
Durham E-Theses

CRIKEY! It's co-ordination in temporal planning

Halsey, Keith

How to cite:

Halsey, Keith (2004) CRIKEY! It's co-ordination in temporal planning, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2707/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2707/
 http://etheses.dur.ac.uk/2707/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

CRIKEY! — IT 'S CO-ORDINATION IN TEMPORAL PLANNING

by

Keith Halsey

Minimising Essential Planner-Scheduler
Communication in Temporal Planning

A copyright of this thesis rests
with the author. No quotation
from it should be pubHshed
without his prior written consent
and information derived from it
should be acknowledged.

Submitted in conformity with the requirements
for the degree of Doctorate of Philosophy

Department of Computer Science
University of Durham

Copyright © 2004 by Keith Halsey

0 7 DEC 2005

Declaration
The material contained within this thesis has not previously been submitted for a degree at
the University of Durham or any other university. The reseaich reported within this thesis
has been conducted by the author unless indicated otherwise.

Copyright Notice
The copyright of this thesis rests with the author. No quotation from it should be

published in any form, including electronic and on the internet, without their prior written
consent and information derived from it should be acknowledged.

Acknowledgements
Firstly, I would like to thank Prof. Maria Fox and Dr. Derek Long, for their supervision,
guidance and, above all, encoui-agement too many times 1 have needed it. Also to all
members of the Strathclyde Planning Group^, past and present, for their friendship and for
making the past three years so fulfilling.

I also extend my very grateful thanks to the University of Strathclyde and its Department
of Computer and Information Sciences who have so generously leant mc their facihtics and
resources in the final year of my PhD. Without their support I would have been sure not to
complete this work.

Finally I would like to thank my family for their unerring emotional support, often in the
face of complete bewilderment at my evei- changing plans. Bexstar; thanks for being patient
— put the kettle on; I ' l l be home soon.

'Alex, Amanda, Andrew, John, Jonathan, JuUe, Luke, Pete, Richard, and Stephen

Abstract
C R I K E Y ! — It's Co-ordination in Temporal Planning

Keith Halsey

Temporal planning contains aspects of both planning and scheduling. Many temporal plan
ners assume a loose coupling between these two sub-problems in the form of "blackbox"
durative actions, where the state of the world is not known during the action's execution.
This reduces the size of the search space and so simplifies the temporal planning problem,
restricting what can be modelled. In particular, the simplification makes it impossible to
model co-ordination, where actions must be executed concurrently to acliicvc a desired effect.

Co-ordination results from logical and temporal constraints that must both be met, and
for this reason, the planner and scheduler must communicate in order to find a valid temporal
plan. This communication effectively increases the size of the search space, so must be done
intelligently and as little as possible to hmit this inaease.

This thesis contributes a comprehensive analysis of where temporal constraints appear in
temporal planning problems. It introduces the notions of minimum and maximmn tempered
constraints, and with these isolates where the planning and scheduhng are coupled together
tightly, in the form of co-ordination. It characterises this with the new concepts of envelopes
and contents.

A new temporal planner written, called ClUKEY, uses this theory to solve temporal
problems involving co-ordination that other planners are unable to solve. However, it does
this intelligently, using this theoiy to minimise the communication between the sub-solvers,
and so does not expand the seax'ch space unnecessarily. The novel search space that CRIKEY
uses docs not specify the timings of future events and this allows for the handling of duration
inequalities, which again, few other temporal planners axe able to solve.

llesults presented show ClUKEY to be a competitive planner, whilst not making the same
simplifying assumptions that other temporal planners make as to the nature of temporal
planning problems.

Contents

Introduction 11
1.1 Pi-eliminEuy Introduction and Overview 11

1.1.1 Classical Planning 11
1.1.2 Scheduling 12
1.1.3 Temporal Planning 13

1.2 Context 13
1.3 Scope, Aims and Motivation 15
1.4 Outline 16

Background 18
2.1 Models of Time 18

2.1.1 Views of Change 18
2.1.2 Classifications 20
2.1.3 Temporal Problems 22
2.1.4 Dm-ative Actions 22
2.1.5 Reasoning About Time 26

2.2 Resources in Planning and Scheduling 26
2.3 Decomposition of Problems 27

2.3.1 HybridSTAN and TIM 28
2.3.2 Translation of the Planning Problem 29
2.3.3 Goal Orderings as Decomposition 29
2.3.4 Advantages of Decomposition 30

2.4 Integrating Planning and Scheduling Technologies 30
2.5 Planners 31

2.5.1 Graphplan-bascd Temporal Planners 31
2.5.2 Forward Heuristic Search 33
2.5.3 Decomposing Planners 35
2.5.4 State of the Art 36

2.6 Chapter Summary 37

CONTENTS

3 Theory 38
3.1 An Initial Solution The LPGP/FF Hybrid 38
3.2 Coupling of Planning and Scheduhng 47

3.2.1 Failure of the LPGP/FF Hybrid 49
3.3 Temporal Constraints in PDDL2.1 50

3.3.1 Translation of the Domain 54
3.4 Envelopes and Contents 56
3.5 Detecting Single Potential Envelopes 58

3.5.1 Reasons for Precedence 59
3.5.2 Defining Potential Envelopes 59

3.6 Chapter Summary 63

4 C R I K E Y 64
4.1 Version 1 65

4.1.1 Envelope Analysis 66
4.1.2 Planning in Version 1 68
4.1.3 Scheduling in Version 1 74

4.2 Characteristics of Version 1 74
4.3 Version 2 75

4.3.1 Envelope Management 76
4.3.2 Scheduling 79

4.4 Compaiison with Sapa 85
4.5 Chapter Summary 86

5 Results 87
5.1 Capabilities 88
5.2 IPC'04 90

5.2.1 Analysis Overview of IPC'04 Domains 109
5.3 Co-ordination 109

5.3.1 The Match Domain Revisited 110
5.4 DriverLog Shift 117

5.4.1 Mousetrap 120
5.4.2 Baseball 121

5.5 Using the Metric 121
5.6 Chapter Summary 122

6 Conclusions 124
6.1 SummaiT 124
6.2 Critique of CRIKEY 125

A Example L P G P Translation 128

CONTENTS 7

B The Zeno TVavel Domain 136

C The Match Domain 139

D Alternative Formalisation 141

E The Cafe Domain 143

F The Lift Match Domain 146

F. l Pai-tial Lift Match Numeric Domain 149

G DriverLog Shift Domain 150

H Mousetrap Domain 154

I Baseball Domain 157

List of Figures

1.1 A Generic View of Temporal Planning 15

2.1 Views of Change in Planning 19
2.2 Possible Concurrency Issues with Durative Actions 25
2.3 Different Types of Temporal Planning Graph 33
2.4 Communication in llealPlan 36

3.1 The Proposed Separation of Planning and ScheduUng in the Hybrid Planner . 39
3.2 Architecture for Separating Planning and Scheduling 40
3.3 The LPGP Translation of Durative Actions 43
3.4 The Veloso Algorithm to Translate Totally Ordered Plans to Partially Or

dered Plans 44
3.5 Example of a Broken invariant 46
3.6 Example of an End Action Deleting a Goal 46
3.7 Couphng Between Planning and Scheduling in Temporal Planning Domains . 47
3.8 A Valid Plan for the Match Problem 49
3.9 Expressing a Maximum Minimum Elapsed Time Between Actions in PDDL2.1 51
3.10 Possible Combinations of Representing the Same Constraint 52
3.11 Expressing both Minimum and Maximum Time Between Actions in PDDL2.1 54
3.12 Two Possible Equivalent Representation of the Breakfast Domain 54
3.13 Comparison of the Match Domain and Minimum and Maximum Delays in

PDDL2.1 55
3.14 Envelopes and Contents 58
3.15 The Three Reasons to Order Actions 59
3.16 Potential Envelopes (with achieving contents) 62
3.17 A Hard Envelope modelling a time limited resource 63

4.1 Differences Between the LPGP/FF Hybrid and the Two Versions of CRIKEY 64
4.2 Architecture Overview of CRIKEY 65
4.3 Alternative Architecture Overview of the LPGP/FF Hybrid 66
4.4 Example Precedence Graph 82

8

LIST OF FIGURES

4.5 A Partial Order for the Cafe Domain 84
4.6 Two Plans with Identical Goals but Different Metrics 84

5.1 Two Possible Complex Envelopes 89
5.2 Non-temporal Small PSR Domain 92
5.3 Non-temporal Dinning Philosophers Domain 94
5.4 Non-temporal Optical-Telegraph Domain 95
5.5 Non-temporal No Tankage Pipesworld Domain 97
5.6 Temporal No Tankage Pipcsworld Domain 98
5.7 Non-temporal Tankage Pipesworld Domain 99
5.8 Temporal Tankage Pipesworld Domain 100
5.9 Temporal UMTS Domain 102
5.10 Temporal Flawed UMTS Domain 103
5.11 Temporal UMTS Domain with compiled Time Windows 104
5.12 Non-temporal Airport Domain 106
5.13 Temporal Airport Domain 107
5.14 Temporal Airport Domain with Time Windows 108
5.15 Standard Match Domain I l l
5.16 Vai"iablc Time Match Domain 113
5.17 The Lift Match Domain 115
5.18 Performance of CRIKEY with and without matches encoded using fluents . . 116
5.19 Standard DriverLog domain as used in IPC'02 118
5.20 DrivcrLog Simple Time Domain Converted to use Shifts 119
5.21 Degradation of Performance when DriverLog Domain Converted to use Shifts 120
5.22 Plan Quality in the Cafe Domain with CRIKEY version 2 123

List of Tables

2.1 Basic Relations Between Intervals 20
2.2 State of the Ai-t Temporal Planners 37

3.1 Nine Possible Combinations of Start End Pmrs from the Three Ordering Rea
sons from the Veloso Algorithm 60

4.1 Possible Specifications of Durations and Resource Conditions and Operators . 83

5.1 Temporal Planner Concurrency Capabilities 88
5.2 Temporal Planner Temporal Capabilities 90
5.3 Percentage of Time Spent in Temporal Planning by CRIKEY in the Match

Domain 112
5.4 Percentage of Time Spent in Temporal Planning by CRIKEY in the Driverlog

Domain 121

10

Chapter 1

Introduction

1.1 Preliminary Introduction and Overview

1.1.1 Classical Planning

Classical Planning is a well defined construction problem where actions are chosen to reach
a goal state from an initial state. In its simpfest form (STRIPS [23]), states are defined by
a set of logical propositions that describe currently true facts about the world. The efltects
of actions change the state by cither adding propositions ("add effects"), or removing them
("delete effects"). Actions also have "conditions" — propositions that must be true in a
state in order to apply the action.

The solution to a planning problem is an ordered sequence of actions caJled a plan, to be
executed by an executive (or agent) that applies each action in turn from the initial state
to reach a goal state.

It is well known that planning is a P-space hai'd problem [22], but furthermore, it is
considered preferable to produce a good quahty solution and at best, an optimal plan, that
is, one with a minimum number of actions. Recently the notion of optimality has not been
researched as much as satisfiability (simply finding a plan).

STRIPS has been extended to ADL [58] to increase the expressiveness of the problem
definition language, including typing of objects in the domain, negative preconditions, and
quantified conditions and effects. However, classical plamiing stiU makes a immber of as
sumptions that are described in [70]. These include:

• Static World — The only cause of change in the world is from the actions performed
by the executive.

• Deterministic — The effects of actions are completely known.

• Fully Observable — The state of the world is completely known.

11

C H A P T E R 1. INTRODUCTION 12

• Finite — The world is finite in every aspect and objects cannot be created.

• Atomic Time — Time is composed of indivisible imits with each eiction taking a
.single time unit.

These asstunptions have all been weakened and the consequences explored. This thesis
is interested in the relaxation the last of these, that of atomic time. As i t holds, it has a
significant consequence: The state of the world need not be considered whilst the execution
of an action is in progress. Instead, the execution is an atomic transformation from one state
to another. Importantly, on accoimt of this, concurrent execution of ax;tions is impossible.
The addition of time into classical planning is called "Temporal Planning" and will be looked
at closer in Section 1.1.3.

Another common extension to classical planning is "Metric Planning", where there arc
not only propositional variables taking the values of true and false, but also metric fluent
vEQ-iables that can take numeric values. This allows the easy modelling of resources, but
makes the problem more complex, as the state space is potentially infinite.

1.1.2 Scheduling

Within the research community there is less agreement, when compared to the planning
problem, as to exactly what the scheduling problem is. However, there is agieement as to
what the class of scheduhng problems entail. Whereas planning is a construction problem,
deciding which actions should be used to reach a goal without breaking any logical con
straints, scheduhng is often an optimisation problem deciding when actions (often called
tasks or activities) should occm- without breaking any temporal or resomxe constraints.
Alternatively, scheduhng could be defined as allocating resources to activities over time.

Claases of scheduHng problem include job shop scheduling (allocating tasks to machines in
a factory), multiprocessor scheduling and timetabling. Sometimes the tasks are pre-emptive
and can be interrupted, other times not so. Scheduling problems can also be recmsive, where
the jobs aie reoccurring and a repeating schedule must be found. I t is common for the jobs
to have deadlines.

Planning is commonly characterised as the problem of "what" activities should be per
formed and scheduhng as the problem of "when" and "with what" should they be executed.
Generally, in planning there may be fewer solutions to find, but in scheduhng, finding a
solution can be relatively easy, making it more important to find a good quaMty or optimal
solution. What constitutes a good solution can change; it may be preferable to maximise
the slack, or alternatively to minimise the number of late jobs, the quantity of resource used,
the total time for the whole schedule or another, different, criteria.

C H A P T E R 1. INTRODUCTION 13

1.1.3 Temporal Planning

Temporal Planning is classical planning with the assumption of atomic time removed. Metric
time (where time takes a value, rather than simply being relative) is expUcitly modelled in
the planning problem. It is incorrect to assert that classical planning has no time as it is
the building of a trajectory (a future course of actions), with a predicted outcome, and so
is developed inherently with respect to time. However, in classical domains there is a very
restrictive set of assumptions on the nature of time.

Time is an important element in many "real world" problems and adding a significantly
less restrictive time model makes the problem more expressive. For example, it is impossible
to form a good model of concurrency in the classical planning framework. I t is also not
suitable when modelling actions that preserve a value over time, goals that aie situated
in time or dynamic domains with predictable exogenous events outside the control of the
executive. And of comse, actions rarely all have the same duration in reality.

The modelling of time is examined closer in Section 2.1. It has an impact on the complex
ity of the planning problem (making it harder still) and also on what the planning problem
is: temporal constraints must be met, as well as the logical constraints. Importantly, a
solution is no longer simply an ordered sequence of actions, since these can now be executed
concurrently, but a time-stamped plan, where actions are given metric time values for their
proposed execution.

Temporal plaiming is the combination of classical planning and scheduling, since now
the problem combines the "what", "when" and "with what" elements (i.e. it must both
plan the actions to use and schedule them in time against the resources). This is a natural
combining of problems as they have similar building blocks (i.e. actions / activities).

All these problems lie on a spectrum. At one extreme are the pure planning problems,
concerned only with logical reasoning, and at the other extreme sit the pure scheduling
problems, with no choice of actions, just their position in time. Tempored planning problems
lie somewhere on this spectrum in-between the two extremes.

1.2 Context

This thesis focuses on where problems lie on this spectrum — how much planning and
how much scheduling is present in the problem and how they interact. The constraints
between the two problems affects how coupled they are. Problems that are independent
have no constraints between them. A weak set of constraints will results in one problem
only affecting the quality of the other, and a strong set of constramts results in the solution
to one problem affecting whether the other is satistiable (that is, possible to solve).

Described here are three examples of temporal planning problems to put this work in
context.

C H A P T E R 1. INTRODUCTION 14

Building a House

When people decide they want to build a house, they must decide both what to do and
when to do it. This is a temporal planning problem. It is logical to first decide on a plan of
action which will contain tasks such as dig the foundations, build the walls, and put in the
windows. Only once these activities have been planned would the human decide when to
do the various activities. There will be some precedence constraints between some of these
actions (for example, to build the walls before the roof is put on). However, there will also
be some choices, for example the electrician could either come before or after the plumber,
but not at the same time (as they would get in each others way). Having the electrician
come first could mean that the plasterers can complete their job quicker and so the house is
finished sooner. Other tasks could happen concurrently, for example the upstairs could be
painted whilst the carpets are laid downstairs.

In this example the planning stage and the scheduling stage do not impact on each other.
In this case it is logical to do the two phases completely separately, since only decisions made
whilst scheduling affect how quickly the building is completed.

Evacuating an Island

Suppose there has be^ a volcanic eruption on an island, and it is necessary to evacuate
it. This again is a temporal planning problem as there is an initial state (volcanic island
with inhabitants), a goal state (all people evacuated) and actions to choose from (building a
landing strip, evacuate by plane, evacuate by boat etc...). In this case the choice of action
will aflfect the quality of the schedule. It may be quicker to build two landing strips and
then operate twice as many planes. The choice of actions may also affect the satisfiability
of the schedule. There may not be enough fuel to evacuate everyone by plane, so some must
go by boat.

In this problem the planning and scheduling M"e more tightly coupled than in the previous
example as the choice of action affects both the quality and the satisfiability of the schedule.

Air to Air Refuelling

In planning to perform air to air refuelling with aeroplanes, the planes must be co-ordinated
to achieve the goal. They must both be at their respective locations at the same time
and they must both be planned and scheduled simultaneously to achieve this. Some action
will have to happen concurrently. Here the scheduling task cannot be separated from the
planning task as in the first example.

C H A P T E R 1. INTRODUCTION 15

1.3 Scope, Aims and Motivation

Temporal Planning Problem

Planner

Sriifiduler

Temporal Pian

Figure 1.1.- A Generic View of Temporal Planrung

Figure 1.1 illustrates a general temporal planning architecture where the problem is decom
posed into planning and schcduhng. Partial solutions, satisfiabihty, constraints and cost
estimates can all be passed between the two solvers. For example, the planner choses some
actions and passes them to the scheduler. The scheduler can then pass back the feasibility
of finding such a schedule, a cost estimate of what a potential schedule might be in terms
of time and resource consumption, or it could pass harJc a full or partial schedule to the
planner. The planner can then use this information in its search.

Pivotal to the nature of the temporal planner is the amount of communication passing
between the two solvers: both how often and how much information they communicate.
This loads to a tradc-off: the more they interact, potentially the higher the quality of the
final solutbn. However, the communication is expensive and so it is preferable to minimise
it, thus reducing execution time and resomces.

In cases where there is no interaction between the planning and the scheduling, then
no communication need take place. Where the choice of action affects the quahty of the
schedule, then the trade-off stands. Finally, where the planning and scheduhng are tightly
coupled and the choice of action affects whether a schedule can be found for the problem,
the solvers mtLSt communicate in order to find a valid final solution.

Sphtting the problem is not the only way to solve temporal planning, however to do so
the interactions between the sub^j)roblems must be understood. Once this is understood,
the communication between the solvers can be controlled and the tradc-off met with some
intelligence.

The scope of this work is to examine and understand whei-e, and to what extent, planning
and scheduling interact in temporal planning domains. The focus is on where the problems
are very tightly coupled, as in the ease of co-ordination, as there are currently few tenqjoraJ
planners capable of solving such problems and it is largely ignored in the benchmark domains.
The motivation is to understand the communication needed between the planner and the
scheduler, with the aim to write a temporal planner to understand these interactions and

C H A P T E R 1. INTRODUCTION 16

perform accordingly, communicating only where necrasary. Whilst the nature of the planner
and scheduler will, of course, greatly affect the performance of the overall system, this thesis
is only concerned with the interaction between them.

Here is a summary of the objectives of the thesis as written above:

Scope of Theory To examine and understand where planning and scheduling interact in
temporal planning.

Focus The thesis will focus on where the problems are tightly coupled.

Motivation To intelligently solve problems currently ignored by the community.

Aim To build a competitive planner to solve these problems using the understanding of
logical and temporal constraint interactions.

The contribution to the community through this work is:

• Understanding of temporal constraints in temporal planning (specifically in PDDL2.1
and similar languages) .

» A planner that uses this theory to minimise communication between the planner and
scheduler and so solve problems that are not solved by other planners.

• A novel search state that does not specify the future timings alkwing for duration
inequalities.

1.4 Outline
The next chapter reviews different models of time and resources and how this affects the
temporal planning problem (Sections 2.1 & 2.2). It looks at the decomposition of problems,
and an abstract look at communication between sub-solvers in Section 2,3- Finally, it takes
a closer looks at temporal planning, the general principles behind integrating Planning and
Scheduling (Section 2.4) and a survey of other research in the field that is tackling temporal
problems (Section 2.5).

Chapter 3 develops a theory of co-ordination in temporal planning by looking at where
planning and .scheduling problems are tightly coupled. It examines where temporal con
straints appear in temporal planning problems using durative actions. I t introduces new
concepts of envelopes and contents, and of minimum and maximum precedence relation
ships to clatssify the temporal constraints. The chapter starts with a planning system where
the planning and scheduling arc split, but very little communication takes place between
the solvers. An example domain containing co-ordination is presented and it is shown how
this system fails in this case.

C H A P T E R 1. I N T R O D U C T I O N 17

Chapter 4 describes the implementation of a temporal planner called C R I K E Y T written
to solve the failures of the system set out in Chapter 3 and achieve the aims set out above.
It uses the theory developed in the previous chapter to do this intelligently and efficiently.
Two versions of the planner are described (Section 4.1 & 4 .3) , the second of which is built
on the first and contains a novel search state. This new state results in complete search for
domains where the planning and scheduling are tightly coupled. The planner is compared for
similarities and diffcrcncos with Sapa, a similarly-expressive temporal planner (Section 4.4) .

Chapter 5 presents some results of the implemented system, using temporal planning
problems that lie on a range of positions on the spectrum between planning and scheduling,
both where they interact heavily and where they do not. It is compared against systems
described in Chapter 2 on both the quality of the plan produced and also of the speed of
the planners. These results arc analy.snd and oxplainod. Finally, Chapter 6 summai-isos the
work presented in the thesis and this is followed by a critique of it, including the strengths
and w^eaknesses of the approach taken.

Chapter 2

Background

2,1 Models of Time
Modelling the flow of time is intrinsic to temporal planning and scheduling and requires
a specific representation that is domain independent to allow general temporal reasoning.
Its reprraentation impacts on what is expressible, such as concurrency and also on the
complexity of the problem. In many ways, time can be likened to resources but has an
important property that differentiates it. Time flows independently and regardless of a i ^
actions: it is not produced and consumed like a traditional resomrce. Also, it orders causality,
that is, caus^ must precede effects.

2.1.1 Views of Change

Change ia fundamental in planning and is inextricably hnked to time aa time can only be
observed through change. Classical planning can be seen as a state transition diagram,
where diange happens when transitioning from one state to another. Therefore, since the
actions are sequenced, the flow of time in classical planning is represented by the transitions
to get from the initial state to a goal state. However, concurrency is impossible (since it
means taking two or more transitions at once).

Lansky [51] identifies a duality between actions and states. Actions arc scon as state
changing functions (talung a state orientated view), but simultaneously, states are seen as
records of what actions have taken place (resulting in an action orientated view). The
first of these is coherent with the state transition model, the second gives rise to a new
description described in [29] as "the histories view of change". In this, states are seen as
evolving continuously, with different evolutions linked Ijy instantaneous monu^nts of (change.
States not only represent the current state of the world but also what has come before
and is to happen in the future. Effects of actions, or exogenous events, can change this
evolution and not necessarily at the time of the action. Fox and Long [29] produce two
useful representations of these views (Figure 2.1).

18

C H A P T E R 2 . B A C K G R O U N D 19

a2:sl
a3:62-
a4:s2
a5.s4

-s2
s3
64

6-5
s5

(a) The Ctassieal State TVansition View of Planning

S i = Null
s2 = a l
s3 = a2
si = al.aS
s5 = al.a3.a5

V al.a4
V a2:a6

s5

(b) The Histories View of Change: states are made up of histories
of events

Figure 2.1; Views of Change in Planning

C H A P T E R 2. B A C K G R O U N D 20

2.1.2 Classifications
Modelling Change i n T i m e

Time is most natm-ally tliought of as passing in intervals whereas (logical) change tends
~ to"happeu at'poiiits iu'time. Thiis' time caii Sther be m̂ ^
based [65]..

One such interval-based framework is described in [1] and specifies thirteen basic relations
that can hold between two intervals (sec Tabic 2.1).

Helatlon
T^ble 2.1: B^gic Rek^ions Between Intgrvalg

Predicate Symljol Inverse Meaning

X before y BEFdRE{x,y) < > H 1-

X equal y EQUAL{x,y)

X meets y MEETSix,y] m

X overlaps y OVERLAFS{x,y)
I —

X during y DUBJNGix,y)

X starts y STARTS{y.,y)

X finishes y FINISHES{x,y)

Disjunctions are allowed between these relationships for greater expressivity
(i.e. {<} U {=} = {<}) and so the predicate IN is defined as:

IN{ti,t2) ^ {DURING{ti,t2)V ST ARrS{h,t2)V FINISH ES(ti,t2))

Furthermore, there are axioms asserting that each relationship is mutually exclusive of the
others and axioms to describe the transitivity of them, such as:

BEFOREitiM) A BEF0RE{t2,h) BEFOREHut^)

The predicate HOLDS{p, t) defines whether a proposition p is true during the interval t.
With these relationships it is possible to reason about other, more complex, relation

ships, and prove that certain facts must be true over certain intervals. "Occurrences" allow
descriptions of action and are split into two categories: "processes" that refers to activity not
cuhninating in a result (such as a fan being on) and "events" that produce an outcome (such
a moving across a room). Causality is expressed by ECAUSE (natmal causes, such as a
non supported object falling) and ACAUSE (where a dchbcrate action by the agent causes

C H A P T E R 2. B A C K G R O U N D 21

an affccfc). The relationships allow reasoning about time and change in time. In particular
this model can represent non-activit>' (such as waiting at the road side) and maintenance
goals (satisfying a goat over a period of time).

Point-beised frameworks include [55] and [69]. In the second of these there are only three
realations that can hold between two points: <, =, and >. Again, disjunctions are allowed
so the complete set of possible relations between two points are {0, < , < , = , > , > , 7̂ , ? } .

I t is proven in [69] that it is possible to translate between a subset of the intervai-based
framework and the point-based framework. We refering to the begiiming and end of a point
based action such that A~ is the start of A and the end Using an example from |65],
representing that "Fred read his paper, during which he started drinking his tea":

papcr{o,s,d]tca =>•

(paper" < paper'^) A (teo~ < tea"*") A (paper"*" > tea") A (poper"*" < tea"*")

Discrete or Continuous

Metric time is classified as discrete or continuous. Where the time is continuous, time
variables can take any real value. This me£ms that tiine is always divisible, and if two
timepoints are not exactly simultaneous, then it is always possible to order them. Conversely,
discrete time proceeds in steps and it is impossible to reason about the state in between two
time units. Whilst continuous time is more exprrasive, it leads to an infinitely larger search
space.

Concurrency, Co-ordination and Synchronisation

Key to the concept of temporal reasoning is "Concmrency" — what can and what cannot
happen simultaneously. For two actions to be able to happen concurrently they must not
interfere with one another, for example, they cannot delete each others effects. Two actions
that are concurrent have an interval relationship of {= , o, o', rf, d', s, s', f , f'} (Section 2.1.2).

"Co-ordination" is where the actions can (or even must) happen together (so are con
current) and interact with one another. The cleissic example is of lifting a bowl [35]. To
succeed without spilling the contents, both sides must be lifted at the same time. These
two actions (lifting the left and lifting the right side) interact to keep the bowl level. This is
opposed to two actions that are not co-ordinated (but can still happen in parallel) such as
one truck being driven from Glasgow to Edinburgh and another being driven from London
to Durham. Co-ordinated actions have an rnterved relationship of {o, </, d, d'}.

Finally, "Synchronisation" is a form of co-ordination where the precise timings are im
perative to the effect of the actions. An example is the hitting of a ball with a bat. It is
essential that the throwing of the ball and the swinging of the bat happen at exactly the right
t im^ to ensure the correct outcome. Synchronised actions have an interval relationship of
{=, s, s', f , /'}.

C H A P T E R 2. B A C K G R O U N D 22

Typically, benchmark temporal planning problems do not contain any a)-ordination or
sjTichronisation.

2.1.3 Temporal Problems
In relation to temporal planning, [29] identifies two classifications of temporal planning prob
lems, "Temporally Extended Actions" (T E A) and "Temporally Extended Goals" (T E G) .
T E A is, "the classical planning problem extended with the notion of activities talcing time
to have their expected effects", and so encompasses cases where actions have a duration.
Plan quality can take a new metric: the length of time taken to complete the plan (since
T E A allows actions to occur concurrently). Importantly in T E A , the representation of the
goal and initial state are no different from classical planning. As will be seen in Section 2.5,
these axe the temporal problems that have been explored most extensively by researchers in
temporal planning. This perhaps is not surprising since T E G is an extension of T E A and
so more complex.

In T E G , the goal state is no longer associated with the final state, but with trajectories
through the search space. As an example, a goal could require a proposition to be true over
a specified time interval or achieved by a specified deadline which could force concurrency
to occm" in the plan. A fiuthcr extension is Temporally Ext.onded Initial States that allows
predictable exogenous events to be expressed.

2.1.4 Durative Actions

The most common way to model time in temporal planning is to use durative actions (actions
with an associated duration) where the effects of an action take time to change the world.

The easiest (and least expressive) method is to simply extend a classical action with
the addition of a numeric dm-ation. Preconditions must hold at the beginning and for the
duration of the action. Effects arc undefined during the action and only become true (or
false) at the end. These axe generally called "blackbox" actions since there is no knowing
what is happening during their execution. Because of this, they only alfow a very restrictive
concurrency model; only actions that do not interfere in any way can be executed together.
This does not allow for co-ordination and does not support actions that make a fact true
only during their execution. Blarkbox actions are used in T G P [62], TPSys [33] and TP4 [40]
(see Section 2.5).

A more expressive form of durative action stipulates conditions to hold at the start or
end of the action or for whole duration (these are called invariants) . In addition, effects can
become tixie at the start or end of an action, and so are defined dmring the execution of the
action. Take as an example a "fly" action. It should be a precondition that the plane is at
its start location. However, as .soon as the action starts, it is no longer there, so this should
be a start delete effect. For the duration of the flight, it should be an invariant that the
engines remain on and it should be an end effect to assert that it is now at its destination.

C H A P T E R 2. B A C K G R O U N D 23

This allows for a much greater degree of concurrency, namely co-ordination, since the state
of the world is known during the execution of an action.

P D D L 2 . X

This durative action model is used by PDDL2.1 [28] and has been widely adopted, mainly
due to its use in the International Planning Competitions (IPC). P D D L [37] in its original
version was specified for the first two eompetitioris (IPC'98 [56] and IPC'0& [2]). It covers
STRIPS and A D L for classical planning. The problem is described in two parts: firstly the
(abstract) domain, describing the operators (abstract actions) and predicates, and secondly
the problem instance, specifying the initial and goal states.

For the third competition m 2002 [27], P D D L was extended to PDDL2.1 to incltide
temporal and metric domains. The temporal aspects are introduced through durative actions
where conditions and effects are specified to hold either at the start or at the end of the
action. Conditions that must hold throughout the execution of the action are specified as
iavafiants.

PDDL2.1 also introduces numeric variables (fluents) that become part of the state along
with propositions. They can be used in both effects and conditions. The effects use operators
(scale up, scale down, increase, decrease and assign) to change the value of a fluent by some
ftmction (+, - , x , -=-) of fluents and real numbers: Conditions use comparators (<, <, = , >
, >) between functions of fluents and real numbers.

For the purposes of the competition, PDDL2.1 was split into levels |26j. Levels 1 to 4
refer to the agrcol spcciification and level 5 is the (Completed language with formal semantics
(PDDL+) that allows the modelling of processes. The first four levels arc as follows, with
each level extending the previous level:

Level 1 As the original PDDL, corresponding to the prepositional parts including A D L ,

Leve l 2 Numeric variables and the ability to test and update their values instantaneously.

Leve l 3 Dm-ative actions as described above.

Level 4 Effects happening during the execution of an action (much like the invariants for
conditions). 'So Called "contitraoiis effects" cati tipdate a numeric variable by some
function of time passed since the start of the fiction.

Level 4 allocs an action to continuously update a numeric yariable, the value of which is
known throughout the execution of the iiction. For example, in an action representing the
filling of a bath, the level of the bath is always known. Co-ordination is also expressible
here as it is easy to model action interactions, such as where a jug of water is also poured
concurrently into the bath, filling it up quicker. The numeric value representing the level of
the water is updated correctly.

C H A P T E R 2. B A C K G R O U N D 24

The language has been extended further once more to PDDL2.2 [21] for the last competi
tion held in 2004 [44] to include two new featiu-es ; "Derived Predicates" and "Timed Initial
Literals" (T I L) . Derived predicates change the classical planning problem. Actions arc still
the sole cause of change, but not necessai-ily explicitly so. It is possible to specify when a
proposition become true or false in relation to other propositions, based on "if then" rules.
For example it is possible to express, "if the washing is on the line, and it is raining, then
the washing is wet."

Timed initial literals allow the specification of exogenous events in the initial state. So
for example, it is possible to state that a shop will open at 0900 and close at 1730. These
events are outside the control of the planner, although are predictable and known in advance.

PDDL2.2 problems that contain either of these features can be compiled down to
PDDL2.1 problems but whereas timed initial literals is a polynomial compilation, derived
predicates can potentially lead to an exponential growth in the number of actions needed.

PDDL2.1 has a T E A outlook on the nature of temporal planning problems. However,
just as it is possible to model timed initial hterals easily in PDDL2.1, so it is eilso possible to
model other T E G aspects, such as deadlines, maintenance goals and temporal constraints.
This is discussed in [30). Whilst they fire not cleanly represented, it is still perfectly possible
to express these fnatm'es and the translation is polynomial in the size of the instance. Note
however, that it is not possible to translate PDDL2.1 domains (with numerics and time)
into the original P D D L domains polynomially in the size of the instance.

One problem encountered by the semantics of durative actions is illustrated in Figure 2,2. In
part (a), action A achieves action B. The question is, can B stait immediately as A finishes
i.e. what is the truth value of p at this point? This is known as the "divided instance
problem". The solution adopted by PDDL2.1 is that intervals are half open on the right,
represented as [A). That is to say, the point of change takes the value of the interval on the
right, e.g. in this case p is true at that point (since p is true after this point).

Figure 2.2(b) shows an instance where two actions finish at the same time, but have
contradictory effects. The question here is what is the truth value of p after these two
actions? One solution is to take them in some (arbitrary) predefined order but this docs
not seem satisfactory. PDDL2.1 adopts the "no moving targets" rule that declai-es that
negative interactions between actions are mutually exclusive (mutcx). In this case they
must be separated by some small value, e. A theoretical point is how small can this value
be before they are again considered mutex? If time is continuous, as it is PDDL2.1, then
this value could be infinitely small whilst never letting the two timepoints be equal. To
overcome this, the user must set the minimum value of e, where £ > O orit defaults e =^0;1.
This is known as the tolerance value, and specifics the minimum separation distance of two
mutually exclusive actions. Through this, PDDL2.1 prohibits some synchronisation.

There is a more practical point to this; any executive carrying out the plan will only be
accurate to a certain degree and so precise synchronisation of actions will be impossible to
achieve. Therefore, no plan's validity should rest upon it.

C H A P T E R 2. B A C K G R O U N D 25

A I- B
P

(B) A achieving B

A

B

(b) A and B with an ambiguous combined effect

A

B

(c) A and B with negatively interacting effects separated by t

Figure 2.2: Possible Concurrency Issues with Durative Actions

Action Durations

The duration of actions can take one of four forms, increasing in complexity:

F ixed The duration of the operator is fixed and so the same for all instantiations. For
example, all fly actions take the same length of time regai'dlcss of their start and
destination cities (that does not change during planning).

Statically Computed The duration of the action is dependent on its parameters, but not
the state of the world. For example, the length of a fly action will depend on the
distance between the two cities.

State Dependent The duration of the action is dependent on the state of the world and
so will change during the planning and scheduhng. For example, completely filling up
a tank will take longer the emptier the tank is.

Variable The duration of the action can be chosen by the plfinner subject to some con
straint. For example it is possible to fill up a tank for as long as needed, so long as
it is not over filled. The final level of the tank will depend on the length of time for
which the action is executed^.

PDDL2.1 durative actions can express all of these forms.

Other Languages

Some languages (notable those used by Sapa [17] and IxTeT [38]) allow effects to occur at
any point during the action, not only at the two end points. It is simple to see these actions

'In PDDL2.1 these are known as "duration inequalities"

C H A P T E R 2. B A C K G R O U N D 26

as a form of abstraction, where they take the place of many shorter PDDL2.1 actions, and
so can be translated into such actions using "clips" and "magnets" as described in [30]. It
is harder to see the state transition approach to time and change with these actions where
effects can happen at any time, as it leans further towards the histories view. Furthermore,
having only interesting effects happen at the start and end makes it easier to understand
the association with the temporal relations described in Section 2.1.2.

L T L (Linear Temporal Logic) is a logic that allows the modalities of • (always), 0
(eventually) and O (next). This allows facts (including goals, conditions and effects) to be
expressed in the form "always p V g" (for example). It is possible to convert L T L formulae
into PDDL2.1 [14]. TLPlan [3] uses L T L to express domain dependent control rules.

2.1.5 Reasoning About Time
One of the most common ways to reason with time is with a Simple Tempoial Network
(STN) [15]. These take constraints of the form bi < x-y < b2 where a; and y are timepoints.
This constraint semantically means that x must follow y by at most 62 aod at least &i, i.e.
it d&scribes a time interval over which one timepoint can lie in with re,spect to the other. A
special timepoint, Xq, fixing the beginning of time (the start of a plan) can place timcpoints
relative to absolute time. Simple precedence constraints can be expressed by setting = oc
and b i =0.

Temporal constraints can be put into a directed weighted graph where the nodes are
the timepoints and the edges are the constraints. An inconsistent network (where not
all the constraints can be met) is identified by finding negative cycles in the graph, and
constraints are propagated by finding shortest paths between points. There are two well
known algorithms that do this with negative edges: Bellman-Ford's [32] which performs
Single Source Shortest Path (SSSP) and is of order 0{nc), (where n = number of nodes,
and e = number of edges), and Floyd-Warshall's [32], which performs All Paii-s Shortest
Path (APSF) and is of order O^e)̂ .

2.2 Resources in Planning and Scheduling
Resources form an integral part of both planning and scheduling but how they are normally
modelled is very different. This is partly because they can take many forms. Resources can
be qualitative (represented by the state of some object, such as the availability of a, ma
chine) or quantitative (often represented by a numeric variable, such as fuel). Quantitative
resources are associated with their consumption and production, which can be discrete or
continuous. They may be perishable (consumed by the passage of time) and exchangeable
(one resource used to replenish another, such as buying fuel with money). Both quantitative
and qualitative resources may or may not be renewable. A qualitative resource that can only
handle one task is described as unary, and one that can take many, as multi-capacity.

C H A P T E R 2. B A C K G R O U N D 27

Resources are seen as part of the scheduling problem and represented sqjlicitly. They
are then reasoned with directly as this is the scheduling problem - to allocate a known set of
activities to available resource whilst respecting precedence, capacity and other constraints.

Planning, however, takes a different view of resources. They are not seen as part of
the problem and are mostly represented implicitly. There is no distinction between an
object acting as a resource or as part of the planning problem. For example, a truck may
be seen as a resource when the goal is to get packages to destinations, but could also be
part of the goal, where it itself must be at a particulai* location. Discrete resources can be
modelled in STRIPS, whereas continuous resources need an extension (such as P D D L 2 . 1) .
[54] examines the role of resources in planning noting that "'they place constraints on the
skape and structure of a plan that mil have to he met by the pianner." A non-renewable
resource will limit what can be achieved. Perhaps a more general view of what a resource is
in planning is as a facihtator object whose actual identity is immaterial for the correctness
of the plan [64].

The main disadvantage of representing resources implicitly is that it is difficult to do any
specialised reasoning with them. It is also harder to idealise the use of alternative resom'ces,
and this leads to excessive symmetry in the problem. Howeva:, by not representing them
exphcitly, the system must discover them for itself. When they can do this, they are able to
find resources that perhaps the domain designer (incorrectly) did not rcaUsc were resources.

As with STNs, algorithms exist to perform consistency checking and propagate resom-ce
constraints. These include Timetabling [18], Edge-finding techniques [9] and Precedence
Graphs [50] and can be used in conjunction with planning and "time" scheduling techniques
as pari of a temporal metric planner. They work well with STNs since they take and modify
the earhest and late,st start times. These can then be propagated back and forth with
the STN. Resource-Envelopes [49] work out heuristics based on where resources are t i^t ly
constrained in planning problems.

2.3 Decomposition of Problems
Sphtting problems into smaller components is a common strategy in computer science. Di
viding the problem into smaller instances of the same problem and combining the solutions
("Divide and Conquer") is intuitively a good idea. Indeed, this is a possible search strategy
for planning problems. Rather than into smaller instances of the same problem, tempo
ral planning can be divided into two different problems: classical planning and scheduling.
This is not such a common technique since most academic computer science problems are
"atomic"; whilst they may be big in the size of the instance, they are structurally small.
Planning is "compomid" as it can have many other sub-problems encoded within it. For
example, a logistics planning problem will contain a route solving problem within it. This
section looks at research into how problems integrate in planning and how they can be sep
arated. This is then put into the context of separating planning and scheduling in temporal
planning.

C H A P T E R 2. B A C K G R O U N D 28

2.3.1 HybridSTAN and TIM
Many problems^ for example travelling salesman, bin-packing and multi-processor scheduling
problems, can be encoded as and within planning problems. HybridSTAN [25], with the aid
of T I M [24][52], is able to find these sub-problems and abstrjict them out. It uses independent
sub-solvers for the sub-problems and also solves the remaining parts of the problem. It then
combines the solutions, to form a complete pkn.

T I M identifies generic types, which are specific kinds of behaviours, examples of which
appear in many different planning domains. For example, there is often a form of trans-
port.ation in a domain, so TIM can identify "mobile" objects, the maps on which they move
(static or dynamic) and the actions by which they move rotmd the map. The types are
identified even when they are not recognisable a.s such to a human. Using the information
from T I M , HybridSTAN can recognise a sub-problem embedded in the planning problem.
Take as an example the travelling salesman problem (TSP). This problem is then abstracted
out by changing the actions to ignore parts of the problem that are in tlifi TSP. Hybrid
STAN then uses a heuristic forward chain planner to start the planning problem. It uses
the TSP-solver for two purposes. Firstly it can ask it for hemistic cost estimates, in this
case, the cost of moving a mobile object round the map, and use this to contribute to the
overall heuristic estimate of a state. Secondly, when it needs a mobile to be at a location, it
can ask for a solution from the TSP-.solver to move it to that location.

Most relevant to this thesis is the study of the possible interactions of the sub-problems,
as identified in [31]:

1. Planning problem is itself a single problem
In this case the entire problem can be solved by the specialised sub-solver. There is
a simple layer between the sub-solver and the overall planning system to present the
sub-problem in the correct form to the sub-solver and to convert the solution back into
a plan.

2. Sub-problem is an independent component of the planning problem
This is the case that has already been described. The sub-problem must be abstracted
away from the overall problem, and the sub-solver used both to provide heuristic cost
estimates and solutions to the sub-problem.

3. Multiple independent sub-problems

This is a generalisation of the previous case where there is more than one sub-problem.

4. Hierarchical sub-problem dependency

Here the sub-problems are in a strict hierarchy, where one sub-problem is encapsulated
in another. Whilst this is slightly more complex, the theory behind it remains the same.
In order for the higher sub-solver to provide either a cost or .solution to the overall
case, it calls on the sub-solvers below it for costs and solutions.

C H A P T E R 2. B A C K G R O U N D 29

5. Sub-problem interdependency

This is the most difficult case, where the solution to one sul>problem is dependent on
the other, and vice versa. This relationship can exist more generally as a cycHc depen
dency between a collection of sub-problems. This case is not solved by HybridSTAN.

How the sub-problems of planning and scheduHng m temporal planning interact in rela
tion to this classification is included in the next chapter.

Results presented in both [25] find [31] shc«rthat this is a successful approEich to dividing
up a problem, both in the quality of the solution and the performance of the planner. The
key to this is that it uses specialised sub-solvers to tackle dififerent parts of the problem.
A single search strategy is not hkely to always be appropriate either to find a solution or
heuristic estimate of the cost of reaching the goal state from the current state. Fox and
Long note that even in the fifth case, whilst it may be very hard to find a solution where
there is an interdependency, it may still be better at producing a heuristic estimate with
the interdependencies ignored than the overall solver is.

2.3.2 IVansiation of the Planning Problem
L P S A T [71] and B L A C K B O X [47] both convert planning problems to Satisfiability Problems
(SAT) problems, and G P C S P [16] and C^Plan [66] both convert to Constraint Satisfaction
Rxiblcms (CSP). After the translation, the compiled problem is solved and the solution
to this is then translated back into a plan. Whilst in all cases the problem is not being
decomposed in any way, it demonstrates the advantage of having a modular approach to
planning. Just as with HybridSTAN, specialised solvers can be used with these planners. Of
course the problem is no easier to solve in its new form, but the solvers could be much more
advanced than planning technology. Should an improved SAT or CSP solver be written, it
can repl£ice the old one and the improvement can immediately been seen in the planning
system. This is the same for HybridSTAN and any modular approach: if a better specialised
solver is written, it can simply replace the old one and any improvement passed onto the
planner.

2.3.3 Goal Orderings as Decomposition
"Goal Agendas" are precedence relationships between goals to determine the order they
should be met in such that goals aheady met in the plan are not deleted when planning tor
goals later in the agenda. [48] describes a polynomial algorithm to find these. This is a kind
of decomposition where each atomic goal is treated as its own sub-problem, thus spfitting
the overall planning problem into many smaller, potentially easier, planning problems. The
algorithm is used in a relaxed form to estimate a goal agenda for the planner F F [45].

SGPlan [10] is a planner that also partitions large planning problems into sub-problems,
each with its own sulHgoal. Again a goal ordering is found, and the search constrained so

C H A P T E R 2. B A C K G R O U N D 30

the sub-problems do not interfere and the sub-solutions can be fused into one plan. This
again has the advantage of a modular approach since it chooses from a .selection of platmers
(currently L P G [36] and MetricFF [42]) to use the best for each sub-problem. Once again,
new planning technologies can be arlded to the choice as they become available.

2.3.4 Advantages of Decomposition
As discussed,- there are two major advantages to problem decomposition, and with plan
ning in particular. The first is that there is a smaller search space for each sub-problem.
Backtracking in one of the search spaces does not necessarily mean having to backtrack
over decisions made in the other. The second, only really relevant if the problem has been
decomposed into different sub-problems, is that speciahsed solvers can be used on each sub-
problem, rather than having one general solver for both. Specialised heuristics and search
strategies can be tailored and used for each of the sub-problems. This in turn benefits from a
modular approach. Here, once better sub-solvers have been written, they can be plugged in
without changing any other part of the system and an improvement is gained by the whole
system.

2.4 Integrating Planning and Scheduling Technologies
It has already been noted that realistic temporal planning problems lie somewhere in between
the two problems of planning and scheduling. How these two interact is studied in the next
chapter. Studied here are the problems associated with the integration of the two problems,
i.e. how planning and scheduling problems can be combined to form temporal planning.
This is not necessarily easy for a number of reasons:

• The scheduling problem is not uniquely deikied, so it is necessary to decide what
version to use, or to use some more generic version.

• The modelling of the two problems have differences, especially the maimer in which
resources are represented.

• The two problems must use a common model of time and this will affect which tech
nologies can be re-used and integrated from the two areas.

• Scheduling tends to be an optimisation problem requiring the best solution, and is
oft.en an over-subscription problem. Little work has been done with planning as an
over-subscription problem where there is a choice of goals. These two views need to
be brought together for integration.

An example of where integration has succeeded is described in [5] which looks at a formal
model for combining plaiming and production scheduling. [61] considers three different
classes of integration.

C H A P T E R 2. B A C K G R O U N D 31

Stratified Where planning is performed first to decide what actions are needed, and then
these are scheduled.

Interleaved Where the two problems are separated, but decisions made in one solver are
propngatnd through to the other.

Homogeneous One problem is truned into the other. Since [61] comes from a scheduling
point of view, the examples given ai-e for tmning planning problems into scheduling
problems where there is no distinction between action choices and ordering decisions.

In F D D L 2 . 1 temporal planning problems, scheduling is introduced into classical planning
through the iLse of dmative actions. [11] performs an ext.ensive review of how dwative actions
can be introduced into classical planning frameworks.

2.5 Planners
In this section, some non-temporal and temporal plaimers are described to demonstrate
some of the aspects presented in this chapter so fai', and also to introduce some other ideas
common in planning which will become relevant later.

2.5.1 Graphplan-based Temporal Planners
Many successful planning techniques are based on GraphPlan [6] that works by building a
planning graph. This is a compacted representation of the search space. It is a directed
graph with the nodes in alternate layers of facts and actions. Edges between the nodes
in each layer comiect preconditions and effects with actions. Each fact layer contains all
propositions that could possibly be true at that point and each action layer contains all
actions that could be applicable at that point. Fact pairs and action pairs are marked
HMitex if they cannot both be true or applicable in the same layer. "No-ops", special actions
with a single precondition and effect, ensure the persistence of facts over time. There are
two distinct phases of GraphPlan: the planning graph is built, and then a plan is extracted
through regression search. The planning graph is built from the initial state imtil all goals
appear non-mutex in a fact layer. If a plan cannot be found in the graph, then it is extended
some further layers and extraction tried again. Graphplan is sound, complete and optimal
(in its makespan).

This plamier has been modified a niunber of times, both to improve its implementation
and to extend it to make it more expressive, not least for temporal planning to produce
"temporal planning graphs". It lends itself well to this since non-mutex actions appearing
in the seime layer could happen concurrently.

C H A P T E R 2. B A C K G R O U N D 32

T G P

T O P [62] (Temporal GrE^hplan) is an optimal planner that extends GraphPlan to handle
metric time. It uses a restrictive blackbox model of durative actions. A new type of mutex
that exists between layers is introduced between actions and preconditions. These are facts
that cannot be true whilst an action is being executed (i.e. the invariants of the action).
Time is associated with actions and so each action layer represents the same amount of time.
This leads to a difficult question; how long should the action layer represent? It really only
meikes sense to set this to the smallest interval in which "something inter^ting" will not
happen. Any smaller and the graph becomes too big, consuming more memory and taking
tonger to search. If the interval is any bigger, a po^ible action that could happen will be
missed or the planner is no longer- optimal (in terms of the duration of the plan). The
solution is to set it to the G C D (Greatest Common Divisor) of the all actions' dmations. If
this number is low in compaiison to the majority of the actions' durations the gi-aph built
becomes laigc. For example, in Figure 2.3(a) there is an action A that takes 1000 time
units and another, B, that takes 999 time unit, so the G C D is 1. This produces a graph
where every 1 time unit is examined to see if anything new could happen. If state dependent
durations were allowed (which in T G P they are not), calculating the G C D could be hard
to do and be vcry^ small since all the actions can be of very- different lengths. L P G [36]
performs local search on a planning graph of this tj^e.

L P G P

L P G P [53] (Lineaa- Programming Graph Plan) is another planner that extends GraphPlan
and uses the richer semantics of PDDL2.1. However, the temporal planning graph associates
time with state (i.e. the fact layers), rather than associating time with actions. The action
layers are only present when something interesting happens (i.e. the state changes). The
plangraph no bnger represents the flow of time, but the logical structure of the plan. It
does this by splitting up durative actions into two instantaneous actions, one for the stai't
conditions and effects and another for the end conditions and effects. Invariants axe kept
through invariant actions for which no no-ops are constructed, forcing the planner to put in
the invariant action at every layer necessary. This translation converts between an interval-
based framework of time and a point-based framework. The duration for each fact layer is
not fixed, but solved through constraint satisfaction. This results in it not being dependent
on the G C D of the actions' duration (see Figure 2.3(b)). However, this does mean that it is
not optimal in this form without extending the graph further.

T P 4

TP4 [40] does not direcAly exteact its plan from a temporal planning graph, (it is an extension
of HSP — see below) but uses a temporal planning graph similar to L P G where time is
associated with action layers. In [39] it describes a novel method for solving problems

C H A P T E R 2. B A C K G R O U N D 33

Fo ^1 = 1 F i A2 = l Fiooo ^1001 = 1 F i 1001

B

(a) Time associated with action layers (action)

Fu = e Ai F i = 999 F^ = 1 F3 = e

'start)

B, end

lend

ao-ori

(b) Time associated with fact layers (state)

Figure 2.3: Different Types of Temporal Planning Graph

with a low G C D of action durations. Firstly, all action durations are rounded up to the
nearest integer. Then the resulting problem is solved using the standard TP4 method
(Section 2.5.2). The cost of this solution is an upper bound on the optimal solution cost of
the original problem. Finally, action durations are restored to their original values, and a
branch-and-bound search, starting from the known upper bound, is used to find the optimal
solution.

2.5.2 Forward Heuristic Searcii

Whereas GraphPljin-based planners perform full systematic search, Heuristic Search plan
ners will often not, but instead rely on good hemistics to guide the search. The consequence
of this is usually a trade-off of quality (and especially- optimahty) for the performance of
the planner. In fact, since all planners involve search, all will use a heuristic guide to decide
which branches to explore first. Calculating the heuristic functions can be computationally
expensive, often in proportion to the accuracy of the guess, so a trade-off is made. Planners
described as heuristic search planners do little W C M ^ with other reasoning functions, so the
hem'istic function can be relatively complex. If the hemistic is admissible, it is possible

C H A P T E R 2. B A C K G R O U N D 34

to use a search algorithm such as A* which will still guarantee optinuJity, but a ^neral
admissible heuristic that is also informative is hard to find. Heuristics can be also be used
to prune dead end states. In temporal planning, the search space tends to be significantly
larger than those in classical planning, implying that the heuristics have to be better and
take temporal aspects into account.

H S P a n d F F

HSP [7] (Heuristic Search Planner) and F F [45] (Fast Forward) both perform heuristically
guided forward search from the initial state to the goal state. They both base their heuristics
oa a relaxed planning graph. This is identical to a regular planning graph but the delete
effects of actions are ignored. This has a number of consequences (all proved in [45]);

1. There are no mutexes in the graph, since there are no delete eflects.

2. The graph takes polynomial time to build,

3. A (relaxed) plan can be extracted without the need for backtracking (so can be done
in "one shot"). This makes tliis phase also polynomial. Search can be performed to
find an optimal relaxed plan, to produce an admissible heuristic, but this is NP-hard
to compute.

4. The graph need never be extended.

HSP's estimates are based on computing weight values for all facts {and so also goals) based
on how difficult they are to achieve — assuming all facts are achieved independently —
whilst F F find a relaxed plan that can take account of positive interactions between goals
(and sub-goaLs). The number of actions in the plan forms the heuristic cost estimate. The
differences between the two heuristics arc explored in [46]. Heuristics based on relaxed
planning graphs have varying success (as investigated in [43]).

Since F F exploits positive interactions between goals, it is generally considered to be
the more successful hemistic approach. Many have incorporated it into their planners and
modified it or extended it, including MetricFF [42] (that extends the heuristic to handle
metric variables according to PDDL2.1 level 2), MacroFF [8], Marvin [12] (both of which
extend the search to include macro operators), Fast Downward [41] (extends the planning
gi-aph to deal with causal dependencies) and YAHSP [08] (a seai-ch strategy, ba-scd on the
extracted relaxed plan). None of these can yet handle temporal domains.

More T P 4 and H S P * „

TP4 [40] and HSP*a are both temporal planners that perform regression search using the
HSP heuristic. They are both optimal although they assume diflFerent semantics to PDDL2.1
in the form of blackbox actions.

C H A P T E R 2. B A C K G R O U N D 35

Sapa

Sspa, [17] searches a set of time stamped states, represented by a tuple S — {ff,M,U,Q,t)
Where P is the set of propositions true at time t, M is the set of values of metric resources,
n, the set of invariants that must currently remain true and Q, the set of updates scheduled
to happen in the future at some point. Those states do not just dnsnribo the state of the
world now, but also the state of planners search^ It takes a step towards the histories view of
change. An action can be applied if its preconditions are satisfied by P and M, the effects do
not interfere with anything in 11 or Q and there are no future events that will interfere with
the invariants of the action. A special "advance-clock" action is added that can advance the
state to the next timepoint in Q.

There are several heuristics that it can be configured to use, all based on a relaxed
temporal planning graph. The search is A*, and some of the heuristics are admissiWe,
making Sapa optimal when thny are used.

Sapa does not decompose temporal planning problems into scheduling and planning, but
solves both the problems at once. As shall be seen later, this leads to a larger search spax:e.
Sapa is unable to handle end conditions and contains bugs not allowing it to correctly solve
problems where the scheduling and planning are tightly coupled (although in theory this
should not be the case).

2.5.3 Decomposing^ Planners

In this section, two planners that decompose temporal planning problems are described.

M I P S

MIPS [19] [20] is based on model cliecking methods by compactly representing planning states
in binary decision diagiams and then searching the imderlying space though A* seairh,
with the heuristic once again based on relaxed plans. These are then scheduled to improve
the heuristic. It is also helped by a pattern database to serve as a domain-independent,
admissible heuristic estimate that is computed off-line.

It splits the temporal planning problems into classical planning and scheduling, as sug
gested could be done earlier in Section 1.1,3. Again, it assumes a loose coupling between the
two problems through the use of blackbox actions. It performs two lots of scheduling, firstly
on the relaxed plan as part of the heuristic (this allows it to minimise the total duration
of the plan) and secondly, after the final plan has been foimd. For this it performs Critical
Path Analysis.

R e a l P l a n

RealPlan [63] does not perform any temporal rea.8oning (i.e. it cannot solve temporfd plan

ning problems) but is interesting as it separates the causal reasoning from the resource

C H A P T E R 2. B A C K G R O U N D 36

reasoning (resource scheduling). There are two versions, RcalPlan-MS (Master-Slave) -and

RealPlan-PP (Peer-to-Peer) (Figiure 2.4). The difference is in how the scheduler of the re

sources and the planner interact. In both cases, the resources are abstracted out of the

domain and translated into a CSP (Constraint Satisfaction Problem), which is then solved

by a specialised CSP solver. In the Master-Slave scenario, should the scheduler fail to find

a solution to the current context, then that partial plan is not pursued any further. In this

version, where all the allocation poUcies lead to failure, it impHes that the causal reasoning

and the rosoiu'co masoning wore, in fact, tightly coupled. In this case, the planner resorts to

traditional planning methods where the r ^ u r c e reasoning is not abstracted out. However

in the peer-to-peer relationship, the caasal reasoning is also translated into a CSP (from a

planning graph). Both CSP problems can be solved simultaneously and so should the sched

uler not find a solution it can tell the planner why not (i.e. what constraints are broken) and

the planner can act accordingly. RealPlan does not use PDDL2.1 as its problem description

language.

PLANNER
policy

failure/succcas
SCHEDULEn.

J
(a) Master-fcJaiffi Relatioiiship

T
R

PLANNER
V

Policy /
No-good

A
N
S
L
A
T
O
R

(b) Peer-to-lW

Translated
Feedback

Translated
Feedback

SCHEDULER
No-good

Relationship

Figure 2.4: Communication in RealPlan

2.5.4 State of the Art

The International Planning Competition has been held 4 times (19^8 [56], 2000 [2], 2002 [27],̂

and 2004 [44]) with the aim of comparing current planning technologies. Many problems,

differing in size and difficulty, are run for a selection of domains and the performance and

quahty of solution compared for each planner. There is a time limit and memory restriction

on finding a plan. PDDL2.1 (and so, temporal planning) was introduced in 20G2, and

PDDL2.2 in 2004. Over these two competitions there have been 11 domain independent

planners (excluding C R I K E Y , the subject of this thesis) that have competed in the temporal

domains. These are listed in Table 2.2.

Chapter 5 takes a closer look at the capabilities of these planners, however, none of these

temporal planners split the problem into its component parts of plamiing and scheduhng

C H A P T E R 2. B A C K G R O U N D 37

Table 2.2: State of the Art Temporal Planners
Planner Description I P C ' 0 2 I P C ' 0 4

C P T a constraint programming based planner. X /
HSP and TP4 see Section 2.5.1 X /

L P G local search of "action graphs", particular sub
graphs of the planning graph representing par
tial plans. It is non-deterministic, so can bo
run multiple times and the best solution taken.
This results in anytime behaviour.

/ /

MIPS see Section 2.5.3 / X
Optop an optimal planner performing regression

search
X /

P-MEP au expressive planner that performs A*
search, using a relaxed planning graph.

X /

Sapa see Section 2.5.2 / X
SGPlan see Section 2.3.3 X /
tilSapa extension of Sapa to deal with timed initial

hterals and derived predicates.
X /

TPSys 1&2 builds and repairs plans ai'ound a relaxed plan. / X
VHPOP a partial order temporal plarmer. / X

and can handle the full temporal expressive power of PDDL2.1 (i.e. those that do split the
problem, assume a blackbox model of action). There is a good reason for this as blackbox
actions assume a loose coupling between the two components of planning and scheduling.
Therefore, when the problem is split, the two components ai"e relatively independent of each
other and the plaimer and scheduler need not conmiunicate. If the full temporal semantics of
PDDL2.1 are used and the problem split, then the planner and scheduler must communicate
and this can be expensive and complex. This is explored further in the next chapter.

As set out in Section 1.3, the aim of this work is to fill this gap. That is, to write a
temporal planner that splits planning and scheduling, whilst not assuming a loo^ coupling
between the problems. To avoid the problems of expensive communication between the
solvers, a theory is developed as to how the problems are coupled, so as to minimise this
communication.

2.6 Chapter Summary
This chapter has boked at the current knowledge in the field of temporal problem solving,
in particular in temporal plaiming. There are various models of time, which differ in what
they can and cannot represent. The most common way to integrate planning and time is
through the use of durative actions. Many planners described in this chapter use these, and
in particular, durative actions defined by PI>I>L2.1 semantics. All planners are searching
some search space, however, through assumptions to this search space they simplify the
problems by making the search space smaller and so easier to solve.

Chapter 3

Theory

This chapter examines where planning and scheduhng interact in temporal planning prob
lems, and in pai'ticulai- where they are tightly coupled. Through examining where temporal
contraints arise in problems (through durative actions and their prcccdcce relationships),
new concepts of envelopes and contents, and of minimum and meiximum precedence rela
tionships are developed. These are then used to minimise the communication between a
planner and scheduler in a new plannei- described in Chapter 4 that does not assume a loose
coupling between the problems, but still solve the problems separately.

3.1 An Initial Solution — The L P G P / F F Hybrid
This first section describes a temporal planning system that separates the planning from the
scheduling in PDDL2.1 domains. The communication between the planner and scheduler
is one way (Figure 3.1) as there is no feedback from the scheduler to the planner. This
is a specific case of the more general case presented back m Figiure 1.1. In this system,
the two sub-solvers work in a strict sequential order. First the planner solves the planning
problem, ignoring all temporal information, selecting actions purely for logical reasons, and
then passes this (classical) plan onto the scheduler^.

Whilst this system has been implemented, it is not proposed as a good solution due to the
lade of conununication between the solvers. It is presented here to show how the planning
can be separated from the scheduling in PDDL2.1 domains, to simplify the explanations,
and to help understand where the sub-problems interact.

The architecture for this system is presented in Figure 3.2. Firstly, a temporal planning
domain and problem are passed through a translator which takes out the temporal aspects,
converting it to an equivalent STRIPS-like domain that preserves all the key temporal
relationships. Durative actions are split into three instantaneous actions, representing the
start of the action, the end of the action and the invariant. It stores the duration of the

^This is stratified integration as classified in Section 2.4

38

C H A P T E R 3. T H E O R Y 39

Temporal Planning Problem

Planner

Scheduler

Temporal Plan

Figure 3.1: The Proptsed Separation of Planning and Scheduhng in the Hybrid Planner

actions in a separate file. The translated problem is passed through a classical planner, in
this case F F . This is where the 'hard' work is done. The resulting totally ordered plan is
passed through a program that hfts a partially ordered plan, allowing actions that can be
executed together to happen concurrently. The partial ordering, along with the duration file
created by the translator, are put as constraints into a Simple Temporal Network (STN).
This schedules the plan by calculating the relative and actual timings of the actions to
produce a vafid temporal plan.

Each box is now taken in turn and explained in more detail.

L P G P Translator

The translator is taken from the L P G P planner (as described in Section 2.5.1). It takes in
domain files and separates the durative actions into three separate instantaneous STRIPS
actions: a start action, an end action and an invariant action. The start action takes the
start conditions and start effects of the durative action, and the end action takes the end
conditions and end effects. The invariant action has the durative action's invariants as
preconditions. This translation takes the model of time from interval-based to point-based,
as described in Section 2.1.2. The interval between the end points is represented by the
invariant action.

S T R I P S and durative actions are defined followed by the translatron between them.

Definition 3.1 — S T R I P S action
An instantaneous S T R I P S action operator o is a triple

o = (cond, add, del)

where each element is a set of propositions, cond is the set of logical precondi
tions, add is the set of add effects (propositions that become true after execution
of the action), and del is the set of delete effects (propositions that become false
after the execution of the action).

C H A P T E R 3. T H E O R Y 40

Problem
Duration
File

PDDL2.1 Problem PDDL2.] Domain

Translator

P D D L
Problem

P D D L
Domain

Classical Planner

Total Order Plan

Total Order to Partial Order Converter

Partial Order Plan

Simple Temporal Network

Temporal Plan

Figure 3.2r Architecture for Separating Planning and Scheduling

Definition 3.2 Durative Action
A Dvu-ative Action operator da is a quad-tuple

da = {ta.cond, ta.add, tajdel, dur)

where the first three elements are a many-to-many mapping firom propositions
to time annotations

ta.cond

ta-add

tajlel

proposition <-> [at start, at end, over all]

proposition {at start, at end}

proposition {at start, at end}

ta.cond are the time annotated conditions of the actions, ta.add are the time
annotated add effects and ta.del are the time annotated delete effects.

C H A P T E R 3 . T H E O R Y 41

For each mapping tajmap, we define

ta.mapi- = {x • proposition (tajmap{x) = at start}

tajrnap^ = {x • proposition | ta.map{x) = over all}

tajmap-i = {x • proposition | tajmap{x) = at end}

dur is the duration of the action where

dur € IR+

Definition 3.3 — L E G E Action IVanslation

A Durativc Action da is split into 3 STRIPS actions, o!ai-, da^ and da-^.

daj- = (candu-, add\-,del\-) is

condk- = ta.condi-

addi^ = ta-addt

de/h = tajdel)- U {Action.NameJni;}

da^ = {cond^, add^,del^) is

cond^ = tajcond^ U {Action.Name.wt;}

add^ = {Action-Name-mu, i_Action_Name-Wt;}

del^ = 0

rfan = (condn, add-\,dcl^) is

condn = ta-cond^ U {Action_Name_mt), i-Action.Name.int;}

add-\ = tajodd-i

del-\ = ta.del-^ U {Action.NameJnu, i_Action.Name.mv}

The durations file is a function df that contains an entry for each durative action

and its corresponding duration

d/ : <ia -> IR+

C H A P T E R 3 . T H E O R Y 42

Oh, and a-\ are the corresponding split actions for a durative action a whose
duration is adur-

Durations can be computed durations (based on a function of a static, fluent) but not state
dependant.

An example durative action is that of loading a truck. This has a duration, as it takes
time to complete this action. To carry out this action successfully, it is necessary that the
object that is to be loaded into the truck must be at the location where the loading is to
take place at the start of the action. For the duration of the action, the truck must also
remain at this location and this is modelled as an invariant. Immediately after the start it
can be con.sidered that the object is no longer at the location; this stops it being loaded into
two trucks at once. However, only at the end of the action will the object be in the truck.

Figure 3.3 illastrates the split of the LOAD_TRUCK durative action from the driver-
log domain. The full example translation of the domain is given in Appendix A. In the
LOAD_TRUCK start action, it is a precondition that the object is at the location where
the loading is to take place. After the start, the object is no longer considered to be at
this location (as it is being loaded). For the dmation of the action (as represented by the
invariant action), it is a condition that the truck staj^ at the location where the loading is
taking place. At the end of the durative action (as represented by the end action) it is an
effect that the object is now inside the truck.

There are two extra dummy propositions added during the conversion process. The
first, Action_Name-inv, is an effect of the start and invariant action, and a condition of the
invariant and end action. The second, iAction_Name-inv, is an effect of the invariant action
and a condition of the end action. These ensure that if an end action is chosen, then so is the
corresponding invariant, and similarly, if an invariant is chosen, then so is the corresponding
start action. This works as follows:

The dummy propositioas take the parameters of the durative actions and are unique
to the three split actions. Action.Name-inv is precondition of the invariant action and end
action. For these actions to be applicable, Action.Name-inv must be true and this can only
be achieved by the start action. Therefore an invariant and end action can only be present
in the plan if the start action has already been applied and achieved this condition. If not,
the preconditions for these actions are not met. The same logic appUes for iAction_Name-inv
and the invariant and end action.

Both dummy propositions are deleted by the end action. This is required so multiple
identical invariant and end actions are not put in the plan without another corresponding
start action. Deleting the dummy propositions ensures that a new start action is needed to
achieve new invariant and end actioas (as before).

C H A P T E R 3. T H E O R Y 43

(:di]rative-action LOAD-TRUCK
:paraiBeters (?o - object ? t - truck ?1 - location)
rdnratlon (= ?duratloH 2)
.condition (and (over a l l (at ? t ?1))

(at s t a r t (at ?o ?1)))
:effect (and (at s t a r t (not (at ?o ?1)))

(at end (in ?o ? t))))

(:action LOAD-TRUCK--START
rparameters (?o ? t ?1)
:precondition (at ?o ?1)
:effect (and (not (at ?o ?1))

(load-truck-inv ?o ? t ?1)))

(:action LOAD-TRUCK-END
:parameters (?o ?t ?1)
:precondition (and

(iload-truck-inv ?o ? t ?1)
(load-truck-inv ?o ? t ?1)))

:effect (and (i n ?o ? t)
(not (load-truck-inv ?o ? t ?1))
(not (iload-truck-inv ?o ? t ?1)))

(-.action LOAD-TRUCK-INV
:parameter (?o ? t ?1)
rprecondltion (and (at ? t 71)

(load-truck-inv ?o ? t ?1))
•.affect (and

(load-truck-inv ?o ? t ?1)
(iload-truck-inv ?o ?t ?1)))

Figure 3.3: The L P G P Translation of Durative Actions

T h e P lanner

This translated domain with the problem file is then passed to the classical planner, in this
case F F , the working of which is described in Section 2.5.2. Any classical planner would
sufiice here.

T h e Part ia l O r d e r L i f t er

The Partial Order Lifter takes the totally ordered plan produced by F F and converts it into
a partially ordered plan. This is an implementation of the Veloso algorithm [67] (sketched
out in Figure 3,4) that takes advantage of the given total ordering of the plan by visiting only
earlier actions in the plan on each iteration of the algorithm, and then removes unnecessary
precedence orderings from the total order to produce a partial order. The total order plan is
a vahd partial order plan, and so in the worst case no precedence orderings will be removed

C H A P T E R 3. T H E O R Y 44

and it is this total order that will be returned. This algorithm finds concurrency where
possible.

Input: TO-Plan: A list of actions (a i , . . . , a„)
Output: PO-Plan: A set of orderings between actions {at -< aj]

for i = n down-to 1 do
(a) for each p € precond{ai) do

Find an action aj where p € add{aj)
Add an ordering aj -< ai

(b) for each d. € del{ai) do
Find all actions Oj where d e precond(oj)
Add an ordering from all actions aj •< Oj

(c) for each p € primaryjadd{ai) (in the goal or sub-goal chain) do
Find all actions aj where p € del{aj)
Add an ordering from all actions ttj -<

Figure 3.4: The Veloso Algorithm to TVauslate Totally Ordered Plana to Partially Ordered
Plans

Note that this is still operating on the translated spHt dmrative actions, and so will find

the correct orderings between the start, invariant and end action triplets, due to the dummy

propositions.

The Veioso algorithm is a greedy polynomial algorithm that does not necessarily find the

best (temporally shortest) partial order. However, step (a) is a choice point as there could

be a number of achievers for an action, of which only the latest in the plan is used. Search

could be performed here to find a better ordering using different achievers.

T h e S T N

The start and end actions represent instantEineous moments of time but the invariEmt action

represents an interval of time (between the two end points). STNs, however, only reason with

instantaneous timepoints. Before the partial order can be converted into an STN, precedence

relations involving invariant actions must be converted to use their corresponding end points:

tti^ -< aj

Ui -< aj^

- flt-l d djV-

In a precedence relationship (aj -< aj), should one action (aj) follow an invariant action
(ai) then this action aj should now follow the whole interval that a; represents. The interval's
latest point is just before the end of the durative action, and so the precedence relationship
is changed to follow this end.

C H A P T E R 3 . T H E O R Y 45

Convcrsly, should an action (ai) precede an invariant action (a_,), it must precede the

whole interval that represents. The i-eason that the precedence relation turns fi'om a

strict ordering (x) to a simple or equal to ordering {:<) is the PDDL2.1 semantics state that

inv£iriants hold from just after the start to just before the end. Thus the orderings are not

between the end points, but rather either side of them.

Definition 3,4 — Conversion of E a r t i a l Order to S T N

A Partial Order pop — (m, pr) where ia is a set of instantaneous STRIPS Actions

and pr is a set of precedence relations between the members of ia, is converted

into a set of temporal constraints tc such that

(a) Vat ~< aj G pr • {e < aj - ai < oo] G tc

(b) Voi r< € pr • {0 <aj - at < oo} etc

(c) Vai e ia - {e < aj - Xo < oo} etc

(d) Voh € ia • {udur <a-\-<H-< Odur) e tc

where Xq — O and represents the start of the plan.

Part (a) of Definition 3.4 ensures that timcpoints that arc in strict precedence must be

separated by at least e (the tolerance value), reasons for which are described in Section 2.1.4.

Timcpoints that are not in strict precedence can happen simultaneously (part (b)). Part (c)

constrains each action to stai-t after the start of the plan (Xu). Each corresponding start

and end action nrast have a constraint, made by part (d), for their duration, which is read

from the duration file produced by the L P G P translator. These constraints take the model

of time from a point-based, back to an interval-based model.

To calculate the earfiest possible start time for each action, the shortest distance must be

found between the action's start timepoint and Xq in the network. Floyd-Warshall's All Pairs

Shortest Path algorithm is used once and is of complexity 0{n^) (where n is the number of

timepoints.) Belhnan-Ford's Single Source Shortest Path would have to be used repeatedly

— once for each action (|) — making the complexity 0 (|) x 0{ne) = 0{n'^e) (where e is

the number of constraints). Since there are at least n constraints (one for each timepoint to

make it follow the start - see part (d) of Definition 3.4) this makes the complexity at least

O(n^n) = 0{n^). As there will be in fact more constraints from precedence relations and

duration constraints, the complexity will be greater than this, and so it is less complex to

use Floyd-Wm'shall's.

It should be noted that this system could potentially not respect invariants correctly. In

Figure 3.5, a start (Ah) and invariant action (A^^) are put in the plan, followed by an

action (B) that breaks the irtvariant condition, a, before the end action (AH). Even if the

invai-iants become conditions of the end action, it would still be possible for the invariants to

C H A P T E R 3. T H E O R Y 46

be broken and then re-achieved. This is because the translation of the durative action treats
the invariant as a single point of time, when it should actually be an interval. Therefore,
in Figure 3.5, F F produces a "vaUd" total order classical plan for the translated domain,
however, when this is passed through the partial order lifter and scheduled, it produces an
invahd temporal plan with respect to the original temporal domain, since the invariant s of
action A has been broken.

5 B- lnv i B - i n v P
A-inv B - i n v i A - i n v

A H A „ Bh P B H
A-inv

AM
A-inv - I S i B - i n v - . I B - i n v

A- inv iA- lnv B - i n v -> B - i n v
^ A - i n v
^ A - l n v

(a) Valid Total Order Plan

-mv: s-

(b) Corresponding Invalid Temporal Plan where the Invari-
ajit s is Broken

Figtue 3.5: Example of a Broken Invariant

A firrther problem with this hybrid is in the way in which the dummy propositions
operate in the translation. Whilst there cannot be an end action without a start, there
could be a start in the plan without its end. This is against PDDL2.1 semantics as all
actions must complete, so a post processing step is needed to ensure that an invariant and
end action are put in the plan for each start action if necessary. This is how L P G P handles
these cases. However, this is not suitable if the end action then deletes a goal (as shown in
Figure 3.6).

current state: r

A-inv

goal: p, r s
A-inv

! A - i nv
A- inv

A - A-H

A- inv
iA- inv

^ i A - l n v
^ A - i n v

Figure 3.6: Example of an End Action Deleting a Goal

This is an initial solution to the temporal planning problem which demonstrates how to
separate the planning from the scheduling in PDDL2.1 domains by taking a point based
representation and planning using only logical reasoning, and then re-introducing temporal
aspects. The main advantage is demonstrated by its modular approach; F F could be replaced

C H A P T E R 3. T H E O R Y 47

with any classical plaimer, and the partial order lifter and STN also could be replaced with
equivalent scheduling algorithms. By decomposing the problem, it is searching smaller
state spaces than if it were to combine the problems. The planner and scheduler do not
communicate with one another and the weaknesses of this is analysed later. Fii-st the
structure of temporal planning domains is investigated.

3.2 Coupling of Planning and Scheduling

p
L
A
N
N
I
N
G

No

®

Loose
Coupling CoupUng

* Tight •
CoupHng

©

Loose

® ® © ® ®

No
Coupling Coupling

S
c
H
E
D
U
L
I
N
G

Figure 3.7: Coupling Between Planning and Scheduling in Temporal Planning Domains

Figure 3.7^ illustrates the spectrum of coupling between planning and scheduUng in temporal
planning domains. The coupling increases with the number. This spectrum is compai-ed
with the sub-problem interactions classified for TIM, as described in Section 2.3.1. In this
case, the main problem is the temporal planning problem and the sub-problems are planning
and scheduling.

On the left (Ip) are pure planning problems that contain no scheduling. These include
classical plarming benchmark domains. On the far right (Is) there arc the domains that arc
completely scheduling problems that have been encoded as planning problems, where there
is no choice of actions. Each goal is achievable by one action that the planner must choose.
These problems (Ip and Is) refer to interactions of type 1 on TIM's classification, where
either the planning or the scheduling is a complete sub-problem of temporal planning.

Domains in 2 represent problems where there is a component from the other sub-problem
but this is easily solved and has no consequence either on satisfiability or on the quality of
the other the problem. For example, a domain in 2b will be predominantly a scheduling
task with a planning component where the choice of actions is easy and has no effect on

^2a and 2b arc equivalent, as are 3a and 3b since the planner must always choose the actions before they
can be scheduled. However, they are separated here, partly for symmetry reasons and partly to demonstrate
how a problem may be more planning centric or more scheduling centric.

C H A P T E R 3. T H E O R Y 48

the schedule. Here there is no coupling between the problems and an example would be the
problem of building a house as set out in Section 1.2. These domains are associated with
interactions of type 2 and 3 on TIM's classification, where the schediding is an independent
component of planning.

Domains of type 3 have a loose coupling where the solution to one problem only affects
the quality of the solution to the other, and not the satisfiability. All the problems in the
IPC'02 [27] were of this type, where the choice of action affected only the quality of the
schedule produced. An example is the ZenoTravel Time domain (see Appendix B) that has
two fly actions: one for flying fast, and the other for flying slowly that uses less fuel, but is a
longer action. The choice of action (i.e whether to fly fast or slow) affects the quality of the
sdiedule that is produced, but a schedule can always be found for the plan. Concurrency
in these domains may oc.c.m in order to produce a better schedule. A consequence of this is
that all plans to problems in the first three levels of this spectrum can be sequentialised so
that there is a complete ordering between the actions with no concurrency. Domains of this
type arc classified as typo 4 (hierarchical sub-problem dependency) on TIM's classification,
where the scheduling is an dependent component of planning.

The tightest couphng happens in domains in the centre of the spectrum (4 and 5) where
concmTency must happen and is of type 5 on the classification TIM uses, as the sub-problems
are interdependent. 4 refers to T E G domains where the concurrency must happen only in
order to achieve the goals by their deadlines. This is a similar coupling to 3, but the quaHty
of the solution is now a hard constraint that must be met. In domains of type 5, concmrency
must happen, not to achieve a goal by a de2idline, but to achieve a goal at all. The coupling
between plaiming and scheduling is stronger in domains of type 5 since the concurrent actions
interact, whereas they do not in domains of type 4; This interaction is co-ordination.

Definition 3.5 — Co-ordination
"Co-ordination" occurs where actions which, when executed concurrently, inter
act to produce an interesting effect.

An example of co-ordination as present in a domain of type 5 occurs in the match domain
(Appendix C, a variant of which was first presented in [53]) where the goal is to mend
fuses. To mend a fuse (with the MEND.FUSE action), there must be light for the duration
of the action. This is achieved by lighting a match (with the LIGHT.MATCH action) which
provides Ught only whilst it bums (i.e. for the duration of the action). To mend a fuse you
must also have a hand free, the effect of which is that you can only fix one fuse at a time.

Where the LIGHT.MATCH action is 8 time units long and the MEND_FUSE action is
5 time units long, it should be obvious that two matches will be needed, since both fuses
cannot be fixed by the light of one match before it burns out. However, if the fuses take
less time to fix, the matches burn for longer, or fuses can be fixed concurrently, then a
different number of matches may be required. Importantly, the MEND.FUSE actions must

C H A P T E R 3. T H E O R Y 49

be executed (and completed) during the execution of the LIGHT.MATCH action. These
actions must be co-ordinated (i.e. happen concurrently and in the correct order) so that the
goal of fixing the fuse is reached. Figure 3.8 is a valid plan for the problem.^

0.01: (LIGHT.MATCH matchl) [8.0]
0.02: (MEND.FUSE fusel matchl) [5.0]
2.04: aiGHT.MATCH match2) [8.0]
5.03: (MEND.FUSE fuse2 match2) [5.0]

LIGHT.MATCH matchl

MEND_FUSE fus&l matchl

MEND.FUSE fuse2 match2

LIGHT.MATCH match2

Figure 3.8: A Valid Plan for the Match Problem

Temporal plannmg domains in IPC'04 [44] where the new features of PDDL2.2 were not
u.sed wore of type 3. Vai'iants where the new feature of timed initial literals were u.sed, were
of type 4. Once compiled down to PDDL2.1 they become of type 5 as the dummy actions
required co-ordination.

An alternative view of the spectrum in Figure 3.7 is in terms of "constrainedness".
Generally, the more constrained a problem, the harder it is. In respect to temporal planning
problems, the more constraints there are between the planning and scheduling, the tighter
they are coupled and the harder the problems become. Domains of types 1 and 2 have no
constraints between the problems whereas domains of types 4 and 5 have many.

3.2.1 Failure of the L P G P / F F Hybrid
The system described at the beginning of this chapter is capable of planning tor all domains
of type 1, 2, and 3, where there is no forced concurrency. The L P G P / F F Hybrid cannot
produce valid plans where the two problems arc tightly coupled (i.e. types 4 and 5). In this
section the failm-e of the system and the reason for this un-soundness is examined to gain
an understanding of where co-ordination arises in domains of this type and how to handle
it best. In the match domain, F F produces the plan:

^It is valid according to the problem specification, even if semantically it is odd.

C H A P T E R 3. T H E O R Y 50

(LIGHT.MATCH-start matchl)
(LIGHT.MATCHJnv matchl)
(MEND.FUSEjtart fusel matchl)
(MEND-FUSEJnv fusel matchl)
(MEND-FUSE-end fusel matchl)
(MEND-FUSE_start fuse2 matchl)
(ME(SfD.FUSEJnv fuse2 matchl)
(MEND.FUSE_end fuse2 matchl)
(LIGHT.MATCH.end matchl)

The partial order lifter produces the constraints;

£ < (MEND.FUSE.start fuse2) - (MEND.FUSE-end fusel) < oo
e < (MEND.FUSE.start fusel) - (LIGHT.MATCH.start matchl) < oo
e < (LIGHT.MATCH.end matchl) - (MEND.FUSE.end fusel) < oo
e < (MEND-FUSEJtart fuse2) - (LIGHT.MATCH.start matchl) < oo
£ < (LIGHT.MATCH.end matchl) - (MEND.FUSE.end fu5e2) < oo
e < (LIGHT.MATCH_end matchl) - (LIGHT.MATCH jtart matchl) < 8
e < CMEND.FUSE.end fusel) - (MEND.FUSE.start fusel) < 5
e < (MEND.FUSE-end fuse2) - (MEND.FUSE.start fuse2) < 5

Finally, the STN finds this set of constraints to be inconsistent and, as there is no feedback
to the planner, the system fails. The reason for the inconsistency is that two matches are
needed in order to have enough time to fix both fuses, but since all temporal information
is ignored whilst planning, it failed to realise this, trying instead to fix both fuses by the
light of one match. Communication is needed between the planner and the scheduler at this
point.

The rest of this chapter looks at where co-ordination occurs in temporal planning domains
and this is then used to minimise communication between the planner and the scheduler.

3.3 Temporal Constraints in PDDL2.1
The reasoning in this section is restricted to PDDL2.1 where logical change can only happen
at the start of a durative action, or on its completion. Unschedulable plans come from
temporal constraints in the problem that cannot be met. In PDDL2.1, temporal constraints
are not represented explicitly, but rather implicitly, using other, potentially dummy, durative
actions, as these are the only way to represent temporal information in the problem. What
follows is a review of possible constraints that can be represented in PDDL2.1 and the
different ways that these constraints can be expressed.

Temporal coastraints take the form (or can be rearranged to) x — y { < , <, >, <} b, where
X and y are the actual times of the start or end points of actions, and so then: difference
(x — y) is how fai' apaii". in time they are relatively, h gives the maximum or minimum
(depending on whether it is greater than or less than) that this difference can be.

C H A P T E R 3. T H E O R Y 51

All other constraints that do not use disjunctions are specialised cases of these. For
example, to represent an exogenous event e that occurs at a particular time, t, y is simply
set to zero and the constraint becomes

i < e - 0 < i

To represent a deadline, d, that some end point, e, must happen by, y is again set to zero
and constraint is

e - 0 < d

Figure 3.9 (a) and (b) show diagrammaticaliy how the constraint B — A < 6, whick
semantically represents the maximum time by which B follows A, can be enforced using a
dummy action^. Figure 3.9 (c) and (d) shows how the constraint B - A > 6 can be encoded,
and represents the minimum time by which B follows A.

-b + 2e-
dummy_max

A

7- B
(a) Maximum B — A < 6

6 - 2 £
dummy.min

(o) Minimum B — A > h

-b + kjdur + B.dur + 2g-
dummy-max

B
(b) Maximum B — A < fc

-6 + A-dur + Bjdur - 2e-
dummy-min

(d) Minimum B - A > h

Figure 3.9: Expressing a Maximum Minimum Elapsed Time Between Actions in PDDL2.1

In each case the duration of the dummy action has been extended or reduced by 2e.
This is because the PDDL2.1 semantics dictate they must be sepaiated by a small amount
(as discussed in Section 2.1,4). When calculating the duration of the dummy action, two
gaps between the dummy action, and A and B must be compensated for. For the rest of
the explanation £ is omitted from the reasoning to ease the complexity, but can easily be
reintroduced.

For both figures (b) and (d) the dummy action's duration must also have the duration
of A and B summed on to it. This is because the dummy action now encapsulates both of
these actions.

These figures have been arranged in a fashion that should make obvious the similarities
both within the different representations of the same constraint, and also the similarities

••llere x—y < b can be rearranged as y~x > —b, which of course means exactly the same. Other constraints
can be equally rearranged, however, since an action cannot have a negative duration, all constraints are kept
in the form that keeps 6 non-negative.

C H A P T E R 3. T H E O R Y 52

in representing the different constraints. The different representation can be "mixed and
matched" within themselves, as shown in Figure 3.10.

max

max

max

max

JDUL

1 min
1 1 1

B A 1 B

m i n

m i n

(b) Minimum Constraints (a) Maximum Constraints

Figure 3.10: Possible Combinations of Representing the Same Constraint

Regardless of the form used, when expressing a maximum time between fictions, the
ordering is from the start of the dummy action to A, and from B to the end of the dummy
action, whereas when expressing a minimum time, regardless of the form used, the ordering
is from A to the start of the dummy action and then from the end of the dummy action
to B.

if B - A < 6

then dummy_max^ -< A

B -< dummy.max_|

if B - A > 6

then A -< dummy.maxt-

dummy-maxn -< B

Notably, in maximum constraint orderings, there are no precedence relations where an
end action procodos a stai-t action and in minimum constraint ordnrings, there arc no prece
dence relations where a start fiction precedes an end action. In both cases, ends precede
ends and starts precede starts.

Prom this observation, two new precedence relationships (-<""'̂ and are defined.

C H A P T E R 3. T H E O R Y 53

Definition 3.6 —- Maximum Precedence Relationship
Maximum Precedence Relationship between two action end points i and j where
i < j is defined asr

V ii- ~< in

Definition 3.7 — Minimum Precedence Relationship ,
Minimum Precedence Relatioaship between two action end points i and j where
i -< j is defined as:

The maximum precedence relationships occur in maximum temporal contraints (Fig-
ui'e 3.10(a)) and the minimum precedence relationships occur in minimum temporal con-
traints (Figure 3.10(b)). These two definitions have an intersections of types (an end can
precede an end, and a start can precede a start), however a maximum temporal constraint
does not have any ends forced to precede a start (as in a minimum temporal constraint)
and a minimum temporal constraint does not have any starts that must precede another
action's end (except, in both cases, through transitive relationships).

Where there are maximmn constraints with no minimum, B could happen before A, and
of course with minimum constraints, B could happen infinitely after A without breaking
the constraint. The more intere.sting cases occur when both a maximum and minimum
time occur, i.e. where the constraints are combined to the form bi < x - y < b^. To
form these constraints, the minimum and maximum coastraints arc simply combined in any
combination. Two possibilities are shown in Figure 3.11.

Of course, for it to be passible for these constraints with both maximum and minimum
time differences to be met, the duration of mrrr must be less than or equal to the duration
of max.

C H A P T E R 3. T H E O R Y 54

mm

max

min

A B

max

Figure 3.11: Expressing both Minimum and Maximum Time Between Actions in PDDL2.1

3.3.1 Translation of the Domain
Consider another domain which involves making a cup of tea. There must be a maximum
time between boiling the water and pouring it into the mug (or else the water cools, and tea
cannot be made with cold water). There is also a minimum time set between the boiling and
pouring of the water (to avoid steam bm-ns). This could be expressed in two ways; either
by the first clipping method, or the second enveloping method (as seen in Figure 3.12).

BOIL.WATER
MAX.DELAY

MIN.DELAY
POUR-WATER

(a) clips:

MAX.DELAY
BOIL.WATER

MIN-DELAY

POUR.WATER

(b) envetopes

Figure 3.12: Two Possible Equivalent Representation of the Breakfast Domain

As shown in the previous section, these two representations are equivalent. If the
BOIL-WATER action in fact has a greater duration (for example if more water is put in
the kettle), the L P G P / F F Hybrid would not produce an un-schedulablc plan with the clip
method, whereas if envelopes are used there is a danger that this could happen. This would
occur where the MAX-DELAY action is not long enough to include the BOIL-WATER, the
MIN.DELAY and the POUR.WATER actions. The dummy action's duration relies on the
duration of the other actions where an envelope is used (see previous Figure 3.&), whereas it
does not where clips are used (with the exception of the MIN.DELAY action. It is fair to as
sume that the domain designer ensures that MIN-DELAYd„r < MAX.DELAYdur-) However,
if the duration of the BOIL-WATER or POUR-WATER actions were to change then either
the duration of the envelope would have to change to keep the constraint the same, or the
constraint would change meaning accordingly.

The clipping method is therefore better for encoding maximum constraints as it does not

C H A P T E R 3. T H E O R Y 55

rely on the duration of the actions it is trying to constrain. The L P G P / F F Hybrid would be

able to produce a valid temporal plan for the clipping method, but not necessoi-ily for the

envelope method, if the MAX.DELAY action were not sufficiently long enough to contain all

actions. Could it be possible to detect such cases with envelopes and translate the problem

to use the easier clipping method? In this particular case it would seem so.

Returning to the match domain, it is possible to change it such that there is a delay

between fixing the two fuses (in order to get the fuse out of its packet) and also so that it

is possible to fix two fuses with one match (i.e. the LIGHT_MATCH action is longer). When

this is done, it looks identical in structure to the domain where tea is made (sec Figure 3.13

(a) and (b)). Would it then be possible to translate this domain, as was done previously,

into a form in using clips? This would mean changing the duration and structure of the

LIGHT_MATCH action, which would result in a plan as in Figvne 3.13 (c). This somantically

does not make sense, but this plan could be translated ba,ck again in a post processing

step to the original form. Whilst this guarantees that there is enough time to fix the fuses,

problems arise if a third action rehes on the diuration or structure of the LIGHT.MATCH

action. Clearly, if the LIGHT.MATCH action changed duration, there would be difficulties

with anything else requiring that light. Also it is unclear how the translation would work in

the case where there are three or more fuses to fix. Bearing all this evidence in mind, this

is not a viable solution to co-ordination.

(a)
LIGHT.MATCH

MEND.FUSH 1MEND.FUS

I FIND.FUSE

§ 1

(c)

IMEND.FUS
LIGHT.MATCH

3 m / 1 E N D . F U S E 1

FIND-FUSE I

.(b)

BOIL
max.delay

min.deiay

(d)

POUR
max.delay

1 BOIL POUR 1

min.deiay

Figure 3.13: Comparison of the Match Domain and Minimum and Maximum Delays in
PDDL2.1

Whilst the representations are syntactically equivalent, they are not always semantically
equivalent. The actions that need translating, those which are the equivalent of the dummy
maximum and minimum actions, may not actually be dummy actions and have other con
ditions and effects that are important to the domain. It is reasonable to assume that if a
domain writer wished to exphcitly express such a constraint, then they would make sure
that the minimum value was less than the maximum. However, this assumption cannot be
rehed upon where the constraints arise naturally or in a disguised form. e.g. you cannot
as.sumc that FIND.FUSErf,,^ < LIGHT.MATCHrf,,^.

C H A P T E R 3. T H E O R Y 56

For these reasons, it would seem that in the general case you cannot always loosen the
couphng between the planning and scheduling sub-problems through a simple translation of
the domain.

3.4 Envelopes and Contents
Strong coupling between planning and schcduhng occurs in co-ordination (Definition 3.5)
where actions must happen concurrently. Envelopes and contents are sequences of actions
that are logically constrained to be executed concurrently with one another.

Definition 3.8 -— Envelope and Contents
An Envelope E and Contents C are both triples

E = (yle, Pe, Te)

C = (.4e, F,, n)

where Ae and Ac are sets of action end points (either a start or end), Pe a id Pc
are sets of precedence constraints between those end points, and Tg and Tc aie
sets of temporal constraints relating to the duration of corresponding end point
pairs in Ae and A^: respectively.

In the envelope:

and in the contents:

V z ^ i e P . . i - ^ ™ " j

In co-ordination concm-rent actions are logically, as well as temporally, constrained. One
set of actions, called the "ccmtMit" actions, must be executed whilst another set of actions,
called "envelope" actions, executes. The contents must fit in the envelope, that is to say, the
contents must start afber the envelope has started and finish before the envelope finishes.

Definition 3.9 — End Points
The first end point in each is defined as

Firste = x € Ae - {yy e Ae-y X ̂ PeAx ^ y)

Fir ate = x e Ac • (Vy & Ac-y -< x ^ Fc/^x ^ y)

C H A P T E R 3 . T H E O R Y 57

And the last end point in each is defined as

Laste = a; e yle • (Vj/ € yle • ar ^ y ^ Pe A X 7̂ J/)

Lastc = X e Ac - (Vy € A^ - x <y ^ PcAx ^ y)

To ensme that they happen concuiTently

Firstp, -< Firstr.

Lastc -< Lastf

For it to be schedulable it is necessary to know whether the minimum amount of time
that the content actrons can be executed in is less than the maximum amount of time that
the envelope actions could take to execute. It stands to reason that if the envelope has
an infinitely large maximum time or the content actions have a minimum time of zero,
then there will be no problems scheduling since the content actions will always "fit in" the
envelope. The problem occurs where the inverse is true. An envelope will have a finite
maximum total execution time where all the temporal constraints between the actions are
of a maximum typo and the content will have a gi'cater than zero minimum time where
all the temporal constraints between the content actions are of a minimum type. This is
regardless of whether these temporal constraints are explicitly encoded with dummy actions
or whether they arise naturally with normal durative actions.

If there is even one precedence relationship in the content actions which is of the max
imum type and not the minimum type (i.e. where ih -< then the content actions can
have a minimum time of zero and so definitely fit inside tlie envelope. Conversely, if there is
even one precedence relationship in the envelope actions which is of the minimum type and
not the maximum type (i.e. where in -< jV), then the envelope can be infinitely large and
so can encompass any contents. This is the reason why:

V i X J e P c - i j

importantly, content actious can be envelope actions themselves (with other actions being
the contents) and so similarly, envelope actions can also be content actions for other envelope
actions. Content and envelope actions caimot be sequentialised with respect to one another
and rmist be executed in parallel. In the case of the match domain, the L I G H T _ M A T C H
action is the envelope action, and the MEND.FUSE actions are the content actions. See
Figure 3.14 for examples of envelopes and content actions.

C H A P T E R 3 . T H E O R Y 58

(a) I 1 single content action
single envelope action

(b) parallel content actions

single envelope action

(c) I 1 j 1 1 I sequential content actions

. single envelope aetion

(d) [__ j suigle content action

•sequential envelope action

ilex contents I lh^=H ' l II 1 }complc

f - ^ — p i |-j 1 complex envelope

Figure 3.14: Envelopes and Contents

3.5 Detecting Single Potential Envelopes
The vast majority of action interactions in a domain are of the minimum precedence type;
an end add effect of one action simply achieves a start condition of another, so must precede
it. It is much more rare to find examples of envelopes (such as the LIGHT.MATCH action)
involving start effects and end conditions (as akeady noted — none appear in benchmark
domains), and so it is these envelopes that arc focused on. In this chapter, only envelopes
that are one dm-ative action long (and so two instantaneous actions, one for the stai't and one
for the end) will be looked at, but later in the next chapter, longer envelopes are investigated.

Definition 3.10 — Single Envelope
An envelope E = {A^, P^, T^) is a Single Envelope iff

jvlej == 2

This definition means that in fact a clip is an envelope, as the two action extremity points
contained in the contents come from different durative actions.

The following reasoning shows where these potential envelopes can occur. It should be
noted that this only holds for the STRIPS and durative-action subsets of PDDL2.1; In
particular, negative conditions are not permitted.

C H A P T E R 3 . T H E O R Y 5 9

3.5,1 Reasons for Precedence
The precedence of the actions is forced through logical constraints. The Veloso algorithm
from Figure 3.4 identifies three reasons why it may be necessary to order actions (summarised
below in Figure 3.15) .

(a)
Q"i

P

"•J
V

aj's effects achieves a precondi
tion of a,- so aj -< a,

(b) P\
aj Oi aj Oi

Oi deletes a precondition of Uj so

(c) pr n

L _J

aj deletes a proposition that is
an effect of that is used to
achieve a third action, at. Here
aj -< at. If this ordering is not
put in, then aj could follow a,
and so ajt would not have its pre
condition met.^

Figm-e 3.15: The Three Reasons to Order Actions

3.5.2 Defining Potential Envelopes
Presented here is a case analysis of where single envelopes could occur

For a single envelope and content action, two orderings are needed to
ensture that the contents must fit inside the envelope:
First{E) -< First{C) A Last{C) Last{E)

There are three possible reasons to order two timepoints, as detailed in
Figm-e 3.15.

There are then a possible 3^ combinations which are shown in Table 3.1.

There are a further six possibilities if the precondition involved in the
(a) start orderings fi-om Figure 3.15 or in the (b) end orderings is instead
an invariant.

32 = 9

6 - F 9 = 15

^ThiB is a standard declobbering technique used in partial order planners. Another is to order an -< aj,
however, the Veloso algorithm does not allow for this as it can only remove orderings from the total order,
i.e. if a „ -< a„-f i is in the total order, it is not possible to make On+i -< a „ .

C H A P T E R 3. T H E O R Y 60

Each possibihty is complicated further if the same proposition is used for
both the start ordering and the end ordering (i.e. if p = 9 in Table 3.1).
This doubles the number of possibilities.

15 X 2
30

The total number of possible envelopes is therefore 30

In fact any action with cither a condition or effect (add or delete) at both the start and
end of the action could be an envelope since all three of these propositions are involved in
a potential ordering.

Compounded with these possibilities, it is assumed that the propositions involved in the
envelope and content actions £u:e not achieved by other actions. If they were, the following
reasoning would be compHcated even further. This is assumed since deciding whether a
particular action (that could achieve this proposition) appears in a plan can be as hard as
planning itself.

These single envelopes can be catagorised further. In some envelopes, such as the â b
pairing or the b-c pairing in Table 3.1, the content actions could appeal' outside (in those
cases, after) the envelope action. Others cases (such as the a^a pairing), there is no possibiUty
of this. These cases are refen'ed to as "Hai-d Envelopes" and cases where potentially the
content action could appear outside the envelope, are called "Soft Envelopes".

Definition 3.11 —H a r d Envelopes
In a Hard Envelope the content actions mmt go in the envelope such that

Firstf, -< Firstc A Lastc -< Laste

Table 3.1: Nine Possible Combinations of Start End Pairs from the Three Ordering Reasons
from the Veloso Algorithm

End Orderings
b

O
r

S d
t e
a r
r i
t n

a-a

b-a.

c-a

a-b a-c

b-b b-c.

c-b c-c

C H A P T E R 3. T H E O R Y 61

Definition 3.12 — Soft Envelopes
In a Soft Envelope the content actions could occur .somewhere outside (either
before or after) the envelope action such that

Firsts Firstc A Lastc -< Last^

V Lastc -< Firste

V Laste, X Firstr.

With co-ordinated actions the a(?tions must occur in parallel tt) produce the desired effect.
However, with Hard Envelopes, the actions can only be executed concurrently, but with Soft
Envelopes they could also be executed sequentially but with a different effect.

It is import£mt to note that in the case of soft envelopes, the contents cannot simply "slip"
out of the envelope. There must be an ordering between the end points of the envelope and
content action. However, in the case of soft envelopes, there will be two similar states in the
search space, one with the content inside the envelope and one with the content outside the
envelope. In the case of hard envelopes, there will only be one state relevtmt in the search
spEice, that where the content action is in the envelope.

Soft envelopes are distinguished between being "relevant soft" and "irrelevant soft". In
relevant soft envelopes (such as the b-c pairing), moving the content action outside the
envelope does not result in any more true facts, so there would be no reason to do so, unless
the content action did not fit in the envelope action. Conversely, in the case of irrelevant soft
envelopes (such as the a-b pairing), keeping the content action inside the envelope results
in fewer true facts, so there would be no reason to keep it in.

Figure 3.16 gives examples of these different envelopes. Figure 3.16(d) shows a possible
envelope-content paii- that is impossible (since the envelope action deletes its own invariant)
so cannot be in the search space.

So, whilst there ai'c 30 possible situations where one content action may be forced to
be placed within one envelope action (assuming these are the only actions involving the
propositions), some of these simply cannot arise with content actions (as in the case of
deleting an invariant of the envelope action) and some do not compromise completeness (as
in the case of irrelevant soft envelopes). Further still, some of these cases are obsctue and are
unlikely to arise in reahstic domains. For these reasons, only one envelope will be analysed
here: the case that occurs in the match domain.

Definition 3.13 —Single Hard Envelope
A Durative Action, da, is a Single Hard Envelope where:

add^- ^$AdeUjti)

C H A P T E R 3. T H E O R Y 62

(a) Hard envelope

W p\ I \q I

hq

(b) Soft envelope — relevant

p p
(c) Soft envelope — irrelevant

u i
(d) Impossible envelope content pair

Figure 3.16: Potential Envelopes (with achieving contents)

There is a good reason to select this particular potential envelope. This is because it models
a unary resomxe that is only available over a time window. It is common to want to model
this. In the case of the match domain, the resource is light which is only available during the
LIGHT_MATCH action. The handfree proposition also models a unary resource, however,
the difference here is that this resource is always available, except during the MEND-FUSE
action.

This potential envelope has another unique property. It is the only hard envelope (i.e.
the contents cannot appear outside it) that is capable of existing on its own (i.e. the contents
arc not compulsory). This is proved below.

We shall name three states, s i , the state immediately before the start of the envelope
action, s2, the state immediately after the start of the action, and s3 the state immediately
after the end of the action (see Figure 3.17). An action applicable in s2 and not in s i must
have been achieved by the start add effects (since there arc no negative conditions, it could
not have been achieved by a start delete effect). Taking it further, there are no actions that
could be applied in s2 and not in s3 which could not have been applied in s i , apart from
those achieved by the start add effects and then deleted by the end delete effects.

Any action conforming to this could be one of these envelopes, and so a simple domain
analysis step can detect these in a problem.

The next chapter describes this and a temporal planner based on the L P G P / F F Hybrid
system that can use this analysis to ensm'e that a valid plan is found, and so solve the match
domain problem and other cases where co-ordination is present in the problem.

C H A P T E R 3 . T H E O R Y 63

-si'" 32 ^s3-

P P\ n I t-p

Figure 3.17: A Hard Envelope modelling a time limited resource

3.6 Chapter Summary

The F F / L P G P Hybrid spfits planning and scheduling by decomposing the durativc action
into three separate instantaneous actions, planning with these, and then scheduling the
resulting plan. This planner fails where the planning and scheduling sub-problems are
tightly coupled on the spectrum of "tightness" (i.e. in the case of co-ordination).

Tempered constraints arise in PDDL2.1 problems through the arrangement of durative
actions. Some arrangements lead to maximum precedence relationships, and others to min
imum precedence relationships. An envelope is made of just maximum precedence rela
tionships between the actions which will have a maximum execution time which cannot be
exceeded, whilst a set of content actions will all be arranged with minimum precedence re
lationships, and so have a minimum execution time which cannot be reduced. Where these
two sets of actions are logically constrained to happen concurrently, the execution time of
the contents must be less than the execution time of the envelope. To simplify matters,
envelope actions that are only one action long are examined, of which one case is singled
out, the single hard envelope. This models a unary resource that is only availiable during
the execution of the action.

Chapter 4

C R I K E Y

This chapter describes a temporal planner named C R I K E Y that splits the planning and
scheduling components of temporal planning in a similai- fashion to the L P G P / F F Hybrid
(described at the beginning of Chapter 3). C R I K E Y solves problems involving co-ordination
where the hybrid system, and indeed all other planners, fails. In these cases the components
are tightly coupled, which requires some communication between the planner and scheduler.
C R I K E Y minimises this communication using the theorj' presented in the previous chapter.

Whilst C R I K E Y is based on the L P G P / F F Hybrid system, all components have been
re-implemented in .Taval.4 to form a complete imified system. Two versions of C R I K E Y
are described in this chapter. Figure 4.1 illustrates the differences between each of them
including the L P G P / F F Hybrid. C R I K E Y version 1 performs envelope analysis to detect
single hard envelopes (Definition 3.13), whilst version 2 can reason with all envelopes (even
those of many actions in length). Version 2 also performs more complex scheduling to handle
duration inequahties.

Temporal Planning
Problem

Temporal Planning
Problem

Temporal Planning
Problem

Plarmer Planner

Scheduler

Planner

}Single Hard
Envelope

Scheduler

} All
Envelopes

Complex Scheduler

Temporal Plan Temporal Plan Temporal Plain

(a) L F G P / F F Hybrid (b) C R I K E Y version 1 (c) C R I K E Y version 2

Figure 4.1: Differences Between the L P G P / F F Hybrid and the Two Versions of C R I K E Y

64

C H A P T E R 4. C R I K E Y 65

4.1 Version 1
This version can only handle co-ordination where there are single hard envelopes and was
the version used in the International Planning Competition 2004 (IPC'04). The architecture
is outlined in Figure 4.2 and can be compared against a similar diagram for the L P G P / F F
Hybrid in Figme 4.3.

Temporal Domain

Classical
Problem

Extracted
Temporal

Information

PLANNING

ActionR Current
State

(Envelopes) Forward
, Search

lelaxed
Plan

STN
Consistency

Heuristic
Distance &

Helpful Actions

Totally
Ordered Plan SCHEDULING

TO to

Partial Lifter
Ordered

Temporal Plan

Figure 4.2: Architecture Overview of C R I K E Y

In Figure 4.2, there is still no arrow back to the planner from the scheduler (as there is in
Figm-e 4.1(b)). However, they are conceptually the same, since the envelopes in Figure 4.2
perform scheduling and it is here that the communication between the planner and scheduler
takes place.

C H A P T E R 4. C R I K E Y 66

Temporal Domain

L P G P
Trgmsla

Classical
Problem

Extracted
Temporal

Information

FF

Current
Slate

ForwaxcA
Seai'ch,

Heuristic
Distance &

Helpful Actions

ilaxcd
Plan

Graph

Totally
Ordered Plan SCHEDULING

TO to
PO

Lifter Partial
Ordered

Plan

• STN 1-

Temporal Plan

Figure 4.3: Alternative Architecture Overview of the L P G P / F F Hybrid

4.1.1 Envelope Analysis
After parsing the domain, durative actions (Definition 3.2) that are not single hard envelopes
(Definition 3.13) are compressed into single, instantaneous STRIPS action (Definition 3.1)

Definition 4.1 — Compressed Action

A compressed action, ca = {cond, add, del), is an STRIPS action that has been
formed from a durativc action, da = {ta.cond, ta.add, tajdcl,dur), where

cond = ta.condi- U {{ta.cond-\ U ta.cond^) \ ta-addy-)

add — {ta.add^ \ ta.del-{) U ta.add-\

del = {tajdel\- \ tajadd-\) U taudeU

C H A P T E R 4 . C R I K E Y 67

A compressed action has the effect of applying the whole action at once, i.e. applying
the start effects first followed by the end effects, while still respecting the conditions. The
preconditions to the compres^d action axe the start conditions of the durative action and
all end conditions and invariants not achieved by the start effects. The add effects of the
compressed action are the end add effects of the durative action and all start add effects that
are not deleted by the end effects. Finally the delete effects of the compressed action are the
end delete effects of the durative action and all start delete effects that are not re-achieved
by the end add effects.

Single hard envelopes are spUt into two actions, one each for the start and end points,
and not three as in L P G P translation (Definition 3.3) used in the L P G P / F F Hybrid. The
rationale for this is that invariants arc not dealt with correctly in the L P G P / F F Hybrid (as
explained in Section 3 .1) and so to rectify this, invariants are now handled separately, not
requiring their own action. This is described below in Section 4.1.2.

Definition 4.2 — C R I K E Y Act ion IVanslation

C R I K E Y spUts a single hard durative action da = (ta.cond, ta.add, tajdel, dur)
into two instantaneous S T R I P S actions, da\- and rfa^
dtt}- = {cmdh, add\-, delv-) is

condy- = ta.cond\- U {ta.cond^ \ tajoddy-)

add\- = tajuldy- U {iAction.Name}

dely — ta-dely. U {gAction.lMame}

da-^ = (condn, add-\, dcl-{) is

c(md-^ = ta-cond-\ U ta.cond^ U {iAction.Name}

add-i = ta-add-i U {gAction.Name}

del-{ = tajdel-{ U {iAction.Name}

As in the L P G P translation, a dummy proposition (iAction.Name) is used to ensm-e that no
end action is placed in the plan without its corresponding st£irt action. This proposition is
an add effect of the start action, and a condition and delete effect of the end action. Once
again the dummy proposition is unique to the spfit actions; Therefore, the only way that
the precondition for the end action can bn mot is for start action to already bo present in
the plan. As with the L P G P translation, this is deleted by the end action so there is only
one end action per start action. iAction_Name-inv, present in the L P G P translation, is no
longer required since the durative action is now only split into two actions rather than three.

Another dunrniy proposition (gAction.Name) is added by the end action and dolotcd by
the start action. The role of this is the converse of iAction-Name: that if a start action is

C H A P T E R 4. C R I K E Y 68

present in the plan, then so also is its corresponding end action^. gAction.lMame is added
to both the initial and goal states. Selecting a stait action deletes the goal gAction-Name,
which can only then be re-achieved by selecting the corresponding end action.

To summarise, the envelope analysis stage will either compress a durative action into a single
STRIPS action, or, if it is a .single hard envelope, split it into two STRIPS actions: one each
for the start and end of the envelope. This leaves only STRIPS actions in the problem.

4.1.2 Planning in Version 1
As in F F , searching is Enforced Hill Climbing (EHC) followed by Best First Search (BFS)
should E H C fail to find a plan. The heuristic estimate is the length of a relaxed plan^,
extracted from a relaxed planning graph where the delete effects of actions are ignored. As
proved in [45], this takes polynomial time to compute. In the same way as F F , helpful
actions (actions in the relaxed plan that appear in the first layer of the relaxed planning
graph) are used in E H C , but not in B F S .

States in the search contain open envelopes — split durative actions that have started
but have not yet completed. Content actions that mu.st go in these envelopes, are checked
to ensure that they fit. This is formalised and described in detail in the rest of this section.

Definition 4.3 — Planning State
A planning state 5 is

where F is the set of true facts and ^, the set of open envelopes.

Envelopes

5 is the set of open envelopes. They are "open" in the sense that the stait action has been
selected (and so present in the plan), but not the end action.

Definition 4.4 — Open Envelope Version 1
An open envelope § in version 1 is

where 9s/ is the single hard envelope durativc action, is a list of content ac
tions that must go inside the envelope, and is the set of temporal constraints
between the content actions and also the envelope action.

^The LPGP translation does not guarantee this, as explained in Section 3.1.
^The relaxed plan may not be optimal.

C H A P T E R 4 . C R I K E Y 69

An open envelope is effectively just a part of the plan containing co-ordination. It is partially
ordered so that its consistency can be tested. Importantly, the consistency is only tested
when there is an envelope action (i.e. when there is co-ordination) and only for the envelope
and its contents (i.e. only for that part of the plan).

Definition 4.5 — Consistency Function

The function consistent{nodes, edges) returns the consistency of an STN, where
nodes are the action end points in the network, and the edges are the temporal
constraints.

Therefore, an envelope is consistent if

consistent{{^s3r}U'^, ^ ' T)

A consistent envelope means that the contents "fit in" the envelope. Consistency is tested
by performing Bellman-Ford's Single Source Shortest Path algorithm from (i.e. from

the end of the envelope). Any negative cycles for this envelope must involve this end action
as this will have a positive edge durected out of it for the maximum time difference from its
start action, and then negative edges leading back to it for the minimum duration of the
contents.

The Veloso function is used to decide whether an action becomes a content action of an
envelope.

Definition 4.6 — Veloso Function

The Veloso function returns a set of temporal constraints tc between an action
Gj and an open envelope e = with its contents.

tc = vcloso{aj, c)

The function is defined as

(a) if -< Gj then -< Uj} Ctc

(b) if aj -< then {a, •< ^^^} C tc

(c) Va, e if ai -< aj then {oj -< a,} C tc

One iteration of the Vcloso algorithm (Figure 3.4) decides whether aj -< Uj.

Part (a) adds a constraint if aj must follow the start of the envelope action, part (b) adds a
constraint if aj must precede the end of the envelope action, and pai-t (c) adds a constraint
if aj must follow any of the content actions already in the envelope. ^

•̂ As in the L P G P Hybrid, •< constraints arc used whore invariants are involved (sec Section 3.1).

C H A P T E R 4. C R I K E Y 70

If the Veloso function returns no constraints, then the tiction (uj) is not a content action
for the envelope (e).

veloso{aj, e) = 0

Invariants

Where durative actions are compresised into instantaneous STRIPS actions, their invariants
cannot be broken, since the start and the end of the action are in effect applied one after the
other, leaving no chance to break the invariants in between. However, where the durative
action has been split there is a possibility that the invariant could be broken and then
rcachicvcd (as possible in the L P G P / F F Hybrid in Figure 3.5). To cnsiurc this docs not
occur, an action, a = {cond, add, del), must not delete any invariant of the open envelopes
in state s = (F,^).

\/eei-deln caiid„{^s/{e)) = 0

Applicability of Act ion

Definition 4.7 — Applicability
An action a is applicable in state s if

(a) cond C F

A (b) Weei-delf] c(md^{^^{e)) = 0

A (c) Ve € ^ • C(msistent{{&£/{e), d} U '^{e), ^'€{e) U veloso{a, e))

This states that (a) a's preconditions must be met, (b) a must not delete any invariants that
are currently protected, and (c) a must be consistent with all currently open envelopes in
s. That is to say, if o must go in any of the currently open envelopes, then there is enough
time to execute a and the other contents concurrently with the envelope action before the
end of the envelope.

Application of Actions

Definition 4.8 — Update Envelope

update{e, a), where an action a is placed in an open envelope, e = {^s:/, ^, ^^),
to produce e' is defined as:

e' = e <— veloso{a, e) = 0

= {&sat,'^U{da{a)i-, da{a)-i},

^•^^ U veloso{a, e)

U {da{a)duT < da(a)-{ - da{a)\- < da(a)dv.T]) <— otherwise

where da{a) is the corresponding durativc action for a

C H A P T E R 4. C R I K E Y 71

The updatc{c, a) function places a content action in an open envelope if necessary, or if

not, leaves the envelope unchanged. If it must go in, it updates the temporjil constraints

for precedence relationships between a and the rest of the contents and envelope action. A

temporal constraint for the duration of a is appended to the set of temporal constraints.

Note that regardless of whether a is a split action or a compressed action, the corresponding

durative action is split (using Definition 4.2) and these two actions are placed as contents

in the envelope. Therefore, the envelope only contains split actions.

Definition 4.9 — Result

The result, Result{s, (a)), of applying a single STRIPS action a = {cond, add, del)
in state s = {F,i) is s' = {F',^") where

(a) F' ^{FUadd)\del

(b) e' = e U {ida(a), 0 , {(k(o)dur < daia)^ - a < c /a (a)dur}} ^ a =\-

(c) = ^ \ {e} • a = 9^-i{e) ^ a = ^

(d) = ^ <— otherwise

(e) ^" = {update{e, a)\ee^'}

where a =h denotes a is a start action, and a =-\ denotes a is an end action.

Part (a) is the logical effects of the action a on s. It adds the add effects and then removes
the delete effects of a from the set of true facts. Part (e) stipulates that where necessary, the
action must be placed in the open envelopes to become a content action, using the update
function defined above. Part (b) adds a new open envelope to the state if the action is
the start of a single hard envelope. If a is the end of a single hard envelope, then part (c)
"closes" this envelope and removes it horn the state. No additional content actions can now
be placed in this envelope. If a is a compressed action, then no new open envelopes are
either created or removed from the state (part (d)).

For completeness, a planning problem and its solution are defined.

Definition 4.10 — Planning Problem
A planning problem is

P==iO, I, G)

where O is a set of STRIPS actions (Definition 3.1), / is the initial state and G
is the goal state.

C H A P T E R 4. C R I K E Y 72

Definition 4.11 — Goal State

A goal state g = (F, ^) must satisfy all the goal conditions, and the set of open
actions must be empty (since the PDDL2.1 semantics rcquh-c that all actions
must complete).

F C G A ^ = 0

Definition 4.12 — Val id Plan
A solution to a planning problem is a plan p

p= (ai, a„)

where (oi, . . . , a„) is an ordered list of actions. The result of applying a plan
on a state s is defined recursively

Rcsult{s, (ai, a„)) = Rcsult{Rcsult(s, (ai, . . . , a„_ i)) , {«„))

A plan p is valid if a goal state is reached when each action is applied in sequence
firom the initial state.

Rcsult{I,p)

Relaxed P lan

The relaxed plan is calculated in the standard way, using the compressed and split actions.
The length of the relaxed plan gives the heuristic estimate of the distance from the current
state to the goal.

Metrics

C R I K E Y can handle metric variables as defined in PDDL2.1 by the fluents flag. Each state
keeps a record of the current resource levels. These are changed by the operators in the
effects of actions, and tested by conditional statements in the conditions.

The metric aspects have been omitted from the reasoning and definitions presented so
far for simplicity and ease of understanding. There are two areas of note when considering
metrics in C R I K E Y . The first is in the compression and splitting of durative actions. Metrics
involved in both the start, effects and invariants of an action must be treated in a similar
fashion to where invariants met by a start effect do not become conditions of the compressed

C H A P T E R 4. C R I K E Y 73

or start action (Definitions 4.1 & 4.2). For example, if an action has a start effect to increase a
resomce by 2 and an invai-iant requiring that the resomxe be less than 10, then the conditions
of the compressed action or start action becomes that the resource should be less than 8.

The second area that metrics complicate is in the lifting of the partial order. Any
precedence relationship in the total order between two actions that either test or change the
same resource is kept in the partial order.

Metrics are incorporated into the heuristic in a similar fashion to MetricFF. At each
fact layer of the relaxed planning graph, the maximum and minimum possible levels of each
resource is calculated based on the values at the previous fact layer and the actions available
in the previous action layer. For an action to be applicable in the relaxed planning graph,
either the maximum or minimum level must meet the metric condition.

Version 1 and the M a t c h Domain

In the case of the match domcun (as desaibed in Section 3.2.1), assuming it is paxt of a
bigger domain, C R I K E Y will search forward ignoring temporal information.

LIGHTJVIATCH When it comes to put in the start action to the
LIGHT-MATCH action (a single hai'd envelope),
it will create a new open envelope.

LiGHT,MATCH

LIGHT-MATCH

MEND-FUSE

LIGHT-MATCH

MEND-FUSE i-_ME_ND=.FUSE_

LIGHT-MATCH

MEND.FUSE

It will then test to see if a MEND-FUSE action
need go in this envelope, and if so, if it is consis
tent..

Indeed, it fits, so the action is applicable and
selected for the plan.

It will then test the second MEND-FUSE action.
This is not consistent with the envelope (there is
jiot enough time left to fix it before the match
burns out), so cannot be inserted in the plan.
(If the fuses could be fixed in parallel, then this
second action would be consistent).

The end of the light action could then be selected
and the envelope closed. C R I K E Y would then
proceed to either light a second match (and so
start a new envelope) or solve another part, of
the problem. In this way a schedulable plan is
produced.

C H A P T E R 4. C R I K E Y 74

4.1.3 Scheduling in Version 1
All the compressed actions in the total order plan are split into a start and end action as
in Definition 4.2. Scheduling is then identical to the schedufing in the L P G P / F F Hybrid
system. A partial order is lifted from the total order plan by an implementation of the Veloso
algorithm and is translated into temporal constraints. As with the L P G P / F F Hybrid,
these constraints are put into a 2-D matrix, representing the graph of the STN and the
shortest distance is found between the start actions and Xo, calculated by Floyd-Warshall's
algorithm. Once again, the temporal plan is then output as a list of time stamped actions
with their diu-ations.

Although the same scheduling process is followed in version 1 as in the L P G P / F F Hybrid,
unschedulable plans cannot be produced because the planner has already checked at the
critical points (where there is co-ordination) that a schedule can be found through the
detection of envelopes.

A Note on the Implementation The formalisation of this first version is closely linked
to the implementation of the planner. In particular, C R I K E Y has an envelope class that
contains small STNs, which are discarded once the envelope is closed, and then has a totally
separate scheduling phase. This has the disadvantage of not showing clearly exactly how the
planner and scheduler communicate. To address this, an alternative formalisation is given
in Appendix D where the scheduling is integi-ated into the planning phase, and a pai'tial
order built rather than a total order. One STN (representing the whole plan) is kept for the
state, rather than many smaller STNs (in the case of the envelopes). However, once again,
the partial order is only checked for consistency when and where absolutely necessary (that
is, where the actions are involved in co-ordination). This makes it conceptually exactly the
same as the above formalisation. The disadvantage of implementing the plemner in this way
is that the STN must be duplicated for each state in the search. This would be expensive,
both in terms of memory and C P U time. In the current implementation, only the small
envelope STNs are duplicated and then discai'ded once the envelope is closed.

4.2 Characteristics of Version 1
This new planner has a number of advantages over the L P G P / F F Hybrid system. By
compressing actions where there is no co-ordination, the search space becomes smaller.
States where actions have been started but not completed are no longer in the seai-ch space:
intuitively a good idea since any action must complete at .some point. In searching, it
effectively skips through this intermediate state and applies both the start action and end
action at once. Compressed actions are effectively blackbox actions where the state of the
world is not known while the action is being executed. However, C R I K E Y only compresses
these actions where it is safe to do so (i.e. not in the case of single hard envelopes).

C H A P T E R 4. C R I K E Y 75

Splitting the action into only a start and end, and not also an invariant action (as the
L P G P / F F Hybrid does) reduces the semxh space by a third. This applies to both the
planning search space and also the relaxed plan graph. This is only a polynomial reduction
in size, but will have an impact on performance in practice.

The main advantage (and purpose) of this planner is that it can handle domains with
co-ordination where the L P G P / F F Hybrid cannot. To do this the seeirch must have access
to the internal state of an action (by splitting the durativc actions into two). Whilst the
hybrid does this, it cannot guarantee that the resulting plan is schedulable, since it does not
test the consistency of the schedule until the plan is fully built. C R I K E Y , however, detects
single haid envelopes in advance and so can realise where the internal state of an action
needs to be known and also when and where to test this consistency. In the benchmark
domains, whore there is no co-ordination, the consistency will never bo tested, but C R I K E Y
minimises the consistency testing in domains where there is co-ordination. It will only test
for consistency where there are envelopes (and so co-ordination), and will only check the
consistency on that part of the plan which needs to be checked, that is, only on the part of
the plan containing the envelope and contents.

There is one major disadvantage of this version of C R I K E Y . As discussed in the previous
chapter, there are many places where envelopes could occur, and so many places where it
could, potentially, be necessary to test for consistency. However, C R I K E Y , in the form
desciibed above, only detects one such instance. Albeit a common instance that it recognises,
it does not preclude the fact that this makes the temporal planner incomplete. Furthermore,
this version is unable to handle envelopes that are more than one action long.

One possible way to extend C R I K E Y would be for it to perform further envelope analysis
to detect other (possibly common) potential envelopes. This would still not make C R I K E Y
complete, unless all envelopes where found and this (as discussed previously) would mean
seeing every action as a potential envelope.

The rest of this chapter looks at an extension of C R I K E Y which splits all actions, but
detects envelopes "on the fly" during planning. This enables it still to minimise consistency
checking, once again performing it only when and where necessary.

Another weakness of this architecture is that it is hard to find good quality plans since
the metric (and specifically the temporal information, for minimising the total execution
time of a plan) is ignored during planning. The second version takes steps to remedy this.

4.3 Version 2

This second version of C R I K E Y performs no envelope analysis to find envelopes in advance.
Instead it splits all durative actions into two actions as in Definition 4.2. This increases the
size of the search space compared to version 1. Since incompleteness occurs where states
do not appear in the search space, this increase in size is inevitable. The main difference
between version 1 and version 2 is the ability to handle all envelopes, even those which are
multiple actions long.

C H A P T E R 4. C R I K E Y 76

4.3.1 Envelope Management
Tlie form that envelopes take is different in this version.

Definition 4.13 — Open Envelope Version 2
An open envelope, e, in version 2 is

e = (J^, ^ , ^ , 9^, ^ ^)

wheie y and § are the start and end actions of the envelope respectively. ^
is the list of content actions that must follow the stai't of the onvolope, and ^
18 the list of content actions that must precede the end of the envelope. 3^'€
is once again the set of temporal constraints both between the envelope actions
and also the content actions.

Open envelopes in version 2 allow for envelopes that are many fictions long, and not just
single hai'd envelopes. and ^ need not belong to the same dvu-ative action.

The consistency function remains the same as in the first version, so to test the consis
tency of an open envelope e, it is now:

ccmsistent{{^, } U ^ U ^ ,

The two lists of actions (those that must follow the start and those that must precede the
end) keep the transitive closure for these end actions. If the intersection of these two sets is
not empty (i.e. <^ (1 ̂ =^ then the consistency of the envelope must be checked, again
using Ford-Bellman's SSSP algorithm from the end (<?) of the envelope. If the intersection
is empty, then there is no need to check the consistency, as the contents have a minimum
time of 7,cro and the envelope will definitely be consistent.

The Veloso function must also change as open envelopes are different in this verion.

Definition 4.14 — Veloso Function

The veloso function returns a set of temporal constraints tc between an action
aj and an open envelope e = (S^, S', ^, with its contents.

tc = vcloso{aj, c)

The function is defined as

(a) a < aj then {S^ ^ aj] C tc

(b) Vai € if Oi -< Oj then {a, •< aj} C tc

(c) if X ^ then {a^ -<S'} Ctc

(d) Vai G ^itaj ^ai then {aj -< ai] Ctc

One iteration of the Vcloso algorithm (Figure 3.4) decides whether Oj -< aj.

C H A P T E R 4 . C R I K E Y 77

Applicability of Act ion

Definition 4.7 part (c), the appHcability of an action, changes to reflect the fact that the
consistent function is now used differently with the new envelopes.

Definition 4.15 — Applicability
An action a = {cond, add, del) is applicable in state s = (F, ^) if

(a) cond C F

(b) A Ve e ^ • cte/ n cond^{da{S'{e))) = 0

(c) A Ve e C • cmsistent{{y{e), <f (e), a} U .^(e) U ^ (e) ,

U veloso{a, e))

Application of Actions

Definition 4.8 must be revised.

Definition 4.16 — Update Envelope .

update{e, a), where an open envelope, e = { y , ^ , <^^), has an action
a placed in it to produce e' = (^', <f', ^'S') is defined as

^ = 5^

g' = g

^ ' = ^ U {a} ^ Ba,- e ^ U {J?'} • ^ a

= ^ <— otherwise

^ ' = ^ U {a} ^ 3aj e U {^} • a

= «— otherwise

= Sr'^Uveloso{a,e)

U {da(a)d„r < da(o)-i - da{a)^ < (ia(a)dur}

Tliis has the effect of adding the action a to the list of followers if it must follow either
the start of the envelope or any other action in the list of followers. Additionally, it is added
to the list of preceders ^ should it precede any other action in that list or the end of the

C H A P T E R 4. C R I K E Y 78

envelope. A temporal constraint for the duration of the fiction is added to in addition
to the constraints returned by the Veloso function.

Another function is needed to create new envelopes, multiple actions long, by expanding
other open envelopes through the addition of new envelope actions.

Definition 4.17 — Expand Envelope
c.xpenv{c, «), where an open envelope, c = (,5 ,̂ , , fT'^) has an action a
placed in it, to produce e' is defined as:

e' = (J ^ , d o (a) H , ^ U i ? ' , 0 ,

{da{a)Awr < daia)-i - a < da{a)dur, A" -a<£}U ^ ' i })

— 3aj e {^} U ^ • a Oj

= e <— otherwise

If Ml action foriiis a inaximum precedence relatiouship (Defiuitiou 3,6) with either the end of
a currently existing envelope, or any action that precedes it, then a new envelope is created
which is the combination of the original envelope and the new action. The new envelope is a
copy of the original envelope, however the envelope's end action is set to the end of the new
action, and the actions that preceded the end now follow the start. A temporal constraint
is also added for the duration of this new action, and also to specify that the two (or more)
envelope actions are of the maximum precedence type.

Definition 4,18 — Result

The result, Residt{s, (a)), of applying a single STRIPS action a = (cond, add, del)
in state 5 = {F,0 is s' = {F',C') where

(a) F' = iFUadd)\del

(b) ^ iU {expenvic «) | e e

(c) ^" = ^' U {(a, do(a)H, 0 , 0 , {da{a)dur < da{a)-i - a < da{a)dur})} ^ a =l-

(d) = ^' \ {e} • a = ^s^^ie) a =H

(e) C ^{updateie,a)\cei"}

New envelopes arc created in a state in one of two ways. In the first case (c), a new start
action is chosen. This is the same as for single envelopes as described in version 1 where the
start and end actions in the envelope correspond to the start and end actions of the durative
action. The two sets of actions that precede and follow the extremes of the envelope are

C H A P T E R 4. C R I K E Y 79

initially empty. The temporal constraint set contains only one constraint corresponding to
the duration of the envelope action. Alternatively, new envelopes can be created where
envelopes arc multiple actions long (d). Again, open envelopes ai'c removed from a state
(closed) when the end action to an envelope is chosen (d). Part (e) places content actions
in open envelopes if necessary.

In cases where there is no co-ordination (and so no envelopes), as in the traditional
benchmark domains, envelopes are created when the start action is chosen. If the end action
is not immediately chosen next, then an action may have to follow the stai't of the envelope
(say, if it has a start effect) or precede the end of the envelope (say, if there is a condition to
meet). However the intersection of the two sets will remain empty and consistency checking
will not be performed.

To sunamarise, in this version C R I K E Y again only communicates with the scheduler where
absolutely necessary and only on that part of the plan where there is danger of producing
an unschedulable plan. This version, however, can deal with all types of envelope including
those which are many actions in length. If, when putting a content action in the envelope,
there is a maximum precedence relationship, then a new envelope (many actions long) is
created.

4.3.2 Scheduling

Scheduling in the second version differs from the first. As before, the Veloso algorithm
Hfts a partial order from the total order plan, however the resource reasoning is performed
with precedence graphs. As this is not strictly in the scope of this thesis and not a novel
technology, but rather an new apphcation of it, it is not presented in detail here. Precedence
giaphs are summarised below and described in full in [50]. The rest of this section describes
how they are integrated into C R I K E Y including the changes to [50] that had to be made,
followed by an example of how they operate.

Precedence Graphs

Most resource scheduhng approaches reason with the actual timing bounds of fictions. How
ever, Precedence Graphs look at their relative positions. Each resource in the plan has its
own graph, where the nodes are action end points that contain either a condition relating to
that resource, or a resource operator in the effect. Each node is labelled with the minimum
and maximum production or consumption of the resource at that node. Edges between the
nodes are precedence orderings. These graphs need not be represented explicitly but can be
deduced fr-om the STN that holds this information.

The "balance constraint" is calculated for each node in each graph''. The basic idea of

''For reservoir resources (as PDDL2.1 fluent variables are), the balance constraint requires the resource
to be closed, i.e. there eire no more nodes to be added to the graph. This is the case in C R I K E Y , since the
resource reasoning is performed after the planning is complete.

C H A P T E R 4. C R I K E Y 80

the balance constraint is to compute a lower and upper bound on the resource level just
before and just after each event (i.e. x ±s). To calculate an upper bound, all maximum
production levels of all events that could happen before the event ai-e summed with the
minimum consumption levels of all events that must happen before the event. In a similar
way the other balance constraints are calculated.

In fact, precedence graplis as described in [50] use a slightly different model of resources
to PDDL2.1. In that model, all resources have a maximum passible level and a minimum
possible level that is always zero. PDDL2.1 does not explicitly model resom'ces, and does
not have maximimi and minimum possible levels encoded in. Instead, the resources must
meet conditions which can change from action to action. This has the effect of changing the
minimum and maximum possible levels of the resource throughout the plan.

For example, the model used in [50] would specify a fuel tank to have a minimum level
of zero and some constant maximum capacity. In PDDL2.1, this maximum capacity can
change dm-ing the plan, as can the minimum.

For this reason, some simple changes are made to the reasoning presented [50]. Instead of
calculating balance constraints at every node in the graph, it only calculates them for those
nodes that contain conditions. The maximum and minimum levels must then meet these
conditions, (and not, as in the model in [50], keep the maximum and minimum between zero
and the maximum level). Secondly, when calculating the minimum and maximum values, it
only considers nodes that contain resource operators.

The balance constraints can then be used to discover:

• dead ends

• new precedence relations

• new bounds on resource usage

• new bounds on time vai'iables

Dead ends (where the conditions cannot be met) arc not found in C R I K E Y , since it keeps
track of metric values during the planning phase to ensure that there is always adequate
resource. Resource reasoning is not separated out (unlike the temporal reasoning) so there
is no chance of finding an un-schedulable plan due to lack of resources. In the worst case,
the precedence graphs will order all the actions identically to the total order plan produced.
However, it will find concurrency where possible.

C R I K E Y does discover new precedence relations. For each condition, it is made sm-e
that either the maximum and minimum resomce levels must meet the condition and if not,
precedence relations oic put in to ensure that the condition is met (by ordering producers
or consumers to occm- before the condition).

C R I K E Y can use the balance constraints to find new bounds on both the time variables
(which can be propagated tlu-ough to the STN) and resom'ce usage variables. This only

C H A P T E R 4. C R I K E Y 8 1

occurs where there are duration inequalities in the domain, as this is the only case where
operatoi's in the plan can produce or consume variable amounts of resoui-ce wi th actions of
variable duration.

An example precedence graph is given in Figme 4.4(a) for the fuel level of a cai'. There
are two move actions, both of which consume between 10 units of fuel. There is also a refuel
action (not presently ordered wi th respect to the move actions) that can produce between
0 and 20 imits of fuel (depending on the length of the action).

Firstly, in Figure 4.4(b), the precedence graph is able to reason that the REFUEL action
must happen before the second MOVE.TO.B action and so the appropriate precedence re
lationship is added. This is turn allows reasoning for the resource bounds of the REFUEL
action, as i t must now produce a minimum of 5 units. The refuel action must now be of
sufficient length to supply the 5 units, and this information can be propagated up to the
STN.

Duration Inequalities

PDDL2.1 allows the specification of duration inequalities. Rather than fixing the duration

of a dm^ative action, these allow bounds to be put on the duration. These bounds can be a

function of other metric values (for example, you cannot drive for longer than the amount

of fuel available). However, resource change can also be dependent on the duration of an

action (for example, the longer you heat water for, the hotter i t becomes). The duration of

an action now effectively becomes a liidden parameter of the action. This allows resource

change to be decided by the planner. For example, it is possible to decide how long to f i l l

the tank up for (the dm'ation of the refuel action) and so thei-efore how fu l l the tank is at

the end of the action. The possible combinations are summed up in Table 4.1.

The (c) and (f) cases then present resource scheduling problems where i t would intuitively

seem illogical to decide exactly how long an action should be and exactly how much resource

should be produced or consumed until after the plan is produced (i.e. the problems should

be separated out). This version of CRIKEY provides the ideal architecture for this since

both the STN and the precedence gi'aphs handle upper and lower bounds on both resomce

production and consumption and also on time. Through these, contents can be made to

fit exactly in envelopes, and resources can be maximised and minimised. For example, in

the match domain, i f the duration of the match is set to : d u r a t i o n (<= ?dura t ion 8) i t

would be possible to "blow out" the match once the fuse is fixed.

CRIKEY reads the quality metric in the PDDL2.1 problem file to decide what to max

imise or minimise in the precedence gi'aphs. This could be a resource or the total time.

I f i t is a resource that is to be maximised, then that precedence graph is selected and the

producers maximised and the consumers minimised (by changing the dm-ation of their cor

responding actions). I f i t is to be minimised, then the converse happens. After calculating

this, CRIKEY propagates the results through to the STN and the other precedence graphs.

C H A P T E R 4. C R I K E Y 82

REFUEL

START

MOVE-TOJV MOVE.TO-B

> 10 [10,10] > 10 [10,10]

(a) Precedence Graph for the Fuel Level of a Car

REFUEL

START

MOVE.JOJK MOVE.TO.B

> 10 [10,10] > 10 [10,10]

(h) A Precedence Relationship is Added

START

MOVE.TOJ^ MOVE.TO.B

> 10 [10,10] > 10 [10,10]

(c) The Resource Bounds change

KEY: O Ini t ial Resource Level

• Action End Point (with Condition)

A Action End Point wi th Increase in Resource Level

V Action End Point with Decrease in R^esoiu-ce Level

[min, max] min and max Resource Change

— Prncodoncc Relationship

Figure 4.4: Example Precedence Graph

C H A P T E R 4. C R I K E Y 8 3

Table 4.1: Possible Specifications of Durations and Resource Conditions and Operators
Specification Example Notes
Durations
(a) Fixed ?duration 5) The duration of the action

is always known and does
not chajige.

(b) PuQCtioa (= Tduratioa (fuel ? t)) The dm-ation of the fiction
wi l l depend on the state.

(c) Condition (< ?duration (fuel ? t)) The duration is a choice of
the planner.

Resource Conditions and Operators
(d) Fixed (> (fuel ?t) a)

(increase (fuel ? t) 3)
The value of the oper
ator or condition is al
ways known and does not
change.

(e) Function (> (fuel ? t) (fuel-required ?t)>
(decrease (fuel ?t) (fuel.used ? t))

The value of the operator
or condition is dependent
on the state.

(f) Function
of Diu-ation

(increase (fuel ?t) (* (r e f u e l j a t e)
'duration))

The resource change is de
pendent on the duration.

Combinations
(f) k (b) equivalent to (e)
(f) & (c) The resource change is a

choice of the planner

I f i t is the total-time to be minimised, then the duration of each durative action is set to its

minimum. The default bchavioiir is to minimise the total-time and the resom-ce levels.

A n example of this is the Cafe Domain (sec Appendix E) where the object is to deliver

breakfast to a table in a cafe, as drawn diagrammatically in Figure 4.5^. However, due to

there only being one electrical socket in the kitchen, the toast and the tea cannot be made

simultaneously. Once either is made, i t starts to cool, unti l delivered to the table. Whilst i t

is preferable to have them as hot as possible when delivered, i t is also preferable to deUver

them at the same time (or as close to each other as possible). There are three possible

metrics, one is to minimise the heat lost by each item whilst i t is in the kitchen, another is

to have them delivered as close as possible together (i.e. minimising the delivery window),

and finally simply to minimise the total-time of the whole plan.

For each metric the same pai'tial order plan is lift.ed, wi th the same bounds on both

the resource levels and the action times. However, i f the first metric is chosen, then the

LOSING-HEAT actions are minimised. This has the effect of delivering the tea and toast

as soon as they are made. This is propagated through to the precedence graph with the

"This domain contiiins maximum ordcrings (the LOSING-HEAT and DELIVERY-WINDOW afjtions) and
BO also co-ordination.

C H A P T E R 4. C R I K E Y 84

MAKE tea

LOSING-HEAT tea

DELIVER tea

DELIVERY.WINDOW

LOSING-HEAT toast
DELIVER toast

MAKE toast

Figure 4.5: A Partial Order for the Cafe Domain

DELIVERY.WINDOW, which wi l l mean this can no longer be as short as i t could have been.
Then, by default the DELIVERY.WINDOW is minimised and then the totaUtime. I f the
second metric is chosen, first the DELIVERY-WINDOW action is minimised (resulting in the
tea waiting and cooling whilst the toast is prepared) and then the LOSING-HEAT actions
are minimised. Finally, i f the total time is to be minimised, the precedence graphs ai-e
ignored, the actions' duration minimiijed, and then the earliest .start times cho.sen for each
action. Figure 4.6 shows two plans. One where the heat lost is minimised, and one where
the deliveiy window is minimised.

(:metric minimize (total-delivery.window)) (:metric minimize (total_heat_lost))

0,01; (HAKE-TEA t e a l socket!) [1.00]
1.00: (LOOSING-HEAT t e a l) [2.04]
1.02: (MAKE_TOAST t o a s t l socketl) [2.00]
3.01: (LOOSING-HEAT to a s t l) [0.03]
3.02: (DELIVERY-WINDOW t a b l e l) [2.02]
3.03: (DELIVER t e a l t a b l e l) [2.00]
3.03: (DELIVER t o a s t l t a b l e l) [2.00]

Total Delivery-Window: 2.02
Total Heat-Lost: 2.07

0.01
1.00
1.01
1.02
1.02
3.01
3.03

(MAKE-TEA t e a l socketl) [1,00]
(LOOSING.HEAT t e a l) [0.03]
(DELIVERY.WINDOW ta b l e l) [4.03]
(DELIVER t e a l t a b l e l) [2.00]
(MAKE-TOAST t o a s t l socketl) [2.00]
(LOOSING.HEAT t o a s t l) [0.03]
(DELIVER t o a s t l t a b l e l) [2.00]

Total Delivery-Window: 4.03
Total Heat-Lost: 0.06

Figure 4.6: Two Plans wi th Identical Goals but Different Metrics

Some assumptions were made in the implementation of the precedence graphs that l imit

what can he. oxpres.sod in the problem. Fii-stly a resomrn oporat.nr's change rjinnot bo a

function of another resomx;e that is also a function of an action's duration. This means that

once a change has been made in a precedence giaph (i.e. a new resomce bound found or a

new l imit on the duration of an action), this wi l l propagate only up to the STN, and wil l

not affect any other resource changes in other precedence graplis. There is no reason why

CRIKEY cannot be extended to relax this assumption, meeming that the propagation must

C H A P T E R 4 . C R I K E Y 85

happen also between precedence graphs, but this is not in the scope of this thesis. Secondly,
resource change that is a function of the duration, cannot be a binary function of the
duration. Once again, there is no reason why this cannot be relaxed, but has been kept for
ease of implementation. Finally, the metrics in PDDL2.1 allow functions of resources to be
optimised, but this implementation only allows for a single resource to be optimised. Once
more, there is no reason for this apart from ease of implementation. The.se assumptions
can all be relaxed to allow for the ful l expressive power of PDDL2.1 wi th no additional
complexity.

4.4 Comparison with Sapa

Similarities and differences can be observed between Sapa (as described in Section 2.5.2)

and CRIKEY. They are both able to plan wi th problems that contain concurrency, and in

particular, co-ordination''. Both perform forward chaining state space search using a relaxed

plan as an hemistie, wi th both having a similai' notion of state. They both take a histories

view of change since they both keep a record of the past (i.e. the corrcnt plan) and both keep

a record of propositions that are currently true, the values of the metric resources and the

invariants that must not be broken in the current state. But it is in the view of the future

that they differ. Sapa associates a time wi th each state. This is not the case in CRIKEY's

states, since the actual times are scheduled during a separate scheduling phase. Secondly,

whereas Sapa keeps a list of time stamped updates scheduled to happen at a particular point

in the future, CRIKEY keeps a set of updates that wi l l happen some undetermined point
in the future.

The consequence of these two differences is that Sapa does not separate the scheduling

from the planning whilst CRIKEY does. CRIKEY orders its actions and puts times on them

only after the actions have been chosen whereas Sapa does this simultaneously wi th choosing

the actions. I f thorn arc two non-int.crfcring actions, and in one state they are occurring

in parallel and in another, sequentially, Sapa w i l l consider these to be two different states,

whereas CRIKEY will con.9ider them to be the same state, and make this decision dming

the scheduHng phase. This means an increase in the state spa£e for Sapa, which in turn

r/>uld mean more to backtrack over (i.e. not just the planning decision made, but al.so the

scheduling decisions as well).

Key is Sapa's "advance-time" action that changes the state to the next update in the

queue. Sapa discourages its use by not re-calculating the heuristic after using i t , and in

doing 30 favours concurrency in its plans. I f i t did not do this, then i t would always be

advantageous (in terms of the heuristic value) to move the state onto the next timcpoint.

As the states in CRIKEY are not time steunped, there is no need for the "advance-time"

action. The choosing of an end action is CRIKEY's equivalent. I t takes an update which is

"in fact, Sapa contains a bug that results in invalid plans being produced for domains with co-ordination.
This is discussed in the next chapter.

C H A P T E R 4. C R I K E Y 86

known to happen in the future and advances the state to that point. Only counting the start
actions in a relaxe<J plan to form the heuristic has the same effect as Sapa not recalculating
the heuristic. This is not necessary though, as CRIKEY puts in the concurrency after
planning.

Since scheduhng happens during the search for a plan wi th Sapa, envelopes are handled

in the .search. Alternatively put, there is no need to check the .schedulability of the state,

because the schedule is part of the state.

An advantage of CRIKEY's states is where there ai'o dm-ation inequalities with resource

operators and constraints dependent on the duration of the action, as discussed in the

previous section. These effectively allow the parameters of an action to take numeric values.

Unlike Sapa^, which would be forced to decide on a duration there and then (and so also

on the resomce levels), CRIKEY need not commit at this point. Sapa could then have to

backtrack to change this decision. CRIKEY, through the use of an STN and precedence

giaplis, can keep the plan unconstrained in this respect. The asual pi t fal l of this approach

is that the planner must make sure that the STN is consistent through communication wi th

the scheduler. This communication is minimised by only checking when and where i t is

necessary, through the detection of envelopes.

Sapa has the advantage of being able to know the quahty of the plan dming the .search

since it calculates the schedule as i t plans. This can be used to guide the search to better

quality plans. As CRIKEY ignores all temporal information dming planning, i t is unable

to do this, potentially leading to inferior plan quality.

4.5 Chapter Summary

Two versions of CRIKEY were built and formalised here. Both use the theory presented
in the previoas chapter to minimi.se the communication between the planner and scheduler
(or by an alternatively-view; minimise the search space). The first version only handled one
type of single envelope, the second any envelope, including those which are multiple actions
long. This second version results in a larger search space but this is necessary since the
inability to handle them in the first version was due to missing states. The second version is
also able to handle duration inequalities as i t does not specify the future timings of known
actions.

''In fact, Sapa is unable to handle duration inequalities, but it could be extended to use this feature.

Chapter 5

Results

This chapter presents and analyses empirical results from testing both versions of CRIKEY

on a vaiiety of domains and compai'ing them wi th results from other temporal planners.

Firstly, the capabilities of the planners are listed and compai-ed. This is followed by results

from the 4th International Planning Competition (IPC'04) in which the first version of

CRIKEY competed. These domains contain no co-ordination, which CRIKEY is specifically

designed for, so this is tested thi'ough some new domains. Finally, the second version of

CRIKEY's ability to use the plan quality metric provided is exEimined. I n all cases, both

the speed of the temporal planners and the quaUty of their plans are compared.

The aim of this chapter is not to evaluate the planning and scheduling technology used in

CRIKEY, but rather to evaluate the interaction between them, especially in domains where

the components of planning and scheduUng are highly coupled.

Points to Note The temporal planners being compared are written by different people

and in different languages. Some implementations are more highly optimised than others,

especially to certain domains (namely, the competition domains). Both these facts wi l l

affect the performance of the planners, not making it a completely fair comparison. Ideally,

i t is the core algorithms of the planners and their complexity that needs to be compared

(for example, the number of states visited, or the complexity of the heuristic). Empirically

testing them is only, albeit strongly, indicative of this. For this reason, it is sometimes better

to view the rate of change of the planners performance as the complexity of the problems

increases, rather than the actual timings. For all comparisons, the planners are run on the

same machine wi th the same resources.

Just as CRIKEY is not designed wi th planning and scheduling in mind, but instead the

communication between them, .so other planners also have their own agendas. This wi l l

affect the performance of planners on the general problems.

87

C H A P T E R 5. RESULTS 88

5,1 Capabilities

A variety of planners have been chosen to compare their capabilities in temporal planning

problems against those of both versions of CRIKEY. Only original planners are used (i.e.

not extensions to planners that explore some non-temporal aspect of planning). Also, only

planners where there is sufficient documentation or the somce code is available are included.

The documentation and previously pubhshed results are used to determine the capabilities,

alongside testing the planners on a simple set of domains wi th the characteristics under

comparison. In aU cases, descriptions of the planners can be found in Section 2.5.

Tabic 5.1 compares the capabilities of different planners wi th regard to the complexity

of concurrency that they can handle. Only CRIKEY, Sapa, VHPOP, and LPGP can handle

domains wi th co-ordination. MIPS, LPG and TP4 cannot, and i t is not thought that there

are any other temporal planners that are able to (including the SAT-based planners). The

planners that cannot find plans in these cases assume a blackbox durative action model, and

fail to take into accoimt start effects and end conditions.

Table 5.1: Temporal Planner Concurrency Capabilities

Temporal
Planner

PDE^L2,2
T i m e d Initial
Literals (T I L)

T I L compiled
to P D D L 2 . 1

Single
Hard

Envelopes

(Jomplex
Multiple

Envelopes
CRIKEY V I X / / X
CRIKEY V2 / / V
Sapa X / X
MIPS / X X X
LPGP X / / /
LPG / X X X
TP4 / X X X
VHPOP / / /

Sapa uses a shghtly different model of durative action to PDDL2.1. Effects can happen

at any time during the duration of the action (and so the end effects of PDDL2.1 can be

easily translated into Sapa's language). Conditions and invariants can hold for any €U-bitary

length of time but must start from the beginning of the action. This makes i t impossible

to correctly translate the end conditions which are not invariants. For this reason, Sapa is

mai'ked as not being able to solve envelopes many actions long since this often requires the

use of end conditions. For example, Sapa cannot find a plan for Figure 5.1(b) (that contains

end conditions), but can for Figiure 5.1(a), whereas CRIKEY version 2 and VHPOP can

find plans for both.

Sapa, whilst i t should theoretically be able to plan wi th co-ordination where there are

single hard envelopes, in practice cannot. The reason for this is two fold. When Sapa first

finds a plan it does not respect the tolerance value (X)rrectly. This is partly because the

C H A P T E R 5 . RESULTS 89

Init ial State

Initial. State

91

s,P,q\

\m
t

ml

\t
(a) Solvable by C R I K E Y v2, VHPOP and Sapa

P

Goal State

Goal State

\<1,^P

t

(b) Solvable Only by C R I K E Y v2 and VHPOP

Figure 5.1: Two Possible Complex Envelopes

"advance-time" action would then only take the time forward by e rather than to the next
event in its queue. I t post-procciscs the plan to optimi.sc i t and scpai'ate the actions by
e. However, this post-processing does not account for start effects (even though Sapa does
whilst planning), and so wrongly places the content actions outside the envelope actions.
Secondly, Sapa contains a bug whereby when it first searches for a plan, it can fail to check
that an invariant of an action is not deleted by an action already in the queue.

Also LPGP theoretically should be able to find plans in domains containing co-ordination.
However, a few modifications to the plarmer are needed. Often in domains involving co
ordination, i t is the start effects of an envelope action that are required and not the ends.
Since LPGP searches backwards in finding a plan, i t must choose to place the (unwanted)
end action in before it realises that i t needs the start of the envelope, and so fails to find a
plan.

Table 5.2 looks at the capabiUties of these planners wi th respect to the kind of durative
action i t can .supiMJrt in PDDL2.1 (see Table 4.1).

Only CRIKEY version 2, Sapa and MIPS can plan with durative actions where the
resource cJiange is reliant on the duration of the action. Only CRIKEY ver.sion 2 and MIPS

C H A P T E R 5 . RESULTS 90

Table 5.2: Temporal Planner Temporal Capabilities

Temporal
Planner Encoding Resources

State
Dependent
Durations

Duration
Dependent
Resource
Change

Duration
Inequalities

CRIKEY V I STRIPS^ / / X X
CRIKEY V2 STRIPS^ / / / /
Sapa STRIPS^ / / / X
MIPS A D L / / / /
LPGP STRIPS / X X
LPG ADL^ / / X X — ^
TP4 STRIPS^ X X X
VHPOP A D L X X X X

fCa j i handle Typed STRIPS domfuns

can handle duration inequalities. CRIKEY makes some assumptions as to the nature of

these as set out in Section 4.3.2. Again i t is not thought that there are any other planners

with these capabilities.

5.2 IPC'04

The competition was run over a period of approximately three months during which time

competitors ran their planners on a series of problems on a Linux PC wi th two CPUs running

at 3GHz. For each problem, planners were hmited to 1GB of memory and 30 minutes of

CPU time. Dming the competition, competitors were allowed to modify their planners to

correct bugs and optimise them for the domains.

There are 7 domains: aii-port, pipesworld, promela, PSR, satellite, settlers and UMTS.

These are described below and in more detail in [44]. The domains are spht into "domain

versions", which I'elates to the number of PDDL2.2 featvues in the problem (for example,

STRIPS only, fluents, durative actions e tc . . .) . Competitors were encouraged to tackle as

many versions as their planner could handle. They then choose a "version formulation".

Each formulation had equivalent problems, but expressed differently. The formulation refers

to STRIPS, ADL, and whether the new features in PDDL2.2 of derived predicates and timed

initial literals are compiled down to PDDL2.1. Some of the domains (satellite and settlers)

did not have non-ADL formulations and so CRIKEY could not compete in these domains.

There is no co-ordination in any of the competition domains, except for where PDDL2.2

timed initial UteraLs are compiled into PDDL2.1 domains. I n these cases, the dummy actions

' L P G P can handle static fluents that do not change during planning.
*LPG is unable to handle conditional effects.
^TP4 can only handle resources that model reservior resources and not the full range of fluent variables

possible in PDDL2.1.

C H A P T E R 5. RESULTS 91

involved in the compilation require envelopes. The temporjil aspect of the domains are

further limited since there are no .state dependent durations.

Planners were compared wi th those that used both the same version and formulation as

itself. On quality, i t was decided by the competition organisers to only compare planners

that were trying to optimise the same criteria. There were three options: the makespan of

the plan, the number of actions in the plan, or the quality metric provided in the problem.

The theory behind this decision is that i t does not make sense to compare two planners

that arc trying to .solve different problems (by optinu,sing different factors). CRIKEY was

evaluated by the total number of actions in the plan i t produced and this is what is referred

to by "quality" in the results presented here.

Furthermore, in the competition, optimal planners were compared separately from sub-

optimal planners. C!ompaji.sons for the competition were done informally, by .simply looking

at the results and judging who performed best.

Results from the competition are presented here to .show that CRIKEY is competitive

in general benchmark domains. The planning and scheduling technology is not novel or

"cutting edge" but simple and well known in such domains. For this reason and the fact

that CRIKEY was not optimised during the competition, i t was not expected to perform

outstandingly.

P S R

i n this domain the goal is to reaupply a number of lines in a faulty electricity network. The
flow of electricity through the network, at any point in time, is given by a transitive closme
over the network connections, subject to the states of the switches and electricity supply
devices. The problems rely heavily on derived predicates, of which only the smallest could
be translated. A l l versions of this domain are non-temporal.

Results for performance and plan <juality are shown in Figures 5.2(a) and 5,2(b). There
is little difference between the competing planners. No planner performs consistently better
than any other, and, wi th the exception of LPG, the quahty is comparable for all planners.

The domain shows CRIKEY performing competitively against state of the art planners
in classical propo.sitional planning and solving 29 of the. 50 problems.

C H A P T E R 5. RESULTS 92

toooo

1000

100

S 10

1 *•

0.1

O.Oi

CRIKEY v1
LPG-td .speed
LPG-td.quaiit̂
SGPIan
diagonally-downward
dowmmard
maivin

PG-IPC3.speed^ • «

iaai—a** '—s-s— ' ^ ' i * — J ! ' 1
10 15 20 25 30

task nr.
(a) Pexformance

35 40 45 50

300

250

200

150

100

CEUKEVvl
-X - LPQ-ld.speed

•••«•• LPG-td.quality
SGPIan

- - » - dtagonaHy-downward
downward

• - • - yahsp
semsyn
BFHSP

5f \

/I I A
1 i i i i •

i h I

' A

10 15 20 25 30
task nr.

(b) Plan Quality

35 40 -15 ?0

Figure 5.2: Non-temporal Small PSR Domain

C H A P T E R 5. RESULTS 93

Promela Domain

Tlie goal in this domain is to find deadlocks in coHunuiiication protocols, translated into
PDDL fi:om the Promela specification language. The communication protocols used in the
competition were the dining philosophers problem, and an optical telegiaph routing problem.
CRIKEY only competed in the non-temporal domain versions since the other ver.sions all
contained ADL, which was impractical to compile to STRIPS.

Figures 5.3 and 5.4 show the results for these domains. The plans are all of the same
length as there is only one solution (plan) to bring the system to deadlock (the goal). In
problem 7 of the dining philosophers domain, CRIKEY put i n some irrelevant actions due
to a bug in the code. CRIKEY, as with Macro-FF and P-MEP, has a significantly greater
giadient than FAP, SGPlan, and YAHSP in the performance giaph, where the .scale is
logarithmic. This shows that the performance is much worse. This is fmther shown as
CRIKEY .solves fewer problems than those planners. Given more re,30urces, CRIKEY would
have continued to solve the problems but wi th a continued deterioration in performance.

C H A P T E R 5. RESULTS 9 4

10000

1000

CRIKEY v1
- X — LPG-ld.speed

LPG-td^aiity
Q Macro-FF

SGPIan
fap
p-mep c
yahsp

001
15 20 25

task nr.
(a) Performance

30 35 40 4&

400

360

300

250

J 200

T50

100

50

C R I K E Y v l
- x-- LPG-td .speed

LPG-td.quality
Q Macro-rr
» - SGPtan

fap
yahsD

^ BFHSP
semsyn

10 15 20 25
task nr.

(b) Plan Quality

30 •fo 45

Figure 5.3: Non-temporal Dinning Philosophers Domain

C H A P T E R 5. RESULTS 95

10000

1000

CRIKEY v1
- X — LPG-ld.speed

LPG-td̂ mjaiity
Q Macfo-FF
• ' SGPIar>«-«-«-*-*

fan-.-*

0.01
to 15 20 25

task nr.
(a) Performance

30 35 40 45

500

400

300

200

100

C R I K E Y v1
LPG-td.speed
LPG-td.oyality
Macrn-FF
SGPtar
fap

BFHIP

/

10 15 20 25
task nr.

(b) Plan Quality

30 35 40 45

Figure 5.4: Non-temporal Optical-Telegi-aph Domain

C H A P T E R 5. RESULTS 96

Pipesworld

In this domain, ttie object is to control the flow of oil derivatives through a pipeline net
work, obeying various constraints such as product compatibility and tankage restrictions.
One interesting aspect of the domain is that i f something is inserted into one end of a
pipchnc .segment, .something potentially completely different can come out at the other end.
CRIKEY competed in four domains, two without resources (no-tankage) and two wi th re
sources (tankage). Of these domains, one was non-temporal, the other was temporal. The
results are shown in Figures 5.5, 5.6, 5.7, and 5.8.

In all these versioas CRIKEY performed competitively .showing that i t can compete
in both temporal and metric planning problems. I n the temporal metric version it solves
problems that no other planner does. I t proves that the decomposition of temporal planning
into planning and scheduling is a viable solution.

C H A P T E R 5. RESULTS 97

100000

10000

1000

0.1

001

CRIKEY v1
- X — LPG-td.speed
•«••- LPG-ld^ality

Q Maao-FF
• - SGPIan

diagonally-downward
downward
fap
marvin / • *1

V4

^ / i t

' • • • • x » 4 J f l ; 0 i • /

10 15 20 25 30
task nr.

(a) Performance

35 40 45 50

tooo CRiKEY vl
LPG-td.speed

«••• LPG-td.quality
Macro-FF
SGPIan
diagonally-downward
downward
iap
roadmapper
yahsp
semsyn
BFHSP

task nr

(b) Plan Quality

Figure 5.5: Non-temporal No Tankage Pipesworld Domain

C H A P T E R 5. RESULTS 98

10000

1000

100

C R I K P I ' V I
- I 1 1 r

LPG-ld.speed
-«•• LPG-td.quality
• SGPIan p

p-mep
L P C - j P C a ^ e d

D Q IP

"d

(pi / tj-O'

001 ^ ^ -1 ! _

10 15 20 25 30 35 40 45 50
task nr.

(a) Performanoe

300

250

200

150

CRIKEY vl
<- - SGPIan

100

-1 1_

25
tasknr,

(b) Plan Quality

30 35 40 45 60

Figuie 5.6: Temporal No Tankage Pipesworld Domain

C H A P T E R 5. RESULTS 99

100000

10000

1000

100

10

0.1 t'

001

CRIKEY v1
- X — LPG-td.speed
• « - • LPG-td.quality

Q Macro-FF
• SGPIan

diagonally-downward
downward

• tap
• marvin ? ? t • , (,
V— roadmapper /; I

PG-IP

T I

10 15 20 25
lask nr.

(a) Ferforinance

30 35 40 45 50

500
CHIKE.Y vt
LPG-td.speed
LPG-td.quallty
Macro-FF
SGPIan
diagonally-downward
downward
lap
roadmapper
yahsp
BFH§P

25 30
task or,

(b) Plan Quality

Figure 5.7: Non-temporal Tankage Pipesworld Domain

C H A P T E R 5. RESULTS 100

toooo

1000

too

10

1 1 : 1
— • — CRIKEY v1
- - y . - ' LPG-td.Speed
• - « - LPG-td.quaity

Q SGPfan _ «
. LPG-IPC3.spe*

1 1

* <

M /

1 1

\ n » •

V
+

•

1 ,

•„
5?

•

1 1

\ n » •

V
+

•

*;' °
Q

-1 " "^z Q a

/', ' ;

; •

J 5 if / i .0

D
1 ,. B B

. 1 1 1 1

0.1

0-01
10 15 20 25

task nr.

(a) Ferformance

30 35 40 45 50

CRIKEY vt
-< SGPIan

26
task nr.

(b) Plan Quality

30 35 40 45 50

Figure 5.8: Temporal Tankage Pipesworld Domain

C H A P T E R 5. RESULTS 101

U M T S

1Q the UMTS dommn, the task is to set up applications for mobile twminais. The objective

is to minimise the time needed for the set up, i.e. to minimise the makespan of the plan. I f

this objective is ignored then the planning is tr ivial . CRIKEY competed in three versions

of this domain: a temporal domain (Figure 5.9), a flawed temporal domain (Figure 5.10)

and a temporal domain wi th time windows which had been compiled down to PDDL2.1

(Figm-e 5.11).

CRIKEY managed to solve almost all the problems in this domain'*. Whilst i t is not

as quick as other plarinei"s competing in the standai'd temporal vei"sion, its performance

degrades at a similar rate and so this could be due to implementation differences.

The flawed temporal domain was created to deliberately disrupt planners guided by

relaxed temporal plans, such as CRIKEY. I t has an action that could achieve a goal in one

step, but this deletes other goals and ,so cannot be used. CRIKEY resorts to Best First

Search which leads to a deterioration both in performance and in the quality of the plan.

This .shows the fragility of the relaxed plan heuristic.

Only two planners competed with the time windows compiled into PDDL2.1: CRIKEY

and SGPIan. Wliilst CRIKEY solved all problems in reasonable time (less than 100 seconds),

SGPIan is faster stiU. In fact, CRIKEY and SGPIan were finding the same plans. The reason

for the difference in the number of actions is that CRIKEY includes the dummy actions in

the total action count, whereas SGPIan does not.

This domain shows that CRIKEY can handle co-ordination when i t is in the form of

time init ial literals compiled into PDDL2.1.

''Those it did not solve were discovered later to be due to a bug in detecting repeated visited states.

C H A P T E R 5. RESULTS 102

toooo

1000

10

— C R I K E Y v1
-X - LPG-td.speed

• L P G - t d . Q u a l i t y
Q SGPIan

- - » - p-mep
LPG-lPC3.soeed

•
»• • -« • •

T I I I I T

0.1
, X -) c , ^ ̂ j < - X y - * ^ X - X - X . ^ K - X - X -

Q • • H Q • B O B D Q B B B B B GJ B B B $

0.01 A o a n d i a B B D f t — • • • [b • • d — g — B — — B « — f e - e fe-B *
10 15 20 25 30

task nr.

(a) ferformance.

35 40 45 50

100

80

GO

4u

90

CRIKEY vl
SGPIan

I I

/

-1 I I L - I I J 1-

10 15 20 25

task nr,

(b) Plan Quality

30 35 40 45 50

Figure 5.9: Temporal UMTS Domain

C H A P T E R 5. RESULTS 103

10000

1000

100

8 10

1

0.1

0.01

~ 1 — _ l
CRIKEY v1

- X - LPG-td.speed
LPG-td.qualitvr

Q SGPfan
LPG-lPC3.spe.

-1 - 1 1 r

, „ „ „ ,) l<_^j | , .«-«- i l (-«- i lC»)l f
^*--»'-_-*-*--,.»._.*-**-* «-*•*•*• «

• Q a B 0 '
B Q Q B e

P - B O O - Q "

Q B Q - B B

• Q Q B B ' A , ' ' *

S B Q Q Gi

Q B B S a £3 B Q C h Q • Q Q Q *

X, „ .4̂ J < - X - X - X - K - K - X

-1 1 1 1 I L

. - x - x - > t » ^ f J < - x - x - , ^ i <
•X, ^ .X-X^j^>^J(

J L .

10 15 20 25 30
tasknr.

(a) Performance

35 40 45 50

100
CRIKEY v1
SGPian

X-X-X - ->f -X

- x - x - x

25
task nr.

(b) Plan Quality

30 35 40 45 50

Figure 5.10: Temporal Flawed UMTS Domain

C H A P T E R 5. RESULTS 104

10000

1000

too

T r i r
CRIKEY vl
SGPIan

-1 r

0.1

: E ^ ^ fL i{ ^ x- -x^-x-x-x-x->;

0.01 I V ' i . A M » i i ' 'W' ' l i ' ' i i l(\ I I » J l ' ' l i Ji j> i i i—I iik—^'
10 15 20 25 30 35 40 45 50

task nr.

(a) Performance

100

80

80

4U

20

C R I K E Y vt
J i i i I I

- X — SGPIan

i
i

J -
X-K-if-WHk

)C X X X X

X - ^ - X - X - K

* - X - X - K - J <

- J 1_ _] I . I L

10 15 20 25 30 35 40 45 50
task nr,

(b) Plan Quality

Figme 5.11: Temporal UMTS Domain with compiled Time Windows

C H A P T E R 5. RESULTS 105

Airport Domain

The purpose in this domain is to control ground traffic in airports, moving planes between

gates and runways safely. The largest instances (problem numbers 2 1 - 5 0) in the test suites

are realistic encodings of Munich airport. C R I K E Y competed in the non-temporal version

(Figure 5 .12) , the temporal version (Figure 5 .13) and the temporal version with deadhnos

complied into P D D L 2 . 1 (Figure 5 .14) .

Again, C R I K E Y performs competitively in all versions of this domain and was ranked

second in the competition for the propositional, sub-optimal airport domain. Where there

is co-ordination in the compiled time windows versions, C R I K E Y finds solutions that other

planners do not.

C H A P T E R 5. RESULTS 106

t00000

10000 F

1000

CRIKEY vl
- LPG-td.speed

i-td^ality
Macro
SGPIan
diagonally-downward

- downward
lap
marvin
p-mep

lask nr

(a) Performance

.A 400 F

GHIKEY v1
X — LPG-td.speed
«.. . LPG-td.quality
tJ Macro-FF

SGRan
diagonally-downward

• • downward
lap
roadmapper
yahsp

'- - semsyn
* • BF

task nr

(b) Plan Quality

Figure 5.12: Non-temporal Airport Domain

C H A P T E R 5. RESULTS 107

10000

1000

too

0.01

CRIKEY v1
- x - LPG-td.speed

LPG-td.quality
a SGPfan

PC3.spe^ +

i. fl
Q Q * ^ X

B O

. 0 P<-x

, . x - f ^ ^

p a ^ , x -

B H > ^ . B ^ ' - ^ V

10 15 20 25
task nr.

(a) Performance.

30 35 40 45 50

C R I K E Y v l
- SGPIan

r 100 .1-

25
task nr,

(b) Plan Quality

50

Figure 5.13: Temporal Airport Domain

C H A P T E R 5. RESULTS 108

1000O

1000

too b

S 10

001

C R I K E Y vl
-1 r T r

- X — SGPIan

r

- I 1-
5 10 15 20 25 30

task nr.

(a) Performance

35 40 45 50

500

400

300

I
200

100

CRIKEY vt 1 I
- X — SGPIan

_ i I I 1 I 1 J 1-

10 15 20 25 30 35 40
task nr.

(b) Plan Quality

45 50

Figure 5.14: Temporal Airport Domain wi th Time Windows

C H A P T E R 5. RESULTS 109

5.2.1 Analysis Overview of IPC'04 Domains

These competition results show that CRIKEY is a temporal planner that performs reason
ably well in propositional, metric and temporal benchmark domains. CRIKEY's implemen
tation is not optimised and its design and algorithm are not intended to be outstanding.
Particular i.ssucs (namely co-ordination) not present in the domains wore focu.sod on in
stead. However, CRIKEY is more expressive than the other planners competing (as shown
in Section 5.1 at the beginning of this chapter), wi th the possible exception of the poorly
performing P-MEP. By limiting the expressive power of the problems, assumptions are made
as to the nature of the problems. These assumption load to a docreaso in the computation
necess£iry which in turn leads to better performance. CRIKEY does not make these assump
tions, and so whilst i t can plan for more domains (see the rast of this chapter) it pays for i t
in its performance in general domains.

5.3 Co-ordination

I n this section, those planners that can handle co-ordination are compared against one an
other as before, but on domains .specifically designed to contain co-ordination. The machine
from the IPC'02 competition was used and is a Linux PC running at SOOMhz. The planners
had 500MB of memory and a time limit of twenty minutes. This is significantly less resources
than for the IPC'04. To compensate for this the problem instance sizes are smaller. One
reason for the reduction in resources available is that the difficulty in the problems does
not come from the size of the instance but from the interaction between the planning and
scheduling (i.e. the co-ordination) and i t is of more interest to know whether the planners
easily find the solution in the search space (if at all) and not actually how long the planners
take.

The performance graphs are now on a linem- scale (not logarithmic), and the quality is
no longer calculated by the number of actions in the plan but by the temporal length of
the plan. The domains contain forced concurrency (in the form of co-ordination) and so
the temporal length of the plan is quite separate from the number of actions in the plan.
Content actions are effectively not counted as it is the envelope actions that account for
the length of the plan. I t is these actions that a good planner wi l l want to minimise. By
comparing the temporal length, i t is the scheduler, planner and their interaction which is
really being tested, whereas when comparing the number of actions, the .scheduler has no
impact on the quality. I t is also important to compare the temporal length of the plan where
there ai'c diu-ation inequalities, since the number of actions wil l remain the same regardless
of their duration.

C H A P T E R 5. RESULTS 110

5.3.1 The Match Domain Revisited

Both versions of CRIKEY, VHPOP and Sapa were all tested on 4 variations of the match

domain, based on the domain initially presented in Section 3.2 and in f u l l in Appendix C.

However, VHPOP and Sapa do not obey PDDL2.1 semantics quite as closely as CRIKEY,

and where an invariant of an action is achieved by the start effects of an action (as in the

LIGHT.MATCH action), the plaimers report that no plan can be found. For these tests these

invariants are removed. This does not affect the meaning of the domain as the fuses must

still be fixed within the burning of the match. The necessary changes to LPGP could not

be made and so is not included in these domains.

Figure 5.15 presents results for the standard match domain. In this domain it takes five

time units to fix a fuse, and a match burns for eight time tmits. The number of matches

and fuses in the instance is twice the task number (e.g. problem niunber 5 has 10 matches

and 10 fuses to fix) .

As discussed earlier, Sapa fails to find valid plans. I t reaUses that more than one match

is required, but produces plans where two fuses are fixed by the light of one match, resulting

in plans with half the niunber of matches required. For this reason, Sapa is compared only

for its performance.

VHPOP can use a multitude of search strategies, flaw selection preferences and hemistic

guidance. Some experimentation was performed to find out which combination work best in

the match domain and i t was found that A * search with the A D D heuristic and preferring

plans with few open conditions.

As can be seen, CRIKEY version 1 performs significantly better than version 2. This is

because a plateau is reached in the search space when one fuse has l^een fixed by the light

of one match and the planner is trying to fix another fuse. The heuristic in this case does

not guide the planner to close the envelope and light another match. In.stead the planner

must perform a small amount of seai'ch to discover this, including checking that all of the

unfixed fuses arc not able to be fixed using the rest of the available light. Version 2 splits

all its actions into 2 actions, whereas version 1 compresses the fix fuse actions into a single

action. For this reason, the size of the .search at every plateau where a new match is needed

is twice as big for version 2 as version 1, and so takes longer.

Table 5.3 shows the percentage of time that both versions of CRIKEY .spend on parsing

and instantiation, planning, and scheduling. The reeison that version 2 spends proportionally

longer planning is again attributed to the lai-ger search space. Both versions spend most of

their time planning as this is the harder problem to solve. The scheduler is not complex,

finding a quick greedy solution.

A l l planners find the same (optimal) solution.

C H A P T E R 5. RESULTS 111

so

70

60

i 50

40

30

20

10

0

— CRIKEY vl
- X — CRIKEY v2

j VHPOP
o SAPA

1 5 6
task nr.

(a) Performance.

10

C R I K E Y vt
— X — CRIKEY v2

VHPOP

task nr

(b) Plan Quality

Figure 5.15: Standard Match Domain

C H A P T E R 5. RESULTS 112

Table 5.3: Percentage of Time Spent in Temporal Planning by CRIKEY in the Match

Problem C R I K E Y v l C R I K E Y v2
Parsing & Paising &
Grounding Plaoning Scheduling Grounding Planning Scheduling

1 33.33% 33.33% 33.33% 33.33% 33.33% 33.33%
2 0.00% 100.00% 0.00% 0.00% l00.0O% 0.00%
3 0.00% 100.00% 0-00% 0.00% 66.67% 33.33%
4 0.00% 66.67% 33.33% 12.50% 62.50% 25.00%
5 0.00% 50.00% 50.00% 5.56% 66.67% 27.78%
6 0.00% 37.50% 62.50% 2.94% 76.47% 20.59%
7 8.33% 33.33% 58.33% 0.17% 97.97% 1.86%
8 6.25% 31.25% 62.50% 0.79% 84.25% 14.96%
9 5.00% 30.00% 65.00% 0.37% 83.52% 16.10%

M = „ . = 4 M % „ = _32-0QSi=. ^.,64.00%=.= =--0:36%^- '-91.55% 8.09% .

Match Domain with Variable Durations

Figure. 5.16 ahow the results for a variant of the sttrndajd matph dom!^ l u this domajii,

the fuses take different times to fix and different matches also burn for different durations.

A fuse that takes a long time to fix must be fixed by the light of a match that burns for

a sufficient amount of time. This match must therefore not be wasted on another shorter

fuse.

The light match action is changed'"' so that only one match can be alight at any one time.

This makes it advantageous to fix as many fuses as possible by the light of one match, in

order to minimise the temporal length of the plan. This variant is effectively a bin packing

problem.

This variant uses fluents to model the burning time of the match and also the mending

time of the fuse. VHPOP cannot handle fluents and so could not be tested on this domain.

Again, Sapa produces invaUd plans, but is plotted to give an approximate comparison of

time.

Once again, CRIKEY finds plateaux in the search space and this again is the reason why

the second version of CRIKEY performs worse since i t has a bigger search space to explore

at this point.

Figme 5.16(b) shows the quality of the solutions produced, including the optimal quality

achievable. Both versions of CRIKEY produce the same solutions. I n some problems, this

is the optimal solution. This is usually where the problem is highly constrained and the

^'I'he proposition light no longer t a k ^ the match providing it as a parameter. This prevents two
LIGHT.MATCH actions executing concurrently, as one would delete the "light" from the other when they
burnt out. Whilst this may not be what is intended, it does mean that the FIX.FUSE action does not need
to specify where the light comes from to fix the fuse. Ideally a combination of these two models is needed:
two matches could burn at once and not delete each other's light at the end of the action, whilst also not
specifying where the light comes from for the fix fuse action. To model this, conditional effects are needed
which C R I K E Y is unable to handle.

CHAPTER 5. RESULTS 113

160

140

120

100

U 80

60

40

20

—>— CRIKEY v1
— K — CRIKEY v2

3APA

5 6
task nr.

(a) Performance

9 10

— I — CRIKEY vl
- - K — CRIKEY v2
••«— Optimal

S

5 6

tasknr,

(b) Plan Quality

9 10

Figure 5.16: Variable Time Match Domain

CHAPTER 5. RESULTS 114

optimal solution is the only solution. (On other problems it may have found the optimal
solution pm'ely by accident). In cases where the problem is highly constrained (i.e. some
fuses must be fixed by one of the matches), the planner must perform BFS in order to find
a solution as EHC fails, since the hemistic ignores the temporal information and pairs the
wrong match with the wrong fuse. In these cases, it takes longer to find a solution.

The Lift-Match Domain

So fm-, the match domaius have only coutaiued co-ordiuatiou. i t i» UMJIB likely that a "real-
life" domain with co-ordination will also have some actions that are not co-ordinated (i.e.
need not happen concurrently). The next variant of the match domain (Appendix F) reflects
tWs. As l>efore, electricians must fix fuses by the light of matches. The fuses however, are
distributed about rooms in a building which the electricians must navigate around using
the corridors and lifts. This navigation is not co-ordinated. Since there is now more than
the one electrician, more fuses can be fixed concurrently by the light of one match, so long
as the fuses, light and electriciaas are all present in the same room. Figure 5.17 shows the
results from this domain.

This is a much more complex domain and the planners do not fair so well on it. Again,
failure occm ŝ most where the problems are highly constrained and there are fewer matches
than fuses. In this case, both electricians must be in the same room at the same time
to fix fuses by the light of only one match. In the previous match domains there have
only been two operators (LIGHT.MATGH and MEND.FUSE), two types (match and fuse)
and four predicates (mended, hght, handfree and unused). In this domain there are seven
operators, six object types and eleven predicates. This makes the search space bigger and
so the problems take longer to solve.

As in the previous match domains, the relaxed plan heuristic is of little help since it
ignores delete effects, but the LIGHT.MATCH action deleting the hght is critical to plan. As
a consequence, CRIKEY often fails in EHC and instead must resort to BFS. This is a poor
search strategy when the problem is big. A more informed heuristic is needed.

In an attempt to reduce the size of the domain, the match objects are turned into a
numeric value where only the number of matches unburnt is recorded. Since all matches
are symmetric, this reduces the symmetry in the problem and so the size of the .search
space. The LIGHT-MATCH action reduces the number of unused matches by one and has a
condition that there is at least one match left (see Appendix F.l). Figure 5.18 shows how
this reduces the time needed to solve the problems.

CHAPTER 5. RESULTS 115

an

70

60

50

—+— CRIKEY v1
— K — CRIKEY v2
•••«••• VHPOP

X 40

30

20

8

task nr.

(a) Ferformance

10 12 14

CRIKEY vt
" X — CRIKEY v2

VHPOP

8

task nr.

(b) Plan Quality

10 12 14

Figure 5.17: The Lift Match Domain

CHAPTER 5. RESULTS 116

80

70

60

50

g 40

30

20

CRIKEY v1 with Numerics'
— K — CRIKEY v2 with Numerics
— «— CRIKEY VI without Numerics

B CRIKEYva without Numerics

8
task nr.

10 12 14

Figure 5.18: Performance of C R I K E Y with and without matches encoded using fluents

CHAPTER 5. RESULTS 117

5.4 DriverLog Shift
The Driver Logistics domain was used at IPC'02 (as used in Appendix A for the example
LPGP translation). It involves moving packages around cities using trucks and drivers
to transport them. This domain, with the problems used in the competition, has been
transformed to the DriverLog Shift domain (Appendix G), where drivers can only work for
a certain amount of time before they must taJce a break and have a rest. This involves
co-ordination, as the shift action is an envelope, into which must fit the contents of driving
and walking.

Figure 5.19 shows the performance of VHPOP and GRIKEY on the original first fifteen
problems of the Simple Time domain. Figure 5.20 shows the performance of the planners on
the same problems converted into shift problems. Figure 5.21 shows how the peifonnance
of the planner deteriorates. This shows how much harder the problems become once co
ordination is introduced int.o the problem. VHPOP in part.iculai' performs much worse even
though it is using the flags that worked best on this domain in IPC'02^.

The seaich must sometimes take aibitrary decisions on which branch on the seaich tree
to explore first where they have the same heuristic value. Problems (e.g. problem 10) where
the planner actually performed better on the shift domain is thought to be due to luckily
choosing the correct path at this point.

Since the temporal length of the plan is dictated by the shift envelope action, all planners
find the same quality of plan, except in Problem 7 where VHPOP finds a plan that can use
one less shift.

Table 5.4 shows the proportion of time spent by CRIKEY in the planning and schedul
ing phases. Again, the second version of CRIKEY spends more of its time proportionally
planning, than the first version. This is again due to the increased search space in planning.
They are both performing exactly the same task for the scheduling so you would expect this
to be equivalent.

Neither the match domain nor the driverlog shift domains can be handled by any of the
planners in Table 5.1 that cannot plan with either the single hard envelopes or the complex
multiple envelopes. A variation of the driverlog shift domain, originally presented in [13], is
where the times of the shift are fixed and cannot not be moved as in the variation presented
here. This fixed shift variation can be encoded using PDDL2.2 timed initial literals and so
any plamier able to handle these could tackle that domain. The variation presented here
cannot be represented using timed initial Uterals since the times of the shifts are not known
in the initial state, but arc a choice of the planner.

Two more domains are presented in the rest of this section that again involve co
ordination and so again can only be handled by those planners which do not assume a
blackbox model of dtnrative action.

* \ T I P G P uspcl grounded actioiiB with A*"5war(-.h, Itie A D D R lii^uristic and ihtf MO-Loc-Couf flaw sufecliou
criteria.

CHAPTER 5. RESULTS 118

350

300

250

200

100

50

— CRIKEY v1
— X — CRIKEY v2
- « • • • VHPOP

8

task nr.

(ft) Performftnc*

10

CHIKtY v1
CRIKEY v2
VHPOP

E 300

8

task nr.

(b) Plan Quality

Figure 5.19: Standard DriverLog domain as used in IPC'02

CHAPTER 5. RESULTS 119

250

» 0

150

100

50

— « — CRIKEY vl
— X — CRIKEY v2
• • • « - VHPOP

8

task nr.

(a) Performance

10 14

7QD
C R I K E Y vl
CRIKEY v2
VHPOP

6 8

task nr.

(b) Plan Quality

Figure 5.20: DriverLog Simple Time Domain Converted to use Shifts

CHAPTER 5. RESULTS 120

600
CRIKEY v1

K — CRIKEY v2
• VHPOP

task nr.

14

Figure 5.21: Degi-adation of Performance when DriverLog Domain Converted to use Shifts

5.4.1 Mousetrap

The mousetrap domain (see Appendix H) is inspired by the board game of the same name.
Mice must navigate around a maze to find and eat cheese. Travelling down some routes
can trigger devices to activate. These devices trigger fm-ther devices (in a "cartoon-hke"
manner) until after some time a trap falls over the cheese along with any mouse eating it.
Sometimes it may be possible (or even necessary) to trigger a trap, and then quickly run in,
eat the cheese and run away, before the trap falls. Other times this will not be possible, and
an alternative route must be found. The co-ordination in this domain occurs between the
contraptions and trap actions (these are the envelope), and the mou.se's (content) actions.

It is not possible to encode this using timed initial literals since the timing of the traps
falling is dopcndnnt on the actions chosen by the planner. I t would soom like an ideal u.sagn
of the derived predicates also expressible in PDDL2.2. However, these are unable to handle
temporal aspects and .so not suitable in this case.

Any planner unable to handle domains containing co-ordination, is unable to tackle this
domain. It could ari.se in a "real-world" domain where processes are triggered and the agent
must complete some task before the process ends.

CHAPTER 5. RESULTS 121

Table 5.4: Percentage of Time Spent in Temporal Planning by CRIKEY in the Driverlog

Problem C R I K E Y v l C R I K E Y v2
Parsing &; Parsing &
Grounding Planning ScheduUng Grotmding Planning Scheduling

1 33.33% 33.33% 33.33% 50.00% 50.00% 0.00%
2 14.29% 28.57% 57.14%
3 25.00% 25.00% 50.00% 5.56% 88.89% 5.56%
4 14.29% 28.57% 5744% 0.88% 97.37% 1.75%
5 10.00% 40.00% 50.00% 2.08% 93.75% 4.17%
6 12.50% 37.50% 50.00% 0.55% 98.90% 0.55%
7 20.00% 20.00% 60.00% 2.56% 94.87% 2.56%
8 5.26% 42.11% 52.63% 0.16% 99.20% 0.64%
9 3.23% 45.16% 51.61%

10 15.38% 15.38% 69.23% 1.23% 97.95% 0.82%

5.4.2 Baseball

This domain (in full in Appendix I) models an innings of baseball. The batsmen must travel
around all four bases which is dependent on the speed they can run. The duration the ball
is in the air is dependent both on how well the batsman can bat and how fast the pitcher
is able to thi-ow the ball. The longer the ball is in the air, the more time available fni" the
batsmen to run around the comse. Batsmen must reach a base before the baJl is retrieved
by the fielders. The model deliberately does not allow for one batsman to overtake another.

The co-ordination in this domain is in the running of the players (some actions may hap
pen concurrent, as with two hitters running to different bases, some must occur sequentially,
where one hitter runs first to base one and then to base two) and the action that represents
the ball travelling thi-ough the air.

Again, this domain can only be handled by planners that can reason with co-ordinated
actions, i.e. CRIKEY, Sapa, VHPOP and LPGP should (at least in theory) all be able to
represent and reason with this domain model.

5.5 Using the Metric
CRIKEY does not hold a queue (or schedule) of exactly when futm-e events happen, allow
ing it to easily be extended to use Precedence Graphs find handle domains with duration
inequalities. It looks at the quaUty metric given to decide on the duration of actions. As
with temporal information, this metric is ignored during the plfuining phase, .so no guarentee
of quality can be given.

Few planners automatically consider the metric given (only LPG claims to use i t in
IPC'04), but this could be because most temporal domains specify minimising the temporal
length of the plan. Only MIPS is known to hemdle duration inequalities (but as previously

CHAPTER 5. RESULTS 122

observed, cannot handle domains with co-ordination).
The goal iu the Cafe domain (as introduced in Section 4.3.2 and in full in Appendix E)

is to deliver breakfast (tea, toast and a cooked breakfast) to tables in a cafe. The plans
are constrained in the number of electrical sockets and chefe available in the kitchen. Two
possible metrics for this domain include minimising the heat lost by the breakfast items
before they are delivered to the table, and minimising the total time window over which
items are delivered to a table.

Figure 5.22 shows plan quality with respect to a metric for ton problems in the Cafe do
main. Both graphs show results from exactly the same problems, however in Figure 5.22(a),
the metric is set to minimise the heat lost, and in Figure 5.22(b), the metric is set to min
imise the delivery window. CRIKEY is trying to minimise the dehvery window in the green
linn, and heat loss in the rod line. (Thus the two rod linos are for the same plans, and the
two green lines for the same plans).

As can be observered, CR.IKEY finds a better plan with respect to the metric, when it.
considers that metric in the scheduhng (as should be expected). In each case (for the fom
linens) the plamier produces the same totally ordered actions, btit makes different choices
when it comes to deciding on the duration of actions where dm-ation inequalities are present.

Again, this domain contains temporal coastraints, r^resented using duration inequalities
that caimot be encoded using timed initial literals (since heat loss and dehvery windows can
occur at any time).

5.6 Chapter Summary
CRIKEY is a competitive planner in the benchmark domains that do not contain any
co-ordination. Its non-exceptional performance is explained in Section 5.2.1. However,
CRIKEY is able to solve problems containing co-ordination that other planners do not do
correctly (if at all) and solve them quicker.

CHAPTER 5. RESULTS 123

40

40

35

„ 30

I 25

20

15

10

5

1 t 1
- t — minimising Heat Lost
- K — minimising Deliverv Window

-K"

» « —

4 5 6
task nr.

(a) Minimising HeAt Lost

1

5 6 7
task nr,

(b) Minimising Delivery Windows

10

ininiiTusing Heat Lost
—X— minimising Delivery Window

10

Figure 5.22: Plan Quality in the Cafe Domain with CRIKEY version 2

Chapter 6

Conclusions

6.1 Summary
Temporal planning is made up of two components; planning and scheduUng. Many tem
poral planners decompose the problem into these two sub-problems. Where these two .sub-
problems intereict, the separate solvers must communicate and this can be expensive, both in
terms of CPU time and memory. Most planners, even if they use a PDDL2.1 model of time,
assume "blackbox" durative actions where the internal state of an action is not known. This
greatly simplifies how the problems can be coupled and does not pennit the modelling of
co-ordination. Those temporal planners that do plan with more expressive durative actions
resort back to .solving both components at once.

This thesis has examined where in temporal planning the planning and scheduling com
ponents interact. In cases of co-ordination, not only is the quality of the schedule affected by
the plan, but the possibility of finding a schedule at all. This occurs where content actions
must execute within the duration of envelope actions. It is in these situations, with both
logical and temporal constraints, that the sub-solvers must communicate, and this theory is
put to u.so in a temporal planner called CRIKEY.

CRIKEY does not assume "blackbox" durative actions, but still decomposes the temporal
planning problem. Communication between the two sub-.solvers is minimised and occurs
only where strictly necess£uy and checking only the part of the plan that contains the co
ordination.

In Chapter 4, CRIKEY is compared to its nearest relative: Sapa. One of the advantages
of CRIKEY over Sapa, is the ability to not siiecify the exact time in the future that effects
occiu. This allows CRIKEY to hajidle dmation inequalities.

To summarise once again what the contibution to the plamiing community is, this thesis
has an indepth study of the how temporal constraints appear in temporal planning and the
natm-e of them. It is through these and logical coastraints that the plamiing and scheduhng
interact. A planner was written that uses this theory to minimise the communication be-

124

CHAPTER 6. CONCLUSIONS 125

tween the planner and scheduler and so solve problems that are not solved by other planners.
A novel .search state that does not specify the future timings allows for dui-ation inequalities.
Through this, the scope, aims, motivation and objectives as set out in Section 1.3 are met.

6.2 Critique of C R I K E Y
Whilst CRIKEY performed competitively in IPC'04, it cannot be classed as a leader, either
in the performance of the planner or in the quahty of the plans it produced. However,
CRIKEY obeys the semantics of the competition language and, unlike all other participants
in the temporal domains^, CRIKEY does not make assumptions as to the natui-e of the
problems (i.e. that the problems contain no co-ordination). In assuming "blackbox" durative
actions, the other competitors are efi'ectively making the problem easier and so it is no
surprise when they perform better than CRIKEY.

There are another two good reasons for the non-exceptional performance by CRIKEY,
both are connected with the split of the planning and scheduling. The first is a practical
point. CRIKEY was written to explore the interaction between planning and .scheduling, and
not the two problems themselves. In this, the work has succeded. However it is reasonable
to say that there is not a great amount of scheduling occurring in CRIKEY and that simply
fifting a partial order does not qualify as scheduling. This is a valid criticism and could
al.so bo extended t.o the planner as i t only performs simple search with a common, yet poor,
heuristic.

CRIKEY has a modular architecture, the advantages of which are .set out in Section 2.3.4.
There is no reason why the planning and scheduling technology aspects cannot be improved.
The planner could use a better hotu-i.stic and use techniques employed by other planners,
such as goal ordering or symmetry detection. The scheduling uses a very simple partial order
Ufter with the Velo.so algorithm. The main problem with this (and other similar polynomial
algorithms such as Regnier and Fade algorithm [59]) is that if a ^ 6 in the total order plan,
then in the partial order plan it cannot be the ease that h -< «; it must either keep a -< b
or remove it, but it cannot reverse it. As proved in [4], lifting an optimal partial order is
a hai-d problem to solve. Critical Path Analysis (also referred to as PERT schefluling) can
go some way to solve this and indeed, this is the approach taken by MIPS. In any case, the
theory of where the planning and scheduling interact still holds and can be integrated into
any improved technology, such that the planner and scheduler continue to communicate as
little as po.ssible. This could all be fiu'ther work in the development of CRIKEY.

The second reason for the non-exceptional performance of CRIKEY connected with
problem decomposition is a theoretical point. Minimising the communication between the
planner and scheduler means that they cannot guide each other to good quahty solutions
where the problems are loosely coupled. The quality of CRIKEY's plans is generally not as

'with the possible exception of tilSapa. There is little documentation of this system but it is based on
Sapa. Whilst Sapa should, in theory, be able txi solve such problems, in reality it fails.

CHAPTER 6. CONCLUSIONS 126

good as other planners, since all temporal information is ignored and no scheduling takes
place dui'ing the planning phase (except in the case of co-ordination, where the plan is
checked to make sure that it will be schedulable, but this does not guide the search to a
better quality plan). To improve this, communication between the planner and .scheduler
could be increased, and partially formed plans in the search scheduled to rank them according
to their quality. Indeed this is the approach that MIPS takes; I t performs a cheap scheduling
algorithm on peirtially built plans, to help guide the search to good quality plans, and then
performs the more complex critical path analysis on the final plan.

The heuristic could also be changed to favour plans of better quality. Cm'rently no
account is taken of the metric during the search, but the quality of the relaxed plan extracted
could be used rather than simply the number of actions in it. A relaxed plan could be drawn
from a relaxed temporal planning giaph to take some account of temporal aspects in the
search (this is the approach taken by Sapa).

Again, this could be further work in tfie development of CRIKEY. An interesting and
useful investigation would be to see how both the quaUty of the plans and the time taken
to find a plan changed relatively to the amount of communication between the sub-solvers.
There could be cases where there is great gain on quality with little time lost, and vica versa,
there could be cases where the opposite is true. Using this knowledge it could be possible
to meet this trade-off with some intelligence.

Another reason for suggesting that there is only hmited planning and scheduling taking
place is that the temporal plarming problerris themselves do not contain much planning or
scheduhng. Benchmark planning problems generally do not contain conflicting goals where
the problems are highly constrained and this is reflected in the success of the relaxed planning
heuristic and of the planner SPG, both of which rely on this fact.

Temporal planning problems typically contain no, or at best, very little, scheduling.
Whilst it is perfectly possible to encode a job shop scheduling problem as a temporal planning
problem, it .soon becomes apparent that this is not a good method by which to solve the
problem (and certainly not with the cinrrent technology). This is because planners choose
the €ictions (which in the encoded problem is easy) and do not reason much about their
ordering. Not only do the benchmark domains not contain any hard planning problems and
little .scheduling (as noted several times so far), they do not interact in a hard way either,
as is the case in co-ordination.

Currently, as reflected by the planning competition domains, a hard planning problem
is equated to a large (in the number of predicates, objects and actions) planning problem.
However, I beUeve that the hardness of a problem should correspond to how constrained the
problem is. (Interestingly, problems that become too constrained become easier to solve,
since there ai"e fewer choices to be made. In tei'ms of constraint satisfaction problems: too
few constraints, and the variables can take any value without impacting on other variables;
too many constraints, and the values that the vaiiables take soon propagate through the

CHAPTER 6. CONCLUSIONS 127

rest of the problem resulting in no search being needed). By assuming no hard constraints
between the planning and scheduling, the problems become easier.

It is perhaps incorrect to say that CRIKEY completely separates the scheduhng from plan
ning, sincx;, as defined at the beginning of this thesis, scheduling is the allocation of resources
to actions over time. However, most resource reasoning is performed by the planner, leaving
the scheduler to only perform "time" scheduling.

Part of the difficulty arises from how resources are encoded. They are not expUcitly
modolled, and while there arc some good reasons for this (not least because it makes i t
easier for the domain encoder), this does mean that, say, in planning, processing a job on
a machine is seen as a different action for each macliine. This shotild not be the case and
the planner should not specify on which machine the job should be processed. The actual
identity of the resource is immaterial for the plan, and so also for the action. To realise
this automatically is very hard and so restricts how the plaiming and scheduling can be
seijarated.

The planning commiuiity is in an interesting position. On the one hand there has been criti
cism of the expressive power of PDDL2.1 ([34], [57], [60]), but then on the other hand, there
are many assumptions made by people using it, who fail to exploit its full potential. Whilst
PDDL2.1 is perfectly capable of modelling many problems (with the notable exception of
disjunctive goals that lead to over subscription problems), it may not be the best way of
representing such problems. However, domain independent planners should still be able to
tackle the full range of problems expressible by a language (and not make assumptions on
the input problems) or alternatively limit the language.

CRIKEY addresses this by being the only temporal planner that fully respects the logical
semantics of PDDL2.1, by reasoning correctly about start effects, invariants (when achieved
by the start eflfects) and end conditions. Not only does it include those states in its search
space that other planners omit, but also reasons intelligently about when and where to check
those states for consistency.

Appendix A

Example LPGP Translation

The DriverLog Time Domain as used in IPC'02:
(define (domain driverlog)

(:requirements rdurative-actions :fluents)
(:predicates

(OBJ ?obj)
(TRUCK ?truck)
(LOCATION ?loc)
(driver 7d)
(at ?obj ?loc)
(in ?objl ?obj.)
(driving ?d ?v)
(link ?x ?y)
(path ?x ?v)
(empty ? v) ;

(:functions
(time-to-walk ?loc ? l o c l)
(time-to-drive ?loc ? l o c l))

(:durative-action LOAD-TRUCK
.-parameters (?obj ?truck ?loc)
:duration (= ?duration 2>
:condition (and

(at start (OBJ ?obj))
(at start (TRUCK ?truck))
(at start (LOCATION ?l o c))
(over a l l (at ?truck ?loe))
(at start (at ?obj ? l o c)))

:effect (and
(at Btaoct (not (at ?obj ? l o c)))
(at end (i n ?obj ? t r u c k))))

(:durative-action UNLOAD-TRUCK
:parameters (?obj 7truck ?loc)
:duration (= Tduration 2)
:condition (and

(at start (OBJ ?obj))
(at start (TRUCK ?truck))
(at start (LOCATION ?l o c))
(over a l l (at ?truck ?l o c))
(at s t a r t (i n ?obj ?truck)))

: effect (and

128

A P P E N D I X A . E X A M P L E L P G P T R A N S L A T I O N 129

(at start (not (in ?obj Ttruck)))
(at end (at ?obj ? l o c))))

(rdurative-action BOARD-TRUCK
:parameters (?driver ?truck ?loc)
:duration C= ?duration 1)
:condition (and

(at start (DRIVER ?driver))
(at s t a r t (TRUCK ?truck))
(at start (LOCATION ?loc)>
(over a l l (at ?truck ? l o c))
(at start (at ?driver ? l o c))
(at start (empty ?truck)))

:effect (and
(at start (not (at ?driver ?loc))>
(at end (driving ?driver ?truck))
(at start (not (empty ? t r u c k)))))

(:durative-action DISEMBARK-TRUCK
: parameters (?driver ?triLck ?loc)
:duration (= ?duration 1)
:condition (and

(at start (DRIVER ?driver))
(at start CTRUCK ?truck))
(at start (LOCATION ? l o c))
(over a l l (at ?truck ?loc))
(at start (driving ?driver ?truck)))

:effect (and
(at start (not (driving ?driver ?truck)))
(at end (at ?driver ?loc))
(at end (empty ?truck))))

(:durative-action DRIVE-TRUCK
ipeirameters (?truck ?loc-from ?loc-to ?driver)
:duration C= ?duration (time-to-drive ?loc-from ?loc-to))
:condition (and

(at start (TRUCK ?truck))
(at start (LOCATION ?loc-from))
(at s t a r t (LOCATION ?loc-to))
(at s t a r t (DRIVER ?driver))
(at stsirt (at ?truck ?loc-from))
(over a l l (driving ?driver ?truck))
(at start (link ?loc-from ?loc-to)))

:effect (and
(at start (not (at ?truck ?loc-from)))
(at end (at ?truck ? l o c - t o))))

(:durative-action WALK
:parameters (?driver ?loc-from ?loc-to)
:duration (= ?duration (time-to-walk ?loc-from ?loc-to))
rcondition (and

(at start (DRIVER ?driver>)
(at start (LOCATION ?loc-from))
(at start (LOCATION ?loc-to))
(at start (at ?driver ?loc-from))
(at start (path ?loc-from ?loc-to)))

:effect (and
(at s t a r t (not (at ?driver ?loc-from)))
(at end (at ?driver ? l o c - t o)))))

A P P E N D I X A . E X A M P L E L P G P T R A N S L A T I O N 130

Problem file 1 for the DriverLog Time Domain as used in IPC'02:

(define (problem DLOG-2-2-2)
(:domain driverlog)
(:objects

d r i v e r l driver2
truckl truck2
package1 package2
sO s i s2
pl-0 pl-2)

(: i n i

(:goa:

at d r i v e r l s2)
DRIVER d r i v e r l)
at driver2 s2>
DRIVER driver2)
at truckl sO)
empty truckl)
TRUCK truckl)
at truck2 sO)
empty truck2)
TRUCK truck2)
at package1 sO)
OBJ package1)
at package2 sO)
OBJ package2)
LOCATION BO)
LOCATION 8 1)
LOCATION s2)
LOCATION pl-0)
LOCATION pl-2)
path s i pl-0)
path pl-0 s i)
path sO pl-0)
path pl-0 sO)
= (time-to-walk s i pi
= (time-to-walk pl-0

(time-to-walk sO pi
= (time-to-walk pl-0
path s i pl-2)
path pl-2 s i)
path s2 pl-2)
path pl-2 82)
= (time-to-walk s i pi
= (time-to-walk pl-2
= (time-to-walk s2 pi
= (time-to-walk pl-2
link sO s i)
l i n k s i sO)
= (time-to-drive sO s
= Ctime-to-drive s i
link sO B2)
li n k s2 sO)
= (time-to-drive sO s
= (time-to-drive s2 s
li n k s2 s i)
l i n k s i 82)
= (time-to-drive s2 s
= (time-to-drive s i s
(and

at d r i v e r l s i)

0) 43)
s i) 43)
0) 80)

sO) 80)

2) 29)
s i) 29)
-2) 79)
s2) 79)

1) 70)
0) 70)

2) 47)
0) 47)

1) 24)
2) 24))

A P P E N D I X A . E X A M P L E L P G P T R A N S L A T I O N 131

(at t r u c k l s i)
(at packagel sO)
Cat package2 sO)))

(:metric minimize (total-time)))

The domain file after translation:

(define (domain driverlog)
(:requirements)
(:predicates

(obj ?obj)
(truck ?truck)
(location ?loc)
(driver rd)
(at ?obj ?loc)
(in ?objl ?obj)
(driving ?d ?v)
(link ?x ?y)
(path ?x ?7)
(empty ?v)
(load-trucking-inv ?obj ?truck ?loc)
(iload-trucking-inv ?obj ?truck ?loc)
(unload-trucking-inv ?obj ?truck ?loc)
(iunload-trucking-inv ?obj ?truck ?loc)
(board-trucking-inv ?driver ?truck ?loc)
(iboard-trucking-inv ?driver ?truck ?loc)
(disembark-trucking-inv ?driver ?truck ?loc)
(idisembark-trucking-inv ?driver ?truck ?loc)
(drive-trucking-inv ?truck ?loc-from ?loc-to ?driver)
(idrive-trucking-inv ?truck Tloc-from ?loc-to ?driver)
(walking-inv ?driver ?loc-from ?loc-to)
(iwalking-inv Tdriver 71oc-from ?loc-to))

C:action load-truck-start
:parameters (?obj ?truck ?loc)
:precondition (and

(obj ?obj)
(truck ?truck)
(location ?loc)
(at ?obj ?loc))

:effect (and
(not (at ?obj ? l o c))
(load-trucking-inv ?obj ?truck ? l o c)))

(.•action load-truck-invl
;parameters (?obj ?truck ?loc)
:precondition (and

(at ?truck ?loc)
(load-trucking-inv ?obj ?truck ?loc))

reffect (and
(load-trucking-inv ?obj ?truck ? l o c)
(iload-trucking-inv ?obj ?truck ? l o c)))

(:action load-truck-end
:parameters (?obj ?truck ?loc)
:precondition (and

(load-trucking-inv ?obj ?truck ?loc)
(iload-trucking-inv ?obj ?truck ? l o c))

A P P E N D I X A . E X A M P L E L P G P T R A N S L A T I O N 132

:effect (and
(in ?obj ?truck)
(not (load-trucking-inv ?obj ?truck ?l o c))
(not (iload-trucking-inv ?obj ?truck ? l o c))))

(:action unload-truck-stcirt
1parameters (?obj ?truck ?loc)
:precondition (and

(obj ?obj)
(truck ?truck)
(location ?loc)
(in ?obj ?truck))

:effect (and
(not (in robj Ttruck))
(unload-trucking-inv ?obj ?truck rioc>>>

(taction unload-truck-invl
:parameters (?obj ?truck ?loc)
.•precondition (and

(at ?truck ?loc)
(unload-trucking-inv ?obj ?truck ?l o c))

:effect (and
(unload-trucking-inv ?obj ?truck ?loc)
(iunload-trucking-inv ?obj ?truck ? l o c)))

(taction unload-truck-end
:parameters (?obj ?truck ?loc)
:precondition (and

(unload-trucking-inv ?obj ?truck ?loc)
Ciunload-trucking-inv ?obj ?truck ?l o c))

:effect (and
(at ?obj ?loc)
(not (unload-trucking-inv ?obj ?truck ?l o c))
(not (iunload-trucking-inv ?obj ?truck ? l o c))))

(taction board-truck-start
:parameters (?driver ?truck ?loc)
•.precondition (and (driver ?driver)

(truck ?truck>
(location ?loc)
(at ?drlver ?loc)
(empty ?truck))

:effect (and
(not (empty ?truck))
(not (at ?driver ?loc))
(board-trucking-inv ?driver ?truck ? l o c)))

(taction board-truck-invl
Iparameters (?driver ?truck ?loc)
tprecondition (and (at ?truck ?loc)

(board-trucking-inv ?driver ?truck ?l o c))
teffect (and

(board-trucking-inv ?driver ?truck ?loc)
(iboard-trucking-inv ?driver ?truck ? l o c)))

(taction board-truck-end
tparameters (?driver ?truck ?loc)
Iprecondition (and

(board-trucking-inv ?driver ?truck ?loc)

A P P E N D I X A . E X A M P L E L P G P T R A N S L A T I O N 133

(iboard-trucking-inv ?driver ?truck ? l o c))
: effect (and

(driving ?driver ?truck)
(not (board-trucking-inv ?driver ?truck ? l o c))
(not (iboard-trucking-inv Tdriver ?truck ? l o c))))

(:action disembark-truck-start
:parameters (?driver ?truck ?loc)
.•precondition (and

(driver ?driver)
(truck ?truck)
(location ?loc)
(driving ?driver ?truck))

.•effect (and
(not (driving ?driver ?truck))
(disembark-trucking-inv ?driver ?truck ? l o c)))

(:action disembark-truck-invl
:parameters (Tdriver ?truck ?loc)
:precondition (and

(at ?truck ?loc)
(disembark-trucking-inv ?driver ?truck ? l o c))

.•effect (and
(disembark-trucking-inv ?driver ?truck ?loc)
(idisembark-trucking-inv ?driver ?truck ? l o c)))

(:action disembark-truck-end
:parameters (?driver ?truck ?loc)
:precondition (and

(disembark-trucking-inv Tdriver ?truck ?loc)
(idisembark-trucking-inv ?driver ?truck ? l o c))

:effect (and
(empty ?truck)
(at ?driver ?loc)
(not (disembark-trucking-inv ?driver ?truck ?loc))
(not (idisembark-trucking-inv Tdriver ?truck ? l o c))))

(:action drive-truck-start
:parameters (?truck ?loc-from ?loc-to ?driver)
:precondition (and

(truck ?truck)
(location ?loc-from>
(location ?loc-to)
(driver Tdriver)
(at ?truck ?loc-from)
(link ?loc-from ?loc-to))

:effect (and
(not (at ?truck ?loc-from))
(drive-trucking-inv ?truck ?loc-from ?loc-to Tdriver)))

(.•action drive-truck-invl
:parameters (?truck ?loc-from ?loc-to ?driver)
:precondition (and

(driving ?driver ?truck)
(drive-trucking-inv ?truck ?loc-from ?loc-to Tdriver))

:effect (and
(drive-trucking-inv ?truck ?loc-from ?loc-to ?driver)
(idrive-trucking-inv ?truck ?loc-from ?loc-to ? d r i v e r)))

A P P E N D I X A . E X A M P L E L P G P T R A N S L A T I O N 134

(:action drive-truck-end
:parameters (?truck ?loc-from ?loc-to ?driver)
.•precondition (and

(drive-trucking-inv ?truck ?loc-from ?loc-to Tdriver)
(idrive-trucking-inv ?truck ?loc-from ?loc-to Tdriver))

:effect (and
(at ?truck ?loc-to)
(not (drive-trucking-inv ?truck ?loc-from ?loc-to ?driver))
(not (idrive-trucking-inv ?truck ?loc-from ?loc-to ? d r i v e r))))

(:action walk-start
:parameters (?driver ?loc-from ?loc-to)
:precondition (and

(driver ?driver)
(location ?loc-from)
(location ?loc-to)
(at ?driver ?loc-from)
(path ?loc-from ?loc-to))

:effect (and
(not (at Tdriver ?loc-from»
Cwalking-inv Tdriver ?loc-from ?loc-to)))

(taction walk-invl
:parameters (?driver ?loc-from ?loc-to)
:precondition (and

(wEilking-inv ?driver ?loc-from ?loc-to))
:effect (and

(walking-inv ?driver ?loc-from ?loc-to)
(iwalking-inv ?driver ?loc-from ?loc-to)))

(:action walk-end
:parameters (?driver ?loc-from ?loc-to)
:precondition (and

Cwalking-inv Tdriver ?loc-from ?loc-to)
(iwalking-inv Tdriver ?loc-from ?loc-to))

:effect (and
(at ?driver ?loc-to)
(not (walking-inv ?driver ?loc-from ?loc-to))
(not (iwalking-inv ?driver ?loc-from ? l o c - t o)))))

The durations file created:

load-truck = 2
unload-truck = 2
board-truck^- 1
disembark-truck = 1
drive-truck s i sO = 70
drive-truck s2 sO = 47
drive-truck sO s i = 70
drive-truck s2 s i =• 24
drive-truck sO s2 = 47
drive-truck s i s2 = 24
walk pl-0 sO = 80
walk pl-0 s i = 43
walk pl-2 s i = 29
walk pl-2 s2 = 79
walk sO pl-0 = 80
walk s i pl-0 = 43
walk B l pl-2 = 29
walk B2 pl-2 = 79

A P P E N D I X A . E X A M P L E L P G P T R A N S L A T I O N 135

The problem file after the translationt

(define (problem dlog-2-2-2)
(tdomain driverlog)
(tobjects

d r i v e r l driver2
truck1 truck2
package1 package2
sO s i s2
pl-0 pl-2)

(: i n i t
(at d r i v e r l s2)
(driver d r i v e r l)
(at driver2 s2)
(driver driver!)
(at truckl sO)
(empty truckl)
(truck truckl)
(art truck2 sO)
(empty truck2)
(truck truck2)
(at packagel sO)
(obj packagel)
(at package2 sO)
(obj package2)
(location sO)
(location s i)
(location s2)
(location pl-0)
(location pl-2)
(path s i pl-0)
(path pl-0 s i)
(path sO pl-0)
(path pl-0 sO)
(path s i pl-2)
(path pl-2 s i)
(path s2 pl-2)
(path pl-2 s2)
(link sO s i)
(link s i sO)
(link sO s2)
(link s2 sO)
(link s2 s i)
(link s i s2))

(rgoal (and
(at d r i v e r l s i)
(at truckl s i)
(at packagel sO)
(at package2 sO))))

Appendix B

The Zeno Travel Domain

The Zeno Tavel Time Domain as used in IPC'02:
(define (domain zeno-travel)

(:requirements :durative-actions :typing :fluents)
(:types a i r c r a f t person - locateable c i t y - object)
(:predicates (in ?p - person ?a - a i r c r a f t)

(at ?x - locateable ? c - c i t y))
(:functions (fuel ?a - a i r c r a f t)

(distance ? c l - c i t y 7c2 - ci t y)
(slow-speed ?a - a i r c r a f t)
(fast-speed ?a - a i r c r a f t)
(slow-burn ?a - a i r c r a f t)
(fast-burn ?a - a i r c r a f t)
(capacity ?a - a i r c r a f t)
(refuel-rate ?a - a i r c r a f t)
(total-fuel-used)
(boarding-time)
(debarking-time))

(rdurative-action board
:parameters (?p - person ?a - a i r c r a f t ?c - ci t y)
.•duration (= ?duration (boarding-time))
rcondition (and (at start (at ?p ?c))

(over a l l (at ?a ? c)))
reffect (and (at start (not (at ?p ? c)))

(at end (i n ?p ? a))))

(rdurative-action debark
:parameters (?p - person ?a - a i r c r a f t ?c - c i t y)
•.duration (= ?duration (debarking-time))
rcondition (and (at start (i n ?p ?a))

(over a l l (at ?a ? c)))
.-effect (and (at start (not (in ?p ? a)))

(at end (at ?p ?c)»)

(rdurative-action f l y
:parameters (?a - a i r c r a f t ? c l ?c2 - ci t y)
rduration (= ?duration (/ (distance ? c l ?c2) (slow-speed ? a)))
rcondition (and (at s t a r t (at ?a ? c l))

(at start (>= (fuel ?a)
(* (distance ? c l ?c2) (slow-bum ? a)))))

1effect (and (at start (not (at ?a ? c l)))
(at end (at ?a ?c2))

136

A P P E N D I X B . T H E Z E N O T R A V E L D O M A I N 137

(at end (increase total-fuel-used
(* (distance ? c l ?c2) (slow-burn ? a))))

(at end (decrease (fuel ?a)
(• (distance ? c l ?c2) (slow-burn ? a))))))

(idurative-action zoom
:parameters (?a - a i r c r a f t ? c l ?c2 - city)
tduration (= ?duration (/ (distance ? c l ?c2) (fast-speed ? a)))
tcondition (and (at start (at ?a ? c l))

(at start (>= (fuel ?a)
(* (distance ? c l ?c2) (fast-burn ?a))))>

teff«ct <and (at start (not (at ?a ? c l)))
(at end (at ?a ?c2))
(at end (increase total-fuel-used

(* (distance ? c l ?c2> (fast-burn Ta))))
(at end (decrease (fuel ?a)

(* (distance ? c l ?c2) (fast-bum ? a))))))

(.'durative-action refuel
:parameters (?a - a i r c r a f t ?c - c i t y)
tduration (= ?duration (/ (- (capacity ?a) (fuel ?a)) (refuel-rate ? a)))
I condition (and (at start (> (capacity ?a) (fuel ? a)))

(over a l l (at ?a ? c)))
teffect (at end (assign (fuel ?a) (capacity ? a)))))

A P P E N D I X B . T H E Z E N O T R A V E L D O M A I N 138

A n example problem file (problem file 5) taken from IPC'03:

(define (problem ZTRAVEL-2-4)
(:domain zeno-travel)
(:objects

planel plane2 - a i r c r a f t
personl person2 personS person4 - person
cityO c i t y l city2 city3 - c i t y)

C:init
(at planel c i t y l)

(slow-speed planel) 178)
(fast-speed plane1) 520)
(capacity planel) 2990)
(fuel planel) 174)
(slow-burn planel) 1)
(fast-burn planel) 3)
(refuel-rate planel) 1800)

(at plane2 city2)
(slow^-speed plane2) 198)
(fast-speed plane2) 330)
(capacity plane2) 4839)
(fuel plane2) 1617)
(slow-burn plane2) 2)
(fast-burn plane2) 5)
(refuel-rate plane2) 830)

Cat personl city3)
(at person2 cityO)
(at persons cityO)
(a t person4 c i t y l)

(distance cityO cityQ) 0)
(distance cityO c i t y l) 569)
(distance cityO city2) 607)
(distance cityO city3) 754)
(distance c i t y l cityO) 569)
(distance c i t y l c i t y l) 0)
(distance c i t y l city2) 504)
(distance c i t y l cityS) 557)
(distance city2 cityO) 607)
(distance city2 c i t y l) 504)
(distance city2 city2) 0)
(distance city2 city3) 660)
(distance city3 cityO) 754)
(distance city3 c i t y l) 557)
(distance city3 city2) 660)
(distance city3 city3) 0)
(total-fuel-used) 0)
(boarding-time) 0.3)
(debarking-time) 0.6))

(:goal (and
Cat personl city2)
(at person2 city3)
Cat person3 city3)
Cat person4 c i t y 3)))

(:metric minimize (+ (* 1 (total-time)) (* 0.002 (total-fuel-used)))))

Appendix C

The Match Domain

The domain:
(define (domain matchcellar)

(rrequirements rtyping rdurative-actions)
(rtypes match fuse)
(rpredicates

(light ?match)
(handfree)
(unused ?match - match)
(mended ?fuse - fuse))

(rdurative-action LIGHT.MATCH
rparameters (?match - match)
:duration (= ?duration 8)
rcondition (and

(at start (unused ?match))
(over a l l (light ?match)))

reffect (and
(at s t a r t (not (unused ?match)))
(at start (light ?match))
(at end (not (light ?match)))))

(rdurative-action MEND_FUSE
rparameters (Tfuse - fuse Tmatch - match)
rduration C= ?duration 5)
rcondition (and

(at start (handfree))
(over a l l (light ?match)))

reffect (and
(at start (not (handfree)))
(at end (mended ?fuse))
(at end (handfree)))))

139

A P P E N D I X C . T H E M A T C H D O M A I N 140

A problem instance:

(define (problem fixfuse)
(:domain matchcellar)
(tobjects

matchl match2 - match
fusel fuse2 - fuse)

(: i n i t
(unused matchl)
(unused match2)
(handfree))

(tgoal (and
(mended fusel)
(mended fuse2)))

(tmetric minimize (total-time)))

Appendix D

Alternative Formalisation

Presented here is an alternative formalisation for CRIKEY version 1. In this formalisation
the scheduling is done in parallel wi th the planning, but consistency of the schedule is
only checked when and where necessary. Rather than checking whether contents can f i t in
envelopes at the action applicability stage, the action is added to the state and then the state
is considered a "dead-end" in the search i f the content action does not fit in the envelope.

Definitions for a STRIPS action (Definition 3.1), durative action (Definition 3.2), single
hard envelope (Definition 3.13), compressed action (Definition 4.1) and split action (Defini
tion 4.2) remain the same.

Durative actions are spht or compressed as in the formahsation in Chapter 4.

Definition D.l — Planning State

A planning state S is

S=iF, (a i , a„) , 0

where F is the set of true facts, (ai , . . . , a,i) is the list of split actions so far
present in the plan, is the set of temporal constraints between the split
axitions, and ^, the set of open envelope durative fictions.

Definition D.2 — Applicability of Action

An action a = [cond, , add, del) is applicable is state S i f

cond C F
A Wa €^-deln cond^(da) = 0

Definition D.3 — Result

The result, Result{s, (a)), of applying a single STRIPS action a = (cond, add, del)
in state s = (F, (ai , . . . , a„) , ^ - T , 0 is s' = {F', (ai, . . . , a„ , a), , ^ ')

141

A P P E N D I X D . A L T E R N A T I V E F O R M A L I S A T I O N 142

where

F' = {F(JaM)\del

£ ' = ^ U {(<te(c)} < - a = t -
^i\{{da{a)) * - a = M
= ^ «— otherwise
= S'^ U {<ia(a)d„r < c{a(a)H - da(a)h < da{a)dur]
= u velosoia, (a j , . . . , a„))

where da[a) is the corresponding durative action for a and veloso{a, (o i , . . . ,
returns the temporal constraints found from performing one iteration the Veloso
algorithm to see which eictions in the list a must follow.

A t e£ich stage of the search, a state must not be expanded before i t is checked t o see i f i t
is a "dead-end". The consistency is checked from the end of each currently open envelope
using a Single Source Shortest Path algorithm. Once the envelope has been closed there
is no need to check the consistency. The following definition uses the consistency function
(Definition 4 .5) .

Definition D.4 — Dead end

A state a is a dead end (invalid) i f

3e 6 ^ • -iconsistent({ai, . . . , a„) , . ^ ' ^)

The definition of a planning problem (Definition 4 .10) remains the same.

Definition D.5 — Goal State

A state g={F,{ai,..., a „) , ^) is a goal state for the problem P = (O, / , G)
i f

F{Hesult{l,{au • • •, a,,))) <ZG hi = %

Appendix E

The Cafe Domain

The domainr

(define (domain CafeDomain)
(rrequirements rtyping rfluents rdurative-actions rduration-inequalities)
(rtypes table chef socket - object tea toast cooked_breaky - item)
(rpredicates

(delivered ? i - item ?t - table)
(d_w_available ?t - table)
(d_w_open ?t - table)
(ready ? i - item)
Cloosing_heat ? i - item)
(started_delivery ? i - item)
(chef.free ?c - chef)
(socket_free ?s - socket)
(Started_cooking ? i - item))

(rfunctions
(tot£LL_delivery_window)
(total_heat_lost))

(r durative-action DELIVERY.WINDOW
rparameters (?t - table)
rduration (<= ?duration 10000000)
rcondition (and

(at start (d_w_available ? t)))
reffect (and

(at start (not (d_w_available ? t)))
(at start (d_w_open ? t))
(at end (not (d_w_open ? t)))
(at end (increase (total_delivery_window) ?duration))))

(rdurative-action DELIVER
rparameters (? i - item ? t - table)
rduration (= ?duration 2)
rcondition (and

(at end (d_w_open ? t))
(over all(d_w_open ? t))
(at start (ready ? i)))

reffect (and
(at start (started_delivery ? i))
(at end (not (stEirted_delivery ? i)))
(at end (delivered ? i ? t))
(at end (not (ready ? i)))))

143

A P P E N D I X E . T H E C A F 6 D O M A I N 144

(:durative-action LOOSING.HEAT
:parameters (? i - item)
:duration (<= ?duration 1000)
:condition (and

(at steirt (started_cooking ? i))
(at end (started_delivery ? i)))

:effect (and
(at start (loosing_heat ? i))
(at end (not (loosing_heat ? i)))
(at end (increase (total_heat_lost) ?duration))))

(:durative-action MAKE_TEA
:parameters (? i - tea ?s - socket)
:duration (= ?duration 1)
:condition (and

(at start (socket_free ? s))
(at end (loosing_heat ? i)))

:effect (and
(at start (not (socket_free ? s)))
(at start (started.cooking ? i))
(at end (socket_free ? s))
(at end (ready ? i))))

(:durative-action MAKE_TOAST
:parameters (? i - toast ?s - socket)
:duration (= ?duration 2)
:condition (and

(at start (socket_free ? s))
(at end (loosing_heat ? i)))

.•^effect (and
(at start (not (socket_free ? s)))
(at start (started.cooking ? i))
(at end (socket.free ? B))
(at end (ready ? i))))

(.-durative-action MAKE_COOKED_BREAKY
:parameters (? i - cooked_breaky ?c - chef)
•.duration (= ?duration 4)
:condition (and

(at start (chef.free ? c))
(at end (loosing_heat ? i)))

.•effect (cind
(at start (not (chef.free ? c)))
(at start (started_cooking ? i))
(at end (chef_free ?c))
(at end (ready ? i)))))

A P P E N D I X E . T H E C A F E D O M A I N 145

A problem:

(define (problem CafeProbleml)
(: domain CsifeDomain)
(:objects

t a b l e l - table
teal - tea
toast1 - toast
chefl - chef
socketl - socket)

(:init
(d_w_avallable tabl e l)
(chef.free chefl)
(socket_free socketl)
(= (total_delivery_window) 0)
(= (total_heat_lost) 0))

(:goal (and
(delivered t e a l t a b l e l)
(delivered toast1 t a b l e l)))

(:metric minimize (total_heat_lost)))

An alternative metric could be:

(rmetric minimize (total_delivery.window))

Appendix F

The Lift Match Domain

The domain:

(define (domain matchlift)
(:requirements :durative-actions :typing)
(:types fuse match l i f t e l e c t r i c i a n floor room - object)
(:predicates

(light ?match - match ?room - room)
(handfree ?elec - e l e c t r i c i a n)
(unused ?match - match)
(mended Tfuse - fuse)
Confloor ?elec - e l e c t r i c i a n ?floor - floor)
(i n l i f t ?elec - e l e c t r i c i a n ? l i f t - l i f t)
(roomonfloor ?room - room ?floor - floor)
(lift o n f l o o r ? l i f t - l i f t ?floor - floor)
(inroom ?elec - e l e c t r i c i a n ?room - room)
(fuseinroom ?fuse - fuse ?room - room)
(connectedfloors ? f l o o r l ?floor2 - floor))

(:durative-action LI&HT_MATCH
:parameters (?match - match

?elec - e l e c t r i c i a n
7room - room)

:duration (= Tduration 8)
•.condition (and

(at start (unused ?match))
(over a l l (inroom ?elec ?room))
(over a l l (light ?match ?room)))

:effect (and
(at s t a r t (not (unused ?match)))
(at s t a r t (light ?match ?room))
(at end (not (light ?match ?room)))))

(:durative-action MEND_FUSE
:parameters (?fuse - fuse

?match - match
?room - room
?elec - el e c t r i c i a n)

rduration (= ?duration 5)
:condition (and

(at start (inroom ?elec ?room))
(over a l l (inroom ?elec ?room))
(at start (fuseinroom ?fuse ?room))
(at start (handfree ?elec))

146

A P P E N D I X F . T H E L I F T M A T C H D O M A I N 147

(at s t a r t (light Tmatch ?room))
(over a l l (light ?match ?room)))

:effect Cand
(at start (not (handfree ? e l e c)))
(at end (mended ?fuse))
(at end (handfree Telec))))

(:durative-action ENTER.ROOM
:parameters (?floor - floor

?room - room
?elec - e l e c t r i c i a n)

: duration (= ?diiration 1)
:condition (and

(at start (onfloor ?elec ?floor))
(at s t a r t (roomonfloor ?room ? f l o o r)))

:effect (and
(at end (inroom ?elec ?room))
(at end (not (onfloor ?elec ? f l o o r)))))

(.•durative-action EXIT_ROOM
:parameters (?fl6or - floor

?room - room
?elec - e l e c t r i c i a n)

•.duration (= ?duration 1)
.'condition (and

(at s t a r t (inroom ?elec ?room))
(at start (roomonfloor ?room ? f l o o r)))

:effect (and
(at end (not (inroom ?elec ?room)))
(at end (onfloor ?elec ? f l o o r))))

(:durative-action ENTER.LIFT
:parameters (?floor - floor

? l i f t - l i f t
?elec - e l e c t r i c i a n)

:duration (= ?duration 1)
.•condition (and

(at s t a r t (onfloor ?elec ?floor))
(at s t a r t (liftonfloor ? l i f t ?floor))
(over a l l (liftonfloor ? l i f t ? f l o o r)))

:effect (and
(at end (i n l i f t ?elec ? l i f t))
(at end (not (onfloor ?elec ? f l o o r)))))

(:durative-action EXIT.LIFT
;parameters (?floor - floor

? l i f t - l i f t
?elec - e l e c t r i c i a n)

:duration (= ?duration 1)
:condition (and

(at s t a r t (i n l i f t ?elec ? l i f t))
(at s t a r t (liftonfloor ? l i f t ?floor))
(over a l l (lifto n f l o o r ? l i f t ? f l o o r)))

:effect (and
(at end (not (i n l i f t ?elec ? l i f t)))
(at end (onfloor ?elec ? f l o o r))))

(:durative-action MOVE.LIFT
:parameters (?floorfrom ?floorto - floor

A P P E N D I X F . T H E L I F T M A T C H D O M A I N 148

? l i f t - l i f t)
:duration (= ?duration 2)
:condition Cand

(at start (connectedfloors ?floorfrom ?floorto))
(at start (l i f t o n f l o o r ? l i f t ?floorfrom)))

:effect (and
(at start (not (lifton f l o o r ? l i f t ?floorfrom)))
(at end (l i f t o n f l o o r ? l i f t ? f l o o r t o))))

Problem 01:

(define (problem matciiliftproblemOl)
(:domain matchlift)
(:objects matchl match2 - match

fusel fuse2 - fuse
l i f t l - l i f t
e l e c l elec2 - e l e c t r i c i a n
f l o o r l floor2 - floor
roomla roomlb room2a room2b - room)

(:init
(unused matchl)
(unused match2)
(handfree e l e c l)
(handfree elec2)
(onfloor e l e c l f l o o r l)
(onfloor elec2 f l o o r l)
(roomonfloor roomla f l o o r l)
(roomonfloor roomlb f l o o r l)
(roomonfloor room2a floor2)
(roomonfloor room2b floor2)
(lifton f l o o r l i f t l f l o o r l)
(fuseinroom fusel roomla)
(fuseinroom fuse2 room2b)
(connectedfloors f l o o r l floor2)
(connectedfloors floor2 f l o o r l))

(:goal (and
(mended fusel)
(mended fuse2)))

(.•metric minimize (total-time)))

A P P E N D I X F . T H E L I F T M A T C H D O M A I N 149

F . l Partial Lift Match Numeric Domain
Domain header and LIGHT.MATCH action:

(define (domain matchCellarComplexNumeric)
(:requirements :durative-actions :tjrping
(:types fuse match l i f t e l e c t r i c i a n floor room
(.: predicate 8

(light ?room - room)
(handfree ?elec - e l e c t r i c i a n)
(mended ?fuse - fuse)
(onfloor ?elec - e l e c t r i c i a n ?floor - floor)
(i n l i f t ?elec - e l e c t r i c i a n ? l i f t - l i f t)
(roomonfloor ?room - room ?floor - floor)
(l i f t o n f l o o r ? l i f t - l i f t ?floor - floor)
(inroom ?elec - e l e c t r i c i a n ?room - room)
(fuseinroom ?fuse - fuse ?room - room)
(connectedfloors ? f l o o r l ?floor2 - floor))

(:functions
(matchesleft))

fluents)
object)

(:durative-action LIGHT-MATCH
:parameters

(?elec - e l e c t r i c i a n
?room - room)

:duration (= ?duration 8)
:condition (and

(at start (> (matchesleft) 0))
(over a l l (inroom ?elec ?room))
(over a l l (light ?room)))

:effect (and
(at start (decrease (matchesleft) 1))
(at start (light ?room))
(at end (not (light ?room)))))

Appendix G

DriverLog Shift Domain

The domain:

(define (domain driverlogshift)
(:requirements :typing :durative-actions)
(:types

location locatable - object
driver truck obj - locatable)

(:predicates
(at ?obj - locatable ?loc - location)
(in ?objl - obj ?obj - truck)
(driving ?d - driver ?v - truck)
(link ?x ?y - location)
(path ?x ?y - location)
(empty ?v - truck)
(working ?d - driver)
(resting, ?d - driver)
(rested ?d - driver)
(tired ?d - driver))

(:durative-action WORK
ipeirameters

C?driver - driver)
:duration (= ?duration 102)
:condition (and

(at start (rested ? d r i v e r)))
:effect (and (at start (working ?driver))

(at end (not (working ? d r i v e r)))
(at stEirt (not (rested ? d r i v e r)))
(at start (not (resting ? d r i v e r)))
(at end (ti r e d ? d r i v e r))))

(:durative-action REST
rpeirameters

(?driver - driver)
:diiration (= ?duration 20)
:condition (and

(at start (tired ? d r i v e r)))
:effect (and

(at start (resting ?driver))
(at end (not (resting ? d r i v e r)))
(at start (not (working ?driver)))
(at start (not (ti r e d ? d r i v e r)))
(at end (rested ? d r i v e r))))

150

A P P E N D I X G . D R I V E R L O G S H I F T D O M A I N 151

(:durative-action LOAD-TRUCK
:peirameters

(?obj - obj
?truck - truck
?loc - location)

.•duration (= ?duration 2)
:condition (and

(over a l l (at ?truck ? l o c))
(at start (at ?obj ? l o c)))

:effect (and
(at start (not (at ?obj ? l o c)))
(at end (i n ?obj ?truck))))

{.-durative-action UNLOAD-TRUCK
:parameters

(?obj - obj
?truck - truck
?loc - location)

.•^duration (= ?duration 2)

.•condition (and
(over a l l (at ?truck ?l o c))
(at start (in ?obj ?truck)))

:effect (and
(at start (not (i n ?obj ?truck)))
(at end (at ?obj ? l o c))))

(:durative-action BOARD-TRUCK
:parameters

C?driver - driver
?truck - truck
?loc - location)

.•duration (= ?duration 1)
:condition (and

(over a l l (at ?truck ?loc))
(at start (at ?driver ?l o c))
(at start (empty ?truck)))

:effect (and
(at start (not (at ?driver ? l o c)))
(at end (driving ?driver ?truck))
Cat start (not (empty ? t r u c k)))))

(:durative-action DISEMBARK-TRUCK
:parameters

(?driver - driver
Ttruck - truck
?loc - location)

:duration (= ?duration 1)
:condition (and

(over a l l (at ?truck ?l o c))
(at start (driving ?driver ?truck)))

:effect (and
(at start (not (driving ?driver ?truck)))
(at end (at ?driver ?loc))
(at end (empty ?truck))))

(.•durative-action DRIVE-TRUCK
:parameters

(?truck - truck

A P P E N D I X G . D R I V E R L O G S H I F T D O M A I N 152

?loc-from - location
?loc-to - location
?driver - driver)

:duration (= ?duration 1 0)
:condition (and

(at start (at ?truck ?loc-from))
(over a l l (driving ?driver ?truck))
(at start (link ?loc-from ?loc-to))
(over a l l (working ?driver)))

:effect (and
(at start (not Cat ?truck ?loc-from)))
(at end (at ?truck ? l o c - t o))))

(rdnrative-action WALK
:parameters

(?driver - driver
?loc-from - location
?loc-to - location)

•.duration (= ?duration 2 0)
:condition (and

(at start (at ?driver ?loc-from))
(at start (path ?loc-from ?loc-to))
(over a l l (working ?driver)))

:effect (and
(at start (not (at ?driver ?loc-from)))
(at end (at ?driver ? l o c - t o)))))

A P P E N D I X G . D R I V E R L O G S H I F T D O M A I N 153

A problem instance:

(define (problem DLOG-2-2-2)
(:domain driverlog)
(:objects

d r i v e r l driver2 - driver
truckl truck2 - truck
package1 package2 - obj
sO s i s2 pl-0 pl-2 - location)

(:init
(at d r i v e r l s2)
(rested d r i v e r l)
(at driver2 s2)
(rested driver2)
(at truckl sO)
(empty truckl)
(at truck2 sO)
(empty truck2)
(at packagel sO)
(at package2 sO)
(path s i pl-0)
(path pl-0 s i)
(path sO pl-0)
(path i>l-0 sO)
(path s i pl-2)
(path pl-2 s i)
(path s2 pl-2)
(path pl-2 s2)
(link sO s-l)
(link s i sO)
(link sO B2)
(link s2 sO)
(link s2 s i)
Uink s i s2))

(:goal (and
(at d r i v e r l s i)
(rested d r i v e r l)
(at truckl s i)
(at packagel sO)
(at package2 sO)))

(:metric minimize (total-time)))

Appendix H

Mousetrap Domain

The domain:

(define (domain mousetrap)
(:requirements :durative-actions :typing)
(;types mouse junction cheese - object

trap part - contraption
contraption - object)

(:predicates
(at ?m - mouse ? j - junction)
(cheese_loc ?c - cheese ? j - junction)
(connected ? j l ? j 2 - junction)
(trigger_connected ? j l ? j 2 - junction ?p - contraption)
(eaten ?c - cheese ?m - mouse)
(clipx)
(clipy)
(causes ?pl ?p2 - contraption)
(triggered ?p - contraption)
(trap_up ? t - trap ?c - cheese))

(;functions
(contraption_time ?p - contraption)
(run.time ? j l ?j2 - junction))

(:durative-action RUN
:parameters

(?m - mouse
?from ?to - junction)

:duration (= ?duration (run_time ?from ?to))
:condition (and

(at start (connected ?from ?to))
(at start (at ?m ?from)))

:effect (and
(at start (not (at ?m ?from)))
(at end (at ?m ? t o))))

(:durative-action RUN_TRIGGER
:parameters

C?m - mouse
?from ?to - junction
?p - contraption)

:duration (= ?duration (run_time ?from ?to))
:condition (and

(at start (trigger_connected ?from ?to ?p))
(at start (at ?m ?from))

154

A P P E N D I X H . M O U S E T R A P D O M A I N 155

(at end (c l i p x)))
:effect (and

Cat start (not Cat ?m ?from)))
(at end (at ?m ?to))
(at end (triggered ?p))))

(:durative-action CLIP
:parameters

C)
:duration (= ?duration 1)
:condition (and

(at start (c l i p y))
(at end (c l i p y)))

:effect (and
(at start (c l i p x))
(at end (not (c l i p x)))
(at start (not (c l i p y)))))

(tdurative-action EAT.CHEESE
rparameters

(?m - mouse
? j - junction
?c - cheese
?t - trap)

:duration (= ?duration 5)
:condition (and

(at start Ccheese_loc ?c ? j))
(at start (at ?m ? j))
(over a l l (trap.up ?t ? c)))

r-effect (and
(at end (eaten ?c ?m))))

(:durative-action PERFORM
:parameters

C?pl - part ?p2 - contraption)
:duration (= ?duration (contraption.time ? p l))
:condition (and

(at start (causes ?pl ?p2))
(at end (cl i p x))
(at start (triggered ? p l)))

:effect (and
(at start (c l i p y))
(at end (triggered ?p2))))

(:durative-action DROP.TRAP
rparameters

(?t - trap
?c - cheese)

:duration (= ?duration (contraption_time ? t))
:condition (and

(at start (trap_up ?t ?c))
(at start (triggered ? t)))

:effect (and
(at stsirt (c l i p y))
(at end (not (trap_up ?t ? c))))))

A P P E N D I X H . M O U S E T R A P D O M A I N 156

A problem:

(define (problem mousetrapProblem02)
(:domain mousetrap)
(:objects

mousel - mouse
j l j 2 j 3 j 4 j 5 j 6 - junction
cheesel cheese2 - cheese
trapl trap2 - trap
crank kick_bucket rolling_b£ill see_saw project diver - part)

(:init
(at mousel J l)
(cheese_loc cheesel j4)
(cheese_loc cheese2 j6)
(trigger_connected j l j 2 crank)
(trigger_connected j l j 2 crank)
(trigger_connected j 2 j 4 see_saw)
(trigger.connected j4 j 2 see_saw)
(trigger_connected j 2 j 6 see_saw)
(trigger_connected j6 j 2 see.saw)
(connected j 2 j l)
(connected j 2 j3)
(connected j 3 j2)
Cconnected j S j4)
(coimected j4 jS)
(connected j 5 j4)
(connected j4 j5)
(connected j 5 j6)
(connected j6 j5)
(= (contraption_time crank) 5)
(= (contraption_time kick_bucket) 2)
(= (contraption_time r o l l i n g _ b a l l) 15)
(= (contraption_time see_saw) 3)
(= (contraption.time project_diver) 2)
(•= Ccontraption_time trapl) 15)
(= (contraption_time trap2) 4)
(= (run.time j l j2) 5)
(= (run_time j 2 j l) 5)
(= (run.time j 2 j 3) 10)
(= (run_time j 3 j 2) 10)
(= (run.time j4 j3) 5)
(= (run.time j3 j4) 5)
(= (run.time j 2 j4) 5)
(= (run.time j4 j2) 5)
(=- (run.time j4 j5) 10)
(= (run.time j 5 j 4) 10)
(= (run.time j5 j6) 10)
(= (run.time j6 j5) 10)
(= (run.time j 2 j6) 10)
(» (run.time j6 j 2) 10)
(causes crank kick.bucket)
(causes kick.bucket r o l l i n g . b a l l)
(causes r o l l i n g . b a l l trapl)
(causes see.saw project.diver)
(causes project.diver trap2)
(trap.up t r a p l cheesel)
(trap.up trap2 cheese2)
(c l i p y))

(:goal (and
Ceaten cheesel mousel)
(eaten cheese2 mousel)))

(:metric minimize (total-time)))

Appendix I

Baseball Domain

The domain:

(define (domain basebzdl)
(:requirements :durative-actions :typing)
(:types base runner pitcher)
(:constants homebase basel base2 base3 - base)
(:predicates

(at ?r - runner ?b - base)
(free 7b - base)
(connected ?bl ?b2 - base)
(completed ? r - runner)
(s t i l l _ t o _ r u n ?r - runner)
(next_pitcher ?p - pitcher)
(pitcher_order ?pl ?p2 - pitcher)
(free_to_pitch)
(b a l l _ i n _ a i r))

(:functions
(pitch_speed ?p - pitcher)
(hit_speed ? r - runner)
(run_speed ?r - ruimer))

(:durative-action RUN
:parameters

(?r - ruimer
?from ?to - junction)

:duration (= ?duration (run_speed ? r))
.'condition (and

(at start (connected ?from ?to))
(at start (at ? r ?from))
(over a l l (free ?to))
(over a l l (b a l l _ i n _ a i r)))

:effect (and
(at s t a r t (not (at ?r ?from)))
(at s t a r t (free ?from))
(at end (not (free ? t o)))
(at end (at ? r ? t o))))

(rdurative-action COMPLETE
;parameters

(?r - runner)
rduration (= ?duration (run_speed ? r))
:condition (and

(at s t a r t (at ? r base3))

157

A P P E N D I X I . B A S E B A L L D O M A I N 158

(over a l l (b a l l _ i n _ a i r)))
: effect (and

Cat start (not (at ? r baseS)))
(at start (free base3))
(at end (completed ? r))))

(:durative-action STEP_UP
:p£irameters

(?r - runner
?pl ?p2 - pitcher)

:duration (= ?duration 1)
:condition (and

(at start {free homebase))
(at start (free_to_pitch))
(at start (s t i l l _ t o _ r u n ? r))
(at start (pitcher.order ?pl ?p2))
(at start (next_pitcher ? p l)))

: effect (and
(at end (at ? r homebase))
(at end (not (s t i l l _ t o _ r u n ? r)))
(at start (not (free homebase)))
(at end (not (next.pitcher ? p l)))
(at end (next_pitcher ?p2))))

(rdurative-action HIT
:parameters

(?r - runner
?p - pitcher)

:duration (= ?duration (* 4 (* (hit_speed ? r) (pitch_speed ? p))))
:condition (and

(at start (at ?r homebase))
(at start (next.pitcher ?p))
(at start (free_to_pitch)))

: effect (and
(at s t a r t (b a l l _ i n _ a i r))
(at end (not (b a l l _ i n _ a i r)))
(at start (not (free_to_pitch)))
(at end (free_to_pitch)))))

A P P E N D I X I . B A S E B A L L D O M A I N 159

A problem (taken from the Boston RedSox vs. Houston):

(define (problem RedSoxVsHouston)
(;domain baseball)
(: objects

Martinez Lowe Wakefield Embree Foulke
Schilling Leskanic Timlin Mendoza Arroyo - pitcher
Biggio Vizcaino Ensberg Berkman Kent
Bagwell Beltran Ausmus Palmeiro Chavez - runner)

(:init
(free homebase)
(free basel)
(free base2)
(free base3)
(connected homebase basel)
(connected basel base2)
(connected base2 base3)
(pitCher.order Martinez Lowe)
(pitcher.order Lowe Wakefield)
(pitcher.order Wakefield Embree)
(pitcher.order Einbree Foulke)
(pitCher.order Foulke Schilling)
(pitCher.order S c h i l l i n g Leskanic)
(pitcher.order Leskanic Timlin)
(pitcher.order Timlin Mendoza)
(pitcher.order Mendoza Arroyo)
(pitcher.order Arroyo Martinez)
(s t i l l . t o . r x m Biggio)
(a t i l l . t o . r u n Vizcaino)
(s t i l l . t o . r u n Ensberg)
(s t i l l . t o . r u n Berkman)
(s t i l l . t o . r u n Kent)
(s t i l l . t o . r u n Bagwell)
Cstill_to_rim Beltran)
Cstill.to.run Ausmus)
Cstill.to.run Palmeiro)
(s t i l l . t o . r u n Chavez)
(next.pitcher Arroyo)
(free.to.pitch)
(= (pitch.speed Martinez)1.2)
(= (pitch_speed Lowe)1.3)
(= (pitch.speed Wakefield)1.0)
(= (pitch.speed Embree)0.9)
(= (pitch.speed Foulke)1.1)
C= Cpitch.speed Schilling)0.8)
(= (pitch.speed Leskanic)1.4)
(= (pitch.speed Timlin)1.6)
(= (pitch.speed Mendoza)1.2)
(= (pitch.speed Arroyo)1.2)
(= (hit.speed Biggio) 0.9)
(= (hit.speed Vizcaino) 1.3)
(= Chit.speed Ensberg) 0.7)
C= Chit.speed Berkman) 2.1)
(= (hit.speed Kent) 0.6)
(= (bit.speed Bagwell) 1.0)
(= (hit.speed Beltran) 0.9)
(= (hit.speed Ausmus) 0.9)
(= (hit.speed Palmeiro) 0.8)
(= (hit.speed Chavez) 0.7)
(= (run.speed Biggio) 1.5)

A P P E N D I X I . B A S E B A L L D O M A I N 160

(= (run_speed Vizcaino) 1.3)
(= (run_speed Ensberg) 0.6)
C= (run_speed Berkman) 0.9)
(= (run_speed Kent) i.O)
(= (run_speed Bagwell) 1.1)
(= (run_speed Beltran) 1.7)
(= (run_speed Ausmus) 0.8)
(= (run_speed Palmeiro) 0.8)
(= (run_speed Chavez) 0.5))

(:goal (and
(completed Biggio)
(completed Vizcaino)
(completed Ensberg)
(completed Berkman)
(completed Kent)
(completed Bagwell)
(completed Beltran)
(completed Ausmus)
(completed Palmeiro)
(completed Chavez)))

(-.metric minimize (total-time)))

Bibliography

[1] J . F . Allen. Towards a general theory of action and time. Artificial Intelligence,
23(2):123-154, 1984.

[2] F . BeicchuB, 2000. web site of the 2nd International Planning Competition 2000:
http://www.cs.toronto.edu/aips2000/.

[3] F . Bacchus and F . Kabanza. Using temporfil logics to express search control knowledge

for planning. Artificial Intelligence, 116(1-2):123-191, 2000.

[4] C. Backstrom. Finding least constrained plans and optimal parallel executions is harder
than we thought. In C. Backstrom and E . Sandewall, editors, Current Trends in AI
Planning: EWSP'93—2nd European Workshop on Planning, Vadstena, Sweden, Dec
1994. lOS Press.

[5] R. Bartak. Integrating planning into production scheduUng: A formal view. In Pro
ceedings of the Workshop on Integrating Planning into Scheduling at ICAPS-O4, pages
1-8, June 2004.

[6] A. Blum and M. Furst. Fast planning through planning graph analysis. In Proceedings
of the 14th International Joint Conference on Artificial Intelligence (IJCAI 95), pages
1636-1642, 1995.

[7} B. Bonet and H. Geffner. Heuristic search planer 2.0. AI Magazine, 22(3):77-80, 2001.

[8] A. Botea, M. Enzenberger, M. Miiller, and J . SchaefFer. Macro-ff. International Planning
Competition 4 Booklet, ICAPS 2004, June 2004. Extended Abstract.

[9] J . Cailier and E . Pinson. A practical use of Jackson's preemptive schedule for solving
the job-shop problem. Annal of Operation Research, 26:269-287, 1990.

[10] Y . Chen, C.-W. Hsu, and B. W. Wah. SGPlan: Subgoal Pai-titioning and Resolution
in Planning. International Planning Competition 4 Booklet, ICAPS 2004, June 2004.
Extended Abstract.

161

B I B L I O G R A P H Y 162

[11] A. Coddington, M. Fox, and D. Long. Handling Durative Actions in Classical Planning
FVameworks. In J . Levine, editor, Proceedings of the 20th Workshop of the UK Planning
and Scheduling Special Interest Group, pages 44-58. University of Edinburgh, December
2001.

[12] A. Coles and A. Smith. Marvin: Macro actions from reduced versions of the instance.
International Planning Competition 4 Booklet, ICAPS 2004, June 2004. Extended
Abstract.

[13] S. Cresswell and A. Coddington. Planning with Timed Literals and Deadlines. In J . Por-
teous, editor, Proceedings of the 22nd Workshop of the UK Planning and Scheduling
Special Interest Group, pages 22-35. University of Strathclyde, December 2003. ISSN
1368-5708.

[14] S. Cresswell and A. Coddington. Compilation of L T L goal formulas into PDDL. In
European Conference on Artificial Intelligence (ECAI 2004A 2004.

[15] R. Dechter, I. Meiri, and J . Pearl. Temporal constraint networks. In Proceedings from
Principles of Knowledge Representation and Reasoning, pages 83-93. Toronto, Canada,
1989.

[16] M. B. Do and S. KMnbhampati. Planning as constraint satisfaction: Solving the plan
ning graph by compiling it into CSP. Artificial Intelligence, 132(2):151-182, 2001.

[17] M. B. Do and S. Kambhampati. Sapa: a Domain-Independent Heuristic Metric Tem
poral Planner. In Proceedings from the 6th European Conference of Planning (ECP),
2001.

[18] B. Drabble and A. Tate. The use of optimistic and pessimistic resource profiles to
inform search in an activity based planner. In Proceedings of the Second International
Conference on AI Planning Systems (AIPS-94), Chicago, USA, June 1994. AAAI Press.

[19] S. Edelkamp. Taming numbers and duration in the model checking integrated planning
system. In Journal of Artificial Research (JAIR), 2002.

[20] S. Edelkamp and M. Helmert. On the Implementation of Mips. In Proceedings from
the 4th Artificial Intelligence Planning and Scheduling (AIPS), Workshop on Decision-
Theoretic Planning, pages 18-25. Brekenridge, Colorado:AAAI-Press, 2000.

[21] S. Edelkamp and J . Hoffmann. PDDL2.2: The Language for the Classical Part of
the 4th International Planning Competition. Technical report, Fachbereich Informatik,
Germany and Institut fiir Informatik, Germany, 2003.

[22] K. Erol, D. Nau, and V. S. Subrahmanian. Complexity, Decidability and Undecidability
Results for Domain-Indedpendent Planning. Artificial Intelligence Journal, 76(l-2):75-
88, July 1995.

B I B L I O G R A P H Y 163

[23] R. E . Fikes and N. J . Nilsson. STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. In Proc. of the 2nd IJCAI, pages 608-620, London, UK,
1971.

[24] M. Fox and D. Long. The Automatic Inference of State Invariants in TIM. Journal of
AI Research, 9:367-421, 1998.

[25] M. Fox and D. Long. HybridSTAN: Identifying and Managing Combinatorial Optimi
sation Sub- problems in Planning. In Proceedings of the 12th International Conference
on Automated Planning and Scheduling (ICAPS), pages 445-452, 2001.

[2d] M. Fax and D. Long. PDDL2.1: An Extension to P D D L for Expressing Temporal
Plaiming Domains. Technical report. University of Durham, UK, 2001.

[27] M. Fox and D. Long. The third International Planning Competition: Temoral and
Metric Planning. In Proceedings from the 6th International Conference on Artificial
Intelligence Planning and Scheduling (AIPS'02), pages 115-117, 2002.

[28] M. Fox and D. Long. PDDL2.1; An extension of P D D L for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20:61-124, 2003.

[29} M. Fox and D. Long. Time in Planning, to be published, Jan 2004.

[30] M, Fox, D. Long, and K, Halsey. An Investigation into the Expressive Power of
PDDL2.1. In Proceedings of the 16th European Conference of Artificial Intelligence
(ECAI), 2004.

[31] M. Fox, D. Long, and M. Hamdi. Handling Multiple Sub-problems within a Planning
Domain. In Proceedings of the 20th UK Planning and Scheduling Special Interest Group
(PlanSIG), 2001.

[32] G. Gallo and S. Pallottino. Shortest path algorithms. Annals of Operations Research,
13:38-64, 1988.

[33] A. Garrido, M. Fox, and D. Long. A Temporal Planning System to Manage Level 3
Durative Actions of PDDL2.1. In Proceedings of the 20th UK Planning and Scheduling
Special Interest Group (PlanSIG), pages 127-138, 2001.

[34] H. Geffner. P D D L 2.1: Representation vs. Computation. Journal of Artificial Intelli
gence Research, 20:139-144, 2003.

[35] M. Gelfond, V. Lifschitz, and A. Rabinov. What are the Limitations of the Situation
Calculus? In R. S. Boyer, editor, Automated Reasoning: Essays in Honor of Woody
Bledsoe, pages 167-180. Kluwer, London, 1991.

B I B L I O G R A P H Y 164

[36] A. Gerevini and I. Serina. L P G : A Planner based on Local Search for Planning Graphs.
In Proceedings of the 6th International Conference of Artificial Intelligence Planning
and Scheduling (AIFS'02), Menlo Park, CA, 2002. AAAI Press.

[37] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL—The Planning Domain Definition Language, 1998. Ghallab, M.;
Howe, A.; Knoblock, C ; McDermott, D.; Ram, A.; Veloso, M.; Weld, D.; and Wilkins,
D. 1998. PDDL—The Planning Domain Definition Language. AIPS-98 Planning Com
mittee.

[38] M. GhaUab and H. Lai'uelle. Representation and control in IxTeT, a temporal plan
ner. In Proceedings of the Second International Conference on Artificial Intelligence
Planning Systems (AIPS-94), pages 61-67, Menlo Park, CA, 1994. AAAI Press.

[39] P. Haslum. TP4'04 and HSP*a- International Planning Competition 4 Booklet, I C A P S
2004, June 2004. Extended Abstract.

[40] P. Haslum and H. GefFner. Heuristic planning with time and resources. In Proceedings
of the 6th European Conference on Planning, 2001.

[41] M. Helmert and S. Richter. Fast downward - making use of causal dependencies in the
problem representation. International Planning Competition 4 Booklet, ICAPS 2004,
June 2004. Extended Abstract.

[42] J . Hoffmann. Extending F F to Numerical State Variables. In F . V. Harmelen, editor,
Proceedings of the 15th European Conference on Artificial Intelligence (ECAI-02), pages
571-575, Lyon, Pi-ance, July 2002.

[43] J . Hoffmann. Local search topology in planning benchmarks: A theoretical analysis. In
M. Ghallab, J . Hertzberg, and P. Traverso, editors. Proceedings of the 6th International
Conference on Artificial Intelligence Planning and Scheduling (AIPS-02), Toulouse,
FVance, April 2002. 379-387.

[44] J . Hoffmann, S. Edelkamp, R. Englert, F . Liporace, S. Thiebaux, and S. Triig. Towards
reahstic Benchmarks for Planning: the Domains used in the Classical Part of EPC-
4. International Planning Competition 4 Booklet, ICAPS 2004, June 2004. Extended
Abstract.

[45] J . Hoffmarm and B. Nebel. The F F Planning System: Fast Plan Generation Through

Hem-istic Search. Journal of Artificial Intelligence Research, 14:253-302, 2001.

[46] J . Hoffmann and B. Nebel. What makes the difference between HSP and F F ? In
Proceedings IJCAI-01 Workshop on Empirical Methods in Artificial Intelligence, 2001.

B I B L I O G R A P H Y 165

[47] H. Kautz and B. Sehnan. B L A C K B O X : A New Approach to the Application of Theorem
Proving to Problem Solving. In AIPS-98 Workshop on Planning as Combinatorial
Search, pages 58-60, 1998.

[48] J . Koehler. Solving Complex Planning Tasks Through Extraction of Subproblems. In
Artificial Intelligence Planning Systems, pages 62-69, 1998.

[49] T. S. Kumar. Incremental Computation of Resource-Envelopes in Producer-Consumer
Models. In Proceedings of The Ninth International Conference on Principles and Prac
tice of Constraint Programming (CP 2003), 2003.

[50] P. Laborie. Algorithms for propagating resource constraints in AI planning find schedul

ing: existing approfiches ajid new results. Artificial Intelligence, 143(2): 151-188, 2003.

[51] A. L . Lansky. A Representation of Pai-allel Activity Based on Events, Structure, and
Causality. In M. P. Georgeff and A. L. Lansky, editors. Reasoning about Actions and
Plans, pages 123-159. Kaufmann, Los Altos, CA, 1987.

[52] D. Long and M. Fox. Automatic synthesis and use of generic types in planning. In
Proceedings of AIPS 2000, pages 196-205, 2000.

[53] D. Long and M. Fox, Exploiting a Graphplan Framework in Temporal Planning. In Pro
ceedings of the 13th International Conference on Automated Planning and Scheduling
(ICAPS), pages 52-61, 2003.

[54] D. Long, M. Fox, L . Sebastia, and A. Coddington. An examination of resources in
planning. In Proceedings of the 19th workshop of the U.K. Planning and Scheduling
Special Interest Group (PLANSIG), 2000.

[55] J . McCarthy and P. J . Hayes. Some philosophical problems from the standpoint of
artificial intelligence, pages 26-45. Morgan Kaufmann Publishers Inc., 1987.

[56] D. McDermott. The 1998 AI Planning Systems Competition. AI Magazine, 21(2):35-55,
2000.

[57] D. McDermott. PDDL2.1 - The Art of the Possible? Commentary on Fox and Long.

Journal of Artificial Intelligence Research, 20:145-148, 2003.

[58] E . P. D. Pednault. ADL: Exploring the Middle Ground between STRIPS and the
Situation Calculus. In R. J . Brachman, H. J . Levesque, and R. Reiter, editors, KR'89:
Proc. of the First International Conference on Principles of Knowledge Representation
and Reasoning, pages 324-332. Kaufmann, San Mateo, CA, 1989.

[59] P. Regnier and B. Fade. Complete determination of parallel actions and temporal
optimization in linear plans of action. In Proceedings of the European Workshop on
Planning, pages 100-111. Springer-Verlag, 1991.

B I B L I O G R A P H Y 166

[60] D. Smith. The Case for Durative Actions: A Commentary on PDDL2.1. Journal of
Artificial Intelligence Research, 20:149-154, 2003.

[61] D. Smith, J . Rrank, and A. Jonsson. Bridging the gap between planning and scheduling.
Knowledge Engineering Review, 15:61-94, 2000.

[62] D. Smith and D. S. Weld. Temporal Planning with Mutual Exclusion Reasoning. In
Proceedings of the 16th International Joint Conference on Artificial Intelliegence (IJ-
CAI), pages 326-337, 1999.

[63] B. Srivastava. RealPlan: Decoupling Causal and Resomce Reasoning in Plaiming. In
Proceedings from the Twelfth Innovative Applications of Artificial Intelligence Confer
ence on Artificial Intelligence (lAAI), pages 812-818, 2000.

[64] B. Srivastava and S. Kambhampati. Scaling up planning by teasing out resource schedul
ing. In Proceedings of the 5th European Conference on Planning (ECAI-00), pages
172-186. Springer-Verlag, 2000.

[65] P. van Beek. Reasoning about qualitative temporal information. Artificial Intelligence,
58(l-3):297-326, 1992.

[66] P. van Beek and X. Chen, CPIan: A Constraint Programming Approach to Planning. In
Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99),
pages 585-590, 1999.

[67] M. M. Veloso, M. A. Perez, and J . G. Carbonell. Nonlinear planning with paraUel
resource allocation. In Proceedings of the DARPA Workshop on Innovative Approaches
to Planning, Scheduling, and Control, pages 207-212, San Diego, CA, November 1990.
Morgan Kaufmanu.

[68] V. Vidal. The yahsp planning system: Forward heuristic search with lookahead plans
analysis. International Plemning Competition 4 Booklet, ICAPS 2004, June 2004. Ex
tended Abstract.

[69] M. Vilain, H. Kautz, and P. van Beek. Constraint propagation algorithms for temporal

reasoning: a revised report, pages 373-381. Morgan Kaufinann Publishers Inc., 1990.

[70] D. S. Weld. An Introduction to Least Commitment Planning. AI Magazine, 4, 1994.

[71] S. A. Wolftnan and D. S. Weld. The L P S A T Engine & Its AppHcation to Resource
Planning. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99), pages 310-317, 1999.

