Ho I К я ) , where RH denotes the outcome that 

the ทน11 hypothesis is rejected. The first condi t ional probabi l i ty means the probabi l i ty 

that the nul l hypothesis HQ w i l l be rejected g iven that Ho is t rue; wh i le the second means 

the probabi l i ty that Ho is true given that Яо is rejected. The level o f significance should 

be understood as the condit ional probabi l i ty P(RH I Яо). I f we fo l low the frequency 

՚ 2 3 A l l o f the іпЇЄфгеїаїІ0П5 are either obscure or even m is taken . Fo r example , ' the imp robab i l i t y o f 
observed results be ing due to e r ro r ' , ' the p robab i l i t y tha t an observed d i f fe rence is rea l ' , the degree to 
w h i c h exper imen ta l results are taken " se r i ous l y " ' . 
124 W i t h respect to the tex tbook def in i t ions o f ทน11 hypotheses, a lack o f consistency and 
comprehens iveness is observed ๒ Truran*ร (1998) s tudy. 
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theory o f probabi l i ty (Section 3.3)， 'a level o f signif icance o f 0.05' means 'on average, 5 

out o f every 100 t imes the ทน11 hypothesis is true, we w i l l reject iť， instead o f ' o n average, 

5 out o f every 100 t imes we reject the nu l l hypothesis, we w i l l be w rong ' . The 

misinterpretation (c) reported by Carver (1978) belongs to this category. Moreover, Falk 

(1986) has reported that a large class o f undergraduate students and 15 teachers and 

teaching assistants o f statistics believed that a is the probabi l i ty o f being wrong when 

rejecting the nu l l hypothesis at the significance level a. Simi lar f indings have been found 

by Bi rnbaum (1982): school students who have studied statistical inference thought that 

the sentence, 'a signif icance level o f 5% means that, on average, 5 times out o f every 100 

times we reject the nul l hypothesis we w i l l be w r o n g ' (p.24) sounded true. Oakes (1986) 

conducted a systematic probe o f the meaning attached to a signif icant test result by 70 

academic psychologists and it was found that the іпІефгеЇаЇ іоп endorsed by most o f the 

subjects was that the р value o f the test conveys the probabi l i ty o f being wrong in 

rejecting the nu l l hypothesis. 

Another misconcept ion associated w i t h the р value is the іпІефгеЇаїіоп that the р 

value is the probabi l i ty that the result (the occurrence o f D) is due to chance or a р value 

o f 0.05 means that the probabi l i ty is .95 that the result was not caused by chance (Bakan, 

1966). As Mat thews (1999) has noted, what researchers are really interested in is the 

probabi l i ty that the effect is just a fluke, given the obtained result. It is quite 

understandable that many researchers have hoped that the р value could give answer to 

125 Other s im i l a r results c o u l d be f ound i n Fa lk and Greenbaum (1995 ) and Po l l a rd and R ichardson (1987) . 
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this question they are real ly interested in.^^^ But , as we have discussed in 4.2, р value is 

the probabi l i ty o f obta in ing the result D or one more extreme when HQ is true and there 

are no other factors inf luencing the result. In other words, a р value o f 0.05 means the 

probabi l i ty o f obtain ing results at least as impressive as those obtained is 0.05, assuming 

that mere chance is their true explanation. Mere ly f r o m the given signif icant result, we 

can hardly make any inference about the causes o f the result. For example, even i f 

concrete manipulat ives such as Shapes are not eff icacious in learning mathematics, a 

signif icance dif ference between the students' performances could be observed i f not all 

condit ions apart f rom the use o f concrete manipulat ives have been kept constant in the 

two groups (say, the students who use Shapes have worked much harder in preparing the 

test than those who do not) . I t is thus incorrect to interpret р value as the condit ional 

probabi l i ty that the result is due to chance, given the data actually obtained. 

Repl icat ion is a cornerstone o f scientif ic research. Credib i l i ty w i l l be much lower 

i f results f rom a study cannot be reproduced. Another misconception is that, as Carver 

(1978) and Batanero (2000) have noted, the signif icance level indicates the probabil i ty o f 

successful repl icat ion. For example, a signif icance level o f 0.05 means that the 

probabi l i ty is 0.95 that the results w i l l replicate, or we can be 0.95 percent confident that 

the results are reliable. In Neyman-Pearson hypothesis testing, a signif icance level 0.05 

means that in the long run it is anticipated that about 5 out o f the 100 tests w i l l be 

signif icant merely by chance given that the nu l l hypothesis is true. This does not entail 

that, regardless o f the truth o f the nul l hypothesis, we wou ld st i l l get successful 

ւ շ 6 Even a researcher (e.g. D u n n , 2001) w h o taught others about the concept o f stat ist ical s ign i f icance wrote 
in this way : 's ta t is t ica l tes t ing uses mathemat ica l procedures to examine par t icu lar d i f ferences between 
groups to see i f it is l i ke l y that the observed d i f fe rence cou ld have ar isen by chance a lone. I f it is un l i ke l y 
enough that the d i f fe rence w o u l d have arisen by chance a lone, the d i f fe rence is "s ta t is t ica l ly -s ign i f icant . ' 
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replication about 95 out the 100 tests. Unless our concern is the process o f replication 

when the nu l l hypothesis is true, it should be the statistical power rather than the Type I 

error rate w i l l p lay a more v i ta l role in determining the result repl icabi l i ty. '^^ 

On the other hand, does a small р value entai l a higher probabi l i ty o f repeating a 

statistically s igni f icant result? As we have discussed before, the р value is a measure o f 

the degree o f conf l ic t o f the observed data w i th the nu l l hypothesis A l though it is not 

related to the rate o f Type I error, it seems that we could argue in this way: the smaller 

the р value, the more evidence there is against the nu l l hypothesis, rendering the nul l 

hypothesis more l ike ly to be false. A n d the more l i ke ly the nu l l hypothesis is to be false, 

the more l i ke ly that the signif icant results w i l l replicate. We wil】 d i s a i f this 

reasoning is real ly va l id in next chapter. 

A f ina l point about the level o f signif icance is the reasons why certain figures 

( l ike 0.05) o f signif icance level have been frequently chosen. As we have discussed in 

Section 2.7， Ronald A . Fisher is probably the f i rst person who expl ic i t ly suggests 

choosing a signif icance level o f 0.05 as a convent ion to recognize signif icant results in 

experiment and some have explained why the value o f 0.05 was selected by Fisher. But it 

is not a reason that is supported by mathematical theory. Indeed, the use o f dif ferent 

levels o f signif icance is a matter o f convention. Research literature has shown that, in 

127 Suppose a null hypothesis is being tested at the 0.05 level of statistical significance, the probabilities that 

a t rue Яо w i l l be accepted tw i ce and that a t rue HQ is re jected t w i c e i n succession when us ing SST are 

respect ive ly 0.952 = 0.9025 and 0.052 = 0.0025. Thus the ove ra l l p robab i l i t y o f rep l i ca t ion is 0.9025 + 

0.0025 =0.905 w h e n Ho is t rue. Th is va lue does not, however , take in to the cons iderat ion the ef fect o f 

stat ist ical power . I f our purpose is to conduct a rep l i ca t ion s tudy to examine a genuine ef fec t (say, concrete 

man ipu ia t i ves are e f f i cac ious ) , then power instead o f the va lue o f р w i l i become a c r i t i ca l factor in 

d e t e r m i n i n g the success o f any rep l i ca t ion e f fo r t . See Ot tenbacher , 1996 fo r detai l o f the impact o f 

stat ist ical p o w e r o n the process o f research rep l i ca t ion and our d iscussions in the next chapter. 
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addit ion to 0.05, the common ly used levels o f signif icance include 0.01 and 0.001. 

Skipper, Guenter, and Nass (1970) have suggested that adopting different levels o f 

signif icance w o u l d enable the dif ferent iat ion o f research f indings that w i l l be published 

or not and remind the researchers to choose level o f signif icance w i th fu l l awareness o f 

its impl icat ions for the problem under study. First, it is possible that a greater value o f ひ， 

i f іпЇЄфгеЇес1 as Type I error rate, might be preferable especially when the power is low 

and a Type I I error is crucial . Second, in Fisher's signif icance testing, whether dif ferent 

signif icance levels a for р values do really reflect the corresponding degree o f evidence is 

a problem that w i l l be addressed in next chapter. 

4,4 The logical foundation of Fisher's significance testing 

As we have discussed in Section 2.3, the focus o f SST is to attempt to challenge 

and refute the statistical hypothesis. Using the hypothesis that concrete ทาanipulatives are 

eff icacious in learning mathematics as an example, the procedures o f Fisher'ร 

signif icance test ing can be summarized as fo l i oพร : 

1. Assuming that at the end o f the learning period the students in groups Gi and Շշ 

come f rom two theoretical populations o f students. A n d the mean test scores o f 

the t w o theoretical populations o f students เท G l and Gl are respectively IĄ and 

/ ¿ 2 . I f the two theoretical populations are ident ical , then ֊//շ= 0 which is 

ident i f ied as the nul l hypothesis Яо- Accord ing to our or iginal hypothesis, what 

we expect to occur is that μ^-թղ> 0， wh ich is described as the alternative 

hypothesis H\. 
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շ . Assuming that groups Gl and Օշ are random samples chosen f rom the 

corresponding populat ions. Determine the appropriate test s t a t i s t i c a n d f igure 

out its d ist r ibut ion under the assumption o f the truth o f the nul l hypothesis. In the 

case o f this example, i t could be a / -distr ibut ion w i t h 38 df. 

3. From the observed data, we could calculate the means and the variances o f the 

two samples and then f igure out the unbiased estimates o f the variances o f the 

populat ions. F ina l ly , we w i l l get a calculated value o f է f r o m these data, 

4. The probabi l i ty o f obtaining a է value as extreme or more extreme than the 

calculated է value when the nul l hypothesis is true is called the р value. I f the р 

value is smal l (say, less than a signif icance level 0.5), then either the hypothesis is 

not true, or an except ional ly rare chance has ՕՕՕԱՄ60. In other words, i f the nul l 

hypothesis is true, the results based merely on fluke are very unl ikely. The 

observed data thus provides evidence against the nul l hypothesis. On the other 

hand, i f the f the р value is not smaller than a and the nu l l hypothesis Hö is true, 

the discrepancies between the mean scores in the two groups could be explained 

by the chance f luctuat ion in sampling. As a result, the data does not provide 

evidence against the ทน11 hypothesis Яо. 

The basic reasoning behind significance testing is: in order to decide i f a ทน11 

hypothesis HQ should be rejected, we f irst assume that Яо is true and see what 

consequence could be deduced. Suppose we could deduce f rom the truth o f Яо that it is 

very unl ike ly that the data D w i l l occur ( for example, a particular test statistic is very 

unl ikely to fa l l in a certain region as hybr id model suggests). I f in fact D does not occur 

For a f o r m a l d e f i n i t i o n o f t e s t stat ist ic, see Cox and H i n k l e y , 1974. 
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(for example, the test statistic does not fa l l in the region), this result is expected under the 

assumption o f the truth o f HQ. We thus have to retain fío in this case. On the contrary, i f 

in fact D does real ly occur, then this result is astonishing i f HQ is true and therefore we 

seem to have good reason to reject HQ. The logic behind the whole argument could be 

summarized as fo l l ows : 

I f Ho is true, then the probabi l i ty that the data D w i l l occur is very small. 

The data D occurs. -

Hence, the probabi l i ty that Яо is true is very smal l . 

Is this argument val id? For a certain nul l hypothesis Яо, i t must be either true or false, 

what does it mean by ' the probabi l i ty that Ho is true'? These questions would be 

addressed in the next chapter. 

4.5 The concepts of refutation and rejection 

Similar to what we have discussed in Section 4 . 1 , the fo l l ow ing argument form 

( M T ) is va l id : 

I f Яо is true, then the data D w i l l not occur. 

The data D occurs 

Hence, Нҫ) is N O T true. 

I f the two premises are true, the conclusion must be true. In other words, i f we could 

deduce f rom the truth o f HQ that the data D w i l l not occur and it is found that D does 

occur, then Яо is said to be refuted. 'Refutat ion o f the ทน11 hypothesis Яо by Ľľ means 

that Щ is shown by the evidence or observation (D occurs) to be false. O f course, as we 
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have discussed in Section 4.1， such a situation is over-s impl i f ied and the intrusion o f 

auxi l iary hypotheses and in i t ia l condit ions is inevitable ๒ most scientif ic research. 

However, even in this case, the revised argument: 

I f HQ is true and с is true, then the data D w i l l not occur. 

The data D occurs, 

Hence, Яо is N O T true or с is N O T true, 

would st i l l imp ly that HQ and с are refuted by D a l though we are not certain wh ich one 

(or both) is being refuted. 

I t is wor thwh i le for us to note that in the argument behind SST what we could at 

most conclude is that the probabi l i ty that Щ is true is very small'"^^. I t is clear that when 

the probabi l i ty o f an event is very small (even zero), i t does not entail that the event is 

impossible^^^. Hence, based on the conclusion that the probabi l i ty that HQ is true is very 

small , we reject Яо; it does not mean that HQ has been reftited or shown to be false. In 

other words, the rejection o f Ho does not imp ly that Ho has shown to be false. It is at most 

a conclusion that HQ is very unl ikely to be true. We w i l l return to this point in Chapter 6. 

4.6 The concepts of different types of hypotheses 

Apar t f r o m the р values and significance levels, ' nu l l hypothesis' is another 

concept that is usually misunderstood. Confusions between the roles o f the nu l l and 

alternative hypotheses and between the statistical alternative hypothesis and the research 

hypothesis could be found in some research papers (Chow, 1996; Batanero, 2000). As 

ւ շ 9 Whe the r w e c o u l d rea l ly reach this conc lus ion w i l l be d iscussed in Chapter 5. 
ISO For examp le , w h e n w e r a n d o m l y select a number f r o m the o p e n in terva l (0， 1)， the p robab i l i t y that it is 

rat ional is 0 a l though it is pe r fec t l y possible that i t cou ld rea l ly be a ra t iona l number . 

96 



we have discussed in Section 4.1， what we are real ly interested in is the substantive 

hypothesis (wh ich , in our example, is concrete m anipulatives are eff icacious in learning 

mathematics) . I t is however not feasible for us to test this hypothesis directly. We have 

to deduce observable impl icat ion f rom the substantive hypothesis and some additional 

auxi l iary hypotheses (and in i t ia l condit ions). The outcome, such as Чһе students who use 

computer manipulat ives in mathematics classes could outperform the students who do 

not ' is called 'research hypothesis' . The research hypothesis is usually st i l l not specific 

enough for put t ing to test. I t is thus required to construct an experimental hypothesis, 

such as ' the students who use the software Shapes in their geometry classes wou ld get 

higher scores in a part iciüar geometry test than those who do not use Shapes'. A n 

experiment w i l l then be conducted to test the experimental hypothesis. For example, in 

Section 4.1， we have discussed in details what specif ic procedures have to be fo l lowed 

under the experimental context. A n d in order to determine i f the students in group Gl 

w i l l get higher scores in a particular geometry test than those in G2, we have to conduct 

statistical analysis wh ich requires a specif ication o f the nu l l hypothesis (Яо: /¿1 - ^2 = 0 ) 

and the alternative statistical hypothesis ( Я і : jUi — յւկ> 0 ). 

W i t h this hierarchy in m ind , we wou ld be clear that SST is merely a means to test 

the statistical hypothesis. Suppose in an experiment we are able to reject a nul l 

hypothesis w i t h a signif icance level o f 0 .01. Even though the logic behind SST is sound 

(we w i l l discuss this po in t in Chapter 5)， it does not imp l y that we are at the same level 

o f certainty to reject the experimental hypothesis. Because experimental control (for 

instance, i f al l relevant factors that could influence students' performance have been kept 

constant) and theoretical considerations from the field under study (for instance, i f the 
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test constitutes a rel iable and va l id measure for students' performance) wou ld play an 

indispensable role in assessing the backward deduct ion f rom the rejection o f statistical 

hypothesis to that o f experimental hypothesis. It is also this reason that Chow (1996) 

who has argued that many o f the crit icisms against SST are misdirected, as they refer not 

to the statistical process but to other parts o f the inferential procedures. ՚՛̂ ^ 

In SST, we attempt to reject the nul l hypothesis so that we can gain evidence o f 

the alternative hypothesis. I t is in this connection that the nu l l hypothesis, as or ig inal ly 

suggested by Fisher, means the hypothesis that is going to be nu l l i f ied (Cohen, 1994). In 

this general sense, the nul l hypothesis does not necessarily refer to the hypothesis o f no 

difference or relat ionship. For example, ' the di f ference o f the means o f two populations 

is 3 marks ( i .e. μ^- թշ = 3 ) ' could be our ทนII hypothesis. Bu t now the word ' n u i r in 

'nu l l hypothesis' is usually regarded a synonym o f ' n i l ' or ' zero ' . Construed in this way, 

the nul l hypotheses o f no difference are sometimes called the 'n i l hypotheses' so as to 

dist inguish i t f rom other ทน11 hypotheses (Cohen, 1994). Some have argued that unless in 

the most rare o f instances the n i l hypothesis must be able to be rejected (Bakan, 1966; 

Cohen, 1994; Meehl , 1967). Certainly, it is extremely rare to find two identical cases o f 

anything in our wo r l d . I f the measure is f ine enough, any observed objects w i l l d i f fer on 

whatever variable we choose to measure. For example, could we expect to find two lakes 

w i t h identical amount o f water? Even i f a machine is designed to produce identical 

bottles o f d ist i l led water, we hardly expect that it can produce two bottles o f water that 

w i l l have exactly the same amount o f water. Even i f we fa i l to measure the difference, 

we can always resort to a more accurate way o f measurement. Bu t as Hagan (1997, 1998) 

Th is po in t w i l l be fu r ther discussed in Chapter 5. 
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has argued, the nu l l hypothesis is a statement about the populat ion rather than the sample. 

Accord ing to h i m , samples drawn f rom the sample populat ion w i l l always di f fer but the 

populat ion w i l l be exactly identical to itself. Moreover , the n i l hypothesis can always be 

rejected at some sample size. Accord ing to A P A ( 1 9 9 4 ) , reports o f effect sizes are 

recommended because sample size largely drives rejection o f the nul l hypothesis. 

Thompson (1998) thus concludes that 'statistical testing becomes a tautological search for 

enough participants to achieve statistical signif icance. I f we fa i l to reject, it is only 

because we ' ve been too lazy to drag in enough part ic ipants' (p.799). We w i l l leave the 

question whether these crit icisms to the concept o f n i l hypothesis are tenable to the next 

chapter. 

4,7 Statistical significance and practical significance 

Al though many authors have made note o f the fact that statistical significance has 

nothing to do w i t h practical importance, it is st i l l not unusual for researchers to herald the 

signif icance level as being synonymous w i th importance (Glaser, 1999; Thompson, 1996， 

1997). In practice, we identify the hypothesis o f interest w i t h the alternative hypothesis 

wh ich usual ly says noth ing about the exact magnitude o f the difference between the 

populat ion means (e.g. μ^- Բշ> 0). Statistical signif icance is thus not necessarily 

informat ive about the practical signif icance o f the data. For example, i f the mean scores 

o f the two groups o f students Gl and Օշ are 60 and 59 out o f 100 marks. A statistically 

signif icant di f ference may st i l l be demonstrated i f the sample size is large enough. 

However, i f a difference in score o f 1 mark is educationally signif icant is another matter. 

In other words, statistically signif icant difference does not imply the difference is 

s igni f icant ly b ig . 
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Besides, in an experiment, i f a difference between the experimental and control 

group is demonstrated to be statistically signif icant, i t does not entail that the difference 

must be due to the treatment differences. For example, i f the mean scores o f the two 

groups o f students Gl and Օշ are shown to be signi f icant ly di f ferent. There is always 

possibi l i ty that the di f ference is due to factors other than the use o f computer 

manipuiat ives. We have to look careful ly at the study design to see i f it is really possible 

that something other than the use o f computer manipuiatives that might explain the 

difference in scores. 
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Chapter 5 Arguments for and against SST 

As noted in previous chapters, there is abundant literature on the controversy o f 

SST. As early as 1931， Ralph พ . Ty ler cautioned against the uncri t ical use o f SST and 

pointed out that 'di f ferences wh ich are statistically signif icant are not always socially 

important. The corol lary is also true: differences wh ich are not shown to be statistically 

signif icant may nevertheless be social ly s igni f icant ' (1931， pp. 116-117). In fact, as 

reported by Pearce (1992)， crit icisms o f SST began immediately w i th Fisher's 

introduct ion o f it in 1925. Joseph Berksen (1942)1 3 2， as a physician and a practit ioner 

who has frequent ly applied SST, has noticed the logical problem o f SST^^^ and raised a 

number o f queries about its usei 34. In 1957 Lancelot Hogben'ร book- length crit ique o f 

SST appeared. Th is book was regarded by Mor r i son and Henkel (1970) as 'a systematic 

and damaging attack on various probabi l i ty practices in research' (P.3). These crit icisms 

were however not heeded by most researchers. In fact, in the middle o f the 20th century 

SST was st i l l w ide ly used and regarded as correct by the vast major i ty o f researchers w i th 

good credentials although there were fragmentary queries about SST, in addit ion to 

Berskson (1938， 1941， 1942) and Hogben (1957) . In this connection, many 

' 3 2 Berkson ( 1 9 3 8 ; 1941) had begun his c r i t i c isms on SST w h e n he discussed chi-square tests and tests o f 

departure f r o m n o r m a l i t y i n his t w o ear l ier papers. Based o n his exper ience on applying the chi -square test, 

he has observed that ' w h e n the numbers in the data are qu i te large, the 尸， s tend to come out s m a l l . . . I f the 

no rma l cu rve is f i t t ed to a b o d y o f data represent ing any real observat ions wha tever o f quant i t ies in the 

physical world, then if the number of observations IS extremely large - for instance, on the order of 200 

ООО 一 the ch i -square р w i l l be smal l beyond any usual l i m i t o f s i gn i f i cance ' (1938 , p.526). 

For examp le , B e r k s o n (1942) has argued that the a rgument beh ind SST is ' bas ica l l y i l l o g i c a l ' by 

cons ider ing the s y m b o l i c f o r m : *It says " I f A is t rue , β w i l l happen somet imes; therefore i f в has been 

f o u n d to happen , A can be cons idered d i sp roved . " The re is no log ica l war ran t f o r cons ide r ing an event 

k n o w n to occur in a g i ven hypothes is , even i f i n f requen t l y , as d i sp rov i ng the hypo thes is ' (p .326) , S im i l a r 

query has been ra ised in B e r k s o n (1938 , pp .530-531) . W e w i l l re turn to this argument in later sections. 

Fo r Fisher*ร c o m m e n t o n Berkson*ร c n t i c i s m o f S S T and B e r k s o n ' s response, see respect ive ly F isher 

(1943) and B e r k s o n (1943 ) . 
Fo r instance, see Geary , 1947; Se lv in , 195フ; Yates , 1 9 5 1 . There were also several papers c r i t i c i z i ng the 

abuses o f the one- ta i led test o f s ign i f i cance, see Eysenck , 1960; G o i d f r i e d , 1959 fo r detai ls. 
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researchers in the forties and f i f t ies o f the 20th century d id not take the cri t icisms o f SST 

seriously (Spielman, 1974). 

In the sixties o f the 20th century, more cr i t ic isms o f SST had been accumulated'^^ 

and this led Clark (1963) saying that ' the shortcomings in the methodology o f statistical 

hypothesis test ing used in educational and psychological research have been emphasized 

repeatedly in recent behavioral science and statistical l i terature' (p.455) and Bakan (1966) 

c la iming that his arguments against SST is hardly or ig inal and ' i n a certain sense, what 

"everybody knows , " and that ' to say i t "out loud" is . , .to assume the role o f the chi ld who 

pointed out that the emperor was really outf i t ted on ly in his underwear' (p.423). The first 

systematic col lect ion o f papers on the controversy over the use o f SST, edited by Denton 

E. Morr ison and Ramon E. Henkel , was publ ished in 1970. Inside the book a number o f 

papers cr i t ic iz ing SST published prior to the seventies have been included. Having said 

that, the situation d id not change much for the subsequent decades as Cohen said twenty 

eight years later after the publ icat ion o f Bakan's paper, ' th is naked emperor has been 

shamelessly runn ing around for a ๒ n g t ime ' (1994, p.997). 

Carver (1978) has identi f ied a number o f misinterpretations o f SST and 15 years 

later he reported that the practices were hardly changed (Carver, 1993). Despite no b ig 

change in the practices, widespread cr i t ic ism o f SST appeared in the psychological 

literature (Gigerenzer and Murray , 1987; Lunt and Liv ingstone, 1989; Gigerenzer, 1993; 

Cohen, 1994; Dracup, 1995). In response to the cr i t ic ism the Amer ican Psychological 

Associat ion ( A P A ) set up a task force on invest igat ing statistical inference and a report 

' 3 6 See, f o r examp le , B inder , 1963; Grant , 1962; L u b i n , 1962; M c N e m a r , I 9 6 0 ; R o z e b o o m , 1960; Salvage, 

1957. 
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was then publ ished (Wi l k inson & Task Force on Statistical Inference, 1999) suggesting a 

plural ist ic approach w i t h respect to dif ferent research methodologies, and a flexible 

approach to data analysis that emphasized the value o f exploratory data analysis and 

graphical methods. Statistics was regarded by the Task Force as a means for 

communicat ing research f indings and no statistical tests were suggested to be banned 

f rom journals although it was agreed that perhaps too much had been made o f statistical 

testing. 

V iews on SST are diverse. Some argue that SST should be banned (e.g. Carver, 

1978, 1993; Falk and Greenbaum, 1995; Hunter, 1997; Schmidt, 1996; Schmidt and 

Hunter, 1997; Shrout, 1997) but some defend that SST is elegant and useful (Abelson, 

1997a; 1997b; Chow, 1996, 1998a, 1998b; Hagen, 1997, 1998; Rindskopf, 1997). There 

are also researchers who hold relatively moderate v iews. For example, Harriร (1997) 

argued that SST could be very useful i f we abandon two-va lued logic, Cohen (1990, 1994) 

and Thompson (1996, 1999a, 1999b, 1999c, 1999d) argued that SST could sti l l be 

meaningful and useful i f more thought is given to fo rmula t ing meaningful hypotheses at 

the front end o f the research process. In this chapter, we w i l l examine the major 

arguments against SST and cr i t ical ly analyze the rebuttal to these objections. 

5.1 Is the n u l l hypothesis always able to be re jected? 

A number o f decades ago, Berkson (1938, 1942, 1943), Bakan (1966), Edward et 

al . (1963), Meeh l (1967) and Nunna l ly (1960) al l have argued that the nul l hypothesis o f 

no difference (or called the 'n i l hypothesis') must be able to be rejected in behavioural 

research. As Murphy (1990) has noted, statistics textbooks and discussions o f statistics 
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in the research literature often state or imp ly that the nul l hypothesis is never true or 

credible. For example, Twai te and Monroe (1979) c la imed, in discussing the nul l 

hypothesis, that the researcher 'never believes that the nu l l hypothesis is true' (p.230). 

As we have mentioned in Section 4.6, the reasons are two fo ld . First, f ind ing two 

identical cases o f anything in our wor ld is extremely rare. As Bakan (1966) has put it, 'a 

glance at any set o f statistics on total populations w i l l qu ick ly conf i rm the rarity o f the 

nu l l hypothesis in nature' (p.426). Tukey (1991) alleged further that asking 'For any A 

and B, are the effects o f A and в di f ferent?' is fool ish since they 'are always different 一 

in some decimal place'(p. lOO). '^^ 

Second, the n i l hypothesis can always be rejected at some suff icient large sample 

size. Nunnal ly (1960) has pointed out ' i f the ทน11 hypothesis is not rejected, it usually is 

because the N is too smal l . I f enough data are gathered, the hypothesis w i l l generally be 

rejected. I f reject ion o f the nu l l hypothesis were the real intent ion in psychological 

experiments, there usually wou ld be no need to gather data' (p.643)138. The Publication 

Manual of the American Psychological Association ( A P A , 1994, p. 18) also admits that 

sample size can dr ive rejection o f the nul l hypothesis and thus recommends reports o f 

effect size'^^. 

'37 F o r o ther researchers w h o also c l a imed that the nu l l hypothes is cannot poss ib l y be t rue, see, f o r example, 
Gran t , 1962; M e e h l , 1967; М и ф һ у , 1990; W e i t z m a n , 1984. Some , such as Ande rson , et a l . (2000) and 

Johnson ( 1 9 9 5 ) , even c l a i m e d that near ly a l l nu l l hypotheses are fa lse on a p r i o r i g rounds. 

՚ 3 * N u n n a l l y ( 1 9 6 0 ) has p rov ided ev idence fo r this con ten t ion : A f t e r a factor analysis o f the results obtained 
๒ a study o f pub l i c o p i n i o n cons is t ing o f 700 subjects, he ca lcu la ted the cor re la t ion coef f ic ients o f the 
fac tors w i t h age, sex, i n c o m e and a number o f other var iables and f o u n d tha t near ly a l l correlat ions were 
s ign i f i can t , i n d u d i n g those that made l i t t le sense (p .643) . S im i l a r evidences cou ld be f ound in Bakan, 1966, 
р.425; Cohen , 1994, p. 1000; M e e h l , 1967, p. 109; 1990, p.212. See also Stre iner , 2003 f o r h is analogy: 

sample size is l i ke m a g n i f i c a t i o n w i t h a microscope: the smal ler the ob jec t t ha t ' s be ing observed, the more 

m a g n i f i c a t i o n w e need. ' (p .761) . 

Never the less , as suggested by numerous empi r i ca l studies o f papers pub l i shed since 1994 in d i f fe rent 

fields (such as psycho logy and educat ion) , mere ly ' r e c o m m e n d i n g has not great ly in f luenced repor t ing 

pract ice ( T h o m p s o n , 1998, p.799) . 
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I f these two reasons were sound, al l ทน11 hypotheses must be false or could always 

be rejected. Cont ro l l ing the Type I error wou ld be insigni f icant and rejection o f nul l 

hypotheses wou ld then become a t r iv ia l exercise. A n d these w o u l d constitute a major 

cr i t ic ism o f SST (K i r k , 1996). Before discussing whether the first reason is really 

jus t i f ied , we have to look into the logic behind it. There are inf in i te numbers o f real 

numbers in any closed interval o f real numbers, say [ -20 , 20 ] . I f we randomly select a 

real number f rom the interval, the probabi l i ty o f selecting any particular real number, 

such as 0， w i l l be zero.'"*^ Accord ing to Fr ick (1995a), i t is this mathematical fact that 

renders some th ink ing that the probabi l i ty o f zero difference between two effects is zero, 

as zero di f ference is merely one point in the interval o f in f in i te possible differences 

between two effects. For example, Mu rphy (1990) exp l ic i t l y stated that 'the ทนII 

hypothesis represents a zero effect, taken to an inf in i te level o f precision, and the 

alternative hypothesis includes everything else. This type o f nu l l hypothesis is clearly not 

very credible; the pr ior probabi l i ty o f a hypothesis such as this should indeed be zero' 

(p.404). Despite the misconception that an event having a zero probabi l i ty implies the 

event being impossible to happen/"*^ this mathematical fact can hardly be applicable to 

the case o f hypothesis unless the assumption, random selection, has been met. I f the 

selection o f a number is not total ly random, for example, a few special numbers can be 

allocated a nonzero probabi l i ty before spreading the remain ing probabi l i ty over the 

"0 I t is w o r t h no t i ng that the p robab i l i t y here is exact ly zero, not 'essent ia l ly zero ' as asserted by F r i ck 
(1995a) . I ndeed , the p robab i l i t y o f se lect ing a finite subset or a countab le i n f i n i t e subset o f the in terva l w i l l 
a lso be zero. Fu r the rmore , F r i c k (1995a) was false เท stat ing that ' o n l y an interval o f real numbers can 
receive a nonzero p robab i l i t y * (p .133) . I t is a w e l l - k n o w n mathemat ica l fact that the set o f i r ra t ional 
numbers in [-20， 2 0 ] , fo r instance, is not an in terva l but i t cou ld s t i l l receive a nonzero p robab i l i t y , 1. 

1 4 ' A s we have men t i oned in Sect ion 4.5， i t is t rue that i f an event E is imposs ib le to happen, then P{E) = 0. 

B u t its converse is false. For examp le , it is possible to r a n d o m l y select a ra t iona l number f r o m [-20, 20 ] 

t h o u g h the p robab i l i t y o f a ra t ional number be ing selected is exact ly 0. I t seems that ๒ thei r exchanges 
b o t h F r i c k (1995a , 1995b ) and Edge l l (1995) d id not note th is po in t . F r i c k (1995a , 1995b) used to consider 
whe the r a hypothes is w o u l d be possib le to be t rue, w i t h o u t k n o w i n g that the p robab i l i t y o f the hypothesis 
be ing poss ib le to be t rue cou ld s t i l l be zero. 
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remaining real numbers, the probabi l i ty o f selecting any one o f the special numbers w i l l 

certainly not be zero. Zero is one o f these special numberร/'^^ I t is thus not a pr ior i t ruth 

that the probabi l i ty o f a n i l nu l l hypothesis must be zero. 

Moreover , i f we merely consider whether a nul l hypothesis is not possible to be 

true we may leave the issue o f zero probabi l i ty aside. When the nu l l hypothesis is about 

manipulat ion o f merely one variable, it is possible for the variable to have n i l effect and 

therefore i t is possible for the n i l nu l l hypothesis, one variable has n i l effect on another 

variable, to be true^^^^ For example, suppose that we want to investigate whether the f irst 

d igi t o f a student's Identi ty Card number wou ld have an effect on the student's 

performance in mathematics, we see no reason why in this case n i l effect is not a possible 

hypothesis. In the case where manipulat ion involves two or more variables, the situation 

is more compl icated. For example, suppose we are going to compare the effects o f the 

Abacus and Mindabacus Course and K u m o n Mathematics Course, two prevalent courses 

in Hong K o n g , on students' abi l i ty in problem solv ing. Since it is possible for both 

courses to have n i l effect on students' abi l i ty , the ทน11 hypothesis that there is no 

difference between their effects is possibly true. However , suppose further that Kumon 

Mathematics Course provides merely d r i l l i ng o f routine problems and causes a decline o f 

students' ab i l i ty in problem solving, wh ich involves main ly novel problems. The nul l 

hypothesis wou ld be true only i f the Abacus and Mindabacus Course has exactly the 

same detr imental effect. I f the effect is measurable on a scale o f real numbers, it is very 

1 4 2 F r i ck (1995a) has used the hypothesis about the p robab i l i t y o f the average height a species can j u m p as 
an examp le to i l lus t ra te th is po in t : a l though the p r o b a b i l i t y o f the average he ight humans can j u m p be ing 
exactly 0.5 m cou ld be zero, the p robab i l i t y o f the average he ight oaks can j u m p be ing exact ly 0 m need not 
be zero. 
՚ 4 3 Unless w e assume radica l v i ews , l i ke wha t Hays (1981) has asserted 一 Чһеге is sure ly no th ing on earth 

that is comp le te l y independent o f any th ing else. The strength o f associat ion may approach zero, but it 

shou ld se ldom or never be exact ly z e r ๙ (p .293) . 
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unl ikely that the two real numbers are exactly ident ical . That may explain why some 

researchers, such as Bakan (1966), Cohen (1990), Grant (1962), Murphy (1990), and 

Weitzman (1984) , have claimed that the nu l l hypothesis cannot possibly be true. As a 

result, it is not true that the n i l nu l l hypothesis cannot possibly be true. Whether a n i l ทน11 

hypothesis can be true depends on the content o f the hypothesis ― whether it involves 

manipulat ion o f one variable and in the case o f complex variables whether it is known 

that at least one variable has an effect. In other words, the f i rst reason for c la iming that 

the ทน11 hypothesis is generally false is not tenable. H o w about the second reason? 

Researchers, such as Bakan (1966X Nunna l l y (1960) and Meehl (1967), have 

presented d i f ferent examples to demonstrate their content ion that a large enough sample 

size w i l l always result ๒ rejection o f the nu l l hypothesis. But Wi l l i am Oakeร (1975) has 

argued that these examples are al l invo lv ing the self-selected-groups (SSG) design՚՛^՛* and 

their contention is not supported by evidence result ing f rom the use o f a true 

experimental design'"*^. In an SSG design, groups are selected on the basis o f a difference 

on one subject variable, i.e., the independent variable. The groups are then compared on 

various other subject variables, i.e. the dependent variables. Since the independent 

variable is i tsel f casually determined by some combinat ion o f other (extraneous) variables, 

it is h igh ly probable that these extraneous variables wou ld exert their influence not only 

on the independent variable but also the dependent variables. I f it is the case, a 

comparison o f the groups w i th respect to any o f those dependent variables whose 

1" A research s tudy is said to be u t i l i z i ng the se l f -se lected-groups design whenever the level o f the 
independent va r iab le is de te rmined fo r each subject by the sub jec t ' s o w n character ist ics ( พ . Oakes, 1975, 
p.267). 

A t rue expe r imen ta l design invo lves a man ipu la ted independent var iab le o f w h i c h the levels are assigned 
at w i l l to subjects b y the exper imenter . 
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determining variables overlap w i t h those determining the level o f the independent 

variable w i l l find the groups d i f fe r ing w i th respect to that particular dependent variable. 

It fo l lows that, no matter how smal l the difference in the dependent variable values for 

the independent variable groups is, the nul l hypothesis w i l l be rejected i f the sample size 

is large enough. 

From above discussion, we could note that a large enough sample size could 

result in rejection o f the nul l hypothesis only i f there is some f ixed, nonzero amount o f 

difference in the dependent variable values for the independent variable groups (Oakeร, 

1975), But does this f ixed difference necessarily occur in al l experimental designs? In a 

true experimental design, the subjects are assigned at random to dif ferent groups. 

Subsequently, d i f ferent levels o f the independent variable are induced in subjects by the 

experimenter's manipulat ions according to the groups the subjects are belonging to. The 

random procedure w i l l ensure that there is no relat ionship between the basis for 

assignment o f groups and measure o f any dependent variable. In other words, before 

manipulat ion, the probabi l i ty o f the groups d i f fe r ing on any variable is independent o f the 

sample size. I f the independent variable does indeed have no effect upon the dependent 

variable, the probabi l i ty o f rejecting the nul l hypothesis w i l l not increase w i th an increase 

in the sample size. I t is thus possible that, as elaborated by Oakes (1975)， after gett ing 

'almost s igni f icant ' results in conducting a true experiment increasing the sample size 

would have the effect wash out as non-signif icant w i t h the larger sample size. 

Accord ing ly , not al l nul l hypotheses must be false on a pr ior i grounds or they 

must be able to be rejected w i th suff ic ient ly large sample size even though many SST 
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reported in the research literature ՚՛^^ are associated w i t h nu l l hypotheses that are not 

plausible, as K l ine (2005) expected. What we have to be cautious about is that the ทน11 

hypothesis should not be a straw man o f wh ich the rejection could hardly advance science. 

5.2 Is s tat is t ica l s ign i f icance d i f fe rence not necessari ly an i m p o r t a n t d i f ference? 

Accord ing to K i r k (2001), researchers are interested in answering three basic 

questions when examining the relationships between variables. First, is an observed 

effect real or should it be attr ibuted to chance? Second, i f the effect is real, how large is 

it? Th i rd , is the effect large enough to be useful? SST could only tel l us the probabi l i ty 

o f obtaining the effect or a more extreme effect i f the nu l l hypothesis is true. I f the ทน11 

hypothesis is a n i l hypothesis, SST could be used to address the first question. But, in 

this case, SST can hardly provide any informat ion about the magnitude o f the effect or 

whether the effect is important or not. As Ty ler (1931) has pointed out, a statistically 

signif icant di f ference is not necessarily an important di f ference, and a difference that is 

not statistically signif icant may be an important di f ference. Since then this warning has 

been repeated many t imes (Carver, 1978). For example, Gold (1969) alleged that 

'statistical signif icance is only a necessary but not suf f ic ient cri terion o f importance' 

(p.44). 

As we have discussed in previous chapters, it is certainly mistaken to іп іефгеї the 

р value, Type I error, or the level o f signif icance as a measure o f effect magnitude^'*''. 

146 Fo r examp le , af ter r e v i e w i n g the nu l l hypotheses tested in several hundred emp i r i ca l studies publ ished 

f r o m 1978 to 1998 i n Ecology and the Journal of Wildlife Management, t w o p rominen t env i ronment 

sciences j ou rna l s , Ande rson et a. (2000) f o u n d that there are o v e r w h e l m i n g occurrence o f false nu l l 

hypotheses in the i r samples o f ar t ic les. 

I t is un fo r tuna te that ou tcomes w i t h l o w e r р values are s t i l l somet imes in terpreted as hav ing stronger 

ef fects than those w i t h h igher р va lues. Oakes (1986) has f o u n d that not o n l y students but also researchers 
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Bu t that SST is unable to measure effect magnitude does not constitute a serious 

challenge to SST, especially when SST is рифогїес і to address only the first question. It 

is wor th not ing that the f irst question is more fundamental than the other two . Wi thout 

know ing whether the observed effect is genuine, it is unjust i f ied to ask i f the effect is 

large or large enough to be useful. It is thus inapt to conclude that the rejection o f a nul l 

hypothesis is not very informat ive. ՚՛̂ ^ Moreover, the nul l hypothesis is not necessarily 

n i l . In case when we really want to test whether certain effect is present, we could set up 

a part icular hypothesis wh ich states that such an effect does not exist. A rejection o f this 

nul l hypothesis could be an indicat ion o f the existence o f this part icular effect magnitude 

although whether i t wou ld really succeed in p rov id ing this in format ion w i l l be discussed 

in later sections. 

5.3 Is SST indispensable? 

Some believe that wi thout SST, we are not able to tel l when a f ind ing is worth 

іп Їефге їа Ї Іоп and it is less possible for di f ferent researchers to arrive at the same decision 

or conclusion f rom data (see, for example, Davis, 1958). A n d to some researchers SST 

does serve a useful рифозе 一 addressing the question, ' is an observed effect real or 

should it be attr ibuted to chance?'. For example, Mu la i k , Raju and Harshman (1997) 

asserted that ' W e cannot get r id o f signif icance tests because they provide us w i th the 

cri teria by wh ich provis ional ly to dist inguish results due to chance variat ion f rom results 

that represent systematic effects in data available to us' (p.81). I t is certainly pleasing i f 

in psycho logy w o u l d overest imate the size o f the e f fec t based on a s ign i f i cance leve l f r o m 0.05 to 0 . 1 . 

M i t t a g and T h o m p s o n (2000) have, however , f o u n d in the A E R A survey that respondents s t rongly 

d isagreed that р va lues d i rec t l y measure s tudy e f fec t size. Fo r d iscuss ion o f the d i f fe rence between these 

t w o studies, see G l i ne r , Leech , & M o r g a n , 2002 . 

'48 M a n y have made such conc lus ion . See, fo r example , Carver , 1978; Oakes, 1986; K i r k , 1996; Shu lman, 

1970. 
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we have a statistical procedure that could be used to judge whether an observed effect is 

real or merely attr ibuted to chance though some'"^^ are very doubtf t i l whether i t is possible 

to have such procedures. However, even though such procedures exist, it does not imp ly 

that SST is the one that can perform the feat. 

We w i l l first discuss the Neyman-Pearson hypothesis testing approach and leave 

the discussion o f Fisher 'ร significance testing to the next section. Accord ing to a number 

o f s t u d i e s , ' t h e average power o f SST in research literature is between 0.4 and 0.6. 

W i th a power w i t h i n this range, Schmidt and Hunter (1997) argued that about half o f all 

tests in a research literature w i l l be non-signif icant. This is certainly mistaken. What it 

means should be: amongst the false ทน11 hypotheses about hal f o f them w i l l not be 

rejected. Nevertheless, they were correct in concluding that coin flipping wou ld in many 

cases provide a higher level o f accuracy than SST. 

One may argue that this is not a defect o f SST, but a problem o f low statistical 

power. Us ing large enough sample sizes wou ld be able to ensure h igh power, but at the 

same t ime, as argued by Schmidt and Hunter (1997), the effect sizes or relations 

examined in most research are small enough that power o f even 0.8 requires more 

subjects than are often feasible to obtain. A n d it w i l l render most studies being 

impossible to be conducted in reality. 

See, f o r examp le , Schmid t & 1997. 
՚ For instance, C o h e n , 1988; Schmid t , 1996; Schmid t , Hun te r , & U r ^ 1976; Sedlmeier & G igers 

1989. 
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5.4 Does р va lue p rov ide p u r p o r t e d evidence against the ทนน hypothesis? 

The logic o f Fisher's signif icance testing is that f rom the truth o f the nul l 

hypothesis we can deduce that the probabi l i ty o f certain event E is very smal l . Hence, 

either the nul l hypothesis is false or rare event E occurs. I f the event E really occurs, it 

w i l l provides evidence against the nul l hypothesis. I f it is the case, the fo l l ow ing 

argument w i l l w o r k as w e l l : for any outcome E of tossing a coin fo r 10 t imes, 

I f the coin is fair, the probabi l i ty o f E w i l l be very small (0.510 )· 

E real ly occurs 

Hence, the die is not fair. 

This argument st i l l runs no matter what the outcomes are and no matter how fair 

the coin is. Fisher's р value is N O T the probabi l i ty o f the observed outcome under the 

assumption that the nul l hypothesis is true, as the probabi l i t ies o f the outcomes more 

extreme than the observed one are also included in calculation o f the р value. We w i l l 

show in this section that using the tai l region to represent a result that is actually on its 

border w i l l make the case against the nu l l hypothesis appear much stronger than it in 

fact is. Consider a simple example: assuming that the nu l l hypothesis and the alternative 

hypothesis are as fo l lows: 

Ho: the distr ibut ion is the normal distr ibut ion N(0， ( / ) 

H\: the distr ibut ion is the normal distr ibut ion N(r/， Ժ), where d> 0. 

Suppose that the test is a two-tai led test w i th known direct ion o f the effect and the 

alternative hypothesis is the one against wh ich the hypothesis testing has 9 0 % power and 

the predetermined Type I error rate is 0.05, the probabi l i t ies 0.9 and 0.025 are represented 

by the areas o f the two regions as shown in Figure 5: 
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Figure 5 The graph showing the curves o f the normal probabi l i ty density functions for 

outcomes under the nul l hypothesis and the alternative hypothesis (Not in scale) 

Let the vert ical l ine be the line corresponding to Type I error rate 0.05. That is to say, it 

w i l l cut the curve for the nul l hypothesis (the left curve in Figure 5) such that the area o f 

the r ight tai l region is 0.05/2 = 0.025. I f the vert ical l ine is at a distance í σ f rom the mean 

o f the dist r ibut ion under the ทน11 hypothesis, where σ is the standard deviat ion o f the two 

distr ibutions under the two hypotheses, then it is clear that ρ{ร < ζ) = 0.025. '^ ' Since the 

hypothesis testing is assumed to have 9 0 % power when the predetermined Type I error 

rate is 0.05， the vertical line w i l l cut the curve for the alternative hypothesis (the right 

curve in Figure 5) such that the area o f the r ight tai l region is 0.9. Suppose the line is at a 

With the use of Maple 8， we can find that the value of ร is approximately 1.959964. 
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distance ra f rom the mean o f the distr ibut ion under the alternative hypothesis, then 

P{z > - r ) = 0.9 . Since normal curves are symmetr ical , we have P{z <r) = 0.9 . 1 5 2 It is 

clear that the distance between the two vertices o f the curves is {ร + r)a ւ տ Յ I f an outcome 

w i th p = 0.02 has been observed, the probabi l i ty associated w i th one o f the two tai l 

regions is 0 .01 . Us ing the l ikel ihood ratio (or Bayes factor) ^^՚* as a measure o f the 

relative evidential support given by the data to the two hypotheses, we could compare the 

relative evidential supports given by the precise outcome {p = 0,02) and the imprecise 

outcome (p < 0.02 ) corresponding to the tai l regions o f the two curves. 

t ( バ , - ^ 、 

Aiíemative hypothese 
Nuil HTOOÜiesis 

a f (Τ \ 

o _ d 

Figure 6 The graph showing the l ikel ihood ratios associated w i th the precise p value {p ： 

0.02) and the imprecise p value ip < 0.02) (Not in scale) 

The va lue o f r is app rox ima te l y 1.281551. 

The va lue o f r + і is app rox ima te l y 3.241515. I t means that the va lue o f d is approx imate ly 3 .241515σ. 

See Sect ion 2.2. 
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The l ike l ihood ratio associated w i th the precise р value (i.e. р = 0.02) is measured by the 

ratio o f curve heights at the observed data , i.e.—֊as shown in Figure 6. It is clear that 
AC 

the length AB corresponds to ф{а) ， where ф is the probabi l i ty density funct ion o f the 

standard normal d i s t r i b u t i o n O n the other hand, the length o f AC corresponds to 

ф{ร + r -ä) 156 as the distance between the vert ical l ine AC and the mean o f the 

distr ibut ion under the alternative hypothesis is (5 + r — α)σ. Therefore, the l ikel ihood 

ratio o f the ทน11 hypothesis to the alternative hypothesis o f a difference associated w i th 

9 0 % power, α = 0.05, under the experimental result w i t h the precise ρ value 0,02 is given 

by: 

φ^α) ^ 0.026652 ^ Q ^ ^ ^ ^ 

ф{г + 8֊а) 0.262448 

On the other hand, the l ikel ihood ratio associated w i t h the imprecise ρ values 

{p < 0.02) is measured by ratio o f the small shaded area to the total shaded area, as-

shown in Figure 6. Obvious ly , the small shaded area is P{z > a) = 1 ֊ φ ( α ) = 0.01 }^՜՛ 

The total shaded area is given by P{z > ~{r + տ-օ)) = ρ {ζ <r + s-a) = ф{г + s-a). 

Therefore, the l ike l ihood ratio o f the nul l hypothesis to the alternative hypothesis o f a 

difference associated w i t h 9 0 % power, α = 0.05, under the experimental result w i t h the 

imprecise ρ value {p< 0 .02) is given by: 

P{z>a) = \֊φ{α) = 0.01 ~ 0.01 -QQ^22 

P{z<r + s-a)" ф{г + з-а)" 0{r + s-a) 0.819948 • • 

' B y s o l v i n g the equat ion φ (a) = 1 - 0 . 0 1 , where φ is standard no rma l cumu la t i ve d is t r ibu t ion func t i on , 

s cou ld find that the va lue o f α is approx imate ly 2 .326348. The re fo re , AB » (í (2 .326348) « 0.026652. 

_ ^ c = ţi>(5 + r - a ) « ^ ( 3 .241515 - 2 . 3 2 6 3 4 8 ) « 0 . 2 6 2 4 4 8 
՚ See foo tnote 155. 

115 



As we have discussed เท Section 2.2, the smaller the value o f the l ike l ihood ratio ( o f the 

nul l hypothesis to the alternative hypothesis), the greater the evidence is said to be against 

the nul l hypothesis (or in favour o f the alternative). The above results thus indicate that 

in this part icular case the actual outcome provides much less relative evidential support 

against the nu l l hypothesis than that o f the outcomes corresponding to the tai l region. 

The ratio o f these two l ike l ihood ratios น is 0.1016/0.0122 « 8.33. It means that the 

l ikel ihood ratio for the precise р value (i.e. the ratio o f heights o f the two probabi l i ty 

densities at the observed data) is about 8.33 t imes less evidence against the null 

hypothesis than does the l ike l ihood ratio for the imprecise р value (i.e. the ratio o f areas 

o f the probabi l i ty density functions beyond the observed data). 

F rom Figure 7 in wh ich the ratio o f the two l i ke l ihood ratios (ผ) is plotted against 

dif ferent р values (the power and the Type I error rate remain the same), we can see that 

the ratio is always greater than 1 (the horizontal l ine ผ = 1 is also plotted) in the range 

f rom 0.0001 to 0 .1 . ' ^ ^ The results that the ratio is greater than 1 are obtained for 

dif ferent powers and Type I error rates. See Figure 8 in wh ich и is plotted against 

dif ferent р values and predetermined Type I errors (the power = 0.9) and Figure 9 for 

dif ferent р value and di f ferent powers (the Type I errors = 0.05). 

' The graphs are p lo t ted w i t h M a p l e 8. See A p p e n d i x 12 fo r the M a p l e Worksheets . 
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Figure 7 The graph showing the ratio o f the two l ike l ihood ratios (ы) under 

dif ferent р value ( f rom 0.0001 to 0.1) 
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Figure 8 The graph showing the ratio o f the two l ikel ihood ratios under different/? 

values ( f rom 0.001 to 0.1) and Type I error rates a ( f rom 0.001 to 0.1). 
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Figure 9 The graph showing the ratio o f the two l ike l ihood ratios under dif ferent р 

values ( f rom 0,001 to 0.1) and power ( f rom 0.5 to 0,95). 

As we have noted above, dif ferent alternative hypotheses w i l l produce different 

l ikel ihoods for the same nul l hypothesis. Can l ike l ihood ratios be used in lieu of р values? 

In fact, for a given nul l hypothesis and observed data, there is an alternative hypothesis 

wh ich w i l l result in a max imum l ikel ihood 一 the one whose mean is equal to the observed 

estimate (see Figure 10). 
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Figure 10 The graph showing the nul l hypothesis and the alternative hypothesis 

wh ich w i l l result in a max imum l ike l ihood for the observed data 

This so-called 'standardized l ike l ihood ' w i l l represent the greatest degree o f 

evidence against the nu l l hypothesis. It can be easily shown that in this case the ratio o f 

these two l ike l ihood ratios и for the outcome (z = a) becomes 

m 
, where p i l = 1 - φ ( α ) 

For example, for the outcome w i th ρ = 0.05 occurs, the ratio o f the two standardized 

l ike l ihood ratios is ֊ ― - 2.93. A plot o f the ratio against dif ferent ρ values is 
0.05<ý(0) 

shown in Figure 11 ： 
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G.02 0.04 0.06 O.OB Ο.Ί 

Figure 11 The graph showing the ratio o f the t w o standardized l ike l ihood ratios 

under dif ferent ρ values ( f rom 0.001 to 0.1). 

We can observe f rom what we have discussed above the l ike l ihood ratio for the precise ρ 

value (i.e. the ratio o f heights o f the two probabi l i ty densities at the observed data) 

provides much less evidence in support o f the nu l l hypothesis than does the l ikel ihood 

ratio for the imprecise ρ value (i.e. the ratio o f areas o f the probabi l i ty density functions 

beyond the observed data). The use o f tai l region to represent a result that is actually on 

the border w i l l thus overstate the evidence against the nu l l hypothesis. 
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5.5 T h e log ica l fa l lacy beh ind hypothesis test ing 

Many supporters o f SST wou ld agree that SST have been misused or 

т із іп іефге їес і by some researchers but the test i tsel f is not inherently misguided or 

f l a w e d W e w i l l see in turn whether they are correct. Suppose that a pregnant woman 

o f age 38 who is wor r ied about her baby having a serious disease (say, Down 's syndrome) 

consults a doctor. The doctor recommends the woman to receive a prenatal 

amniocentesis test'^^. Accord ing to the doctor, amniocentesis is a very effective test to 

determine whether the baby has Down 's syndrome or not. The test is conducted and the 

result is negative. The doctor then comforts the woman by report ing the negative result 

and assuring that, i f the baby has Down ' ร syndrome the result wou ld very probably have 

been posit ive. In this case it seems that we should conclude w i th high probabi l i ty that the 

baby does not have D o w n ' ร syndrome. On the other hand, i f the test result is 

unfortunately posit ive i t seems that we should conclude w i th h igh probabi l i ty that the 

baby does have D o w n ' s syndrome. The inference, that seems to be prevalent in our dai ly 

l i fe and stra ight forwardly va l id , is indeed the heart o f the argument o f SST 一 the 

assumption that Яо is true w i l l lead to an improbable result D, I f D really occurs it w i l l 

show that the probabi l i ty that Яо is true is very smal l , and therefore leads to the rejection 

o f the assumption that Щ is true. This argument is s imi lar to a p roo f strategy commonly 

used in mathematics or mathematical logic ― reductio ad absurdum 161, also known as 

՚ 5 9 See, for instance, Abelson, 1997a; Cortina & Dud 1997; Frick, 1996; Hagen, 1997. 
' 6 ° Amniocentesis is the process in which a needle is passed through the mother'ร lower abdomen into the 
amniotic cavity inside the uterus so as to withdraw some amniotic fluid from around baby. The amniotic 
fluid can then be used for testing for certain conditions or birth defects in the baby. 
16' Strictly speaking, reductio ad absurdum is a derived rule of inference (derived from the axioms and the 
rule of inference ― modus ponenร) or a metatheorem, i.e. a theorem about an axiomatic system (for the 
distinction between a theorem and a metatheorem, see Hunter, 1971, p.l 1). For example, in the formal 
axiomatic theory L for the propositional logic (see Mendelson (1997, pp.35-36) for details of L\ reductio 
ad absurdum can be expressed as: raum can DC exprcssca as. 

' i f Г, p I-¿ q л 〜ą then г 卜¿ 〜p, or ฯf r,p1"¿ 〜p then г h¿ -p'. 
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՚ indirect p r o o f or ' p roo f by c o n t r a d i c t i o n ' R e d u c t i o ad absurdum is a type of va l id 

logical argument where we assume a premise for the sake o f argument, arrive logical ly at 

an absurd result (such as a contradict ion), and then conclude the or ig inal assumption must 

have been false and thus has to be rejected, since it gives us this absurd result. For 

example, in elementary number theory we prove that there is no greatest pr ime number, 

by assuming that there is a greatest pr ime number and proceeding to prove that such an 

assumption w i l l lead to an absurdity 一 there is a number'*^՝^ that is both pr ime and not 

pr ime, and therefore we have to reject the or ig inal assumption that there is a greatest 

pr ime number. 

Some, inc luding textbook wri ters, have indeed made an analogy between SST and 

argument by contradict ion (for instance, Freedman, Pisani, and Purves, 1998; 

Harshbarger, 1977; Reeves & Brewer, 1980) and some exp l ic i t l y c la im that the logic 

behind SST is 'an argument by contradict ion, designed to show that the nul l hypothesis 

w i l l lead to an absurd conclusion and must therefore be rejected The nu l l 

hypothesis is creating absurdities, and should be rejected. In general, the smaller the 

observed signif icance level, the more you want to reject the ทน11. The phrase "reject the 

n u i r emphasizes the point that w i t h a test o f signif icance, the argument is by 

contradict ion' (Freedman, Pisani, and Purves, 1998, p.482). Though most o f them do not 

really maintain that the nul l hypothesis rejected in SST is def in i te ly false, they do believe 

Here, Ύ， р \-լ (f means that q could be derived in the formal axiomatic system Ĺ from г and p. It is, of 

course in a stringent sense, mistaken to characterize reductio ad absurdum as tantamount to the theorems 

like '(p -> л "^)) 〜p， or Հբ ֊> -p) 〜p， (such conflation could be found ๒ some elementary logic 
textbooks, for instance, Tymoczko and Henle, 1995, p.94). 
'62 See Quine (1982, p. 194) for the historical note of reductio ad absurdum (or indirect proof). 
'63 This number is p¡...pn.¡p„ + 1 where p„ is the greatest prime number and քկ， ...,Pn-i are the rest of all 

prime numbers that are less than pท. The details of the proof could be found in any standard textbooks, 
such as the one coauthored by the author - Man, Leung ， and Ng， 1997, p.l27. 
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that the ทน11 hypothesis has been rendered improbable and that explains why it has to be 

rejected. Despite the strong resemblance between these two argument forms 一 reductio 

ad absurdum is a va l id argument f o rm (or a metatheorem for an axiomat ic system for the 

preposit ional or predicate logic) 164 but its probabi l ist ic counterpart in SST ' 6 5 is not. 

Consider the example o f amniocentesis again: suppose the amniocentesis is very 

effect ive in the sense that the probabi l i ty o f a posit ive test result given the baby is being 

affected by D o w n ' s syndrome, and the probabi l i ty o f a negative test result given the baby 

is normal (not be ing affected by D o w n ' s syndrome) are both 0.995 (denoted by T ' ) 

(Pauker and Pauker, 1979). Assuming that the baby is normal (denoted by ' ~ D S ' ) we 

wou ld have a h igh probabi l i ty (0.995) that the test result is negative (denoted by 'neg ' ) . 

I n other words, we have 

r， ~DS \-prob neg. 

The result is in fact posit ive. As ~neg \-prob ~neg, we have 

Г, ~ D S , ~neg \-prob neg л - n e g . 

The proof of reductio ad absurdum is simple. For example, in the formal axiomatic theory L for the 

prepositional logic, reductio ad absurdum could be proved as follows: 

(1) T p \ - ь д л ֊ д 

(2) Г 卜¿p—<7Λ~ή· (1), deduction theorem 
(3) Γ 1-і ~( 9 л ~q) ~p (2), law of the contrapositive 

(4) Г ['i ~( ^ л -q) law of contradiction 

(5) Г 1-і ֊p (3), (4), modus ponenร (QED) 
The probabilistic соипіефагі of reductio ad absurdum can be expressed as: 

ฯf T , p Ц і q л ~q then Г 卜グ ֊р" or ՝ ι ΐ Т,рҮргоь ~ρ then г [prob ~р՝՝ 

where Au Aj, ... , Α„ \-prab Β i f and only i f it IS logically impossible for the premises /41, ฬ2, . . . , A„ all to 
be true and the conclusion в to have low probability (cf Sainsbury, 1991, p.105). 
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Accord ing to the probabil ist ic соип Їсфа і І o f reductio ad absurdum, we should 

conclude ( f rom г and 〜neg) w i th high probabi l i ty that the baby does have Down 's 

syndrome, i.e. 

r， 〜nê  \-prob DS. 

But is it the case? Suppose for women o f age 38 the incidence o f l ive b o m infants w i th 

Down 's syndrome is 1/800. Then the situation could be represented in the fo l l ow ing 

f igure 9: 

Down's syndrome Noi^al 

Figure 12 D o w n ' s syndrome Situation 1 

The whole square represents the proposit ion that the infants are borne by women o f age 

38. The left and the right rectangles represent respectively the proposit ions that the 

infants are affected and the infants are normal ; shaded regions represent the proposit ion 

that negative amniocentesis results were obtained. The areas o f the regions in the 

diagrams represent the probabil it ies o f the proposit ions they correspond to (though not 
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drawn in exact scale)^^^. For example, the ratio o f the area o f the left rectangle to the area 

o f the r ight rectangle should be 1:800. From the figure, it is clear that the probabi l i ty o f 

an affected infant ( lef t rectangle), given a posit ive test result (whi te region) is not very 

high^^^. In other words , even though T , 〜DS， 〜neg \֊prob neg л 〜neg' is true T， 〜neg 

-prob D S ' is false. Th is example suffices to show that the probabil ist ic соип Їефаг І o f 

reductio ad absurdum is not a va l id rule o f inference (or argument fo rm) . 

From the above analysis, we could observe that the fal lacy occurs because we 

ignore the low base rate o f DS in the particular populat ion. I f for women o f age 38 the 

incidence o f l ive born infants w i th Down 's syndrome is 400/800 instead o f 】/励 then the 

situation becomes: 

Down's syndrome Normal 

I ᄂ ^ 

Negative results 

Figure 13 Down 's syndrome Situation 2 

՚ 6 6 See Adams (1998, pp. 11-19) for details of how Venn diagram could be used to represent probabilities 
of compound propositions. 
՚ 6 7 Simple calculation will reveal that the probability is only 0.995x1/(0.995x1 + 0.005x799) = 0.199. _ 
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N o w the probabi l i ty o f an affected infant ( lef t rectangle), g iven a posit ive test result 

(whi te region) is very h igh (0.995) and 'r， 〜neg {-prob DS' is thus no longer false. In 

fact, hundreds o f studies conducted on the use o f base rates in probabi l i ty judgment tasks 

revealed that base rates were universally ignored (Tversky & Kahneman, 1982; 

Chistensen-Szalanski & Bushyhead, 1981). No t on ly laymen who have litt le or no 

knowledge on probabi l i ty theory commi t such error in probabi l i ty judgment tasks, 

psychologists and even trained statisticians may ignore base rate probabil i t ies 

unconsciously^^^ 

The logic behind the argument o f SST could also be analyzed f rom two other 

perspectives. First, the argument could be phrased as: 

I f Ho is true, then the probabi l i ty that the data が69 w i n occur is very small . 

The data D occurs 

Hence, the probabi l i ty that HQ is true is very smal l . 

For example, in our previous example o f amniocentesis, the argument is: 

I f a baby is normal , then the probabi l i ty that the test result is positive is 

very smal l . 

The test result is posit ive 

Hence, the probabi l i ty that the baby is normal is very smal l . 

1 6 8 The author (พน, Ng, & Sze， 2003) has conducted a research project (๒ 2001-2002) to study if the 
student teachers majoring in mathematics education in the Hong Kong Institute of Education would still 
commit the base-rate fallacy and the result is consistent with others (such as Hacking, 2001). 
1 6 9 The data D here could mean an outcome in the rejection region oif the ทนII hypothesis Ho, rather than the 
point numerical value of the statistic obtamed. 
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The argument is o f the f o rm : 

I f р is true, then the probabi l i ty that q is true is very smal l . 

q is true 

Hence, the probabi l i ty that p is true is very smal l . 

Or, more precisely, 

For any X, i f P{x) is true, then the probabi l i ty that Q{x) is true is very smal l . 

Q{a) is true 

Hence, the probabi l i ty that P{a) is true is very smal l . 

Accord ing to Salmon (2005)， this fo rm o f inference is extremely important as it seems to 

represent a common fo rm o f inference in statistics. Giere (1979, p.97) even characterizes 

this fo rm as the standard fo rm that the good induct ive arguments in scientif ic reasoning 

almost always have. This fo rm looks very simi lar to modus tollens (MT)*^*^, a va l id 

argument f o r m wh ich can be expressed as fo l lows: 

I f p is true, then q is not true. 

q is true. 

Hence, p is not true. 

' 7 ° We have mentioned this form in Section 4.1. Here p and g can be substituted by the names of any two 

sentences. In the formal axiomatic theory L for the propositional logic, modus tollens is a metatheorem that 

could also be expressed as: 

p֊농 〜q,q К -^P 
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Ог 

For any х, i f P i x ) is true, then Qix) is not true. 

Q(a) is true. 

Hence, P{a) is not true. 

Notwi thstanding their h igh s imi lar i ty , the probabi l ist ic modus tol lens is not a va l id 

argument f o rm (or a metatheorem). Here is a counterexample showing its inval id i ty '^ ' ： 

I f « is a non-negative integer less than 1000, then the probabi l i ty that ท is 

zero is very smal l . 

ท happens to be 0. 

Hence, the probabi l i ty that ท is an integer less than 1000 is very small . 

The f irst premise is true as the probabi l i ty that a non-negative integer less than 1 ООО is 

zero is ւ /1000, a very small number. I f ท happens to be 0, ท must be a non-negative 

integer less than 1000. Hence, the probabi l i ty that « is a non-negative integer less than 

1000 is 1, wh ich is certainly not very smal l . I t thus shows that the probabil ist ic modus 

tollens is not va l id . In order to i l lustrate this case w i t h the use o f Venn diagram. Let us 

consider another simi lar but finite case: 

(Pi ) I f a person is wo rk ing in Hong Kong , then the probabi l i ty that the 

person is work ing at the Univers i ty o f Hong Kong ( H K U ) is small. 

(P2) Sheena is work ing at H K U . 

(C) Hence, the probabi l i ty that Sheena is wo rk ing in Hong Kong is very 
smal l . 

See Cohen (1994), Falk and Greenbaum (1995), and Falk (1998) for similar examples. Moreover, our 
previous amniocentesis example could serve the same рифозе. 
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The rest of the world Hong Kong 
I รレ 

HKU 

Figure 14 Probabi l i ty o f wo rk ing at H K U 

Accord ing to the ratio o f number o f staff members o f H K U to the total number o f 

employers in Hong Kong , the f irst premise (Pi) is clearly true. Thus the ratio o f the areas 

o f the shaded region to the r ight rectangle is smal l . Since al l persons who are work ing at 

H K U must be w o r k i n g in Hong Kong, the whole shaded region in Figure 11 lies inside 

the right rectangle. Therefore, i f Sheena is work ing at H K U then Sheena has to be 

work ing in Hong Kong . A n d the probabi l i ty that Sheena is work ing in Hong Kong is 

thus 1 and it can hardly be very small . The conclusion (C) cannot be concluded f rom 

these two premises. Hence, this argument fo rm is inva l id . 

A l though the arguments against the probabil ist ic M T appear to be very persuasive, 

there are st i l l some objections to the counterexamples. First, some'^^ may argue that the 

consequent o f the condit ional '^^ (Pi) is true in and o f i tsel f - the probabi l i ty that a person 

1 7 2 For instance, Cortina and Dunlar (1997). 

1" A conditional is any sentence of the form ' i f р then where р and q are called respectively the 

antecedent and the consequent of the conditional. (Blackburn, 1994, p.73) ― 
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is work ing at H K U is very smal l . A s a result, almost any sentence could be used as 

antecedent o f the condi t ional (P i ) and that its t ru th wou ld not affect the truth o f the whole 

condit ional . I f a person is work ing at H K U then that person has to be work ing in Hong 

Kong , and it is because o f these two aspects o f the part icular example chosen that the 

probabi l ist ic M T breaks down. Cort ina and Dunlar (1997) have argued that there are a 

number o f instances in wh ich the probabi l ist ic use o f M T is correct. For example, they 

have cited the f o l l ow ing as more representative o f psychology: (1) I f Sample A were 

f rom some specif ic populat ion o f 'normals, ' the sample A probably wou ld not be 5 0 % 

schizophrenia. (2) Sample A comprises 5 0 % schizophrenic indiv iduals; therefore, (3) 

Sample A is probably not f rom the 'no rma l ' d ist r ibut ion. 

Cort ina and Dunlar (1997) are mistaken on at least three points. First, for the 

condit ional discussed above, the consequent is not true in and o f itself. For example, i f 

the antecedent happens to be 'a person is wo rk i ng at H K U ' , then neither the consequent 

nor the condi t ional w i l l be true. Second, when we want to prove that a universal sentence 

is false (e.g., al l pr ime numbers are odd), we w i l l deliberately choose a counterexample 

(e.g., the pr ime number 2 is not odd). I t is r id iculous for a crit ic to challenge, ' w h y don ' t 

you choose ' the pr ime number 11 is odd ' as the example?' In order to prove that an 

argument f o rm is inval id (i.e., not al l arguments in this fo rm w i l l have true conclusions 

when their premises are true)'^"*, what we should do is to choose an argument o f this fo rm 

wh ich has true premises but false conclusion as the counterexample and it doesn't matter 

whether or not there are many other arguments o f this fo rm whose premises and 

՚ 7 4 In other words, i fan argument form is valid, then all arguments of this form must have true conclusion if 
their premises are true. 

131 



conclusion happen to be trae.'^^ Th i rd , the argument ci ted by Cort ina and Dunlar (1997) 

could in fact st i l l be inva l id . Consider an extreme but possible case: suppose there are 

only two populat ions in our wo r l d : (1) ' N o r m a l ' populat ion wh ich comprises 95% non-

Schizophrenic and 5% Schizophrenic; (2) 'Super ' Populat ion wh ich comprises 100% 

non-Schizophrenia. I t is obvious that the sample A wh i ch comprises 5 0 % schizophrenic 

is st i l l probably f r om the 'no rma l ' populat ion. 

The last perspective on the logic behind the reasoning o f SST is about condit ional 

probabil i t ies. In SST, what we t ry to deduce is that when we obtain data D, such that 

P{D I Яц) is low, д я 。 ļ Z)) is also rendered suf f ic ient ly low to guarantee rejection o f HQ. 

But it is quite clear that the two condit ional probabi l i t ies P{D I Яд) and P{HQ I D) are 

completely di f ferent even though there are reports that many people st i l l believe that 

these two condi t ional probabil i t ies are equal 176 (Bakan, 1966; B i rnbaum, 1982; D iamond 

& Forrester, 1983). Furthermore, even though one may be aware that the two condit ional 

probabil i t ies are in general unequal one may st i l l th ink that a low value o f P{D I я 。 ) w i l l 

warrant a low value 0ĪP{Hņ I D). The reasoning is based on the probabil ist ic analogue 

o f contraposit ion: 

Same as reduct ion ad absurdum and M T , contraposit ion is also a va l id argument fo rm (or 

meta theorem) ' ' ' : 

'ズ 5 ՛ i f and only i f ' ~ 5 ~A' 

՚ " Baril and Cannon (1995) have made a similar mistake in criticizing Cohen'ร (1994) selection of 
examples. See also Cohen's (1995) reply. 
՚ 7 6 For further discussion of this fallacy of equating two inverse conditional probabilities, see Down , 1988; 
Eddy, !982. 

Sometime, contraposition could be used to refer the theorem Ά в <ř> ~B ^ ~A՝. These two 
representations could be shown to be equivalent with the use of deduction theorem. 
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Accord ing to the probabi l i ty condit ional theory (Jeffrey, 1964; E l l i s , 1973; Adams, 1998), 

the probabi l i t ies o f condi t ional sentences l ike ' ^ - > 5 ' are condit ional probabil it ies (e.g. 

P{A->B) = P{B\A)). Hence, 

P{B \A) = \ i f and only i f P(~ A\֊B) = i 

I t is this relat ion that renders some inferr ing a h igh value o f р(- A \~ B) f rom a high 

value o f P{B I A) or vice versa (i.e. P{B ᄂ4) « 1 if and on ly if ？ ( - メ卜 5 ) « 1 ) , and this 

inference is what we cal l ' the probabil ist ic analogue o f contraposi t ion ' (P-contraposit ion). 

As a low value o f P{D I я。 ) implies a high value o f P{~ D\Hņ) and a high value 

Р ( - ƒ ƒ 。 I D) impl ies a low value o f 尸 ( я。 I D) ( R u l e * ) ' ^ ^ some could deduce f rom the 

probabil ist ic analogue o f contraposit ion that a low value o f Р(Яд I D) wou ld result f rom 

a low value o f P{D\H^): 

a l o w value o f P{D\H^) 

=> a high value o f р ( - D\H^) (Ru le* ) 

=> a high value o f P{~ я。 I D) (P-contraposit ion) 

=> a low value o f р (я。 I D) (Ru le* ) 

That may explain why some think that a l ow value o f P{D I я。 ) w i l l warrant a low 

value o f Р(Яо I D) even i f they are aware that the two condit ional probabil it ies are 

unequal. However , s imi lar to the probabil ist ic с о и т е ф а Л o f reductio ad absurdum or 

M T , the probabi l ist ic analogue o f contraposit ion is also inva l id . Our previous examples 

could demonstrate this point . Nevertheless, the inference f rom a high value o f 

՚ 7 8 Since Р ( / ) |Яо ) + P(~D\Ho) = 1 , a l ow value oí P{D\Ho) w i l l i m p l y a h i g h va lue o f P{~D\Ho). S im i la r l y , 

P{Ho\D) + P{~Ho\D) =1， a h i g h va lue ofP(,~Ho\D) w i l l enta i l a l o w va lue o f P{Ho\D). 
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Բ(~ Z) ļ Яд ) to a h igh value o f р(；〜 Яо I D) could become va l id i f an addit ional condit ion 

has been met. Consider the fo l l ow ing f igure: 

щ 
I ι 

с 

а 

і 
һ 

D 

Figure 15 Condit ional probabi l i t ies 

Let a, b, c, d be the areas o f the corresponding regions. In other words, ¿7, ろ， с, d denote 

the probabil i t ies o f я 。 л 〜 і ) , Яо л Ű , 〜 / / 。 Λ 〜 Ζ ) ， and - Яо л Ζ) respectively and 

their sum o f these probabi l i t ies equals 1. 

P{-D\H,)< H, I D) iff 
a d 

、179 

Also, 

and 

d 

a<d 

a+b b+d 

i f f ab + ad <ad + bd 

i f f a<d (provided ЪфОУ 

i f f Ρ に н 。 л ~ D)<P{~ Η。へ D). 

i f f a + b<b + d 

i f f P{H,)<P{D), 

i f f la + b + c<a + b + c + d 

1 ք ծ = 0 ( a n d c j ; ^ 0 , ๔ ; í 0 ) , P{֊D I Ho) = Р{~Но \D)=l and the inequa l i t y mus t h o l d . 
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i f f (α + ծ ) + (ö + с) < 1 

{•:a + b + c + d ^ ì ) 

i f f Р { Н , ) + Р(֊ D ) < 1 . 

In other words, if ЬФО then the fo l l ow ing 4 condit ions are equivalent: 

P i - D \ H , ) < P ( ~ H , \ D ) , P(H,A֊ D) < P(~ H , A D ) , P ( H , ) < P ( D ) , 

P(H,) + Pi- D)<\. 

That is, i f P(H, ) < PİD) , Р{Н, л֊0)< P{~ H,AD), or P{H, ) + P ( ~ ű ) < 1 t h e n 

the probabi l ist ic contraposit ive P{~ я。 I D) is greater than or equal to the probabi l i ty o f 

the or ig inal condit ional ρ ( - ű I Яо) and thus the inference f r om a high value o f 

P{֊ Z) I Яц ) to a h igh value o f P(~ я 。 I Π) becomes va l id . In any situation in which we 

wou ld l ike to apply the probabil ist ic analogue o f contraposit ion we have to consider i f the 

condi t ion has been met. The above analysis may help us resolve the paradox o f 

conf i rmat ion proposed by Carl G. Hempel (1945a; 1945b) '^ ' . But when doing a realistic 

SST, how could we check i f the condit ions, say, 尸(я。) < ? (£>) , have been met? We 

cannot s imply assume that ң җ ) < P{D) since is tantamount to assuming that 

P{֊ D\HJ< Ρ ( - HQ\D), and it is exactly the point at issue. 

" ° Re ichenbach (1976 , pp .129-133) has shown s im i la r result . 

I t is also caUed ' H e m p e l ' ร paradox ' or 'Raven pa radox ' , w h i c h was proposed to i l lustrate a prob lem 
where c o n f i r m a t i o n theory v io la tes i n tu i t i on (o r more prec ise ly , a s h o r t c o m i n g o f N i c o d ' s c r i te r ion) -
W h e n w e w a n t t o test the theory that al l ravens are b lack , w e have to go out and examine ravens and see i f 
t hey are a l l b lack . B u t ' a l l ravens are b lack ' are l o g i c a l l y equ iva len t to 'wha teve r is not b lack is not a 
r a v e n ' . I f a b lack raven is a c o n f i r m i n g ev idence fo r a l l ravens are b l ack ' then a w h i t e th ing that is f ound 
to be non- raven (such as a sh i r t ) shou!d also be a c o n f i r m i n g ev idence fo r ' a l l ravens are b lack ' too , w h i c h 
does c lear ly v io la te our i n tu i t i on . For the d iscussion o f h o w H e m p e l ' ร paradox w o u l d vanish f r o m a 
p robab i l i s t i c po in t o f v i e w , see Re ichenbach, 1976; Sa lmon , 2005 . 
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Hagen (1997) also raised objections to the attack on the logic o f SST. He argues 

that Cohen (1994) has tr ied to find a way to relate the probabi l i ty o f Ho to 'countable' , 

'empir ica l ly based' relative frequencies and Cohen's ef for t led h im to define Ho and H] in 

ways that the SST does not a l low. In our response to Cort ina and Dunlar (1997), we have 

clearly shown that merely insisting that the hypotheses must be about the populat ion is 

not able to save the logic o f SST. Hagen (1997) also defends the logic o f the SST by 

arguing that arguments can be reasonable and defensible even when they are not logical ly 

val id in a fo rmal sense. I t w i l l be quite interesting to see how one could prove this point. 

But Hagen (1997) fai ls to do so. He merely gives an example to il lustrate this point: 

I f you contract AIDS, you wi l l probably die of some opportunistic infection 

within 10 years. 

You did contract AIDS. 

You wi l l probably die of some opportunistic infection within 10 years. 

This probabilistic argument is not formally logical because one could accept the 

premises but still reject the conclusion. The argument is, however, quite 

reasonable and defensible based on data (p. 22). 

Our rejoinder is two fo ld . First, this argument is not probabi l ist ic in the sense that the 

modal term 'probably ' attached to the sentence plays no role in determining the val id i ty 

o f the argument. Second, this argument is indeed an instance o f modus ponenร wh ich is 

certainly a va l id argument fo rm in proposit ional logic. That explains why this argument 

looks 'quite reasonable and defensible based on data' and no person could reasonably 

accept the two premises but reject the conclusion. 
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As Fa lk (1998) has argued, 'the faulty be l ie f that a statistically signif icant result 

makes Ho improbable and deserving rejection, is central to the N H S T reasoning. I f this 

bel ief is erroneous, the who le structure collapse: reject ing a hypothesis whose posterior 

probabi l i ty is moderate or h igh is unacceptable' (p. 798). 

5.6 Does p r o b a b i l i t y p rov i de an a p p r o p r i a t e measure o f the p laus ib i l i t y o f a 

hypothesis 

We have discussed the logic behind SST in the last section but there are, however, 

two intertwined assumptions that we have not yet chal lenged: (1) a hypothesis w i th high 

probabi l i ty is something good or something we have to a im at; (2) the low probabi l i ty o f 

a hypothesis provides us a good reason to reject the hypothesis. As we have discussed in 

Chapter 3， ta lk ing o f the probabi l i ty o f the hypothesis that is not an outcome o f a chance 

process is indeed uninte l l ig ib le and the attempt to ident i fy the probabi l i ty o f a hypothesis 

w i t h the probabi l i ty o f events is doomed to fai lure. Bu t for the sake o f argument, suppose 

we were able to assign probabi l i ty value to a hypothesis in the same way as we assign it 

to an event. Should we then take it for granted that a hypothesis w i th high probabi l i ty is 

really what we ought to a im at when we conduct research? First, i f a hypothesis achieves 

its highest probabi l i ty , i.e. 1， what i t means is that я is a necessary t ruth. But only a 

hypothesis vo id o f empir ica l content (e.g., the hypotheses wh ich consist o f solely analyt ic 

sentences such as 'a l l mathematics high achievers are h igh achievers in mathematics') 

could be a necessary t ruth. I t is clear that no one w i l l regard a hypothesis vo id o f 

empir ical content as a useful hypothesis that we ought to a im at in conduct ing empir ical 

research. Second, testabil i ty is a virtue o f hypotheses that we ought to a im at. A more 

testable hypothesis is one wh ich can be better tested. I f a hypothesis, going to one 
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extreme, is never susceptible o f test (either ver i f icat ion or fa ls i f icat ion), then it can hardly 

be regarded as scienti f ic. Generally speaking, a hypothesis w i t h more empirical content 

is more susceptible o f fa ls i f icat ion than the one w i t h less empir ical content. For example, 

'a l l swans are whi te and al l ravens are black' has more empir ical content than 'a l l swans 

are wh i te ' . Every instance that can be used to fa ls i fy the second sentence (e.g., the 

existence o f a whi te swan) can falsi fy the f irst sentence but not the vice versa (e.g., the 

existence o f a non-black raven can fals i fy the first but not the second sentence). The f irst 

sentence is thus more susceptible o f falsi f icat ion than the second one. As a result, the 

greater the testabil i ty or the more empir ical content the hypothesis possesses, the more 

improbable the hypothesis w i l l be, The intui t ion that a hypothesis w i th high probabi l i ty 

must be something good or something we have to a im at when conducting empir ical 

research is thus not jus t i f ied unless 'probabi l i ty ' here has another meaning - one that 

does not conform to the probabi l i ty calculus. In fact, as argued by Popper (1983, p.225), 

we have to dist inguish between the probabi l i ty o f a hypothesis w i t h respect to its chance 

and the probability o f a hypothesis w i th respect to its test. What we have already 

discussed is the first usage. 

For the second usage o f probability, a hypothesis w i l l be considered to be more 

probable (or to be having a higher probability) i f i t can stand up to more severe tests (or 

i t has some other virtues such as it is more simple and has greater explanatory power and 

fewer assumptions). I t is t r iv ia l that under this interpretation a hypothesis w i th high 

probability must be something good or something we have to a im at and on the other 

hand the l ow probability o f a hypothesis is a good reason for us to reject the hypothesis. 

In order to avoid conf i is ion, we fo l low Popper'ร (1983) suggestion in using the term 
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'degree o f c o r r o b o r a t i o n ' t o characterize the degree to wh ich a hypothesis has been 

tested and leaving the use o f 'p robabi l i ty ' only for those concepts that satisfy the 

probabi l i ty calculus (p.277). Can degree o f corroborat ion be treated in terms o f 

probabi l i ty calculus? I f a hypothesis H\ implies (or is said to be stronger than) another 

hypothesis Я2, every refutat ion o f Я2 w i l l necessarily be a refutat ion o f H\， but not vice 

versa. I t is thus impossible for the degree o f corroborat ion o f H2 to be greater than that 

H\. Bu t logical ly H\ w i l l be more improbable than Hi. ՚̂ ՜̂  Hence, even though 

corroborat ion could be treated in terms o f probabi l i ty calculus, i t wou ld be more closely 

related to the improbabi l i ty o f a hypothesis than to its probabi l i ty (Popper, 1983, p.231). 

A s we have discussed in 3.6, Popper (1957/1980, 1983) has suggested a formula 

for the measure o f the degree o f corroborat ion. But he had also stressed many times that 

what real ly concerned h im was not the way we define the degree o f corroboration. He 

d id not believe that such a numerical evaluation o f this degree wou ld have any practical 

signif icance, such as contr ibut ion to science.^^՚^ There is thus no need for us to delve into 

its details here. 

I n conclusion, ta lk ing o f probabi l i ty o f a hypothesis is i tsel f questionable, unless 

we are w i l l i n g to adopt a subjective interpretation o f probabi l i ty . But even so, a 

hypothesis w i th h igh probabi l i ty is not what we should a im at when doing scientif ic 

research, as a hypothesis vo id o f empir ical content wou ld achieve its highest probabi l i ty, 

՚ 8 2 Popper had indeed used another label * degree o f c o n f i r m a t i o n ' i n his ear l ier w r i t i ngs . See Popper, 1983, 
pp .228-230 fo r the reasons w h y he later changed the t e r m into 'degree o f c o r r o b o r a t i o n ' . 
1 " Here w e s t i l l assume that w e can ta lk about the p robab i l i t y o f a hypothes is . I t is as i f we are ta l k i ng 
about the p robab i l i t y o f an event E , and ๒ that case, i f E l imp l ies £ շ , the p robab i l i t y o f E 、 w i l l not be 

greater than that o f £շ. 
՚ 8 4 See Popper , 1983, p . 2 2 1 . 233 , 254 . 
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i.e. I . 'P robab i l i t y ' m igh t have another usage when we talk about the probabi l i ty o f a 

hypothesis. For this usage, 'the probability o f a hypothesis ' is tantamount to ' the degree 

o f conoborat ion o f the hypothesis'. I f probability could be expressed in terms o f 

probabi l i ty , i t w i l l be more closely related to the improbabi l i ty o f hypothesis than to its 

probabi l i ty. That is to say, using the concept 'p robab i l i t y ' that satisfies the probabi l i ty 

calculus to describe a hypothesis is absurd. A hypothesis w i th high probabi l i ty might 

have l i t t le empir ica l content or it is less corroborated, and thus i t cannot be something 

good or something we have to a im at when conduct ing scientif ic research. So far, we 

have seen w h y SST, or other statistical tests wh i ch enable one to decide between 

hypotheses on the basis o f the probabi l i ty that the hypotheses are true, has gone astray. 

We w i l l discuss in the next chapter i f there are any alternatives to SST that are on the 

r ight track. 

140 



Chapter 6 Alternatives to SST 

Many have noted the problems o f SST though not al l o f them genuinely 

understand the l imi tat ions and di f f icul t ies that we have discussed in the last two Chapters. 

As we have discussed in Chapter 5, the use o f SST has been cr i t ic ized in an unfair way. 

For example, i f we a im at using SST to address only the question o f whether an observed 

difference is produced by chance, then asking how to supplement SST so as to address 

the questions, such as ' H o w large is the effect?' or ' Is the effect large enough to be 

useful?' , is not a р г о Ы е т that we have to bother w i t h here.'^^ We w i l l focus here on 

whether there are any better alternatives to SST so that they could be used to tackle the 

problems that SST tries to solve, but fai ls. Nevertheless, there is a great number o f 

sources cr i t i c iz ing the over-reliance on SST and advocat ing that in report ing outcomes 

f rom research more widespread use o f confidence intervals (CIs) , amongst other 

statistical techniques, wou ld improve research communicat ion (for example, Cohen, 1994; 

Gumming and F inch, 2 0 0 1 ; Har low, Mu l iak , & Steige^^ 1997; May , 2003; Wi lk inson & 

Task Force on Statistical Inference, 1997). We w i l l see in the f irst section whether CIs 

are really able to tackle the problems encountered in using SST. In such a volume as this, 

we are not able to discuss al l suggested alternatives to SST, such as the effect sizes and 

Bayesian statistics. We, however, hope that our discussion o f CIs could shed l ight on the 

tenet that al l other suggested alternatives that are induct ive in nature wou ld suffer the 

same l imi ta t ion and in the last section we w i l l suggest how a methodological f ramework 

for doing quantitat ive research could resolve this problem. 

'お For h o w to supp lement SST, see, fo r example , K i r k , 1996, i n w h i c h he has proposed 40 d i f fe ren t ways 

to measure the e f fec t magn i tude . 

141 



6.1 Is the confídence interval an alternative to SST? 

In response to the challenges to SST, A P A Publ icat ion Manual has suggested that 

'Because conf idence intervals combine in format ion on location and precision and can 

often be d i rect ly used to infer signif icance levels, they are, in general, the best report ing 

strategy. The use o f confidence intervals is therefore strongly recommended' ( A P A , 

2 0 0 1 , p.22). Gumming and Finch (2001) have of fered four cogent reasons to advocate 

the use o f CIs , namely that " they are (a) readi ly interpretable, (b) are l inked to fami l iar 

statistical signif icance tests, (c) can encourage meta-analytic th ink ing , and (d) give 

informat ion about precis ion' (p.532). We w i l l see i f they real ly constitute reasons for 

regarding CIs as an alternative to SST. 

As w e have discussed in the last two chapters, researchers have severe 

misconceptions about SST. Could CIs be free f rom miscomprehension? A r e they real ly 

readi ly іпїефгеїаЬІе. Brandstätter (1999) has al leged that CIs are easier to understand 

than SST. 186 We can, however, hardly be opt imist ic , at least in Hong Kong . Even the 

Hong K o n g o f f i c ia l curr icu lum documents recommending for use in schools, for example, 

Syllabuses for Secondary Schools - Applied Mathematics (Advanced Supplementary 

Level), contains statements l ike: 'Conf idence interval for the mean o f a normal popuh t ion 

w i t h known variance: (Notes on teaching) I n general, teachers should point out that an 

interval estimate o f an unknown populat ion parameter (e.g. the mean μ) is a random 

interval constructed so that it has a given probabi l i ty o f inc lud ing the parameter' 

I 8 6 F i d l e r and G u m m i n g (2005) also ma in ta ined that there are benef i ts o f teach ing in ference v i a C I , rather 

than SST even t h o u g h they noted that a number o f m isconcep t ions about CIs had been reported in d i f fe ren t 

รณdies. 
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(Curr icu lum Development Counc i l , 1998， р.б4) '^^, a b ig blunder in interpreting CIs. 

Unquestionably, the curr icu lum statement is true to point out that it is the interval, but not 

the populat ion parameter o f interest, that is random. But it is false to assert that a 

particular С І has a given probabi l i ty o f inc luding the parameter purported to be estimated 

by the С І . As shown in the fo l l ow ing f igure, 100 dif ferent 9 5 % confidence intervals 

constructed f r om di f ferent data sets drawn f rom the same populat ion (w i th mean equals 

zero) were generated w i t h the use o f Maple 8: 

"Tas ^ 1 

Figure 16 100 di f ferent 9 5 % confidence intervals constructed f rom di f ferent data sets 

drawn f rom the same populat ion (w i th mean equals zero) 

1" The same statement cou ld be f ound เท another Ma thema t i c s Sy l labus : C u m c u l u m D e v e l o p m e n t C o u n c i l , 

1992, p . l 5 1 . ： : — ᄂ 
՚ 8 8 The in te rva l is r a n d o m in the sense that the sample mean is r a n d o m . O f course w e are not say ing that 
based on the par t i cu la r sample at hand the С І w o u l d va ry a l t hough th is po in t is, as reported by B l u m e and 
R o y a l l ( 2003 ) , o f ten confused by students in i n t roduc to ry stat ist ics classes. 

143 



It is noteworthy that a few o f the CIs in the f igure do not overlap. I f a 9 5 % С І d id really 

mean that there is a 9 5 % probabi l i ty that the true value o f the parameter being estimated 

lies inside the interval , the probabi l i ty that the parameter lies inside any two non-

overlapping (or mutua l ly exclusive) CIs wou ld be 2 x 0.95 = 1.9, wh ich is greater than 1. 

This is certainly an absurd result, and on that account, a 9 5 % С І does not mean that there 

is 9 5 % that the true value o f the parameter being estimated fal ls inside the С І . 

Besides, there is a more profound reason w h y the above іп Їефге Іа Ї іоп is mistaken. 

We use a standard С І problem as an example. Suppose we are dealing w i th a random 

sample o f size ท less than 30 f rom a normal d ist r ibut ion w i t h the mean μ and variance cr ， 

then '^ ' : 

τ = ^ ՜ յ ^ ， where ՝x and ŕ are the mean and the variance o f the random sample, S 

has the է d is t r ibut ion w i t h ท -1 degrees o f f reedom. Us ing t^ ^ to denote the value such 

that the area to its r ight under the curve o f the է d is t r ibut ion w i th V degrees o f freedom is 

equal to a ， i.e., P{T > = « , we have 

Pİ-ta,г.n֊^<T<ta,г,-^) = ^ ֊ c c . 

From these two equations, we get a (1 - α) 100% C I for the mean μ o f the populat ion: 

X - ^ a / 2 , « - l - ; ^ < y " < ^ + ^ a / 2 , . - | - ; ^ ' 

' Th i s is a standard resul t that can be found elsewhere. F o r e x a m p l e , M i l l e r , & Mi l le^^ 1999, p.285. 
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Here х and •ร2 are respectively the mean and variance o f a part icular sample, and they 

should not be confused w i t h the random variables Ճ and ś^.'^'^ There are at least four 

interpretations o f this С І constructed f rom the random sample: 

(C I i ) Р{Х ― í „ / 2 . „ _ ! •֊֊<μ<Χ + • ֊ I populat ion mean = μ) = 1-α 

(Ch) P(x - • — < μ < χ + r „ / 2 . „ _ , . I populat ion mean = μ) = \-α 

(СІз) P ( X - t a / 2 . n - i •-^<M<^ + (a/2.n֊ì • ^ . where populat ion mean = μ) = \-α 

(CLt) p(x-/„/2,„_, •-֊<μ<χ + /„；2,„_, where populat ion mean = μ)^1-α 

The difference between ( C I i ) and (CI3), or between (CI2) and (CI4), is simi lar to the 

difference between P(A I B) and P(A and B) . In the process o f getting the above 

inequality for the С І , the calculat ion is condit ional on the value o f populat ion mean. That 

is to say, Figure 13 could not be drawn wi thout f i rst decid ing what the true value o f the 

populat ion mean is. Hence, what we really assert is ( C I i ) or (CI2) rather than (CI3) or 

(CI4) when we say that the (1 - α ) 100% c i s have a probabi l i ty o f (1 - à) o f containing the 

mean μ o f the populat ion (Sober, 2005). 

' For d iscuss ion o f th is con fus ion , see Schle id , 1997. 
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On the other hand, probabi l i ty statements are referent ial ly opaque. 191 For 

example, it is k n o w n that for a fair die the probabi l i ty that the result o f the next throw is 

an odd number is 0.5. Even i f the result o f the next th row is 3， we cannot substitute ' 3 ' 

for Чһе result o f the next th row ' in the sentence ' the result o f the next throw is an odd 

number ' , w i thout af fect ing the truth o f the probabi l i ty statement, because the probabi l i ty 

that 3 is an odd number is certainly not 0.5. Accord ing ly , we cannot conclude f rom the 

truth o f ( C I i ) to the truth o f (СІ2) although (CI2) is an instantiat ion o f (C I i ) . What (C I i ) 

describes is that i f we apply this statistical procedure o f construct ion to dif ferent data sets 

drawn f rom the same populat ion w i th mean ふ we can expect to construct CIs that in the 

long run about (1 - α ) 100% o f them w i l l contain μ. When this procedure is applied to a 

single data set (CI2), the part icular С І constructed either includes μ, or it d o e s n ' t . A l l 

that we can be said o f this part icular С І is that it is constructed by a procedure that is 

described by ( C l i ) . The probabi l i ty is not real ly about this part icular С І for the С І either 

contains μ. (w i th probabi l i ty one) or i t does not (w i th probabi l i ty 0) . The misconception 

that (CI2) is true is very prevalent. Even those who are discussing the problems 

associated w i th SST and CIs wou ld st i l l commit this mistake. For example, in a response 

to Cohen's (1994) classic article against SST, Fr ick (1995c) endorsed the іп іефге їа ї іоп 

' 9 ' T r u t h about a g i v e n object is no t usua l ly in f luenced by the w a y o f r e fe r r i ng to i t . I n other words , i f the 

te rms A and в have the same re ference then te rm A can be subst i tu ted fo r t e r m в i n any sentence ๒ w h i c h 
В occurs , w i t h o u t a f f ec t i ng the t ru th -va lue o f the sentence. Fo r examp le , as 'Hesperus ' and 'Phosphorus* 

refer to the same planet , one can subst i tute 'Phosphorus ' , w i t h o u t loss o f t r u th , f o r 'Hesperus* in the 

sentence 'Hesperus is the p lanet V e n u s ' . Q u i n e (1980 ) has, however , a rgued that i n some contexts, w h i c h 

are ca l led ' r e fe ren t i a l l y opaque ' , in te rsubs t i tu t i v i t y does not necessar i ly occu r w i t h o u t loss o f t ru th (pp. 

139-159) . Fo r e x a m p l e , that ' D a v i d k n o w s that Phosphorus is Phosphorus ' is t rue does not i m p l y that 

' D a v i d k n o w s that Phosphorus is Hesperus ' is t rue. 

192 B r e w e r (1985) has argued that damage does not necessar i ly occu r w h e n researchers regard the parameter 

/ і as a var iab le except that w i t h th is t reatment must come the ph i l osophy i n w h i c h i t m akes sense to do so. 
I n par t icu lar , i f p robab i l i t i es are construed as degrees o f be l ie f , we can say, f o r instance, we are 9 5 % sure 
that the parameter fa l ls inside a par t icu lar con f idence in te rva l , in w h i c h one starts w i t h p r io r d is t r ibu t ion o f 
the parameter and finds a pos ter io r p r o b a b i l i t y d i s t r i bu t ion , w h i c h is the cond i t i ona l p robab i l i t y d is t r ibu t ion 
o f the parameter g i v e n the data. Th i s Bayes ian in terpretat ion o f CIs is p h i l o s o p h i c a l l y cont rovers ia l and w e 
w i l l no t de lve in to its deta i l here. 
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that Чһе 9 5 % confidence interval is an interval w i t h i n wh ich the true value is 9 5 % 

probable to f a l l ' (p. 1102). 

In a survey o f 180 undergraduate psychology students, they displayed 

misconceptions about both the def in i t ion o f a С І 193， and how aspects o f С І relate to each 

other^^՚* (Fidler & Gumming , 2005). Besides, even wor ld- leading researchers have been 

found in d i f ferent studies (Cumming , Wi l l i ams & Fidler, 2004) to have a range o f serious 

misconceptions about CIs. That may explain w h y Smithson (2003) c la imed that 'perhaps 

the most obvious d i f f i cu l t y w i th confidence intervals lies in how we interpret what the 

confidence statement means' (p.16), and w h y Thompson (1987) concluded that ' . . .bo th 

signif icance tests and CIs are subject to misinterpretat ion. The issue in choosing between 

the two is therefore not whether one is immune f rom interpretation but rather wh ich o f 

the two is more useful to a thoughtful reader' (p.191). Furthermore, by ident i fy ing 

di f ferent misconceptions surrounding CIs by textbook wri ters, Brewer (1985) found that 

these misconceptions appeared to be related to the interpretations o f CIs and their relation 

to SST. Besides, some even argued that the logic o f hypothesis test ing is relat ively 

uncomplicated and uncontroversial compared to that o f CIs (S imon, unpublished). 

Therefore, CIs are not real ly readily іпІефгеІаЬІе and being free o f miscomprehension is 

not a reason that we have to replace SST by CIs. 

I n the last Chapter, we have argued that the logic behind SST is fal lacious. Could 

CIs escape the logic o f SST and thus of fer a defensible procedure for making a 

dichotomous decision on the nul l hypothesis. Being regarded as a means o f estimating 

For examp le , m a n y o f t hem fa i l ed to real ize the in fe ren t ia l nature o f CIs . 

• O n l y 1 6 % o f t h e m k n o w h o w the С І w i d t h is related to the sample size. 
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the value o f a parameter, CIs can indeed be used to either reject or retain the nul l 

hypothesis wh ich specifies the value o f the parameter. To test the nul l hypothesis, we 

could determine whether the value o f the parameter specif ied in the ทน11 hypothesis lies 

w i th in the С І . I f the value o f the parameter lies outside the С І , then the nul l hypothesis 

could be rejected at the level o f confidence. On the contrary, i f it lies inside the С І , then 

the ทน11 could not be rejected at that level. I t appears that we could now be able to test a 

hypothesis concerning a parameter in a more direct way - a С І could in form us the range 

in wh ich we should locate the parameter rather than the range in wh ich we should not 

locate it. Is it real ly so? First, we are indeed not sure whether the С І calculated f rom the 

observed data does or does not contain the value o f the parameter specified in the nul l 

hypothesis. A s we have discussed above, we cannot even assign a probabi l i ty to the 

statement about the part icular С І . A l l we could know is that in the long run about 9 5 % o f 

the CIs w o u l d contain the parameter. Hence, it is incorrect to say that a particular С І 

could in form us the range in wh ich we could locate the parameter. Second, in SST we 

begin w i th a nu l l hypothesis wh ich specifies the value o f a single parameter. From this 

parameter, we develop, say, a sampling d ist r ibut ion against wh ich the observed sample 

statistic is compared. Bu t for CIs, we start f r o m the observed sample statistic, and 

establish a С І against wh ich we test an inf in i te number o f parameters (Hagan, 1997). A l l 

hypotheses w i t h specif ied parameters that are outside the С І wou ld be rejected. The logic 

invoked here is, as i l lustrated by Hagan (1997): 'The probabi l i ty that a populat ion w i th 

" th i s " parameter produced '4h is" datum from wh i ch " t h i s " confidence interval was 

constructed is very low. Therefore, we reject the idea that the datum came f rom such a 

populat ion. ' (ร)22). In this regard, the logic is the same as that behind SST and it is a 

148 



plain mistake to regard the С І estimation as the inverse operation to S S T / ^ ^ C I S can thus 

hardly escape the logical fal lacy, discussed in the last Chapter. We may agree w i th 

McGrath (1998) that test ing the nu l l hypothesis may not be the pr imary reason for some 

who prefer CIs , or Thompson (1998) that we are do ing l i t t le more than SST i f we do 

mindlessly interpret a С І w i t h reference to whether the С І subsumes zero^^^. But these 

cannot sway our conclusion that CIs are no better than SST for the purpose o f testing nul l 

hypothesis. 

Moreover, when compar ing mul t ip le means, researchers are sometimes 

recommended to compare the results f rom CIs and decide i f the intervals o v e r l a p . T h e 

difference is judged signi f icant when there is no overlap, and not signif icant when there is 

overlap. This procedure can, however, lead to mistaken conclusions. Schenker and 

Gentleman (2001) have shown that even though CIs over lap, there could be a statistically 

signif icant di f ferent between the means. In other words, a rejection o f the nu l l hypothesis 

by this overlap method entails rejection by the fami l ia r SST, but not vice versa. 

Therefore, the overlap method is more conservative and less power fu l than the standard 

method and the use o f С І in comparing mult ip le means is thus not as useful as some have 

expected. 

There are o f course many suggested virtues o f CIs. For example, according to 

McGra th (1998), the basic question under SST is 'based on this sample, what is our best 

195 I t is w o r t h n o t i n g that such mis take rea l ly exists. F o r examp le , N i c h o l l s (2000) exp l i c i t l y a l leged that 
' T h e repor t ing o f con f i dence in terva ls w o u l d a l l ow readers to address the quest ion " G i v e n these data and 
the cor re la t ion ca lcu la ted w i t h t h e m , wha t is the p robab i l i t y that Ho is t rue?" rather than " G i v e n that Ho is 
t rue , wha t is the p r o b a b i l i t y o f finding a cor re la t ion th is s t rong(or s t r onge r )? " ' (p .984) 
՚ 9 6 Whe the r i n rea l i ty peop le are c o n f o r m i n g to the i r ' w i s h e s ' is an issue that w e w i l l discuss be low. 
197 A b u n d a n t examples c o u l d be f ound ш Schenker & Gen t l emen , 2 0 0 1 . 
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guess about whether or not р equals 0?，， but CIs a l low for a more interesting question: 

'based on this sample, what is our best guess about the value o f р？，. A n d , perhaps more 

important, many have cla imed that CIs are able to give more in format ion about the effect 

size'^^, and thus useful for conduct ing meta-analysis and about r e p l i c a t i o n a n d 

precision^^^v B u t as we have argued in previous Chapters, SST does not purport to 

provide the in format ion on these areas. Hence, even though CIs could provide 

informat ion on these areas, the use o f CIs in these aspects serve merely as a supplement 

to SST. There is thus no need for us to delve here into the details o f CIs. Moreover, 

some o f the claims about the usefulness o f CIs are dubious. For example, Matthews 

(1998) has argued that 'CIs share many o f the same problems o f interpretation as P-

values. Most important ly , they also share an inabi l i ty to take into account the plausibi l i ty 

o f the hypothesis under test. As such, 95 per cent confidence intervals are also prone to 

exaggerate both the size and the "signif icance" o f intr insical ly implausible effects.' A n d 

we may note, in passing, that some other objections to the use o f CIs have been raised^*^^. 

Moreover , even though the integrity o f CIs had not been threatened by these 

arguments, it w o u l d st i l l be dubious whether CIs being used merely as an algori thm for 

making inference f rom data could really serve as a supplement to SST. In fact, CIs have 

198 The CIs about e f fec t sizes are not the same as the C Is about means. See, f o r example , G u m m i n g & 

F i n c h , 2 0 0 1 ; Sm i t hson , 2 0 0 3 ; T h o m p s o n , 2002 , f o r detai ls . 

'^^ For h o w CIs fac i l i l i t a te meta-ana ly t ic t h i n k i n g o r i ts ro le i n meta-analys is , see S i m & Rei^^ 1999; 

T h o m p s o n , 2002 . 

2 ° ° See G u m m i n g , W i l l i a m s & F i l d ^ 2004 . 

2 ° 1 To some researchers (e.g. , C u m m i n g & F i n ^ ^ 2 0 0 1 , M o n t o r i , et a i . , 2 0 0 4 ) , C I w i d t h cou ld ref lect a 

number o f aspects o f p rec is ion o f a study, i n c l u d i n g the amoun t o f va r i ab i l i t y in the popu la t i on , the sampie 

size, s a m p l i n g error , and the amoun t o f error i n the dependent var iab le . 

2D2 F o r examp le , see Se iden fe ld , 1979 fo r c r i t i c i sm leve led at the Neyman-Pea rson theory o f CIs and M a y o , 

1981 fo r re jo inder to th is c r i t i c i s m ; see W a l l e y , 1991 (sect ion 7.5) f o r arguments against the use o f CIs and 

see Smi thson , 2003 f o r defense. F o r a more recent c r i t i c i sm o f C I s , see Paw i tan , 2 0 0 1 , sect ion 5.10. 
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been recommended as a supplement in many di f ferent f ie lds for d e c a d e s a n d the 

changes o f editor ial po l icy in journals appeared to be quite effect ive, but reporting o f CIs 

does not guarantee that they w i l l be used to interpret the data. Di f ferent studies on the 

effect o f editor ial po l icy on statistical practice show that the compliance was superficial. 

For example, Savitz, Тою and Poole (1994) found that al though 7 0 % o f articles in the 

American Journal of Epidemiology reported CIs, the inferences were based merely on the 

location o f the nu l l value w i t h respect to the bounds o f the С І , i.e. CIs were st i l l used as a 

means to test hypotheses. A n d Fidler, et al. (2004) also found that the authors presented 

CIs and not р values seldom use CIs to jus t i f y their іп іефге іа і іоп o f the data, as 

suggested by the t i t le o f their paper 'Edi tors can lead researchers to confidence intervals, 

but can't make them th ink ' . In other words, even though researchers know that SST has 

many insurmountable problems and accept the recommendat ion that CIs could serve as a 

supplement to SST, they either st i l l use SST w i th an attachment o f a report o f CIs or 

s imply use CIs as an alternative to SST, wi thout know ing that s imi lar insurmountable 

problems w o u l d be encountered when using CIs to test the nul l hypothesis. We w i l l 

discuss in the next section why such phenomena happen and see i f i t is possible for us to 

have an a lgor i thm other than SST or CIs for testing hypothesis. 

6.2 Any other algorithms for making inference f rom data? 

As noted in the previous section, there are formulae for constructing CIs for the 

purpose o f test ing hypotheses or estimating the parameter, such as means, specified in the 

nu l l hypothesis. The logic behind CIs is as simple as that behind SST. N o t much extra 

2 ° 3 Over t w e n t y j o u r n a l s ๒ educat ion and psycho logy n o w requ i re C Is o r e f fec t size repor t ing (Thompson , 
2002 ) . See also Publication manual of the American Psychological Association (5th Ed.) ( А Р А , 2001 ) , 

Publication Manual, Memory ά Cognition ( L o f t u s , 1993) , Journal of Consulting and Climcal Psychology 
( K e n d a l l , 1997) . 
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effort is required i f CIs are merely used as an alternative to SST for testing the nul l 

hypothesis. In this connect ion, a deal could easily be made i f researchers are merely 

requested to report CIs or s imply to switch f rom SST to CIs in test ing the nu l l hypothesis. 

On the other hand, when CIs are used as a supplement to SST, for example, for 

measuring effect sizes, researchers have to confront at least two daunting technical 

d i f f icu l t ies: the use o f noncentral distr ibut ion, wh i ch are less fami l iar to many researchers, 

and the lack o f a generic and ready-made formula for comput ing CIs for effect sizes 

(Thompson, 2002). I t is thus understandable w h y people prefer using CIs to test the nul l 

hypothesis, or to estimate the parameter specif ied in the nu l l , rather than using it to 

measure effect sizes. That explains why using SST or CIs to test the nul l hypothesis 

could st i l l be so prevalent, especially when many researchers are st i l l conceiving these 

practices as an a lgor i thmic method for conduct ing research ― what they thought they have 

to do is to design an experiment and to col lect data and there is no need for them to 

bother about the inferences at al l as there are well-established algori thms or automatic 

rules for mak ing inferences f rom the data. 

Look ing for an algor i thm or an automatic rule for mak ing inferences f rom the data 

might be a natural quest to many researchers. Since both SST and CIs encountered 

intractable problems in testing the nu l l hypotheses, are there any other statistical tests that 

can be free f rom these problems in prov id ing algor i thms for testing the nul l hypotheses? 

In what fo l l ows we w i l l consider three di f ferent cases and see i f they could shed l ight on 

this question. 
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First, undoubtedly the calculations involved in SST or CIs are algor i thmic, at least 

in the sense that abundant computer software are now available for researchers to perform 

these calculations after input t ing the data. But it is also important to see, behind the 

computations, i f there are any assumptions o f wh ich v io la t ion wou ld give incorrect result. 

Indeed, before we conduct a test we have to check i f al l requirements have been met. For 

example, when we conduct a SST to compare groups (say, to test i f the group o f students 

who were taught by a teacher making use o f a new teaching strategy could perform better 

than a normal group in a standard mathematics test), we could compute the standardized 

sample mean on the assumption that the sampl ing d is t r ibut ion is normal ( in case the 

populat ion variance is known) and fo l l ow the standard procedures o f SST as discussed 

before. A n d it is the central l im i t theorem that gives a remarkable result about the 

sampling distr ibut ion o f the sample mean so that we can make inferences f rom data 

wi thout bother ing about the distr ibut ion o f the populat ion. Many textbook writers 

reassure the readers that ๒ one-sample z-test the sampl ing distr ibut ion o f the means f rom 

very non-normal populat ions w i l l become normal as the sample size աշէ63Տ6տ?°՛՛ But the 

question that h o w many observations must be used when comput ing the sample means so 

that the normal distr ibut ion w i l l be a fa i r ly good approximat ion to the sampl ing 

distr ibut ion o f the means is often ignored by the researchers. Some recent writers have 

made good use o f computer algebra system to answer this question empirically.^"^ Let 

us consider a un i fo rm distr ibut ion wh ich is usually a standard i l lustrat ion o f the central 

l im i t theorem. We use Maple 8 to generate 10000 random numbers f rom [0, 1], 

s imulat ing a un i fo rm distr ibut ion บ (0， 1). Figure 17 shows the histogram o f this 

simulated populat ion: 

5?で See, f o r examp le , H o p k i n s , H o p k i n s , & Glas^^ 1996, pp. 158-164; M o o r e & M c C ^ ^ 2006, pp .362-364. 

շ 0 5 See, f o r exampÍe , K a r i a n and Tan is , 1999, pp .106-114 ; B rase l ton , 2003 , pp .427 -437 . 
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Figure 17 Simulat ion o f the un i fo rm distr ibut ion บ (0, 1) 

The standardized sample mean (or called One-sample ζ statistic) is calculated assuming 

the populat ion mean and populat ion variance are known . The effect o f the sample size 2 

on the d is t r ibut ion o f the sample means is shown in Figure 18. I f w e increase the sample 

size to 20， there w i l l be better agreement between the plot o f sampl ing distr ibut ion o f the 

means and the normal curve. 

ท =2 ท =20 

Figure 18 The histograms o f the standardized sample means when ո =2 (L ) and ท 

=20 (R) and the corresponding normal curve for the parent un i fo rm populat ion f / ( 0 , l ) 
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Consider an exponential d istr ibut ion w i th probabi l i ty density funct ion f { x ) = e~\ where 

0 < д: < 0 0 . We repeat our computer experiment (also assuming that the populat ion mean 

and populat ion variance are known) and the histogram o f this simulated exponential 

populat ion is shown in Figure 19 whi le the histograms o f sampl ing distr ibut ion o f the 

means when ท =2 and ո =20 and the corresponding normal curves are shown in Figure 20. 

j " ļ 

liiļ 

Figure 19 Simulat ion o f the exponential d istr ibut ion w i t h probabi l i ty density 

funct ion f { x ) = ๙^ 
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« =2 ท=20 

Figure 20 The histograms o f standardized sample means when ห =2 (L ) and ท =20 

(R) and the corresponding normal curve for the parent populat ion w i th probabi l i ty density 

fonction f {х) = 6՜" 

In these t w o examples, we start w i t h distr ibut ions whose curves do not look l ike a 

normal curve but plots o f sampling means are approximately normal when each mean is 

based on only 20 or even 2 values. Some may thus th ink that in general the central l im i t 

theorem applies w i t h small sample sizes. But is i t the case? Consider the lognormal 

distr ibut ion^"* wh ich has a skewed and heavy-tai led probabi l i ty curve as shown in Figure 

2 1 . 

I t is b io log ica l science w h i c h f i rs t in t roduced l ogno rma l d i s t r i bu t i on especia l ly w h e n exponent ia l g r o w t h 
is c o m b i n e d w i t h fu r ther symmet r i ca l va r ia t ion . B u t the d i s t r i bu t i on has m u c h m o r e appl icat ions nowadays . 
F o r a general d iscuss ion o f l o g n o r m a l d is t r ibut ions and h o w it is used across d i f fe ren t areas o f science, see 
L i m p e r t , Stahel , and A b b t , 2 0 0 1 . 
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Figure 21 The histogram o f a lognormal distr ibut ion 

Same as before, 20 observations are used to compute each sample mean and the plot o f 

the means is shown in Figure 22. 

Figure 22 The histogram o f standardized sample means when ท =20 and the 

corresponding normal curve for the lognormal distr ibut ion 

157 



This t ime the p lo t o f the means is poor ly approximated by a normal curve, part icularly in 

the left ta i l , as indicated in Figure 22. I f we increase the sample size to 40， the 

approximat ion is better though as a whole i t st i l l remains poor. A n d the plot o f means 

looks better when the sample size increases to 80 (see Figure 23 for ท =40 and ท = 80). 

As a result, we could get good approximat ion w i th 20 observations in some cases but 

there are cases where more observations are needed. 

« = 40 « = 80 

Figure 23 The histograms o f standardized sample means when « = 40 (L ) and ท 

=80 (R) and the 0 Օ Մ 6 տ բ օ ո ( Ս ո £ normal curve for the lognormal distr ibut ion 

N o t on ly z statistic but also է statistic (wh ich is supposed to have Student'ร է 

distr ibut ion when the populat ion variance is not known , that has been mentioned in 

Section 2.2) is sensitive to the populat ion f rom the sample is d r a w n . F i g u r e 24 shows 

the p lot o f sample է statistics for samples w i t h size 20 drawing randomly f rom the 

lognormal distr ibut ion and the graph o f the corresponding է d istr ibut ion (w i th 19 degrees 

For fu r the r d iscuss ion on the pract ica l p rob lems w i t h Student 's t, see W i l c o x , 2 0 0 1 , p p . 6 7 - 9 1 . 
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o f f reedom). I t is obvious that the actual d istr ibut ion o f sample է statistics is skewed and 

deviated s igni f icant ly f rom the է d istr ibut ion i f the sample size is 20 (the approximat ion is 

better but st i l l not so good when the sample size increases to 80) 

« = 20 « = 80 

Figure 24 The histograms o f the sample է statistics taken f rom a lognormal 

d is t r ibut ion when « = 20 and « = 80 and the curve for է (19) distr ibut ion 

Since the left tai l o f the actual sampl ing distr ibut ion is skewed and its left tai l is 

much thicker than the է d istr ibut ion, the actual probabi l i ty coverage w i l l be substantially 

less i f we compute what we claim is a 0.95 С І for the mean. We use Map le 8 to select 

5000 random samples (w i th size 20) f rom the lognormal distr ibut ion and calculated the 

ratio o f the samples wh ich really lie inside the 9 5 % С І (i.e. [ ֊ a , a] , where a = 

2.093024054, computed f rom the է (19) d istr ibut ion). I t is found that on ly 86.4% o f 

samples are covered by the С І . Simi lar errors w o u l d occur when we estimate Type I and 

Type I I errors. Hence, even though we suppose the problems sunounding SST did not 

exist, the computat ion o f CIs would be inaccurate and the control over the Type I error 

wou ld be poor i f the samples w i th insuff ic ient sample size are taken f r om populations 
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wi th lognormal d is t r ibut ion. In other words, not only SST but also other inferences f rom 

data (such as comput ing CIs) wou ld be sensitive to v iolat ions o f assumptions. A n d 

checking whether the assumptions have been vio lated is certainly not an algor i thmic 

process. 

Second, in many cases when researchers use SST to compare groups, the genuine 

ทน11 hypothesis they are go ing to test is that the groups come f r om the same populat ion, 

i.e. the probabi l i ty curves associated w i th the groups are identical. For instance, the 

observed result that renders us rejecting a nul l hypothesis about the means w i th Student's 

է is certainly an indicat ion that the probabi l i ty curves o f the groups d i f fer in some manner. 

However, is the converse also true? N o w suppose, after conduct ing a SST, we have to 

accept the nu l l hypothesis that the means o f the two groups are equal. Could we thus 

conclude that the probabi l i ty curves associated w i t h the groups are identical?. The 

answer is yes i f we assume that the means must d i f fe r i f the probabi l i ty curves d i f fer 

(Wi lcox , 2001， p.87). However, this assumption is p la in ly false. For example, we can 

use Maple 8 to draw two dif ferent probabi l i ty curves that have equal means (1.66) and 

variances (4.66) (see Figure 25). 
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Figure 25 The probabi l i ty curves o f a lognormal and a normal distr ibut ion that 

have equal means (1.66) and variances (4.32) 

Hence, mere a compl iance w i th the algor i thm is not enough for mak ing correct inference. 

In this case, maybe a graph o f the data from these two samples could help in avoiding this 

t r iv ia l mistake. 

Th i rd , there are many cases in wh ich very d i f ferent data can give rise to the same 

level o f achieved signif icance, the same correlat ion, and the same regression equation 

(Anscombe, 1973; Macdonald, 2002). For example, consider the four data sets o f 

ordered pairs given ๒ the f o l l ow ing Table 4: 
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Р" 

X l У\ X2 Уі Хъ Уъ Xi ァ 4 

4 4.27 4 3.1 4 5.39 8 6.58 

5 5.67 5 4.74 5 5.73 8 5.76 

6 7.24 6 6.13 6 6.08 8 7.71 

7 4.82 7 7.26 7 6.42 8 8.84 

8 6.95 8 8.14 8 6.77 8 8.47 

9 8.81 9 8.77 9 7.13 8 7.04 

10 8.04 10 9.14 10 7.45 8 5.25 

11 8.33 11 9.26 11 7.81 8 5.56 

12 10.84 12 9.13 12 8.15 8 7.91 

13 7.58 13 8.74 13 12.75 8 6.88 

14 9.96 14 8.1 14 8.84 19 12.5 

Table 4 Four data sets o f ordered pairs 

In each data set, there are 14 ordered pairs. They al l give rise to the same means o f the 

x 'ร (9.0) and / ร (7.5), the same regression line {y = 0.5x + 3 ) , the same correlation 

coeff ic ient (0.67), and the same level o f signif icance (0.02). But we could see f rom 

the their graphs (as shown in Figure 26 ― 29) that not al l o f the data sets conform to the 

theoretical descriptions, such as the result o f regression analysis. Figure 26 shows that 

there is probably a linear relationship between the variables and it conforms to what most 

o f us anticipate when a regression analysis is per formed. But in the second data set the 

relationship between the variables is perfect ly nonlinear and it is dubious whether there is 

any random variat ion (y seems to have a perfect ly smooth curved relation, such as 

quadratic, w i th X). The th i rd data set shows a perfect linear relationship between the 

variables except fo r one outl ier. The regression l ine obtained is thus deviated f rom the 

one that perfect ly fits the points excluding the out l ier. For the fourth data set, the data 

are quite consistent w i t h the assumptions o f a linear relationship ― homogeneity o f 

variance and a normal ly distributed error term even though al l the variat ion on X comes 

f rom only one point . 

162 



12 

10 

8 

6 

4 

2 

О 

у = 0.5х + 3 . 0 0 0 9 

R^ = 0.6668 

10 15 

Figure 26 Graph o f the f i rst data set 
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Figure 27 Graph o f the second data set 
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Figure 28 Graph o f the th i rd data set 
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Figure 29 Graph o f the four th data set 

Th is case shows that sometimes statistical tests are not suff ic ient for us to decide 

between the models on the probabi l i ty that the models are true, and that data could 

undermine a model and that this could influence our confidence in the results o f the 

statistical tests. For example, the graph o f Figure 27 suggests that the linear model for 

the second data set is misspecif ied although, f o l l ow ing the algori thms for f ind ing level o f 

achieved signi f icance, correlation coeff icient and regression equation, all data sets give 

rise to the same results. It is wor th not ing that in this case, un l ike our first example in 

wh ich we challenge i f all assumptions have been met, data could cast doubt on the 

signif icance test but w i thout challenging on the assumptions on wh ich it is based. Our 

discussion here is not on ly applicable to regression analysis but also to, for example, 

analyses o f variance ( A N O V A ) and է tests (Macdonald, 2002). Hence, whenever any 

statistical test is applied we must be cautious that unexpected patterns o f results can affect 

the conclusions that should be drawn f rom it. 

F rom the discussion o f these three cases, we could see that having only a 

compliance w i t h the algor i thm or r ig id rules dictated by SST, CIs or any other statistical 
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theory is not sufficient for drawing a good inference from data. We should be cautious 

about the assumptions o f the tests. Sometimes the violation o f these assumptions could 

lead to incorrect results. Also, particular consideration should be given to the data, which 

could sometimes be able to strengthen or undermine the hypothesis. The list could be 

extended to a considerable length (Macdonald, 2002). In a nutshell, it is not reasonable 

for us to expect the existence of a statistical test providing algorithms or rigid rules by 

conforming to which all problems about testing hypotheses could be solved. 

We have now come to a situation where both SST and с Is have insurmountable 

problems in testing hypotheses, and there are no other statistical tests that could provide 

algorithms to enable one to decide between hypotheses merely on the basis of these 

algorithms. It seems that searching for a panacea that could replace SST for testing 

hypotheses is doomed to failure. Then, what practices should we adopt in testing 

hypotheses? We wi l l address this question in the next section. 

6.3 Induct ion versus falsifîcation 

As Macdonald (2004) has argued, all forms of statistical inference, of which SST 

is certainly one, involve the following characteristics: observations are made, a 

probability is computed, and a conclusion is drawn. Making statistical inferences 

involves reasoning on the basis of incomplete information and does not lead to 

necessary conclusions. And it is this reason that probability comes into play. Besides, it 

was argued that statistical reasoning is a sort of induction based on an inference with 

some missing premises, i.e. enthymemes (e.g., Macdonald, 2004). But induction is not 

deductively valid, that is to say, the truth of the premises cannot guarantee the truth of 
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the conclusion. Could we justify induction and statistical reasoning, with the help of 

enthymemes? Certainly, it is always possible to construe induction as an enthymeme. 

But it does not help much. Induction is still logically invalid. Because i f enthymeme 

does work in this way, all invalid arguments would be turned into valid arguments^*^^. 

For example, we know that the following argument is invalid: 

David is a mathematics teacher 

Hence, David is an expert in Sudoku 

We could add the sentence 'Any mathematics teacher is an expert in Sudoku', or simply, 

'David is an expert in Sudoku' as a missing premise, then the argument wi l l become 

pretty valid. Hence, enthymeme cannot help in turning induction into valid inferences 

unless we are prepared to accept that there are no invalid arguments at all. 

We have concluded from the preceding discussion that both SST and CIs have 

insurmountable problems in testing hypotheses, and there appear to be no other 

statistical tests that could provide algorithms to enable one to decide between 

hypotheses merely on the basis of these algorithms. Do these problems arise from the 

inductive nature of statistical tests? I f so, could scientific research be conducted without 

induction? We wi l l discuss these questions in what fol lo พร. 

In science, the hypotheses usually consist of universal statements. Unlike singular 

statements such as 'David is a mathematics teacher', universal statements cannot be 

proved or conclusively confirmed. For example, 'all ravens are black' cannot be 

established with absolute certainty no matter how many black ravens have been 

' For fu r ther d iscuss ion on th is issue, see Musg rave , 1999a, 1999b. 
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observed. It is thus commonly believed that the hypotheses in science cannot be 

conclusively confirmed^^^. What researchers can do is to make use of induction, say, 

The raven observed at t\ is black 

The raven observed at էշ is black. 

The raven observed at t„ is black 

Hence, all ravens are black. 

This inference looks perfectly sensible, although it, unlike deduction, is not logically 

watertight, for the truth of all premises does not guarantee the truth of the conclusion. 

No matter how big ท is, it is still possible that the next observed raven is not black. This 

sort of inferences ÍS known as ' inductive inferences' in which we move from premises 

about singular statements, such as those express the results o f observations or 

experiments, to a universal statement. A received view, at least before Karl Popper, is 

that science is characterized by the use of induction. And it is Popper who has argued 

forcefully that this view is mistaken. 

Although inductive inferences are not deductive, they nonetheless seem to be a 

perfectly legitimate way of forming our beliefs about the world. For instance, we 

believe that all children under 2 years old are unable to solve differential equations 

because all children under 2 years old that we have observed are unable to do so; the sun 

wi l l rise tomorrow because the sun has risen every day up until now. The list can go on 

indefinitely. Could we justify these seemingly ubiquitous inductive inferences? To this 

question David Hume gave a negative answer. Admitt ing that we use induction all the 

շ 0 9 Fo r fa l lab i l i s ts , a l l k n o w l e d g e is f a l l i b l e , that is to say, not o n l y sc ien t i f i c theory but also al l other factua l 
statements cannot be establ ished w i t h absolute certainty.* 
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time, in daily-life as well as in science, Hume maintained that our use of induction is 

merely a matter of brute animal habit (Hume, 1739/1990). It appears that when making 

inductive inferences, we are based on a principle called the 'uniformity of nature' which 

states that the course of nature continues uniformly over time and space. Is this 

principle true? Or, could it be justified? It is obvious that this principle is neither a 

purely logical truth nor a priori truth, like ' i f Dodo is a black cat then Dodo is black', 

since a world violating this principle is conceivable. But can it be justified empirically? 

Suppose up to this moment this principle is true for all instances we have examined, this 

still cannot constitute a justification to the principle since the argument from all these 

examined instances to the truth of this principle is itself based on this very principle - it 

is begging the question. Hume thus concluded that induction is not justifiable. I f we 

accept that to reason in an unjustifiable way is irrational and induction is unjustifiable, 

then we must conclude that to reason with the use of induction is irrational. But in 

science, or in daily-life, it seems that we reason, and must reason, with the use of 

induction. Does it imply that we are, and must be irrational? 

Popper (1957/1980) agreed that the various difficulties of induction are 

insurmountable, but he argued that science could make no appeal to induction. His 

basic idea is that: confronted with an experience-transcending hypothesis н in science, 

we could either try to justify H, give reasons to it, show that it is true or highly probable, 

or try to criticize it, give reasons against it, show that it is false (Musgrave, 2004). 

Being experience-transcending, н cannot be justified with only experience. According 

to what we have discussed, invoking unjustifiable induction to justify н is itself 
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unjustifiable, and to show that н is highly probable also does not work. Hence, it leaves 

only the latter option to us. 

For the latter option, there are two possible outcomes. First, we succeed in 

falsifying the hypothesis, that is to say, the hypothesis is shown to be false^'^. The 

hypothesis wi l l then be expelled from the body of science. The falsification, as 

discussed in Chapter 4， is based completely on a valid logical argument form, modus 

tollens. As no invalid or unjustifiable inductive inferences are required Ín falsifying H, 

the falsification could sustain the attack from Hume's inductive skepticism. Second, we 

fail in falsifying the hypothesis, i.e. н stands up to our effort to reject it. What does it 

mean to have passed these tests? It is the answer to this question that constitutes the 

main difference between Popper'ร falsificationism and justificationism^^* (Miller, 1980， 

1994). For justificationists, only the hypotheses that have passed the tests, or have been 

confirmed, would be admitted to the realm of scientific knowledge. But for Popper'ร 

falsificationism, all hypotheses that are falsifiable^*^ would be admitted. A test of a 

hypothesis is a serious attempt to falsify it. I f a hypothesis stands up to our effort in 

falsifying it, it does not make any significant difference to the status of the hypothesis. 

Although some may regard it as corroborated, it merely means that the hypothesis could 

still remain in the realm of scientific knowledge, temporarily and perhaps it wi l l be 

falsified in next test. But a hypothesis'ร passing a test does not mean that it has been 

^'^ The genu ine s i tuat ion is more comp l i ca ted . See Sect ion 4.1 and the f o l l o w i n g discussion. 
2 ' ' Jus t i f i ca t ion ism is p remised on the tenet that i t is o n l y reasonable to be l ieve what has been j us t i f i ed 
( s h o w n to be t rue, o r p robab le) . 
2 ' 2 I n a nu tshe l l , a hypothes is is said to be fa ls i f íab le i f and o n l y i f there are cond i t ions under w h i c h the 
hypothes is w i l l be re jec ted, i.e. i t can m a k e some de f i n i t e pred icat ions that are capable o f be ing tested 
against exper ience. I t is f a l s i f i ab i l i t y that Popper proposed i t as a c r i t e r ion o f demarca t ion between science 
and pseudoscience. Fo r more techn ica l de ta i l , see Popper , 1983, p p . x i x - x x v . I t shou ld be stressed that the 
t e r m * fa l s i f í ab le ' is not used in the sense that the hypothes is can d e f i n i t i v e l y or conc lus ive ly o r 
demons t rab l y be f a l s i f i ed . 
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justified, confirmed nor p r o v e d . ^ T h e r e has been much discussion over Popper's 

falsificationism in the past decades. For the purpose of clarification, it is worthy to note 

the fol lowing five points about Popper's idea on falsificationism. 

First, some may wonder i f we never invoke induction, how could the knowledge 

of our world beyond the content of our observations be obtained? For example, 

suppose we know that all metals are electrical conductors. This piece of knowledge 

can neither be observed, as it is impossible for us to test all metals, nor inferred from 

what we observed, i f no inductive inference is allowed. Our reply is that it is true that 

empirical knowledge cannot be obtained in these ways, but it does not imply that we 

have to do with induction. Because empirical knowledge could come from conjectures 

or guesswork. In fact, most great theories or hypotheses in sciences are not an 

accumulation of observations. For example, Newton'ร first law of motion states that: 

An object moving in a straight line wi l l continue moving in a straight line, unless acted 

on by an outside force. It seems to be contrary to our observations. On one hand, we 

cannot directly observe force; and on the other hand, what we usually observe about a 

moving object in a straight line is that it wi l l sooner or later come to a rest, rather than 

continue moving. This law of motion is indeed a bold guesswork. Of course, we are 

not saying that observations have no place in making conjectoeร. Sometimes it is the 

observation that inspires researchers to make their guesswork. But it does not mean 

that there is a necessary linkage between observation and the bringing up of the 

շ ւ 3 M u s g r a v e (2004 ) w o u l d , however , argue that Մտ be ing able to stand up to our e f fo r t to cniicize it w i l l 
constitute a good reason to bel ieve ƒƒ: though น is not a reason for н Itself (p .24 ) . A c c o r d i n g to Musg rave 

(2004) , r e a s o n fo r be l i ev i ng Մ and ' reason fo r H՝ are comp le te l y d i f f e ren t . See M i l l e r , 2002/2006 for 
commen ts o n th is v i e w . I t is too i nvo l ved a subject to be treated here i n deta i l . 
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hypothesis. Inductive inferences do not have a role in putting hypotheses into science. 

The only 'entrance' requirement for a hypothesis into science is its falsifiability. 

Second, one of the distinguishing features of scientific theories or hypotheses is 

that they do have predictive import. It is also an important factor that we treasure 

science, instead of pseudo-science. However, does having predictive import imply that 

some form o f ampliative ւոԽշոօօ^^՛^ must be іпсофогаїе0? Popper (1974) said 'n๙. 

Science has predictive import simply because the hypotheses or theories consist of 

universal statements. When a hypothesis states that 'all metals are electrical 

conductors', what it asserts is about all metals including those which are tested in the 

ftiture. There is no need for us to invoke any ampliative inference for predictive 

import. 

Third, like all fallabilists, Popper believed all factual statements could be 

mistaken and thus no certain truth could be achieved. But unlike other fallabilists, 

Popper maintained that it is pointless for us to target at making our knowledge more 

certain, more reliable^^^ or more p r o b a b l e . I t is truth, but not probable truth or 

reliable truth, which we should try to achieve in science (Miller, 1980). It is this 

contention that engenders researchers to put their effort in falsification rather than 

justification. What researchers should do is to make strenuous effort to put any 

hypothesis to test, as severe as possible, to ensure all false hypotheses could one day be 

շ ւ 4 A n in ference is amp l i a t i ve w h e n its conc lus ion conta ins m o r e i n f o r m a t i o n than its premises. 
շ ւ 5 A c c o r d i n g to re l i abi l is ts, know ledge is t rue be l i e f generated by a re l iab le me thod or process. Induc t ion 
o n its o w n is no t re l iab le , as i t o f ten leads to false be l ie fs . B u t c o m b i n i n g w i t h other methods, induc t ion 
cou ld become m o r e re l iab le ( G o l d m a n , 1986). 
2 1 6 The no t i on ' p r o b a b l e t r u t h ' is qui te obscure. Sec M i l l e r , 1980, p . l 14 f o r fu r ther d iscuss ion. 
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shown to be false. As we only aim at truth, we need not bother about the measures of 

certainty, truthfulness, or reliability of the hypotheses that have passed all tests. No 

inductive inference is thus needed to keep the hypotheses in the body of science. 

However, there seems to be a difference amongst hypotheses 一 we have more 

confidence in the hypotheses which have already been passed many severe tests than 

that not yet been tested. But it is merely a sort of psychological difference. A 

hypothesis in which no matter how confident we feel could not ensure it wi l l never be 

falsified by empirical evidence. For example, we had pretty high confidence in 

Newton's classical mechanics for many years but there was still one day we found that 

the motion of Mercury'ร perihelion, the point at which Mercury passes closest to the 

รนท, did not behave as predicted by Newton's theory."^ 

It is noteworthy that the prediction made by science is merely deduced from the 

hypotheses which have not yet been falsified^^^. It should not be regarded as one that 

has been justified by the observation. But this is not a big problem for, as shown by 

Hume, no ampliative or inductive inferences could lead to justified predictions either. 

Fourth, i f a hypothesis has been falsified, how could we be certain that it wi l l be 

falsified again in the future, i f induction is not allowed? (Hesse, 1974; Waraock, 1960) 

Before answering this question, we have to make a distinction first. When a 

2 ' 7 Scient ists had t r i ed t o f i x th is p rob lem w i t h m a n y a u x i l i a r y hypotheses. Fo r examp le , some had 
proposed that there was dust be tween the รนท and M e r c u r y . B u t none o f t hem were consistent w i t h other 
observat ions, f o r instance, no dust cou ld be f ound w h e n the reg ion between M e r c u r y and the รนท was 
care f t i l l y sc ru t in i zed . I t was later that E ins te in ' s Genera l T h e o r y o f R e l a t i v i t y c o u l d pred ic t the o rb i t o f 
M e r c u r y w i t h an as tound ing accuracy. For ftirther d iscuss ion, see T o r r e t t i , 1999, pp .246n , 2 9 9 , 4 1 7 - 4 1 9 . 
2 ' 8 S t r i c t l y speak ing , a u x i l i a r y hypotheses and/or speci f ic i n i t i a l cond i t i ons are needed, in add i t iona l to the 
hypotheses. See Chap te r 4 fo r deta i ls . 
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hypothesis is said to be falsified, we wi l l use the word ' FALS IF IED ' with bold capital 

letters to denote that the hypothesis has in fact been falsified, and use the word 

'falsified with italic letters to denote that the hypothesis was mistakenly falsified by 

the researchers. In other words, when researchers claim that a hypothesis has been 

falsified, either the hypothesis is FALSIF IED, in this case the hypothesis is really 

false though the researchers might never be absolutely certain o f it, or it is falsified, in 

this case the hypothesis is true and some mistakes must have been made in the process 

of falsification. Let us return to the question. Hesse's (1974) argued that 'one past 

falsification of a generalization does not imply that the generalization is false in future 

instances. To assume that it wi l l be falsified in similar circumstances is to make an 

inductive assumption, and without this assumption there is no reason why we should 

not continue to reply upon all falsified generalization* (p.95). I f 'falsification' here 

means F A L S I F I C A T I O N , then one past F A L S I F I C A T I O N wi l l imply that the 

generalization or the hypothesis is false, and false forever. It is deductive logic, rather 

than induction, that wi l l guarantee that it wi l l be false in future instances. However, 

some, in particular fallibilists, might argue that all factual statements cannot be 

established with absolute certainty and we would thus never be absolutely certain that 

whether the falsified hypothesis is FALSIF IED or falsified. It is true that we may not 

be absolutely certain i f the falsification is F A L S I F I C A T I O N or falsification, but it 

does not mean a hypothesis could not be falsified until we are absolutely certain of it. 

I f we never risk falsifying a hypothesis that might be true, then no hypothesis would be 

falsified at all. In fact, Popper has stated clearly that anything like conclusive proof to 

settle an empirical question, such as finding a conclusive practical experimental proof 

of falsity, does not exist (Popper, 1983, p.xxii). That is to say, a hypothesis could be 
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falsified even though we are not sure i f it is FALSIF IED or not. What we must bear 

in mind is that i f a hypothesis is falsified by a test, it does not provide evidence that it 

must fail a repetition o f the test although it does give reasons for believing that the 

hypothesis is false (Popper, 1974, p. 1043)· Likewise, unless we smuggle induction in 

somewhere, the fact that a hypothesis has passed a test, no matter how stringent, does 

not provide any evidence that it w i l l pass a repetition of the test. 

Despite saying this, we are not alleging that we have to repeat the same test again 

and again i f the hypothesis has already passed the test. As Popper (1963/1989) has 

elaborated, we have to use our background knowledge in searching for a 

counterexample, for we always try to falsify the hypothesis with the most risky 

predications. I f a theory has passed many such tests, then, 'owing to the incorporation 

of the results of our tests into our background knowledge, there may be, after a time, 

no places left where (in light of our new background knowledge) counterexamples can 

be expected to occur with a high probability. But this means that the degree of severity 

of our test declines. This is also the reason why an often repeated test wi l l no longer be 

considered as significant or a severe...' (p.240). To put it in another way, we have to 

repeat a test only because we want to check i f there were any mistakes that had been 

made in conducting the test, or i f the observation is indeed one that can be repeated. 

But, in doing so, what we are really testing is not the substantive hypothesis itself. 

This thus explains why a repeated test is less severe. 

Fifth, there are some hypotheses that have passed a number of strenuous tests. Our 

practical decisions are made on the basis of these best-tested hypotheses, not because 
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the passing of tests constitutes a reason for the hypothesis nor it could raise its 

probability of being true, but 'because these decisions (and the proposals from which 

they emanate) stand up best to criticism and rational comparison with other proposals 

about our practical decision' (Miller, 1980， p.127). It is worth noting that the proposal 

that stands up best to criticism is not necessarily the one that we have reason to 

suppose to be successful. Moreover, as Mil ler (1980) pointed out, 'the best we can do 

in the way o f criticism is to deploy all the theoretical knowledge that we have at our 

disposal' (p. 128). What we have to make use of in criticism is what we know now, not 

what we w i l l know when our decision is implemented. 

We have discussed a number of important differences between induction and 

falsification. In the next section we wi l l then discuss how Popper's perspectives on 

falsificationism could shed light on the problems being encountered by SST. 

6.4 SST and falsificationism 

SST, no matter it is Fisher's significance testing, Neyman-Person hypothesis 

testing or their hybrid, is about statistical hypotheses. How is it possible to falsify a 

statistical hypothesis which comprises probability statements? Popper (1957/1980) 

stated very clearly that 'probability statements will not be falsifiable՝ (ррЛ89"190). To 

see why, let us consider a very simple probability statement about a coin: the probability 

of getting a head is 1/2. Unlike the singular statement 'the weight of the coin is 8 g' , 

which is clearly falsifiable, the hypothesis Чһе probability of getting a head is 1/2' is 

consistent with all possible outcomes. No matter how long we toss the coin, say, for ท 

times, and whatever number of heads we observe, e.g., m， the outcome wi l l always have 
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a non-zero probability: (^y. Even though in 1000 tosses we get 1000 tails, we still 

cannot falsify the probability statement. I f falsifiability is a criterion of demarcation 

between science and non-science, it would seem that statistical hypotheses could not be 

regarded as scientific. 

In order to address this question, Popper (1957/1980) proposed the notion of 

methodological falsifiability, with the development of alternative accounts of 

randomness, convergence, and the formal theory of probability. Popper (1957/1980) 

first gave a modified definition of randomness on top of the Frequency theory of von 

Mises and then developed his own definition for what it is for a finite sequence to be 

random.^ The claim that a sequence, whatever its distribution is, is random can be 

falsified i f its initial behaviour, rather than just its eventual behaviour, is sufficiently 

remote from the ideal randomness. For example, even though the probability for a fair 

coin to have 1000 tails in 1000 tosses is greater than zero, this result is so 

unrepresentative or physically impossible that it can occur only within a much more 

extensive context, say, the sequence of 1000 tails w i l l occur when there are 2 藤 or 

more games, in each game the coin is tossed 1000 times. But it is physically impossible 

for a coin to be tossed for such a large number of times^^^. Hence, i f we really obtain 

such a result, the probabilistic hypothesis that the coin is fair could still be practically 

falsified even though we are not certain i f it has been FALSIF IED ox falsified. In this 

2 ' 9 Th i s idea had been deve loped, by G.J. Cha i t i n , A . N . K o l m o g o r o v , p . M a r t i n - L ö f , R. So lovay , in to the 

i n fo rma t ion - theo re t i c approach, accord ing to w h i c h a sequence is r a n d o m i f i t is incompress ib le (or 

i r reduc ib le ) . F o r d iscuss ion on d i f fe ren t ae f in i t ions o f randomness, see Cha t i n , 2 0 0 1 , pp .111-127 . 

22° O n one h a n d , no phys i ca l co in cou ld be tossed fo r so m a n y t imes w i t h o u t smash ing in to dust; and on the 

other our present un iverse does not have enough t i m e to generate so m a n y tosses: I f we toss the co in once 

per second, i t w i l l take us about 3 .4χI0^^^years t o run 2 ՛ °°° games. B u t ou r un iverse is o n l y about 1.5x10՛^ 
years o l d ! T h e r e are ce r ta in l y cases that are not so c lear-cut . I n these cases, the ru le w i l l be dec ided by the 
researchers, b u t i t w i l l a lways be subject to c r i t i c i sm. W e w i l l re tu rn to th is po in t later. 
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example, the practical falsification is based on some kind of methodological rule, 

namely, that the basic statement about the sequence of heads and tails would be 

accepted as a consequence of the statistical hypothesis i f and only i f the sequence is 

representative^^' in a physically possible context of tossing the fair coin. 

The methodological rule that cases of extreme non-probability be excluded 

resembles the rule of rejection in SST. That's why some have thought that SST is a 

falsifying rule in Popper'ร falsificationism. For example, Keuth (2005) stated that 'As is 

common practice in statistics, a region of acceptance and a corresponding region of 

rejection is defined. Occurrences that are very unlikely in view of the hypothesis fall 

within the region of rejection. I f a test results in such a sample, then the hypothesis is 

rejected for the present; otherwise, it is accepted for the present. The definition of a 

region of acceptance and a region of rejection functions as a methodological rule...We 

need not follow Popper'ร considerations any further, for they add nothing to what we 

know from statistics textbooks' (p. 176). The first explicit falsifying rule for probability 

statement was proposed by Gillies (1971). This falsifying rule was endorsed by Popper 

(1957/1980, p. l91), who regarded Gillies'ร proposal as 'a most important contribution to 

the problem of the falsifiability of probabilistic or statistical theories and falsifying 

statistical tests' (p.419). The falsifying rule indeed agrees with the procedures of SST 

(Gillies, 2000, pp.147-148). I f so, are there any differences between SST and 

falsificationism? We wi l l discuss this ргоЫегп in turn. 

2 2 ' 'Representa t i ve ' here is not an ob jec t ive no t ion . W e w i l l soon re turn to th is po in t . 

2 2 2 See also M a y o , 1996 f o r adopt ing some fo rms o f SST as me thodo log i ca l rules fo r fa ls i f i ca t ion o f 

stat ist ical hypotheses. 
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First, the methodological rule, according to Popper (1957/1980), is 'a rule, for 

instance, which might demand that the agreement between basic statements and the 

probability estimate should conform to some minimum standard.' (p.204). The dividing 

line drawn by the methodological rule decrees that only reasonably representative 

segments (or reasonably 'fair samples') are permitted, while atypical or non-

representative segments are forbidden. This rule is for statistical hypotheses, but similar 

rules are already present for emr treatment in deterministic hypotheses. For example, 

suppose we are testing a deterministic hypothesis H, from which we could deduce that a 

particular measurable quantity JC would have a value of XQ under some conditions. By 

measuring X under these conditions, we would be able to check i f its value does amount 

to ぶ0. In principle, Я would be falsified i f the value of X does not equal JCO. But in fact we 

wi l l not expect, even though н is known to be true, that the value of X wi l l be exactly the 

same as Xo, for errors and uncertainties in making measurements are almost always 

inevitable.^^^ Hence, although the value of д: does not exactly equal xo， н should not be 

regarded as falsified i f it is still sufficiently near ズ0. Only i f the value of X differs from XQ 

to a certain extent, н would be regarded as falsified. In other words, we may specify an 

interval Լ usually symmetrical about ；co， say [ X Q - δ,χο + δ\ ，շ24 such that we wil l regard н 

as falsified i f the value of JC does not lie inside I, and maintain н otherwise. Hence, 

practically, the methodological rule is required not only by the falsification of statistical 

hypotheses but also by that of deterministic hypotheses. 

2 2 3 There are m a n y po ten t ia l sources o f error and uncer ta in ty in m a k i n g measurements. For example , errors 

in m a k i n g measurements me lude human error, ca l ib ra t ion and systemat ic error , etc. See Got t & D u g g a n , 

2003 

2 2 4 Th i s is man i fes t i n par t i cu la r w h e n the exper imenta l errors are non-sys temat ic , and the measurements 

can be cons idered as independent t r ia ls such that the error in the measurement X ， i.e. t o x - Xo, is a random 

var iab le whose d i s t r i bu t i on is symmet r i ca l about 0. 
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Second, according to falsificationism, when we put a statistical hypothesis to a 

test, we have to formulate a rejection region for the hypothesis. The rejection region here 

may be no different from that in STT. For example, the rejection region could be 

formulated in such a way that the probability of getting outcomes in this region is, say, 

0.05 assuming the truth of the hypothesis. When the observed outcome really lies inside 

the rejection region, we w i l l regard the hypothesis as falsified, and no more than that. 

That is to say, falsification, aiming at expelling the false hypotheses from the body of 

science, has no implication that when one hypothesis has been falsified another 

hypothesis like the alternative hypothesis in Neyman-Pearson hypothesis testing, 

would thus turn out to be accepted. Besides, according to falsificationism, there are only 

two possible outcomes when we put a hypothesis to a test. Either the hypothesis is 

falsified or not. Contrary to Fisher's significance testing, in which the р value is regarded 

as a measure of degree of the evidence against the hypothesis, there is no place for the р 

value in falsificationism. Furthermore, as with the falsification of deterministic 

hypotheses, the falsification of statistical hypotheses could be mistaken and it is always 

possible for a falsified hypothesis to pass the repeated test. However, i f the repeated tests 

are independent and the hypothesis is true, the probability for the hypothesis to fail twice 

would be much smaller. On the other hand, i f the statistical hypothesis passes the test, we 

simply maintain the hypothesis until it fails in another test. Passes in tests would not 

225 O f course, w h e n н is false its negat ion 〜H w i l l be t rue. B u t the negat ion i t se l f may not be an interest ing 

hypothes is that w e are l o o k i n g f o r or it is even not fa ls i f iab le . F o r examp le , researchers in economics 

proposed the hypothes is ca l led ' the law o f demand ' 一 f o r al l goods , the l ower the pr ice the more quant i ty 

w i l l one demand ― to exp la in h u m a n ' s behaviour . I f i t we re f a l s i f i e d , the negat ion w o u l d be: fo r some 

goods, i t is not t rue that the l o w e r the p r i ce the more quant i t y w i i l one d e m a n d . Since i t does not spec i f y 

w h i c h goods w o u l d not obey the law o f demand, w h e n the pr ice o f a g o o d drops , the quant i ty demanded, no 

mat ter i t increases, decreases o r remains unchanged, w o u l d a lways c o m p l y w i t h th is negat ion o f the law o f 

demand . Tha t is to say, th is n e w hypothes is w i l l t u r n o u t to be p rac t i ca l l y un fa ls i f íab le . A n d as we have 

discussed before , o n l y fa l s i f i ab le hypotheses, at least p rac t ica l l y , w o u l d be a l l o w e d in science. 
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constitute any evidence for the truth of the hypothesis. Researchers should continue to 

make strenuous effort to falsify the hypothesis with another more severe test. 

Third, what falsificationists are really concerned with is the hypothesis per se, 

rather than the Type I error rate in the long run or the truth of the alternative hypothesis. 

In other words, even i f Neyman-Pearson hypothesis testing, contrary to what we have 

argued before, had succeeded in grouping all different hypotheses into a single batch 

and estimating that 5%, say, of them would be falsely rejected, this Type I error rate is 

not what falsificationists are bothered about, for it cannot tell i f a particular hypothesis is 

falsified or not. Also, in Neyman-Pearson hypothesis testing, the rejection of the null 

hypothesis is tantamount to the acceptance of the alternative hypothesis. But for 

falsificationists, i f we are really interested in the alternative hypothesis, we have to put 

the alternative hypothesis directly to test. 

Fourth, one may note that when we discuss the methodological rules for statistical 

hypotheses and deterministic hypotheses, we encountered some notions such as 

'representative in a physically possible context' or 'an interval I which is symmetrical 

about xo， that seem to be quite arbitrary. These notions, like the rejection region, are 

postulated for practical purpose. For example, when testing Newton's laws, physicists 

might accept certain measurement error of distance. But later when A. Einstein 

postulated the theory of special relativity, the same standard might no longer work for 

detection of the time dilations for particles derived from the theory of special relativity. 

In order to falsify Newton's law, physicists have to put the theory to test under more 

stringent requirements. It is thus not meaningful for asking for an objective and one-
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size-f i t-al l fa ls i fy ing rule. I f a hypothesis passes a test w i th a reject ion region, it is 

always legit imate for other researchers to cri t icize it and test it again w i th a more 

stringent rejection region. That is to say, the rejection region is a factor that determines 

the test-severity rather than a predetermined fixed region that cou ld be used for al l 

practical purposes. Moreover, Type I error and Type I I error rates are important notions 

in Neyman-Pearson hypothesis testing. Bu t for falsi f icat ionists, al l judgments are 

conjectural. N o matter how we set the signif icance level, the long term Type I or Type 

I I error rates, we cannot get falsification done once and for a l l . That is to say, 

falsif icationists are always prepared to revise the previous decisions they have made 

about what has been fals i f ied and what has not. They wou ld on ly commi t an error in 

tentatively mainta in ing a false hypothesis or the error in tentat ively rejecting a true 

hypothesis. 

F i f th , in SST, we sometimes need not postulate al l details o f the hypothesis before 

testing, especially when SST is regarded as an inferential process f r om sample to 

populat ion. For example, when we conduct a one-sample է test to compare the mean o f 

a sample to a populat ion, the populat ion variance is unspecif ied before observation for 

its value is estimated f rom the sample. In most research situations researchers use SST, 

as A r o n , A ron and Coups (2005) mentioned, when they do not know the populat ion 

mean, plus, they usually have not one set but two sets o f data (p.228). N o matter the է 

test is for dependent means or independent means, the means and the variances o f the 

populations w o u l d not be pre-specif ied. Bu t for falsi f icat ionists, i t does not matter i f 

we know the populat ion mean. What we have to do is to postulate the details o f the 

hypothesis before putt ing it to test. I f we do not specify the details o f the hypothesis 
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clearly, w e can hard ly make continuous ef for t in pu t t ing the same hypothesis to tests. 

For example, i f we want to test the hypothesis wh ich claims that the Secondary Four 

students who get a special lesson in using Dynamic Geometry Software wou ld perform 

better in geometry, we select a group o f students to receive the special lesson. Before 

and after the special lesson, the^ students are tested w i t h their abi l i ty in solv ing problems 

เท geometry. In this repeated-measures design, a standard է test for paired samples^^^ 

wou ld be per formed to test the nu l l hypothesis: students' scores in the test (wh ich 

measures thei r ab i l i t y in solv ing problems in geometry) do not change f r om before to 

after the special lesson. Since there are many factors that could inf luence a student'ร 

score in the test, we wou ld not expect that a student'ร difference score (after - before) 

must be zero^^' even though the ทนII hypothesis is true. Accord ing to SST, we assume 

that i f the nu l l hypothesis is true then the populat ion o f difference scores w i l l be 

normal ly distr ibuted w i th a mean o f zero. A n d we have to reject the nul l i f the sample 

mean o f the dif ference scores deviates much f rom zero. Bu t it is noteworthy that 

whether the deviat ion is great or not depends on the dispersion o f the distr ibut ion o f the 

sample means, wh ich in turn depends on the sample size and the dispersion o f the 

distr ibut ion o f the populat ion difference scores. Bu t in SST the latter is not specif ied in 

our nul l hypothesis unt i l the sample mean has been obtained. We use the variance o f the 

sample di f ference scores and the sample size to estimate the variance o f the populat ion 

difference scores. The estimated variances could be very di f ferent f rom one test to 

another. That is to say, even i f we repeat the test again, the nul l hypotheses are dif ferent 

f rom one test to another. 

2 2 6 It is also known as 't test for dependent means', ' / test for correlated means', or Ί test for matched 
samples'. 
2 2 7 And o f course the mean of the students' difference scores would not necessarily be zero too. 
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Besides, for the риф05е o f SST, the nu l l hypothesis is merely a k ind o f straw man. 

What the researchers are really concerned w i t h is the alternative hypothesis, wh ich is in 

our present example that students' scores wou ld increase f rom before to after the special 

lesson. As we have discussed in previous chapters, the rejection o f nul l hypothesis on 

one hand cannot i m p l y the truth o f the alternative hypothesis and on the other cannot 

imply that the statist ically signif icant dif ference is pract ical ly signif icant. For 

falsi f icat ionists, they have to specify the hypothesis w i t h suff ic ient details, for example, 

the students' di f ference scores wou ld be a normal d ist r ibut ion w i t h a mean = 10 marks 

and standard deviat ion = 3 marks before put t ing the hypothesis to test. O f course, we 

have to specify a reject ion region, say ズ < 1 0 一 2 x 3 or I 〉10 + 2 x 3 ， to enable us to 

fa ls i fy the hypothesis pract ical ly. Here, one could choose a narrower rejection region to 

make the test less severe when the study is at the exploratory stage and make the test 

more stringent by broadening the rejection region in later s t a g e s N e v e r t h e l e s s , one 

may notice that the hypothesis wou ld be easily fa ls i f ied i f it is stated in such a precise 

fo rm. But it is not the fault o f our approach. On ly adopt ing the most severe tests could 

prevent us f rom becoming entrenched in false hypotheses camouflaged w i t h their vague 

specif ications. 

S ix th , fa ls i f icat ionism could enable us to cr i t ic ize others' hypotheses in a way that 

SST could not. Say, suppose some researchers report that the above ทนII hypothesis 

about the effect o f special lessons has been rejected by SST and then conclude that the 

students' scores wou ld increase f rom before to after the special lesson. There are 

certainly a number o f ways that the study could go wrong . For example, the tests might 

2 2 8 In exploratory studies, one could practically allow the mean to have a range o f values and thus narrow 
the rejection region. 
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be inval id or not rel iable; there might be researcher biases, such as halo effect^^^. 

Nevertheless, the best way for one who queries the conclusion is to repeat the test. But 

here comes the prob lem. A s we have discussed in Chapter 5， this sort o f ทน11 hypothesis 

can hardly be n i l fo r there are numerous factors, other than the special lesson, that could 

intervene to affect the scores. The sample size could inf luence the probabi l i ty o f 

rejecting the nu l l i n this experimental design. Does it imp l y that the researchers who are 

skeptical about the rejection o f the nul l have to keep the same sample size in their 

repeated test? Perhaps at least they have to give jus t i f ica t ion why they have reduced the 

sample size i f i t leads to result that the hypothesis is no longer being rejected. What is 

more, d i f ferent sample sizes wou ld result in di f ferent estimated populat ion variances. 

The nu l l hypotheses addressed by these researchers are not genuinely identical. I t is 

thus hard for one to make any conclusion i f one Ís rejected but another is not. 

For falsi f icat ionists, they do not have the problems arising f rom the sample size. 

For one th ing , they have to specify the variance o f the populat ion in the hypothesis 

before conduct ing the test. That is to say, the variance o f the populat ion wou ld not be 

affected by the sample variance. Next , even though the hypothesis is easily to be 

fa ls i f ied, i t does not imp ly that we have to accept another hypothesis. Hence, we wou ld 

not have the problems, as discussed in Section 5.1， confronted by SST, e.g., we might 

accept the truth o f the alternative hypothesis s imply by conduct ing a SST on the 

corresponding ทน11 hypothesis w i th a large sample size. Moreover, suppose some 

falsif icationists have tr ied to put the hypothesis, w i t h a specif ied rejection region, to test. 

I f the hypothesis passes the test, al l researchers skeptical o f this result could put the 

' For more other possible errors, see, for example, Onwuegbuzie & Daniei, 2003. 
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identical hypothesis to a repeated test. There w i l l never be a conclusive test for a 

hypothesis. That is to say, hypotheses are always open to cr i t ic ism. I f the researchers 

are st i l l disturbed by the hypothesis even though it has passed in repeated tests, they 

could put the hypothesis to more severe tests, for example, by improv ing the accuracy o f 

measurement for a deterministic hypothesis or cont ro l l ing the intervening variables for a 

statistical hypothesis so that they could have another rejection region to accept less 

extreme results as evidence for falsi f icat ion. 

More important, SST is used to direct researchers in deciding whether the 

difference has been produced by chance, sampling in our case, or by the treatment, the 

special lesson. However, suppose al l intractable problems surrounding SST had 

disappeared, SST could at most in form researchers i f the dif ference is due to chance. I f 

the difference is not due to chance, SST w i l l not te l l us whether this difference is due to 

the factors other than the treatment. For falsi f icat ionists, even i f the hypothesis passes 

in repeated tests, they have to propose more substantive hypotheses to test i f the 

difference is due to the treatment. For example, i f the dif ference is really due to the 

treatment instead o f halo effect, one testable impl icat ion is that the difference scores 

wou ld remain unchanged when we change other condi t ions, say the teacher invo lv ing in 

the special lesson, or the t ime between the two tests. Then we could change some o f the 

condit ions and test the hypothesis again. In this cont inu ing process o f cr i t ic ism, we 

could render the hypothesis more precise and thus more easily refutable. 

On the other hand, i f the hypothesis fai ls in the test. Those who sti l l th ink that the 

hypothesis is true could put it to a repeated test. I f the rejection region is selected in 
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such a way that i f the hypothesis is true there w i l l be a probabi l i ty o f 0.05 that the 

sample means w i l l fa l l in this region. Since they are testing the same hypotheses, 

fa ls i fy ing a true hypothesis tw ice wou ld be much less probable (0.05x0.05) i f the tests 

are independent and have the same rejection region. 

From the preceding discussion, we could see that there are a number o f 

differences between SST and falsi f icat ionism. A n d it should now be clear that how 

falsificationisทา could contr ibute to solv ing the intractable problems encountered by SST. 

In the next section we w i l l discuss how fals i f icat ionism could influence the conduct o f 

education research. 

6,5 Implications of falsifícationism for education research 

Popper'ร revolut ionary approach to scienti f ic method, in particular, and 

epistemology, in general, is also known as 'cr i t ica l ra t ional ism' wh ich conceives human 

knowledge as consist ing o f bo ld guesses or conjectures. Cr i t i c ism, according to Popper, 

should be appl ied in a l l fields o f human experience, wherever there are problems for 

wh ich we are interested in f igur ing out workable solutions. A n d educational discourse is 

certainly not an exception. There are many ways that cr i t ical rat ional ism could relate to 

education, for example, cr i t ical rat ionalism and the values under ly ing education, impacts 

o f cr i t ical rat ional ism on learning and teaching practices, impl icat ions o f fals i f icat ionism 

for the conduct o f education research.^"^^ A n d for the purpose o f our discussion, only the 

last issue w i l l be addressed here. Moreover, we w i l l use examples f rom the research on 

I For a recent introductory overview of critical rationalism and educational discourse, see Zecha, 1999. 
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mathematics education for i l lustrat ion al l over this section although the major discussion 

below might apply equally to research in other educational contexts. 

As we have mentioned in Chapter 1, a lot o f money is spent per each year on 

education research (Pr ing, 2000). But it is dubious i f the money is we l l spent (Hi l lage, 

1998; Tooley and Darby, 1998). Education research is cont inual ly being cr i t ic ized for its 

poor qual i ty (Lev in and O 'Donne l l , 1999) and its cr i t ic isms have been emerging for a 

number o f years. The reputation o f education research is said to be awfu l (Kaestle, 1993). 

One reason that could explain why such crit icisms exist is that there are many conf l ic t ing 

theories and v iewpoints. A l l are claimed by their proponents to be inspired by data or 

observations (Phi l l ips, 1999, p. 176). Indeed, i f we count a l l observable implicat ions o f a 

hypothesis as evidence for the hypothesis, the hypothesis w i l l always have evidence in its 

favour. There is, for example, evidence for the hypothesis that older and returning 

students wou ld work harder in pre-calculuร classes,^"^^ i f we could f ind a returning student 

A who is older and work harder in a pre-calculuร class than another student B. But at the 

same t ime, we migh t also find an evidence for another hypothesis that older and returning 

students wou ld not w o r k harder in pre-calculuร classes, e.g. by ident i iy İng a returning 

student С who is older but does not work harder in a pre-calculuร class than another 

student D. These two hypotheses are, however, contraries.^"*^ That is to say, the evidence 

for one hypothesis constitutes a falsi f icat ion for another. I f both evidences are true, the 

two hypotheses are indeed false even though each o f them wou ld have its own 

2 3 ' This question could probably be posed in a better way. But it is not a point that we have to bother with 
here. For discussion on posing research questions, see, for example, McKnight, Magid, Мифһу, & 

McKnight, 2000, pp. 21-23. \ 
2 3 2 Two sentences are said to be contraries i f and only i f they cannot both be true but can both be false. 
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conf i rming evidence. This example shows that merely seeking for conf i rming evidence 

cannot ef fect ive ly detect false hypotheses. 

We know f rom preceding discussion that on ly by making continuous and 

strenuous ef for t to put the hypothesis to tests could prevent us f rom becoming entrenched 

in falsity. Bu t fa ls i f icat ionism is st i l l not prevalent, at least, in research on mathematics 

education. For example, in a recent conference on mathematics education held in Hong 

Kong , there were 10 theses and 22 research papers presented and later published in the 

Proceedings of Conference on Mathematics Education 2005. Many o f them did not 

mention any hypotheses or theories in their theses or papers, for example, Leung & Park, 

2005; W o n g , 2005; Zhang, 2005. A n d those who had mentioned some hypotheses or 

theories, for instance, B r o w n , 2005; Cai , 2005, M o k , 2005, at the most, reported that they 

had found some evidences for the hypotheses but none o f them had explained how the 

hypotheses could be fa ls i f ied and certainly d id not show any ef for t in fa ls i fy ing the 

hypotheses. For example, both M o k (2005) and Huang and M o k (2005) expl ic i t ly 

mentioned the Var ia t ion theory^՚^^ in their research reports. But when they tr ied to 

investigate the learning and teaching o f mathematics in Hong K o n g and Shanghai, they 

never asked what observations wou ld constitute a fa ls i f icat ion o f the theory. It seemed 

233 According to the Variation theory, developed by Marton in collaboration with different researchers 
(Marton, et al., 2004), learning is a process in which we want learn ers to develop a certain capability or a 
certain way o f seeing or experiencing. Experience o f variation is an essential experience for discernment 
and to discern certain feature o f something is necessary for seeing that object in a certain way. Hence, 
experiencing variation is significant for learning. They fiirther argue that paying attention to what varies 
and what is invariant in a learning situation is crucial. Furthermore, learning always involves an object o f 
learning. What is more important is how the teacher structures the łessons so that it is possible for the 

object o f learning to come to the fore o f the students' awareness, which is caHed the enacted object o f 

learning. (Huang & Mok, 2005; Mok, 2005) 
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that all o f the lessons, no matter what varies and what is invariant in a learning situation, 

wou ld always con form to the Var iat ion theory. Therefore, when they noted that, 

compared w i t h Hong Kong mathematics teachers, Shanghai mathematics teachers 

practiced more w i t h imp l ic i t variat ion in their lessons, they s impİy observed 'v ia the lens 

o f the Var ia t ion theory ' ( M o k , 2005, p.25), w i thou t pay ing any attention to the problem 

whether the learners' outcomes are inconsistent w i t h the Var iat ion theory or not. 

For falsi f icat ionists, the first th ing to do in conduct ing a research on mathematics 

education is not on ly to propose a hypothesis that they hope is true. They also have to 

formulate the hypothesis precisely so that they could specify the condit ions under wh ich 

the hypothesis cou ld be fals i f ied. As Schoenfeld (2000) has noted, questions l ike ฯว0 

students learn as much mathematics in large classes as in small classes?' could hardly be 

answered in the abstract. But Schoenfeld'ร cr i t ic ism on these unanswerable questions 

seems to go astray. When addressing this question, according to Schoenfeld (2000), one 

must immediate ly ask, 'what counts as mathematics? H o w much weight w i l l be placed, 

for instance, on problem solv ing, on model ing, or on the abi l i ty to communicate 

mathematical ly?' (p.642). He thought that a researcher has to know what to look for and 

what to take as evidence o f it before being able to determine whether it is there. This 

saying is not mistaken. For example, w i thout know ing the meaning o f 'better ' , how 

could we determine i f one approach in teaching algebra is better than another? I t does 

make sense to require a researcher to know what to look for and what to take as evidence 

for the hypothesis. However, in reality this requirement is not d i f f i cu l t to meet. A n d , 

more important, this is not enough to discern falsi f iable hypotheses f rom non-falsif iable. 

For example, one major tenet in Cai (2005) is that 'h igh qual i ty mathematics instruction 
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should not on ly prov ide students w i th the oppor tuni ty to learn important mathematics and 

participate act ively in the processes o f construct ing knowledge; it also should provide a 

setting for students to explain and jus t i fy their th ink ing and challenge the explanations o f 

their peers and teachers.' (p .51 , 67). What does ' h i gh qual i ty mathematics instruct ion' 

mean? Cai (2005) interpreted a high qual i ty mathematics education as one conducted 

w i th effect ive classroom instruction. A n d an effect ive classroom instruction comprises o f 

four cr i t ical features: students' learning goals, instruct ional tasks, classroom discourse, 

and the role o f teachers (Caí, 2005, 50-53). So far so good! It seemed to meet 

Schoenfe lďร requirement. But when look ing into the details o f classroom discourse, we 

could find that classroom discourse does indeed refer to the ways o f representing, 

th ink ing, ta lk ing , and agreeing and disagreeing that teachers and students use to engage in 

instructional tasks (Cai, 2005, p.62) A desirable discourse in mathematics teaching is 

explicated by two teaching episodes, adopted f r om Thompson et al. (1994). A n d Cai 

(2005) praised the one wh i ch has provided a sett ing for students to reason and reflect on 

their reasoning (p.66). I n other words, although Cai seemed to know what to look for, his 

major tenet, ignor ing the details, is something no more than that h igh qual i ty mathematics 

instruct ion, wh i ch has to provide students X， should provide students X . That is a 

tautological statement that no observation could fa ls i fy it. Moreover, even though the 

major tenet were not in the above fo rm, the statement Έ should provide students Y ' i tself 

is a value judgment instead o f a factual judgment . N o matter A does in fact provide 

students Y or does not, Έ should provide students Y ' cou ld st i l l be true. Cai 'ร major 

tenet is thus not falsi f iable even though it satisfies Schoenfe lďร requirement. 
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A s we have discussed, after proposing a fa ls i f iable hypothesis, we have to carry 

out a study that is designed as a test wh ich aims to detect i f the hypothesis is erroneous. 

A n d the details o f how falsi f icat ionism sheds l ight on tack l ing problems encountered by 

SST have been discussed in the last section. A l though SST might give many people an 

impression that it is supported by sophisticated mathematics (Menon, 1993), SST is not 

so wide ly adopted in research on mathematics education. In a recent study o f the use o f 

statistical procedures in mathematics education research conducted by the present author 

( N g & พ น , 2003), al l quantitative articles, i.e. those invo lved col lect ing data and use o f 

statistical analyses, publ ished f rom 1994 to 2003 in the Journal for Research in 

Mathematics Education and Educational Studies in Mathematics were examined. It was 

found that on ly a f ew percentages o f studies had adopted inferential statistical analysis. 

For example, the percentage o f adopting է test is shown be low: 

Journal for Research in 

Mathematics Education 

Educational Studies in 

Mathematics 

1994 - 1998 8.67 % (ท = 173) 3 . 1 9 % ( ท = 188) 

S よ
 

0、
 

õ、
 

3 . 3 7 % (ท = 178) 1 .54% ( ท = 195) 

Table 5 The percentage o f adopt ing է test 

The percentages for adopt ing A N O V A , M A N O V Á , A N C O V A , Chi-squared test, F-test, 

correlation coeff ic ients, and effect sizes are even smaller. The most favorable statistical 

tools adopted were for descriptive риф05Є5: 
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Journal tor Research іท 

Mathematics Education 

Educational Studies in 

iVlathematics 

1 9 9 4 - 1998 1 2 . 7 2 % ( ท = 173) 24.47 % ( ո = 188) 

О
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õ
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õ
、

 

14. 0 4 % ( ท = 178) 20.51 % ( ո = 195) 

The misconceptions o f SST and related fallacies are also prevalent in the research on 

mathematics education where SST has been used, even though some may think that 

researchers on mathematics education should be much less susceptible to making 

mistakes in statistical reasoning. For example, Menon (1999) remarked that there was a 

researcher, having 25 years o f teaching experience in mathematics and a good statistical 

background, who conflated the two condit ional probabil i t ies P{HQ I D) and P{D I Я д ) in 

a report on the effectiveness o f wri t ing-to-Iearn approach to learning mathematics (p.8). 

We have discussed the problems o f SST and how fals i f icat ionism could shed l ight on 

tackl ing the problems encountered by SST. There is no point to repeat here. One last 

point we have to make here is that although there are many di f ferent types o f research on 

mathematics education and what we have discussed in this chapter is focused on the 

quantitative research wh ich involves the use o f SST, i t should not be assumed that other 

types o f research could entirely insensitive to the impl icat ions o f falsi f icat ionism, 

especially the points we have made in this stcúor^^^, Phi l l ips (1999), for example, has 

indeed discussed how fals i f icat ionism could enhance quali tat ive research. 

In conclusion, i f our purposes for conduct ing research on mathematics education 

are, as Schoenfeld (2000) suggested, to understand the nature o f mathematical th ink ing, 

2 3 4 Indeed the research studies in the examples we have already discussed in this section are not quantitative. 
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teaching and learning and to use such understandings to improve mathematics instruction, 

our study has to be in touch w i th the empir ical wo r l d and science w o u l d then step in . 

A n d only a science o f mathematics education wou ld be o f use to the advance our 

understanding o f the nature o f mathematical th ink ing , teaching and learning and to 

education practi t ioners, inc luding pol icymakers and teachers, in improv ing mathematics 

instruct ion. The science o f education is not necessarily concerned w i t h quantitative 

research. In l ight o f Popper'ร fa ls i f icat ionism, the only requirement for a hypothesis or 

theory to be regarded as scientif ic is its fa ls i f iabi l i ty . I t does not matter whether it is 

qual i tat ive, quantitative, or statistical, in nature. Sometimes researchers are busy w i th 

the col lect ion o f data but wi thout understanding the roles o f data or observations. First, 

we should not expect that a great theory or hypothesis wou ld automatical ly come out 

once we col lect suff ic ient data. Second, no matter how many favorable observations we 

make, our hypothesis can never be conclusively conf i rmed or ver i f ied. The most 

important role o f data is to fa ls i fy the hypothesis. I f our hypothesis is statistical in nature, 

we could adopt some statistical fa ls i fy ing rule to render the statistical hypotheses 

pract ical ly fals i f iable. No matter the hypothesis is deterministic or statistical, its truth 

w i l l never be certain. SST wou ld not be able to guarantee the truth o f hypotheses and any 

attempt in searching algor i thmic rules for j us t i f y ing hypotheses are doomed to be failures. 

The science o f mathematics education is best construed as a process o f cr i t ic isms. A n d , 

as Swan (2003) noted, ' the value o f science both as a means o f advancing knowledge, 

and o f he lp ing us to improve practice, lies on ly - but not insigni f icant ly 一 in the method 

o f c r i t i c ism' (p.265). So long as we strenuously test those beliefs that we are using to 

guide our educational practices, evenณally we w i l l be able to detect our current faults, for 

example, we w i l l one day el iminate some false judgment in regarding some teaching 
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practices as ef fect ive. A l though our concern here has been w i th the science o f 

mathematics education, i t does not entail that we attach no value to other research. For 

example, the study on the aims o f mathematics education is important,^^^ even though it 

is pr imar i ly concerned w i t h the value judgment ( N g , 1999), wh ich can hardly be studied 

w i th the scient i f ic methods. More important, there is clearly a place for our present study 

even though it is not scientif ic in nature. Science o f mathematics education is thus not a 

panacea. It is on ly the most effective means at our disposal ๒ addressing empir ical 

questions. 

2 3 5 The problems addressed there are sometimes very important. For example, answer to the question Svhy 
we require all secondary school students to study mathematics' could have very great implications for 
many people. 
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Chapter 7 Conclusion 

SST has a long history. The first paper on the formal test o f statistical hypothesis 

was wr i t ten by John Arbuthnot t about 300 years ago. Bu t the basic logic underly ing his 

arguments is st i l l prevalent in the current practice o f SST - a hypothesis is rejected 

because the observed data wou ld be very unl ike ly i f the hypothesis is true. The inference 

is so true that many o f us are tempted to accept it. M u c h o f the technical details o f 

Arbuthnot t 's arguments had been challenged and advanced by his contemporaries and 

later commentators, as we have examined in Chapter 2. Bu t this inference is an exception. 

Even nowadays there are many researchers who st i l l regard this inference as va l id . 

Probabi l i ty is inevitable in SST, wh ich can be revealed in the above long-lasting 

inference. Th is inference is based on one important premise ― the observed data is 

unl ikely i f the hypothesis is true. On one hand probabi l i ty is a best measure o f how 

unl ikely the observed data are. That explains why , as we noted in Chapter 2， the 

probabi l i ty theory, in part icular Bernoul l i ' s l im i t theorem and Bayes'ร theorem, has 

played an important role to the advancement o f SST in its early stage o f development. 

A n d on the other, ^probabil i ty o f a hypothesis' is contained in a hidden premise o f the 

inference ― a hypothesis has to be rejected i f i t has a very low probabi l i ty to be true. 

Apart f rom this inference, 'probabi l i ty o f a hypothesis ' is also invoked in resolving the 

problem o f induct ion. Bu t what do we mean by 'probabi l i ty o f a hypothesis' i f the 

hypothesis is not a possible outcome o f a chance process? I t is this question that led us to 

examine di f ferent interpretations o f probabi l i ty in Chapter 3. 
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Af te r a br ie f discussion o f di f ferent іп їефге їа ї іопз o f probabi l i ty , we came to the 

conclusion that the classical theory, the logical theory, and the frequency theory al l suffer 

f rom fatal d i f f icu l t ies. T o the subjective theory and the propensity theory, s t i f f objections 

are inescapable. However , it was concluded that the propensity theory is the one that are 

most able to stand up to its objections (Section 3.5). We certainly d id not intend to settle 

al l controversial issues surrounding the interpretations o f probabi l i t ies for it is such a b ig 

task that requires at least another project. Moreover, we have noted that even granted that 

i t wou ld be the subjective theory, instead o f the propensity theory, that could be most able 

to stand up to the harsh cri t ic isms, our major conclusions about the role o f SST in 

education research w o u l d st i l l be tenable. 

Nevertheless, we have come to three conclusions. First, i f we do not accept the 

subjective theory o f probabi l i ty , ta lk ing about the probabi l i ty o f a hypothesis that is not 

the outcome o f chance processes is unintel l ig ible (Section 3.6). On the other hand, i f we 

are prepared to accept the subjective theory o f probabi l i ty , we have to explain how the 

di f f icul t ies encountered by the subjective theory could be resolved, as we have done for 

the propensity theory. Second, suppose we insist on assigning probabi l i ty value to a 

hypothesis in the same way as we assign it to an event, then we have to accept that i t is 

the hypothesis w i t h l ow probabi l i ty, rather than h igh probabi l i ty , that we should aim at 

when conduct ing scient i f ic research (Section 5.6). That is, however, contrary to the 

hidden premise in SST 一 a hypothesis has to be rejected i f it has a very low probabi l i ty 

for being true. Th i rd , there is another usage o f 'p robabi l i ty ' when ta lk ing about the 

probabi l i ty o f a hypothesis. For this usage, a hypothesis w i l l be regarded as more 

probable i f i t can stand up to more severe tests, or it has some other virtues that we th ink 

196 



a good hypothesis should possess. That is to say, the l o w probability o f a hypothesis 

could now constitute a good reason for us to reject it. B u t in this case the probability w i l l 

not conform to the probabi l i ty calculus (Section 5.6). Since the word 'probabi l i ty ' in the 

premise ' the probabi l i ty that the data w i l l occur is very smal l i f the nul l hypothesis is 

t rue' refers to the one that conforms to the probabi l i ty calculus, we cannot infer f rom this 

premise to the conclusion ' the probabi l i ty that the nu l l hypothesis is very smal l ' , where 

'probabi l i ty ' has another meaning . Otherwise, no matter the argument fo rm is val id or 

not, we w o u l d commi t the fal lacy o f equivocation as we have put forward an argument 

where the wo rd 'p robab i l i t y ' changes f rom one meaning in the premise to another in the 

conclusion. 

For those who believe that we should adopt the subjective theory or those who 

st i l l insist on assigning probabi l i ty value to a hypothesis in the same way as we assign it 

to an event, a detailed examination o f the va l id i ty o f the inference 一 a hypothesis is 

rejected because the observed data wou ld be very un l ike ly i f the hypothesis is true 一 is 

needed although in fact many people, including both the advocates and even crit ics o f 

SST, either ignore this issue or simply regard the inference as va l id when discussing the 

role o f SST in conduct ing research. We thus devoted a rather long section to address this 

problem. W i t h a detailed examination o f the inference f r om di f ferent perspectives, we 

argued decisively that the inference is fal lacious. Moreover, by making contrast w i th 

certain va l id argument fo rm and rule o f inference, we could see why so many people 

have commit ted the fal lacy. 
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As we have discussed in Chapter 2， SST is not a single concept that emerged all at 

once. There is indeed a cluster o f concepts associated w i th SST and they were developed 

gradual ly since the publ icat ion o f Arbuthnot t 'ร paper. We have also discussed how the 

two modem approaches o f SST, Fisher'ร signif icance testing and Neyman-Pearson 

hypothesis test ing, as we l l as their hybr id were evolved ๒ l ight o f the historical 

background discussed in previous sections. Despite the dist inct ions between these two 

approaches, they are also di f ferent f rom Arbuthnot t ' ร or ig inal idea. Moreover, not all 

advocates o f SST wou ld agree that we must invoke the concept o f probabi l i ty o f a 

hypothesis in conduct ing SST. Hence, in addit ion to the above cr i t ical analysis, we have 

to examine whether the two approaches o f SST and their hybr id could avoid invoking the 

concept o f the probabi l i ty o f a hypothesis and become free o f the insurmountable 

problems. But before that, we had to look more closely at the important notions and 

common misconceptions associated w i th SST. A n d it was our task in Chapter 4. 

In Chapter 4， we first explained the logic o f hypothesis testing in general so that 

we could see why SST wou ld be invoked in conduct ing research. Dist inct ions between 

Fisher's signif icance testing and Neyman-Perason hypothesis testing were thoroughly 

discussed (Section 4.2), On ly by do ing so we could disentangle the subtle differences 

between the t w o most important notions in the modem versions o f SST 一 р values and 

Type I error probabi l i ty (Section 4,3) and understand w h y so many discussions on SST 

have gone astray. 

To sum up, in Fisher'ร signif icance testing, the researcher attempts to reject the 

ทนII hypothesis by establishing the probabi l i ty {p value) o f obtain ing the observed or 
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more extreme outcomes under the assumption o f the nu l l hypothesis. The р value is a 

measure o f the strength o f evidence against the nu l l hypothesis. The smaller the value o f 

p, the greater the weight o f the evidence is. There is no place for an alternative hypothesis 

or the contro l o f the long run Type I or Type I I error rates. It is interesting to note that 

Fisher h imse l f s imply regarded the inference as induct ive, fluid, non-quantif iable and did 

not explicate the logic under ly ing the signif icance testing. Fisher and his advocates are 

thus confronted w i th two di f f icul t ies. First, what does it mean by 'evidence against the 

nul l hypothesis'? A n d how could it be measured? Second, suppose we know the 

answers to these questions, but w h y is the probabi l i ty {p value) o f obtaining the observed 

or more extreme outcomes under the assumption o f the nul l hypothesis be used as 

measure o f the strength o f evidence against the nu l l hypothesis? There are two possible 

answers to these questions. One invokes the probabi l i ty o f the nul l hypothesis, e.g. the 

evidence against a nu l l hypothesis is the one that renders the hypothesis less probable, or 

the smaller the value o f p, the more improbable the nu l l hypothesis w i l l be true. The 

under ly ing reasoning is, however, fallacious (Section 5.4 & 5.5). Another invokes the 

l ike l ihood ratio associated w i th the observed or more extreme data but not the probabi l i ty 

o f a hypothesis. But in this case, we have to ignore Fisher's or iginal idea that no 

alternative hypothesis is required in signif icance testing. This signif icance testing would 

encounter another prob lem, i.e. i t wou ld lead to misleading results as we have shown that 

the use o f ta i l region to represent a result that is actually on the border wou ld overstate 

the evidence against the nu l l hypothesis (Section 5.4). 

In contrast to Fisher's signif icance testing, Neyman-Pearson hypotheses testing 

does not a im at the t ruth o f a single hypothesis and does not regard the mere occurrence 
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o f rare outcome as adequate evidence for the rejection o f the nu l l hypothesis. What it is 

concerned w i t h is to contro l the rate o f mistaken conclusions in the long ran. That 's why 

the concept o f Type I errors and Type I I errors were developed in Neyman-Pearson'ร 

approach. It is important to note that the level o f signif icance must be specified or f ixed 

prior to the analysis o f data. But many people have ignored this problem and even some 

suggested to report ing the observed р value as the exact signif icance level. We have 

provided a novel explanation in Section 4.3 for w h y such a blur o f dist inctions between 

the р value and the signif icance level wou ld lead to undesirable consequences. A n d it 

also explains why the hybr id o f these approaches, i.e. using the р value to l im i t our 

mistakes in the long run and at the same t ime to assess the truth o f the nul l hypothesis, 

w i l l not render SST to be more tenable. A l though Neyman-Pearson hypothesis testing 

does not invo lve the concept o f the probabi l i ty o f a hypothesis, it does have some other 

serious problems that can hardly be resolved. The most important one is that to reject a 

hypothesis at a certain Type I error rate means only that the rule, prescribing us to take an 

act ion, w i l l ensure that in the long run we shall not be too often wrong. But it cannot 

address the researchers' genuine concern, i.e. the t ruth o f the hypothesis they are 

interested in. What is more, the report o f the calculated р values as the significance level 

w i l l distort the overal l long term Type I error rate (Sect ion 4.3). Hence, an indiv idual 

researcher cannot make the hypothesis testing i tsel f more stringent merely by choosing a 

smaller signif icance level . The Neyman-Pearson hypothesis testing thus cannot provide 

an effective means for rejecting false hypotheses. 

We have also discussed some wide ly held misconceptions about SST, such as the 

conflat ion between the two condit ional probabi l i t ies, i.e. probabi l i ty o f rejecting a nul l 
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provided it is true and the probabi l i ty that the ทน11 is true provided it has been rejected, 

level o f signif icance being an indicator o f the probabi l i ty o f successful repl ication, nul l 

hypotheses being tantamount to n i l hypotheses, and the conf lat ion between statistical 

signif icance and pract ical signif icance. On these grounds, we could on one hand see the 

l imi tat ion o f SST and on the other judge whether some generally received crit icisms on 

SST are real ly fair. First, i t is not true that al l nu l l hypotheses must be false on a pr ior i 

grounds or they must be able to be rejected w i th suf f ic ient ly large sample size, for the 

truth is dependent on whether it is self-selected groups design or a true experimental 

design (Section 5.1). Second, i f a ทน11 hypothesis is not a n i l hypothesis, a rejection o f 

the nul l hypothesis could be an indication o f an important difference (Section 5.2). More 

important, i f what the researchers are interested in is a n i l nu l l hypothesis, for example, 

they a im at testing whether the difference is produced by chance or by the treatment, then 

the questions l ike Ή ο พ large is the effect?' or ' Is the effect large enough to be useful?' 

are not the questions that they have to bother w i t h . Th i r d , the average power o f SST in 

research literature was found to be between 0.4 and 0.6. That is to say, about ha l f o f the 

tests for false ทน11 hypotheses are non-signif icant. B u t this is not an intractable problem 

for large enough sample sizes could be able to ensure h igh power (Section 5.3), 

I t should be concluded, f rom what has been discussed above, that although some 

cri t icisms on SST are not real ly fair, SST has insurmountable problems that could 

misguide the research paradigm. Many crit ics o f SST have thus proposed dif ferent 

alternatives to SST. It must be noted that even though di f ferent reasons have been 

proposed fo r the use o f CIs， we found, after a detailed examinat ion o f these reasons, that 

CIs have many problems too. A n d more important, the logic under ly ing CIs is the same 
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as that under ly ing SST. cis are no better than SST for the purpose o f testing nu l l 

hypothesis (Sect ion 6.1). Moreover, an algori thmic method for conduct ing research, i.e. 

what we have to do is to design an experiment and to col lect data and there are ready-

made automatic rule for mak ing inferences from data, is certainly a tempt ing idea. But , 

as we have argued in Section 6.2, it is unreasonable to expect the existence o f a statistical 

test that could provide algori thms or r ig id rules by con fo rming to which all problems 

about testing hypotheses could be solved. 

In proposing alternatives to SST, many cr i t ics o f SST ignore one deeper reason 

for the fai lure o f SST - the inductive reasoning under ly ing SST. N o t only SST but also 

other tests invok ing induct ion wou ld fai l in making va l id inference f rom data to the 

hypothesis. Th is po in t becomes more apparent when mak ing a contrast between 

induct ion and fa ls i f icat ionism in Section 6.3. Accord ing to the tradit ional 

v iew, advocated by many falsifícationists, SST is a methodological rule for fa ls i fy ing 

statistical hypotheses. We have, however, argued that there are indeed subtle differences 

between the methodological rules in fa ls i f icat ionism fo r fa ls i fy ing statistical hypothesis 

and SST. A n d in l ight o f these discussions, we could be clear how falsi f icat ionism could 

eschew the disadvantages o f SST and other s imi lar statistical inductive inferences 

(Section 6.4). 

Education research is cont inual ly being cr i t ic ized for its qual i ty. Teachers often 

complain that the research output does not real ly matter to them or is fut i le to their 

practices. There are many reasons for that. One possible reason is that there are many 

conf l ic t ing theories and viewpoints in education research. A n d at least to this issue 
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fa ls i f icat ionism could make its dist inct ive contr ibut ion. The contr ibut ion is two- fo ld . 

First, fa ls i f icat ionism requires the hypotheses to be falsi f iable i f the hypotheses are about 

our empir ical wo r l d . The researchers have to formulate the hypothesis precisely such that 

the condit ions under wh ich the hypotheses could be fals i f ied are clearly stated. B y doing 

so, the tautological or metaphysical theories, vo id o f empir ica l content, w i l l be expelled 

f rom the body o f educational theories. Second, it is not d i f f i cu l t to f ind evidence for a 

hypothesis even i f the hypothesis is false. I t is fa ls i f icat ion but not conf i rmat ion that 

could ef fect ively discern the false theories. 

The contr ibut ion is not on ly to the so-called 'quant i tat ive research'. Whenever 

the hypothesis is about our empir ical wo r l d , no matter it is quantitat ive or qualitat ive, 

fa ls i f icat ionism could be invoked. That 's w h y the examples we adopted for i l lustration in 

Section 6.5 are not restricted to on ly the quantitative studies. Moreover, although most 

examples in this thesis were drawn f rom the research on mathematics education, the 

major discussion might apply equal ly to research in other educational contexts. Final ly, i t 

is interesting to note that Carver (1993) has subjected the publ ished data o f Michelson 

and Mor ley , wh ich were used in 1887 to test the hypothesis that l ight travels through a 

medium called ether, w i t h a simple analysis o f variance. His tor ica l ly , as we know, 

Michelson and More l y had concluded wi thout using SST that l ight travels the same speed 

no matter what direct ion i t is t ravel ing. Based on their result, special relat iv i ty had been 

developed later by A lber t Einstein. Would Miche lson, M o r e l y and Einstein change their 

minds i f they had known that Carver (1993) could f i nd statistical signif icance associated 

w i t h the direct ion the l ight is t ravel ing (p < .001)? 
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We do real ly hope that there could be research paradigms that wou ld br ing 

education research into a more prosperous situation in wh ich teachers and other 

educational professionals wou ld f ind the research output really matters to their practices. 

SST, as i t should be clear now, is certainly not one o f them, unless w e prepare to include 

^educational ether' in our theories. 
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Appendix 1 A Proof of Arbuthnotťs first argument 

Here is a p roo f o f Arbuthnot t 's first argument in modem terminology: suppose 

that the probabi l i t ies o f gett ing M and F are both 0.5， the probabi l i ty o f gett ing nil Ms by 

th rowing ท two-s ided dice (where ท is even) is: 

c: rn 
2 

" ！ 

( ( « / 2 ) ! ) ' 2 ՞ 

B y using St i r l ing 'ร formula^^^, we can easily show that its l im i t w i l l be zero as ท 

approaches in f in i ty : 

"！ 
л & ( ֊ ) " 

((ท/2)\ք2" lim-

= J-T lim 4 ^ 

v π „ - » 0 0 v ท 

= О 

Bu t does it imp ly that ' i t is very improbable that the outcomes wou ld never reach as far as 

the extremit ies'? A l though there is always a posi t ive probabi l i ty o f gett ing an extreme 

outcome, the probabi l i ty w i l l rapidly d imin ish as ท increases. That is to say, i f we use รท 

to denote the number o f Afs we get in th rowing ท two-sided dice. What we have shown 

above can be wr i t ten as 

lim^(^.=f) = 0 ' 

2 3 6 According to Karl Pearson (1924)， it was Abraham de Moivre who first gave the expansion of factorials 

and what James Stirling had indeed contributed is the determination of the constant term in the expression 

(^J2π) (see also David, 1962/1998, pp.l73-177). In this connection, maybe this formula or theorem 

should have been called 'de Moivre-Stinng theorem' as Pearson (1924) has proposed. 
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Some may th ink that the probabi l i ty that รท is near ทII (or in a certain interval centred at 

nil ) w i l l not d imin ish so rapidly as ท increases (or its l im i t i ng value w i l l no longer be 

zero). Bu t this in tu i t ion is p la in ly false as shown below: for any posit ive number a, 

Х щ [ п \ ֊a<s„<\^a^ = l im ( I c; փ֊) 
ทิ二; \、ム ^ ノ 一a ム 

hm 
դ삼 
v 4m ノ 

i-e-, \imP{-c։<S„֊֊<a) = 0. 

I t is an amazing but disappoint ing result: no f in i te interval [ — 0 , a] can be used to trap for 

the probabi l i t ies associated w i th ร^ —— as ท approaches in f in i ty . But , on the other hand, 

the weak law o f large numbers tells us, as ท approaches in f in i ty , the probabi l i ty that the 

average number o f gett ing Ms that deviates f rom 1/2 by more than any pre-assigned 

posit ive number ε w i l l also tend to zero, 

i.e. lim̂  ท 2 
= 0 , for any posit ive number ε . 

Or in its equivalent f o rm : 

lim̂  = 1 , for any posit ive number ε 
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Appendix 2 The Christenings in London, 1629-1710 

Year Ma les Females Y e a r Ma les Females 1 Y e a r Ma les Females 

1629 5218 4683 1657 3396 3289 1685 7484 7246 

1630 4858 4457 ļ 1658 3157 3013 1686 7575 7119 

1631 4422 4102 1659 3209 2781 1687 7737 7214 

1632 4994 4590 1660 3724 3247 1688 7487 7101 

1633 5158 4839 1661 ：: 4748 4107 1689 7604 7167 

1634 5035 4820 ： 1662 5216 4803 1690 7909 7302 

1635 5106 4928 ร: 1663 5411 4881 1691 7662 7392 

1636 4917 4605 1664 6041 5681 1692 7602 7316 

1637 4703 4457 і 1665 5114 4858 1693 7676 7483 

1638 5359 4952 1666 4678 4319 1694 6985 6647 

1639 5366 4784 1667 5616 5322 1695 7263 6713 

1640 5518 5332 1668 6073 5560 1696 7632 7229 

1641 5470 5200 1669 6506 5829 1697 8062 7767 

1642 5460 4910 1670 6278 5719 1698 8426 7626 

1643 4793 4617 1671 6449 6061 1699 7911 7452 

1644 4107 3997 16721 6443 6120 1700 7578 7061 

1645 4047 3919 ：• 1673- 6073 5822 1701 5102 7514 

1646 3768 3395 1674 6113 5738 1702 8031 7656 

1647 3796 3536 1675； 6058 5717 1703 7765 7683 

1648 3363 3181 1676 6552 5847 1704 6113 5738 

1649 3079 2746 1677 6423 6203 1705 8366 7779 

1650 2890 2722 1678 6568 6033 1706 7952 7417 

1651 3231 2840 1679 6247 6041 1707 8379 7687 

• 1652 3220 2908 1680 6548 6299 1708 8239 7623 

1653 3196 2959 1681 6822 6533 1709 7840 7380 

1654 3441 3179 1682 6909 6744 1710 7640 7288 

1655 3655 3349 і 1683 7577 7158 

1656 3668 3382 1684 7575 7127 

Table A2 .1 The christenings in London, 1 6 2 9 - 1710 (Arbuthnot t , 1710, pp. 189-190): 
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Appendix З Wil lem 'sGravesande'ร argument 

W i l l e m 'sGravesande's idea was that the probabi l i ty o f the observed data, given 

Ho, should be the probabi l i ty o f observing, in each o f the 82 consecutive years, the 

number o f male births fa l l ing between two specific values, defined by reference to the 

extremes o f the observed data. His calculations were shown b e l o w ^ " : 

1. Since the annual total number o f births (assuming to be the number o f 

christenings) var ied, he assumed that the year ly number o f births was constant and 

its value was s imply the average number o f births over the 82 years. 

i.e. the yearly number o f births = = 11442. 
82 

2. He then picked up the two years w i th the most extreme values for the ratio o f 

male bir ths: the total number o f births. 

Y e a r M / T o t a l Y e a r M / T o t a l Y e a r M / T o t a l Yea r M / T o t a l 

1703 0.502654 1702 0.511953 1704 0.515821 1630 0.521524 

1682 0.506043 1694 0.512397 1633 0.515955 1707 0.521536 

1693 0.506366 1641 0.512652 1636 0.516383 1655 0.521845 

1644 0.506787 1665 0.512836 1706 0.517405 1668 0.522049 
1657 0.508003 1672 0.512855 1687 0.51749 1670 0.523297 

1645 0.508034 1688 0.51323 1700 0,517658 1698 0.524919 

1685 0,508079 1637 0.513428 1647 0.51773 1652 0.525457 

1679 0.508382 1667 0.513439 1705 0.518179 1663 0.525748 

1640 0.508571 1696 0.513559 1631 0.518771 1646 0.526037 

1677 0.508712 1648 0.513906 1701 0,518827 1642 0.526519 

1635 0.50887 1683 0.514218 1653 0.519253 1629 0.527017 

1691 0.508968 1675 0.51448 1708 0.519417 1669 0.527442 

1697 0.509318 1689 0.514792 1695 0.519677 1676 0.52843 

1643 0.509352 1699 0.514938 1638 0.519736 1649 0,528584 

1692 0.509586 1650 0.514968 1654 0.519789 1639 0,52867 

1680 0.509691 1709 0.515112 1666 0.519951 1651 0.532202 

, 1673：, 0.510551 1684 0,515236 լ 1690 0.519953 1660 0.534213 

2 3 7 For details of 'sGravesande'ร calculation, see Hald, 1990, pp.275-285; Shoesmith, 1987, 133-146. The 
table here is generated with the use of Excel from Arbuthnott's original set of data. 
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1681 0.51082 1664 0.515356 1656 0.520284 1659 0.535726 
1634 0.510908 1671 0.515508 1662 0.520611 1661 0.536194 
1658 0.511669 1686 0.515517 1632 0.521077 
1710 0.51179 1674 0.515821 1678 0.521228 

Table A3.1 The ratio o f male christenings to the total number o f christenings in 

London, 1 6 2 9 - 1710: 

We can observe f rom the Table A3.1 that in 1703 the ratio was the least (0.502654) 

and in 1661 the ratio is the greatest. (0.536194). 

Hence, the lowest Observed' number o f male births 

= 0 .502654x11442 = 5 7 5 1 . 

S imi lar ly , the greatest Observed' number o f male births = 6135. 

3. B y using a b inomia l expansion w i th ท = 11442 and р = ՚/շ, we can calculate the 

probabi l i ty o f observing the number o f male births w i t h i n the l imits 5751 and 

6135, ๒ each o f 82 successive 'average' years (w i th ท = 11442). Wi th the use o f 

Maple 8, we get the fo l l ow ing result^^*: 

> sum ( b i n o m i a l (11442 , k ) * (0 . 5 ' ՝11442) , k = 5 7 5 1 . . 6135) ； 

.2906222800 

> % ^ 8 2 ; 

.9839437208 10 
-44 

6135 1 

: „ ^ 1 1 4 4 2 ( 1 、 
i.e., 2一 с; (^) 

i=5751 ^ 

11442 0.291 

2 3 8 In the times where computer algebra systems were not available, 'sGravesande was required to do the 

summation longhand and he had invented certain minor sophisticated methods to cut down the calculations 

involved. See, Pearson, 1978, pp.301-2, for details. 

209 



A n d the probabi l i ty o f the observed outcomes over 82 years w i l l thus become 

0.98 X10՜세 ， that is much less than the one by Arbuthnot t 's calculat ion: 2.07x 10՜ 2 5 . 
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Appendix 4 Nicholas BernouUi'ร counterargument 

Nicho las Bernoul l i has proposed an argument against Arbuthnot t 's second 

argument. What Bernou l l i challenges is the assumption οΐρ= 1/2 for the probabi l i ty o f a 

male b i r th , on wh i ch both Arbuthnott and 'sGravesande had founded their logic. 

Accord ing to Bernou l l i , this assumption was too restrict ive an interpretation o f 'chance' 

(Pearson, 1978, pp.161-162; Shoesmith, 1985, pp. 256-259; 1987, p. 142). In his letter to 

de Montmor t , he took the probabi l i ty o f a male b i r th to be 18/35. B y adopting a model 

similar to 'sGravesande'ร, Bernoul l i selected a constant value o f 14000 for the total 

number o f christenings (ท) so that we needed not to use di f ferent b inomia l series for each 

o f the 82 years. He then transformed the numbers o f male and female christenings in 

each year in proport ional to this constant value o f ท. A s ρ = 18/35, the expected value o f 

rescaled male christenings wou ld be HOOOx ― = 7 2 0 0 . The table o f rescaled figures o f 

christenings is as shown below: 

Y e a r Ma les Females Y e a r M a l e s Females Y e a r Ma les Females 

1629 7378 6622 1657 7112 6888 1685 7113 6887 

1630 7301 6699 1658 7163 6837 1686 7217 6783 

1631 7263 6737 1659 7500 6500 1687 7245 6755 

1632 7295 6705 1660 7479 6521 1688 7185 6815 

1633 7223 6777 1661 7507 6493 1689 7207 6793 

1634 7153 6847 1662 7289 6711 1690 7279 6721 

1635 7124 6876 1663 7360 6640 1691 7126 6874 

1636 7229 6771 1664 7215 6785 1692 7134 6866 

1637 7188 6812 1665 7180 6820 1693 7089 6911 

1638 7276 6724 1666 7279 6721 1694 7174 6826 

1639 7401 6599 1667 7188 6812 1695՛ 7275 6725 

1640 7120 6880 1668 7309 6691 1696Ϊ 7190 6810 

1641 7177 6823 1669 7384 6616 1697 7130 6870 

1642 7371 6629 1670 7326 6674 1698 7349 6651 

1643 7131 6869 1671 7217 6783 1699 7209 6791 

1644, 7095 6905 1672 7180 6820 1700 7247 6753 
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1645 7112 6888 1673 7148 6852 1701 7264 6736 

1646 7365 6635 1674 7222 6778 1702 7167 6833 

1647 7248 6752 1675 7203 6797 1703 7037 6963 

1648 7195 6805 7398 6602 1704 7222 6778 

1649 7400 6600 1677 7122 6878 1705 7255 6745 

1650 7210 6790 1678 7297 6703 1706 7244 6756 

1651 7451 6549 1679 7117 6883 • 1707 7302 6698 

1652 7356 6644 1680 7136 6864 1708 7272 6728 

1653 7270 6730 1681 7151 6849 1709 7212 6788 

1654 7277 6723 1682 7085 6915 1710 7165 6835 

1655 7306 6694 1683 7199 6801 

1656 7284 6716 1684 7213 6787 

Table А4 .1 Christenings in London (rescaled w i t h ห = 14000), 1629 - 1710 

From this table, we note that the lowest value o f the rescaled male christenings was 7037 

( in 1703), wh i ch was 163 less than the expected value o f 7200; and the greatest value was 

7507 ( in 1661), wh i ch was 307 greater than 7200. The next step was to calculate the 

probabi l i ty that the rescaled male christenings wou ld in any one year d i f fer by no more 

than 163， either way , f rom the expected value o f 7200: 

7363 

Σ С 
Jt=7037 

14000 

к 
ri8ļ к ri7ļ 

、35 J 

14000-

Wi th the use o f Maple 8, we get: 

> p : = 1 8 / 3 5 ： sum ( b i n o m i a l ( 14 0 0 0 , к ) * ( p ^ k ) * ( 1 - p ) A ( 1 4 0 0 0 -

k ) , k = 7 0 3 7 . . 7 3 6 3 ) ； 

> . 9 9 4 3 0 5 8 4 2 8 

i.e., the probabi l i ty is 0.9943. 

Then we also notice that dur ing the 82 years there are 11 deviations greater than 163: 

Y e a r Ma les 

1646 7365 

1642 7371 

1629 7378 

1669 7384 

, 1676 7398 
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： 1649 7400 

1639 ： 7401 

1651 ： 7451 

7479 

7500 

：：„：„,：,Добі ,,：,：,, 7507 

That means the probabi l i ty that the rescaled male christenings fa l l ing outside [7037, 7363] 

no more than 11 t imes in 82 years (and w i th in them at least 71 t imes) is: 

f ; C f ç 4 l - ^ ) \ where ^ = 0.9943. 

* = 7 1 

Using Maple 8， we have: 

> s u m ( b i n o m i a l ( 8 2 , к ) * ( q ^ k ) * ( ( l ֊ q ) ^ ( 8 2 - k ) ) , k = 7 1 . . 8 2 ) ； 

.9999999997 

Such a h igh probabi l i ty indicates that a chance mechanism could give rise to the 

regularity and consistency that Arbuthnott has observed. 

213 



Appendix 5 James BernouUi'ร l imit theorem 

W i t h the use o f modem notation, the l im i t theorem presented by James Bernoul l i 

can be put in this way: 

Suppose a tr ia l has է = r + s equally l ike ly outcomes, where r and s are two 

posit ive integers, o f w h i c h r are favourable,^^^ and let p = . I f รท is the number o f 

r + s 

favourable outcomes in a series o f ท independent tr ials, then for any posit ive real number 

c, there exists an integer N {r, ร, с) such that 

P 
T - タ 

ո 

՜է > , for al l ท > Ν. 
c + \ 

Apart f r om prov ing the existence o f the integer N, Bernou l l i also shows how its value 

could be f igured out : N = max( m^t + ֊ ― ֊ ֊ ― , /77^/+ ) , where m\ and աշ 

5 + 1 r+\ 

are the smallest posit ive integers satisfying m¡ > ֊ ՝ ՜^ ՛^^ and ทկ > ^^^^^^ 一,Ι)) 

respectively.^"*^ 

A f te r the p roo f o f this theorem, Bernou l l i gave one (and only one) example. We 

w i l l use this example to il lustrate the impl icat ions o f this theorem: consider an urn w i t h 

whi te and black pebbles in the ratio 3:2. We take out one pebble after another (w i th 

replacement) and observe how often a whi te pebble is w i thdrawn. I f drawing a whi te 

It is also called, in Bernoull i 's terminology, * fecund events' or 'ferti le events'. 
2 4 u See Adams (1974) and Stigler (1986) for the outline o f the proof in modern notation. A complete proof 

could be found in Hald (1990, pp.260-262). In modem texts, a much simpler proof can be obtained from 

Chebychev'ร inequality (see, for example Hogg & Craig, 1995, pp.68-69). But Bernoulli 's treatment has 
its own advantages over the modem one (for details, see Stigler, 1986, pp.66-69). 
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pebble is considered to be a favourable outcome, then r \ s = ъ \ 2. The values r and ร 

could be chosen w i t h some latitude (such as r = 15 and ร = 10), depending on what l imits 

for the relative frequency o f the favourable outcomes we want to have. In Bernoul l i ' s 

example, the values r and ร were chosen to be 30 and 20， wh ich meant that the l imits for 

sjn were given by: 

ท 5 50 50 ռ 50 

He chose the value o f с to be 1000, which meant that a 'mora l շշճճոՀյ՝՜^^^ o f 1000/1001 

for this inequal i ty to ho ld . W i th the use o f the result shown above, he got тпі=1พ, 

/«2=301 and N = max( 24728, 25550) = 25550. 

A s Bernoul l i said in a letter to Leibniz, most o f us know by some instinct o f 

nature per se and by no previous instruction that the greater number o f drawings, the 

surer we know about the proport ion o f whi te pebbles in the u m (Gigerenzer et al. , 1989, 

р.ЗО; Stigler, 1986, р.65). Bu t the common sense does not suff ice to show how many 

drawings warrant what degree o f certainty. One o f the great achievements by Bernoul l i is 

the commencement o f the journey toward a mathematical quant i f icat ion o f uncertainty. 

From the above calculat ion, we are now sure that when we make 25550 or more drawings, 

we w i l l anticipate w i th a probabi l i ty greater than 1000/1001 that the proport ion o f 

drawings in wh ich a wh i te pebble is taken out w i l l d i f fe r f rom the true proport ion o f 

whi te pebbles in the urn (i.e. 3/5) by less than 0.02. Bernou l l i ' s estimation o f the number 

o f drawings {N) was, o f course, not the รЬафезЇ one. The number o f tr ials 25550 was a 

2 4 ' Bernoull i appUed 'moral certain' to an event whose probability nearly equals the whole certainty, so that 
a morally certain event cannot perceived not to happen. For Bernoull i ' s own elaboration, see Hald, 1990, 
pp.248-249. 
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very large number to Bernou l l i especially when he intended to extend the result to 

solv ing practical problems. The number o f stars l isted in Flamsteeďร catalogue (1725) in 

Bernoul l i 's t ime, as Stigler (1986, p.77) noted, was merely 3000 and the entire population 

o f Basel was smaller than 25550. The number 25550 was thus at that t ime more than 

astronomical. Th is might explain why he seemed reluctant to publ ish his work though he 

had proved the theorem f i f teen years before his death. He got such a large number part ly 

because o f his insistence on the moral certainty warranted by odds o f 1000 to 1 wh ich is 

much higher than the now common standard o f certainty 19 to 1 (i.e. 0.95). Even though 

he had relaxed his standard to ' immora l certainty ' , say 19 to 1, the number o f trials 

required wou ld st i l l be quite large 一 15715. A number o f people had thus tr ied to รһафеп 

Bernoul l i ' s result and reduce the number o f drawings to a more practicable size. For 

example, Nicholas Bernou l l i proved a theorem in 1713 by wh ich the value o f N was 

found to be 8400, and Abraham de Mo iv re reduced it ftirther to 6500 f rom a theorem 

publ ished twenty years after the two proofs o f the two Bernoul l iร . (Ha ld , 1990, 267-274). 

Indeed, we could use Map le 8 to find that N = 6450 suffices for the required probabi l i ty 

(but Л/" - 6449 w o n ' t do). 

Bernou l l i ' s example acts as a model to investigate human morta l i ty , weather or 

other important practical phenomena where the causes are hidden and the enumeration o f 

equally l ike ly cases is impossible. Bu t in these real problems, the proport ion o f balls in 

the urn corresponds to the hidden causes and it is usually f i xed but unknown. I f the 

proport ion o f wh i te pebbles in the urn is unknown, cou ld we st i l l use BemouUi 's result to 

estimate the proport ion and determine how accuracy this estimate is f rom the number o f 

favourable outcomes in a series o f ท independent drawings, รทΊ A t first sight, the answer 
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is af f i rmat ive ― i t seems that we could use Bernou l l i ' s result to compute an interval, 

wh ich can be taken as narrow as we wish^"*^, so that we may expect w i th a high 

probabi l i ty that the true proport ion w i l l l ie inside this interval, prov ided suff ic ient ly large 

number o f drawings, ท, are made: i t is obvious that the inequal i ty 

or the statement 

s„ є J{p, ท), where J(p, ri) denotes the interval [np- — ,np + ―] 

is equivalent to the inequali ty 

ท է n t 

or the statement 

р є I{s„, " ) ， where ƒ 0 „ , ท) denotes the interval , ― 

Then given the value o f c, according to the Bernou l l i ' ร result, we seem to be able to 

ascertain that i f the number o f drawings ո is Nor more we may expect w i th a probabi l i ty 

greater than c/(c + 1) that the value o f р w i l l l ie inside the interval I {ร^,ท). 

A closer look into the calculations w i l l reveal that the above argument is 

mistaken. Since iV is a value wh ich depends on the true proport ion o f white реЬЫеร in 

the urn, we are st i l l unable to know how many drawings are required to guarantee that we 

wou ld have a probabi l i ty greater than ๘(c + 1) that the value o f р w i l l lie inside the 

2 4 2 The length o f the interval is given by 211 in this example and we assume է being constant (=1/50) 
throughout the fol lowmg discussion. 
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interval I(ร^, ท). W i t h the modem notation o f condi t ional probabi l i t ies, we could clearly 

dist inguish the probabi l i ty that Bernoul l i has demonstrated how to compute: 

P(s„ є Ao,ո) \p = a)i= P{ae I{ร„,ท) \p = a)) 

and the one that we want to know when the true propor t ion is unknown: 

Pip 6 I{b,ท)\s„=b)i=P{be J{p,ท)\ร„=b)) 

The first probabi l i ty reveals, when given the true proport ion o f whi te pebbles in 

the urn p, how l i ke ly i t is that observed relative frequency (รท/ท) w i l l approximate that 

probabi l i ty to any desired degree o f precision. What we really want to f igure out in 

solv ing practical real problems is, however, the second probabi l i ty wh ich reveals, when 

given the observed relative frequency, how l ike ly is it to approximate the true 

proport ion. 2 " I t is apparent that Bernou l l i h imse l f had not conflated these two 

probabil i t ies in his wr i t ings and there is not much evidence that he had pretended to a 

satisfactory answer to the problem o f est imating the true proport ion and determining the 

accuracy o f this estimate. Maybe his fai lure to compute the second probabi l i ty is another 

reason for his reluctance to publ ish Ars conjectandi (Dav id , 1962, p.133; Ha ld , 1990, 

p.263; G lymour , 1992, p. 196). The first systematic attempt to compute the second 

probabi l i ty have to wa i t unt i l 1763, ha l f a century after the publ icat ion o f Ars conjectandi, 

and this is our topic in the next Appendix. 

A l though Bernou l l i ' s theorem cannot be used to estimate the true proport ion and 

determine the accuracy o f this estimate, i t has been argued that Bernoul l i ' s result does 

2 4 3 The second probability is also called 'inverse probability'. We w i l l note, after the discussion o f different 
іпіефгеїаііопз o f probability in the next chapter, that the first probability can be given any іпіефгеїаїіоп 

but the second one is only open to a limited kinds o f ішефгеїаііопв. 

218 ― —— 



begin to j us t i f y SST (Ba i rd , 1981, p.50). For example, f r om the above discussion, we 

know that i f an urn contains whi te and black pebbles เท the ratio 3:2, in suff ic ient ly large 

number o f drawings (say, ท = 6450) we w i l l expect w i t h a h igh probabi l i ty ( > 1000/1001) 

that the number o f drawings in wh ich a whi te pebble is taken out w i l l lie between 3741 

and 3999. I f we find that, in 25550 drawings, there are 4010 drawings in wh ich a wh i te 

pebble is taken out; some may thus regard i t as good evidence to reject the hypothesis 

that the true propor t ion o f whi te pebbles in the urn is 3/5. The logic under ly ing this 

reasoning can be seen in subsequent development o f SST. 
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Appendix 6 Bayes's theorem and SST 

Here we w o u l d l ike to make two pre l iminary remarks regarding Bayes's theorem 

and SST. First, i f an urn contains whi te and black pebbles in the ratio 3:2, in suff ic ient ly 

large number o f drawings (say, ท = 6450) we w i l l expect w i t h a h igh probabi l i ty ( > 

1000/1001) that the number o f drawings in wh ich a wh i te pebble is taken out w i l l l ie 

between 3741 and 3999, i.e. 5(,450 є [3741,3999] That means the fo l l ow ing probabi l i ty 

w i l l be greater than 1000/1001: 

P(E\p = 0.6), 

where ' F denotes the event 5,450 e [3741,3999]. Since P(E \ Р = 0.6) + Р{~ E\ p = 0.6) 

= 1 , it thus fo l lows that the fo l l ow ing probabi l i ty w i l l not be greater than 1/1001 ： 

P(֊E\p = 0.6), 

where denotes that the event 5̂ 450 ๕ [3741,3999]. 

Suppose in 6450 drawings the number o f drawings in wh ich a white pebble is 

taken out is 4010 (i.e. í6450 = 4010) , could we thus conclude that i t is highly unl ikely that 

the true proport ion o f wh i te pebbles in the urn w i l l be 3/5? Before invoking Bayes'ร 

theorem to express the posterior probabi l i ty o f the hypothesis that p = 0.6, we should first 

make clear one point about the relationship between the event ぶ 6 4 5 。 = 4010 and ~E (i.e. 

•ร6"0 t [3741,3999]) . I t is clearly that •ร6450 = 4010 impl ies ֊E, but the converse does not 

ho ld. Hence, in general, P{p = 0.6 卜 E) and P(p = 0.6 I í̂ 430 = 4 0 1 0 ) w i l l be dif ferent. 

2 " Here 's„' denotes the number o f favourable outcomes in a series o f ท independent trials. For details, see 
Appendix 5. 
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Which one should be adopted in answering our question in this very paragraph? I w i l l 

argue a l i t t le bi t later that only P{p = 0.61 •ร6450 = 4010) w i l l make sense in the calculation 

o f the posterior probabi l i t ies o f hypotheses. 

I t can be easily shown that \i A impl ies в then P{A) < PiBf^^. Moreover, i f A 

impl ies В then, for any proposi t ion Χ , Α Λ Χ implies в A X , and hence P{A A X ) < P{B л 

X). B y Bayes'ร theorem, i t is certain that P{A \X)< P{B I X ) , but the order o f the sizes o f 

the two probabi l i t ies 一 P{X I A) and P{X I 5 ) ֊ is s t i l l ւոճ6է6քոււոՅէ6^՛*^. In our present 

case, since 5g450 = 4010 implies ~E, we thus have P{ 5̂ 450 = 4010 ) < P{~E) and 

?(5^450 = 401이 ρ = 0.6) <P{~E\p = 0 .6) . W i t h the use o f Bayes's theorem, we have 

PiP ֊֊ 0.6 I . . . = 4 0 1 0 ) = ^ ( ^ . . . 0 = 4 0 1 0 | . = 0 .6)P(P = 0.6) 

л^6450 = 4010) 

Since the probabi l i ty Բ{՛֊՛ E\p = 0.6) is a very smal l number ( < 1/1001) , the 

probabi l i ty /"( ig^ jņ = 40101 ρ = 0.6) w i l l be much smaller. In fact, 

P(5,,50 =АШ\р = 0.6) = х 0.6 ՛° '° χ 0Л^''° « 1.751243x10- ' . 

However , we cannot conclude, w i thout mak ing any assumptions about the pr ior 

probabi l i t ies P{p = 0.6) and P{SMSO = 4 0 1 0 ) , that P{p = 0.61 5̂ 450 = 4010) w i l l also be 

very smal l . 

2 4 5 See any standard text on probability logic, e.g. Adams (1998, p.32). 

2 4 6 For example, suppose a number w is selected randomly from { 1 , 2, 5} , assuming that each number is 

equally l ikely to be chosen. Let ฬ ： 'พ є {\γ,Β : 'พ є { 1 , ΐ γ , Χ : 'พ є { 1 , 5 } ' , ř : 'พ e {2, 5 } ' . We 
have A implies B, P{X\A)= 1, P{X I B) = ՚/շ, hence P{X I A) > P{X I B). On the other hand, P{Y\A) = 0, 
P{Y I B) = 14, hence Р(Ү\А)йР(Ү\ В). 
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Consider this example: suppose there are two urns, one o f wh ich (called '17, ' ) 

contains 30 wh i te and 20 black pebbles and the other urn (called ՚ ւ / շ ՛ ) contains 10 whi te 

and 40 black pebbleร^'*^. We first select one urn f r om U\ and Սշ, assuming that each urn 

is equally l i ke ly to be chosen. Wi thout know ing wh ich urn has been chosen, we take out 

one pebble after another (w i th replacement). We observe that in 6450 drawings the 

number o f drawings in wh ich a whi te pebble is taken out is 4010, wh ich is N O T in the 

interval [ 3741 , 3999] . Given these condit ions, we could compute the probabi l i ty that the 

urn selected is U\ ( in our example, the u m selected is ԼԼ i f and only i f р =0.6) : 

P{p = Q.e\s,,,,=AQ\0) 

Р(ร,,¡0 =40101/7 = 0.6) χ Ғ(р = 0.6) + բ(ร,,,g =40lO¡p = 0.2)xP(p = 0.2) 

= 1.751243x10՜'χ 0.5 

= 1 .75124x10՜ ' χΟ.5 + 3.164495χ 1 0 ՜ ' " " χ0 .5 

« 1 , 

where ρ is the proport ion o f white pebbles in the selected urn. 

I t is thus clearly that we should conclude w i t h a very h igh probabi l i ty that the 

proport ion o f whi te pebbles in the selected urn is 0.6 (i.e. the urn is U\) even though 

P{SM50 = 40101 ρ = 0.6) is very smal l . Let us consider a more conspicuous example 

wh ich is the same as before except on ly that the urn ք / շ now contains merely black 

pebbles. I f in 6450 drawings the number o f drawings in wh ich a whi te pebble is taken 

out is 4010 then, w i thout any calculat ion, we can conclude w i t h absolute certainty that 

We wi l l refer to this example by 'two-urns example' in later discussion. 
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the um must not be Սղ because at least one whi te pebble is in the սա.^ ՛ * * From this 

example, we could also see that w h y we should not use P{p = 0.6 卜 E) for comput ing 

the posterior probabi l i ty o f the hypothesis. Us ing Bayes'ร theorem to compute 

P(p = 0.6 |~ E) and P(p = 0\~ E), we get respectively 9.945174x10՜' ' and 0.999005 

and it seems to imp l y that we should expect that the u m selected is Սշ wh ich is, however, 

inconsistent to the fact that the urn must N O T be Սշ. 

Second, in a section discussing about the relat ion between в ayes's theorem and SST, 

Bai rd (1981) has argued that ' i f the pr ior probabi l i ty for h is not very small then the 

l ikel ihood P{e I h) is the most directly relevant factor to the posterior probabi l i ty P{h I e). 

But this is the essence o f the logic under ly ing SST: I f the probabi l i ty o f e given h is low 

then probabi l i ty o f h given e is l ikewise l o w ' (p.51). As shown in the above two-urns 

example, the pr ior probabi l i ty for the hypothesis that the urn selected is บ] is ՚/շ, wh ich is 

denoted Ъур = 0.6, is certainly not very smal l ; and the probabi l i ty o f the evidence, wh ich 

is J6450 = 4010 in our example, given the hypothesis is P{SM50 = 4 0 1 0 | p = 0.6) wh ich is 

certainly l ow (« 1.751243x10՜^). Bu t the probabi l i ty o f the hypothesis given the evidence, 

i.e. P{p = 0.61 5 ^50 = 4010 ) , can hardly be regarded as ' l ikewise l ow ' as Bai rd asserted. 

This sort o f mistaken v iew is not rare as we w i l l see in later chapters. 

2 4 8 I f we insist on the use o f в ayes's theorem, we get: 

P(p=0.6|í6450 = 4010) = 1.75124xl0''x0.5/( 1.75124xl0' 'x0.5+0x0.5) = 1. 
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Appendix 7 The nature of normal distribution 

The normal distr ibut ion is fundamental to most o f the modem statistical tests 

developed in the last century and its influence on social sciences is tremendous as we w i l l 

see later.^''^ The discovery o f the normal distr ibut ion can be traced pr imar i ly to Abraham 

de Mo iv re who publ ished in 1738 the first edit ion o f The doctrine of chances or a method 

of calculating the probabilities of events in play, wh i ch may be regarded as a gambler 's 

manual, in its revised th i rd edit ion he continued the w o r k o f Nicholas Bernoul l i and 

demonstrated a method o f approximating the sum o f a very large number o f b inomial 

terms ๒ {A + ву }^՛^ As ท increases, the number o f terms in the expansion also 

increases and the graph o f the distr ibut ion w i l l begin to resemble a smooth curve, a bel l -

shaped symmetr ical curve. For example, i f a fair coin is tossed for ท t imes, the 

probabi l i ty o f gett ing X heads (where 0 < л: < л ) is 

С: х 0 . 5 ՞ . 

In the f o l l ow ing f igure, the histograms o f these probabi l i t ies are plotted for ท = 10, 30, 

100 and 1000. I n each case, a curve given by the equation is also plotted: 

У = ֊ Ж '  2՞՛ ， 

σ ν 2 ; Γ 

ム49 About the normal distribution Bryan Morgan, a mathematician historian, has made a vivid remark, 'as 

characteristic o f statistics as the hexagon is o f organic chemistry or the paraDola o f ballistics' (1972， p. 168). 

2 5 ° For a detailed illustration o f de Moivre's normal approximation to the binomial distribution, see Hald, 

1990, pp.468-508. 
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where / і = « х 0.5 and σ = х 0.5х 0.5 . This curve is now commonly known by the 

name that Kar l Pearson has put it - the normal curve 
251 
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Figure A7.1 The histograms of the binomial {ท,p=.5) probabilities superimposed with the 

corresponding normal curve for different values of ո 

2 5 ' Karl Pearson is certainly not the first to use the term 'normal curve' and the first use of this term is still 
controversial (Cowles, 2001, p.lO; David, 2001, pp.210-211; Tankard, 1984, pp.24-25). Recently, Kruskal 
and Stigler (1997) have argued that Charles s, Peirce should be credited with the first use of the term. 
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I t is clearly that as ท becomes larger and larger, the shape o f the b inomia l probabil i t ies 

becomes more and more l ike a normal curve. 

The credit for discovering the normal curve is sometimes given to Carl Friedrich 

Gauss^^^ and it can be revealed f rom the name 'Gaussian distr ibution'^^^ wh ich is often 

used to refer to the normal distr ibut ion. One o f the earlier applications o f the normal 

d ist r ibut ion outside o f gaming is the assessment o f errors in astronomical observations 

(Cowles, 2001， pp. 10-12). I t is Laplace's wo rk , and contr ibut ions by many others, that 

interpreted the normal curve as the law o f error^^"^ by wh ich it means that measurements 

should f o l l o w the normal curve. A n error, according to Laplace, is the resultant o f a 

large number o f sources o f error o f wh ich one may affect the result in one direction or the 

opposite. L ike every outcome o f tossing a co in, every source o f error may come up Ή ' 

or ' T ' , i f we use Ή ' to denote the one that affect the result ๒ one direct ion and T ' the 

opposite. Gauss assumed exp l ic i t ly that the two types o f errors are equal l ike ly , and thus 

derived that the dist r ibut ion governing error is a b inomia l d ist r ibut ion o f wh ich the law o f 

error is the l im i t i ng case when the number o f sources o f error tends to in f in i ty . 

Throughout the 1800'ร the normal distr ibut ion was used to describe a number o f 

di f ferent phenomena. A n d the normal distr ibut ion was regarded by many researchers as a 

natural law. For examples, Adolphe Quetelet has prov ided masses o f data (e.g. 

2 5 2 The credit also goes to Laplace, Charles ร. Peirce and Wi lhelm Lexis. According to Kruskal and Stigler 
(19らフ, P.8の^ such mult ipl ici ty o f naming is conspicuous and it probably suggests that a prevailing 

contemporaneous evolving conceptual understanding o f populations o f people, of measurements and of 

their similarities in the 1870ร 
2 5 3 In Germany, Gauss's portrait has been put on their 10 Deutschmark bil l and a normal curve with 
equation is printed to the left o f his portrait. See: 

2 5 4ե is also called 'the normal law of error', 'the normal law' , or 'the Gauss-Laplace law of frequency o f 
error' (Tankard, 1984， p.24). 
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measurements o f the chest girths o f 5738 Scottish soldiers^^^) that he claimed fo l l ow the 

normal d is t r ibut ion. (Bor ing , 1920， pp.10-11). These results had greatly impressed 

Francis Gal ton (1889, p.66)^^^ who argued that the evidence, collected f rom various 

measurements (such as heights^^^, span o f arms, breathing capacity), for the law o f error 

was in fact more than jus t i f ied (p.56). But , as a law o f nature, the law o f error could 

hardly be a p r io r i , analyt ic, or necessary^^^ I t is always possible for the law to be false 

(i.e. its negation is always a possibi l i ty) or to be fa ls i f ied. I f a law cannot be falsified^^^ 

no matter what experimental data we have, then it can hardly be used to provide factual 

in format ion about our wo r l d . In its history o f development, there are, however, 

researchers who have tr ied to give an a pr ior i p roo f o f this law. For instance, in 1850 

Fr iedr ich W i l h e l m Herschel, a German-bom Br i t ish astronomer who discovered the 

planet Uranus, has argued in a way similar to Laplace that the probabi l i ty o f an error 

depends merely on its magnitude and not on its d i rect ion, and posi t ive and negative errors 

2 5 5 It was this set o f data that made Quetelet to become the first person to apply normal distribution to 

human data (Wi ld and Seber, 2000, p.238). 
շ 5 6 A facsimile o f the ful l text in PDF format could be downloaded at: 
http://www.mugu.com/galtoa^)ooks/natural-inhentance/. 
2 5 7 There are subcategories for certain types o f measurements. Say, for height, it was subdivided into 
standing, standing without shoes, sitting, sitting from seat o f chair. (Galton, 1889, p.201) 
2 5 8 There is a trio o f distinctions that we w i l l find usefiil in later discussion. They are the epistemologica! 
distinction between a priori and a posteriori, the metaphysical distinction between necessity and 
contingency, and the semantical distinction between analytic and synthetic truth. Roughly speaking, a 
truth is known a prion i f it can be, in principle, known independently o f experience of how things are in the 
world (e.g. a white swan is white, a father is the male parent); whereas a truth known a posteriori is one 
which can only be known on the basis on empirical investigation (e.g. snow is white, Pierre Simon Laplace 
died in 1827). An analytic sentence is one which is true or false merely in virtue o f the meanings o f the 
words used to make it and the grammatical rules governing their combination (e.g. an oculist is an eye 
doctor, a triangle has three sides) whereas a synthetic sentence is one whose truth could N O T be 
determined merely by the meanings o f the words used to make it and the grammatical rules governing their 
combination (e.g. all dogs have kidneys, pure water boils at 100**c under norma! conditions). A necessary 
truth is that whose denial wi l l yield an impossibility, or it is true in all possible worlds (e.g. I f a l l humans 
are featherless and Fisher is human, then Fisher is featherless; the sum o f any two prime numbers that are 
greater than 2 is an even number) whereas the denial o f a contingent truth is possible, or neither it nor its 
negation is necessary (e.g. A l l humans are featherless, there are nine planets ๒ our solar system). For 
details, see any texts on philosophical logic, e.g., Grayling, 1997, pp.33-87; Wolfram, 1989, pp.80-128. 
2 5 9 A well-established law of nature is the one that can be falsified but has not yet been falsified by many 
observations. See Chapter 6 for further discussion. 
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are equal ly probable. Suppose we drop a ball f rom a g iven height and intend to make it 

fa l l on a given mark, errors in al l horizontal directions are equally probable and that in 

perpendicular direct ions are independent. Hence, according to h i m , the law o f error must 

necessarily be general and apply al ike in al l cases since the causes o f error are supposed 

al ike unknown (Ba i rd , 1981， pp.62-63). Bu t our question is: why must the posit ive and 

negative error be equally probable? Only our ignorance o f the sources o f QYVOV cannot 

warrant this equal i ty. Suppose we are given a co in about wh ich we know nothing, we 

cannot deduce f rom our ignorance o f its fairness to the conclusion that the distr ibut ion o f 

the outcomes w i l l f o l l ow a normal curve especially when the number o f tosses is not very 

large. For example, consider tossing a biased coin (probabi l i t ies o f getting heads and 

tails are respectively 0.1 and 0.9) for 30 t imes. In the f o l l o w m g f igure, the histogram o f 

probabil i t ies are plotted and it is superimposed by the corresponding normal curve given 

by the equation: 

σ^2π 

where μ = ทУ-ОЛ and σ = л / и х o . l x 0 . 9 . 
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F igu re A 7 . 2 The h is tog ram o f the b i n o m i a l {ท = 30,р=л ) p robab i l i t i es super imposed w i t h the 

cor respond ing n o r m a l cu rve 

From this f igure, we can observe clearly that the histogram is skewed. O f course, i t is 

now a we l l - known mathematical theorem that when ท tends to in f in i ty , the b inomial 

d istr ibut ion, no matter how р is dif ferent f rom 0.5, w i l l approach the standard normal 

distr ibution^^" I t can be i l lustrated by the biased coin example: the coin is now tossed for 

500 times instead o f 30 and the histogram o f probabi l i t ies becomes symmetrical and 

looks more or less the same as the corresponding normal curve as shown in the fo l l ow ing 

f igure: 

For the t h e o r e m and its p roo f , see, fo r example , M i l l e r & шіет^ 1999, pp. 223 -224 . For an i n fo rma l 

t reatment to a n o r m a l app rox ima t i on to a skewed d i s f r i bu t i on , and to the l i m i t Ot a sum o f a large number o f 

r a n d o m var iab les , see H a m m i n g , 1991 , pp .317-323 . 
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F igu re A 7 . 3 T h e h is togram o f the b i n o m i a l {ท = 500 , р=л ) p robab i l i t i es super imposed w i t h the 

cor respond ing no rma l curve 

A t the t ime o f Quetelet, many researchers, certainly inc luding Quetelet himself, 

believed that al l паШгаІІу occurr ing distr ibutions o f proper ly collected and sorted data 

wou ld f o l l ow a normal curve, and that i f there were any fai lure to exhibi t such a shape, it 

was merely an evidence o f ignoring some factors that could influence the results, or that 

the group under consideration is non-homogeneous. For instance, in an examination o f 

the heights o f 100 ООО French conscripts, Quetelet found a discrepancy between observed 

and predicted values 一 out o f 100 ООО men there are 28 620 men who were o f less heights 

than 5 ' 2 " , but there should only be 26 345 f r om the normal law. He explained this 

discrepancy by suggesting that there were Frenchmen who had stooped so low as to avoid 

mi l i tary service (Bor ing , 1920, p . l l ) . In 1863, Ado lphe Ber t i l lon , f o l l ow ing Quetelet's 

study on the heights o f French, found that the distr ibut ion o f heights o f 9 002 young men 

measured between 1851 and 1860 in the department o f Doubs in France d id not exhibi t 

the usual symmetr ica l shape w i t h a single modal value. What Ber t i l lon found was a 

curve w i t h two modal values. He then suggested that the inhabitants o f Doubs must 
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consist o f two human types and the suggestion was conf i rmed later by his colleague 

Lagneau (Stigler, 1986, pp.215-218). 

The price fo r saving the normal law f rom the threats o f fals i f icat ion is h igh. First, 

the value o f a scient i f ic theory or a law o f nature is that it is falsi f iable. I f we always 

regard the evidence o f fa ls i f icat ion as exceptions, the law w i l l be irrefutable and it w i l l 

become useless in explanation or predict ion (Popper, 1963, pp.33-39). Second, i f we 

always a l low the possib i l i ty that the group under consideration is non-homogeneous then 

the occurrence o f normal distr ibut ion w i l l become an outcome entirely caused by the 

choices o f researchers. For example, consider the dist r ibut ion o f the measurement o f 

weights. As far as we know, no researchers have tr ied to survey the weights o f al l l i v ing 

things in the w o r l d . We hope it is very obvious that its distr ibut ion w i l l not exhibi t any 

shape l ike a normal curve ( th ink ing about the weights o f viruses and elephants, and their 

numbers). Perhaps some w i l l argue that we should restrict our group to a smaller one. 

H o w about mammals? M ice and whales are mammals. The group seems to be too large. 

H o w about the species o f Homo sapiens? W o u l d di f ferent races (the pygmy o f 

Equatorial A f r i ca vs. the Abor ig ines o f Austra l ia) , d i f ferent age groups (babies and 

adults), d i f ferent genders, di f ferent professions (sumo playerร^^^ vs. jockeys) be regarded 

as di f ferent groups? The rule o f thumb seems to be: narrow the group once you f ind that 

the distr ibut ion does not resemble the normal curve. A t last, we wou ld probably get a 

group that fits the normal law. But the normal curve w i l l be, as Simon (1968, p.436) has 

put i t , made by the researcher, rather than met by h i m (p.436). 

Sumo is the t rad i t i ona l nat iona l sport o f Japan, usual ly p layed by ve ry fat people. 
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Accord ing to Bo r i ng (1920， p. 14), in 1894 K a r l Pearson st i l l gave evidence o f 

being inf luenced by the sanctity o f the normal law, but in 1900 his fai th towards the 

sanctity was gone. N o r m a l law is finally regarded as merely one o f a series o f important 

distr ibutions. O f course, normal distr ibut ion st i l l plays an important role in statistics and 

in particular SST, but for the reasons that are di f ferent f rom that believed by Quetelet or 

his contemporaries. First, it is a mathematical fact that i f a random sample is taken f rom 

a normal d is t r ibut ion, then the distr ibut ion o f various important functions o f the 

observations in the sample can be derived expl ic i t ly and w i l l themselves have simple 

forms^^^. As a result, fo r the mathematical s impl ic i ty and convenience, many researchers 

w i l l tact ical ly assume the normal i ty o f the dist r ibut ion f r om wh ich a random sample is 

drawn. Second, i t is the central l im i t theorem that makes the normal law more prevai l ing. 

One o f the impl icat ions o f this theorem is that i f a large random sample is taken f rom a 

distr ibut ion, no matter it is i tself normal or not, the sampl ing distr ibut ion w i l l be 

approximately normal . These two reasons are h ighly controversial . For the first reason, 

mathematical s impl ic i ty and convenience can hardly be reason for jus t i fy ing that the 

distr ibut ion f rom wh ich a random sample is drawn is normal . For the second, it is 

indisputable that the theorem has been proved. But the theorem itself does not state how 

large the random sample could warrant the normal i ty o f the sampl ing distr ibut ion and we 

w i l l elaborate this point in Chapter 6. 

• Fo r the ma themat i ca l par t , see D e G r o o t & Scherv ish, 2002 , p p . 2 6 8 - 2 8 0 . 
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Appendix 8 Arguments against the classical theory 

First, i f we want to define probabi l i ty as the ratio o f the number o f favourable 

outcomes to that o f al l possible outcomes, we have to assume that al l possible outcomes 

are eąuipmbable}^^ But what does it mean by 'equiprobable '? I f it is construed as 

meaning 'hav ing an equal probab i l i ty ' , then the concept o f 'p robab i l i t y ' enters into the 

very def in i t ion o f 'p robabi l i ty ' and vicious circular i ty thus arises. In order to avoid this 

c ircular i ty, some have tr ied to attach another meaning to 'equiprobable' 264 - the 

equiprobable outcomes have to meet two requirements: (1) equiprobable outcomes are 

those wh ich are on the same logical level and can be subdivided in the same ways^^^, and 

(2) there is no reason or evidence to support that one o f the outcomes w i l l occur rather 

than the others. The f i rst requirement per se cannot warrant the outcomes to be 

equiprobable. For example, the six outcomes o f a loaded die are on the same logical 

level but they are hardly equiprobable. The second requirement is what we have 

introduced - the Principle o f Indif ference. A n d it is this very Principle that makes the 

classical theory o f probabi l i ty to be discredited by many people. 

The cr i t ic isms o f the Principle o f Indi f ference constitute the second objection to 

the classical theory o f probabi l i ty . The trouble w i t h this pr inc ip le is two- fo ld . One 

trouble is that the pr incip le i tse l f is not a p r io r i means to warrant the outcomes to be 

equiprobable. It is common ly believe that the Principle o f Indi f ference is applicable 

2 6 3 See, f o r instance, Lap lace , 1825/1994, p.6. 
2*파 F o r examples , see Lap lace , 1825/1994; W e a t h e r f o r d , 1982. 

2 6 5 I n the examp le o f t h r o w i n g a d ie , the ou tcome o f ge t t ing a ' 1 ' and that o f ge t t i ng ' 3 ' are o f the same 

log i ca l leve l s ince they can be subd iv ided i n the same w a y - no t be ing able to be subd iv ided ; and get t ing ' 3 , 

4 , 5, o r 6 ' and ge t t i ng Ч o r 2 ' are not s ince the first case can be subd i v i ded in to 4 sub-cases but the second 

cannot . W e w i l l re tu rn to the d iscuss ion o f this requ i rement i n later paragraphs. See Keynes , 1921 , p.60. 
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when the outcomes are equally undecided. B u t i f indecision is to refer to one's 

psychological state, then di f ferent people might have di f ferent judgment and one's 

indecision could be total ly mistaken. For example, a secondary school student might not 

be able to decide about whether a rat ional number or an irrat ional number is more l i ke ly 

to be selected f r om the interval [0, 1] and thus regards the two possible outcomes -

rat ional or i rrat ional - as equiprobable. The student is w rong and since the probabil i t ies 

for selecting a rat ional and an irrat ional number are in fact 0 and 1 respectively. Hence, 

'equal ly undecided' must not be re fen ing to an ind iv idua l 's indecision. 

The name o f 'Pr inciple o f Indi f ference' m igh t suggest that the Principle is only 

applicable to the outcomes amongst wh ich there is no difference. Bu t 'no di f ference' 

here must not mean that there is no difference in every aspect o f the outcomes, otherwise 

the outcomes wou ld become identical ― there w o u l d be only one outcome^^^. Accept ing 

that the outcomes are not exactly the same in every way , nor sharing all their qualit ies, 

we may suggest that the Principle could be applicable i f and only the differences between 

the outcomes are not relevant to the problem. ' N o t relevant to the prob lem' here means 

that the differences do not constitute any reason or evidence to support that one o f the 

outcomes w i l l occur rather than the others. Bu t whether a certain piece o f evidence is 

relevant to the occurrence o f an outcome cannot in general be determined in a pr ior i way. 

For example, in a car racing, we know that the CO lours o f two cars are dif ferent. But we 

usually do not consider this piece o f knowledge as relevant to their probabi l i ty o f w inn ing 

― we w i l l s t i l l apply the Principle o f Indif ference ๒ this case unless we could f ind other 

2 6 6 The re is a thesis ca l led L e i b n i z ' ร thesis o f the iden t i t y o f ind iscern ib les w h i c h states that no t w o th ings 
can be exac t l y the same in every way , shar ing al l the i r qua l i t ies ( i n c l u d i n g the numer i ca l - i den t i t y -w i t h 
qua l i t y ) ( K i r w a n , 1995, p.390) . 
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known relevant dif ferences, such as the differences in the size o f engines or sk i l l levels o f 

the drivers, between the two cars. Another example is the fairness o f die. Given a die, 

could we be sure that its six possible outcomes are equiprobable? Is the fairness o f die a 

piece o f a p r io r i knowledge? The answer is certainly ' n ๙ · We cannot distinguish a fair 

die f rom a loaded one wi thout any empir ical knowledge about the dice. One may argue 

that i f the die is made o f a perfect geometrical cube w i t h perfect ly homogeneous material, 

then we could establish in a logical sense that the die is fair and al l possible outcomes are 

thus equiprobable. Bu t how could we know that the die is a perfect cube? H o w could we 

know that the cube is made o f homogeneous material? Or how could we know that 

dif ferent numbers marked on different faces w i l l not affect its probabi l i ty o f landing as 

some pr im i t i ve tribes might th ink that numbers could have some magical effects on 

physical world^^^? A l l o f these are the questions that cannot be answered wi thout a resort 

to empir ical knowledge about the die. Hence, the Principle o f Indif ference is by no 

means theoret ical ly fundamental and is hardly an a pr ior i too l for us to assign 

probabi l i t ies to various outcomes. 

Another trouble is that i t yields a number o f inconsistencies or paradoxes. Some 

o f them can be el iminated by mod i fy ing the Principle o f Indif ference. For example, 

consider the paradox wh ich is called the book paradox (Keynes, 1921, pp.43-44): 

Suppose we are about to borrow a book f r om a l ibrary, we have never seen the book 

before and we only know that its cover is mono-colour but have no idea what the colour 

is. It seems that we have no more reason or evidence to anticipate that the cover is red 

than not. A p p l y i n g the Principle o f Indi f ference, we have the probabi l i ty that the cover is 

See v o n M i s e s , 1957, pp .72-73 f o r a d iscussion o f th is po in t . 

235 



red (i.e. P(red cover)) and р(ทot-red cover) are both 1/2. We could apply the same 

reasoning to black and blue, so we have P(black cover) = ァ(blue cover) = 1/2. Then 

P(red or black or blue cover) = 3/2 > 1， wh i ch is a contradict ion. This paradox can be 

easily resolved i f we introduce a further requirement that has been stated previously 一 

equiprobable outcomes are those which are on the same logical level and can be 

subdivided in the same ways. The outcome that the book is non-red can be subdivided 

into black and not-(red or black), but the outcome that the book is red cannot be 

subdivided in the same way. Hence the Principle o f Indif ference is no longer legit imately 

applicable in the cases o f red and not-red covers. 

This suggestion to resolve the book paradox cannot, however, be used to 

el iminate the f o l l ow ing paradox o f specific vo lume and density^^^ Suppose we know that 

the specific volume^^^of a substance has a un i fo rm probabi l i ty density in the interval [1， 

3] . B y the Principle o f Indi f ference, i t is just as l ike ly to be between 1 and 2 as between 2 

and 3， so we have: 

Р (1< specif ic vo lume <2) = p (2< specific vo lume < 3) = 1/2. 

Since the specific vo lume o f a substance lies between I and 3, its density is between 1/3 

and 1. A p p l y i n g the Pr inciple o f Indif ference to equal intervals again, we have: 

Р (1/3 < density < 2/3) = Р (2/3 < density < 1 ) = 1/2. 

F rom these values, we have: 

Р (1.5 < specific vo lume < 3) = р (1 < specif ic vo lume < 1.5) = 1/2. 

2 6 8 Keynes ( 1 9 2 1 , p.45) at t r ibutes th is paradox to v o n K r i e s . F o r the d iscuss ion o f th is paradox, see also 

G i l l i e s , 2000, p.38; W e a t h e r f o r d , 1982, pp .56-57. 

2 Spec i f i c v o l u m e o f a substance is def ined as the v o l u m e d i v i d e d by the mass, w h i c h is also the inverse 

o f its densi ty . 
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Combin ing w i t h the first results o f the specific vo lume, we have р (1.5 < specific 

vo lume < 2) = 0, wh ich is contradictory to our assumption that is specif ic volume has a 

un i fo rm probabi l i ty density in the interval [ 1 , 3 ] . 

Apar t f rom this paradox, other paradoxes also arise in the application o f the 

Principle o f Indi f ference in the problems invo lv ing continuous parameters or geometrical 

probabi l i ty . For the problems invo lv ing continuous parameters, paradoxes can be 

produced by the f o l l ow ing method: consider a continuous parameter θ which takes 

values in a closed interval [a , b ] , construct a bi ject ive mapping / on [a ,b \ such that 

ƒ is continuous and ƒ {Θ) є [ ƒ (α ) , ƒ ( ծ ) ] i f and only i f θ є {a,b] 2 7 ° . I f we have no reason 

to expect that θ is at one point o f the interval [a ,b] rather than another, we can apply 

the Principle o f Indif ference to give θ a un i form probabi l i ty density in the interval [ a , 

b ] . S imi lar ly , we have no reason to expect էհճէքԼՑ) is at one po in t o f the interval [ Д а ) ， 

ß j j ) ] than another and we apply the same Principle to g i v e / ø a un i form probabi l i ty in 

[ßß) , ß j j ) ] . In general, the probabil i t ies based on θ w i l l be di f ferent f rom those based 

on β^θ) and thus inconsistence w i l l arise. Let us use a simple example to illustrate this 

method o f generating paradox. Suppose a square .has been drawn on a paper and all we 

know is that the length o f its side θ ( in cm, say) lies in [1 , 4 ] . Consider its area A ( in 

c m 2 ) wh ich is a funct ion o f its length: A = f (θ) = . Th is funct ion is clearly continuous 

and / ( 0 ) є [ / ( I ) , / ( 4 ) ] = [1 ,16 ] i f and only i f θ є [ 1 , 4 ] . Since we have no reason to 

expect that θ is at one point o f the interval [ I ， 4 ] rather than another and A is at one 

po in t o f the interval [1 , 16] rather than another, we an apply the Principle o f Indifference 

" ° I n the paradox o f spec i f i c v o l u m e and densi ty , the parameter ö i s the spec i f i c v o l u m e i n the in terva l [ 1 , 3] 

and the f unc t i on is \ΙΘ. 
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to give each o f θ and A a un i fo rm probabi l i ty density in the interval [1， 4] and [1， 16] 

respectively. When we t ry to figure out the probabi l i ty that the area o f the square is less 

than 9 cm^, we get 2/3 based on θ but 1/2 based on A. These two answers cannot both be 

correct but we have no way to tel l one is correct and another is wrong , paradox thus 

arises. 

For the geometrical paradoxes, the most famous one is perhaps Bertrand'ร 

Paradox: g iven a fixed circle and select a random chord, what is the probabi l i ty that this 

random chord is longer than the side o f the equilateral tr iangle inscribed Ín the circle? It 

is now we l l - known that by using the Principle o f Indif ference เท three plausible ways we 

could obtain three di f ferent answers: 1/2 (by considering the location o f the mid-point o f 

the chord along the length o f the diameter that bisects the chord), 1/3 (by considering the 

angle between the chord and the tangent at one end-point o f the chord), and 1/4 (by 

considering the area o f the concentric circle wh i ch contains the centre o f the chord).^^^ 

Di f ferent considerations w i l l give di f ferent answer to the same question. Simi lar 

d i f f i cu l t y appears in the needle prob lem. Gi l les (2000) has indeed asserted, wi thout 

further expl icat ion, that the needle problem raised by Bu f f on in 1733 is the earliest 

paradox arising f r o m the Principle o f Indif ference. Bu f fon ' ร needle problem itself is, 

however, not a we l l - known paradox. Many people regard this problem as a standard 

textbook problem wi thout ณking notice o f the existence o f paradoxes.^^^ The problem 

goes in this way: 

2 7 1 These three so lu t ions cou ld be f ound i n e lsewhere. See f o r examp les , G i l l i es , 2000 , pp.3 8 - 4 1 ; 
M i c h a l e w i c z and F o g e l , 2000, pp .31-33 . There is no need fo r us to go in to its deta i l here. 
2 7 2 For e x a m p l e , in h is n o w classic book o n cha l l eng ing p rob lems in e lementa ry p robab i l i t y theory , 
M o s t e l l e r ( 1 9 6 5 ) has i nc luded th is p rob lem and g ive one so lu t ion to th is p r o b l e m . I t seems that he does not 
k n o w that th is p r o b l e m cou ld have other so lu t ions as wha t w e w i l l exp l ica te b e l o w . 
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A tab le o f i n f i n i t e expanse has inscr ibed on i t a set o f para l le l l ines spaced 2a un i ts 

apart. A needle o f l eng th 2/， where / < a, is t w i r l e d and tossed on the tab le . W h a t is 

the p r o b a b i l i t y that w h e n it comes to rest i t crosses a l ine? (Mos te l le r , 1965， P.14). 

Similar to Ber t rand'ร Paradox, this problem can be solved by apply ing the Principle o f 

Indif ference in three plausible ways. The first way is what Mostel ler (1965, pp.86-87) 

and many other wri ters have taken into consideration: the distance o f the center o f the 

needle f rom its nearest parallel l ine and the angle between the needle and the nearest 

parallel l ine. A s shown เท Figure A 8 . 1 , let р be the centre o f the needle, X be the 

distance o f Р f r om its nearest parallel l ine, and θ be the angle between the needle and the 

l ine. 

Figure А 8 Л 

Then we have 0 < X < Û and 0<θ<π. The line w i l l cross one o f the parallels i f and 

only i f X < asinO, i.e. i f and only i f the point (x y Θ) lies inside the shaded region g l as 

shown in the Figure A8 .2 . 
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sinil 

Figure A8 .2 

Suppose P is equal ly l i ke ly to fa l l anywhere between the parallels, then the probabi l i ty 

that the needle crosses a l ine is 

Area o f 

Area o f the rectangle bounded by 0 < д: < ûf and 0<ө <π 

"jsın θ de 2Į 

απ πα 

For the second solut ion, let us consider the distance o f the center o f the needle 

f rom its nearest paral lel l ine and the length o f its pro ject ion on the nearest parallel l ine. 

As shown in the Figure A8 .3 , let ρ be the centre o f the needle, X be the distance o f ρ 

f rom its nearest paral lel l ine, and 2y be the length o f the project ion. 
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Figure A8.3 

Then we have 0 < ДГ < α and 0 < y < l . The l ine w i l l cross one o f the parallels i f and 

only i f / 2 一 _y2 > JC2 , i.e. i f and only i f the point (x ,y) lies inside the shaded region g2 as 

shown in Figure A8 .4 : 

Figure A8 .4 

The probabi l i ty that the needle crosses a line is thus: 

The area o f the shaded region 

The area o f the rectangle bounded by 0 < χ < α and 0 < ；/ < / 

― 4 πΐ 

la Aa 

241 



For our th i rd way o f calculat ion, construct a рефепс і ісиїаг l ine to the parallel lines 

and along this рефепс і ісиїаг select one direct ion as posi t ive. Using this directed 

perpendicular l ine and the closest parallel l ine as the y-axis and the X-axis respectively, 

we let y\ and У2 be the y-coordinates o f the two end-points o f the needle as shown in 

Figure A8 .5 . 

Figure A8.5 

Then we have:ļ>^i ->^ շ | < 2/ and |>'i + > ^ շ 1 < 2a, The l ine w i l l cross one o f the parallels i f 

and only if У^У2 <0 , i.e. i f and only i f the point {y\ ,У2 ) lies inside the shaded region 

g3 as shown in Figure A8 .6 : 
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Vi + У 2 = 2 а 

Figure A8.6 

The probabi l i ty that the needle crosses a l ine is thus: 

The area o f the shaded region 

The area o f the rectangle bounded by >·, - y^l = 21 and レ 1 + > ՚ շ | = 2α 

4ŕ ι 

2V2ûx2V2/ = Ία 

The reason w h y di f ferent approaches give di f ferent solutions lies in the fact that we have 

appl ied the Principle o f Indif ference to give a un i fo rm probabi l i ty density to three 

di f ferent random variables - i.e. the three order-pairs (X , Θ), (x , y) and (vi ， У2) 

respectively. Ass ign ing a un i form probabi l i ty density to these three random variables are 

thus three incompatible assumptions. We are now able to conclude that the Principle o f 

Indi f ference per se cannot be used to fix the probabi l i ty , at least in the problems o f 

invo lv ing continuous parameters or geometrical probabi l i ty , as some classical theorists 

have alleged. 
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The th i rd object ion to the classical theory o f probabi l i ty is about its domain o f 

appl icat ion. In addi t ion to the problems invo lv ing continuous parameters or geometrical 

probabi l i ty in wh ich the application o f the Principle o f Indif ference could give rise to 

inconsistencies, the classical theory o f probabi l i ty breaks down in a number o f cases. 

The first case is the sort o f probabi l i ty problems in mathematics that lead to irrational 

numbers as probabi l i t ies (for example, the probabi l i ty that two natural numbers selected 

at random are relat ively pr ime is в I i ł )273. Since an irrat ional number cannot be 

expressed as a ratio o f two integers, the classical theory, according to wh ich probabi l i ty is 

defined as the ratio o f the number o f favourable outcomes to that o f al l possible outcomes, 

w i l l thus fa i l to give an account o f irrational probabi l i ty . Another case is the situation in 

wh ich the outcomes are empir ical ly not equiprobable. For example, consider the loaded 

die wh ich we have discussed before. Suppose we have tested the die empir ical ly by 

th rowing it for a large number o f t imes and observed the number o f occurrence o f ' r 

(say, we get 200 ' 1 'ร out o f 600 throws), we then assert the fo l l ow ing sentence: 

(3.1) the probabi l i ty o f gett ing a ' г in th rowing a loaded die is 2/3， 

This sentence does, however, not make sense according to the classical theory. Because 

the six outcomes are no longer equiprobable even though they are on the same logical 

level (they al l cannot be subdivided). Some may th ink that this is not a serious problem 

一 we could restrict our use of: the term 'probabi l i ty ' in the cases where al l possible 

outcomes are equiprobable. Despite the fact that this w i l l leave the classical theory w i th 

very l i t t le to wo rk on, it st i l l gives rise to another problem 一 how could we know that the 

outcomes are equiprobable or not? We know that the classical theory is work ing we l l on 

See, f o r ins tance, W e l l s , 1986, p. 28. 
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a fair die. But what does it mean by 'fair'? This term cannot be defined with resort to a 

vicious circularity: a die is said to be fair i f and only i f the classical theory is working 

well on it. Otherwise, 'the classical theory is working well on a fair die' merely 

expresses an analytic truth 'the classical theory is working well on a die on which the 

classical theory is working wel l ' . Since we have no a priori way to judge whether they 

are equiprobable or not, we cannot know in a particular case whether the term 

'probability' can be legitimately used without performing empirical tests. But even a 

long series of experiments or empirical tests, no matter how long it is, is still unable to 

establish a conclusive proof that the die is fair. Tossing a fair die 6000 times, the number 

of occurrences of ' 1 ' could be 1000, or any number between 0 and 6000. Although we 

could apply Bernoulli's l imit theorem to ascertain a high probability that the die is fair, 

the application itself would resort to the concept of 'probability' again as we have 

discussed in Section 2.2. Hence, according to the classical theory, we cannot practically 

talk about 'probability' in most cases. Any use of 'probability' that is not based upon 

equiprobable outcomes, including most of casual use such as the single event Чһе 

probability that Brazil wi l l win the World Cup 2006 is greater than 0.2,， w i l l be deviated 

from the classical theory. It thus certainly renders the classical theory unfit for 

explicating the use of probability in common usage. 
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Appendix 9 Logical theory and its difficulties 

We wi l l here use a simple example to illustrate Carnap's logical theory of 

probability. Consider the simple language Ûๅ,, which is a language that consists of 2 

independent one-place predicates {M and N) and 3 individual constants {a, b, and c)""*. 

By affirming or denying each property of each individual, a sentence^^^ which completely 

describes a state of the world is called a state-description (Carnap, 1962, p.71). Each 

state-description could be regarded as characterizing a possible world. For examples, the 

following five state-descriptions wi l l be characterizing five different possible worlds: 

Zol l i l i ： -Ma 

Zioiooo ： Ma & ~Mb & M ľ & ~Na & ~m & ~Nc 

Zoomi ： -Ma & ֊Mb &Мс^ 

Z 画 u ： Ma &~м> & ֊Мс & Na & ^ 

For our simple language ẑ 3, there wi l l be a total of 64 different possible worlds each of 

them wi l l be characterized by one state-descriptions. I f A is a sentence of ւ \ its range R 

is the class of all state-descriptions in which h holds. For example, i f h denotes 'Mc & 

Na 8c Nb & Nc、, then its range is { Z i i i i i i , Zol l i l i , Z iomi , Zoomi}. The degree of 

confirmation, q, o f a hypothesis, h, on evidence, e, w i l l be written as c{h,e) = q. Carnap 

represents the unconditional probability of h by m{h), where m is the measure function 

associated with с. Therefore c{h,e) = ——- . For the measure which assigns the 

พ(e) 

2 7 4 Usua l l og i ca l connect ives are also inc luded . 
2 7 5 O r a class o f sentences i f the language is ΙΛο. ( i .e. a language w i t h π independent one-place predicates 

and ín f ín i te n u m b e r o f independent i nd iv idua ls ) . 
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state-descriptions the equal weights, Carnap writes the measure function as m' and the 

corresponding confirmation function based on พ卞 is շԼ In our example, i f һ denotes 'Mc 

& Na ^ Nc, and e denotes ' M ) & & だ^ since the measure of һ is 

the number of state-descriptions in which it is true divided by the total number of state-

descriptions, we have: 

64 16 

い 64 32 

and 
64 32 

_ լ 
" し ， 、 พ 卞 ( ๕ & め 32 , 

Hence, ๙ { һ , е ) = չ ^ = գ = \. 

32 

The value of this confirmation function is 1, which is reasonable since e logically entails 

h. This function is, however, not wholly suitable as a foundation for a system of 

quantitative inductive logic. For example, i f һ denotes 'M๙ and e denotes 'Мя & Mb\ 

following similar calculation, we have: 

(h ,e)= ― . which is the same as ct (A ， Г) where г denotes a tautology. 

It means that even i f we know that two more individuals a and b wi l l satisfy the predicate 

M, the probability that the third individual с w i l l satisfy the predicate M wi l l remain 

unchanged. This function thus fails to account for learning from experience"*. That's 

2 7 6 W e are not say ing that the f unc t i on ct fa i ls in accoun t ing f o r l ea rn ing f r o m exper ience in a l l cases. Fo r 

examp le , i f h denotes ' M ) & M ľ ' and e denotes 'Ma & M l 了 , t hen et (A , e) = 1/2 w h i c h is greater than 

(h, r ' ) = 1/4, that means, in th is case, it can demonstrate h o w w e learn f r o m exper ience. 
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why Carnap has constructed another confirmation function с to replace this ê function 

(Howson and Urbach, 1993, pp.65-66; Weatherford, 1982， pp. 87-90). 

The confirmation function с makes all structure-descriptions rather than all state-

descriptions equiprobable. A structure-description corresponding to a world Z/ in z \ , j , 

is the disjunction of all worlds z which are isomorphic^^^ to Zi arranged in lexicographical 

order (Carnap, 1962, р . І Іб). For example, consider our previous example ― the language 

Ûๅハ there wi l l be 20 different structure-description: 

500 ՜ 0̂00000 

501 ՜ 0̂00001 v Հ-000010 v Zoooíoo 

ร02 ― Zooooi 1 v Zoooioi v Zoooi ւօ 

ร03 = ^000 u ι 

Sio = շ՚ւ00000 v /ююооо v Zooiooo 

ร ท = ^100100 v ճօ ւօօ ւօ v ZoOlOOl 

Sır = Zi ООО I о v Z I 00001 v Zoioioov Zoloooi v ZoolOlov Ζοοποο 

ร12 ՜ ^100011 ν Zoioioi ν Zoomo 

Sır = Zioouo ν Ziooioi ν Zoiouov Zoiooio V Zooi 101 ν Zooioii 

ร13 ~ ^100111 ν Zoioiu ν Zoomi 

Տշօ = 2 i 10000 ν ճւօւօօօ ν Zoiiooo 

Տշւ = Zi 10001 ν Лююю ν Zomoo 

Տշւ՛ - Հ^՚ոօօւօ ν Znoioo ν ZļoioolV Zlonoo v ճօււօօւ v ճ օսօ ւ օ 

2 7 7 T w o w o r l d s are said to be i somorph ic i f and o n l y i f one can be der i ved from the other by mere l y 
exchang ing some ind i v idua l s f o r others by means o f a one- to -one m a p p i n g . F o r examp le , Zoomi and Zļooi 11 
i n our p rev ious e x a m p l e are і з о т о ф Ь і с , but Z i i i m and Z o m u are not . 
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Տշշ = Ziioiio v Zloiioi v Zónou 

Տշշ՛ = Ziioioi v ZilOOll v ZlOlOllV ZlOllIO v ZoillOI v Zoili 10 

ՏշՅ = Z\\Q\U v ZlOllll v Zol l i l i 

Տ30 ~ 2l 11000 

531 ~ 2l 11001 v Znioiov Zu 1100 

532 = ^n io i l v Zi inolV Zi i ioi l 

ร33~ Z\\\\\\ 

I f we treat each of structure-descriptions as equiprobable, then the measure of each 

structure-descriptions = 1/20. In other words, 

Inside each structure-description, the weight wi l l be distributed equally between all state-

descriptions. For example, /พ*( Zoooooo) = 1/20 but m*( Zoooool) = 1 ^ ~ = 7Г because 

3 20 60 

there are 3 state-descriptions in Soi. Using this new confirmation function to evaluate c* 

{h ， e) and с {հ , Γ) again ， where h denotes 'Mc &Na s¿ Nb & Nď and e denotes 'Mb & 

Mc &Na&Nb & Nc\ we have с (һ ,e)= 1， which is reasonable as e logically entails һ 

and the result is the same as that calculated by ct. Consider another example, i f һ 

denotes 'Mc' and e denotes ԴԽ & Mb\ we have һ A e is Ma & Mb & Mc, and 

พ * ( / 2 л е ) = พ*( Տ՚Յօ) + т \ รъ\) + rn{ S32) + m\ Ą3) = ^ = 7 

/พ*(e) = m\ Տ30) + m\ ՏյՕ + m\ S32) + m\ S33) + 全 ( m\ Տշօ) + m\ Տշւ) + 

m\ ร2V ) + m\ Տշշ) + m\ 5շշՕ + m\ S23) ) 

4 1 6 3 
20 З 20 10 
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Н е п с е , с * ( й , . ) = — ^ = ү 

10 

2 

And сҢҺ , Г ) = ^ ( т \ ร,о) + т \ 5 ,0 + ^ ( 5 ' , , . ) + т \ รท) + т \ ร,г) + т \ รน)) 

+ | ( /«*( 2̂0) + т \ Six) + m\ Sjy ) + m\ Տշշ) + m\ ร22·) + m\ Տշշ)) 

+ m*{ รго) + т \ รг\) + т \ &2) + т \ รгъ) 

= 1 6 2 6 4 1 

= З 20 З 20 20 2 

Now our evidence could increase the value of the confirmation function c* from 1/2 to 

2/3, which is successful เท reflecting how learning takes place from experience. 

From these lengthy calculations, it seems to show how the value of probability], 

as a degree of confirmation, can be determined in a simple language completely by a 

priori means. Unlike Keynes who still wants to retain the Principle of Indifference as the 

only legitimate source of numerical initial probabilities, Carnap has explicitly rejected the 

Principle of Indifference^^*. But a closer look into Carnap's calculations wi l l reveal that 

the spirit o f the Principle of Indifference has indeed revived in his theory though in 

another form. When Carnap assigns probabilities to each structure-descriptions, he has 

declared that each is equiprobable. Furthermore, within each structure-description, he 

has assumed that probability is distributed equally between all state-descriptions. As we 

have argued before, one major objection to the Principle of Indifference is that different 

2 7 8 I n his wo rds , ' t he c lassical theory c la ims to g i ve a d e f i n i t i o n f o r p robab i l i t y , based o n the concept o f 
e q u i p o s s i b k cases. T h e o n l y ru le g i ven f o r the app l i ca t ion o f the latter concept is the p r inc ip le o f 
i nd i f fe rence , s ince w e k n o w today thârt this p r inc ip le leads to a con t rad i c t i on , there IS i n fact no der in i t i on 
f o r the concept o f equ iposs ib i l i t y ' (Carnap, 1962, p.343) 
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applications o f the Principle of Indifference depending upon different specifications of 

the alternatives w i l l result in different values for the probability. We have aiready shown 

that Carnap'ร and c* functions would result in different values for the probability! of 

the same hypothesis, based on the same e v i d e n c e . I f they are regarded as merely two 

abstract mathematical models, then it sounds perfectly legitimate for Carnap to make any 

assignment of probabilities. But when we try to apply the models to practical problems 

in our world, we have to determine which model wi l l f i t our world. And in this case we 

have still resorted to emp^ means to make our judgment or evaluation^^^. As a result, 

the probability measures based on Carnap's method of distributing probabilities do not 

possess a genuine logical status. 

Another objection to the logical theory of probability is that it cannot explain why 

our estimate o f probability judgments should be in any way affected by the amount of 

evidence on which they are based (Ayer, 1973, pp.188-198). Consider an event: David 

wi l l get a pass in the mathematics examination (A), its probability, as a measure of logical 

relation between evidence and conclusion, must be relative to certain evidence. But 

there are a number of relevant evidences that can be taken into account. Some are 

relevant to h, for examples, Є\ that David has got very high mark in a recent mathematics 

test; Є2 that David's father is a professional mathematician. But how about the evidences 

like: ๕3 that David's mother has been confirmed to be a patient of Severe Acute 

^ '^These t w o cond i t i ona l p robab i l i t y func t ions are me re l y the t w o that are regarded by Carnap as the most 
s imp le and natura l ones. There is indeed a c o n t i n u u m o f other p robab i l i t y ftinctions def ined on s imp le 
languages, each co r respond ing t o a rea l -va lued non-nega t i ve parameter λ. See H o w s o n and U rbach , 1993, 

pp .66 -72 fo r a b r i e f d iscuss ion on h o w Carnap and his f o l l owe rs (such as J. H i n t i k k a ) have deve ioped 

these func t ions . 

2 8 ° Carnap h i m s e l f has indeed suggested that the parameter λ spec i f y i ng the cor respond ing cond i t iona l 

p robab i l i t y f u n c t i o n cou ld be evaluated by a ca l ib ra t ion process w h i c h consists in c o m p a r i n g the class o f 

p red ic t ions ass igned X percent p robab i l i t y w i t h the f requency w i t h w h i c h those pred ic t ions were t rue 

( H o w s o n and U r b a c h . 1993, pp .70-71) . 
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Respiratory Syndrome (SARS) three days before David's mathematics examination? 

Whether it is relevant to David's performance or is able to change the probability of һ 

may in turn depend on the other evidences. For example, i f we know that ๕4 that David 

has been living wi th his mother until she was admitted into hospital two days before the 

examination, and some other evidences regarding the spread of SARS,..., etc, then Єз 

together with w i l l constitute relevant evidences that we should take it into account. On 

the contrary, i f what we know is е$ that David has not any contacts with his mother for 2 

months rather than ๕4, then Єз together with е$ wi l l probably not relevant at all. It seems 

that we should take all evidences into account especially when certain piece of evidence 

per se is not sufficient for us to determine whether it is relevant or not. Of course it is 

practically impossible for us to gather all evidences^^', what we could do might only be to 

gather the total evidence available to us. But why should we have to take as evidence the 

total evidence available to us? From the point of logical theory, unless we had made 

logical mistakes, any one of these probabilities cannot be regarded as more, or less, 

correct than another one. For example, suppose we correctly arrive at = p、 and 

P{h,e^ Л Є 2 л ^ з = / 7 շ , both results wi l l be necessarily true and there is no ground 

for us to assert that one is more 'accurate' or 'correct' than the other. It is clearly unable 

to explain why in making a probability judgment we should base it on as many evidences 

as available. Another consequence of logical theory is that probabilities would never be 

refijted by experience. For example, based on only a piece of evidence e about a die (e.g. 

merely by observing its appearance), we figure out that the probability of getting a ' г in 

rolling this die once Ís 1/6, say. But later we throw it for 600 times and find that we get 

2 8 1 There is o f course another serious pract ica l p rob lem that the log ica l theor ists have to face: h o w cou ld w e 

determine the p r o b a b i l i t y o f һ on e^ = P{h,e^) ， P { Ķ e ^ ) , P{Ke^) ，..·•， etc? B u t f o r the sake o f 

a rgument here, let us suppose the task o f ca lcu la t ing a l l these p robab i l i t i es cou id be accompl ished. 
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600 ' l ' s (evidence ๙ դ This new additional piece of evidence wi l l certainly reflate our 

estimation that the probability of getting a ' 1 ' is 1/6. Logical theorists would, however, 

reply that there is indeed no refutation at all, what we get are indeed pçv,e) = 1/6 and 

Р( 'Г ,еле*) = 1, and both of them are true. It thus show that the logical theory is 

separated from experience or our empirical world. 
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Appendix 10 Objections to the frequency theory 

A main objection to the frequency theory is that there are many situations where 

we use probability but in which nothing like an empirical collective can be defined. 

These narrow limits of its applicability have, however, been well acknowledged by von 

Mises, as we have mentioned before. Von Mises (1957) has made the point clearly: 

'From the complex ideas which are colloquially covered by the word 'probability', we 

must remove all those that remain outside the theory we are endeavouring to formulate. I 

shall therefore begin with a preliminary delimitation of our concept of probability' (pp.8-

9). To von Mises, the frequency interpretation of probability w i l l certainly not applicable 

to single events, for examples, 'the probability that David wi l l get a pass in the 

mathematics examination is 0.8', 'the probability that us wi l l be involved in war with 

North Korea at some time in the future (say, in 2007) is greater than 0.1 ' , or 'the 

probability that Gaius Julius Caesar has visited Britain is less than 0.5'^^^. Critics to the 

frequency theory allege, however, that these sentences are absolutely meaningful and any 

theory o f probability that cannot give an interpretation to them is certainly inadequate. 

We have two rejoinders to this objection. First, although von Mises has argued 

that there is no such thing as the probability of a single event, it does not imply that no 

frequency theorists think that frequency theory can also be applicable to single event. 

Indeed, Reichenbach (1949) has attempted to give a frequency іпЇефгеІаІіоп to single 

events by means of a posit (pp.372-378). According to Reichenbach, a posit is a sentence 

2 8 2 V o n M i s e s has, h o w e v e r , argued that p rob lems such as the p robab le re l i ab i l i t y o f witnesses and the 

correctness o f j u d i c i a l verd ic ts l ie more or less on the bounda ry o f the reg ion w h i c h he has inc luded in his 

t reatment ( 1 9 5 7 , p.9). 
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with which we deal as true, although its truth value is unknown. A sentence about the 

probability of a single event is regarded as an 'elliptic mode of speech' which acquires a 

fictitious meaning by a transfer of meaning from the general to the particular single event. 

Second, von Mises's attempt could indeed provide a way out of the so-called 'the 

reference class problem'. As a critic against frequency theory, Hájek (1997) takes this 

example to illustrate the reference class problem: his probability of dying by age 60 

(pp.74-75). What he wants is an unconditional probability^*^. But, according to von 

Mises's (1957) frequency theory, the notion of probability must be relativized 一 it is only 

the notion of probability in a given collective which is unambiguous (p.20). There are, 

however, many reference classes that Hájek can be placed in. For instances, the class of 

all l iving things, the class of all humans, the class of ali male philosophers, the class of all 

fans of Woody Al len.. . We agree with Hájek that each of these reference classes wi l l 

have its own associated relative frequency for death by age of 60. But we don't agree 

with him that the event (his death by age 60) has more than one probability. In fact, 

either Hájek w i l l die by age 60 or not die by age 60. We wi l l know the answer one day, 

say one hundred years later. It is totally legitimate for us to regard our common usage of 

'the probability of his death by age 60' is really elliptical for a relativized probability 

sentence 'the probability of his death by age 60 on the condition that he belongs to the 

intersection of classes c^ ոՇշ n---C„. Here the classes are all relevant classes that are 

available to us and they are certainly not exhaustive. Indeed, i f we could consider all 

relevant classes that he can be placed in, then he w i l l be the only element in their 

intersection. We could theoretically be certain that he would either die or not die by age 

2 " H á j e k (1997 ) has made a very good d is t i nc t ion between a cond i t i ona l p robab i l i t y o f the f o r m P{B I A) 
and a re la t i v i zed p r o b a b i l i t y o f the f o r m PA (B): the f o rme r but not the lat ter presupposes that P(A) is w e l l -

de f ined Cp.86). 
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60 and the probability would then be either 1 or 0. Hence, when we talk about the 

probability of a single event, it is only an elliptical way to talk about the probability of 

that event relativized to certain known reference classes^^" .̂ I f for a certain single event 

we cannot obtain any reference class in which the event can be placed, then talking about 

its probability could be absolutely nonsense. 

Another cluster of related objections to the frequency theory is about the notion of 

limiting relative frequency. These objections, that are interrelated, can be divided into 

three major categories^^^ for the sake of discussion: 

1. Epistemologica! problem: limiting relative frequencies cannot be known, at 

least for certainty; 

2. Ontological problem: limiting relative frequencies do not exist in our natural 

world; 

3. Methodological problem: sentences or theories with Umiting relative 

frequencies is not refutable nor confirmable. 

For the first problem, it has been argued that the limit relative frequency can 

hardly be known even for a simple problem like tossing a coin. According to the 

frequency theory, the probability of getting head is defined as the limiting relative 

frequency of heads in an infinite sequence of tosses. But no matter how many times the 

coin has been tossed, the relative frequency of heads is still not the limiting relative 

284 For the cases in w h i c h the reference classes or emp i r i ca l co l l ec t i ve can be i den t i f i ed , in i t ia l probabi l i t ies 
can be d i rec t l y ascerta ined t h rough i nduc t i on by enumera t ion , at least in p r inc ip le . Th i s is cont rary to the 
classical theor is ts ' me thod o f coun t i ng equ iprobab le cases acco rd ing to the Pr inc ip le o f Ind i f fe rence . Tha t 
also exp la ins w h y v o n M i s e s ( 1 9 5 7 ) has argued that w e can h a r d l y say a n y t h i n g about p robab i l i t ies when 
w e are ignoran t (pp .75 -80 ) . F o r a more deta i led analysis o f a pos ter io r i es tab l ishment o f a p robab i l i t y 
me t r i c , see Re ichenbach , 1949, pp .359-366 . 
2 8 5 See W e a t h e r f o r d , 1982, pp .199-200 fo r a s im i l a r d i v i s i o n o f ob jec t ions . 
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frequency of heads in an infinite sequence. The probability is thus never known to us 

with 100% of certainty and accuracy. It is true that we are indeed unable to toss the coin 

for an infinite number of times and thus unable to get an absolutely exact value for the 

probability of getting head. But some wi l l argue that many of the physical quantities that 

could only be measured empirically are being unable to be known in this sense. Consider 

the mass of our earth, what we are able to measure is only an approximation of it. No 

matter how technologies have been advanced, we still cannot get its exact value. There is 

however one major difference between two cases. Though we cannot measure many of 

the physical quantities, such as the mass of the electron, with 100% of certainty and 

accuracy, its value measured with today's technology wi l l be better than the one we 

measure 20 years ago and it is likely accurate to within our tolerable limit. A reasonable 

and finite number of measurements can establish the value of a normal physical quantities 

so convincingly that we have to explain where a previous error has been made i f we want 

to make significant revision. But it is clearly not the case for limiting relative frequency. 

No matter how many times a die has been tossed and how stable the relative frequency of 

the occurrence of ' r is, it is always possible that its value wi l l change dramatically 

without necessarily requiring an acknowledgment of any previous error. 

When some assert that all students aged 18 or above could solve quadratic 

equations with 1 variable, we could either refute it by getting one student who is aged 18 

or above but could not solve the equations, or confirm it by getting students who fulf i l l 

the requirements. But how about the sentences or theories with limiting relative 

frequencies? Consider the sentence 'the probability of getting ' 1 ' by throwing this die is 

1/3'. I f we throw this die for 1000 times and it is found that no ' r occur, we still could 
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not refute the sentence. Since the sentence only asserts that the limit relative frequency 

of ' 1 ' is 1/3， it is always compatible that the limit is 1/3 but no ฯ ' occurs in the 1000 

throws. Hence, it is quite clear that these sentences can hardly be refuted conclusively. 

As a result, critics to frequency theory wi l l query the existence of limiting relative 

frequency - it cannot share many properties possessed by other physical quantities simply 

because it is fictitious. Moreover, consider the case of tossing a coin, the probability of 

getting head is defined as the limiting relative frequency of heads in an infinite sequence 

of tosses. Suppose we toss the coin for 1000 times and get the relative frequency of 

heads, this sequence is merely an estimation for the limiting relative frequency in an 

infinite sequence. The infinite sequence itself has no physical existence. Unlike the 

moon that has a mass no matter we measure it or not, the coin would not have any 

sequence of heads i f it had not been tossed. Could we say that a coin that is destroyed 

immediately after it has been made (so that it has not been tossed even for once) has no 

probability of getting head? Moreover, no matter how many times the coin had been 

tossed, the coin can never been tossed for infinite number of time. There is no such an 

infinite sequence of physical events (even though the coin's physical characteristics 

would not change a little when tossed for a large number of times), the characteristics of 

coin cannot explain why heads have probability 1/2. It is these difficulties that render 

the proposal of another objective theory of probability 一 the propensity theory which wi l l 

be discussed in Section 3.5. 
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Appendix 11 Objections to the subjective theory 

There are certainly cases ๒ which probabilities look like objective. For instances, 

the probability o f getting a ' r in throwing a particular die, the probability that a 

randomly selected Chinese is suffering from G6PD deficiency, and the probability that a 

particular radioactive element wi l l disintegrate in 3 years all seem to be objective in 

nature. In other words, they are not a matter o f opinion and are independent o f how we 

believe them. Some subjectivists like De F๒etti would reply that there are ๒ fact no 

objective probabilities and all probabilities including those apparently objective 

probabilities just described could only be іпЇЄфгеїес1 as degrees of beliefs (De Finetti, 

1937). This reply leaves two problems that they should address. First, i f there were in 

fact no objective probabilities, they have to explain why most of us have an illusion that 

such probabilities exist. Second, frequency theory succeeds in many cases especially in 

figuring out the probabilities of the statistical events and in the games of chance. Could 

the subjective theory provide the same successful results in these cases? We wi l l 

examine the subjectivists' answers to these questions by taking a simple example. 

Consider a particular die which is not known to be biased or not. Our intuition tells us 

there is a true though unknown probability of getting a ' 1 ' in a particular throw of this 

particular die (the event E). Its exact value may never be known to us but it could still be 

estimated by observing the number of occurrences of ' 1 ' (m) in throwing the die for a 

large number of times (ท). Subjectivists like De Finetti, as we have already said, wi l l 

claim that there is no such an absolute probability of E. Each person is free to have 

2 8 6 N o t a l l sub jec t iv is ts w o u l d agree w i t h D e F ine t t i o n th is po in t . Fo r examp le , Ramsey w o u l d accept 
ob jec t i ve p r o b a b i l i t y and advocate a k i n d o f ca l ib ra t ion be tween degrees o f be l i e f and frequencies 
( W i l l i a m s o n and C o r f i e l d , 2 0 0 1 , p . l ) . 
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whatever degrees of belief in E. We are certainly able to throw the die again and again 

in addition to the particular throw of the die {E), but each throw is an individual event and 

should not be regarded as a part of a set of repetitive events. In other words, a person 

may have a betting rate o f 1/6 on E but he is still perfectly all right to have a betting rate 

of 1/2 on the next throw of the same die. 

Now, suppose the die has been thrown for ท times (where и is a big number, such 

as 5000) before E and we observe that the number o f occurrences of ฯ ' is m, experience 

tells us that any person who makes a betting rate on E which is much different from mln 

wi l l almost certainly lose in the long run. Let's see how the subjectivists could explain 

this phenomenon. Suppose we use a, to denote that we get ' 1 ' in the rth throw, bi to 

denote that we do not get ' r in the rth throw, and e„ the complete specification of the 

results of the first ท throws. According to these definitions, E = a„ + \ and e„ is a 

particular ท-tuple in which there are m a's. What the subjectivists are going to figure out 

is P(a„^, 1 e „ ) . I f a person has coherent beliefs, then the betting rates wi l l conform to the 

axioms of probability and we could thus obtain: 

Rather than using the notion of independent events, the subjectivists introduce the 

condition of exchangeability^*^ which is given by: 

For any «， when there is more than one possible order in which a 

certain number of a appear in the «"tupie 6ท we have to assign the 

same betting rate to any one of the particular «-tupie e„. 

See D e F ine t t i ( 1 9 7 5 , 2 1 1 - 2 2 4 ) or Je f f rey ( 2 0 0 4 , 7 8 - 8 1 ) f o r deta i ls o f a f o r m a l t reatment. 
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For example, when ท = 3 there are three possible tr iples in wh ich exactly one a appearร: 

афгЬวฺ,, b ļ ū j b ļ , եւհշսշ . 

I f we assign a bett ing rate η 3 to the event that there are exactly one ' 1 ' appears in the first 

3 throws, then by the condi t ion o f exchangeabil i ty, we have to assign the same bett ing 

rates ( η 3 / 3 ) to each o f these three events (or tr iples). 

Since e„ is a part icular outcome o f the f i rst ท throws in wh i ch there are m ' l ' s , 

there w i l l be C " such possible outcomes. Hence, we have 

C" ՝' 

where Վ is a bett ing rate that a person assigns to the event that there are exactly m '1 ' ร 

appearing in the first ท throws. 

S imi lar ly , А Є „ ) = ՚ա+1 
с: : ' , 

Hence, we have 

= p í o 
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I f we assume fiirther that tends to 1 when ท approaches in f in i ty , then P{an + \ \ e) 
m 

w i l l tend to + wh ich is approximately equal io mln (the observed relative 

frequency) fo r large ท. This explains why the observed relative frequency provides a 

good measure o f P{E), In other words, even though di f ferent persons may have dif ferent 

degrees o f bel ie f in the proposit ions that we w i l l get /พ Ч ' s in the first ท throws o f the die 

(i.e. assigning di f ferent values to Հ ) in i t ia l ly , they w i l l eventual ly change their degrees 

o f bel ie f in response to more observations and f ina l ly come to agreement as evidence 

mounts up to a certain extent. I t is this very result that the subjectivists use it to explain 

why people have an i l lusion that there is an object ive probabi l i ty . Apparent ly the 

subjective theory is able to provide the same successful results in statistical events or 

games o f chance as the objective іп Їефге Їа ї іоп o f probabi l i ty . 

Let us now consider i f this subjective іпІефгеЇа1 іоп is tenable or not. In the above 

der ivat ion, the subjectivists have made two assumptions in addit ion to the axioms o f 

probabi l i ty (or the assumption o f coherent bett ing rates). One is the assumption that the 

l im i t o f the ratio Վ1\ I Հ is equal to 1 and another is the condi t ion o f exchangeabil i ty. 

A l though the l im i t assumption seems to be reasonable, i t is s i l l legit imate for us to ask 

why we have to assume that it is true. As the subjective theory asserts, a person has his 

o w n r ight to assign any numbers to the bett ing rates Հ and Հ1\ ， provided the set o f 

bett ing rates is coherent. We see no reason why for a subjectivist i t is i l legit imate to 

assign the better rates in a such a way that the ratio Հ1\ 1Հ does not converge to 1. In 

other words, this assumption is not jus t i f ied w i th in f ramework o f the subjective theory. 
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Exchangeabi l i ty is, in a certain sense, a substitute for the not ion o f independence. 

As Gi l l ies (2000) notes, 'when an object ivist assumes independence and formulates 

corresponding mathematical equations, a subjecti v ist can s imply reinterpret these 

equations as being about subjective probabi l i t ies and exchangeabi l i ty ' (p.77). Bu t 

independence is a very crucial not ion when we apply probabi l i t ies in enormous cases, we 

w i l l show here that such an el iminat ion o f the not ion o f independence in favour o f 

exchangeabil i ty is imprudent. Unl ike independence wh i ch could be expl ic i t ly defined in 

mathematical terms, exchangeabil i ty is a loose concept and its use is a l i t t le b i t arbitrary. 

For instance, in the above mentioned example, the die has been thrown for ท t imes before 

E and we have used Վ to denote the bett ing rate that a subjectivist assigns to the event 

that there are exactly m T s appearing in the f i rst ท throws. Since there are no 

compulsory rule in addit ion to the requirement o f coherence, subjectivists could make 

any choice on the bett ing rates. Hence, though this is not mandatory, subjectivists are 

liable to apply exchangeabi l i ty in this way: the number o f ' I ' s in the ท throws could on ly 

be 0， 1， 2， .,.， or ท, we assign the same bett ing rates to each o f these states, i.e., 

Հ =ะ r" = , , Հ . Since they sum up to 1, we have 

r" =r" = r" = 1 
° ' ՞ « + Г 

From previous result, 

PK . , I . J =^!1^]}CL 
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Hence, i ' K . J e J = ^ 
(« + 1 ) · ֊ ֊ n + ì 

m + ì 

n + 2 

N o w , w i thout mak ing an addit ional assumption that the l im i t o f the ratio r^ll I Հ 

equals 1， we could get this very famous result - Laplace's law o f succession. This law is 

so famous because before the dawn o f modern theory o f probabi l i ty Laplace has tr ied to 

use this law to j us t i f y induct ion. Given that the sun has risen dai ly for 5000 years or 

1826213 days, to what extent we could be sure that the sun w i l l rise tomorrow? Laplace 

uses this law to f igure out the probabi l i ty that the รนท w i l l rise tomorrow^^*: 

v /« = « = 1826213 

•••the probabi l i ty = 1326213 + 2 ^ 0-999 999 4 5 2 4 1 9 . . . . 

I t seems to be able to jus t i f y why many people believe that the sun w i l l rise 

tomorrow given that i t has risen dai ly for so many years. Nevertheless, this law is 

p la in ly false. Accord ing to what we know about f rom astrophysics, our sun w i l l not last 

forever but according to this law the probabi l i ty fo r the sun to rise w i l l only increase as 

t ime. We may also use a dai ly- l i fe example to i l lustrate how this law wou ld give absurd 

result. Suppose we have an o ld radio which has been programmed in such a way that it 

w i l l automatical ly turn on at 6 am every morn ing. For the past 10 years or 3652 days, it 

works perfect ly we l l every morning. Bu t in this morn ing the radio doesn't turn on 

automatical ly. We t ry to turn it on manual ly but fa i l . No rma l l y we w i l l expect that this 

o ld radio w i l l not w o r k again unless we get someone to fix it. However, according to 

' Feller, 1968, pp. 124- 125. 
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Laplace's law o f succession, the probabi l i ty that i t w i l l w o r k tomor row only drops to a 

very smal l extent: from 3653/3654 to 3653/3655! The law o f succession fails in this case 

because it doesn't take the dependence into proper account. Whether the radio w i l l 

funct ion proper ly tomor row is not independent o f how i t functions today. The 

assumption o f exchangeabi l i ty only looked plausible เท the first place because the case 

we consider - t h row ing o f a die - is a sequence o f independent events. I t w i l l lead to 

mistaken conclusion i f i t is applied to the รนท r is ing or radio case in wh ich the events are 

not independent. A s a result, we cannot assume exchangeabi l i ty in a pr ior i way. There is， 

however, no posterior i guideline for us to determine when we should assume 

exchangeabil i ty or its consequence ( law o f succession), especially when the notion o f 

independence is el iminated in the f ramework o f subjective theory. 

There is one more object ion to the subjective theory o f probabi l i ty. One o f the 

claimed merits o f the subjective theory is that i t a l lows us to apply Bayes' theorem to 

consider the probabi l i ty o f a hypothesis. Suppose in a research problem there are some 

compet ing hypotheses to be considered. Accord ing to the object ivists, a hypothesis н is 

either true or false. I f it is true, then P{H) = 1 ; i f i t is false, P{H) = 0 . Ta lk ing about any 

probabi l i t ies other than 0 and 1 seem to be absurd. The subjectivists assume that i f the 

set o f hypotheses is expressed as {HQ I Ö є / } there is an in i t ia l subjective distr ibut ion 

(also cal led pr ior distr ibut ion) μ{θ) for the parameter θ. In response to new evidence e, 

the pr ior d istr ibut ion μ{θ) is revised by condi t ion ing on e w i t h the use o f Bayes' theorem, 

which yields the posterior distr ibut ion μ{θ I e). The who le revision process, wh ich relies 

on the use o f Bayes' theorem, is called 'Bayesian condi t ional izat ion ' (Howson, 1995， p.8; 
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Gil l ies, 2000, p.36). The posterior distr ibut ion μ{θ I e) is also over the set o f hypotheses, 

the subjectivists then set P{HQ) = μ{θ) and P{HQ I e) = μ{θ I e). As a result, to the 

subjectivists, sentences l ike ' P{H \ e) = 0.98， are perfect ly meaningf i i l . Bayesians 

believe that the process o f Bayesian condit ional izat ion w i l l provide rational persons (such 

as scientists or researchers) a learning strategy so that whatever pr ior probabil i t ies they 

adopt their posterior probabi l i t ies w i l l converge towards the same value. This is the very 

point that we are go ing to argue against. 

To il lustrate the argument, we wou ld l ike to use an example called the game o f 

red or blue probably first described by Feller (1968, p.78 - 84).^^^ A fair coin is first 

tossed to determine the in i t ia l mark o f a player A . I f it is head, his in i t ia l mark is 0; i f it is 

ta i l , the in i t ia l mark is - 1. Then the coin w i l l be tossed for a number o f t imes. For each 

toss o f the co in , i f i t is head, A gets one more mark; i f it is ta i l , 1 mark w i l l be deducted 

f rom A ' s current total mark. A f te r each toss, the total mark A gets is either a non-

negative point in wh ich we w i l l call the event ' B l u ๙ or a negative number in wh ich we 

call 'Red ' . The game consists in making bets on the occurrence o f one o f these events 

' B l u e ' or ' R e d ' . Since the coin is fair and the in i t ia l mark is either 0 or - 1， whose 

probabi l i ty o f occurrence is supposed to be equal, many o f us wou ld expect that in the 

long run the relative frequency o f the occurrences o f ' B l u ๙ w i l l be almost the same as 

that o f ' R e d ' . The remarkable th ing is that the result does not l ike what we expect! Here 

we per form a s imulat ion w i th the use o f Maple 8 o f the game: the coin is tossed for 3000 

t imes and we count the occurrences o f 'B lue ' and 'Red , . This is one tr ia l and we w i l l 

2 8 9 This example has also been used by Popper (1983) and Gillies (2000). It is Popper who first calls it the 
game red or blue (1983, p.303). 
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figure out the relative frequency o f ' B l u e ' . The tr ia l w i l l be repeated for 1000 t imes. 

That means w e wou ld have 1000 data about the relat ive frequency o f 'B l ue ' in each t r ia l . 

> restart: with(plots, display) ： 

libname：="C：/mylib/stat",libname： with(stat)： 

>N:=1000:T:=3000: 

> for j from 1 to N do: 

> ร[0] :=0: 
>for і from 1 to T do: 
>X:=Die(2,l) ： 

> i f x=[l] then RA:=-1 else RA:=1 end if: 

> ร[i] :=S [i-l]+RA: 
> i f ร[i]>=0 then B[i]:=1: R[i] :=0 else B[i]:=0: R[i]:=1 end 
i f ; 
> od: 
> 
BB： =տ\աւ(В[m] ,m=l. .τ) ：RR:=s\am(R[ni] ,m=l. . Τ) ：Rate в [ j] ： =evalf (В 

B/T,5)/Rate R[j]:=evalf(RR/T,5)： 

> od: 

> for к from 1 to N do: 

>Rate_B[к]；Rate R[к]； 

> od: 

>L: = [seq(Rate в [พ] ,พ=1. .Ν) ] ะ 
> Histogram (L,о. .1,5) ； 

Its histogram is plotted as shown in Figure A l 1.1: 
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Figure A l 1.1 ( n : = 1 0 0 0 : T : = 3 0 0 0 ) 

It is clearly f r o m the graph that there is h igh probabi l i ty o f one o f the colours appearing 

much more than the other. One may wonder i f i t is on ly an accidental result. Let 's 

increase the number o f tosses to 8000 in each tr ia l and repeat the trials for 5000 times. 

We get the f o l l o w i n g simi lar result again: 
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Figure A l 1.2 ( N : = 5 0 0 0 : T : = 8 0 0 0 ) 

I f a subject iv ist ร is asked to analysis a sequence o f numbers (either 1 or 0) wh ich 

are, unknown to ร , generated by the game o f red or blue (say, i f the event 'b lue ' occurs, 

otherwise, the number is 0)， it is quite natural for ร to g ive a pr ior un i fo rm distr ibut ion to 

Հ (the event that there are exactly m ' l ' s appearing in the first ท numbers o f the 

sequence) but no matter how A chooses his bett ing rates the str ik ing results wou ld st i l l 

appear. For example, i f A f ina l ly gets the Laplace'ร law o f succession by assuming that: 

1 
Կ Ղ 一 …厂" 

« + l 

In this case, i f it is g iven that the f irst 100 numbers are 1 and the 101st and 102nd 

numbers are both 0, A w i l l find that the probabi l i ty o f gett ing 1 for the 103rd number is 

quite h igh: 101/104 = 0.971 (3 sig. f lg . ) . However , f r om the rule o f game o f red and blue, 
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we know that the probabi l i ty should be 0. In other words , i t is indeed impossible to get 1 

for the 103rd number.^^^ Moreover, f rom Figure A l 1.2, i f the number o f tosses is 8000, 

we find that about 73 .2% o f the 5000 trials w i l l give the result that the relative frequency 

o f one colour is more than 0.7. Hence we wou ld expect that ร is natural to estimate the 

probabi l i ty o f gett ing one o f the two numbers in the number sequence is 0.7 or more. Bu t 

in the real under ly ing game, the two colours are indeed symmetr ical . In this example, S's 

calculations using exchangeabil i ty or Bayesian condi t ional izat ion w i l l produce a 

sequences o f probabi l i t ies at complete variance w i t h reali ty. Since the events are indeed 

dependent whose possib i l i ty has been already ruled out in the use o f exchangeabil i ty, no 

Bayesian condi t ional izat ion w i l l br ing ร close to grasping what the real situation is. I t 

thus shows that exchangeabil i ty or Bayesian condi t ional izat ion is hardly an effect ive 

learning strategy. One may argue that ร fails because the events are independent and he 

should have considered not jus t exchangeabil i ty but also various fo rm o f Markov 

exchangeabil i ty and a broad and comprehensive class o f hypotheses. But the point is: it 

is quite impossible to consider al l the forms o f exchangeabi l i ty and al l the possibi l i t ies 

wh ich migh t arise at the very beginning o f the study. 

Besides, M a x A lber t (1999, 2001) has argued forcefu l ly that no matter how a 

Bayesian chooses his learning strategy (i.e. how he figure out the probabi l i ty o f the nth 

number g iven the first ท 一 1 numbers in the sequence) there must exist a pr ior probabi l i ty 

distr ibut ion μ over the set o f what he called the mod i f ied chaotic hypothesis such that S's 

2 9 ° The reason is simple. When the 100th number is 1 and the 101st number is 0, the 100th event and the 

101st event must be 'Blue' and 'Red'. In this case, the 100th total mark must be 0, otherwise it is 

impossible for it to change to negative in the next event. In this connection, the total mark for the 101st and 

102nd event must -1 and -2 respectively. Therefore, it is impossible for the total mark to become 0 or 

positive in the next event. 
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probabil i t ies could be produced by Bayesian condi t ion ing on μ . In other words, i f ร is 

going to consider a broader set o f hypotheses, the chaos theory should be on the list and 

thus anything he does w i l l , according to A lber t 's proof, w i l l become Bayesian, rendering 

the whole approach empty. 
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Appendix 12 Maple 8 Worksheets for Chapter 5 

Maple Worksheet for Figure 5.1 

> restart:with(stats) ะwith(plots) ： 

W a r n i n g , t h e name c h a n g e c o o r d s h a s b e e n r e d e f i n e d 

> alpha:=0.05 :power:=0.9: 

>normalf:=(x,miu,sig)->exp(-(x-

miu) ՚̂ շ/ {2*sig'՝2) ) /sqrt {2*Pi*sig^2) ะ 
> Z:=fsolve(statevalf[cdf,normald] (x)=l-alpha/2,x) ； 

Z : = 1.959963985 

> 

difference：=solve(statevalf[cdf,normáid](х)=power,х)+fsolve( 

statevalf[cdf,normald](x)=l-alpha/2,x)； 

difference ֊ 3.241515551 

> zz: = (aa)->solve(statevalf[cdf,normald] (x)=l-aa/2,x)； 

:= aa sohJ^statevalf^^^^^^^^,lx) =\-\aa,x^ 

>ratio : = (p)->(normalf(zz(p) ,0,1)/normalf(difference -

zz(p),0,1)) I 

( (1-

statevalf[cdf,normald](zz(p)))/statevalf[cdf,normald](differ 

― Р no rma l f ( zz (p ) , 0, 1 ) statevalf^^^^^^¡J^difference - ZTİp)) 

Р norm&\í{d։fference ֊7z(p), o, 1 ) ( 1 - statevaljոօոաա^^՚^բ^^) 

> 
a:=0.0001:b:=0.1:ratio(a)；ratio(O,02)；plots[display]({plot(r 

atio(p), p=a..b, colour=blue)},{plot(1,a..b,colour=red)})； 

> 3.292177782 

8.326763046 
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Maple Worksheet for Figure 5.2 

> restart : with(stats) ：with(plots) ： 

W a r n i n g , t h e name c h a n g e c o o r d s h a s b e e n r e d e f i n e d 

>alpha：=alpha：power:=0.8: 

> normalf ： = (х,miu, sig) ->exp (- (วէ一 

miu)八2/(2*sig^2))/sqrt(2*Pi*sig^2)： 

>Z:=(alpha)->solve(statevalf[cdf,normald](x)=l-alpha/2,x) 

Z := α solve statevalf 
cdf, normalt 

, / ^ ) = 1 一 į a ， 

>difference：=(alpha)-

>solve(statevalfէcdf,normald] (X)=power,x)+solve(s tatevalf[cd 
f,normald](χ)=l-alpha/2,χ)； 
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difference := α - > 

( χ ) = power, χ ) + solve state valf •ժք, n o r m a / / 1 - - α , Χ 

> zz: = (aa)->solve(statevalf[cdf,normald] (χ)=l-aa/2,χ) ； 

>ratio : = (ρ,alpha)-

Xnormalf (ζζ (ρ) ,0,1) /normalf (dif f erence (alpha) - zz (p) ,0,1) ) 

I ( i l 

sta tevalf [cdf,normald](zz(p)))/statevalf[cdf,normald](differ 

normal f ( zz(j? )，0,1) statevalfnormald^ difference ( a ) ― zz(p ) ) 

まo := ゆ， α ) ― n o r m a l f ( d i f f e r e n c e ( a ) ֊ z z ( p ) , о, 1 ) ( 1 — sta7^Җ՜^^^^^^՜JzՀբ))) 

> 
plot3d({ratio(p,alpha)},p=0.001,.0.1,alpha=0.001..0.1,axes=๖ 
ox) ； 

100 

Maple Worksheet for Figure 5.3 

> restart:with(stats) ：with(plots) 
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W a r n i n g , t h e name c h a n g e c o o r d s has b e e n r e d e f i n e d 

>alpha:=0.05 :power：=power： 

> normalf： = (х,miu,sig)->exp(-(x-

miu)^2/(2*sig^2))/sqrt(2*Pi*sig^2) ะ 
> Z:=solve(statevalf[cdf,normald] (x)=l-alpha/2,x)； 

Z := 1.959963985 

> difference： = (power)一 

>solve(statevalf[cdf,normald](x)=power,X)+solve(statevalf[cd 

f,normald](х)=l-alpha/2,χ)； 

difference := power 

so\weistateval^^^^^,lx) = power, x) + soìv^stateval^^^^^,/x) = l - f , ^ ^ 

> zz: = (aa)->solve{statevalf[cdf,normald] (x)=l-aa/2,x) ； 

>ratio : = (ρ,power)-

>(normalf(zz(p),0,1)/normalf(difference(power) - zz (ρ) ,0,1)) 

I ( i l 

sta tevalf [cdf,normald](zz(p)))/statevalf[cdf,nonnald](differ 

ence(power) 一 zz(p)))； 

ratio •֊ {p, power) 

n o r m a l f ( z z ( p ) , 0, 1 ) statevalf ^^^^^^l di f ference {power ) ― z z ( p ) ) 

normaIf ( di f ference (/JO wer ) 一 z z (p ) , 0, 1 ) ( 1 - sta^ 

> 

plot3d({ratio(p,power)},p=0.001..0.1,power=0.5..0.95,axes=bo 

X ) ； 
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Maple Worksheet for Figure 5.4 

> restart:with(stats) ：with(plots) ： 

W a r n i n g , t h e name c h a n g e c o o r d s h a s b e e n r e d e f i n e d 

> Z:=p->solve(statevalf[cdf,normald] (x)=l-p/2,x) ； 

z:- р ^ solve statevalf 
1 

edf. normalJ<^^ ՜ ^ ՜ շԲ՛ ^ 

> normalf: = (х,miu,sig)->exp(-(x-

miu) 八2/ (2*sig^2) ) /sqrt (2*Pi*sig'՝2) ： 

> LD : =a->normalf ( z (р) ,0,1) /nomialf (0,0,1) ；น: =p->LD(p) /p; 
n o r m a l f ( z ( p ) , o, 1 ) LD:=a-^ 

norma l f (0 , o, 1 ) 

>LD(0.001)；น(0.05)； 

20.00000000 e 
-1/2 RootOK2 — „ o r n , a , / - ' ^ -  2 + 

> a:=0.0001:b:=0.1 : plots[display] ({plot(น(p) , p=a..b, 
colour=๖lack)},{plot(1,a..b,colour=red)})； 
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