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Abstract

The aim of this thesis is to evaluate the effectiveness of technical analytic indicators
in the fixed income markets. Technical analysis is a widely used methodology by
investors in the equity and foreign exchange markets, but the empirical evidence on
the profitability of technical trading systeins in the bond markets is sparse. There-
fore, this thesis serves as a coherent and systematic examination of technical trading

systems in the government bond futures and bond yield markets.

We investigate three aspects of technical analvsis. First, we evaluate the profitabil-
ity of 7,991 technical trading systems in eight bond futures contracts. Our results
provide mixed conclusions on the profitability these technical systems, since the re-
sults vary across different futures markets, even adjusting for data snooping effects
and transaction costs. In addition. we find the profitability of the trading systems
has declined in recent periods. Second, we examine the informativeness of technical
chart patterns in the government benchmark bond yield and yield spread markets.
We apply the nonparametric regression methodology, including the Nadaraya-Watson
and local polynomial regression, to identify twelve chart patterns commonly taught
by chartists. The empirical results show no incremental information are contained
within these chart patterns that investors can systematically exploit to earn excess
returns. Furthermore, we find that bond vield spreads are fundamentally different
to price series such as equity prices or currencies. Lastly, we categorize and evaluate
five type of price gaps in the financial markets for the first time. We apply our price
gap categorisation to twenty-eight futures contracts. Our results support the Gap-
Fill hypothesis and find that some price gaps may provide additional information
to investors by exhibiting returns that are statistically different to the unconditional

returns over a short period of time.

In conclusion, this thesis provides empirical evidence that broadly support the

usage of technical analysis in the financial markets.
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Chapter 1
Introduction

Modern financial markets are complex and fascinating. One important characteristic
of the modern financial system is the presence of organized market place for buying
and selling financial assets. In these early stock exchanges, detailed financial price
data of stocks and commodities are recorded daily, either updated on ticker tapes or

chalk boards as brokers and dealers conduct transactions.!

Long before the advent of the efficient market hypothesis, market practitioners
have already begun creating simple statistical methods to analyze these financial data.
In 1884, Charles Dow developed the Dow Theory and created the Dow Industrial
Index to track the broad movements of the US stock market?, 29 years before Louis
Bachelier (1900) applied the Random Walk theory to describe the movements of
stock prices! Based on Dow’s work and other early pioneers, a new field in finance
has grown rapidly, one that uses price and volume data solely to predict future stock

prices. Today, this field is known as technical analysis.

What roles do technical analysts perform? In summmary, the practice of technical

analysis is defined by Pring (1991, p.2) to be:

The technical approach to investment is essentially a reflection of the idea
that prices move in trends that are determined by the changing attitudes
of investors toward a variety of economic, monetary, political, and psycho-
logical forces. The art of technical analysis, for it is an art, is to identify a
trend reversal at a relatively early stage and ride on that trend until the

weight of the evidence shows or proves that the trend has reversed.

1See, for example, Michie (1999) for an account of the historical development of the London stock
exchange.

2See Lynch and Rothchild (1995, p.70) for a description on the creation of the Dow Jones Indus-
trial Index.



This definition shows that technical analysis encompasses wide-ranging fields, with
the most important strategies being contrary and trend-following. To some extent,
technical analysis also include some analyses of investors psychology, an area that
has only begun in the academic finance in earnest, popularly known as behavioural

finance.

As far as academics are concerned, they have always rejected technical analysis,

as Campbell, Lo and Mackinlay (1997, p.43) succinctly describe this view:

Historically, technical analysis has been the “black sheep” of the academic
communif,y. Regarded by many academics as a pursuit that lies somewhere
between astrology and voodoo, technical analysis has never enjoyed the
same degree of acceptance that, for example, fundamental analysis has

received.

However, this view has begun to change in recent decades, possibly due to the fact
that using fundamental information to predict the level of asset prices has become
notoriously difficult, and many technical oriented traders have pl‘oﬁﬁed from this
using approach.® Moreover, modern media may have assisted in the distribution of
“technical” knowledge in reports and periodicals, as described by Robert Shiller (2000,
2002). For example, a typical investment report from brokerage firms or news agencies
may have the following titled: “Balancing the fundamentals: Technical analysis offers
investors other ways to read market tea leaves.” Because of these developments,
technical analysis has now become indispensable to a large proportion of traders and
fund managers. It is common to see investors adopting a ‘hybrid’ approach, one that

includes both technical and fundamental inputs into their investment decisions.

Given the widespread knowledge of technical analysis, it is generally assumed
that technical analysis is equally applied to all asset classes, including equity, cur-
rency, commodities and fixed income markets. Even though the finance literature
has produced an extensive amount of research on technical analysis in the equity and
currency markets, the evidence for fixed income markets is less clear and established.
Therefore, the objective of this thesis is to evalnate the effectiveness of technical

analysis in trading fixed income securities.

In the bond world, quantitative models reign supreme. To provide partial evidence

for this fact, Figure 1.1 presents the biannual survey results conducted by the Bank of

31f one views that technical analysis should belong to voodoo science, the results obtained by
Yuan. Zheng and Zhu (2006) will be even more perplexing. They find that “stock returns are lower
on the days around a full moon than on the days around a new moon.”

4International Herald Tribune, 18 February 2006, p.14.






(1992) and Brace, Gaterek and Musiela (1997) frameworks for relative trading and
derivatives hedging rather than using technical analysis in forecasting interest rates
and bond yields. Hence, it would be very interesting to test how effective is technical

analysis in the fixed income markets in terms of supporting investment strategies.

For the rest of this chapter, we summarise and discuss the current state of affairs
in technical analysis with applications to the fixed income markets. The objective
here is not to provide a literature review of technical analysis since it has already
been comprehensively written by Park and Irwin (2004). Rather, we distill a number
of major results from the literature into several stylized facts. For this purpose, we
first provide an overview of the technical analytic indicators. Next, we describe and
discuss three stylized facts about these technical indicators. Lastly, we discuss the

scope of technical analysis in the fixed income markets.

1.1 Technical Analysis: Facts and Fantasies

1.1.1 An Overview of the Technical Indicators

Developing and implementing technical trading systems require vast amount of efforts
from traders, not to mention the critical need to keep abreast of the financial markets
developments that may have an impact on the trading systems. Generally, technical
analysis is an umbrella term for a myriad of indicators. There are numerous technical
indicators and methods for investors to choose from. For a more thorough discussions
of many of these methods, see Edwards and Magee (1966), Murphy (1986), Schwager
(1996), Pring (1991), Bulkowski (2005) and Kaufman (2005). The following is a brief

listing of the fundamental building blocks of technical indicators:

1. Technical Theories. The advocation of technical theories marks the beginning
of technical analysis. The key theories include Dow Theory, Fibonacci theory,
Elliot Wave Theory (Prechter (1980)), Kondratiefft Wave theory (Kondratieff
(1984)) and Gann Lines. Many technical analysts use these theories as a tool
to track the overall performance of the markets over a period of time. The
length of historical analysis varies among theories and analysts. See Brown,

Goetzmann and Kumar (1998) for an analysis of the Dow hypothesis.

2. Technical Charts and Chart Patterns. Charting is the foundation of tech-
nical analysis. The major chart types include line, bar, point-and-figure and
candlesticks. Many chart patterns have been developed for each of these charts
in order to analyse the price actions. The major price patterns for line and bar

charts include Head-and-Shoulders, Triangles, Broadening, Rectangles, Flags,

4



Double and Triple formation, (Bulkowski (2005)) while some of the major pat-
terns in candlestick charts are Takuri, Kubitsuri, Kabuse, Kirikomi, Tsutsumi,
Hoshi, Narabi Kuro, Tasumi and Doji (Nison (1991)). Lastly, the major pat-
terns in point-and-figure charts include Bullish signals, Bearish signals, Cata-
pults formation, Long tail, Broadening formation, Relative Strength and Bullish
Percent (Dorsey (2001)). No comparison has been made to see which charting

method produces better investment results.

3. Trend Following Indicators. This area provides the most popular technical
indicators among technical analysts and traders. Major trend-following strate-
gies include filters (Alexander (1961, 1964)). moving average and its variants,
channel breakout, support and resistance, and swing trading.” In éddition, the
price distribution trading systems attempt to capture price trends based on the

moments of the financial prices, with indicators such as skewness and kurtosis.

4. Breath Indicators. Breath indicators analyse the volume aspect of the finan-
cial markets, usually in a manner that complements trend-following indicators
or chart patterns. Indicators include volume, On-Balance volume, Accumulator

and Advance-Decline system. (See Kaufman (2005))

5. Short-terrn Momentum Indicators. This category includes indicators like
moving average convergence-divergence (MACD), momentum, Stochastics, rela-
tive strength index (RSI), rate-of-change, percent R (%R), among many others,

to track the short-term price movements.

6. Sentiment Indicators. These indicators attempt to measure the broad mar-
ket psychology. Sentiment indicators include short-interest ratio, insider trad-
ing news reports, grouping of advisory services, mutual funds cash/asset ratio,
analysis of margin debt, put/call ratio, surveys of investment managers’ views,
investment newsletter sentiment, short interest. Barron’s confident index and
CBOE volatility index (fear gauge). Davis (2003) provides some interesting

examples of contrarian indicators.

7. Cycles and Seasons. Observing that financial markets exhibit cycles, tech-
nical analysts use a number of wave-based mathematical tools such as Fourier
system to model these cycles. Studies of current business cycles are frequently

couched in the framework -of Dow theory or Kondratieft wave theory.

"Kaufman (2005, p.153) defines ‘price swing’ to be “a sustained price movements.” Thus, swing
trading attempts to captiure these price swings.



8. Econometric Models. Recent advancements in econometrics techniques have
popularised the usage of advance statistical tools in analyzing market behaviour.
Models that technical analysts have employed include linear regression, ARIMA
models, stochastic volatility models such as AutoRegressive Conditional Het-
eroskedasticity (ARCH, Engle (1982)) and Generalized AutoRegressive Condi-
tional Heteroskedasticity (GARCH, Bollerslev. (1986)), and state space models
like Kalman Filter. How profitable these models are is yet to be empirically

verifted.

9. Network Models. Advancing computer technology has made complicated
models like neural network, genetic algorithm, and chaos system popular among
sophisticated traders, as these network models are able to handle complex, non-
linear multivariate relationships among numerous financial variables. However,
the majority of the empirical research of these methodologies generally found
negative results about their profitability. Neural network, in particular. has
been shown to generate inconsistent. profits over time. (See, for example, White
(1988), Trippi and Turban (1992), Allen and Karjalainen (1999) and Ready
(2002)). Whether these methods are as widely used as simple indicators like
moving average is not known.®
In swnmary, the number of technical analytic tools available to investors is enor-

mous. It is common for traders to combine one or more of the above indicators into

a single and coherent trading system. Pring (1991, p.9), for instance, recomimends

that, “No single indicator can ever be expected to signal trend reversals, and so it

is essential to use a number of them together to build up a consensus.” Pruitt and

White (1988) and Pruitt, Tse and White (1992) combine several technical indicators,

including Cumulative volume, RelatIve Strength and Moving Average indicators and

assess their profitability. This strategy is commonly known as CRISMA. They find
this system earned annualized mean excess returns of 1.0 to 5.2 percent after trans-
action costs in US equity markets over period 1986-1988, which outperformed the
buy-hold strategy. But Goodacre, Bosher and Dove (1999) apply this strategy to UK
equity market over 1987-1996 and find little evidence of high excess return after tak-
ing transaction costs and risk into account. Similarly, Goodacre and Kohn-Spreyer
(2001) discover this system generates little profits in the US market in the nineties

after adding transaction costs and risk. But CRISMA system is only one possible

8The diffienities in using neural network for trading purpese are due to (i) Sophisticated mathe-
niatical methods involved, (ii) No a priori hypothesis on selected explanatory variables. The reper-
“cussion is that neural network provides no explanation as to why the forecasts are inaccurate and
when the network will likely to provide good forecasts, and (iii) Neural network are prone to over-
training and faulty optimization. (See, for example, McNelis (2005))



combination. There are many other combinations. Moreover, many technical ana-
lysts have developed many new indicators that not listed here due to their proprietary

nature. Thus it is difficult for us to test all indicators and their combinations.

1.1.2 Some Stylized Facts of Technical Analysis

The literature on technical analysis is a large and growing one. This section provides

some stylized facts distilled from this voluminous literature:

Stylized Fact 1: Increasing Usage of Technical Analysis. An increasing
number of traders and investors is using technical analysis to compliment their
trading activities and investment strategies. This can be due better computing
facilities and data availability. To prove this fact, various survey studies con-
ducted by Group of Thirty (1986), Brorsen and Irwin (1987), Frankel and Froot
(1990), Taylor and Hellen (1992), Menkhoff (1997), Lui and Mole (1998). Che-
ung and Wong (2000), Cheung, Chinn and Marsh (2000), Cheung and Chinn
(2001) and Oberlechner (2001) have confirmed such a trend in the financial
community. But whether increasing usage of technical indictors will lead to a
decrease in the profitability of these strategies is difficult to verify since many

other factors may influence the overall results.

Stylized Fact 2: Profitability of Technical Analysis is Still Inconclusive.
A voluminous amount of empirical studies have researched on the profitability
of technical trading systems. Unfortunately, the conclusion from these studies
is far from certain. Early empirical studies by Cootner (1964), Van Horne
and Parker (1967, 1968), Alexander (1961, 1964), Fama and Blume (1966),
Jensen and Benington (1970), Dryden (1970a, 1970b) and James (1968) find
that technical rules such as filter and moving average rules generate inconsistent

profits. For instance, James (1968, p.326) concludes:

What seems abundantly clear, however, is that when records of in-
dividual stocks (as opposed to averages or indices of stock price) are
examined, this survey detected little reason to believe that investors’

position will be henefited by the use of monthly moving average.

The collapsed of Bretton Wood system in the early seventies, however, con-
tributed to higher price volatility in the financial markets. In light of these de-
velopments, a number of studies find technical indicators to be profitable in the-
currencies markets, including Dooley and Schafer (1983), Schulmeister (1987)
and Sweeney (1986, 1988), Levich and Thomas (1993), Silber (1994), Taylor



(1994), Menkhoff and Schlumberger (1997), Lee and Mathur (1996a, 1996b),
Kho (1996), Szakmary and Mathur (1997), Chang and Osler (1999), LeBaron
(1999), Maillet and Michel (2000), Okunev and White (2003), Lee, Gleason
and Mathur (2001), Lee, Pan and Liu (2001), Martin (2001), Neely (2002),
Saacke (2002) and Sapp (2004). They report that a variety of technical rules
are consistently profitable in the currency markets. even during central bank
intervention. In the equity markets, Brock, Lakonishok and LeBaron (1992),
Bessembinder and Chan (1995), Huang (1995), Wong (1995), Raj and Thurston
(1996), Mills (1991, 1997), Hudson, Dempsey and Keasey (1996), Gencay and
Stengos (1997), Ito (1999), Ratner and Leal (1999), Coutt and Cheung (2000)
Gunasekarage and Power (2001) and Ready (2002) have found on average that

b

technical indicators yield positive returns in developed and developing capital
markets. But many of these studies conclude that these technical strategies
become unprofitable once transactions costs and bid-ask spreads are included.
On the whole, the profitability of technical strategies is found to be weaker in
equity markets than in currency markets. In fixed income markets, few studies

has empirically tested the profitability of technical analysis.

Fact 3: Suitability of Technical Analysis Differs Among Traders. The
profitability of technical trading system depends on the traders’ psychological
makeup and compatibility. Two issues are certain here. One, not everyone
is suited to be a trader and two, not every trader can be a profitable techni-
cal trader. (See, for example, Schwager (1990, 1992) and Steenbarger (2002))
Recently, academic studies by Lo and Repin (2002) and Lo, Repinz and Steen-
bargery (2005) have begun to focus on the behavioral reaction of traders during

trading hours. However, this is an area that demands further research.

Discussions

Stylized Fact 1: Although the first stylized fact is clear and unambiguous, academics

are intrigued as to why analysts and traders use technical analysis at all. To resolve
this puzzling behaviour, a number of theoretical models have been proposed, mostly
within the noisy rational expectations equilibrium framework. These models assume
that the current asset prices do not fully reveal all available information because
of market noise. Consequently, technical analysis can aid investors in disentangling
information from these market noise. Formal models by Brown and Jennings (1989)
and Grundy and McNichols (1989) show that a series of price patterns help traders
to make better judgement of the underlying asset through learning behaviour. In a

similar framework, Blume, Easley and O’Hara (1994) consider the role of volume and



price together, arguing that volume provide important information to traders, one
that is unique from prices. Overall, the economic impact of an increasing number of

technical investors in the financial market is yet unclear.

Stylized Fact 2: The second stylized fact, on the other hand, is still controversial. A

corollary of efficient market hypothesis (EMH) implies that profitability of technical
trading systems equates market inefficiency and vice versa, as strongly advocated by
Fama (1970). Since in an efficient market. prices reflect all available information.
Technical rules that rely on historical prices should not be able to consistently pro-
duce superior results in comparison to passive trading strategies after adjusting for
risk and transaction costs. (See, for example, Roberts (1967) and Pinches (1970))
Many early empirical studies on US equity markets indeed confirm this hypothesis by
documenting the fact that moving average and filter rules are unprofitable. This led
to the conclusion that technical strategies cannot help investors in earning excess re-
turns consistently and that financial markets are efficient, as Jensen and Bennington

(1970, p.470) summarise this view:

Likewise given enough computer time, we are sure that we can find a
mechanical trading rule which works on a table of random numbers -
provided of course that we are allowed to test the same rule on the same
table of numbers which we used to discover the rule. We realize of course
that the rule would prove useless on any other table of random numbers,

and this is exactly the issue with Levy’s (1971) results.

However, there is a possible flaw to this conclusion. There are hundreds, if not
thousands, of possible technical strategies for traders to choose from, with many new
ones being developed daily and old ones discarded. Since it is virtually impossible
to test all trading systems, is it correct to deduce that the whole financial market
is efficient (or ineflicient) based on a small subset of trading strategies tested on
a small subset of securities? As Timmermann and Granger (2004) recently point
out that empirical tests of EMH need to have access to the full set of forecasting
models available at any given point in time and the search technology used to select
the best forecasting model. None of the above studies, however, fully satisfies these
requirements. Furthermore, Grossman and Stiglitz (1980) identify that a perfectly
efficient market is impossible due to the costs involved in gathering information and

interpreting these information.

Besides, it is well known that academic research suffers from the so-called pub-
lication bias—only unusual and significant results get published. The exclusion of

many other technical indicators may affect the conclusion that financial markets are
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efficient. There are two opposing effects caused by this bias. One, the excluded
technical indicators are unprofitable, which strengthens the case for market efficiency
since the indicators that are profitable are likely to be due to data snooping.? Two,
the excluded indicators are profitable but not known to researchers. In this situation,

the case for an efficient market is weaken.'°

As many empirical studies subsequently show that the profitability of technical
indicators varies across financial markets and time periods, it appears that financial
markets may exhibit time-varying efficiency across time, across asset markets and
across different countries, as Neftci and Policano (1984, p.138) conclude from their

tests on trend-following indicators in the futures markets:

A disturbing point was the way results varied across commodities and
across contracts for the same commodity. One set of parameters which
yield a significant dummy in one case. was found to be insignificant in

other cases.

Furthermore, many tests of technical system do not take into account that tech-
nical traders can change their trading strategies change over time by incorporating
new market characteristics. Traders are not static users of systems but evolutionary.
Time to time, they even override trading signals from the trading systems. This is to
ensure the profitability of their technical system and their survivability over the long
run. Recently, Andrew Lo (2004) has coined such evolutionary behavior Adaptive
Market Hypothesis (AMH). This hypothesis postulates that the survivability of mar-
ket participants is the most important objective in the traders’ mind, even though
other ohjectives, such as profit and utility maximisation, are important. In fact, the
well known fund manager George Soros (1987) exhibits this type of mentality, as he
states the objective of his Quantum Fund to be: “Generally speaking, I am more
concerned with preserving the Fund’s capital than its recent profits, so that I tend
to be more liberal with self-vmposed limits when my investment concepts seem to be

working.” (p.145)

Only recently has research begun to recognize these facts by testing more techni-
cal strategies and to account for the possible effects of data snooping. For example,

Sullivan, Timmermann and White (1999) tested 7,846 technical strategies, while Hsu

9White (2000, p.1097) defines data snooping to be “Data snooping occurs when a given set of
data is used more than once for purposes of inference or model selection.”

190ne stylized fact in the mutual fund industry is that the majority of fund managers are unable
to outperform passive investment strategies, especially when transaction costs are added into the
evaluation. (See, for example, Malkiel (1995, 2003)) Whether mutual fund managers use technical
analysis in selecting securities is not known.
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and Kuan (2005) tested 39,832 strategies. Moreover, studies like Pesaran and Tim-
mermann {1995)have adopted the idea of “recursive modeling” to account for the fact
that technical strategies change over time. Recently, White (2000) and Hansen (2005)
develop variants of the stationary bootstrap procedure in an attempt ameliorate the

data mining problem.

However, even with such a huge number of strategies and adoption of complicated
bootstrap methodologies in the evaluation procedure, we are still no closer to an-
swering whether financial markets are efficient. This is because the results of these
studies seem to vary over time, asset markets and strategies. (See Chapter 2 for more
discussions of these hootstrap studies.) To give a simple example of time-varying
market efficiency, Figure 1.2 displays the first-order autocorrelation coefhicients (in
percentage) of the weekly US 30-year Treasury bond futures returns over 1980-2005.
The simple Random Walk hypothesis asserts that all financial returns are serially
uncorrelated, which implies that all correlation coefficients should not he statisti-
cally different from zero.!! However, the coefficients in Figure 1.2 seem to refute this
assertion. If the values of autocorrelation coefficients are crude proxies for market
efficiency, then it is obvious that this efficiency varies through time. In fact, Andrew
Lo (2004, p.18) has described that market efficiency is dependent on the competition

and other variables within any given market:

Market efficiency cannot be evaluated in a vacuum, but is highly context-
dependent and dynamic, just as insect populations advance and decline
as a function of the seasons, the number of predators and prey they face,

and their abilities to adapt to an ever-changing environment.

Another important point that many researchers neglected when evaluating tech-
nical trading strategies is that technical strategies constitute only a portion of the
overall trading system. There are many aspects of the trading system which are very
important, such as risk management and capital management, not to mention the
personality of traders involved, all of which can drastically affect the final profits.
Practical issues like stop loss, position sizing, risk-reward ratio, markets to trade and
leverage level need to be addressed. Since these factors vary widely across market
participants, it ’is difficult to impose a set of homogeneous and realistic assumptions
across all markets participants for modelling purpose. A prime example is the lever-
age level of a fund. Theory tells us that starting with too much capital may hamper
a trader’s performance by being over-capitalized, but if it is unable to sustain a string

of losses, an otherwise profitable technical trading system may still be terminated

11See Campbell, Lo and Mackinlay (1997, p.42) for further discussion about testing for Hy : 5, = 0.
g /
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Stylized Fact 3: The third stylized fact is perhaps the most important: Not every

trader uses technical trading systems, and not every trader who uses them can be
successful. Two important but controversial issues need to be addressed here: (1)
Can a successful technical trading system be publicized and still remain successful?
and (2) What makes a successful technical trader and what are their characteristics?
Regarding the first issue, there are plenty of evidence presented in Schwager (1990,
1992). For example, two highly successful technical traders, William Eckhardt and
Richard Dennis, debated on whether a profitable technical trading system can be
taught to a group of inexperience traders and remain profitable for these new traders.
To settle this issue, they taught a number of trainees traders about their highly suc-
cessful technical systems and supply these newly minted traders with capital ranging
from $500,000 to $1,000,000 for them to begin trading with their method. (These
trainees are the so-called Turtles traders.) After two successive experiments, the trad-
ing results accumulated by these traders were labelled as “outstanding success” by
William Eckhardt. (Schwager (1990, p.128)), which perhaps settled the question that
successful technical trading system can be taught from one generation to another,

and still remain profitable.

However, would exposing the successful trading system render them imeffective
since many investors will be using the same indicators? The answer to this question
1s unclear, as from the above-mentioned experiment, it appears that the technical
system will remain successful. Another such strategy that survive public scrutiny
is the momentum strategy initially documented by Jegadeesh and Titman (1993),
which is still found to be profitable nine years later in Jegadeesh and Titman (2001).13
However, observations from arbitrage activities are less supportive as the burgeoning
hedge fund sector may add impetus for relative mispricing of securities to disappear

quickly, especially in the fixed income sector.!4

YBy and large, the momentum strategy in Jegadeesh and Titman’s (1993, 2001) study and the
trend-following strategy in the above-mentioned experiment are similar, in the sense that both
strategies chase after recent price trends. De Long et al. (1990) have modeled such a feedback
mechanism between asset prices and market participants’ psychology. The basic observation is that
the higher the asset prices, the more bullish market participants becomes, and vice versa. Studies by
DeBondt (1993), Griffin, Harris and Topaloglu (2003) and Brunnermeier and Nagel (2004) confirm
this trend chasing behaviour by showing that forecasters and institutional investors do chase after
trends once the trend is detectable in asset prices, and attempt to time the market by reducing their
holding before the bubble burst. Abreu and Brunnermeier (2003) develop a theoretical framework
that model the dynamics of asset prices when informed and rational agents ride a price bubble until
it reaches a critical level.

14Riskless arbitrage depends fundamentally on the Law of One Price, which implies that two
securities with similar payoff structure should have the same price. The more capital is put to
execute these arbitrage. strategies, especially on .the relative value strategies in the fixed income
market, the faster the convergence between the two securities will take place. The positions for
arbitrage or convergence will be exactly opposite to that of trend-following technical trading system.
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The second issue about the characteristics that underpin successful technical
traders is harder to validate because the behavior of traders who use technical trad-
ing systems ranges so widely. For example, Lo, Repin and Steenbargery (2005) find
little correlation between a trader’s personality traits and the trading performance in
their survey of 80 traders. Moreover, it is well known that many biases affect traders,
such as loss aversion biases (Odean, 1998) and overconfidence biases (Daniel, Hirsh-
leifer and Subrahmanyam (2001)). How to control for this biases when evaluating the

profitability of trading system remains a rich avenue for future research.

Moreover, academic studies do not incorporate that fact different market partic-
ipants will inevitably gravitate to the trading model that best suit their personality,
no matter whether it is fundamental system or technical system. For example, some
traders, such as day traders, prefer short-term trading horizon and consequently they
built their trading model accordingly to capture short-term price movements. On
the other hand, some traders are inclined towards long-term positional trade.!® Their
trading model will try to capture trends in financial markets over a longer time frame.
More research is definitely needed in understanding how to match a trader’s behavior

to the optimal trading style and what kind of traders use technical tools successfully.

Recently, progress has been made in linking the emotion states of a trader with
their trading performance by Lo and Repin (2002), Steenbarger (2002), Fento-O’Creevey
et al. (2004) and Lo, Repin and Steenbargerv (2005). They find that the emotional
responses to stress and financial losses of traders are vital and important ingredi-
ents in ensuring the survivability of traders. Perhaps one way that traders express
their survivability (by reducing the stress caused by trading activities) is to choose a
trading system that accentuates mental calmness and ensuring optimal performance
during trading hours. This can only be achieved if the trading system they use is

compatible with their mind-set and personality.

1.2 Active Bond Portfolio Management and the
Quest For Bond Yields

1.2.1 Active Bond Portfolio Management

Within the universe of bond portfolio management, there are two main types of

strategies in generating portfolio yields: active and passive management. Since pas-

Thus, it is difficult for us to judge whether more trend-following investors will sway the financial
markets toward increased market efficiency or whether they will accentuate the price trends.
15 Unsurprisingly, even the word ‘long-term’ can mean different, Lime frame to different, traders.
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sive bond managers attempt to match the returns of the portfolio to a particular index
without any active input, technical analysis generally does not serve any purpose in
this area.'® On the other hand, active bond managers strive to outperform a targeted
benchmark with a focus on maximizing portfolio yield, and subjected to a targeted
average maturity or credit quality of the portfolio. This is an area where technical

analysis may provide value to bond managers and traders.

Broadly speaking, there are four main types of active bond portfolio management

approaches, which we briefly described below (See, for example, Fabozzi (2001, 2005)):

1. Directional Approach. This approach attempts to profit from the expected
trend in interest rate by adjusting the duration length of the bond portfolio
to capitalize on the directional views, or by acquiring unhedged positions in
bond futures. A simple strategy is to increase the portfolio duration if interest,
rates are expected to increase and reduce portfolio duration if interest rates are
expected to decrease. This relies greatly on the market timing ability of the
manager. For obvious reason, this strategy entails high market risk and thus

constitutes only a portion of the activity of the overall bond portfolio.

2. Yield Curve Approach. Since the yield curve is dynamical over time, it can
generate a variety of possible shapes. Fund managers who attempt to exploit the
movements of the yield curve adjust the maturity profile of their bond portfolio
to capture the shifts in the yield curve shapes. The strategies below are some
approaches that adjust the maturity profile of the bond portfolio to reflect the

views of the fund managers on different yield curve shapes:

(a) Ladder - An equal investment in each issuing maturity along the yield

curve. This bets on the parallel shifts of the yield curve.

(b) Bullet - An investment at one maturity on the yield curve, betting on the

movement in a particular point on the yield curve.

(c) Barbell - An investment in two non-adjacent maturities with the same du-

ration as an intermediate maturity. This bets on the curvature of the yield

8 [ore specifically, passive strategies include buy-and-hold and indexing. By indexing il means
that the bond manager strives to replicate the performance of the index, such as the Lehman
Brother, Merrill Lynch or JP Morgan bond index. Depending on the selection of the securities in
their portfolio, there will be tracking error between the portfolio return and the benchmark return.
Furthermore, since replicating the index is costly, for example, Lehman Aggregate Index includes
5,000 bonds, managers can select a subset of securities to track the index movements. See Evans

and, Archer.(1968).and..McEnally. and.-Boardman..(1979) .. @bviously,-asset=managers-can-elect-to—

mix both passive and active management into a hybrid system whereby the managers are allowed a
measured deviation from the benchmark in terms of cash flow, sector or credit quality.
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curve. In comparison to bullet strategy, barbells outperform bullet during

vield curve flattening and underperform during yield curve steepening.

(d) Butterfly - An investment in three sections of the yield curve with the two
ends having the same position and opposite to the middle section. There
are a number of weighting schemes available to trades, including Nelson-
Siegel (1987) model. Grieves (1999) and Fabozzi, Martellini and Priaulet
(2005), who discussed several weighting methods and the profitability of
this strategy.

(e) Riding the yield curve - This strategy aims at enhancing the portfolio
yield by holding securities with a longer maturity in an upward sloping
term structure. For this strategy to be profitable. it assumes that the
yield curve shape does not change over the holding period, tantamount to
a bet on parallel yield curve shifts. Dyl and Joehnk (1981), Grieves and
Marcus (1992), Ang, Alles and Allen (1998), Grieves et al. (1999) and
Bieri and Chincarini (2005) empirically investigate this strategy in the US
and international Treasury markets. All in all, they find this strategy
enhances the bond portfolio’s return on average compared to the buy-and-

hold strategy with only a modicum increase in risk.!”

3. Yield Spread Approach. A yield spread strategy attempts to profit from
the spread between different bond sectors or hond markets, such as the spread
between the natural resource corporate bonds and the government bonds. A
number of risk factors can affect this spread such as the credit ratings of the
issuer and/or some industry specific risk factors. In other words, to trade yield
spread profitably, traders have to estimate accurately how these factors may
alter the dynamics of yield on both sides of the trade. (The bonds of the
same maturity between two countries are usually called sovereign spread.) The

following spreads are utilized by fund managers to earn extra yield:

a) Sector Spread - Bond yield spread between different industry sectors.

(a)
(b) Country Spread - Yield spread between similar bonds in different countries.
(c) Currency Spread - Similar bonds denominated in different currencies.

)

(d) Yield Curve Spread - Two different maturities on the same vield curve.

4. Individual Security Approach. This strategy is mainly based on a relative
basis, meaning that fund managers identify undervalued or overvalued fixed

income securities relative to comparable bond of similar characteristics.

17To an extent, this strategy trades on the empirical regularity that vield curve are upward sloping
most of the time. (See, for example, Brown and Schaefer (1994))
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5. Volatility Approach. This strategy positions the bond portfolio to take ad-
vantage of the time-varying volatility property of interest rates. For example,
fund managers adjust the convexity of a portfolio by holding convex assets like
puttable bond if volatility is expected to increase and sell callable bonds (nega-
tive convex assets) if volatility is expected to decrease. Other instruments that

are explicitly exposed to volatility are exchange traded bond options.

For all the above investment approaches, the specific element lacking in each strat-
egy is the timing of trades, and this is where technical analysis may offer invaluable
help to traders. By using specific technical indicators, the null hypothesis is that
traders is able to improve the individual trade profitability, and hence improve the
overall trading performance. Until now, this application has never been investigated
in a systematic way across various fixed income markets. Thus, the main interest of
this thesis is to test the various aspects of technical analysis tools in the fixed income
markets, and especially in government bond futures markets and government bond

yield markets in a coherent manner.

1.2.2 Technical Analysis in the Fixed Income Markets

“Bconomists are as perplezed as anyone by the behaviour of the stock mar-
ket.”
— Robert Hall, 2001 Richard T.Ely Lecture

What can technical analysis contribute to the fixed income market? At first -
pression, the role of technical analysis in fixed income markets are somewhat limited.
On one side of the field are macro-economists who examine extensively the term struc-
ture of interest rates using the expectation hypothesis approach. (See, for example,
Campbell and Shiller (1987) and Fama and Bliss (1987)) Occupying the other half of
the field are sophisticated stochastic models built for pricing fixed income derivatives,
with the key building block being the models of latent (unobservable) factors with
no-arbitrage restriction. (See, for example. Heath, Jarrow and Morton (1992), Duffie
and Kan (1996), and Dai and Singleton (2000))

A brief analysis of both approaches shows that neither side is reliable in predicting
future interest rates. The core theory in the first approach is the expectations theory
of the term structure of interest rates, which carry the implication that the forward in-
terest rates are unbiased forecasts of future interest rates. Empirically, the predictive
power of the forward rate is much less significant than what the expectations theory
suggest. For example, Fildes and Fitzgerald (1980), Shiller, Campbell and Shoen-
holtz (1983), Fama (1984, 2006), Fama and Bliss (1987), Walz and Spencer (1989)
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and Shiller (1990) have empirically confirmed this observation in many countries.!®

Apart from forward rates, yield spreads (the yield curve slope) have been investigated
by many researchers on whether it can forecast changes in spot interest rates. The
answer to this, however, is more positive. For example, Campbell and Shiller (1991),
Hardouvelis (1994), Engsted (1996), and Campbell, Lo and Mackinlay (1997) have all
provided evidence that the yield spread may contain some information that account
for the changes in future spot rates, especially as the maturities increases. Other
economic factors, such as the real rate expectations, inflation expectations and risk
premiums, are found to have time-varying impacts on the movements of short-term
interest rates and bond yields. (Ilmanen (1995)) At the moment, the literature does
not seem to offer a method which separates these different effects. Thus we argue that
analysing directly on these bond yields using technical indicators may yield better

investment results.

For the second approach, it is surprising that given the plethora of existing stochas-
tic models, very few studies have shown them to able to provide accurate forecast for
future interest rate. Stochastic model are factor-based models, factors here refer to
some unknown economic impact on interest.rates commonly modelled with Brownian
motion. According to Litterman and Scheinkman (1991) and Knez, Litterman and
Scheinkman (1994), the three most common factors are labeled as “level” | “slope” and
“curvature”, which describe the movements of the yield curve over time. Contrary
to the economic approach, these factors are purely statistical and does not explain
the nature of factors.!® Even though these models are useful in pricing interest rate
derivatives, their forecasting capability in forecasting future yields is somewhat lim-
ited. Duffee (2002) supported this fact by documenting the fact the three-factor affine
term structure models (ATSM) by Dai and Singleton (2000) are particularly poor at
forecasting future bond yields. What is surprising is that he shows that ATSM cannot
outperform a simple random walk model in terms of forecast errors for both in- and
out-of-sample tests. He argues that ATSM cannot fit the distribution of yields and
the observed patterns of predictability in the excess holding period returns on US

Treasury bills and bonds data.

180n the other hand, Longstaff (2000) provides some support for the expectations hypothesis at
the very short end of the yield curve. From the overnight, weekly and monthly repo rates data, he
finds the term rates are unbiased estimators of the average overnight rate realised over the same
period. There is no statistically risk premium in the weekly and monthly rates. See also Dai and
Singleton (2002).

YThe particular technique they employ to extract the factors in bond returns is the principal
component analysis, which provides no economic intnition. For example, the first factor in Litterman
and Scheinkman’s (1991) study accounts for an average of 89.5 percent of the observed variation in
vield changes across maturities. See Bliss (1997) for more intuitive explanation of these factor term
structure models.

18



Recently, some studies have attempted to combine both the economic and sta-
tistical approaches to improve the overall fit of the model to yield curve data. For
example, Ang and Piazzesi (2003) develop the no-arbitrage model of the term struc-
ture of interest rates that includes inflation and macroeconomic activity, in addition
to the level, slope and curvature factors. They find that the inclusion of the two
additional economic factors improve the model’s ability to forecast the dynamics of
the yield curve. Similar results are obtained by Evans and Marshall (2002). Still,
the overall view is that the first approach does not produce convincing proof that the
bond markets obey the rational expectation models conjectured by economists, espe-
cially regarding the predictability of future interest rate changes using forward rate.
The second approach plays only a limited role in active bond portfolio management

since they seemed to provide miserable forecasts.

The final approach for forecasting bond yields and trading fixed income securities
may be technical analysis. Given the above evidence that both the economic and
stochastic modelling approach cannot provide accurate forecasts, can technical anal-
ysis replace (or compliment) the above methodologies? This approach has not been
examined in the fixed income markets and it will be interesting to see what they can

offer.

Several studies have provided partial evidence on the inefficiency of fixed income
markets, which provide some motivations for our work here. A potential anomaly is
the calendar effects. For example. Johnston, Kracaw and McConnell (1991) discover
two significant weekly seasonal effects in the US GNMA, T-bond, T-note and T-bill
futures returns, including the negative Monday effect and positive Tuesday effect,
which could have significantly impacted trading performance. In addition, De Vassal
(1998) finds that the bond yields tend to increase before the monthly auctions and
drift downwards after the auction, and since 1980 interest yield volatility is highest
on Friday in US bond markets. However, he did not test whether such predictability
are exploitable for traders. Other studies on the seasonal effects in the bond mar-
kets include Scheneeweis and Woolridge (1979), Smirlock (1985), Clayton, Delozier
and Ehrhardt (1989) and Smith (2002). Erb, Harvey and Viskanta (1994, 1996)
find that forming bond portfolios based on Institutional Investor risk ratings gener-
ate risk-adjusted abnormal, unhedged returns in the range of 500 basis points per
year, suggesting that bond markets respond to the level of recent changes in various
measures of economic risk. At shorter horizon, Cohen and Shin (2003) find that in
US Treasury markets, trade and price movements show positive feedback symptoms
during market stress. A short-term trend-following strategy may earn high returns.

Furthermore, Ilmanen and Byrne (2003) point out that it is possible to make abnormal
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returns by trading Treasury bonds before the announcement of important economic
variables like non-farm payroll as there seems to be some momentum effects in hond

vield movement right up to the announcement day.?’

Moreover, researchers have discovered some models that might help investors in
forecasting future interest rates. For example, Diebold and Li (2003) recently show
that there is some form of predictability in the US yield curve using the simple Nelson-
Siegel (1987) model.?! They use this model to forecast the future bond yields with
both in- and out-sample tests. They find the model’s one-vear forecasts outperform a
random walk and show the Nelsons-Siegel model are able to outperform (in terms of
root-mean square error) even the best model from Duffee (2002). Encouraged by this
result, Fabozzi, Martellini and Priaulet (2005) use this model to identify whether the
predictability in the model parameters generate any significant improvement in trad-
ing results using butterfly strategies in the US swap markets. In addition, they utilize
the recursive modeling techniques developed by Pesaran and Timmerman (1995) and
the thick modeling proposed by Granger and Jeon (2004) with a number of econom-
ically motivated explanatory variables. The results they obtained are statistically
significant since they are able to find that these variables are able to predict the beta
parameters in the Nelson-Siegel model aud able to make statistically significant gains

over the buy-hold strategy.

Despite none of the above studies evaluates technical rules directly, it does seem
to suggest that there are some form of inefficiency in the fixed income markets that
may have trading significance. This thesis thus sought shed some lights on this issue
by evaluating technical trading systems directly in fixed income markets. Specifically,

we investigate three areas in the bond markets??:

2%The news announcement effects in the bond markets has been investigated by several studies.
Fleming and Remolona (1997, 1999a, 1999b) document that a number economic releases cause
significant price movements i the US bond markets. Important economic factors include Consumer
Price Index, Durable Goods Order, Housing Starts, Jobless rate, Nonfarm Payroll and Producer
Price Index, among others. Goldberg and Leonard (2003) find that US economic aunouncetnents
also affect. Germany bond markets. On intraday basis. Balduzzi. Elton and Green (2001) examine
the effects of economic announcements on price, volume and price volatility. Unexpecrted component,
of the news causes price volatility. However, none ol them investigates whether the news-effect can
generate abnormal trading performance.

21The Nelson-Siegel model is: 7, ¢ = Fo + 5 [1_:;&(9_/%/“] + 3 [1_:3?&((9_/f)/z) - exp(—()/l.)} where
ry¢ is the rate at time zero with maturity #. The physical interpretation of the parameter set
(Bo, B1.52) is often denoted as the level, slope and curvature of the yield curve. Dolan (1999)
provides somne analysis of this model and shows that the slope parameter is predictable in several
countries.

22 Al the tests in this thesis do not make use of any fundamental information, thus the problem
associated with unreliable economic information and inaccurate company data is avoided. The
underlying principles of technical analysis are (1) All information are already discounted in the
prices. Therefore, no fundamental information are needed. Chestnut (1965, p.12) summarises this
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e Can technical trading systems exploit the predictability in the yield curve and
interest rates in the government bond futures markets? Our study evaluate the
weak-formed EMH in the bond markets directly by testing the moving average
and volatility strategies, augment with extensive bootstrapping methodology

that can account for the data snooping problem.

e Can chart patterns provide any incremental information to bond and relative
value traders in the government bond markets? Since chart patterns are more
subjective than technical trading systems, we use various smoothing techniques
to extract the chart patterns mechanically. The smoothing estimators include

the nonparametric kernel regression and local polynomial regression.

e Can investors use price gaps to initiate technical strategy in a profitable way?
A price gap here is defined to be the vertical empty space create by the highlow
price in the current period and the high/low price in the next trading period.
Our examination attempt to answer several questions at once. (1) Are price
gaps filled in the future? (2) Is there any extra information contained in the

price gaps that is exploitable by traders?

1.3 The Scope of the Thesis

The rest of this thesis is as follows.

Chapter 2 investigates the profitability of a large number of technical trading
systems in the bond futures markets systematically. For preliminary examination,
we examine three moving average technical rules, augment with the standard test
statistics and non-parametric bootstrap methodology. In the second part, we exam-
ine 7,991 technical trading systems using White’s (2000) Reality Check bootstrap

procedure to explore the significance of technical profits.

Chapter 3 evaluates the predictive power of technical patterns in the bench-

mark government bond yield markets using a smoothing algorithm known as non-

principle:

..[W]e do not need to know why one stock is stronger than another in order to act
profitably upon the knowledge of the fact. The market itself is continually weighting
and recording the effects of all the bullish information and all the bearish information
about every stock. No one in possession of inside information can profit from it unless
he buys or sells the stock. The moment he does, his buy or sell orders have their effect
upon the price. That effect is revealed in the market action of the stock.

(2) History always repeat itself. Thus, all chart patterns will occur in the future, albeit in different
forms. See, for example, Robert Levy (1966), who has written a lucid argument on the practice of
technical analysis.
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parametric kernel regression. This method was developed by Lo, Mamaysky and
Wang (2000). Although this kernel methodology has been applied to the equity mar-
kets, to our knowledge this is the first time it has been applied to the bond yield and
bond yield spread data. Furthermore, we improve upon the non-parametric kernel
method by developing a new methodology known as local linear regression to detect

chart patterns.

Chapter 4 attempts to verify the Gap-Fill hypothesis advocated by technical an-
alysts. This is the first systematic study of price gaps in the financial markets. We
first categorize the various price gaps into five commonly taught price gaps, and ex-
amine whether these price gaps exhibit any significant information that is exploitable
by technical traders by comparing the conditional returns against the unconditional
returns. We explore this hypothesis in the futures markets, including equity, fixed

income, currencies and commodities contracts.

Chapter 5 concludes.
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Chapter 2

An Empirical Evaluation of
Technical Trading Systems in Bond
Futures Markets

2.1 Introduction

This Chapter investigates the profitability of technical trading svstems in the bond
futures markets. Bond futures are popular trading vehicles employed by institutional
investors and traders to manage their interest rate exposure. They are popular be-
cause of the low trading costs, higher liquidity and extra gearing. The first interest
rate futures contract was introduced by International Monetary Market (IMM) in
January 1976 with the 90-day Treasury Bill as the underlying asset, followed shortly
by the 30-year Treasury bond futures introduced by Chicago Board of Trade (CBOT)
in 1977. Since its introduction, trading in interest rate futures has grown rapidly and
now constitutes a large segment of exchange-traded futures contracts in many devel-
oped capital markets. The annual Bank of International Settlements’ (BIS) survey of
the notional amount of futures trading worldwide in Figure 2.1 clearly shows the pop-

ularity of interest rate futures contracts as compared to equity and currency futures.

A large proportion of futures traders employ a variety of technical trading systems
to speculate on the movements of futures prices. Many examinations on the profitabil-
ity of technical trading strategies claim that some technical trading rules can provide
genuine value to investors. (See, for example, Brock, Lakonishok and LeBaron (1992),
Levich and Thomas (1993) and LeBaron (1999)) On the other hand, there is also a
large proportion of empirical evidence which show that technical trading rules are

unprofitable once transaction costs are factored into the rules. The leading skeptic
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show large variation in responding to news shocks. They conclude that interest rate
futures are informationally inefficient. De Vassal (1998) shows that interest rates
changes are related to time patterns. such as Friday effect and seasonal patterns. This
predictability may benefit bond traders. Furthermore, Papageorgiou and Skinner
(2002) demonstrate that a simple probit-type model can predict the direction of
5-, 7-, 10- and 20-year US constant maturity Treasury yields sixty percent of the
time. Reisman and Zohar (2004) find significant predictive power in the US Treasury
yield data, which they claim can increase a bond portfolio’s return dramatically. All
these studies provide evidence that there are some form of predictability in the fixed
income markets, which can be exploited by astute investors.? This predictability in
rates can be seen in the US federal funds rate in Figure 2.1, which indicates that
Federal Reserve does not act randomly. The probability of a 10-rate increases in a
row is much higher than getting 10 heads in a row from 10 coin tosses. Empirically,
such cyclical behaviour in rates is observed by Melnik and Kraus (1969, 1971), who
estimate a short-run cycle of eighteen months to twenty-four months in both ninety-
day US T-bill rate and ten-year US government bond yield rate. The issue now is
whether traders can employ trend-following technical trading strategies to exploit

these cyclical trends in the bond markets.

To partially answer this question, we evaluate the profitahility of a large number
of technical trading systems in the fixed income futures markets. For preliminary in-
vestigation, we test the profitability of three moviﬁg average svstems. This is a useful
acid test since moving average system 1is claimed to be one of the more profitable
trading systems and is a widely viewed technical indicator by traders. For example,
Lui and Mole (1998, p.544) find the following in their survey of foreign exchange
traders, “Interest rate news 1s found to be a relatively important fundamental factor,
while moving average and/or other trend following systems are the most used technical
techniques. ” For statistical inference on the profitability of the moving average strat-
egy, we use the standard t-test and nonparametric bootstrap. (Levich and Thomas
(1993))

However, active search for trading opportunities often give rise to spurious or
exaggerated findings, as Lo and Mackinlay point out (1990, p.432) “The more scrutiny

a collection of data is subjected to, the more likely will interesting (spurious) patterns

2A study by Brandt and Kovajecz (2004) find that price discovery occurs in the US Treasury bond
market and that this process is tilted towards the on-the-run securities. They find that orderflow
imbalances account for a substantial portion of the daily fluctnations of the yield curve and liguidity
seems to determine the orderflow. Some active bond strategies, such as butterfly, can take advantage
of these price movements. But their study is mainly concentrated on the underlying Treasury bond
markets and not the fixed income {utures markets.
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Figure 2.2: Trends in Interest Rates Over Time (see arrows)

US Fed Funds Target Rate (1973-2006)

Percent

emerge.” This is especially true when evaluating technical trading systems because
they are quite simple to develop, as Michael Jensen draws attention to the data
snooping problem (1968, p.81):

If we begin to test various mechanical trading rules on the data we can
be virtually certain that if we try enough rules with enough variants we
will eventually find one or more which would have vielded profits (even

adjusted for any risk differentials) superior to buy-and-hold policy.

But eliminating this problem is virtually impossible, as Campbell, Lo and Mackinlay
(1997, p.523) argue:

Unfortunately, there are no simple remedies to these two problems since
the procedures that give rise to them are the same procedures that produce
genuine enipirical discoveries. The source of both problems is the inability
to perform controlled experiments and, consequently, the heavy reliance

on statistical inference for our understanding of the data.

Thus, we use a recent statistical procedure developed in the literature, known
. as the Reality Check, to account for the possibility of data mining.- This procedure
was developed by White (2000) and has been applied to evaluate the profitability

of technical trading systems in the Dow Jones Industrial Index (DJIA) by Sullivan,
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White and Timmermann (1999, thereafter STW). Over a period of more than 100
years of data (1896-1986), they conclude that the best technical trading system cannot
beat the benchmark index once the data mining issue is pressed into the evaluation
procedure, especially in the recent decades from 1986-1996 using S&P 500 futures
contract. In another paper, Sullivan, White and Timmermann (2001) apply the
same method to examine the calendar effects in DJIA index, and they find that the
profitability of these calendar strategies is drastically weakened when the data mining

effects are accounted for.

However, Qi and Wu (2001) apply the Reality Check procedure to seven currency
pairs and find contrary evidence. They discover that technical trading systems have
value to currency traders even after taking data snooping and transaction costs is-
sues into account. Similarly, Hsu and Kuan (2005) apply this procedure to four US
markets, including DJIA, S&P500, Russell 2000 and Nasdag indices. Interestingly,
they find that they cannot reject the data mining problem in “older” markets, such as
DJIA and S&P500, but technical trading systems have value to investors in “younger”
markets, such as Nasdaq and Russell 2000. Recently, Kosowski et al. (2005) apply
the White’s Reality Check procedure to the universe of fund managers in order to
determine whether skill is the driving force of high alpha fund managers. On the
whole, they find results which support active management. Our study here attempts

to determine whether this is the case for bond futures markets.

Given the possible combination of technical trading systems is limitless, we are
able to evaluate only a subset of the universe of systems. In total, we investigate
7,991 technical trading strategies, which is a large number in comparison to many
previous studies. The basic four categories in our universe of trading strategies include
the moving average system, Donchian breakout system, Wilder volatility system and
price distribution system.® Similar to the above-mentioned studies apply the Reality
Check procedure to this set of trading systems in an attempt to detect the possibility

of data snooping.

The rest of this Chapter is as follows: Section 2.2 describes the bond futures
data used in our study, including a discussion on the long-memory tests using the
traditional and Lo’s (1991) modified Rescaled-Range (R/S) statistic. The first part
of Section 2.3 evaluates the profitability of three moving average systems using the

standard test statistics and nonparametric bootstrap. The second part proceed to

3The Wilder volatility trading system is closely related to the ‘Turtle’ trading strategy discussed
in Chapter 1. The ‘“Turtle’ strategy is the technical trading system that is being taught to a number
of inexperience traders.
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examine a larger set of trading systems using White'’s Reality Check procedure. All

the empirical evidence are given in Section 2.4. Lastly, Section 2.5 concludes.

2.2 Bond Futures Data and Long Memory Tests

2.2.1 Bond Futures Markets and Data Adjustments

We focus our attention on six markets, namely, US, UK, Germany, Japan, Australia
and Canada government bond futures markets. Since trading futures contract entails
margin requirement and subjected to the marked-to-market procedure, we collect

daily rather than weekly futures data.

For US markets, we select three of the most popular bond futures currently traded
in CBOT: 5-year Treasury Note futures, 10-year Treasury Bond futures and 30-year
Treasury-Bond futures. For UK and Germany, we choose the 10-year long-gilts futures
and the 10-year Bund futures respectively.! For Japan, we include the JGB futures,
and for Australia, we gather data on the popular 3-year and 10-year government hond
futures contracts traded in Sydney Futures Exchange (SFE). Lastly, we also include
the 10-year Canadian bond futures. All bond futures have the same expiry months

in March, June, September and December.

In reaction to recent decline in global nominal interest rates, futures exchanges
have reduced the coupon rate of the deliverable bonds. The coupon rate of many
deliverable bonds is now 6 percent. We split the sample data according to the periods
with the same notional coupon rate. This allows us to have bond futures prices derived
from a similar basket of bonds. Apart from the long-gilts futures, other bond futures
have experienced only a small number of changes to the notional coupon rate. In US
and Canada, for example, there was only one change, in 1999 and 2000 respectively,
while in UK, changes occurred in 1988, 1998 and 2004 respectively. For the rest of
the markets, there was no change to the coupon rate. A summary of the bond futures
markets is given in Table 2.1. In total, our data set contains eight bond futures and
fifteen subperiods to which we apply the technical trading strategies. Each futures
series includes the daily high, low and closing futures prices from Datastrearn and

Ecowin.

Unlike spot markets, futures contracts expire. There will be a price gap between

the two futures contracts when rolling over from one futures contract to another,

4Germany has a number of popular bond futures contracts traded in EUREX. They are Bobl,
Bund, Bux! and Schatz futures contracts. Specifically, Bobl futures are 5-year Federal Notes, Bund
futures are the benchmark 10-year bond futures, Buxl! is the 20- to 30-year government bond futures
and Schatz futures are the 2-year bond futures. .
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assuming not taking delivery of the underlying asset. Without adjusting for these
price gaps, the trading signals generated by the data will be spurious. To solve this
issue, we follow the standard procedure in creating the gap-adjusted bond futures
price data by deducting the price gaps from all the historical prices. (See, for example,
Levich and Thomas (1993) and Kho (1996)) Starting from the latest price in 29
February 2005, if a price gap during rollover exists, we deduct this difference in price
from all historical prices before this rollover day, a procedure known as slicing. Our
chosen rollover day is the last trading day before the delivery month. That is, the
last trading day in February, May, August and November. We assume that there is
no liquidity problem during rollover. We avoid rolling over on the delivery day in
the delivery month for two reasons. One reason is the presence of quality and timing
options in the delivery month, which may complicate the bond futures pricing.®> The
other reason is that there are evidence of excessive volatility in futures price during

delivery date. (See, for example, Ma, Mercer and Walker (1992)).

Table 2.1 presents the summary statistics of the annualized daily bond futures
returns, taken to be the first log-difference of the artificially constructed bond futures
prices.> The annualized daily mean return varies by contracts. The smallest mean
return is Australia 10Y bond futures at 0.619 percent and the largest is US30YTB
(1999-2005) at 8.176 percent. It is noticeable that Australia reports the lowest an-
nualized standard deviation of at 1.525 and 1.561 percent for 3-Y and 10-Y bond
futures respectively. We also note from US market that the volatility of bond futures
is proportional to its maturity, the higher the maturity, the larger the standard de-
viation. This is inconsistent to Fisher’s (1896) observation that short-term rates are

more variable than long-term rates.”

It is clear from the normality tests that bond futures returns display the fat-tailed
phenomena commonly seen across all asset classes. One possible explanation for the

non-normal returns is the clustering effects induced by the release of macroeconomic

SBond futures contract does not have one underlying (deliverable) asset. Rather, it has a basket
of underlying securities (as defined by the futures exchange). Valuation of bond futures typically use
the cost-of-carry model, relating the bond futures price to the cheapest-to-deliver bond. There are
several options available to the bond futures seller. For example, the tuming option, where the short
seller may deliver the bond on any business day in the delivery month, and quality option, where
the short seller has the opportunity to deliver any bond that has at least fifteen years to maturity
or first call. See Chance and Hemler (1993) for a review of these options and Carr and Chen (1997)
for a valuation of the quality option embedded in bond futures. Interestingly, Rendleman (2004)
shows that if interest, rates are significantly above or below 6 percent, the delivery option has little
influence on the pricing of Treasury bond futures. »

5The annualized mean returns X 4 is computed as: X4 = 252 x T ZZ=1 X and the annualized
standard deviation ¢4 is given by: o4 = /252 x \/T*' Zthl(Xt - X)2

"We did not apply the trading rules to the UK gilt market after 2003 because of insufficient data.
Some trading systerns require 250 historical trading days before the first signal is generated.
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news. For example, Fleming and Remolona (1999a, 1999b) and Furfine (2001) find
empirical evidence that show most of the large movements in bond markets are asso-
ciated with macroeconomic news shocks in the US treasury markets. Ahn, Jun and
Cheung (2002) find the macroeconomic announcements from Germany and US are
imporitant sources of volatility for Germany Bund futures contracts. Durenard and
Veradas (2002) further document that macro-economic news surprises do affect the
US Treasury bond futures price movements, especially when the forecast error of the
market participants are large. Moreover, they find these unexpected macroeconomic
effects to depend on business cycle because the news effect on bond futures prices is
dependent on the business cycle. Collectively, this body of work shows that whenever
there is a concentration of news shocks permeating the bond markets, these informa-
tion shocks generate excessive volatility across the yield curve and cause the bond

returns to behave outside the normal distribution.

2.2.2 Long Memory in Bond Futures Returns

Long memory has been associated with the profitability of technical trading rules,
as Levich and Thomas (1993, p.469) highlight this possible connection in their study
of trading systems in the currency markets, “..the link between serial dependency
in the data and the profitability of technical rules is a question.” As a small part
of our investigation, we examine whether the persistence of asset returns are linked
to the profitability of technical trading systems. Long memory in asset returns can
be captured by the Rescaled-Range statistics (R/S) developed by Hurst (1951) and
Mandelbrot and Wallis (1969a, 1969b, 1969¢).® Earlier studies by Olszewski (1998,
2001) show that there may be a positive link between the R/S statistic and trend
following system in a number of futures contracts. Overall, he finds that there using
R/S statistic as a filter for future out-of-sample trading vield higher profits. and

concludes that (p.701):

...when the R/S statistics used to filter trade, the profitability of the sys-
tem is improved overall....Furthermore, the R/S statistics seem to provide
insights into why momentum-based trading system is profitable in some

but not other markets.

8Basically, a time series X; has long memory if there is a real number o € (0,1) and a constant
p(k)

Cok

¢p > 0 such that limg o = 1, where p(k) is the sample autocorrelation. (See Beran (1994,

p.42)).
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Table 2.1: Summary Statistics of Annualized Daily Bond Futures Return.

Futures Sample Coupon  Obs. Mean  Standard Skew Kurtosis Normality Autocorrelation
Market Period (Percent) Deviation Test o1 o5 210
Us

5YT-Note 05/88-11/99 8.0 2883 2.4888 4.4857 -0.1354  2.1707  333.83*** 0.0680* -0.0093 0.0283

5YT-Note 12/99-02/05 6.0 1313 5.0072 4.9935 -0.2664  1.3450  67.508%**  0.0453  0.0074 -0.0497

10YT-Bond  09/83-11/99 8.0 4327 6.4089 10.1888 0.2409  3.0608 846.71%%*  0.0393 -0.0229 0.0089

10YT-Bond  12/99-02/05 6.0 1312 6.8065 7.5874 -0.3439  1.0455 46.465%**  0.0198 -0.0129 -0.0307

30YT-Bond  10/77-11/99 8.0 5369 2.6932  25.7079 0.0714 24135  766.34*** 0.0201* -0.0036 -0.0130

30YT-Bond  12/99-02/05 6.0 1311 8.1762 11.5490  -0.3655  0.8045 36.080%**  0.0018  0.0280 -0.0232

UK

LG1 12/82-02/88 12.0 1383  2.5050 9.9280 -0.0339  1.8203 126.60***  -0.0080 0.0541* -0.0088

LG2 09/88-09/98 9.0 2467  2.4597 8.5667 -0.2070  3.3881 553.91%**  -0.0004 0.0154 0.0053

LG3 10/98-09/03 7.0 1461 (.8286 5.8090 -0.3578 1.4538 80.552%**  (.0655* -0.0372 0.0168
Germany

10Y G-Bond 12/90-02/05 6.0 3789 1.9723 5.5715 -0.3720  1.0642  57.338***  -0.0388 -0.0381  0.0088

Japan

JGB 12/86-02/05 6.0 4370 5.9999 8.8590  -0.4355  5.4427  1727.8*%*F  0.0091 0.0320* 0.0232
Australia

3YG-Bond 12/89-02/05 6.0 3840 1.1612 1.5251 0.2016  4.2875 1224.9%%*  -0.0240 0.0011 -0.0141

10YG-Bond  12/84-02/05 6.0 5078 0.6192 1.5614 -0.3244  3.9209 1256.7%**  -0.0452 0.0281 -0.0163
Canada

10YG-Bond  12/89-01/00 8.0 2565  3.9003 7.8407  -0.1894  2.7228  312.46%** (.0135* -0.0039 -0.0459

10YG-Bond  02/00-02/05 6.0 1245 5.1455 6.3996 -0.3479  0.8874  31.593*%**  0.0772  0.0019  0.0215

Source: Datastream and Ecowin



Long memory in financial markets is estimated by the classical R/S statistic:

k k

Or = o | 2 a2 (=) (21)
where 5% = %ZJTZI (X; - X)Q is the sample variance, X; is the futures return and
X is the sample mean. The first and secoud term in (2.1) are the maximumn and
minimum (over k) of the partial sums of the first £ deviations of X, from the sample
mean respectively. If k = T, then the final sum is equal to zero. Given some volatility,
a small R/S statistic means that the returns data do not wander far from the mean
value. On the contrary, a large R/S statistic says that the range of partial sums is

large and mean reverts slowly towards the mean value.

Since the original R/S statistic has no reliable distributional basis for statistical
inference, Lo (1991) improves the R/S statistic by incorporating short-range memory

effects and derives an asymptotic sampling theory of the R/S statistic:”

k.
1
@) = 5 [KmeX - %) - i, DX X } 22)
where the denominator is now:
2 ¢ a _ i}
Sie) = 7 Z (X =X+ o= 2w [Z<X - X)X - X)} (2.3)
and w; are the Barlett weights:
wi(qg) =1 - ——, T 2.
w;{q) g q < (2.4)

The second squared term in (2.3) is the weighted autocovariance. Essentially, the
critical difference between Lo’s R/S and classical R/S statistic is the inclusion of the
weighted autocovariance, which accounts for short range memory effects in asset re-
turns. When ¢ = 0, the modified Lo’s R/S statistic corresponds to the classical R/S
statistic. The null hypothesis of Lo’s modified R/S statistics is no long-memory and
the critical values of Qr and Qr(q) are adopted from Lo (1991, p.1288, Table II). For
ease of comparison, we tabulate the critical values in Table 2.2. For example, if the
value of Q1 (q) is larger than 1.7470, then the null hypothesis of no long memory is
rejected at & percent siguificance level. Similarly, if the value of Q7(q) is less than

0.8610, then the alternative hypothesis of auti-persistence (or negative persistency) is

9For recent improvements to Lo’s statistic, see Kwiatkwaski et al. (1992) and Giraitis et al (2003).
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Table 2.2: Fractiles of the Limiting Distribution of the V' Statistic Under the As-
sumption of No Long Memory

Prob(V <w) 0.005 0.025 0.050 0.100 0.200 0.300 0.400 0.500

v 0.721 0809 0861 0927 1.018 1.090 1.157 1.223
Prob(V <wv) 0543 0.600 0.700 0.800 0.900 0.950 0.975 0.995
v w/2 1294 1.374 1473 1.620 1.747 1.862 2.098

Source: Lo (1991, p.1288, Table II)

accepted. Returns which display anti-persistence mean that large bond price move-
ments in a given direction is likely to be followed by price movements in the opposite
direction. As T increases without bound, the R/S statistic converges (in distribution)

to a well-defined random variable V' when properly normalized:

1

VT

where = denotes weak convergence and V is the range of a Brownian bridge on a

Qrl¢) =V (2.5)

unit interval.

Table 2.3 presents the results for both classical R/S and Lo’s R/S tests on the bond
futures returns and their percentage differenced. For the modified Lo’s statistics, the
number in the bracket is the bias in percentage, calculated as: [Qr/Qr(q) — 1] x 100.
Since the Lo’s R/S statistic has no optimal ¢ a priori, four value of ¢ = 25, 50, 100, 250
are computed to assess the bias between the classical R/S statistics and the Lo's

statistic.

The classical R/S statistic in Table 2.3 (Column 2) shows a varied picture about
the persistence within the bond futures returns. The largest R/S statistic is 1.7130
while the lowest is 0.8009. Among the classical R/S statistic, only US 30YTN(77-99)
displays statistical significant, positive persistence returns. The rest of the contracts
show no strong bias towards positive or negative persistence. Our result here is
consistent with Fung and Lo (1993) and Booth and Tse (1995), who find no evidence
of long memory in both Eurodollar and US T-Bill futures contracts. A study by
Connolly, Guner and Hightower (2001) also find that the excess weekly return of
the US Treasury Bill display no long-term memory, but not the gross weekly returns.
They suggest that the persistence in gross returns is due to the persistence in inflation

rate.

A comparison between the classical and Lo’s R/S statistics shows an interesting
observation. Classical R/S statistics which has anti-persistence (< 1.223) display

contrary evidence when the value of ¢ for Lo’s R/S statistic increases. For example,
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USLG1 (1983-1988) has a classical R/S statistic of 0.8931 (anti-persistence), but
rises to 1.9872 when ¢ = 250, a statistically significant persistence value. Such effects
can also be seen in US10YB (1999-2005), US30YTB (1999-2005) and CAN10YGB
(2000-2005). This conflicting evidence implies that long memory is present in these
bond futures returns, but this characteristic is masked by short-term anti-persistence

effects.

We also note that the classical R/S statistics for US bond futures have declined
recently, meaning that bond futures are becomingly less persistence and increasingly
behaving like a random walk. This suggests that the past movements of the futures
prices cannot predict future changes and trading based on historical rates are probably
going to be futile and unprofitable. For Canada futures contract CAN10YTB (2000-
2005), this decrease is even more pronounced. This implies that long-term trend-
following rule might be unprofitable. Instead, a mean-reverting trading svstem may
be more appropriate for these futures contracts. To verify whether this hypothesis
true, we proceed to evaluate the technical trading systems in the next section, where
our universe of trading strategies include both trend following and counter-trend

systems.

2.3 Technical Trading in Bond Futures Markets:
Preliminary Evaluation and Implementing Re-
ality Check

2.3.1 Preliminary Evaluation: Moving Average Systems

For preliminary evaluation, we investigate the profitability of three simple moving
average technical trading systems. The trading signals Z; from the moving average
systems are emitted when two moving averages of prices crossover. In particular, the

signals 7, from the single, dual and triple moving average trading rule are given by:

Z (2.6)
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where F} is the futures price at time ¢ and Sgn(-) is the signum function. More
specifically, Z; = +1 (long signal) if Sgn(-) > 0 and Z, = —1 (sell signal) if Sgn(-) < 0.
We multiply these signals to the futures returns X;. The first term in Equation (2.6)
is the shorter n-day moving average and the second term is the longer m-day moving
average. The parameters (n,m,r) control the smoothness of the moving average. If
n = 1, then equation (2.6) becomes the single moving average system. If n > 1, the
equation (2.6) becomes the dual moving average system. Equation (2.7) extends the
single and dual moving average to triple moving average system, where (wy,ws, ws3)
are the weights assigned to the moving averages.!® For the single moving average,
we set the parameter values at n = 1 and m = 50. For dual moving average systen,
our parameters are n = 10 and mn = 150. For the triple moving average systemi, the
parameter values are n = 10,m = 100 and r = 200. As long as the shorter moving
average remains above or below the longer moving average, we shall remain with the

position given by signal Z;. In this section we do not apply any time or price filter.

Standard Statistical Tests and Nonparametric Bootstrap

For a simple measurement of the statistical significance of moving average system'’s
profitability, we use the standard test statistic. (See, for example, Brock, Lakonishok
and LeBaron (1992)) Let Xp and X be the overall average buy and sell return

respectively, given as:

_ g X
X, = L i=B,S (2.8)
Ty
where Y "% X, and Y. X, is the sum of all daily returns produced by the buy and
sell signals respectively and where ng and ng is the number of buy and sell days.

For buy signals, the null hypothesis is Hy : Xp = 0 against H; : X5 > 0 because we

10 Apart from the arithmetic moving average, another method of computing the moving average is

1/m

the geonietric moving average: (Hf:ol Ft,s) ! . However, since Acar (1993) has shown that these
two averages are approximately similar (assuming the near equality of arithmetic and geometric
returns), we shall use the arithmetic moving average in our preliminary investigations. Another
widely used moving average is the exponential smoothed moving average (ESMA). The computation
of ESMA depends on the exponential constant C, which has the formula C' = 2/(m+ 1), where m is
the moving average lag. Specifically, ESMA has formula: ESM A, = (F,-ESMA)xC+ESMA,,
where F; is the futures price at time f. The advantage of ESMA over the arithmetic moving average
is that 1t is easier to compute and counstitutes a form of weighted moving average, which put more
emphasis on recent data. Broadly speaking, moving average rules belong to a set of rules that obey
the Markov time principle proposed by Neftci (1991). A Markov time 7 is defined as: 7 < t € Gy,
Vt € T, which means that at each time point t, 7 is adapted to the filtration set S of the economic
agents without utilizing future information. In other words, technical rules like moving average do
not require market participants to generate forecasts. Further theoretical analysis of the moving
average rules can be found in Acar and Satchell (1997), Kuo (1998) and Chiarella, He and Hommes
(2003).

35






A simple null hypothesis for the nonparametric bootstrap can be stated as follows:
if there is no information in the original series, then the profits from the trading system
should not be significantly different from the profits obtained with the shuffied series.
We set the rejection point of this hypothesis at « significance level. (We choose o« = 10

percent)

Since our preliminary evaluation evaluated only three moving average systers,
drawing inferences from such a small set of technical trading systems is unreliable
even though we implement the nonparametric bootstrap. We have not account for the
possibility of data snooping effects. Furthermore, the traditional test statistics assume
normal empirical returns, which mayv not accurately reflect the true distribution of

bond futures returns, as Merton (1987, p.107) argues:

Is it reasonable to use standard t-statistics as a valid measure of signifi-
cance when the test is conducted on the same data used by many earlier

studies whose results influenced the choice of theory to be tested?

To address these issues and determine whether technical systems have genuine value
to investors, we apply the White’s Reality Check to a larger set of technical trading

systems.

2.3.2 White’s Reality Check

This section extends the examination of the technical trading systems in the bond
futures markets by employing White’s (2000) Reality Check procedure. Extending
the work by Diebold and Mariano (1995) and West (1996), White’s test evaluates
the distribution of a performance measure accounting for the full set of models that
lead to the best performing model among the following (L x 1) vector of performance

statistic:
1 &
fr = — - c=1, .. }
. ,”’:ZRjt, k=1,..,L (2.10)

where L is the number of trading systems, n is the number of prediction periods
indexed from R through T, ie, n =T — R+ 1 and f; is the observed performance
measure for period t. k is the index for the number of trading models. The first
trading signal is generated at R = 251 because some technical rules require 250 days
of previous prices in order to provide the first trading signal. The value of T and n

differ for each bond futures contracts.

to 2000 and find the mean bootstrapped profits to be close to the mean profits with 500 replications.
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The rate of return for k*" trading rule at time ¢ is computed as:

: | X1 Se(Be) .

fer=In {m} k=1,.. L (2.11)
for t = 251,...,T, where X,;, is the futures price return. Sy (-) and S (:) are the
signal functions that convert prices into market positions for the system parameters
3%. The signal function has three possible values: +1 for long position, 0 for neutral
position and -1 for short position. Following Brock, Lakonishok and LeBaron (1992)
and STW, our benchmark trading rule is the null system, which is always out of the

market. Consequently, Sq is zero for all ¢.

The null hypothesis is that the best technical system is no better than the perfor-

mance of the benchmark:

Hy max [E(fr)] <0 (2.12)
where the expectation E(-) is evaluated with the simple arithmetic average f, =
n~! Z,T: i fe.e. Rejection of this null hypothesis lead to conclusion that the best

trading rule is superior to the chosen benchmark.

White (2000) shows that the null hypothesis (2.12) can be tested by applying the
stationary boatstrap of Politis and Romano (1994) and West (1996) to the observed
values of fy,. First, we resample the empirical returns f, from Equation (2.11)
for each trading rule k&, one (or more) observation at a time with replacemenf and
denote the resulting series as f7,. We repeat this procedure B times, yielding B
bootstrapped mean return for each trading rule K, ff‘, = %Z,T: rfr¢ Second, we
repeat this sampling procedure over all L trading rules, k = 1,..., L. Thirdly, we

construct the following statistics:

P, VA () ae
Vip = nax [Vn (ﬂxz -f)]. i=1,..B (2.14)

[RRARS

and denote the sorted values of Vk* ; as \_/kf], \7,;2, o \7,; 5. We seek to find M such that
‘7; w <V < V4 Lastly, White’s Reality check p-value is obtained by comparing
V to the quantiles of V", calculated as P =1 — M/B. By using the maximum value
over all I, models, the Reality Check p-value incorporates the effects of data snooping

from L trading systems.

Consistent with STW and White (2000), we implement the stationary bootstrap

in our study. The stationary bootstrap requires the value of the smoothing parameter
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g that determines the length of the block resampling procedure, where 0 < ¢ < 1. (See
STW (1999, p.1689)) The average length of the sampling block follows the geometric
distribution, and is equal to 1/q. If ¢ = 1.0, then the stationary bootstrap becomes
the ordinary bootstrap. In this chapter, we use ¢ = 0.1 for all contracts, meaning the

average block is 10.'4

The above hypothesis (2.12) can be extended to examine the superiority of the

best trading system based on Sharpe ratio.
Ho: max [g(E(Xy)) < g(E(Xo))] (2.15)

where G is the Sharpe ratio, in the form:

E(ch,t+l) —Tft+1
VEXE ) = (BXe))?

9(E( Xk 1)) = (2.16)

where the expectations are evaluated with arithmetic average and where r4,,, is the

risk-free rate at time t + 1.1° The relevant statistic are:

fr = g(hx) = g(ho) (2.17)

where ho and hj are average rates of returns over the prediction sample for the
benchmark and the kth trading rule respectively, that is, hy = n™" Ztrz g ka1 Over
the trading rules £ = 0, ..., L. The above stationary bootstrap procedure is applied
to evaluate the Sharpe ratio by generating B bootstrapped values of fi, which we

denote as f} ;:

feo = glhi,) —g(hy), t=1,..,B (2.18)
1 T

R = =Y ki, i=1,....B 2.1

Yk.i n;lk,tTu . SRR (2.19)

14The stationary bootstrap procedure is as follows: (1) First set ¢+ = R and draw a random number
from the empirical returns R, ..., T. (2) Increase t by 1. If t > T’ stop. Else, draw a standard uniform
random variable U € [0,1]. If U < ¢, draw a block 6; randomly, independently and uniformly from
R....,T. Else if U > ¢, expand the block 8, by setting 8y = 6;_; + 1. 1f 8, > T, reset 6; = R. (3)
Repeat Step 2. STW examine ¢ = 0.01,0.1,0.5 and find their original results are sufficiently robust
to different values of ¢. See also Qi and Wu (2001). Thus, there is no need to further check for
different. values of ¢ here.

15The risk-free rate is different, {or each sample country. We take the interest rate closest 1o the
policy rate for each country and convert the annualized rates into daily rates using the formula
rqg = Ln(l + Tann) /252, where rq and 14, are the daily and annualized interest rates respectively.
We assumed there are 252 trading days in a year.
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The Universe of Trading Strategies

We now discuss the universe of technical trading systems available to a trader. In
financial markets, the number of possible combinations of trading system is unlimited
and it is impossible to test them all. Furthermore, public access to proprietary trading
strategies is limited. In response to these considerations, we focus on trading systems
that are publicly available and widely used. We acknowledge that the issue of the size
of the ‘universe’ of trading strategies in White’s Reality Check is always a concern.
But STW (p.1684) defended the choice in their study as long as two issues are satisfied:

The omitted trading rules cannot improve substantially the best perform-
ing trading rule drawn from the current universe, and the omitted trading
rules should generate payoffs that are largely orthogonal to the payoffs of

the included trading rule so that they will increase the effective span.

We choose four major trading systems, which are (1) Moving average, (2) Donchian
Breakout, (3) Wilder volatility and (4) Price distribution systems. These systems have
all been documented in the literature extensively and are still widely used by trading

professionals in various guises. Altogether, we test 7,991 trading systems.

As a robustness check on the span of our universe of trading rules, we randomly
select 250 trading rules from the full universe and form the covariance matrix of
returns from these 250 rules. The size of the covariance matrix is therefore 250 x 250.
We then apply the principal component analysis to this matrix. The intuition here is
that the greater the number of nonzero eigenvalues, the larger is the effective span of
the trading systems.'® Figure 2.3 plots the eigenvalues (sorted in descending order)
along the x-axis. This figure provides some evidence that our universe of trading
rules has nonzero eigenvalues. This procedure is repeated several times, with similar
results. Therefore. we are assured that our universe of trading rules has a sufficient.

span as discussed by STW.!” We now describe the trading systems in detailed.

A. Moving Average Systems

The preliminary section has evaluated only three moving average systems. We now
extend the number of moving average systems to be tested. We test the single, dual
and triple moving average systews. Furthermore, we apply price and time filter in

order to obtain trading signals. The parameter values for the three moving averages

16This is only a subset of the universe of trading rules. Due to computational constraint, we are
unable to increase the size of the matrix. But we are allowed to repeat this exercise several times.

"However, We are unable to check whether the omitted trading rule has higher returns than our
universe of trading rules since there is an infinite combination of trading rules available.
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Figure 2.3: Checking the Span of the Universe of Technical Trading Systems from
250 randomly selected rules. After computing the covariance matrix of the returns
from the 250 trading rules, we apply principal component analysis this (250x250)
covariance matrix to obtain the eigenvalues. The following Figure plots the sorted
eigenvalues.
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are: n,m,r = [5, 10, 15, 20, 25, 30, 50, 60, 75, 100, 125, 150, 200, 250]. We apply
four time filers, Time Filter = [2,3,4,5] days and four price filters, Price Filter =
[0.001,0.005,0.01,0.02] percent. Altogether, we test 3,751 moving average systems.

B. Donchian Breakout Systems

The Donchian Breakout rule is also known as support and resistance rule (in STW) or
trading range break (in Brock, Lakonishok and LeBaron (1992)). This is an old tech-
nical rule, discussed as early as in Wyckoft (1910) but reformulated and popularised

by Donchian (1957), hence our preferred description.

The classical n-day Donchian rule dictates that a long position is taken if the
current price exceeds the highest price in the previous n trading days and a short
position is taken if the current price declines below the lowest of the previous n days.
Whenever a new signal is generated, we liquidate the old position simultaneously.
Thus, the system stays in the market throughout. The modified Donchian rule gener-
ates a buy signal if the current price rises above the maximum price in the previous n
trading days and exit the market if the current price falls below the low of m previous
trading days, where m < n. Accordingly, the system is not necessarily in the market

throughout. We apply the following parameters to the Donchian classical and modi-
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fied system n = [3, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 80, 90, 100]. In addition, we
apply the price filter for each Donchian system, Price Filter = [0.001, 0.005, 0.01, 0.02].
We test 924 Donchian systems altogether.

C. Wilder Volatility Systems

Wilder volatility system is another popular technical rule advocated by practitioners.
The basic premise of this rule assumes that the price range (as measured by the
difference between the high, low and closing price) can detect changes in price trends.
(See Patel (1998)) -

First, we define the true range (TR) at time ¢ to be the maximum of:
TR, =max(H, — L, H — Ci_y, Ly — C_1) (2.20)

where H;, I; and C;_, are the day ¢ high, low and day t — 1 close price respectively.
The W-day average true range (ATR) is the average of the W previous TR. For the
initial trading signal, we record the initial trend so that we can pick a point to enter
the market when this initial trend reverse. For example, increasing closing prices
imply initial increasing trend and we take a short position should this initial trend
reverses. Conversely, decreasing close prices imply a decreasing initial trend and we
enter into a long position when this initial trend reverses. The point where we enter
the market is known as Stop and Reverse (SAR). For initial downtrend, the time ¢
SAR; is the sum of time t — 1 AT R, ; and the lowest closing price in the previous W
trading days. If the current close price is higher than SAR;, a buy signal is generated.
After the initial entry signal is emitted, the rest of the trading signals are mechanically
updated. We examine this system with the following parameters, W = [7, 10, 15, 20,
25, 30, 35, 40, 50, 60, 75, 90, 100, 120, 150, 180, 200, 225, 250], and three price filters
of 0.1%, 0.25%, 0.5%, vielding a total of 76 systems.

D. Price Distribution Systems

Price distribution system is based on the skewness and kurtosis of a time series. The
underlying principle of this system captures the fact that if there is a price trend,
then this trend will cause the skewness and kurtosis to deviate from the Gaussian
distribution. By measuring the skewness and kurtosis we can detect the beginning of
a trend. (See Kaufman (2005))

When prices are platykurtic, prices must be trending since more prices are detected
on the tails of the Gaussian curve. On the contrary, if prices are leptokurtic, prices

concentrate together, a typical trendless period. Hence, when kurtosis is low, we
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employ the trend following strategy, and when kurtosis is high, we turn to a mean-
reverting strategy. After deciding which strategy to use, we then decide which position
to take. If positive skewness is observed, we take a long position. If negative skewness
is recorded, we take a short position. Lastly, higher volatility (as measured by TR in

the previous section) must be observed before a position is taken.

The system is as follows: Let K and S be the value for kurtosis and skewness
respectively and V for the minimum volatility. For the trend following system, we
enter into a long position when K < 0, § > 0, TR > V and we enter into a short
position when K < 0, S <0, TR > V. For mean-reverting systems, we go long when
K>0,5<0, TR >V and go short if K < 0, S <0, TR > V. We supply the
following kurtosis K and skew S parameters S, K = [5, 7, 8, 10, 15, 20, 25, 30, 40,
50, 75, 90, 100, 125, 180, 200, 250] and the minimum volatility level V is V' =[0, 0.25,
0.50, 0.75, 1.00] percent. Altogether, we test 3,240 systems.

2.4 Empirical Evidence

2.4.1 Preliminary Results from Moving Average Systems

The empirical results for single, dual and triple moving average system are tabulated
in Table 2.4 Panel A, Panel B and Panel C respectively. Column 2 and 3 are the an-
nualized buy and sell mean return and its corresponding test statistics from Equation
(2.9a), Column 4 and 5 are the annualized average daily standard deviations of buy
and sell signals, Column 6 is the coefficient for the Buy-Sell spread and its associated
test statistics. Lastly, Column 7 presents the nonparametric bootstrap results, in
terms of the ranking of the moving average profits among the 500 bootstrap profits.
For example, a value of 490 means that the moving average profit is higher than 489

of the bootstrap profits, a statistically significant value.

For the single 50-day moving average system, the empirical results report signifi-
cant positive buy signals in a number of markets, including US, UK, Japan, Australia
and Canada. Most mean buy returns are statistically significant in US, rejecting the
null hypothesis that buy signals yield zero returns. However, the sell signals are not
as good as the buy signals. More than half of the sell mean returns are positive,
implying that holding short positions results in losses. UK long-gilts futures is the
only contract to show negative sell returns in three sub-periods. For the Buy-Sell
spread statistic, the results are mixed. This is because the Buy-Sell spread statistic
1s a linear combination of buy and sell signals. By adding the profitable buy signals

to unprofitable sell signals cancels out the profits. For example, the buy mean re-
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turn for US 5YTN (1999-2005) is significantly profitable with t-statistic of 2.409, but
after adding the unprofitable sell mean return, the Buy-Sell spread statistic turned
insignificant with t-statistic of 1.074. UK, Australia and Japan futures contracts all
show statistically significant Buv-Sell test statistics. We also note that the return’s

volatility for buy signals is consistently lower than sell signals.!8

Turning to the nonparametric bootstrap of the single moving average system in
Column 7, the results shows that a number of futures contracts have a high ranking
among the 500 bootstraps, including US 5YTN futures, US 10YTB futures, JGB
futures and Australia 3YGB futures. All but US 30YTB futures (1999-2005), Bund
futures and Canadian (2000-2005) futures have rankings higher than 400. This result

is consistent with the standard test statistics reported earlier.

Moving onto the dual moving average system, the results look similar to the sin-
gle moving average systeni. Most ol the buy test statistics are still significant, but
none of the sell signals is. Four out of six buy mean returns in US are statistically
significant. The results for UK long gilts futures have deteriorated as compared to
the previous system, as we find onlv one significant Buv-Sell spread statistic against
three in the previous system. Moreover, most of the recent periods in US and Canada
are unprofitable too. Australia is the only country to report significant buy signals
and Buy-Sell spread statistics for both 3-Y and 10-Y futures, suggesting that techni-
cal trading system has some value in the Australian market. Interestingly, the Bund
futures and JGB futures produce results opposite to the previous system. The re-
sults from the nonparametric bootstrap is similar to the conclusions derived from the

standard test statistics.

To explain why buy signals are more profitable than sell signals. we hvpothesize
that this is due to the declining policy rates during our sample period, which led to an
increase in bond futures prices. The profitable buy signals capture this increase while
sell signals are results of whipsaws occurring to the trend following moving average

systems.

Lastly, it is noticeable that the results for the triple moving average system in
Panel C are not as good as the previous two systems. This shows that a change in
the way we apply the basic indicator (moving average) can result in a big difference
in trading profits. Altogether, there are only five significant buy-sell spread statistics.
For US bond futures, most of the significant buy-sell statistic are concentrated in the

pre-1999 period. UK long gilts futures do not report any significant test statistics in

18We are unable to test whether the so-called ‘leverage effect’ hypothesis by Black (1976) is
applicable to our situation here.
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all three sub-periods, including most buy and all sell signals. For Bund and JGB fu-
tures, the buy signals are statistically significant but not the Buy-Sell spread statistic.
Similar to the previous system, Australia has produced both significant buy signals

and Buy-Sell spread statistic.

The nonparametric bootstrap results displays similar conclusion about the prof-
itability of the trading systems. The lowest ranking of the nonparametric bootstrap
among all contracts is Canadian 10YGB (2000-2005), attaining a rank of only 47.
Clearly, a loss as large as this is puzzling. In an efficient market. the economic profits
is likely to be zero. There should not be any systematic technique in generating capi-
tal losses. One possible explanation for this result may be due to the anti-persistency
characteristic found earlier. For example, in Table 2.3 the lowest classical R/S statis-
tic is display by Canada 10YGB (2000-2005) at 0.8009. Since the moving average
system is a trend-following system, this anti-persistency characteristic will cause the
moving average system to generate losses. A counter-trend technical trading strat-
egy is more appropriate for this futures contract over the sample period 2000-2005.
This shall be investigated in our expanded universe of trading strategies in the next

section.

In summary of the empirical evidence so far, we find the preliminary results show
some promising results. But we are unsure whether this is due to data snooping or
technical indicators have genuine value to traders. Moreover, the results presented
here are only valid historically, providing a snapshot of what we can reasonably expect
from these trading systems. The profits seem to vary over time and over different
futures contracts. This confirms Stylized Fact 2 mentioned earlier in Chapter 1: it
is difficult to conclude whether technical trading systems provide genuine value to

investors.



Table 2.3: Long Memory Tests of Bond Futures Returns. Column 2 is the Classical
R/S Statistic, and Column 3-6 are the Lo’s R/S Statistic under four different values
of ¢.

Futures Contracts  Classical Lo’s R/S Statistics
R/S Statistics ¢ =25 q =50 g = 100 q = 250
US5YTN(88-99) 1.3471 1.3141 1.2271 1.2208 1.2387
(2.51%)  (9.78%) (12.18%)  (8.75%)
US5YTN(99-05) 1.2256 1.2255 1.2607 1.3839 1.5692
(0.01%)  (-2.79%)  (-11.14%) (-21.90%)
US10YTN(83-99) 1.2962 1.2585 1.2104 1.1967 1.1544
(3.00%)  (7.09%)  (8.32%)  (12.29%)
US10YTN(99-05) 1.0227 1.0487 1.1093 1.2637 1.5675
(-247%) (-7.80%)  (-19.07%) (-34.75%)
US30YTB(77-99) 1.7130 1.6429* 1.5922 1.6242* 1.5279
(4.27%)  (7.59%)  (5.40%)  (11.12%)
US30YTB(99-05)  0.8367 0.8490*  0.9370 1.1496 1.5607
(-1.44%)  (-10.70%) (-27.21%) (-46.49%)
UKLG1(83-88) 0.8931 0.8566*  0.8368* 0.9300 1.9872*
(4.26%)  (6.73%)  (-3.96%)  (-55.05%)
UKLG2(88-98) 1.3291 1.3459 1.3217 1.3198 1.2362
(-1.19%) (0.62%) (0.77%) (7.57%)
UKLG3(98-03) 1.1033 1.1025 1.5775 1.1185 1.2519
(0.07%)  (4.96%) (1.36%) (-11.87%)
GER10YB(98-05)  1.0593 1.1038 1.1302 1.1357 1.1604
(-4.03%) (-6.27%)  (6.73%) (-8.07%)
JAPJGB(86-03) 1.4430 1.3045 1.2309 1.2872 1.4501
(10.62%) (17.22%) (12.10%)  (-0.49%)
AUS3YGB(89-05) 1.3792 1.3519 1.2869 1.2404 1.2304
(2.03%)  (7.18%) (11.20%)  (12.12%)
AUSI0YGB(84-05) 1.2423 1.2624 1.2368 1.2283 1.2455
(-1.59%)  (0.45%) (1.14%) (-0.25%)
CAN10YGB(90-00) 1.3059 1.2613 1.2183 1.1954 1.2660
(3.57%)  (7.20%) (9.25%) (3.16%)
CAN10YGB(00-05) 0.8009 0.8973 1.0084 1.2421 1.9237*

(10.75%) (-20.58%) (-35.52%) (58.37%)
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Table 2.4: Preliminary Results of the Moving Average Systems. Column 2-3 are the Buy/Sell
mean return, followed by the Buy/Sell standard deviation and the Buy-Sell Spread. Column 7 is
the Ranking from the nonparametric bootstrap. Numbers in parenthesis are the ¢-statistics.

Futures Buy Sell Buy Sell  Buy-Sell Rank
Market Mean Mean S.D. S.D. Spread
(t-stat) (t-stat) (t-stat)
Panel A: 50-Day Moving Average System
US5YTN(88-99) 4.863 -0.671 4.445 4451 5.533 497
(2.793)***  (-0.330) (4.186)***
US5YTN(00-05) 6.351 3.960 4934 5174 2.391 370
(2.409)*** (0.960) (1.074)
US10YTB(83-99) 8.333 0.802 9.274 10.416 7.531 472
(2.742)*** (0.215) (2.478)***
US10YTB(99-05) 8.351 6.426 7.089  8.611 1.925 315
(2.117)%*  (1.007) (0.573)
US30YTB(77-99) 12.606 -7.459 22.370  29.051 20.065 483
(1.682)** (-0.931) (3.667)***
US30YTB(99-05) 7.899 9.093 10.878  12.603 -1.195 243
(1.291) (0.993) (-0.235)
UKLG1(83-88) 9.725 -6.145 9.051 10.245 15.870 487
(1.716)* (-0.999) (3.807)***
UKLG2 (88-98) 4.784 -0.681 7.678  9.740 5.465 430
(1.343)* (-0.157) (1.984)**
UKLG3 (98-03) 2.966 1.657 5.738  5.907 4.623 423
(0.869) (-0.471) (1.888)**
GERI10YB(90-05) 2.211 3.502 5.004  6.053 -1.291 189
(1.243) (1.537) (-0.920)
JAPJGB(86-05) 11.007 -5.451 7.089 11.549 16.458 500
(4.209)***  (-1.483)** (7.725)%%*
AUS3YGB(89-05) 1.740 0.173 1.408 1.683 1.567 493

continued next page -
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{continued)

Futures Buy Sell Buy Sell  Buy-Sell Rank
Market Mean Mean S.D. S.D. Spread
(t-stat) (t-stat) (t-stat)
(3.563)*** (0.268) (4.028)***
AUS10YGB(84-05) 0.928 0.185 1.418 1.731 0.743 429
(2.057)** (0.342) (2.143)**
CANI10YGB(90-00) 7.374 0.235 7.302  8.553 7.139 475
(2.290)** (0.061) (2.888)***
CAN10YGB(00-05) 4.458 7.881 6.041  7.060 -3.302 163
(1.315)* (1.486) (-1.134)
Panel B: 10/150-Day Moving Average System
US5YTN(88-99) 4.774 -1.276 4.329 4.621 6.051 494
(2.867)***  (-0.563) (4.510)***
US5YTN(00-05) 4.137 11.697 5.002  5.252 -7.561 72
(1.619)* (2.011) (3.232)
US10YTB(83-99) 8.082 -0.739 9.033 10.622 8.821 483
(2.779)**%*  (-0.185) (3.745)%**
US10YTB(99-05) 4.375 18.678 7416 7.994 -14.303 53
(1.131) (2.300) (-4.095)
US30YTB(77-99) 11.864 -8.002 20.453 31.949 19.867 485
(1.619)** (-0.933) (3.566)***
US30YTB(99-05) 4.402 15.887 11.273  11.953 -11.485 117
(0.708) (1.549) (-2.150)
UKLG1(83-88) -1.002 7.726 8.632 11.181 -8.728 114
(-0.181) (1.096) (-2.001)
UKLG2(88-98) 5.480 -2.399 7.215 10.919 7.880 460
(1.559)* (-0.494) ‘ (2.767)***
UKLG3(98-03) -1.502 0.491 5.684  6.001 -1.993 235
(-0.456) {0.123) (-0.785)
GER10YB(90-05) 3.955 0.204 4.886  5.941 3.751 456
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(continued)

Futures Buy Sell Buy Sell  Buy-Sell Rank
Market. Mean Mean S.D. S.D. Spread
(t-stat) (t-stat) (t-stat)
(2.385)*¥**  (0.083) (2.731)***
JAPJGB(86-05) 5.118 4618 6.517 12.627 0.499 298
(2.111)%*  (1.140) (0.240)
AUS3YGB(89-05) 1.718 -0.055 1.468 1.619 1.773 492
(3.690)%**  (-0.074) (4.501)%**
AUSI0YGB(84-05) 1.455 -0.117 1.456 1.718 1.108 471
(2.256)%*  (-0.202) (3.162)%**
CAN10YGB(90-00) 4.621 6.244 7.143  8.333 -1.624 234
(1.559)* (1.474) (-0.668)
CAN10YGB(00-05) 2.801 14.543 6.422 6.494 -11.743 35
(0.809) (2.165) (-1.134)
Panel C: 10/100/200-Day Moving Average System
US5YTN(88-99) 4.244 -0.013 4.339 4.628 4.257 482
(2.560)***  (-0.006) (3.138)***
US5YTN(00-05) 5.090 6.768 5.063 5.353 -1.678 254
(1.917)**  (1.145) (-0.693)
US10YTB(83-99)  7.665 0.811 8.992 10.598  6.853 456
(2.637)%**  (0.202) (2.908)***
US10YTB(99-05) 5.600 13.068 7.339 8.630 7.468 150
(1.398)* (1.583) (-2.072)
US30YTB(77-99) 8.696 -4.275 21.050 31.669 12.972 446
(1.180) (-0.493) (3.300)**
US30YTB(99-05) 0.794 13.130 11.083 12.889 -7.339 182
(0.910) (1.212) (-1.337)
UKLG1(83-88) 0.834 2.967 8.649 11.369 -2.123 247
(0.149) (0.399) (-0.475)
UKLG2(88-98) 3.999 0.268 7.343 10.831 3.731 407

continued next page
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Futures Buy Sell Buy Sell  Buy-Sell Rank
Market Mean Mean S.D. S.D. Spread
(t-stat) (t-stat) (t-stat)
(1.113)* (0.055) (1.039)
UKLG3(98-03) 0.011 -2.087 5.440  5.990 2.098 366
(0.003) (-0.544) (0.829)
GER10YB(90-05) 2.670 2.594 4.866  5.993 0.076 288
(1.594)* (1.054) (0.055)
JAPJGB (86-05) 6.250 5.298 6.594 11.459 0.952 317
(2.740)%** (1.336) (0.481)
AUS3YGB(89-05) 1.519 0.451 1.473 1.683 1.068 457
(3.194)¥**  (0.621) (2.684)%**
AUS10YGB(84-05) 1.103 -0.207 1416 1.782 1.310 478
(2.511)** (-0.351) (3.717)**x*
CAN10YGB(90-00) 4.206 3.376 7.075  8.453 2.830 387
(2.118)** (0.761) (1.158)
CANI10YGB(00-05) 1.448 - 17.190 6.422  7.140  -15.746 24
(0.405) (2.443) (-4.943)
”

** - gignificant. at 1 percent level, ** - sipgnificant, at 5 percent level, - * significant at 10 percent level



Volatility and Moving Average Profits

Results in Table 2.4 highlight the fact that technical profits have declined in recent
vears, as shown by the sub-period tests on US, UK and Canada futures contracts. Our
results are consistent with Ready (2002), Kidd and Brorsen (2004) and Olson (2004),
who all report findings that technical profits have decreased over time. For examnple,
Olson (2004) finds the moving average rule produces three percent annualized risk-
adjusted profit in the eighties, which declined to zero percent in the nineties. Similarly,
Ready (2002) finds the moving average rules in Brock, Lakonishok and LeBaron's
(1992) study on US DJIA had performed quite poorly after 1986.

A plausible explanation for this decline in profitability is the decline of the volatil-
ity of bond futures return itself. Recall that moving average system is a form of trend
following strategy, with nonlinear option-like payoff. (See, for example, Fung and
Hsieh (2001)) This means that trend following systems tend to perform better during
periods of high volatility. During periods of decreasing or low volatility, the abil-
ity of moving average system in generating significant returns is drastically reduced
because it generates too many small and unprofitable trades, a period known as whip-
saw. Pedersen and de Zwart (2004), for example, demonstrate that if the volatility
of an exchange rate series is low, then the moving average rule cannot generate high
profitability due to the absence of trends. They determine this result using a large

number of simulations. It is plausible that it might occur in our dataset.'?

To provide some evidence for this, Figure 2.4(a) plots the 50-day moving average
variance of the 30-year US Treasury bond futures return. It clearly shows that bond
futures returns have declined substantially since the volatile periods in the early
eighties and has remained very low for the last 10 years. Thus, trend following

systems exhibit lower profits recently.

To see further how volatility affects the trend following system profits, we fit the
geometric Brownian motion model to the US (1978-1999) futures returns and conduct
a number of simulation trials.?® For each volatility value (holding the drift parameter
constant), we simulate ten trials. Figure 2.4(b) shows the relationship between in-
creasing volatility and the possibility of higher moving average profits. As volatility

increases, the range of annualized returns from the 50-day moving average system

198kewness and kurtosis also have positive effects on trend following strategies, such as moving
average rule. This is due to the option-like feature of the nmoving average pavoff function.

20The geometric Brownian nmotion model is: dF, = puF, + o F;dW,. where W, is the standard
Brownian motion and F; is the futures price. To generate simulated prices, we first estimate the
drift and diffusion coefficients by maximum likelihood and the simulate prices using estimated drift
parameter value while varying the volatility parameter value.
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increases. Our point here is not to suggest that increased volatility will definitely
increase the profits from trend following trading rules. But increased volatility will
increase the probability of price trends occurring in the markets, and if the trend fol-
lowing trading system is able capture the trend correctly, then it will lead to higher
profits. Otherwise, higher volatility may just increases the chances of whipsaw and
reduces the profits of the trend-following systems. This can be seen in Figure 2.4(b),
an increase in volatility increases the possibility of generating large losses from the

moving average system.

Another possible explanation for the lower technical profits is due to a more ef-
ficient market. For instance, a recent study by Fong and Yong (2005) demonstrate
that even in a highly speculative bubble, such as the internet stocks during period
1998-2002, investors who use trend-following rules like moving average systems are
unable to earn statistically significant returns. Lo and Mackinlay (1999) suggest that
the widespread “statistical arbitrage” activities may have contributed to the lower
technical profits. Furthermore, the proliferation of the moving average system and
the a decrease in computer cost has made it harder for these systems to generate
significant returns since virtually every investors will use this tool. By the time a
price trend is properly defined, most traders may already taken a position and there
1s no additional impetus to carry the trend forward. As a result, the market retreats

in the opposite direction and the trader suffers a loss.?!

In short, we still cannot determine conclusively the vartables that cause the recent

decline in technical profits.

Next, Figure 2.5 shows the positive relationship between long memory effects and
moving average system profits. The slope in each figure depicts the relationship
between the R/S statistics in Table 2.3 (x-axis) and the annualized Buy-Sell return
in Table 2.4 (y-axis) for each trading system. The positive slope here captures the
observation that the more persistence the returns, the larger moving average system
profits. This positive relationship holds for all three moving average systems. In .
other words, the R/S statistic may be able to act as a form of filter that increases

the profitability of trend following systems. For example, if for anv subperiods one

21But it is perhaps unrealistic to presume that the traders have used the same technical system
unchanged over the last two decades. Traders have probably altered their techniques dramatically
over the sample period so as to adapt to the changing market conditions (such as decreasing volatility
and increase program trading), while the simple rules that we test here have been held constant
throughout. Barberis and Shleifer (2003) develop a model whereby investors categorise risky assets
into different styles and move funds among these styles in accordance to the relative performance
of each style. In other words, investors engaged in “style-chasing”. Teo and Woo (2004) provide
empirical evidence that confirm this fact in the US equity and mutual fund markets.
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estimate that the R/S statistic is low, then a counter trend technical rule will likely
to benefit than a trend following rule. But the cutoff point which determine how
‘low’ the R/S statistic should be before investors switch from trend following strategy
to counter trend strategy vary according to different markets. Moreover, even with
strong positive persistence, the technical profits vary according to the parameters
of the trading rule. The evidence in Figure 2.5 suggests that 1.200 is a reasonable
cutoff point for the three moving average systems, implying that as the R/S statistics
drop below 1.200, trend following traders might want to reconsider their position for
the next out-of-sample time period, either by switching to counter trend strategy or
reducing their capital commitments to trend following trading signals.??> Our results

here are consistent with the results given by Olszewski (1998, 2001).

Figure 2.6 provides some observations about the cumulative wealth effects of the
50-day moving average system over two sub-periods (1977-1999, 1999-2005). On the
left-hand scale is the wealth over time and on the right-hand scale is the futures
price. The initial wealth is assumed to be 100. It is striking how the moving average
profits can be consistent in the first period and become more volatile in the second
period. The same technical rule which is profitable in one period may generate losses
in the next period. This indicates that there is a need to recalibrate the trading
system to more recent data in order to avoid the problem of structural change in the
financial markets, changes that may render the trading systems ineffective in out-of-
sample trading. The procedure of varying the trading system’s parameters over time
is known as optimization in the markets. But whether this has any positive effect
on the performance of the trading system is still controversial. For example, Pardo
(1986) argues that because of the continuing changes in the financial markets, traders
must periodically check and re-optimize the trading systems as the markets evolve.?3
But Lukac and Brorsen (1989, p.58) empirically test the value of optimization and

refute the claim that optimization has any incremental value:

...there appears to be very little difference between any of the strategies,
again suggesting that the value of optimisation is very limited. Reop-
timization stratégy did not hurt the mean profits or performance from
the systems. But, the value of reoptimization strategies is less that what

many users of optimization expect.

Even the length of historical period to which we calibrate the trading system is

arbitrarily selected. For example, Lui and Mole (1998) find in their survey that the

22From Table 2.2, 1.223 is the value that separates between negative and positive persistence.

ZThere are other ways to improve the trading results. For example, Ilmanen and Sayood (2002)
suggest the following ways to increase trading profits, such as smarter indicator weightings, adding
new predictors, improving breadth by adding new trading rules, or smarter ways of combining trades.
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most common length of historical period used by foreign exchange dealers in Hong
Kong is 12 months. But financial markets evolve over time and so do the optimal
moving average parameters. Traders with a short trading horizon will prefer a shorter

historical calibration period, and vice versa.

It is noticeable from 2.6(b) that even though the trading system may be able
to produce substantial profits at some point in the past, the drawdown value may
be unacceptable to many investors.?! The issue here is how we can incorporate
appropriate risk management techniques into the trading system to avoid giving back
all these profits when the system fails. For instance, one needs to mmimize the capital
commitments when the position is suffering losses. Reducing the size of positions
during losses ensures that the fund does not deplete its capital holding onto losing
position, a crucial tactical move in light of the daily marking-to-market procedure
in futures markets. The other method for improving method is to devise trading
systems that capture only trends and ignore the whipsaws. For example, adding filters
to the moving average system, such as price or time filter, may reduce unprofitable
and marginal trades.?> Another technique is the usage of stop-loss orders. While
the simpler part is placing these stop-loss orders, the more difficult part is knowing
where to place the stop-loss orders. From the technical analysis perspective, there is a
number of potential choices, such as putting the stop-loss on major support /resistance
level, round numbers, trendlines, previous high/close/low prices, and on significant

retracement level, possibly based on Fibonacci ratio or Elliot Wave.26

Even with these measures, trend following systems may not always necessarily
be profitable. This is because in actual trading, human biases complicate matters.
For example, taking losses during whipsaws is an action that traders tend to avoid.
Consequently, this resulted in larger losses and smaller profits over time. See, for

example, Shefrin and Statman (1985) for a description of this disposition effect and

24Under the Commodity Futures Trading Commissions’ (CTFC) mandatory disclosure rules, man-
aged futures advisors are obliged to disclose this drawdown figure. How useful this figure for potential
investors in evaluating traders is still debatable. For a discussion on the drawdown issue, see, for
example, Acar and James (1997).

25From the perspective of technical analysis, a marginal trade is a trade that has poor risk-reward
ratio. This risk-reward ratio depends on two elements: (1) Price objective, and (2) A subjective
probability on whether the current price will reach this price objective in the future. Depending on
the trading system that one is using and their risk appetite, the recommended risk-reward ratio is
usually 3-1 or more. See Pring (1992) and Kaufmann (2005).

26 A support level is an area where prices reverse its downward movements and a resistance level is
an area where prices meet opposition to a further rise. The support and resistance lines are usually
drawn horizontally. Trendlines are slanted support/resistance level. See, for example, Edwards and
Magee (1966). Empirically, Osler (2003) finds that there is a clustering effect on predictable support
and resistance levels in the currency markets and prices tend to reverse at these levels. Furthermore,
price trends are usually more rapid after crossing these levels. This strongly suggests that currency
traders do place trading orders according to the technical indicators. See also Osler (2000).
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Odean (1998) for some empirical evidence. Recently, Coval and Shumway (2005)
collect some trading results from CBOT traders and find that CBOT traders become
more risk-seeking and aggressive in setting prices in the afternoon session if they had
suffer losses in the morning trading session. Such behaviors may cause the traders
to frequently override trading signals from technical system or over-leverage their
position. It will be an interesting avenue for future research on how human biases

will affect technical trading profits.
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Figure 2.5: Long Memory and Trend-Following Trading System Profits. The x-axis

is the R/S statistic and y-axis is the Buy-Sell Spread statistic.
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2.4.2 Results from White’s Reality Check

We now discuss the empirical results from applying White's Reality Check to bond
futures. The performance results of the best trading system for each futures contract
are reported in Table 2.5, along with White's Reality Check p-value, the nominal
p-value and the best technical system. The nominal p-value is the result of applying
the hootstrap methodology to the best trading rule only, thereby ignoring the effects
of data mining. In other words, the difference between these two p-values represents
the magnitude of data snooping on the performance measure f;. In the last column

in Table 2.5 is the number of trades recorded for the best trading system.

The results show that the annualized mean return for the best technical trading
system varies substantially across markets, from 1.039 percent (Australia 10-Y) to
18.192 percent (US 30-Y, 1977-1999). A number of the best trading systems come
from the triple moving average with time filter. Thus, adding the time filter seems
to improve the profitability of the moving average trading system. For the US 5-Y
T-Notes futures (1999-2005), US 10-Y T-Bond futures (1999-2005) and UK long-gilts
futures (1988-1998), the best rule is the dual moving average, while for Canadian
10-Y futures (1990-2000) the best rule is the 5-day single moving average. A number
of futures contracts display p-values above the 10 percent significant level (> 0.10),
indicating that the best technical system does not perform better than the null bench-
mark. For example, such as the Australia 10YGB (1984-2005), where the p-value is
statistically insignificant at 0.228. This result is contrary to the preliminary results
discussed earlier, where we find that Australia 10YGB has significant buy-sell test

statistic for all three moving average systems.

On the other hand, the futures contracts that reject the null hypothesis (2.12)
include the US 5-Y (1988-1999), US 10-Y (1983-1999), US 30-Y (1977-1999), Germany
Bund futures, Australia 3-Y and Canada 10-Y (1990-2000). This shows that the best
technical trading system has genuine value to traders for these markets even after

accounting for data snooping effects.

A comparison between the nominal p-values and White’s p-values show a large
difference between them. All nominal p-value indicates that the best trading system is
statistically significant among the 500 bootstraps since all nominal p-values are below
0.10. This indicates data snooping effects are important and affects the conclusion
about the profitability of technical trading system. For example, the UK long gilts
futures (1983-1988) contract has.a nominal p-value of 0.000. Taken at face value,
this means that the triple moving average with time filter system is statistically

significant at 1 percent and we can reject the null hypothesis (2.12). However, once
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we employ White’s procedure to account for data snooping effects, the p-value rises
to 0.298, clearly refuting the earlier conclusion. A similar pattern appears in other

bond futures markets,

Furthermore, we notice that the White’s p-values are consistently higher in recent
periods than earlier periods. Recall that we discussed about a decrease in the prof-
itability of the moving average system in recent periods in the previous section. This
fact, apparently, appears here. An example of this decline is given by UK long-gilts fu-
tures for the three subperiods (1983-1988,1988-1998,1998-2003), where the best mean
annualized return are 10.435 percent, 6.796 percent and 4.819 percent respectively, a
marked decline of more than 50 percent. We conjecture that this lower profitability
may have resulted in higher White’s p-values. A contradiction to this hypothesis is
shown by US5YTN, where the White’s p-value are much higher for US5YTN (1999-
2005) than USS5YTN (1988-1909) even though the mean returns is higher as well.

Thus this evidence may rule out the explanation that lower returns increase p-values.

How do our results here fared as compared to other asset classes? In STW,
they obtain White’s p-value to be 0.000 for DJIA over 100-year period (1897-1986).
However, in the out-of-sample test using S&P 500 futures over period 1984-1996, they
obtain White’s p-value to be 0.90 even though the best mean return is 9.4 percent
per annum. They claim that technical trading systems provide no useful value to
traders over the more recent period, thus refuting Brock, Lakonishok and LeBaron’s
(1992) earlier claim that technical rules have value to investors. In another test,
Sullivan, Timmermann and White (2001) find White's p-value to be 0.243 for DJIA
for the best calendar rule and 0.874 for the out-of-sample tests, again showing the
best calender rule is unable to beat the benchmark. On the contrary, Qi and Wu
(2001) find White’s p-value to be zero for seven currency pairs, was able to reject
the null hypothesis (2.12) after including transaction costs. Recently, Hsu and Kuan
(2005) apply White's Reality Check to NASDAQ and Russell 2000 Index and find
the hest trading system be statistically significant (p = 0.00) with annualized returns
of 39.19 percent and 47.10 percent respectively. Most of these studies find the best

rule to be the moving average system.

It is interesting that the results for the White’s test vary so much across different
markets. For future research, it would be interesting to find out why the null hypoth-
esis (2.12) are rejected in some asset classes and not others. Kho (1996, p.287), for
example, pinpoints the source of technical profits in currency markets to the time-

varying risk premium and conclude that:
Periods of higher or lower returns identified by the technical rules largely
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correspond to those of higher or lower conditional expected returns, due to
high or low risk premia and volatility. Thus, large parts of the technical
rule profits are a natural consequence of time-varying risk premia and

volatility.

This finding strengthens Fan'la’s»(l‘)‘()l) argumment that market efhiciency does not
preclude a degree of forecastability due to time-varying risk premia. More recently,
Mifre (2002) also finds that commodity futures exhibit time-varving risk premia when
testing the performance of abnormal returns with a number of economic factors. For
bond markets, llmanen (1995) analyzes the predictability variation in the monthly
excess return of long-term government bonds over period (1978-1993) in US, UK,
Germany, Japan, France and Canada with four economic factors, which are inverse
relative wealth, bond beta, term spread and real bond yield. What he finds is that
these variables can forecast international bond returns to some extent, and conse-
quently, dynamic trading strategies can exploit these return predictability and earn
annualized excess return between 3 to 8 percent. Without a complete macro-economic

model, we cannot determine the origins of the time-varying profits in our tests here.
27

An important issue when evaluating technical trading systems is assessing the
effects of transaction costs on trading profits. From the number of trades given
by the preliminary moving average trading systems, (See Column 10 of Table 2.4),
it is evident that the number of trades is relatively low. For example, US 30-Y
T-Bond futures (1977-1999) produces a total of 354 trades over the last 22 years,
which is equivalent to 1.34 trade per month. Australia 10-Y futures (1984-2005) has
an equivalent of 1.5 trades per month for 21 years. A characteristic of the moving
average rule is that the number of trades are not evenly spread throughout the sample
period. For instance, when the bond futures prices are trending, the trading signal
can remain unchanged for as long as a year. When the market enters into a choppy
period, the number of trades rises quickly and some trading signals can be as short

as a day.

Table 2.6 presents the Reality Check results with transaction costs. Since it is

difficult to estimate the exact lustorical transaction costs. we assume two cost values.

27If investors are rational, then the bond return predictability captured by trading systems will be
a result of time-varying bond risk premiums. This implies that bond returns are high when bonds
returns command high risk premiums. In particular, high risk premiums come from (i) Highly risk-
averse investors or (ii) Bonds are deemed to be very risky. Empirical tests of bond asset pricing
model iricludes Campbell, Kazemi and Nanisetty (1999). However, since we cannot ohserved directly
on the expectations of these investors, we can never know to what extent bond risk premiums reflect
the time-varying risk premiums or systematic forecast errors. Some studies employ the survey-type
study to proxy for the market’s expectations. See, for example, Froot (1989).
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Panel A display the results assuming cost of 0.25 percent per transaction while panel
B show the results assuming cost of 0.5 percent per transaction. This assumed trans-
action costs will not be very accurate for several reasons. First, transaction costs
vary across market participants.?® Second, transaction costs vary across different fu-
tures markets. Third, transaction costs vary across different times, especially during
market stress. For example, Fleming (2004) explores the relationship of the bid-ask
spread in the US treasury market using tick data. He finds that the liquidity (as
proxied by the spread) increased heavily during the market stress, such as the equity
market decline in October 1997, LTCM'’s collapse in 1998, and the market disruption
around Treasury’s quarterly refunding in February 2000. He finds variables such as
quote size, trade size on-/off-the-run spread are only modest proxies for liquidity.
The basic Reality Check results in Table 2.5 provide us with some estimates on the
breakeven costs. For example, for US 30YTB(1977-1999) over a period of 21 years,
the best mean return is 18.19 percent with 628 trades recorded. The breakeven costs
is thus (18.19 x 21)/628 =~ 0.61 percent. This figure may be too high to reflect the
actual costs.?? For bond markets, transactions costs further varies with the age and

size of the bonds.%

Table 2.6 shows that the best trading system with transaction costs are similar
to previous results without transaction costs. Moreover, the mean returns are not,
drastically reduced by transaction costs. For example, most of the previously signif-
icant p-values previously are still significant even after 0.5 percent transaction costs
are added, while the contracts that have insignificant p-values have only marginally
higher p-values than without transaction costs. The only exception is Bund futures
contract, which generated statistically insignificant p-value after transaction costs are
included. Its basic White’s p-value is 0.082, rising to 0.084 after 0.25 percent cost are
added and 0.134 after 0.5 percent costs are added.

One possible reason to that fact that transaction costs have no major impact on

the baseline results is due to the low number of trades from the best trading system.

2Gweeney (1988), for example, studies the profitability of filter rules on 30 Dow Jones stocks
and find that the profits vary across rarket participants. Floor traders can generate substantial
profits with the filter rules, while institutional money managers can only break-cven. Other investors
outside this group generate losses.

29For example, Chakravarty and Sarkar (2003) examine the transaction costs in three US bond
markets. They find that the mean daily bid-ask spread per $100 par value is 23 cents [or municipal
bonds, 21 cents for corporate bonds and 8 cents for Treasury bonds. For bond futures markets,
this spread is arguably lower due to greater competition. For example, a common bid-ask spread
estimate by CBOT is one sixty-fourth of a point — $15.625 on a $100. 000 transaction.

30For example, Alexander, Edwards and Ferri (2000) and Sarig and Wara (1989) find younger
corporate bonds are more actively traded and Babbel et al. (2004) show that on-the-run Treasury
bonds have smaller spreads. Moreover, credit ratings can also affect the size of bid-ask spread.
Different securities have inherently different liquidity and therefore bid-ask spread.
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For example, there are only four trades recorded for both US5YTN (1999-2005) and
USI0YTN (1999-2005) over a period of six years. Consequently, adding 0.5 percent

transaction costs is likely to reduce only a tiny fraction of the mean returns.

Table 2.7 summarizes the results on the best trading rules under the Sharpe ratio
criterion, which evaluate the superiority of the best trading rule with the average
excess returns per unit risk. Unlike Qi and Wu (2001), some of the best trading sys-
tems are different to the ones given by the mean return criterion. For example, the
best trading rule for US30YTB (1977-1999) is the mean-reverting price distribution
system rather than the triple moving average system. The majority of the p-values
that are statistically significant under the mean return criterion is also significant
under the Sharpe ratio criterion. An interesting observation is that for Bund and
JGB futures, the p-value for the mean return criterion is 0.082 and 0.650 respectively.
But the p-value for the Sharpe ratio criterion has changed to 0.242 and 0.032 respec-
tively, a switch in statistical significance. An explanation for this change in statistical
significance may be due to the relatively low capital costs in Japan, which resulted

in higher Sharpe ratio and lower p-values than Bund futures.

The overall conclusion from the White’s tests reflects the preliminary empirical
results documented earlier. One, there are technical trading systems that seem to have
genuine value to investors from a universe of 7,991 trading rules. This can be seen by
the statistically significant p-values for both mean return and Sharpe ratio criterion
that reject the null hypothesis that best trading rule cannot beat the null benchmark.
Furthermore, the addition of transaction costs did not change this conclusion since
there was only a marginal increase in the p-values. Two, we also find that the p-
values are higher in recent periods, which carry the implication that technical rule
has less investment significance to investors for this sample period. However. the

Reality Check procedure cannot determine the reason behind this cause.
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Table 2.5: Best Trading System and Mean Return Criterion. Column 2 is the mean return from
the best rule. Column 3 and 4 is the p-value from the nominal (apply bootstrap once) and White’s
p-value. Column 5 is the best trading system while Column 6 is the number of trades.

Bond Futures Mean Nominal White's Best Performing Technical Trading Number of
Contracts Return  p-value  p-value System Trades
US5YTN(88-99) 5.0082  0.000 0.004  Triple MA Time Filter (20,150,200,4) 26
US5YTN(00-05) 6.6583  0.002 0.162  Dual MA (200,250) 4
US10YTB(83-99) 7.8770  0.000 0.072  Triple MA Time Filter (20,125,250,4) 58
US10YTB(99-05) 9.2505  0.002 0.114  Dual MA Time Filter (200,250,3) 4
US30YTB(77-99) 18.1924  0.000 0.030  Triple MA Price Filter (5,15,25,0.001) 628
US30YTB(99-05) 10.1001  0.004 0.958  Triple MA (10,15,50) 112
UKLG1(83-88) 10.4257  0.000 0.298  Triple MA Time Filter (5,10,20,4) 88
UKLG2(88-98) 6.7960  0.010 0.700  Dual MA Price Filter (100,150,0.005) 6
UKLG3(98-03) 4.8186  0.032 0.998  Triple MA Time Filer (20,25,30,5) 52
GER10YB(90-05) 4.1788  0.002 0.082  Triple MA Time Filter (10,100,200,4) 62
JAPJGB(86-05) 7.3889  0.014 0.650  Triple MA Price Filter (5,20,60,0.001) 269
AUS3YGB(89-05) 1.5071  0.000 0.022  Triple MA Time Filter (5,30,75,3) 142
AUS10YGB(84-05) 1.0386  0.000 0.228  Triple MA Time Filter (20,25,100,2) 247
CAN10YGB(90-00)  9.5727  0.000 0.000  Single MA (5) 602
CANIOYGB(00-05) 6.8299  0.002 0.456  Triple MA Price Filter (5,20,25,0.005) 41
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Table 2.6: Best Trading System and Mean Return Criterion with Transaction Costs. We apply two
transaction costs values: 0.25% and 0.50%.

Bond Futures Mean Nominal White’s Best Performing Technical Trading Number of
Contracts Return  p-value  p-value System Trades
Panel A: One-way Transaction Cost = 0.25 percent
US5YTN(88-99) 5.0022  0.000 0.000  Triple MA Time Filter (20,150,200,4) 26
US5YTN(00-05) 6.6583  0.002 0.174  Dual MA (200,250) 4
US10YTB(83-99) 7.8681  0.000 0.048  Triple MA Time Filter (20,125,250,4) 58
US10YTB(99-05) 9.2481  0.004 0.166  Dual MA Time Filter (200,250,3) 4
US30YTB(77-99) 18.1210  0.000 0.028  Triple MA Price Filter (5,15,25,0.001) 628
US30YTB(99-05) 10.0441  0.012 0.952  Triple MA (10,15,50) 112
UKLG1(83-88) 10.3859  0.002 0.346  Triple MA Time Filter (5,10,20,4) 88
UKLG2(88-98) 6.7943  0.006 0.730  Dual MA Price Filter (100,150,0.005) 6
UKLG3(98-03) 4.7954  0.030 0.996  Triple MA Time Filer (20,25,30,5) 52
GER10YB(90-05) 4.1682  0.002 0.084  Triple MA Time Filter (10,100,200,4) 62
JAPJGB(86-05) 7.3490  0.022 0.696  Triple MA Price Filter (5,20,60,0.001) 269
AUS3YGB(89-05) 1.4829  0.000 0.008  Triple MA Time Filter (5,30,75,3) 142
AUS10YGB(84-05)  1.0072  0.004 0.244  Triple MA Time Filter (20,25,100,2) 247
CANI0YGB(90-00) 9.4269  0.000  0.000  Single MA (5) 602
CANI10YGB(00-05) 6.8130  0.000 0.440  Triple MA Price Filter (5,20,25,0.005) 41
Panel B: One-way Transaction Cost = 0.50 percent
US5YTN(88-99) 4.9963  0.000 0.002  Triple MA Time Filter (20,150,200,4) 26
US5YTN(00-05) 6.6583  0.006 0.174  Dual MA (200,250) 4
USI0YTB(83-99) 7.8592  0.000 0.046  Triple MA Time Filter (20,125,250,4) 58
US10YTB(99-05) 9.2458  0.002 0.142  Dual MA Time Filter (200,250,3) 4
US30YTB(77-99) 18.0495  0.000 0.036  Triple MA Price Filter (5.15,25,0.001) 628
US30YTB(99-05) 9.9881  0.022 0.946  Triple MA (10,15,50) 112
UKLG1(83-88) 10.3462  0.006 0.382  Triple MA Time Filter (5.10,20,4) 88

continued next page
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(continued)

UKLG2(88-98)
UKLG3(98-03)
GER10YB(90-05)
JAPJGB(86-05)
AUS3YGB(89-05)
AUS10YGB(84-05)
CAN10YGB(90-00)
CAN10YGB(00-05)

6.7926
4.7721
4.1576
7.3091
1.4587
0.9759
9.2812
6.7960

0.004
0.040
0.006
0.010
0.000
0.006
0.000
0.006

0.740
0.998
0.134
0.728
0.024
0.350
0.000
0.480

Dual MA Price Filter (100,150,0.005)
Triple MA Time Filer (20,25,30,5)
Triple MA Time Filter (10,100,200,4)
Triple MA Price Filter (5,20,60,0.001)
Triple MA Time Filter (5,30,75,3)
Triple MA Time Filter (20,25,100,2)
Single MA (5)

Triple MA Price Filter (5,20,25,0.005)

52
62
269
142
247
602

41
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Table 2.7: Best Trading System and Sharpe Ratio Criterion

Bond Futures Sharpe Nominal White’s Best Performing Technical Trading Number of
Contracts Ratio p-value p-value System Trades
US5YTN(88-99) 0.0717 _ 0.001 _ 0.002 Triple MA Time Filter (20,150,200,4) 2
US5YTN(00-05) 0.0807  0.000 0.404  Dual MA (200,250) 4
US10YTB(83-99) 0.0527  0.000 0.048  Triple MA Time Filter (20,125,250,4) 58
US10YTB(99-05) 0.0757  0.004 0.388  Dual MA Time Filter (200,250,3) 4
US30YTB(77-99) 0.0440  0.000 0.024  Price Distribution Mean Reverting (8,30,0.01) 297
US30YTB(99-05) 0.0763  0.000 0.418  Price Distribution Mean Reverting (15,10,0.01) 131
UKLG1(83-88) 0.0820  0.000 0.068  Price Distribution Mean Reverting (50,200,0.000) 13
UKLG2(88-98) 0.0522  0.002 0.766  Price Distribution Trend-Following (8,75,0.0075) 518
UKLG3(98-03) 0.0936  0.000 0.396  Price Distribution Mean Revering (7,90,0.000) 75
GER.10YB(90-05) 0.0482 0.000 0.242  Triple MA Time Filter (10,100,200,4) 60
JAPJGB(86-05) 0.0568  0.000 0.032  Price Distribution Trend-Following (20,7,0.025) 696
AUS3YGB(89-05) 0.0626 0.000 0.012  Triple MA Time Filter (5.30,75,3) 142
AUSI0YGB(84-05) 0.0423 (.002 0.174  Triple MA Time Filter (20,25,100,2) 247
CANI10YGB(90-00) 0.0770 0.000 0.000  Single MA (5) 602
CANIOYGB(00-05) 0.0754  0.003 0.486  Price Distribution Mean Reverting (30,15,0.005) 107




2.4.3 Data Mining Effects

Figure 2.7 to 2.14 shows the White’s p-value as a function of the trading strategy.
Each figure demonstrates how the effects of data mining may propagate over the
number technical trading systems. The sequential ordering of the technical rules is
unimportant since only the terminal value of the highest mean return and the terminal
Reality Check p-value matter to our final assessment. (See STW for more details).
All figures include the sequentially updated highest mean return (thin black line, with
corresponding left-hand scale), the annualized mean return from each strategy (dots,
with corresponding left-hand scale) and the White’s p-value (thick black line, with

corresponding right-hand scale).

For US markets, there are two distinct phases of White’s p-value, pre- and post-
1999. In pre-1999, the White’s p-values are generally smaller and below 0.01. But
post-1999 period produces higher White’s p-values. It is interesting to see how the
effects of data mining enters into the evaluation procedure. When additional trad-
ing systems do not lead to an improvement over previously best performing trading
system, the p-value for the null hypothesis (2.12) that the best model does not outper-
form the benchmark increases. This accounts for the fact that the best rule has been
selected from a large universe of trading system. This can be seen in the post-1999
period. For example, the US30YTB (1999-2005) has a p-value below 0.600 at model
200. But the p-value rises steadily while we évaluate more trading rules. At model
4,500 until 7,991, the p-value stays above 0.900, which reject the null hypothesis
(2.12).

For UK, the effects are similar. White’s p-values generally increase faster in recent
sub-periods, implying that the value of technical trading system decreases overtime.
For example, the White p-value rises fairly slowly in the period 1983-1988, especially
after trading system 4,500. For subperiod 1988-1998, the p-value shows a steady
increase throughout the evaluation until model 4,500. For the subperiod 1998-2003,
the p-value stays near 1.0 for nearly all the trading systems, dipping occasionally

when there is a new maximum mean return.

On the other hand, Bund futures shows significant p-value throughout all tech-
nical systems. As seen from Figure 2.12, an improvement over the previously best-
performing system results in a drop in the White's p-values. For JGB futures, how-
ever, it seems that the economic value of trading systems is low after considering the
universe of trading systems. The results for Australia futures are consistent with the
preliminary results shown earlier. The White’s p-values are consistently low through-

out the technical systems, especially for 3-Y futures. Lastly, the Canadian futures
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over period (1990-2000) shows that the White’s p-value is effectively zero for all strate-
gies. This is because the best rule for this market is the first system we evaluate.
For Canadian futures (2000-2005), the p-value generally drops when a new maximum
mean return emerge, and rises slowly after no new maximum mean return is found.

This result is consistent with the earlier observations.

Moving onto the Sharpe ration criterion, Figure 2.15 to Figure 2.22 display the
p-value for the Sharpe ratio criterion over 7,991 trading systems. Similar to the mean
return criterion, the thin line is the maximum Sharpe ratio and the thick black line is
the p-value for each system. Each dot represents the Sharpe ratio from each trading

strategy.

The effects of data snooping described earlier can also be seen from these figures.
For example, the US30YTB (1999-2005) shows the p-values increases steadily from
model 200 to model 4500. After which, an increase in the maximum Sharpe ratio
causes the value of p-value to decrease substantially from more than 0.90 to less that
0.50. Such effects are also exhibited by other contracts. By comparing the maximum
Sharpe ratio and the maximum mean return, it is noted that some of the best trading
system for the mean return criterion is different to the Sharpe ratio criterion. For
example, the best trading rule underlying the best mean return for US30YTB (1999-
2005) is the Triple moving average with time filter. while the best rule for the highest.
Sharpe ratio criterion is price distribution system. What this implies is that even
though the triple moving average system gives the highest mean return, it may not

necessarily has the highest excess return per unit risk.

Recently, Hansen (2005) argues that including poor performing trading rules into
White’s (2000) Reality Check procedure may erode its statistical power. Hansen
develops an alternative procedure known as the superior predictive ability (SPA)
procedure that reduces this problem. In Hansen, Lunde and Nason (2005), they
use this procedure to re-examine the calender effects investigated by STW (2001)
and find contrary evidence to STW (2001). They conclude that calender effects are
statistically significant in a number of markets, even though they find the calendar
effects have diminished since later 1980s. It will be for a work for future research in

implementing the SPA procedure in the bond futures markets.
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Figure 2.8: Best Trading System and Mean Return Criterion: US 10-Year T-Bond
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Figure 2.9: Best Trading System and Mean Return Criterion: US 30-Year T-Bond
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Figure 2.11: Best Trading System and Mean Return Criterion: UK Long Gilts
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rading System and Mean Return Criterion: Bund and JGB

Figure 2.12: Best
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Figure 2.13: Best Trading System and Mean Return Criterion: Australia Bond
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Figure 2.14: Best Trading System and Mean Return Criterion: Canada Bond
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Figure 2.15: Best Technical Trading System and Sharpe Ratio Criterion: US 5-Year
T-Note. The dots are the Sharpe ratio from each trading rule (left scale). The thin
line is the best rolling Sharpe ratio (left scale) and the thick line is White's p-value

(right scale).
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Figure 2.16: Best Technical Trading System and Sharpe Ratio Criterion: US10-Year

T-Bond
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Figure 2.17: Best Technical Trading System and Sharpe Ratio Criterion:

T-Bond

US 30-Year
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Figure 2.18: Best Technical Trading System and Sharpe Ratio Criterion: UK Long

Gilts (LG)
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Figure 2.19: Best Technical Trading System and Sharpe Ratio Criterion: UK Long
Gilts (LG) (continued)
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Figure 2.20: Best Technical Trading System and Sharpe Ratio Criterion:
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Figure 2.21: Best Technical Trading System and Sharpe Ratio Criterion: Australia

Bond
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Figure 2.22: Best Technical Trading System

and Sharpe Ratio

Criterion: Canada
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2.5 Conclusion

This chapter evaluates the profitability of technical trading systems in the fixed in-
come derivatives markets, namely, the bond futures markets, across six markets. For
preliminary investigation, we test the profitability of three moving average systems.
The results shows some promising results. We find that the single 50-day moving
average system is statistically profitable in a number of futures markets. This lead

us to further examine more trading systems.

In the second part of our examination, we evaluate 7,991 trading systems. The
universe of trading systems include the moving average, breakout, volatility and price
distribution systems. Moreover, we employ White's Reality Check procedure to ac-
count for the possibility of data mining. By using the highest trading system return
and comparing it with the maximum sorted bootstrapped empirical returns, this

procedure ameliorates the danger of data mining.

Overall, we find that some bond futures contracts exhibit statistically significant
returns, which led us to reject the null hypothesis that trading system has no value
to bond investors. For example, we find US30YTB (1977-1999) produces annualized
mean returns of 18.12 percent after transaction costs, and with statistically significant
p-value. However, White’s Reality Check does not explain why some contracts have
more statistically significant returns than the rest. On a broader perspective, it does
not explain why some asset class are more profitable than others. For example. Qi
and Wu (2001) find that technical trading systems are statistically significant in the
currency markets while STW argue that the equity markets are more efficient. using

the same procedure. More research is required to address this difference.

Our results also highlight the possibility that technical trading systems have be-
come less profitable in recent periods. This is shown by both moving average tests
and Reality Check results. This finding is consistent with the results from a num-
ber of recent studies that find lower technical profits in currency and equity markets.
However, whether this due to a more efficient financial market is vet to be determined.
Some researchers have suggested that this unprofitability is due to lower volatility in
asset prices. This is a plausible explanation since the number of discernable trends
in asset prices is lower when the volatility is low. As most trading systems belongs
to trend following (such as moving average rule), this may cause these systems to be

unprofitable.

Returning to the issue on whether trend following sfr‘atégtgies can profitably exploit

the trends in interest rates, the answers are mixed. Although trends exist in policy
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rates, these trends may not map directly to the longer-maturity bond futures markets
because of market noise. These noise give rise to noisy trading signals that cause the
trend following signals to be unprofitable. Because of this, we argue that adjustments
to the trading systems are needed in order to capture the trends, such as adding
risk and capital managements techniques to the trading systems. One interesting
question for future research is to examine the informational content of policy rates
on the technical profits, whether movements in policy rates will have any impact on
technical profits. For example, LeBaron (1999) finds that central bank interventions

are associated with high technical profits in the currency markets.

In conclusion, our results here indicate that technical trading systems may provide
some value to bond traders. But in view of the data mining problem and time varying
technical profits, we argue that a consistently profitable technical systemn that provide
genuine value to traders is quite difficult to uncover. We do not suggest that it is
not possible to do, as we have argued in Chapter 1. But with an ever advancing
technology and increasing speculative capital roaming the global capital markets in

search for profits, this task will become immeasurably harder over time.
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Chapter 3

An Empirical Investigation of
Technical Charting in the Bond
Markets

3.1 Introduction

Chart analysis is the cornerstone of téchnical analysis. Unlike the technical trading
systems analysed in Chapter 2, technical chart patterns are more subjective and open
to varied interpretations. This makes unanimous identification of chart patterns prob-
lematic. According to Efficient Market Hypothesis (EMH), technical chart patterns
should not be consistently profitable over time, as Jegadeesh (2000. p.1766) points

out:

Perhaps the most important reason why charting techniques have not been
more widely accepted is that they are built on weak foundations. For
instance, chartists believe that selected patterns in the history of stock
prices tend to repeat. However, there does not seem to be a plausible

explanation as to why these patterns should indeed be expected to repeat.

In this Chapter, we investigate the informativeness of technical patterns in the
bond markets. It is claimed that the yields of fixed income securities appear to contain
repetitive patterns over time, and to be able to take advantage of these recurring
patterns, fixed income traders may need to understand the technical behavior of
bond yields. Thus, bond yields and bond vield spreads present a new and interesting
application of technical charting. In particular, we wish to answer the following
consequential questions: (i) Do technical chart patterns exist in the l;)oncl yield and

bond yield spread markets? and (ii) If they do, can bond and relative value traders
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exploit these chart patterns in any way? Our results will have important implications
for EMH since the government bond market is one of the most competitive financial
markets, a characteristic which ensures that any anomaly which contributes to excess

returns will disappear fairly quickly.

To answer the above questions, we apply and extend the pattern recognition tool
proposed by Lo, Mamasky and Wang (2000, thereafter LMW) in identifying various
chart patterns commonly prescribed by technical analysts. The main statistical tool
they proposed is the nonparametric kernel regression, which has been used in the
fixed income markets to construct the cross-sectional yield curve and to estimate
stochastic interest rate models.! By framing the chart patterns in such a way that is
recognizable by the kernel regression, LMW were able to use the nonparametric kernel
regressions to match a number of pre-defined technical chart patterns and therefore
identify patterns like Head-and-Shoulders with ease. The key contribution of their
work is automating the process of identifying chart patterns in stock prices. In this
Chapter, we improve upon the nonparametric Nadaraya-Watson kernel regression
proposed by developing the local polynomaial regression, which is known to ameliorate

several biases embedded in the Nadaraya-Watson regression.

There are many types of trading strategies in fixed income markets. The most
straightforward trading strategy is directional trades, which bet on the direction of
the interest rates. (See Chapter 2) Another prominent strategy is the spread strategy,
which belongs to the relative value strategy. An example of the relative value strategy
is the swap spread strategy between interest rate swaps and government securities, a
popular relative value trade among hedge funds and proprietary desks of institutional
imvestors. Other examples of bond spreads include the yield spreads between different
maturities along the same yield curve, or between the spreads between mortgage-

based securities (MBS) and US Treasuries.?

However, most analyses of these spreads depend either on fundamental factors or

quantitative models. For instance, one popular method used to measure the relative

! Nonparametric statistical methods have the attractive feature of being distribution-free, thereby
avoiding any specification bias. For yield curve construction, Tanggaard (1992) compare the cross-
sectional vield curve constructed using Nelsen-Siegel (1987) method and nonparametric kernel re-
gression. They find the latter method provides a good fit to the yield data. See Gourieroux and
Scaillet (1994) and Linton et al. (2001) for further advances in this area. On the other hand,
Ait-Sahalia (1996), Stanton (1997) and Johannes (2004) develop various nonparametric statistical
methods to estimate the continuous-time interest rate model.

2See, for example, Duffic and Singleton (1997) and Brown, In and Fang (2002) for some empirical ___

analysis of the swap spreads. Another popular spread strategy is the TED spread, which is the
spread between the US Treasury Bills and Eurodollar. See Fung and Hsieh (2002) for some analyses
of different types of fixed-income spread returns.
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cheapness of LIBOR-based swap spread is the so-called rich/cheap analysis, which is
based on contemporaneous market variables such as the implied volatility of S&P 100
index and yield curve slope. (See, for example, Prendergast (2000)) The quantitative
method approach in analysing bond spread include the contingent claim models de-
veloped by Merton (1974) and Black and Cox (1976). (See, for example, Duffie and
Singleton (2003) for a comprehensive review of these models.) In this chapter, we
take another route by analyzing the bond yields and bond yield spreads via technical

chart patterns.

We apply the nonparametric Nadaraya-Watson and local polynomial regressions
to seven government bond markets, including US, UK, Germany, Japan, Australia,
Canada and Hong Kong. The availability of bond yield data varies according to the
sophistication of the respective debt markets. For example, the US bond yield data
starts from 1962 while the Hong Kong bond vield begins only in 1992. In total, we
evaluate twelve chart patterns, including Head-and-Shoulders, Broadening, Triangle,

Rectangle, Double and Triple chart patterns.

The rest of this chapter is as follows: The next section provides a brief review
of the technical charting literature. In the first part of Section 3.3, we briefly de-
scribe the nonparametric kernel regression and the local polynomial regression. In
the second part, we provide the characterization of various chart patterns. Section 3.4
discusses the bond yield data and statistical tests underlying our examinations of the
informativeness of chart patterns. Next, Section 3.5 presents the empirical evidence.

Lastly, Section 3.6 concludes.

3.2 Literature Review on Technical Charting

There are many types of charts available to investors, including bar charts, line charts,
point-and-figure charts and candlestick charts. Bach type of chart has different in-
terpretations of the asset prices and therefore different trading implications.? In this

Chapter, we shall mainly analyse line charts and the patterns within themn.

Chart patterns have been known to investors for a long time. (See Shabacker
(1930) and Edwards and Magee (1966)) The advent of modern technology such as

3Historically, rice traders in Japan was the first to introduce the cendlestick chart. (Nison (1991))
Recently, Marshall, Young and Rose (2005) investigate the predictive property of candlestick charting
in the US active stocks over the period 1992-2002. Using the bootstrap methodology as in Brock,
Lakonishok and LeBaron (1992), they report low predictive power of the various candlestick patterns

-commonly advocated by technical analysts. Thus, their results support the EMH and conclude
that investors who based their trading decisions solely on candlestick patterns are unlikely to gain
financially from this activity. See also Fock. Klein and Zwergel (2005).
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computer has led to the idea of automating the identification of chart patterns.
Girmes and Damant (1975) use the gradient smoothing technique to find the Head-
and-Shoulders pattern in stock prices. Interestingly, they find five times as many
Head-and-Shoulders pattern in the actual stock prices than in simulated data. This
implies that the movements of stock prices are subjected to more human intervention
than, say, a random walk. But Levy (1971) tests the predictive power of thirty-
two ‘five-point chart patterns’ and concludes that (p.318) “after taking transaction
costs into account, none of the thirty-two patterns showed any evidence of profitable

forecasting ability in either (bullish or bearish) direction.”

Similarly, Olser (1998) tests the Head-and-Shoulders pattern in the US equity
market by random selecting 100 stocks from the CRSP (Center of the Research on
Securities Prices) with historical prices going back to 1962. She finds this pattern lacks
predictive power. Dempster and Jones (1998, 2002) automate the detection of Head-
and-Shoulders and Channel technical pattern using a fixed number of local maxima
and minima in the currency markets. They test their algorithm on the intra-day spot
exchange rate data obtained from the industry vendors. Contrary to expectations
of market practitioners, they find that both patterns produce trading losses. Their

study supports the notion that chart patterns are simply indistinguishable from noise.

Along the same line, Chang and Osler (1999) use a percentage method to define the
Head-and-Shoulders pattern on six currencies pairs. Their empirical results indicate
mix results, with four out of six currencies found to be unprofitable. But dollar-
yen and dollar-mark currency pairs are profitable, even after adjusting for interest
rate differential, risk and transaction costs. Dawson and Steeley (2003) evaluate
ten chart patterns in the UK equity market over the sample period 1986-2001 using
the kernel regression methodology. They find that no excess profit can be earned
using these technical patterns. Given these negative evidence on the profitability of
chart patterns, the fact that market practitioners continue to use them is a puzzling

behaviour, as Chang and Osler aptly describe such activity as “methodical madness™.

However, such negative views on technical charting may not necessarily be correct.
From their empirical results on US equity markets, even LMW admit that using
technical chart patterns as additional inputs to the investment process may be useful
(p-1753):

We find that certain technical patterns, when applied to many stocks over
many time periods, do provide incremental information, especially for

Nasdaq stocks. Although this does not necessarily imply that technical
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analysis can be used to generate “excess” trading profits, it does raise the
) g1 ;

possibility that technical analysis can add value to the investment process.

Using the same methodology as LMW, Savin, Weller and Zvingelis (2003) find that
the Head-and-Shoulders pattern has explanatory power in predicting excess returns
in the US equity markets. They also determine that trading using this pattern yield
7-8 percent risk-adjusted return per year over the period 1989-1999. The factor risk-
measure they use is the three factor Fama-French model augment with a momentum
factor. Bulkowski (2005) has produced an extensive “Encyclopedia” on technical
chart patterns and argue that (p.7), “Investing using chart formations is an exercise
in probability.” He claims that the most profitable chart pattern in both bull and
bear markets is the Flag pattern, with an average rise in prices of 69 percent and 42

percent respectively!

So far, no empirical study evaluates the profitability of chart patterns in the bond
markets. Thus, we contribute to the literature on technical analysis by applying
the nonparametric kernel regression to examine the informativeness of chart patterns
in the government bond yields and bond yield spread markets. The literature on
vield spread trading is sparse. Typically, bond vield spreads are used to determine
whether there exist a relationship between these spreads and country risk premium,
or whether the expectations hypothesis of the term structure is validated.? A number
of strategies has already been devised to speculate on the yield spread movements,
such as the butterfly, barbell or the credit spread strategy. (See. for example, Fahozzi
(2001))

Only recently has research began to examine the trading opportunities offered by
yield spread trading. Dolan (1999) provides a preliminary analysis of the predictabil-
ity of the yield curve shapes. By choosing the Nelson-Siegel (1987) model as the
benchmark tool, he shows that the model parameters are predictable over time, which
may have investinent significance in the selection of bond portfolios. Using the same
model, Diebold and Li (2003) provide evidence that the parameter which capture the
bond yield spread movement is predictable in the US bond markets. Encouraged by
this development, Fabozzi, Martellini and Priaulet (2005) apply the Nelson and Siegel
model to fit US swap curve over period 1994-2003 and test their impact on the but-
terfly strategy.® Furthermore, they incorporate the technique of “recursive modeling”

developed by Pesaran and Timmermann (1995) and “thick modeling” proposed by

4For the first topic, see, for example, Angeloni and Short (1980), Feder and Ross (1982) and '
Scholtens (1999). For the expectation hypothesis, see. for example, Cox, Ingersoll and Ross (1981),
~ Campbell and Shiller (1987) and Longstaff (2000a, b).
5See Chapter 1 and Fabozzi (2001, 2005) for more details about this strategy.
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Granger and Jeon (2004) to improve the forecast of these parameters with a number
of external economic factors. They show that the combination of above techniques
enable them to generate significant portfolio outperformance.® This studies provide

some evidence that yield spread may be predictable.

In addition to these developments, several research efforts have initiated modeling
the sovereign yvield spread using econometrics models. For instance, Duffie, Pedersen
and Singleton (2003) estimate the Russian yield spread relative to US treasuries dur-
ing the 1998 Russian debt default using multifactor affine model. Koutmos (2002)
models the dynamics of the MBS spreads using a two-factor stochastic model. But
despite the plethora of arbitrage-free yield curve models in the literature, it is not sure
whether any of them have good forecasting property. Duftee (2002), for example, doc-
unients the fact that the three-factor affine term structure model cannot outperform

a simple random walk model in forecasting future interest rates.

In summary, it would be interesting to see whether technical chart patterns can

provide an alternative approach in forecasting bond yield spreads.

3.3 Identification of Technical Charts Patterns

3.3.1 Nonparametric Kernel Regression

Financial asset prices are filled with “noise”. (Black (1986)) The presence of these
market noise complicates the analysis of price movements since the underlying true
signals are obscured by these noise. To identify the true signals from the noisy data,
one has to smooth the asset prices in some way. Press et al. (2002, p.655), for

instance, have aptly describe the potential of smoothing:

Data smoothing is probably most justified when it is used simply as a
graphical technique, to guide the eye through a forest of data points all
with large error bars; or as a means of making initial rough estimates of

simple parameters from a graph.

For this purpose, we turn to nonparametric smoothing methodologies such as kernel

regression and local polynomial regression. Nonparametric method has the advantage

SRelatedly, Krishnamurthy (2002) examines the spread between the new bond and old government
bonds. He finds that the average profit are close to zero once the difference in repo market financing
rates between the two bonds is taken into account, and liquidity does seem to play an important role
in the variation of the new- and old-bond spread. To an extent, his research analyses the convergence
properties of the spread over time.
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of being distribution-free, thereby avoiding any specification bias imposed upon the

asset prices.

It is assumed that the bond yields, y, is generated by the function f(-):
y=flz)+e (3.1)

where f(z) is an arbitrary fixed but unknown nonlinear function of the state variable
x and €’s are independent and identical white noise, i.e., E(e) = 0 and Var(e) = 1.

For any arbitrary x, a smoothed estimator of f(x) may be expressed as:

R 1<
flz) = TZwt(x)yt (3.2)

where the weights w;(z) are large for those y; paired with z; near focal point zy and
small for those y; paired with z far from focal point xy. The weight function w;(z) is
constructed from a probability density function K (z), also known as a kernel, with

the following properties:
K(z)>0 /K(u)du =1 (3.3)

The idea of the kernel K,(-) is to multiply different weights to the data so that the
data closer to the focus point g has more influence than the data further away from
the focus point zy. (See, for example, Rosenblatt (1956), Silverman (1986), Hardle
(1990), Campbell, Lo and Mackinlay (1997, Chapter 12) for a comprehensive review
of these concepts.) By rescaling the kernel with respect to a parameter A > 0, we can

change its spread:
1 ‘ |
Ko(u) = 3 K (u/h) / Kn(u)du =1 (3.4)

The weight function wy is defined as:

wep = Kple —a4)/gn(x) (3.5)
T
gr(z) = % ; Kp(x — xy) (3.6)
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Substituting equation (3.5) and (3.6) into (3.2) yields the Nadaraya- Watson kernel

estimator le,V(:z;) of f(x):

) 1 <
faw(@) = =D wn(x)u

_ Zt:l Kp(x — x)yy (3.7)

ZZ;I Kp(z —xy)

This expression allow us to estimate the kernel regression in any fixed length window

of size . In empirical form, this can be written as:

St Ka(7 = s)us
ZH—d—l Kh(’r . S)

s=t

leV(T) =

t=1,...,T—(d+H-1) (3.8)

where d is the size of the fixed length window, T" is the total number of data in a
bond yield series and H is the holding period to which we measure the conditional
bond returns. In other words, we .apply the Nadaraya-Watson estimator to a series
of fixed length rolling windows from ¢ to ¢ + d — 1, where ¢ begins from 1 and ends
at T — (d + H — 1). The rationale for this sub-window is to prevent the detection
of technical patterns of varying duration frowm fitting a single kernel regression to the
entire data set. What remains to be specified is the kernel function K,(-) and the

bandwidth parameter, which we shall discuss in Section 3.3.3.

Assuming fNW(T) is a differentiable function of 7, once the function fNW(T) is
obtained, the local extrema can be readily identified by find times (7 — 1) such that
Sgn(faw(r — 1) = —Sgu fiu (7), where fiy (7) denotes the derivative of fyw (7)
with respect to 7 and Sgn(-) is the signum function. If the signs of f,’VW(T — 1) and
Saw(7) are +1 and —1 respectively, then we have found a local maximum, and if they
are —1 and +1 then we have found a local minimum. With this procedure we are
able to identify all the extrema in a given fixed-length window. A useful consequence
of the above algorithm is that the series of extrema alternates between minima and
maxima. That is, if the & is the extremum is a maximum, then it is always the
case that (k + 1) is a minimum and vice versa. We label all extrema found in the

window to be (e, ..., €&mn).

However, it is well-known that the Nadaraya-Watson estimator (3.7) suffers from
a number of weaknesses. For example, the Nadaraya-Watson estimators have large
bias order at the boundary region. Even though many ad-hoc proposals such as
the boundary kernel methods have been proposed to alleviate this problem, they are

less efficient than local linear fit. (See, for example, Fan and Gijbels (1996)) Thus,
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we shall extend the usage of kernel regression in technical analysis by turning to
the local polynomial regression, which has the advantage of similar bias order along
the boundary and in the interior. This reduces the need to use specific boundary
kernels. Another advantage of the local polynomial regression is that we can estimate
the regression parameters using least squares. (See, for example, Fan and Gijbels
(1996, Chapter 3) and Hastie, Tibshirani and Friedman (2001, Chapter 5) for further

discussion of these issues.)

3.3.2 Local Polynomial Regression

The starting point for local polynomial regression is similar to the nonparametric
kernel regression. Assuming that the bond yields and bond yield spreads are generated
by some nonlinear function f(-) as in equation (3.1), and further assume that the
(p+ 1) derivative of f(z) at focal point 4 exists, we can approximate the unknown
regression function f(z) locally by a polynomial of order p. A Taylor expansion for

x in the neighborhood of xy gives:

e () e
2 P

fLP(i'L')\Q: flwo) + f'(za) (2 — o) + (x —x0)” (3.9)

This polynomial is fitted locally by a weighted least square regression, minimizing

the following function:

d D 2
. ; - [ i — Xo
1‘1}311‘12 [yi - ;ﬁj(:ﬂi - ;L'())J} Ky ( ; ) (3.10)

i=1

where Kj,(-) is the kernel function assigning weights to each datum point, and h
is the bandwidth parameter controlling the size of the local neighborhood. Let
Bj,j = 0,...,p be the solution to this least squares problem, it is clear from the
Taylor expansion that f](lo) = jlﬁj is an estimator for fU)(xg), for j = 0,1, ..., p.

Denote X as the (d x p) design matrix:

1 (xy —xo) - (21— x0)?
x o | D el 1)
1 (xq— -/L'O) co (ag — $0)p

and let W be the (d x d) diagonal matrix of weights:

W = diag{K, (‘“’7‘”“)} i=1,..d (3.12)
1
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The weighted least square problem (4.3) can be written as:

m@in(y - X3)'W(y — X3) (3.13)

where ﬂ = (Bo. 1. ..., Bp)" is the vector of parameters and y is the vector of bond yields
or bond yield spreads. The solution is provided by weighted least squares theory and

is given by:
3= (X'WX)'X'Wy (3.14)

if (X'WX) is invertible. The estimator f;p(-) is the intercept term &y. To ensure
that (X’WX) is invertible, at least (p + 1) different points with positive weights are

required.

After all the ﬁo’s are computed, we can determine the extrema in this window by

T=45

checking the signs of {fLP(T)},_ fip() is simply given by parameter g; in (4.7).

All extrema are obtained by checking for the sign of fi () against fi.(r —1). If
fip(r) > 0 and fip(r — 1) < 0, a minimum extrema is found at (7 — 1). On the
contrary, if f; p(7) <0 and f} p(r — 1) > 0, a maximum extrema is found at (7 — 1).
If both fiP(T) =0 and f’LP(T —1) = 0, we work backwards for each g;, to determine
whether the current stationary point is a maximum or minimum since the extrema
always gives an alternating sequence between maximum and minimum. As before,

we label all extrema in a rolling window to be (e, ..., e,,).

Asymptotic results prescribe that odd p has a clear advantage over even p, in the
sense that the conditional bias for odd values of p are simpler that even values of p.
(See Simonoft (1996) and Fan and Gijbels (1996)) Consequently, we shall use the first

order only, p = 1, for all polynomial regressions.

In equation (4.7), X is a matrix of time point 1,2,...,d. The parameter d is the
window of bond yields/bond yield spreads to which we apply (4.7) to each data point
7 in that window in order to obtain d smoothed bond yields. In thié chapter, we
shall fixed d = 45, meaning that both the local polynomial and kernel regressions
are applied to bond yields at interval {y;, ..., y4_44} in a series of rolling window. The
first window starts at ¢ = 1 and ends at d + H — 1, where H is the holding period.
(See equation (3.8)) Our fixed-length window is larger than in LMW'’s study because

7

bond markets may take a longer time frame to display the pattern.” Here, we set

“TThis may be due to the lower government bond price volatility relative to stock prices. Some
estimates of the yield volatility ¢ are given in the Appendix 1.
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H = 1, which has carries the intuition that the market practitioners would take 1-day

to realize the completion of the chart pattern.

To identify the chart patterns, the pattern must be completed with d — H days. In
addition, the last extrema e, must occur on the day d — H. Without this requirement,
the same pattern would be recorded several times while rolling the window forward.
The strategy for our estimation is as follow: (1) First estimate a 45-day window of
smoothed prices using kernel and local polynomial regression. (2) Check whether
an extrema has occurred at day 44. (3) If an extrema exists on this day, the next
step is to check whether a chart pattern has occurred. If not, move on to the next
window. (4) If a chart pattern is confirmed, then the one-day conditional bond return
is measured from day 45 (d + 1) to day 46 (d + 2). This way, we have a clean out-of-
sample bond return to measure the informativeness of the technical chart patterns.

If no chart patten is confirmed, we move on to the next fixed-length window.

3.3.3 Nonparametric Kernel Function and Bandwidth De-

termination

As Jegadeesh (2000) points out, the nonparametric kernel smoothing method devel-
oped by LMW does depend on a number of parameters that may be detrimental in
the quest of objectifying chart patterns. Similar criticism applies to our nonparamet-
ric local polynomial regression. There is no optimal solution in solving this since each

chart pattern will, in practice, be unique to some extent.

Two parameters plays an important role in nonparametric regression, which are
the kernel function K (-) and the bandwidth value h. In this section, we shall briefly
describe the kernel function and the choice of the bandwidth value, followed by a

discussion of the chart patterns in the next section.

There exist a number of possible kernel functions, including uniform, Gaussian,
Epanechnikov and Biweight. Rather than following LMW and Dawson and Steely
(2003), who use the Gaussian kernel,® we choose to use the Epanechnikov kernel
(Epanechnikov (1969)):

K(z)=~(1-2%, (3.15)

This choice is based on results by Fan and Gijbels (1996, Theorem 3.4) and Fan et

al. (1995), who prove that Epanechnikov kernel is'the optimal kernel for all orders of

1
27w

8The Gaussian kernel is defined as: K),(z) = exp(—x2/2h?). For other kernel choices, see

Silverman (1986) and Hardle (1990).
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p in the local polynomial regression, that is, it is the weight function that minimizes
the asymptotic mean squared error of the local polynomial estimators. To be con-
sistent for both nonparametric regression, this kernel function is also applied to the

Nadaraya- Watson estimators.

The bandwidth parameter /i plays a more important role than the kernel function
K (). The reasons for this straightforward: if h is large, then averaging will occur
over a larger neighborhoods of the y;s, leading to an overly smooth kernel estimates,
on the other hand, if A is small, the average will occur over a small neighborhood of
the y;s, resulting in a choppy function that does not filter out the noise in the yields,

depriving us of the power of the smoothing methods.

There are numerous methods in computing the bandwidth parameter value, in-
cluding the rule-of-thumb, cross-validation, nearest neighbors and plug-in methods.
(See Simonoft (1996), Fan and Gijbels (1996) and Jones, Marion and Sheather (1996)
for some extensive discussion of these methods.) In this chapter, we use the band-
width parameter derived from the popular cross validation method, which minimizes

the following function:

iLC\/ = (1_ZZ <yf, — ft,)z (3.16)

where

d
: 1
fh,l = a ;wrh,yT (317)

th observation from local regression at the focal value y;.

which is the omit the 7

Omitting the 7" makes the fitted value independent of the observed value ;.
g y

Figure 3.1 presents a graphical example of applying both the Nadaraya-Watson
estimator f ~vw (line with asterisk) and the local polynomial regression estimate fL P
(thick dashed line) to the bond yields over a period of 45 days. The kernel function
used in this example is the Epanechnikov kernel and the bandwidth parameter value
is derived from the cross-validated method with no adjustment being made. Some
interesting properties can be seen here. First, the boundary bias for Nadaraya-Watson
estimates is obvious. In the interior, both Nadaraya-Watson and local polynomial
regression estimates are similar, but as we examine the estimates on the left and
~ right boundary, large discrepancies appear between these two estimates. At both
boundaries, the local polynomial regression tracks the actual bond yields better than

the Nadaraya-Watson estimates, which tend to over-smooth the actual bond yields.
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Figure 3.1: A Comparison of Nadaraya-Watson Estimators wa and Local Polyno-
mial Regression f;p with Cross-Validated Bandwidth Parameter and Epanechnikov
Kernel Function
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Correcting this boundary bias is important because we are always measuring f’ ()
near the right boundary. If the Nadaraya-Watson estimates over-smooth the actual
bond yields, then the regression estimates might not capture the extrema e,, even if

one exists.

Second, the bandwidth parameter fLCv\,- obtained from cross-validation method
may over-smooth the actual bond yields, especially during day 26-30. Consequently
there is a need to reduce the value of the bandwidth parameter value obtained from
the cross-validation procedure. Furthermore, choosing a smaller bandwidth value
can reduce the boundary bias for Nadaraya-Watson estimator. We examine various
bandwidth adjustments, and it is decided that the final bandwidth adjustment is fixed
at hey x 0.45 for both bond yields and bond yield spreads. This is a local bandwidth

parameter whose values may vary over different fixed-length rolling window.”

9Since a global bandwidth parameter value will not reflect any local vield movements, a local
bandwidth parameter can resolve this deficiency. But such adjustment are by no means perfect.
Even LMW admit (p.1714) that selecting the appropriate bandwidth parameter is a challenging
task, “...this an ad hoc approach, and it remains an important challenge for future research to develop
a more rigorous procedure.” They rely on a trial and error approach and some practical advice from
professional technical analysts to fix the bandwidth at fz,c-\/- % 0.3.
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3.3.4 Technical Chart Patterns

We apply the nonparametric kernel to six pairs of technical patterns that are com-
monly taught in classic technical analysis texts. (See, for example, Edward and Magee
(1966), Schwager (1996), Kaufman (2005) and Bulkowski (2005)) They are Head and
Shoulders Top (HSTOP) and Bottom (HSBOT), Broadening Top (BTOP) and Bot-
tom (BBOT), Triangle Top (TTOP) and Bottom (BBOT), Rectangle Top (RTOP)
and Bottom (RBOT), Double Top (DTOP) and Bottom (DBOT) and Triple Top
(TPTOP) and Triple Bottom (TPBOT).

From the nonparametric algorithm described in the previous section, we would
have identified m local extrema in a given fixed length window. Denoting all the
m extrema by (ej,ea,...,e,) and (t5,15,....t5) the dates on which these extrema
occur. the last five extrema are labeled as (€p,_4, €m—3, €m—2, €m—1, €m ). The technical

patterns are identified by framing conditions on these extrema.

Head-and-Shoulders Pattern

Head-and-Shoulders Top (HSTOP) and Bottom (HSBOT) are popular technical pat-
terns that have been regularly detected and examined by pracﬁitioners and researchers.
(See Osler (1998), Change and Osler (1999) and Dempster and Jones (1998)) Basi-
callv, HSTOP and HSBOT consist of five local extrema, including the left shoulder,
the head, and the right shoulder. Thus, five extrema are able to define a Head-and-

Shoulders pattern in the following way:

HSTOP1 ¢, is a maximum

HSTOP2 e, 2 > €py, €m_2 > €, €my > €my, and e, > €,

HSTOP3 max|e; — €| = 0.010 x &, where i =m —4,m and € = (e;-q4 + €m)/2

HSTOP4 max|e; —é| = 0.010 x &, wherei =m —~3,m—1and € = (e,,_3+ €mn-1)/2
and

HSBOT1 ¢, is a minimum

HSBOT2 €,,_2 < €4, €m-2 < €m, Em—3 > €m—a, and €,,_| > €,

HSBOT3 max le; — &l = 0.010 x &, where i = m — 4, m and € = (€4 + €m)/2

HSBOT4 max|e; —é| = 0.010 x &, where i = m —3,m ~.1 and &€ = :('6/,,7,;54—*—.6,-,;;1—)/2




Broadening Pattern

BTOP and BBOT are characterized by a sequence of five consecutive local extrema

such that:

BTOP1 ¢, is a maximum

BTOP2 ¢, 4 < eém_s < €, and €,_3 > €1
and

BBOT1 ¢, is a minimum

BBOT2 ¢,,,_4 > €m_o > €, and €,,_3 < €p_;

Triangle Pattern

A symmetrical triahgle occurs when the trading range of the asset prices gradually
decreases, which is exactly opposite to the Broadening pattern. Typically, a ‘breakout’
from a symmetrical triangle often signifies the initiation of a medium term price trend.
Symmetrical Triangle Top (TTOP) and Triangle Bottom (TBOT) are characterized

by the following:

TTOP1 e, is a maximum

TTOP2 e,,_4 > €m_g > €, and e,,_3 < €,
and

TBOT1 ¢, is a minimum

TBOT?2 €m—q < €m-_2 < €y and €m—-3 > €m—1

Rectangle Pattern

The Rectangle formation is also one of the frequently taught and observed patterns in
asset prices. The following conditions satisty the rectangle Top (RTOP) and Bottom
(RBOT) respectively:

RTOP1 e, is a maximum

RTOP2 max|e; — &
en)/3

RTOP3 maxle; — €| =0.010 x &, where i =m —3,m ~ 1 and € = (e;p_3 + €,,-1)/2

=0.010 x &, wherei=m—4,m —2,m and & = (¢,,_g + €y +
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RTOP4 min (6m—41 €m—2, em) > max (6177—31 cm~1)
and
RBOT1 ¢, is a minimum

RBOT?2 max|e;, —e| = 0.010 x &, where e =m —4, m—2,m and € = (e,_4 +e€,_2+
8771)/3

RBOT3 max|e; — €| =0.010 x &, wherei=m —3,m —1 and € = (€53 + €m_1)/2

RBOT4 max (€,-4,€m-2,€n) < Min (en,_3,€m_1)

Double Pattern

Double top (DTOP) and double bottomn (DBOT) are characterized by the local ex-

tremum e,, and local extrema e, and e, such that:

eo =sup{P; 1ty >t} k=1,..,d-1 (3.18a)
ep = inf{P; :tp >t} k=1,..,d-1 (3.18b)

The above equations mean that we compare the highest maxima extrema recorded in
a rolling window with last extrema. Given these two extrema, Double Top (DTOP)
and Bottom (DBOT) can be characterized by:

DTOP1 ¢, is a maximun

DTOP2 max]|e; — &| = 0.010 x &, where i = (m, a) and € = (e,, + €4)/2
DTOP3 t; —t,, > 20 days

and

DBOT1 e, is a minimum

DBOT?2 max|e; — | = 0.010 x &, where i = (m,b) and & = (e, + ¢,)/2

DBOTS3 ¢; —t,, > 20 days

Triple Pattern

Triple Top (TPTOP) and Bottom (TPBOT) are rare formations in the asset prices.
Typically, a TPTOP consists of three highest local maxima that occur around the
same value. Similarly, TPBOT also has three lowest minor bottoms that.are generally

of the same value. To detect TPTOP, we first record all the extrema in a fixed-length
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window and we pick out the highest three maxima, one of which must be the last
extrema e,,. Next, we compare whether the yields are within a stipulated band (say,
1.0 percent) of one another. Lastly, the time difference between the first and last
extrema are assumed to be more than five weeks (25 dayvs). The following conditions
define TPTOP and TPBOT respectivelv:

TPTOP1 e, is a maximuin

TPTOP2 Select three highest maxima (€max1 > €max2 > €max3) With corresponding

times at (tmax1, tmax2, tmax3) respectively. One of which extrema must be e,,.
TPTOP3 max|e; — ] = 0.010 x € for i = (max 1, max 2, max 3), where

€max 1 + €max 2 + €max 3

3

e =

TPTOP4 t,..3 — tmax1 > 25 days
and

TPBOT1 e, is a minimum

TPBOT2 Select three lowest maxima (€min1 < €min2 < €min3) With corresponding

times at (fmin1; tmin2s tmins) respectively. One of the extrema must be e;.
TPBOT3 max|e; — | = 0.010 x & for ¢« = (min 1, min 2, min 3), where

€minl T €min2 T Emin3

3

e =

TPBOT4 tming — tmin1 > 25 days

3.4 Bond Yield Data, Return Measurement and

Information Tests

3.4.1 Government Benchmark Bond Yield Data

To evaluate the usefulness of technical chart patterns, we apply the smoothing meth-
ods described in the previous section to the US, UK, Germany, Japan, Australia,
Canada and Hong Kong government benchmark bond vield markets. Benchmark
bonds are usually the most liquid government bonds among a basket of similar matu-
rity bonds. Consequently, benchmark bonds are viewed as reference points for many

investors and used as pricing benchmarks for other financial assets, such as corporate
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bonds. The benchmark bonds are frequently replaced because the maturity of bonds
shortens due to the time decay factor. New replacements are needed to ensure the
benchmark bonds stay within the maturity bracket, such as 2-year or 10-year. All

benchmark bonds are coupon honds.

We tabulate the basic information on the bond yield data in Table 3.4.1. All data
are obtained from Fcowin. In Panel A, the second column is the maturity of the
bond vield, and the third column is the various yield spread pairs. Each country has
different maturity sectors. There are 34 bond yields with 204,816 data in total. Not
all of the maturities have equal number of data, for example, the 1-year maturity bond
yield data may start in 1962 while the 5-year maturity bond yield data begins in 1979.
To extract the vield spread between these two time series, we begin with the later date.
If a missing data among the two yield data is encountered while matching with the
two date series, the series without the missing data on that particular date is dropped.
Altogether, we have extracted 43 yield spreads series of different maturities, with a
total of 262,170 data points. These spreads are chosen because of their popularity
with bond and relative value traders. One interesting avenue for future research is
to apply the statistical algorithm in this chapter to credit spreads between different
industry sectors, such as between the motor industry and the government hond sector,

or the emerging market spreads.!’

The summary statistics of the bond yield and bond yield spreads are tabulated in
Appendix I. The results basically confirm the stylized facts documented by Diebold
and Li (2003). For example, the average yield curve for all countries is upward sloping
and concave, as shown by the increasing bond yield mean value and the positive niean
yield spreads for all bond yield spreads. Furthermore, the standard deviation o from
fitting the Vasicek model (see next section) shows that the shorter maturities bond
yields are more volatile than the long maturities bond yields. The autocorrelation
p(100) in the last column implies that bond yields are highly persistent, a fact ob-
served by Chapman and Pearson (2001). They estimated that the US monthly bond
vields’ autocorrelation are in excess of 0.98. They suggest that this persistence in
bond yields may be due to the sluggish adjustment of interest rates to fundamental
factors. From the maximum and minimum bond yield in Column 6 and 7, there seem
to be substantial variation of the sample bond yield data. For example, the 2-year
Japanese government benchmark bond yield has a maximum of 8.49 percent and a

minimum of 0.01 percent during the sample period 1986-2006. On the other hand,

10Stanton (1997) and Bhanot (2001) have estimated the continuous-time model using nonpara-
metric methods on credit spreads. But so far, no charting algorithm has been to credit spreads.
Most of the credit spread models are derived from the guantitative approach with option pricing
methodology. See, for example, Merton (1974) and Dutfie and Singleton (2003) for move details.
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the variation of the yield spread data, though not as huge as the bond yield, is still
fairly large. This points to the fact that the movement of the term structure of bond

yields is non-parallel.
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Table 3.1: Government Benchmark Bond Yield Data. Column 2 is the bond yield maturity. Column 3 is
yield spread pairs, followed by the number of data.

Panel A: Bond Yield and Bond Yield Spread

Markets Bond Yield Maturities (yr) Yield Spread Pairs (Short,Long) Obs. (Bond Yield) Obs. (Yield Spread)
US 1,2,3,5, 7,10, 30 (1,5),(1,7),(1,10),(1,30),(2,5),(2,7),(2,10),(2,30) 69,245(7) 116,147(13)
(3,7).(3,10),(5,10),(5,30),(10,30)
UK 2,5, 7,10 (2,5),(2,7),(2,10),(5,10) 27,848 (4) 27,848 (4)
Germany 2, 3,5,7, 10 (2,5),(2,7),(2,10),(3,7),(3,10),(5,10) 25,500 (5) 30,104 (6)
Japan 2,3, 5,10 (2,5),(2,10),(3,10),(5,10) 21,000 (4) 21,000 (4)
Australia 2,3, 5, 10 (2,5).(2,10)(3,10),(5,10) 20,548 (4) 20,548 (4)
Canada 2,3,5,7, 10 (2,5),(2,7),(2,10),(3, ),( ,10),(5,10) 25,785 (5) 30,942 (6)
Hong Kong 2, 3,5,7, 10 (2,5),(2,7),(2,10),(3,7),(3,10),(5,10) 14,890 (5) 15,581 (6)
Total 204,816 (34) 262,170 (43)

L01

Source: Econwin



Figure 3.2: A Historical View of US (1,10)-year Yield Spread
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According to a number of empirical studies on yield spread and the economic
cycles, the historical yield spread data appear to contain some predictive power for the
business cycle in many countries, and seem to suggest that each inversion of the bond
yield curve tends to precede an occurrence of economic recession. Harvey (1991),
for example, reports that the US yield spread provides warnings for the economic
recessions in 1973 and early eighties, and in various out-of-sample tests. Estrella
and Hardouvelis (1991) also find the yield spread has predictive power for cumulative
changes in the real output for up to 4 years and recession 5 to 7 quarters ahead. Hu
(1993), Davis and Henry (1994), Estrella and Mishkin (1998), Bernard and Gerlach
(1998) and Kanagasabapathy and Rajan (2002) have all provided empirical evidence
on the predictive power of the yield spread on the real economic output in a number

of countries, such as UK, Germany and India.

To illustrate, Figure 3.2 shows the US government benchmark ten- and one-year
bond yield spread since 1962. A positive spread implies an upward sloping term
structure of bond yields while a negative spread describes a downward sloping term
structure. It is noticeable that the spread is quite volatile over time, which is contrary
to the assumption of constant yield curve spread. There were six major occasions
where the spread is negative (not including the current one in 2006), in year 1967,

1969, 1973, 1979, 1989 and 2000. If we match the dates in which these negative

spread occurred and the economic cycles, the spread seems to coincide with the onset,
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of economic downturn.!!

Given this attractive convergence and partially predictable property of yield spreads,
is it possible to trade profitably on this pattern consistently over time? The answer
is probably no. This is simply because such convergence trades between yields of
different maturities are risky. These trades do not have the same risk profile as risk-
less arbitrage. For example, suppose the 1- and 10-year US Treasury vield spread
is currently at 2 percent. Historical data tells us that such a steep yield curve will
revert to near zero percent level at some point in the future, as shown in Figure
3.2. However, before the spread tightens, it may widen to 3 percent, as it occurred
in 1992 and 2002. A converging spread trade involving a long position in 10-year
sector and a short position in 1-year sector will thus incur large capital losses in the
short-termi. Over a the long period of time, the spread trade may be profitable, but
in the short-run, the trader may have to liquidate the positions before the gains ave
reaped, especially when the positions are highly leveraged, as Jay Ritter (2002) com-
ments, “Being right in the long run s no consolation if you lost everything in the
short-run.”'? Leverage in yield spread trading constitute a critical component for a
spread trader or a hedge fund. Fixed income spread traders typically make use of high
leverage (with collateral known as hair-cut) to amplify their returns. However, in the
event of extreme market turbulence, such as the 1998 Russian default episode, such
high leverage can destabilize the orderly liquidation of spread positions, especially
when a large proportion of traders have similar risk exposures. Hence, the timing of
the spread trades is very important. Perhaps technical analysis of the spread can aid

traders in initiating spread trades.

3.4.2 Sampling Conditional and Unconditional Bond Returns

Returns are an important part in our investigation of the effectiveness of technical
charts. In LMW and Dawson and Steeley (2003), the conditional returns of the
stock prices are measured once a chart patten is detected using the return formula:
In (j’_’—) However, this is not possible here because we do not have the associated
price series for the benchmark bond yield. Rather, we utilized the following relation-
ship between the change in bond yield and the modified duration D* to obtain the

bond returns:

. AP
PV = - =Dy x D x (=1 (3.19)

"1One can refer to the dates on the US business cycle expansions and contraction provided by the
National Bureau of Economic Research (NBER) found in www.uber.org.
2Readers may realize that this situation is aptly applicable to arbitrage activities as well.
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where AP = P, — F,_; is the change in bond price and Ay = y; — y;_, 1s the change

in bond yield from time t — 1 to . &2 is the percentage bond price change, taken to
y P 1 g g

be the bond return 2" at time ¢. (For more details. see Appendix I1) Effectivelv, the
bond yield is the exogenous variable that drives bond returns. Because of this fact

we can apply the charting algorithm to the bond yield rather than the bond price.

Since yield spread trading is based on the assumption that two sections of the
vield curve exhibit non-parallel movements, either diverging (steepening yield curve)
or converging (flattening yield curve) over time, when a trader forecasts that the
spread between the long- and short-end of the yield curve will diverge further in the
future, a long spread position is established by buying the shorter maturity bond and
selling the longer maturity bond to lock in on the yield spread. On the other hand, if
the trader forecast that the spread will tighten in the future, a short spread position
is entered by selling the longer maturity bond and buying the longer maturity bond.
Arguably, this vield spread reflects the market’s credit situation and the required
bond risk premium. A yield spread portfolio requires that both positions are duration-
neutral or dollar-value of a basis point (DV01) neutral so that the spread portfolio is

not expose to the level of the yield curve.

Thus, the bond yield spread portfolio shall include two positions with opposite
weights. The conditional portfolio return is a linear combination of the two weights

assigned to the long and short position, given by:

Ys _ Byl , .  BY2 ’
ry S =wry T A wary (3.20)

where 7B and rBY? are given by the previous equation, representing the bond return
from each segment of the portfolio multiplied by the weight. While spread trades may
entail less market risk than outright directional trade, such undertaking still expose
traders to the slope factor of the yield curve. To maintain an equal dollar value of
both positions so that this portfolio is insensitive to the level of yield curve, the trader
has to adjust the portfolio so that it is duration-neutral. For a long spread position,
the weights for (wy, wq) are (+wy, —ws) since the trader is betting on the divergence
of yield spread. If a trader enters into a short spread position, the weights (wy, wo)
will have signs (+w;, —wy). To ensure that the spread portfolio is neutral of the
direction of the bond yield, the weights are adjusted using the duration of the short

and long segment of the portfolio.**

3For example, suppose the duration of the 2-year and 10-year bond are 1.7 and 6.8 respectively,
and a long spread strategy is initiated. That is, buy 2-year bond and sell 10-year bond. To maintain
the same return from each bond following a parallel shift in the yield curve, the bond with larger
duration will have a smaller weight while the bond with smaller duration will have a larger weight.
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After applying the nonparametric chart algorithm to each yield data, we-have
twelve sets of conditional yield returns upon detection of each chart pattern. For
each bond yield and yield spread series, we also construct the unconditional yield
returns and compare them to the conditional yield returns. To make comparison
easier across different markets, both the conditional and unconditional vield returns

are standardized by subtracting the mean and dividing by the standard deviation:

riy — Mean(r; )

S.D.(ris)

Zit (3.21)
where the mean and standard deviation are computed for each individual yield series.
Moreover, to increase the power of the statistical tests, we join all the bond yield and

bond yield spread series for the information tests describe in the next section.

3.4.3 Information and Statistical Tests

To conclude whether chart patterns contain any particular information compared to
the unconditional yields returns, we follow the procedure proposed by LMW, who
advocated the goodness-of-fit test and the Kolmogorov-Smirnov test. The null hy-
pothesis for these tests is that if chart patterns are informative, conditioning on them
would alter the empirical distribution of the bond returns. On the other hand, if the
information contained in the pattern has been incorporated into the returns, then the

normalized conditional and unconditional bond returns should be similar.

For the goodness-of-fit test, the procedure is to compare the quantiles of the
conditional bond returns with their unconditional counterparts. The first step is to
compute the deciles of unconditional returns and tabulate the relative frequency 0, of

conditional returns that fall into decile j of the unconditional returns, y = 1, ..., 10:

5 Number of conditional bond returns in decile j
= — (3.22)
total number of conditional bond returns

The null hypothesis is that bond returns are independently and identically dis-
tributed and thus the conditional and unconditional bond returns distribution are

identical. The corresponding goodness-of-fit. test statistics () is given by:

VT(d; —0.10) ~ N(0,0.10(1 — 0.10)) (3.23)

To see this, assume a positive shift of Ay = 0.1 and by equation (3.19), the return for 2-year and
10-year bonds is —0.17 and —0.68 respectively. Substituting these two components into equation
(3.20), equate it to zero and use w; + wy = 1.0, the weight for 2-vear bond and 10-year bond is 0.80
and 0.20 respectively. This means that four-Afth of the capital is invested in the 2-year bond and
one-fitth in 10-year bond. In other words, buy four units of 2-year for every unit of 10-year bond
sold. The only exposure of this portfolio is non-parallel shifts of the yield curve.
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10

T, - 0.107)? ‘
Q = Z (JW)T— ~ X (3.24)

j=

where n; is the number of observations that fall in decile 7 and the T" is the total

number of observations and (4.13) is the asymptotic Z-values for each bin.

For the Kolmogorov-Smirnov test, the statistical basis is derived from the cumu-
lative distribution function Fj(z) and F»(z) with the null hypothesis that Fy = F5.

Denote the empirical cumulative distribution function I3 (2) of both samples:
- 1
Fi(z) = =) I(Zu<z), i=1.2 (3.25)

where I(-) is the indicator function and (2 M)le and (th)tTi , are the two IID samples.

The Kolmogorov-Smirnov statistic is given by the expression:

( TlTQ >1/2
Y = sup

m Fy(z) - FQ(Z)‘ (3.26)

and the p-values are given by:

Prob(y < z) = i (—1)*exp(=2k%22), 2>0 (3.27)

k=—oa

Under the null hypothesis, the statistic v should be small. An approximate a-level
test of the null hypothesis can be performed by computing the statistic and rejecting
the null if it exceeds the upper 100ath percentile for the null distribution. (See Press
et al. (2002, Section 14.3) and DeGroot (1986))

Apart from the Goodness-of-fit and Kolmogorov-Smirnov test, a simple ¢-statistic
tests whether the conditional mean returns are statistically significant different from

zero. The formula for the test-statistic is:

k4

o/VT.

where z is the mean normalized conditional returns, o is the standard deviation of

(3.28)

the normalized unconditional returns, and 7, is the number of observations for the

conditional returns z for a particular chart pattern. We apply equation (3.28) to all

bond vield and bond yield spread mean returns.
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3.4.4 Conditioning on Moving Average

Moving average is one of the most frequently cited technical indicators that has
predictive value for asset prices. (See, for example, Brock, Lakonishok and LeBaron
(1992), Levich and Thomas (1993) and Chapter 2) Therefore, for each chart pattern,
we will compute the 45-day moving average and include it as a further conditioning
variable. The total number of chart patterns is thus separated into two categories,
one where the last extrema e,, is above the moving average and the other below the
moving average. Including moving average as an indicator has a further advantage
because we can use it to filter ‘incorrect’” patterns detected by the kernel regression.
For example, to quantify a Head-and-Shoulders Top, the formation must at least
be above the 45-day moving average since it is a ‘top’, while a Head-and-Shoulders
Bottom must be at least below the 45-day moving average since it is a ‘bottom’

pattern.

3.4.5 Simulation Using 1-Factor Vasicek Model

In addition to the raw bond yield data, we also apply the smoothing algorithm to
simulated prices for comparison purpose. In particular, we conduct simulation trials
using the Vasicek (1977) yield curve model, a popular and widely used model in pricing
fixed income derivatives. We choose this model hecause it is simple and intuitive. By
its Gaussian property, the Ornstein-Uhlenbeck process is able to generate negative
values, which models the yield spread better then the square-root model.'* The

Vasicek model is given by:
dyy = Mp — y)dt + odW, (3.29)

where W, is the standard Brownian motion and v, is the yield at time ¢. The parameter
A governs the speed of mean reversion to the long run equilibrium p and o is the

volatility parameter. Given the discrete time counterpart to model (3.29) is:
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where g, is the standardized Gaussian white noise. The maximum likelihood estimates

of parameters (u, A, o) are:

T
i 1 _ .
t=1

"“The square-root process is: dy; = Mu — y)dt + o /y;dW,. See Cox, Ingersoll and Ross (1985)
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t=1
A= —log(p) (3.31)
. 2logp \ .
= - | —= 3.32
Ntk 1932

where ¢ is the sample mean and T is the number of observations over t = 1,...,T.
(See, for example, Gourieroux and Jasiak (2001, Section 12.1) or Brigo and Mercurio
(2001, p.54))

The value of each parameter is estimated for each yield series. (The full results
are given in Appendix I (Table 3.12)). A causal comparison between the bond yield
and the bond yield spread series shows some interesting characteristics. First, the
parameter p for bond yield is much larger than vield spread. This is expected since
the level of bond yields is higher than yield spread. Second, a comparison of the
parameter A shows that it is larger for yield spread than for bond yield. This is
intuitive because yield spreads tend to exhibit more reversals than bond yield, and
as a result, the speed to which yield spreads move toward their mean value is faster
than bond yield. Lastly, a comparison of ¢ between the bond yield and yield spread

indicates that the volatility for bond yield is larger than yield spread.

Given these parameter values, an independent price series is simulated for each
bond yield and bond yield spread series. Next, we apply the pattern recognition
algorithm to detect the occurrence of each of these technical patterns in each simulated
series. We do this procedure only once for each series since the purpose here is not
to construct a distribution of conditional vield returns but to provide a comparison

hetween the simulate series and the actual yields.!®

3.4.6 Graphical Examples of the Nonparametric Kernel Chart-
ing Algorithm
This section presents some graphical examples of the technical chart patterns defined

in Section 3.3.4. The nonparametric local polynomial regression is applied to the US

(10-1)-year government benchmark bond yield spreads over period 1962-2006. The

15The primary reason for not conducting more simulation is because of time constraint. To
complete a cycle of simulating and applying the nonparametric kernel regression to 240,000 data
takes approximately 48 hours in Mathematica. Hence conducting 1000 simulations is not feasible.
To a large extent, this problem also exists in LMW and Dawson and Steely’s (2003).
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fixed-length window for each pattern is 45 trading days, with a requirement that
the last extrema e,, must occurred on day d — 1 hefore we measure the conditional
bond return. For all chart patterns, the kernel bandwidth parameter value is fixed
at hey x 0.45. The solid line in each figure is the actual bond vield spreads, and the

dashed line is the kernel estimate frp(-).

A casual inspection of the pictorial representations show some matching properties
between the technical pattern and the nonparametric kernel regressions. However,
these are merely illustrative examples and not meant to be conclusive. As a matter
of fact, one critical weakness of the nonparametric estimators shown in these figures
is that the extrema of the smoothed prices and the actual yields do not coincide.’® A
number of the extrema of the local polynomial regression are situated at one or more
days away from the turning point in the actual bond yield. As a result, even though
the yields obtained from the dates at which these extrema (€,,-4, €,-3, €m—2, €m-1, €n)
satisfy the chart pattern conditions, they may not represent the actual turning point.
To ameliorate this problem, one can (i) tighten the definitions of the chart patterns,
or (ii) reduce the bandwidth parameter value further. The consequence of the first
action is that a lesser number of pattern count is detected, which is detrimental to
our statistical tests since the power of the tests would be diminished substantially.
The result of the second remedy, on the other hand, greatly reduces the advantage of
the smoothing methodology advocated in this chapter, since \there is little differences
between the smoothed vields and the actual yields (even though the local peaks of
both the smooth and actual yield now match). Given the considerable needs to
balance both sides of the arguments, we shall use the original algorithm specified in
Section 3.3.4.

'6The same problem exists in LMW’s estimation. If one refers to the graphic examples given in
LMW closely, not all extrema of the kernel regression occur on the same day as the actual closing
price. Furthermore, it is noticeable that the last extrema of the Triangle Top (p.1723) and Double
Top (p.1725) does not occur on day 35 (vertical line) in the 35-day rolling window, which is contrary
to their stated algorithm on page 1719 “..we require that the final extremum that completes a pattern
occurs on day 85.7
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Figure 3.3: An lllustration of Head-and-Shoulders Pattern. The thin line is the actual
bond yield while the dotted line is the Local Polynomial Regression. The empty circles

are the last five extrema which satisfied the Head-and-Shoulders conditions.
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Figure 3.4: An Ilustration of Broadening Pattern
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Figure 3.5: An [llustration of Triangle Pattern
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Figure 3.6: An Illustration of Rectangle Pattern
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Figure 3.7: An Illustration of Double Pattern
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3.5 Empirical Evidence

3.5.1 Technical Chart Patterns in Bond Yields

This section presents the empirical results from the bond vield data. Table 3.2 and 3.3
display the pattern count from applying the Nadaraya-Watson and local polynomial
regression respectively. The first row is the total sample count. and the second row
is the results from the simulation from Vasicek model. The third and fourth row are
counts where ¢, is above the 45-day moving average (() MA) and below moving

average ((\,) MA) respectively.

The total sample count from applving the Nadaraya-Watson regression shows that
the most common chart pattern is Rectangle, with more than 3000 recorded, followed
by Head-and-Shoulders and Double, with more than 1000 occurrences each. The rest
of the chart patterns have counts in between 600-800. Interestingly, this result is
different to LMW, who find the Double chart pattern to he the most observed in
US equities, and Dawson and Steeley (2003) find Head-and-Shoulders to be the most
observed pattern in the UK equity market. The country which displays the least
number of chart patterns is Japan, with has only 856 count aggregated across all
patterns, a substantially lower count than countries which have a similar number of
raw data, such as Australia and Canada. When aggregating the bond yield series
into three maturity brackets (short, medium and long), the most observed pattern
count is still Rectangle, followed by Head-and-Shoulders and Double pattern, for all
three maturities. When we separate the pattern count by the 45-day moving average,
the difference with between (') MA and (N\,) MA, the Double pattern and Triple
pattern show a stark difference, as we find nearly all Double and Triple top patterns
lie above the moving average, and nearly all Double and Triple bottom patterns lie
below the moving average. This shows that the moving average may have some use
in differentiating top and bottom chart patterns. The only top pattern has a lower
count with () MA is the Triangle pattern.

A further comparison of the number of chart patterns between the actual bond
yields and simulated Vasicek yields shows that the total pattern count recorded from
Vasicek simulation is higher than actual series for UK, Germany, Japan and Australia.
For example, the number of patterns for Japan from the Vasicek series is nearly four
times as many as the actual yields. One possible reason for the low pattern count in
Japan is due to the level of bond yields. During the late nineties, the Japanese mone-
tary authority has maintained the zero-interest rate policy for many years. With the
bond vields languishing at near zero percent for such a considerable length of time,

the consequence was few bond vields movements and thus no formation of chart pat-
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terns.!” For US, Canada and Hong Kong markets, the pattern count from the actual
vield is higher than the simulated Vasicek series. But whether this observation may
carry the implication that technical traders are more active in these markets is difficult
to conclude since we only conduct only one simulation from the Vasicek model. But
having said that, our results do contrast significantly from LMW’s estimation on the
US equity markets, where they find that Head-and-Shoulders, Rectangle and Double
chart patterns have much higher count than simulated geometric Brownian motion.
This difference, however, may mean that chart traders are more active in US equity
markets than in bond markets. For all simulated Vasicek series, the most frequently
detected chart pattern is still the Rectangle pattern, followed by Head-and-Shoulders

and Double chart pattern.

Further analysis between the results in Table 3.2 and Table 3.3 shows an interesting
difference, in that the aggregate pattern count for the local polynomial regression is
always higher. For example, the total chart pattern count for Nadaraya-Watson
regression is 16,929, as compared to 21,334 for local polynornial regression. This
implies that the boundary bias between the Nadaraya-Watson and local polynomial
regression is important and has consequential results in matching chart patterns.
When this boundary bias is reduced, more extrema are found near the right boundary
to which we can identify the chart patterns, which contributed to the higher count.
Similar to Nadaraya-Watson regression, the most frequently observed pattern for local
polynomial regression is Rectangle, followed by Head-and-Shoulders and Double. The
next step is to analyse whether higher pattern counts will provide more conclusive

evidence on the informativeness of chart patterns.

To provide further intuitive results about the occurrence of the chart patterns
across time and across the level of bond yield, Figures 3.5.1 provides two examples
where the chart patterns are detected. Subfigure (a) shows the US 1-vear bond yield
while subfigure (b) shows the 2-vear Japanese bond yield. Each empty circle signifies
that one of the twelve chart patterns has occurred at that particular time.'® In
subfigure (a), it is noticeable that the distribution of patterns is not concentrated
in any subperiods. The circles are fairly distributed across time periods and across
yield levels, with possible exception during the period 1979-1981. On the other hand,

subfigure (b) highlights a number of interesting features. Omne, the distribution of

The late nineties witnessed a series of failures of Japanese financial iustitutious, such as the Long-
Term Credit Bank and Nippon Credit Bank. As a result, Moody downgraded Japan's sovereign credit
rating from AAA in November in 1998 and further downgrades in September 2000 and November
2001. These events prompted the Japanese central bank to mmaintain exceptionally low policy rate
until recently.

18We omit the rest. of the bond vields due to insufficient, space.
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chart patterns do cluster more than the US bond yield, especially around 1994 and
2005. Two, the level of hond yield may have some cffects on the occurrence of
chart patterns. When the yields are extremely stable at a particular level for an
extended time period, as shown by Japan during 2001-2004 at zero percent, this
implies that there is a lack of bond yield movements, which in turn means that no
chart pattern can be formed at all. Three, when bond yields are experiencing a
rapid movement in one direction (trending), this reduces chart formation which fit
our pattern definition in Section 3.3.4, which is seen clearly in the US market during
1979-1981 and Japan during 1991, where few circles are recorded. Thus, the overall
observation here is that when yields are very stable at some particular level, or very
unstable over a relatively short time, it is difficult for chart patterns to form and
hence our smoothing algorithm cannot detect them. In fact, when bonds vields are
trending, a trend-following technical strategy might be a better choice than chart

patterns, as we have discussed in Chapter 2.

Table 3.4 and 3.5 display the summary statistics of the one-day conditional yield
return following the conclusion of a chart pattern for the two nonparametric regres-
sions methods respectively. The asterisk (*) besides the mean return signifies that
the return is significantly different from zero. The test statistic 1s given by equatibu
(4.18). The mean and standard deviation of the unconditional returns have all been
normalized to zero and one respectively. A comparison of the normalized conditional
returns to the unconditional counterpart show some differences, but these differences
seem to be randomly distributed across the chart patterns. For example, the HSTOP
pattern is statistically different to zero for US and UK markets, but insignificant
for the rest of the markets. Seven out of twelve chart patterns exhibit statistically
significant mean return from the Nadaraya-Watson regression. When we have more
conditional returns, as provided by local polynomial regression, there are now only
five significant mean returns. So it seems that when a better technique is used to
identify chart patterns (more sample count), the normalized mean returns are found

to be less significant.

Furthermore, the signs of the mean returns do not conform to the expected sign.
All top patterns are assumed to produce positive returns and bottom patterns are
suppose to exhibit negative returns, since bond yields are inversely related to bond
prices. An examination of the signs of mean returns across different countries and
maturities does not yield any systematic pattern at all. For example, the mean
return of the Head-and-Shoulders pattern is positively significant for US and UK,
but negative for Australia market, highlighting the differences in the power of chart

patterns across different bond markets. Conditioning on the moving average may not
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improve the results for both Nadaraya-Watson and local polynomial regressions. For
example, the local polynomial regression result in Table 3.5 shows the UK BTOP,
RTOP and RBOT pattern has significant return for both (,”) MA and (\,) MA, while
few of these patterns are significant in the US. But interestingly, we find that there
are seven significant mean retwrns for () MA, which are HSTOP, TTOP, RTOP,
HSBOT. BBOT, TBOT and RBOT. This result is consistent with our expectation
if only the top patterns are significant, as all the top patterns should be above the
45-day moving average. But what is perplexing is that the bottom patterns (HSBOT,
BBOT. TBOT and RBOT) are significant as well. This implies that bottom patterns
that are already above the moving average continue in their upward trend while the
bottomn patterns below the moving average exhibit weaker reversals. The former

patterns thus generate larger and statistically negative bond returns.

Table 3.6 and 3.7 presents the information test results for Nadaraya-Watson and
local polynomial regression respectively. Panel A of both tables is the goodness-of-
fit Chi-square test. The null hypothesis here is that each decile should contain an
equal percentage of conditional yield return (10.0 percent). The last column is the Q-
statistics and the numbers in parenthesis are the asymptotic z-values for each decile
and p-value for the ()-statistics respectively. Panel B is the Kolmogorov-Smirnov
statistics for each chart pattern. The numbers in parenthesis are the p-values for

each ~y statistic, given by equation (4.17).

The overall results from both regressions provide mixed support for the technical
charts. The number of chart patterns that reject the goodness-of-fit test is seven and
eight for Nadaraya-Watson and local polynomial regression respectively. The Rectan-
gle pattern has the largest @) statistic. The results from local polynomial regression
show only a limited improvement in the information tests, as evident from the p-
values. For the Kolmogorov-Smirnov test, only five and six chart patterns reject the
null hypothesis for Nadaraya-Watson and local polynomial regression respectively, a
lower number than the goodness-of-fit test.!* When examining the results for indi-
vidual countries, it seems that there are no systematic pattern that bond traders can
exploit, since most of the p-values are more than ten percent for most chart patterns.
One possible exception maybe the Head-and-Shoulders Top (HSTOP) pattern in the
US bond markets, which appear to reject hoth the goodness-of-fit and Kolmogorov-
Smirnov null hypothesis, and for both Nadaraya-Watson and local polynomial re-
gressions. The maturity of bond yields does not seem to produce any systematic
results. Similarly, conditioning on moving average may not improve the results in

any dramatic way, as shown by the insignificant p-values.

19.99.00 implies that less than three patterns are detected.
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In summary of the results so far, the tentative conclusion seem to point to the fact
that chart patterns do not provide return distribution that is systematically different

to the unconditional counterpart.

Does the lack of statistical significance from our tests implies that technical chart-
ing contains no incremental information in the bond yields series for bond traders?
Technical analysts may disagree with our results here. Their disagreement is largely
based the mechanization procedure used to identify technical chart patterns. Tradi-
tional technical analysts have argued strenuously that a mechanical procedure, such
as local polynomial regression, does not capture fully the spirit of chartism since these
algorithms cannot acquire the sophistication that human cognitive ability possesses

in recognizing complex patterns, as Edwards and Magee (1966, p.304) emphasized:

...[T]he stock market are driven by human emotion, as perhaps the most
important of many variables influencing price. An human emotion and
behaviour, its manic and its depressive elements, have not yet been quan-
tified.... The fact the chart analysis is not mechanizable is important. It is
one reason chart analysis continues to be effective in the hands of a skilled
practitioner. Not being susceptible to mechanization, counter-strategies
cannot be brought against it, except in situations whose meaning is ob-
vious to everyone, for instance, a large important Support or Resistance

level or a glaringly obvious chart formation.

They may have a valid point, as we have shown that when bond yields are moving
rapidly or very stable, few chart patterns can be captured by the nonparametric re-
gressions. Furthermore, our algorithm is constrained by several parameters, including
the fixed-window of d = 45 days and the bandwidth parameter hev, which may be
unsuitable in discovering chart patterns. For example, some chart patterns can take
more than 45 days to form. There are also limitations as to what the nonparametric
regression can capture. For example, Bulkowski (2005) has described four possible
tvpes of Double Top (DTOP), whereas the nonparametric regression here can only

capture one type.

To alleviate these weaknesses, Jegadeesh (2000) suggests to let the computers to
search for the optimal chart pattern from the historical data. This is akin to the
optimization procedure used by technical system traders to find the best parameter
for the trading system, as discussed in Chapter 2. This may not be as useful as
investors had hoped since many genetic algorithm studies show that historically opti-
mized strategy yield no better predictive results. See, for example, Neely, Weller and
Dittmar (1997), Allen and Karjalainen (1999) and Neely and Weller (2003). Return-

ing to the point about whether using statistical tools can mimic humans’ extensive
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capability in recognizing chart patterns, it remains a work for the future to develop
computer algorithms that can fully match the overall cognitive capabilities of human

in recognizing complex technical chart patterns.
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Table 3.2: Technical Pattern Count for Bond Yields (Nadaraya-Watson Kernel Regression). Row 1 and 2
are the number of patterns detected from the actual bond yield and Vasicek simulation respectively. Row
3 and 4 are the number of patterns detected which is above/below the 45-day Moving Average indicator
respectively, shown by (/) MA and () MA. Column 3-14 present the results for each of the 12 different

chart patterns respectively.

8C1

Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
All Bond Yields
Actual 16929 1841 634 3200 1180 645 762 666 3552 1237 716
Vasicek 19962 2092 1063 3735 1350 751 1066 933 3735 1458 689
(/) MA 7846 1100 572 1993 1177 638 54 428 1071 0 4
() MA 9083 741 62 1207 3 7 708 238 2481 1237 712
US, All Maturities
Actual 5520 599 187 1090 442 222 223 186 1125 389 231
Vasicek 5183 546 375 793 368 179 359 317 793 410 160
(/) MA 2649 360 170 684 441 219 21 113 355 0 1
(\\) MA 2871 239 17 406 1 3 202 73 770 389 230
UK, All Maturities
Actual 2909 328 84 603 162 88 101 107 703 186 132
Vasicek 3015 312 158 578 193 102 148 110 604 224 101
(/) MA 1344 209 77 387 162 87 4 66 203 0 1
() MA 1565 119 7 216 0 1 97 41 500 186 131
Germany, All Maturities
Actual 2496 299 83 476 146 92 110 39 534 186 101
Vasicek 3616 389 149 805 241 149 138 134 767 235 122
(/) MA 1119 189 66 279 146 92 9 62 160 0 0
() MA 1377 110 17 197 0 0 101 27 374 186 101
Japan, All Maturities

Actual 858 75 64 110 70 31 71 61 140 73 24
Vasicek 3226 326 98 707 179 126 112 90 758 207 157
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(continued)

Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT

6¢1

() MA 402 41 60 24 67 68 31 23 4 39 43 0 P
(\\) MA 456 34 4 39 43 2 0 53 67 22 97 73 22
Australia, All Maturities
Actual 1863 201 70 42 319 145 95 178 101 60 419 146 87
Vasicek 2226 251 93 97 431 148 99 232 114 36 438 172 65
(/Y MA 892 129 67 11 214 145 93 60 4 43 126 0 0
(\) MA 971 72 3 31 105 0 2 118 97 17 293 146 87
Canada, All Maturities
Actual 2289 257 93 126 433 144 77 225 110 108 445 172 99
Vasicek 2128 233 115 112 372 182 85 217 126 121 332 164 69
() MA 1004 131 83 31 267 144 76 65 8 71 128 0 0
(\) MA 1285 126 10 95 166 0 1 160 102 37 317 172 99
Hong Kong, All Maturities
Actual 994 82 53 66 169 71 40 99 46 G 186 85 42
Vasicek 568 35 5 70 49 39 11 41 69 7H 43 46 15
(/Y MA 436 41 49 21 95 71 40 25 4 34 56 0 0
(") MA 558 41 4 45 74 0 0 74 42 21 130 85 42
Short Maturity Yields (1-, 2- and 3-year)
Actual 6156 623 281 301 1136 444 227 639 326 284 1230 432 233
Vasicek 7415 722 423 415 1331 494 280 754 433 398 1334 553 278
(/) MA 2850 363 251 94 689 443 221 215 27 181 364 0 2
(v) MA 3306 260 30 207 447 1 6 424 299 103 866 432 231
Medium Maturity Yields (5- aud 7-year)
Actual 6048 662 201 278 1175 403 219 637 245 229 1298 440 261
Vasicek 7043 772 382 333 1313 493 254 760 383 316 1288 518 231
(/) MA 2785 410 179 84 740 403 219 208 15 148 377 0 2
() MA 3263 252 22 194 435 0 0 429 230 81 921 440 259
Long Maturity Yields (10- and 30-year)

Actual 4725
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889 333 199 484 191 153 1024 365 222
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Sample  Total

(continued)

HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Vasicek 5504 598 258 228 1091 363 217 600 250 219 1113 387 180
(Y MA 2211 327 142 49 564 331 198 159 12 99 330 0 0
() MA 2514 229 10 108 325 2 1 325 179 54 694 365 222
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Table 3.3: Technical Chart Pattern Count for Bond Yields (Local Polynomial Kernel Regression)

Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
_ All Bond Yields
Actual 21334 2297 831 893 4016 1483 818 2215 998 334 4462 1585 902
Vasicek 25178 2645 1380 1127 4693 1724 968 2639 1385 1139 4668 1911 899
() MA 9910 1368 750 287 2526 1479 810 734 75 537 1340 0 4
(\) MA 11424 929 81 606 1490 4 8 1481 923 297 3122 1585 898
US, All Maturities
Actual 7025 749 246 269 1379 540 283 757 306 235 1444 516 301
Vasicek 6462 666 476 385 989 461 239 669 468 402 959 542 206
(/) MA 3356 459 221 92 882 539 279 261 27 140 454 0 2
() MA 3669 290 25 177 497 1 4 496 279 95 990 516 299
UK, All Maturities
Actual 3680 407 108 137 771 214 117 362 143 143 871 242 165
Vasicek 3784 401 200 160 725 240 133 429 195 131 739 294 137
(/) MA 1700 256 99 45 489 214 116 129 6 92 254 0 0
() MA 1980 151 9 92 282 0 1 233 137 51 617 242 165
Germany, All Maturities
Actual 3075 373 117 125 597 184 129 314 137 103 653 224 119
Vasicek 4530 477 189 144 997 295 186 453 176 158 973 317 165
(/) MA 1412 223 94 40 364 184 129 99 12 70 197 0 0
() MA 1663 150 23 85 233 0 0 215 125 33 456 224 119
Japan, All Maturities
Actual 1101 95 80 77 136 88 39 106 96 78 170 104 32
Vasicek 4105 421 123 115 894 231 161 459 142 107 974 277 201
() MA 519 57 75 30 82 86 39 36 9 49 54 0 2
() MA 582 38 5 47 54 2 0 70 87 29 116 104 30
Australia, All Maturitics
Actual 2387 256 104 58 416 182 112 236 128 74 525 184 112

continued next page
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(continued)

Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Vasicek 2838 329 132 114 551 202 124 288 149 115 537 210 87
() MA 1138 161 99 15 277 181 110 78 7 53 157 0 0
(\\) MA 1249 95 5 43 139 1 2 158 121 21 368 184 112
Canada, All Maturities
Actual 2810 308 115 142 510 190 93 300 129 132 562 203 126
Vasicek 2728 303 160 129 478 238 109 285 158 138 432 213 85
(/) MA 1248 160 104 37 320 190 92 91 9 88 157 0 0
(\,) MA 1562 148 11 105 190 0 1 209 120 44 405 203 126
Hong Kong., All Maturities
Actual 1256 109 61 85 207 85 45 140 59 69 237 112 47
Vasicek 731 48 100 80 59 57 16 56 97 88 54 58 18
(/) MA 537 52 58 28 112 85 45 40 5 45 67 0 0
(N MA 719 57 3 57 95 0 0 100 54 24 170 112 47
Short Maturity Yields (1-, 2- and 3-year)
Actual 7745 769 371 365 1404 561 275 807 15 351 1572 547 308
Vasicek 9333 906 558 472 1656 647 355 970 557 484 1660 718 350
(/) MA 3579 442 333 123 859 559 269 267 34 230 460 0 3
(\) MA 4166 327 38 242 545 2 6 540 381 121 1112 547 305
Medium Maturity Yields (5- and 7-year)
Actual 7626 836 264 328 1461 505 282 805 331 292 1636 559 327
Vasicek 8989 930 503 383 1682 640 340 933 514 380 1621 696 317
(/Y MA 3516 511 236 99 923 505 282 267 27 187 478 0 1
(\N) MA 4110 325 28 229 538 0 0 538 304 105 1158 559 326
Long Maturity Yields (10- and 30-year)
Actual 5963 692 196 200 1151 417 261 603 252 191 1254 479 267
Vasicek 6856 759 319 272 1355 437 273 736 314 275 1387 497 232
(/) MA 2815 415 181 65 744 415 259 200 14 120 402 0 0
() MA 3148 277 15 135 407 2 2 403 238 71 852 479 267
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Table 3.4: Summary Statistics of Unconditional and Conditional Bond Returns (Nadaraya-Watson Kernel

Regression). Row 1-4 are the first four moments of the normalized conditional mean return. Column 5

I

and 6 are the normalized mean return from above/below the 45-day Moving Average indicator. Column
3-14 are the 12 chart patterns.

Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Returns
All Boud Yields

Mean 0.000 0.051* -0.006 0.112* 0.068* -0.037 -0.039 -0.059*  0.067* -0.155* -0.023*  0.005 -0.001

S.D. 1.00000 0.920 1.033 0.847 0.837 0.839 0.957 0.869 0.958 1.003 0.802 0.866 0.775

Skew. -0.1375 -(0.852 -0.922  -0.218 -0.448 -1.114 -2.198 0.142 0.668 -0.675 -0.172 0.728 -0.641
Kurtosis 17.4359 18.010 10.670  3.073 8.411 9.705 19.560 6.088 10.640 5.028 3.340 10.800 4.117
(/) MA 0.0000 0.055%* -0.013  0.145%  0.044* -0.038 -0.047 -0.095%  0.342%  -0.221* -0.052* - 0.618
() MA 0.0000 0.044 0.050 0.097* 0.108*  0.447 0.739 -0.042 0.046 -0.037  -0.011 0.005 -0.004

US, All Maturities

Mean 0.0000 0.093* -0.011  0.117*  0.097* -0.068* -0.172* -0.040 0.008 -0.221* -0.021 -0.123*  -0.093

S.D. 1.0000 1.081 1.054 0.872 0.877 0.843 0.963 0.815 0.970 1.040 0.771 0.851 0.775

Skew. 0.2348 -1.712 0.608 0.158 -0.108 -2.525 -2.795 0.147 -0.651 -1.176  -0.274  -0.186 -1.575
Kurtosis 10.3536 26.690 8.066 3.008 10.640 20.500 21.260 2.464 4.540 5.101 4.406 6.607 8.994
() MA 0.0000 0.0961 -0.006 0.117  0.075* -0.069* -0.177* -0.037 0.419  -0.311*% -0.012 - 0.001
() MA 0.0000 0.0879 -0.067 0.117  0.132*%  0.130 0.167* -0.042 -0.035  -0.084 -0.026 -0.123* -0.094*

UK; All Maturities

Mean 0.0000 0.092* 0.155 0.118  0.112* 0.154* 0.112 -0.087* 0.117 -0.183  -0.067*  0.060 0.034

S5.D. 1.0000 0.817 1.080 0.984 0.894 0.864 0.706 0.762 0.841 1.193 0.807 0.823 0.795

Skew. 0.1680 -0.143 -4.025 0.163 -1.010 0.783 -0.156 -0.316 0.569 -1.882  -0.236 0.469 0.139
Kurtosis 7.4571 1.545 28.080 1.254 9.450 1.830 0.785 1.487 0.975 5.151 2.269 1.860 0.314
() MA 0.0000 0.070 0.144  0.445% (.088*% 0.154* 0.110 -0.133*%  -0.355*% -0.373* -0.139* - -0.016
(\\) MA 0.0000 0.131%* 0.286 -0.035  0.155* - 0.276 -0.060 0.136 0.122 -0.038 0.060 0.035

Germany, All Maturities
Mean 0.0000 -0.009 0.067 0.119* 0.004 -0.185*  -0.096 -0.152*  -0.008 -0.130  -0.020 0.063 -0.023
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(continued)

Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Returns

S.D. 1.0000 0.849 0.957 0.704 0.770 0.927 0.981 0.888 0.934 0.805 0.778 0.787 0.747

Skew. -0.3819 -0.256 -0.988  0.008 -0.382 -0.667 0.085 -1.136 0.472 -0.606  -0.202  -0.083 -0.438
Kurtosis 19.7031 5.010 4.171 0.294 3.289 2.164 0.314 6.076 1.716 1.092 2.062 1.804 1.890
(/) MA 0.0000 -0.035 0.094 0.294* -0.037 -0.185*  -0.096 -0.245%* 0.424  -0.202* -0.050 - -
(\,) MA 0.0000 0.036 -0.040  0.052 0.062 - - -0.109 -0.046 0.035 -0.008 0.063 -0.023

Japan, All Maturities

Mean 0.0000 0.036 0.010 0.067 -0.018 -0.058 -0.261 0.092 0.074 -0.029  -0.077 0.009 0.242

S.D. 1.0000 0.827 1.017 0.790 0.711 0.726 1.852 1.063 0.752 0.912 0.619 0.681 0.816

Skew. -0.5683 -0.109 -0.471  -0.732 -1.164 0.117 -3.261 4.736 0.094 1.311 -0.147  -0.546 -1.270
Kurtosis 10.1088 3.031 1.471 2.786 7.016 0.070 13.610 32.500 0.094 6.551 2.879 2.469 3.605
(/) MA 0.0000 0.001 0.038 0.108 -0.021 -0.078 -0.261 -0.159 0.516* 0.086  -0.212* - 1.244*
(") MA 0.0000 0.079 -0.398  0.043 -0.013  0.606 - (0.200 0.047 -0.235  -0.018 0.009 0.151

Australia, All Maturities

Mean 0.0000 -0.041 -0.087  0.149 0.048 0.009 0.136 0.045 0.076 -0.144  0.090*  0.070 0.136

S.D. 1.0000 0.860 0.836 1.085 0.843 0.900 0.943 1.020 1.007 0.986 0.936 0.776 0.901

Skew. -0.3079 0.474 0.038 -0.382 -0.887 -0.862 0.076 0.179 -1.117 0.378 0.125 -0.472 0.042
Kurtosis 5.5083 5.104 0.338 1.875  6.016 3.381 3.522 1.062 4.642 2.559 3.084 2.391 1.453
(/) MA 0.0000 -0.077 -0.104  0.386  -0.003  0.009 0.095 0.027 -0.012  -0.244 0.026 - -
(\,) MA 0.0000 0.023 0.302 0.065 0.153* - 2.011 0.054 0.079 0.108  0.117*  0.070 0.136

Canada, All Maturities

Mean 0.0000 0.037 -0.061 0.015 0.053  -0.055 0.055 -0.154*  0.1563*  -0.063 -0.076* 0.039 -0.028

S.D. 1.0000 0.883 1.220 0.747  0.805 0.760 0.758 0.978 0.869 0.876 0.884 1.007 0.723

Skew. -0.2826 0.303 -1.686  -1.357 -0.192  -0.423 -0.108 -0.460 0.133 0.523 -0.168 0.059 -0.893
Kurtosis 6.9883 1.172 11.710  8.908  4.517 3.344 1.916 1.680 1.742 2.651 2.529 1.407 1.461
(/) MA 0.0000 0.157* -0.089 -0.127 0.063  -0.055 0.051 -0.224* 0.349 -0.115  -0.016 - -
(\) MA 0.0000 -0.089 0.166 0.061 0.036 - 0.373 -0.126 0.137 0.036 -0.099 0.039 -0.028

Hong Kong, All Maturities

continued next page
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(continued)

Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Returns
Mean 0.0000 0.075 -0.179  0.280  0.042  -0.008 0.078 0.074 (0.195  -0.249  0.033 0.151 0.089
S.D. 1.0000 0.521 0.894 0.786* 0.664  0.612 0.547 0.651 1.474 1.127 0.564 1.095 0.506
Skew. -0.9280 0.727 0.411  -0.999 -0.407 0.238 0.600 0.490 4.141 0.815  -1.261  5.542 0.690
Kurtosis 110.0890 1.262 3.232 1.926  3.879  1.299 2.978 3.384 22.040  3.832 5.863  41.360 0.753
(/) MA 0.0000 0.183*  -0.233* -0.157 -0.025 -0.008 0.078 0.215*  0.623* -0.209 -0.127 - -
() MA 0.0000 -0.034 0.489  0.484* (.129* - - 0.026 0.154  -0.314 0.103*  0.151 0.089
Short Maturity Yields (1-, 2- aud 3-year)
Mean 0.0000 0.009 0.041  0.093* 0.052* -0.003 0.067 -0.089*  0.065 -0.111* -0.012 -0.027  -0.038
S.D. 1.0000 0.960 1.089 0810 0718  0.798 0.872 0.836 1.000 0.924 0.719 0.907 0.730
Skew. -0.2170 -2.458  -0.508 -0.132 -0.101 -0.350 0.220 -0.183 1.499  -0.463  0.233 1.801 -1.380
Kurtosis 19.1048 39.800 10.640 5.538  6.144  5.373 2.636 5.334 18.770  5.323 2.588  23.380  12.460
(/) MA 0.0000 0.029 0.036  0.052  0.024 -0.004 0.047 -0.104*  0.206  -0.152  -0.083 - 0.418
() MA 0.0000 -0.019 0.082 0.111* 0.095* 0.130 0.816 -0.081*  0.052  -0.040  0.018 -0.027  -0.042
Medinmn Maturity Yields (5- and 7-year)
Mean 0.0000 0.101*  -0.047 0.100* 0.069* -0.048  -0.077 -0.038 0.073 -0.181* -0.031  0.017 0.055
S.D. 1.0000 0.851 0.954 0919 0.888  0.883 1.127 0.915 (0.889 1.005 (0.829 0.815 0.746
Skew. -0.0893 0.633 -2.573  -0.358 -1.094 -2.270  -3.969 0.639 -0.268  -0.524  -0.203  0.186 -0.288
Kurtosis 22.7280 3.747 17.680  2.204 12.540 18.180  27.880 9.303 4.142 3.670 4.213 1.297 1.436
(/) MA 0.0000 0.119*  -0.052  0.090 0.064* -0.048  -0.077  -0.116% 0.764* -0.257* -0.0564 - 0.818
() MA 0.0000 0.072 -0.006  0.104* 0.077* - - -0.000 0.028  -0.041 -0.022  0.017 0.050
Long Maturity Yields (10- and 30-vear)
Mean 0.0000 0.037 -0.040  0.171% 0.088* -0.068 -0.117*  -0.049 0.064 -0.198* -0.027  0.026 -0.029
S.D. 1.0000 0.950 1.029  0.783 0907 0.839 0.830 0.848 0.977 1.136 0.859 0.876 0.849
Skew. -0.0687 -0.221  -0.132  0.048 0.130 -0.327  -0.226 -0.290 0.051  -0.978 -0.407 -0.143  -0.412
Kurtosis 6.8821 2.342 3.065 -0.259  3.355 1.377 0.893 0.930 0.681 5.360 2.443 2.288 0.848
(/) MA 0.0000 0.005 -0.049  0.419* 0.042 -0.072  -0.119*  -0.055 0.121  -0.293* -0.015 - -
(\) MA 0.0000 0.083 0.080  0.059 0.167*  0.606 0.276 -0.047 0.061  -0.025 -0.032 0.026  -0.029
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Table 3.5: Swinmary Statistics of Unconditional and Conditional Bond Return (Local Polynomial Kernel

Regression)
Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Returns
All Bond Yields

Mean 0.0000 0.063* 0.017  0.110* 0.064* -0.022 -0.023 -0.044* 0.045 -0.096* -0.015 0.007 -0.004

S.D. 1.0000 0.919 1.043  0.823  0.847 0.859 0.949 0.861 0.959 0.965 0.811 0.848 0.779

Skew. -0.1375 -1.016  -0.910 -0.019 -0.728 -0.907 -2.109 0.174 0.542  -0.222  -0.042 0.772 0.238
Kurtosis 17.4359 18.730 9.478  2.754 10.410 7.920 18.350 5.720 8.944 4.418 3.623 10.750 4.652
() MA 0.0000 0.065* 0.018  0.129* 0.041* -0.023 -0.029 -0.072*%  0.261* -0.166* -0.042* - 0.538
(") MA 0.0000 0.060* 0.003  0.101* 0.102*%  0.330 0.665 -0.030 0.028 0.030  -0.004 0.007 -0.006

US. All Maturities

Mean 0.0000 {0.099* -0.015 0.112% 0.073* -0.062* -0.145* -0.022 -0.011  -0.123*  -0.009 -0.109* -0.069

S.D. 1.0000 1.097 1.024 0.836  0.897 0.813 0.992 0.810 0.958 0.922 0.788 0.854 0.799

Skew. 0.2348 -1.940 0.472 0.143 -1.031 -2.266 -2.898 0.199 -0.232  -0.520 0.067 0.435 1.000
Kurtosis 10.3536 26.010 7.112  3.132  16.170 19.510  19.580 2.891 4.515 2.041 4.915 9.464 10.620
(") MA 0.0000 0.093 -0.002  0.066  0.050 -0.062* -0.149* -0.003  0.492* -0.239* -0.006 - -0.168
() MA 0.0000 0.109*  -0.131 0.137* 0.112*  0.130 0.162* -0.032 -0.060 0.049  -0.011 -0.109*%  -0.068

UK, All Maturities

Mean 0.0000 0.082*  0.236* 0.076 0.097% 0.127* 0.097 -0.039 0.061 -0.177* -0.094* 0.032 -0.056

S.D. 1.0000 0.815 1.069 0.919  0.868 0.912 0.700 0.780 0.929 1.127 0.801 0.768 0.805

Skew. 0.1680 -0.397  -3.076  0.190 -0.903 0.161 -0.112 -0.087 0.220  -1.585  -0.452 0.414 0.039
Kurtosis 7.4571 2.230 24.320 1.589  8.487 1.791 0.397 0.985 3.083 4.956 2.558 2.103 0.315
(/) MA 0.0000 0.054 0.228* 0.377* 0.082% 0.127* 0.095 -0.134%  -0.478*%  -0.323* -0.127* - -
\,) MA 0.0000 0.129%  0.325*  -0.071 0.123* - 0.276 0.013 0.084 0.088  -0.081*  0.032 -0.056

Germany, All Maturities

Mean 0.0000 0.026 0.029 0.110  0.021  -0.158*  -0.058 -0.105*  -0.034 -0.132 0.014 0.050 0.046

S.D. 1.0000 0.845 1.099 0.738  0.766 0.904 0.937 0.891 0.955 0.826 0.805 0.768 0.766

Skew. -0.3819 -0.170  -1.731 0179 -0.193  -0.625 0.038 -0.907 0.288 -0.353  -0.112  -0.363 -0.305
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(continued)

Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Returns
Kurtosis 19.7031 4.220 8.987  1.398  3.667 1.912 0.332 5.702 1.202 1.000 2.195 0.884 1.670
() MA 0.0000 0.021 0.073  0.129 -0.025 -0.158*  -0.058  -0.186*  0.345 -0.194% -0.041 - -
(\\.) MA 0.0000 0.032 -0.149  0.102  0.094* - - -0.067  -0.070  -0.001 0.038 0.050 0.046
Japan, All Maturities

Mean 0.0000 0.004 0.120  0.091 -0.001 -0.013 -0.279 0.081 0.017 0.036  -0.055  -0.006 0.161

S.D. 1.0000 0.770 1.051  0.728  0.694 0.756 1.653 0.941 0.800 0.872 0.612 0.740 0.750

Skew. -0.5684 -0.044  -0.217 -0.584 -0.844 -0.399 -3.635 4.872 -0.469 1.067  -0.145 -0.742 -1.000
Kurtosis 10.1088 3.366 1.207 3421  6.703 0.645 17.310 38.650 1.532 5.774 2.629 2.246 3.487
(/') MA 0.0000 -0.023 0.127  0.098 0.038 -0.027  -0.279 -0.099 0.092 0.103  -0.186* - 1.244*
(\\) MA 0.0000 0.046 0.015  0.086 -0.059  0.606 - 0.173 0.010  -0.078  0.006  -0.006 0.088

Australia, All Maturities

Mean 0.0000 -0.047  -0.067  0.241  0.091*  0.022 0.175* -0.013 0.064  -0.043 0.106* 0.121%* 0.144

S.D. 1.0000 0.801 0.939 1.120  0.900 1.055 0.972 1.028 0.959 1.102 0.945 0.812 0.870

Skew. -0.3079 0.467 -0.482  0.086 -0.453 -0.501 0.221 0.451 -1.231 1.275 0.065  -0.113 -0.074
Kurtosis 5.5083 5.570 1.931 1.881  4.632 3.295 3.025 1.737 5.088 5.388 2.557 2.930 1.413
(/) MA 0.0000 -0.100  -0.098  0.653  0.055 0.022 0.142 0.016 -0.249  -0.111 0.048 - -
() MA 0.0000 0.042 0.540  0.097 0.161* -0.022 2.011 -0.027 0.082 0.129  0.131*  0.121* 0.144

Canada, All Maturities

Mean 0.0000 0.098*  -0.040 0.027  0.044 0.006 0.087 -0.125%  0.192*  -0.046 -0.064*  0.086 -0.030

S.D. 1.0000 0.904 1164 0.726  0.830  0.807 0.782 0.954 0.906 0.835 0.879 0.978 0.700

Skew. -0.2826 0.515 -1.595  -0.638 -0.247  -0.320 0.273 -0.574 0.306 0.505 0.210 0.038 -0.590
Kurtosis 6.9883 1.941 11.530  3.501  3.878 3.087 2.365 2.304 1.409 2.792 3.517 1.439 1.512
() MA 0.0000 0.227*  -0.049 -0.057 0.028 0.006 0.084 -0.192*  0.366  -0.078  -0.022 - -
() MA 0.0000 -0.043 0.044  0.057  0.070 - 0.373 -0.097  0.179*  0.016 -0.080*  0.086 -0.030

Hong Kong, All Maturities

Mean 0.0000 0.087*  -0.155 0.224* 0.039 -0.007 0.040 -0.007 0.165  -0.089  0.030 0.080 0.073

S.D. 1.0000 0.509 0.837 0.738  0.645 0.571 0.457 0.648 1.325 1.114 0.564 0.979 0.485

Skew. -0.9280 0.574 0.348  -0.861 -0.517  0.072 -0.196 0.113 4.464 0.732  -1.032  6.029 0.776
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(continued)

Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Returns
Kurtosis 110.0890 0.831 3.959 1.920 3.851 1.535 1.661 3.345 27.020 3.325 5.430  51.160 1.105
(/) MA 0.0000 0.172*  -0.175 -0.059 0.005  -0.007 0.040 0.084 0.535*  -0.104 -0.110 - -
() MA 0.0000 0.009 0.245 0.363* 0.080 - - -0.044 0.131 -0.060  0.086* 0.080 0.073
Short Maturity Yields (1-, 2- and 3-year)
Mean 0.0000 0.001 0.037 0.064 0.036* -0.006 0.051 -0.061* 0.059 -0.081  -0.007  -0.005 0.016
S.D. 1.0000 0.981 1.016 0.794 0.757 0.836 0.843 0.833 0.966 0.915 0.760 0.896 0.736
Skew. -0.2170 -2.689  -0478 -0.282 -1.339 -0.351 0.131 0.070 1.189 0.015 0.294 2.053 1.761
Kurtosis 19.1048 38.480 10.850 5.818 17.650 4.824 2.680 5.511 17.200 6.803 4.544 22.760 14.150
(") MA 0.0000 0.012 0.033 0.032  -0.004 -0.006 0.033 -0.082* 0.132  -0.128* -0.089* - 0.167
(,) MA 0.0000 -0.014  0.072  0.081 0.099%  0.054 0.816 -0.051 0.052 0.010 0.028  -0.005 0.014
Medium Maturity Yields (5- and 7-year)
Mean 0.0000 0.128*  0.048* 0.121 0.075* -0.010 -0.054 -0.009 0.050  -0.107* -0.015 -0.024 0.007
S.D. 1.0000 0.841 1.047 0.868 0.883 0.886 1.130 0.908 0.918 0.995 0.825 0.798 0.755
Skew. -0.0893 0.628 -2.042  0.051 -1.116 -1.795 -3.586 0.526 0.214 -0.401 -0.020 0.090 -0.277
Kurtosis 22.7280 3.511 14140 0.892 12.230 14.800 24.500 8.138 4.561 3.145 3.902 1.426 1.239
(/) MA 0.0000 0.143*  0.063  0.105 0.074* -0.010 -0.054 -0.072  0.445% -0.189*  -0.030 - 1.652
") MA 0.0000 0.105*  -0.076 0.127* 0.075* - - 0.022 0.015 0.039 -0.009  -0.024 0.002
Long Maturity Yields (10- and 30-year)
Mean 0.0000 0.054 -0.064 0.176* 0.083* -0.058 -0.066 -0.067* 0.016 -0.109  -0.027 0.056 -0.041
S.D. 1.0000 0.935 1.090 0.799 0.902 0.858 0.831 0.833 1.003 1.010 0.853 0.846 0.854
Skew. -0.0686 -0.244  -0.202  0.290 0.158  -0.415 -0.173 -0.328 -0.074 -0.270 -0.358 -0.311 -0.422
Kurtosis 6.88212 2.439 2.411 1.186 3.086 2.248 1.578 1.026 (0.989 3.048 2.378 1.990 0.693
(/) MA 0.0000 0.026 -0.067 0.349* 0.061  -0.061 -0.068 -0.059 0.223  -0.203* -0.003 - -
(\\) MA 0.0000 0.096*  -0.026 0.093 0.143* 0.606 0.211* -0.071 0.004 0.050 -0.038 0.056 -0.041
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Table 3.6: Goodness-of-Fit. Chi-Square Tests and Kolmogorov-Smirnov Distribution Tests (Nadaraya-
Watson Kernel Regression). Panel A: Column 2-11 are the 10 deciles of the sorted normalized returns
for each chart pattern, in percentage term. The null hypothesis is 10% for each decile. The last column is
the Q-Statistic. Below the percentage result is the associated p-value for each of the ten deciles. Panel B:
The ~ statistic is the Kolmogorov-Smirnov statistic, tabulated for each chart pattern. Below the v statistic
is the associated p-value.

Panel A: Goodness-of-Fit Test

Chart Deciles
Patterns 1 2 3 4 5 6 7 8 9 10 Q-Statistic
HSTOP 7.88 9.94 9.45 10.80 8.96 9.67 11.00 11.10 11.70 9.51 22.20
(pvalue)  (-3.04)  (-0.09) (-0.78) (1.08) (-1.48) (-0.47)  (1.47) (1.55) (2.48) (-0.71)  (0.008)
BTOP 9.62 8.83 12.00 11.50 7.89 9.15 9.94 10.10 10.60 10.40 8.52
(pvalue)  (-0.32)  (-0.98) (1.67) (1.27) (-1.77) (-0.71)  (-0.05)  (0.08)  (0.48)  (0.34)  (0.482)
TTOP 6.93 8.29 9.24 10.50 8.70 11.10 8.56 13.50 11.50 11.70 26.00
(p-value) (-2.78)  (-1.55) (-0.69) (0.42) (-1.18) (1.03) (-1.30) (3.12)  (1.40) (1.52) (0.002)
RTOP 6.50 8.28 10.10 11.70 9.38 11.80 10.90 11.30 11.30 8.84 86.50
(pvalue)  (-6.60) (-3.24)  (0.12)  (3.12) (-L.18)  (3.36)  (1.71)  (2.53) (2.36) (-2.18)  (0.000)
DTOP 8.57 10.70 10.40 12.00 9.84 11.20 9.75 10.00 9.50 8.06 14.30
(pvalue)  (-1.64)  (0.79)  (0.50) (2.24) (-0.18)  (1.37)  (-0.28)  (0.01) (-0.57) (-2.22)  (0.113)
TPTOP 9.61 10.40 9.15 9.92 11.00 12.60 8.99 10.20 9.61 8.53 7.73
{p-value) (-0.33) (0.33)  (-0.72) (-0.07) (0.85) (2.17) (-0.85) (0.20)  (-0.33) (-1.25) (0.438)
HSBOT 10.10 11.20 10.60 10.40 10.30 10.70 10.80 9.49 8.69 7.78 17.60
(pvalue)  (0.16)  (1.67)  (0.79)  (0.56)  (0.40)  (0.95)  (1.11)  (-0.72) (-1.83) (-3.10)  (0.041)
BBOT 9.20 9.20 9.59 10.20 9.33 8.67 10.40 11.40 11.00 10.90 5.85
(pvalue)  (-0.74)  (-0.74)  (-0.37)  (0.23) (-0.62) (-1.22)  (0.35)  (1.32) (0.95) (0.83)  (0.255)
TBOT 13.80 11.70 11.10 9.01 11.00 9.16 6.16 10.10 11.00 7.06 30.40
(p-value) (3.28) (1.47)  (0.96) (-0.85) {0.83) (-0.72) (-3.31) (0.05)  (0.83) (-2.53) (0.000)
RBOT 7.85 10.50 11.00 12.10 10.20 10.10 11.30 10.60 9.07 7.18 75.50
(pvalue)  (-4.26)  (0.94)  (2.06) (4.24) (0.38)  (0.16)  (2.67)  (1.28) (-1.86) (-5.60)  (0.000)
DBOT 9.05 9.46 11.00 12.40 9.22 10.00 9.78 10.90 9.14 8.97 14.20
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(continued)

(p-value) (-1.11)  (-0.63) (1.17) (2.87) (-0.92) (0.03) (-0.26) (1.07)y  (-1.01) (-1.20) (0.116)
TPBOT 6.99 8.25 11.20 13.40 9.79 12.00 11.30 8.25 10.60 8.11 27.30
(p«value) (-2.68)  (-1.56) (1.06) (3.05) (-0.19) (1.81) (1.18) (-1.56)  (0.36)  (-1.68) (0.001)
Panel B: Kolmogorov-Smirnov Test
Statistics HSTOP BTOP TTOP RTOP- DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
' All Bond Yields
y 1.206 0.319 1.292 2.689 0.821 0.535 1.544 0.378 1.334 1.866 0.652 0.649
(p-value) (0.109) (1.000) (0.071) (0.000) (0.510) (0.937)  (0.017) (0.999) (0.057) (0.002) (0.789) (0.793)
v () MA 1.096 0.214 1.024 1.577 0.839 0.661 2.248 1.292 1.809 1.608 -99.000 0.499
(p-value) (0.181) (1.000) (0.245) (0.014) (0.483) (0.774)  (0.000) (0.071) (0.003) (0.011) (0.000) (0.965)
v () MA 1.144 0.381 0.860 2.222  -99.000 1.185 0.597 0.292 0.427 1.484 0.652 0.646
(p-value) (0.146)  (0.999) (0.450) (0.000) (0.000) (0.120)  (0.869) (1.000) (0.993) (0.024) (0.789) (0.798)
US. All Maturities
3 1.640 0.358 0.609 2.150 0.553 0.838 0.686 0.237 0.790 1.136 1.047 0.859
(p-value) (0.009) (1.000) (0.852) (0.000) (0.919) (0.483) (0.735) (1.000) (0.561) (0.151) (0.223) (0.452)
v () MA 1.307 0.357 0.923 1.576 0.547 0.815 1.286 0.921 1.204 1.383 -99.000 -99.000
(p-value) (0.066) (1.000) (0.362) (0.014) (0.926) (0.519) (0.073) (0.364) (0.110) (0.044) (0.000) (0.000)
v (N MA  0.960 0.401 0.572 1.117  -99.000 -99.000 0.371 0.444 0.475 1.112 1.047 0.850
(p-value) (0.315)  (0.997) (0.899) (0.165) (0.000) (0.000)  (0.999) (0.989) (0.978) (0.169) (0.223) (0.465)
! UK, All Maturities
o 0.893 0.877 0.509 1.151 0.496 0.715 1.002 0.504 0.477 1.364 0.280 0.402
{(p-value) (0.402) (0.425) (0.958) (0.141) (0.966) (0.685)  (0.268) (0.961) (0.977) (0.048) (1.000) (0.997)
v () MA  0.569 0.792 0.582 0.623 0.496 0.704 1.400 0.256 0.778 1.420 -99.000 -99.000
(7)‘7va,1ue) (0.903) (0.557) (0.887) (0.833) (0.966) (0.704)  (0.040) (1.000) (0.580) (0.036) (0.000) (0.000)
v !(\) MA  0.793 0.332 0.268 1.442  -99.000 -99.000 0.452 0.542 0.379 0.689 0.280 0.395
(pt‘-va.lue) (0.556)  (1.000) (1.000) (0.031) (0.000) (0.000)  (0.987) (0.931) (0.999) (0.729) (1.000) (0.998)
Germany, All Maturities
o 0.944 0.477 0.789 1.075 1.102 0.654 1.317 0.741 0.607 1.236 0.242 0.474
(p-value) (0.335) (0.977) (0.562) (0.198) (0.176) (0.786)  (0.062) (0.642) (0.855) (0.094) (1.000) (0.978)
v () MA 0920 0.562 0.327 0.944 1.102 0.654 1.017 0.516 0.973 0.282 -99.000 -99.000
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{p-value) (0.365)  (0.910) (1.000) (0.335) (0.176) (0.786)  (0.252) (0.953) (0.300) (1.000) (0.000) (0.000)
v (N MA 0638 0.429 0.554 0.994 -99.000 -99.000 0.870 0.616 0.326 1.282 0.242 0.474
(p-value) (0.811)  (0.993) (0.919) (0.277) (0.000) (0.000)  (0.435) (0.843) (1.000) (0.075) (1.000) (0.978)
Japan, All Maturities

v 0.172 0.735 0.232 0.581 0.377 0.610 0.305 0.200 0.528 1.173 0.325 0.530
(p-value) (1.000) (0.653) (1.000) (0.889) (0.999) (0.850)  (1.000) (1.000) (0.943) (0.127) (1.000) (0.942)
v (/)MA  0.153 0.470 0.339 0.858 0.418 0.610 0.787 0.281 0.230 1.224 -99.000 -99.000
(p-value) (1.000)  (0.980) (1.000) (0.454) (0.995) (0.850)  (0.566) (1.000) (1.000) (0.100) (0.000) (0.000)
v () MA  0.264 0.751 0.160 0.323  -99.000 -99.000 0.380 0.328 1.097 0.515 0.325 0.467
(p-value) (1.000) (0.626) (1.000) (1.000) (0.000) (0.000)  (0.999) (1.000) (0.180) (0.954) (1.000) (0.981)

Australia, All Maturities
~ 0.463 0.821 0.611 1.283 0.429 0.733 0.575 0.689 0.852 0.817 0.686 0.878
(p-value) (0.983)  (0.510) (0.850) (0.074) (0.993) (0.656)  (0.896) (0.729) (0.462) (0.516) (0.735) (0.424)
vy . () MA  0.369 0.871 0.363 0.828 0.429 0.677 0.410 0.022 1.082 0.642 -99.000 -99.000
(p-value) (0.999)  (0.433) (0.999) (0.500) (0.993) (0.750)  (0.996) (1.000) (0.193) (0.805) {0.000) (0.000)
voo(N) MA O 0265 -99.000  0.319 0.535  -99.000 -99.000 0.492 0.765 0.491 1.179 0.686 0.878
(p-value) (1.000)  (0.000) (1.000) (0.937) (0.000) (0.000)  (0.969) (0.602) (0.969) (0.124) (0.735) (0.424)

Canada. All Maturities

o 0.199 0.706 0.992 0.647 1.143 0.468 1.048 0.824 0.489 0.929 0.565 0.465
(p-value) (1.000)  (0.701) (0.279) (0.797) (0.146) (0.981)  (0.222) (0.506) (0.971) (0.354) (0.907) (0.982)
vy () MA  0.876 0.747 0.478 0.553 1.143 0.452 1.002 0.409 0.659 0.617 -99.000 -99.000
(1!)—value) (0.427)  (0.632) (0.976) (0.919) (0.146) (0.987)  (0.268) (0.996) (0.777) (0.841) (0.000) (0.000)
v (N, MA  0.686 0.290 0.766 0.740  -99.000 -99.000 0.762 0.898 0.626 0.681 0.565 0.465
(p-value) (0.734)  (1.000) (0.600) (0.644) (0.000) (0.000)  (0.607) (0.396) (0.828) (0.743) (0.907) (0.982)

' Hong Kong, All Maturities
4 0.564 0.773 1.228 0.307 0.450 0.508 0.470 0.494 1.386 1.142 0.469 0.413
(p-value) (0.908)  (0.589) (0.098) (1.000) (0.987) (0.958)  (0.980) (0.968) (0.043) (0.147) (0.980) (0.996)
¥ (/) MA 0523 1.032 0.761 0.134 0.450 0.508 0.761 0.361 1.091 0.449 -99.000 -99.000
(pi,valne) (0.947)  (0.237) (0.609) (1.000) (0.987) (0.958)  (0.608) (0.999) (0.185) (0.988) (0.000) (0.000)
v (\) MA 0571 0.447 2.025 0.683  -99.000 -99.000 (.478 0.656 0.763 1.215 0.469 0.413
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(p-value) (0.900) (0.988) (0.001) (0.740) (0.000) (0.000)  (0.976) (0.782) (0.606) (0.105) (0.980) (0.996)
Short Maturity Yields (1-, 2- and 3-year)
7y 0.615 0.207 0.896 2.146 0.651 0.537 1.052 0.339 0.758 1.152 0.750 0.830
{p-value) (0.844)  (1.000) (0.399) (0.000) (0.790) (0.935) (0.218) (1.000) (0.613) (0.141) (0.628) (0.496)
v ()MA 0391 0.258 0.136 1.201 0.643 0.407 1.274 0.453 0.646 1.474 -99.000 -99.000
(p-value) (0.998) (1.000) (1.000) (0.112) (0.802) (0.996)  (0.078) (0.986) (0.798) (0.026) {0.000) (0.000)
vy (N MA 0695 0.324 0.716 1.522  -99.000  1.064 0.578 0.302 0.527 0.825 0.750 0.881
(p-value) (0.719)  (1.000) (0.685) (0.019) (0.000) (0.208) (0.893) (1.000) (0.944) (0.505) (0.628) (0.419)
Medium Maturity Yields (5- and 7-year)
o 1.150 0.348 0.756 1.643 0.711 0.492 0.499 0.347 1.314 1.135 0.343 1.051
(p-value) (0.142)  (1.000) (0.617) (0.009) (0.693) (0.969) (0.965) (1.000) (0.063) (0.152) (1.000) (0.219)
v () MA  0.868 0.410 0.569 1.301 0.711 0.492 1.214 1.359 1.341 0.881 -99.000 -99.000
(p-value) (0.439)  (0.996) (0.902) (0.068) (0.693) (0.969) (0.105) (0.050) (0.055) (0.420) (0.000) (0.000)
v (\) MA 0852 0.211 0.446 1.232  -99.000 -99.000 0.466 0.242 0.470 0.805 0.343 1.032
~ (p-value) (0.462) (1.000) (0.988) (0.096) (0.000) (0.000)  (0.982) (1.000) (0.980) (0.536) (1.000) (0.238)
S Long Maturity Yields (10- and 30-year)
Y 1.128 0.339 0.802 1.078 0.777 0.816 0.628 0.464 0.648 0.963 0.346 0.520
(p-value) (0.157)  (1.000) (0.541) (0.195) (0.583) (0.518)  (0.826) (0.982) (0.794) (0.312) (1.000) (0.950)
v ()MA 0335 0.362 1.492 0.613 0.797 0.797 0.909 0.402 0.919 0.395 -99.000 -49.000
(p-value) (1.000)  (0.999) (0.023) (0.846) (0.549) (0.550)  (0.380) (0.997) (0.367) (0.998) (0.000) (0.000)
v (N\) MA  1.181 0.111 0.412 1.266  -99.000 -99.000 0.436 0.411 0.408 0.866 0.346 0.520
(p-value) (0.123)  (1.000) (0.996) (0.081) (0.000) (0.000)  (0.991) (0.996) (0.996) (0.442) (1.000) (0.950)
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Table 3.7: Goodness-of-Fit and Kolmogorov-Smirnov Distribution Tests (Local Polynomial Kernel Regres-

sion)
Panel A: Goodness-of-Fit Test
Deciles

Patterns 1 2 3 4 5 6 7 8 9 10 Q-Statistic
HSTOP 7.49 9.71 9.53 10.40 9.32 9.75 10.70 11.00 12.50 9.58 34.90
(p-value) (-4.01)  (-047) (-0.74) (0.72) (-1.09)  (-0.40) (1.13) (1.55)  (3.99) (-0.67) (0.000)
BTOP 9.99 8.42 11.00 11.10 8.30 9.75 10.10 9.39 10.30 11.70 8.96
(p-value)  (-0.01)  (-1.51)  (0.91)  (1.03) (-1.63) (-0.24)  (0.10)  (-0.59) (0.34)  (1.61)  (0.441)
TTOP 6.72 8.40 8.85 10.50 9.41 11.80 8.73 12.90 12.00 10.80 29.30
(p-value) (-3.27)  (-1.60) (-1.15) {0.52) (-0.59) (1.75) (-1.26) (2.87) (1.97) (0.75) (0.001)
RTOP 6.65 8.22 10.00 11.10 9.56 11.90 11.30 11.30 11.10 8.76 104.00
(p-value) -7.08) (-3.77)  (0.02) (2.39)  (-0.93) (4.07) (2.76) (2.76)  (2.39) (-2.61) (0.000)
DTOP 8.70 10.60 10.60 10.60 9.24 10.90 9.78 11.20 10.20 8.16 13.50
(p-value) (-1.67) (0.75) (0.75)  (0.75)  (-0.98) (1.19) (-0.29) (1.53) (0.32)  (-2.36) (0.142)
TPTOP 9.17 9.41 9.90 9.78 10.80 11.90 10.10 10.30 9.78 8.92 5.25
(p-value) (-0.79)  (-0.56) (-0.09) (-0.21) (0.72) (1.77) (0.14) (0.26)  (-0.21) (-1.03) (0.188)
HSBOT 9.98 10.90 9.89 11.10 9.62 11.40 10.60 9.62 9.16 777 22.70
(;l)-va,lue) (-0.04) (1.38)  (-0.18) (1.74)  (-0.60) (2.16) (0.96) (-0.60) (-1.31) (-3.51) (0.007)
BBOT 9.52 8.92 9.52 11.40 9.12 8.62 9.82 11.80 11.00 10.20 10.80
(p-value) (-0.51)  (-1.14) (-0.51) (1.50) (-0.93) (-1.46) (-0.19) (1.92) (1.08) (0.23) (0.291)
TBOT 12.40 11.80 11.00 9.59 9.47 9.71 6.71 10.20 11.50 7.67 23.9
(p-value) (2.26) (1.69) (0.99) (-0.39) (-0.51)  (-0.28) (-3.16) (0.18) (1.45)  (-2.24) (0.004)
RBOT 7.87 10.20 10.80 12.10 10.20 10.40 11.30 10.80 8.92 7.33 92.40
(p-value) (-4.75) (0.39) (1.89) (4.73) (0.44) (0.99) (2.93) (1.74)  (-2.41)  (-5.95) (0.000)
];DBOT 3.64 9.53 10.90 12.30 8.96 10.20 10.90 10.50 9.65 8.39 20.80
(p‘fva.lue) (-1.80)  (-0.63) (1.21) (3.06) (-1.38) (0.29) (1.21) (0.63) (-0.46) (-2.14) (0.014)
TPBOT 7.87 8.65 11.00 12.10 9.65 12.00 12.00 9.31 9.76 7.76 22.70
(p-value) (-2.13)  (-1.35)  (0.98) (2.09) (-0.36) (1.98) (1.98) (-0.69) (-0.24) (-2.24) (0.007)

Panel B: Kolmogorov-Smirnov Test

T
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Statistics ~ HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
All Bond Yields
¥ 1.645 0.669 1.633 2.345 0.764 0.371 1.531 0.345 1.562 2.192 0.739 0.824
(p-value) (0.009) (0.761) (0.010) (0.000) (0.603) (0.999) (0.018) (1.000) (0.015) (0.000) (0.646) (0.505)
v () MA 1.384 0.647 1.049 1.457 0.776 0.339 1.345 1.388 1.699 1.766 -99.000 0.262
(p-value)  (0.043) (0.796) (0.221) (0.020) (0.584) (1.000) (0.054) (0.042) (0.006) (0.004)  (0.000)  (1.000)
v (\) MA 1.522 0.499 1.066 2.403 0.442 1.315 0.528 0.266 0.946 1.723 0.739 0.847
(pvalue)  (0.019) (0.965) (0.206) (0.000) (0.990) (0.063)  (0.943) (1.000) (0.332) (0.005)  (0.646)  (0.470)
US, All Maturities
o] 1.928 0.157 0.814 1.237 0.728 0.660 0.737 0.262 0.738 1.425 1.169 0.799
(pvalue)  (0.001)  (1.000) (0.522) (0.094) (0.665) (0.777)  (0.649) (1.000) (0.647) (0.034)  (0.130)  (0.547)
vy (YMA  1.500 0.162 0.295 0.815 0.727 0.630 1.013 1.179 0.844 1.499 -99.000 -99.000
(pvalue)  (0.022) (1.000) (1.000) (0.521) (0.666) (0.822)  (0.256) (0.124) (0.474) (0.022)  (0.000)  (0.000)
v (N MA 1.209 0.679 0.682 1.247  -99.000 0.751 (0.357 0.484 0.708 1.239 1.169 0.791
- (pvalue)  (0.107) (0.745) (0.740) (0.089) (0.000) (0.625)  (1.000) (0.973) (0.698) (0.093)  (0.130)  (0.559)
o UK, All Maturities
¥ 1.454 1.197 0.219 1.238 0.872 0.630 0.869 0.257 0.781 1.751 0.464 0.468
(pvalue)  (0.029) (0.114) (1.000) (0.093) (0.432) (0.822)  (0.437) (1.000) (0.576) (0.004)  (0.982)  (0.981)
v ()MA 0816 1.099 0.732 0.760 0.872 0.620 1.375 0.139 1.083 1.554 -99.000 -99.000
(pvalue)  (0.518) (0.178) (0.658) (0.611) (0.432) (0.837)  (0.046) (1.000) (0.192) (0.016)  (0.000)  (0.000)
v () MA 1.308 0.445 0.451 1.055  -99.000 -99.000 0.428 0.461 0.340 1.064 0.464 0.468
(pvalue)  (0.065) (0.989) (0.987) (0.216) (0.000) (0.000)  (0.993) (0.984) (1.000) (0.208)  (0.982)  (0.981)
Germany, All Maturities

¥ 0.601 0.518 0.773 1.262 0.982 0.510 1.296 0.416 0.904 1.057 0.329 0.526
(pvalue)  (0.862) (0.951) (0.589) (0.083) (0.290) (0.957)  (0.069) (0.995) (0.387) (0.214)  (L.000)  (0.945)
v (/)MA 0631 0.529 0.410 1.270 0.982 0.510 0.693 0.652 1.134 0.428 -99.000 -99.000
(pvalue)  (0.821) (0.942) (0.996) (0.080) (0.290) (0.957)  (0.723) (0.788) (0.152) (0.993)  (0.000)  (0.000)
v (\) MA 0.498 0.797 0.737 1.146  -99.000 -99.000 0.973 0.415 0.333 1.024 0.329 0.526
(p-value) (0.965) (0.549) (0.649) (0.144) (0.000) (0.000)  (0.300) (0.995) (1.000) (0.246) (1.000) (0.945)

Japan, All Maturities
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(p-value)
(/) MA
(p-value)
(\) MA
(p-value)

oy
(p-value)
(") MA
(p-value)
(\.) MA
(p-value)

~

(p-value)
() MA

(p-value)
(\) MA

(p-value)

~
i

(p-value)

0.307
(1.000)
0.289
(1.000)
0.405
(0.997)

0.767
(0.599)
0.761
(0.608)
0.509
(0.958)

0.427
(0.993)
1.201
(0.111)
0.558
(0.915)

0.739
(0.646)
0.719
(0.680)
0.620
(0.837)

0.681
(0.743)

0.772
(0.590)
0.797
(0.550)
0.628
(0.826)

0.488
(0.971)
0.602
(0.861)
0.342
(1.000)

0.483
(0.974)
0.452
(0.987)
0.126
(1.000)

0.833
(0.491)
0.978
(0.295)
-99.000
(0.000)

0.249
(1.000)

0.463
(0.983)
0.561
(0.911)
0.388
(0.998)

0.595
(0.870)
0.706
(0.701)
0.335
(1.000)

0.665
(0.768)
0.490
(0.970)
0.652
(0.788)

1.214
(0.105)
0.597
(0.868)
1.440
(0.032)

0.872
(0.433)

0.732 0.433 0.555 0.585 0.235
(0.658) (0.992) (0.917)  (0.883) (1.000)
0.615 0.481 0.555 0.741 0.365
(0.844) (0.975) (0.917)  (0.643) (0.999)
0.565  -99.000 -99.000 0.781 0.222
(0.907) (0.000) (0.000)  (0.575) (1.000)
Australia, All Maturities
1.400 0.383 0.712 0.866 0.718
(0.040) (0.999) (0.691)  (0.442) (0.681)
0.961 0.361 0.662 0.743 0.484
(0.314) (0.999) (0.774)  (0.638) (0.973)
0.694  -99.000 -99.000 0.436 0.721
(0.722)  (0.000) (0.000)  (0.991) (0.677)
Canada, All Maturities
0.616 0.756 0.558 1.391 0.916
(0.842) (0.617) (0.914)  (0.042) (0.372)
0.672 0.756 0.544 0.768 0.338
(0.757)  (0.617) (0.929)  (0.597)  (1.000)
0.562  -99.000 -99.000 0.771 0.970
(0.911) (0.000) (0.000)  (0.592)  (0.303)
Hong Kong, All Maturities
0.518 0.509 0.645 0.525 0.321
(0.951) (0.958) (0.800)  (0.946) (1.000)
0.190 0.509 0.645 0.331 0.483
(1.000) (0.958) (0.800)  (1.000) (0.974)
0.621  -99.000 -99.000 0.504 0.488
(0.835) (0.000) (0.000)  (0.961) (0.971)
Short Maturity Yields (1-, 2- and 3-year)
1.640 0.497 0.613 0.942 0.668
(0.009) (0.966) (0.847)  (0.338) (0.763)

0.324
(1.000)
0.160
(1.000)
0.664
(0.771)

0.769
(0.595)
0.995
(0.276)
0.597
(0.868)

0.555
(0.918)
0.622
(0.834)
0.653
(0.787)

0.960
(0.316)
0.689
(0.729)
0.445
(0.989)

0.477
(0.977)

1.247
(0.089)
1.377
(0.045)
0.764
(0.604)

1.233
(0.095)
0.140
(1.000)
1.521
(0.020)

1.175
(0.126)
0.618
(0.840)
0.893
(0.403)

1.337
(0.056)
0.522
(0.948)
0.867
(0.440)

1.236
(0.094)

0.401 0.384
(0.997)  (0.998)
-99.000  -99.000
(0.000)  (0.000)

0.401 0.322
(0.997)  (1.000)

1.162 1.098
(0.134)  (0.179)
-99.000  -99.000
(0.000)  (0.000)

1.162 1.098
(0.134)  (0.179)

0.632 0.567
(0.820)  (0.904)
-99.000  -99.000
(0.000)  (0.000)

0.632 0.567
(0.820)  (0.904)

0.541 0.454
(0.932)  (0.986)
-99.000  -99.000
(0.000)  (0.000)
0.541 0.454
(0.932)  (0.986)

0.822 0.560
(0.509)  (0.912)
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v () MA 0.372 0.245 0.426 1.014 0.482 0.496 1.287 0.637 0.533 1.393 -99.000 -99.000
(p-value)  (0.999) (1.000) (0.993) (0.255) (0.974) (0.967)  (0.073) (0.813) (0.939) (0.041)  (0.000)  (0.000)
v (\,) MA 0.685 0.709 0.743 1.614  -99.000 1.064 0.469 0.668 0.524 0.855 0.822 0.543
(p-value)  (0.736) (0.696) (0.639) (0.011) (0.000) (0.208)  (0.980) (0.763) (0.946) (0.457)  (0.509)  (0.929)
Medium Maturity Yields (5- and 7-year)
¥ 1.484 0.896 1.007 2.028 0.582 0.462 0.453 0.277 1.218 1.402 0.831 0.785
(p-value)  (0.024) (0.398) (0.263) (0.001) (0.887) (0.983)  (0.987) (1.000) (0.103) (0.039)  (0.495)  (0.569)
v (/) MA 1.270 1.053 0.838 1.608 0.582 0.462 0.605 1.031 1.242 0.935 -99.000 -99.000
(pvalue)  (0.079) (0.217) (0.483) (0.011) (0.887) (0.983)  (0.858) (0.238) (0.091) (0.347)  (0.000)  (0.000)
v (N MA 1129 0.302 0.551 1.321  -99.000 -99.000 0.426 0.335 0.488 1.077 0.831 0.776
(p-value) (0.156)  (1.000) (0.922) (0.061) (0.000) (0.000)  (0.993) (1.000) (0.971) (0.196) (0.495) (0.584)
Long Maturity Yields (10- and 30-year)
o 1.359 0.458 0.937 1.188 0.721 0.695 1.101 0.372 1.254 1.167 0.883 0.571
(pvalue)  (0.050) (0.985) (0.343) (0.119) (0.676) (0.719)  (0.177) (0.999) (0.086) (0.131)  (0.416)  (0.900)
v (/) MA 0.273 0.398 1.338 0.734 0.714 0.673 0.948 0.758 1.470 0.482 -99.000 -99.000
(p-value)  (1.000)  (0.997) (0.056) (0.654) (0.688) (0.756)  (0.330) (0.614) (0.026) (0.974)  (0.000)  (0.000)
v () MA 1.408 0.478 0.385 1.205  -99.000 -99.000 0.871 0.349 0.747 1.125 0.883 0.571
(p-value) (0.038) (0.976) (0.998) (0.110) (0.000) (0.000)  (0.434) (1.000) (0.633) (0.159) (0.416) (0.900)




3.5.2 Technical Chart Patterns in Bond Yield Spreads

This section discusses the empirical results for bond yield spreads. Table 3.8 presents
the pattern count for the Nadaraya-Watson kernel regression (Panel A) and local
polynomial regression (Panel B) respectively. The top row is the aggregate count from
all 43 yield spreads. We find the results here quite surprising because a comparison of
the pattern count, for hond vield spreads and hond vields show a substantial difference
across all chart patterns, despite the fact that the number of raw data for vield spread
is higher than bond yield. This seems to suggest that yield spreads behave more like
a random walk than bond yields. Furthermore, the most frequently observed patterns
are Triangle and Broadening patterns, rather than Rectangle, Double or Head-and-
Shoulders that commonly found in equities or currencies markets. The fact that
Broadening pattern count is higher than Head-and-Shoulders is even more perplexing

in light of observations by Edwards and Magee (1966, p.148)

It has been assumed in the past that Broadening Bottoms must exits,
but the writer [Edwards] has never found a good one in his examination
of thousands of individual stocks over many years and only one or two

patterns which bore resemblance to it.

Similar to the results from bond yield, the pattern count for local polynomial
regression is higher than Nadaraya-Watson regression. Out of 262,170 raw data, only
7,209 and 9,136 chart patterns are found by Nadaraya-Watson and local polynoinial
regression respectively, a considerable lower number than bond yield data. The least
detected chart pattern is Triple pattern. The country that shows the lowest pattern
count is Australia. A comparison of Vasicek simulation to actual yield series show no
large difference for any particular pattern, results that are different to bond yields and
other agsets. Thus, it is conclusive to say that yield spreads data are fundamentally
different to individual stocks, bond yield or currencies. The critical question now is
whether technical charts can be applied to vield spreads as in other financial markets,

in an attempt to gain any investment edge.

Next, Table 3.9 displays the summary results for the unconditional and conditional

O All the yield spread returns

yield spread return from the long-spread strategy.’
from the long spread strategy have been normalized to zero mean and unit standard
deviation. Overall, the results here indicate some support for EMH since none of

the overall mean return are statistically significant from zero, apart from HSTOP

29The mean, standard deviation and skewness results for the short-spread strategy have the op-
posite signs to the long spread strategy, but all the values remain the same.
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for the local polynomial regression. None of the sign of the mean returns shows any

svstematic pattern that spread traders will be able to earn excess returns.

Lastly, Table 3.10 and 3.11 show the results for information tests from the two non-
parametric regression respectively. Panel A of both tables are results from goodness-
of-fit test, while panel B presents the results from the Kolmogorov-Smirnov test for
all vield spreads. Unlike bond yield markets, only four chart patterns was able to
reject the goodness-of-fit null hypothesis for Nadarava-Watson regression in the vield
spreads. There is, however, an improvement shown by local polynomial regression,
where eight chart patterns are able to reject the goodness-of-fit null hypothesis that
the unconditional and conditional distributions are the same. But the Kolmogorov-
Smirnov test, for both regressions, rejects every single null hypothesis, apart from
HSTOP pattern. Thus, it is fairly conclusive that the unconditional yield spread
returns are not statistically different to the unconditional normalized returns. It is
conceivable that spread traders may disagree with our results here, on the ground
that even though chart patterns do not show statistically significant returns dees not
mean that other strategies will not earn excess returns. It may be true, but that
is beside the point, since the objective here is to investigate whether chart pattern
will provide additional information to spread traders. The answers to this question

Is negative.
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Table 3.8: Technical Pattern Count for Bond Yield Spreads

Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT

Panel A: Nadaraya-Watson Kernel Regression

0St

All Yield Spreads

Actual 7209 409 983 1031 387 614 144 394 1124 1071 403 508 141
Vasicek 7223 318 1357 1177 217 506 77 273 1362 1183 222 449 82
US, All Spreads
Actual 3141 211 397 425 196 259 61 206 497 412 186 230 61
Vasicek 3103 117 600 522 66 220 32 104 607 522 79 203 31
UK, All Spreads

Actual 445 13 85 90 7 32 8 7 85 85 10 19 4

Vasicek 597 8 123 133 5 27 1 8 136 142 3 10 1
Germany, All Spreads

Actual 1124 75 134 155 72 88 21 81 144 168 91 76 19

Vasicek 1162 33 173 135 70 101 20 74 174 127 84 97 24

Japan, All Spreads

Actual 695 42 68 74 52 76 21 50 76 80 57 75 24

Vasicek 853 80 123 94 64 59 16 62 114 92 49 81 19
Australia, All Spreads

Actual 393 5 71 56 11 46 8 4 77 85 0 23 7

Vasicek 474 11 111 104 3 25 1 7 98 94 1 17 2
Canada, All Spreads

Actual 1019 45 170 178 32 75 15 31 187 176 43 50 17

Vasicek 680 10 161 127 4 47 3 14 149 141 2 19 3

Hong Kong, All Spreads
Actual 392 18 58 53 17 38 10 15 58 65 16 35 9
Vasicek 354 9 66 62 ) 27 4 4 34 65 4 22 2

Panel B: Local Linear Regression

All Yield Spreads
Actual 9136 511 1315 1254 488 813 194 481 1430 1283 518 674 175

continued next page
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(continued)

Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Vasicek 9022 403 1744 1405 291 628 109 359 1685 1437 292 563 106
US. All Spreads
Actual 3992 264 521 536 243 346 84 252 624 503 244 297 78
Vasicek 3870 158 756 629 96 267 43 . 758 641 102 244 41
UK, All Spreads

Actual 571 17 111 113 9 39 8 7 115 107 15 25 5

Vasicek 744 8 164 156 5 35 2 10 178 164 D 15 2
Germany. All Spreads

Actual 1401 39 179 182 94 119 30 90 182 197 114 102 23

Vasicek 1444 106 211 160 94 122 28 100 206 157 105 124 31

Japan, All Spreads

Actual 873 54 87 96 61 94 26 65 90 100 71 99 30

Vasicek 1077 96 166 108 81 83 23 81 132 113 66 105 23
Australia, All Spreads

Actual 525 10 64 16 62 12 5 100 92 4 39 9

Vasicek 598 2 126 3 31 1 9 125 117 2 24 3
Canada, All Spreads

Actual 1266 54 228 200 43 96 20 41 245 206 49 65 19

Vasicek 844 13 203 149 7 55 6 18 187 170 5 27 4

Hong Kong, All Spreads
Actual 508 23 77 63 22 57 14 21 74 78 21 47 11
Vasicek 445 10 99 77 5 35 6 6 99 75 7 24 2




[\\)

Table 3.9: Summary Statistics of Conditional Bond Yield Spread Return (Long Spread Strategy)

Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Return
Panel A: Nadaraya-Watson Kernel Regression
All Spreads, All Spreads

Mean 0.0000 0.060  -0.004  0.023 0.024  0.038 0.018 0.032 -0.016  0.014 0.008 0.007 0.022

S.D. 1.0000 0.742 0.944 0897 (0.763  0.888 0.718 0.669 0.947 0.908 0.588 0.718 0.723

Skew. 0.1200 0.222 -1.449  -0.364 -1.140 -1.761 -0.008 0.108 -0.724  0.365 0.072 0.732 2.143
Kurtosis 38.7293 8.523 11.020  11.350 8.396  21.830 0.739 3.862 12.410  6.965 1.309 5.953 12.670

US, All Spreads

Mean 0.0000 0.053 -0.012  0.041 0.066  0.011 0.111 0.068*  -0.077  0.071 0.030 0.005 0.027

S.D. 1.0000 0.752 1.016 0914 0879  0.883 0.819 0.739 1.004 0.858 0.619 0.738 0.598

Skew. 0.1030 0.014 -1.096  0.616 -1.075 -1.222 0.124 -0.186  -1.757  0.099  -0.261  1.335 0.254
Kurtosis 11.5246 3.371 5.683 7407  7.168  9.387 -0.010 3.075 15.180  5.779 0.500  6.849 0.088

UK, All Spreads

Mean 0.0000 0.563  0.204* -0.071  0.024  0.050 -0.042 -0.497  -0.062  0.060  -0.152  0.080 0.092

S.D. 1.0000 1.412 0.719 1.304 0.831 0.624 0.701 0.847 0.905 1.196 0.449 0.766 0.671

Skew. 2.2468 2.664 0.586 -2.227 0.298 0.849 0.913 -1.880 -1.678 0.049 -0.367  -0.316 0.458
Kurto'lsis 68.6957 5.940 2.387 16.250 -0.890  0.595 0.068 1.801 7.610 7.016  -0404 -0424  -0.953

Germany, All Spreads

Mean 0.0000 -0.078  -0.163  0.094 -0.136 0.174* 0.060 0.046 0.012  -0.068 -0.020 -0.082  -0.019

S.D. 1.0000 0.722 1.144 0.723 0.728  0.802 0.697 0.536 0.988 0.905 0.5632 0.691 0.870

Skew. -0.6763 -2.339  -2.663  1.280 -2.256  1.167 -0.957 1.160 -0.367 1.167  -0.196 -1.090 0.417
Kurtosis 68.7458 9.662 19.800 4.330  9.028  2.064 1.742 4.025 5.551 15.200  1.467  3.092 -0.140

. Japan, All Spreads

Mean 0.0000 0.156 -0.065 -0.088 0.011  0.041 -0.168 0.003 0.176 0.106 -0.061 -0.069  -0.014

S.D. 1.0000 0.641 0.842 0.750  0.466  0.738 0.757 0.592 0.969 1.103 0.676 0.722 0.560

Skew‘.“ﬁ -0.0591 0897  -2.468 -0.473 -0.351 -0.123  -0.548 1.366 0.598 0.991 1.099  -0.474  -0.277
Kurto:‘?is 26.8662 2.367 12430 -0.133 0917  0.615 0.560 5.268 2.252 1.599 3.291 4.085 -0.091

Australia, All Spreads
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Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Return
Mean 0.0000 -0.374 0.028 -0.034 0.178 0.288*  -0.136 -0.283 0.007  -0.000 - 0.316 0.445
S.D. 1.0000 1.305 0.725 0.693 0974  0.984 0.449 0.587 0.631 0.846 - 0.893 2.030
Skew. -0.3493 -0.968  -0.580 -0.153  0.423  2.119 0.288 0.108 -0.218 0.661 - 2.284 1.661
Kurtosis 13.8816 -0.468 7.309 1.535 -0.140  7.320 -1.104 -1.597 2.500 2.045 - 6.907 1.315
Canada, All Spreads
Mean 0.0000 0.133* 0.047 0.109 0.184* -0.153  -0.062 -0.057 0.062  -0.027  0.061 0.055 -0.051
S.D. 1.0000 0.432 0.892 0.897  0.411 1.261 0.448 0.638 0.975 0.848 0.517 0.547 0.269
Skew. -0.1623 -0.902  -0445 -0.319 -0.068 -4.450  -0.802 0.894 1.852 0.082 0.519  -0.003 -0.381
Kurtosis 24.6661 0.968 4.671 3.520  -0.200 30.110 0.327 5.621 10.270 3.407 -0.007 1.867 0.394
Hong Kong, All Spreads
Mean 0.0000 0.066 -0.015  -0.248*% -0.143  -0.040 0.048 0.079 -0.025  -0.183*  0.100 0.066 -0.056
S.D. 1.0000 0.540 0.633 0.686 0.390  0.342 0.579 0.484 0.538 0.728 0.448 00.686 0.511
Skew. -0.5951 -0.658  -1.187 -2.458 -0.023  0.430 0.656 -0.002 -0.543  -2.225  -0.533 1.580 -0.856
Kurtosis 206.748 0.591 4480 10.280 -1.005  0.692 -0.137 -0.067 3.023 6.529 0.366 4.262 -0.573
\ Panel B: Local Polynomial Regression
Long Spread, All Spreads
Mean 0.0000 0.059*  -0.001  0.002 0.032  0.038 0.070 0.032 -0.045 0.025 0.016 0.024 0.021
S.D: 1.0000 0.732 0.938 0.879 0.755  0.799 0.756 0.670 0.976 0.954 0.643 0.759 0.684
Skew. 0.1200 0.065 -1.200  -0.504 -0.923 0.141 0.432 0.015 -1.210 0445  -0.333  0.644 2.065
Kurtosis 38.7293 7.513 10.260 11.460 7.564  8.156 2.110 3.811 13.000  8.380 2.622 5.628 12.860
E US. All Spreads
Mean 0.0000 0.055 -0.056  0.041 0.085  -0.007  0.219* 0.053  -0.118*% 0.064 0.060 0.022 -0.016
S.D: 1.0000 0.758 1.014 0.899 0.874  0.871 0.865 0.741 1.028 1.033 0.659 0.748 0.591
Skew. 0.1030 -0.101  -1.223 0482 -0.871 -0.709 0.532 -0.160  -1.929 0.505  -0.049  1.021 0.414
Kurtosis 11.5246 2.802 5.780 6.953 6499  8.696 1.045 2.883 14.000  8.488 0.633 5.123 0.020
‘ UK, All Spreads
Mean 0.0000 378 0.125% -0.071 -0.301 -0.017  -0.042 -0.497  -0.051 0.004  -0.067  0.200 -0.005
1.0000 1.284 0.709 1.280 1.000  0.625 0.701 0.847 0.871 1.162 0.632 0.955 0.620

S.D.-

|
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Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT
Return
Skew. 2.2468 2.994 0.799 -2494 0.063 0.619 0.913 -1.880  -1.079  0.005 0.031 0.557 0.817
Kurtosis 68.7458 8.377 2.444  16.190 -0.648 0.819 0.068 1.801 7.257 6.395  -0.339  0.245 -0.523
Germany, All Spreads
Mean 0.0000 -0.080  -0.050 0.051 -0.085 0.060 -0.073 0.042 -0.031  -0.034  0.052  -0.015 0.012
S.D. 1.0000 0.722 1.087  0.711 0.723  0.764 0.664 0.538 1.083 0.891 0.507  0.653 0.803
Skew. -0.6763 -2.122 2397 1.229  -1.799  1.207 -0.601 1.201 -2.001  0.820 -0.193 -1.170 0.344
Kurtosis 68.7458 8.703  19.200 4.231 7.646 2429 0.975 3.687 14.770  14.060  1.596 3.595 0.159
' Japan, All Spreads
Mean 0.0000 0.152*  0.030 -0.073 0.026  0.098 -0.008 -0.009  0.176*  0.178* -0.187* -0.144 0.046
S.D. 1.0000 0.591 0.960  0.721 0.453  0.677 0.723 0.664 0.953 1.036 0.801 0.800 0.544
Skew. -0.0591 0.918  -1.608 -0.455 -0.468 0.413 1.135 0.001 0.333 0.865  -0.281 -0.747  -0.392
Kurtosis 26.8662 2.833 7.614  -0.111 0.572  1.089 2,182 5.256 2.307 1.630 3.845 2.924 -0.040
Australia, All Spreads
Mean 0.0000 -0.054 0.080 -0.084  0.064 0.275*  -0.079 -0.273  -0.060  0.005  -0.750  0.226 0.331
S.D. 1.0000 0.989 0.686 0.661 0.847  0.895 0.387 0.494 0.856 0.900 1.380 1.057 1.786
Skew. -0.3493 -1.661  -0.146 -0.483 0.785  1.985 -0.048 -0.087  -1.257  0.555  -1.142  1.111 1.978
Kurtosis 13.8816 1.924 6.573 0.504 0.645  8.482 -0.894 -1.327 5.924 1.591 -0.677  4.952 2.724
: Canada, All Spreads
Mean 0.0000 0.113*  0.053 0.042 0.148* -0.008 -0.105 0.008 0.039  -0.015  0.079 0.118 -0.044
S.Du 1.0000 0.480 0.920 0854 0395  0.833 0.713 0.551 0.955 0.724 0.551 0.710 0.294
Skewiv.. -0.1624 -1.336 0.383  -0.312  -0.023 0.930 -1.966 1.724 1.491  -0.188  (.429 2.393 -0.342
Kurtosis 24.6661 2.610 7.237  3.744  -0.222  7.325 4.392 5.289 9.192 5499  -0412 12.050  -0.352
Hong Kong, All Spreads
Mean 0.0000 0.112 -0.016 -0.271* -0.143  0.024 0.070 0.155 0.016 -0.113  0.067 0.074 0.111
S.D. 1.0000 0.521 0.589 0.703  0.349  0.423 0.563 0.426 0.520 0.699 0.358 0.541 0.426
Skew. -0.5951 -0.700 -1.053  -2.152 -0.028 0.476 0.470 -0.437  -0.349 -2.221  -1.101  0.900 -1.243
Kurtosis 206.748 0.600 4.592 7.748  -0.638 0.128 -0.557 0.576 3.307 7.270 1.148 1.826 1.783
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Table 3.10

. Information Tests for Bond Yield Spreads (Nadaraya-Watson Kernel Regression)

Panel A: Goodness-of-Fit Test (Long Spread)

Deciles
Patterns 1 2 3 4 ) 6 7 8 9 10 Q-Statistic
HSTOP 5.38 9.05 9.29 8.07 10.80 12.50 12.70 13.90 11.20 7.09 27.00
p-value (-3.12)  (-0.64) (-0.48) (-1.30) (0.51) (1.66) (1.83) (2.65)  (0.84) (-1.96) (0.001)
BTOP 9.36 11.00 9.05 7.73 9.77 9.56 11.00 11.00 12.10 9.46 14.10
p-value (-0.67) (1.03) (-0.99) (-2.37) (-0.24) (-0.46) (1.03) (1.03)  (2.20) (-0.56) (0.119)
TTOP 7.95 11.50 10.30 9.21 9.21 10.90 10.30 10.60 11.10 9.02 11.50
p-value (-2.19) (1.65)  (0.30) (-0.84) (-0.84) (0.92) {(0.30) (0.61)  (1.13) (-1.09) (0.246)
RTOP 7.49 7.49 9.30 9.04 13.20 12.90 10.60 10.60 10.90 8.53 14.01
p-value (-1.64)  (-1.64) (-0.46) (-0.63) (2.08) (1.91) (0.39) (0.39) (0.56) (-0.97) (0.122)
DTOP 7.82 9.45 9.77 9.61 13.80 10.10 8.96 10.60 10.10 9.77 13.20
p-value (-1.80)  (-0.46) (-0.19) (-0.32) (3.17) (0.08) (-0.86) (0.48)  (0.08) (-0.19) (0.152)
TPTOP 8.33 12.50 5.56 10.40 14.60 9.03 10.40 9.72 7.64 11.80 8.64
p-value (-0.67) (1.00) (-1.78) (0.17)  (1.83) (-0.39) (0.17) (-0.11) (-0.94) (0.72) (0.471)
HSBOT 4.82 10.20 11.90 10.20 13.20 11.20 9.90 11.40 10.40 6.85 21.40
pvalue  (-3.43)  (0.10)  (1.28)  (0.10)  (2.12)  (0.77)  (-0.07)  (0.94) (0.27) (-2.08)  (0.011)
BBOT 10.10 10.60 10.10 10.20 9.25 9.70 9.25 11.90 8.81 10.10 7.58
p-value (0.16) (0.66)  (0.06) (0.26) (-0.84) (-0.34) (-0.84) (2.15)  (-1.33)  (0.06) (0.423)
TBOT 9.43 11.70 9.24 7.84 10.60 10.60 9.80 11.00 10.20 9.62 11.00
p-value (-0.62) (1.82) (-0.83) (-2.35) (0.60) (0.70) (-0.21) (1.1 (0.19) (-0.42) (0.273)
RBOT 5.96 9.93 11.70 7.94 12.20 12.20 11.40 15.60 7.20 5.96 36.50
L p-value (-2.71)  (-0.05) (1.11) (-1.38) (1.44) (1.44) (0.95) (3.77)  (-1.88) (-2.71) (0.000)
- DBOT 7.09 11.80 11.00 9.65 11.20 9.65 11.00 8.86 13.60 6.10 22.80
. p-value (-2.19)  (1.36)  (0.77) (-0.27)  (0.92) (-0.27) (0.77) (-0.86) (2.69) (-2.93) (0.007)
TPBOT 6.38 12.10 9.22 7.80 15.60 15.60 7.80 7.80 10.60 7.09 14.70
p-value (-1.43) (0.81) (-0.31) (-0.87) (2.22) (2.22) (-0.87) (-0.87) (0.25) (-1.15) (0.100)

Panel B: Kolmogorov-Smirnov Test

\
i
v
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(continued)

Statistics HSTOP BTOP TTOP RIOP DTOP TPTOP HSBOT BBOT TBOT RBOT  DBOT  TPBOT
~ 1.118 0280 0484 0943 0526 0268 1057 0282 0698  0.985 0.761 0.422
pvalue  (0.164) (1.000) (0.974) (0.336) (0.945) (1.000) (0.214) (1.000) (0.715) (0.286)  (0.609)  (0.994)




=1

Table 3.11: Information Tests for Bond Yield Spreads (Local Polynomial Kernel Regression)

Panel A: Goodness-of-Fit Test (Long Spread Strategy)

Deciles

Patterns 1 2 3 4 5 6 7 3 9 10 Q-Statistic
HSTOP 5.87 8.61 9.59 7.83 10.80 11.70 11.90 14.50 11.90 7.24 32.00
-p-value (-3.11)  (-1.05) (-0.31) (-1.64) (0.58) (1.31) (1.46) (3.38) (1.46)  (-2.08) (0.000)
BTOP 8.75 10.90 10.30 7.91 9.28 9.58 11.60 10.60 11.40 9.66 16.70
p-value (-1.52) (1.06) (0.32)  (-2.53) (-0.87) (-0.51) (1.98) (0.78) (1.70)  (-0.41) (0.054)
f\TTOP 8.37 11.20 11.10 9.57 8.21 10.80 10.80 10.40 11.30 8.37 17.90
p-value (-1.92) (1.37) (1.28) (-0.51) (-2.11) (0.90) (0.90) (0.43) (1.56)  (-1.92) (0.037)
RTOP 7.38 6.76 10.20 9.22 13.50 11.90 10.00 11.30 11.90 7.79 21.50
:p—value (-1.93) (-2.38) (0.18) (-0.57) (2.60) (1.39) (0.03) (0.94) (1.39) (-1.63) (0.011)
DTOP 7.38 10.80 9.96 9.84 12.90 9.72 9.72 10.70 9.84 9.10 14.30
p-value (-2.49) (0.78)  (-0.04) (-0.15) (2.77) (-0.27) (-0.27) (0.67) (-0.15) (-0.85) (0.113)
TPTOP 7.22 11.90 4.12 12.90 12.90 9.28 11.90 9.79 8.25 11.90 14.10
p-value (-1.29) (0.86) (-2.73) (1.34) (1.34) (-0.34) (0.86) (-0.10)  (-0.81)  (0.86) (0.117)
HSBOT 4.57 10.20 11.60 10.60 13.10 11.00 9.98 12.50 9.36 7.07 28.00
p-value (-3.97) (0.14) (1.20) (0.44) (2.26) (0.74) (-0.02) (1.81) (-0.47) (-2.14) (0.001)
BBOT 10.30 10.80 10.10 10.10 9.16 10.30 9.44 11.50 8.67 9.58 3.64
p-value (0.44) (1.06) (0.18) (0.09)  (-1.06) (0.35) (-0.71) (1.85) (-1.67) (-0.53) (0.471)
TBOT 9.43 10.70 9.51 7.56 10.80 10.60 10.20 10.20 11.30 9.74 12.50
ﬁl\rzx.ll.le (-0.68) (0.81)  (-0.59) (-2.91)  (0.90) (0.72) (0.25) (0.25) (1.55)  (-0.31) (0.186)
RBOT 6.95 9.27 10.20 7.72 12.50 11.80 11.00 15.80 7.34 7.34 38.30
pl—value (-2.31)  (-0.56) (0.18) (-1.73) (1.93) (1.35) (0.76) (4.42)  (-2.02) (-2.02) (0.000)
DBOT 7.12 11.60 9.79 9.64 11.40 9.94 11.00 9.64 13.20 6.68 23.80
p%value (-2.49) (1.36)  (-0.18) (-0.31) (1.23) (-0.05) (0.85) (-0.31)  (2.77)  (-2.88) (0.005)
TPBOT 5.14 13.10 10.90 6.86 13.70 14.90 8.57 9.71 10.90 6.29 17.20
p-value (-2.14) (1.39) (0.38) (-1.39) (1.64) (2.14) (-0.63) (-0.13) (0.38) (-1.64) (0.046)

!

Panel B: Kolmogorov-Smirnov Test

continued next page
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(continued)

Statistics HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT
¥ 1.426 0.171 0.357 0.790 0.863 0.326 1.089 0.184 1.140
p-value  (0.034) (1.000) (1.000) (0.560) (0.445)

DBOT TPBOT

0.916 0.663 0.514
(1.000) (0.186) (1.000) (0.149) (0.371)  (0.771)  (0.954)




3.6 Conclusion

In this chapter, we examine the effectiveness of technical chart patterns in the bond
markets. Specifically. we apply the charting algorithm to both bonds yield and bond
vield spread markets. To the best of our knowledge, this is the first systematic
evaluation of technical charts in the bond yields and bond yield spreads. Furthermore,
we extend the capability of the nonparametric kernel regression by developing the

nonparametric local polynomial kernel regression.

In summary of the results, we find that chart patterns exist in the bond yield
markets, in a manner that can be captured by the chart algorithm. However, the
results obtained from these chart patterns are broadly in supportive of the weak-
formed EMH, meaning that chart patterns may have only limited information in
trading bond securities. Some patterns, such as the Head-and-Shoulders, could have

value in US bond markets. But for other markets, the value of this pattern declines.

In contrast to bond yields, relatively few chart patterns are detected by our non-
parametric regression algorithins in the yield spread markets. Furthermore, the condi-
tional returns obtained from these chart patterns provide no incremental information
to traders at all. This shows that yield spread data are fundamentally different to
individual stock or currencies. Perhaps other strategies are more suited in trading

yield spreads than technical chart patterns.

In conclusion, it remains a challenge for technical analysis to explain how technical
charts are useful to traders in forecasting bond prices and how it can be incorporated

in the relative spread trading.
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Appendix I: Maximum Likelihood Estimates of the
Vasicek Model

This section presents the maximumn likelihood estimates of the Vasicek (1977) model
on bond yield and yield curve spreads data. The main purpose of the one-factor
model is to provide a comparison using simulated vield and the actual yield. The
Vasicek model is dy; = A(p — y)dt + cdW,, where (u, A, o) are the model parameters,
interpreted as long-run equilibrium level, speed of mean reversion and volatility of
the state variable y; respectively. The estimates are computed using equations (3.30)
to (3.32) in Section 3.5. Panel A of Table 3.12 displays the results for bond yields,
and Panel B presents the results for yield spreads. Panel C tabulates the results for
sovereign yield spreads, which is the spread between a foreign country (UK, Germarny,

Japan, Australia, Canada and Hong Kong) and US.

An inspection of the results shows several interesting properties. One, bond yields
have lower A values, meaning that the yield spreads mean revert faster to the long-run
equilibrium mean g than bond yields. The autocorrelation statistics also show that
yield spreads have lower persistency. Two., all bond yield spreads have positive mean
value, which implies that on average the yield curve is upward sloping for all sample
countries.

Table 3.12: Vasicek Model Parameter Estimates

Bond Yield Obs.(T) 7 o A Max Min  p(100)
Panel A: Bond Yields
USBY1Y 11211 0.0625 0.0082 0.0005 0.1731 0.0088 0.9059
USBY2Y 7619  0.0697 0.0088 0.0005 0.1695 0.0108 0.9248
USBY3Y 11211 0.0668 0.0064 0.0005 0.1659 0.0132 0.9199
USBY5Y 11211 0.0689 0.0057 0.0005 0.1627 0.0203 0.9320
USBY7Y 9341 0.0751 0.0060 0.0005 0.1605 0.0263 0.9353
USBY10Y 11211 0.0711 0.0046 0.0005 0.1584 0.0312 0.9394
USBY30Y 7441  0.0794 0.0051 0.0005 0.1521 0.0417 0.9406

UKBY2Y 6962 0.0828 0.0081 0.0006 0.1549 0.0318 0.9220
UKBY5Y 6962 0.0845 0.0061 0.0006 0.1594 0.0356 0.9251
UKBYT7Y 6962 0.0852 0.0055 0.0006 0.1580 0.0375 0.9349

UKBY10Y 6962 0.0852 0.0050 0.0005 0.1556 0.0391 0.9430
GERBY?2Y 5341 0.0495 0.0029 0.0004 0.0927 0.0188 0.9409
GERBY3Y 4873 0.0510 0.0024 0.0004 0.0931 0.0218 0.9388
GERBY5Y 5341 0.0539 0.0027 0.0006 0.0914 0.0246 0.9218
GERBYTY 4604 0.0565 0.0021 0.0005 0.0926 0.0274 0.9301
GERBY10Y 5341 0.0583 0.0020 0.0006 0.0913 0.0302 0.9248

JAPBY2Y 9250 0.0226 0.0012 0.0004. .0.0849. 0.0001-- 0.9482— - -~~~

JAPBY3Y 5250 0.0%44 T0.0012 0.0004 0.0845 0.0007 0.9454
JAPBY5Y 5250  0.0276 0.0017 0.0004 0.0849 0.0015 0.9394
continued next page
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(continued)

Bond Yield  Obs.(T) Iz o A Max Min  p(100)
JAPBY10Y 5250 0.0338 0.0025 0.0006 0.0823 0.0044 0.9272
AUSBY?2Y 5137 0.0780 0.0066 0.0008 0.1615 0.0382 0.9156
AUSBY3Y 5137 0.0792 0.0069 0.0007 0.1557 0.0404 0.9165
AUSBY5Y 5137 0.0812 0.0066 0.0008 0.1495 0.0431 0.9202
AUSBY10Y 5137 0.0833 0.0059 0.0007 0.1425 0.0459 0.9244
CANBY2Y 5157 0.0631 0.0081 0.0008 0.1329 0.0219 0.9108
CANBY3Y 5157 0.0651 0.0065 0.0007 0.1301 0.0244 0.9129
CANBYS5Y 5157 0.0674 0.0059 0.0008 0.1257 0.0313 0.9164
CANBY7Y 5157 0.0699 0.0051 0.0008 0.1218 0.0344 0.9225
CANBY10Y 5157 0.0710 0.0048 0.0008 0.1196 0.0373 0.9231
HKBY2Y 3659 0.0487 0.0156 0.0018 0.1183 0.0057 0.8621
HKBY3Y 3182 0.0527 0.0144 0.0017 0.1142 0.0006 0.8728
HKBY5Y 2952 0.0570 0.0085 0.0014 0.1056 0.0229 0.8378
HKBYT7Y 2662 0.0581 0.0136 0.0023 0.1055 0.0074 0.8488
HKBY10Y 2435 0.0598 0.0078 0.0017 0.1052 0.0333 0.8367
Total 204,816
Panel B: Bond Yield Spreads
USYS(1,5) 11211 0.0063 0.0030 0.0023 0.0258 -0.0271 0.7526
USYS(1,7) 9341 0.0089 0.0039 0.0020 0.0294 -0.0321 0.7448
USYS(1,10) 11211 0.0085 0.0038 0.0016 0.0339 -0.0344 0.7765
USYS(1.30) 7441 0.0129 0.0052 0.0013 0.0437 -0.0391 0.8017
USYS(2,5) 7619 0.0043 0.0019 0.0032 0.0164 -0.0171 0.7893
USYS(2.,7) 7619 0.0064 0.0024 0.0024 0.0229 -0.0220 0.7962
USYS(2,10) 7619 0.0074 0.0025 0.0017 0.0274 -0.0241 0.8008
USYS(2,30) 7441 0.0095 0.0035 0.0013 0.0369 -0.0281 0.8185
USYS(3,7) 9341 0.0042 0.0016 0.0034 0.0181 -0.0130 0.7721
USYS(3.10) 11211  0.0043 0.0018 0.0023 0.0224 -0.0157 0.7940
USYS(5,10) 11211 0.0022 0.0009 0.0041 0.0119 -0.0091 0.7448
USYS(5,30) 7441 0.0053 0.0019 0.0021 0.0226 -0.0156 0.7994
USYS(10,30) 7441 0.0022 0.0009 0.0039 0.0113 -0.0084 0.8101
UKYS(2,5) 6962 0.0017 0.0017 0.0034 0.0166 -0.0135 0.7978
UKYS(2,7) 6962 0.0023 0.0030 0.0033 0.0199 -0.0169 0.7865
UKYS(2,10) 6962 0.0023 0.0043 0.0030 0.0287 -0.0216 0.7499
UKYS(5,10) 6962 0.0007 0.0015 0.0042 0.0187 -0.0090 0.5504
GERYS(2,5) 5341 0.0045 0.0021 0.0052 0.0195 -0.0084 0.8229
GERYS(2.7) 4604 0.0072 0.0014 0.0014 0.0226 -0.0095 0.8941
GERYS(2,10) 5341 0.0089 0.0024 0.0018 0.0271 -0.0130 0.8718
GERYS(3.,7) 4604 0.0055 0.0007 0.0015 0.0174 -0.0071 0.8886
GERYS(3,10) 4873 0.0072 0.0014 0.0015 0.0211 -0.0098 0.8607
GERYS(5,10) 5341 0.0044 0.0017 0.0042 0.0141 -0.0085 0.7843
JAPYS(2,5) 5250 0.0050 0.0009 0.0042 0.0133 -0.0047 0.8036
JAPYS(2,10) 5250 0.0112 0.0019 0.0026 0.0256 -0.0072 0.8442
JAPYS(3,10) 5250 0.0094 0.0017 0.0032 0.0223 -0.0064 0.7984
JAPYS(5,10) 5250 0.0062 0.0013 0.0044 0.0142 -0.0067 0.7566
AUSYS(2,5) 5137 0.0032 0.0018 0.0039 0.0153 -0.0145 0.7988
AUSYS(2,10) 5137 0.0053 0.0036 .0.0028 0.0277 --0.0240-" 0.7855"
AUSYS(3;10) 5137  0.0041 0.0035 0.0048 0.0209 -0.0194 0.7289
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(continued)

Bond Yield  Obs.(T7) I a A Max Min  p(100)
AUSYS(5,10) 5137 0.0020 0.0023 0.0080 0.0127 -0.0095 0.6890
CANYS(2,5) 5157 0.0043 0.0028 0.0058 0.0165 -0.0121 0.7736
CANYS(2,7) 5157 0.0068 0.0042 0.0047 0.0226 -0.0135 0.7848
CANYS(2,10) 5157 0.0079 0.0058 0.0045 0.0263 -0.0172 0.7921
CANYS(3,7) 5157 0.0048 0.0022 0.0049 0.0200 -0.0085 0.7733
CANYS(3,10) 0157 0.0059 0.0050 0.0065 0.0198 -0.0132 0.7806
CANYS(5.10) 5157 0.0037 0.0041 0.0172 0.0114 -0.0097 0.7470

HKYS(2.5) 2952 0.0084 0.0059 0.0085 0.0212 -0.0193 0.7109

HKYS(2.7) 2662 0.0113 0.0129 0.0096 0.0275 -0.0202 0.7666
HKYS(2,10) 2435 0.0142 0.0083 0.0040 0.0336 -0.0208 0.7924

HKYS(3.7) 2662 0.0079 0.0125 0.0209 0.0335 -0.0133 0.7739
HKYS(3.10) 2435 0.0107 0.0079 0.0070 0.0373 -0.0140 0.8053
HKYS(5,10) 2435 0.0061 0.0015 0.0047 0.0142 -0.0033 0.8381

Total 262,170
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Append 1I: Unconditional and Conditional Bond

Returns

This Appendix brieflv describes the methodology use ro calculate the unconditional
and conditional bond returns. Two important assumptions are needed to compute
the bond returns. First, all benchmark bonds in our sample countries, apart from
Germany, are assumed to pay semi-annual coupons to bond holders throughout the
sample period.  Second. henchmark honds are assumed to trade at par. The first
assumption is not controversial since the government coupon bonds usually maintain
similar coupon payout methods for many vears, especially for benchmark issues. To
show why the second assumption is reasonable as well, we refer to the following Figure
3.10.

Figure 3.10: An Example of Historical Benchimark Bond Price and Bond Yield
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This Figure displays the historical US 10-year benchinark bond price and the bond
yield over period 1978-2006. The evidence here shows that the benchmark bond prices
fluctuate pernmanently around $H0 while the bond vields vacillate hetween 3 and 15
percent. Although the bond prices deviate from par, in the long run, the average value
of the bond price is close to par. As a matter of fact, the mean price in this example

is $100.17. which is not significantly different from: $100. Thus. it is reasonable for us

to maintain the second assumption for other bonds of different maturities.

The next step is to compute the bond’s duration. Despite the recent growth in

rnodern financial engineering. the Macaulay duration by F. Macaulay (193%) s still
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the bedrock in measuring the price response of a hond to changes in interest rates.

The basic equation for calculating the Macaulay duration D is given as:

n tC nif
2iz1 [y + Ty

b= P

(3.33)

where y is the bond yield (semi-annual coupons), P is the bond price, M is the par
value and n is the number of semi-annual periods. Given this Macaulay duration D
we can proceed to calculate the Modified duration D*:
D= D (3.34)
I+y
By the virtue of the second assumption, the bond vield is equivalent to the coupon
rate at par. This information enables us to compute the Modified duration D* in
equation (3.34) with P = 100, M = 100, C = y and the bond yield y, at time ¢
and the maturity value. For example, the modified duration of a 10-year government
bond at 5 percent yield and 5 percent coupon is D* = 7.7945.*! Armed with the
modified duration D*, it is possible for us to compute the approximate percentage
bond price change of the bond with the following expression, even though we do not
have the actual bond price data:
AP

’,‘t: —_— =

5 =D x Ay =27 (3.35)

where AP = P, — Py, Ay =y, — y;_,, and AP/P is the percentage change in bond
price, and Ay is the change in bond yield. This percentage bond price change is
assumed to be the bond returns 7, at time t.?2 To provide further intuition to the
percentage bond price change, we provide a graphical example of the unconditional
bond returns r; in Figure 3.11. The data used in this example is the US 10-year
benchmark bond vield over the period 1962-2006. Basically, this Figure shows the
dailv normalized bond price returns change computed with the modified duration D*

and daily bond yield change Ay via equation (3.35).%3

This figure shows that the unconditional bond price returns capture several well

218ee Fabozzi (2001) and Campbell, Lo and Mackinlay (1997, Chapter 10) for more details.

22 Another approach for approximating a bond’s duration using the yield-to-maturity is derived
by Shiller, Campbell and Schoenholtz (1983) Their approximation to the bond’s duration that is
selling close to par is given by: D° = =2 where p=(1+y,)"t and n is the bond’s maturity. This

latlonslup becomes equality if the })Oll(flb selling at par. The log-linear bond returns is then given
as: 1. =~ D% — (D° — Dy, where y; is the yield-to-maturity at time ¢. See Campl)ell Lo (m(l
Mackinlay (1997, p.408) and Hardouvelis. (1994) for-more details. -~ - - -

“BThe madifisd duration D* will vary throughout our sample data because the level of bond yield
is not constant. The normalization procedure is described i1 Section 3.2.
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Figure 3.11: Daily Normalized Unconditional Benchmark Bond Price Changes Using
Modified Duration
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known stylized facts, such as the increased in bond price volatility during the US
monetary tightening in 1978-1981, and the large positive spike in bond price during
the October 1987 equity market crash. Because of their relative accuracy and to
maintain consistency throughout our work, the method described here is used to
calculate both the unconditional bond price returns and the one-day conditional bond
price returns. After applying the Nadaraya-Watson and local polynomial regressions
to each bond yield series, we have twelve sets of normalized conditional bond yield
changes Ay, which we convert to bond price percentage returns 7 and compare these
returns against the unconditional bond price returns from the whole sample period

with the goodness-of-fit and Kolmogorov-Smirnov distribution tests.



Chapter 4

An Empirical Investigation of Price

Gaps in the Financial Markets

4.1 Introduction

It is well known that investors use technical analysis extensively to forecast future
asset prices. (See Chapter 1) A significant part of technical analysis involves pat-
tern recognition and evaluating images, such as extracting meaningful information
from chart patterns like Head-and-Shoulders, which we have examined in Chapter
3. Therefore, human cognitive ability plays an important role in technical analysis.
Early German psychologists have developed the Gestalt laws of perceptual organi-
zation to explain how humans, or technical traders in our case, perceive external
objects. Among these Gestaltist laws, one cognitive theory hypothesized that there
is a tendency for humans to visually complete fragmentary pictures and fill in the

' To exemplify this

incomplete information. This is known as the Law of Closure.
law, we plot two objects in Figure 4.1(a). One could easily recognize the left and
right figure as a circle and triangle respectively, even though no complete circle or
triangle has been drawn. According to the Law of Closure, we mentally connect the
dashed lines and fill the empty space between these dashed lines with imaginary lines,

therefore forming the circular and triangular objects in our mind.

In relation to the dashed objects, such gaps (or empty space) can also occur
between two trading periods in the financial markets, as shown in Figure 4.1(b).
Price gaps are defined to be the vertical space created between the high and low
prices in one trading period and the high and low prices in next trading period. They

are marked by G in this sub-figure. For example, if the day-high at time_t. is lower

" 18ee; foi ex'an‘i'p':le;\Vé‘rtlieiriwler’:(192§; .195_8) for a description of this and other cognitive laws.
Early studies that verify the Law of Closure with simple incomplete geometric figures include Koftka
(1935). Street (1931) and Leeper (1935). See also Barlett (1916, 1932).
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justified. Until now, price gaps have not been analyzed statistically. The price gap
hypothesis has beconie a universal tool without any strong evidence, apart from the
fact chartists know that gaps are important, as Edwards and Magee (1966, p.207)

argue about this many vears ago:

These “holes™ in the price trend graph were conspicuous. It was only
natural that observers should attach importance to them. should try to
assign some special significance to their occurrence. But the result was
unfortunate, for there soon accumulate a welter of “rules” for their inter-
pretation, some of which have acquired an almost religious force and are
cited by the superficial chart reader with little understanding as to why
they work when they work (and, of course, as is always the case with any

superstition, an utter disregard of those instances where they don’t work.)

Furthermore, no empirical study has provided any evidence on to whether gaps
are sources of profitable technical indicators. The line of research in many previous
technical analysis papers concentrate on [1] Profitability of simpler technical indi-
cators like moving average. filters and calendar effects (See, for example. Brock.
Lakonishok and LeBaron (1992), Kho (1996), Cooper (1999), Sullivan, White and
Timmermann (1999, 2001) and Chapter 2), [2] Chart pattern recognition capability
(See, for example, Osler (1998), Chang and Osler (1999), Lo, Mamaysky and Wang
(2000), Dempster and Jones (2002), Dawson and Steeley (2003), Savin, Weller and
Zvingelis (2003) and Chapter 3), [3] Neural network and artificial intelligence (See, for
examniple, Neely, Weller and Dittmar (1997), Allen and Karjalainen (1999) and Neely
and Weller (2003)) and [4] Theoretical models (See Treynor and Ferguson (1985),
Brown and Jennings (1989) and Blume, Easley and O’Hara (1994)).2

Thus, this chapter extends the current literature on technical analysis by evalu-

ating several hypothesis relating to price gaps:
1. Are price gaps filled, as technical analysts are universally led to believe?
2. Do price gaps provide an extra dimension of information to traders?
3. Do price gaps provide sources of profitable trading strategies?

Although price gaps are easy to identify, they can take several distinguishable
forms. To test the information provided by these gaps, an objective method for
identifying vauous tvpes of puce gaps is needed. Otherwise, various-interpretations

of the price gaps will arise. Thus, we pre-set various conditions for different types of

2See Park and Irwin (2004) for a complete review of the previous studies in technical analysis.
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gaps and apply these conditions objectively to detect price gaps in financial markets.

The goal of such a procedure is to reduce the subjective nature of our selection process.

To this end, we first categorize price gaps into five specific types commonly taught
by chartists. There are Congestion gaps, Breakout gaps, Runaway gaps, Exhaustion
gaps and Island gaps. The characteristics of each type of gap are carefully studied and
described. The next step is translating these verbal descriptions into computationally
feasible algorithms so as to detect and sort out the various price gaps. The final step is
evaluating the conditional price returns obtained from these price gaps by comparing

them to the unconditional returns.

Price gaps are usually not used as an isolated technical indicator. In fact, technical
analysts commonly use other technical indicators in conjunction with price gaps when
evaluating the significance of price trend. Indicators including various chart patterns

and volume. Hence, we shall include both indicators in our price gap study.

First, to test whether conditioning on chart patterns provide further information
to technical analysts, we use a statistical smoothing algorithm to extract potentially
useful chart patterns in conjunction with price gaps, as in the spirit of Lo, Mamaysky
and Wang (2000, thereafter LMW). The smoothing method we consider is known
as the local polynomial regression. Using local polynomial regression has several
attractive properties over the Nadaraya-Watson estimator used by LMW, such as
reduced boundary bias. Moreover, by resorting to this regression technique, we can
homogenized the appearance of chart pattern throughout the sample data. (See
Chapter 3 for more details) Second, volume is hypothesized to contain information
that is potentially useful to analysts. For example, the occurrence of a price gap
together with increased volume is claimed to confirm a price trend while decreasing
volume signifies that the price trend are more prone to reversal in the future. (See,
Bulkowski (2005), Edwards and Magee (1966) and Blume, Easley and O’Hara (1994))

We test the Gap-Fill hypothesis and apply the technical charting algorithm to
twenty-eight futures markets. The principal reason for this data choice is that short-
selling is permitted in the futures markets. Investors could either enter into a long or
short positions in the event of a price gap, which can be an upward or downward price
gap. Furthermore, futures markets allow us to test the Gap-Fill hypothesis across
different asset markets, such as equity, currencies, fixed income and commodities.
As a matter of fact, some futures markets have higher liquidity than the underlying
financial instruments, a characteristic which enhances pricé discovery and promotes

market efficiency.
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The rest of this chapter is as follows. The first part of Section 4.2 describes the
various type of price gaps and its algorithmic identification. The second part of the
same section describes the two conditioning variables used in conjunction with the
price gaps, including chart patterns and volume. Next, Section 4.4 summarizes the
underlying futures data and the adjustment technique used to extract the continuous
time series. We also include a number of graphical examples to facilitate the un-
derstanding of the algorithm and the smoothing technique. Section 4.5 presents the

empirical results. Finally, Section 4.6 concludes.

4.2 Identification of Price Gaps

4.2.1 Types of Price Gaps

Price gaps occur regularly in financial markets. The causes of prices gaps are many,
some of which may be due to exogenous information shocks like the release of eco-
nomic data which has an unexpected component, (See, for example, Fleming and
Remonola (1999a and 1999b) and Fleming (2003)) or a clustering of buy/sell orders
at certain technical price levels.® (See, for example, Osler (2003) and Kavajecz and
Odders-White (2004)*) Technical analysts have grouped these price gaps into different
categories so that it is possible to identify future price gaps and to derive forecasting
properties from these gaps. Fach type of gap offers a different hypothesis {see next

section).”

In broad generalities, there are several types of price gap that market technicians
have identified. (See, for example, Edwards and Magee (1966), Schwager (1996)
Bulkowski (2005) and Kaufman (2005))

1. Congestion gaps. Occur within a congestion or consolidation level.

2. Breakout gaps. Occur when prices are breaking out of the congestion (trend-

less) area.
3. Runaway gaps. Occur when prices are rapidly moving in one direction.

4. Exhaustion gaps. Occur when the price trend is coming to an end or reversed

itself.

30ur study here is not to investigate the causes of price gaps. Whether price gaps are predictable
is an interesting issue, but outside the scope of our study here and a work for future research.

4In particular, Kavajecz and Odders-White (2004) find evidence that .some- technical- indicators:

can capture-changes in the state of the limit book orders, indicators such as moving average.
5The ex-dividend gaps are not included in the present study since they offers no new information
as market participants know in advance the causes of the gaps.
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5. Island Gaps Occur when there are upward and downward gaps in a matter of
short-period, leaving an island of prices separated by two gaps from the rest of

the prices.

4.2.2 Observations on Different Price Gaps

This section provides more information about the various price gaps identified previ-

ously.

Congestion gaps occur frequentlv in financial data and can be attributed to the
normal fluctuation of market noise. (Black (1986)). These gaps are commonly seen in
areas of congestions, occurring below a critical resistance level and above an important
support level, as shown in Figure 4.2.2. Simply, a resistance level is an area where
prices can no longer advance due to excess supply of asset from sellers and a support
level is a price level where prices do not fall further due to excess demand from buyers.
These levels can be seen by the horizontal lines. The area bounded by the resistance
and support levels is known as the “congestion” area. Therefore, the high and low
prices on the day a congestion gap occurs should remained within the support and
resistance level. Congestion gaps are said to be filled rapidly. Moreover, Edwards
and Magee (1966, p.211) have described such gaps to have no value to traders, “The
forecasting significance of Common or Pattern Gaps is practically nil.” Thus, we
should not expect such gaps to lent any forecasting capability to traders, neither

should they provide any incremental information.

On the other hand, Breakout gaps often indicate the completion of some chart
patterns and signal that a degree of bullishness or bearishness in asset prices is forth-
coming. Patterns including Triangle or Rectangle. (See next section for more de-
scription of the chart patterns.) Usually, a Breakout gap is accompanied by heavier
volume, and new highs (for up Breakout gap) and new lows (for down Breakout gap)
on the day of the gap is made. The Breakout gap may be filled after the initial break-
out. In Figure 4.2.2 an example of upward Breakout gap is given, which is shown to
pierce through the resistance line. But what is the significance of Breakout gaps to
investors? Edwards and Magee (1966) advise that if two securities are experiencing
the same technical chart pattern, the security that breaks out of the pattern with a
price gap has a higher probability of maintaining its direction over the security that
does not have a gap. However, having said that, they also claim that (p.214) “Fxcept
for the presumption of somewhat greater “steam” behind the move, the Breakaway
gaps carries no particular measuring umplication, nor-any other forecastiiig signafi-
" cance.” For both'C(;ngestion and Breakout gaps, the congestion area hounded by a

resistance and support line is presumed to span at least 10 trading days.
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Figure 4.2: An Illustration of Various Price Gaps in the Financial Markets
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Runaway gaps occur amidst a “strong” price advance or decline. To quantify
what a strong price movement is, the prices before and on the day the Runaway gap
occur should be new high (for an upward gap) or new low (for a downward gap). A
Runaway gap is clearly seen in Iligure 4.2.2, where the prices before the occurrence of
the Runaway gap had increased rapidly. Prices after the occurrence of Runaway gaps
are hypothesized to continue in the direction of the gap without pulling back to cover
the gap in the short-term. To capture the characteristic of the strong price trend
prior to Runaway gaps, we specify that prices must have at least two consecutive new
highs or new lows before the day the gap occurs. The new highs or lows are compared

to prices in the last 15 days.

Closely related to Runaway gaps are Exhaustion gaps, which are usually described
as “the last gasp” after a strong price trend. The high or low price recorded during
the Exhaustion gap must be new high or new low and possibly accompanied by higher
than average volume. Exhaustion gaps are usually preceded by other price gaps, such
as Runaway gaps, as shown in Figure 4.2.2. Exhaustion gaps are claimed to be filled
quickly, most often within 2 to 5 days. Since Exhaustion gaps must be made after a
significant price trend, we define the new high or new low over a longer time frame

of 22 days.

Understandably, the hardest gaps to distinguish between are Runaway and Ex-
haustion gaps. This is because one is always uncertain whether the trend is terminat-
ing. It is only possible to differentiate these two gaps retrospectively, as Edwards and
Magee (1966, p.216) point out that, “this is fairly typical of many cases in which it
1s impossible to say whether Continuation or Evhaustion is being signaled until 2 or
3 days after the gap is made.” However, there are clues to distinguish between these
two gaps, as described by the Edwards and Magee later in the same chapter (1966,
p.221):

An Exhaustion Gap is seldom the first gap in a runaway move; it is usu-
ally preceded by at least one Continuation Gap. Thus, you may ordinarily
assume (unless the contrary appears from other and more weighty indi-
cations) that the first gap in a rapid advance or decline is a continuation
Gap. But each succeeding gap must be regarded with more and more

suspicion, especially if it is wider than its predecessor.

The problem for us now is deciding how. many. Continuation gaps triust occurred
before the gap can be categorized as an Exhaustion gap. For simplicity, we shall fixed

the number at 1, meaning that at least one Runaway gap must occur in the near term

173



before the current price gap is described as an Exhaustion gap. We define near term

to be 7 trading days.

The last type of price gap is Island gap. An Island gap is an island of prices left
out of the continuous fluctuations of price path separated by two gaps. This can be
seen at the top right-hand corner in Figure 4.2.2. By itself, Island gaps are claimed
not to be a major reversal indicator. Rather, they belong to minor tops in a larger
chart formation, such as the Head in the Head-and-Shoulders formation. (Edwards
and Magee (1966)) But given that interpretation, Island gaps are also said to predict
some sort of retracement to earlier price movements after it occurs. Hence, if an
Island top occurs, the general expectation is that near-term prices will decline. On
the contrary, if an Island bottom occurs, the near-term prices will increase. Even
Edward and Magee concede that it is not easy to make money by trading the Island

gap pattern.

The next section transforms the above general descriptions algorithmically so that

it is possible identify the price gaps.

4.2.3 Identification of Price Gaps

To define the above-mentioned price gaps, let O, H;, L, and C, denote the open,
high, low and close price at time ¢ respectively. After a price gap is detected, it must
be categorized into one of the first four price gaps without any overlapping definition.
The only exception is Island gaps. This is because the Island gap contains two gaps,

one up and one down, separated by a trading day.
The following are the conditions on each type of price gap.

Definition 1: (Congestion Gaps) Congestion gaps are bounded by a support level and
a resistance level. The following defined both upward congestion gap (UCG)and

downward congestion gap (DCG) respectively:

UCG1 L, > H,,
UCG2 C; and O; < Max(H; 4, ..., H;_19)

and

DCG1 H < L;_,
DCG2 C{ and‘O, < I\/Iilfl;([/ffl., Lf,]())
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Definition 2. (Breakoul Gaps) Breakout gaps occur when the gap forecast an initia-
tion of a trend in prices. There are two types of possible breakaway gaps. The
first case is when the body of the gap penetrates the resistant/support level.
and the second case is when the gap skips entirely the resistance or support
level. The following defines the upward breakout gap (UBG) and downward
breakout gap (DBG) respectively®:

UBG1 L, > H;
UBG?2 Either C; or O; or Ly > Max(H,_y,..., Hi_10)
UBG3 H, >sup(H; : t=-1,...,—-10)

and

DBG1 Hf < L(_l
DBG2 Either Cf or O[ or L{ < I\’Iil'l([‘f‘,h L[,.]())
DBG3 L; < inf(L; : t = —1,...,—10)

Definition 8: (Runaway Gaps) Runaway gaps continue the ongoing trend. It is
characterized by strong price movements prior to the gap. The upward runaway
gaps (URG) and downward runaway gaps (DRG) can be characterized by the
following conditions respectively:

URG1 L, > H,_,

URG2a H;_y > Max(H; : t = ~2,..., =2 — k) where k = 15
URG2b H,_, > Max(H; :t = —1,...,~1 — k) where k = 15
URG3 H; > sup(H; : t =—1,...,—15)

and

URG1 H, < L,_;
URG2a L; o < Min{L; : t = =2,...,—2 — k) where k = 15

8From our perspective, the color of the body in candlestick charts does not matter, as long
as either the close, open or low price penetrates the resistant/support level. Color here refers to
whether the open price is higher than the close, and vice versa. If L, penetrate the resistant/support
level, it means that the gap completely skips the resistant/support. If either C; or O, penetrate
the resistant/support level, the body of the bar penetrates the resistant/support level. Candlestick
chartists may disagree with our presumption here, for example, Nison (1991). But to confirm our
suspicions on the lack of profitability of candlestick charts,-we-cite a-number of ‘éfupirical studies
evaluate numerous candlestick patterns, all of which find them to be unprofitable. See recent studies
by Fock, Klein and Zwergel (2005) and Marshall, Young and Rose (2005).
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range prior to the day the price gap occurs. First, we measure the size of the gap by
gapdift, = L, — H,_, for an upward gap, and gapdiff, = H, — L,_, for a downward
gap. For Size 1, gapdiff is smaller or equal to the size of open and close price of the
previous day. For Size 2, gapdiff is smaller or equal to the size of high and low price
of the previous day. For Size 3, gapdift is larger than the size of the high and low

price of the previous dayv. More specifically,

1. (Size 1) gapdift, | < |0,21 — G|

N

. (Size 2) g&pdlﬁtg S IH{—I ~ L(v_1|
3. (Size 3) gapdift, 3 > [H;_1 — L]

where O, H;, C; are the open price, high price and close price at timme t respectively.

4.2.5 Conditioning Variable 1: Chart Patterns

Local Polynomial Regression

Chart patterns are the foundation of technical analysis. It is frequently claimed
that chart patterns provide additional value in forecasting financial prices. Indeed,
LMW has provided some empirical evidence that chart patterns do alter the empirical
distribution of the stock returns in the U.S. equity markets. (See Chapter 3 for more

details.)

To identify the chart patterns objectively, we use a nonparametric smoothing algo-
rithm known as local polvnomial regression specified in Chapter 3. Local polynomial
regression has several appealing properties over the Nadaraya-Watson kernel estima-
tors. One advantage is the similar bias order along the boundary and in the interior,
and this reduces the need to use specific boundary kernels. The other advantage is
that we can estimate the regression parameters using least squares. (Fan and Gijbels
(1996, Chapter 3) and Hastie, Tibshirani and Friedman (2001, Chapter 5))

It is asswned that the financial price, y, is generated by the function f(.):
y = fla)+e (4.1)

where ¢’s are independent white noise, that is, E(¢) = 0 and Var(e) = 1. Assuming
that the (p4 1) derivative of f(x) at point xq exists, we can approximate the unknown

regression function f(x) locally by a polynomial of order p. A Taylor expansion for

@ in the neighborhood of iy gives: o . - -

f(p)l'o

f@) = flxg) + f'(xo)(a — xg) + r (;O) (x —xg) + ...+

(r —ap)"  (4.2)
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This polynomial is fitted locally by a weighted least square regression, minimizing

the following function:

n p 2
. , , o fx—x .
H};HZ[w—Zﬁmu—:nO)J} A,.( . “) (43)

i=1 §=0

where NI,(-) is the kernel function assigning weights to each datum point, and h
is the bandwidth parameter controlling the size of the local neighborhood. Let
Bj.,j = 0,...,p be the solution to this least squares problem, it is clear from the
Tayvlor expansion that f,-(a;o) = j!/?,- is an estimator for fW(xg), for j = 0,1,...,p.

Denote X as the (n x p) design matrix:

1 (xy =) - (21 —x0)”
X - 1 (1172 _ :EO) : (51;2 _ -'1"0)1) (4.4)
1 (z, —wxg) - (2, —xg)

and let W be the (n x n) diagonal matrix of weights:
W = diag{K, (Q)} i=1,..,n (4.5)
)
The weighted least square problem (4.3) can be written as:

min(y — X3)W(y - X9) (4.6)

where 3 = (5o, 51, ..., G,)". The solution is provided by weighted least squares theory

and is given by:
4= (XWX) 'X'Wy (4.7)

if (X'WX) is invertible. The estimator F() is the intercept term fo. To ensure
that (X’'WX) is invertible, at least (p + 1) different points with positive weights are

required.

In our estimation, y is a vector of closing prices and X is a matrix of time point
1,2,...,n, where n is the window of close prices to which we apply (4.7) to each data
point 7 in that window in order to obtain n smoothed prices. In this chapter, we fixed
n = 30, implying that once a price gap is discovered .at time ¢, the local polynomial®

teglession is applied to prices at interval {y; .1, ..., y—s0}.7

“In chapter 3, the fixed length window is 45 days. The fixed length window is stualler in this study
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After all 5’0 are computed, we determine the extrema in this window by checking
the signs of {f'(7)}7=%0. f'(-) is given by parameter /4 in (4.7). All extrema are
obtained by checking for the sign of f(7) against f'(r—~1). If f’(r) > 0 and flir=1) <
0, a minimum extrema is found at 7—1. On the contrary, if f'(7) < 0and f/(r—1) > 0,
a maximum extrema is found at 7 — 1. If both f'(r) = 0 and f'(r — 1) = 0, we
work backwards for each 3;, to determine whether the current stationary point is
a maximum or minimum since the extrema always gives an alternating sequence

between maximum and minimum. We label all extrema in a window to be (e, ..., €,)

Asymptotic results prescribe that odd p has a clear advantage over even p, in the
sense that the conditional bias for odd values of p are simpler that even values of p.
(See Simonoft (1996) and Fan and Gijbels (1996)) Consequently, we shall use the first

order only, p = 1, for all polynomial regression.

Smoothing Parameters

The key parameters in both nonparametric kernel and polynomial regression are the
choice of kernel. size of bandwidth and definition of chart patterns. We shall discuss
the first two in this section and leave the discussion of chart patterns to the next

section.

There are many choices in choosing which the kernel functions K, (-). The most
common ones are Gaussian, Epanechnikov and uniform kernels. The advantage of
Epanechnikov kernel is that it has compact support, but is not differentiable at 1.3
Results by Fan and Gijbels (1996, Theorem 3.4) and Fan et al. (1995) prove that
Epanechnikov kernel is the optimal kernel for all orders p, that is, it is the weight
function that minimizes the asymptotic mean squared error of the local polynomial
estimators. Thus in this chapter we use the Epanechnikov kernel as our primary

kernel:
- 3 2
K(z) = 1(1 — 2% (4.8)

After deciding the kernel function, the next step is to choose the bandwidth pa-
rameter. There are numerous approaches to this, including rule-of-thumb, cross val-
idation, nearest neighbour and plug-in methods. (See, for example, Hardle (1990),

Simonoft (1996) and Jones, Marron and Sheather (1996) for some theoretical and

because price gaps are short-term indicators. Thus, the period to which we extract the pattemb are
shorter than just evaluatmg, chart patterns.alone. o = S e =

'8A1L8r11aL1\'el\, one could follow LMW and use the Gaussmn l\ernel defined as: K(z) =
\/%Eexp( 22/2), or the Uniform kernel, defined as: K(z) = Ly_o.5,.40.5(2)
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simulation analyses of these methodologies.) Many of these methods rely on asymp-
totic results to justify their selection. But in this chapter, we are dealing with finite
samples and rely heavily on visual approximation. This makes the asymptotic theo-
retical results less relevant, as Cleveland and Loaders (1996) argued that there is a
gap between the asymptotic theory and the problems encountered in finite samples.
In particularly, they argue that global bandwidth selection tend to perform worse
than nearest neighbours methods in practice, which contradicts the asymptotic the-
ory. Hence, no matter which method of computing the bandwidth, there is always a

need to adjust the bandwidth visually by technical analysts.

Taking these considerations into account, we use the most common approach, the
cross validation method: (See Silverman (1986) and Hardle (1990))

hev = —Z< —fht> (4.9)

where

A 1 i
) = - +hYr 410
Iy nzw LY ( )

TH#L

which is the on‘lit the 7! observation from local regression at the focal value ;.
Omitting the 7" makes the fitted value independent of the observed value y;. After
each price gap is found, the cross validation (4.9) is computed on a window of n
closing prices so that it can feed into the local polynomial regression. As such, hev is
a local bandwidth rather than a global bandwidth. Similar to LMW, visual analysis
of izcv shows that this bandwidth value over-smooth data. Thus, there is a critical
need to reduce the value of hcy. After some trial and error, we fixed the bandwidth
at (hey x 0.45) for all data.

Chart Patterns

After obtaining the smoothing algorithm, the next step is defining the type of chart
patterns of interest.” Given the extrema (e;,es, ..., €,,), where ¢, is the last extrema
in a window of 30 days (approximately six trading weeks), we define the following
chart patterns, including Head-and-Shoulders, Triangle, Rectangle, Broadening and

Double. The strategy in applying the local polynomial regression to identify chart

9The chart patterns defined here are slightly different to the patterns described in Chapter 3.
because we alter the parameter.values.that define-the patterns. For éxample, the shoulders extrema
(€m—i e,,,*l) in the Head-and-Shoulders pattern here are constrained to be less than 0.5 percent
from their average, where as it is 1.0 percent in Chapter 3.
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patterns is as follows. Step 1: we determine whether a price gap has occurred and
whether it is an upward or a downward gap. Step 2(a): If the price gap is an
upward gap, we check whether an inverse Head-and-Shoulders, Triangle, Rectangle,
Broadening or Double has occurred in the last 30 days, that is, we check for the
Bottom chart patterns by applying the regression to the closing prices. Step 2(b): If
the price gap is an downward gap. we check whether a Head-and-Shoulders, Triangle,
Rectangle, Broadening or Double Top has occurred in the last 30 days. The rationale
for this difference i1s that an upward gap starts from a support level, and therefore
a bottom pattern is more appropriate than a top pattern. Similarly, if a downward
price gap occurs, a short-term top pattern reflects a change in price trend better !’
Step 3: Analyze the conditional returns based on the information tests. (See Section
3)

The following describes the five commonly taught patterns, including Head-and-
Shoulders Top (HSTOP) and Head-and-Shoulders Bottom (HSBOT), Triangle Top
(TTOP) and Triangle Bottom (TBOT), and Rectangle Top (RTOP) and Rectangle
Bottom (RBOT), Broadening Top (BTOP) and Bottom (BBOT) and Double Top
(DTOP) and Bottom (DBOT). (See, for example, Chapter 3, Bulkowski (2005), Ed-
wards and Magee (1966) and Kaufmann (2005) for sone extensive description of chart
patterns.) The extrema (€, 4, €m—3, €m—2, €n—1, €n) are the last five extrema before a
price gap occurred. In our estimation, we only apply the regression to closing futures
prices. One possible avenue for future research is to use both the high and low daily

prices.

Pattern 1: (Head-and-Shoulders) The following conditions characterize the Head-
and-Shoulders Top (HSTOP) and Bottom (HSBOT) respectively:

HSTOP1 ¢, is a maximum.
HSTOP2 ¢,,_5 > €,,_4 and e,,_o > €,,

em—4+E€m
G

HSTOP3 max !

e; — €] <0.005 x &, where i = (m —4,m) aud € =

HSTOP4 max |e; —é| < 0.005x e, wherei = (m—3,m—1)and é = 5—‘—”2“—‘—1

and

HSBOT1 ¢, is a minimurn.
HSBOT2 ¢, 5> < e,y and ¢,,_o < e,
HSBOT3 max

e"l i4+ei” T
2

e; — €] < 0.005 x g, where-i = (m — 4;m) and € =

0 For robustness purpose, we also report the results for the Top patterns for downward price gaps
and Bottom patterns for upward price gaps.
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HSBOT4 max |e;—&| < 0.005x &, where i = (m—3,m—1) and & = Z=22¢m=t

Pattern 2: (Triangle) The following characterize the Triangle Top (TTOP) and
Bottom (TBOT) with five extrema respectively:

TTOP1 ¢, is a maximun.

TTOP2 €m—q4 > Cm-2 > €y and €m-3 > €m—1
and

TBOT1 ¢, is a minimum.

TBOT2 ¢,,,_4 < €2 < &, and €,,_3 < €m_

Pattern 3: (Rectangle) The following conditions specify the Rectangle Top (RTOP)
and Bottom (RBOT) respectively:

RTOP1 ¢, is a maximurn.
RTOP2 max

€m—-d+em_2+€m

3
RTOP3 max

< 0.005 x e, where i = (m —4,m — 2,m) and é =

(j,'—(j,

€m—3+€m_1

< 0.005 x €, where t = (m —3,m—1) and € = 5

e,‘—é

RTOP4 Inin(em—tl: €m-2, @m) > 1‘11ax(e,77,3, em-l)
and

RBOT1 ¢, is a minimuin.
RBOT2 max|e; —é] < 0.005 x €, where ¢ = (m —4,m —2,m) and € =

Cm-dT€m-2+em
3

RBOT3 max |e; — ] < 0.005 x &, where i = (m —3,m — 1) and & = “2=2ln=l

RBOT4 rna.x(e.,n_4, €m-2, Cm) < l‘llil’l((im_g, em-l)

Pattern 4: (Broadening) The following conditions specify the Broadening Top (BTOP)
and Bottom (BBOT) respectively:

BTOP1 ¢, is a maximuin.

BTOP2 ¢,,_4 < €0 < e, and €3 < €m—)
and

BBOT1 ¢, is a minimum.
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BBOT2¢,,_4 > ¢p_2 > €, and €,,-3 > €m_1

Pattern 5: (Double) Double top and bottom patterns need the top two (eiop1, €rop2)
and lowest two (epor1, €ror2) prices in a 30-day window, with the time at which
these extrema occurred to be (€op1.4, €1op2.t) aNd (€por1 ¢+ Epor2.t) Tespectively. The
following conditions specify the Double Top (DTOP) and Bottom (DBOT) re-

spectively:

DTOP1 ¢, is a maximum.
DTOP2 maxle; — | < 0.0025 x &, where 7 = (€p1, €10p2) and & = Zeptttor?

DTOP3 max|etp1. — €iopze] > 15 days
and

DBOT1 e, is a minimum.
DBOT2 max|e; — €] < 0.0025 x &, where i = (€pot1, €por2) and € = ﬁ%ﬂﬂ

DBOT3 max |€por1.t — €por2.e| > 15 days

4.2.6 Conditioning Variable 2: Volume

From the technical analysis perspective, volume may provide a further confirmation
of the current trend in addition to the price gaps. Theoretically, Blume, Easley and
O’Hara (1994) has provided us with some insights on how this might be possible
in a rational framework. The hypothesis here is rather simple: if a price gap is
accompanied by higher volume, then it may reinforce the information of price gap

and the direction of the price trend.

To simplify the role of volume in this paper, we assume that the price gaps are
further conditioned by increasing or decreasing volume trend. To know whether the
volume is increasing, we first compute the average of the volume in the last 22 days
at the day when a price gap occur. If the current volume is higher than this average
volume, the gap is categorized as an increasing volume (I.V.) price gap. On the other
hand, if the volume is lower than the average volume in the last 22 days, then the

gap is a decreasing volume (D.V.) price gap.
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4.3 Return Measurement, Information Tests and

Bootstrapping

4.3.1 Sampling Conditional and Unconditional Returns

For each price series, we apply the algorithin specified in the previous section to
extract the conditional returns. In particular, once a price gap is detected at time ¢,

we record the one-day continuously compounded returns from time ¢ to t + 1 using

Pt
Py

formula r; = ln( ), where P, is the time t closing price. As a result, we have
10 sets of conditional returns upon detection of each type of price gap. To obtain
additional information, we also record the conditional returns from ¢ + 2 (day 2) to
t +4 (day 5) to examine any abnormal behavior. Unlike the conclusion of technical
chart patterns such as Head-and-Shoulders top in Chapter 3, detecting price gaps is
rather immediate since there are less controversy about their formation. Hence, there
is no requirement to wait for several days before measuring the conditional returns,
as in LMW.

For each price series, we construct the unconditional continuously compounded re-
turns and compare them to the conditional returns. To make comparison easier across
different markets, both the conditional and unconditional returns are standardized

by subtracting the mean and dividing by the standard deviation:

rie — Mean(r, ;)

S-D("'zi,f.)

Ziy (4.11)
where the mean and standard deviation are computed for each individual price series.
Moreover, to increase the power of the statistical tests, we join all the futures price

contracts for the information tests describe in the next section.

4.3.2 Information and Statistical Tests

To conclude whether price gaps contain any particular information compared to the
unconditional returns, we use the goodness-of-fit test and the Kolmogorov-Smirnov
test as proposed by LMW. (See Chapter 3) The null hypothesis for these tests is that
if price gaps are informative, conditioning on them will alter the empirical distribution
of returns. On the other hand, if the information contained in such patterns has been
incorporated into the returns, then the normalized conditional and unconditional

return distribution should be similar.

For the goodness-of-fit test, the procedure is to compare the quantiles of the condi-

tional returns with their unconditional counterparts. The first step is to compute the
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deciles of unconditional returns and tabulate the relative frequency 9, of conditional

returns that fall into decile 7 of the unconditional returns, j = 1, ..., 10:

Number of conditional returns in decile
total number of conditional returns

1>

The null hypothesis is that returns are independently and identically distributed
and thus the conditional and unconditional return distribution are identical. The

corresponding goodness-of-fit test statistic ¢ is given by:

VT(6; — 0.10) ~ N(0,0.10(1 — 0.10)) (4.13)
10
(T; — 0.10T)*
= = Uy 4.14
Q o 0.10T X9 (4.1 )

where 7; is the number of observations that fall in decile j and the T is the total

number of observations and (4.13) is the asymptotic Z-values for each bin.

For the Kolmogorov-Smirnov test, the statistical basis is derived from the cumu-
lative distribution function Fij(z) and F3(z) with the null hypothesis that F} = Fs.

Denote the empirical cumulative distribution function Fj(z) of both samples:

- 1
Bilz) = =

bk

I(Zg < z), i=12 (4.15)

T.
=]

where I() is the indicator function and (th)tT:1 , and (ZQ,,),E] are the two IID samples.

The Kolmogorov-Smirnov statistic is given by the expression:

Ty \'* : :
1= () IR - A (1.16)

and the p-values are given by:

o
Prob(y < 2) = Z (—1)*exp(—=2k?22), 2 >0 (4.17)
k=—0c
Under the null hypothesis, the statistic v should be small. An approximate «-level
test of the null hypothesis can be performed by computing the statistic and rejecting
the null if it exceeds the upper 100ath percentile for the null distribution. (See Press
et al. (2002, Section 14.3)-and DeGroot (1986)) - =~ - e et

Apart from the information test, a simple t-statistic tests whether the uncondi-
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tional mean returns are statistically significantly different from zero. The formula for

the test-statistic is:

p=_—" (4.18)

a/VT.
where Z is the mean normalized conditional returns, o is the standard deviation of
the normalized unconditional returns, and 7% is the number of observations for the

conditional returns Z for a particular price gap. The null hypothesis is Z = 0. We

apply equation (4.18) to all mean returns.

4.3.3 Nonparametric Bootstrapping

For comparison purpose, we conduct a number of bootstrap trials to test whether the
number of price gaps found is significantly different to the bootstrap distribution. Ac-
cording to Brock, Lakonishok and LeBaron (1992), bootstrapping has the advantage
of performing a joint test of significance across different trading rules, and at the same
time, accommodating the leptokurtic, autocorrelation and heteroscedasticity features
of financial data. (See Efron (1979))

We employ the simple nonparametric bootstrap discussed in Levich and Thomas
(1993) and Chapter 2. Nonparametric here refers to the fact that we are not imposing
any form of statistical distribution to the time series.!! The sampling procedure is as
follows: First, given n returns, we scramble these returns to form a new n-dimensional
array, and rebased each scrambled returns with initial price of 100. Since we are
sampling without replacement, the distribution properties of each bootstrap series are
exactly similar to the actual return. Moreover, the initial and final price are the same
as the original sample data. Next, we apply the price gap identification algorithm to
this scrambled futures prices to form the empirical distribution of the number of gap
detected and the distribution of normalized conditional returns up to five days after
a price gap is detected. The procedure is repeated 1000 times. Lastly, we compare
the actual number of price gaps with this distribution. A simple null hypothesis for
the nonparametric bootstrap can be stated as follows: if there is no information in
the original futures price series, then the number of gaps should not be significantly
different from the number of gaps obtained by the shuffled series. We set the rejection

point of this hypothesis at « significance level. (We choose a = 10 percent)

11Altenmtive]v Brock, Lakonishok and LeBaron (1992) impose and fit four null statistical mnodels
oun the stock index data, which are random walk model, dutow&,lesmve AR( ) model, GARCH-in-
—m e = Mean-model and Exponential: GARCH model. * ' - : o
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4.4 Futures Data

4.4.1 Futures Data and Data Adjustments

The primary data in our investigation are daily futures data obtained from Datas-
treamn, which include daily open, high, low, close prices, and volume. We choose
futures data rather than underlying stocks or bonds primarily due to the opportunity
to hold short positions. Since the direction of price gaps can be either upward or
downward, futures data alleviate the problem of short selling underlying assets in a
downward gap. To some extent, a number of futures contracts has higher liquidity

than the underlying instruments.

Table 4.1 displays the 28 futures contracts to which we evaluate the price gap
hypotheses. There are four types of futures contracts, currencies, fixed income, stock
index and commodities, each have more than 10 years of daily trading data. The
total number of data is 164,288 daily futures prices, which is deemed sufficient for

our evaluation.

Since futures contracts expire at delivery day, there is a need to join the successive
contracts into a continuous price series. We follow the standard procedure similar
to Levich and Thomas (1993), Kho (1996) and Sullivan, Timmermann and White
(1999, Section V) in splicing futures contracts. A continuous artificial returns data
is created by taking logarithmic returns fronm the nearby (front) futures contract.
For all financial futures contracts, the nearby months are March, June, September
and December contracts, and for commodity contracts, the nearby contracts vary.
For example, the returns data for US T-Bond March 2004 contract is collected from
December 2003 to February 2004, and for June 2004 contract, returns data is collected
from March 2004 to May 2004, and so on. The futures contract is switched on the last
trading day before the current contract enters into the delivery month to avoid the
complications arising during the delivery months, such as excess volatility, illiquidity
and the presence of various options for fixed income futures. (See, for example,
Milonas (1986), Johnston, Kracaw and McConnell (1991) and Ma, Mercer and Walker
(1992))

Next, after obtaining all the actual returns series of the futures contracts, with
the open, high and low prices as a fraction of the close actual futures prices for each
trading day, we then rebased the returns series into a continuous price series, assuming

an initial price based index as 100. The returns are converted back to prices with the

- - - — —expression” P, = P_e™ for t = 1,...,n and Py = 100, where r, is the actual return

at time t and P, is the price index at time ¢t. The open, high and low prices are then
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Table 4.1: Futures Contracts

Futures Contracts  Sample Period  Contracts Months Observations

Currencies

US-Yen Jan. 78-Jun. 06 3.6,9.12 7184
US-CHF Jan. 78-Jun. 06 3,6,9.12 7186
US-GBP Jan. 78-Jun. 06 3.6,9,12 7184
US-AUS Jun. 88-Jun. 06 3.6,9,12 4555
US-CAN Sep. 87-Jun. 06 3,6,9,12 4744

Fixed Income
US 2Y T-Bond Jun. 90-Jun. 06 3,6,9,12 4014
US 5Y T-Bond May. 88-Jun. 06 3,6.9,12 4539
US 10Y T-Note May. 82-Jun. 06 3,6,9.12 6074
US 30Y T-Bond Jan. 78-Jun. 06 3.6,9,12 7167
EuroDollar Dec. 81-Jun. 06 3,6,9,12 6182
UK Long Gilts Dec. 82-Jun. 06 3,6,9,12 5954
JAP. JGB Dec. 86-Jun. 06 3,6,9,12 4704
AUS. 3Y T-Note  May. 88-Jun. 06 3,6,9,12 4579
AUS. 10Y T-Bond Dec. 84-Jun. 06 3,6,9,12 5456
CAN. 10Y Bond  Sep. 89-Jun. 06 3,6,9,12 4211

Stock Indices
S&P 500 Apr. 82-Jun. 06 3,6,9,12 6095
FTSE 100 May. 84-Jun. 06 3.6,9,12 5593
Nikkei 225 Sep. 88-Jun. 06 3,6,9,12 4378
Dax Nov. 90-Jun. 06 3,6.9,12 3938

Commodities
Gold Jan. 79-Jun. 06 2.4,6.8,10.12 6894
Silver Jan. 79-Jun. 06 3,9,7,9,12 6908
Cotton Jan. 79-Jun. 06 3,5,7.10,12 6894
Crude Qil Apr. 83-Jun. 06 1-12 5782
Heating Oil Jul. 80-Jun. 06 1-12 6507
Cocoa Jan. 79-Jun. 06 3,5,7,9,12 6886
Coffee Jan. 79-Jun. 06 3,5,7,9,12 6880
Wheat Jan. 79-Jun. 06 3,5,7.9.12 6928
Sugar Jan. 79-Jun. 06 3,5,7,10 6882

Total Observations 164,288

Source: Datastream
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obtained by multiplying the actual fraction to this close price index.!?

Figure 4.3 provides a comparison of the actual and rebased price series. The chart
type is candlestick, where white bar means the close price is higher than open price
and black bar means that the close price is lower than open price. Evidently, there
is little difference between the charts, apart from the level of prices. The returns
and the open, high, low prices, as a ratio to the closing price, are similar to one
another. The rebased future price series have all the actual returns from the nearest
futures contract prices, and the open, high and low are also of the same dimension as
the actual futures prices. Consequently, when we conduct the empirical tests on the
rebased futures prices, the results should be similar to the actual prices, at least in
the short term. A gap in the actual price series will also exhibit itself in the rebased
price series. As a robustness check, we have also spliced the futures data with another
procedure based on expiry day, assuming that the futures contract is switch 10 days
before the front contract expires. The results from this method are similar to the
results from the first splicing procedure. For future research, it will be interesting to
test the Gap-Fill hypothesis on intra-day data. as day traders rely heavily on technical
indicators in their trading decisions. Moreover, intraday data allows us to ohserve

the distribution of the volume throughout trading hours.

One particular concern about using futures data is the level of rebased futures
prices. Arguably, the rebased futures prices are not an exact replica of the underlying
cash prices or cash indekx. Therefore, we can only evaluate the Gap-Fill hypothesis
in the short-term, since over the long-term the cumulative difference between the
rebased futures price level and actual price level differs substantially. It remains a

work for future research to test the Gap-Fill hypotlesis on cash asset prices directly.

4.4.2 Empirical Examples of Price Gaps and Chart Patterns

In this section, we provide a visual sample of all price gaps detected using the algo-
rithmm specified in Section 4.2. The futures data to which we applied the price gap
identification algorithm is the US 30-year bond futures contract over the entire sam-
ple period shown in Table 4.1. There are ten figures, one for cach type of price gap

detected (See Figure 4.4 to Figure 4.8). In each figure, the vertical dashed line is the

213y addition to the forward splicing method used lere, we have also tried the backward splicing
method for robustness check. Backward splicing uses the latest price as the initial price and multiplies
the futures returns backward from T to t = 1 to obtain the futures prices. Even though the price
level is different (because the initial price is different), the empirical results obtained from applying.
the price  gaps ‘algorithri oif thiis dédtaset is the same, since the returns used for both methods are
similar. See Chapter 2 for more description about the backward splicing procedure. In the Appendix
I, we present a graphical view of all the rebased price series.
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Figure 4.3: Actual and Rebased Price Series of S&P 500 Index Futures (June 2006
contract, 21/03/06-31/05/06)
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day at which a price gap occurred. The solid horizontal line highlights the level of
price relative to the price gap. The dark bar means that the close price is lower than

the open price and grey bar is the opposite.

In summary, Figure 4.4 shows the Congestion gaps are detected in-between some
resistance and support levels and Figure 4.5 shows the Breakout gaps penetrating key
resistance and support levels. The Runaway gaps in Figure 4.6 show that a strong
price movements occurred before the price gap is detected. The Exhaustion gaps in
Figure 4.7 show that a Runaway gap must occur in the last 7 days before it can be

classified as an Exhaustion gap. Lastly, Figure 4.8 depicts the Island gaps.

The next set of figures (Figure 4.9 to Figure 4.13) are price gaps conditioned on
one of the ten chart patterns discussed in Section 2.4. The thick dashed line is the
smoothed prices obtained from applying the local polynomial regression f () ~with-— -
Cross validafed ba11d§vidtl’1 (ich x 0.45) to the closing prices. The vertical dashed line -

is the day when a particular price gap occurred. As before, the darker candlesticks
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are trading days where the open price is lower than the closing price. For upward
price gap, we apply the inverse chart patterns, and for downward price gap, we
apply the top chart patterns. For example, a downward price gap in Figure 4.9(a)
is shown to be accompanied by a Head-and-Shoulders Top, while an upward price
gap is accompanied by a Head-and-Shoulders Bottonm in Figure 4.9(b). Obviously,
not all Head-and-Shoulders patterns are as symumetrical as the one shown in this
Figure. One weakness of kernel regression and local polynomial regression is the
inability of the extrema (ej,...,e,) to match the actual turning points in closing
prices precisely. Nevertheless, the local polynomial regression does provide us with a

powerful indication that a chart pattern has indeed formed prior to the price gap.
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Figure 4.4: An Illustration of Congestion Gaps. The dotted line is the day the price

gap is detected and categorised.
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Figure 4.5: An Illustration of Breakout Gaps
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Figure 4.6: An Illustration of Runaway Gaps
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Figure 4.7: An Ilustration of Exhaustion Gaps
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Figure 4.8: An Illustration of Island Gaps
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Figure 4.9: An Illustration of Price Gaps With Head-and-Shoulder Chart Patter.
The thick dotted line is derived form the local polynomial regression and which sat-

isfied the conditions for the Head-and-Shoulders chart pattern.
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Figure 4.10: An Illustration of Price Gaps With Rectangle Chart Pattern
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Figure 4.11: An Illustration of Price Gaps With Triangle Chart Pattern
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Figure 4.12: An Illustration of Price Gaps With Broadening Chart Pattern
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Figure 4.13: An [llustration of Price Gaps With Double Chart Pattern
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4.5 Empirical Evidence

4.5.1 The Price Gap-Fill Hypothesis

Table 4.2 presents the empirical results from applying the price gaps identification
algorithm described in Section 2 to the rebased futures data. The first three rows in
Panel A are the total upward and downward price gaps detected, sorted across by
the 10 gap patterns, and also conditioned on increasing volume (I.V.) and decreasing
volume (D.V.). Following this is the result for each individual futures contract, where
the first row is the number of gaps detected and the second row is the median number

of price gaps from 1000 nonparametric bootstraps.

The greatest number of price gaps is Congestion gaps, followed by Breakout,
Runaway, Exhaustion and Island gaps. This observation is similar for both upward
and downward gaps, and for many individual contracts. The number of upward and
downward gaps are roughly balanced across the data. For example, the total number
of upward price gaps is 11,547 against 10,922 downward price gaps. For fixed income
and stock index futures, however, the total number of upward price gaps is always
all higher than the downward price gaps. This is due to the increasing futures prices
in the last decades for these contracts. For example, lower interest rates in the last
decades has led to large increases in bond prices, which created more upward price

gaps. This can be seen clearly in the Appendix A, where we plot all the futures prices.

When conditioned on volume, it seems that price gaps are more associated with in-
creasing volume (I.V.) than decreasing volume (D.V.). For example, the total number
of upward price gaps conditioned on 1.V. is 6,578 compared to 4,966. If we breakdown
the type of price gaps according to volume (See Row 2 and 3, Panel A), two contrast-
ing effects appear. First, the number of Congestion gaps (UCG and DCG) with D.V.
is higher than 1.V. What this may suggests is that congestion gaps are more prone
to price reversals in the near future, since price gap is less significant (as proxied by
lower volume). Second, Breakout (UBG and DBG), Runaway (URG and DRG) and
Exhaustion gaps (UEG and DEG) show that the number of gaps with I.V. is almost
twice the number conditioned on D.V.. For example, the number of 1.V. for UBG is
3,002 compared to 1,404 for D.V., and for UEG is 292 against 151. This indicates
that these price gaps are more significant since more trading occurs when these gaps

occurred.

As we inspect the individual futures contracts, it is noticeable that- the S&P- 500 -
index futures displays the least number of price gaps among all the futures contracts.

For example, a comparison of S&P 500 futures to US10Y bond futures reveal that it
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has nearly forty percent less price gaps (329 for S&P 500 and 523 for US10Y bond)
than US10Y bond despite the fact that both contracts has similar number of raw
data. One speculative reason for this could be that S&P index futures is the most

efficient futures. But we cannot affirm this hypothesis here.

A comparison of the number of gaps detected in actual series and to the median
number in 1000 bootstrap series show that we cannot reject the null hypothesis that
the price gaps count from the actual price are equal to the bootstrap series. What
this implies is that the number of price gaps shown by the actual futures prices may
not be unusually high or low. In other words, the formation of price gaps may be
due to randomness because if traders’ actions or information news shock are causes
of price gaps, then we should expect that the number of gaps from actual price series
to be much higher than the randomly reshuffied series. But this is not the result

displayed here.

Turning to the Gap-Fill hyvpothesis, Panel B of Table 4.2 presents the percentage
of the price gaps filled as a percentage of the total number of gaps recorded in that
particular category and aggregated over all futures contracts.’® To provide informa-
tion about the distribution of the number of days taken to fill the price gaps, we split
the price gap sample into 9 categories, shown on the most left column in Panel B. On
the right are the percentages of the gaps in each category (see total sample count in
that category in Panel A). The fill here is taken to be complete fill and not partial
fill.

The percentage of price gaps being filled within a short period of time after their
occurrence is high. For example, the percentage of price gaps covered within 1 day
vary from 20.70 to 33.80 percent, and the percentage of gaps covered within the next
four days vary from 26.50 to 31.90 percent. Cumulative results shows that 70 percent
of gaps across all categories are covered within 20 days and 80 percent of price gaps
are filled within 50 days for all price gaps. This provides quite strong support for
the Gap-Fill hypothesis. Surprisingly, it is noted that only less than six percent of
all gaps are not filled at all, which is a small percentage. One further observation
is that Breakout gaps have the lowest percentage filled in 1-day (row 1 in Panel B),
which may indicates that the Breakout gaps capture prices that are breaking out of
some important resistance or support levels. Therefore, prices continue to move in
the same direction to the Breakout gap the following day rather than retracing to fill

the gap.

13 The Tesults for each individual contracts are available upon request.
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Armed with some strong evidence that price retrace to fill the price gap after their
occurrence. The next question is whether such predictability give traders a risk-free
method to generate excess returns. To answer this important question, Table 4.3
displays the summary statistics of the normalized conditional returns from day 1 to
day after the price gap is identified, and sorted by the various price gaps. The first
column is the unconditional normalized return with zero mean and unit standard
deviation. Conditional mean retwrn with asterisk (*) nmplies that it is significantly
different from unconditional mean retwrn at 10 percent significance level. Statistical
significance here is measured using the simple test-statistic in equation (4.18). At the
bottom of each row is the conditional mean return for increasing (I1.V.) and decreasing

(D.V.) price gap.

An analysis of the results for shows an interesting observation. The consequence
of high percentage of gaps being filled in the short term means that four out of five
upward gap’s mean returns are negative on day 1. But after day 1, the average
mean normalized returns aggregated from all futures data for these five types of price
gaps demonstrate no persistent bias in either direction. As previously mentioned,
Breakout gaps have lowest filled percentage at 1-day. The statistics in row 1 of Table
4.3 support this fact. First, the unconditional mean returns at day 1 for UBG and
DBG are of the expected signs (positive and negative) respectively. Moreover, the
mean returns on day 1 are statistically significant and largest in absolute terms among

all the five davs conditional Breakout gap mean returns.

Turning to Runaway gaps, URG shows some persistence in the mean return, which
is positive from day 2 to day 5, while DRG exhibit negative mean return from day 3
to day 5. The average standard deviation of the conditional returns for both URG
and DRG are shown to be slightly higher than Congestion and Breakout gaps. For
Exhaustion gaps (UEG and DEG), its standard deviation are highest as compared
to the rest of the price gaps. Lastly, the one-day Island gaps display results that are
contrary to the hypothesis that UIG should have negative mean returns while DIG
should have positive returns. In fact, it is more common to see negative returns for
both UIG and DIG.

Regarding the information given by volume, both increasing (I1.V.) and decreasing
(D.V.) mean return show no consistent patterns across all price gaps, apart from day 1,
which we observe that increasing volume has a tendency to increase the value of mean
return in the same direction as the total mean return for all ])llCe gaps. FOL exaxnpl

“the hean return for UBG is 0.0453 compaled to 0.0522 for LV. and the mean return
for URG is -0.0719, which is less negative than the I.V. with mean return of -0.1390.
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Other than this, the mean returns for other days (2-5) show inconstant signs. Perhaps
the effects of volume last for onlv 1 dav, after which the effects disappear. This
is partially consistent with the results presented by Cooper (1999), who produces
evidence that increasing volume stocks exhibit weaker reversal than decreasing volume

stocks in the US equity markets.
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Table 4.2: The Gap-Fill Hypothesis. Panel A of the following Table (row 1 to row 3) shows the total number
of price gaps identified by the price gap algorithm. The results horizontally placed are the 10 different
types of price gaps. Row 2 (I.V.) and row 3 (D.V.) display the total number of price gaps conditioned on
increasing volume and decreasing volume respectively. The rest of Panel A present the results for each
individual contract. The median number is the median number of price gaps from 1000 nonparametric
bootstrap simulations. Panel B shows the time period taken by the price gap to be filled. The column on
the left is the 9 periods which we measure the time taken for the gaps to be filled. The results on the right
hand side of Panel B is the percentage of the price gaps for each type of price gap, for each corresponding
time period. ’

Futures  Total Total UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Up  Down

Gaps Gaps

Panel A: Price Gap Count
Total 11547 10922 5812 4406 648 446 235 5579 4264 515 322 242

LV. 6578 6304 2713 3002 431 292 140 2640 3013 354 183 114

D.V. 4966 4618 3099 1404 217 151 95 2939 1251 161 139 128
Currencies

USYen 811 905 400 284 46 46 35 412 351 52 55 35

(Median) 837 932 445 293 42 30 27 484 314 56 46 32

USCHF 605 658 304 208 42 33 18 296 255 A7 41 19

(Median) 595 656 308 218 36 20 13 333 231 47 29 16
USGBP 685 616 320 259 48 41 17 301 246 31 21 17
(Median) 703 664 353 257 46 29 18 350 239 37 22 16
USAUS 596 579 312 216 30 23 15 314 202 20 19 24
(Median) 643 580 336 210 38 35 24 320 195 26 20 19

USCAN 317 293 158 122 21 12 4 159 116 13 2 3

(Median) 316 284 162 118 22 9 5 153 108 14 5 4
Fixed Income

US2Y 284 193 150 110 14 6 4 120 64 7 2 0

continued next page
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(continued)

Futures Total Total UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Up  Down
Gaps  Gaps
{Median) 303 228 150 112 24 12 5 137 73 11 4 3
USsY 216 157 119 87 6 1 3 96 53 6 1 1
(Median) 242 181 118 92 21 8 3 101 64 11 3 2
Usi10yY 287 236 138 126 14 7 2 136 92 6 0 2
(Median) 318 236 144 132 28 10 4 126 90 15 3 2
US30Y 323 302 152 142 17 8 4 145 129 16 9 3
{Median) 326 287 152 134 28 9 3 140 118 21 6 2
ED 277 259 136 114 16 8 3 143 91 13 10 2
(Median) 89 326 189 174 16 6 4 189 121 10 3 3
UKLG 288 238 134 119 23 11 1 128 99 7 2 2
{Median) 304 257 147 122 23 8 4 132 103 16 4 2
JGB 473 374 215 181 39 32 6 200 130 18 13 8
(Median) 478 352 217 182 41 29 9 190 131 17 3 6
AUS3Y 562 437 307 202 26 13 14 267 141 9 ) 15
{Median) 586 471 307 201 33 27 18 287 143 18 10 13
AUSI0Y 714 633 406 247 21 14 26 388 194 20 10 21
(Median) 721 613 396 229 41 33 22 369 185 25 16 18
CAN10Y 324 292 173 120 14 12 5 169 93 8 )
(Median) 320 268 156 120 25 13 6 150 94 6 4
Stock Indices
S&P500 176 153 94 70 12 0 0 87 60 5 0 1
(Median) 205 153 89 89 21 5 1 76 64 10 2 1
FTSE100 405 309 211 148 24 16 6 166 112 12 ) 14
(Median) 402 314 200 150 31 15 5 169 118 17 6 4
N225 399 344 220 141 23 11 4 172 135 17 10 10
(Median) 383 360 198 138 20 15 7 172 140 26 14 8
DAX 276 213 148 98 20 6 4 119 76 12 3 3

contimued next page
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(continued)

Futures  Total Total UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Up Down
Gaps  Gaps
(Median) 283 204 139 107 23 11 3 108 79 11 4 2
Commodities
Gold 507 529 260 185 29 22 11 272 204 26 15 12
(Median) 534 541 280 204 27 13 10 280 211 27 13 10
Silver 401 426 189 140 27 35 10 197 170 25 27 7
(Median) 431 438 221 162 28 12 8 216 175 27 11 3
Cotton 408 433 200 167 19 17 5 191 215 16 7 4
(Median) 426 410 215 162 31 13 5 203 157 32 13 5
Crude 348 338 172 140 17 11 3 161 139 23 9 6
(Median) 321 274 157 126 25 9 4 146 104 16 5 3
Heat 417 421 201 155 29 23 9 202 164 27 19 9
(Median) 402 369 200 152 31 13 6 198 133 24 9 5
Cocoa 428 520 218 176 21 7 6 246 237 17 12 3
(Median) 432 506 224 159 30 13 6 242 194 42 21 7
Coffee 360 384 153 169 16 15 7 175 184 18 3 4
(Median) 347 370 177 136 23 8 3 180 149 27 10 |
Wheat 282 297 138 125 14 3 2 150 130 14 3 0
(Median) 276 283 136 113 20 5 2 129 117 27 8 2
Sugar 378 383 184 155 20 13 6 162 182 21 11 7
(Median) 407 378 203 158 30 12 4 185 150 29 10 4
Panel B: Price Gap Being Filled (Percentage of Total)

1-Day 33.80 20.70 3290 30.30 24.30 33.80 22.10 30.60 27.60 32.20

2-5 Day 28.90 30.20 27.00 26.50 31.90 30.10 29.20 28.10 29.40 26.90

6-10 Day 939 11.00 849 1370 11.10 942 11.70 10.50 12.10 9.09

11-20 Day 778 933 T2 717 723 725 908 659 650 744

21-50 Day 6.07 856 6.17 6.95 7.66 6.88 941 6.01 712 8.26

51-75 Day 2.15 3.20 262 448 298 208 255 271 155 3.72

continued next page
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(continued)

Futures  Total Total UCG UBG URG UEG UIG DCG DBG DRG DEG DIG

Up Down

Gaps Gaps
76-100 Day 1.14 186 216 1.79 170 136 197 136 093 1.24
101-200 Day 251 368 478 493 340 224 344 388 341 207
>200 Day 392 581 355 157 553 408 716 6.01 712 6.61
No Fill 437 570 463 269 426 276 337 426 433 248
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Table 4.3: Summary Statistics of Unconditional and Conditional Normalized Returns. The following Table
shows the summary statistics of the normalized conditional futures returns for each price gap, from day
1 to day 5 after the occurrence of the price gap. On the second column is the normalized unconditional
futures returns with zero mean and unit variance respectively. The summary statistics display from row
1 to row 4 are mean, standard deviation, skewness and excess kurtosis respectively. Row 5 and 6 is the
conditional mean return for increasing volume and decreasing volume price gap respectively. The asterisk

*) besides the mean return imply that the return is statistically significant at 10% significant level.
Pl v osig g

Statistics  Unconditional UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Day 1
‘Mean -0.0000 -0.0318*  0.0453* -0.0719* -0.0400 -0.0822 0.0010 -0.0315* 0.1206* 0.0929 -0.0133
S.D. 1.0000 1.0282 1.0788 1.1298 1.3820 1.1788 1.0369 1.0520 1.2709 1.4456 1.1430
Skew. -0.2344 0.3711 0.6315 0.6084 -0.5856 -0.6478 -0.3016 -0.4919 0.0632 0.3690 0.7113
Kurt. 10.6242 6.9602 9.3443 5.9317 5.2325 3.2534 4.1404 3.7185 7.1327 2.6084 5.7712
I.V. Mean - -0.0723*  0.0522* -0.1390* -0.1300* -0.0331 0.0167  -0.0498* 0.1850* 0.0952 -0.0301
D.V. Mean - 0.0037 0.0306 0.0611 0.1300* -0.1550* -0.0131 0.0125 -0.0219 0.0898 0.0017
' Day 2
Mean -0.0000 0.0010 -0.0164  0.1298*  0.1065*  -0.0103 -0.0276 0.0266* 0.1168* -0.0426 -0.0058
S.D. 1.0000 1.0346 1.0255 1.1307 1.3194 1.1763 1.0330 1.1062 1.4541 1.3191 1.0862
Skew. -0.2344 0.2831 0.7056 0.1394 -0.1640 0.6341 -0.2651 -0.8739 2.8380 0.1470 0.3561
Kurt. 10.6242 5.7559 8.5284 2.32064 2.5668 6.5731 3.9813 11.3040 23.5890 1.1235 1.2055
I.V: Mean - -0.0002 0.0231 0.0943 0.0851* 0.0256  -0.0555* 0.0304* 0.1290* -0.0026 -0.0710
DV Mean - 0.0020 -0.1010 0.2010 0.1470*  -0.0632 -0.0026 0.0173 0.0901 -0.0952 0.0523
: Day 3
I\(Iean -0.0000 -0.0047 -0.0073 0.0259 0.1149%  -0.0890 0.0022 -0.0021  -0.0579 -0.1413* -0.0326
%.D, 1.0000 1.0382 1.1001 1.2186 1.3801 1.1951 1.0307 1.0882 1.1866 1.4197 1.0885
Sk(-\.W -0.2344 0.2225 1.9764 -0.2092 -0.6943 -0.0230 -0.1636 -0.3828  -0.3985  -0.0896 0.4653
Kurt. 10.6242 6.2587 35.7200 3.2971 5.7672 2.8202 3.8251 6.6020 3.5091 1.3153 1.2454
L.V, Mean - -(.0048 -0.0002 0.0103 0.0637 -0.0843 -0.0334* -0.0131 -0.0661 -0.0935 -0.1520*
D.V: Mean - -0.0046 -0.0224 0.0567 0.2120*  -0.0960  0.0342* 0.0244 -0.0399 -0.2040* 0.0738

continued next page
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(continued)

Statistics ~ Unconditional UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Day 4
Mean -0.0000 -0.0207  0.0305* 0.0172 0.0361 0.0783 -0.0038  -0.0141  -0.0100 -0.1371* -0.1350*
S.D. 1.0000 1.0014 1.0323 1.1368 1.4166 1.2659 1.0484 1.0835 1.2240 1.2860 1.0673
Skew -0.2344 -0.2766 0.1337 -0.8971  -0.6516 1.4280 0.0394 0.4846  -0.1579 -0.0692 -0.7017
Kurt. 10.6242 3.3699 4.3381 4.6530 2.0531 14.6780 4.3037 6.7417 2.7071 0.5615 2.9010
I.V. Mean - -0.0022  0.0314* 0.0338 0.0084 0.1190*  -0.0033 -0.0082  0.0265 -0.2110* 0.0389
D.V. Mean - -0.0368*  0.0285*  -0.0158  0.0886* 0.0182 -0.0043  -0.0284 -0.0900 -0.0401  -0.2900*
Day 5
Mean -0.0000 -0.0047 -0.0346*  0.0455 -0.0073  0.1826*  0.0254*  -0.0177 -0.0285 -0.1499* 0.1407*
S.D. 1.0000 1.0402 1.0629 1.1350 1.4190 1.1147 1.0567 1.1020 1.2477 1.3062 0.9887
iSkew -0.2344 0.3308 0.2158 -0.3628  -0.6638 1.6552 0.2906 -0.1463 -0.2711  0.1004 0.7280
Kurt,. 10.6242 7.9087 4.9763 2.1136 2.9466 13.9570 7.6124 3.5132 4.7005 1.4448 1.2514
LV. Mean - 0.0073 -0.0321 0.0368 0.0206 0.1950 0.0515 -0.0058  -0.0006 -0.0683 0.0474
D.V. Mean - -0.0153  -0.0400 0.0627 -0.0601 0.1640 0.0020 -0.0463  -0.0901 -0.2570  0.2240




4.5.2 Information Content of Price Gaps

This section presents the information tests results of the price gaps. The two main
tests are goodness-of-fit and Kolmogorov-Smirnov distribution tests described in Sec-
tion 4.2. Table 4.4 tabulates the empirical results from the goodness-of-fit tests,
aggregated across all futures contracts and sorted vertically according to the type of
price gaps, from day 1 to day 5 after the occurrence of the price gaps. The result hor-
izontally placed is the ten deciles of the. normalized conditional returns in percentage
form. According to the goodness-of-fit null hypothesis, the percentage for each bin is
10.00 percent. The number in parenthesis below each percentage is the asymptotic
z-values given in equation (4.13). The last column is the goodness-of-fit Q-statistic
computed using equation (4.14), and the number in parenthesis below the ()-statistic

is the p-value.

The large Q-statistics for all price gaps on day 1 (except DIG) imply that we can
reject the hypothesis that the distribution of unconditional and conditional normal-
ized returns are equal. But as we move further along from day 2 to day 4, there is
a slight increase in the p-values, especially for UCG and UIG, implying that some
of the conditional return distributions are indistinguishable to the unconditional dis-
tributions one day after the price gap occurs. Comparing across all price gaps, the
highest @-statistics are shown by Exhaustion gaps (UEG and DEG), and the price
gap that has the lowest Q-statistic is DIG.

One particular feature of Table 4.4 is the variation in the distribution of the
normalized returns display by different price gaps. .For Congestion and Breakout
gaps, the distribution of the returns seldom venture more than 1.5 percentage points
from the null of 10.00 percent for each decile, for all five days. On the other hand,
the difference from the null increases for Runaway gaps (URG and DRG), sometimes
this difference is more than three percentage points. For Exhaustion gaps (UEG and
DEG), the percentage deciles range from 4.93 to 20.90, in stark contrast to Congestion
and Breakout gaps. The basic observation is that the weight of the distribution tend
to push to both ends of the deciles as we compare from UCG to UEG, which resulted

in larger QQ-statistic.

Next, Table 4.5 presents the Kolmogorov-Smirnov two sample distribution tests
aggregated from all futures contracts, sorted across by the type of price gaps, and
from day 1 to day 5. The parameter v is the Kolmogorov-Smirnov statistic given
in equation (4:16) and the numbers in parenthesis are-the-p-values. V. -and-D.V- -
represents the increasing volume and decreasing volume respectively when the price

gaps occur.



For Congestion gaps (UCG and DCG), the day 1 p-values are 0.000 and 0.021
respectively. But the results for day 2 to day 5 are seemingly different from dayv 1,
because the p-values increase to more than 10 percent for these days. This shows that

any unusual price gaps effects for UCG and DCG dissipated after one day.

For Breakout gaps, the opposite conclusion is found. On day 1, both UBG and
DBG produce insignificant p-values at 0.400 and 0.111 respectively. But from day 2
to day 5, the p-values decline to less than 10 percent. This provides some evidence
that prices continue to behave abnormally for a few more days after the penetration of
key support or resistant level. For Runaway gaps (URG and DRG), the results show
that any dissimilarities between the conditional and unconditional returns dissipate
by day 3 and day 1 for URG and DRG respectively.

The results for Exhaustion price gaps (UEG and DEG) are fairly strong, where the
p-values are statistically significant (ranging from 0.000 to 0.064) for all days, thereby
rejecting the null hypothesis that the conditional return distribution are similar to the
unconditional normalized returns. The overall conclusion from both the goodness-of-
fit test and the Kolmogorov-Smirnov tests suggests that there may be some unusual

information contained in the Exhaustion price gaps that investors can use.

Similar to the goodness-of-fit tests, the only price gaps that do not show statisti-
cally insignificant for most days are UIG and DIG, implving that there are no extra
information that traders can use even after these type of gaps appear in the financial
markets. This also confirms Edwards and Magee's forecast described earlier; that

Island gaps are very difficult to trade on.

Contrary to the hypothesis about the role of volume advocated by market techni-
cian, the results in Table 4.5 (row 2 and 3) does not seem to support the hypothesis
that increasing volume on price gap days decreases the p-value for v consistently, nei-
ther do decreasing volume exhibit any particularly striking results. For example, it
was noted earlier that the number of increasing volume price gaps are more common
than decreasing volunie price gaps. The Kolmogorov-Smirnov statistic for increasing
volume, however, is not always higher than decreasing volume. For example, the I.V.
v for UEG is 1.37 compared to D.V. v of 1.60. What this suggests is that a higher
number of gaps may not necessarily produce returns that are unusual compared to

the unconditional returns.

213



vic

Table 4.4: Goodness-of-Fit Information Tests. The following Table displays the Chi-square information
test. The normalized returns are separated into 10 deciles. The null percentage for each decile is 10%.
The number in parenthesis for the deciles for each decile is the asymptotic p-values given by equation (77).
The last column shows the @-statistic computed using equation (4.14). The number in parenthesis is the
p-value for the ()-statistic.

Decile
Gaps 1 2 3 4 5 6 7 3 9 10  Q-Statistic
Day 1
UCG  10.50 10,50  11.30  10.70 9.93 9.41 10.00 8.69 9.05 9.93 32.60
(1.26)  (1.26) (3.31) (1.70) (-0.18) (-1.50) (0.08) (-3.33) (-2.41) (-0.18) (0.000)
UBG  8.65 10.10  10.70 11.60 11.00 9.12 9.44 8.87 8.85 11.70 55.000
(-2.99)  (0.12) (1.48) (3.p4) (2.28) (-1.94) (-1.24) (-2.49) (-2.54) (3.79) (0.000)
URG 11.30 13.10  11.30 11.30  12.00 9.26 7.25 7.87 5.71 11.00 32.800
(1.07)  (2.65) (1.07) (1.07) (1.73) (-0.63) (-2.33) (-1.81) (-3.64) (0.81) (0.000)
UEG 16.40 11.20 8.30 8.30 6.50 5.83 9.87 9.64 7.62 16.40 55.20
(4.48)  (0.85) (-i.20) (-1.20) (-2.46) (-2.94) (-0.09) (-0.25) (-1.67) (4.48) (0.000)
UlG  14.00 10.20 13.60 8.94 6.81 4.68 7.23 9.79 1280 11.90 20.70
(2.07)  (0.11) (1.85) (-0.54) (-1.63) (-2.72) (-1.41) (-0.11) (1.41) (0.98)  (0.014)
DCG 11.40 9.43 9.27 9.55 8.46 9.70 1040 1040 10.80 10.60 37.80
(3.49) (-1.42) (-1.83) (-1.11) (-3.83) (-0.75) (0.99) (1.12) (1.92) (1.43) (0.000)
DBG  12.00 9.22 9.12 8.75 9.76 9.85 10.60  10.60  10.30 9.87 33.10
(4.32)  (-1.70) (-1.91) (-2.73) (-0.53) (-0.33)  (1.20) (1.36) (0.59) (-0.28) (0.000)
DRG  13.60 7.96 6.21 6.41 7.96 8.93 12.80 10.90  10.50 14.30 41.80
(2.72)  (-1.54) (-2.86) (-2.72) (-1.54) (-0.81) (2.13) (0.66) (0.37) (3.60) (0.000)
DEG 1580 8.70 7.76 6.52 7.45 6.21 7.76  10.60 11.50 17.70 45.30
(3.49) (-0.78) (-1.34) (-2.08) (-1.52) (-2.27) (-1.34) (0.33) (0.89) (4.61) (0.000)
DIG  14.90 7.02 8.68 10.30 9.09 9.09 11.60 8.26 11.60 9.50 10.70
(2.53)  (-1.54) (-0.69) (0.17) (-0.47) (-0.47) (0.81) (-0.90) (0.81) (-0.26) (0.295)
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(continued)

Decile
Gaps 1 2 3 4 5 6 7 8 9 10 Q-Statistic
UCG 10.70 10.50 10.50 9.43 8.88 9.31 9.76 9.86 10.30 10.70 22.00
(1.78)  (1.39) (1.26) (-1.45) (-2.85) (-1.76) (-0.62) (-0.36) (0.82) (1.78) (0.009)
UBG 9.94 10.30 11.10 11.30 10.20 9.53 9.71 9.83 8.35 9.78 26.40
(-0.13)  (0.72)  (2.33) (2.83) (0.42) (-1.03) (-0.63) (-0.38) (-3.65) (-0.48)  (0.002)
URG 9.72 8.80 12.00 8.18 7.56 8.95 9.26 8.64 11.40 15.40 32.400
(-0.24) (-1.02) (1.73) (-1.55) (-2.07) (-0.89) (-0.63) (-1.15) (1.20) (4.61) (0.000)
UEG 13.70 8.52 8.97 10.10 5.83 6.73 7.85 6.95 12.80 18.60 62.70
(2.59) (-1.04) (-0.73) (0.06) (-2.94) (-2.30) (-1.52) (-2.15) (1.96) (6.06) (0.000)
UIG 13.60 11.50 8.09 9.36 7.23 8.94 9.79 7.23 13.20 11.10 11.10
(1.85) (0.76) (-0.98) (-0.33) (-1.41) (-0.54) (-0.11) (-1.41) (1.63) (0.54) (0.270)
DCG 11.60 9.64 9.79 9.32 9.55 9.16 10.10 10.60 10.10 10.10 25.40
(4.02) (-0.89) (-0.53) (-1.69) (-1.11) (-2.09) (0.36) (1.52) (0.27) (0.14) (0.003)
DBG 11.20 9.47 8.54 9.62 8.75 8.54 10.50 10.60 10.80 12.10 55.70
(2.53) (-1.14) (-3.19) (-0.84) (-2.73) (-3.19) (1.10) (1.20) (1.77) (4.47) (0.000)
DRG 14.80 7.57 6.41 8.16 8.93 8.93 9.90 10.30 11.50 13.60 32.00
(3.60) (-1.84) (-2.72) (-1.40) (-0.81) (-0.81) (-0.07) (0.22) (1.10) (2.72) (0.000)
DEG 18.00 8.39 9.01 6.52 8.39 7.76 7.76 9.01 12.10 13.00 33.40
(4.79) (-0.97) (-0.59) (-2.08) (-0.97) (-1.34) (-1.34) (-0.59) (1.26) (1.82) (0.000)
DIG 12.00 13.60 10.30 8.68 8.68 9.09 8.68 7.44 8.26 13.20 10.50
(1.03) (1.89)  (0.17) (-0.69) (-0.69) (-0.47) (-0.69) (-1.33) (-0.90) (1.67) (0.313)
Day 3
UCG  10.80 10.60 9.67 10.40 9.17 9.27 9.76 9.76 9.77 10.70 19.00
(2.09) (1.52) (-0.84) (1.13) (-2.11) (-1.85) (-0.62) (-0.62) (-0.58) (1.87) (0.025)
UBG  10.50 11.00 10.10 10.20 9.17 8.81 9.69 10.20 9.37 10.90 21.60
(1.12) (2.28)  (0.17)  (0.52) (-1.84) (-2.64) (-0.68) (0.37) (-1.39) (2.08) (0.010)
URG 11.70 9.26 11.40 8.95 6.48 8.80 8.64 9.26 12.50 13.00 24.60
(1.47)  (-0.63) (1.20) (-0.89) (-2.99) (-1.02) (-1.15) (-0.63) (2.12) (2.51) (0.003)
UEG 1280 9.87 8.07 8.30 6.05 8.30 9.87 8.52 7.40 20.90 71.20
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(continued)

Decile
Gaps 1 2 3 4 5 6 7 8 9 10 Q-Statistic
(1.96) (-0.09) (-1.36) (-1.20) (-2.78) (-1.20) (-0.09) (-1.04) (-1.83) (7.64) (0.000)
UIG 14.50 11.10 8.09 10.60 7.23 11.50 7.66 13.20 6.38 9.79 15.00
(2.28)  (0.54) (-0.98) (0.33) (-1.41) (0.76) (-1.20) (1.63) (-1.85) (-0.11) (0.091)
DCG 10.90 10.20  10.10 9.16 8.64  10.10 9.48 10.40 10.20 10.90 26.00
(2.15)  (0.41) (0.36) (-2.09) (-3.39) (0.14) (-1.29) (0.94) (0.45) (2.33) {0.002)
DBG 10.90 10.70 10.10 9.36 8.77 9.90 9.64 9.10 10.20 11.30 25.10
(1.97)  (1.61) (0.23) (-1.40) (-2.67) (-0.22) (-0.79) (-1.96) (0.49) (2.74) (0.003)
DRG 13.20 11.80 9.51 10.70 8.74 8.54 7.57 7.57 9.7 12.60 19.000
(2.42)  (1.40) (-0.37) (0.51) (-0.95) (-1.10) (-1.84) (-1.84) (-0.22) (1.98) (0.026)
DEG  20.20 8.70 9.01 6.21 11.20 6.21 8.07 7.45 8.39 14.60 54.90
(6.09) (-0.78) (-0.59) (-2.27) (0.71) (-2.27) (-1.15) (-1.52) (-0.97) (2.75) (0.000)
DIG  14.00 10.30 1240  10.30 7.85 8.26 7.85 7.02 9.92 12.00 11.50
(2.10)  (0.17) (1.24)  (0.17) (-1.11) (-0.90) (-1.11) (-1.54) (-0.04) (1.03)  (0.245)
Day 4
UCG 10.20 10.50 1010  10.20 9.33 9.53 10.50 9.79 9.67  10.10 8.43
(0.52)  (1.35) (0.30) (0.60) (-1.71) (-1.19) (1.17) (-0.53) (-0.84) (0.34) (0.495)
UBG 10.40 9.42 9.85 9.74 9.19 9.15 10.10 10.30  10.80  10.90 16.10
(0.92) (-1.29) (-0.33) (-0.58) (-1.79) (-1.89) (0.32) (0.77) (1.88) (1.98) (0.065)
URG 10.60 10.30 8.33 8.64 10.20 9.57 9.41 9.57 9.10 14.20 15.80
(0.55)  (0.29) (-1.41) (-1.15) (0.16) (-0.37) (-0.50) (-0.37) (-0.76) (3.56) {0.072)
UEG 17.50 7.62 6.73 5.83 7.40 5.61 7.85 11.90 10.50 19.10 92.10
(56.27)  (-1.67) (-2.30) (-2.94) (-1.83) (-3.09) (-1.52) (1.33) (0.38) (6.38) (0.000)
UIG 11.10 10.20 8.94 8.51 8.09 11.10 7.23 11.10 10.60 13.20 6.74
(0.54)  (0.11) (-0.54) (-0.76) (-0.98) (0.54) (-1.41) (0.54) (0.33) (1.63) (0.336)
DCG 11.20 10.50 10.00 9.52 3.94 8.96 9.84 9.68 9.86 11.40 35.60
(3.04)  (1.25) (0.09) (-1.20) (-2.63) (-2.58) (-0.40) (-0.80) (-0.35) (3.57) (0.000)
DBG 12.10 11.00 9.87 9.38 8.02 8.91 9.31 10.00 10.70  10.70 52.40
(4.57)  (2.07) (-0.28) (-1.35) (-4.31) (-2.37) (-1.50) (0.08) (1.56) (1.51) (0.000)
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Decile
Gaps 1 2 3 4 5 6 7 8 9 10 Q-Statistic
DRG 12.20 11.70 11.30 7.38 8.16 7.77 9.90 8.35 9.71 13.60 20.70
(1.69)  (1.25) (0.95) (-1.98) (-1.40) (-1.69) (-0.07) (-1.25) (-0.22) (2.72) (0.014)
DEG 19.30 10.60 7.45 7.45 7.76 11.80 5.90 7.76 8.39 13.70 46.70
(5.54)  (0.33) (-1.52) (-1.52) (-1.34) (1.08) (-2.45) (-1.34) (-0.97) (2.19) (0.000)
DIG  11.20 15.30 11.60 8.68 5.79 9.50 11.20 12.00 4.96 9.92 19.90
(0.60) (2.74) (0.81) (-0.69) (-2.19) (-0.26) (0.60) (1.03) (-2.61) (-0.04) (0.019)
Day 5
UcG 10.80 10.30 10.00 9.84 9.14 9.79 9.84 10.10 9.76 10.30 10.60
(2.09)  (0.87) (0.03) (-0.40) (-2.19) (-0.53) (-0.40) (0.30) (-0.62) (0.87) (0.300)
UBG 11.80 10.70 11.50 9.42 8.40 9.06 8.40 9.28 10.80 10.60 61.50
(4.04)  (1.63) (3.28) (-1.29) (-3.55) (-2.09) (-3.55) (-1.59) (1.83) (1.28) (0.000)
URG 10.80 10.20 10.00 8.64 8.49 6.79 10.50 10.20 10.20 14.20 21.40
(0.68)  (0.16) (0.03) (-1.15) (-1.28) (-2.72) (0.42) (0.16) (0.16) (3.56)  (0.011)
UEG 17.90 10.50 8.30 6.28 4.93 6.95 6.05 6.95 12.80 19.30 104.00
(5.59)  (0.38) (-1.20) (-2.62) (-3.57) (-2.15) (-2.78) (-2.15) (1.96) (6.53) (0.000)
UlG 8.09 9.36 11.90 4.68 8.09 6.81 11.90 8.51 16.60 14.00 27.20
(-0.98) (-0.33) (0.98) (-2.72) (-0.98) (-1.63) (0.98) (-0.76) (3.37) (2.07) (0.001)
DCG  10.50 10.30 10.20 9.73 8.21 9.91 9.28 9.66 10.60 11.60 40.90
(1.16)  (0.72) (0.41) (-0.66) (-4.46) (-0.22) (-1.78) (-0.84) (1.61) (4.07) (0.000)
DBG 11.80 10.30 10.50 8.91 7.67 9.43 9.47 10.60 10.10 11.10 53.80
(4.01)  (0.69) (1.15) (-2.37) (-5.07) (-1.25) (-1.14) (1.31) (0.23) (2.43) (0.000)
DRG  14.20 10.10 9.51 8.93 7.96 7.96 7.57 10.50 10.30 13.00 21.80
(3.16)  (0.07) (-0.37) (-0.81) (-1.54) (-1.54) (-1.84) (0.37) (0.22) (2.28) (0.009)
DEG 18.00 12.10 7.14 8.39 7.45 9.63 8.70 8.39 8.07 12.10 31.70
(4.79)  (1.26) (-1.71) (-0.97) (-1.52) (-0.22) (-0.78) (-0.97) (-1.15) (1.26) (0.000)
DIG 9.09 10.70 9.50 9.09 9.09 9.92 7.02 9.50 11.60 14.50 8.41
(-0.47)  (0.39) (-0.26) (-0.47) (-047) (-0.04) (-1.54) (-0.26) (0.81) (2.31) (0.493)
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Table 4.5: Kolmogorov-Smirnov Distribution Tests. The following Table displays the Kolmogorov-Smirnov
test for all 10 normalized conditional price gap returns, up to 5 days after the occurrence of the price gap.

Row 1 is the Kolmogorov-Smirnov « statistic given by equation (4.16) and row 2 is the p-values for each
corresponding statistic given by equation (4.17). Row 3 and 5 are the 7 statistic for increasing volume and
decreasing volume respectively, while row 4 and 6 are the corresponding p-value.

Statistics  UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Day 1
v 2.46 0.89 1.42 1.31 0.77 1.51 1.20 1.45 1.64 0.51
p-value  (0.000) (0.400) (0.036) (0.064) (0.598) (0.021) (0.111) (0.031) (0.009) (0.955)
LV.~y 1.66 1.34 1.58 1.37 0.78 1.32 1.29 1.41 0.96 0.73
p-value  (0.008) (0.056) (0.014) (0.048) (0.572) (0.060) (0.071) (0.039) (0.316) (0.658)
D.V.y 1.04 0.31 0.69 1.60 1.20 0.68 0.36 1.27 1.06 0.42
p-value  (0.226) (0.000) (0.734) (0.012) (0.110) (0.737) (1.000) (0.079) (0.208) (0.995)
Day 2
v 0.91 1.48 1.48 2.26 0.85 1.19 2.15 1.12 1.47 0.76
p-value  (0.376) (0.024) (0.025) (0.000) (0.463) (0.120) (0.000) (0.166) (0.027) (0.614)
LV.~y 0.83 0.85 1.12 1.77 0.49 1.23 1.97 0.96 1.11 1.01
p-value  (0.492)  (0.460) (0.166) (0.004) (0.967) (0.099) (0.001) (0.320) (0.166) (0.263)
D.V.y 0.25 1.54 1.17 1.50 0.48 0.32 0.82 0.64 0.99 0.43
p-value  (1.000) (0.017) (0.127) (0.023) (0.973) (1.000) (0.515) (0.801) (0.282) (0.992)
Day 3
v 0.95 1.27 1.36 2.12 0.91 1.09 1.01 1.20 2.03 1.01
p-value  (0.325)  (0.080) (0.050) (0.000) (0.383) (0.185) (0.263) (0.111) (0.001) (0.257)
V. ~y 0.44 0.94 0.63 1.54 0.80 1.74 0.74 1.14 1.23 1.12
p-value  (0.990) (0.341) (0.825) (0.018) (0.544) (0.005) (0.645) (0.148) (0.098) (0.161)
D.V.y 1.09 0.75 1.33 1.39 0.52 1.03 1.14 0.92 1.38 0.35
p-value  (0.189) (0.624) (0.057) (0.043) (0.946) (0.236) (0.151) (0.361) (0.044) (1.000)
Day 4
0% 0.80 1.56 0.79 1.95 0.55 1.18 2.03 0.98 1.73 0.62
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(continued)

Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
p-value  (0.538) (0.015) (0.564) (0.001) (0.927) (0.122) (0.001) (0.290) (0.001) (0.840)
ILV. v 0.17 1.41 0.96 1.43 0.41 1.21 1.59 0.94 1.44 0.69
p-value  {0.000) (0.037) (0.311) (0.034) (0.995) (0.105) (0.012) (0.337) (0.032) (0.735)
D.V.~y 0.75 0.52 0.52 1.62 0.30 0.62 1.08 0.92 1.17 1.08
p-value  (0.635) (0.952) (0.952) (0.011) (1.000) (0.843) (0.192) (0.362) (0.127) (0.193)

Day 5
~y 1.00 2.54 0.82 2.43 1.55 1.42 1.41 1.04 1.83 0.96
p-value  (0.268) (0.000) (0.506) (0.000) (0.016) (0.035) (0.037) (0.231) (0.003) (0.311)
LV.~y 0.35 1.72 1.09 1.84 1.59 1.50 0.66 1.14 1.15 0.22
p-value  (0.000) (0.005) (0.187) (0.002) (0.012) (0.022) (0.777) (0.146) (0.145) (1.000)
D.V.y 1.14 1.09 0.88 1.75 0.37 0.74 1.24 1.05 1.67 1.19
p-value  (0.151)  (0.185) (0.423) (0.004) (0.999) (0.643) (0.093) (0.221) (0.007) (0.119)




4.5.3 Does the Size of Price Gap Matter?

Table 4.6 presents the results with gap size categorization. Panel A shows the number
of price gap count for each size (Size 1 to Size 3), and sorted by the type of price gap
(UCG to DIG). Recall the Size 1 gaps are price gaps that has lower absolute value
than the difference between the open and close price of the previous trading day, the
result in Panel A shows that such gaps are the most common, followed by Size 2 and
Size 3 respectively. For Island gaps (UIG and DIG), no count is recorded for Size
2 and Size 3, hence we cannot tests the hypothesis whether the size of price gaps
will affect the results in the previous section. An interesting observation is that for
Exhaustion gaps (UEG and DEG) the percentage of Size 3 over the total sample size
is more than 20 percent, at % ~ 25.8 percent and %
a percentage larger than other types of price gaps. For Breakaway gap, for example,
4746056 ~ 17.36 percent and % ~ 17.17
percent for upward and downward gap respectively.

=~ 30.4 percent respectively,

the percentage of Size 3 over the total sample is

Panel B of the samie Table presents the summary statistics and the information
test results for each size. To conserve space, the p-values for both the goodness-of-fit
@ and Kolmogorov-Smirnov + statistics are omitted. Instead, an asterisk (*) is shown
beside the statistic if the p-values are more than 10 percent. This also applies to the

mean return t-tests.

Previously we noted that the mean returns on UCG, UBG, URG and UEG are
statistically negative on day 1, which is a result from the prices retracing to cover
the gaps. When we split the size of price gaps, some interesting facts emerge. One,
the congestion gaps (UCG) mean returns are all negative for all sizes. Surprisingly,
the mean return for Size 1 is more negative than Size 2 or 3. It seem to suggest that
a contrarian strategy might be profitable here. Two, all upward Breakout gaps have
positive mean returns and all downward Breakout gaps have negative mean returns.
This means that a trend-following strategy is more appropriate when a Breakout gap
appears. Three, for both upward Runaway and Exhaustion gaps, the Size 1 and Size 2
mean returns are negative, but it is positive for Size 3. Moreover, the mean return for
Size 3 is the largest compared to Size 1 or 2. The opposite signs are observed for the
downward Runaway and Exhaustion gaps. What this is saying is that if the size of the
price gap is large enougly, then stroug momentum effect may result from it. The large
standard deviation for Size 3 Runaway and Exhaustion gaps also implies that these
momentum effects are accompanied with increased volatility. A further implication
of this fact suggests that even though traders can earn higher returns by trading
the URG, UEG, DRG and DEG price gaps, these higher returns are accompanied

by higher risks (as measured by higher standard deviation). In other words, the
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high return-high risk relationship still prevails. Furthermore, a casual look at the
pattern count for Size 3 for these four gaps show that it is not a large number. It is
undoubtedly fairly difficult to trade all these gaps over twenty-eight futures contract
over a span of 25 years. Fourth, all Size 3 downward gaps (DCG, DBG, DRG and
DEG) show negative mean returns. This means that downward momentum effects is

strong when the size of the downward gap is large.

For other days (2-4). the Congestions gaps (UCG and DCG) do not show any
unusual results for all sizes. The p-values for ¢) and ~ statistic for both UCG and
DCG vary during these days. For Breakout gaps (UBG and DBG), the @ and ~
statistics are randomly significant for three sizes. For example, on day 3 the Size 1
UBG @ statistic is significant at 6.810, but on day 5. it is significant at 40.700. Moving
to Runaway gaps (URG and DRG), the mean test statistic, ¢ and ~ statistics are all
significant on day 1. After which, such strong results disappear from day 2 onwards,

and are inconsistent for all sizes.

Turning to the Exhaustion gaps (UEG and DEG), we observed that all the Q
and v statistics are significant at 10 percent, level for all sizes at day 1. After day 1,
however, Size 3 remains the only category that shows significaut @) and - statistics
consistently for five days after the occurrence of the price gaps. Moveover, the con-
ditional normalized mean return for Size 3 show the most consistent direction, which
is negative for DEG and positive for UEG (except day 5). Lastly, Island gaps (UIG
and DIG) have very unreliable results for all days. This is consistent with our earlier

findings.

In summary, the results here support the hypothesis that the size of the price gap
will improve the information content of the price gap on day 1. We also show that
Exhaustion gaps seem to be the only tvpe of gaps that show statistically significaut
results. Judging by the results shown here and in the previous sections, the unusual
effects exhibited by Exhaustion gaps may be caused by the short-term momentum
effects in the futures prices. For example, Jegadeesh and Titman (1993, 2001) report
strong momentum effects in the US equity markets. Moreover, Moskowitz and Grin-
blatt (1999) find industry momentum effects. Recently, George and Hwang (2004)
present evidence that stocks that are near the 52-Week exhibit momentum effects
that are greater than Jegadeesh and Titman’s results. Since our categorisation of the
Exhaustion gap requires the current price to be either a new high (for upward gap)
or a new low (for downward gap) over a period of 22 days. Our results here may
just be a manifestation of the short-term momentum effects dbciuneﬁted by these

studies. Adding the large shocks (as measured by Size 3 gap), we therefore find that
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Exhaustion conditional returns to be statistically different from the unconditional

returns.
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Table 4.6: Price Gap Size Evaluation. Table 4.6 displays the results according to the size of price gaps. The
first three rows of the Table shows the total number of price gaps for each size, for each type of price gap.
Row 2 and row 3 are the results for increasing and decreasing volume respectively. The rest of the table
displays the summary statistics and the distribution tests results for each price gap, for up to five days
after the occurrence of the price gap. To save space, the p-values for Chi-square and Kolmogorov-Smirnov
distribution tests are omitted, to be replaced by an asterisk (*) if the p-values are more than 10%. Dashed

(-) means that no price gap is detected for that particular size.

Gap  Statistics ucG UBG URG UEG UIG DCG DBG DRG DEG DIG
Size
Size 1 Count 3397 2563 435 216 235 3153 2440 303 146 242
Size 2 Count 1739 1078 142 115 0 1731 1092 148 78 0
Size 3 Count 676 765 71 115 0 695 732 64 98 0
Day 1
Size 1 Mean -0.0469*  0.0382* -0.1139* -0.1173* -0.0822 0.0203 -0.0053 0.0941 0.2224*  -0.0133
S.D 1.0285 1.0088 1.0834 1.2124 1.1788 1.0422 1.0592 1.1216 1.2450 1.1430
Q 31.600*  36.300* 15.600*  19.100* 20.700* 30.600* 16.700* 16.600* 24.000* 10.700
~ 2.257* 0.856 1.343* 0.980 0.768 1.565* 0.728 1.294* 1.390* 0.512
Sizc 2 Mean -0.0095 0.0332  -0.2665*% -0.2850G* - 0.0124 -0.0438 0.2717* 0.2158* -
S.D. 1.0050 1.0590 0.9254 1.4610 - 0.9924 0.9841 1.3025 1.3621 -
Q 11.000 14.800%  18.400* 11.200 - 8.170 12.100  22.100*  22.300* -
v 0.793 0.670 1.553* 0.947 - 0.735 0.551 1.348* 1.244* -
Size 3 Mean -0.0129  0.0862* 0.5752*%  0.3508* - -0.1151*  -0.1006* -0.1035 -0.1980* -
S.D. 1.0846 1.3094 1.5110 1.5240 - 1.1122 1.1217 1.7555 1.7328% -
Q 4.800 22.000*  52.000*  91.300% - 20.200%  27.400% 26.600* 25.500* -
~ 0.176 1.004 1.429* 2.237* - 1.131 0.952 1.106 1.546* -
Day 2
Size 1 Mean -0.0028 -0.0629* 0.1372* 0.0005 -0.0103  -0.0275 0.0162  0.1058* 0.0457 -0.0058
SD 1.0544 0.9698 1.0798 1.2260 1.1763 1.0688 1.1197 1.4227 1.1915 1.0862
Q 25.500%  31.600% 17.000* 18.200* 11.100  26.200* 41.500* 16.200* 6.470 10.500
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Gap  Statistics UucaG UBG URG UEG UIG DCG DBG DRG DEG DIG
Size
¥ 0.759 2.207* 1.079 0.849 0.851 1.001 1.486 0.861 0.360 0.758
Size 2 Mean -0.0082 0.0105 0.0992 0.0978 - -0.0254 0.0410  0.1824* -0.1067 -
S.D. 0.9989 0.9818 1.0912 1.2401 - 0.9583 1.0219 1.4978 1.2616 -
Q 9.480 7.400 11.800  21.400* - 2.860* 12100 16.600%  17.400* -
~ 0.168 0.550 0.773 0.828 - 0.372 0.792 0.814 1.293* -
Size 3 Mean 0.0433  0.1014*  0.1461  0.3140* - -0.0332 0.0397 0.0173  -0.1231 -
S.D. 1.0245 1.2364 1.4787 1.5357 - 1.0488 1.1808 1.5141 1.5333 -
Q@ 12,500  15.500*  31.100*  50.000* - 8.550 18.200* 7.880  45.100* -
~ 0.758 0.946 1.059 1.840* - 0.471 0.669 0.713 1.703* -
Day 3
Size 1 Mean 0.0026 0.0174  -0.0142 0.0058  -0.0890  0.0083  -0.0232 -0.0877 -0.0391* -0.0326
SD 1.0354 1.0159 1.2537 1.2234 1.1951 1.0338 1.1017 1.1083 1.4153 1.0885
N @ 11.100 6.810 12.800  21.800*% 15.000* 22.200* 19.100* 17.500% 29.500* 11.500
- v 0.776 0.461 0.774 0.649 0.907 1.038 1.346 1.070 0.922 1.012
Size 2 Mean -0.0251 0.0029 0.1150 0.0120 - 0.0112 0.0200  -0.0656  0.0012 -
S.D. 1.0474 1.0120 1.1132 1.5463 - 0.9856 0.9905 1.1860 1.2701 -
Q 15.000%  14.700* 11.800 11.500 - 14.200 6.610 18.600* 9.950 -
5 0.972 0.355 0.979 0.821 - 0.831 0.506 0.563 0.513 -
Size 3 Mean 0.0113  -0.1045*  0.0929  0.4225* - -0.0476 0.0350 0.1007  -0.4070* -
S.D. 1.0288 1.4359 1.2059 1.4465 - 1.1221 1.1781 1.5121 1.5140 -
Q 12.400  30.200* 12.500  68.400* - 11.500 9.040 13.200  40.800* -
07 0.427 1.971%* 0.799 1.784* 0.498 0.785 0.798 2.043* -
Day 4
Size 1 Mean -0.0099  0.0323*  0.0217  -0.0519  0.0783 0.0000  -0.0353* 0.0447  0.0275 -0.1350*
S.D 1.0044 0.9689 1.1179 1.3474 1.2659 1.0852 1.0826 1.1389 1.1358 1.0673
Q 4.800 8.020 11.400  29.900* 6.740  42.500*  43.900*  14.700 12.400  19.900*
5y 0.282 0.714 0.668 1.089 0.546 1.200 2.005* 0.765 0.547 0.617
Size 2 Mean -0.0455*  0.0082 0.0930  -0.0075 - -0.0294  0.0534* -0.0601 -0.2151*% -
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(continued)

Gap  Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Size
S.D. 0.9801 1.0946 1.0792 1.4375 - 0.9688 1.1067 1.3178 1.2458 -
Q 12.200 13.400 11.800 16.400%* - 11.400 17.300% 23.800* 17.600* -
~ 1.106 0.659 0.811 0.626 - 0.266 0.587 0.985 1.237* -
Size 3 Mean -0.0109 0.0559 -0.1623  0.2449* - 0.0427 -0.0444 -0.1528 -0.3204* -
S.D. 1.0403 1.1426 1.3441 1.5107 - 1.0686 1.0482 1.3833 1.4944 -
Q 7.990 19.900* 4.920 79.200%* - 17.600* 8.870 8.500 47.100* -
~y 0.430 0.818 0.628 2.088* - 0.679 0.886 0.627 1.894* -
Day 5
Size 1 Mean 0.0104  -0.0152 0.0325 0.0525  0.1826*  0.0209 -0.0204 -0.0372 -0.0522  0.1407*
S.D 1.0107 1.0490 1.0897 1.5127 1.1147 1.0361 1.1271 1.2744 1.2862 0.9887
Q 9.660 40.700* 14.300  68.900* 27.200%  34.400*  44.100* 8.520 7.700 8.410
~ 0.753 0.987 1.026 2.061* 1.554* 1.040 1.198 0.616 0.953 0.964
Size 2 Mean -0.0392  -0.0765*  0.0145 -0.0049 - 0.0418* 0.0122  -0.0264  0.0051 -
S.D. 1.0786 1.0337 1.0649 1.2150 - 1.0704 1.0396 1.1139 1.2015 -
Q 9.920 16.300* 8.990 13.300 - 7.060 7.690 8.620 3.790%* -
~ 1.007 1.236 0.434 0.676 - 0.525 0.518 0.452 0.454 -
Size 3 Mean 0.0080 -0.0406 0.1868 -0.1218 - 0.0051 -0.0529  0.0076 -0.4186* -
S.D. 1.0842 1.1463 1.4960 1.4310 - 1.1146 1.1079 1.4209 1.3860 -
Q 18.300%  19.400*  24.900* 53.300* - 12,700 22.000* 21.900* 39.100* -
~ 0.863 0.958 1.509* 1.358%* - 0.360 0.736 0.854 1.788* -




4.5.4 Conditiohing on Chart Patterns

Table 4.7 displays the results for the statistical test of price gaps conditioned on the
occurrence of one of the chart patterns. (See Section 2.4) The results are aggregated
over all futures contracts. Column 1 to 10 are the price gaps (UCG to DIG) and for

each row represents the results for each chart pattern (HSBOT to DTOP).

In Panel A, we provide the pattern count for all ten chart patterns for each type
of price gap. For upward gaps, the Bottom chart patterns (HSBOT, RBOT, TBOT,
BBOT, DBOT) are patterns where the last extrema ¢, is a minimum in the 30-day
window. (See Section 4.4.2 for some graphical examples.) Recall our hypothesis that
an upward price gap is assumed to be followed after a Bottom chart pattern. But
not every e,, for an upward price gap is a minima. In fact, a large number of upward
gaps have the last extrema to be maxima. Rather than discarding these price gaps,
we test whether these polynomial regressions satisfy any of the Top chart pattern.
The pattern counts from this exercise is shown by HSTOP, RTOP, TTOP, BTOP
and DTOP for the upward gaps in Table 4.7 (column 3 to 7). A similar procedure is
undertaken for downward price gaps as well and shown by HSBOT, RBOT, TBOT,
BBOT and DBOT in column 8 to 12.

The evidence in Panel A shows that a large number of extrema e,, do indeed
satisfy the chart formation conditions for a Top pattern even when an upward price
gap occurs. As a matter of fact, the count for HSTOP is higher than HSBOT for
upward Congestion price gap (UCG) and the count for HSBOT is higher than HSTOP
for downward Congestion price gap (DCGQG), observations that are contrary to our

expectations. !

For upward Congestion gap (UCG), the most frequently seen pattern is Rectangle
(RBOT, RTOP) followed by Head-and-Shoulders and Double chart pattern. The
difference in the pattern count between RBOT (432) and RTOP (405) is low. For
upward Breakout gap (UBG), the largest pattern count is RBOT (631), followed
by HSBOT (469) and TBOT (219). Similarly, for downward Breakout gap (DBG),
RTOP (492) has the largest count, followed by HSTOP (394) and TTOP (235). A
comparison between the Congestion and Breakout gaps shows an interesting feature
about the shift of bottom pattern count to top pattern count. For example, for
upward Congestion gaps, the total number of bottom patterns (HSBOT, RBOT,
TBOT, BBOT, DBOT) is 1,102 and the total number of top patterns (HSTOP.

14Tn comparison to LMW, the definitions of the chart patterns as specified in Section 2.4 are more
stringent. For example, for Head-and-Shoulders, Rectangle and Double patterns, the difference in
prices during the extrema points are fixed to be 0.5 percent. Because of such strict definitions, the
algorithm detects less patterns in our sample data than in LMW,
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RTOP, TTOP, BTOP, DTOP) is 997, a difference of only 105. On the other hand,
for upward Breakout gaps, the total number of bottom chart pattern is 1,586, but, the
total number of top pattern is only 315, a difference of 1,271. This implies that upward
Breakout gaps (and to a large extent, Runaway and Exhaustion gaps) experienced
some form of ‘bottoming-out’ before an upward price gap occurs. The opposite can
be said for downward Breakaway gaps, where prices experience some form of ‘topping’

before a downward gap happens.

Panel B displays all the summanry statistics and information tests results for each
pattern. Like previous section, the p-values for ) and v statistics are omitted to con-
serve space and replaced by asterisk (*) if it is more than 10 percent. Basically, the
results show that statistically significant p-values are randomly distributed among the
price gaps and across all ten chart patterns. This evidence seems to suggest that not
one chart pattern is capable of producing reliable results, in terms of statistically sig-
nificant p-values for Q and ~ statistics that reject the hypothesis that the conditional
returns are similar to unconditional returns. For example, on day 1, the () statistic
for RBOT is significant for UCG, UBG and DBG, but not the rest of price gaps. On
day 4, the same pattern is now significant for UIG and DEG. Furthermore, it is diffi-
cult to discover any patterns that exhibit significant statistics for the goodness-of-fit,

Kolmogorov-Smirnov and t-tests together, even for Exhaustion gaps.

However, one main concern about the distribution tests is the low power of these
tests, which is due to the extremely low number of pattern count for some price gaps.
The only way to alleviate this problem is to include more data. But even including
more data may not necessarily increases the pattern count if the asset prices do not
exhibit the chart pattern as defined in Section 4.2. As a result, one has to be careful

in drawing conclusion about the results shown in this section.
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Table 4.7: Price Gaps and Technical Chart Patterns. Panel A shows the number of chart patterns detected
conditioned upon the occurrence of each of the 10 price gaps. Panel B presents the summary statistics
of the normalized conditional futures returns and the Chi-square and Kolmogorov-Smirnov distribution
tests statistic. To save space, the p-values for Chi-square and Kolmogorov-Smirnov distribution tests are
omitted, to be replaced by an asterisk (*) if the p-values are more than 10%. Dashed (-) means that no
chart pattern was detected for that particular price gap.

Chart Statistics  UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Patterns

Panel A: Pattern Count

8¢C

-HSBOT Count. 190 469 76 28 26 260 38 0 0 0
RBOT Count 432 631 79 22 35 400 116 2 2 0
TBOT Count 82 219 31 23 15 105 20 0 0 0
BBOT Count 152 71 7 3 4 34 40 1 6 0
DBOT Count 246 196 11 4 9 141 77 3 4
HSTOP Count. 282 46 0 0 0 155 394 59 23 31
RTOP Count. 405 143 2 2 0 436 492 75 23 37
TTOP Count 80 19 0 0 0 77 235 34 9 13
BTOP Count 88 43 5 4 0 158 81 12 1 3
DTOP Count 142 64 2 4 0 214 138 11 4 5

Panel B: Summary Statistics and Information Tests
Day 1

HSBOT Mean -0.0063 -0.0204 -0.0377 -0.1646  -0.0266  -0.0930  -0.2407 - - -
S.D. 0.8382 0.9239 0.9209 1.0705 0.9993 0.8729 0.8590 - - -

Q 15.700*  11.800 9.530 11.300 10.200 10.800 7.790 - - -

v 0.401 0.845 0.507 0.826 0.629 0.969 0.729 - - -

RBOT Mean -0.0361  0.0435  -0.0901 -0.4781* -0.2650 -0.0146 -0.1772* 0.0895 0.3622 -
S.D. 0.7749 0.9001 1.2453 0.8647 0.9151 0.8698 0.7423 0.7824 0.5811 -

Q 47.500%  25.100* 9.480 12.500 7.000 11.500  16.200* 8.000 8.000 -

v 0.988 0.918 0.799 1.415* 0.937 0.423 1.293* 0.376 0.046 -
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(continued)

Chart Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Patterns
TBOT Mean 0.2076*  0.1008 -0.1606 -0.1786 -0.0027 -0.0510 -0.2748 - - -
S.D. 0.8033 0.9847 1.3275 1.1908 1.0877 1.0282 0.8268 - - -
Q 8.240 17.300* 6.740 7.870 8.330 5.950 10.000 - - -
¥ 0.720 0.566 0.718 0.410 0.493 0.171 1.021 - - -
BBOT Mean 0.0215 0.0617  -0.4887 -1.1006* -0.8925*  -0.1432 0.3737 0.2897 0.7870 -
S.D. 0.8552 1.0166 1.5814 0.5567 0.6904 1.0813 1.2060 - 1.3488 -
Q 6.290 13.100 5.860 13.700 6.000 1.950* 8.500 9.000 7.330 -
~ 0.315 0.214 0.761 1.406* 0.697 0.300 0.867 0.424 0.477 -
DBOT Mean -0.0231 -0.0027  0.2316 0.6437 0.0138 0.0026 -0.0772  -0.4676 0.6874 -
S.D. 0.7863 0.7737 0.6997 0.5156 0.9553 0.9891 1.0666 0.2008 0.7737 -
Q 8.720 18.300* 6.270 11.000 5.440) 11.000 2.610* 7.000 11.000 -
~ 0.528 0.572 0.232 0.835 0.352 0.214 0.294 0.263 0.691 -
HSTOP Mean -0.0919  0.0003 - - - -0.0583  -0.0091 0.0513 0.0985  -0.1562
S.D. 0.9496 1.0170 - - - 0.8735 0.9615 0.8114 1.0108 0.8093
Q 11.600 4.430 - - - 11.500 6.710 4.900 9.610 5.450
~ 0.875 0.175 - - - 0.637 0.252 0.499 0.360 0.640
RTOP Mean 0.0838*  0.0820 0.1016  -0.4632 - -0.0699  -0.0588 0.0913 0.2006  -0.0811
S.D. 0.8189 1.0491 0.6311 0.0430 - 0.8616 0.9160 0.9596 0.6448 0.8487
Q 14.800*  38.900* 8.000 18.000* - 15.400* 9.220 11.500 8.740 14.100
¥ 0.996 1.051 0.297 0.394 - 0.853 0.726 0.745 0.382 0.705
TTOP Mean -0.1162  -0.3052* - - - -0.1157  -0.0188 0.4143 -0.0315  -0.3441
S.D. 1.1211 2.0072 - - - 1.1566 1.0416 0.9476 0.7471 1.1284
Q 14.500 8.890 - - - 14.000 8.700 16.000* 7.670 12.400
5 0.969 0.649 - - - 0.366 0.277 0.828 0.329 0.763
BTOP Mean -0.1316  -0.1633  -0.1293 0.0161 - 0.1046 -0.1192 0.4228 0.1350  -0.5573
S.D. 0.9961 0.9739 0.5850 0.5414 - 0.9785 1.1432 1.1586 - 0.2346
Q 5.410 15.800 9.000 6.000 - 3.270 11.500 19.700* 9.000 7.000
~ 0.679 0.619 0.290 0.174 - 0.469 0.564 1.012 0.521 0.296
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(continued)

Chart Statistics  UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Patterns
DTOP Mean 0.1171 0.1053 0.5564 0.0509 - -0.0712  -0.0913 0.4629 0.9307*  0.2201
S.D. 0.8321 0.8730 0.0121 0.5941 - 0.9862 0.9847 0.7657 1.9268 1.3771
Q 12.500 7.250 18.000*  16.000* - 6.000 9.970 8.090 11.000 5.000
¥ 0.454 0.409 0.420 0.022 - 0.450 0.590 0.808 0.527 0.353
Day 2
HSBOT Mean -0.0329 -0.0722  0.0915 -0.0855 -0.0632 0.0159 -0.2005 - - -
S.D. 0.9071 0.8909 0.9236 1.1636 0.8155 0.9679 1.0888 - - -
Q 11.300 12.200 1.370* 7.710 2.460* 7.380 6.740 - - -
¥ 0.430 1.095 0.248 0.533 0.237 0.546 0.610 - - -
RBOT Mean 0.0464 -0.0471  0.0151 0.0190 -0.3707  -0.0713 -0.2119* -0.4538 0.1807 -
S.D. 0.9037 0.8923 0.8931 0.9305 0.9750 0.8743 1.1366 0.7309 1.1582 -
Q 3.420*  35.800* 4.160* 6.180 19.000* 9.050 21.200%* 8.000 8.000 -
~ 0.247 1.451* 0.139 0.579 1.157 0.818 1.492* 0.748 0.475 -
TBOT Mean 0.1910*  0.0390 0.0443  0.4264* -0.0223 -0.1034  -0.1663 - - -
S.D. 1.1011 1.0949 0.9837 1.2024 0.8282 0.8732 0.7656 - - -
Q 7.020 5.430 8.680 9.610 3.000* 7.100 6.000 - - -
v 0.491 0.178 0.354 1.018 0.203 0.436 0.471 - - -
BBOT Mean -0.0441  0.1623  -0.4127 -0.1356 0.1419 -0.1143  -0.0712  -0.0143 0.1800 -
S.D. 1.0022 1.0134 1.1663 0.7944 1.4622 1.1437 1.2299 - 0.6613 -
Q 18.000%  2.940* 8.710 7.000 6.000 6.950 17.000%* 9.000 7.330 -
~ 1.257* 0.253 0.697 0.425 0.456 0.707 0.393 0.622 0.289 -
DBOT Mean 0.0488  -0.0067  0.0323 0.0920 -0.1165  -0.1326 0.1383 0.1002 1.2587* -
S.D. 0.8642 0.7766 0.9865 0.5037 0.7579 0.8151 1.0273 0.1841 1.0659 -
Q 14.200 10.100 6.270 6.000 9.890 19.500* 4.170%* 7.000 11.000 -
~ 0.232 0.745 0.373 0.290 0.864 0.942 0.261 0.236 1.021 -
HSTOP Mean 0.0444  -0.0824 - - - 0.0191 -0.0305 -0.0090 -0.1134  0.0817
S.D. 1.0210 1.1605 - - - 1.0342 0.9826 0.8902 0.6479 1.3569
Q 15.000* 7.910 - - - 8.940 14.100 11.300 20.900*  10.600
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Chart Statistics  UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Patterns

1€¢

v 0.209 0.846 - - - 0.486 0.547 0.705 0.694 0.383
RTOP Mean 0.0098  -0.1200  0.2730  0.1475 - -0.0148  -0.0951  -0.0470  0.1283  0.1872
S.D. 0.9063 09695  0.9210 1.0848 - 1.0085 0.9992 0.8717 0.5925  1.0504
Q 14.400  18.900*  8.000 8.000 - 20.700%  12.100 8.330 22.700%*  6.510
¥ 0.671 1.491%* 0.321 0.465 - 0.401 0.600 0.648 0.771 0.242
TTOP Mean 0.1139  -0.0459 - - - -0.0375  -0.0270  -0.0286  0.3834 -0.2938
S.D. 0.9956 1.0309 - - - 0.9306 1.0305 1.3467 1.0267  0.7554
Q 2.000* 8.890 - - - 14.600 6.400 6.590 7.670 6.230
v 0.415 0.490 - - - 0.299 0.338 0.683 0.510 0.622
BTOP Mean 0.1030  -0.1710  0.4200  -0.2969 - -0.0480  0.0764 0.2494 0.5384  0.3128
S.D. 0.9456  0.9841 1.2098  0.5652 - 0.9436 1.1174 1.0593 - 0.3955
Q 8.140  15.800*  9.000 6.000 - 7.950 4.310 9.670 9.000 7.000
v 0.623 0.467 0.158 0.391 - 0.496 0.292 0.405 0.299 0.230
DTOP Mean 0.0430 01095 -0.4073  0.2671 - -0.0384  -0.0893  -0.1021 -0.6232 -0.1124
S.D. 0.8461 1.1510  0.041t 0.7437 - 1.0060 0.9047 0.7732 0.5246  2.5386
Q 8.850 10.100 8.000 11.000 - 8.150 7.650 4.450 21.000*  13.000
5 0.469 0.418 0.361 0.157 - 0.102 0.782 0.238 0.948 0.955
Day 3
. HSBOT Mean 0.0962  -0.0486 0.0232 -0.5324*  0.0394 0.0716 -0.1542 - - -
S.D. 0.9866  0.9568  1.1625 1.1411 1.2364 0.8815 0.6622 - - -
Q 14.200  18.900*  8.470  20.600*  10.200 5.770 7.260 - - -
v 1.132 0.549 0.812 1.168 0.726 0.367 1.014 - - -
RBOT Mean -0.0045  -0.0200 -0.0200 0.3249*  0.0034  -0.0069  0.0448  -0.6476 -2.4453* -
S.D. 0.8948 09024  1.0441  0.8239 1.1977 0.8663 0.9969 0.9476 1.7203 -
Q 11.500  10.500  12.300  13.500 2.430%* 14.400 12.600 8.000 18.000* -
v 0.400 1.199 0.534 0.665 0.360 0.340 0.580 0.881 1.398* -
TBOT Mean 0.0031 0.0274 0.0729 0.4032* -0.0786 -0.0608 -0.2756 - - -
S.D. 0.9850 1.1167  1.8144 1.7284 0.9208 0.9233 0.7958 - - -
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Chart Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Patterns

454

Q 9.710 6.620 13.800 7.000 7.000 16.600* 8.000 - - -
v 0.305 0.484 0.624 0.395 0.341 0.188 0.694 - - -
BBOT Mean 0.0109 0.1987 0.4597  -0.2879  1.0576* -0.0251 0.0795 0.2573 0.4989 -
S.D. 0.9727 1.0633 1.1785 1.1949 1.0284 1.1737 0.8796 - 0.5185 -
Q 18.100*  10.800 8.710 7.000 11.000 7.670 4.500 9.000 7.330 -
v 0.280 0.504 0.311 0.583 0.986 0.644 0.180 0.444 0.445 -
DBOT Mean -0.0148  0.0737 0.6057  1.1572*  -0.3069 0.0334  0.2071*  0.4746  -2.1442* -
S.D. 0.7814 0.8547 0.9694 1.8441 1.2837 0.9679 0.8788 0.4869 1.4412 -
Q 7.660 15.300%  11.700 11.000 9.890 4.040* 7.290 7.000 21.000* -
Yy 0.417 1.030 0.684 0.536 0.730 (0.465 0.905 0.349 1.704* -
HSTOP Mean -0.0267  -0.2490 - - - -0.0921  -0.0279  -0.2428 0.3094 -0.0414
S.D. 0.9631 1.0100 - - - 1.0345 1.0032 0.8678 0.9383 0.9833
Q 6.940 11.000 - - - 9.450 4.020* 9.980 28.700*  3.520*
Y 0.420 0.526 - - - 0.493 0.492 1.060 0.747 0.710
RTOP Mean 0.0373  -0.1698* 0.1998  -0.0583 - -0.0490  -0.0114 0.1169 0.2074  -0.0947
S.D. 0.8444 0.9996 0.0012 0.3636 - 1.0546 0.9837 0.8855 0.7479 0.9700
Q 6.780 18.300*  18.000* 8.000 - 6.200 10.400 11.800  18.300* 8.140
0 0.398 0.973 0.176 0.277 - 0.309 0.631 0.388 0.720 0.802
TTOP Mean -0.0778  -0.3134 - - - 0.1781 0.0019 0.0714  0.7084* -0.1110
S.D. 0.9890 (0.6642 - - - 1.2394 0.9969 1.1515 1.0567 1.0899
Q 7.750 19.400* - - - 19.000* 11.200 4.240 12.100 10.800
v (0.610 0.617 - - - 0.530 0.195 0.211 0.793 0.652
BTOP Mean 0.0425 -0.2226  0.4605  -0.2611 - -0.1630  -0.0407  -0.1996 0.0941 0.2215
S.D. 0.9333 0.9000 0.7229 0.5612 - 0.9161 0.9478 0.9011 - 0.5809
Q 10.400 9.330 9.000 6.000 - 12.800 0.358%* 8.000 9.000 7.000
0 0.393 0.779 0.270 0.454 - 1.104 0.227 0.610 0.546 0.222
DTOP Mean 0.0219  -0.1478 -0.1630 -0.4131 - -0.0801  -0.0034 -0.3251 0.3064  0.4758
S.D. 0.7580 0.8105 0.5142 (.5114 - 0.9260 1.1099 1.5677 0.4102 0.9599
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Chart Statistics  UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Patterns
Q 8.420 16.600* 8.000 6.000 - 6.650 9.830 2.640* 6.000 5.000
~ 0.701 0.918 0.414 0.886 - 0.925 0.410 0.583 0.329 0.317
Day 4
HSBOT Mean 0.0136  0.1082* -0.0964  0.1240 -0.2092  -0.1505*  0.1575 - - -
S.D. 0.9721 0.9191 1.1355 0.9449 1.1672 1.0061 1.2532 - - -
Q 16.000* 9.780 7.950 22.700* 6.310 16.200% 13.100 - - -
~ 0.300 0.631 0.386 0.643 0.420 1.212 0.495 - - -
RBOT Mean 0.0413 0.0509 0.1074 0.1921 0.0909 0.0290 -0.0260  -0.3751  -0.1666 -
S.D. 0.9449 0.8673 0.9219 1.1332 0.9581 0.9534 0.9249 0.2984 1.1699 -
Q 7.770 10.900 5.430 8.000 3.570* 8.050 9.690 8.000 8.000 -
~y 0.334 0.723 0.371 0.233 0.234 0.450 0.695 0.447 0.611 -
TBOT Mean -0.1287  0.0461 0.1860 -0.3755%  0.2110 -0.0398  -0.4816 - - -
S.D. 0.8213 0.9571 0.8327 1.2520 0.6725 1.1202 1.2808 - - -
Q 4.100* 13.600 6.740 12.200 4.330 3.480* 13.000 - - -
~y .458 0.627 0.276 1.019 0.494 0.305 0.797 - - -
BBOT Mean 0.0364 0.0021  -0.1076 -0.9722*  0.3224 0.0738 0.3097 0.6190 -0.1737 -
S.D. 1.0996 1.1589 0.5863 1.6920 2.0336 1.0587 0.9788 - 0.3696 -
Q 7.740 15.600* 5.860 7.000 6.000 13.100 4.500 9.000 14.000 -
o 0.239 0.249 0.244 1.027 0.567 0.441 0.518 0.265 0.049 -
DBOT Mean 0.0456 0.0608 0.1118  -0.3279 0.0264 0.0012 -0.1174  -0.0456 0.5689 -
S.D. 0.8524 0.9237 0.7187 1.0365 1.6009 0.9888 0.9966 0.5577 0.4895 -
Q 11.200 8.390 9.910 6.000 9.890 6.020 8.840 7.000 6.000 -
~ 0.513 0.545 0.437 0.530 0.697 0.299 0.428 0.436 0.654 -
HSTOP Mean -0.0307  0.3304* - - - 0.0062 -0.1230  -0.1213 0.1287 0.1063
S.D. 0.9345 1.2498 - - - 1.0333 0.9644 0.8813 1.0516 0.9644
Q 6.370 10.500 - - - 12.500 14.800%* 4.900 14.800*  15.800*
v 0.368 0.610 - - - 0.239 0.596 0.741 0.391 0.384
.RTOP Mean -0.0438  0.0152  -0.0787 -0.2886 - -0.0401  -0.1185 0.0071 -0.2852 -0.1114
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(continued)

Chart Statistics  UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Patterns
S.D. 0.8352 0.9999 0.0676 0.8668 - 0.9842 1.0132 0.7908 0.7467 0.8245
Q 16.400* 4.200 18.000* 8.000 - 12.000 16.300* 13.700  22.700%*  11.400
5 0.738 0.320 0.123 0.582 - 0.533 0.686 0.282 0.960 0.885
TTOP Mean -0.1196  0.2525 - - - -0.1205  -0.0696 0.1747 -0.2231 -0.2735
S.D. 1.0099 0.9903 - - - 1.2142 1.0806 1.2992 1.1476 0.7657
Q 8.500 6.790 - - - 4.950 6.660 20.100* 9.890 13.900
~ 0.762 0.553 - - - 0.644 1.100 0.661 0.475 0.739
BTOP Mean -0.0125  0.0552  -1.1684  0.1530 - -0.0270  -0.1262  -0.3066  -0.7464  0.1304
S.D. 0.9553 0.9682 2.2502 0.4804 - 1.0379 1.0024 1.6020 - 0.2938
Q 3.360 7.930 17.000*  11.000 - 8.080 18.400* 13.000 9.000 7.000
~ 0.575 0.299 0.733 0.400 - 0.342 1.004 0.587 1.015 0.143
DTOP Mecan -0.1191  0.1258 0.5893 0.0554 - 0.0141 -0.0848 0.1563 0.1085  -0.0743
S.D. 0.8099 0.7685 0.8772 0.6400 - 0.8811 0.8638 0.7161 1.2354 (0.6661
Q 11.100  17.300% 8.000 11.000 - 7.310 6.640 13.500 6.000 5.000
~ 1.021 0.447 0.047 0.242 - 0.328 0.545 0.212 0.345 0.443
Day 5
HSBOT Mean -0.0331  -0.0064 -0.1126 -0.1594  0.3666* 0.0366 -0.0233 - - -
S.D. 0.8760 1.0217 1.0664 1.4323 0.8719 0.8968 0.6576 - - -
Q 5.580 5.180 8.210 19.100*  17.800%* 14.200 16.200* - - -
v 0.483 0.492 0.471 0.913 0.462 0.447 0.523 - - -
RBOT Mean -0.0316  -0.1393* 0.2936*  0.0556 -0.0104  -0.0458 -0.0942  -0.3994 0.1876 -
S.D. 0.8516 0.9799 1.1107 1.0382 0.7853 0.8483 0.8139 0.4960 0.6684 -
Q 13.200 14.600 10.500 5.270 8.710 7.550 9.340 8.000 8.000 -
~ 0.772 1.365 0.711 0.407 0.359 0.646 0.723 0.525 0.254 -
TBOT Mean 0.0373  -0.1038 0.3689  -0.1775  -0.2388 0.0002 0.1049 - - -
S.D. 0.9106 1.0260 1.1859 1.2595 1.0879 1.0844 1.1164 - - -
Q 14.800 8.810 7.390 12.200 12.300 16.600* 4.000* - - -
5 0.126 0.513 0.497 1.068 0.767 0.472 0.429 - - -
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{continued)

Chart Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG
Patterns
BBOT Mean -0.0249 -0.0203 -0.3147  0.5525 -0.1855 0.1305 -0.1695  -0.1900 -0.7844 -
S.D. 0.9542 1.0390 1.2435 0.5550 0.9206 0.9274 1.1192 - 0.3536 -
Q 21.000%  13.600 8.710 7.000 11.000 5.760 12.000 9.000 14.000 -
5 0.383 0.297 0.739 0.287 0.508 0.778 0.858 0.751 0.195 -
DBOT Mean 0.0185 -0.1314* 0.2976  -0.7402 0.0682 0.0342 -0.0103  -1.0475*  0.0245 -
S.D. 0.8405 0.8293 0.6929 1.4001 0.9539 0.9816 0.8256 1.0858 0.6035 -
Q 10.200 10.300  19.000%  11.000 9.890 2.330* 15.100* 7.000 6.000 -
~ 0.290 1.186 0.744 1.056 0.515 0.286 0.578 1.110 0.173 -
HSTOP Mean -0.0045  0.1562 - - - 0.0475 -0.0657 0.1047 0.1813 0.0463
S.D. 1.1871 0.6927 - - - 0.9139 0.9668 0.8644 1.2168 0.7075
Q 5.870 12.300 - - - 6.740 11.500 5.580 10.500 9.320
~ 0.711 0.494 - - - 0.370 0.496 0.275 0.323 0.447
RTOP Mean 0.1387*  0.0862 -0.4442 -0.0761 - 0.0082 -0.0611 0.0338 -0.0647  0.2263
S.D. 0.7868 (.8524 0.3980 0.3243 - 0.8446 (.9922 1.0442 0.8763 0.9746
Q 24.900*  11.100 8.000 8.000 - 9.140 8.200 2.730* 10.500 10.300
~ 1.374%* 0.588 0.515 0.269 - 0.713 0.760 0.135 0.197 0.922
TTOP Mean 0.3009*  -0.2379 - - - 0.1031 0.0134 0.4369 -0.1972  0.4588
SD. 1.0732 1.4879 - - - 1.2506 1.1880 1.3664 1.0400 0.8525
Q@ 8.500 13.100 - - - 11.700 14.100 16.000* 9.890 15.500*
v 0.839 0.492 - - - 0.575 0.400 1.086 0.412 0.842
BTOP Mean 0.0299  -0.1221 -0.1517  -0.7588 - 0.1730 -0.0081  -0.4705 -1.3468* -0.0539
S.D. 0.9827 1.1464 0.4752 0.2938 - 0.8258 1.0188 0.8612 - 1.0491
Q 12.000 6.530 9.000 16.000* - 10.900 11.200 9.670 9.000 7.000
~ 0.494 0.807 0.618 0.290 - 1.365* 0.664 0.877 1.143 0.440
DTOP Mean 0.0733 0.0778  -0.4325  0.4766 - -0.0983 0.0901 0.3295 0.3579  0.9470*
S.D. 0.9527 1.0862 0.4146 0.9119 - 0.9027 0.9414 0.8956 0.1809 1.5035
Q@ 6.590 6.940 8.000 6.000 - 15.000* 10.800 8.090 16.000* 5.000
v 0.492 0.360 0.515 0.181 - 1.315* 0.755 0.510 0.768 0.290




4.6 Conclusion

This chapter evaluates an old principle proposed by market technicians: the Gap-Fill
hypothesis. Market technicians have hypothesized that when a price gap occurs, it
will be filled in the future. Furthermore, price gaps are said to contain important
information in evaluating the current price movements. To test this Gap-Fill hypoth-
esis, we first categorize the all the price gaps into five type of price gaps commonly
taught by chartists, including Congestion gap, Breakout gap, Runaway gap, Exhaus-
tion gap and one-day Island gap. We then examine this Gap-Fill hypothesis in the
futures markets. Apart from studying the information on the price gaps, we also
include a number of conditioning variables in our tests for further evaluation since
price gaps are seldom analyze alone. The conditioning variables include chart patterns
and volume. To extract the chart patterns systematically, we applied a methodology
known as local polynomial regression to the futures prices whenever a price gap is

detected.

There are several empirical results in our study are interesting and which con-
tribute to the literature on technical analysis. First, our results provide support for
the Gap-Fill hypothesis. The percentage of price gaps filled within 20 days is more
than 75 percent across all types of gaps, including both upward and downward price

gaps.

Second, we examine whether such predictability in price retracement give chartists
an edge in trading. Broadly speaking, these retracements in prices provide only partial
reliable sources of information for chartists, especially one day after the occurrence of
the gaps. On day 2 to day 4, Many of the conditional returns generated from these
price gaps have distributions that are not statistically different from the distribution

of the unconditional returns aggregated over all futures markets.

Third, we study whether price gaps are sources of profitable indicators. The
overall conclusion is yet unclear. Even though many of conditional mean returns are
statistically significant (using test statistics), especially ou day 1, the direction of these
conditional mean returns varies differently from day 2 to day 5. Thus, it may not he
profitable for investors if they were to trade with price gaps alone. Furthermore, the
evidence shows that velume does not provide any useful information in ascertaining

the direction of price gaps, apart from day 1.

Fourth, the effects of the size of price gaps is also analyzed. We find that Ex-
haustion price gaps are statistically significant across all five days for the largest gap

size category (Size 3). Moveover, the direction of the conditional mean returns is also
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largely consistent for Size 3, which is negative for downward gaps and positive for

upward gaps. Other types of price gaps show less reliable results.

Lastly, we also find that conditioning on the chart patterns produces conditional
returns that are indistinguishable from the unconditional returns. This implies that
chart patterns are less useful, informative and profitable when combine with price
gaps, results that are quite different to LMW. One may argue that our results may
be plagued by small sarple problem due to the low number of pattern count. But a
comparison of the results with patterns that have larger counts do not provide any

more consistent results.

In conclusion, it is evident that not every price gaps are useful to investors. As a
matter of fact, many price gaps may be caused predominantly by market noise and
indistinguishable to the rest of the market movements. On rare occasions, however,
some price gaps are found to provide important information to investors. It remains
a challenge for technical analysis to explain why price gaps should be important and

how it can be exploited by investors in a profitable manner.
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Appendix: Splicing Futures Contract

The aim of the splicing procedure is to join all successive futures contracts together
without any of the gaps between different futures contracts. In Figure 4.14, we plot
all the rebased price series with initial 100. We observe that all fixed income futures
have experienced higher prices in the last decade, which is a direct consequence of
lower interest rates in developed economies. On the contrary, equity futures display
substantial variation in prices, especially during the recent euphoria in technology
sector.’® The commodity futures show signs of rapid increased in prices after nearly

two decades of decreasing prices.

3In those days, a mere change in a firm’s name to .com will generate some unusual returns. as
discovered by Cooper, Dimitrov and Rau (2001). See also Ofek and Riclhiardson (2002) and Barber
and Odean (2001).
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Figure 4.14: Rebased Futures (cont)
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Chapter 5
Conclusion

This thesis evaluates the effectiveness of technical trading systems in the financial
markets, with main applications to the fixed income sector. Specifically, we attempt
to answer whether technical indicators are able to provide a systematic strategy for
bond traders to earn excess returns in the bond markets, and whether technical
indicators, such as technical charts and price gaps, are able to provide additional

information to investors.

We have analysed several aspects of technical analysis. First, we investigate the
profitability of a large number of technical trading systems in the bond futures mar-
kets. Second, we examine the informativeness of technical chart patterns in the bond
yield markets and bond yield spread markets. Third, we categorize and test the

information contained in price gaps in the futures markets.

In summary of the above empirical results, we document the following major

results:

1. Technical trading systems are useful in capturing trends in interest rates and
bond futures prices. But the profitability of these systems varies over time and
across different trading strategies. The issue of data snooping may not be solved
by evaluating additional trading systems since the final results vary substantially
over different bond markets. We also find the profitability of trading svstemns
has decreased in recent years, but we cannot affirm whether this is due to a

more efficient market or due to lower volatility.

2. Technical chart patterns may not provide additional information to bond traders.
This is because we find the unconditional and conditional bond returns are not
svstematically different from each other in the bond yield markets. Occasion-
ally, some patterns may appear to generate incremental information in some

bond markets. But we cannot address why this is so. A more negative result is
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especially acute for bond yield spread markets since we show that vield spread
data are fundamentally different to traditional price series such as equity prices
or currencies. Far fewer chart patterns are found in bond yield spread than
bond vyield, and the conditional returns obtained from vyield spreads are not
statistically significant to unconditional returns. This implies other investment

strategies may be more suitable for bond traders than technical chart patterns.

e

Generally, some financial price gaps are found to contain significant information
for investors. But the unusual effects displayed by most price gaps are short-
term. In other words, traders may have to act quickly to be able to take
advantage of the gaps. Since our sample data contains twenty-eight futures
contracts over a period of nearly twenty-five years, we opine that it will be a
challenging task for traders to trade on every gap over such a long period of

time.

In view of the above results, it is clear that using the technical indicators specified
in this thesis may not be the panacea that investors have been searching for in order
to earn excess returns consistently over time. We opine that such a strategy is difficult
to find, which may be due reasonably efficient financial markets. Robert Shiller (2002,

p.23) summarises this view:

The basic problem with efficient markets is that it is a half-truth. Pre-
senting market efficiency as a concept to students and amateur imvestors
is useful lest they come to believe that it is easy to get rich quickly. It is

not easy to get rich quickly by trading in speculative markets.

Perhaps the only way to earn excess returns is to consistently develop a com-
petitive advantage, which may be a combination suitable trading strategy, astute
capital management and sound risk management. Because the profitability of invest-
ment strategies tend to vary over time and across different markets, no prediction
will be good for very long. Mistakes will be mace, even by the standard of the best

investment managers such as Warren Buffett or George Soros.!

One possible extension of this thesis is to examine how market psychology and the
technical indicators interacts, given the importance of market and investors’ psychol-

ogy in asset pricing.? For example, investors are known to exhibit the characteristic of

1See, for example, the 1989 Berkshire Hathaway Annual Chairman’s report to shareholders. in
which Warren Buffett detailed the investment mistakes he made in the last 25 years. Ironically, the
first mistake he made was buying Berkshire Hathaway!

2As famously deseribed by Maynard Keynes in Treatise on Money (1930):

The vast majority of those who are concerned with buying and selling of securities
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“over-confidence” (Daniel, Hirshleifer and Subrahmanyam (2001)) and tend to over-
trade as a result. (Odean (1999)).® Controlling for these behaviour is important in

assessing whether technical analysis can provide genuine value to investors.

Lastly, technical analysis may not be suitable for every investors. Some investors
will prefer fundamental information to technical indicators, and some investors may
prefer short-term trading to long-term investing. The crux of the matter is that
investors must choose and develop the strategies for themselves in order to survive
in the financial ‘jungles’, and this is what economic historian David Landes (1998)

advocates from his important work on trade development:

It always helps to attend and respond to the market. But just because
markets give signals does not mean that people will respond to timely or
well. Some people do this better than others, and culture can make all

the difference.
The only action he discovers that everyone (investors in our case) must do is (p.524):

The one lesson that emerges is the need to keep trying. No miracles. No
perfection. No millennium. No apocalypse. We must cultivate a skeptical
faith, avoid dogma, listen and watch well. try to clarify and defined ends,

and better to choose means.

know almost nothing whatever about what they are doing. They do not possess even
the rudiments of what is required for a valid judgement, and are the prey of hope and
fears easily aroused by transient events and as easily dispelled. This is one of the odd
characteristics of the capitalist system under which we live, which, when we are dealing
with the real world, is not to be overlooked.

3For other biases, see, for example. Barberis and Thaler (2002) and Shleifer (2000).
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