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Abstract 

Wind tunnel testing of racing cars is performed with a moving ground plane to take into 

account the downforce generated by the low ground clearance of these vehicles. Struts and 

wheel stings, mounted from the roof and walls of the tunnel, are used to hold the vehicle in 

position within the test section. These supports disrupt the airflow around the model, 

thereby deviating from on-track conditions. Where the vehicle's aerodynamics are already 

highly refined, the effects of subtle shape changes such as those made in Formula 1, may be 

much smaller than the errors introduced by the supporting struts. Support interference can 

also lead to incorrect optimisation of aerodynamic elements. 

A magnet will stably levitate over a High Temperature Superconductor (HTS) cooled 

below its critical temperature. The magnetic flux of the magnet becomes pinned within the 

bulk HTS microstructure in the form of individual flux quanta, each of which is surrounded 

by a current vortex at sites of imperfection in the superconducting matrix. This mechanism 

formed the basis of the superconducting pod which achieved stable passive levitation. 

Finite element analysis simulation was used to optimise the effectiveness of the 

electromagnets providing a restoring force to the levitating magnets. To augment the 

superconducting levitation, without introducing excessive instability to the levitation, the 

magnetic rail was invented. Traverses of both the superconducting pod and the magnetic 

rail were performed to map the forces each produced. 

The feasibility of a non-intrusive method of supporting ground vehicle wind tunnel models 

has been investigated. The Superconducting Magnetic Levitation System combines the 

inherent stability and damping of superconducting levitation with the high ground clearance 

of magnet only levitation. Stable passive levitation has been achieved, with six degree of 

freedom control. The system uses a combination of type II high temperature 

superconductors, rare earth permanent magnets, and electromagnets to support a model 

under test. 

The final prototype of the superconducting magnetic levitation system was designed to 

support a 40% scale Formula 1 model. The system was capable of supporting 250N of 

downforce on top oLthe weight ~of the model and 90N of-drag- at ~ground- clearances 

comparable to 40% scale Formula 1 clearances. The Superconducting Magnetic Levitation 

System is the largest wind tunnel magnetic levitation system in the world and has been 

successfully tested at speeds of up to 20ms-1 in the Durham 2m wind tunnel. 
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Chapter 1 - Introduction 

1. Introduction 

1.1 Summary 

This thesis investigates the feasibility of a non-intrusive method of supporting ground 

vehicles under test in a wind tunnel with a moving ground plane. Without such a system 

struts and stings, mounted to the roof and walls of the test section, are required to support 

the weight of the vehicle, and transmit forces to a force balance for measurement. In cases 

where the vehicle's aerodynamics are already highly refined, the effects of subtle shape 

changes, such as those made in Formula 1, may be considerably smaller than the errors 

introduced by the supporting struts. Hetherington & Sims-Williams (2006) discusses the 

effects that struts and stings have on lift and drag measurements and showed that the results 

are considerably affected and that the effects were dependant of the model and strut 

configuration; precluding the use of correction factors. Considerable resources are spent 

each year by automotive manufacturers on wind tunnel testing for new models, and some 

Formula 1 teams have multiple wind tunnels running 24 hours a day, yet the resulting data 

is affected by the supporting struts and stings. 

The Superconducting Magnetic Levitation System detailed in this thesis is based on the 

facility of type II high temperature superconductors (HTS) to trap magnetic flux within 

their volume. This mechanism allows levitation to occur without the need for any active 

control. The magnetic flux of a permanent magnet becomes trapped or pinned within the 

bulk HTS microstructure in the form of individual flux quanta, each of which is surrounded 

by a current vortex at sites of imperfections (such as second phase inclusions) in the 

superconducting matrix, (Feng et al 2001). A magnet will stably levitate over a type II 

superconductor in the vortex state and will oppose any force acting on it. This 

superconducting levitation is passive and intrinsically damped thereby insulating the system 

from the effects of high frequency oscillation in the air flow. 

Computational analysis of a simplified geometry of the superconducting levitation was 
.• - . ·-' . . - . . _._ ._- -· ' "-" - .- . _. . -.. 

undertaken using an electromagnetic finite element analysis program called MEGA 

(MEGA 2000). Simulations of multiple arrangements of the permanent magnet, 



Chapter 1 - Introduction 

superconductor, and electromagnet system were tested to find the most efficacious 

configuration. 

Through the use of superconducting levitation, stable passive levitation can be achieved. 

However the height at which such levitation can occur is limited. In order to expand the 

operating range of the system a permanent magnet only levitation system, which is capable 

of acting over considerably larger air gaps, was constructed to reinforce the 

superconducting levitation. Rare earth permanent magnets composed of a Neodymium­

Iron-Boron alloy were used throughout this project. These magnets possess far superior 

field strength-to-weight ratio than that of ferrite or ceramic magnets (Coey 2002), an 

essential attribute for any levitation application. Table 1.1.1 shows that Nd2Fe14B has the 

highest value of magnetic flux, Br, and, more importantly, by far the largest maximum 

energy product (BH)max which is a measure of the useful work that a magnet can produce at 

a distance from its volume. 

~ 
Br (T) (BH)max (kJm-J) 

l 

Nd2Fe148 1.28 300 

Sm2Co11 1.08 220 

SmCos 0.88 150 

AlNiCo 1.25 43 

SrFe12019 0.41 34 

Table 1.1.1, Properties of Magnetic Material (Coey 2002) 

1.2 Existing test techniques 

Wind tunnel tests involving the use of a moving ground plane requires the use of struts and 

stings to hold the vehicle under test in position. For vehicles with high ground clearance, 

such as road cars, testing is generally performed with a static ground plane and the wheels 

of the model are pinned through the floor of the wind tunnel. This technique provides a 

reasonably realistic airflow over the top half of the model and, given the high ride height of 

these vehicles, a moderately representative airflow underneath the model. However when 

2 



Chapter 1 - Introduction 

performing testing on vehicles with low ground clearance or refining under body elements 

for high ground clearance vehicles, it is important to simulate the relative motion of the 

moving ground plane and the model, due to the interaction of the ground plane with the 

under floor of the model. When a moving ground plane is used in the testing of racing cars 

the model is usually held in position by the use of five stings. One sting locates the main 

body of the model and four locate the wheels, as shown in figure 1.2.1. 

Figure 1.2.1, The Sauber Wind tunnel (Motorsport.com 2003). 

1.2.1 Support Strut Interference 

Wind tunnel testing of aeroplane models also require the use of stings, as shown in figure 

1.2.2 which shows the A380 being tested at ONERA (2005). The model is supported by a 

strut attached to the base of the fuselage, which is connected to a force balance to measure 

the forces acting on the model and the supporting strut. However it is well established that 

the measurements of the forces acting on supporting struts in cases such as these change 

when the model is introduced, and equally the forces acting on the model change when the 

supporting struts are introduced (Barlow et al 1999). The sum of the separate forces acting 

3 



Chapter 1 - Introduction 

on the model and strut in most cases is less than the combined forces acting on both 

together. 

Figure 1.2.2, Airbus A380 under test at ONERA (2005). 

The join between the strut and the model body produces a horseshoe vortex, so called 

because it wraps around the strut and has two trailing legs that progress down either side of 

the strut, as shown in figure 1.2.3. 

4 



Chapter 1 - Introduction 

Figure 1.2.3 Horseshoe Vortex System, from Simpson (2001) 

The horseshoe vortex is subject to large-scale, low-frequency unsteadiness (Simpson 2001), 

and acts to bring high momentum, free stream fluid into the comer of the strut-body joint 

which energises the flow, increasing the shear stress adding to the drag. This effect can also 

act to change the point at which separation may occur on aerodynamic elements 

downstream (Devenport et al 1990), and so may change the perceived effect on part of the 

model even if the overall forces are accounted for. 

The same principles apply to the testing of ground vehicle wind tunnel models but with the 

added complexity that a moving ground plane introduces. Given the importance that is 

placed upon the under floor flow of racing cars in providing downforce quantifying the 

effects of the supporting struts and stings would be essential to validate the accuracy of the 

results. However there is little published workon the subject. 

5 



Chapter 1 - Introduction 

It is possible to attempt to quantify the effects of the struts on the models through the use of 

dummy struts. The model is supported by another strut and the strut being evaluated is 

replaced by a mock strut, the effect of the strut on the force measurement can then be 

evaluated. This process must be repeated for any change made to the model or the 

supporting strut and is time consuming. This approach is more effective for aircraft as 

supporting struts can be used both above and below the model where the struts cause little 

interference with the flow around each other. For ground vehicles this approach is more 

limited as there is less scope for mounting supports in positions where they will not affect 

the flow around each other. However whilst this method allows the effect of an isolated 

strut to be quantified it does not entirely solve the problem as the supporting struts still 

disturb the airflow from the path it would otherwise be taking and the flow in the wake of 

such a strut will possess a momentum deficiency that will affect any aerodynamic element 

downstream of the strut. 

1.2.2 Support Strut Interference Factors 

Simpson (200 1) discusses how the shape of a strut supporting a model directly affects the 

aerodynamic interference that it causes. The amount of drag produced mainly depends on 

the strength of the horseshoe vortex formed at the leading edge of the strut. The strength of 

the horseshoe vortex produced increases with the bluntness factor of the strut. Where 

bluntness factor is defined as; 

(1.1) 

Where R0 is the leading edge radius, Xr is the chordwise position of the maximum 

thickness T, and Sr is the distance from the leading edge along the aerofoil surface to the 

maximum thickness. It was found that struts with bluntness factors of 0.0133 and 0.0287 

did not produce horseshoe vortices, but that struts with bluntness factors of 0.0452 and 

higher cau~ed the creation of vortices. The dist:ailces between a model and the wall of the 

wind tunnel that support struts have to span means that the required stiffness of the struts 

necessitates the struts possessing a bluntness factor greater than 0.0452. When testing is 

6 



Chapter 1 - Introduction 

done with a yawed model and consequently a yawed strut, the angle of attack becomes non­

zero and the flow encounters a strut that becomes more blunt with increasing angle of 

attack. As a result the strength of the horseshoe vortices also increases with the increasing 

angle of attack (Simpson 2001). 

1.2.3, Support Strut Interference Reduction 

Given that the production of horseshoe vortices is virtually unavoidable for large scale 

model testing with a moving ground plane, methods of reducing the vortices produced by 

the struts have been investigated. Devenport et al (1990) have shown that a constant radius 

fillet at the strut/body junction can reduce the interference drag on a strut. However the 

fillet also has the effect of making the nose of the strut more blunt, strengthening the 

horseshoe vortices produced. A more successful approach was to apply the fillet to the 

leading edge only, Devenport et al (1992) showed that this configuration eliminated 

separation at the leading edge of the strut by reducing the adverse pressure gradient 

experienced by the boundary layer on the body upstream of the strut/body junction. The 

leading edge fillet also prevented the formation of the horseshoe vortices. It has also been 

show that by applying a fillet, with a radius of around 6% of the wing chord extending one 

strut chord from the trailing edge, the interference drag can be reduced by 10% (Hoerner 

1965). Leading and trailing edge fillets also act to decrease the effective bluntness of the 

struts by increasing the strut chord at the strut/body junction. However given the need for 

vehicle support struts which penetrate the body shell without contact, and regular changes 

of the model under test, applying fillets effectively in a wind tunnel can be complicated. 

Another method of drag reduction was investigated by Lafleur and Langston (1993) which 

involved producing an indentation in front of the leading edge of the strut which allowed 

for an 18% reduction in interference drag. The indentation allows for lower velocities and 

lower peak vorticity magnitudes around the strut due to the increased flow area that results 

(Simpson 2001 ). However for this to be feasible for testing it would require reshaping the 

model and as such is impractical. The impact of the strut interference on aerodynamic 

elements downstream was found to be reduced by ejecting high pressure air from the 

trailing edge of the strut (Akehurst 2003); however strut wake interference constitutes only 

a small part of the total interference, and so this method is limited in its effectiveness. 

7 



Chapter 1 -Introduction 

Among the factors that contribute to the overall drag increase caused by supporting struts 

are the nose bluntness of the support, the Reynolds number and displacement thickness of 

the approach boundary layer, the free-stream turbulence, the roughness ofthe surfaces, the 

boundary layers, separations, and vortices around the obstacles (Simpson 2001). While it is 

possible to account for some of these effects that are caused by these factors, the complex 

interactions between them means there is no way to apply correction factors to completely 

negate their effects. 

1.2.4 Boundary Layer Control 

Unlike wind tunnel testing of aircraft, boundary layer removal is important for ground 

vehicle testing due to the proximity of the vehicle underfloor and the floor of the wind 

tunnel. It is especially so for racing cars due to their very low ground clearance. Figure 

1.2.4 shows common methods of boundary layer control. 

(a) 

Suction 

Blowing 
(d) 

Blowing 

Figure 1.2.4, Boundary Layer Control Methods 

In figure 1.2.4 (a) the boundary layer is removed by suction before the start of the test 

section. In figure 1.2.4 (b) the flow is re-energised by injecting air into the boundary layer 

before the start of the test section. Figure 1.2.4 (c) shows the slotted floor boundary layer 

8 



Chapter 1 - Introduction 

control method. Low pressure below the floor of the wind tunnel constantly removes the 

low speed air of the boundary layer. In figure 1.2.4 (d) the flow is re-energised before the 

test section at which point the moving ground plane, which moves at the same speed as the 

air, eliminates the boundary layer. 

The boundary layer on an empty test section has a deficit of both mass and momentum 

fluxes. The mass deficit is characterised by the displacement thickness <h, which is the 

amount by which the boundary displaces flow field above it away from the floor, as shown 

in figure 1.2.5 (Hucho 1998). The thickness of the boundary layer increases as it progresses 

downstream. The presence of the boundary layer caused by the stationary floor is a 

considerable deviation from on road conditions where the vehicle is moving over the road 

and through the air at the same speed as the air, especially in vehicles with low ground 

clearances. 

o - boundary layer thickness 

o1- displacement thickness -------~~~--------~-

Figure 1.2.5, Boundary Layer Development 

Separation of the boundary layer may occur when it is subjected to an adverse pressure 

gradient such as occurs in front of the wheels of a model or where the underfloor of a 

model is shaped like a diffuser. Flow separation below a diffuser can render the diffuser 

ineffective during wind tunnel testing, severely affecting the resulting data. For these 

reasons, wind tunnel testing employing a moving ground plane is important for racing car 

models with low ground clearance in order to facilitate accurate representation of on-track 

conditions. 

9 



Chapter 1 - Introduction 

1.2.5 Support Strut Interference Quantification 

Tests were performed by Knowles et al (2002) on an isolated racing car wheel in contact 

with a moving ground plane to measure the effect of a supporting strut. This was done by 

first measuring the forces acting on the wheel and suspension alone, then introducing a 

supporting strut and measuring the resulting forces. The strut was found to decrease the lift 

of the wheel by 16%, increase the drag by 2%, and increase the mass flow through the hub 

by 83%. The strut was also found to cause the point of flow separation to advance by 4 

degrees compared to the wheel on its own. Significantly the changed flow over the wheel 

will also affect the flow over other aerodynamic elements downstream, further affecting the 

results. Page et al (2002) conducted a CFD study at the Swift wind tunnel using a 

NASCAR model to investigate the effect on the flow field of supporting struts. An 

overhead strut was found to reduce the pressure coefficient by 0.1 one chord length in front 

of the leading edge and after the trailing edge, and continued to disrupt the flow 

downstream of the strut. 

More in-depth work has been done into the effects of support strut interference at Durham 

University School of Engineering using the 2m Durham Wind Tunnel, which is a% open 

jet tunnel as described by Sims-Williams and Dominy (2002). Hetherington and Sims­

Williams (2006) used four different models to investigate the effect of supporting struts on 

the airflow; 

25% scale notchback saloon. The model has stationary wheels, a semi-detailed 

under floor, simplified engine cooling flow and limited exterior trim. The area 

blockage ofthe model in the tunnel jet was 6%, as shown in figure 1.2.6 (a). 

40% scale hatchback. The model has stationary wheels and limited exterior trim. 

The area blockage of the model in the tunnel jet was 15%, as shown in figure 1.2.6 

(b). 

35% scale Le Mans prototype closed-wheel race car. The model has stationary 

wheels, a detailed under floor with front splitter and rear diffuser, engine and brake 

cooling ducts, and full exterior trim. The area blockage of the model in the tunnel 

test was 5%, as shown in figure 1.2.6 (c). 

10 



Chapter 1 - Introduction 

25% scale generic open-wheel race car. The model has stationary wheels, a detailed 

under floor, simplified engine cooling and suspension and full exterior trim. The 

area blockage ofthe model in the tunnel jet was 5%, as shown in figure 1.2.6 (d). 

Figure 1.2.6. Support strut interference test models. 

All the models were tested with a fixed ground plane in the 2m Durham wind tunnel and 

connected to a six component under floor force balance at each of the model ' s wheels. The 

models were tested at a wind speed of 29ms-1 both with and without mock struts and stings. 

Four mock wheel stings and one mock supporting overhead strut were used to measure the 

interference on the airflow. Wake traverses were performed on the models and flow 

visualisation was utilised to show local flow effects. 

The mock overhead strut used was a NACA 664-021 , which was selected for its low drag 

profile in order to minimise the effect of strut wake on the rear wing of the models under 

test, and possessed a bluntness factor (Fleming et al 1991) of0.045. The strut had a chord 

of 1 OOmm which if steel would provide it with sufficient stiffness to support a 40% model. 

The strut was mounted to a faired support that housed actuators for controlling model pitch 

and ride height. The mock wheel stings that were used were existing wheel stings that had 

had their wheel mounting points removed. The wheel stings had a circular mounting boss 

and an aerofoil shape over the rest of their length. The wheel stings were mounted onto the 

floor of the wind tunnel outside the tunnel jet. 

11 



Chapter 1 - Introduction 

1.2.6, Support Strut Interference Quantification Results. 

Figure 1.2. 7 shows the separate and combined effects of an overhead strut and wheel stings 

on the drag coefficient. The results show that the struts caused different effects on the drag 

depending on the model being tested and that the effects were not cumulative. 

....... 
c: 
Q) 
·u 
IE 
Q) 
0 
(.) 

C> rn ..... 
"0 
c: 
0 

....... 
() 

& 
w 

• Notchback 
• Hatchback - no deflector 
D Open wheel racer 

0.030 
0.025 
0.020 
0.015 
0.010 
0.005 
0.000 

-0.005 
-0.010 
-0.015 
-0.020 
-0.025 

• Hatchback - w/deflector 
Closed wheel racer 

Support configuration 

Figure 1.2. 7, Effects of Support Interference on Drag Coefficient (Hetherington and Sims­

Williams 2006) 

Figure 1.2.8 show the effects of supporting overhead strut and sting on the lift coefficient of 

the models. As with the changes shown for the drag coefficient the struts had different 

effects depending on which model they were used on and again the effects were not 

surnmative. It was also found for the closed wheel race car that the introduction of an 

overhead strut affected the flow underneath the car. It was thought that this was due the 

wake of the supporting strut impinging on the rear wing and reducing its effectiveness and 

so decreasing the pumping effect of the wing that sucks air from the underneath of the 

vehicle. 
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These results show that the effects of supporting struts and stings considerably disrupt the 

airflow around vehicles under test and that the effects differ considerably depending on the 

model and that the effects of the struts and stings are not cumulative. 
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Suppport configuration 

Figure 1.2.8, Effects of Support Interference on Lift Coefficient (Hetherington and Sims-

Williams 2006) 

1.3 Magnetic Suspension and Balance System 

A technique for supporting wind tunnel models by non-intrusive means would provide a 

more realistic testing environment and would eliminate the problems caused by support 

strut interference. This can be achieved through the use of magnetic levitation. Holmes 

(1937) developed a non-intrusive method of supporting a spinning rotor using magnetic 

fields, this idea was further developed by Beams (1954) who created a frictionless bearing 

and with it achieved rotational speeds of 50,000,000 rpm. Tournier and Laurenceau (1957) 

were the first to build a magnetic suspension and balance system (MSBS) wind tunnel to 

support a stationary model at ONERA, the French National Office of Aerospace Study and 

Research. 
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1.3.1 , MIT/NASA/ODU MSBS 

NASA used an active non-intrusive electromagnetic support system, called the Magnetic 

Suspension and Balance System (MSBS) (NASA 1991), to test the space shuttle at mach 

0.6 in a 158mm diameter wind tunnel, as shown in figure 1.3.1. The system was originally 

developed at the Massachusetts Institute of Technology (Stephens 1969). The system was 

moved to NASA Langley Research Centre in 1984, before being moved to Old Dominion 

University in 1994. 

Figure 1.3.1 , NASA's MSBS 158mm Wind Tunnel (NASA 1991) showing reflection of 

test vehicle in mirrored walls. 

The NASA 158mm Magnetic Suspension and Balance System supported the model under 

test using a combination of Helmholtz coils, saddle coils, and iron core magnet assemblies 

(Yang 1997). The Helmholtz coils provided an axial magnetisation field, compensating for 

the drag force acting on the model; multiple Helmholtz coils were positioned along the test 

section to provide a uniform magnetic field over the test section. The saddle coils provided 

the transverse magnetic field components; multiple coils were used at right angles to each 
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other and spaced along the test section to allow for pitch and yaw control of the model. Lift 

and side force was provided by iron cored magnets; again the magnets were spaced along 

the test section to produce an even magnetic field to act on the model. All of the coils were 

required to be water cooled in order to dissipate the considerable heat produced by the large 

currents. In order to avoid electrolysis and silting the water had to be demineralised and de­

aerated to facilitate prolonged operation. The large coils of the electromagnets are visible 

through the perspex walls ofthe wind tunnel shown in figure 1.3.1. 

The need for the Magnetic Suspension and Balance System to have multiple large 

electromagnets around the test section meant that the space available was restricted 

preventing the use of an optical positioning system. An electromagnetic position sensor was 

used instead which utilised the principle of a differential transformer with the model acting 

as the core to resolve the components of the models position and orientation. A pair of 

Helmholtz coils acted as the excitation winding while seven pairs of coils were used as the 

pickup coils. The axial pickup coils were Helmholtz coils while the models horizontal and 

vertical position and pitch and yaw readings were measured using six pairs of saddle coils. 

The excitation coils produced a uniform magnetic field throughout the centre of the test 

section; when a ferromagnetic model was aligned with the axis of the excitation coils it 

became magnetized at the same frequency as the excitation field. The position of the model 

could then be ascertained by measuring the outputs of the pickup coils. 

NASA also used a larger MSBS tunnel; The NASA Langley Research Centre (LaRC) 13 

inch Magnetic Suspension and Balance System was developed from a system originally 

constructed at the Arnold Engineering Development Centre in the 1960's. (Boyden et al, 

1985). Various other MSBS tunnels have been developed including systems at the 

University of Southampton and Oxford University (Tuttle et al 1991) 

However there were many drawbacks with the Magnetic Suspension and Balance System, 

the most significant being the massive power supplies required to power the 

electromagnets. The 158mm MSBS was recently recommissioned with considerably 

improved and more efficient electromagnets yet the system still drew 400kW (Britcher 

1997). Such high power consumption is very expensive for prolonged operation and scaling 
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the system up would exponentially increase the power requirements because of the inverse 

cube law of forces between magnetic dipoles. Despite the lack of any physical supports the 

results from the MIT/NASA/ODU tunnel were affected by the proximity of the tunnel walls 

to the test subject; the diameter of the tunnel was only marginally larger than that of the 

model which had a wingspan of 127mm. 

1.3.2, National Aerospace Laboratory of Japan MSBS 

More recently the National Aerospace Laboratory of Japan has built several MSBS wind 

tunnels, ranging in size from the smallest with a test section of 1 OOmm x 1 OOmm to the 

largest with a 600mm x 600mm test section which is shown in figure 1.3 .2 (Sawada 2001 ). 

The arrangement of electromagnets required to support the model is shown in Figure 1.3.3. 

Coils 0 and 9 produced an axial magnetisation field, compensating for the drag force acting 

on the model in the x axis. Coils 1, 3, 5, and 7 provided lift and also controlled the pitch of 

the model in the z axis. Coils 2, 4, 6, and 8, provided side force in the y axis and also 

controlled the roll and yaw of the model. An optical positioning system monitored the 

position of the model in the test section providing feedback for the active control system to 

keep the model centred in the wind tunnel. This system is currently the largest active 

Magnetic Suspension and Balance System in operation, and is considerably larger than the 

system used by NASA. However it is still limited in the maximum weight that it can 

support; only models weighing less than 7kg and producing less than 16N of drag force can 

be used. Despite the low weight and drag of the models the MSBS tunnel still requires 

40kW to operate. 

The National Aerospace Laboratory of Japan is currently working to develop a system to 

allow heavier models to be supported. By replacing the magnets in the model with low 

temperature superconducting electromagnets, capable of producing stronger magnetic 

fields, the load bearing capacity of the system is increased. However this approach is 

problematical as superconducting electromagnets are very expensive and difficult to 

manufacture and also limit the time the tunnel can be operated to just a few minutes before 

the superconducting coil either saturates or warms up. Low temperature superconductors 

also require expensive liquid helium to operate. 
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Figure 1.3 .2, MSBS at the National Aerospace Laboratory of Japan (Sawada 2001) 

! Z 

' y 

posit ion sensing camera 

Figure 1.3.3, Electromagnet arrangement for the 600mm NAL MSBS Wind Tunnel 

(Sawada 2001) 

17 



Chapter 1 - Introduction 

1.3.3, Limitations of the Magnetic Suspension and Balance System. 

While all the incarnations of the Magnetic Suspension and Balance Systems provide a non­

intrusive method of supporting wind tunnel models, even the largest is limited to operation 

in a wind tunnel with dimensions of 600mm x 600mm and can only support light weight 

and low drag models. None of the systems would be suitable for ground vehicle wind 

tunnel testing, unless the testing was performed at an extremely small scale. When testing 

ground vehicle models in a wind tunnel, a suitably low blockage ratio must be achieved in 

order to approximate real conditions. On the road, a car is subject to open air on three sides, 

in order to replicate these conditions in the wind tunnel, the walls and ceiling of the tunnel 

must be a significant distance away from the model. Adapting an MSBS system to test a 

ground vehicle model would require the introduction of a floor in the middle of the tunnel, 

effectively halving the size of the tunnel at a stroke. The magnetic interaction between two 

dipoles decreases with the inverse cube of the distance between them, so increasing the size 

of the tunnel causes the power requirements of the tunnel to increase exponentially. An 

electromagnet capable of producing a field strong enough to act on the model from a 

distance of at least a metre would either be prohibitively large or would have to be an 

expensive and complex low temperature superconducting coil. The output of such a coil 

would be likely to interfere with the other electrical equipment in the tunnel, even if the 

cost and power requirements for such a system were not a consideration. 

The development of a magnetic levitation system that would be capable of supporting a 

model from one side only would allow the solution of the problem of magnetic fields acting 

over large distances. A system that could support a ground vehicle wind tunnel model 

solely from below the floor would allow the walls and ceiling of the tunnel to be as far 

away as desired facilitating testing in an open jet wind tunnel to provide a low blockage 

ratio. 

1.4 Preliminary work 

A non-intrusive method of supporting ground vehicle wind tunnel models was developed 

by the author for an M.Eng thesis at the School of Engineering at Durham University 
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(Muscroft 2002). During this project the superconducting pod was designed and built that 

used a combination of high temperature superconductors (HTS), permanent magnets, and 

electromagnets. The pod that was built proved to be stationary and stable when tested in a 

wind tunnel at 20ms-1
, achieving stable levitation without the need for active control. The 

research detailed in this thesis is a continuation of that work, investigating the feasibility of 

a non-intrusive method of support for use in the aerodynamic testing of 40% scale Formula 

1 cars. 

1.5 Overview of research 

This thesis details the design and development of a non-intrusive support system for ground 

vehicle wind tunnel models. The aim of this research was to investigate the feasibility of 

such a system built to support a 40% Formula 1 car under test in a wind tunnel with a 

moving ground plane. 

Chapter 2 discusses the key mechanism underpinning this research; flux trapping in type II 

high temperature superconductors. This mechanism allows the stable levitation of a 

permanent magnet over a superconductor and, crucially, is also intrinsically damped. This 

allows magnetic reinforcement of the superconducting levitation without rendering the 

system unstable. 

Chapter 3 covers the design and development of the superconducting "pod" system that is 

the vital constituent of the larger system. Electromagnetic finite element analysis was 

undertaken to model a simplified geometry of the superconductor, permanent magnet, and 

electromagnet system. This work was done to optimise the layout of the system to achieve 

the maximum restoring force acting on a levitating magnet from an electromagnet. The 

larger three pod superconducting levitation system is also discussed. 

Chapter 4 details the conception, development, and testing of the magnetic "rail" 

configuration designed to reduce the instability of permanent_ magnet only levitati()n. 

Multiple rare-earth permanent magnets of varying shapes and sizes were tested to ascertain 
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which was the most suitable for the magnetic reinforcement of the superconducting 

levitation. 

Chapter 5 covers the development and testing of both the medium and large scale hybrid 

superconducting magnetic levitation systems. 

Chapter 6 draws together the results of the work and discusses the experimental techniques. 

Chapter 7 covers the conclusions that were drawn from this work as to the feasibility of the 

system for use in testing 40% models in wind tunnels with a moving ground plane. 

Recommendations for future work are also covered. 
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2. Theory 

2.1 Superconductivity 

Superconductivity was first discovered when Heike Kamerlingh Onnes developed 

refrigeration to a sufficient degree to solidify mercury. Using the Leyden Cascade, a series 

of refrigeration loops that each used a refrigerant with a lower boiling point than the 

previous loop, he achieved temperatures below the boiling point of Helium, 4.2K. When a 

current was passed through the solid form of mercury at 4.15K it was found to have an 

extremely low value of resistance. The value of the resistance was measured to be less than 

1 o-6 n, which was the limit to the sensitivity of the equipment that was available at the time 

(Kamerlingh Onnes 1913). Advances in the sensitivity of measurement equipment have 

decreased this upper limit. Kedves et al (1987) and Y eh et al (1987) studied the decay rates 

of persistent currents in an YBaCuO superconducting ring and found values of resistance of 

less than 2 X 10-16 
Q, and 1 X 10-16 

Q respectively. 
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Figure 2.1.1, Graph showing the resistance of mercury at liquid helium temperatures 

(Kamerlingh Onnes 1913). 
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2.1.1, Zero Resistance in a Superconducting Wire 

Sarangi et al (2005) showed that the value of resistance in a Niobium Titanium (NbTi) 

superconducting wire is zero. To show this they used a 300cm coil of NbTi wire, 

designated coil B, in parallel with an 8cm loop of NbTi wire, designated coil A. A 6 Amp 

current was passed through the wires, and the magnetic field in the coil measured using a 

Hall probe with and without the 8cm loop connected. The magnetic field from the large 

coil, H n
1

, without the short loop connected was found to be 174 Gauss. With the short loop 

connected the magnetic field from the coil, H n
2 

, was found to be 4.5 Gauss. These results 

corresponded to the equation; 

I L8 Hn =Hn (-+1) 
2 I L 

A 

(2.1) 

Where L8 /LA is the ratio of lengths of the two NbTi coils. These measured values fitted 

with the expected result as the resistance in the large coil is L8/LA times more than the 

resistance in the short coil. 

The NbTi coils were then cooled to liquid helium temperatures, below the critical 

temperature ofNbTi (9.3K), and the magnetic fields in the coils were measured again using 

the Hall probe. If the superconducting wire possessed even a small resistivity, e, of the 

order 10-20 ncm-1
, then the resistance of the short loop, r sA, would be equal to e LA 

multiplied by the area of the cross section of the wire. The resistance of the large coil, r s 
8 

, 

would be equal to E L8 multiplied by the area of the cross section of the wire, so that r s 
8 

= 

k r sA . As a result Is 8 = Is A lk, and the magnetic field from the large coil B, H s
2

, would be 

equal to H n
2 

• 

However if the resistance of the superconducting wire is zero, then both coils have equal 

resistances and would therefore carry equal currents, I/2. As a result the magnetic field 

generated by the large loop, coil B, would be H n
1 
/2. The magnetjc field in coil B was 

measured to be 87 Gauss; half of the original field of 174 Gauss, showing that the 

resistance of the wire in the superconducting state is effectively zero (Sarangi et al, 2005). 
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2.1 .2 Elements Displaying Superconductivity 

As well as mercury many elements were also found to have superconducting properties at 

liquid helium temperatures, as shown in table 2. 1.1. It was found that some elements that 

do not display superconductivity at low temperatures alone can be induced into displaying 

superconductivity through the application of high pressure (Buzea and Robbie 2005). 

However, all the elemental superconductors that were discovered were type I 

superconductors. Type I superconductors possess a low critical field strength, as a result of 

which superconductivity breaks down when only a small current is passed through them, 

generating a magnetic field, rendering them to be of little use for current carrying 

applications. For this reason and because of the difficulty and high cost involved in 

producing liquid helium the applications of superconductivity were not further explored 

until much later in the twentieth century. 
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2.2 High Temperature Superconductors. 

A major breakthrough in the field of superconductivity came with the discovery of the so­

called "High Temperature" or type II superconductors, which exhibited superconductivity 

at much higher temperatures than the elemental low temperature superconductors. Prior to 

this discovery extensive research had been undertaken to find superconductors that 

possessed higher critical temperatures, yet the highest achieved was with a Niobium­

Germanium metallic alloy which achieved transition at a critical temperature of 23 .2K 

(Testardi 1974). 

The first high temperature superconductor to be discovered was a Lanthanum Barium 

Copper Oxide compound, (LaBaCuO) which demonstrated superconductivity at 35K 

(Bednorz and Muller 1986). It was found that replacing the barium with strontium to create 

LaSrCuO produced a critical temperature of 48.6K (Wu et al 1987). This provided a 

significant increase in critical temperature from the type I superconductors, but this 

temperature could still only be reached through cooling with liquid helium. 

2.2.1 Superconductivity above 77K. 

LaBaCuO has a perovskite structure (Kittel 1996) and it was found that by applying 

pressure to the compound that its critical temperature could be raised to 5 7K. It was found 

that this effect of increased critical temperature through pressurisation could be replicated 

by substituting the large Lanthanum ion with the smaller Yttrium ion. This change applied 

chemical pressure to the compound, instead of physical pressure, and produced YBCO (Hor 

et al 1987). YBCO, a Yttrium Barium Copper Oxide alloy, is a commonly used high 

temperature superconductor, and possesses a critical temperature of 92.5K. 

Crucially this was the first superconductor to have a transition temperature above the 

boiling point of liquid nitrogen (77K). Nitrogen is readily available in the atmosphere and 

inexpensive to liquefy, unlike helium which has to be mined due to its scarcity in the 

atmosphere. The discovery of YBCO sparked new interest in superconductors with a view 

to developing a room temperature superconductor. Currently the record for the highest 
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temperature at which superconductivity has occurred was measured in a HgBa2Ca2Cu30s+x 

compound, which has a critical temperature of 133K (Reissner 1997). Applying a pressure 

of 26 GPa to the compound increased the transition to 156K (Tristan Jover et al 1994). 

However due of the increased difficulty of production, the hazardous nature of the mercury 

content, and liquid nitrogen remaining the preferred cryogen, YBCO is used for most 

superconducting levitation applications. 

With the discovery of the high temperature superconductors, superconductivity was hailed 

as the solution to the energy problem, but without a room temperature superconducting 

material interest has waned. Nevertheless low temperature liquid helium cooled 

superconducting electromagnets are still used in MRI scanners as they can be formed into 

long wires to produce superconducting electromagnets capable of creating the very strong 

magnetic fields required. 

2.3 BCS theory 

When an electric current IS passed through a standard conductor power Is dissipated 

according to equation; 

P=fR (2.2) (Ohm 1827) 

Where Pis the power dissipated, I is the current passed through the conductor, and R is the 

resistance of the conductor. If the current passing through a conductor of a given resistance 

is doubled then the resulting dissipated power will quadruple. The resistance of a conductor 

increases as the length of the conductor increases, and as the cross sectional area of the 

conductor decreases. Consequently this is a problem in long distance power transmission 

where large distances must be covered and weight and cost are paramount. Electrical 

resistance is caused by the collisions between the free current carrying electrons and the 

imperfections in the lattice structure of the conductor. These collisions cause the current 

carrying electrons to pass on their energy to the lattice structure of the conductors, causing 

the electrons to decelerate as they lose energy. These collisions cause the temperature of the 

conductor to increase as the energy of the lattice increases, this causes the lattice structure 
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to vibrate more rapidly which in tum increases the number of collisions between the 

electrons and the lattice, increasing the resistance of the conductor. 

Superconductivity is explained by the BCS theory, named after Bardeen, Cooper, and 

Schrieffer, (Bardeen et al 1957). BCS theory centres on Cooper pairs, which are electrons 

that pair up in the superconducting matrix and move together through the material. 

Normally, the electrons would repel each other, but when the superconductor is cooled 

below its transition temperature, they overcome their repulsion due to a combination of two 

events. The first is the "screening" effect resulting from the motion of other electrons that 

reduces the repulsion between the Cooper pair. The second more dominant effect is the 

creation of a charge distortion called a "phonon", as shown in figure 2.3.1. 

• • • • • • • • •• () .. • • • • 
2nd Electron -------- ... .. .__. ·-- ----- ------ 1st Electron 

• • • • • • • ..~ ~ .. ./. • / 
Lattice charge distortion; 
known as "Phonon" Superconducting lattice 

• • • • • • • • • • • • • • 
Figure 2.3 .1, Electron/Phonon Interaction in the superconducting lattice. 

The charge distortion occurs when the fust electron of the Cooper pair shifts the position of 

the ions in the lattice structure of the superconductor and also other electrons as it passes 

them causing a ripple effect that creates an instantaneous pocket of positive charge. The 

second electron is then attracted to this concentration of positive charge. Because the 

electrons are moving at relativistic speeds, far faster than the phonons, by the time the 

second electron arrives at the site of positive charge, the fust electron is far enough ahead 

that they do not repel each other. The paired electrons can interact by exchanging phonons 

and have their momentum and spin vectors antialigned. The attraction between the 

electrons is very weak yet the superconducting phase transition occurs because the 
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electrons close to the Fermi energy have a net attraction. At a temperature just below the 

transition temperature in a superconducting material a small energy band develops where 

there no states. The energy gap is caused by the binding energy due to the formation of 

Cooper pairs. The formation of Cooper pairs is hindered by the thermal excitation of 

electrons; as the temperature is lowered the number of electrons that can cross the energy 

gap is significantly reduced resulting in a greater number of Cooper pairs forming causing 

the energy gap to become larger. Therefore the collisions of the electrons with 

imperfections in the lattice in a superconductor do not generate enough energy to cross the 

energy gap and therefore the electrons remain paired and there is no resistance to the flow 

of current (Rohlf 1994). 

2.4 The Meissner Effect 

When a superconducting material is cooled below its critical temperature and becomes 

superconducting, it will exhibit the Meissner effect; this is when the material will expel any 

magnetic fields impinging on its volume (Meissner and Ochsenfeld 1933) as shown in 

figure 2.4.1. This state holds as long as the magnetic field does not exceed the materials 

critical field strength, which when exceeded causes superconductivity to completely break 

down. When a changing magnetic field acts on a conducting material, it induces eddy 

currents to form which oppose the movement of the magnetic field, these eddy currents 

quickly die away because of the resistance of the conductor. However because a 

superconductor has no resistance to electrical flow the eddy currents do not die away. The 

currents form the exact opposite magnetic field to the one applied, repelling the external 

field. 

T>Tc T<Tc 

27 



Chapter 2 - Theory 

Figure 2.4.1, The Meissner Effect, in a conventional superconductor. 

When the magnetic field acting on a superconductor is less than the materials critical 

magnetic field strength, the magnetic field induced in a superconductor is equal and 

opposite to the external magnetic field. The critical magnetic field for a type I 

superconductor is very small and superconductivity breaks down when only a small current 

is passed through it. For this reason there are very few applications for type I 

superconductors. However, the critical field strength for a type II superconductor can be 

several hundred times larger than that of a type I superconductor, and thus type II 

superconductors are used more extensively. 

When a magnetic field is introduced to both type I and type II superconductors that have 

already been cooled below their critical temperatures, both types of superconductors will 

display the complete Meissner effect, as long as the magnetic field strength is below the 

critical field strength of the superconducting material. However once the critical field 

strength has been exceeded the superconductors behave in different ways. Figure 2.4.2 

shows how Type I and Type II superconductors behave when an increasing magnetic field 

is applied. 

Type I 

He 

Applied magnetic field 

Type II 

Meissner 
Phase Abrikosov 

mixed phase 

I 
He

1 
He2 

Applied magnetic field 

Figure 2.4.2, Effects of magnetic fields on Type I and II superconductors 
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There is no difference in the process of superconductivity in type I and type II 

superconductors. Both types have similar thermal properties at the superconductor-normal 

transition in a zero magnetic field. Type I superconductors exhibit the complete Meissner 

effect; up to the critical field strength He, the induced field is equal and opposite to the 

applied field. When the applied field exceeds He, the induced field drops to zero and the 

material ceases to be superconducting (Kittel 1996). There are two other factors that 

delineate superconductivity; the critical temperature and the critical current density. These 

three factors form an envelope, as shown in figure 2.4.3, if the limits of the envelope are 

exceeded in any direction the material ceases to be superconducting. 

Current Density, J 

Superconducting region 

Tc 
Temperature, T 

Magnetic Field, H 

Figure 2.4.3, Critical Surface Phase diagram 

Type II superconductors exhibit a partial Meissner effect. Type II superconductors follow 

the Meissner effect up to the material's first critical magnetic field strength Hc
1

• Once the 

applied field exceeds this strength, the induced field decreases exponentially as the applied 

field is increased, until the applied field is equal to the second critical field strength H c
2 

at 

which point the induced field is zero. While the applied field is between H c
1 

and H c
2 

, the 

material is still partially superconductii1g; this state is kllown ~ the Abrikosov mixed 

phase. When the field exceeds H c
2 

the material entirely ceases to be superconducting. Up 

to the first critical field strength the sample completely excludes the magnetic field. Once 
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Hc1 has been reached the sample only partially excludes the magnetic field but remains 

superconducting. This is known as flux trapping or flux pinning. When the magnetic field 

strength is between Hc1 and Hc2, the superconductor is said to be in the vortex state 

(Taoufik 2002). 

2.5, The Vortex State. 

A superconductor will completely repel any magnetic field that impinges on its volume, up 

to the critical field strength for the material. When a magnet is brought close to a 

superconductor, the Meissner effect occurs, which is also known as the "mirror effect". 

Currents are induced in the superconductor which produce the exact opposite field to the 

magnet and the magnet is repelled. Figure 2.5.1 shows the mirror effect. 

Magnet 

Mirror Line ------------- ,.----')-~ ;;..-+--...------ -------
' , 
\S' 

'------..--,~~·~ , , Superconductor 
: ,' .- - - ~~!. - - , \ ' 

Effective field produced______-.\\_~---~-;.~,::~ 
by superconductor \ /N, / Imaginary magnet 

... _... ... __ .... 

Figure 2.5.1, The Meissner Effect 

If the dimensions of the magnet are considerably smaller than the superconductor, it will 

stably levitate, as the magnetic field generated by the superconductor will instantaneously 

follow any move the magnet makes because the superconductor has zero resistance to the 

flow of current. However, if the magnet has similar dimensions to the superconductor, it 

will not levitate stably because as the magnet moves horizontally it will go beyond the 

physical limits of the superconductor and will no longer be supported. In order for a magnet 

to levitate stably over a superconductor of similar size flux trapping must occur. Flux 

trapping occurs when the superconductor is in the vortex state. 
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The term 'vortex state' describes the circulation of superconducting currents in vortices 

throughout the bulk specimen. In the vortex state, when the external magnetic field is 

greater than the second critical field strength of the material it will penetrate the regions of 

the superconductor that are no longer superconducting as a result of the external field. The 

magnetic flux will also partially penetrate the regions that are superconducting; 

superconductors do not entirely exclude an external magnetic field; the field enters the 

superconductor up to a penetration depth J..., 20nm - 40nm, decreasing in strength down to 

zero at the penetration depth. The magnetic flux of the permanent magnet becomes trapped 

or pinned within the bulk HTS microstructure in the form of individual flux quanta, each of 

which is surrounded by a current vortex at sites of imperfection, such as second (211 or 

Y2BaCu05) phase inclusions, in the superconducting matrix, (Feng et al 2001). There are 

no physical differences between the normal and superconducting regions in the vortex state. 

Figure 2.5.2 shows a cross section of the penetration of the magnetic field in a type II 

superconductor in the vortex state, figure 2.5.3 shows the vortices of supercurrent. This is 

also known as flux trapping. Vortex core size for a YBCO superconductor is~ 60 A (6nm) 

(Sonier 2004) depending on magnetic field strength. 

Normal region 

region 

External magnetic field 

Figure 2.5.2, Magnetic field penetration in a homogeneous bulk structure in the vortex state 

(Ketterson and Song 1999) 
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Supercurrent 

Normal Core 

~60A 

Figure 2.5.3, Vortices formed in a mixed state superconductor 

Figure 2.5.2 and figure 2.5.3 show the transition in a superconducting material as it changes 

from the pure Meissner state to the mixed vortex state. As the external magnetic field acting 

on the superconducting material exceeds the first critical field strength, the field begins to 

penetrate through cores of the material no longer in the superconducting state. These cores 

are surrounded by superconducting current vortices. An increase in temperature or 

magnetic field towards the limits of superconductivity causes the normal state cores to 

increase in size and the superconducting currents to decrease until the normal cores overlap 

and all superconductivity ceases. 

The structure of the superconducting material is crucial to the formation and prolongation 

of the vortices. Movement of the vortices create electrical resistance, imperfections in the 

crystal lattice, such as inclusions, act to pin the vortices and prevent movement of the 

magnetic field. The creation of regular artificial imperfections in the crystal lattice either 

through doping or the creation of microdots in superconducting materials allows the 

continuation of superconductivity at higher temperatures and higher field strengths. Yang et 

al (1998) discuss the influence of doping on critical current density in YBCO. The vortex 

state can also be induced by cooling a type II superconductor below its critical temperature 

in the presence of a magnetic field that exceeds its first critical field strength but is less than 

the second critical field strenght. In this case it does not expel all the magnetic field 

impinging on its volume; instead it traps the magnetic flux and resists any movement of the 

magnetic field. This is known as field cooling in type II superconductors (Li 2003). 
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2.6, Yttrium Barium Copper Oxide. 

The superconducting material used throughout this project was a Yttrium Barium Copper 

Oxide alloy, which is one of a family of alloys of rare-earth metals and copper oxide, all of 

which possess high transition temperatures. Their chemical compositions and transition 

temperatures are shown below. 

BaPbo. 1sBio.2s03 

La2-xBaxCu04 

YBa2Cu307 

ThBa2Ca2Cu301o 

Hgo.s Tlo.2Ba2Ca2Cu30s.JJ 

I 

: Tc = 12 K [BPCO] 

: Tc = 36 K [LBCO] (x = 0.15) 

: Tc = 92.5 K [YBCO] 

: Tc = 120 K [TBCO] 

: Tc = 133 K 

.~· 

The crystal structures of these compounds are 

oxygen-defect modifications of the perovskite 

structure: about one-third of the oxygen 

positions in the lattice are vacant. Figure 2.6.1 

shows the lattice arrangement of barium 

titanate, an example of the perovskite crystal 

structure. Barium titanate is cubic with Ba2
+ 

ions at the cube comers, 0 2- ions at the face 

centres and a Ti4+ ion at the body centre. 

Figure 2.6.1, Perovskite Crystal Structure (Kittel 1996) 

The primitive cell of YBCO is developed from that of a tetragonal perovskite crystal 

structure tripled along the c axis, as shown in figure 2.6.1. All of the high temperature 

superconductors with critical temperatures greater than 40 K have parallel layers of Cu02 

as part of their structure. In figure 2.6.2 there are three Cu02 planes in a primitive cell of 

the orthorhombic structure. The two Cu02 planes that run through the interior of the cell are 

the dominant conductive pathways. However, the Cu02 planes are not superconducting on 
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their own and require the rest of the structure to act as a charge reservoir (Shimura et al 

1994). 

I c 

0 Yttrium 

e Barium 

• Copper 

0 Oxygen 

.~ ,_, Absent Oxygen 
Atoms 

• 
a 

b/ 

Figure 2.6.2, Crystal Structure of Yttrium Barium Copper Oxide (Kittel 1996) 

2. 7 YBCO Production 

There are several methods of producing Yttrium Barium Copper Oxide superconductors; 

sintering is commonly used in ceramic processing as it has many advantages in preparing 

precise formed shapes for practical applications. Sintered samples are prepared from 

powders of high purity Y203, BaC03 and CuO. The powders are mixed well and calcined at 

850-950°C for up to 24 hours, the resulting pellet is pulverised and the process repeated to 

improve the quality of the powder. However while sintered YBCO can be formed into any 

shape it does not produce samples with high critical current densities, which are essential 

for levitation applications. These low critical current.?ensities are due !O the pr~sence of 

weak links at the grain boundaries of the YBCO structure. Whilst not suitable for use as 

levitators, such superconductors with low critical current density can be used for current 
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limiter applications. A small section of an electric circuit is replaced with a superconductor 

with properties matched to the circuit so that the maximum safe current is the current limit 

of the superconductor. Once the current limit of the superconductor is reached the material 

reverts to its normal insulating state, breaking the circuit (Murakami, 1992). 

The properties of the superconductors can be improved through the melt textured growth of 

YBCO which reduces the weak links in the superconductor. This process involves melting 

and then slowly cooling sintered YBCO. Melt processing techniques are based on the 

peritectic reaction that occurs in the YBCO system at around 1015°C. Figure 2.7.1 shows 

how YBa2Cu30 7_0 melts incongruently at this temperature forming a mixture of solid 

Y 2BaCu05 and liquid BaCuO phases. The required 123 (YBa2Cu307...5) phase forms as the 

mixture is cooled slowly in the presence of a temperature gradient through the peritectic 

temperature according to equation 2. 7.1 (Campbell and Cardwell, 1997). 

T 

L I 
011 + L ~3+L ........ 

123 + 
011 + 
001 

3BaCu02 
+2Cu0 

/ 200+L 

211 + L 

123 + 211 

211 
+ 
200 
+ 
210 

Y2BaCuOs 5YOu 
+BaO 

Figure 2.7.1, Phase diagram for the YBCO system (Campbell and Cardwell 1997). 

In order to increase the flux pinning centres up to 40% excess 211 (Y2BaCuOs) phase 

ma~erial is added to the stoichiometric 123 material prior to melt processing. 211 phase 

inclusions in the superconductor increase the critical current density by generating a fine 

array of flux pinning centres, and also promote larger grain growth in the superconductor. 
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The addition of small concentrations of platinum or rhodium to the precursor powder also 

increases the number of flux pinning centres by inhibiting the growth of the 211 

(Y2BaCu05) phase (Ogawa et al, 1991), and can triple the critical current density. The 

platinum or rhodium added to the powder inhibits the growth of the 211 phase by causing 

considerable numbers of nucleation sites to occur at an early stage of the sintering. No one 

crystal can grow to a larger size because of the all the other crystals that occur 

simultaneously. In an undoped sample there are only a few nucleation sites which results in 

small numbers of large crystal 211 phases limiting the maximum critical current density 

that can be obtained. 

The addition of a seed crystal to the sintered pellets during the melt processing of the 

superconductors improves the quality of the sample by initiating the nucleation and further 

growth of the desired Y123 phase, which then solidifies into a single grain during the 

cooling of the pellet (Reddy et al2005, Diko et al 2003). The size and the shape ofthe seed 

crystal affects the growth of the grains within the bulk. To prepare a sample a mixture of 

Y 203, BaCu02, and CuO, powders doped with platinum are pressed into pellets of the 

required size under high pressure. The pellets are then seeded with a chemically and 

structurally compatible seed crystal such as MgO, SmBCO, or NdBCO, which possess a 

higher melting point than the YBCO preform powder. The pellets are then heated to around 

1 050°C, then cooled to the peritectic temperature of the Y123 phase, 101 0°C, then cooled 

more slowly to allow grain formation to occur. At the peritectic temperature the pellet 

consists of a mixture of solid Y2BaCuOs and liquid Ba3Cu506.72 phases (Campbell and 

Cardwell 1997). The seed crystal instigates the nucleation and subsequent epitaxial growth 

of the Y123 phase in the pellet, which solidifies into a single grain. The superconductors 

used in this project were composed of a Yttrium Barium Copper Oxide alloy, prepared in 

bulk samples with diameters of 42-44mm and a height of 13mm. Each superconductor's 

structure is a single crystal prepared from powder by the top-seeded melt growth process. 

2.8 Permanent Magnets 

The first magnetic material that was discovered was magnetite ore Fe304, known as 

lodestone, which was commonly used in compasses for navigation purposes. Every 
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material has electrons that surround the nucleus of the atoms it contains, which are arranged 

in shells. Each electron revolves on its axis as it orbits the nucleus; this is termed "spin". 

Each electron has a magnetic field and an electric field. The number of electrons spinning 

in the same direction in a material determines the strength of its magnetic field. In a non­

magnetic material, an equal number of electrons are spinning in opposite directions and so 

the magnetic field produced by each electron is cancelled out. In a magnetic material, the 

majority of the electrons spin in the same direction and so the material develops a magnetic 

field. Figure 2.8.1 shows the electron shells in an iron atom. 

Figure 2.8.1, Free atom of iron, (Hadfield, 1962) 

Electron 

Electron 
shells 

The most commonly used magnets are ferrite magnets, composed of either Barium Iron 

Oxide, BaFe120 19, or Strontium Iron Oxide, SrFe12019• Despite only possessing a low 

magnetisation value, they are widely used due their low cost and reliability. Cobalt magnet 

steels such as AlNiCo alloy possess higher magnetic fields than ferrite magnets and also 

have a higher Curie point. The Curie point is the temperature at which magnetism breaks 

down within a magnetic material, ferrite magnets have a Curie point of ~500°C, whereas 

AlNiCo magnets keep their magnetism up to 800°C and as such are used when high 

operating temperatures are required. 
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2.8.1, Rare-Earth Permanent Magnets 

Samarium-Cobalt was the first rare-earth magnet that was developed in the form of SmCos. 

Further development led to the samarium cobalt magnet, Sm2Co 17, that possessed a 

magnetic field considerably stronger than both SmCo5, and AlNiCo. These high power 

magnets were used wherever strong and lightweight magnets were required, such as in 

stepper motors. High cobalt prices led to a search for high power magnetic materials that 

did not require the use of cobalt. Neodymium is more abundant in the earths crust than 

Cobalt or Samarium and also possesses a higher magnetic moment than both elements. The 

first Neodymium magnet developed had a composition of Nd1 5FenBs. The principal 

magnetic phase of this compound was later found to be Nd2Fe14B which possesses the 

highest magnetic field of all the permanent magnets (Coey 1995). NdFeB magnets are now 

used extensively in applications where high magnetic fields and light weights are essential. 

Table 2.8.1 compares the magnetic qualities of permanent magnets. 

~ 
Br (T) Js (T) iHe sHe (BH)max 

(kAm-1) (kAm-1) (kJm-3) 1 

Nd2Fe14B 1.28 1.54 1000 900 300 

Sm2Co17 1.08 1.15 800 800 220 

SmCos 0.88 0.95 1700 660 150 

AlNiCo 1.25 1.40 54 52 43 

SrFe12019 0.41 0.47 275 265 34 

Table 2.8.1, Magnetic materials and their properties (Coey 2002). 

Nd2Fe14B possesses the highest value of magnetic flux, Br, which is the maximum magnetic 

flux produced under closed circuit conditions. AlNiCo has a similar value of Br, however 

Nd2Fe14B has much higher values of both normal coercivity (sHe) and intrinsic coercivity 

GHe). Where sHe is the applied field intensity required to bring the magnetisation of the 

material to zero and jHe is the applied field intensity required to reverse the direction of the 

materials magnetisation. The most i111portant parameter is the maximum energy product, 

BHmax, which a measure of the useful work that a magnet can produce at a distance from its 

volume. Despite AlNiCo having a high value of Br. its low values of coercivity result in a 
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low energy product. Nd2Fe14B has by far the highest value of BHmax, showing that is has 

the highest magnetic field strength to weight ratio. The units of BHmax are kJm-3
, giving a 

value of energy per unit volume. 

B 

(BH)max 

H 

Figure 2.8.2, Demagnetisation curve for a permanent magnet. 

Magnetic field strength to weight ratio is the most important property of a magnet if it is to 

be used for levitation applications. Conventional ferrite magnets do not have a sufficiently 

high field strength to weight ratio to be levitated, and cannot even support their own 

weight. As shown in table 2.8.1 Neodymium Iron Boron rare-earth magnets have maximum 

energy products nearly ten times larger than standard ferrite magnets (Coey 2002), this can 

be accounted for by the electron shells in the element. Iron has an atomic number of 26, 

whereas neodymium has an atomic number of 60. The extra 14 electrons in the f shell of 

each neodymium atom can all be aligned together and accordingly produce a large 

magnetic moment. For this reason rare-earth magnets were used in this project. It would 

have not have been feasible to conduct the project without them. 

2.9 Earnshaw's Theorem 

Earnshaw's theorem states that: A charged body placed in an electrostatic field cannot be 

maintained in stable equilibrium under the influences of the electric forces alone (Earnshaw 

1842). The electrostatic potential of a point charge obeys Laplace's equation; therefore the 

total potential <p of a set of point charges must also obey Laplace's equation. 
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V'2qJ = 0 (2.9.1) 

82qJ 82qJ 82qJ 
--+--+--=0 ax2 ay2 az2 

A continuous distribution of charge can be modelled as a set of point charges so that 

Laplace's equation holds in a charge free region. If cp were to have a minimum at a point 

then for any change in x, y, or z, cp must increase, as shown in figure 2.9.1. The second 

order differential 
82~ must then be positive, as shown in figure 2.9.3. For a minima to 
ax 

exist this must hold for X, y, and Z, therefore 
82~, 82~, and 

82~ would all be positive 
ax ay az 

which would then mean Laplace's equation did not hold and so it is not possible for a 

minima to exist. 

X 

Figure 2.9.1, Graph of cp against x for stable levitation. 

arp 
ax 

X 

Figure 2.9.2, First order differential,~= . 

8rp 
-=2x ax 
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Figure 2.9.3, Second order differential, 
82~. ax 

X 

For a charged body the electrostatic energy of an element of charge on or in that body must 

obey Laplace's equation because the electrostatic potential describing the applied field also 

obeys Laplace's equation. Ifthe body is moved parallel to itselfthe position of a point 

charge can be specified by the position of the body's centre of gravity; the electrostatic 

energy of the point charge will obey Laplace's equation when regarded as a function of 

position of the centre of gravity. This will hold for every element of charge in the charged 

body, therefore the total electrostatic energy ofthe body q> will obey Laplace's equation. If 

the charged body is in stable equilibrium and then displaced in a small direction parallel to 

itself, then no matter the direction of the displacement, q> must increase. Therefore 
82 ~ , ax 

82 ~ , and 
82 ~ must all be negative, but this is not possible as it does not agree with 

ay 8z 

Laplace's equation and therefore the original assumption of stable equilibrium must be 

false. For a case where the charges in a body are free to move, any displacement parallel to 

the original position will result in a situation where q> decreases as the distribution of charge 

on any conductor is always to minimise the electrostatic potential, (Jones 1980). This 

indicates that any system of static permanent magnets or electromagnets with constant 

current will not be able to stably levitate another magnet. 
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However Milgrom (1998) suggests that while Earnshaw's theorem holds for point charges 

or a single dipole, that it is possible to suspend point bodies of finite charge, or extended 

test-charge bodies. This suggests that three or more dipoles connected by stiff links and 

each supported by a separate set of static magnetic fields should be able to achieve stable 

levitation. This may provide a method of producing stable levitation without the need for 

superconductors. 

Earnshaw's theorem relies on the linearity of the Laplace operator, and so will not apply to 

non-linear systems, such as superconductors. This also allows the stable suspension of 

neutral dipolar bodies with a constant magnitude, as long as the dipole is forced to remain 

aligned with the potential supporting it. This principle is used in the construction of 

magnetic traps for atoms, and is also the principle behind the Levitron. 

2.9.1, The Levitron 

The Levitron is an example of stable levitation achieved using only permanent magnets, the 

Levitron consists of a ring shaped permanent magnet base, and a small disc shaped magnet 

that levitates over the ring as shown in figure 2.9.4. The Levitron achieves stability through 

the spinning motion of the top; the gyroscopic force produced allows the top to balance on 

the magnetic field produced by the base, (Gov et al, 1999, Dullin and Easton, 1999). When 

the levitating disc magnet is not spinning the Levitron is stable in four degrees of freedom, 

and unstable in pitch and roll. The spinning motion stabilises the top on pitch and roll and 

levitation is sustained until the top slows down. 

Rare-earth disc magnet "top" 

Ferrite ring magnet 

Figure 2.9.4, The Levitron. 
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Earnshaw's theorem does not apply to the superconducting levitation used in this project as 

levitation with a superconductor occurs in the vortex or mixed state. The magnetic field of 

the levitating magnet enters the superconductors' volume and the magnetic flux is trapped 

in superconducting current vortices, resisting any movement of the magnet. The current 

vortices are pinned in position at inclusions or defects in the crystal lattice of the 

superconductor (Taoufik 2002), allowing stable levitation to occur. Milgrom ( 1998) 

suggests that is may be possible to construct a series of permanent magnet only levitation 

devices that could be used to bolster the superconducting levitation. 
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3. Analysis and Testing of the Superconducting Pod for Levitation 

3.1 Introduction 

This chapter describes the analysis and testing of the "Superconducting Pod" and its use for 

levitation applications. The superconducting pod formed the basis for the Superconducting 

Magnetic Levitation System and utilised one superconducting bulk. Electromagnetic Finite 

Element Analysis that was used to model the interactions between the electromagnets, the 

levitating magnets and the superconductors used in this project is also covered. The MEGA 

software (MEGA 2000) was used to optimise the design of the electromagnets used in the 

system to provide the most efficacious horizontal restoring force to act against the wind 

force applied to the levitating magnets. Finally the construction of a larger superconducting 

system is detailed; a system that employed three superconducting pods was then designed, 

built, and tested against destabilising forces acting in the direction of the airflow. 

3.2 Superconducting Levitation and the Superconducting Pod 

When a superconductor is cooled below the critical temperature at which it becomes 

superconducting, it will exhibit the Meissner effect. The Meissner effect is one of the 

hallmarks of superconductivity in which a superconducting material will expel any 

magnetic flux impinging on its volume. A magnet will levitate over a superconductor in the 

Meissner state as long as the diameter of the superconductor is several orders of magnitude 

larger than the diameter of the magnet. The superconductor creates a mirror image of the 

magnetic fields produced by the levitating magnet. Because the superconducting material 

has no resistance the mirror image of the levitating magnet moves instantaneously, 

matching any movement of the levitating magnet, thereby keeping it supported at all times. 

However this cannot occur if the levitating magnet is of a similar size to the 

superconductor. In this case movement of the magnet causes it to move beyond the 

boundary of the superconductor and as such it can no longer support it. 

Levitation of a magnet over a superconductor of comparable dimensions can only occur 

when the superconductor is in the mixed or vortex state. In this state the superconducting 
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material is a mixture of superconducting regions and normal state sections. The magnetic 

flux penetrates the volume of the superconductor throughout the normal state regions, and 

is pinned in place by vortices of supercurrent which surround the normal state sectors at 

defects within the superconducting lattice. The movement of the magnetic flux is resisted 

by the vortices of supercurrent, and consequently so is any movement of the magnet, thus 

allowing stable levitation to occur; this is known as flux pinning. This mechanism is the 

main principle behind the stable levitation of the superconducting pod that was designed 

and tested, as shown in figure 3.2.3, figure 3.2.4, and figure 3.2.5. 

Permanent Magnet 

Unstable 

Superconductor 

Figure 3.2.1, Stable and unstable levitation with superconductors in the Meissner state. 

The superconducting pod was developed as part of the author's previous work (Muscroft 

2002). Initially the superconducting levitation was tested whilst restricted to two degrees of 

freedom. A neodymium-iron-boron magnet with dimensions 50mm x 50mm x 6mm was 

mounted on a 1 metre long non-ferrous arm that was attached to a gimbal to restrict the 

motion of the magnet to two degrees of freedom, as shown in figure 3.2.2. The long arm 

reduced the displacement of the magnet towards the gimbal when moved from its central 

position. A melt textured YBCO superconducting bulk with a diameter of 44mm was 

mounted in a resin sealed polystyrene cryostat. Two electromagnets were used, one 

positioned either side of the cryostat, and each electromagnet had 400 turns and drew 5A. 

The height of the neodymium magnet was set using a non-ferrous spacer between the 

superconductor and the magnet. Various sizes of spacers were used to vary the levitation 

height. The superconductor was then cooled with liquid nitrogen and the spacer removed; 

this is known as flux pinning by field cooling. The position of the levitating magnet could 

be controlled by changing the current in the electromagnets; increasing the current in the 
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electromagnet on the left hand side of the magnet caused the levitating magnet to move to 

the right and vice versa. 

Electromagnets 

Metre long arm to reduce 
rotation of magnets 

Superconductor 

Figure 3.2.2, Two Degree of Freedom Testing 

• 
Neodymium 

magnets 

The system was then extended to six degrees of freedom by adding another set of 

electromagnets at 90° to the existing electromagnets and removing the gimbal and arm. The 

superconducting bulk was mounted in an aluminium casing, which was located by means of 

a central mounting pin attached to an aluminium base plate that formed the floor of the 

cryostat. The main body of the cryostat was formed out of polystyrene which was sealed 

with resin in order to make it impermeable to the liquid nitrogen. The cryostat was 

positioned at the outlet of one of the Durham wind tunnels with a jet of 457mm x 457mm 

square. An aluminium floor was installed to cover the cryostat and represent the floor of a 

wind tunnel. The main cryostat was joined to a second feeder cryostat, positioned outside of 

the jet of the wind tunnel, which was raised above the level of the main cryostat to allow 

the gravity fed flow of liquid nitrogen to cool the superconductor once the aluminium floor 

was in place. Four electromagnets positioned equidistant from each other around the 

cryostat were used to provide a restoring force to the levitating magnet to resist the 

horizontal force acting on them produced by the airflow, as shown in figure 3.2.4. 
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Before the wind tunnel was turned on the levitation height of the magnets were set by the 

use of a non-ferrous spacer placed between the magnets and the YBCO superconducting 

bulk. The superconductor was then field cooled by the addition of a liquid nitrogen bath 

and the spacer removed. The four electromagnets each had 400 turns and prior to the tunnel 

being turned on each electromagnet was drawing 2.5A. As the speed of the wind tunnel was 

ramped up the air applied a force to the levitating magnets, forcing them backwards away 

from their central point. This movement was countered by reducing the current being 

supplied to the front two electromagnets which caused the magnets to become centred 

again. The position of the levitating magnets could be controlled by changing the current in 

the electromagnets. The superconducting pod was proved to be stable at a wind speed of 

20ms-1
, which was the limit of the wind tunnel being used for testing. 

The test was initially performed with just the levitating magnets in the air flow, as shown in 

figure 3.2.3. In order to test the limits of the system the levitating magnets were then 

encased in modelling foam to increase the drag of the magnets and act as a bluff body to 

subject the system to unsteady air fluctuations as shown in figure 3.2.5 and figure 3.2.6. 

The modelling foam body was cylindrical and had a diameter of 1 OOmrn and a height of 

50mrn. With the aluminium floor in place and the addition of the bluff body to the 

levitating magnets the superconducting pod proved to be stable at 20ms-1
, which was the 

maximum speed of the wind tunnel. Despite the wind tunnel operating at its maximum 

speed the levitating magnets remained centred and stationary suggesting that the system 

was capable of operation at higher wind speeds. 

Direction of 
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Electromagnet Superconductor 
Liquid Nitrogen 

Cryostat 

Figure 3.2.3, Schematic of the Superconducting Pod. 
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Figure 3.2.4, Layout of the Superconducting Pod 
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Figure 3.2.5, The Superconducting Pod Levitating 

Figure 3.2.6, The Superconducting Pod Levitating with Aluminium Floor in Place. 
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3.3, Superconductor Crystal Quality and Domain Size 

The levitation force that is produced by a magnet positioned over a superconductor, that has 

been cooled below its critical temperature, is proportional to the diameter of the 

superconducting current that is induced in the superconducting sample by the magnetic 

field of the magnet. The larger the diameter of the superconducting current produced, the 

greater the resulting levitation force. The size of the supercurrent is dependant upon the 

quality of a superconducting sample which itself is defined by the crystal structure of the 

superconducting bulk. The maximum levitation force is produced if the supercurrent can 

circulate throughout the entirety of the superconducting bulk; for this to happen the 

structure of the superconductor must be composed of a single grain crystal. Several factors 

can cause the production of samples consisting of multiple grains during manufacture. 

These factors can include polycrystal seed crystals, edge nucleation, or misorientation 

within a domain where c-axis misalignments occur between adjacent sub domains, 

(Sengupta et al 1998). All these manufacturing flaws prevent the flow of the supercurrent 

between the adjacent grains and reduce the size of the supercurrent loop. Physical cracks 

within the superconductor bulk can of course also reduce the domain size. These are all 

macroscopic factors which can affect the domain size unlike the microscopic imperfections 

introduced to the crystal structure as sites for flux pinning which do not disrupt the flow of 

the supercurrent. 

3.3.1, Measurement ofTrapped Magnetic Flux 

Three of the Yttrium-Barium-Copper Oxide superconducting samples that were used for 

levitation purposes in this project were examined. All three samples displayed small cracks 

on their surface, but one sample exhibited a crack running across half its width. A visual 

examination is not capable of revealing the extent of the cracks to assess whether the 

fractures run deep enough to disrupt the flow of current and alter the domain size of the 

samples. Yang et al (2002) investigated the effect of domain size on levitation force. It was 

found that the larger the domain size of the superconductor, the greater the levitation force 

the superconducting sample could produce. However the relationship between domain 

diameter and levitation force is not linear. The levitation force of a superconducting sample 
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of a given size consisting of a single domain is considerably greater than the sum of the 

levitation force produced by two superconducting samples of half the size or that of a 

sample of the same size but with a physical crack throughout the sample dividing the 

domain into two. The levitation force that a sample can produce is inversely proportional to 

the perimeter of the grain boundaries in the sample (Yang et al 2001 ), cutting a sample in 

half increases the grain boundaries by four times the radius of the sample. The trapped 

magnetic flux in a single domain sample is at a maximum at the centre and decreases 

towards the edge of the sample as shown in figure 3.3.5 and figure 3.3.6. A crack in the 

sample, as shown in figure 3.3.3 creates an extra boundary at which the trapped magnetic 

flux is reduced, resulting in decreased levitation force as shown in figure 3.3.8. Maximising 

the area in which the supercurrent loop can form produces the largest levitation force. 

Therefore for a given area over which superconductors are to provide levitation, the 

maximum force will be gained using superconducting samples with the largest diameter 

available whilst still consisting of a single domain and possessing the shortest grain 

boundary achievable. 

The three superconducting samples were then tested to ascertain the size and number of 

domains contained within each. Domain sizes were determined by measuring the trapped 

flux in each sample using a Hall probe. The superconducting samples were cooled below 

their critical temperature by means of liquid nitrogen, and then a magnetic field was 

introduced, and then subsequently removed. To exceed the first critical field strength of the 

YBCO superconductors a stack of four 50mm x 50mm x 6mm neodymium-iron-boron 

magnets was used. The magnets were forced towards the superconductor causing the 

magnetic flux to be compressed between the superconductor and magnet and thereby 

exceeding the first critical field strength of the magnet, before being removed. The strength 

of the magnetic field trapped within the superconducting bulk was then measured by a Hall 

probe mounted on a non-ferrous arm connected to a traverse gear. A three axis traverse gear 

was used to position the Hall probe. The stepper motors were RS 440-458 12V 0.6A units 

with a step resolution of 1.8°. The Hall probe measured the trapped field emanating from 

each superconductor at a height of 2mm above the surface of the samples. The results are 

shown below. 
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Figure 3.3.3, Trapped flux pattern in sample 1. Figure 3.3.4, Superconducting sample 1. 
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Figure 3.3.5, Trapped flux pattern in sample 2. Figure 3.3.6, Trapped flux in sample 3. 

Figure 3.3.3 shows the trapped flux in superconducting sample 1. Visual examination of 

sample 1 shows a crack running from the middle of the sample to its edge, as shown in 

figure 3.3.4. The graph of the trapped magnetic flux in the sample shows that the crack runs 

at least to the depth that the magnetic field penetrated into the crystal, this crack disrupts the 

flow of the supercurrent and produces the uneven flux distributions seen in the graph in 

figure 3.3.3 . The crack does not extend across the entire width of sample 1 so it still has 

only one domain. However the crack severely reduces the diameter of the supercurrent loop 
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that the superconductor can produce. This also results in the effective domain size of the 

sample being reduced considerably, and the perimeter of the grain boundary is increased; 

hence it would be expected to significantly reduce the levitation force that it can produce. 

Figures 3.3.5 and 3.3.6 show that while the other two samples were shown to have small 

cracks on their surface, the cracks do not penetrate through the thickness of the samples. 

Leblond et al (1999) showed that the levitation force that a superconducting sample 

produces increases with the thickness of the sample up to a thickness of 6rnm above which 

point no further increase in levitation force is achieved. Levitation force is proportional to 

the superconducting volume up to the point at which the magnetic field from the permanent 

magnets cannot penetrate any further into the superconductor. The superconducting 

samples that were tested were 12rnm thick. Single domain superconducting samples allow 

the supercurrent loop to form with a diameter comparable to the diameter of the sample. 

The conical shapes of the graphs of the trapped magnetic flux show that both samples have 

only one domain and that the domain size is comparable with the size of the samples. 

3.3.2, Levitation Forces Produced by Superconducting Samples 

The levitating force that each sample could produce was then measured. Each 

superconducting sample was placed within a cryostat and mounted on to a six component 

force balance. The force balance consisted of two plates connected by six thin links. The 

links were directly attached to one plate and connected to the other plate through six strain 

gauge load cells positioned to measure the axial force in each link. The force balance was 

designed to isolate the load cells from out of plane forces. A directly applied vertical force 

would load links 1, 2, and 3, as a thin rod is axially stiff, but because a thin rod is relatively 

flexible in bending and torsion the load on links 4, 5, and 6 would be negligible. The 

resulting loads would be measured by the six strain gauge load cells. The load cells were 

manufactured by Graham and White Instruments with a full scale load of ±60N, and full 

scale deflection of 0.6mm. The links were manufactured from 1.6rnm diameter steel rods, 

the plates and all other components of the balance were made from aluminium (Docton 

1997). 
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Figure 3.3.7, Schematic of the Six Component Force Balance 

Three neodymium-iron-boron rare earth magnets with dimensions of 50mm x 50mm x 

6mm were attached to the traverse gear via a non-ferrous arm. The superconducting 

samples were cooled below their critical temperatures in liquid nitrogen and the rare-earth 

magnets were lowered from directly over the samples from a height of 1 OOmm. Figure 

3.3.8 shows the levitation force produced by each superconducting sample interacting with 

the rare-earth magnets. To account for the weight of liquid nitrogen that boiled off during 

the measurements a run was performed without any permanent magnets and the readings 

subtracted from the force measurements. 
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Figure 3.3.8, Levitation force produced by superconducting samples and rare-earth 

magnets. 
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The results of the levitation force traverses shown in figure 3.3.8 show good correlation 

with the results of the flux trapping measurements. The flawed sample 1 only produced a 

maximum levitation force of around 7N, whereas samples 2 and 3 both produced a 

maximum levitation force of around 20N. The samples without any cracks, and hence 

larger domain sizes, produced significantly larger levitation forces than the cracked sample, 

despite the cracked sample still possessing only one domain. Where possible throughout 

this project only single grain superconductors were used. 

The maximum levitation force that a superconducting sample can generate is determined by 

the magnetic field strength that the levitating magnets produce. The stronger the magnetic 

field that is produced by the magnets, the greater the levitation force that is produced. This 

relationship is followed up until the point at which the magnetic field acting at the surface 

of the superconducting sample exceeds the upper critical field strength of the 

superconducting bulk; at which point superconductivity within the sample breaks down. 

Teshima et al ( 1997) investigated the relationship between the diameter of magnet used and 

the levitation force produced. It was found that the effective maximum levitation force was 

produced when the levitating magnet had a diameter which was marginally smaller than 

that of the superconductor; this was found to be approximately 90% of the diameter of the 

superconducting bulk. The use of a levitating magnet with a larger diameter than this will 

result in a greater levitation force being produced, however the extra levitation force is less 

than that required to compensate for the extra weight of the magnetic material and as such 

reduces the effective levitation force. 

The magnetic field acting on the superconductor can also be increased using magnets of 

increased thickness or by stacking the levitating magnets on top of each other. Adding 

subsequent magnets will increase the resulting magnetic field but, as with the width of the 

magnets, there is a limit where the extra magnet will not provide a sufficient increase in 

levitation force to compensate for the extra weight that it adds, thereby decreasing the 

levitation potential of the system. To ascertain the ideal number of magnets to stack to 

produce the maximum levitation force a superconducting bulk was mounted in a cryostat 

on a six component force balance and a varying number of magnets were mounted to a 

traverse gear via a non-ferrous arm. Figure 3.3.9 shows the relationship between levitation 
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force produced by a superconducting bulk and number of levitating magnets being used. To 

ensure the results are not affected by the liquid nitrogen boiling off a dry run was 

performed and the measurements subtracted from the force readings. 
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Figure 3.3.9 Effect on levitation force of increasing the number of magnets. 

Figure 3.3.9 shows a marked increase in the levitation force produced by increasing the 

number of magnets from one to two, and a similar increase resulted from the addition of a 

third magnet. However the addition of a fourth magnet produced only a minor increase in 

the resulting levitation force. The increase in levitation force engendered was not sufficient 

to compensate for the extra weight that the magnet added. At a height of 2cm above the 

superconducting bulk a fourth magnet produced an extra levitation force of 0.5N. However 

in order to compensate merely for its own weight the extra magnet would have to have 

produced an additional levitation force of 0.91N. Therefore the result of the addition of a 

fourth magnet would be to actually reduce the levitation height of the magnets. 

When a rare-earth magnet is levitating over a superconducting bulk in the vortex state, the 

superconductor is capable of resisting large forces in the vertical direction; however the 

superconductor can resist only relatively small horizontal forces, therefore requiring the use 

of the electromagnets to hold the magnets in position. In the authors previous work 
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(Muscroft 2002) it was considered whether the superconductors could provide more 

horizontal restoring force by placing them at an angle towards the direction of the airflow. 

To test this theory a YBCO superconducting bulk was mounted in a cryostat at increasing 

angles, from horizontal to 30° in increments of 10°, as shown in figure 3.3.10. A 

neodymium-iron-boron rare-earth magnet was mounted to a traverse gear on a non-ferrous 

arm and force plots were taken over an area from 1 OOmm above the superconductor to 

80mm horizontally from the centre of the superconductor. The results are shown in figures 

3.3.11, 3.3.12, 3.3.13, 3.3.14. With the superconductor parallel to the magnet the maximum 

force produced was 3.55N. Changing the angle of the superconductor by 10° reduces the 

maximum force produced to 2.13N. Increasing the angle to 20° again further reduces the 

maximum levitation force produced to 1.65N. Increasing the angle to 30° causes a reduction 

in levitation force to just 0.36N. These results show that any gain in horizontal restoring 

force by changing the angle of the superconductor is considerably outweighed by such a 

dramatic loss of levitation force. This effect was due to the average distance between the 

superconductor and levitating magnets being considerably increased as the highest point of 

the superconductor had to be below the effective floor level. Therefore this is not a 

beneficial configuration when horizontal restoring force is produced considerably more 

effectively through the use of electromagnets. Figure 3.3.11 shows that the superconductor 

produces significant levitation force even though the magnet is not directly over the 

superconductor. This means that although the space for levitating magnets will be 

constrained by the size and shape of the vehicle to be levitated, extra levitation force can be 

achieved by positioning superconductors beyond the boundaries of the vehicle. 

2Magnets 

~- / 
Effective Floor Level 

Angled 
Superconductor 

Figure 3.3 .1 0, Increasing the angle of incidence between levitating magnets and 

superconductors. 
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3.4 Electromagnetic Finite Element Analysis 

3.4.1 E.F.E.A. Method 

MEGA is an electromagnetic finite element analysis package developed at the University of 

Bath (Mega 2000). MEGA solves the low frequency subset of Maxwell's equations using 

the finite element method. MEGA is based on four fundamental field equations: 

---> 

V.B =0 

---> 
___, fJB 

VxE+-=0 at 
---> 

V.D = p 

---> 
___, fJD ___, 

VxH+-=J at 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

~ ~ ~ ~ 

Where His the magnetic field strength, J is the current density, E is the electric field, B is 

---> 

the magnetic field, D is the electric displacement field, pis charge density, and t is time 

(Monk, 2003). 

The Finite Element Method is employed to model a system numerically in order to assess 

its properties without the need to physically build it. The test configuration is modelled in 

the finite element program and values are attributed to the components. The model is 

solved by breaking it down into small elements. The model is divided into a sufficiently 

fine mesh, and then the governing equations are then solved for each small element, as 

defined by the set boundary conditions. The size and shape of the mesh and the elements 

that it is divided into are regulated by a trade off between accuracy and processing power. 

The smaller the elements and the more complex the mesh, the more accurate the result will 

be. However, a very fine mesh will COilsurn.e a lot of _processing power, considerably 

increasing the time taken for the program to solve the problem; for a complicated model the 

solving time can run into weeks. As a result the design of the mesh is of great importance. 
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In any design of a system that is to be modelled there will be areas in which either there are 

large force gradients, or where there are large electrical gradients. These areas occur around 

features such as stress concentrators or points of high load. In order to produce an accurate 

solution for the regions incorporating the steepest gradients the mesh must be structured to 

be sufficiently fine to capture the small detail. However structuring the entire mesh in this 

fashion causes processing power to be wasted on areas containing only moderate or low 

gradients. Instead the mesh is structured to be gradated so that it is fine in areas where there 

is a large amount of detail to be captured and coarse in areas far from the point of interest. 

This approach allows detailed analysis of points of interest whilst minimising the run time 

taken for the program to solve each mesh, careful design of the mesh is important to 

optimise this trade off without missing any fine detail. Computer modelling is a useful tool 

to reduce the time required to investigate the behaviour of electromagnetic circuits, or 

where it is either impractical or financially unfeasible to build multiple variations of the 

actual circuits. MEGA (2000) was the FEA package that was used for all of the computer 

simulation covered in this report. Meshes in MEGA could be constructed using a 

combination of quadrilateral and triangular elements. 

3.4.2 Scope ofthe Analysis 

The role of the electromagnets used in this research was to provide a restoring force 

opposing the destabilising horizontal aerodynamic force of the air flow acting on the model 

in the wind tunnel. Finding the optimal orientation of the electromagnets experimentally 

would have required the manufacture of all the electromagnets that were under 

consideration and taken considerable time to test all the potential variations. Computer 

simulation significantly cut the time taken to explore the possibilities and removed the need 

for the costly manufacture of multiple designs of electromagnets. 

The layouts of the simulations were based on a single superconducting pod. The pod 

consisted of a superconducting bulk, a levitating permanent magnet, and two 

electromagnets modelled in 2D. In MEGA 2D models are modelJeq_ as a cross section 

through the centre point of a lm long 3D model so that end effects are far enough away so 

that they do not impinge upon the test section. This configuration is a good approximation 

61 



Chapter 3- Analysis and Testing of the Superconducting Pod for Levitation 

of the superconducting pod as the electromagnets are designed to resist a force in one plane 

and forces acting in other planes will be opposed by a separate set of electromagnets. All 

the components of the superconducting pod system that are designed to resist the wind 

force acting in one direction lie in one plane, therefore all the simulations of the 

superconducting pod system were performed in 2D. Whilst the 3D effects are significant 

this approach will provide a good indication as to the most effective configuration of the 

electromagnets. 

3.4.3 Modelling of Permanent Magnets 

The MEGA software was capable of modelling an allocated area as permanent magnet 

material with an ascribable field strength and direction; however the MEGA program 

cannot calculate the force that one permanent magnet is applying to either another 

permanent magnet or an electromagnet. The MEGA software calculates the force acting on 

an element by multiplying the current density by the magnetic field and integrating over the 

area specified (MEGA 2000), therefore as areas specified as permanent magnets have no 

current density no forces can be calculated. Therefore in order to allow forces to be 

measured the permanent magnet models simulated were created as electromagnets so that 

there would be a current density to measure. As the models were tested in 2D, opposite 

current densities were assigned to either side of the permanent magnets in the models to 

produce the required magnetic fields. The current densities for the electromagnetic 

representation of the permanent magnets were chosen by meshing a magnet and assigning it 

as a permanent magnet and measuring the magnetic field it produced. An electromagnet of 

the same dimensions was then meshed and the current densities varied until the magnetic 

field it produced was the same as the permanent magnet model. 

3.4.4 Modelling ofthe Vortex State 

The Meissner state, in which a superconducting material expels any magnetic flux 

impinging on its volume, can be modelled by applying a boundary co11dition of tangential 

flux at the perimeter of the area to be designated as a superconductor. This condition holds 

as long as the magnetic field acting on the material is below the first critical field strength 
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of the material. However when the magnetic field strength at the surface of a type II high 

temperature superconductor, such as the Yttrium, Barium, Copper Oxide alloy that was 

used in this research, exceeds the first critical field strength of the material, the 

superconductor can no longer expel all of the magnetic flux, and some of the flux enters its 

volume. This is known as the mixed or Vortex state. The MEGA finite element analysis 

package is not capable of modelling the processes that occur within the superconductors in 

the vortex state that were used in this project. 

The principal objective of modelling the electromagnet, superconductor, and levitating 

magnet system was to measure the forces produced by the interaction between the 

electromagnets and the levitating magnet. The purpose of the electromagnets in the system 

is to oppose the destabilising horizontal wind force acting on the levitating magnets. The 

interactions between the fields produced by the levitating magnets and the electromagnets 

are a significant distance away from the superconductor and as such are not appreciably 

affected by the superconductor. In the Vortex state caused by field cooling of the 

superconductor the shape of the magnetic field differs only slightly from the Meissner state 

as the field dips into the volume of the superconductor. Modelling the system with the 

superconductor assumed to be in the Meissner state is a reasonable approximation in order 

to allow the effect of the electromagnets to be assessed. 

3.4.5 Mesh Resolution 

The mesh size used for the models was determined by running the simulations and refining 

the mesh between each run until comparison of the results showed the difference between 

refmements was negligible. The mesh used for Model 1, as shown in figure 3.5.3, consisted 

of 10472 cells. This mesh was chosen as it was shown that quadrupling the number of 

elements used from 2500 to 10000 resulted in a change in the magnet field of 0.5%, whilst 

a further quadrupling of the number of cells to over 40000 cells resulted in a change in the 

magnetic field of less than 0.2%, as shown in figure 3 .4.1. 
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Figure 3.4.1, Graph of Cell Number against Magnetic Field. 

3.5 Electromagnetic Finite Element Analysis Results 

In order to find the optimum shape of electromagnet to produce the maximum horizontal 

force a standard arrangement of the superconductor and levitating permanent magnet was 

chosen. A superconductor and magnet of equal size were positioned directly over each 

other at a fixed height as shown in figure 3.5 .1, with a boundary condition of tangential 

magnetic flux applied to the superconductor. For each simulation the electromagnets being 

tested were meshed to lie on either side of the superconductor, all lying below the line 

where the floor of the wind tunnel would be. The horizontal forces acting on the levitating 

magnet were then calculated. The models were then re-meshed to move the levitating 

magnet 2mm horizontally as shown in figure 3.5.2, and the new model solved to find the 

horizontal forces acting on the levitating magnets to ascertain whether the force was either 

a restoring force or a destabilising force. 

The first simulation that was investigated was a 2D representation of the superconducting 

pod. Curved electromagnets were used in this system as previous experimental results 

(Muscroft 2002) suggested that they provided a more stable repulsion force, (Figure 3.5.3). 

Several other shapes of electromagnets were simulated including straight and curved 

electromagnets with a range of angles (Figures 3.5.4 - 3.5.8). The forces acting on each 
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element of the levitating magnet were calculated by MEGA and the forces written out to a 

text file. A datum reading of the levitating magnet on its own was deducted from the 

readings to only show the forces being produced by the perturbation. 

Figure 3.5.1, Arrangement of magnet and superconductor and element distribution. 
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Levitating Magnet 

Figure 3.5.2, Configuration with 2mm horizontal displacement of the magnet. 

Figure 3.5.3: Model l, 45° Electromagnets. 
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Figure 3.5.4: Model2, 90° Electromagnets. 

Figure 3.5.5: Model 3, Horizontal Electromagnets. 
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Figure 3.5.6: Model 4, 30° Electromagnets. 

Figure 3.5.7: ModelS, Electromagnets at 45° angle. 
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Figure 3.5.8: Model 6, Vertical electromagnets. 

For the purposes of analysis the simulations were split into two families; one of straight 

electromagnets aligned horizontally and another group of angled electromagnets. 

Straight electromagnets Angled Electromagnets 

Model3 Horizontal Model3 oo 

ModelS 45° Model4 30° 

Model6 Vertical Modell 45° 

Model2 90° 

Table 3.5.1, Electromagnet groupings. 
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Figure 3.5.9, Horizontal restoring force acting on the levitating magnets from the straight 

electromagnets from a 2mm horizontal displacement. 

The results shown in Figure 3.5.9 shows that the straight horizontal electromagnet (model 

3) produces the largest restoring force, (negative forces being in the desired direction). The 

straight electromagnet angled at 45° (model 5) produced very little restoring force and the 

straight vertical electromagnets (model 6) actually produced a destabilising force. The 

forces produced are very large due to the way 2D models are simulated in MEGA; a 2D 

model is considered a cross section of a lm long 3D model. This result correlates with the 

angle of the flux lines produced by each of the simulations. The flux lines are steepest in 

figure 3.5.5 showing that they produce the greatest horizontal force on the levitating 

magnet. 
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Figure 3.5.10, Total vertical forces acting on the levitating magnets with the straight 

electromagnets before and after applied horizontal perturbation. 

The change in the vertical forces acting on the levitating magnet before and after a 2mm 

horizontal perturbation is applied to it are shown in figure 3.5.1 0. The vertical 

electromagnets produced the largest vertical force, the horizontal electromagnets produced 

the smallest vertical force, and the 45° electromagnets were between the two. This is due to 

the orientation of the poles of the electromagnets. When the electromagnets are vertical 

their south poles are directly opposed to the south pole of the levitating magnet and 

therefore produce the greatest vertical force. As the south poles of the electromagnets are 

turned away from the levitating magnet the vertical force is reduced. The changes in the 

vertical force when the displacement is applied for each of the models is small, as 

correspondingly are the turning moments produced on the levitating magnet as shown in 

figure 3.5.11. The smallest turning moment was produced by the straight horizontal 

electromagnets. 
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Figure 3.5.11 , Turning moment acting on levitating magnet from the straight 

electromagnets. 
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Figure 3.5.12, Horizontal restoring force acting on the levitating magnets from the angled 

electromagnets. 

The horizontal restoring forces produced by an electromagnet with an increasing angle of 

bend are shown in figure 3.5.12. The largest restoring force was produced by model 3, the 
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electromagnets with the 0° bend. Increasing the angle of the bend in the electromagnets 

caused the horizontal restoring force to be reduced. 
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Figure 3.5.13, Total vertical forces acting on the levitating magnets from the angled 

electromagnets before and after applied horizontal perturbation. 

The vertical forces for the angled electromagnets before and after a 2mm horizontal 

perturbation was applied are shown in figure 3.5.13. As with the straight electromagnets 

there was only a small change in the vertical force which was also reflected in the turning 

moments acting on the levitating magnets as shown in figure 3.5.14. As with the non­

angled electromagnets the electromagnet with a 0° degree bend (model 3) produced the 

smallest turning moment on the levitating magnet. 
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Figure 3.5.14, Turning moment acting on levitating magnet from angled electromagnets. 

These results show that the most effective way of applying restoring force to the levitating 

magnets is through the use of straight horizontal electromagnets, model 3 as shown in 

figure 3.5.5, as these electromagnets produced the largest horizontal force. The horizontal 

electromagnets produced very little vertical force but changing the orientation to provide 

more vertical force results in a significant decrease in the horizontal restoring force. 

Vertical force is more easily produced through the use of permanent magnet levitation as 

will be discussed in chapter four. Therefore the electromagnets shown in figure 3.5.5 

(model 3) were used to provide restoring force against the drag force produced by the air 

flow acting on the model. 

Further simulations were then performed on model 1 and model 3, the electromagnets with 

45° and 0° bends as shown in figure 3.5.3 and figure 3.5.5 respectively, to assess the effect 

of raising the height ofthe magnet by lOmm, from 20mm to 30mm. Figure 3.5.15 shows 

the results before and after the magnets were raised. The restoring force produced decreases 

as the height increases; this is due to the increased distance between the electromagnets and 

the levitating magnets. The ratios of the forces produced by the two simulations remains the 

same. 
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Figure 3.5.15 Restoring force acting on the levitating magnets at different heights. 

3.6 Force Testing of the Superconducting Pod 

Tests were then performed on the superconducting pod to measure the forces acting on the 

levitating magnets produced by the electromagnets and the superconductor. Different 

configurations were tested with the levitating magnets at a range of heights and the 

electromagnets at varying currents. The first set of tests was performed on a 

superconducting pod with four electromagnets equally spaced around the central cryostat as 

shown in figure 3.6.1. Each electromagnet had 400 turns. 
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Figure 3.6.1 , Layout ofthe Superconducting Pod 

The superconductor, cryostat, and the electromagnets were then mounted on the six 

component force balance. Three neodymium-iron-boron permanents magnets, each with 

dimensions of 50mm x 50rnm x 6mm, were mounted onto the traverse gear via a non­

ferrous arm. The height between the superconductor and the magnets were set at 1 Ornm, 

15rnm, 20mm, and 25mm. Liquid Nitrogen was added to the cryostat to field cool the 

superconductor and then the magnets were traversed 1 Omm in the x direction and the 

horizontal forces measured. For each height setting of the magnets five tests were 

performed with different currents applied to the electromagnets from OA to 4A in 1 A 

increments. Figure 3.6.2 through figure 3.6.5 shows the horizontal forces acting on the 

system 
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Figure 3.6.5, Horizontal forces at an air gap of25mm. 

Figure 3.6.2 shows that the superconductor on its own produces a significant horizontal 

restoring force when the magnets are moved from their central position with an air gap of 

1 Omm. Increasing the current in the electromagnets increased the restoring force as 

expected. When the air gap of the system is increased the horizontal restoring force 

produced by both the superconductor and the electromagnets decreases. As the air gap 

increases the quantity of magnetic flux that encroaches into the volume of the 

superconductor during field cooling is reduced, reducing the flux pinning that occurs and 

therefore also the resistance to movement. As the air gap increases the horizontal restoring 

force produced by the electromagnets decreases because of the angle of interaction between 

their respective magnetic fields, and the resulting force acts in an increasingly vertical 

direction. The increased separation between the magnets also causes the forces between 

them to decrease. 

This result is also shown in the results from the Electromagnet Finite Element Analysis of 

the superconducting pod in fig 3.5.5. The restoring force produced by the electromagnets 

was also being reduced by the effect of the other electromagnets. The opposing 

electromagnets work against each other by applying forces to opposite sides of the 

levitating magnets. In order to produce the maximum restoring force from the 

electromagnets, the test was repeated using only two electromagnets with an angle of 45 

degrees between them equidistantly spaced either side of the x axis. The configuration of 

the new superconducting pod is shown in figure 3.6.6. 
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Figure 3.6.6, Configuration of Superconducting Pod for Maximum Restoring Force 

Tests were performed with the air gap between the magnets and the superconductors at 

1 Omm, and 30mm. The magnets were centred over the superconductor and liquid nitrogen 

added to the cryostat to field cool the superconductor. Each electromagnet had 100 turns 

and drew 4A. The magnets were then traversed 1 Omm in the x direction and the forces 

produced measured. The results are shown in figure 3.6.7. 
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Figure 3.6.7, Horizontal Restoring Forces. 
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The results show a similar trend to the previous results with the restoring force produced 

being reduced as the height increases, however without the influence of the opposing 

electromagnets greater restoring force is achieved. These results show that the most 

efficacious way to provide restoring force is not to surround the levitating magnets with 
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electromagnets but to position electromagnets to provide restoring force in the opposite 

direction of the force applied by the air flow. This result corresponds with the results from 

the wind tunnel testing of single superconducting pod which had four evenly spaced 

electromagnets as shown in fig 3.2.3. With no air flow all the electromagnets were 

magnetised and the levitating magnets stayed stationary and centred. As the wind speed 

was increased and the magnets started to move backwards, the current in the front 

electromagnets was reduced allowing the magnetic fields from the rear electromagnets to 

push the magnets back to their central position. By positioning electromagnets around the 

levitating magnets the location of the magnets can be controlled by changing the currents in 

the required electromagnets so as not to have them opposing each other. 

3.7 Three Pod Superconducting Levitation System 

The superconducting pod described at the beginning of this chapter was tested in a wind 

tunnel at a wind speed of 20ms- 1
• The speed at which it was tested was not limited by the 

superconducting levitation system, but was the maximum speed at which the wind tunnel 

was capable of operating. The levitating magnets were encased in modelling foam to act as 

a bluff body to increase the drag acting on the superconducting levitation system, as the 

magnets on their own did not produce sufficient drag to test the limits of the system. Even 

so the size of the block of modelling foam that could be used to increase drag was not 

limited by the amount of horizontal restoring force that the system could supply, but by the 

amount of turning moment that the system could supply. The force acting on the levitating 

magnets was applied at a point higher than the central point of the magnets causing the 

magnets to pitch nose up. This turning of the levitating magnets was opposed by the 

electromagnets arranged around the system, but whilst the electromagnets could supply 

more than enough horizontal restoring force, they could not produce sufficient turning 

moment to oppose the force applied by the air flow. 

This problem was rectified by expanding the superconducting levitation system to use three 

superconductiflg pods in its design. This resulted in an aspect ratio of the three pod system 

that was considerably greater than that of the single superconducting pod system. This 

change meant that the turning moment caused by the wind force acting on the levitating 
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magnets was opposed by the increased lever arm of the system. This acts to greatly reduce 

the effect of any pitching or rolling moment acting on the system, considerably increasing 

its stability. The three pod system was built and tested on the bench; figure 3.7.1 shows the 

arrangement of the superconductors and electromagnets. Figure 3.7.2 shows the three pod 

system in operation. Optical benches were used to support the system as they incorporated 

slots on the top and sides to which platforms to support the cryostats and electromagnets 

could be mounted. The optical benches were also constructed out of aluminium and as such 

were suitable for use in applications involving strong magnetic fields. The three 

superconducting bulks were mounted in separate double insulated cryostats supported by 

aluminium brackets attached to the optical benches. Each cryostat was fed from a main 

central cryostat situated to the side of the system to allow operation of the system with an 

aluminium floor in place. The electromagnets were mounted to the rails running along the 

top of the optical benches using adjustable aluminium brackets. Figure 3.7.1 shows the 

layout of the three pod system. 

Airflow 

Figure 3.7.1, The three pod system layout. 
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A frame to support the levitating magnets was constructed out of three L section aluminium 

bars. The bars were connected by bolts on top of the mounting brackets for the neodymium­

iron boron magnets, as shown in figure 3.7.2. Nine neodymuium-iron-boron magnets were 

used, three for each superconducting pod, with dimensions of 50mm x 50mm x 6mm. 

Airflow 

Figure 3. 7.2 Three pod system levitating with aluminium floor in place. 

Stable levitation was achieved with the three pod system; figure 3. 7.2 shows the frame and 

the rare-earth magnets levitating. Also shown is the anodised black aluminium sheet placed 

between the superconducting pods and the levitating frame to act as the floor of a wind 

tunnel. Figure 3.7.2 also shows liquid nitrogen being added to the main feeder cryostat to 

keep the superconductors cooled below their transition temperature. As with the small scale 

system the position of the floating magnets could be controlled by changing the current in 

the electromagnets that surrounded each pod. Due, however, to the considerably increased 

aspect ratio of the three pod system the changing currents in the electromagnets did not 

cause the levitating frame to pitch, and the movement of the frame was solely in the 

horizontal plane. 

Six electromagnets were used in the three pod prototype, two for each superconducting 

pod, as shown in figure 3.7.1. Each electromagnet was initially positioned at ±45° to the 
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direction of the air flow to allow for maximum stability of the levitating model. This 

configuration meant that any movement of the frame brought it closer to a set of the 

electromagnets which caused the force acting on the frame to increase, pushing the frame 

back to its central position. The four electromagnets at the back of the test rig were 

connected to a separate power supply to the two electromagnets at the front to allow 

independent control of the current in the electromagnets. Tests were carried out to show 

that increasing the current to the rear electromagnets and reducing the current to the 

forward electromagnets caused the frame to move forward and vice versa. The rear 

electromagnets were then rewired to have both left facing electromagnets connected to one 

supply and both right facing electromagnet connected to the other supply. The levitating 

frame could then be moved side to side by controlling the current in the electromagnets. 

The only limit to the accuracy of this movement is the limit of the fine adjustment of the 

current output of the power supplies. During these tests the levitating frame remained level 

at all time, any turning moment acting on levitating magnets from the electromagnets was 

resisted by the large aspect ratio of the system. Further tests on the three pod system were 

carried out to determine the drag force that the system could withstand. It was found that 

there was a linear relationship between the current through the electromagnets and the 

resisting force. In these tests the maximum drag force that the system could resist was 

limited by the number of turns in the electromagnets and the maximum current that the 

power supplies were able to produce. The frame was field cooled at an air gap of 20mm and 

each of the electromagnets at the rear of the system had 400 turns and drew 4.5A. With this 

configuration the system was able to withstand 7.5N of drag force before moving from its 

central position. 

3.7.1 Large Scale Superconducting Levitation System 

Figure 3.7.3 shows a potential configuration for a large scale superconducting levitation 

system. The layout is based on an extended version of the three pod system described 

above. The central section of the system is tiled with YBCO superconducting bulks which 

would correspond to an equivalent number of rare-earth magnets mounted inside the 

vehicle to be supported. Electromagnets would be placed around the central 

superconducting section to allow positional control of the vehicle and oppose the 
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destabilising force of the air flow acting on the model at a range of yaw angles. However 

such a system would be limited in the maximum ground clearances that it could operate at 

due to the air gap between the rare-earth magnets and superconductors at which flux 

pmnmg can occur. 

V/771 
V/771 
V/771 
VZ/71 
V/771 
VZ/71 
V/771 
V/771 

Superconductors 

Electromagnets 

Figure 3.7.3, Potential configuration for a large scale superconducting levitation system. 
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4. Design and Development of Magnetic Reinforcement 

4.1 Introduction 

This chapter details the invention and analysis of the magnetic "rail" system that was 

utilised to provide permanent magnet levitation to augment the superconducting levitation. 

The magnetic "rail" increases the usefulness of permanent magnet levitation by reducing its 

destabilising influence. A considerable number of different magnetic "rail" configurations 

were constructed and tested using a six component force balance and a traverse gear. Ring 

magnets were also tested to ascertain their usefulness in a levitation application. The 

"Levitron", a permanent magnet system that achieves stable levitation using a ring magnet 

base and a spinning levitating disc magnet, was analysed to assess its potential for 

levitation applications. 

4.2 Magnetic Reinforcement of Superconducting Levitation 

A scaled up version of the three pod system, that was designed and tested using only 

superconductors for levitation as discussed in chapter 3, would be capable of supporting a 

40% scale Formula 1 car for aerodynamic testing operating at corresponding levels of lift 

and drag. However such a system would place limitations on the maximum ride height of 

the model that could be achieved; superconducting levitation can only operate at a limited 

ground clearance that is determined by the strength of the magnetic field produced by the 

levitating magnets. The mirror effect of the superconductor, as discussed in chapter 2, 

means that the levitating magnet experiences a force as if from another opposing magnet 

that is twice as far away as the superconductor. If the levitating magnet is a similar size to 

that of the superconductor then it experiences a force as if from an opposing magnet that is 

smaller than itself as only part of the magnetic flux from the magnet is "mirrored" in the 

superconductor as the flux extends beyond the diameter of the superconductor. 

Two neodymium rare-earth magnets are capable of ~epelling each other with considerably 

more force than that produced by a rare-earth magnet and a superconductor, and at a much 

greater air gap between the two. This is because instead of the levitating magnet 
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experiencing a force akin to that of a smaller opposing magnet twice the distance away, as 

in superconducting levitation, the levitating magnet will experience a force from a larger 

magnet acting from floor level. This means that augmentation of the superconducting 

levitation system with magnet on magnet levitation would extend the air gap over which the 

system would be able to operate and also increase the downforce that the system can 

support, considerably increasing the usefulness of the levitation system. 

When two permanent magnets are positioned directly over each other with like magnetic 

poles facing so that they repel, they are in a state of unstable equilibrium. Any deviation 

from this stable point, other than directly towards or away from each magnet, will result in 

a net force which acts to further destabilise the magnets. Earnshaw's theorem (Earnshaw 

1842) describes how a point charge cannot be stably levitated using any combination of 

static electric charges. The use of one permanent magnet levitating over another permanent 

magnet to bolster the system's ability to compensate for downforce will introduce 

instability. This instability will reduce the ability of the system to compensate for the force 

acting on it due to the air flow. The more magnet only levitation that is used the more 

unstable the system will become. Milgrom (1998) suggests that, while Earnshaw's theorem 

applies to point charges or a dipole, it may be possible to suspend point bodies of finite 

charge, or extended test-charge bodies where the large aspect ratio of linked dipoles 

stabilises the levitating system in pitch and roll. The Levitron is an example of stable 

levitation achieved using solely permanent magnets, (Gov et al, 1999, Dullin and Easton, 

1999). 

Reducing the instability of the magnet-only levitation would improve the useful range of 

the levitating system as the extra instability introduced reduces the amount of useful 

damping intrinsic to the superconducting levitation that could be used to counter the force 

acting on the levitating magnets due to the air-flow. Reducing the instability of permanent 

magnet levitation would also increase the load-bearing capability of the system as 

destabilising forces between two magnets increase as the force acting between them also 

mcreases. 
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4.3 The Magnetic "Well" 

The electromagnets that were used to compensate for the force of the airflow acting on the 

levitating magnets in the prototype superconducting pod were designed to create a magnetic 

"well" in one plane. This "well" supported the levitating magnets against the destabilising 

force of the air-flow, with the superconductor plugging the hole in the bottom of the "well" 

and stabilising the levitating magnets in pitch and roll. Extrapolation of this system 

suggested that bringing the electromagnets closer together should allow stable levitation in 

two degrees of freedom without the need for the superconductor. In order to test this 

scenario a rare-earth magnet was attached to a gimbal via a 1m long non-ferrous arm 

restricting it to two degrees of freedom and positioned over two electromagnets in close 

proximity of each other as shown in figure 4.3.1. The levitating magnet should be able to 

balance on the magnetic fields produced by the electromagnets as shown in figure 4.3.2. 

y 

X 

z 

Fixed 
Electromagnets 

Metre long arm to reduce 
rotation of magnets 

Neodymium 
magnet 

Figure 4.3.1, Levitation with electromagnets restricted to two degrees offreedom. 
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Figure 4.3.2, Magnetic fields for the two degrees of freedom configuration. 

However when the configuration shown in figure 4.3.2 was tested it was found that the 

available power supplies were not strong enough to magnetise the electromagnets 

sufficiently to prevent the rare-earth magnet from being attracted to the steel cores of the 

electromagnets. This was due to the low coercivity of the electromagnets. The same 

experiment was then tried using only rare-earth magnets, although instead of having the 

two fixed magnets at an angle as with the electromagnets, they were laid flat as shown in 

figure 4.3.3. This arrangement proved to be stable and capable of supporting a range of 

loads. The configuration of the three magnet system produces an arrangement that was 

stable in both the y and z direction but that is unstable in the x direction and in pitch and 

roll, and neutrally stable in yaw. 

z 

Unconstrained in y and z 

Rare-Earth 
Permanent Magnets 

Figure 4.3.3, Two degree of freedom levitation with permanent magnets 
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The height above the fixed magnets at which the magnets attached to the gimbal were in 

equilibrium could be varied by changing the size of the gap between the two fixed magnets. 

By making the gap between the two fixed magnets smaller, the height at which the magnets 

attached to the gimbal were in stable equilibrium was increased. Conversely, increasing the 

gap between the two fixed magnets decreased the height at which stable equilibrium of the 

magnets on the gimbal was achieved. For a given number of magnets on the gimbal there is 

a limit to the range of spacing between the two fixed magnets that allow the system to be 

stable. If the two fixed magnets are positioned too close together then the magnets on the 

gimbal will become unstable and are pushed to one side by the fixed magnets. If the two 

fixed magnets are placed too far apart they are no longer able to support the weight of the 

magnets on the gimbal and the magnets will fall down. 

4.3 .1, Stability of the three magnet system. 

Measurements of the load bearing capability of the three magnet system were then taken. 

The configuration of the magnets was the same as in figure 4.3.3. The two lower magnets 

were fixed, while the levitating magnet was attached to a gimbal restricting it to movement 

in two degrees of freedom. The distance in the z direction between the fixed base magnets 

was varied, and a range of loads were added to the levitating magn~t, and for each 

permutation the height at which stable equilibrium was achieved was measured. The results 

are shown in table 4.3.1. Three Neodymium-Iron-Boron permanent magnets were used, 

each having dimensions of 50mm x 50mm x 6mm. The levitating magnet was attached to a 

gimbal via a lm long non-ferrous arm to minimise the rotation of the magnet caused by any 

displacement. The gimbal was counterbalanced to negate the effect of the weight of the 

arm. Weights were added directly over the levitating magnet using a non-ferrous spacer to 

prevent any interference effects. 

The results show a stable region where the magnet on the gimbal is in stable equilibrium. 

The stable zone is a compromise between stability and the load that the system can support. 

When the fixed base magnets are positioned closer together, the magnets can support more 

load at a given height. However this also causes the system to become less stable, as the 
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magnetic fields produced by the magnets are squashed together reducing the size of the 

"well" in which the magnet on the gimbal can sit. 

Distance between 5 10 15 20 25 30 35 

fixed magnets (mm) 

Vertical Levitation 

Force on height 

arm (N) (mm) 

0 Unstable Unstable Unstable Unstable 53 48 0 

0.5 Unstable Unstable Unstable 55 49 38 0 

1.0 Unstable Unstable Unstable 50 44 0 0 

1.5 Unstable Unstable Unstable 45 39 0 0 

2.0 Unstable Unstable Unstable 42 32 0 0 

2.5 Unstable Unstable Unstable 38 27 0 0 

3.0 Unstable Unstable Unstable 35 0 0 0 

3.5 Unstable Unstable 43 33 0 0 0 

4.0 Unstable Unstable 37 28 0 0 0 

4.5 Unstable Unstable 35 25 0 0 0 

5.0 Unstable Unstable 33 22 0 0 0 

Table 4.3 .1, Stable regions of the three magnet system 

The forces produced by the three magnet system were then mapped by mounting the two 

base magnets onto a six component force balance and mounting the third magnet on a 

traverse gear via a non-ferrous arm. The force balance and traverse gear are described in 

chapter 3. The magnets were mounted to the traverse gear via a rigid non-ferrous arm. 
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4.4 Force measurements of the Magnetic "Rail" 

Several force testing arrangements of the magnetic rail were tested, based on the three 

magnet layout shown below in figure 4.4.1. Rails of different constituent magnets were 

tested, using magnets of varying sizes, the different compositions of each test are listed 

below in table 4.4.1. 

y 
X 

z 
s 

Figure 4.4.1 , Magnet testing configuration. 

Rail Dimensions of fixed base 

magnets (mm). 

1 50 X 50 X 6, 50 X 50 X 6. 

2 50 X 50 X 6, 50 X 50 X 6. 

3 50 X 50 X 6, 50 X 50 X 6. 

4 50 X 50 X 6, 50 X 50 X 6. 

5 50 X 50 X 12, 50 X 50 X 12. 

6 50 X 50 X 6, 50 X 50 X 6. 

7 50 X 50 X 6, 50 X 50 X 6. 

To traverse gear 

Fixed base magnets mounted on 
six component force balance. 

Dimensions of levitating Gap between fixed 

magnet (mm). magnets (mrn). 

50 X 50 X 6. 20 

12x30x5. 16 

12x30x5. 14 

12x30x5. 12 

12x30x5. 16 

12 X 30 X 10. 16 

12 X 30 X 10. 18 

Table 4.4.1, Magnetic rail testing configurations. 

For each configuration a 50mm by 50mm horizontal grid was traversed in 2mm height 

increments from a height of 20mm to 40mm around the centre point of the fixed magnets. 

The forces acting on the magnets at each position were measured. The results are shown 

below. 
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4.4.1 , Force testing on rail configuration 1. 

Forces in the x direction for rail configuration 1; 

Figure 4.4.2; Force in x at 20mm height 

Figure 4.4.4; Force in x at 28mm height 

Figure 4.4.6; Force in x at 36mm height 
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Figure 4.4.3; Force in x at 24mm height 

Figure 4.4.5 ; Force in x at 32mm height 

Zdist(mm) 
·5 
Xdist(mm) 

Force N 

Figure 4.4.7; Force in x at 40mm height 
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Forces in they direction for rail configuration 1; 

Figure 4.4.8; Force in y at 20mm 
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Figure 4.4.10; Force in y at 28mm 
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Figure 4.4.12; Force in y at 36mm 

Force N 

Force N 

Force N 

•s-7 

05-6 

·4-5 

03-4 

02-3 

·1-2 

00-1 

Figure 4.4.9; Force in y at 24mm 
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Figure 4.4.11; Force in y at 32mm 

Figure 4.4.13 ; Force in y at 40mm 
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Forces in the z direction for rail configuration 1; 

Figure 4.4.14; Force in z at 20mm Figure 4.4.15; Force in z at 24mm 

Force N 

Figure 4.4.16; Force in z at 28mm Figure 4.4.17; Force in z at 32mm 

Figure 4.4.18; Force in z at 36mrn Figure 4.4.19; Force in z at 40mm 
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Figure 4.4.20, Graph of the gradients of the forces for rail configuration 1. 

Figure 4.4.2 through figure 4.4.7 show the forces in the x direction acting on the system of 

magnets shown in figure 4.4.1. Figure 4.4.14 through figure 4.4.19 show the forces in the z 

direction. The graphs of the forces in the x and z direction show a primarily linear 

relationship between force and movement. As is to be expected at the centre point of the x 

axis the force acting in the x direction is zero as the forces are in equilibrium. Movement of 

the magnet on the traverse gear either side of this central point results in a force acting to 

further move the magnet away from its central neutral point, further increasing the 

destabilising force acting on the system. This of course only applies to a region close to the 

fixed magnets, past a certain point the destabilising force in the x direction will start to 

decrease as the distance between the "levitating" magnet and the fixed magnets increases. 

As the height of the magnet above the base increases, the destabilising force acting on it 

steadily decreases, this is also due the increased distance between the magnets. At a height 

of 40mm the destabilising forces are approximately half that of which they are at a height 

of 20mm. This is also shown in the gradients of the destabilising force in the x direction as 

shown in table 4.4.20 which are measured from the central linear section of the graph. The 

gradient of the destabilising force decreases from -0.59 Nmm-1 at a height of 20mm, to -

0.22 Nmm-1 at a height of 40mm. Doubling the height between the magnets decreases the 

instability in the x direction of the magnets by nearly 60%. This is due to the increased 

distance between the fixed magnets and the "levitating" magnet. 
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Figure 4.4.8 through figure 4.4.13 show the forces in the y direction acting on the system 

shown in figure 4.4.1. A saddle shaped graph is produced, the peaks of maximum force 

corresponding to the points at which the centre point of the magnet on the traverse gear is 

closest to the centre point of either one of the fixed magnets, as this is where the greatest 

overlap ofthe magnets occur. Unlike the force acting in the x direction, deviation from the 

centre point of the graph in the x direction causes the force in the y direction to decrease, 

whereas deviation from the centre point of the graph in the z direction causes the force in 

the y direction to increase. 

Figure 4.4.14 through figure 4.4.19 show the forces in the z direction acting on the system 

shown in figure 4.4.1. The results are similar to the forces acting in the x direction, 

although unlike the destabilising forces in the x direction, a movement away from the 

central position results in a restoring force acting on the magnet connected to the traverse 

gear. Increasing the height between the magnets leads to a reduction in the restoring force 

that results from a movement of the magnet in the z direction. The gradient of the restoring 

force decreases from 0.21 N/mm at a height of20mm to 0.012 N/mm at a height of 40mm. 

While the central section of the graphs show a linear relationship similar to the linear shape 

of the graphs showing the force in the x direction, the graph takes on an s shaped profile 

towards its edges. This is caused by the varying distance between the magnet attached to 

the traverse gear and the fixed magnets. As the upper magnet moves closer to the centre 

point of one of the fixed magnets it initially causes a restoring force to act on the magnet, 

however once the upper magnet approaches the centre point of one of the fixed magnets the 

restoring force starts to decrease, as the angle of interaction between the magnetic flux of 

each magnet increases until the "levitating" magnet is directly over one of the fixed 

magnets. 

4.5 Reducing Magnetic Levitation Instability 

The graphs of the forces acting in the magnetic system shown in figure 4.4.1 and the graph 

of the gradients of the magnetic forces shown in figure 4.4.20 show that the destabilising 

forces acting in the x direction are considerably larger than the restoring forces acting in the 

z direction. Therefore any stability advantage a levitation system gained in the z direction is 
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more than negated by the instability in the x direction. The three magnet system is only 

stable in two degrees of freedom, but can be made stable in pitch, roll, and yaw by using 

multiple three magnet systems. A system could be built that would be stable in five degrees 

of freedom. Four of these three magnet systems spaced at suitable intervals from each other 

and all aligned in the same direction would result in a configuration that would only require 

restraint in one degree of freedom. 

The instability of the system stable in five degrees of freedom means that it still requires an 

element of active control to stay in total equilibrium. This instability could be reduced by 

extending the length of the two fixed magnets to infinity in the x direction. This would 

create two rails over which multiple magnets of finite size would be positioned. As the 

length of the rails increased the instability of the system would decrease. This would result 

in a system that would be neutrally stable in the x direction. This would allow the creation 

of a system consisting of two rails and four levitating magnets that would be stable in five 

degrees offreedom, and neutrally stable in one degree offreedom, as shown in figure 4.5.1 

Figure 4.5.1, Neutrally Stable Magnetic Rail System. 

In practice extending the magnets to infinity is of course not possible. However increasing 

the length of the rails will reduce the instability of the system and there will be a point 

where the fixed magnets have dimensions that are sufficiently greater than the levitating 

magnet in order that the destabilising force in the x direction will be smaller than the 

stabilising force in the z direction. This should mean that a system consisting of an even 

number of such magnet configurations should then be stable. Figure 4.5.2 shows a possible 

configuration for a stable system. 
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Magnetic 
"Rails" 

Levitating 
Magnets 

Figure 4.5.2; Potential configuration for a stable magnet only system. 

4.5.1 , Traverses ofthe composite magnetic rail 

To test this hypothesis, further traverses were performed using four fixed magnets of 

dimensions 50mm x 50mm x 6mm arranged in "rails" a distance of 20mm apart, and one 

levitating magnet with dimension 50mm x 50mm x 6mm at a height of 30mm, as shown in 

figure 4.5.3. The fixed magnets were mounted on to a six component force balance, and the 

"levitating" magnet mounted on a non-ferrous arm, connected to a traverse gear. The results 

of the traverses are shown in figures 4.5.4- 4.5.6. 

y 

X 

s s 
Figure 4.5 .3, Testing Configuration with Extra Magnets 
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Force N 

Figure 4.5.4; Force in x direction at 30mm Figure 4.5.5; Force in y direction at 30mm 

Force N 

25 

Figure 4.5.6; Force in z direction at 30mm 

The shapes of the graphs are similar to those produced from the previous traverses of the 

three magnet system, although because of the extended "rails" the resulting shapes are more 

uniform. The force produced in the y direction shown in figure 4.5.5 produced an arch 

shaped graph, unlike the saddle shaped graph shown in figures 4.4.8 to 4.4.13 where the 

force produced reduces as the "levitating" magnet moves past the edges of the fixed 

magnets. The gradient of the central linear section of the graph of the force in the z 

direction was 0.31 N/mm, and the gradient ofthe central section ofthe graph ofthe force in 

the x direction was 0.10 N/mm. This indicates that the restoring force in the z direction was 

greater than the destabilising force in the x direction. It follows that continuing to add more 

magnets to the fixed ones, creating longer "rails", will further decrease the destabilising 

force, leading to a situation where the system becomes even more stable. 
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The arrangement of magnets shown in figure 4.5.3 was then tested experimentally with the 

"levitating" magnet mounted on a 1 metre long non-ferrous arm connected to a gimbal. It 

was found that the amount of weight the magnet attached to the gimbal could support had 

decreased substantially, despite the extra magnets that had been introduced into the system. 

This was caused by the gap between the magnets affecting the magnetic field and reducing 

the stable region, even though fixed base magnets were touching. 

When two magnets with the same directional polarity are put close together side by side, 

the magnetic field of each magnet repels the other. As they are brought together the 

magnetic fields are distorted, resulting in an uneven distribution of magnetic flux at the 

join. This effect is masked due to the size of the levitating magnet and is not particularly 

pronounced in figure 4.5.5, as the effect is averaged out due to the area over which the 

magnets are interacting. However a small reduction of vertical force can be seen at the 

centre of the graph, despite an increase in force being expected at the centre point due to the 

maximum area of overlap between the magnets. To ensure that this effect was not due to 

the "levitating" magnet being directly positioned over the join between the fixed magnets, 

the experiment was repeated with six fixed magnets to ensure the levitating magnet was not 

over a join, however the same loss of load bearing capability was observed. The traverses 

were then repeated using a smaller "levitating" magnet with dimensions 30mm x 25mm x 

6mm. Figure 4.5.7 shows the vertical force acting on the system when using the smaller 

magnet. A more pronounced loss of lift is seen in the central portion of the graph than in 

the previous graph, and in fact the lift becomes negative and the "levitating" magnet is 

attracted to the fixed base magnet. For this reason composite rails are not suitable for 

levitation applications. 
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Figure 4.5.7, Force in they direction at 30mm using a composite rail design. 

In order to explain the destabilising effect of the composite magnetic rails, the arrangement 

was modelled in the electromagnetic finite element analysis package, MEGA. Figure 4.5.8 

shows a small magnet positioned over a larger one piece magnet with like poles facing each 

other. The field lines are clearly separated and show the repulsion between the magnets. 

Figure 4.5.9 shows a small magnet positioned over two larger magnets, with like poles 

facing each other, with a very small gap between the two. The field lines from the small 

magnet can be seen to penetrate through the small gap between the two larger magnets, 

interacting with the magnetic flux from the underneath of the larger magnets and 

experiencing an attractive force. Force readings were taken for the split magnet and it was 

found that reducing the height between the levitating magnet and the fixed magnet by half 

caused the vertical force on the levitating magnet to decrease by 60%. Despite the magnets 

being closer together the repulsion force between is actually decreased, this creates the 

instability experienced in the experimental tests. 
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Figure 4.5.8, Small Magnet over Large One Piece Magnet. 

Figure 4.5.9, Small Magnet over Larger Composite Magnet. 
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4.5.2, Force testing on rail configuration 2. 

In order to test the effect of the changing ratios of the length of the fixed base magnets to 

the length of the "levitating" magnet without using multiple fixed magnets, smaller 

"levitating" magnets were used. Two fixed neodymium magnets with dimensions 50mm x 

50mm x 6mm were traversed using a neodymium magnet with dimensions 12 mm x 30mm 

x 5mm. This configuration gave a ratio of magnets lengths of 12/50 = 0.24. Traverses were 

performed with decreasing intervals of 2mm between the fixed magnets. The first run was 

performed with a gap of 16mm, rail configuration 2, between the fixed base magnets. 
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Forces in the x direction for rail configuration 2; 

ForceN 

Zdlst(mm) 

-10 Xdlst(mm) 

Figure 4.5.2.1, Force in x direction at 20mm Figure 4.5.2.2, Force in x direction at 24mm 
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Figure 4.5.2.3, Force in x direction at 28mm Figure 4.5.2.4, Force in x direction at 32mm 

-10 

Zdist(mm) -10 Xdist(mm) -10 

Figure 4.5.2.5, Force in x direction at 36mm Figure 4.5.2.6, Force in x direction at 40mm 
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Forces in the z direction for rail configuration 2; 
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Figure 4.5.2.7, Force in z direction at 20mm Figure 4.5.2.8, Force in z direction at 24mm 

Figure 4.5.2.9, Force in z direction at 28mm Figure 4.5.2.10, Force in z direction at 32mm 
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Figure 4.5.2.11, Force in z direction at 36mm Figure 4.5.2.12, Force in z direction at 40mm 
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Forces in they direction for rail configuration 2; 
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Figure 4.5.2.13, Force in y direction at 20mm Figure 4.5.2.14, Force in y direction at 24mm 
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Figure 4.5.2.15, Force in y direction at 28mm Figure 4.5.2.16, Force in y direction at 32mm 
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Figure 4.5.2.17, Force in y direction at 36mm Figure 4.5.2.18, Force in y direction at 40mm 
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Figure 4.5.2.19, Graph of magnetic force gradients for rail configuration 2. 

With the "levitating" magnet below a height of 26mm above the fixed base magnets, in rail 

configuration 2, the restoring force in the z direction is greater than the destabilising force 

in the x direction. However at a height of more than 26mm above the fixed base magnets 

the destabilising force in the z direction becomes greater than the restoring force in the x 

direction. This is due to the angle of intersection between the fields of th~ magnets. When 

the height of the "levitating" magnet is reduced the horizontal component of the force from 

the fixed base magnets increases. As the height of the "levitating" magnet is increased, the 

horizontal component of the force from the fixed base magnets decreases as the relative 

angle between the magnets increases. The restoring force in the z direction decreases faster 

than the destabilising force in the x direction because the fixed base magnets are opposing 

each other in the z direction but are working together to destabilise the "levitating" magnet 

in the x direction. 

The vertical force between the "levitating" magnet and the fixed base magnets does not 

change linearly with the changing height between the magnets. The force at a height of 

20mm is less than the force at a height of 24mm, despite the "levitating" magnet being 

closer to the fixed base magnets. This is due to the changing angle of interaction between 

the magnetic flux from the magnets. This means that there is a stable zone where levitation 

can occur which has an upper limit at the point at which the restoring force in the z 
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direction becomes less than the destabilising force in the x direction, and with a lower limit 

at the point at which the "levitating" magnet becomes attracted to the magnetic flux from 

the underside of the fixed magnets. Increasing the size of this stable zone will result in a 

more stable configuration and ultimately a more effective levitation system. The traverses 

were then repeated with the gap between the fixed base magnets reduced to 14mm, rail 

configuration 3, to investigate the effect that this will have on the stable levitation region. 
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4.5 .3, Force testing of rail configuration 3. 

Forces in the x direction for rail configuration 3; 

-10 Xdlst(mm) 1CXl 

Figure 4.5.3.1 , Force in x direction at 20mm Figure 4.5.3.2, Force in x direction at 24mm 

10 

Xdlat(mm) 

Figure 4.5.3.3, Force in x direction at 28mm Figure 4.5.3.4, Force in x direction at 32mm 

Zdlst(mm) 1CXl Xdist(mm) Zdlsl(mm) 1CXl 

Figure 4.5.3.5, Force in x direction at 36mm Figure 4.5.3.6, Force in x direction at 40mm 
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Forces in the z direction for rail configuration 3; 

X dis! (mm) 10 

Figure 4.5.3.7, Force in z direction at 20mm Figure 4.5.3.8, Force in z direction at 24mm 
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Figure 4.5.3.9, Force in z direction at 28mm Figure 4.5.3.1 0, Force in z direction at 32mm 

Figure 4.5.3.11 , Force in z direction at 36mm Figure 4.5.3.12, Force in z direction at 40mm 
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Forces in they direction for rail configuration 3; 
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Figure 4.5.3.13, Force in y direction at 20mm Figure 4.5.3.14, Force in y direction at 24mm 
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Figure 4.5.3.15, Force in y direction at 28mm Figure 4.5.3.16, Force in y direction at 32mm 
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Figure 4.5.3.17, Force in y direction at 36mm Figure 4.5.3.18, Force in y direction at 40mm 
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Figure 4.5.3.19, Graph of magnetic field gradients for rail configuration 3. 

The graph of the magnetic field gradients shows that when the gap between the fixed base 

magnets is reduced the size of the stable levitation region decreases. With the gap between 

the fixed base magnets at 16mm, in rail configuration 2, the three magnet configuration 

proved to be stable to a height of 26mm. However with the gap between the magnets set at 

14mm, in rail configuration 3, the stable levitation region only extends to a height of 

24mm. This result shows that reducing the distance between the fixed base magnets causes 

the three magnet system to become more unstable. This is caused by the angle at which the 

magnetic fluxes from the magnets interact; when the gap between the fixed base magnets 

are reduced, the angle at which the flux they produce interacts with the flux from the 

levitating magnet increases. This causes the horizontal component of the force between the 

magnets to decrease, therefore reducing the restoring force applied to the levitating magnet. 

However this also causes the vertical component of the force to increase, and as a result the 

vertical force acting on the system is almost doubled. The traverses were then repeated with 

the gap between the fixed base magnets reduced to 12mm, rail configuration 4, to further 

investigate the effect that changing the layout of the three magnet has on the stable 

levitation zone. 

11 2 



Chapter 4 - Design and Development of Magnetic Reinforcement 

4.5.4, Force testing of rail configuration 4. 

Forces in the x direction for rail configuration 4; 
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Figure 4.5.4.1, Force in x direction at 20mm Figure 4.5.4.2, Force in x direction at 24mm 
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Figure 4.5.4.3, Force in x direction at 28mm Figure 4.5.4.4, Force in x direction at 32mm 
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Figure 4.5.4.5, Force in x direction at 36mm Figure 4.5.4.6, Force in x direction at 40mm 
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Forces in the z direction for rail configuration 4; 
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Figure 4.5.4.7, Force in z direction at 20mm Figure 4.5.4.8, Force in z direction at 24mm 
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Figure 4.5.4.9, Force in z direction at 28mm Figure 4.5.4.10, Force in z direction at 32mm 
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Figure 4.5.4.11 , Force in z direction at 36mm Figure 4.5.4.12, Force in z direction at 40mm 
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Forces in they direction for rail configuration 4; 
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Figure 4.5.4.15, Force in y direction at 28mm Figure 4.5.4.16, Force in y direction at 32mm 
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Figure 4.5.4.17, Force in y direction at 36mm Figure 4.5.4.18, Force in y direction at 40mm 
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Figure 4.5.4.19, Graph of magnetic field gradients for rail configuration 4. 

With the gap between the fixed base magnets reduced to 12m.m, in rail configuration 4, 

there is no point above an air gap of 20m.m at which the configuration is more stable than 

unstable. The graph of the magnetic gradients shows that this configuration would be likely 

to become stable below a height of 18mm. As with the previous set of results this is due to 

the horizontal component of the forces between the magnets being reduced as the angle of 

interaction of the magnetic flux decreases. Again the vertical force acting on the levitating 

magnet is increased as there is more overlap between the dimensions of the fixed base 

magnets and the levitating magnet. The results produced from theses traverses show how 

the configuration of the three pod system affects the size of the stable levitating region. 

Increasing the gap between the fixed base magnets results in a more stable system and the 

lower the height at which the levitation occurs, the more stable the levitation becomes. 

Decreasing the gap between the fixed base magnets increases the load bearing capability of 

the three magnet system as this increase the overlap between the "levitating" magnet and 

the fixed base magnets. However this also decreases the stability of the three magnet 

system and reduces the height at which stable levitation can occur. 

The traverses were then repeated with a 16mm gap, rail configuration 5, between the fixed 

base magnets, and two extra magnets were added so that each base magnet consisted of a 

stack of two magnets to assess their effect on the stable levitation region and the vertical 

forces acting on the magnets. 
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4.5.5, Force testing of rail configuration 5. 

Forces in the x direction for rail configuration 5; 
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Figure 4.5.5.1, Force in x direction at 20mm Figure 4.5.5.2, Force in x direction at 24rnm 
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Figure 4.5.5.3, Force in x direction at 28mm Figure 4.5.5.4, Force in x direction at 32mm 
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Figure 4.5.5.5, Force in x direction at 36mm Figure 4.5.5.6, Force in x direction at 40rnm 
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Forces in the z direction for rail configuration 5; 

Xdist(mm) 

Figure 4.5.5.7, Force in z direction at 20mm Figure 4.5.5.8, Force in z direction at 24mm 

Force N 

Xdist(mm) 

Figure 4.5.5.9, Force in z direction at 28mm Figure 4.5.5.10, Force in z direction at 32mm 

Xdlst(mm) 10 Xdist(mm) 

Figure 4.5.5.11, Force in z direction at 36mm Figure 4.5.5.12, Force in z direction at 40mm 
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Forces in the y direction for rail configuration 5; 

Force N 

tm Xdist(mm) 

Figure 4.5.5.13, Force in y direction at 20mm Figure 4.5.5.14, Force in y direction at 24mm 
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Figure 4.5.5.15, Force in y direction at 28mm Figure 4.5.5.16, Force in y direction at 32mm 
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Figure 4.5.5.17 Force in y direction at 36mm Figure 4.5.5.18, Force in y direction at 40mm 
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Figure 4.5.5.19, Graph of Magnetic Field Gradients for rail configuration 5. 

Doubling the thickness of the fixed base magnets with a 16mm gap between them, as in rail 

configuration 5, increased the instability of the system and resulted in the configuration of 

magnets being unstable above a height of 18mm between the magnets. However the 

vertical force acting on the "levitating" magnets was significantly increased compared to 

the configuration with single fixed base magnets with a 16mm gap. The traverses were then 

repeated with rail configuration 6 where the thickness of the "levitating" magnet was 

doubled, and the thickness of the base magnets reduced back to their original thickness. 
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4.5.6, Force testing of rail configuration 6. 

Forces in the x direction for rail configuration 6; 

-10 

Figure 4.5.6_1, Force in x direction at 20mm Figure 4.5.6.2, Force in x direction at 24mm 
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Figure 4.5.6.3, Force in x direction at 28mm 
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Figure 4.5.6_4, Force in x direction at 32mm 
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Figure 4_5_6.5, Force in x direction at 36mm Figure 4.5.6.6, Force in x direction at 40mm 
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Forces in the z direction for rail configuration 6; 
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Figure 4.5.6.7, Force in z direction at 20mm Figure 4.5.6.8, Force in z direction at 24mm 
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Figure 4.5.6.9, Force in z direction at 28mm Figure 4.5.6.10, Force in z direction at 32mm 

Figure 4.5.6.11 , Force in z direction at 36mm Figure 4.5.6.12, Force in z direction at 40mm 
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Forces in they direction for rail configuration 6; 

Force N Force N 

Xdist(mm) 

Figure 4.5.6.13, Force in y direction at 20mm Figure 4.5.6.14, Force in y direction at 24mm 
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Figure 4.5.6.15, Force in y direction at 28mm Figure 4.5.6.16, Force in y direction at 32mm 
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Figure 4.5.6.17, Force in y direction at 36mm Figure 4.5.6.18, Force in y direction at 40mm 
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Figure 4.5.6.19, Graph of Magnetic Field Gradients for rail configuration 6. 

4.5.7 Effect ofMagnet Stacking 

Doubling the "levitating" magnet, as in rail configuration 6, has a similar effect on the 

gradients of the magnetic fields as doubling the fixed base magnets, as in rail configuration 

5, in increasing the instability of the system. The system became unstable above a levitation 

height of 18mm. However the increase in vertical force acting on the three magnet 

configuration was significantly greater than the increase that occurred when the fixed base 

magnets were doubled. This effect is due to the shape of the magnetic fields produced by 

the magnets. In order to show the effects of additional magnets on the magnetic fields 

produced by a small magnet positioned over a larger magnet the formation was modelled in 

MEGA (2000), the meshed magnets were assigned as permanent magnets with opposing 

field directions. Figure 4.5.7.1 shows the magnetic fields produced by a small magnet 

positioned over a large magnet. Figure 4.5.7.2 shows the magnetic fields produced by 

stacking two small magnets over the initial large magnet. Figure 4.5.7.3 shows the 

magnetic fields produced by stacking two large magnets below the initial small magnet. 

The addition of a second small magnet results in a stronger field which mainly acts within 

the boundaries of the larger magnet, thereby maximising the interaction between the flux 

lines of both magnets. However when a second large magnet is added to the original system 

the result is an increased magnetic field of which only part interacts with the small magnet. 
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The addition of a second large magnet increases the levitation force but not as much as the 

addition of a second small magnet because of the way the additional magnetic flux is 

distributed. 

Figure 4.5.7.1, Small Magnet over Larger Magnet ofldentical Thickness 
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Figure 4.5.7.2, Double Thickness Small Magnet over Large Magnet 

Figure 4.5.7.3, Small Magnet over Double Thickness Large Magnet 
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4.5.8, Force testing of rail configuration 7. 

Forces in the x direction for rail configuration 7; 

-10 

Figure 4.5.8.1 , Force in x direction at 20mm Figure 4.5.8.2, Force in x direction at 24mm 

10 

Figure 4.5.8.3, Force in x direction at 28mm Figure 4.5.8.4, Force in x direction at 32mm 

-10 

Figure 4.5 .8.5, Force in x direction at 36mm Figure 4.5.8.6, Force in x direction at 40mm 

127 



Chapter 4 - Design and Development of Magnetic Reinforcement 

Forces in the z direction for rail configuration 7; 

Force N Force N 
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Figure 4.5.8.7, Force in z direction at 20mm Figure 4.5.8.8, Force in z direction at 24mm 
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Figure 4.5.8.9, Force in z direction at 28mm Figure 4.5 .8.10, Force in z direction at 32mm 
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Figure 4.5.8.11 , Force in z direction at 36mm Figure 4.5.8.12, Force in z direction at 40mm 
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Forces in they direction for rail configuration 7; 
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Figure 4.5.8.13, Force in y direction at 20mm Figure 4.5.8.14, Force in y direction at 24mm 
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Figure 4.5.8.15, Force in y direction at 28mm Figure 4.5.8.16, Force in y direction at 32mm 
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Figure 4.5.8.17, Force in y direction at 36mm Figure 4.5.8.18, Force in y direction at 40mm 
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Figure 4.5.8.19, Graph of Magnetic Field Gradients for rail configuration 7. 

As expected from the results of the previous traverses, it was found that increasing the gap 

between the fixed base magnets to 18mm reduces the instability in the x direction, and 

increases the restoring force in the z direction. As a result the height at which the three 

magnet system is stable is also increased; below a height of23mm the system is more 

stable than unstable. In line with previous results the vertical force produced by the system 

is also reduced. 

4.6, The Levitron 

A more elegant and compact solution than an infinitely long magnetic "rail" would be to 

turn the system into a closed loop by the use of a ring magnet and a cylindrical levitating 

magnet. By effectively joining either end of the ends of the fixed magnetic base described 

previously the destabilising force should be eliminated leaving a system that is only 

unstable in pitch and roll, although due to the symmetry of such a system they can be 

treated as instability in one degree of freedom only. A system based on such principles is 

the Levitron (Dullin 1999) the configuration of which is shown in figure 4.6.1 . 
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Rare-earth disc magnet "top" 

Ferrite ring magnet 

Figure 4.6.1; The Levitron 

The Levitron consists of a ferrite ring magnet encased in the plastic base of the Levitron 

and a spinning top that is made of a rare-earth magnet mounted in a plastic "top" with the 

like poles of the magnets opposing each other. The Levitron works in a similar way to the 

magnetic "rails" described previously; a small stable region exists above the ring magnet 

where the repulsion of the two magnets is equal to the gravitation pull on the top, and any 

horizontal displacement of the levitating magnet is opposed by the ring magnet. The 

gyroscopic effect of the spinning top keeps it stable in pitch and roll preventing the top 

from flipping over. 

Three Levitrons spaced at a suitable distance apart with the tops connected together by a 

stiff frame should, in theory, be able to achieve stable levitation without the need for the 

stabilising gyroscopic force that the spinning motion of the top provides. However in 

practice this is unlikely. The Levitron has several drawbacks, it has an extremely small 

stable region and constantly requires fine adjustment of its weight, and each Levitron 

comes with a selection of washers to allow adjustment of the weight by as little as 0.5 g. 

Small changes in the ambient temperature affect the magnetic field produced by the magnet 

which requires the weight of the top to be changed in order to remain balanced. 

The spinning top experiences a restoring force when it is moved away from its central 

position. The restoring force decreases with increasing height as the horizontal component 

of the force between the two magnets decrease as the angle of the interaction between the 
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magnetic flux increases, as shown in figure 4.6.2. When the spinning top is a long distance 

away from the ring magnet it experiences a primarily vertical force, as it approaches the 

ring magnet the vertical repulsion force it feels becomes less as lines of magnetic flux that 

are interacting between the magnets become more vertical than horizontal and the forces 

acting on the top in the horizontal plane increases. The lower the spinning top is the greater 

the horizontal stability the Levitron possesses, but the vertical force it produces is 

decreased, as shown in figures 4.6.3- 4.6.13. 

Figure 4.6.2, Magnetic Field Interactions of the Levitron 

When the vertical repulsion force acting on the top becomes less than the weight of the 

spinning top, levitation breaks down. There is only a small region where the repulsion force 

keeping the magnet levitating is greater than the weight of the top, and the horizontal 

restoring force is strong enough to prevent the lateral movement of the magnet. Figure 4.6.3 

through figure 4.6. 7 show the rapid decrease in the horizontal restoring force acting on the 

top as the levitation height increases. Figure 4.6.8 through figure 4.6.13 show how the 

vertical forces acting on the top change as the levitation height increases. 
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Radial forces acting on the spinning top of the Levitron; 
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Figure 4_6_3; Force in x direction at 25mm Figure 4.6.4; Force in x direction at 29mm 

Figure 4.6.5; Force in x direction at 33mm 
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Figure 4.6.7; Force in x direction at 41mm 
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Vertical forces acting on the spinning top of the Levitron; 
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Figure 4.6.9; Force in y direction at 25mrn Figure 4.6.1 0; Force in y direction at 29mrn 
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Figure 4.6.13 ; Force in y direction at 41mm Figure 4.6.14; Force in y direction at 45mrn 
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Figure 4.6.15: Magnetic field gradients and vertical force produced by the Levitron. 

Figure 4.6.15 shows the gradients of the magnetic fields as the magnets are moved radially 

from their central position and the vertical forces at the centre of the Levitron. At a height 

of 25mm above the ring magnet the restoring force to any horizontal movement of the 

levitating magnet is significant. However as the height of the " levitating" magnet increases 

the gradient of the restoring force drops dramatically and at the point at which the vertical 

force becomes positive is approached the restoring forces are very small. As a result the 

Levitron is only capable of supporting light magnets, and with changing atmospheric 

conditions affecting the magnetic field strength regular adjustment of the ballast added to 

the levitating magnet in increments as small as 0.5g are required. As a consequence the 

Levitron can only resist small horizontal or vertical displacements before stable levitation 

breaks down. 

4. 7, Ring Magnets 

The Levitron arrangement of a cylindrical magnet levitating over a ring magnet 1s an 

attractive solution to the problem of creating stable levitation. The original Levitron used a 

rare earth levitating magnet and a ferrite base ring magnet, presumably because ferrite 

magnets are considerably cheaper than Neodymium magnets and ferrite magnets are safer 

for untrained personnel to handle. 
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Through the use of a rare earth magnet as the base magnet in a similar arrangement to the 

Levitron it should be possible to achieve greater levitation height and greater load bearing 

capabilities due to the much greater magnetic field strength of Neodymium-Iron-Boron 

magnets. Various ring magnets were tested for suitability for levitation, with varying inner 

and outer diameter. Circular magnets with diameter of 40mm and thickness of 6mm were 

attached to a gimbal via a 1m long non-ferrous arm to restrict movement to two degrees of 

freedom. The rare earth ring magnets enabled levitation to occur at a larger air gap; 

however they still only produced a very small stable region. This was due to the flux 

distribution around the ring magnet. Although the system with the ring magnets is in 

essence an extension of the "rail" system shown in figure 4.3.3, the flux distributions are 

very different due to the geometry of the magnet. 

(a) 

Figure 4. 7.1 Magnetic field distributions 

Figure 4.7.1 shows the differences in the magnetic field distributions between the magnetic 

rail system using separate magnets and the Levitron style ring magnet. The magnetic field 

lines around the rail system shown in figure 4.7.l(a) are gently sloping creating a shallow 

magnetic well in which the levitating magnet sits. For the ring system shown in figure 

4.7.1(b) a similar amount of magnetic flux passes through the centre of the ring as goes 

around the edge of the ring; as the magnetic flux is forced through a restricted area the field 

lines are compressed, producing the peak shown. This peak of magnetic flux significantly 

reduces the size of the stable region. Where the rail system had a large stable zone similar 
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to the size of the levitating magnet, and could support a large range of weight, the ring 

system has only a small stable zone and can support a very limited range of weight. A 

solution to this would be to increase both the inner and outer diameter of the ring magnet. 

As the diameter of the magnet increased the ratio of the size between the area inside the 

magnet and the area outside the magnet would increase. Extending this to infinity would 

result in a situation where there would be no difference between the magnetic flux path 

inside and outside the magnet. Therefore the larger the diameter of the ring magnet used the 

more stable such a system should be. However the maximum size of the magnets is limited 

by the size and power of the electromagnets used to magnetise the precursor material 

during the production process. The largest commercially available magnets are not large 

enough to significantly alter the flux patterns to increase the stability. 

4.8, Summary of Magnetic Rail Results 

The results of these traverses in section 4.4 to section 4.5.8 show how the forces produced 

by the three magnet system, shown in figure 4.3.3, and the extent of the stable zone, change 

as the characteristics of the system are altered. Reducing the gap between the fixed base 

magnets reduces the stability of the system but increases the load bearing capability of the 

system. Conversely increasing the gap between the fixed base magnets increases the 

stability of the system, but also decreases the amount of weight the system can support. 

Doubling the number of the fixed base magnets used increases the amount of load that the 

system can support but also reduces the stability of the system and the maximum height at 

which the system is stable. Doubling the number of levitating magnets used reduces the 

instability of the system by a similar amount as when the fixed base magnets were doubled, 

but because of the resulting change in magnetic field shape the vertical force produced was 

significantly more. Whilst this is a beneficial result because the levitating magnets used are 

smaller than the fixed base magnets and only require half the number of magnets, so 

therefore are considerably cheaper, reducing the overall cost of the system, and are also 

easier to handle; this also increases the weight that has to be supported. The results of these 

traverses show that the optimum configuration of the three magnet "raW' system would 

consist of long fixed base magnets and narrow levitating magnets. The longer that the fixed 

magnets that make up the rails are, the more stable the three magnet system will be. 
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The Levitron is a stable magnet only system that is stabilised by the gyroscopic effect of the 

spinning levitating magnet. However it is not feasible to use it for the support of large 

weights due to the small stable zone it produces, its small load bearing capacity and the fine 

weight adjustments required to keep it within the stable zone. Larger versions of the 

Levitron using more powerful magnets are also unfeasible for large scale levitation 

applications because of the small stable zone inherent to ring magnets caused by the 

magnetic flux distributions as shown in figure 4.7.1. Therefore due to the infeasibility of 

the ring magnets for levitation applications it was decided that the magnetic "rails" are the 

most suitable solution for augmenting the superconducting levitation. 
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5. Design and Evaluation of the Hybrid Superconducting Levitation System. 

5.1 Introduction 

This chapter describes the design, testing, and analysis of several superconducting magnetic 

levitation systems. Firstly, the medium scale hybrid system that was designed and 

constructed to combine the stability of the superconducting levitation with the large ground 

clearances and increased load bearing capability that permanent magnet levitation can 

provide. Then the final large scale prototype designed to support a 40% scale Formula 1 

car. The Superconducting Magnetic Levitation System is the largest wind tunnel magnetic 

levitation system in the world, which was built and successfully tested in the Durham 2m 

wind tunnel. 

5.2 Hybrid Superconducting Levitation System for 20% Le Mans Style Vehicles 

Magnet only levitation systems such as the Magnetic Suspension and Balance System 

(NASA 1991) can only maintain levitation through the use of a complex active control 

feedback system and require very high power electromagnets to operate. As previously 

demonstrated in chapter 3 a stable levitation system can be built using only 

superconducting levitation, but due to the mirror effect such a system is limited in the 

maximum air gap at which it can operate, and as such is limited in its applications. A 

solution to this problem could be achieved by combining the stability inherent to the 

superconducting levitation with the large air gap capability of the magnet on magnet 

levitation to produce a hybrid superconducting magnetic levitation system. 

The objective of this research was to investigate the feasibility of a system of non-intrusive 

support primarily for use in the aerodynamic testing of racing cars. Such vehicles tend to 

have low ground clearance at the front axle and relatively high ground clearance at the rear 

axle, with this change in height designed to create a diffuser effect to produce downforce. A 

40% scale model of a Le Mans type ~<icing c~ op~n1tes with sufftci~ntly low gr()und 

clearance at the front axle to allow support through the use of superconducting levitation 

for the front half of the vehicle. However the high ground clearance at the rear axle means 
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that the rear half of the model can not be supported in this way, but the ground clearance is 

well within the operating range of permanent magnet on permanent magnet levitation. By 

combining the inherently stable superconducting levitation with the magnet on magnet 

levitation it is possible to create a stable system that is capable of supporting a vehicle with 

a large range of ground clearances without the need for active control. 

A medium scale prototype of the hybrid superconducting magnetic levitation system was 

then constructed. The system was based on a 20% scale Mercedes Le Mans racing car. 

Three Yttrium Barium Copper Oxide superconducting bulks were used to provide levitation 

at the front of the model. The superconductors were mounted in double insulated linked 

brass cryostats to allow the flow of liquid nitrogen to the superconductors to be controlled 

by filling only the most accessible cryostat. The cryostats were mounted on aluminium L 

section supports bolted to aluminium optical benches, as shown in figure 5.2.1. Six 

electromagnets were used in the design, two for each superconducting pod. Adjustable 

aluminium mounting brackets were used to affix the electromagnet to the rails on top of the 

optical benches allowing for five degree of freedom positioning. The electromagnets for the 

central pod were aligned parallel to the direction of air flow; the electromagnets for the 

pods on either side were positioned at an angle of 45° to the direction of air flow to provide 

lateral stability and positional control for the levitating magnets. 
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Figure 5.2.1 Superconducting Section of the Hybrid Levitation System. 

The levitating magnets were mounted to a frame constructed from lengths of 12mm x 

12mm x lrnm aluminium angle section. The frame was rectangular with two crossbraces; 

the extra crossbrace served as a mounting point for the offset levitating magnets and also 

balanced the frame side to side; tests with just one crossbrace resulted in one side of the 

rear of the frame levitating at a lower air gap due to the increased weight on one side. The 

frame and the attached levitating magnets are shown below in figure 5.2.2. 
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Figure 5.2.2, Frame for levitating magnets 

For the rear section of the hybrid superconducting levitation system the magnetic "rail" 

configuration was employed to reduce the instability inherent to permanent magnet on 

permanent magnet levitation. The magnetic "rail" configuration, as discussed in chapter 

four, is stable in one horizontal direction, and unstable in the horizontal direction 

perpendicular to it. Combinations of several magnetic "rails" can be used to create a system 

that is either neutrally stable/unstable, or more stable in one direction than another, 

depending on the desired outcome. 

The rear magnet only system used 50mm by 50mm by 6mm Neodymium magnets on the 

base and levitating Neodymium magnets with dimensions 30mm by 1 Omm by 5mm. 

Several combinations of the magnetic "rail", that was used for the rear magnet only section 

of the system, were evaluated. Figure 5.2.3 shows the different configurations that were 

assessed for stability. 

142 



Chapter 5 - Design and Evaluation of the Hybrid Superconducting Levitation System 

z 

(a) X (b) 

~ 
~ ~ 

~ ~ 

(c) 
Superconductors 

~ (d) 
Magnet Rails 

Figure 5.2.3 Hybrid Superconducting Magnetic Levitation "Rail" Configurations. 

The first configuration that was tested was comprised of two rails positioned to be stable in 

the z direction, as shown in figure 5.2.3a. This arrangement was proved to be stable; 

however due to the orientation of the magnetic rails this setup had limited resistance to 

force in the x direction. The second configuration that was tested is shown in figure 5.2.3b. 

The magnetic "rails" were aligned to be stable in the x direction to ascertain if the 

orientation of the rails affected the stability of the system. This arrangement of the rails was 

also shown to be stable but could only withstand a significantly smaller displacement from 

the central position than the configuration shown in figure 5.2.3a. The reason for this 

reduced stability is the lever arm of the frame over which the destabilising forces of the 

magnetic rails act. In the arrangement shown in figure 5.2.3a the magnetic rails were 

unstable in the x direction and applied a uniform force in the x direction to the 

superconductors that they were capable of resisting. However in the arrangement shown in 

figure 5.2.3b the magnetic rails were unstable in the z direction, this resulted in the central 
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superconductor acting as a pivot point. The destabilising force of the magnetic rail was 

multiplied by the lever arm of the aluminium frame resulting in a force too great for the 

superconductors to resist. This arrangement meant that only two superconductors were able 

to resist the movement of the frame, with the middle superconductor rendered redundant 

and unable to resist the destabilising movement. The longer the frame, and consequently 

the distance between the superconductors and the magnetic rails, the more unstable the 

system will be. 

Despite the reduced instability of the system shown in figure 5.2.3b the magnetic "rails" 

provided a restoring force in the x direction that would oppose the force acting on the 

levitating magnets caused by the force of the wind, but as the system has only a small 

degree of stability it is not particularly useful. The configuration shown in figure 5.2.3c 

consists of two magnetic "rails" that are unstable in the x direction and another "rail" 

positioned at right angles so that it is unstable in the z direction. This configuration was 

designed to provide stability with the two rails unstable in the x direction and some 

restoring force in the x direction with the rail unstable in the z direction. Testing of this 

configuration showed it possessed improved stability over the arrangement in figure 5.2.3b. 

Another magnetic "rail" was then added to the system as shown in figure 5.2.3d. This 

configuration consisted of four rails; two were unstable in the x direction and two were 

unstable in the z direction. This configuration was also shown to be stable, because each 

magnetic "rail" had a counterpart at right angles to itself, any displacement of the levitating 

magnets was opposed by one set of rails, as a destabilising movement in the x direction for 

one set of rails resulted in a restoring force from the other set. The magnetic rails in this 

configuration also cancel out each other in rotation as well. The result of this is the creation 

of an almost neutrally stable system of magnetic rails. The hybrid superconducting 

magnetic levitation system is shown in operation in figure 5.2.4. 
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Figure 5.2.4 Hybrid Superconducting Magnetic Levitation System Levitating. 

As shown in chapter 3 the behaviour of the magnetic rails is dictated by the gap between 

the magnets that form the base of the rails and the number of levitating magnets used. 

Reducing the gap between the fixed magnets resulted in greater load bearing ability and 

increased air gap at the expense of stability. The use of multiple rails allows for fine tuning 

of the system; by increasing or reducing the gap between the rails positioned in either the x 

or z direction the system can be made to be more stable of unstable in a given direction. In 

the case of testing of a vehicle at yaw angles the aerodynamic loads act unevenly on the 

vehicle. By tuning specific rails the system can be configured to apply a restoring force in 

the required direction when the magnets are displaced. 

The addition of a non-ferrous conducting sheet between the levitating magnets and the 

superconductors and the magnetic rails, as shown in figure 5.2.5, will help to damp any 

movement of the frame. The levitating magnets induce eddy currents in the conducting 

sheet, in this case aluminium, which oppose the movement of the magnetic field that 

created them. Teshima (1997) investigated the effects of eddy current damping in non­

ferrous conductors, it was found that a copper sheet provided the most damping, and the 

thicker the sheet the more damping produced. For levitation applications the rolling road 

platen would be required to be a non-ferrous sheet, a copper platen would be very 

expensive therefore an aluminium platen was used in this project. 
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Figure 5.2.5 Hybrid System Levitating with Aluminium Floor in Place. 

5.3 Inherent stability of the Levitating system 

Superconducting levitation has a range of air gaps over which it can operate in the vortex 

state. The closer the magnet is to the superconductor, the greater the volume of the 

superconductor that is in the vortex state. The greater the proportion of the superconductor 

in the vortex state, the greater the restoring force that the superconductor provides to a 

perturbation. Therefore at larger air gaps the amount of restoring force that the 

superconductor can produce decreases, as a result it is desirable to have a stable as possible 

system before any wind forces act on the system. The Superconducting Magnetic 

Levitation System is a modular system which means it is capable of being used for any size 

and shape of model. Therefore the demands on the system will differ depending upon the 

application in question. In order to create as stable a system as possible initially the 

magnetic "rails" will be positioned so that half are stable in the x direction and half are 

stable in the z direction. The system can then be tuned once the demands on system are 

known. Until this point the restoring force required for the system to oppose the force of the 

air flow will be produced through the use of electromagnets as these are capable of 

producing large forces in any direction. 

5.4 Design of Large Scale Hybrid Superconducting Magnetic Levitation System 

The most probable application of the Superconducting Magnetic Levitation System would 

be for the wind tunnel testing of Formula 1 cars. F1 cars run at very low ground clearances 

making them ideal candidates for the technology, and the manufacturers consider 
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aerodynamic testing to be the most important aspect of building a fast car. All Formula 1 

teams perform aerodynamic testing of their vehicles and several manufacturers run multiple 

wind tunnels twenty four hours a day, such is the importance of the resulting data. These 

tests are performed with a moving ground plane to simulate the diffuser effect produced by 

the low ground clearance of the cars. Therefore the vehicles are supported by large struts 

and stings from the walls and roof of the tunnel which disrupt the airflow around the car 

and cause the tests to deviate from on track conditions as discussed in chapter 1. As a result 

large amounts of time and resources are being expended to produce flawed data. 

The varying ground clearance along the chassis of an F 1 car dictated the positioning of the 

superconductors within the model. Figure 5.4.1 shows the changing ground clearance of the 

Toyota TF103 

Figure 5.4.1, the Toyota TF103 (Toyota 2003). 

The lowest ground clearance is around the central section of the car. Unlike a Le Mans car 

which has its lowest ground clearance at the front axle, an F1 car has a raised nose, in 

accordance to the regulations (F .LA. 2004 ), which makes it unsuitable for superconducting 

levitation. The ground clearance is also greater at the rear axle because of the raised section 

used to form the diffuser, making it unsuitable for superconducting levitation. Therefore all 

the magnets used for superconducting levitation for a scale model of an Fl car must be 

positioned centrally. The larger ground clearances at the front and back of the model are 

suited to magnet on magnet levitation. 

147 



Chapter 5- Design and Evaluation of the Hybrid Superconducting Levitation System 

Whilst the nose section operates at too great a height to be suitable for support using 

superconducting levitation, the front wing runs at a lower ground clearance and as such is a 

candidate for superconducting levitation. However following consultation with the Toyota 

F1 it was decided to not place magnets inside the front wing. This was due to the regularity 

with which the design and components of the front wing were changed, rendering it 

unfeasible to constantly change the layout of the magnets in the wing and the 

superconductors beneath the floor of the wind tunnel. 

Many of the Formula 1 manufacturers test their vehicles in the wind tunnel at 40% scale so 

therefore the model used for this project was based upon a 40% scale Formula 1 car. For 

the 2004 season the FIA regulations stated that a Formula 1 car must fit within a 

rectangular box that is 4600mm long and 1800mm wide, the same dimensions are still in 

force for the 2006 season. The body of the car is 1400mm wide at it largest point and the 

rear wing extends 600mm beyond the rear axle. For a 40% scale model the box becomes 

1840mm long and 720mm wide, it was decided to initially build a simplified frame without 

either wings or wheels on to which the magnets would be mounted. A frame was built from 

sheet aluminium mesh with 5mm diameter holes to allow the magnets to be easily mounted. 

The frame was 1600mm long and 560mm wide at the largest point; the shape of the frame 

was based upon the Ferrari F2004. Figure 5.4.2 shows a plan view of the F2004. 

Figure 5.4.2, Plan view of the F2004 (Ferrari 2004). 
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Figure 5.4.3 shows the frame for the levitating magnets superimposed over the plan view of 

the F2004. The area of the frame was divided into three sections; sections 1 and 3 are areas 

of high ground clearance and as such are suitable for support with magnet only levitation, 

section 2 is an area of low ground clearance and therefore is suitable for support through 

the use of superconducting levitation. The size and shape of the levitating frame dictates the 

layout of the superconductors, cryostats, permanent magnets, and electromagnets required 

to support the levitating magnets. 

Figure 5.4.3, Frame for levitating magnets superimposed on the F2004. 

5.4.1, 150mm Rare-Earth Neodymium Magnets 

The magnetic rails become more stable as the ratio of the length of the fixed base magnets 

to the length of the levitating magnets increase. Therefore the longer the fixed rails are, the 

more stable a system incorporating them will be. The maximum size for production of the 

magnets is limited by the method by which they are magnetised. The raw materials that the 

magnets are composed of can be pressed and sintered into virtually any shape and any size; 

it is the magnetising of the material that is the limiting factor in the process. In order to 

produce a magnet with a uniform magnetic field throughout its volume, the electromagnetic 

coil that is used to magnetise it must be capable of producing at its centre a uniform 

magnetic field the same size as the resulting magnet. The larger the size of the magnet that 

is required, the larger the magnetising coil must be in order to magnetise the Nd-Fe-B 
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powder. At present the largest commercially available magnets are 150mm in length. The 

magnets that were chosen to be used in this project were rare-earth neodymium-iron-boron 

magnets with dimensions of 150mm x 50mm x 1 Omm. Magnets of this size allow fine 

tuning of the rail system by changing the gap between the fixed magnets and using 

levitating magnets of varying sizes to change the properties of the system to best augment 

the superconducting levitation. 

5.4.2, Layout of the Large Scale Hybrid Superconducting Magnetic Levitation System 

The ideal configuration for the supporting formation would be to have the entire central 

section of the system tiled with YBCO superconducting bulks to provide maximum 

levitation force and damping to the system, as shown in figure 5.4.4. The extent of the 

superconductors extends beyond the area of the levitating frame as a superconductor is 

capable of producing a vertical levitation force on a magnet that is not positioned directly 

over it as shown in chapter 3. The front and rear sections of the levitating frame would be 

supported by multiple magnetic "rails" composed of 150mm long rare-earth magnets. Each 

rail consisted oftwo 150mm x 50mm x 10mm Neodymium-Iron-Boron rare-earth magnets; 

each magnet had two aluminium end caps with an 8mm hole running along the width of the 

magnets. Stud bar was used to connect the end caps and wing nuts were used to adjust the 

distance between the magnets. The area of the levitating frame dictated the number of rails 

that could be used in each section. The available space allowed for the use of four magnetic 

"rails" to support the front section of the frame, and eight magnetic "rails" to support the 

rear section of the frame. This configuration is shown in figure 5.4.4. 
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Superconductors 
Magnetic 
Rails 

Figure 5.4.4, Original configuration of the Superconducting Magnetic Levitation System. 

Unfortunately due to budgetary constraints the project was limited to seventeen 44mm 

diameter Yttrium Barium Copper Oxide bulks manufactured by THEV A Gmbh (THEV A 

2004), rather than the sixty superconductors that would have filled the available space as 

shown above. The superconductors were evenly spaced around the central section of the 

system in order to preserve a long lever arm between the superconductors to better allow 

them to resist any rotation of the system. The superconductors were held in aluminium 

cases mounted in linked brass cryostats. All the cryostats were fed from a central reservoir 

situated to the side of the main system, as shown in figure 5.4.5, to allow continuous 

cooling of the superconductors when a floor was used to cover the system. The cooling 

system was heavily insulated to reduce the boil-off rate of the liquid nitrogen as much as 

possible. The cryostats were supported using optical benches that provide multiple 

mounting points for brackets. Six electromagnets were positioned behind each 

superconductor in the rearmost row corresponding to the position of the levitating magnets. 
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Electromagnets 

Figure 5.4.5, Layout of the Cryostats and Superconductors. 

It was found that the space taken up by the optical benches and the electromagnets meant 

that space in the rear section of the system was reduced requiring a reduction in the number 

of magnetic rails from eight to six. Figure 5.4.6 shows the layout of the system. Figure 

5.4.7 shows the layout of the Superconducting Magnetic Levitation System on the bench. 
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Electromagnets 

I 

Figure 5.4.6, Actual layout ofthe System 

Figure 5.4.7, Prototype of the Superconducting Magnetic Levitation System. 

Magnetic 
Rails 

Figure 5.4.7 shows the superconductors within the cryostats attached to the liquid nitrogen 

feeding system. The magnetic rails are mounted on adjustable scissor platforms in front and 

behind the superconductors. A row of electromagnets sit behind the superconductors to 

counteract the wind force applied to the model. Figure 5.4.8 shows the system with the 

aluminium levitating frame in position. 
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Figure 5.4.8, Prototype final rig with Frame in place. 

Figure 5.4.8 shows the frame being held in place by clamps. Non-ferrous spacers were used 

to set the height of the superconducting levitation before the liquid nitrogen was added to 

field cool the superconductors. Figure 5.4.6 shows the frame levitating after the addition of 

liquid nitrogen. 

Magnets levitating 
over superconductors 

Figure 5.4.6, Large Scale Prototype Rig Levitating. 
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The levitation height varied from the central superconducting section where the height was 

15mm, to the magnet on magnet section where the height was 70mm. The fixed magnets on 

the base were lower than the superconductors to mimic the increased height change at the 

front and rear of an F 1 car, as it was easier to change the height of the floor than to change 

the height of the frame. Figure 5.4.6 shows that there was some give in the frame that 

allowed the front and rear sections to flex upwards as the height of the scissor platforms 

were increased causing the levitating magnets to move up as well. The model was changed 

for the later tests in the wind tunnel so that the front and rear sections were raised to 

represent the outline of an Fl car, and the superconductors and magnets were at the same 

level under the floor of the wind tunnel. 

5.5, Bench testing of the final system. 

The system was tested in situ on the bench to ascertain its capabilities. Maximum lift tests 

and maximum drag tests were performed with various different arrangements of the 

permanent magnets to provide varying amounts of lift. The first test was run with the 

magnetic rails with a distance of 25mm between them, and with the superconductors field 

cooled at a height of 15mm. Calibrated masses were then loaded onto the frame. This 

configuration gave a maximum levitation force of 200N, mainly supplied by the 

superconductors, because of the distance between the rails the magnets provided only a 

small amount of lift as the system had been configured for maximum stability. For the 

second run the gap between the rails was reduced to 1 Omm. In this configuration the system 

was able to support 250N. The system was then tested for drag force. Each of the six 

electromagnets had 400 turns, and each electromagnet drew 5 Amps. The electromagnets 

were positioned 50mm behind the superconductors and electromagnets in order to allow 

space for insulation. The maximum drag force attained was 90N before the levitating frame 

started to move. As with previous drag force tests it was found that the drag force that could 

be resisted increased as the current in the electromagnets increased. Through the use of 

electromagnets with more turns and larger power supplies the maximum drag force that can 

be resisted will be considerably increased. 
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5.5 .1, Modular Expansion of the Superconducting Magnetic Levitation System. 

As mentioned previously, only a fraction of the superconductors that were intended to be 

used in the original design were used to build the large scale prototype of the 

Superconducting Magnetic Levitation System. Seventeen Yttrium Barium Copper Oxide 

superconducting bulks with a diameter of 44mm were used; depending on whether circular 

or square superconductors were used up to 80 superconductors of similar dimensions would 

be able to fit into the available space. This would at least quadruple the load carrying 

capacity of the superconductors. The limiting factor to the amount of levitation force that 

the magnetic rails can produce is the stability and damping that the superconductors 

produce, such a large increase in the numbers of superconductors used will greatly increase 

the stability and damping that the system possesses and will allow much larger loads to be 

supported by the magnets. 

Based on a frontal area of an F1 car of 1.5m2
, the system operating with the reduced 

number of superconductors the system would be capable of supporting a lightweight, 10 kg 

model at 30 ms-1 with modest lift and drag coefficients of -1.14 and 0.70 respectively. 

Increasing the number of superconductors used would make it possible to support vertical 

forces of 1000 Nand horizontal forces of 360 N. These forces would correspond to a 35 kg, 

40% Formula 1 car model at 30ms-1 with lift and drag coefficients of -4.0 and 2.5 

respectively. 
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Figure 5.5.1 , Demonstration of the Systems Load Carrying Capability. 
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The system was also run with an aluminium sheet in place over the superconductors to 

demonstrate that is did not cause any problems for the system. The levitation height of the 

magnet-magnet levitation at the front and back of the system could be adjusted whilst in 

operation. 

Figure 5.5.2, Superconducting Magnetic Levitation System with Aluminium Floor 

5.6, Testing of the Superconducting Magnetic Levitation System in the Durham 2m Wind 

Tunnel. 

The Superconducting Magnetic Levitation System was designed for use in conjunction with 

a rolling road. A purpose built rolling road had been designed for use with the system 

inside the Durham 2m wind tunnel. Unlike standard rolling roads which have three rollers 

the rolling road was designed with four rollers to allow space inside the belt to position a 

six component force balance with the Superconducting Magnetic Levitation System on top 

of it. The rolling road was made of 60mm square section steel beams and was designed so 

that when it was not in use it could be lowered to allow a turn table to be mounted on top of 

it to run yaw testing. A 3mm thick aluminium platen was used in the rolling road. A 

diagram of the rolling road is shown in figure 5 .6.1. 
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Figure 5.6.1, Rolling road frame (Dimensions in mm) 

The aluminium frame for the Superconducting Magnetic Levitation System on which the 

levitating magnets were mounted was designed to be 40% of the length of a Formula 1 car 

at 1800mm. The supporting structure of the system was 2000mm long. The rolling road in 

the Durham 2m Wind Tunnel was designed with two 60mm square section steel supports 

running across the width ofthe rolling road as shown in figure 5.6.1. The distance between 

the beams was 1500mm, 500mm shorter than the overall length of the Superconducting 

Magnetic Levitation System. 

In order to fit the Superconducting Magnetic Levitation System into the available space 

within the rolling road the supporting system was shortened whilst keeping the length of the 

levitating frame the same. The layout of the superconductors in the central section was kept 

the same although the supporting optical benches were moved closer together and the 

electromagnets were moved closer to the superconductors. The major reduction in length 

was achieved by removing one of the magnetic rails in the front section of the system that 

was perpendicular to the direction of the airflow. The layout of the shortened version of the 

Superconducting Magnetic Levitation System is shown in figure 5.6.2. 
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Electromagnets 

Figure 5.6.2, Cut down version of system. 

Superconductors 
Magnetic 
Rails 

The Superconducting Magnetic Levitation System was mounted on a steel frame used to 

represent the dimensions of the force balance normally used for fixed ground testing. 

Figure 5.6.3 shows how the Superconducting Magnetic Levitation System was integrated 

into the rolling road. 

Magnets 

Belt 
Suction box 

Force balance 

Figure 5.6.3, Schematic of the system integrated into the rolling road 

Figures 5.6.4 and 5.6.5 show the system installed in the rolling road within the 2m Durham 

Wind Tunnel. 
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Figure 5.6.4, Superconducting Magnetic Levitation System Installed in the Rolling Road 
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Figure 5.6.5, Superconducting Magnetic Levitation System in the Durham 2m Tunnel. 

In order to prevent convection due to the airflow from causing the liquid nitrogen to boil off 

at an increased rate the cryostats were covered in clingfilm, whilst ensuring the system was 

still vented to prevent pressure build up. In order to allow continuous cooling of the 

superconductors when the aluminium platens were in place, a feeder pipe was connected to 

an exterior inlet to allow the addition of liquid nitrogen whilst the system was in operation. 

Figure 5.6.6 shows the Superconducting Magnetic Levitation System installed inside the 

rolling road in the Durham 2m wind tunnel with the platen in place. No part of the system 

protruded above the level of the floor, thereby providing no impediments to the normal 

operation of the rolling road. 
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Figure 5.6.6, Superconducting Magnetic Levitation System with Platen in Place. 

In order to provide a more realistic set of conditions for the testing of the Superconducting 

Magnetic Levitation System in the 2m Durham wind tunnel, the frame used to support the 

levitating magnets was mounted inside a model designed to approximate the body shell of a 

Formula 1 car. When the system was tested on the bench the frame had all the magnets at 

the same height and the height differences for the system were introduced by setting the 

magnetic rails at a lower height than the superconductors. For the tests in the wind tunnel 

the height changes were incorporated into the model. The magnets in the central section of 

the model were kept at the same height and the magnets for the front and rear magnet only 

sections were raised. The underneath of the frame was covered with aluminium sheeting to 

provide a flat underside for the model. In order to provide drag to act on the system a 

polystyrene shell was added to the frame to act as a bluff body and induce unsteady 

oscillations in the system to test the damping capabilities of the Superconducting Magnetic 

Levitation System. The levitation height of the system was set by field cooling the 
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superconductors with the model in place using 1 Omm spacers. The levitation height at the 

front of the model was 70mm, and the levitation height at the rear of the model was 30mm, 

although these heights could be adjusted by changing the height of the scissor platforms on 

which the magnetic rails were mounted. Figures 5.6.7 and 5.6.8 show the Superconducting 

Magnetic Levitation System in operation. In order to allow the current in the 

electromagnets to be adjusted during the operation of the system the leads were run to the 

exterior of the wind tunnel where they were connected to the power supplies. The 

Superconducting Magnetic Levitation System was demonstrated to be stable at a range of 

wind speeds up to 20ms-1
• There was some oscillation of the nose of the model at higher 

wind speeds due to the flexible nature of the frame intended to allow changes in the ride 

height to occur without the need to reposition the magnets inside the model. This problem 

would be solved by making the frame stiffer as demonstrated in the rear section of the 

model where no oscillation occurred due to the damping from the superconductors and the 

stiff frame. 

Figure 5.6.7, Superconducting Magnetic Levitation System in Operation. 
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Figure 5.6.8, Superconducting Magnetic Levitation System in Operation. 

5.7, Summary of Experimental Results 

It has been demonstrated that permanent magnet only levitation can be used to augment 

superconducting levitation. The magnetic "rail" reduces the instability of magnet only 

levitation and the orientation of the rails affect the directional stability of the system. 

A large scale Hybrid Superconducting Magnetic Levitation System was built to support a 

40% scale Fl car. The system has been demonstrated to work both in tests on the bench and 

in the wind tunnel. The system has been demonstrated to be stable at a speed of20ms-1
• The 

modular nature of the system allows for straightforward scaling to accommodate changes in 

vehicle size. These results were published by the author (Muscroft et al 2006). 
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6. Discussion 

6.1 Introduction 

Aerodynamic testing of racings cars with a moving ground plane requires the use of struts 

and wheel stings to hold the vehicle in position. Hetherington and Sims-Williams (2004 and 

2006) showed that these supporting struts and stings significantly disrupt the air flow 

around the vehicle. The supports can be several orders of magnitude larger than some of the 

aerodynamic element on the vehicles. In cases where the vehicle's aerodynamics are 

already highly refined, the effect of subtle shape changes may be considerably smaller than 

the errors introduced by the supporting struts. The large overhead strut is situated directly 

in front of the highly loaded rear wing. The supports cause the conditions to deviate from 

those experienced on track, and the resulting test data is therefore inaccurate. It has been 

demonstrated that the overhead strut can also affect the airflow underneath the model. The 

interference effects are model and configuration dependant and are not cumulative, making 

the use of correction factors unfeasible. 

The ideal solution to the problem of support strut interference would be to remove the 

physical supports and support the vehicle non-intrusively. The Magnetic Suspension and 

Balance System was developed for aerospace applications; used most notably by NASA 

(1991) to test the space shuttle. Currently the largest Magnetic Suspension and Balance 

System in the world operates at the National Aerospace Laboratory of Japan (Sawada 

2001). The MSBS operates in a 600mm x 600mm wind tunnel, requires active control and 

draws 40kW, yet the system can only support light weight models weighing less than 7kg 

producing less than 16N of drag. Using such a system for ground vehicle application would 

severely reduce its effectiveness. Scaling the system up to allow the support of a 40% 

vehicle is problematical as the force acting between two magnetic dipoles decreases with 

the inverse cube of the distance between them. The power supplies required for a system of 

sufficient size to support a 40% vehicle and also allow the walls far enough away to 

provide a low blockage ratio would be prohibitively large. 
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6.2 Superconductivity 

Superconductivity occurs in a material when electrons overcome their repulsion and pair up 

to form Cooper pairs (Bardeen et al 1957). This happens when the material is cooled below 

its critical transition temperature. The paired electrons possess equal and opposite values of 

momentum and spin vectors. When the electrons collide with the lattice structure of the 

superconductor the Cooper pair is not affected unless the energy generated is sufficient to 

cross the energy gap, and therefore there is no resistance to flow. The energy gap increases 

as the temperature of the material is reduced. Type II High Temperature Superconductors 

(HTS) possess higher critical current densities than the predominantly elemental type I 

superconductors, and therefore produce greater levitation forces. The Yttrium Barium 

Copper Oxide superconductor has a critical temperature above the boiling point of liquid 

nitrogen, unlike previous superconductors which required cooling with expensive liquid 

helium. 

The usefulness of a YBCO superconducting bulk for levitation application depends on the 

quality of the sample. The levitation force produced by the superconductor depends on the 

manufacturing process and the resulting structure of the crystal lattice. Superconducting 

samples that consist of a single domain allow an external magnetic field to induce a 

supercurrent with a diameter comparable to that of the sample. Yang et al (2002) showed 

that the relationship between domain size and levitation force is not linear. A sample with a 

single domain produces significantly greater levitation force than the sum of two samples 

of half the size. The levitation force that a sample produces is inversely proportional to the 

length of the domain boundary perimeter. The trapped magnetic flux in a superconducting 

sample is at a maximum at the centre of the sample and decreases towards the boundary of 

the sample. A crack in a superconducting sample that splits the crystal lattice acts to 

increase the boundary length of the sample, and therefore reduces the trapped flux and 

hence the resulting levitation force, dramatically reducing the usefulness of the sample as 

demonstrated in section 3.3.2. To maximise the effectiveness of a superconducting 

levitation system only single domain superconductors should be used. 
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The Meissner effect (Meissner and Ochsenfeld 1933) is where a superconductor will expel 

any magnetic field impinging on its volume. A magnet will stably levitate over a 

superconductor in the Meissner state if the superconductor is several orders of magnitude 

larger than the magnet. For a magnet to levitate over superconductor of similar dimensions, 

the superconductor must be in the vortex state. In the vortex state the magnetic flux is 

trapped in superconducting vortices at imperfections in the crystal lattice of the 

superconductor. These imperfections are intentionally created in the production process and 

are microscopic which, unlike the macroscopic imperfections such as cracks, do not affect 

the flow of current within the superconductor or create multiple domains. 

Superconducting levitation in the vortex state is intrinsically damped and the levitating 

magnet will resist any force that acts on it. This levitation forms the basis for the 

superconducting pod, as described in section 3.2, that is used in the Superconducting 

Magnetic Levitation System that has been developed as part of the present work. The air 

gap at which superconducting levitation can occur is directly proportional to the magnetic 

field strength of the levitating magnet. Rare-earth permanent magnets possess much higher 

magnetic fields than standard ferrite magnets. Neodymium-Iron-Boron magnets possess the 

highest magnetic field of all the permanent magnets and therefore produce the greatest 

levitation height. Neodymium magnets are essential for levitation applications and were 

therefore used throughout this project. 

6.3 The Superconducting Pod 

The Superconducting Pod forms the basis of the Superconducting Magnetic Levitation 

System. The superconducting pod consisted of a rare-earth magnet levitating over a YBCO 

superconducting bulk in the vortex state surrounded by electromagnets to counteract the 

effect of the wind force acting on the levitating magnets. One pod was tested in a wind 

tunnel and was demonstrated to be stable at 20ms-1 (Muscroft 2002). The position of the 

levitating magnets could be controlled by adjusting the current in the electromagnets. The 

Superconducting pod is passive and as such does not require constant adjustment to remain 

in a stationary position. 
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Electromagnetic Finite Element Analysis was carried out on a two dimensional 

representation of the Superconducting Pod to evaluate the effectiveness of the 

electromagnets used to resist the force of the wind acting on the levitating magnets. Several 

different configurations of electromagnets were tested with varying angles of incidence to 

the horizontal and increasing angles of bend in the electromagnets from 0° to 90°. It was 

shown that straight horizontal electromagnets produced the greatest horizontal restoring 

force. The simulations were also tested with the levitating magnets at different air gaps 

which showed that the restoring force decreased as the air gap increased. This result tallied 

with the experimental results from the force testing of the superconducting pod on the force 

balance as described in section 3.6. 

A larger system consisting of three Superconducting Pods was then designed and built. The 

increased aspect ratio of the system removed the problem of the levitating magnets pitching 

as the current in the electromagnets was adjusted to compensate for the effect of the wind 

force. The three pod system was shown to be stable and allowed complete horizontal 

positional control ofthe system through the adjustment of the current in the electromagnets. 

The system was also tested with a metallic non-ferrous floor to demonstrate that it does not 

affect the operation of the system, as shown in section 3.7. 

6.4 Magnetic Reinforcement and the magnetic "Rail". 

Superconducting levitation is stable and intrinsically damped but, because of the mirror 

effect, the air gap at which levitation can occur is limited. Magnetic levitation is capable of 

producing greater forces at larger air gaps. However one permanent magnet levitating over 

another permanent magnet will always be unstable. The magnetic rail was invented as a 

means of reducing the instability of magnet only levitation. The magnetic rail consists of 

one permanent magnet levitating over two permanent magnets with a given separation. The 

levitating magnet rests in a magnetic "well" created by the magnetic fields of the two base 

magnets. This results in a configuration that is stable in one horizontal direction and 

unstable in the perpendicular horizontal direction. Increasing the ratio of the length of the 

rails to the length of the levitating magnets reduces the instability of the system as shown in 

section 4.4. 
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The use of the magnetic rail to reinforce the superconducting levitation allows for more 

weight to be supported without introducing large amounts of instability into the system. 

The magnetic rail can be tuned to provide more load bearing capacity or increased stability 

depending upon the current requirements of the system. For situations such as yaw testing, 

multiple magnetic rails positioned at right angles to each other can be altered to provide a 

restoring force in a particular direction when a displacement is applied to the levitating 

magnets. 

6.5 The Hybrid Superconducting Magnetic Levitation System 

The magnetic rail and the superconducting pod were amalgamated to form a hybrid 

superconducting magnetic levitation system, combining the stability and damping of the 

superconducting levitation with the high ground clearance and large load bearing capability 

of magnetic levitation. Such a system is suited to providing support for racing cars which 

are comprised of regions of both high and low ground clearance. The superconductors 

provide levitation for the low ground clearance areas of the vehicles and the magnet only 

levitation provides support for the high ground clearance areas. The first hybrid system that 

was built was based on a 20% Le Mans style racing car and used superconducting levitation 

for the low ground clearance at the front axle of the car and permanent magnet levitation 

for the high ground clearance at the rear axle. 

The number of magnetic rails used and the direction in which they were arranged affected 

both the stability and restoring force the system produced. Magnetic rails positioned at the 

rear of the system and aligned to be stable in the direction of the airflow reduced the 

stability of the system because of the large lever arm over which the destabilising force was 

able to act. When the magnetic rails are aligned to be stable in the direction perpendicular 

to the airflow the destabilising force acts uniformly against the superconductors without 

being amplified by the lever arm of frame and the resulting configuration is more stable. 

Reducing the lever arm of the frame by increasing the number of superconductors used in 

the system or shortening the frame would increase the stability. In order to create the most 

versatile system an equal number of rails perpendicular to each other were used. This 

arrangement produced an almost neutrally stable system of magnetic levitation which was 
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then stabilised by the superconducting levitation. Such a configuration can then be tuned to 

provide extra stability in a desired direction depending upon the requirements put on the 

system. This system provided positional control through the adjustment of the current in the 

electromagnets and ride height control through the adjustment of the scissor platforms on 

which the magnetic rails were mounted as shown in section 5.2. The superconducting 

levitation allowed for a ground clearance of up to 35mm. The permanent magnet levitation 

allowed for adjustment of the ground clearance up to 80mm. The system was also tested 

with an aluminium sheet to represent the platen of the rolling road to demonstrate it did not 

affect the operation of the system. An important advantage of the hybrid system is that it is 

passive and requires only low power supplies to operate. The 20% system drew less than 

200W. 

The hybrid superconducting magnetic levitation system was extended to support a 40% 

Formula 1 car. Unlike Le Mans style cars, Formula 1 cars have raised nose sections, 

making the front section unsuitable for support through the use of superconducting 

levitation. The central section of Formula 1 cars are designed with low ground clearance 

therefore the superconductors were situated there. The high front and rear sections of the 

model were supported through the use of magnetic rail configuration. The modular nature 

of the superconducting magnetic levitation system allowed for easy restructuring to support 

the larger vehicle of dissimilar design. The larger system used fives times more 

superconducting material than the 20% Le Mans style configuration. This allowed the 

superconductors to be positioned to provide an increased lever arm between the 

superconductors both parallel and perpendicular to the direction of the air flow. Increasing 

the distance between the superconductors resulted in an increased resistance to rotation of 

the system. The magnetic rails at the front and rear of the model were mounted on scissor 

platforms which allowed the ride height of the system to be easily controlled. The 

superconducting levitation allowed for a ground clearance of up to 35mm. The permanent 

magnet levitation allowed for adjustment of the ground clearance up to 80mm. Positional 

control of the levitating frame was achieved through control of the currents in the 

electromagnets as demonstrated in section 5.5. The 40% system co~ld support 250N of 

downforce on top of the weight of the frame and magnets and could resist 90N of drag. The 

modular nature of the system means that at least four times the superconducting material 
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could be used in the design which would at least quadruple the load bearing capability of 

the system. 

6.6 Wind Tunnel Tests of the Superconducting Magnetic Levitation System 

To test the ability of the system to withstand the unsteady oscillations caused by the air 

flow acting on a vehicle under test in a wind tunnel, the hybrid superconducting magnetic 

levitation system was installed in the Durham 2m Wind Tunnel. The system was installed 

inside a custom made rolling road equipped with four rollers to provide space within it to 

locate the system mounted on a six component force balance. The rolling road was 

constructed of 60mm square steel beams but, despite strong magnetic fields being used in 

the system, there were no problems of interference. A 3mm aluminium platen was used on 

top of the rolling road. A representation of the body shell of a Formula 1 car was mounted 

on top of the frame connecting the levitating magnets to act as a bluff body to induce drag 

and cause unsteady flow to test. All of the components of the superconducting magnetic 

levitation system were situated either underneath the platen of the rolling road or within the 

levitating frame. No part of the system encroached into the airflow. The system was tested 

up to a speed of 20ms-1 and was demonstrated to be stable in section 5.6. The results of 

these tests were published by the author (Muscroft et al 2006). 
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7. Conclusions and Recommendations for Future Work 

7.1 Conclusions 

7 .1.1 Wind Tunnel Testing with a Moving Ground Plane. 

Testing of ground vehicle wind tunnel models with a moving ground plane requires the use 

of struts and wheel stings to hold the model in position. It has been shown that these 

supports considerably disrupt the air flow over the test vehicle, resulting in flawed test data. 

The ideal solution to this problem is to support a vehicle under test without using physical 

supports. Previous methods of non-intrusive support have been limited to aerospace 

applications. A Magnetic Suspension and Balance System (MSBS) uses very high power 

electromagnets to support a test vehicle. The largest MSBS is based at the National 

Aerospace Laboratory of Japan, and it is limited to operation in a test section of dimensions 

600mm x 600mm and is only capable of supporting a model weighing 7kg. The power 

supplies required for a MSBS of sufficient size to support large scale heavy test vehicles 

are prohibitive. 

7 .1.2 Superconducting Levitation and Crystal Quality 

It has been demonstrated that a permanent magnet will stably levitate over a type II 

superconductor when the superconductor is in the vortex state. The levitation force that a 

superconductor can produce depends upon its size and quality. For a superconductor to 

produce the maximum levitation force it must consist of only one domain. The external 

magnetic field induces a current loop within the crystal lattice of the superconductor; the 

larger the radius of the current loop, the greater the force produced. Cracks within the 

superconductor or misalignment of the c-axis between adjacent grains disrupt the flow of 

current, and if they extend throughout the sample can result in the sample consisting of two 

or more domains. Superconductors with multiple domains produce considerably less 

levitation force than single domain superconductors of comparable size, and therefore only 

single domain superconductors must be used for levitation applications. 
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7 .1.3 The Magnetic Rail 

One pennanent magnet levitating directly over another permanent magnet will always be in 

a state of unstable equilibrium; any movement of one of the magnets will result in a force 

acting to further destabilise the magnets. Therefore the addition of this type of levitation to 

a system will always introduce greater instability. The magnetic rail was invented to reduce 

the instability of permanent magnet only levitation. Through the creation of a magnetic 

"well" in which the levitating magnet rests in the dip in field created by two fixed magnets 

and is then stable in two degrees of freedom. By increasing the length of the fixed magnets 

compared to the levitating magnet the instability of the system can be further reduced. The 

magnetic rail thereby allows permanent magnet levitation to augment superconducting 

levitation without introducing large amounts of instability, increasing the effectiveness of 

such a levitation system. 

7 .1.4 Electromagnetic Finite Element Analysis 

Simulations of a two dimensional representation of the superconducting pod indicated that 

straight horizontal electromagnets provided the greatest horizontal restoring force to a 

displacement of the levitating magnets. 

7.1.5 Development ofthe Hybrid Levitation System 

It has been demonstrated that a levitation system solely utilising superconducting levitation 

is limited in its effectiveness for the support of a ground vehicle wind tunnel model. 

Augmentation of superconducting levitation with permanent magnet levitation will 

introduce instability, however through the use of the magnetic rail configuration the 

instability is minimised. Superconducting levitation provides damping and support for 

regions of low ground clearance whilst permanent magnetic levitation provides support for 

regions of high ground clearance. The magnetic rails can also be tuned to provide a 

restoring force in a particular direction in response to a displacement. 
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7.1.6 Testing ofthe Hybrid Levitation System 

The hybrid levitation system was scaled up to allow the support of a vehicle with the 

dimensions of a 40% Formula 1 car. The system is modular allowing for straightforward 

implementation for differing vehicle design. This system was tested on both the bench and 

in the wind tunnel to evaluate its effectiveness. The system was found to be able to support 

250N of downforce and 90N of drag and was tested at speeds of up to 20ms-1 in the 2m 

Durham wind tunnel and was shown to be stable. The prototype system used a quarter of 

the superconducting material that the design called for, through the use of the system with a 

full compliment of superconductors it is likely that it will be able to support 1 OOON of 

downforce which is comparable with the operating parameters of a Formula 1 car at test 

scale. 

THis thesis has demonstrated for the first time that it is feasible to create a passive non­

intrusive method of supporting ground vehicle wind tunnel models, capable of operating in 

large scale wind tunnels and requiring only low power to operate. The superconducting 

magnetic levitation system requires less than half a kilowatt to run and because the vehicle 

is solely supported by magnetic fields from below the floor of the wind tunnel, the walls 

and ceiling of the wind tunnel can be as far away as desired to provide a low blockage ratio. 

The system is the largest wind tunnel magnetic levitation system in the world. 
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7.2 Future Work 

7.2 .1, Tiling of S uperconducting Bulks. 

To increase the effectiveness of the system more superconducting material could be fitted 

into the available space beneath the test vehicle. The use of cylindrical superconductors 

similar to those used to construct the previous systems would result in large quantities of 

dead space not providing levitation. Superconducting bulks can be machined into either 

square or hexagonal shapes which could then be tiled to maximise the use of space. Square 

superconductors are easier to machine but reduce the diameter of the supercurrent that can 

flow in the sample. Hexagonal superconductors produce a supercurrent path that is closer to 

the ideal circular path but are more difficult to produce. 

Testing of the system with an increased quantity of superconducting material would also 

show how the extra damping provided would increase both the stability of the model and 

the ability of the system to hold the model stationary in the airflow. 

7.2.2, Testing of the system with a detailed model. 

Operation of the system with a detailed model running levels of drag and lift comparable to 

those produced by a Formula 1 car at test scale would assess the capabilities of the system. 

The model would not necessarily need to include the aerodynamic elements situated on the 

chassis of the vehicle, as utilised in Formula 1. Instead larger front and rear wings than 

those allowed in F 1 could be used to compensate for the extra downforce and drag 

normally produced by the chassis located aerodynamic elements. 

7.2.3, Remote Ride Height Control. 

The inclusion of remotely adjustable platforms supporting the separate elements of the 

system would allow ride height changes to be made to the vehicle during testing. Stepper 

motors would be used to control the height of the platforms; multiple axis platforms would 

allow independent pitch and roll control. 
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7.2.4, Yaw Testing. 

Mounting the superconducting magnetic levitation system onto a turntable would allow 

testing of the system at yaw angles. Testing of vehicles at yaw angles would apply differing 

loads to the system. This would require adjustments to be made to the system to apply 

restoring forces at an angle to the direction of the airflow. This could be achieved through 

the use of electromagnets positioned to resist the forces acting on the sides of the system. 

Tuning of the magnetic rails would also allow a displacement to result in a force acting in a 

desired direction. 

7.2.5, Testing of the System with a Force Balance. 

Tests on the system mounted on top of a force balance will show the level of repeatability 

that the system is capable of producing. 

7 .2.6, Quantification of Support Strut Interference. 

The superconducting magnetic levitation system would be an effective means of 

quantifying the effects of support strut interference. The non-intrusive method of support 

would allow the use of a moving ground plane and removable "dummy" struts that would 

show the effects they have on the airflow and other aerodynamic elements on a test vehicle. 
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