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Abstract 

The aim of this thesis is to evaluate the effectiveness of technical analytic indicators 

in the fixed income markets. Technical analysis is a widely used methodology by 

investors in the equity and foreign exchange markets, but the empirical evidence on 

the profitability of technical trading t:>ystems in the bond markets is sparse. There­

fore, this thesis serves as a coherent and systematic examination of technical trading 

systems in the government bond futures and bond yield markets. 

We investigate three aspects of technical analysis. First, we evaluate the profitabil­

ity of 7,991 technical trading systems in eight bond futures contracts. Our results 

provide mixed conclusions on the profitability these technical systems, since the re­

sults vary across different futures markets, even adjusting for data snooping effects 

and transaction costs. In addition. we find the profitability of the trading systems 

has declined in recent periods. Second, we examine the informativeness of technical 

chart patterns in the government benchmark bond yield and yield spread markets. 

We apply the non parametric regression methodology, including the N adaraya-Watson 

and local polynomial regression, to identify twelve chart patterns commonly taught 

by chartists. The empirical results show no incremental information are contained 

within these chart patterns that investors can systematically exploit to earn excess 

returns. Furthermore, we find that bond yield spreads are fundamentally different 

to price series such as equity prices or currencies. Lastly, we categorize and evaluate 

five type of price gaps in the financial markets for the first time. 'Ne apply our price 

gap categorisation to twenty-eight futures contracts. Our results support the Gap­

Fill hypothesis and find that some price gaps may provide additional information 

to investors by exhibiting returns that are statistically different to the unconditional 

returns over a short period of time. 

In conclusion, this thesis provides empirical evidence that broadly support the 

usage of technical analysis in the financial markets 
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Chapter 1 

Introduction 

Modern financial markets are complex and fascinating. One important characteristic 

of the modern financial system is the presence of organized market place for buying 

and selling financial assets. In these early stock exchanges, detailed financial price 

data of stocks and commodities are recorded daily, either updated on ticker tapes or 

chalk boards as brokers and dealers conduct transactions. 1 

Long before the advent of the efficient market hypothesis, market practitioners 

have already begun creating simple statistical methods to analyze these financial data. 

In 1884, Charles Dow developed the Dow Theory and created the Dow Industrial 

Index to track the broad movements of the US stock market2
, 29 years before Louis 

Bachelier (1900) applied the Random Walk theory to describe the movements of 

stock prices! Based on Dow's work and other early pioneers, a new field in finance 

has grown rapidly, one that uses price and volume data solely to predict future stock 

prices. Today, this field is known as technical analysis. 

What roles do technical analysts perform? In surnmary, the practice of technical 

analysis is defined by Pring (1991, p.2) to be: 

The technical approach to investment is essentially a reflection of the idea 

that prices move in trends that are determined by the changing attitudes 

of investors toward a variety of economic, monetary, political, and psycho­

logical forces. The art of technical analysis, for it is au art, is to identify a 

trend reversal at a relatively early stage and ride on that trend until the 

weight of the evidence shows or proves that the trend has reversed. 

1See. for example. !Vlichie (1999) for a11 accou11t of the historical cleveloprne11t of the Lonclo11 stock 
exchauge. 

2 See Ly11ch <mel Rothchild (1995, p.70) for a descriptio11 on the creation of the Dow .Jo11es Indus­
trial Index. 
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This definition shows that technical analysis encompasses \vide-ranging fields, with 

the most important strategies being contrary and trend-following. To some extent, 

technical analysis also include some analyses of investors psychology, an area that 

has only begun in the academic finance in earnest, popularly known as behavioural 

finance. 

As far as academics are concerned, they have always rejected technical analysis, 

as Campbell, Lo and Mackinlay (1997, p.43) succinctly describe this view: 

Historically, technical analysis has been the "black sheep" of the academic 

community. Regarded by many academics as a pursuit that lies somewhere 

between astrology and voodoo, technical analysis has never enjoyed the 

same degree of acceptance that, for example, fundamental analysis has 

received. 

However, this view has begun to change in recent decades, possibly due to the fact 

that using fundamental information to predict the level of asset prices has become 

notoriously difficult, and many technical oriented traders have profited from this 

using approach. 3 Moreover, modern media may have assisted in the distribution of 

"technical" knowledge in reports and periodicals, as described by Robert Shiller (2000, 

2002). For example, a typical investment report. from brokerage firms or news agencies 

may have the following titled: "Balancing the fundamentals: Technical analysis offers 

investors otheT ways to read market tea leaves. "4 Because of these developments, 

technical analysis has now become indispensable to a large proportion of traders and 

fund managers. It is common to see investors adopting a 'hybrid' approach, one that 

includes both technical and fundamental inputs into their investment decisions. 

Given the widespread knowledge of technical analysis, it is generally assumed 

that technical analysis is equally applied to all asset classes, including equity, cur­

rency, commodities and fixed income markets. Even though the finance literature 

has produced an extensive amount of research on technical analysis in the equity and 

currency markets, the evidence for fixed income markets is less clear and established. 

Therefore, the ohjectiw~ of this thesis is to r-~valuat.P the dfectivenPss of technical 

analysis in trading fixed income securities. 

In the bond world, quantitative models reign supreme. To provide partial evidence 

for this fact, Figure 1.1 presents the biannual survey results conducted by the Bank of 

3If one view~ that technical analysis should belong to voodoo science, the results obtaiued by 
Yuan. Zheng and Zhu (2006) will be even more perplexing. They find that "stock retttr-ns an; lowe1· 
on the days anmnd a full moon than on the days around a new moon. " 

4 International Herald Tribune, 18 February 2006, p.l4. 
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Figure 1.1: A BIS Survey of Assets By Classes m the Over-The-Counter (OTC) 
Markets 

BIS Survey of OTC Instruments (1998-2004) 
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International Settlement (BIS) of the Over-The-Counter ( OTC) derivat ives trading 

since the late nineties (BIS , 200<1, 2005). The growth rate of OTC markets for interest 

rate derivatives contracts shown in this figure is astonishingly high and dominate 

t he foreign exchange and commodity derivatives by a large margin. F ixed income 

markets are unique among the asset markets mainly because of cash flow. Unlike 

equi t ies or commodities, bond markets have~ a fixed , or at least a partially fixed , 

known cash fl ow projected some time into t he future. This cash feature is attractive 

to investors because t hey can buy and sell fixed income instruments to hedge their 

cash fl ow requirements ." For traders and arbi trageurs, fixed cash flow makes it fairly 

straightforward to compute the relative value of various fixed income securi t ies and 

replicate it with other securities . As a result , arbitrageurs perceive bond markets 

to contain li ttle fundamental risk. 6 The combination of above factors means tha t 

t rader are more reliant on quantitative models. such as Heath, Jan ow and Morton 

5 For example, government and corporate bonds are frequently t raded by pensi011 funds a nd 
im;ur i:l 11 Ce firms to hedge t heir business li abili t ies. i:l process known i:lS ·imrnunizat·ion. 

6 Even though many events and studies have proved otherwise. The collapsed of Long-Tenu 
Capital Management in September 1998 is a good exalllple of the huge capital losses incurred in ar­
birraging swap sprPad markets. Dnartf', Longstaff and Yn (2005) inwstigat.P whPthcr snch arbit.n1g;f' 
activities amount to picking ·nickels in front of a steamroller'. The main result from their study 
shows the excess returns from a number fixed income arbitrage strategies are posi t ively skewed . even 
after cont roll ing for leverage effect and the possibility of a unrealized "peso" event. This means thaL 
there are econom ically viable benefi ts to arbitrageurs. 
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(1992) and Brace, Gaterek and I'viusiela (1997) frameworks for relative trading and 

derivatives hedging rather than using technical analysis in forecasting interest rates 

and bond yields. Hence, it would be very interesting to test how effective is technical 

analysis in the fixed income markets in terms of supporting investment strategies. 

For the rest of this chapter, we summarise and discuss the current state of affairs 

m technical analysis with applications to the fixed income markets. The objective 

here is not to provide a literature review of technical analysis since it has already 

been cornprehensively written by Park and Irwin (2004). Rather, we distill a number 

of major results from the literature into several stylized facts. For this purpose, we 

first provide an overview of the technical analytic indicators. Next, we describe and 

discuss three stylized facts about these technical indicators. Lastly, we discuss the 

scope of technical analysis in the fixed income markets. 

1.1 Technical Analysis: Facts and Fantasies 

1.1.1 An Overview of the Technical Indicators 

Developing and implementing technical trading systems require vast amount of efforts 

from traders, not to mention the critical need to keep abreast of the financial markets 

developments that may have an impact on the trading systems. Generally, technical 

analysis is an umbrella term for a myriad of indicators. There are numerous technical 

indicators and methods for investors to choose from. For a more thorough discussions 

of many of these methods, see Edwards and Magee (1966), Murphy (1986), Schwager 

(1996), Pring (1991), Bulkowski (2005) and Kaufman (2005). The following is a brief 

listing of the fundamental building blocks of technical indicators: 

1. Technical Theories. The advocation of technical theories marks the beginning 

of technical analysis. The key theories include Dow Theory, Fibonacci theory, 

Elliot Wave Theory (Prechter (1980)), Kondratieff Wave theory (Kondratieff 

( 1984)) and Gann Lines. Many technical analysts use these theories as a tool 

to track the overall performance of the markets over a period of time. The 

length of historical analysis varies among theories and analysts. See Brown, 

Goetzmann and Kumar (1998) for an analysis of the Dow hypothesis. 

2. Technical Charts and Chart Patterns. Charting is the foundation of tech­

nical analysis. The major chart types include line. bar, point-and-figure and 

candlesticks. Many chart patterns have been developed for ead1 of these charts 

in order to analyse the price actions. The major price patterns for line and bar 

charts include Head-and-Shoulders, Triangles, Broadening, Rectangles, Flags, 

4 



Double and Triple formation, (Bulkowski (2005)) while some of the major pat­

terns in candlestick charts are Takuri, Kubitsuri, Kabuse, Kirikomi, Tsutsumi, 

Hoshi, Narabi Kuro, Tasumi and Doji (Nison (1991)). Lastly, the major pat­

terns in point-and-figure charts include Bullish signals, Bearish signals. Cata­

pults formation, Long taiL Broadening formation, Relative Strength and Bullish 

Percent (Dorsey (2001)). No comparison has been made to see which charting 

method produces better investment results. 

3. Trend Following Indicators. This area provides the most popular technical 

indicators among technical analysts and traders. J\!Jajor trend-following strate­

gies include filters (Alexander (1961, 1964)). moving average and its variants, 

channel breakout, support and resistance, and swing trading. 7 In addition, the 

price distribution trading systems attempt to capture price trends based on the 

moments of the financial prices, with indicators such as skewness and kurtosis. 

4. Breath Indicators. Breath indicators analyse the volume aspect of the finan­

cial markets, usually in a manner that complements trend-following indicators 

or chart patterns. Indicators include volume, On-Balance volume, Accumulator 

and Ad vance-Decline system. (See Kaufman ( 2005)) 

5. Short-term Momentum Indicators. This category includes indicators like 

moving average convergence-divergence (MACD), momentum, Stochastics, rela­

tive strength index (R.SI), rate-of-change, percent R. (%R.), among many others, 

to track the short-term price movements. 

6. Sentiment Indicators. These indicators attempt to measure the broad mar­

ket psychology. Sentiment indicators include short-interest ratio, insider trad­

ing news reports, grouping of advisory services, mutual funds cash/asset ratio, 

analysis of margin debt, put/ call ratio, surveys of investment managers' views, 

investment newsletter sentiment, short interest. Barron's confident index and 

CBOE volatility index (fear gauge). Davis (2003) provides some interesting 

examples of contrarian indicators. 

7. Cycles and Seasons. Observing that financial markets exhibit cycles, tech­

nical analysts use a number of wave-based mathematical tools such as Fourier 

system to model these cycles. Studies of current business cycles are frequently 

couched in the framework of Dow theory or Kondratieff wave t.lwory. 

7 Kaufman (2005, p.l53) defines 'price swing' to be ·'a sustained price movements." Thus, swing 
trading attempts to capti.Jre these price swings. 
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8. Econometric Models. Recent advancements in econometrics techniques have 

popularised the usage of advance statistical tools in analyzing market behaviour. 

Models that technical analysts have employed include linear regression, ARilVIA 

models, stochastic volatility models such as AutoRegressive Conditional Het­

eroskedasticity (ARCH, Engle (1982)) and Generalized AutoRegressive Condi­

tional Heteroskedasticity (GARCH, Bollerslev (1986)), and state space models 

like Kalman Filter. How profitable these models are is yet to be ernpiricall:y 

verified. 

9. Network Models. Advancing computer technology has made complicated 

models like neural network, genetic algorithm, and chaos system popular among 

sophisticated traders, as these network models are able to handle complex, non­

linear multivariate relationships among numerous financial variables. However, 

the majority of the empirical research of these methodologies generally found 

negative results about their profitability. Neural network, ill particular. has 

been shown to generate inconsistent profits over time. (See, for example, vVhite 

(1988), Trippi and Turban (1992), Allen and Karjalainen (1999) and Ready 

( 2002)). Whether these methods are as widely used as simple indicators like 

moving average is not known. 8 

In summary, the number of technical analytic tools available to investors is enor­

mous. It is common for traders to combine one or more of the above indicators into 

a single and coherent trading system. Pring (1991, p.9), for instance, recommends 

that, ''No single indicator can ever be expected to signal trend reversals, and so it 

is essential to use a number of them together to build up a consensus.'' Pruitt and 

White (1988) and Pmitt, Tse and White (1992) combine several technical indicators, 

including Cumulative volume, Relative Strength and J\!Ioving Average indicators and 

assess their profitability. This strategy is commonly known as CRISMA. They find 

this system earned annualized mean excess returns of 1.0 to 5.2 percent after trans­

action costs in US equity markets over period 1986-1988, which outperformed the 

buy-hold strategy. But Goodacre, Bosher and Dove (1999) apply this strategy to UK 

equity market. over 1987-1996 and find little evidence of high exress return aftn tak­

ing transaction costs and risk into account. Similarly, Goodacre and Kohn-Spreyer 

(2001) discover this system generates little profits in the US market in the nineties 

after adding transaction costs and risk. But CRISMA system is only one possible 

8Tlw difficulties in using nenral network for trading pmpose are dne t.o (i) Sophisticated mathe­
matical methods involved, (ii) No a priori hypothesis on selected explanatory variables. The reper­

. cussion. is that neural network provides no explanation as to why the forecasts are inaccurate a11d 
when the network will likely to provide good forecasts, and (iii) Neural network are prone to over­
trainiHg and faulty optimization. (See, for example, McNelis (2005)) 
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combination. There are many other combinations. Moreover, many technical ana­

lysts have developed many new indicators that not listed here due t.o their proprietary 

nature. Thus it is difficult for us to test all indicators and their combinations. 

1.1. 2 Some Stylized Facts of Technical Analysis 

The literature on technical analysis is a large and growing one. This section provides 

some stylized facts distilled from this voluminous literature: 

Stylized Fa:ct 1: Increasing Usage of Technical Analysis. An increasing 

number of traders and investors is using technical analysis to compliment their 

trading activities and investment strategies. This can be due better computing 

facilities and data availability. To prove this fact, various survey studies con­

ducted by Group of Thirty (1986), Brorsen and Irwin (1987), Frankel and Froot 

(1990), Taylor and Hellen (1992), Menkhoff (1997), Lui and Mok (1998), Che­

ung and Wong (2000), Cheung, Chinn and Marsh (2000), Cheung and Chinn 

(2001) and Oberlechner (2001) have confirmed such a trend in the financial 

community. But whether increasing usage of technical indictors will lead to a 

decrease in the profitability of these strategies is difficult. to verify since many 

other factors may iufiuencc the overall results. 

Stylized Fact 2: Profitability of Technical Analysis ts Still Inconclusive. 

A voluminous amount. of empirical studies h<we researched on the profitability 

of technical trading systems. Unfortunately, the conclusion from these studies 

is far from certain. Early empirical studies by Cootner ( 1964), Vau Horne 

and Parker (1967, 1968), Alexander (1961, 1964), Fama and Blume (1966), 

Jensen and Benington (1970), Dryden (1970a, 1970b) and James (1968) find 

that technical rules such as filter and moving average rules generate inconsistent 

profits. For instancr~, James (1968, p.:326) concludes: 

What seems abundantly clear, however, is that when records of in­

dividual stocks (as opposed to averages or indices of stock price) are 

examined, this survey detected little reason to believe that investors' 

position will be benefited by the use of rnonthly moving average. 

The collapsed of Bretton Wood system in the early seventies, however, con­

tributed to higher price volatility in the financial markets. In light of these de­

velopments, a number of studies find technical indicators to be profitable in the 

currencies markets, including Dooley and Schafer (1983), Schulrneister (1987) 

and Sweeney (1986, 1988), Levich and Thomas (199:3), Silber (1994), Taylor 
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( 1994), l'vlenkhoff and Schl umberger ( 1997), Lee and Mathur ( 1996a, 1996b), 

Kho (1996), Szakmary and Mathur (1997), Chang and Osler (1999), LeBaron 

(1999), Maillet and Michel (2000), Okunev and White (2003), Lee, Gleason 

and Mathur (2001), Lee, Pan and Liu (2001), l'vlartin (2001), Neely (2002), 

Saacke ( 2002) and Sapp ( 2004). They report that a variety of technical rules 

are consistently profitable in the currency markets, even during central bank 

intervention. In the equity markets, Brock, Lakonishok and LeBaron (1992), 

Bessembinder and Chan (1995), Huang (1995), Wong (1995), Raj and Thurston 

(1996), Mills (1991, 1997), Hudson, Dempsey and Keasey (1996), Gencay and 

Stengos (1997), Ito (1999), Ratner and Leal (1999), Coutt and Cheung (2000), 

Gunasekarage and Power (2001) and Ready (2002) have found on average that 

technical indicators yield positive returns in developed and developing capital 

markets. But many of these studies conclude that these technical strategies 

become unprofitable once transactions costs and bid-ask spreads are included. 

On the whole, the profitability of technical strategies is found to be weaker in 

equity markets than in currency markets. In fixed income markets, few studies 

has empirically tested the profitability of technical analysis. 

Fact 3: Suitability of Technical Analysis Differs Among Traders. The 

profitability of technical trading system depends on the traders' psychological 

makeup and compatibility. Two issues are certain here. One, not everyone 

is suited tQ be a trader and two, not every trader can be a profitable techni­

cal trader. (See, for example, Schwager (1990, 1992) and Steenbarger (2002)) 

Recently, academic studies by Lo and Repin (2002) and Lo, Repinz and Steen­

bargery (2005) have begun to focus on the behavioral reaction of traders during 

trading hours. However, this is an area that demands further research. 

Discussions 

Stylized Fact 1: Although the first stylized fact is clear and unambiguous, academics 

are intrigued as to why analysts and traders use technical analysis at all. To resolve 

this puzzling behaviour, a number of theoretical models have been proposed, mostly 

within the noisy rational expectations equilibrium framework. These models assume 

that the current asset prices do not fully reveal all available information because 

of market noise. Consequently, technical analysis can aid investors in disentangling 

information from these market noise. Formal models by Brown and. Jennings (1989) 

and Grundy and l'vicNichols ( 1989) show that a series of price patterns help traders 

to make better judgement of the underlying asset through learning behaviour. In a · 

similar framework, Blume, Easley and O'Hara (1994) consider the role of volume and 
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pnce together, arguing that volume provide important information to traders, one 

that is unique front prices. Overall, the economic impact of an increasing number of 

technical investors in the financial market is yet unclear. 

Stylized Fact 2: The second stylized fact, on the other hand, is still controversial. A 

corollary of efficient market hypothesis (EMH) implies that profitability of technical 

trading systems equates market inefficiency and vice versa, as strongly advocated by 

Fama (1970). Since in an efficient market, prices reflect all available information. 

Technical rules that rely on historical prices should not be able to consistently pro­

duce superior results in comparison to passive trading strategies after adjusting for 

risk and transaction costs. (See, for example, Roberts (1967) and Pinches (1970)) 

Many early empirical studies on US equity markets indeed confirm this hypothesis by 

documenting the fact that moving average and filter rules are unprofitable. This led 

to the conclusion that technical strategies cannot help investors in earning excess re­

turns consist<ently and that financial markets are f:fficient, a::; .Jensf:n and Bf:nnington 

(1970, p.470) summarise this vievv: 

Likewise given enough computer time, we are sure that we can find a 

mechanical trading rule which works on a table of random numbers -

provided of course that we are allowed to test the same rule on the same 

table of numbers which we used to discover the rule. vVe realize of course 

that the rule would prove useless on any other table of random numbers, 

and this is exactly the issue with Levy's (1971) results. 

However, there is a possible flaw to this conclusion. There are hundreds, if not 

thousands, of possible technical strategies for traders to choose from, with many new 

ones being developed daily and old ones discarded. Since it is virtually impossible 

to test all trading systems, is it correct. to deduce that the whole fimutcial market 

is pfficient (or inefficient) based on C\ small subset of trading stratPgies testPd on 

a small subset of securities? As Timmermann and Granger (2004) recently point 

out that empirical tests of EMH need to have access to the full set of forecasting 

models available at any given point in time and the search technology used to select 

the best forecasting model. None of the above studies, however, fully satisfies these 

requirements. Furthermore, Grossman and Stiglitz (1980) identify that a perfectly 

efficient market is impossible due to the costs involved in gathering information and 

interpreting these information. 

Besides, it is \vell known that academic research suffers from the so-called pub­

lication bias-only unusual and significant results get published. The exclusion of 

many other technical indicators may affect. the conclusion that financial markets are 
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efficient. There are two opposmg effects caused by this bias. One, the excluded 

tP-chnic:al indicators arP. unprofitctb!P., which strP-ngthens thP. case for markP-t dfic:if~ncv 

since the indicators that are profitable are likely to be due to data snooping9 Two, 

the excluded indicators are profitable but not known to researchers. In this situation, 

the case for an efficient market is weaken. 10 

As many empirical studies subsequently show that the profitability of technical 

indicators varies across financial markets and time pP-riods, it appears that finctncictl 

markets may exhibit time-varying efficiency across time, across asset markets and 

across different countries, as Neftci and Policano (1984, p.138) conclude from their 

tests on trend-following indicators in the futures markets: 

A disturbing point was the way results varied across commodities and 

across contracts for the same commodity. One set of parameters which 

yield a significant dummy in one case, was found to be insignificant in 

other cases. 

Furthermore, many tests of technical system do not take into account that tech­

nical traders can change their trading strategies change over time by incorporating 

new market characteristics. Traders are not static users of systems but evolutionary. 

Time to time, they even override trading signals from the trading systems. This is to 

ensure the profitability of their technical system and their survivability over the long 

run. Recently, Andrew Lo (2004) has coined such evolutionary behavior Adaptive 

Market Hypothesis (AMH). This hypothesis postulates that the survivability of mar­

ket participants is the most important objective in the traders' mind, even though 

other objectives, such as profit and utility maximisation, are irnportant. In fact, the 

well known fund manager George Soros (1987) exhibits this type of mentality, as he 

states the objective of his Quantum Fund to be: ''Generally speaking, I am. ·rrwTe 

conce:rned with P'l'eseruing the Fund's capital than its ·recent pmfits, so that I tend 

to be more liberal wdh selj~imposed limits when. my investrnent concepts seem to be 

working.'·' (p.l45) 

Only recently has research begun to recognize these facts by testing more techni­

cal strategies and to account for the possible effects of data snooping. For example, 

Sullivan, Timmermann and White (1999) tested 7,846 technical strategies, while Hsu 

9 \.Yhite (:2000, p.1097) defines datR snooping t.o bP. "Datn snoopzny occnTs when a given set of 
datn is used moTe than once joT p'Urposes of inference OT model selection." 

100ne stylized fact in the mutual fund industry is that the majority of fund managers are unable 
to outperform passive iuvestment strategies, especially when transaction costs are added into the 
evaluation. (See, for example, l'v!alkiel (1995, 2003)) vVhether mutual fund managers use techuical 
analysis in selecting securities is not kuowu. 
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and Kuan (2005) tested 39,832 strategies. Moreover, studies like Pesaran and Tim­

mermann (1995)have adopted the idea of ''recursive modeling" to account for the fact 

that technical strategies change over time. Recently, White (2000) and Hansen (2005) 

develop variants of the stationary bootstrap procedure in an attempt ameliorate the 

data mining problem. 

However, even with such a huge number of strategies and adoption of complicated 

bootstrap methodologies in the evaluation procedure, we are still no closer to an­

swering whether financial markets are efficient. This is because the results of these 

studies seem to vary over time, asset markets and strategies. (See Chapter 2 for more 

discussions of these bootstrap studies.) To give a simple example of time-varying 

market efficiency, Figure 1.2 displays the first-order autocorrelation coefficients (in 

percentage) of the weekly US 30-year Treasury bond futures returns over 1980-2005. 

The simple Random Walk hypothesis asserts that all financial ncturns are serially 

uncorrelated, which implies that all correlation coefficients should not be statisti­

cally different from zero11 However, the coefficients in Figure 1.2 seem to refute this 

assertion. If the values of autocorrelation coefficients are crude proxies for market 

efficiency, then it is obvious that this efficiency varies through time. In fact., Andrew 

Lo (2004, p.l~) has described that market efficiency is dependent on the competition 

and other variables within any given market: 

Market efficiency cannot be evaluated in a vacuum, but is highly context­

dependent and dynamic, just as insect populations advance and decline 

as a function of the seasons, the number of predators and prey they face, 

and their abilities to adapt to an ever-changing environment. 

Another important point that many researchers neglected when evaluating tech­

nical trading strategies is that technical strategies constitute only a portion of the 

overall trading system. There are many aspects of the trading system which are very 

important, such as risk management and capital management, not to rnention the 

personality of traders involved, all of which can drastically afFect the final profits. 

Practical issues like stop loss, position sizing, risk-reward ratio, markets to trade and 

leverage level need to be addressed. Since these factors vary widely across market 

participants, it is difficult to impose a set of homogeneous and realistic assumptions 

across all markets participants for modelling purpose. A prime exarnple is the lever­

age level of a fund. Theory tells us that starting with too much capital may hamper 

a trader's performance by being over-capitalized, but if it is unable to sustain a string 

of losses, an otherwise profitable technical trading system may still be terminated 

llSee Campbell, Lo and Mackinlay (1997, p.42) for further discussion about testing for H0 : (; 1 = 0. 
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Figure 1.2: First-Order Autocorrelation Coefficients of the US 30-year Bond Futures 
Weekly Returns Using 3-year Rolling Windows from January 1978 to February 2005. 

1980 198'3 1986 1989 199:? 1995 1998 2001 :!003 

prematurely, as in the arbitrage scenano envisioned by Shleifer and Vishy (1997). 

The optimal leverage level of a fund depends on a number of factors, such as appetite 

(or perhaps disregard?) for risk. So how should one manages his/ her leverage !eve]? 

Theoretically, Grossman and Vila (1992) solve for the dynamic optimal trading strat­

egy of au investor who faces some form of leverage constraint. Their model assumes 

that investors have constant relative risk aversiou, which may not be reflective of 

actual market participants. 12 Liu and Longstaff (2000) study the optimal investment 

strategy in a market where there are arbitrage opportunities. They find the optimal 

leverage for arbitrageurs is determined largely by the volatility and speed of con­

vergence of the pair trades, and the characteristics of the margin requirements. In 

Duarte, Longstafl' and Yu (2005). they also find that the alllount of capital allocated 

to fixed income arbi t rage is correlated to the strategy excess returns. ThP.y suggest 

that having (p.22) "intermediate levels of capital may actually impmve liquidity and 

enable tmdes to conve1ge mor-e rapidly. '' However , no such study has been carried out 

on technical strategies and so we do not know what are the effects of time-varying 

leverage on the final results and whether an optimal leverage level exists 

12 Along t he same line, Getrnansky, Lo and l'vlakarov (2004) develop an econometric model with 
dynamic leverage characteristic to model hedge funds returns. The exogenous factors are market 
volatili ty and prices. De Souza and Smirnov (2004 ), for example, model the leverage as a funct ion of 
the n t a et value of a fund with barriers. In trading underlying Tr a ury ecuritie , high leverage 
is attainable via repo financing. t hat is, using the 1'reasury securi ties as collateral for fundin g over 
a short-term horizon. 
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Stylized Fact 3: The third stylized fact is perhaps the most important: Not every 

trader uses technical trading systems, and not every trader who uses them can be 

, successful. Two important but controversial issues need to be addressed here: ( 1) 

Can a successful technical trading system be publicized and still remain successful? 

and (2) \i\fhat makes a successful technical trader and what are their characteristics? 

Regarding the first issue, there are plenty of evidence presented in Schwager (1990, 

1992). For example, two highly successful technical traders, vVilliam Eckhardt and 

Richard Dennis, debat<ed on wlwther a profitable technical trading system can be 

taught to a group of inexperience traders and remain profitable for these new traders. 

To settle this issue, they taught a number of trainees traders about their highly suc­

cessful technical systems and supply these newly minted traders with capital ranging 

from $500,000 to $1, 000, 000 for them to begin trading with their method. (These 

trainees are the so-called Turtles traders.) After two successive experiments, the trad­

ing results accumulated by these traders were labelled as ''outstanding success" by 

William Eckhardt. (Schwager (1990, p.128)), which perhaps settled the question that 

successful technical trading system can be taught from one generation to another, 

and still remain profitable. 

However, would exposing the successful trading system render them ineffective 

since many investors will be using the same indicators? The answer to this question 

is unclear, as from the above-mentioned experiment, it appears that the technical 

system will remain successful. Another such strategy that survive public scrutiny 

is the momentum strategy initially documented by Jegadeesh and Titman (1993), 

which is still found to be profitable nine years later in J egadeesh and Titman ( 2001) 13 

However, observations from arbitrage activities are less supportive as the burgeoning 

hedge fund sector may add impetus for relative mispricing of securities to disappear 

quickly, especially in the fixed income sector. 14 

13 By and large, the momentmn strategy in Jegadeesh and Titman's (1993, 2001) study and the 
trend-following strategy in the above-mentioned experiment are similar, in the sense that both 
strategies chase after recent price trends. De Long et al. (1990) have modeled such a feedback 
!llechanism between asset prices and market participants' psychology. The basic observation is that 
the higher the asset prices, the more bullish market participants becomes, and vice versa. Studies by 
DeBondt (1993), Griffin, Harris aml Topaloglu (2003) and Brunnermeier and Nagel (2004) confirm 
this trend chasing behaviour by showing that forecasters and institutional investors do chase after 
trends once the trend is detectable in asset prices, and attempt to time the market by reducing their 
holding before the bubble burst. Abreu and Bnumenueier (2003) develop a theoretical framework 
that model the dynamics of asset prices when informed and rational agents ride a price bubble until 
it reaches a critical level. 

14 Riskless arbitrage depends fundamentally on the Law of One Price, which implies that two 
securities with similar payutr structure should lwvc the sawe price. The more capital is put t.u 
execute t.hese a.rbit;rage. strategies, especially on . the relative value strategies in- the fixed income 
market, the faster the convergence between the two securities will take place. The positions for 
arbitrage or convergence will be exactly opposite to that of trend-following technical trading system. 
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The second issue about the characteristics that underpin successful technical 

traders is harder to validate because the behavior of traders who use technical trad­

ing systerns ranges so widely. For example, Lo, Repin and Steenbargery (2005) find 

little correlation between a trader's personality traits and the trading perfonnance in 

their survey of 80 traders. Moreover, it is well known tha.t many biases affect traders, 

such as loss aversion biases (Odean, 1998) and overconfidence biases (Daniel, Hirsh­

leifer and Subrahmanyam (2001)). How to control for this biases when evaluating the 

profitability of trading system remains a rich avenue for future research. 

l'doreover, academic studies do not incorporate that fact different market partic­

ipants will inevitably gravitate to the trading model that best suit their personality, 

no matter whether it is fundamental system or technical system. For example, some 

traders, such as clay traders, prefer short-term trading horizon and consequently they 

built their trading model accordingly to capture short-term price movements. On 

the other hand, some traders are inclined towards long-term positional tracle 1 ;' Their 

trading model will try to capture trends in financial markets over a longer time frame. 

More research is definitely needed in understanding how to match a trader's behavior 

to the optimal trading style and what kind of traders use technical tools successfully. 

Recently, progress has been made iu linking the emotion states of a trader with 

their trading performance by Lo and Repin (2002), Steenbarger (2002), Fento-O'Creevey 

et a!. (2004) and Lo, Repin and Steenbargery (2005). They find that the emotional 

responses to stress and financial losses of traders are vital and important ingredi­

ents in ensuring the survivability of traders. Perhaps one way that traders express 

their survivability (by reducing the stress caused by trading activities) is to choose a 

trading system that accentuates mental calmness and ensuring optimal performance 

during trading hours. This can only be achieved if the trading system they use is 

compatible with their mind-set and personality. 

1.2 Active Bond Portfolio Management and the 

Quest For Bond Yields 

1.2.1 Active Bond Portfolio Management 

Within the universe of bond portfolio management, there are two 1nam types of 

strategies in generating portfolio yields: active and passive management. Since pas-

Thi1s. it is difficult for us to judge wlwther 1110n~ treml-follow.ing invPst.ors will swny t.lw finnncial 
mnrkets townrd inrrensed market efficienr:y or wlwthn they will ncrent.ua.te the price trends. 

15 Unsurprisingly, even the word 'long-term· rnn menn differenl. t.ime fnmw l.o difl"erent. t.ri\ders. 
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sive bond managers attempt to match the returns of the portfolio to a particular index 

without any active input, technical analysis generally does not serve any purpose in 

this area. 16 On the other hand, active bond managers strive to outperform a targeted 

benchmark with a focus on maximizing portfolio yield, and subjected to a targeted 

average maturity or credit quality of the portfolio. This is an area where technical 

analysis may provide value to bond managers and traders. 

Broadly speaking, there are four main types of active bond portfolio management 

approaches, which we briefly described below (See, for example, Fabozzi (2001, 2005)): 

1. Directional Approach. This approach attempts to profit from the expected 

trend in interest rate by adjusting the duration length of the bond portfolio 

to capitalize on the directional views, or by acquiring unhedged positions in 

bond futures. A simple strategy is to increase the portfolio duration if interest 

rates are expected to increase and reduce portfolio duration if interest rates are 

expected to decrease. This relies greatly on the market timing ability of the 

manager. For obvious reason, this strategy entails high market risk and thus 

constitutes only a portion of the activity of the overall bond portfolio. 

2. Yield Curve Approach. Since the yield curve is dynamical over time, it can 

generate a variety of possible shapes. Fund managers who attempt to exploit the 

movements of the yield curve adjust the maturity profile of their bond portfolio 

to capture the shifts in the yield curve shapes. The strategies below are some 

approaches that adjust the maturity profile of the bond portfolio to reflect the 

views of the fund managers on different yield curve shapes: 

(a) Ladder - An equal investment in each issuing maturity along the yield 

curve. This bets on the parallel shifts of the yield curve. 

(b) Bullet - An investment at one maturity on the yield curve, betting on the 

movement in a particular point on the yield curve. 

(c) Barbell- An investment in two non-adjacent maturities with the same du­

ration as an intermediate maturity. This bets on the curvature of the yield 

ltil'vlorP specifica.lly, pa.~sive strategies inclncle buy-and-hold and indexing. l::ly indexing il. mPans 
that the bond manager strives to replicate the performance of the index, such as the Lelunau 
Brother, Merrill Lynch or JP Morgan baud index. Depending ou the selection of the securities iu 
their portfolio, there will be tmck'ing er"ror between the portfolio retum and the benchmark retum. 
Furthermore, since replicating the index is costly, for example, Lehrnau Aggregate Index includes 
5,000 bonds, mauagers can select a subset of securities to track the index rnovemeuts. See Evans 
apd .. Arct1er (!968)<,ai1d,JvlcEnally:, and.Boarclman. (1979) .... Qbviously, ... assetcc·managerscan' elect· to­
mix both passive and active mauagement iuto a hybrid system whereby the managers are allowed a 
measured deviatiou from the heuchwark in terms of cash flow, sector or credit quality. 
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curve. In comparison to bullet strategy, barbells outperform bullet during 

yield curve flattening and underperform during yield cnrve steepening. 

(d) Butterfly- An investment in three sections of the yield curve with the two 

ends having the same position and opposite to the middle section. There 

are a number of weighting schemes available to trades, including Nelson­

Siegel (1987) model. Grieves (1999) and Fabozzi, Martellini and Priaulet 

(2005), who discussed several weighting methods and the profitability of 

this strategy. 

(e) Riding the yield curve - This strategy aims at enhancing the portfolio 

yield by holding securities with a longer maturity in an upward sloping 

term structure. For this strategy to be profitable. it assumes that the 

yield curve shape does not change over the holding period, tantamount to 

a bet on parallel yield curve shifts. Dyl and Joehnk (1981), Grieves and 

Marcus (1992), Ang, Alles and Allen (1998), Grieves et a!. (1999) and 

Bieri and Chincarini (2005) empirically investigate this strategy in the US 

and international Treasury markets. All in all, they find this strategy 

enhances the bond portfolio's return on average compared to the buy-and­

hold strategy with only a modicum increase in risk. 17 

3. Yield Spread Approach. A yield spread strategy attempts to profit from 

the spread between different bond sectors or bond markets, such as the spread 

between the natural resource corporate bonds and the government bonds. A 

number of risk factors can affect this spread such as the credit ratings of the 

issuer and/ or some industry specific risk factors. In other words, to trade yield 

spread profitably, traders have to estimate accurately how these factors may 

alter the dynamics of yield on both sides of the trade. (The bonds of the 

same maturity between two countries are usually called sovereign spread.) The 

following spreads are utilized by fund managers to earn extra yield: 

(a) Sector Spread - Bond yield spread between different industry sectors. 

(b) Country Spread- Yield spread between similar bonds in different countries. 

(c) Currency Spread - Similar bonds denominated in different currencies. 

(d) Yield Curve Spread- Two different maturities on the same yield curve. 

4. Individual Security Approach. This strategy is mainly based on a relative 

basis, meaning that fund managers identify undervalued or overvalued fixed 

income secttrities relative to comparable bond of similar characteristics. 

17To an extent, this strategy trades on the empirical regularity that yield curve are upward sloping 
most of the time. (See, for example, Brown and Schaefer (1994)) 
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5. Volatility Approach. This strategy positions the bond portfolio to take ad­

vantage of the time-varying volatility property of interest rates. For example, 

fund managers adjust the convexity of a portfolio by holding convex assets like 

puttable bond if volatility is expected to increase and sell callable bonds (nega­

tive convex assets) if volatility is expected to decrease. Other instruments that 

are explicitly exposed to volatility are exchange traded bond options. 

For all the above investment approaches, the specific element lacking in each strat­

egy is the timing of trades, and this is where technical analysis may offer invaluable 

help to traders. By using specific technical indicators, the null hypothesis is that 

traders is able to improve the individual trade profitability and hence improve the 

overall trading performance. Until now, this application has never been investigated 

in a systematic way across various fixed income markets. Thus, the main interest of 

this thesis is to test the various aspects of technical analysis tools in the fixed income 

markets, and especially in government bond futures markets and government bond 

yield markets in a coherent manner. 

1.2.2 Technical Analysis in the Fixed Income Markets 

"Economists are as perplexed as anyone by the behaviour of the stock mar·­

ket. '·· 

- Robert Hall, 2001 Richard T.Ely Lecture 

What cau techuical analysis contribute to the fixed income market'? At first im­

pression, the role of technical analysis in fixed income markets are somewhat limited. 

On one side of the field are macro-economists who examine extensively the term struc­

ture of interest rates using the expectation hypothesis approach. (See, for example, 

Campbell and Shiller (1987) and Fama and Bliss (1987)) Occupying the other half of 

the field are sophisticated stochastic models built for pricing fixed income derivatives, 

with the key building block being the models of latent (unobservable) factors with 

no-arbitrage restriction. (See, for example, Heath, Janow and Morton (1992), Duffie 

and Kan (1996), and Dai and Singleton (2000)) 

A brief analysis of both approaches shows that neither side is reliable in predicting 

future iuterest rates. The core theory in the first approach is the expectatious theory 

of the term structure of interest rates, which carry the implication that the forward in­

terest rates are unbiased forecasts of future interest rates. Empirically, the predictive 

power of the forward rate is much less significant than what the expectations theory 

suggest. For example, Fildes and Fitzgerald (1980), Shiller, Campbell and Shoen­

holtz (1983), Fama (1984, 2006), Fama and Bliss (1987), Walz and Spencer (1989) 
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and Shiller (1990) have empirically confirmed this observation in many countries18 

Apart from forward rates, yield spreads (the yield curve slope) have been investigated 

by rnany researchers on whether it can forecast changes in spot interest rates. The 

answer to this, however, is more positive. For example, Campbell and Shiller (1991), 

Hardouvelis (1994), Engsted (1996), and Campbell, Lo and Mackinlay (1997) have all 

provided evidence that the yield spread may contain some information that account 

for the changes in future spot rates, especially as the maturities increases. Other 

economic factors, such as the real rate expectations, infta.tion expectations and risk 

premiums, are found to have time-varying impacts on the movements of short-term 

interest rates and bond yields. (Ilmanen ( 1995)) At the moment, the literature does 

not seem to offer a method which separates these different effects. Thus we argue that 

analysing directly on these bond yields using technical indicators may yield better 

investment results. 

For the second approach, it is surprising that given the plethora. of existing stochas­

tic models, very few studies have shown them to able to provide accurate forecast for 

future interest rate. Stochastic model are factor-based models, factors here refer to 

some unknown economic impact on interest rates commonly modelled with Brownian 

motion. According to Litterrnan and Scheinkman (1991) and Knez, Litterrnan and 

Scheinkman ( 1994), the three most common factors are labeled as "level", ''slope" and 

"curvature", which describe the movements of the yield curve over time. Contrary 

to the economic approach, these factors are purely statistical and does not explain 

the nature of factors. 19 Even though these models are useful in pricing interest rate 

derivatives, their forecasting capability in forecasting future yields is somewhat lim­

ited. Duffee (2002) supported this fact by documenting the fact the three-factor affim~ 

term structure models (ATSM) by Dai and Singleton (2000) are particularly poor at 

forecasting future bond yields. What is surprising is that he shows that ATSM cannot 

outperform a simple random walk model in terms of forecast errors for both in- and 

out-of-sample tests. He argues that ATSM cannot fit the distribution of yields and 

the observed patterns of predictability in the excess holding period returns on US 

Treasury bills and bonds data. 

18 0n the other hand, Longstaff (2000) provides some support for the expectations hypothesis at 
the very short end of the yield curve. From the overnight, weekly and monthly repo rates data, he 
finds the term ri:l.tes are unbii:lsed estimators of the average overnight rate rei:l.lised over the same 
period. There is no statistically risk premium in the weekly and monthly rates. See also Dai and 
Singleton (2002). 

19The particular techuique they employ to extract the factors iu bond returns is the principal 
component analysis, which provides no Pconomic int.nit.ion. For f'xamplc, thr first factor in Litt.rrman 
and Scheinkman's (1991) study accounts for an average of 89.5 percent of the observed variation in 
yield changes across maturities. See Bliss ( 1997) for more intuitive explanation of these factor term 
structure models. 
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Recently, some studies have attempted to combine both the economic and sta­

tistical approaches to improw~ the overall fit of the model to yield curve data. For 

example, Ang and Piazzesi (2003) develop the no-arbitrage model of the term struc­

ture of interest rates that includes inflation and macroeconomic activity, in addition 

to the level, slope and curvature factors. They find that the inclusion of the two 

additional economic factors improve the model's ability to forecast the dynamics of 

the yield curve. Similar results are obtained by Evans and Marshall (2002). Still, 

the overall view is that the first approach does not produce convincing proof that tlw 

bond markets obey the rational expectation models conjectured by economists, espe­

cially regarding the predictability of future interest rate changes using forward rate. 

The second approach plays only a limited role in active bond portfolio management 

since they seemed to provide miserable forecasts. 

The final approach for forecasting bond yields and trading fixed income securities 

may be technical analysis. Given the above evidence that both the economic and 

stochastic modelling approach cannot provide accurate forecasts, can technical anal­

ysis replace (or compliment) the above methodologies? This approach has not been 

examined in the fixed income markets and it will be interesting to see what. they can 

offer. 

Several studies have provided partial evidence on the inefficiency of fixed income 

markets, which provide some motivations for our work here. A potential anomaly is 

the calendar effects. For example, Johnston, Kracaw and McConnell (1991) discover 

two significant weekly seasonal effects in the US GNMA, T-bond, T-note and T-bill 

futures returns, including the negative Monday effect awl positive Ttwsday effect, 

which could have significantly impacted trading performance. In addition, De Vassal 

( 1998) finds that the bond yields tend to increase before the monthly auctions and 

drift downwards after the auction, and since 1980 interest yield volatility is highest 

on Friday in US bond markets. However, he did not test whether such predictability 

are exploitable for traders. Other studies on the seasonal effects in the bond mar­

kets include Scheneeweis and Woolridge (1979), Smirlock (1985), Clayton, Delozier 

and Ehrhardt (1989) and Smith (2002). Erb, Harvey and Viskanta (1994, 1996) 

find that forming bond portfolios based on Institutional Investor risk ratings gener­

ate risk-adjusted abnormal, unhedged returns in the range of 500 basis points per 

year, suggesting that bond markets respond to the level of recent changes in various 

measures of economic risk. At shorter horizon, Cohen aucl Shin (2003) find that iu 

US Treasury markets, trade a.nd price movements show positive feedback symptoms 

during market stress. A short-term trend-following strategy may earn high returns. 

Furthermore, Ilmanen and Byrne (2003) point out that it is possible to rnake abnormal 
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returns by trading Treasury bonds before the announcement of important economic 

variabks like non-farm payroll as there seems to be some momentum effects in bond 

yield movement right up to the announcement clay. 20 

Ivioreover, researchers have discovered some models that might help investors in 

forecasting future interest rates. For example, Diebold and Li (2003) recently show 

that there is sonte form of predictability in the US yield curve using the simple Nelson­

Siegel (1987) model. 21 They use this model to forecast the future bond yields with 

both in- and out-sample tests. They find the model's one-year forecasts outperform a 

random walk and show the Nelsons-Siegel model are able to outperform (in terms of 

root-mean square error) even the best model from Duffee ( 2002). Encouraged by this 

result, Fabozzi, lVIartellini and Priaulet (2005) use this model to identify whether the 

predictability iu the model parameters generate any significant improvement in trad­

ing results using butterfly strategies in the US swap markets. In addition, they utilize 

the Tec·ursive modeling techniques developed by Pesaran and Timmerman (1995) and 

the thick modeling proposed by Granger and Jeon (2004) with a number of econom­

ically motivated explanatory variables. The results they obtained are statistically 

significant since they are able to find that these variables are able to predict the beta 

IJaraweters iu the N elsou-Siegel model <:Hid able to tuake statistic<:tlly significant. gains 

over the buy-hold strategy. 

Despite none of the above studies evaluates technical rules directly, it does seem 

to suggest that there are some form of inefficiency in the fixed income markets that 

may have trading significance. This thesis thus sought shed some lights on this issue 

by evaluating technical trading systems directly in fixed income markets. Specifically, 

we investigate three areas in the bond markets22
: 

20The news announcement effects in the bond markets has been investigated by several studies. 
Fleming and Rernolona (1997, 1999a, 1999b) documeut that a uumber economic releases cause 
significant price movernents in the US bond markets. Trnportant economic factors include Consumer 
Price Index, Durable Goods Order, Housing Starts, .Jobless rate, Nonfarm Payroll and Producer 
Price Index, among others. Goldberg and Leouard (200:.3) find tlwt US ecuuomic a1mouncenwuts 
also affect Germany bond markets. On intraday basis. Baldnzzi. Elton and Green (2001) examinP 
the effects of economic annonncements on price, vohmw and price volatility. Unexpected component. 
of t.he news canses price volat.ilit.y. However, none of t.hem invest.igates whether the news-efi"ect. can 
generate abnormal trading performance. 

21Th N I s· . I I I... . _ (3 (3 [1-exp(-O/tJ] (:' [1-exp(-O/tJ ( n/ J] I . e e son- 1ege moe e IS. r LO - . o + . 1 exp(B/t.) + ,2 exp(B/t.) - exp -u I , w tere 

r1,o is the rate at time zero with maturity fJ. The physical interpretation of the parameter set 
(.30, ,81, (32) is often deuotecl as the level, slope and curvature of the yield curve. Dolau ( 1999) 
provides some analysis of this model ami shows that the slope parameter i~ predictable in several 
countries. 

22 All the tests in this thesis do not make use of any fuudamental information, thus the problem 
associated with unreliable economic information and inaccurate compauy data is avoided. The 
underlying principles of teclmical analysis are ( 1) All information are already discounted in the 
prices. Therefore, no fundamental iuformation are needed. Chestnut (1965, p.l2) smmnarises this 
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• Can technical trading systems exploit the predictability in the yield curve and 

interest rates in the government bond futures markets? Our study evaluate the 

weak-formed EMH in the bond markets directly by testing the moving average 

and volatility strategies, augment with extensive bootstrapping methodology 

that can account for the data snooping problem. 

• Can chart patterns provide any incremental information to bond and relative 

value traders in the government bond markets? Since chart patterns are more 

subjective than technical trading systems, we use various smoothing techniques 

to extract the chart patterns mechanically. The smoothing estimators include 

the nonparametric kernel regression and local polynomial regression. 

• Can investors use price gaps to initiate technical strategy in a profitable wa}r? 

A price gap here is defined to be the vertical empty space create by the highlow 

price in the current period and the high/low price in the next trading period. 

Om examination attempt to answer several questions at once. ( 1) Are price 

gaps filled in the future? (2) Is there any extra infonuation contained in the 

price gaps that is exploitable by traders? 

1.3 The Scope of the Thesis 

The rest of this thesis is as follows. 

Chapter 2 investigates the profitability of a large number of technical trading 

systems in the bond futures markets systematically. For preliminary examination, 

we examine three moving average technical rules, augment with the standard test. 

statistics and non-parametric bootstrap methodology. In the second part, we exam­

ine 7,991 technical trading systems using White's (2000) Reality Check bootstrap 

procedure to explore the significance of technical profits. 

Chapter 3 evaluates the predictive power of technical patterns m the bench­

mark government bond yield markets using a smoothing algorithm known as non-

principle: 

... [vV]e do not need to know why one stock is stronger than another in order to act 
profitably upon the knowledge of the fiH:t.. ThC' markP1. itself is continually weighting 
and recording the effects of all the bullish information and all the bearish informRtion 
about every stock. No one in possession of inside information can profit. from it unless 
he buys or sells the stock. The moment he does, his buy or sell orders have their effect 
upon the price. That effect is revealed in the market action of the stock. 

(2) History always repeat itself. Thus, all chart patterns will occur in the future, albeit in different 
forms. See, for example, Robert Levy (1966), who has written a lucid argument on the practice of 
technical analysis. 
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parametric kernel regression. This method was developed by Lo, Mamaysky and 

Wang (2000). Although this kernel methodology has been applied to the equity mar­

kets, to our knowledge this is the first time it has been applied to the bond yield and 

bond yield spread data. Furthermore, we improve upon the non-parametric kernel 

method by developing a new methodology known as local linear regression to detect 

chart patterns. 

Chapter 4 attempts to verify the Gap-Fill hypothesis advocated by technical an­

alysts. This is the first systematic study of price gaps in the financial markets. We 

first categorize the various price gaps into five commonly taught price gaps, and ex­

amine whether these price gaps exhibit any significant information that is exploitable 

by technical traders by comparing the conditional returns against the unconditional 

returns. We explore this hypothesis in the futures markets, including equity, fixed 

income, currencies and commodities contracts. 

Chapter 5 concludes. 
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Chapter 2 

An Empirical Evaluation of 

Technical Trading Systems in Bond 

Futures Markets 

2.1 Introduction 

This ChaptP-r investigates the profitability of tnchnical trading svstems in tlw bond 

futures markets. Bond futures are popular trading vehicles employed by institutional 

investors and traders to manage their interest rate exposure. They are popular be­

cause of the low trading costs, higher liquidity and extra gearing. The first interest 

rate futures contract was introduced by International Monetary J\!Iarket (IlVIM) in 

January 1976 with the 90-day Treasury Bill as the underlying asset, followed shortly 

by the 30-year Treasury bond futures introduced by Chicago Board of Trade (CBOT) 

in 1977. Since its introduction, trading in interest rate futures has grown rapidly and 

now constitutes a large segment of exchange-traded futures contracts in many devel­

oped capital markets. The annual Bank of International Settlements' (BIS) survey of 

the notional amount of futures trading worldwide in Figure 2.1 clearly shows the pop­

ularity of interest rate futures contracts as compared to equity and currency futures. 

A large proportion of futures traders employ a variety of technical tr~ding systems 

to speculate on the movements offutures prices. Many examinations on the profitabil­

ity of technical trading strategies claim that some technical trading rules can provide 

genuine value to investors. (See, for example, Brock, Lakonishok and LeBaron (1992), 

Levich and Thomas (1993) and LeBaron (1999)) On the other hand, there is also a 

large proportion of empirical evidence which show that technical trading rules are 

unprofitable once transaction costs are factored into the rules. The leading skeptic 
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Figure 2.1 : A Survey of Global Futures Markets (BIS) by Turuover 

Turnover in Global Futures Exchanges 
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on this side is Fama (1970, 1991 ) and Malkiel (1986, 2003 ). Until now , th is debate 

has not been settled. 

Given the prominence of fixed income futures contracts as previously mentioned , 

it is somewhat surprising that little evidence is known about the profitability of tech­

nical t rading systems in this part icular asset class. The majority of the research are 

concentrated on the profitabili ty of trading systems in the equity and currency mar­

kets. There is li ttle published research concerning the usefulness of trading systems in 

t he fixed income market 1 Thus t he question , "Are fixed income markets effi cient ?" 

remains sorely unanswered. 

A number of papers , however , have suggested the bond markets exhibi t weak­

form inefficiency. Hami lton ( 1996), for instance, find s that short-tern1 interest. rates 

do not behave like a martingale. This makes short rate partially predictable. Becker. 

Finnerty and Kopecky (1995) examine the intra-day movement of Eurodollar and 

US Treasury bond fut ures when there are important news announcements. Contrary 

to the prediction of market effici ency, they show that both futures experienced a 

substantial delay in responding to macroeconomic news and both futures contracts 

1 Many studies oncentrate on the arbi trage efficiency of the bond market. See, for example, 
Vignola and Dale (1980), Eltou . Gruber and Re11tzler (1983), Kolb aud Gay (1985) aud Huaug and 
Ederingtou (1993). 
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show large variation in responding to news shocks. They conclude that interest rate 

fntuncs ar<e informationally inefficient De Vassal (1998) shows that interest rat<es 

changes are related to time patterns. such as Friday effect and seasonal patterns. This 

predictability may benefit bond traders. Furthermore, Papageorgiou and Skinner 

(2002) demonstrate that a simple probit-type model can predict the direction of 

5-, 7-, 10- and 20-year US constant maturity Treasury yields sixty percent of the 

time. Reisman and Zohar (2004) find significant predictive power in the US Tteasury 

yield data, which they claim can increase a bond portfolio's return dramatically. All 

these studies provide evidence that there are some form of predictability in the fixed 

income markets, which can be exploited by astute investors. 2 This predictability in 

rates can be seen in the US federal funds rate in Figure 2.1, which indicates that 

Federal Reserve does not act randomly. The probability of a 10-rate increases in a 

row is much higher than getting 10 heads in a row from 10 coin tosses. Empirically, 

such cyclical behaviour in rates is observed by Melnik and Kraus ( 1969, 1971), who 

estimate a short-run cycle of eighteen months to twenty-four months in both ninety­

day US T-bill rate and ten-year US government bond yield rate. The issue now is 

whether traders can employ trend-following technical trading strategies to exploit 

these cyclical trends in the bond markets. 

To partially answer this question, we evaluate the profitability of a large number 

of technical trading systems in the fixed income futures markets. For preliminary in­

vestigation, we test the profitability of three moving average sy·stems. This is a useful 

acid test since moving average system is claimed to be one of the more profitable 

trading systems and is a widely viewed technical indicator by traders. For example, 

Lui and !VIole (1998, p.544) find the following in their survey of fon~ign exchange 

traders, ''Interest rate news is found to be a Telatively important fundamental factoT. 

while moving average and/or- other trend following systems ar-e the most ·used technical 

techniques." For statistical inference on the profitability of the moving average strat­

egy, we use the standard t-test and nonparametric bootstrap. (Levich and Thomas 

(1993)) 

However, active search for trading opportunities often give rise to spunous or 

exaggerated findings, as Lo and Mackinlay point out (1990, p.432) ''The moTe scTutiny 

a. collection of data is subjected to. the nw·1·e likely will inter-esting (spur-ious) pattems 

2 A study by Brandt ami Kovajecz (2004) find that price discovery occms i11 the US T1·easury bo11d 
warket ami that this process is tilted towards the 011-the-run securities. They find that orderflow 
imhalanres arronnt for a snbstantial portion of the dailv flnrtnations of the yield rnrve and liquidity 
seems to determine thP- orderflow. Some active bond strategies, snrh Rs butterfly, ran tRkf' aclvantag;f' 
of these price mover}1ents. But their study is mainly concentrated on the underlying Treasury bond 
markets and not t.he fixed income futures markets. 
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... -a: 

Figure 2.2: Trends in Interest Rates Over Time (see arrows) 
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emerge.'' This is especially true when evaluating technical trading systems because 

they are quite simple to develop, as Michael Jensen draws attention to the data 

snooping problem (1968, p.81): 

If we begin to test various mechanical trading rules on the data we can 

be virtually certain that if we try enough rules with enough variants we 

will eventually find one or more which would have yielded profits (even 

adjusted for any risk differentials) superior to buy-and-hold policy. 

But eliminating this problem is virtually impossible, as Campbell, Lo and l\IIackinlay 

(1997, p.523) argue: 

Unfortunately, there are no simple remedies to these two problems since 

the procedures that give rise to them are the same procedures that produce 

genuine empirical discoveries. The source of both problems is the inability 

to perform controlled experiments and, consequently, the heavy reliance 

on statistical inference for our understanding of the data. 

Thus, we use a recent statistical procedure developed in the literature, known 

as the Reality Check, to account for the possibility of data mining.· This procedure 

was developed by White (2000) and has been applied to evaluate the profitability 

of technical trading systems in the Dow Jones Industrial Index (DJIA) by Sullivan, 
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White and Timmermarm (1999, thereafter STW). Over a period of more than 100 

years of data ( 1896-1986), they conclude that the best technical trading system cannot 

beat the benchmark index once the data mining issue is pressed into the evaluation 

procedure, especially in the recent decades from 1986-1996 using S&P 500 futures 

contract. In another paper, Sullivan, White and Timmermann (2001) apply the 

same method to examine the calendar eflects in DJIA index, and they find that the 

profitability of these calendar strategies is drastically weakeued when the data ruiuiug 

effed.s are ar:counted for. 

However, Qi and Wu (2001) apply the Reality Check procedure to seven currency 

pairs and find contrary evidence. They discover that technical trading systems have 

value to currency traders even after taking data snooping and transaction costs is­

sues into account. Similarly, Hsu and Kuan (2005) apply this procedure to four US 

markets, including DJIA, S&P500, Russell 2000 and Na.sdaq indices. Interestingly, 

they find that they cannot reject the data mining problem in ··older" markets, such as 

DJIA and S&P500, but technical trading systems have value to investors in "younger" 

markets, such as Nasdaq and Russell 2000. Recently, Kosowski et al. (2005) apply 

the White's Reality Check procedure to the universe of fund managers in order to 

determine whether skill is the driving force of high alpha fund managers. On the 

whole, they find results which support active management. Our study here attempts 

to determine whether this is the case for bond futures markets. 

Given the possible combination of technical trading systems is limitless, we are 

able to evaluate only a subset of the universe of systems. In total, we investigate 

7,991 technical trading strategies, which is a large number in comparison to many 

previous studies. The basic four categories in our universe of trading strategies include 

the moving average system, Donchian breakout system, Wilder volatility system and 

price distribution system. 3 Similar to the above-mentioned studies apply the Reality 

Check procedure to this set of trading systems in an attempt to detect the possibility 

of data snooping. 

The rest of this Chapter is as follows: Section 2.2 describes the bond futures 

data used in our study, including a discussion on the long-memory tests using the 

traditional and La's (1991) modified Rescaled-Range (R/S) statistic. The first part 

of Section 2.3 evaluates the profitability of three moving average systems using the 

standard test statistics and nonparametric bootstrap. The second part proceed to 

3The Wilder volatility trading system is closely related to the ·Turtle' trading strategy discussed 
in Chapter 1. The 'Turtle' strategy is the technical trading syste111 that is being taught to a nmuber 
of inexperience traders. 
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examine a larger set of trading systems using White's Reality Check procedure. All 

the empirical evidence are given in Section 2.4. Lastly, Section 2.5 concludes. 

2.2 Bond Futures Data and Long Memory Tests 

2.2.1 Bond Futures Markets and Data Adjustments 

We focus our attention on six markets, namely, US, UK, Germany, Japan, Australia 

and Canada government bond futures markets. Since trading futures contract entails 

margin requirement and subjected to the marked-to-market procedure, we collect 

daily rather than weekly futures data. 

For US markets, we select three of the most popular bond futures currently traded 

in CBOT: 5-year Treasury Note futures, 10-year Treasury Bond futures and 30-year 

Treasury-Bond futures. For UK and Germany, we choose the 10-year long-gilts futures 

and the 10-year Bund futures respectivel}·. 4 For Japan, we include the JGB futures, 

and for Australia, we gather data on the popular 3-year and10-year government bond 

futures contracts traded in Sydney Futures Exchange (SFE). Lastly, we also include 

the 10-year Canadian bond futures. All bond futures have the same expiry months 

in Iviarch, June, September and December. 

In reaction to recent decline in global nominal interest rates, futures exchanges 

have reduced the coupon rate of the deliverable bonds. The coupon rate of many 

deliverable bonds is now 6 percent. We split the sample data according to the periods 

with the same notional coupon rate. This allows us to have bond futures prices derived 

from a similar basket of bonds. Apart from the long-gilts futures, other bond futures 

have experienced only a small number of changes to the notional coupon rate. In US 

and Carmela, for example, there was only one change, in 1999 and 2000 respectively, 

while in UK, changes occurred in 1988, 1998 and 2004 respectively. For the rest of 

the markets, there was no change to the coupon rate. A summary of the bond futures 

markets is given in Table 2.1. In total, our data set contains eight bond futures and 

fifteen subperiods to which we apply the technical trading strategies. Each futures 

series includes the daily high, low and closing futures prices from Datastream and 

Ecow'in. 

Unlike spot markets, futures contracts expire. There will be a price gap between 

the two futures contracts when rolling over from one futures contract to another, 

4 Germany has a number of popular bond futures contracts traded in EUREX. They are Bob!. 
Bund, Buxl and Schatz futures contracts. Specifically, Bob! futures are 5-year Federal Notes, Buncl 
futures are the benchmark 10-year bond futures. Buxl is the 20- to 30-year government bond futures 
allcl Schatz futures are the 2-year bond futures. 
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assuming not taking delivery of the underlying asset. Without adjusting for these 

price gaps, the trading signals generated by the data will be spurious. To solve this 

issue, we follow the standard procedure in creating the gap-adjusted bond futures 

price data by deducting the price gaps from all the historical prices. (See, for example, 

Levich and Thomas (1993) and Kho (1996)) Starting from the latest price in 29 

February 2005, if a price gap during rollover exists, we deduct this difference in price 

from all historical prices before this rollover day, a procedure known as slicing. Our 

chosen rollover day is the last trading day before the delivery month. That is, the 

last trading day in February, May, August and November. We assume that there is 

no liquidity problem during rollover. We avoid rolling over on the delivery day in 

the delivery month for two reasons. One reason is the presence of quality and timing 

options in the delivery month, which may complicate the bond futures pricing.5 The 

other reason is that there are evidence of excessive volatility in futures price during 

delivery date. (See, for example, IVIa, Iviercer and Walker (1992)). 

Table 2.1 presents the summary statistics of the annualized daily bond futures 

returns, taken to be the first log-difference of the artificially constructed bond futures 

prices. 6 The annualized daily mean return varies by contracts. The smallest mean 

return is Australia lOY bond futures at 0.619 percent and the largest is US30YTB 

(1999-2005) at 8.176 percent. It is noticeable that Australia reports the lowest an­

nualized standard deviation of at 1.525 and 1.561 percent for 3-Y and 10-Y bond 

futures respectively. We also note from US market that the volatility of bond futures 

is proportional to its maturity, the higher the maturity, the larger the standard de­

viation. This is inconsistent to Fisher's (1896) observation that short-term rates are 

more variable than long- term rates. 7 

It is clear from the normality tests that bond futures returns display the fat-tailed 

phenomena commonly seen across all asset classes. One possible explanation for the 

non-normal returns is the clustering efi'ects induced by the release of macroeconomic 

5Bond futures contract does not have one underlying (deliverable) asset. Rather, it has a basket 
of underlying securities (as dehuecl by the futures exchange). Valuation of bond futures typically use 
the cost-of-cany model, relatiug the bond futures price to the cheapest-to-deliver bond. There are 
several options available to the bond futures seller. For example, the t'im'ing opt-ion, where the short 
seller may deliver the bond on any business day in the delivery month, aud q'llal'itg option, where 
the short seller has the opportunity to deliver any bond that has at least fifteen years to maturity 
or first call. See Chance and Hemler (1993) for a review of these options and Carr and Chen (1997) 
for a valuation of the quality optiou embedded in boud futmes. Iuterestiugly, Reudlemau (2004) 
shows that if interest ra.tes are significantly above or below 6 percent., the delivery option has little 
influence on the pricing of Treasury bond futures. 

6The annualized mean retums XA is computed as: XA = 252 x y-J 2:,;~ 1 Xt. and the annualized 

standard deviation aA is giveu by: aA = J252 x Jr- 1 I:.i~, (X1 - X) 2 

7\Ve did not apply the trading rules to the UK gilt market after 2003 because of insufficient data. 
Some trading systems require 250 historica.l trading days before the first signal is genere~ted. 
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news. For example, Fleming and Remolona (1999a, 1999b) and Furfine (2001) find 

empirical evidence that show most of the large movements in bond markets are asso­

ciated with macroeconomic news shocks in the US treasury markets. Aim, .Jun and 

Cheung (2002) find the macroeconomic announcements from Germany and US are 

important sources of volatility for Germany Buncl futures contracts. Durenard and 

Veradas (2002) further document that macro-economic news surprises do affect the 

US Treasury bond futures price movements, especially when the forecast error of the 

marlwt participants are large. Moreover, they find these unexpected macroeconomic 

effects to depend on business cycle because the news effect on bond futures prices is 

dependent on the business cycle. Collectively, this body of work shows that whenever 

there is a concentration of news shocks permeating the bond markets, these infonna­

tion shocks generate excessive volatility across the yield curve and cause the bond 

returns to behave outside the normal distribution. 

2.2.2 Long Memory in Bond Futures Returns 

Long memory has been associated with the profitability of technical trading rules, 

as Levich and Thomas (1993, p.469) highlight this possible connection in their study 

of trading systems in the currency markets, ·' ... the link between ser·ial dependency 

in the data and the profitability of technical ntles is a q1testion. '' As a small part 

of our investigation, we examine whether the persistence of asset returns are linked 

to the profitability of technical trading systems. Long memory in asset returns can 

be captured by the Rescaled-Range statistics (R/S) developed by Hurst (1951) and 

Mandelbrot and Wallis (1969a, 1969b, 1969c). 8 Earlier studies by Olszewski (1998, 

2001) show that there may be a positive link between the R/S statistic and trend 

following system in a number of futures contracts. Overall, he finds that there using 

R/S statistic as a filter for future: out.-of-sampk trading yidd highr:r profits, and 

concludes that (p.701): 

... when the R/S statistics used to filter trade, the profitability of the sys­

tem is improved overall. ... Furthermore, the R/S statistics seem to provide 

insights into why momr:ntum-basr:d trading syst.r:m is profitable in somP. 

but not other markets. 

8 Basically, a time series X 1 has long memory if there is a real nmnber rr E (0. 1) and a coustant 

cP > 0 such that limA~= /kkJ.. = 1, where p( k) is the sample autocorrelatiou. (See Bemu ( 1994. 
I' 

p.42)). 
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Table 2.1: Summary Statistics of Annualized Daily Bond Futures Return. 

Futures Sample Coupon Obs. !VIeau Standard Skew Kurtosis Normality Autocorrelation 
l\1arket Period (Percent) Deviation Test P1 p;, P1o 

us 
.SYT-Note 05/88-11/99 8.0 2883 2.4888 4.4857 -0.1354 2.1707 333.83*** 0.0680* -0.0093 0.0283 
5YT-Note 12/99-02/05 6.0 1313 5.0072 4.9935 -0.2664 1.3450 67.508*** 0.0453 0.0074 -0.0497 
lOYT-Boncl 09/83-11/99 8.0 4327 6.4089 10.1888 0.2409 3.0608 846.71 *** 0.0393 -0.0229 0.0089 
10YT-Bond 12/99-02/05 6.0 1:312 6.8065 7.5874 -0.3439 1.0455 46.465*** 0.0198 -0.0129 -0.0307 
30YT-Bond 10/77-11/99 8.0 5569 2.6932 25.7079 0.0714 2.4135 766.34*** 0.0201 * -0.0036 -0.0130 
30YT-Bond 12/99-02/05 6.0 1311 8.1762 11.5490 -0.:365S 0.804S 36.080*** 0.0018 0.0280 -(l.0232 

UK 

c..v LG1 12/82-02/88 12.0 1383 2.5050 9.9280 -0.0339 1.8203 126.60*** -0.0080 0.0541 * -0.0088 
....... LG2 09/88-09/98 9.0 2467 2.4597 8.5667 -0.2070 3.3881 553.91 *** -0.0004 0.0154 0.0053 

LG3 10/98-09/03 7.0 1461 0.8286 5.8090 -0.3578 1.4S38 80.S52*** 0.0655* -0.0372 0.0168 
Germany 

lOY G-Bond 12/90-02/05 6.0 3789 1.9723 5.5715 -0.3720 1.0642 57.338*** -0.0388 -0.0381 0.0088 
Japan 

JGB 12/86-02/05 6.0 4370 5.9999 8.8590 -0.4355 5.4427 1727.8*** 0.0091 0.0320* 0.0232 
Australia 

3YG-Boud 12/89-02/05 6.0 3840 1.1612 1.5251 0.2016 4.2875 1224.9*** -0.0240 0.0011 -0.0141 
lOYG-Bond 12/84-02/05 6.0 5078 0.6192 1.5614 -0.3244 3.9209 1256. 7*** -0.0452 0.0281 -0.0163 

Canada 
10YG-Bond 12/89-01/00 8.0 2565 3.9003 7.8407 -0.1894 2.7228 312.46*** 0.0135* -0.0039 -0.0459 
lOYG-Doncl 02/00-02/05 6.0 1245 5.1455 6.3996 -0.3479 0.8874 31.593*** 0.0772 0.0019 0.0215 
So11.rce: Data..strea.m a.n.d Ecowin 



Long memory in financial markets is estimated by the classical R/S statistic: 

1 [ k - k -] Qr = -
5 

max L (XJ -X) - min L (XJ -X) 
T l~k~T j=l l~k~T j=l 

(2.1) 

where Sj, = ~ l:J=1 (XJ - X) 2 
is the sample variance, X 1 is the futures return and 

X is the sample mean. The first allCl second term iu (2.1) are the maximum aud 

minimum (over k) of the partial snms of the first k deviations of X1 from the sample 

mean respectively. If k = T, then the final sum is equal to zero. Given some volatility, 

a small R/S statistic means that the returns data do not wander far from the mean 

value. On the contrary, a large R/S statistic says that the range of partial sums is 

large and mean reverts slowly towards the mean value. 

Since the original R/S statistic has no reliable distributional basis for statistical 

inference, Lo ( 1991) improves the R/S statistic by incorporating short-range memory 

effects and derives an asymptotic sampling theory of the R/S statistic:9 

Qr(q) = _2__( ) [max ~(Xj -X) - min ~(Xj -X)] 
Sr q l~k~TL....1 l~k9'L....1 ]= ]= 

(2.2) 

where the denominator is now: 

(2.3) 

and 'Wj are the Barlett weights: 

.J 
'W (q) = 1- --. 

J q + 1 
q < T (2.4) 

The second squared term in (2.3) is the weighted autocovariance. Essentially, the 

critical difference between La's R/S and classical R/S statistic is the inclusion of the 

weighted autocovariance, which accounts for short range memory effects in asset re­

turns. When q = 0, thP moclifiPcl Lo's R/S statistic: rorresponds to the: classiral R/S 

statistic. The null hypothesis of La's modified R/S statistics is no long-memory and 

the critical values of Qr and Qr(q) are adopted from Lo (1991, p.1288, Table II). For 

ease of comparison, we tabulate the critical values in Table 2.2. For example, if the 

value of Qr(q) is larger than 1.7470, then the null hypothesis of no long memory is 

rejected at 5 percent significance level. Similarly, if t.he value of Qr( q) is less than 

0.8610, then the alternative hypothesis of anti-persistence (or negative persistency) is 

9 For recent improvemeuts to Lo's statistic, seeK wiatkwaski et al. (I 992) aud Ciraitis et al (2003). 
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Table 2.2: Fractiles of the Limiting Distribution of the V Statistic Under the As­
sumption of No Long Memory 

Prob(V < v) 0.005 0.025 0.050 0.100 0.200 0.300 0.400 0.500 
v 0.721 0.809 0.861 0.927 1.018 1.090 1.157 1.223 

Prob(V < v) 0.543 0.600 0.700 0.800 0.900 0.950 0.97.5 0.995 
v Ffi 1.294 1.374 1.473 1.620 1.747 1.862 2.098 

Source: Lo (1991, p.J288, Table II) 

accepted. Returns which display anti-persistence mean that large bond price move­

ments in a given direction is likely to be followed by price movements in the opposite 

direction. As T increases without bound, the R/S statistic converges (in distribution) 

to a well-defined random variable V when properly normalized: 

(2.5) 

where =? denotes weak convergence and V is the range of a Brownian bridge on a 

unit interval. 

Table 2.3 presents the results for both classical R/S and Lo's R/S tests on the bond 

futures returns and their percentage differenced. For the modified Lo's statistics, the 

number in the bracket is the bias in percentage, calculated as: [Qr/Qr(q)- 1] x 100. 

Since the Lo's R/S statistic has no optimal q a priori, four value of q = 25, 50, 100, 250 

are computed to assess the bias between the classical R/S statistics and the Lo's 

statistic. 

The classical R/S statistic in Table 2.3 (Column 2) shows a varied picture about 

the persistence within the bond futures returns. The largest R/S statistic is 1. 7130 

while the lowest is 0.8009. Among the classical R/S statistic, only US 30YTN(77-99) 

displays statistical significant positive persistence returns. The rest of the contracts 

show no strong bias towards positive or negative persistence. Our result here is 

consistent with Fung and Lo (1993) and Booth and Tse (1995). who find no evidence 

of long memory in both Eurodollar and US T-Bill futures contracts. A study by 

Connolly, Guner and Hightower (2001) also find that the excess weekly return of 

the US Treasury Bill display no long-term memory, but not the gross weekly returns. 

They suggest that the peri:iistence in gross returns is clue to the persistence in inflation 

rate. 

A comparison between the classical and Lo's R/S statistics shows an interesting 

observation. Classical R/S statistics which has anti-persistence ( < 1.223) display 

contrary evidence when the value of q for Lo's R/S statistic increases. For example, 
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USLG1 (1983-1988) has a classical R/S statistic of 0.8931 (anti-persistence), but 

rises to 1.9872 when q = 250, a statistically significant p8rsistence value. Snch effects 

can also be seen in US10YB (1999-2005), US30YTB (1999-2005) and CAN10YGB 

( 2000-2005). This conflicting evidence implies that long memory is present in these 

bond futures returns, but this characteristic is masked by short-term anti-persistence 

effects. 

We also note that the classical R/S statistics for US bond futures have declined 

recently, meaning that bond futures are becomingly less persistence and increasingly 

behaving like a random walk. This suggests that the past movements of the futures 

prices cannot predict future changes and trading based on historical rates are probably 

going to be futile and unprofitable. For Canada futures contract CAN10YTB (2000-

2005), this decrease is even more pronounced. This implies that long-term trend­

following rule might he unprofitable. Instead, a mean-reverting trading svstem may 

be more appropriate for these futures contracts. To verify whether this hypothesis 

true, we proceed to evaluate the technical trading systems in the next section, where 

our umverse of trading strategies include both trend following and counter-trend 

systems. 

2.3 Technical Trading in Bond Futures Markets: 

Preliminary Evaluation and Implementing Re­

ality Check 

2.3.1 Preliminary Evaluation: Moving Average Systems 

For preliminary evaluation, we investigate the profitability of three simple moving 

average technical trading systems. The trading signals Zt from the moving average 

systems are emitted when two moving averages of prices crossover. In particular, the 

signals Z1 from the single, dual and triple moving average trading rule are given by: 

(2.6) 

(2.7) 
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where F1 is the futures price at time t and Sgn( ·) is the s1gnum function. More 

specifically, Z1 = + 1 (long signal) if Sgn(-) > 0 and Z1 = -1 (sell signal) if Sgn(-) < 0. 

We multiply these signals to the futures returns X 1 . The first term in Equation (2.6) 

is the shorter n-day moving average and the second tenn is the longer rn-day moving 

average. The parameters (n, rn, r) control the smoothness of the moving average. If 

n = 1, then equation (2.6) becomes the .single moving average system. If n > 1, the 

equation (2.6) becomes the d·ual moving average system. Equation (2. 7) extends the 

single and dual moving average to triple moving average system, where (w1, w2 , w3 ) 

are the weights assigned to the moving averages. 10 For the single moving average, 

we set the parameter values at n = 1 and m. = 50. For dual moving average system, 

our parameters are n = 10 and r11 = 150. For the triple moving average system, the 

parameter values are n = 10, Til = 100 and r = 200. As long as the shorter moving 

average remains above or below the longer moving average, we shall remain with the 

position given by signal Z1. In this section \Ve do not apply any time or price filter. 

Standard Statistical Tests and Nonparametric Bootstrap 

For a simple measurement of the statistical significance of moving average system ·s 

profitability, we use the standard test statistic. (See, for example, Brock, Lakonishok 

and LeBaron (1992)) Let X3 and Xs be the overall average buy and sell return 

respectively, given as: 

i = B,S (2.8) 

where 2:"8 X 1 and 2:"5 X 1 is the sum of all daily returns produced by the buy and 

sell signals respectively and where n 3 and ns is the number of buy and sell clays. 

For buy signals, the null hypothesis is H 0 : X3 = 0 against H 1 : X3 > 0 because we 

10 Apart from the arithmetic moving average, auother method of computing the moving average is 

the geometric moving average: (IT~~-;; 1 F1_,) l/m However, since Acar (1993) has shown that these 

two averages are approximately similar (assuming the near equality of arithmetic and geometric 
returns), we shall use the arithmetic moving average in our preliminary investigations. Another 
widely used moving average is the exponential smoothed moving average (ESMA). The computation 
of ESI'viA depemls on the exponential constaut C, which has the formula C = 2/(m.+ 1), where 'Ill is 
tliellloviugavera.gelag. Specific<J.lly, ESMA liosfonnula.: ESMAt+l = (F1 -ESMAt)xC+ESMA 1, 

where F1 is the futures price at time t. The advantage of ESMA over the arithmetic moving average 
is that it is easier to compute aud constitutes a form of weighted moving average, which put more 
emphasis on recent data. Broadly speaking, moving average rules beloug to <J set of rules that obey 
the Markov time principle proposed by Neftci (1991). A 1\•larkov timeT ifi oefined as: T < t E '2ft, 
Vt E T, which means that at each time point t, T is adapted to t.he filtration set. '2s1 of the economic 
ageuts without utilizing future iuformation. In other words, technical rules like Juoviug average do 
not require market participauts to generate forecasts. Further theoretical analysis of the moving 
average rules can be found in Acar and Satchell (1997), Kuo (1998) ami Chiarella, He and Hommes 
(2003). 
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expect long positions to earn positive returns. For short positions, t he null hypothesis 

is H0 : X8 = 0 against H 1 X B < 0 because short positions are expected to earn 

negative returns. In addition. we test the joint effect of buy and sell signals. The 

null hypothesis for this buy-sell spread is H 0 : Xo = 0 against H 1 : Xo > 0. The 

corresponding test statistics for the buy, sell and buy-sell signals are: 

'i = B,S (2 .9a) 

Xo 
to = ~------------~ 

( (J l .;nB + (J I JnS) 
(2.9b) 

respectively, where rJ is the standard devia tion of the whole sample. The crit ical 

values fo r t he above test s are derived from normality assumption. (See, for example, 

Wong, Manzur and Chew (2003 , p.547)) Basically, if t he t-statistic is larger than 

1.645 , we reject the buy and buy-sell spread null hypothesis at 5 percent level, and 

if the t-statistic is smaller t han -1.645, we reject the sell null hypothesis at 5 percent 

leve!J 1 

In addition to the standard test statistic. we also provide the results from non­

parametric bootstrap. Bootstrapping is a simulation procedure used to test the sig­

nifi.cance of the t rading system wit h a fixed numl.Jer of random pcnnutatious of t he 

original data series. · (Efron (1979) and Freedman and Peters (1984a, 1984b)) . We 

apply t he simple nonparametric bootstrap with replacement. Nonparametric here 

refers to t he fact that we are not imposing any fo rm of statistical distribution on the 

t ime series .12 The sampling procedure is as fo llows : First, given n returns from a 

part icular st rategy, we scramble t hese returns to form a new n-dimensional array. vVe 

multiply t his bootstrapped array of returns by the first bonrl fut ures pricf'. This way, 

t he start ing points fo r all bootstrap futures price series are the same as the actual 

futures price . Second , we apply the same t rading strategy to t his scrambled futures 

prices to form the empirical distribu tion of the trading profits. VIle then compare 

t he act ual profits to this distribution. The procedure is repeated 500 times for each 

t rading rule. 13 

11 T he detail reject ion criteria of the null hypothesi is as fo llows: For significance level 5%-10%: 
1.6449 > T > 1. 2816, lor significance level l %-5%. 2.3263 > T > 1.6449 and for s ignificance level 
l %. T > 2.3263 , where T is the value of test statistic. See Wong. Manzur ami Chew (2003). 

12 Brock. Lakon ishok and LeBaron (1992) fit four statistical models to the US stock index data. 
The models are random walk model , autoregressive AR(1) model, GARCH-in- lean model and 
Exponential GARCH lllOdeL The bootstrappiug procedun• involves randomly shuffli ng tl1e error 
series obtained frm n the fi tting. See also Levish and Tl10 uws (l Y93) , Boswijk, Giffoen ami Hommes 
(2001) and Kwon and Kish (2003) . 

13 It is possib le to increase the number of bootstraps. According to Efron and T ibshirani ( 1986) , 500 
replirRt.ions are snffirient ly r losf' t.o Lhf' l.rt lf' t>st. imal or. W t> h;we f'XI.f'nded Lhf' nnmber of boot.stritps 
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A simple null hypothesis for the nonparametric bootstrap can be stated as follows: 

if then~ is no information in the original series, then the profits from the trading; system 

should not be significantly different from the profits obtained with the shuffled series. 

We set the rejection point of this hypothesis at 0: significance level. (We choose 0: = 10 

percent) 

Since our preliminary evaluation evaluated only three moving average systems, 

drawing inferences from such a small set of technical trading systems is unreliable 

even though we implement the nonparametric bootstrap. We have not account for the 

possibility of data snooping effects. Furthermore, the traditional test _statistics assume 

normal empirica.l returns, which may not accurately reflect the true distribution of 

bond futures returns, as Merton (1987, p.107) argues: 

Is it reasonable to use standard t-statistics as a valid measure of signifi­

cance when the test is conducted on the same data used by many earlier 

studies whose results influenced the choice of theory to be tested"~ 

To address these issues and determine whether technical systems have genuine value 

to investors, we apply the White's Reality Check to a larger set of technical trading 

systems. 

2.3.2 White's Reality Check 

This section extends the examination of the technical trading systems in the bond 

futures markets by employing White's (2000) Reality Check procedure. Extending 

the work by Diebold and tvlariano (1995) and West (1996), White's test evaluates 

the distribution of a performance measure accounting for the full set of models that 

lead to the best performing model among the following ( L x 1) vector of performance 

statistic: 

k = 1, ... , L (2.10) 

where L is the number of trading systems, n is the number of prediction periods 

indexed from R through T, i.e., n = T- R + 1 and / 1 is the observed performance 

measure for period t. k is the index for the number of trading models. The first 

trading signal is generated at R = 251 because some technical rules require 250 clays 

of previous prices in order to provide the first trading signal. The value of T and n 

differ for each bond futures contracts. 

to 2000 and find the mean bootstrapped profits to be dose to the mean profits with SOO replications. 

37 



The rate of return for k 1
" trading rule at time t is computed as: 

k = 1, ... ,L (2.11) 

fort = 251, ... , T, where X 1+ 1 is the futures price return. 5'0 (-) and SA,(-) are the 

signal functions that convert prices into market positions for the system parameters 

,8k. The signal function has three possible values: + 1 for long position, 0 for neutral 

position and -1 for short position. Following Brock, Lakonishok and LeBaron (1992) 

and STW, our benchmark trading rule is the null system, which is always out of the 

market. Consequently, S0 is zero for all t. 

The null hypothesis is that the best technical system is no better than the perfor­

mance of the benchmark: 

H0 : max [E(JA,)] :::; 0 
k=L .. ,L 

(2.12) 

where the expectation E(-) is evaluated with the simple arithmetic average .h = 

n-1 'i:.i=R ]kJ. Rejection of this null hypothesis lead to conclusion that the best 

trading rule is superior to the chosen benchmark. 

White (2000) shows that the null hypothesis (2.12) can be tested by applying the 

stationary bootstrap of Politis and Romano (1994) and West (1996) to the observed 

values of fk,t. First, we resample the empirical returns fk, 1 from Equation (2.11) 

for each trading rule k, one (or more) observation at a time with replacement and 

denote the resulting series as fk, 1. We repeat this procedure B times, yielding B 

bootstrapped mean return for each trading rule K, J:.t = ~ 'i:.J=R Jk,,~. Second, we 

repeat this sampling procedure over all L trading rules, k = 1, ... , L. Thirdly, we 

construct the following statistics: 

1lk*. 
,l 

max [ Jn (lk)] 
k=L ... L 

max [ Jn (R.i ~ lk)], 'i = 1, ... , B 
1.-=l, ... ,L · 

(2.13) 

(2.14) 

and denote the sorted values of lik~i as Vk~ 1 , 1lk~ 2 , ... , \fk~B· We tieek to find M such that 

\fk*AI :::; v :::; vk~M+l' Lastly, White's Reality check p-value is obtained by comparing 

11 to the quantiles of~·, calculated as P = 1 ~ M /B. By using the maximum value 

over all L models, the Reality Check p-value incorporates the effects of data snooping 

from L trading systems. 

Consistent with STW and White (2000), we implement the stationary bootstrap 

in our study. The stationary bootstrap requires the value of the smoothing parameter 
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q that determines the length of the block resarnpling procedure, where 0 < q ~ 1. (See 

STW (1999, p.1689)) The average length of the sampling block follows the geometric 

distribution, and is equal to 1/q. If q = 1.0, then the stationary bootstrap becomes 

the ordinary bootstrap. In this chapter, we use q = 0.1 for all contracts, meaning the 

average block is 10. 14 

The above hypothesis (2.12) can be extended to examine the superiority of the 

best trading system based on Sharpe ratio. 

H 0 : max [g(E(Xk)) ~ g(E(Xo))] 
k=I .... ,L 

(2.15) 

where G is the Sharpe ratio, in the form: 

(E(x )) _ E(Xk,t+d- rf,t+l 
g k.t+l - !=============== · I 2 2 y E(Xk.t+I)- (E(Xk,t+J)) 

(2.16) 

where the expectations are evaluated with arithmetic average and where Ift+I is the 

risk-free rate at time t + 115 The relevant statistic are: 

( 2.17) 

where h0 and lLk are average rates of returns over the prediction sample for the 
- T 

benchmark and the kth trading rule respectively, that is, hk = n- 1 
L::t=R hk,t+l over 

the trading rules k = 0, ... , L. The above stationary bootstrap procedure is applied 

to evaluate the Sharpe ratio by generating B bootstrapped values of ]k, which we 

denote as ];,; : 

g(h~.J- g(h~,;), i = 1, ... , B (2.18) 

1 T ;;, L h~J+I,i: ·i = 1, ... , B 
t=R 

(2.19) 

14The stationary bootstrap procedure is as follows: (1) First set t =Rand draw a random nmnber 
from the empirical returns R, ... , T. (2) Increase t by 1. If t > T, stop. Else, draw a standard uniform 
random variable U E [0, 1]. If U < q, draw a block &1 randomly, independently ami uniformly from 
R, ... , T. Else if U 2': q, expand the block &1 by setting &1 = &1_ 1 + l. If &1 > T, reset 131 = R. (3) 
Repeat Step 2. ST\V examine q = 0.01, 0.1, O.S and fi11d their origiual results are sufficiently robust. 
to different values of q. See also Qi and Wu (2001). Thus, there is 110 need to further check for 
different values of q here. 

15 The risk-free rate is different. for each sample country. \Ve take the interest. rate closest to t.l1P 

policy rate for each cou11tr~' and co11vert the aHnualizecl rates i11to daily rates usi11g the formula 
i"d = Ln( 1 + r,,., 11 ) /252, where 'l"fl a11d ~"ann are the <.laily and annualized interest rates respectively. 
\Ve assumed there are 252 trading days in a year. 
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The Universe of Trading Strategies 

Vl/e now discuss the universe of technical trading systems available to a trader. In 

financial markets, the number of possible combinations of trading system is unlimited 

and it is impossible to test them all. Furthermore, public access to proprietary trading 

strategies is limited. In response to these considerations, we focus on trading systems 

that are publicly available and widely used. 'vVe acknowledge that the issue of the size 

of the 'universe' of trading strategies in White's Reality Check is always a concern. 

But STW (p.l684) defended the choice in their study as long as two issues are satisfied: 

The omitted trading rules cannot improve substantially the best perform­

ing trading rule drawn from the current universe, and the omitted trading 

rules should generate payoffs that are largely orthogonal to the payoffs of 

the included trading rule so that they will increase the effective span. 

We choose four major trading systems, which are (1) ~·/loving average, (2) Donchian 

Breakout, (3) Wilder volatility and (4) Price distribution systems. These systems have 

all been documented in the literature extensively and are still widely used by trading 

professionals in various guises. Altogether, we test 7,991 trading systems. 

As a robustness check on the span of our universe of trading rules, we randomly 

select 250 trading rules from the full universe and form the covariance matrix of 

returns from these 250 rules. The size of the covariance matrix is therefore 250 x 250. 

We then apply the principal component analysis to this matrix. The intuition here is 

that the greater the number of nonzero eigenvalues, the larger is the effective span of 

the trading systerns. 16 Figure 2.3 plots the eigenvalues (sorted in descending order) 

along the x-axis. This figure provides some evidence that our universe of trading 

rules has nonzero eigenvalues. This procedure is repeated several times, with similar 

n~sults. Then-Jon~, we are assured that om universe of trading rules has a sufficient 

span as discussed by STW. 17 We now describe the trading systems in detailed. 

A. Moving Average Systems 

The preliminary section has evaluated only three moving average systems. 'vVe now 

extend the number of moving average systems to be tested. Vve test the single, dual 

and triple moving average systems. Furthermore, we apply price and time hlter in 

order to obtain trading signals. The parameter values for the three moving averages 

16This is only a subset of the universe of trading rules. Due to computational constraint, we are 
unable to increase the size of the matrix. But we are allowed to repeat this exercise several ti111es. 

17 However, \Ve are unable to check whether the Olllitted tradiug rule has higher returns thau our 
universe of trading rules siuce there is an iufinite c01nbiuatiou of tracliug rules available. 
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Figure 2.3: Checking the Span of the Universe of Technical Trading Systems from 
250 randomly selected rules. After computing the covariance matrix of the returns 
from the 250 trading rules, we apply principal component analysis this (250 x 250) 
covariance matrix to obtain the eigenvalues. The following Figure plots the sorted 
eigenvalues. 
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are: n, m, r = [5, 10, 15, 20, 25, 30, 50, 60, 75, 100, 125, 150, 200, 250]. We apply 

four time filers, Time Filter = [2,3,4,5] days and four price filters, Price Filter 

[0.001,0.005,0.01,0.02] percent. Altogether, we test 3,751 moving average systems. 

B. Donchian Breakout Systems 

The Donchian Breakout rule is also known as S'Upport and resistance rule (in STW) or 

trading range break (in Brock, Lakonishok and LeBaron ( 1992)). This is an old tech­

nical rule, discussed as early as iu \Vyckoff (1910) lmt reformulated aud popularised 

by Donchian (1957), hence our preferred description. 

The classical n-day Donchian rule dictates that a long position is taken if the 

current price exceeds the highest price in the previous n trading days and a short 

position is taken if the current price declines below the lowest of the previous n days. 

Whenever a new signal is generated, we liquidate the old position simultaneously. 

Thus, the system stays in the market throughout. The modified Donchian rule gener­

ates a buy signal if the current price rises above the-maximum price in the previous n 

trading days and exit the market if the current price falls below the low of m previous 

trading days, where m < n. Accordingly, the system is not necessarily in the market 

throughout. We apply the following parameters to the Donchian classical and modi-
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fied system n = [3, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 80, 90, 100]. In addition, we 

<=Lpplv the pricP filter for each Donchicu1 svstPm, Price Filter= [0.001, 0.005, 0.01, 0.02]. 

We test 924 Donchian systems altogether. 

C. Wilder Volatility Systems 

Wilder volatility systern is another popular technical rule advocated by practitioners. 

The basic premise of this rule assumes that the price range (as measured by the 

difference between the high, low and closing price) can detect changes in price trends. 

(See Patel (1998)) 

First, we define the true range (TR) at time t to be the maximum of: 

(2.20) 

where H 1 , L 1 and C1_ 1 are the day t high, low and clay t - 1 close price respectively. 

The W-day average true range (ATR) is the average of the W previous TR For the 

initial trading signal, we record the initial trend so that we can pick a point to enter 

the market when this initial trend reverse. For example, increasing closing prices 

imply initial increasing trend and we take a short position should this initial trend 

reverses. Conversely, decreasing close prices imply a decreasing initial trend and we 

enter into a long position when this initial trend reverses. The point where we enter 

the market is known as Stop and Reverse (SAR). For initial downtrend, the time t 

S AR1 is the sum of time t - 1 AT R1_ 1 and the lowest closing price in the previous W 

trading clays. If the current close price is higher than SAR1, a buy signal is generated. 

After the initial entry signal is emitted, the rest of the trading signals are mechanically 

updated. We examine this system with the following parameters, W = [7, 10, 15, 20, 

25, 30, 35, 40, 50, 60, 75, 90, 100, 120, 150, 180, 200, 225, 250], and three price filters 

of 0.1 %, 0. 25%, 0.5%, yielding a total of 76 systems. 

D. Price Distribution Systems 

Price distribution system is based on the skewness and kurtosis of a time series. The 

underlying principle of this system captures the fact that if there is a price trend, 

then this trend will cause the skewness and kurtosis to deviate from the Gaussian 

distribution. By measuring the skewness and kurtosis we can detect the beginning of 

a trend. (See Kaufman (2005)) 

When prices are platykurtic, prices must be trending since more prices are detected 

on the tails of the Gaussian curve. On the contrary, if prices are leptokurtic, prices 

concentrate together, a typical trendless period. Hence, when kurtosis is low, we 
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employ the trend following strategy, and when kurtosis is high, we turn to a mean­

reverting strategy. After deciding which strateg_y to use, we then decide which position 

to take. If positive skewness is observed, we take a long position. If negative skewness 

is recorded, we take a short position. Lastly, higher volatility (as measured by T R in 

the previous section) must be observed before a position is taken. 

The system is as follows: Let K and S be the value for kurtosis and skewness 

respectively and V for the minimum volatility. For the trend following system, we 

enter into a. long position when K < 0, S > 0, T R > V and we enter into a short 

position when K < 0, S < 0, T R > V. For mean-reverting systems, we go long when 

J{ > 0, S < 0, TR > V and go short if K < 0, S < 0, TR > V. We supply the 

following kurtosis K and skew S parameters S, J( = [5, 7, 8, 10, 15, 20, 25, 30, 40, 

50, 75, 90, 100, 125, 180, 200, 250] and the minimum volatility level Vis V =[0, 0.25, 

0.50, 0.75, 1.00] percent. Altogether, we test 3,240 systems. 

2.4 Empirical Evidence 

2.4.1 Preliminary Results from Moving Average Systems 

The empirical results for single, dual and triple moving average system are tabulated 

in Table 2.4 Panel A, Panel B and Panel C respectively. Column 2 and 3 are the an­

nualized buy and sell mean return and its corresponding test statistics from Equation 

(2.9a.), Column 4 and 5 are the annualized average daily standard deviations of buy 

and sell signals, Column 6 is the coefficient for the Buy-Sell spread and its associated 

test statistics. Lastly, Column 7 presents the nonparametric bootstrap results, in 

terms of the ranking of the moving average profits among the 500 bootstrap profits. 

For example, a value of 490 means that the moving average profit is higher than 489 

of thP bootstrap profits, a statistically i:iignific.ant value. 

For the single 50-clay moving average system, the empirical results report signifi­

cant positive buy signals in a number of markets, including US, UK, Japan, Australia 

and Canada. 1viost mean buy returns are statistically significant in US, rejecting the 

null hypothesis that buy signals yield zero returns. However, the sell signals are not 

as good as the buy signals. More than half of the sell mean returns are positive, 

implying that holding short positions results in losses. UK long-gilts futures is the 

only contract to show negative sell returns in three sub-periods. For the Buy-Sell 

spread statistic, the results are mixed. This is because the Buy-Sell spread statistic 

is a linear combination of buy and sell signals. By adding the profitable buy signals 

to unprofitable sell signals cancels out the profits. For example, the buy mean re-
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turn for US 5YTN (1999-2005) is significantly profitable with t-statistic of 2.409, but 

after n.clding the unprofitable sell mean return, the Buy-Sell spren.d statistic turned 

insignificant with t-statistic of 1.074. UK Australia and Japan futures contracts all 

show statistically significant Buy-Sell test statistics. ·we also note that the return's 

volatility for buy signals is consistently lower than sell signals. 18 

Turning to the nonparametric bootstrap of the single moving average system in 

Column 7, the results shows that a number of futures contracts have a high ranking 

among the 500 bootstraps, including US 5YTN futures, US lOYTB futures, JGB 

futures and Australia 3YGB futures. All but US 30YTB futures (1999-2005), Bund 

futures and Canadian (2000-2005) futures have rankings higher than 400. This result 

is consistent with the standard test statistics reported earlier. 

Moving onto the dual moving average system, the results look similar to the sin­

gle moving average system. l'viost of the buy test ::;tatistics are still significant, but. 

none of the sell signals is. Four out of six buy mean retums in US are statistically 

significant. The results for UK long gilts futures have deteriorated as compared to 

the previous system, as we find only one significant Buy-Sell spread statistic against 

three in the previous system. lVIoreover, most of the recent periods in US and Canada 

are unprofitable too. Australia is the only country to report significant buy signals 

and Buy-Sell spread statistics for both 3-Y and 10-Y futures, suggesting that techni­

cal trading system has some value in the Australian market. Interestingly, the Buncl 

futures and JGB futures produce results opposite to the previous system. The re­

sults from the nonparametric bootstrap is similar to the conclusions derived from the 

standard test statistics. 

To explain why buy signals are more profitable than sell signals, we hypothesize 

that this is due to the declining policy rates during our sample period, which led to an 

increase in bond futures prices. The profitable buy signals capture this increase while 

sell signals are results of whipsaws occurring to the trend following moving average 

systems. 

Lastly, it is noticeable that the results for the triple moving average system in 

Panel C are not as good as the previous two systerns. This shows that a change in 

the wa:y we apply the basic indicator (moving average) can result in a big diffen:nce 

in trading profits. Altogether, there are only five significant buy-sell spread statistics. 

For US bond futures, most of the significant buy-sell statistic are concentrated in the 

p-re-1999 period. UK long gilts futures do not report any significant test. statistics in 

18vVe are unable to test whether the so-called 'leverage effect' hypothesis by Black (1976) is 
applicable to our situation here. 
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all three sub-periods, including nwst buy and all sell signals. For Bund and JGB fu­

tures, the buy signals arP stntisticc=dlv significant hut not thP Buy-Sdl sprPad statistic. 

Similar to the previous system, Australia has produced both significant buy signals 

and Buy-Sell spread statistic. 

The nonparametric bootstrap results displays similar conclusion about the prof­

itability of the trading systems. The lowest ranking of the nonparametric bootstrap 

among all contracts is Canadian lOYGB (2000-2005), attaining a rank of only 47. 

Clearly, a loss as large as this is puzzling. In an efficient market. the econornic profits 

is likely to be zero. There should not be any systematic technique in generating capi­

tal losses. One possible explanation for this result may be due to the anti-persistency 

characteristic found earlier. For example, in Table 2.3 the lowest classical R/S statis­

tic is display by Canada lOYGB (2000-2005) at 0.8009. Since the moving avei·age 

system is a trend-following system, this anti-persistency characteristic will cause the 

moving average system to generate losses. A counter-trend technical trading strat­

egy is more appropriate for this futures contract over the sample period 2000-2005. 

This shall be investigated in our expanded universe of trading strategies in the next 

section. 

In summary of the empirical evidence so far, we find the preliminary results show 

some promising results. But we are unsure whether this is due to data snooping or 

technical indicators have genuine value to traders. Moreover, the results presented 

here are only valid historically, providing a snapshot of what we can reasonably expect 

from these trading systems. The profits seem to vary over time and over different 

futures contracts. This confirms Stylized Fact 2 mentioned earlier in Chapter 1: it 

is difficult to conclude whether technical trading systems provide genuine value to 

investors. 
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Table 2.3: Long J\!Iemory Tests of Bond Futures Returns. Column 2 is the Classical 
R/S Statistic, and Column 3-6 are the La's R/S Statistic under four different values 
of q. 

Futures Contracts Classical La's R/S Statistics 
R/S Statistics q = 25 q =50 q = 100 q = 250 

US.5YTN(88-99) 1.3471 1.3141 1.2271 1.2208 1.2387 
(2 . .51%) (9.78%) (12.18%) (8.75%) 

US5YTN(99-0.5) 1.2256 1.2255 1.2607 1.3839 1.5692 
(0.01%) (-2.79%) (-11.14%) (-21.90%) 

US10YTN(83-99) 1.2962 1.258.5 1.2104 1.1967 1.1.544 
(3.00%) (7.09%) (8.32%) (12.29%) 

US lOYTN ( 99-05) 1.0227 1.0487 1.1093 1.2637 1..5675 
( -2.47%) (-7.80%) (-19.07%) (-34.75%) 

US30YTB(77-99) 1.7130 1.6429* 1.5922 1.6242* 1..5279 
(4.27%) (7.59%) (.5.40%) (11.12%) 

US30YTB ( 99-05) 0.8367 0.8490* 0.9370 1.1496 1.5607 
(-1.44%) (-10.70%) (-27.21 %) (-46.49%) 

UKLG1(83-88) 0.8931 0.8.566* 0.8368* 0.9300 1.9872* 
(4.26%) (6.73%) (-3.96%) (-55.05%) 

UKLG2(88-98) 1.3291 1.34.59 1.3217 1.3198 1.2362 
( -1.19%) (0.62%) (0.77%) (7 . .57%) 

UKLG3(98-03) 1.1033 1.1025 1.577.5 1.1185 1.2519 
(0.07%) (4.96%) (1.36%) (-11.87%) 

GER10YB(98-05) 1.0.593 1.1038 1.1302 1.1357 1.1604 
(-4.03%) (-6.27%) (6.73%) (-8.07%) 

JAPJGB(86-05) 1.4430 1.3045 1.2309 1.2872 1.4501 
(10.62%) (17.22%) (12.10%) (-0.49%) 

AUS3YGB(89-05) 1.3792 1.3519 1.2869 1.2404 1.2304 
(2.03%) (7.18%) (11.20%) (12.12%) 

AUS10YGB(84-0.5) 1.2423 1.2624 1.2368 1.2283 1.2455 
(-1.59%) (0.45%) (1.14%) (-0.25%) 

CAN10YGB(90-00) 1.3059 1.2613 1.2183 1.1954 1.2660 
(3.57%) (7.20%) (9.25%) (3.16%) 

CANlOYGB(00-05) 0.8009 0.8973 1.0084 1.2421 1.9237* 
(10.7.5%) (-20.58%) (-3.5.52%) (.58.37%) 
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Table 2.4: Preliminary Results of the Moving Average Systems. Column 2-:3 are the Buy /Sell 
mean return, followed by the Buy /Sell standard deviation and the Buy-Sell Spread. Column 7 is 
the Ranking from the nonparametric bootstrap. Numbers in parenthesis are the t-sta.tistics. 

Futures Buy Sell Bny Sell Buy-Sell Rank 
Market Mean Mean S.D. S.D. Spread 

( t-stat) ( t-stat) ( t-stat) 
Panel A: 50-Day Moving Average System 

US5YTN(88-99) 4.863 -0.671 4.445 4.451 5.533 497 
(2.793)*** (-0.:330) (4.186)*** 

US5YTN(00-05) 6.351 3.960 4.934 5.174 2.391 370 
(2.409)*** (0.960) (1.074) 

US10YTB(8:3-99) 8.333 0.802 9.274 10.416 7.531 472 
(2.742)*** (0.215) . (2.478)*** 

US10YTB(99-05) 8.3.51 6.426 7.089 8.611 1.925 315 
(2.117)** (1.007) (0.573) 

J:- US30YTB ( 77-99) 12.606 -7.459 22.:370 29.051 20.065 48:3 --1 

(1.682)** (-0.931) (3.667)*** 
US:30YTB ( 99-05) 7.899 9.093 10.878 12.603 -1.195 243 

(1.291) (0.993) ( -0.2~)5) 
UKLG1(83-88) 9.725 -6.145 9. 051 10.245 15.870 487 

(1.716)* (-0.999) (3.807)*** 
UKLG2 (88-98) 4.784 -0.681 7.678 9.740 5.465 430 

( 1.343) * (-0.157) (1.984)** 
UKLG3 (98-03) 2.966 1.657 5.738 5.907 4.623 423 

(0.869) (-0.471) (1.888)** 
GER.10YB(90-05) 2.211 3.502 5.004 6.053 -1.291 189 

(1.243) (1.537) ( -0.920) 
.JAP JGB(SG-05) 11.007 -5.451 7.089 11.549 16.458 500 

(4.209)*** (-1.483)** (7.725)*** 
AUS3YGB(89-05) 1.740 0.173 1.408 1.683 1.567 493 
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(continued) 
Futures Buy Sell Buy Sell Buy-Sell Rank 
Market Mean Mean S.D. S.D. Spread 

( t-stat) ( t-stat) ( t-stat) 
(3.56:3)*** (0.268) (4.028)*** 

AUS10YGB(84-05) 0.928 0.185 1.418 1.731 0.743 429 
(2.057)** (0.342) (2.143)** 

CAN10YGB(90-00) 7.374 0.235 7.302 8.553 7.139 475 
(2.290)** (0.061) (2.888)*** 

CAN10YGB(00-05) 4.458 7.881 6.041 7.060 -3.302 163 
(1.315)* (1.486) (-1.134) 

Panel B: 10/150-Day Moving Average System 
US5YTN(88-99) 4.774 -1.276 4.329 4.621 6.051 494 

(2.867)*** ( -0.563) (4 .. 510)*** 
US5YTN(00-05) 4.137 11.697 5.002 5.252 -7.561 72 

""- (1.619)* (2.011) (3.232) 
00 

US10YTB(83-99) 8.082 -0.739 9.Q:3:{ 10.622 8.821 483 
(2.779)*** ( -0.185) (:3.745)*** 

US10YTB(99-05) 4.375 18.678 7.41() 7.994 -14.303 53 
(1.131) (2.300) ( -4.095) 

US30YTB(77-99) 11.864 -8.002 20.453 31.949 19.867 485 
(1.619)** (-0.933) (3.566)*** 

US30YTB(99-05) 4.402 15.887 11.27:3 11.953 -11.485 117 
(0.708) ( 1.549) (-2.150) 

UKLG 1 (83-88) -1.002 7.726 8.6:32 11.181 -8.728 114 
(-0.181) (1.096) (-2.001) 

UKLG2(88-98) 5.480 -2.399 7.215 10.919 7.880 460 
(1.559)* ( -0.494) (2.767)*** 

UKLG~~(98-03) -1.502 0.491 .5.684 6.001 -1.993 235 
(-0.456) (0.123) (-0.785) 

GER10YB(90-05) 3.955 0.204 4.886 5.941 3.751 456 
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(continued) 
Futures Buy Sell Buy Sell Buy-Sell Rank 
Market. Mean Mean S.D. S.D. Spread 

( t-stat) ( t-stat) ( t-stat) 
(2.385)*** (0.083) (2.7:31)*** 

JAPJGB(86-05) 5.118 4.618 6.517 12.627 0.499 298 
(2.111)** (1.140) (0.240) 

AUS3YGB(89-05) 1.718 -0.055 1.468 1.619 1.773 492 
(3.690)*** (-0.074) (4.501)*** 

AUS10YGB(84-05) 1.455 -0.117 1.456 1.718 1.108 471 
(2.256)** ( -0. 202) (3.162)*** 

CAN10YGB(90-00) 4.621 6.244 7.143 8.333 -1.624 234 
(1.559)* (1.474) (-0.668) 

CAN10YGB(00-05) 2.801 14.543 6.422 6.494 -11.743 :35 
(0.809) (2.165) ( -1.134) 

,::;.. Panel C: 10/100/200-Day Moving Average System 
co 

US5YTN(88-99) 4.244 -0.01:3 4.339 4.628 4.257 482 
(2.560)*** (-0.006) (:3138)*** 

US5YTN(00-0.5) 5.090 6.768 5.063 5.353 -1.678 254 
(1.917)** (1.145) (-0.693) 

US10YTB(83-99) 7.665 0.811 8.992 10.598 6.853 4.56 
(2.637)*** (0.202) (2.908)*** 

US10YTB(99-05) 5.600 13.068 7.:3:39 8.630 7.468 150 
(1.398)* (1.583) (-2.072) 

US30YTB (77 -99) 8.696 -4.275 21.050 31.669 12.972 446 
(1.180) (-0.493) (3.309)** 

US30YTB(99-05) 5.794 13.130 11.083 12.889 -7.339 182 
(0.910) (1.212) (-1.337) 

UKLG1(83-88) 0.834 2.967 8.649 11.369 -2.123 247 
(0.149) (0.399) (-0.475) 

UKLG2(88-98) 3.999 0.268 LH3 10.831 3.731 407 
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(confirmed) 

Futures Buy Sell Buy Sell Buy-Sell Rank 
Market Mean tviean S.D. S.D. Spread 

( t-stat) ( t-stat) ( t-stat) 
(1.113)* (0.055) (1.039) 

UKLG3(98-03) 0.011 -2.087 5.440 5.990 2.098 366 
(0.003) (-0.544) (0.829) 

GER10YB(90-05) 2.670 2.594 4.866 5.993 0.076 288 
(1.594)* (1.054) (0.055) 

.JAP.JGB (86-05) 6.250 5.298 6.594 11.459 0.952 317 
(2.740)*** (1.336) (0.481) 

AUS3YGB(89-05) 1.519 0.451 1.473 1.683 1.068 457 
(3.194)*** (0.621) (2.684)*** 

AUS10YGB(84-05) 1.103 -0.207 1.416 1.782 1.310 478 
(2.511)** (-0.351) (3.717)*** 

c..n CAN10YGB(90-00) 4.206 3.376 7.07C> 8.453 2.830 387 
0 

(2.118)** (0.761) (1.158) 
CANlOYGB(00-05) 1.448 17.190 6.422 7.140 -15.746 24 

(0.405) (2.443) (-4.943) 
***-significant at 1 p<:rc.<:nt lP.vd, **-significant at !J pPrcr~nt lr~vd,- * significant at 10 p<:rc·.Pnt lcvd 



Volatility and Moving Average Profits 

Results in Table 2.4 highlight the fact that technical profits have declined in recent 

years, as shown by the sub-period tests on US, UK and Carmela futures contracts. Our 

results are consistent with Read_y ( 2002), Kidd and Brorsen ( 2004) and 0 lson ( 2004), 

who all report fimlings that technical profits have decreased over time. For example, 

Olson (2004) finds thP. moving average rule produces three pP.rcent annualizP.d risk­

adjusted profit in the eighties, which declined to zero percent in the nineties. Similarly, 

Ready (2002) finds the moving average rules in Brock, Lakonishok and LeBaron's 

( 1992) study on US DJIA had performed quite poorly after 1986. 

A plausible explanation for this decline in profitaiJility is the decline of the volatil­

ity of bond futures return itself. Recall that moving average system is a form of trend 

follmving strategy, with nonlinear option-like payoff. (See, for example, Fung a.nd 

Hsieh ( 2001)) This means that trend following systems tend to perform better during 

periods of high volatility. During periods of decreasing or low volatility, the abil­

ity of moving average system in generating significant returns is drastically reduced 

because it generates too many small and unprofitaLle trades, a period known as whip­

saw. Pedersen and de Zwart (2004), for example, demonstrate that if the volatility 

of an exchange rate series is low, then the moving average rule cannot generate high 

profitability due to the absence of trends. They determine this result using a large 

number of simulations. It is plausible that it might occur in our dataset. 19 

To provide some evidence for this, Figure 2.4(a) plots the 50-day moving average 

variance of the 30-year US Treasury bond futures return. It clearly shows that bond 

futures returns have declined substantially since the volatile periods in the early 

eighties and has remained very low for the last 10 years. Thus, trend following 

systems exhibit lower profits recently. 

To see further how volatility affects the trend following system profits, we fit the 

geometric Brownian motion model to the US (1978-1999) futures returns and conduct 

a number of simulation trials2 ° For each volatility value (holding the drift parameter 

constant), we simulate ten trials. Figure 2.4(b) shows the relationship between in­

creasing volatility and the possibility of higher moving average profits. As volatility 

increases, the range of annualized returns from the 50-day moving average system 

19Skewness and kurtosis also have positive effects on trend following strategies, such as moving 
average rule. This is due to the option-like feaLUre of the moving average payoff function. 

20 The geometric Brownia11 111ot.ion model is: dF1 = p.F1 + rJ F1dlV1 . where H..-1 is the st.a11dard 
Brownian motion all(] F1 is the futures price. To generate simulated prices, we first estimate the 
drift and difl"usion coefficients by maximum likelihood and the simulate prices using estimated drift 
parameter value while varying the volatility parameter value. 

51 



increases. Our point here is not to suggest that increased volatility will definitely 

inr:rease the profits from trend following trading rules. But increased volatility will 

increase the probability of price trends occurring in the markets, and if the trend fol­

lowing trading system is able capture the trend correctly, then it will lead to higher 

profits. Otherwise, higher volatility may just increases the chances of whipsaw and 

reduces the profits of the trend-following systems. This can be seen in Figure 2.4(b), 

an increase in volatility increases the possibility of generating large losses from the 

moving average system. 

Another possible explanation for the lower technical profits is clue to a more ef­

ficient market. For instance, a recent study by Fong and Yong (2005) demonstrate 

that even iu a highly speculative bubble, such as the internet stocks during period 

1998-2002, investors who use trend-following rules like moving average systems are 

unable to earn statistically significant returns. Lo and Mackinla:v (1999) suggest that 

the widespread "statistical arbitrage" activities may have contributed to the lower 

technical profits. Furthermore, the proliferation of the moving average system and 

the a decrease in computer cost has made it harder for these systems to generate 

significant returns since virtually every investors will use this tool. By the time a 

price trend is properly defined. most traders rna~r already taken a position and there 

is no additional impetus to carry the trend forward. As a result, the market retreats 

in the opposite direction and the trader suffers a loss 21 

In short, we still cannot determine conclusively the variables that cause the recent 

decline in technical profits. 

Next, Figure 2.5 shows the positive relationship between long memory effects and 

moving average system profits. The slope in each figure depicts the relationship 

between the R/S statistics in Table 2.3 (x-axis) and the annualized Buy-Sell return 

in Table 2.4 (y-axis) for each trading system. The positive slope here captures the 

observation that the more persistence the returns, the larger moving average system 

profits. This positive relationship holds for all three llloving average systems. In 

other words, the R./S statistic may be able to act as a form of filter that increases 

the profitability of trend following systems. For example, if for any subperiods one 

21 But it is perhaps unrealistic to presume that the traders have used the same technical system 
unchanged over the last two decades. Traders have probably altered their techniques dramatically 
over the sample period so as to adapt to the changing 111arket conditions (such as decreasing volatility 
and increase program trading), while the simple rules that we test here have been held co11stant 
throughout. Barberis and Shleifer (2003) develop a 111odel whereby investors categorise risky assets 
into different. styles and move fnnds among these styles in accordance to !.he relatiw performancP 
of each style. In other words, investors engaged in "style-chasing". Teo and \Voo (2004) provide 
empirical evidence that confirm this fact in the US equity and mutual fund markets. 
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estimate that the R/S statistic is low, then a counter trend technical rule will likely 

to lx~ndit than a trend following rule;. But the rntoff point which determine how 

'low' the R/S statistic should be before investors switch from trend following strategy 

to counter trend strategy vary according to different nmrkets. Moreover, even with 

strong positive persistence, the technical profits vary according to the parameters 

of the trading rule. The evidence in Figure 2 .. 5 suggests that 1.200 is a reasonable 

cutoff point for the three moving average systems, implying that as the R/S statistics 

drop below 1.200, trend following traders might want to reconsider their position for 

the next out-of-sample time period, either by switching to counter trend strategy or 

reducing their capital commitments to trend following trading signals?2 Our results 

here are consistent with the results given by Olszewski (1998, 2001). 

Figure 2.o provides some observations about the cmuulative wealth effects of the 

50-day moving average system over two sub-periods (1977-1999, 1999-2005). On the 

left-hand scale is the wealth over time and on the right-hand scale is the futures 

price. The initial wealth is assumed to be 100. It is striking how the moving average 

profits can be consistent in the first period and become more volatile in the second 

period. The same technical rule which is profitable in one period may generate losses 

in the next period. This indicates that there is a need to recalibrate the trading 

system to more recent data in order to avoid the problem of structural change in the 

financial markets, changes that may render the trading systems ineffective in out-of­

sample trading. The procedure of varying the trading system's parameters over time 

is known as optimization in the markets. But whether this has any positive effect 

on the performance of the trading system is still controversial. For example, Pardo 

(1986) ctrgwcs that ])f~cause of thf~ continuing change> in the finanrial markets, traders 

must periodically check and re-optimize the trading systems as the markets evolve. 23 

But Lukac and Brorsen (1989, p.58) empirically test the value of optimization and 

refute the claim that optimization has any incremental value: 

... there ctppears to be very little diH'erem:c IJctweeu any of the strategies, 

again suggesting that the value of optimisation is very limited. Reop­

timization strategy did not hurt the mean profits or performance from 

the systems. But, the value of reoptimization strategies is less that what 

many users of optimization expect. 

Even the length of historical period to which we calibrate the trading system is 

arbitrarily selected. For example, Lui and Mole (1998) find in their survey that the 

22 Frorn Table 2.2, 1.223 is the value that separates between negative and positive persistence. 
23 There are other ways to improve the trading results. For example, Ilmaueu aud Sayoocl (2002) 

suggest the following ways to increase trading profits, such as smarter indicator weight.ings, adding 
uew predictors, improving breadth by adding new trading rules, or smarter ways of combining trades. 
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most common length of historical period used by foreign exchange dealers in Hong 

Kong is 12 months. But financial markPts evolve over time and so do the optimal 

moving average parameters. Traders with a short trading horizon will prefer a shorter 

historical calibration period, and vice versa. 

It is noticeable from 2.6(b) that even though the trading system may be able 

to produce substantial profits at some point in the past, the drawdown value may 

be unacceptable to many investors. 24 The issue here is how we can incorporate 

appropriate risk management techniques into the trading system to avoid giving back 

all thesP profits when th<e system fetils. For im>tetnce, on<e needs to minimize th<e capital 

commitments when the position is suffering losses. Reducing the size of positions 

during losses ensures that the fund does not deplete its capital holding onto losing 

position, a crucial tactical move in light of the daily marking-to-market procedure 

in futures markets. The other method for improving method is to devise trading 

systems that capture only trends and ignore the whipsaws. For example, adding filters 

to the moving average system, such as price or time filter, may reduce unprofitable 

and marginal trades. 25 Another technique is the usage of stop-loss orders. While 

the simpler part is placing these stop-loss orders, the more difficult part is knowing 

where to place the stop-loss orders. From the technical analysis perspective, there is a 

number of potential choices, such as putting the stop-loss on major support/resistance 

level, ronnel numbers, trendlines, previous high/ close/low prices, and on significant. 

retracement level, possibly based on Fibonacci ratio or Elliot Wave. 26 

Even with these measures, trend following systems may not always necessarily 

be profitable. This is because in actual trading, human biases complicate matters. 

For example, taking losses during whipsaws is an action that traders tend to avoid. 

Consequently, this resulted in larger losses and smaller profits over time. See, for 

example, Shefrin and Statman (1985) for a description of this disposition effect and 

24 Under the Commodity Futures Trading Commissions' (CTFC) mandatory disclosure rules, man­
aged futures advisors are obliged to disclose this drawdown figure. How useful this figure for potentia.! 
investors in evaluating traders is still debatable. For a discussion on the drawdown issue, see, for 
example, Acar and James (1997). 

25 From the perspective of technical analysis, a marginal trade is a trade that has poor risk-reward 
ratio. This risk-reward ratio depends on two elements: (1) Price objective, and (2) A subjective 
probability on whether the cunent price will reach this price objective in the future. Depending on 
the trading system that one is using and their risk appetite, the reconnnended risk-reward ratio is 
usually 3-1 or more. See Pring (1992) and Kaufmann (2005). 

26 A support level is an area where prices reverse its downward movernents and a resistance level is 
an area where prices meet opposition to a further rise. The support and resistance lines are usually 
drawn horizontally. Trendlines are slanted support/resistance level. See, for example, Edwards and 
Magee (1966). Empirically, Osler (2003) finds that there is a clustering effect on predictable support. 
and resistance levels in the currency markets and prices tend to reverse at these levels. Furthermore, 
price trends are usually more rapid after crossing these levels. This strongly suggests that cmrency 
traders do place trading orders according to the technical indicators. See also Osler (2000). 
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Odean (1998) for some empirical evidence. Recently, Coval and Shumway (2005) 

rolled. some trading resnlts from CBOT traders and find that CBOT traders become 

more risk-seeking and aggressive in setting prices in the afternoon session if they had 

suffer losses in the morning trading session. Such behaviors may cause the traders 

to frequently override trading signals from technical system or over-leverage their 

position. It will be an interesting avenue for future research ou how human biases 

will affect technical trading profits. 
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Figure 2.5: Long Memory and Trend-Following Trading System Profits. The x-axis 

is the R/S statistic and y-axis is the Buy-Sell Spread statistic. 
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Figure 2.6: Technical Trading System and Cumulative Wealth 
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2.4.2 Results from White's Reality Check 

We now discuss the empirical results from applying ·white's Reality Check to bond 

futures. The performance results of the best trading system for each futures contract 

are reported in Table 2.5, along with White's Reality Check p-value, the nominal 

p-value and the best technical system. The nominal p-value is the result of applying 

the bootstrap methodology to the best trading rule only, thereby ignoring the effects 

of data mining. In other words, the difference between these two p-va.lues represents 

the magnitude of data snooping on the performance measure fk· In the last column 

in Table 2.5 is the number of trades recorded for the best trading system. 

The results show that the annualized mean return for the best technical trading 

system varies substantially across markets, from 1.039 percent (Australia 10-Y) to 

18.192 percent (US 30-Y, 1977-1999). A number of the best trading systems come 

from the triple moving average with time filter. Thus, adding the time filter seems 

to improve the profitability of the moving average trading system. For the US 5-Y 

T-Notes futures (1999-2005), US 10-Y T-Bond futures (1999-2005) and UK long-gilts 

futures (1988-1998), the best rule is the dual moving average, while for Canadian 

10-Y futures (1990-2000) the best rule is the 5-day single moving average. A number 

of futures contracts display p-values above the 10 percent significant level (> 0.10), 

indicating that the best technical system does not perform better than the null bench­

mark. For example, such as the Australia 10YGB (1984-2005), where the p-value is 

statistically insignificant at 0.228. This result is contrary to the preliminary results 

discussed f~arlier, where we find that Australia lOYGB has significant 1-my-sell test 

statistic for all three moving average systems. 

On the other hand, the futures contracts that reject the null hypothesis (2.12) 

include the US 5-Y (1988-1999), US 10-Y (1983-1999), US 30-Y (1977-1999), Germany 

Bund futures, Australia. 3-Y and Canada 10-Y (1990-2000). This shows that the best 

technical trading system has genuine value to traders for these markets even after 

accounting for data snooping efFects. 

A comparison between the nominal p-values and \i\Thite's p-values show a large 

difference between them. All nominal p-value indicates that the best trading system is 

statistically significant among the 500 bootstraps since all nominal p-values are below 

0.10. This indicates data snooping effects are important and affects the couclusiou 

about the profitability of technical trading system. For example, the UK long gilts 

futures (1983-1988) contract has a nominal p-value of 0.000. Taken at face value, 

this means that the triple moving average with time filter system is statistically 

significant a.t 1 percent and we can reject the null hypothesis ( 2.12). However, once 
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we employ White's procedure to account for data snooping effects, the p-value rises 

to 0.298, clearly refuting the earlier conclusion. A similar pattem appears in other 

bond futures markets, 

Furthermore, we notice that the White's ;v-values are consistently higher in recent 

periods than earlier periods. Recall that we discussed about a decrease in the prof­

itability of the moving average system in recent periods in the previous section. This 

fact, apparently, appears here. An example of this decline is given by UK long-gilts fu­

tures for the three subperiods (1983-1988,1988-1998,1998-2003), where the best mean 

annualized return are 10.435 percent, 6. 796 percent and 4.819 percent respectively, a 

marked decline of more than 50 percent. \Ve conjecture that this lower profitability 

may have resulted in higher White's p-values. A contradiction to this hypothesis is 

shown by US5YTN, where the White's p-value are much higher for US5YTN (1999-

2005) than US5YTN (1988-1909) even though the mean returns is higher as well. 

Thus this evidence may rule out the explanation that lower returns increase p-values. 

How do our results here fared as compared to other asset classes? In STW, 

they obtain White's p-value to be 0.000 for DJIA over 100-year period (1897-1986). 

However, in the out-of-sample test using S&P 500 futures over period 1984-1996, they 

obtain vVhite's ;v-value to be 0.90 even though the best mean return is 9.4 percent 

per annum. They claim that technical trading systems provide no useful value to 

traders over the more recent period, thus refuting Brock, Lakonishok and LeBaron's 

(1992) earlier claim that technical rules have value to investors. In another test, 

Sullivan, Timmermann and White (2001) find White's p-value to be 0.243 for DJIA 

for the best calendar rule and 0.87 4 for the out-of-sample tests, again showing the 

best calender rule is unable to beat the benchmark. On the contrary, Qi and Wu 

(2001) find vVhite's p-value to be zero for seven currency pairs, was able to reject 

the null hypothesis (2.12) after including transaction costs. Recently, Hsu and Kuan 

(2005) apply ·white's Reality Check to NASDAQ aud Russell 2000 Index awl find 

the best trading system be statistically significant (p = 0.00) with annualized returns 

of 39.19 percent and 47.10 percent respectively. :VIost of these studies find the best 

rule to be the rnoving average system. 

It is interesting that the results for the White's test vary so much across different 

markets. For future research, it would be interesting to find out why the null hypoth­

esis (2.12) are rejected in some asset classes and not others. Kho (1996, p.287), for 

excunple, piupoint::; the source of teclmical profits iu currency Imtrkets to the time­

varying risk premium and conclude that: 

Periods of higher or lower return::; identified by the technical rule::; largely 
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correspond to those of higher or lower conditional expected returns, clue to 

high or low risk premia and volatility. Thus, large parts of the technical 

rule profits are a natural consequence of time-varying risk premia and 

volatility. 

Thi~ finding strengthens Fama's (19!:!1) argument that market efficiency does not 

preclude a degree of forecastability clue to time-varying risk premia. More recently, 

Mifre (2002) also finds that commodity futures exhibit time-varying risk premia when 

testing the performance of abnormal returns with a number of economic factors. For 

bond markets, Ilmanen (1995) analyzes the predictability variation in the monthly 

excess return of long-term government bonds over period (1978-1993) in US, UK, 

Germany, Japan, France and Canada with four economic factors, which are inverse 

relative wealth, bond beta, term spread and real bond yield. What he finds is that 

these variables can forecast international bond returns to some extent, and conse­

quently, dynamic trading strategies can exploit these return predictabili'ty and eam 

annualized excess return between 3 to 8 percent. vVithout a complete macro-economic 

nwdel, we cannot determine the origins of the tirne-vctrying profits in our te~t~ here. 
27 

An important issue when evaluating technical trading systems IS assessing the 

P.ffP.r:ts of transaction costs on trading profits. From the number of trades givP.n 

by the preliminary moving average trading systems, (See Column lO of Table 2.4), 

it is evident that the number of trades is relatively low. For example, US 30-Y 

T-Boncl futures (1977-1999) produces a total of 354 trades over the last 22 years, 

which is equivalent to 1.34 trade per month. Australia 10-Y futures (1984-2005) has 

an equivalent of 1.5 trades per month for 21 years. A characteristic of the moving 

average rule is that the number of trades are not evenly spread throughout the sample 

period. For instance, when the bond futures prices are trending, the trading signal 

can remain unchanged for as long as a year. When the market enters into a choppy 

period, the number of trades rises quickly and some trading signals can be as short 

as a clay. 

Table 2.6 presents the Reality Check results with transaction costs. Since it is 

difficult to e~timate the exact historical transaction cost~. we a~sumc two cost value~. 

27 If investors are rational, then the bond return predictability captured by tracliHg systems will be 
a result of time-varying bond risk premiums. This implies that bond returns are high when bo!lds 
returns command high risk premiums. In particular, high risk premiums come from (i) Highly risk­
averse investors or (ii) Bonds are deemed to be very risky. Empirical tests of bond asset pricing 
model irieludes Campbell, Kazerni and Nanisetty (1999). However, since we cannot observed directly 
on the expectations of these investors, we can never know to what extent bond risk premiums reflect 
the time-varying risk premiums or systematic forecast errors. Some studies ernplo~' the survey-type 
study to proxy for the market's expectations. See, for example, Ft·oot (1989)-
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Panel A display the results assuming cost of 0.25 percent per transaction while panel 

B show the results assuming cost of 0.5 percent per transaction. This assumed trans­

action costs will not be very accurate for several reasons. First, transaction costs 

vary across market participants. 28 Second, transaction costs vary across different fu­

tures markets. Third, transaction costs vary across different times, especially during 

market stress. For example, Fleming (2004) explores the relationship of the bid-ask 

spread in the US treasury market using tick data. He finds that the liquidity (as 

proxiecl by the spread) increased heavily during the market stress, such as the equity 

market decline in October 1997, LTCi'd's collapse in 1998, and the market disruption 

around Treasury's quarterly refunding in February 2000. He finds variables such as 

quote size, trade size on-/ off-the-run spread are only modest proxies for liquidity. 

The basic Reality Check results in Table 2.5 provide us with some. estimates on the 

breakeven costs. For example, for US 30YTB(1977-1999) over a period of 21 years, 

the best mean return is 18.19 percent with 628 trades recorded. The breakeven costs 

is thus (18.19 x 21)/628 ~ 0.61 percent. This figure may be too high to reflect the 

actual costs. 29 For bond markets, transactions costs further varies with the age and 

size of the bonds.30 

Table 2.6 shows that the best trading system with transaction costs are similar 

to previous results without transaction costs. J\!Ioreover, the mean returns are not 

drastically reduced by transaction costs. For example, most of the previously signif­

icant p-values previously are still significant even after 0.5 percent. transaction costs 

are added, while the contracts that have insignificant p-values have only marginally 

higher p-values than without transaction costs. The only exception is Bund futures 

contract, which generated statistically insignificant p-value after transaction costs are 

included. Its basic White's p-value is 0.082, rising to 0.084 after 0.25 percent cost are 

added and 0.134 after 0.5 percent costs are added. 

One possible reason to that fact that transaction costs have no major impact on 

the baseline results is due to the low number of trades from the best trading system. 

28Sweeney (1988), for exa111ple, studies the profitability of filter rules 011 ;{(J Dow Jones stocks 
cl.nd find that the profits vary across market participants. Floor traders ca.n generate substantial 
profits with the filter rules, while institutioualwoney managers ca.u only break-even. Other investors 
outside this group generate losses. 

29 For example, Chakravarty and Sarkar (2003) examine the transaction costs in three US bond 
markPLs. They find that the mean daily bid-ask spreMI per SilOO par wdnP is 2:3 rents lor mnnicip;d 
bonds, 21 cents for corporate bonds ami 8 cents for Treasury bonds. For bond futures markets. 
this spread is arguably lower clue to greater competition. f<or example, a conmton bid-ask spread 
estimate by CBOT is one sixty-fourth of a poiut- $15.625 011 a $100.000 transaction. 

;1°For example, Alexander, Edwards and Ferri (2000) and Sarig and vVa.ra. (1989) find younger 
corporate bonds are more actively traded and Babbel et al. (2004) show that on-the-nu1 Treasury 
bonds have smaller spreads. Moreover, credit ratings can also affect the size of bid-ask spread. 
Different securities ha.ve inherently different liquidity and therefore bid-ask spread. 
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For example, there are only four trades recorded for both US5YTN (1999-2005) and 

US10YTN (1999-2005) over a period of six years. Consequently, adding 0 .. 5 percent 

transaction costs is likely to reduce only a tiny fraction of the mean returns. 

Table 2. 7 summarizes the results on the best trading rules under the Sharpe ratio 

criterion, which evaluate the superiority of the best trading rule with the average 

excess returns per unit risk. Unlike Qi and Wu (2001), some of the best trading sys­

tems are different to the ones given by the mean return criterion. For Pxample, thr 

best trading rule for US30YTB (1977-1999) is the mean-reverting price distribution 

system rather than the triple moving average system. The majority of the p-values 

that are statistically significant under the mean return criterion is also significant 

under the Sharpe ratio criterion. An interesting observation is that for Buncl and 

JGB futures, the p-value for the mean return criterion is 0.082 and 0.650 respectively. 

But the p-value for the Sharpe ratio criterion has changed to 0.242 and 0.032 respec­

tively, a switch in statistical significance. An explanation for this change in statistical 

significance may be due to the relatively low capital costs in Japan, which resulted 

in higher Sharpe ratio and lower p-values than Bund futures. 

The overall conclusion from the White's tests reflects the preliminary empirical 

results documented earlier. One, there are technical trading systems that seem to have 

genuine value to investors from a universe of 7,991 trading rules. This can be seen by 

the statistically significant p-values for both mean return and Sharpe ratio criterion 

that reject the null hypothesis that best trading rule cannot beat the null benchmark. 

Furthermore, the addition of transaction costs did not change this conclusion since 

there was only a marginal increase in the p-values. Two, we also find that the p­

values are higher in recent periods, which carry the implication that technical rule 

has less investment significance to investors for this sample period. However, the 

Reality Check procedure cannot determine the reason behind this cause. 
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Table 2.5: Best Trading System and Mean Return Criterion. Column 2 is the mean return from 
the best rule. Column 3 and 4 is the p-value from the nominal (apply bootstrap once) and White's 
p-value. Column 5 is the best trading system while Column 6 is the number of trades. 

Bond Futures Mean Nominal White's Best Performing Technical Trading Number of 
Contracts Return p-value p-value System Trades 
US5YTN(88-99) 5.0082 0.000 0.004 Triple MA Time Filter (20,150,200,4) 26 
US5YTN(00-05) 6.6583 0.002 0.162 Dual MA (200,250) 4 
US10YTB(83-99) 7.8770 0.000 0.072 Triple MA Time Filter (20,125,250,4) 58 
US10YTB(99-05) 9.2505 0.002 0.114 Dual t\ifA Time Filter (200,250,3) 4 
US30YTB(77-99) 18.1924 0.000 0.030 Triple MA Price Filter (5, 15,25,0.001) 628 
US30YTB(99-05) 10.1001 0.004 0.958 Triple MA (10,15,50) 112 
UKLG 1 ( 83-88) 10.4257 0.000 0.298 Triple MA Time Filter (5,10,20,4) 88 
UKLG2(88-98) 6.7960 0.010 0.700 Dual tviA Price Filter (100,150,0.005) 6 
UKLG3(98-03) 4.8186 0.032 0.998 Triple MA Time Filer (20,25,30,5) 52 

O"l GER10YB(90-05) 4.1788 0.002 0.082 Triple MA Time Filter (10,100,200,4) 62 ""-
.JAPJGB(86-05) 7.3889 0.014 0.650 Triple MA Price Filter (5,20,60,0.001) 269 
AUS3YGB(89-05) 1.5071 ().000 0.022 Triple MA Time Filter (5,30,75,3) 142 
AUS10YGI3(84-05) 1.0386 0.000 0.228 Triple MA Time Filter (20,25, 100,2) 247 
CAN10YGB(90-00) 9.5727 0.000 0.000 Single t\IA (5) 602 
CANlOYGB(00-05) 6.8299 0.002 0.456 Triple MA Price Filter (5,20,25,0.005) 41 



Table 2.6: Best Trading System and Mean Return Criterion with Transaction Costs. We apply two 
transaction costs values: 0.25% and 0.50%. 

Bond Futures Mean Nominal White's Best Performing Technical Trading Number of 
Contracts Return p-value p-value System Trades 

Panel A: One-way Thansaction Cost = 0.25 percent 
US5YTN(88-99) 5.0022 0.000 0.000 Triple MA Time Filter (20,150,200,4) 26 
US5YTN(00-05) 6.6583 0.002 0.174 Dual MA (200,250) 4 
US10YTB(8:3-99) 7.8681 0.000 0.048 Triple MA Time Filter (20,125,250,4) 58 
US10YTB(99-05) 9.2481 0.004 0.166 Dual MA Time Filter (200,250,3) 4 
US30YTB(77-99) 18.1210 0.000 0.028 Triple MA Price Filter (5,15,25,0.001) 628 
US30YTB(99-05) 10.0441 0.012 0.952 Triple MA (10,15.50) 112 
UKLG1(83-88) 10.3859 0.002 0.:~46 Triple MA Time Filter (5,10,20,4) 88 
UKLG2(88-98) 6.7943 0.006 0.730 Dual MA Price Filter (100,150,0.005) 6 
UKLG3(98-03) 4.7054 0.030 0.006 Triple MA Time Filer (20,25,30,5) 52 

OJ GER10YB(90-05) 4.1682 0.002 0.084 Triple MA Time Filter (10,100,200,4) 62 CJ1 

JAPJGB(86-05) 7.3490 0.022 0.696 Triple MA Price Filter (5,20,60.0.001) 269 
AUS3YGB(89-05) 1.4829 (). 000 0. 008 Triple MA Time Filter (5,30,75,3) 142 
AUS10YGB(84-05) 1.0072 0.004 0.244 Triple MA Time Filter (20,25, 100,2) 247 
CAN10YGB(90-00) 9.4269 0.000 0.000 Single MA (5) 602 
CAN10YGB(00-05) 6.8130 0.000 0.440 Triple MA Price Filter (5,20,25,0.005) 41 

Panel B: One-way Thansaction Cost = 0.50 percent 
US5YTN(88-99) 4.9963 ().000 0.002 Triple MA Time Filter (20,150,200,4) 26 
US5YTN (00-05) G.G583 0.006 0.174 Dual MA (200,250) 4 
US10YTB(83-00) 7.8592 0.000 0.046 Triple MA Time Filter (20,125,250,4) 58 
US10YTB(99-05) 9.2458 0.002 0.142 Dual MA Time Filter (200,250,3) 4 
US30YTB(77-99) 18.0495 0.000 0.036 Triple MA Price Filter (5.15,25,0.001) 628 
US30YTB(99-05) 9.9881 0.022 0.946 Triple MA ( 10, 15.50) 112 
UKLG1(83-88) 10.3462 0.006 0.382 Triple MA Time Filter (5,10,20,4) 88 
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UKLG2(88-98) 
UKLG3(98-03) 
GER10YB(90-05) 
.JAPJGB(86-05) 
AUS3YGB(89-05) 
AUS10YGB(84-05) 
CAN10YGB(90-00) 
CAN10YGB(00-05) 

6.7926 0.004 
4.7721 0.040 
4.1576 0.006 
7.3091 0.010 
1.4587 0.000 
0.9759 0.006 
9.2812 0.000 
6.7960 0.006 

( cont'inued) 
0.740 Dual lVIA Price Filter (100,150,0.005) 6 
0.998 Triple MA Time Filer (20,25,30,5) 52 
0.134 Triple MA Time Filter (10,100,200,4) 62 
0.728 Triple MA Price Filter (5,20,60,0.001) 269 
0.024 Triple MA Time Filter (5,30,75,3) 142 
0.350 Triple MA Time Filter (20,25,100,2) 247 
0.000 Single MA (.5) 602 
0.480 Triple MA Price Filter (5,20,25,0.005) 41 



Table 2.7: Best Trading System and Sharpe Ratio Criterion 

Bond Futures Sharpe Nominal White's Best Performing Technical Trading Number of 
Contracts Ratio ])-Value p-value System Trades 
US5YTN(88-99) 0.0717 0.001 0.002 Triple MA Time Filter (20,150,200,4) 26 
US5YTN(00-05) 0.0807 0.000 0.404 Dual MA (200,250) 4 
US10YTB(83-99) 0.0527 0.000 0.048 Triple MA Time Filter (20, 125,250,4) 58 
US10YTB(99-05) 0.0757 0.004 0.388 Dual MA Time Filter (200,250,3) 4 
US30YTB(77-99) 0.0440 0.000 0.024 Price Distribution Mean Reverting (8,30,0.01) 297 
US30YTB(99-05) 0.0763 0.000 0.418 Price Distribution Mean Reverting (15,10,0.01) 131 
UKLG 1 ( 83-88) 0.0820 0.000 0.068 Price Distribution Mean Reverting (50,200,0.000) 13 
UKLG2(88-98) 0.0522 0.002 0.766 Price Distribution Trend-Following (8,75,0.0075) 518 
UKLG3(98-03) 0.09:36 0.000 0.396 Price Distribution Mean Revering (7,90,0.000) 75 
GER10YB(90-05) 0.0482 0.000 0.242 Triple MA Time Filter (10,100,200,4) 60 
.JAPJGB(86-0G) 0.0568 0.000 0.032 Price Distrilmtion Trend-Following (20, 7,0.02G) 696 

Ol AUS3YGB(89-05) 0.0626 0.000 0.012 Triple MA Time Filter ( 5,30, 75,3) 142 ---.) 

AUS10YGB(84-05) 0.0423 0.002 0.174 Triple MA Time Filter (20,25,100,2) 247 
CAN10YGB(90-00) 0.0770 0.000 0.000 Single MA (5) 602 
CAN10YGB(00-05) 0.0754 0.003 0.486 Price Distribution Mean Reverting (30,15,0.005) 107 



2.4.3 Data Mining Effects 

Figure 2.7 to 2.14 shows the White's p-value as a function of the trading strategy. 

Each figure demonstrates how the effects of data mining may propagate over the 

number technical trading systems. The sequential ordering of the technical rules is 

unimportant since only the terminal value of the highest mean return and the terminal 

Reality Check p-valne matter to our final assessment. (See STW for more details). 

All figures include the sequentially updated highest mean return (thin black line, with 

corresponding left-hand scale), the annualized mean return from each strategy (clots, 

with corresponding left-hand scale) and the White's p-value (thick black line, with 

corresponding right-hand scale). 

For US markets, there are two distinct phases of ·white's p-value, pre- and post-

1999. In pre-1999, the White's p-values are generally smaller and below 0.01. But 

post-1999 period produces higher White's p-values. It is interesting to see how the 

effects of data mining enters into the evaluation procedure. When additional trad­

ing systems do not lead to an improvement over previously best performing trading 

system, the p-value for the null hypothesis (2.12) that the best model does not outper­

form the benchmark increases. This accounts for the fact that the best rule has been 

selected from a large universe of trading system. This can be seen in the post-1999 

period. For example, the US30YTB (1999-2005) has a p-value below 0.600 at model 

200. But the p-value rises steadily while we evaluate more trading rules. At model 

4,500 until 7,991, the p-value stays above 0.900, which reject the null hypothesis 

(2.12). 

For UK, the effects are similar. White's p-values generally increase faster in recent 

sub-periods, implying that the value of technical trading system decreases overtime. 

For example, the White p-value rises fairly slowly in the period 1983-1988, especially 

after trading system 4,500. For subperiod 1988-1998, the p-value shows a steady 

increase throughout the evaluation until model 4,500. For the subperiod 1998-2003, 

the p-value stays near 1.0 for nearly all the trading systems, dipping occasionally 

when there is a new maximum mean return. 

On the other hand, Bund futures shows significant p-value throughout all tech­

nical systems. As seen from Figure 2.12, an improvement over the previously best­

performing system results in a drop in the ·white's p-values. For JGB futures, how­

ever, it seems that the economic value of trading systems is low after considering the 

universe of trading systems. The results for Australia futures are consistent with the 

preliminary results shown earlier. The ·white's p-values are consistently low through­

out the technical systems, especially for 3-Y futures. Lastly, the Canadian futures 
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over period (1990-2000) shows that the White's p-value is effectively zero for all strate­

gies. This is lwcausc the best rule for this market is the first system we evaluate. 

For Canadian futures (2000-2005), the p-value generally drops when a new maximum 

mean return emerge, and rises slowly after no new maximum mean return is found. 

This result is consistent with the earlier observations. 

Moving onto the Sharpe ration criterion, Figure 2.15 to Figure 2.22 display the 

p-value for the Sharpe ratio criterion over 7,991 trading systems. Similar to the mean 

return criterion, the thin line is the maximum Sharpe ratio and the thick black line is 

the p-value for each system. Each dot represents the Sharpe ratio from each trading 

strategy. 

The effects of data snooping described earlier can also be seen from these figures. 

For example, the US30YTB (1999-2005) shows the p-values increases steadily from 

model 200 to model 4500. After which, an increase in the maximum Sharpe ratio 

causes the value of p-value to decrease substantially from more than 0.90 to less that 

0.50. Such effects are also exhibited by other contracts. By comparing the maximum 

Sharpe ratio and the maximum mean return, it is noted that some of the best trading 

system for the mean return criterion is diH'erent to the Sharpe ratio criterion. For 

example, the best trading rule underlying the best mean return for US30YTB (1999-

2005) is the Triple moving average with time filter. while the best rule for the highest 

Sharpe ratio criterion is price distribution system. What this implies is that even 

though the triple moving average system gives the highest mean return, it may not 

necessarily has the highest excess return per unit risk. 

Recently, Hansen (2005) argues that including poor performing trading rules into 

White's (2000) Reality Check procedure may erode its statistical power. Hansen 

develops an alternative procedure known as the superior predictive ability (SPA) 

procedure that reduces this problem. In Hansen, Lunde and Nason (2005), they 

use this procedure to re-examine the calender effects investigated by STW ( 2001) 

and find contrary evidence to STW (2001). They conclude that calender eH'ects are 

statistically significant in a number of markets, even though they find the calendar 

effects have diminished since later 1980s. It will be for a work for future research in 

implementing the SPA procedure in the bond futures markets. 
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F igure 2.7: Best Trading System and Mean Return Criterion: US 5-Year T-Note. 

The clots are t he mean return from each trading rule (left-scale). The thin line is 

rolling maximum return (left-scale) and the thick line is White ·s p-value (right scale). 
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Figure 2.8: Best Trading ·system and J\!Iean Return Criterion: US 10-Year T-Bond 
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Figure 2.9: Best Trading System and Mean Return Criterion: US 30-Year T-Bond 
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Figure 2.10: Best Trading System and Mean Return Criterion: UK Long Gilts (LG) 
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Figure 2.11: Best Trading System and Mean Return Criterion: UK Long Gilts (LG) 

(continued) 
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Figure 2.12: Best Trading System and Mean Return Criterion: Buncl and JGB 
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Figure 2.13: Best n·ading System and Mean Return Criterion: Australia Bond 
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Figure 2.14: Best Trading System and .Mean Return Criterion: Canada Bond 
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Figure 2.15: Best Technical Trading System and Sharpe Ratio Criterion: US 5-Year 

T-Note. The dots are the Sharpe ratio from each trading rule (left scale). The thin 

line is the best rolling Sharpe ratio (left scale) and the thick line is White's p-value 

(right scale). 
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Figure 2.16: Best Technical Trading System and Sharpe Ratio Criterion: USlO-Year 
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Figure 2.17: Best Technical Trading System and Sharpe Ratio Criterion: US 30-Year 

T-Bond 
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Figure 2.18: Best Technical Trading System and Sharpe Ratio Criterion: UK Long 

Gilts (LG) 
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Figure 2.19: Best Technical Trading System and Sharpe Ratio Criterion: UK Long 

Gilts (LG) (continued) 
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Figure 2.20: Best Technical Trading System and Sharpe Ratio Criterion: Bund and 

JGB 
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Figure 2.21: Best Technical Trading System and Sharpe Ratio Criterion: Australia 

Bond 

AIJSJY 

0.08 0.3 

0.06 

0,25 

0.04 

0. 

0 
0.02 ~ 

·~ . ;; ' 0: ' 0. . 0.15 
0. ·. ~ . 

" .<: 
ro . .; 

.<: -0.02 3 

0.1 

-0.04 .. .. . .. ': 
0.05 

-0.06 

-0.08 

1 501 1001 1501 2001 2501 3001 3501 4001 45(11 5001 5501 6001 6501 7001 7501 

Model 

(a) Australia 3YGB ( 1989-2005) 

AUS10Y 

0.06 0.9 

0.8 

0.04 

0.7 

0.02 0.6 . 
0 " . .; ri . 
" 0.5 > ~ 

0: ' 0. . 
0. ·. ~ 0.4 . 

" ii ·.; 
.<: ,. 

-0.02 0.3 

0 0 

-0.04 

0.1 

-0.0 6 

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 

Model 

(b) Australia lOYGB (1986-2005) 

84 



Figure 2.22: Best Technical Trading System and Sharpe Ratio Criterion: Canada 
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2.5 Conclusion 

This chapter evaluates the profitability of technical trading systems in the fixed in­

come derivatives markets, namely, the bond futures markets, across six markets. For 

preliminary investigation, we test the profitability of three moving average systems. 

The results shows some promising results. We find that the single 50-clay moving 

average system is statistically profitable in a number of futures markets. This lead 

us to further examine more trading systems. 

In the second part of our examination, we evaluate 7,991 trading systems. The 

universe of trading systems include the moving average, breakout, volatility and price 

distribution systems. Moreover, we employ White's Reality Check procedure to ac­

count for the possibility of data mining. By using the highest trading system return 

and comparing it with the maximum sorted bootstrapped empirical returns, this 

procedure ameliorates the danger of data mining. 

Overall, we find that some bond futures contracts exhibit statistically significant 

returns, which led us to reject the null hypothesis that trading system has no value 

to bond investors. For example, we find US30YTB (1977-1999) produces annualized 

mean returns of 1~.12 percent after transaction costs, and with statistically significant 

p-value. However, White's Reality Check does not explain why some contracts have 

more statistically significant returns than the rest. On a broader perspective, it does 

not explain why some asset class are more profitable than others. For example. Qi 

and Wu (2001) find that technical trading systems are statistically significant in the 

currency markets while STW argue that the equity markets are more efficient. using 

the same procedure. More research is required to address this difference. 

Our results also highlight the possibility that technical trading systems have be­

come less profitable in recent periods. This is shown by both moving average tests 

and Realitv Check results. This finding is consistent with the results from a num-
" . 

ber of recent studies that find lower technical profits in currency and equity markets. 

However, whether this due to a more efficient financial market is yet to be determined. 

Some researchers have suggested that. this nnprofit.ability is due to lower volatility in 

asset prices. This is a plausible explanation since the number of discernable trends 

in asset prices is lower when the volatility is low. As most trading systems belongs 

to trend following (such as moving average rule), this may cause these systems to be 

unprofitable. 

Returning to the issue on whether trend following sfratcgiec; can profitably exploit. 

the trends in interest rates, the answers are mixed. Although trends exist in policy 
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rates, these trends may not map directly to the longer-maturity bond futures markets 

because of market noise. These noise give rise to noisy trading signals that cause the 

trend following signals to be unprofitable. Because of this, we argue that adjustments 

to the trading systems are needed in order to capture the trends, such as adding 

risk and capital managements techniques to the trading systems. One interesting 

question for future research is to examine the informational content of policy rates 

on the technical profits, whether movements in policy rates will have any impact ou 

terhnic:a,] profits. For example, LeBaron (1999) finds that central ba,nk interventions 

are associated with high technical profits in the currency markets. 

In conclusion, our results here indicate that technical trading systems may provide 

some value to bond traders. But in view of the data mining problem and time varying 

technical profits, we argue that a consistently profitable tedmical system that provide 

genuine value to traders is qnite difficult to nnrover. We do not suggest that. it is 

not possible to do, as we have argued in Chapter 1. But with au ever advancing 

technology and increasing speculative capital roaming the global capital markets in 

search for profits, this task will become immeasurably harder over time. 
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Chapter 3 

An Empirical Investigation of 

Technical Charting in the Bond 

Markets 

3.1 Introduction 

Chart analysis is the cornerstone of technical analysis. Unlike the technical trading 

systems analysed in Chapter 2, technical chart patterns are more subjective and open 

to varied interpretations. This makes unanimous identification of chart patterns prob­

lematic. According to Efficient Market Hypothesis (EMH), technical chart patterns 

should not be consistently profitable over time, as Jegadeesh (2000, p.l766) points 

out: 

Perhaps the most important reason why charting techniques have not been 

more widely accepted is that they are built on weak foundations. For 

instance, chartists believe that selected patterns in the history of stock 

prices tend to repeat. However, there does not. seem to be a plausible 

explanation as to why these patterns should indeed be expected to repeat. 

In this Chapter, we investigate the informativeness of technical patterns in the 

bond markets. It is claimed that the yields of fixed income securities appear to contain 

repetitive patterns over time, and to be able to take advantage of these recurring 

patterns, fixed income traders may need to understand the technical behavior of 

bond yields. Thus, bond yields and bond yield spreads present a new and interesting 

application of technical charting. In particular, we wish to answer the following 

consequential questions: (i) Do technical chart patterns exist in the bond yield and 

bond yield spread markets? and (ii) If they do, can bond and relative value traders 
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exploit these chart patterns in any way? Our results will have important implications 

for EMH since the government bond market is one of the most competitive financial 

markets, a characteristic which ensures that any anomaly which contributes to excess 

returns will disappear fairly quickly. 

To answer the above questions, we apply and extend the pattern recognition tool 

proposed by Lo, Mamasky and Wang (2000, thereafter LM\1\/) in identifying various 

chart patterns commonly prescribed by technical analysts. The main statistical tool 

they proposed is the nonpamm.etric kernel regression, which has been used in the 

fixed income markets to construct the cross-sectional yield curve and to estimate 

stochastic interest rate models. 1 By framing the chart patterns in such a way that is 

recognizable by the kernel regression, LMW were able to use the nonparametric kernel 

regressions to match a number of pre-defined technical chart petttems and therefore 

identify patterns like Head-and-Shoulders with ease. The key contribution of their 

work is automating the process of identifying chart patterns in stock prices. In this 

Chapter, we improve upon the non parametric Nadaraya-Watson kernel regression 

proposed by developing the local polynomial regression, which is known to ameliorate 

several biases embedded in the Nadaraya-Watson regression. 

There arP. many typPs of trading stratPgies in fixed incomP. markets. The most 

straightforward trading strategy is directional trades, which bet ou the direction of 

the interest rates. (See Chapter 2) Another prominent strategy is the spread strategy, 

which belongs to the relative value strategy. An example of the relative value strategy 

is the swap spread strategy between interest rate swaps and government securities, a 

popular relative value trade among hedge funds and proprietary desks of institutional 

investors. Other examples of bond spreads include the yield spreads between different 

maturities along the same yield curve, or between the spreads between mortgage­

based securities (MBS) and US Treasuries. 2 

However, most analyses of these spreads depend either on fundamental factors or 

quantitative models. For instance, one popular method used to measure the relative 

1 Nouparametric statistical methods have the attractive feature of beiug distrib'lltion-jTee, thereby 
avoiding any specification bias. For yield curve construction, Tanggaard (1992) compare the cross­
sectioual yield curve constructed usiug Nelsen-Siegel (1987) method and HOHpanuuetric kernel re­
gression. They find the latter method provides a good fit t.o the yield data. See Gourieroux and 
Scaillet (1994) and Linton et al. (2001) for further advances in this area. On the other han~!, 
Ait-Sahalia (1996), Stanton (1997) and JohanHes (2004) develop various nonparametric statistical 
methods to estimate the continuous-time interest rate model. 

2 See, for example, Duffie and Singleton ( 1997) and Brown, In and Fang (2002) for some empirica.l 
aHalysis of the swap spreads. Auother popular spread strategy is the TED-·spread, wllich is the 
spread between the US T1'easury -Bills and Eurodollar. See Fung and Hsieh (2002) for some aHalyses 
of different types of fixed-income spread returns. 
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cheapness of LIBOR-based swap spread is the so-called rich/cheap analysis, which is 

based on contemporaneous market variables such as the implied volatility of S&P 100 

index and yield curve slope. (See, for example, Prendergast (2000)) The quantitative 

method approach in analysing bond spread include the contingent claim models de­

veloped by Merton (1974) and Black and Cox (1976). (See, for example, Duffie and 

Singleton (2003) for a comprehensive revie\v of these models.) In this chapter, we 

take another route by analyzing the bond yields and bond yield spreads via technical 

chart patterns. 

We apply the nonparametric Nadaraya-Watson and local polynomial regressions 

to seven government bond markets, including US, UK, Germany, Japan, Australia, 

Canada and Hong Kong. The availability of bond yield data varies according to the 

sophistication of the respective debt markets. For example, the US bond yield data 

starts from 1962 while the Hong Kong bond yield begins only in 1992. In total, we 

evaluate twelve chart patterns, including Head-and-Shoulders, Broadening, Triangle, 

Rectangle, Double and Triple chart patterns. 

The rest of this chapter is as follows: The next section provides a brief review 

of the technical charting literature. In the first part of Section J.J, we briefly <.I.e­

scribe the nonparametric kernel regression and the local polynomial regression. In 

the second part, we provide the characterization of various chart patterns. Section 3.4 

discusses the bond yield data and statistical tests underlying our examinations of the 

informativeness of chart patterns. Next, Section 3.5 presents the empirical evidence. 

Lastly, Section 3.6 concludes. 

3.2 Literature Review on Technical Charting 

There are many types of charts available to investors, including bar charts, line charts, 

point-and-figure charts and candlestick charts. Each type of chart has different. in­

terpretations of the asset prices and therefore different trading implications.:1 In this 

Chapter, we shall mainly analyse line charts and the patterns within them. 

Chart patterns have been known to investors for a long time. (See Shabacker 

( 1930) and Ed w.ards and Magee ( 1966)) The ad vent of modern technology such as 

3 I-listorically, rice traders in Japan was t.he first to introduce the candlestick chart. (Nison ( 1991)) 
Recently, Marshall, Young and Rose (2005) iuvestigate the predictive property of candlestick charting 
in the US active stocks over the period 1992-2002. Usiug the bootstrap wethodology as in Brock, 
Lakonishok and LeBaron (1992), they report low predictive power of the various candlestick patterns 

-commonly advocated by technical analysts. Thus, their results support the EMH and conclude 
that investors who based their trading decisions solely on candlestick patterns are unlikely to gain 
financially from this activity. See also Fock. Klein and Zwergel (2005). 
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computer has led to the idea of automating the identification of chart pattern::;. 

Girmes and Damant (1975) nse the gradient smoothing techniqu<" to find the Head­

and-Shoulders pattern in stock prices. Interestingly, they find five times as many 

Head-and-Shoulders pattern in the actual stock prices than in simulated data. This 

implies that the movements of stock prices are subjected to more human intervention 

than, say, a random walk. But Levy (1971) tests the predictive power of thirty­

two 'five-point chart patterns' and concludes that (p.318) ''after taking tr-ansaction 

costs into account, none of the th1:rty-two patterns showed any evidenr.e of profitable 

forecasting ability in either (bullish or bearish) direction. '' 

Similarly, Olser (1998) tests the Head-and-Shoulders pattern m the US equity 

market by random selecting 100 stocks from the CRSP (Center of the Research on 

Securities Prices) with historical prices going back to 1962. She finds this pattern lacks 

predictive power. Dempster and Jones (1998, 2002) automate the detection of Head­

and-Shoulders and Channel technical pattern using a fixed number of local maxima 

and minima in the currency markets. They test their algorithm on the intra-day spot 

exchange rate data obtained from the industry vendors. Contrary to expectations 

of market practitioners, they find that both patterns produce trading losses. Their 

study supports the notion that chart patterns are simply indistinguishable from noise. 

Along the same line, Chang and Osler ( 1999) use a percentage method to define the 

Head-and-Shoulders pattern on six currencies pairs. Their empirical results indicate 

mix results, with four out of six currencies found to be unprofitable. But dollar­

yen and dollar-mark currency pairs are profitable, even after adjusting for interest 

rate differential, risk allC! transaction costs. Dawson and Steeley ( 2003) evaluate 

ten chart patterns in the UK equity market over the sample period 1986-2001 using 

the kernel regression methodology. They find that no excess profit can be earned 

using these technical patterns. Given these negative evidence on the profitability of 

chart patterns, the fact that market practitioners continue to use them is a puzzling 

behaviour, as Chang and Osler aptly describe such activity as "methodical madness". 

However, such negative views on technical charting may not necessarily be correct. 

From their empirical results on US equity rnarkets, even Ll'vivV admit that using 

technical chart patterns as additional inputs to the investment process may be useful 

(p.1753): 

WP find that certain technical patterns, wlwn applied to many stocks over 

many time periods, do provide incremental informatioi1, esriecially for 

N asdaq stocks. Although this does not necessarily imply that teclmical 
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analysis can be used to generate ··excess" trading profits, it does raise the 

possibility that technical analysis can add value to the investment process. 

Using the same methodology as LMW, Savin, Weller and Zvingelis (2003) find that 

the Head-and-Shoulders pattern has explanatory power in predicting excess returns 

in the US equity markets. They also determine that trading using this pattern yield 

7-8 percent risk-adjusted return per year over the period 1989-1999. The factor risk­

measure they use is the three factor Fama-French model augment with a momentum 

factor. Bulkowski (2005) has produced an extensive "Encyclopedia" on technical 

chart patterns and argue that (p. 7), "Investing 'using chart formations is an exer-cise 

in probability.'' He claims that the most profitable chart pattern in both bull a.nd 

bear markets is the Flag pattern, with an average rise in prices of 69 percent and 42 

percent respectively! 

So far, no empirical study evaluates the profitability of chart patterns in the bond 

markets. Thus, we contribute to the literature on technical analysis by applying 

the nonparametric kernel regression to examine the informativeness of chart patterns 

in the government bond yields and bond yield spread markets. The literature on 

yield spread trading is sparse. Typically, bond yield spreads are used to determine 

whether there exist a relationship between these spreads and country risk premium, 

or whether the expectations hypothesis of the term structure is validated. 4 A number 

of strategies has already been devised to speculate on the yield spread movements, 

such as the butterfly, barbell or the credit spread strategy. (See. for example, Fabozzi 

(2001)) 

Only recently has research began to examine the trading opportunities offered by 

yield spread trading. Dolan (1999) provides a preliminary analysis of the predictabil­

ity of the yield curve shapes. By choosing the Nelson-Siegel (1987) model as the 

benchmark tool, he shows that the model parameters are predictable over time, which 

may have investment significance in the selection of bond portfolios. Using the same 

model, Diebold and Li (2003) provide evidence that the parameter which capture the 

bond yield spread movement is predictable in the US bond markets. Encouraged by 

this development, Fabozzi, Martellini and Priaulet (2005) apply the Nelson and Siegel 

model to fit US swap curve over period 1994-2003 and test their impact on the but­

terfly strategy." Furthermore, they incorporate the technique of "recursive modeling" 

developed by Pesaran and Timmermann ( 1995) and "thick modeling" proposed by 

4 For the first topic, see, for example, Angeloni and Shan (1980), .Feder and Ross (HlR'2) and 
Scholtens (1999). l<or the expectation hypothesis, see·. for exa1;1ple, Cox, Ingersoll and Ross (1981), 
Ca!'npbell arid Shiller ( 1987) and Longstaff (2000a, b). 

5See Chapter 1 and Fabozzi (2001, 2005) for more details about this strategy. 

92 



Granger and Jean (2004) to improve the forecast of these parameters with a number 

of external economic factors. They show that the combination of above techniques 

enable them to generate significant portfolio outperformance 6 This studies provide 

some evidence that yield spread may be predictable. 

In addition to these developments, several research efforts have initiated modeling 

the sovereign yield spread using econometrics models. For instance, Duffie, Pedersen 

and Singleton (2003) estimate the Russian yield spread relative to US treasuries dur­

ing the 1998 Russian debt default using multifactor affine model. Koutmos (2002) 

models the dynamics of the MBS spreads using <::t two-factor stochastic model. But 

despite the plethora of arbitrage-free yield curve models in the literature, it is not sure 

whether any of them have good forecasting property. Duffee (2002), for example, doc­

uments the fact that the three-factor affine term structure model cannot outperform 

a simple random walk model in forecasting future interest rates. 

In summary, it would be interesting to see whether technical chart. patterns can 

provide an alternative approach in forecasting bond yield spreads. 

3.3 Identification of Technical Charts Patterns 

3.3.1 Nonparametric Kernel Regression 

Financi::d asset. prices are filled with "noise". (Black (1986)) Tlw presence of tlwse 

market noise complicates the analysis of price movements since the underlying true 

signals are obscured by these noise. To identify the true signals from the noisy data, 

one has to smooth the asset prices in some way. Press et al. (2002, p. 655), for 

instance, have aptly describe the potential of smoothing: 

Data smoothing is probably most justified when it is used simply as a 

graphical technique, to guide the eye through a forest of data points all 

with large error bars; or as a means of making initial rough estimates of 

simple parameters from a graph. 

For this purpose, we turn to nonparametric smoothing methodologies such as kernel 

regression and local polynomial regression. Nonparametric method has the advantage 

6 Relatedly, Krishnarnurthy (2002) examines the spread between the new bond ami old government 
bonds. He finds that the average profit are close to zero once: the differeuce in repo umrket. finallciug 
rates betweeu the two bouds is taken iuto acc:ouut, aud liquidity does seem to play an important role 
iu the variation of the new- and old-bond spread. To an extent, his research analyses the convergence 
properties of the spread over time. 
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of being distribution-free, thereby avoiding any specification bias imposed upon the 

asset prices. 

It is assumed that the bond yields, y, is generated by the function f (-): 

y=f(x)+t (3.1) 

where f ( x) is an arbitrary fixed but unknown nonlinear function of the state variable 

:rand t:'s are independent and identical white noise, i.e., E(c) = 0 and Var(c) = 1. 

For any arbitrary x, a smoothed estimator of f(x) may be expressed as: 

(3.2) 

where the weights Wt(x) are large for those y1 paired with x1 near focal point x0 and 

small for those Yt paired with x far from focal point x0 . The weight function w1 ( x) is 

constructed from a probability density function K ( x), also known as a kernel, with 

the following properties: 

K(x) 2 0 j K(u)du = 1 (3.3) 

The idea of the kernel Kh(-) is to multiply different weights to the data so that the 

data closer to the focus point x0 has more influence tha11 the data further away from 

the focus point x 0 . (See, for example, Rosenblatt (1956), Silverman (1986), Hardie 

(1990), Campbell, Lo and Mackinlay (1997, Chapter 12) for a comprehensive review 

of these concepts.) By rescaling the kernel with respect to a parameter h > 0, we can 

change its spread: 

(3.4) 

The weight function Wt is defined as: 

Wt,h (3.5) 

Yh(x) (3.6) 
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Substituting equation (3.5) and (3.6) into (3.2) yields the Nadaraya- Watson kernel 

estimator .f~w (:c) of f ( x): 

1 T 

T I:wt,h(:r)yt 
1=1 

T 
Lt=l Kh(x - Xt)Yt 

2::::;=1 Kh(:r;- :r;t) 
(3.7) 

This expression allow us to estimate the kernel regression in any fixed length window 

of size d. In empirical form, this can be written as: 

'\'t+d-1 }' ( ) 
Ds=t 1 h T - S Ys 

'\'t+d.-1 K ( _ ) 
Ds=t h T S 

t = 1, ... , T- (d + H- 1) (3.8) 

where d is tlw size of the fixed length window, T is the total number of data in a 

bond yield series and H is the holding period to which we measure the conditional 

bond returns. In other words, we .apply the N adaraya-vVatson estimator to a series 

of fixed length rolling windows from t to t + d - 1, where t begins from 1 and ends 

at T - ( d + H - 1). The rationale for this sub-window is to prevent the detection 

of teclmical patterns of varying duration from fitting a single kernel rcgret>siuu to the 

entire data set. \i\That remains t.o be specified is the kernel function Kh ( ·) and the 

bandwidth parameter, which we shall discuss in Section 3.3.3. 

' . 
Assuming f mv ( T) is a differentiable function of T, once the function .fNiv ( T) ts 

obtained, the local extrema can be readily identified by find times ( T - 1) such that 

Sgn(}~w ( T - 1) = - Sgnf~w· ( T), where J~w ( T) denotes the derivative of ] NIV ( T) 

with respect to T and Sgn(-) is the signum function. If the signs of J~w ( T - 1) and 

]~ 111 ( T) are + 1 and -1 respectively, then we have found a local maximum, and if they 

are -1 and +1 then we have found a local minimum. vVith this procedure we are 

able to identify all the extrema in a given fixed-length window. A useful consequence 

of the above algorithm is that the series of extrema alternates between minima and 

maxima. That is, if the k/" is the extremum is a maximum, then it is always the 

case that ( k + 1 )1
" is a minimum and vice versa. We label all extrema found in the 

window to be (e 1 , ... , e111 ). 

However, it is well-known that the Nadaraya-vVatson estimator (3.7) suffers from 

a number of weaknesses. For example, the Nadaraya-Watson estimators have large 

bias order at the boundary region. Even though many ad-hoc proposals such as 

the bo'Undar-y ker-nel rnethods have been proposed to alleviate this problem, they are 

less efficient than local linear fit. (See, for example, Fan and Gijbels (1996)) Thus, 
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we shall extend the usage of kernel regression m technical analysis by turning to 

the local polynomial regression, which has the advantage of similar bias order along 

the boundary and in the interior. This reduces the need to use specific boundary 

kernels. Another advantage of the local polynomial regression is that we can estimate 

the regression parameters using least squares. (See, for example, Fan and Gijbels 

(1996, Chapter 3) and Hastie, Tibshirani and Friedman (2001, Chapter .5) for further 

discussion of these issues.) 

3.3.2 Local Polynomial Regression 

The starting point for local polynomial regression is similar to the nonparametric 

kernel regression. Assuming that the bond yields and bond yield spreads are generated 

by some nonlinear function j(-) as in equation (3.1), and further assume that the 

(p + 1) 1
" derivative of f(x) at focal point x0 exists, we can approximate the unknown 

regression function f(x) locally by a polynomial of order p. A Taylor expansion for 

x in the neighborhood of x 0 gives: 

. , f"(xo) 2 _l(Plxo 
.fLpCc) ~ f(xo) + f (xo)(x- xo) + --(:r- .co) + ... + --(:r- xo)P (3.9) 

2 p 

This polynomial is fitted locally by a weighted least square regression, mmimizmg 

the following function: 

(3.10) 

where Kh(-) is the kernel function assigning weights to each datum point, aud h 

is the bandwidth parameter controlling the size of the local neighborhood. Let 

.Uj, j = 0, ... , p be the solution to this least squares problem, it is clear from the 

Taylor expansion that }j(x0 ) = j!;]j is an estimator for fUl(x 0 ), for j = 0, 1, ... ,p. 

Denote X as the ( d x p) design matrix: 

1 (xi -::co) (xi - xo)P 

1 (.1:2 - xo) ... (::r - T )P 
X 

'2 . '0 
(3.11) 

1 (:cd- xo) (xd- xo)P 

and let W be the ( d x d) diagonal matrix of weights: 

W = diag{Kh c!:; ~ Xo)} 'i = 1, ... , d (3.12) 
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The weighted least square problem ( 4.3) can be written as: 

min(y- X,G)'W(y- X;3) 
13 

(3.13) 

where ~ = (;30 , ;31 , ... , ;3p)' is the vector of parameters and y is the vector of bond yields 

or bond yield spreads. The solution is provided by weighted least squares theory and 

is given by: 

;J = (X'WX)- 1X'Wy (3.14) 

if (X'WX) is invertible. The estimator ]LP(-) is the intercept term ,&0 . To ensure 

that (X'WX) is invertible, at least (p + 1) different points with positive weights are 

required. 

After all the ;30 's are computed, we can determine the extrema in this window by 

checking the signs of {hp( T)} ;~f'. hp(-) is simply given by parameter ,01 in ( 4. 7). 

All extrema are obtained by checking for the sign of hp( T) against hP ( T - 1). If 

hp(T) > 0 and hp(T- 1) < 0, a minimum extrema is found at (T- 1). On the 

contrary, if j~p( T) < .0 and hp( T - 1) > 0, a maximum extrema is found at ( T - 1). 

If both hp(T) = 0 and j~p(T -1) = 0, we work backwards for each ,GLT to determine 

whether the current stationary point is a rnaximum or minimum since the extrema 

always gives an alternating sequence between maximum and minimum. As before, 

we label all extrema in a rolling window to be (e 1 , ... , e111 ). 

Asymptotic results prescribe that odd p has a clear advantage over even p, in the 

sense that the conditional bias for odd values of p are simpler that even values of p. 

(See Simonoff (1996) and Fan and Gijbels (1996)) Consequently, we shall use the first 

order only, p = 1, for all polynomial regressions. 

In equation (4.7), X is a matrix of time point 1, 2, ... ,d. The parameter dis the 

window of bond yields/bond yield spreads to which we apply (4.7) to each data point 

T in that window in order to obtain d smoothed bond yields. In this chapter, we 

shall fixed d = 45, meaning that both the local polynomial and kernel regressions 

are applied to bond yields at interval {Yt. ... , Yt- 44 } in a series of rolling window. The 

first window starts at t = 1 and ends at d + H - 1, where H is the holding period. 

(See equation (3.8)) Our fixed-length window is larger than in LMW's study because 

bond markets may take a longer time frame to display the pattern. 7 Here, we set 

- 7This may be due to the lower government bond price volatilit~' relative to stock prices. Some 
estimates of the yield volatility a are given in the Appendix I. 
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H = 1, which has carries the intuition that the market practitioners would take 1-day 

to realize the completion of the chart pattern. 

To identify the chart patterns, the pattern must be completed with d- H days. In 

addition, the last extrema em must occur on the day d- H. Without this requirement, 

the same pattern would be recorded several times while rolling the window forward. 

The strategy for our estimation is as follow: ( 1) First estimate a 45-day window of 

smoothed prices using kernel and local polynomial regression. (2) Check whether 

an extrema has occurred at day 44. (3) If an extrema exists on this day, the next 

step is to check whether a chart pattern has occurred. If not, move on to the next 

window. ( 4) If a chart pat tern is confirmed, then the one-day conditional bond return 

is measured from day 45 (d + 1) to day 46 (d + 2). This way, we have a clean out-of­

sample bond return to measure the informativeness of the technical chart patterns. 

If no chart patten is confirmed, we move on to the next fixed-length window. 

3.3.3 Nonparametric Kernel Function and Bandwidth De­

termination 

As Jegadeesh (2000) points out, the nonpara.metric kernel smoothing method devel­

oped by UviW does depend on a number of parameters that may be detrimental in 

the quest of objectifying chart patterns. Similar criticism applies to our nonparamet­

ric local polynomial regression. There is no optimal solution in solving this since each 

chart pattern will, in practice, be unique to some extent. 

Two parameters plays an important role in nonparametric regression, which are 

the kernel function K (-) and the bandwidth value h. In this section, we shall briefly 

describe the kernel function and the choice of the bandwidth value, followed by a 

discussion of the chart patterns in the next section. 

There exist a number of possible kernel functions, including uniform, Gaussian, 

Epanechnikov and Biweight. Rather than following LMW and Dawson and Steely 

(2003), who use the Gaussian kernel, 8 we choose to use the Epanechnikov kernel 

( Epanechnikov ( 1969)): 

3 2 
K(z) = 4(1- z )+ (3.15) 

This choice is based on results by Fan and Gijbels (1996, Theorem 3.4) and Fan et 

al. ( 1995), who prove that Epanechnikov kernel is the optimal kernel for all orders of 

8The Gaussian kemel is. defined as: K,.(:r) = h~ exp(-:c2 j2h2 ). For other kernel choices, see 

Silverman (1986) and Hardie (1990). 
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p in the local polynomial regression, that is, it is the weight function that minimizes 

the asymptotic mean squared error of the local polynomial estimators. To be con­

sistent for both nonparametric regression, this kernel function is also applied to the 

Nadaraya-Watson estimators. 

The bandwidth parameter h plays a more important role than the kernel function 

J( (-). The reasons for this straightforward: if h is large, then averaging will occur 

over a larger neighborhoods of the y1s, leading to an overly smooth kernel estimates, 

on the other hand, if h is small, the average will occur over a small neighborhood of 

the y1s, resulting in a choppy function that does not filter out the noise in the yields, 

depriving us of the power of the smoothing methods. 

There are numerous methods in computing the bandwidth parameter value, m­

cluding the rule-of-thumb, cross-validation, nearest neighbors and plug-in methods. 

(See Simonoff (1996), Fau and Gijbels (1996) and Jones, Marion and Sheather (1996) 

for some extensive discussion of these methods.) In this chapter, we use the band­

width parameter derived from the popular cross validation method, which minimizes 

the following function: 

he;: 
1 d • 2 

d L (Yt- !t) 
1=1 

(3.16) 

where 

!h,t 
1 d 

d LwT,h'!)T 
T-j.t 

(3.17) 

which is the omit the Tth observation from local regression at the focal value y;. 

Omitting the Tth makes the fitted value indepeudent of the observed value y1. 

Figure 3.1 presents a graphical example of applying both the N adaraya-Watson 

estimator } mv (line with asterisk) and the local polynomial regression estimate j LP 

(thick clashed line) to the bond yields over a period of 45 clays. The kernel function 

used in this example is the Epanechnikov ke1'nel and the bandwidth parameter value 

is derived from the cross-validated method with no adjustment being made. Some 

interesting properties can be seen here. First, the boundary bias for N ada.raya-Watson 

estimates is obvious. In the interior, both Nadaraya-Watson and local polynomial 

regression estimates are similar, but as we examine the estimates on the left and 

right boundary, large discrepancies appear between these two estimates. At both 

boundaries, the local polynomial regression tracks the actual bond yields better than 

the Nadaraya-Watson estimates, which tend to over-smooth the actual bond yields. 
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Figure 3.1: A Comparison of Nadaraya-Watson Estimators .fmv and Local Polyno­
mial Regression .fLP with Cross- Validated Bandwidth Parameter and Epanechnikov 
Kernel Function 
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Correcting this boundary bias is important because we are always measurmg ./' (-) 

near the right boundary. If the Nadaraya-Watson estirnates over-smooth the actual 

bond yields, then the regression estimates might not capture the extrema em even if 

one exists. 

Second, the bandwidth parameter hcv obtained from cross-validation method 

may over-smooth the actual bond yields, especially during day 26-30. Consequently 

there is a need to reduce the value of the bandwidth parameter value obtained from 

the cross-validation procedure. Furthermore, choosing a smaller bandwidth value 

can reduce the boundary bias for Nadaraya-Watson estimator. We examine various 

bandwidth adjustments, and it is decided that the final bandwidth adjustment is fixed 

at hcv x 0.45 for both bond yields and bond yield spreads. This is a local bandwidth 

parameter whose values may vary over different fixed-length rolling window 9 

9 Since a global bandwidth parameter value will not reflect any local yield movements, a local 
ba.ndwidth parameter can resolve this deficiency. But such adjustment are by no rnea.ns perfect. 
Even LlviW admit (p.l714) that selecting the appropriate bandwidth parameter is a challenging 
task, " ... this an ad hoc approach, and d r-ernains nn irnpoTtnnt challenge for future r·eseaTch to develop 
n moTe rigom:us pmced1tre." They rely on a trial ami error approach and some practical advice from 
professional t.echnicRI Rnnlyst.s t.o fix the bandwiclt.h at hcv x 0.3. 
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3.3.4 Technical Chart Patterns 

We apply the nonparametric kernel to six pairs of technical patterns that are com­

monly taught in classic technical analysis texts. (See, for example, Edward and Magee 

(1966), Schwager (1996), Kaufman (2005) and Bulkowski (2005)) They are Head and 

Shoulders Top (HSTOP) and Bottom (HSBOT), Broadening Top (BTOP) and Bot­

tom (BBOT), Triangle Top (TTOP) and Bottom (BBOT), Rectangle Top (RTOP) 

and Bottom (RBOT), Double Top (DTOP) and Bottom (DBOT) and Triple Top 

(TPTOP) and Triple Bottom (TPBOT). 

From the nonpararnetric algorithm described in the previous section, we would 

have identified m. local extrema in a given fixed length window. Denoting all the 

m extrema by ( e1, e2, ... , em) and ( ti, t;, ... , t~,) the dates on which these extrema 

occur, the last five extrema are labeled as (em-4, em-3, em-2, em-1, em)· The technical 

patterns are identified by framing conditions on these extrema. 

Head-and-Shoulders Pattern 

Head-and-Shoulders Top (HSTOP) and Bottom (HSBOT) are popular technical pat­

terns that have been regularly detected and examined by practitioners and researchers. 

(See Osler (1998), Change and Osler (1999) and Dempster and .Jones (1998)) Basi­

cally, HSTOP and HSBOT consist of five local extrema, including the left shoulder, 

the head, and the right shoulder. Thus, five extrema are able to define a Head-and­

Shoulders pattern in the following way: 

HSTOPl e111 is a maximum 

HSTOP3 max je;- e\ = 0.010 x e, where 'i = rn.- 4, m. and e = (ern_ 4 + e111 )/2 

HSTOP4 max je;- e\ = 0.010 x e, where i = rn- 3, rn- 1 and e = (e111 _ 3 + em-d/2 

and 

HSBOTl em is a mnumum 

HSBOT3 max \ei - e\ = 0.010 X e, where i. = m.- 4, Til and e = (em-4 +em )/2 

HSBOT4 max jei- e\ = 0.010 x e, where i = rn- 3,rn -1 and e = (ern_ 3+e;,;_, )/2 
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Broadening Pattern 

BTOP and BBOT are characterized by a sequence of five consecutive local extrema 

such that: 

BTOPI em is a maximum 

BTOP2 em-4 < em-2 <em and em-3 > em-1 

and 

BBOTI em is a minimum 

BBOT2 em-4 > em-2 > em and em-3 < ern-1 

Triangle Pattern 

A symmetrical triangle occurs when the trading range of the asset prices gradually 

decreases, which is exactly opposite to the Broadening pattern. Typically, a 'breakout' 

from a symmetrical triangle often signifies the initiation of a medium term price trend. 

Symmetrical Triangle Top (TTOP) and Triangle Bottom (TBOT) are characterized 

by the following: 

TTOPI em is a maximum 

and 

TBOTI em lS a mmunum 

TBOT2 em-4 < em-2 < em and em-3 > em-1 

Rectangle Pattern 

The Rectangle formation is also one of the frequently taught and observed patterns in 

asset prices. The following conditions satisfy the rectangle Top (RTOP) and Bottom 

(RBOT) respectively: 

RTOPI em is a maximum 

RTOP2 max lei- el = 0.010 X e, where ·i, =Til- 4, 'Ill- 2, Til and e = (e/71-4 + em-'2 + 
em )/3 

RTOP3 max lei - el = 0.010 X e, where 'i = rn - 3, Ill - 1 aml e = ( em-3 + ern-!) /2 
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and 

RBOTl ern is a mmunum 

RBOT2 max ie1 - ei = 0.010 x e, where ·i = m.- 4, m- 2, rn and e = (ern-4 + e,n-2 + 
ern)/3 

RBOT3 maxie,- ei = 0.010 x e, where i = m- 3, rn- 1 and e = (em-:.l + em-r)/2 

RBOT4 rnax (em-4 1 em-2 1 em) < ruin (em-3, em-1) 

Double Pattern 

Double top (DTOP) and double bottom (DBOT) are characterized b_y the local ex­

tremum e,, and local extrema ea and e6 such that: 

ea = sup{P1: : t; > t~,} k = 1, ... , d- 1 (3.18a) 

e1, = inf{P1:. : t; > t~,} k = 1, ... , d- 1 (3.18b) 

The above equations mean that we compare the highest maxima extrema recorded in 

a rolling window with last extrema. Given these two extrema, Double Top (DTOP) 

and Bottom (DBOT) can be characterized by: 

DTOPl em is a maximum 

DTOP2 maxie; - ei = 0.010 X e, where i = (rn, a) and e = (em+ ea)/2 

DTOP3 t~- tm > 20 days 

and 

DBOTl em is a minimum 

DBOT2 max le1 - ei = 0.010 x e, where i = (rn, b) and e =(em+ e11 )/2 

DBOT3 ti, - tm > 20 days 

Triple Pattern 

Triple Top (TPTOP) and Bottom (TPBOT) are rare formations in the asset prices. 

Typically, a TPTOP consists of three highest local maxima that occur around the 

same value. Similarly, TPBOT also has three lowest minor bottoms that are generally 

of the same value. To detect TPTOP, we first record all the extrema in a fixed-length 
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window and we pick out the highest three maxima, one of which must be the last 

extrema em· Next, we compare whether the yields are within a stipulated band (say, 

1. 0 percent) of one another. Lastly, the time diflerence between the first and last 

extrema are assumed to be more than five weeks (25 clays). The following conditions 

define TPTOP and TPBOT respectively: 

TPTOPl e11 , is a maximum 

TPTOP2 Select three highest maxima (emax 1 > emax2 > Cmax3) with corresponding 

times at (tmaxlo tmax2, tmax3) respectively. One of which extrema must be e111 • 

TPTOP3 maxie; - ei = 0.010 x e for 'i = (max 1, max 2, max 3), where 

em ax 1 + emax 2 + emax 3 e= ------------------
3 

TPTOP4 tmax3- tmaxl > 25 days 

and 

TPBOTl em is a muurnum 

TPBOT2 Select three lowest maxima ( emin 1 < emin 2 < emin 3) with corresponding 

times at ( tmin 1, tmin 2, tmin 3) respectively. One of the extrema must be e5. 

TPBOT3 maxie;- el = 0.010 x e for 'i = (min1,min2,min3), where 

Cmin 1 + emin 2 + emin 3 e= --------~-------
3 

TPBOT4 tmin3- tminl > 25 days 

3.4 Bond Yield Data, Return Measurement and 

Information Tests 

3.4.1 Government Benchmark Bond Yield Data 

To evaluate the usefulness of technical chart patterns, we apply the smoothing meth­

ods described in the previous section to the US, UK, Germany, Japan, Australia, 

Canada and Hong Kong government benchmark bond yield markets. Benchmark 

bonds are usually the most liquid government bonds among a basket of similar matu­

rity bonds. Consequently, benchmark bonds are viewed as reference points for many 

investors and used as pricing benchmarks for other financial assets, such as corporate 
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bonds. The benchmark bonds are frequently replaced because the maturity of bonds 

shortens due to the time decay factor. New replacements are needed to ensure the 

benchmark bonds stay within the maturity bracket, such as 2-year or 10-year. All 

benchmark bonds are coupon bonds. 

We tabulate the basic information on the bond yield data in Table 3.4.1. All data 

are obtained from Ecowin. In Panel A, the second column is the maturity of the 

bond yield, and the third column is the various yield spread pairs. Each country has 

different maturity sectors. There are 34 bond yields with 204,816 data in total. Not 

all of the maturities have equal number of data, for example, the 1-year maturity bond 

yield data may start in 1962 while the 5-year maturity bond yield data begins in 1979. 

To extract the yield spread between these two time series, we begin with the later date. 

If a missing data among the two yield data is encountered while matching with the 

two date series, the series without the missing data on that particular date is dropped. 

Altogether, we have extracted 43 yield spreads series of different maturities, with a 

total of 262,170 data points. These spreads are chosen because of their popularity 

with bond and relative value traders. One interesting avenue for future research is 

to apply the statistical algorithm in this chapter to credit spreads between different 

industry sectors, such as betweeu the motor industry and the govennuent bond sector, 

or the emerging market spreads. 10 

The summary statistics of the bond yield and bond yield spreads are tabulated in 

Appendix I. The results basically confirm the stylized facts documented by Diebold 

and Li (2003). For example, the average yield curve for all countries is upward sloping 

and concave, as shown by the increasing bond yield mean value and the positive mean 

yield spreads for all bond yield spreads. Furthermore, the standard deviation a from 

fitting the Vasicek model (see next section) shows that the shorter maturities bond 

yields are more volatile than the long maturities bond yields. The autocorrelation 

p(lOO) in the last column implies that bond yields are highly persistent, a fact ob­

served by Chapman and Pearson (2001). They estimated that the US monthly bond 

yields' autocorrelation are in excess of 0.98. They suggest that this persistence in 

bond yields rnay be due to the sluggish adjustment of interest rates to fundamental 

factors. From the maximum and minimum bond yield in Column 6 and 7, there seem 

to be substantial variation of the sample bond yield data. For example, the 2-year 

Japanese government benchmark bond yield has a maximum of 8.49 percent and a 

minimum of 0.01 percent during the sample period 1986-2006. On the other hand, 

10Stanton (1997) and Bhanot (2001) have estimated _the continuous-time model using nonpara­
metric methods on credit spreads. But so far, 110 charting algorithm has been to credit spreads. 
Most of the credit. spread models are derived from the quantitative approach with option priciug 
methodology. See, for example, Merton ( 197 4) ond Duffie and Singleton (2003) for 1rron~ details. 

105 



the variation of the yield spread data, though not as huge as the bond yield, is still 

fairly large. This points to the fact that the movement of the term structure of bond 

yields is non-parallel. 
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Markets 
us 

UK 
Germany 

Japan 
Australia 
Canada 

Hong Kong 
Total 

Table 3.1: Government Benchmark Bond Yield Data. Column 2 is the bond yield maturity. Column 3 is 
yield spread pairs, followed by the number of data. 

Bond Yield Maturities (yr) 
1, 2, 3, 5, 7, 10, 30 

2, 5, 7, 10 

2, 3, 5, 7, 10 

2, :3, 5, 10 

2, 3, 5, 10 

2, 3, 5, 7, 10 

2, 3, 5, 7, lU 

Panel A: Bond Yield and Bond Yield Spread 
Yield Spread Pairs (Short.,Long) 

(1 ,5) ,(1,7) '(1' 10) '(1 ,30)' (2,5) '(2, 7) '(2, 10) '(2,30) 
(3, 7) ' ( 3, 10) ,(5, 10)' ( 5,30) ' ( 10,30) 

( 2 '5)) ( 2) 7) ' ( 2) 10)) ( 5) 10) 

(2,5) '(2, 7) '(2, 10) '(3, 7) '(3,10) ' ( 5, 10) 

(2,5) '(2, 10)) (3, 10) '(5, 10) 
(2,5). (2, 10) (3, 10)) (5, 10) 

( 2' 5) ' ( 2 '7) ' ( 2' 10) ' ( 3 '7) ' ( 3' 10) ' ( 5' 10) 
(2,5) '(2, 7)) (2, 10)' (3,7)) (:3,10) ,( 5,10) 

Obs. (Bond Yield) 
69,245(7) 

27,848 (4) 

25,500 (5) 

21,000 (4) 

20,548 ( 4) 

25,785 (5) 

14,890 (5) 

204,816 (34) 

Obs. (Yield Spread) 
116,147(1:3) 

27,848 (4) 
30,104 (6) 

21,000 (4) 

20,.548 ( 4) 

30,942 (6) 

15,581 (6) 

262,170 (43) 

Source: EconuJin 



Figure 3.2: A Historical View of US (1,10)-year Yield Spread 

U:5 (1-yeat: and 10-yeat:) Y1eld Spcead 
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According to a number of empirical studies on yield spread and the economic 

cycles, the historical yield spread data appear to contain some predictive power for the 

business cycle in many countries, and seem to suggest that each inversion of the bond 

yield curve tends to precede an occurrence of economic recession. Harvey ( 1991), 

for example, reports that the US yield spread provides warnings for the economic 

recessions in 1973 and early eighties, and in various out-of-sample tests. Estrella 

and Hardouvelis ( 1991) also find the yield spread has predictive power for cumulative 

changes in the real output for up to 4 years and recession 5 to 7 quarters ahead. Hu 

(1993), Davis and Henry (1994), Estrella and l\tlishkin (1998), Bernard and Gerlach 

(1998) and Kanagasabapathy and Rajan (2002) have all provided empirical evidence 

on the predictive power of the yield spread on the real economic output in a number 

of countries, such as UK, Germany and India. 

To illustrate, Figure 3.2 shows the US government benchmark ten- and one-year 

bond yield spread since 1962. A positive spread implies an upward sloping term 

structure of bond yields while a negative spread describes a downward sloping terrn 

structure. It is noticeable that the spread is quite volatile over time, which is contrary 

to the assumption of constant yield curve spread. There were six major occasions 

where the spread is negative (not including the current one in 2006), in year 1967, 

1969, 1973, 1979, 1989 and 2000. If we match the dates in which these negative 

spread occurred and the economic cycles, the spread seems to coincide with the onset 
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of economic downturn. 11 

Given this attractive convergence and partially predictable property of yield spreads, 

is it possible to trade profitably on this pattern consistently over time? The answer 

is probably no. This is simply because such co!1vergence trades between yields of 

different maturities are risky. These trades do not have the same risk profile as risk­

less arbitrage. For example, suppose the 1- and 10-year US Treasury yield spread 

is currently at 2 percent. Historical data tells us that such a steep yield curve will 

revert to near zero percent level at some point in the future, as shown in Figure 

3. 2. However, before the spread tightens, it may widen to 3 percent, as it occurred 

in 1992 and 2002. A converging spread trade involving a long position in 10-year 

sector and a short position in 1-year sector will thus incur large capital losses in the 

short-term. Over a the long period of time, the spread trade may be profitable, but 

in the short-run, the trader may have to liquidate the positions before the gains are 

reaped, especially when the positions are highly leveraged, as Jay Ritter (2002) com­

ments, "Being r-ight in the long T'Un is no consolation 'if you lost ever·ything in the 

short-run. "12 Leverage in yield spread trading constitute a critical component for a 

spread trader or a hedge fund. Fixed income spread traders typically make use of high 

leverage (with collateral known as hazr-cut) to amplify their returns. However, in the 

event of extreme market turbulence, such as the 1998 Russian default episode, such 

high leverage can destabilize the orderly liquidation of spread positions, especially 

when a large proportion of traders have similar risk exposures. Hence, the timing of 

the spread trades is very important. Perhaps technical analysis of the spread can aiel 

traders in initiating spread trades. 

3.4.2 Sampling Conditional and Unconditional Bond Returns 

Returns are an important part in our investigation of the effectiveness of technical 

charts. In LMW and Dawson and Steeley (2003), the conditional returns of the 

stock prices are measured once a chart patten is detected using the return formula.: 

In (_1!!_). However. this is not possible here because we do not have the associated 
Yt-l · 

price series for the benchmark bond yield. Rather, we utilized the following relation-

ship between the change in bond yidd and the modified duration D* to obtain the 

bond returns: 

BY b.P • 
'l"t =- = b.y X D X ( -1) p ( 3.19) 

11 One can refer to the dates on the US business cycle expansions and contraction provided hy the 
National Bureau of Economic Research (NBER) found in www.nber.org. 

12 Readers may realize that this situation is aptly applicable to arbitrage activities as well. 
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where b.P = P1 - Pt.-1 is the change in bond price and b.y = y1 - y1_ 1 is the change 

in bond yield from time t - 1 to t. 6
: is the percentage bond price change, taken to 

be the bond return rfY at time t. (For more details. see Appendix II) Effectively, the 

bond yield is the exogenous variable that drives bond returns. Because of this fact 

we can apply the charting algorithm to the bond yield rather than the bond price. 

Since yield spread trading is based on the assumption that two sections of the 

yield curve exhibit non-parallel movements, either diverging (steepening yield curve) 

or converging (flattening yield curve) over time, wheu a trader forecasts that the 

spread between the long·- and short-end of the yield curve will diverge further in the 

future, a long spread position is established by buying the shorter maturity bond and 

selling the longer maturity bond to lock in on the yield spread. On the other hand, if 

the trader forecast that the spread will tighten in the future, a shoTt spread position 

is entered by selling the longer maturity bond and buying the longer maturity bond. 

Arguably, this yield spread reflects the market's credit situation and the required 

bond risk premium. A yield spread portfolio requires that both positions are duration­

neutral or dollar-value of a basis point (DVOl) neutral so that the spread portfolio is 

not expose to the level of the yield curve. 

Thus, the bond yield spread portfolio shall include two positions with opposite 

weights. The conditional portfolio return is a linear combination of the two weights 

assigned to the long and short position, given by: 

.,.YS _ 'LV TBY1 + 'W .,-BY2 t - 1 t 2 I (3.20) 

where rfY 1 and rfY2 are given by the previous equation, representing the bond return 

from each segment of the portfolio multiplied by the weight. While spread trades may 

entail less market risk than outright directional trade, such undertaking still expose 

traders to the slope factor of the yield curve. To maintain an equal dollar value of 

both positions so that this portfolio is insensitive to the level of yield curve, the trader 

has to adjust the portfolio so that it is duration-neutral. For a long spr-ead position, 

the weights for (w 1 , w2 ) are ( +w1 , -w2 ) since the trader is betting on the divergence 

of yield spread. If a trader enters into a shor-t spread position, the weights (w1 , w 2 ) 

will have signs ( +w1 , -w2 ). To ensure that the spread portfolio is neutral of the 

direction of the bond yield, the weights are adjusted using the duration of the short 

and long segment of the portfolio. 13 

13For example, suppose the duration of the 2-year and 10-year bond are 1. 7 and 6.8 respectively, 
and a long spread strategy is initiated. That is, buy 2-year bond and sell 10-year bond. To ltlaintain 
the same return from each bond following a parallel shift in the yield curve, the bond with larger 
duration will have a smaller weight while the bond with s1t1aller duration will have a larger weight. 

110 



After applying the nonparametric chart algorithm to each yield data, we· have 

twelve sets of conditional yield returns upon detection of each chart pattern. For 

each bond yield and yield spread series, we also construct the nncondit·ional yield 

returns and compare them to the conditional yield returns. To make comparison 

easier across different markets, both the conditional and unconditional yield returns 

are standardized by subtracting the mean and dividing by the standard deviation: 

T. - Mean(r ) t,f. u 

S.D.(Ti t) 
(3.21) 

where the mean and standard deviation are computed for each individual yield series. 

lVIoreover, to increase the power of the statistical tests, we join all the bond yield and 

bond yield spread series for the information tests describe in the next section. 

3.4.3 Information and Statistical Tests 

To conclude whether chart patterns contain any particular information compared to 

the unconditional yields returns, we follow the procedure proposed by LMvV, who 

advocated the goodness-of-fit test and the Kolmogorov-Smimov test. The null hy­

pothesis for these tests is that if chart patterns are informative, conditioning on them 

would alter the empirical distribution of the bond returns. On the other hand, if the 

information contained in the pattern has been incorporated into the returns, then the 

normalized conditional and unconditional bond returns should be similar. 

For the goodness-of-fit test, the procedure is to compare the quantiles of the 

conditional honrl. returns with their unconrl.itional counterparts. The first step is to 

compute the deciles of unconditional returns and tabulate the relative frequency (ii of 

conditional returns that fall into decile j of the unconditional returns, j = 1, ... , 10: 

6 J 

Number of conditional bond returns in decile J 

total number of conditional bond returns 
(3.22) 

The null hypothesis is that bond returns are independently and identically dis­

tributed and thus the conditional and unconditional bond returns distribution are 

identical The corresponding; goodness-of-fit test statistics Q is given by: 

Vr(Jj- 0.10) ""'N(0,0.10(1- 0.10)) (3.23) 

To see t.his, assnme a posit.ive shift of D.y = 0.1 and by equation (3.19), the return for 2-year and 
10-year bonds is -0.17 and -0.68 respectively. Substituting these two components into equation 
(3.20), equate it to zero and use w 1 + w2 = l.O, the weight for 2-year bond and 10-year bond is 0.80 
and 0.20 respectively. This means that four-fifth of the capital is invested in the 2-yeai bond and 
one-fifth in 10-year bond. In other words, buy four units of 2-year tor every unit. of 10-year bond 
sold. The ouly exposure of this portfolio is uon-parallel shifts of the yield curve. 
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Q 
10 ( )2 ~ T1 - 0.10T 2 

L..... 0.10T rv X9 (3.24) 
j=l 

where nj is the number of observations that fall in decile j and the T is the total 

number of observations and ( 4.13) is the asymptotic Z-values for each bin. 

For the Kolmogorov-Smirnov test, the statistical basis is derived from the cumu­

lative distribution function F1(z) and F2 (z) with the null hypothesis that F1 = F2 . 

Denote the empirical cumulative distribution function FJ ( z) of both samples: 

, 1 T; 

FJ(z) = T ~ I(Z;k ~ z), i = 1, 2 
l k=l 

(3.25) 

where J(-) is the indicator function and (Zit)f~ 1 and (Z2t)f~ 1 are the two liD samples. 

The Kolmogorov-Smirnov statistic is given by the expression: 

I = (3.26) 

and the p-values are given by: 

CXl 

Prob(l ~ x) = ~ (-1)kexp(-2k2x2
), :r > 0 (3.27) 

k=-oo 

Under the null hypothesis, the statistic 1 should be small. Au approximate Cl"-level 

test of the null hypothesis can be performed by computing the statistic and rejecting 

the null if it exceeds the upper lOOath percentile for the null distribution. (See Press 

et al. (2002, Section 14.3) and DeGroot ( 1986)) 

Apart from the Goodness-of-fit and Kolmogorov-Smirnov test, a simple t-statistic 

tests whether the conditional mean returns are statistically significant different from 

zero. The formula for the test-statistic is: 

z 
t = -----== 

ajffz 
(3.28) 

where z is the mean normalized conditional returns, a is the standard deviation of 

the normalized unconditional returns, and Tz is the number of observations for the 

conditional n:turns z for a particular chart pattem. We apply equation (3.28) to all 

bond yield and bond yield spread mean returns. 
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3.4.4 Conditioning on Moving Average 

Moving average is one of the most frequently cited technical indicators that has 

predictive value for asset prices. (See, for example, Brock, Lakonishok and LeBaron 

(1992), Levich and Thomas (1993) and Chapter 2) Therefore, for each chart pattern, 

we will compute the 45-day moving average and include it as a further conditioning 

variable. The total number of chart patterns is thus separated into two categories, 

one where the last extrema em is Rbove the moving average and the other below the 

moving average. Including moving average as an indicator has a further advantage 

because we can use it to filter ·incorrect' patterns detected by the kernel regression. 

For example, to quantify a Head-and-Shoulders Top, the formation must at least 

be above the 45-day moving average since it is a 'top', while a Head-and-Shoulders 

Bottom must be at least below the 45-day moving average since it is a 'bottom' 

pattern. 

3.4.5 Simulation Using 1-Factor Vasicek Model 

In addition to the raw bond yield data, we also apply the smoothing algorithm to 

simulated prices for comparison purpose. In particular, we conduct simulation trials 

using the Vasicek (1977) yield curve model, a popular and widely usedrnoclel in pricing 

fixed income derivatives. Vve choose this model because it is simple and intuitive. By 

its Gaussian property, the Ornstein-Uhlenbeck process is able to generate negative 

values, which models the yield spread better then the square-root model. 14 The 

Vasicek model is given by: 

cf:yt = >.(1-L - Yt )cit + O"dWt (3.29) 

where H11. is the standard Brownian motion and Yt is the yield at timet. The parameter 

).. governs the speed of mean reversion to the long run equilibrium 1-1 and O" is the 

volatility parameter. Given the discrete time counterpart to model (3.29) is: 

where ft is the standardized Gaussian white noise. The maximum likelihood estimates 

of parameters (fL, >., O") are: 

{I (3.30) 

14The square-root process is: dyt = ;>..(p- y1 )dt + (}JYtdW1 . See Cox, Ingersoll and Ross (1985) 
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p 

a 

- log(p) 

_ ( 2log p ) ~2 
1 - (p )2 

(3.31) 

(3.32) 

where f) is the sample mean and T is the number of observations over t = 1, ... , T. 

(See, for example, Gourieroux and Jasiak (2001, Section 12.1) or Brigo and Mercurio 

(2001, p.54)) 

The value of each parameter is estimated for each yield series. (The full results 

are given in Appendix I (Table 3.12)). A causal comparison between the bond yield 

and the bond yield spread series shows some interesting characteristics. First, the 

parameter J.L for bond yield is much larger than yield spread. This is expected since 

the level of bond yields is higher than yield spread. Second, a comparison of the 

parameter /\ shows that it is larger for yield spread than for bond yield. This is 

intuitive because yield spreads tend to exhibit more reversals than bond yield, and 

as a result, the speed to which yield spreads move toward their mean value is faster 

than bond yield. Lastly, a comparison of a between the bond yield and yield spread 

indicates that the volatility for bond ,yield is larger than yield spread. 

Given these parameter values, an independent price series is simulated for each 

bond yield and bond yield spread series. Next, we apply the pattern recognition 

algorithm to detect the occurrence of each of these technical patterns in each simulated 

series. We do this procedure only once for each series since the purpose here is not 

to construct a distribution of conditional yield returns but to provide a comparison 

between the simulate series and the actual yields. 15 

3.4.6 Graphical Examples of the Nonparametric Kernel Chart­

ing Algorithm 

This section presents some graphical examples of the technical chart patterns defined 

in Section 3.3.4. The nonparametric local polynomial regression is applied to the US 

(10-1)-year government benchmark bond yield spreads over period 1962-2006. The 

15The primary reason for not conducting more simulation is because of time constraint. To 
complete a cycle of simulating and applying the nonparametric kemel regression to 240,000 data 
takes approximately 48 hours in Afathematica. Hence conducting 1000 simulations is not feasible. 
To a large extent, this problem also exists in LMW and Dawson and Steely's (2003). 
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fixed-length window for each pattern is 45 trading days, with a requirement that 

the last extrema em must occurred on clay cl - 1 before we measure the conditional 

bond return. For all chart patterns, the kernel bandwidth parameter value is fixed 

at he\/ x 0.45. The solid line in each figure is the actual bond yield spreads, and the 

clashed line is the kernel estimate f~p( ·). 

A casual inspection of the pictorial representations show son:1e matching properties 

between the technical pattern and the nonparametric kernel regressions. However, 

these are merely illustrative examples and not meant to be conclusive. As a Inatter 

of fact, one critical weakness of the nonparametric estimators shown in these figures 

is that the extrema of the smoothed prices and the actual yields do not coincide. 16 A 

number of the extrema of the local polynomial regression are situated at one or more 

days away from the turning point in the actual bond yield. As a result, even though 

t~e yields obtained from the dates at which these extrema ( em-4: em-:>, ern-2, em-1> em) 

satisfy the chart pattern conditions, they may not represent the actual turning point. 

To ameliorate this problem, one can (i) tighten the definitions of the chart patterns, 

or (ii) reduce the bandwidth parameter value further. The consequence of the first 

action is that a lesser number of pattern count is detected, which is detrimental to 

our statistical tests since the power of the tests would be diminished substantially. 

The result of the second remedy, on the other hand, greatly reduces the advantage of 

the smoothing methodology advocated in this chapter, since there is little differences 

between the smoothed yields and the actual yields (even though the local peaks of 

both the smooth and actual yield now match). Given the considerable needs to 

balance both :-;ides of the argument:-;, we ::;hall use the original algorithm specified in 

Section 3. 3. 4. 

16The same problem exists in LMvV's estimation. If oue refers to the graphic examples given in 
Llv!W closely, not all extrema of the kernel regression occur 011 the same day as the actual closing 
price. J:<"'urthermore, it is uoticeable that the last extrema of the Triangle Top (p.l723) and Double 
Top (p.l725) does not occur on day 35 (vertical line) in the 35-day rolling window, which is contrary 
to their stated algorithm em page 1719 " ... we rcq·u-ire that the final cxt·reum.m that completes a pattcr·n 
OCC'UT'S on day 35." 
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Figure 3.3: An Illustration of Head-and-Shoulders Pattern. The thin line is the actual 

bond yield while the dotted line is the Local Polynomial Regression. The empty circles 

are the last five extrema which satisfied the Head-and-Shoulders conditions. 
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3.5 Empirical Evidence 

3.5.1 Technical Chart Patterns In Bond Yields 

This section presents the ernpirical results from the bond yield data. Table 3.2 and 3.3 

display the pattern count from applying the N adaraya-vVatson and local polynomial 

regression respectively. The first row is the total sample count, and the second row 

is the results from the simulation from Vasicek model. The third and fourth row are 

counts where em is above the 45-day moving average ( (/) MA) and below moving 

average ((~) MA) respectively. 

The total sample count from applying the N adaraya-Watson regression shows that 

the most common chart pattern is Rectangle, with more than 3000 recorded, followed 

by Head-and-Shoulders and Double, with more than 1000 occurrences each. The rest 

of the chart patterns have counts in between 600-800. Interestingly, this result is 

diffP-rent to Ll\1\rV, who find the Donhk chart pattP-rn to bP- the most obsP-rvP-d in 

US equities, and Dawson and Steeley (2003) find Head-and-Shoulders to be the most 

observed pattern in the UK equity market. The country which displays the least 

number of chart patterns is Japan, with has only 856 count aggregated across all 

patterns, a substantially lower count than countries which have a similar number of 

raw data, such as Australia and Canada. \Vhen aggregating the bond yield series 

into three maturity brackets (short, medium and long), the most observed pattern 

count is still Rectangle, followed by Head-and-Shoulders and Double pattern, for all 

three maturities. When we separate the pattern count by the 4.5-day moving average, 

the difference with between (/) MA and (~) IVIA, the Double pattern and Triple 

pattern show a stark dift'erence, as we find nearly all Double and Triple top patterns 

lie above the moving average, and nearly all Double and Triple bottom patterns lie 

below the moving average. This shows that the moving average may have some use 

in differentiating top and bottom chart patterns. The only top pattern has a lower 

count with (/) 1viA is the Triangle pattem. 

A further comparison of the number of chart pattems between the actual bond 

yields and simulated Vasicek yields shows that the total pattern count recorded from 

Vasicek simulation is higher than actual series for UK, Germany, Japan and Australia. 

For example, the number of patterns for JapaJ1 from the Vasicek series is nearly four 

times as many as the actual yields. One possible reason for the low patteru count in 

Japan is due to the level of bond yields. During the late nineties, the Japanese rnone­

tary authority has maintained the zero-interest rate policy for many years. With the 

bond yields languishing at near zero percent for such a considerable length of time, 

the consequence was few bond yields movements and thus no formation of chart pat-
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temsY For US, Canada and Hong Kong markets, the pattern count from the actual 

yield is higher than the simulated Vasicek series. But whether this observation may 

carry the implication that technical traders are more active in these markets is difficult 

to conclude since we only conduct only one simulation from the Vasicek model. But 

having said that, our results do contrast significantly from LMW's estimation on the 

US equity markets, where they find that Head-and-Shoulders, Rectangle and Double 

chart patterns have much higher count than simulated geometric Brownian motion. 

This differem:tc, howevtcr, mav mean thctt rhart tracltcrs artc mortc artivtc in US tcquitv 

markets than in bond markets. For all simulated Vasicek series, the most frequently 

detected chart pattern is still the Rectangle pattern, followed by Head-and-Shoulders 

and Double chart pattern. 

Further analysis between the results in Table 3.2 and Table 3.3 shows an interesting 

difference, in that the aggregate pattern count for thf~ local polynomial rtcgression is 

always higher. For example, the total chart pattern count for Nadaraya-vVatson 

regression is 16,929, as compared to 21,334 for local polynomial regression. This 

implies that the boundary bias between the N adaraya-vVatson and local polynomial 

regression is important and has consequential results in matching chart patterns. 

\iVhen this boundary bias is reduced, more extrema are found near the right boundary 

to which we can identify the chart patterns, which contributed to the higher count. 

Similar to Nadaraya-\Vatson regression, the most frequently observed pattern for local 

polynomial regression is Rectangle, followed by Head-and-Shoulders and Double. The 

next step is to analyse whether higher pattem counts will provide more conclusive 

evidence on the informativeness of chart patterns. 

To provide further intuitive results about the occurrence of the chart patterns 

across time and across the level of bond yield, Figures 3.5.1 provides two exarnples 

where the chart patterns are detected. Subfigure (a) shows the US 1-year bond yield 

while subfigure (b) shows the 2-year Japanese bond yield. Each empty circle signifies 

that one of the twelve chart pattems has occurred at that particular time. 18 In 

:mbfignn~ (a), it IS noticeab!f~ that the distribntion of patterns is not conctcntrattcd 

in any subperiods. The circles are fairly distributed across time periods and across 

yield levels, with possible exception during the period 1979-1981. On the other hand, 

subfigure (b) highlights a number of interesting features. One, the distribution of 

17Tlitc lat.e nineties wit.nessed ct series of failures of .Japanese hnancial institutions, such as the Long­
Tenu Credit Bank and Nippon Credit Bank. As a result, i'vloody dowugraded Japan's sovereign credit 
rating from AAA in November in 1998 ami fmthcr clowugracles iu September 2000 ami Novelllber 
2001. These events prompted the Japanese central bank to maintain exceptionally low policy rate 
uutil receutly. 

18 .We omit t.he rest. of the bond yiRlcls clne t.o insnfficient. spRee. 
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chart patterns do cluster more than the US bond yield, especially around 1994 and 

200S. Two, the level of bond yield may have some dftcds on thP occurrence of 

chart patterns. When the yields are extremely stable at a particular level for a.n 

extended time period, as shown by .Japan during 2001-2004 at zero percent, this 

implies that there is a lack of bond yield movements, which in turn means that 110 

chart pattern can be formed at all. Three, when bond yields are experiencing a 

rapid movement in one direction (trending), this reduces chart formation which fit 

our pattern definition in Section 3.3.4, which is seen dcarlv in tlw US market during 

1979-1981 and Japan during 1991, where few circles are recorded. Thus, the overall 

observation here is that when yields are very stable at some particular level, or very 

unstable over a relatively short time, it is difficult for chart patterns to form and 

hence our smoothing algorithm cannot detect them. In fact, when bonds yields are 

trending, a trend-following technical strategy might be a better choice than chart 

patterns, as we have discussed in Chapter 2. 

Table 3.4 and 3.5 display the summary statistics of the one-clay conditional yield 

return following the conclusion of a chart pattern for the two nonparametric regres­

sions methods respectively. The asterisk (*) besides the mean return signifies that 

the retum is significantly differe11t frow zero. The test statistic is giveu by equatio11 

(4.18). The mean and standard deviatio11 of the unconditional returns have all been 

normalized to zero and one respectively. A comparison of the normalized conditional 

returns to the unconditional counterpart show some differences, but these differences 

seem to be randomly distributed across the chart patterns. For example, the HSTOP 

pattern is statistically different to zero for US and UK markets, but insignificant 

for the rest of the markets. Seven out of twelve chart patterns exhibit statistically 

significant mean return from the Nadaraya- \iVatson regression. When we have more 

conditional returns, as provided by local polynomial regression, there are now only 

five significant mean returns. So it seems that when a better technique is used to 

identify chart patterns (more sarnple count), the normalized mean returns are found 

to be less significant. 

Furthermore, the signs of the mean returns do not conform to the expected sign. 

All top patterns are assumed to produce positive returns and bottom patterns are 

suppose to exhibit negative returns, since bond yields are inversely related to bond 

pnces. An examination of the signs of mean returns across different countries and 

maturities does not yield any systematic pattern at all. For example, the rnean 

rd.urn of t·hc Head-and-Shoulders pattem is positively significant for US and UK, 

but negative for Australia market, highlighting the differences in the power of chart 

patterns across different bond markets. Conditioning on the moving average may not 
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improve the results for both N adaraya-Watson and local polynomial regressions. For 

example, the local polynomial regression result in Table 3.5 shows the UK BTOP, 

RTOP and RBOT pattern has significant return for both(/) MA and(~) MA, while 

few of these patterns are significant in the US. But interestingly, we find that there 

are seven significant mean returns for (/) J\!IA, which are HSTOP, TTOP, RTOP, 

HSBOT, BBOT, TBOT and RBOT. This result is consistent with our expectation 

if only the top pctttems are significant, as all the top patterns should be above the 

45-day moving average. But what is perplexing is that the bottom patterns (HSBOT, 

BBOT. TBOT and RBOT) are significant as well. This implies that bottom patterns 

that are already above the moving average continue in their upward trend while the 

bottom patterns below the moving average exhibit weaker reversals. The former 

patterns thus generate larger and statistically negative bond returns. 

Table 3.6 and 3. 7 presents the information test results for N adaraya-vVatson and 

local polynomial regression respectively. Panel A of both tables is the goodness-of­

fit Chi-square test. The null hypothesis here is that each decile should contain an 

equal percentage of conditional yield return (10.0 percent). The last column is the Q­

statistics and the numbers in parenthesis are the asymptotic z-values for each decile 

and p-value for the Q-statistics respectively. Panel B is the Kolmogorov-Smirnov 

statistics for each chart pattern. The numbers in parenthesis are the p-values for 

each /' statistic, given by equation ( 4.17). 

The overall results from both regressions provide mixed support for the technical 

charts. The number of chart patterns that reject the goodness-of-fit test is seven and 

eight for N adaraya-Watson and local polynomial regression respectively. The Rectan­

gle pattern has the largest Q statistic. The results from local polynomial regression 

show only a limited improvement in the information tests, as evident from the p­

values. For the Kolmogorov-Smirnov test, only five and six chart patterns reject the 

null hypothesis for N adaraya-vVatson and local polynomial regression respectively, a 

lower number than the goodness-of-fit test. 19 vVhen examining the results for inch­

vidual countries, it seems that there are no systematic pattern that bond traders can 

exploit, since most of the p-values are more than ten percent for most chart patterns. 

One possible exception maybe the Head-and-Shoulders Top (HSTOP) pattern in the 

US bond markets, which appear to reject both the goodness-of-fit and Kolmogorov­

Srnirnov null hypothesis, and for both Nadaraya-vVatson and local polynomial re­

gressions. The maturity of bond yields does not seem to produce any systematic 

results. Similarly, conditioning on moving average may not improve the results in 

any dramatic wav, as shown hy thP insignificcmt p-values. 

19-99.00 implies that less tha.H three pattems are detected. 
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In summary of the results so far, the tentative conclusion seem to point to the fact 

that chart patterns do not provide return distribution that is systematically different 

to the unconditional counterpart. 

Does the lack of statistical significance from our tests implies that technical chart­

ing contains no incremental information in the bond yields series for bond traders? 

Technica.l analysts may disagree with our results here. Their disagreement is largely 

based the mechanization procedure used to identify technical chart patterns. Tradi­

tional technical analysts have argued strenuously that a mechanical procedure, such 

as local polynomial regression, does not capture fully the spirit of cha.r-tisrn since these 

algorithms cannot acquire the sophistication that human cognitive ability possesses 

in recognizing complex patterns, as Edwards and Magee (1966, p.304) emphasized: 

... [T] he stock market are driven by human emotion, as perhaps the most 

important of many variables influencing price. An human emotion and 

behaviour, its manic and its depressive elements, have not yet been quan­

tified .... The fact the chart analysis is not mechanizahle is important. It is 

one reason chart analysis continues to be effective in the hands of a skilled 

practitioner. Not being susceptible to mechanization, counter-strategies 

cannot be brought against iL except in situations whose meaning is ob­

vious to everyone, for instance, a large important Support or Resistance 

level or a glaringly obvious chart formation. 

They may have a valid point, as we have shown that when bond yields are movmg 

rapidly or very stable, few chart patterns can be captured by the nonpara.metric re­

gressions. Furthermore, our algorithm is constrained by several parameters, including 

the fixed-window of d = 45 days and the bandwidth parameter hcv, vvhich may be 

unsuitable in discovering chart patterns. For example, some chart patterns can take 

more than <15 days to form. There are also limitations as to what the nonparametric 

regression can capture. For example, Bulkowski (2005) has described four possible 

types of Double Top (DTOP), whereas the nonparametric regression here can only 

capture one type. 

To alleviate these weaknesses, J egadeesh ( 2000) suggests to let the corn pu ters to 

search for the optimal chart pattern from the historical data. This is akin to the 

optimization procedure used by technical system traders to find the Lest parameter 

for the trading system, as discussed in Chapter 2. This may not be as useful as 

investors had hoped since many genetic algorithm studies show that historically opti­

mized strategy yield no better predictive results. See, for example, Neely, Weller and 

Dittmar (1997), Allen and Karjalainen (1999) and Neely and Weller (2003). Return­

ing to the point about vvhether using statistical tools can mimic humans' extensive 
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capability in recognizing chart patterns, it remains a work for the future to develop 

computer algorithms that can fully match the overall cognitive capabilities of human 

in recognizing complex technical chart patterns. 
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Table :3.2: Technical Pattern Count for Bond Yields (Nadara.ya-Watson Kernel Regression). Row 1 and 2 
are the number of patterns detected from the actual bond yield and Vasicek simulation respectively. Row 
3 and 4 are the number of patterns detected which is above/below the 45-cla.y Moving Average indicator 
respectively, shown by (/) MA and (~) MA. Column 3-14 present the results for each of the 12 different 
chart patterns respectively. 

Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 
All Bond Yields 

Actual 16929 1841 634 7:36 3200 1180 645 1760 762 666 :3552 1237 716 
Vasicek 19962 2092 1063 976 3735 1350 751 2114 1066 933 :3735 1458 689 
(/) MA 7846 1100 572 227 199:3 1177 638 582 54 428 1071 0 4 
("'.) MA 9083 741 62 509 1207 3 7 1178 708 238 2481 1237 712 

US, All lVIa.turities 
Actual 5520 599 187 221 1090 442 222 605 223 186 1125 389 231 
Vasicek 5183 .)4(i 375 334 793 368 179 549 359 317 793 410 160 

f-' 

(/)MA !\.;) 2649 :360 170 75 684 
00 

441 219 210 21 11:3 3.5.5 0 1 
("'.) !VIA 2871 239 17 146 406 1 3 395 202 73 770 389 230 

UK, All Maturities 
Actual 2909 328 84 113 603 162 88 302 101 107 703 186 1:32 
Vasicek 3015 :312 158 13:3 578 193 102 352 148 110 604 224 101 
(/) MA 1344 209 77 36 387 162 87 112 4 66 203 0 1 
("'.) MA 1565 119 7 77 216 0 1 190 97 41 500 1:'16 131 

Germany, All lVIa.turities 
Actual 2496 299 83 105 476 146 92 275 110 89 534 186 101 
Vasicek 3616 389 149 122 805 241 149 :365 138 1:34 767 23-5 122 
(/) MA 1119 189 66 29 279 146 92 87 9 62 160 0 0 
("'.) MA 1377 110 17 76 197 0 0 188 101 27 374 186 101 

Japan, All Maturities 
Actmd 858 75 64 63 110 70 31 76 71 61 140 73 24 
Vasicek :~226 326 98 108 707 179 126 :358 112 90 7-58 207 157 
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( continned) 
Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 
(/) MA 402 41 60 24 67 68 31 23 4 39 43 0 2 
(\.) MA 4.56 34 4 39 43 2 () 53 67 22 97 73 22 

Australia, All Maturities 
Actual 1863 201 70 42 319 145 95 178 101 60 419 146 87 
Vasicek 2226 251 93 97 431 148 99 232 114 86 438 172 6r:: 'J 

(/) MA 892 129 67 11 214 14.5 93 60 4 4:3 126 0 0 
(\.) MA 971 72 3 31 105 0 2 118 97 17 293 146 87 

Carmela, All Maturities 
Actual 2289 2.57 93 126 433 144 77 225 110 108 445 172 99 
Vasicek 2128 233 115 112 372 182 8r:: ;) 217 126 121 332 164 69 
(/) MA 1004 131 83 31 267 144 76 (jf': ;) 8 71 128 0 0 
(\.) MA 1285 126 10 95 166 0 1 160 102 :37 317 172 99 

Hong Kong, All l'viaturitics 
>--' 
1'0 

Actual 994 82 53 66 169 71 40 99 46 55 186 85 42 
(!:) Vasicek 568 :{5 75 70 49 39 11 41 69 75 43 46 15 

(/) MA 436 41 49 21 95 71 40 25 4 34 56 0 0 
(\.) MA 558 41 4 45 74 () () 74 42 21 1:30 85 42 

Short Maturity Yields ( 1-, 2- aud 3-year) 
Actual 6156 623 281 301 1136 444 227 639 326 284 1230 432 233 
Vasicek 7415 722 423 415 1331 494 280 754 433 308 1334 553 278 
(/) MA 2850 363 251 94 689 44:3 221 215 27 181 :~64 0 2 
(\.) MA 3:306 260 30 207 447 1 6 424 299 103 866 432 231 

}.'fedium Maturity Yields (5- and 7-year) 
Actual 6048 662 201 278 1175 403 219 637 245 229 1298 440 261 
Vasicek 7043 772 382 333 1313 493 254 7()0 383 316 1288 518 231 
(/) MA 2785 410 179 84 740 403 219 208 15 148 377 () 2 
(\.) MA 32G3 252 22 194 4:)5 0 0 429 230 81 921 440 259 

Long Maturity Yields ( 10- and 30-year) 
Actual 4725 556 LS2 157 889 :33:3 199 484 191 153 1024 365 222 
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f-' 
C;.:i 
0 

Sample 
Vasicek 
(/) MA 
("") MA 

Total HSTOP 
5.504 598 
2211 327 
2514 229 

BTOP TTOP RTOP 
258 228 1091 
112 49 564 
10 108 325 

(continued) 

DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 
363 217 600 250 219 1113 387 180 
331 198 159 12 99 330 0 0 
2 1 325 179 54 694 365 222 



Table :3.3: Technical Chart Pattern Count for Bond Yields (Local Polynomial Kernel Regression) 

Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 

All Bond Yields 
Actual 21334 2297 831 893 4016 1483 818 2215 998 834 4462 158.5 902 
Vasicek 25178 2645 1380 1127 4693 1724 968 2639 1385 1139 4668 1911 899 
(/) MA 9910 1368 750 287 2526 1479 810 734 75 537 1340 0 4 
('\.) MA 11424 929 81 606 1490 4 8 1481 923 297 3122 1585 898 

US, All Maturities 
Actual 7025 749 246 269 1379 540 283 757 306 2:35 1444 5Hi 301 
Vasicek 6462 666 476 385 989 461 239 669 468 402 959 542 206 
(/) MA 3356 459 221 92 882 539 279 261 27 140 454 () 2 
('\.) MA 3669 290 25 177 497 1 4 496 279 95 990 51G 299 

UK, All Maturities 
Actual 3680 407 108 137 771 214 117 362 143 143 871 242 165 

....... 
w Vasicek 3784 ,..... 401 200 160 725 240 133 429 195 131 739 294 137 

(/) MA 1700 256 99 45 489 214 11G 129 6 92 254 0 0 
('\.) MA 1980 151 9 92 282 0 l 2:33 137 51 617 242 165 

Germany, All Maturities 
Actual 3075 373 117 125 597 184 129 :n4 137 103 653 224 119 
Vasicek 45:3() 477 189 144 997 295 186 453 176 158 973 317 165 
(/) MA 1412 22:3 94 40 3G4 184 129 99 12 70 197 0 0 
('\.) MA 1663 150 23 85 233 0 0 215 125 :33 456 224 119 

Japan, All Maturities 
Actual 1101 95 80 77 136 88 39 106 96 78 170 104 32 
Vasicek 4105 421 123 115 894 231 161 459 142 107 974 277 201 
(/) MA 519 57 75 30 82 86 39 36 9 49 54 () 2 
('\.) MA 582 38 5 47 54 2 () 70 87 29 116 104 30 

Australia, All Maturities 
Actual 2387 256 104 58 416 182 112 236 128 74 525 184 112 
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(continued) 
Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 
Vasicek 2838 329 132 114 551 202 124 288 149 115 537 210 87 
(/) MA 1138 161 99 15 277 181 110 78 7 53 157 0 0 
(",) MA 1249 95 5 43 139 1 2 158 121 21 368 184 112 

Canada, All !Vlaturities 
Actual 2810 308 115 142 510 190 9:3 300 129 132 502 203 126 
Vasicek 2728 303 160 129 478 238 109 285 158 138 4:32 213 85 
(/) MA 1248 160 104 37 320 190 92 91 9 88 157 0 0 
(",) MA 1562 148 11 10.5 190 0 1 209 120 44 405 203 126 

Hong Kong, All l\IIaturities 
Actual 1256 109 61 85 207 85 4.5 140 59 69 237 112 47 
Vasicek 7:31 48 100 80 59 57 16 56 97 88 54 58 18 
(/) MA 537 52 58 28 112 85 45 40 5 45 67 0 0 
(",) MA 719 57 3 57 95 0 () 100 54 24 170 112 47 

f-' Short Maturity Yields ( 1-, 2- and 3-year) w 
IV Actual 7745 769 371 365 1404 561 275 807 415 351 1572 547 308 

Vasicek 9333 906 558 472 1656 647 355 970 557 484 1660 718 350 
(/) 11A :3579 442 :3:33 123 859 559 269 267 34 230 460 0 3 
(",) MA 4166 327 ~}8 242 545 2 6 540 381 121 1112 547 305 

Medium Maturity Yields (5- and 7-year) 
Actual 7626 836 264 328 1461 505 282 805 ~{31 292 16:36 559 327 
Vasicek 8989 980 503 383 1682 640 340 9:{3 014 380 Hi21 696 :n7 
(/) MA 3516 .511 236 99 923 .505 282 267 27 187 478 0 1 
(",) MA 4110 325 28 229 538 0 0 538 304 105 1158 559 326 

Long Maturity Yields ( 10- and 30-year) 
Actual 5963 692 196 200 1151 417 261 603 252 191 1254 479 267 
Vasicek 6856 759 :319 272 13.55 437 273 736 314 275 1387 497 232 
(/) MA 2815 415 181 65 744 415 259 200 14 120 402 0 0 
(",) MA 3148 277 15 135 407 2 2 403 238 71 852 479 267 



Figure 3.9: Illustrations of the Distribution of Chart Patterns 
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Table 3.4: Summary Statistics of Unconditional and Conditional Bond Returns (Nadaraya-Watsou Kernel 
Regression). Row 1-4 are the first four moments of the normalized conditional mean return. Column 5 
and 6 are the normalized mean return from above/below the 45-day Moving Average indicator. Column 
3-14 are the 12 chart patterns. 

Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 
Returns 

All Bond Yields 
Mean 0.000 O.OS1* -0.006 0.112* 0.068* -0.0:37 -0.0:39 -0.059* 0.067* -0.155* -0.023* 0.005 -0.001 
S.D. ] .00000 0.920 1.033 0.847 0.837 0.839 0.957 0.869 0.958 1.003 0.802 0.866 0.775 

Skew. -0.1375 -0.852 -0.922 -0.218 -0.448 -1.114 -2.198 0.142 0.668 -0.675 -0.172 0.728 -0.641 
Kurtosis 17.4;)59 18.010 10.670 3.073 8.411 9.705 19.S60 6.088 10.640 5.028 3.340 10.800 4.117 

(/) MA 0. 0000 0.055* -0.013 0.145* 0.044* -0.038 -0.047 -0.095* 0.342* -0.221* -0.052* 0.618 
(~) MA 0. 0000 0.044 0.050 0.097* 0.108* 0.44 7 0.739 -0.042 0.046 -0.037 -0.011 o.oo.s -0.004 

US, All Maturities ,__.. 
0.09:3* 0.117* 0.097* -0.068* -0.172* -0.221 * -0.123* w Mean 0.0000 -0.011 -0.040 0.008 -0.021 -0.093 

~ 

S.D. 1. 0000 1. 081 1.054 0.872 0.877 0.843 0.963 0.815 0.970 1.040 0. 771 0.851 0.775 
Skew. 0.2348 -1.712 0.608 0.158 -0.108 -2.525 -2.795 0.147 -0.651 -1.176 -0.274 -0.186 -1.575 

Kurtosis 10.:3536 26.690 8.066 3. 008 10.640 20.500 21.260 2.464 4.540 5.101 4.406 6.607 8.994 
(/) MA 0.0000 0.0961 -0.006 0.117 0.075* -0. 069* -0.177* -0.037 0.419 -0.311 * -0.012 - 0.001 
(~) MA 0.0000 0.0879 -0.067 0.117 0.132* 0.130 0.167* -0.042 -O.o:35 -0.084 -0.026 -0.12:3* -0.094 * 

UK; All lVIaturities 
Mean 0. 0000 0.092* 0.155 0.118 0.112* 0.154* 0.112 -0.087* 0.117 -0.183 -0.067* 0.060 0.034 
S.D. 1.0000 0.817 1. 080 0.984 0.894 0.864 0. 706 0. 762 0.841 1.193 0.807 0.823 0.795 

Skew. 0.1680 -0.14:) -4.025 0.163 -1.010 0.783 -0.156 -0.316 0.569 -1.882 -0.236 0.469 0.139 
Kurtosis 7.4571 1.545 28.080 1.254 9.450 1. 830 0.785 1.487 0. 975 5.151 2.269 1.860 0.314 
(/) MA 0.0000 0.070 0.144 0.445* 0.088* 0.154* 0.110 -0.133* -0.355* -0.373* -0. 1:39* -0.016 
(~) MA 0.0000 0.1:31* 0.286 -0.035 0.155* - 0.276 -0.060 0.136 0.122 -0.038 0.060 O.o:35 

Germany, All Maturities 
l\·Iean 0.0000 -0.009 0.067 0.119* 0.004 -0.185* -0.096 -0.152* -0.008 -0.130 -0.020 0.06:3 -0.02.3 
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(continued) 
Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 

Returns 
S.D. 1.0000 0.849 0.957 0.704 0.770 0.927 0.981 0.888 0.934 0.805 0.778 0.787 0.747 

Skew. -0.3819 -0.256 -0.988 0.008 -0.382 -0.667 0.085 -1.136 0.472 -0.606 -0.202 -0.083 -0.438 
Kurtosis 19.7031 5.010 4.171 0.294 3.289 2.164 0.314 6.076 1. 716 1.092 2.062 1.804 1.890 
(/) MA 0.0000 -0.035 0.094 0.294* -0.037 -0.185* -0.096 -0.245* 0.424 -0.202* -0.050 
("-,) MA 0.0000 0.036 -0.040 0.052 0.062 -0.109 -0.046 0.035 -0.008 0.063 -0.023 

Japan, All Maturities 
Mean 0.0000 0.036 0.010 0.067 -0.018 -0.058 -0.261 0.092 0.074 -0.029 -0.077 0.009 0.242 
S.D. 1.0000 0.827 1.017 0.790 0.711 0.726 1.852 1.063 0.752 0.912 0.619 0.681 0.816 

Skew. -0.5683 -0.109 -0.471 -0.732 -1.164 0 117 -3.261 4.736 0.094 1.311 -0.147 -0.546 -1.270 
Kurtosis 10.1088 3.031 1.471 2.786 7.016 0.070 13.610 32.500 0.094 6.551 2.879 2.469 3.605 
(/) MA 0.0000 0.001 0.038 0.108 -0.021 -0.078 -0.261 -0.159 0.516* 0.086 -0.212* 1.244* 

,__. ("-,) MA 0.0000 0.079 -0.398 0.043 -0.013 0.606 0.200 0.047 -0.235 -0.()18 0.009 0.151 w 
CJ1 Australia, All Maturities 

Mean 0.0000 -0.041 -0.087 0.149 0.048 0.009 0.136 0.045 0.076 -0.144 0.090* 0.070 0.136 
S.D. 1.0000 0.860 ll.S:36 1.085 0.843 0.900 0.943 1.020 1.007 0.986 0.936 0.776 0.901 

Skew. -0.:3079 0.474 0.038 -0.382 -0.887 -0.862 0.076 0.179 -1.117 0.378 0.125 -0.472 0.042 
Kurtosis 5.5083 5.104 0.338 1.875 6.016 3.381 3.522 1062 4.642 2.559 3.084 2.391 1.453 
(/) MA 0. 0000 -0.077 -0.104 0.386 -0.003 0.009 0.095 0.027 -0.012 -0.244 0.026 
("-,) MA 0.0000 0.02:3 0.302 0.065 0.15:3* - 2.0ll 0.054 0.079 0.108 O.ll7* 0.070 0.136 

Canada. All Maturities 
Mean 0.0000 0.037 -0.061 0.015 0.053 -0.055 0.055 -0.154* 0.153* -0.063 -0.076* 0.039 -0.028 
S.D. 1.0000 0.88:3 1.220 0.747 0.805 0.760 0.758 0.978 0.869 0.876 0.884 1.007 0.72:3 

Skew. -0.2826 0.:303 -1.686 -1.357 -0.192 -0.423 -0.108 -0.160 0.133 0.523 -0.168 0.059 -0.893 
Kurtosis 6.9883 1.172 11.710 8.908 4.517 3.344 1.9Hi 1680 1.742 2.651 2.529 1.407 1.461 
(/) MA 0.0000 0.157* -0.089 -0.127 0.06:3 -0.055 0.051 -0.224* 0.349 -0.115 -0.016 
("-,) MA 0. 0000 -0.089 O.H:i6 0.061 0.0:36 0.373 -0.126 0.137 0.036 -0 099 0.039 -0.028 

Hong Kong, All Maturities 
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(continued) 

Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 
Returns 

Mean 0.0000 0.075 -0.179 0.280 0.042 -0.008 0.078 0.074 0.195 -0.249 0.03:3 0.151 0.089 
S.D. ] .0000 0.521 0.894 0.786* 0.664 0.612 0.547 0.651 1.474 1.127 0.564 1.095 0.506 

Skew. -0.9280 0.727 0.411 -0.999 -0.407 0.238 (). 600 0.490 4.141 0.815 -1.261 5.542 0.690 
Kurtosis 110.0890 1.262 3.232 1.926 :3.879 1.299 2.978 3.384 22.040 3.832 5.863 41.360 0.753 
(/) MA 0.0000 0.183* -0.233* -0.157 -0.025 -0.008 0.078 0.215* 0.62~~* -0.209 -0.127 

("") MA 0.0000 -0.034 0.489 0.484* 0.129* 0.026 0.154 -0.314 (l.l Q:3 * 0.151 0.089 
Short Maturity Yields (1-, 2- am! :3-year) 

Mean 0.0000 0.009 0.041 0.093* 0.052* -0.003 0.067 -0.089* 0.065 -0.111* -0.012 -0.027 -0.038 
S.D. 1.0000 0.~60 1.089 0.810 0.718 0.798 0.872 0.836 1.000 0.924 0.71~ 0.907 0.730 

Skew. -0.2170 -2.458 -0.508 -0.1:32 -0.101 -0.350 0.220 -0.18:3 1.499 -0.463 0.233 1.801 -1.:380 
Kurtosis ] !).1048 39.800 10.640 5.538 6.144 5.373 2.636 5.334 18.770 5.32:3 2.588 23.380 12.460 

f-' 
w (/) MA 0.0000 0.029 0.036 0.052 0.024 -0.004 0.047 -0.104* 0.206 -0.152 -0.08:3 0.418 
Cl ("") MA 0.0000 -0.019 0.082 0.111 * 0.095* 0.1:30 0.816 -0.081 * 0.052 -0.040 0.018 -0.027 -0.042 

Medium Tviatnrity Yields (5- and 7-year) 
tviean 0. 0000 0.101 * -0.047 0.100* 0.069* -0.048 -0.077 -0.038 0.07:3 -0.181* -0.031 0.017 0.05-5 
S.D. 1. 0000 0.851 0.954 0.919 0.888 0.883 1.127 0.915 0.889 1.005 0.829 0.815 0. 746 

Skew. -0.0893 0.633 -2.573 -0.3-58 -1.094 -2.270 -3.969 0.639 -0.268 -0.524 -0.203 0.186 -(J.288 
Kurtosis 22.7280 3.747 17.680 2.204 12.540 18.180 27.880 ~.303 4.142 3.670 4.21:3 1. 2!)7 1.436 
(/) MA 0.0000 0.119* -0.052 0.090 0.064* -0.048 -0.077 -0.116* 0.764* -0.257* -0.054 - 0.818 

("") MA 0.0000 0.072 -0.006 0.104 * 0.077* - -0.000 fl. 028 -0.041 -0.022 0.017 0.050 
Long !VIaturity Yields ( 10- and 30-year) 

Mean 0.0000 0.037 -0.040 0.171 * 0.088* -0.068 -0.117* -0.049 0.064 -0.198* -0.027 0.026 -0.029 
S.D. 1.0000 0.950 1.029 0.783 0.907 0.839 0.830 0.848 0.977 1.136 0.859 0.876 0.849 

Skew. -0.0687 -0.221 -0.132 0.048 0.130 -0.327 -0.226 -0.290 0.051 -0.978 -0.407 -0.143 -0.412 
Kurtosis 6.8821 2.342 3.065 -0.259 :3.:355 1.377 0.8~:3 0.930 0.681 5.360 2.443 2.288 0.848 
(/) MA 0.0000 0.005 -0.049 0.419* 0.042 -0.072 -0.119* -0.055 0.121 -0.293* -0.015 

("") MA 0.0000 0.083 0.080 0.059 0.167* 0.606 0.276 -0.047 0.061 -0.025 -0.0:32 0.026 -0.029 



Table 3.5: Summary Statistics of Unconditional and Conditional Bond Return (Local Polynomial Kernel 
Regression) 

Statistics U ncondi tiona! HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 
Returns 

All Bond Yields 
Mean 0.0000 0.063* 0.017 0.110* 0.064* -0.022 -0.023 -0.044* 0.045 -0.096* -0.015 0.007 -0.004 
S.D. 1.0000 0.919 1.043 0.823 0.847 0.859 0.949 0.861 0.959 0.965 0.811 0.848 0.779 

Skew. -0.1375 -1.016 -0.910 -0.019 -0.728 -0.907 -2.109 0.1 7 4 0.542 -0.222 -0.042 0.772 0.238 
Kurtosis 17.4359 18.730 9.478 2.754 10.410 7.920 18.350 5.720 8.944 4.418 3.62~~ 10.750 4.652 
(/) MA 0.0000 0.065* 0.018 0.129* 0.041 * -0.023 -0.029 -0.072* 0.261 * -0.166* -0.042* - 0.538 

("") MA 0.0000 0.060* 0.003 0.101* 0.102* o.:Bo 0.665 -0.030 0.028 0.030 -0.004 0.007 -0.006 
US, All Maturities 

Mean 0.0000 0.099* -0.015 0.112* 0.073* -0.062* -0.145* -0.022 -0.011 -0.123* -0.009 -0.109* -0.069 
S.D. 1.0000 1.097 1.024 0.836 0.897 o.8n 0.992 0.810 0.958 0.922 0.788 0.854 0.799 

f-' 
w Skew. 0.2348 -1.940 0.472 0.143 -1.031 -2.266 -2.898 0.199 -0.232 -0.520 0.067 0.435 1.000 
--..J 

Kurtosis 10.35:3G 26.010 7.112 :3.132 16.170 19.510 19.580 2.891 4.515 2.041 4.915 9.464 10.620 
(/) MA 0.0000 0.093 -0.002 0.066 0.050 -0.062* -0.149* -0.003 0.492* -0.239* -0.006 -0.168 

("") MA 0.0000 0.109* -0.131 0.137* 0.112* 0.1:30 0.162* -0.032 -0.060 0.049 -0.011 -0.109* -0.068 
UK, All Maturities 

'Mean 0.0000 0.082* 0.236* 0.076 0.097* 0.127* 0.097 -0.039 0.061 -0.177* -0.094 * 0.0:32 -0.056 
S.D. 1.0000 0.815 1.069 0.919 0.868 0.912 0.700 0. 780 0.929 1.127 0.801 0. 768 0.805 

Skew. 0.1680 -0.:397 -3.076 0.190 -0.903 0.161 -0.112 -0.087 0.220 -1.585 -0.452 0.414 0.039 
Kurtosis 7.4571 2.230 24.320 1.589 8.487 1. 791 0.397 0.985 3.083 4.956 2.558 2.10:3 0.315 
(/) MA 0.0000 0.054 0.228* 0.377* 0.082* 0.127* 0.095 -0.134* -0.478* -0.323* -0.127* 

("") MA 0.0000 0.129* 0.:32.5* -0.071 0.123* - 0.276 0.013 0.084 0.088 -0.081* 0.032 -0.056 
Germany, All Maturities 

~·lean 0.0000 0.026 0.029 0.110 0.021 -0.158* -0.058 -0.105* -0.0:34 -0.132 0.014 0.050 0.046 
S.D. 1.0000 0.845 1.099 0. 738 0.766 0.904 0.937 0.891 0.955 0.826 0.805 0.768 0.766 

Skew. -0.3819 -0.170 -1.731 0.179 -0.193 -0.625 0.038 -0.907 0.288 -0.353 -0.112 -0.363 -0.305 
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( contin'Ued) 
Statistics U ncondi tiona! HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 

Returns 
Kurtosis 19.7031 4.220 8.987 1.398 3.667 1.912 0.332 5.702 1.202 1.000 2.19.5 0.884 1.670 
(/) MA 0.0000 0.021 0.073 0.129 -0.025 -0.1.58* -0.0.58 -0.186* 0.345 -0.194* -0.041 
(~) MA 0.0000 0.032 -0.149 0.102 0.094* - - -0.067 -0.070 -0.001 0.038 0.050 0.046 

.J a.pan, All Mat uri ties 
Mean 0.0000 0.004 0.120 0.091 -0.001 -0.013 -0.279 0.081 0.017 0.036 -0.055 -0.006 0.161 
S.D. 1.0000 0. 770 1.051 0.728 0.694 0.7.56 1.653 0. 941 0.800 0.872 0.612 0.740 0.750 

Skew. -0.5684 -0.044 -0.217 -0.584 -0.844 -0.399 -3.635 4.872 -0.469 1.067 -0.145 -0.742 -1.000 
Kurtosis 10.1088 3.366 1.207 3.421 6.703 0.645 17.310 38.650 1.532 5.774 2.629 2.246 3.487 
(/) MA 0.0000 -0.023 0.127 0.098 O.o:38 -0.027 -0.279 -0.099 0.092 0.1 ();3 -0.186* - 1.244* 
(~) MA 0.0000 0.046 0.015 0.086 -0.059 0.606 - 0.173 0.010 -0.078 0.006 -0.006 0.088 

Australia, All Maturities 
1\·fcan 0.0000 -0.047 -0.067 0.241 0.091 * 0.022 0.175* -0.013 0.064 -0.043 0.106* 0.121* 0.144 

....... 
w S.D. 1.0000 0.801 0.939 1.120 0.900 1.055 0.972 1.028 0.959 1.102 0.945 0.812 0.870 
00 Skew. -0.3079 0.467 -0.482 0.086 -0.453 -0.501 0.221 0.451 -1.231 1.275 0.065 -0.113 -0.074 

Kmtosis 5.5083 5.570 1.931 1.881 4.6:32 3.295 3.025 1.737 5.088 5.388 2.557 2.930 1.413 
(/) MA 0. 0000 -0.100 -0.098 0.653 0.055 0.022 0.142 0.016 -0.249 -(J.lll 0.048 
(~) MA 0.0000 0.042 0.540 0.097 0.161 * -0.022 2.011 -0.027 0.082 0.129 ().131* 0.121 * 0.144 

Canada., All Maturities 
Mean 0. 0000 0.098* -0.040 0.027 0.044 0. 006 0.087 -0.125* 0.192* -0.046 -0.064* 0.086 -0.030 
S.D. 1.0000 0.904 1.164 0.726 0.8:30 0.807 0. 782 0.954 0.906 0.835 0.879 0.978 0. 700 

Skew. -0.2826 0.515 -1..595 -0.638 -0.247 -0.320 0.273 -0.574 0.306 0.505 0.210 0.038 -0 .. 590 
Kurtosis 6.9883 1.941 11.530 3.501 3.878 3.087 2.365 2.304 1.409 2.792 3.517 1.439 1.512 
(/) MA 0. 0000 0.227* -0.049 -0.05 7 0.028 0.006 0.084 -0.192* 0.366 -0.078 -0.022 
(~) MA 0.0000 -0.043 0.044 0.057 0.070 - ().;373 -0.097 0.179* 0.016 -0.080* 0.086 -0.030 

Hong Kong, All Maturities 
Mean 0.0000 0.087* -0.155 0.224* 0.039 -0.007 0.040 -0.007 0.165 -0.089 0.030 0.080 0.073 
S.D. 1.0000 0.509 0.837 0.738 0.645 0.571 0.457 0.648 1.325 1.114 0.564 0. 979 0.485 

Skew. -0.9280 0.574 0.:348 -0.861 -0.517 0.072 -0.196 0.113 4.464 0. 732 -1.032 6.029 0.776 
continued next page 



(contin-ued) 
Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 

Returns 
Kurtosis 110.0890 0.831 3.959 1.920 3.851 1.535 1.661 3.345 27.020 3.325 5.430 51.160 1.105 
(/) MA 0.0000 0.172* -0.175 -0.059 0.005 -0.007 0.040 0.084 0.535* -0.104 -0.110 
("-,.) MA 0.0000 0.009 0.245 0.363* 0.080 - - -0.044 0.131 -0.060 0.086* 0.080 0.073 

Short Maturity Yields (1-, 2- and 3-year) 
Mean 0.0000 0.001 0.037 0.064 0.036* -0.006 0.051 -0.061 * 0.059 -0.081 -0.007 -0.005 0.016 
S.D. 1.0000 0.981 1.016 0.794 0.757 0.836 0.843 0.833 0.966 0.915 0.760 0.896 0.736 

Skew. -0.2170 -2.689 -0.478 -0.282 -1.339 -0.351 0.131 0.070 1.189 0.015 0.294 2.053 1.761 
Kurtosis 19.1048 38.480 10.850 5.818 17.650 4.824 2.680 5.511 17.200 6.803 4.544 22.760 ] 4.150 
(/) MA 0.0000 0.012 0.033 0.032 -0.004 -0.006 0.033 -0.082* 0.132 -0.128* -0.089* 0.167 
("-,.) MA 0.0000 -0.014 0.072 0.081 0.099* 0.054 0.816 -0.051 0.052 0.010 0.028 -0.005 0.014 

Medium Maturity Yields (5- and 7-year) 
l'vlcan 0.0000 0.128* 0.048* 0.121 0.075* -0.010 -0.054 -0.009 0.050 -Cl.107* -0.015 -0.024 0.007 

,__. 
CN 

S.D. 1.0000 0.841 1.047 0.868 0.883 0.886 1.130 0.908 0.918 0.995 0.825 0.798 0.755 
<.0 Skew. -0.0893 0.628 -2.042 0.051 -1.116 -1.795 -3.586 0.526 0.214 -0.401 -0.020 0.090 -0.277 

Kurtosis 22.7280 3.511 14.140 0.892 12.230 14.800 24.500 8.138 4.561 3.145 3.902 l.426 1.239 
(/) MA 0. 0000 0.143* 0.063 0.105 0.074* -0.010 -0.054 -0.072 0.445* -0.189* -0.030 1.652 
("-,.) MA 0.0000 0.105* -0.076 0.127* 0.075* 0.022 0.015 0. 039 -0.009 -0.024 0.002 

Long Maturity Yields ( 10- and 30-year) 
I\ lean 0.0000 0.054 -0.064 0.176* 0.083* -0.058 -0.066 -0.067* 0.016 -0.109 -0.027 0.056 -0.041 
S.D. 1.0000 0.935 1.090 0.799 0.902 0.858 0.831 0.833 1.00:3 uno 0.853 0.846 0.854 

Skew. -0.0686 -0.244 -0.202 0.290 0.158 -0.415 -0.173 -0.328 -0.074 -0.270 -0.3.58 -().311 -0.422 
Kurtosis 6.88212 2.439 2.411 1.186 3.086 2.248 1.578 1.026 0.989 3.048 2.378 1.990 0.693 
(/)MA 0.0000 0.026 -0.067 0.349* 0.051 -0.061 -0.068 -0.059 0.22:3 -0.203* -0.003 
("-,.) MA 0.0000 0.096* -0.026 0.093 0.143* 0.606 0.211* -0.071 0.004 0.050 -0.038 0.056 -0.041 



Table 3.6: Goodness-of-Fit Chi-Square Tests and Kolmogorov-Smirnov Distribution Tests (Nadaraya-
Watson Kernel Regression). Panel A: Column 2-11 are the 10 decilcs of the sorted normalized return:s 
for each chart pattern, in percentage term. The null hypothesis is 10% for each decile. The last column is 
the Q-Statistic. Below the percentage result is the associated p-value for each of the ten deciles. Panel B: 
The A( statistic is the Kolmogorov-Smirnov statistic, tabulated for each chart pattern. Below the 1 statistic 
is the associated p-value. 

Panel A: Goodness-of-Fit Test 
Chart Deciles 

Patterns 1 2 3 4 5 6 7 8 9 10 Q-Statistic 

HSTOP 7.88 9.94 9.45 10.80 8.96 9.67 11.00 11.10 11.70 9.51 22.20 
(p-value) ( -3.04) ( -0.09) (-0.78) ( 1.08) (-1.48) ( -0.4 7) ( 1.4 7) ( 1.55) (2.48) (-0.71) ( (). 008) 

BTOP 9.62 8.83 12.00 11.50 7.89 9.15 9.94 10.10 10.60 10.40 8.52 
(p-wtlue) ( -(J.:32) (-0.98) ( 1 . 6 7) (1.27) (-1.77) (-0.71) ( -0.05) (0.08) (0.48) (0.34) (0.482) 
TTOP 6.93 8.29 9.24 10.50 8.70 11.10 8.56 1:3.50 11.50 11.70 26.00 

(p-value) (-2.78) (-1.55) (-0.69) (0.42) (-1.18) ( 1.03) (-1.30) (3.12) ( 1.40) ( 1. 52) (0.002) 
,___. 

RTOP ""- 6.50 
0 

8.28 10.10 11.70 9.:38 11.80 10.90 11.30 11.30 8.84 86 .. 50 
(p-value) ( -6.60) (-3.24) (0.12) (3.12) (-1.18) (3.36) ( 1. 71) (2.53) (2.36) ( -2.18) (0.000) 
DTOP 8.57 10.70 10.40 12.00 9.84 11.20 9.7.5 10.00 9.50 8.06 14.:30 

(p-value) ( -1.64) (0.79) (0.50) (2.24) (-0.18) ( 1.37) (-0.28) (0.01) ( -0.57) ( -2.22) (0.113) 
TPTOP 9.61 10.40 9.15 9.92 11.00 12.60 8.99 10.20 9.61 8.53 7.73 
(p-value) (-0.33) (0.33) (-0.72) ( -0.07) (0.85) (2.17) ( -0.85) (0.20) ( -0.33) (-1.25) (0.4:38) 
HSBOT 10.10 11.20 10.60 10.40 10.30 10.70 10.80 9.49 8.69 7.78 17.60 
(p-value) ( 0.16) ( 1.67) (0.79) (0.56) ( 0.40) (0.9.5) (1.11) (-0.72) (-1.83) (-3.10) (0.041) 
BBOT 9.20 9.20 9.59 10.20 9.33 8.67 10.40 11.40 11.00 10.90 5.85 

(p-value) (-0.74) (-0.74) ( -0.:37) (0.23) ( -0.62) (-1.22) (0.3.5) (1.32) (0.95) (0.83) (0.2.55) 
TBOT 13.80 11.70 11.10 9.01 11.00 9.16 6.16 10.10 11.00 7.06 30.40 

(p-value) ( 3.28) (1.47) (0.96) (-0.85) (0.83) ( -0. 72) (-3.31) (0.05) (0.83) (-2.53) ( 0. 000) 
RBOT 7.85 10.50 11.00 12.10 10.20 10.10 11.30 10.60 9.07 7.18 75.50 

(p-va.lue) (-4.26) (0.94) (2.06) (4.24) (0.38) (0.16) (2.67) ( 1.28) (-1.86) ( -5.60) (0.000) 
DBOT 9.05 9.46 1UJO 12.40 9.22 10.00 9.78 10.90 9.14 8.97 14.20 
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( contin'Ued) 
(p-value) (-1.11) ( -0.63) ( 1.17) (2.87) (-0.92) (0.03) (-0.26) ( 1.07) (-1.01) (-1.20) (0.116) 
TPBOT 6.99 8.25 11.20 13.40 9.79 12.00 11.30 8.25 10.60 8.11 27.30 
(p-value) (-2.68) (-1..56) ( 1.06) (3.05) (-0.19) (1.81) ( 1.18) (-1.56) (0.56) (-1.68) (0.001) 

Panel B: Kolmogorov-Smirnov Test 
Statistics HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 

All Bond Yields 

r 1.206 0.319 1.292 2.689 0.821 0.535 1.544 0.378 1.334 1.866 0.652 0.649 
(p-value) (0.109) (1.000) (0.071) (0.000) (0.510) (0.937) (0.017) (0.999) (0.057) (0.002) (0.789) (0.79:3) 

r (/) MA 1.096 0.214 1.024 1.577 0.839 0.661 2.248 1.292 1.809 1.608 -99.000 0.499 
(.p-valne) (0.181) (1.000) (0.245) (0.014) (0.483) (0.774) (0.000) (0.071) (0.003) ((lOll) (0.000) (0.965) 

r . (""') MA 1.144 0.381 0.860 2.222 -99.000 1.185 0.597 0.292 0.427 1.484 0.652 0.646 
(p-value) ( 0.146) (0.999) (0.450) ( 0. 000) (0.000) (0.120) (0.869) (1.000) (0.993) (0.024) (0.789) ( 0. 798) 

US, All lVlaturities 

1 1.640 0.358 0.609 2.150 0.553 0.838 0.686 0.2:H 0.790 1.136 1.047 0.859 
,_.... (]J-value) (0.009) (1.000) (0.852) (0.000) (0.919) (0.483) (0.7:35) (1.000) (0 . .561) (0.151) (0.22:3) (0.452) 
""-
>---' r '(/) tvJA 1.307 0.357 0.923 1..576 0.547 0.81.5 1.286 0.921 1.204 1.383 -99.000 -99.000 

(jJ-va.lue) (0.066) (1.000) (0.362) (0.014) (0.926) (0 . .519) (0.073) ( 0.364) (0.110) (0.044) (0.000) (0.000) 

r (""') tv1IA 0.960 0.401 0 . .572 1.117 -99.000 -99.000 0.371 0.444 0.475 1.112 1.047 0.850 
(p-value) (0.315) (0.997) (0.899) (0.165) (0.000) (0.000) (0.999) (0.989) (0.978) (0.169) (0.223) (0.465) 

UK, All Maturities 
') 0.89:) 0.877 0.509 1.151 0.496 0. 715 1.002 0.504 0.477 1.364 0.280 0.402 

(n-value) (0.402) (0.425) (0.958) (0.141) (0.966) (0.685) (0.268) (0.961) (0.977) (0.048) (1.000) (0.997) 

1 (/) MA 0.569 0.792 0.582 0.623 0.496 0.704 1.400 0.256 0.778 1.420 -99.000 -99.000 
(J;.. value) (0.903) (0.557) (0.887) (0.833) (0.966) (0.704) (0.040) (1.000) (0.580) (0.036) (0.000) (0.000) 

I !(""') tv·! A 0.793 0.332 0.268 1.442 -99.000 -99.000 0.452 0.542 0.379 0.689 0.280 0.39.5 
(J~value) (0.556) ( UJOO) (1.000) (0.031) (0.000) (0.000) (0.987) (0.931) (0.999) (0.729) (1.000) (0.998) 

Germany, All Maturities 

1 0.944 0.477 0.789 1.075 1.102 0.654 1.317 0.741 0.607 1.236 0.242 0.474 
(p;-va.lue) (0.335) (0.977) (0.562) (0.198) (0.176) (0.786) (0.062) (0.642) (0.855) (0.094) (1.000) (0.978) 

1 (/) MA 0.920 0.562 0.327 0.944 1.102 0.654 1.017 0.516 0.973 0.282 -99.000 -99.000 
continued next page 



(cont-inued) 
.(p-value) (0.365) (0.910) (1.000) (0.335) (0.176) (0.786) (0.252) (0.953) (0.300) ( 1.000) (0.000) (0.000) 

"( (""') MA 0.6:38 0.429 0.554 0.994 -99.000 -99.000 0.870 0.616 0.326 1.282 0.242 0.474 
(p-value) (0.811) (0.993) (0.919) (0.277) (0.000) (0.000) (0.435) (0.843) (1.000) (0.075) ( 1.000) (0.978) 

Japan, All Maturities 
') 0.172 0.735 0.232 0.581 0.377 0.610 0.~~05 0.200 0.528 1.17:3 0.325 0.530 

(p-value) ( 1.000) (0.653) (1.000) (0.889) (0.999) (0.850) ( 1.000) (1.000) (0.943) (0.127) (1.000) (0.942) 
1 (/) MA 0.153 0.470 0.339 0.858 0.418 0.610 0.787 0.281 0.230 1.224 -99.000 -99.000 

(JJ-value) ( 1.000) (0.980) ( 1. 000) (0.454) (0.995) (0.850) (0.566) (1.000) ( 1. 000) (0.100) (0.000) (0.000) 
"( (""')MA 0.264 0.751 0.160 0.323 -99.000 -99.000 0.380 0.328 1.097 0.515 0.325 0.467 

(p-value) (1.000) (0.626) ( 1.000) ( 1.000) (0.000) (0.000) (0.999) ( 1.000) (0.180) (0.954) (1.000) (0.981) 
Australia, All :Maturities 

') 0.46:3 0.821 0.611 1.283 0.429 0.733 0.575 0.689 0.852 0.817 0.686 0.878 
(p-value) (0.98:3) (0.510) (0.850) (0.074) (0.993) (0.656) (0.896) (0.729) (0.462) (0.516) (0.7:35) (0.424) 

1 , (/) ~viA 0.369 0.871 0 .. 363 0.828 0.429 0.677 0.410 0.022 1.082 0.642 -99.000 -99.000 
>--' (}rva.lue) (0.999) (0.433) (0.999) (0.500) (0.99~3) (0.750) (0.996) (1.000) (0.193) (0.805) (0.000) (0.000) 
>~"'-
1'0 1 · (""') JviA 0.265 -99.000 0.319 0.53.5 -99.000 -99.000 0.492 0. 76.5 0.491 1.179 0.686 0.878 

(p-value) (1.000) (0.000) ( UJOO) (0.937) (0.000) ( 0.000) (0.969) (0.602) (0.969) (0.124) (0.7:35) (0.424) 
Carmela, All Maturities 

') 0.1D!J 0.706 0.9!)2 0.647 1.143 0.468 1.048 0.824 0.489 0.929 0.565 0.465 
(p-value) ( 1.000) (0.701) (0.279) (0.797) (0.146) (0.981) (0.222) (0.506) (0.971) (0.3.54) (0.907) (0.982) 

r i(/) !v·IA 0.876 0.747 0.478 0 . .553 1.143 0.4.52 1.002 0.409 0.659 0.617 -99.000 -99.000 
(Jj._value) ( 0.427) (0.632) (0.976) (0.919) (0.146) (0.987) (0.268) (0.996) (0. 777) (0.841) (0.000) (0.000) 

1 (""') MA 0.686 0.290 0. 766 0.740 -99.000 -99.000 0. 762 0.898 0.626 0.681 0.565 0.46.5 
(P:,value) (0.7:34) ( 1.000) (0.600) (0.644) (0.000) (0.000) (0.607) (0.396) (0.828) (0.743) (0.907) (0.982) 

Hong Kong, All Maturities 
') 0 . .564 0.773 1.228 0.307 0.450 0.508 0.470 0.494 1.386 1.142 0.469 0.413 

(p~value) (0.908) (0 . .589) (0.098) (1.000) (0.987) (0.958) (0.980) (0.968) (0.043) (0.147) (0.980) (0.996) 
1 (/) MA 0 . .523 1.032 0.761 0.134 0.450 0.508 0.761 0.~361 1.091 0.449 -99.000 -99.000 

(7~valne) (0.947) (0.237) (0.609) (1.000) (0.987) (0.958) (0.608) (0.999) (0.185) (0.988) (0.000) (0.000) 

1 (""') MA 0.571 0.447 2.02.5 0.683 -99.000 -99.000 0.478 0.656 0.763 1.215 0.469 0.413 
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( contin'Ued) 
(p-value) (0.900) (0.988) (0.001) (0.740) (0.000) (0.000) (0.976) (0.782) (0.606) (0.10.5) (0.980) (0.996) 

Short Maturity Yields ( 1-, 2- and 3-year) 

l 0.615 0.207 0.896 2.146 0.651 0.537 1.052 0.339 0.758 1.152 0.750 0.830 
(p-valne) (0.844) ( 1.000) (0.399) (0.000) (0.790) (0.935) (0.218) (1.000) (0.613) (0.141) (0.628) (0.496) 

1 (/) MA 0.391 0.258 0.136 1.201 0.643 0.407 1.274 0.453 0.646 1.474 -99.000 -99.000 
(p-value) (0.998) (1.000) (1.000) (0.112) (0.802) (0.996) (0.078) (0.986) (0.798) (0.026) (0.000) (0.000) 

1 (~) MA 0.695 0.324 0.716 1..522 -99.000 1.064 0.578 0.302 0.527 0.825 0. 750 0.881 
(p-value) (0.719) (1.000) (0.685) (0.019) (0.000) (0.208) (0.893) (1.000) (0.944) (0.505) (0.628) (0.419) 

Medium Maturity Yields (5- and 7-year) 

l 1.150 0.348 0.756 1.643 0.711 0.492 0.499 0.347 1.314 1.135 0.34:3 1.051 
(p-value) (0.142) (1.000) (0.617) (0.009) (0.693) (0.969) (0.965) ( 1. 000) (0.063) (0.152) (1.000) (0.219) 

1 (/) MA 0.868 0.410 0.569 1.301 0.711 0.492 1.214 1.359 1.341 0.881 -99.000 -99.000 
(p-va.lue) (0.4~19) (0.996) (0.902) (0.068) (0.693) (0.969) (0.105) (0.050) ( 0. 055) (0.420) (0.000) (0.000) 

I (~) rviA 0.852 0.211 0.446 1.232 -99.000 -99.000 0.466 0.242 0.4 70 0.805 0 .. 343 1. 032 
>--' (p-valne) (0.462) ( 1. 000) ( 0. 988) (0.096) (0.000) (0.000) (0.982) (1.000) (0.980) (0.536) (1.000) (0.238) 
""-c.v Long Maturity Yields (10- and 30-year) 

1 1.128 0.339 0.802 1.078 0.777 0.816 0.628 0.464 0.648 0.963 0.:346 0.520 
(p-value) (0.157) (1.000) (0.541) (0.195) (0.583) (0.518) (0.826) (0.982) (0.794) (0.312) (1.000) (0.950) 

1 (/) rvrA 0.335 0.362 1.492 0.613 0.797 0.797 0.909 0.402 0.919 0.395 -99.000 -99.000 
(p-value) (1.000) (0.999) (0.023) (0.846) (0.549) (0.550) (0.380) (0.997) (0.:367) (0.998) (0.000) (0.000) 

1 (~) MA 1.181 0.111 0.412 1.266 -99.000 -99.000 0.436 0.411 0.408 0.866 0.346 0.520 
(p-value) (0.123) ( 1. 000) (0.996) (0.081) (0.000) (fl. 000) (0.991) (0.996) (0.996) (0.442) (1.000) (0.950) 



Table 3.7: Goodness-of-Fit and Kolmogorov-Smirnov Distribution Tests (Local Polynomial Kernel Regres-
sion) 

Panel A: Goodness-of-Fit Test 
Deciles 

Patterns 1 2 3 4 5 6 7 8 9 10 Q-Statistic: 
HSTOP 7.49 9.71 9.53 10.40 9.32 9.75 10.70 11.00 12.50 9.58 34.90 
(p-value) (-4.01) (-0.47) (-0.74) (0. 72) ( -1.09) (-0.40) (1.13) ( 1. 55) (3.99) ( -0.67) (0.000) 
BTOP 9.99 8.42 11.00 11.10 8.30 9.75 10.10 9.39 10.30 11.70 8.96 

(p-va.lue) (-0.01) (-1.51) (0.91) ( Ul3) ( -1. 6:~) (-0.24) (0.10) ( -0.59) (0.34) (1.61) (0.441) 
TTOP 6.72 8.40 8.85 10.50 9.41 11.80 8.73 12.90 12.00 10.80 29.30 

(jJ-value) ( -3.27) (-1.60) (-1.15) (0.52) (-0.59) ( 1. 75) (-1.26) (2.87) ( 1.97) (0.75) (0.001) 
RTOP 6.65 8.22 10.00 11.10 9.56 11.90 11.30 11.30 11.10 8.76 104.00 

(p-value) -7.08) ( -3. 77) (0.02) (2.39) (-0.9:~) (4.07) (2.76) (2.76) (2.39) (-2.61) (0.000) 
DTOP 8.70 10.60 10.60 10.60 9.24 10.90 9.78 11.20 10.20 8.16 13.50 
' 

>--' 
(p-value) (-1.67) (0.75) (0.75) (0.75) (-0.98) (1.19) (-0.29) ( 1.53) (0.32) ( -2.36) (0.142) 

..,.. "J;'PTOP 9.17 9.41 9.90 9.78 10.80 11.90 10.10 10.30 9.78 8.92 5.25 ..,.. 
(p-valuc) ( -0. 79) ( -0.56) (-0.09) (-(J.21) (0.72) ( 1. 77) (0.14) (0.26) (-0.21) ( -1.0.3) (0.188) 
HSBOT 9.98 10.90 9.89 11.10 9.62 11.40 10.60 9.62 9.16 7.77 22.70 
(P-value) 

' 
(-0.04) ( 1.38) (-0.18) (1.74) (-0.60) (2.16) (0.96) ( -0.60) (-1.31) ( -3.51) (0.007) 

BBOT 9.52 8.92 9.52 11.40 9.12 8.62 9.82 11.80 11.00 10.20 10.80 
(P;value) (-0.51) (-1.14) (-0.51) (1.50) (-0.93) ( -1.46) (-0.19) (1.92) (1.08) (0.23) (0.291) 
TBOT 12.40 11.80 11.00 9.59 9.47 9.71 6.71 10.20 11.50 7.67 23.9 

(;a-value) (2.26) ( 1.69) (0. 99) ( -0.39) (-0.51) ( -0.28) (-3.16) ( 0.18) ( 1.45) (-2.24) (0.004) 
RBOT 7.87 10.20 10.80 12.10 10.20 10.40 11.30 10.80 8.92 7.33 92.40 

(Jt'value) (-4.75) (0.39) ( l. 89) ( 4. 73) (0.44) (0.99) (2.93) (1.74) (-2.41) (-5.95) (0.000) 
DBOT 8.64 9.53 10.90 12.30 8.96 lll.20 10.90 10.50 9.65 8.39 20.80 
I 

(~~value) (-1.80) ( -0.63) (1.21) (~~.06) (-1.38) (0.29) (1.21) (0.63) (-0.46) (-2.14) (0.014) 
T:PBOT 7.87 8.65 11.00 12.10 9.65 12.00 12.00 9.31 9.76 7.76 22.70 
(J:t vaJ u e) (-2.13) (-1.:35) (0.98) (2.09) (-0.36) ( 1.98) (]. 98) ( -0.69) (-0.24) ( -2.24) (0.007) 

Panel B: Kolmogorov-Smirnov Test 
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( contin'Ued) 

Statistics HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 
All Bond Yields 

1 1.645 0.669 1.633 2.345 0.764 0.371 1.531 0.34.5 1..562 2.192 0.7:39 0.824 
(p-value) (0.009) (0.761) (0.010) (0.000) (0.603) (0.999) (0.018) (1.000) (0.015) (0.000) (0.646) (0.505) 

"Y (/) rviA 1.384 0.647 1.049 1.457 0.776 0.339 1.345 1.388 1.699 1.766 -99.000 0.262 
(p-value) (0.043) (0.796) (0.221) (0.029) (0.584) (1.000) (0.054) (0.042) (0.006) (0.004) (0.000) ( 1. 000) 

"Y (~) MA 1.522 0.499 1.066 2.403 0.442 1.315 0.528 0.266 0.946 1.723 0.739 0.847 
(p-value) (0.019) (0.965) (0.206) (0.000) (0.990) (0.063) (0.943) (1.000) (0.332) (0.005) (0.646) (0.470) 

US, All Maturities 

I 1.928 0.157 0.814 1.237 0.728 0.660 0. 737 0.262 0.738 1.425 1.169 0.799 
(p-value) (0.001) (UlOO) (0.522) (0.094) (0.665) (0. 777) (0.649) (1.000) (0.647) (0.034) (0.1:30) (0.547) 

1 (/) MA 1.500 0.162 0.295 0.815 0.727 0.630 1.01:3 1.179 0.844 1.499 -99.000 -99.000 
(p-value) (0.022) (1.000) ( 1.000) (0.521) (0.666) (0.822) (0.256) (0.124) (0.474) (0.022) (0.000) (0.000) 

I (~) MA 1.209 0.679 0.682 1.247 -99.000 0.751 0.357 0.484 0.708 1.239 1.169 0.791 
>--' (p-value) (0.107) (0.745) (0.740) (0.089) (0.000) (0.625) (1.000) (0.973) (0.698) (0.093) (0.130) (0.559) 
~ 
CJl UK, All Maturities 

I 1.454 1.197 0.219 1.238 0.872 0.630 0.869 0.257 0.781 1.751 0.4()4 0.468 
(p-value) (0.029) (0.114) ( 1. 000) ( 0. 093) (0.432) (0.822) (0.437) ( 1. 000) (0.576) (0.004) (0.982) (0.981) 

I (/) MA 0.816 1.099 0.732 0.760 0.872 0.620 1.375 0.139 1.083 1.554 -99.000 -99.000 
(p-value) (0.518) (0.178) (0.658) (0.611) (0.432) (0.837) (0.046) ( 1. 000) (0.192) (0.016) (0.000) (0.000) 

I (~) MA 1.308 0.445 0.451 1.055 -99.000 -99.000 0.428 0.461 0.340 1.064 0.464 0.468 
(p-value) (0.065) (0.989) (0.987) (0.216) (0.000) (0.000) (0.993) (0.984) ( 1. 000) (0.208) (0.982) (0.981) 

Germany, All Maturities 

l 0.601 0.518 0.773 1.262 0.982 0.510 1.296 0.416 0.904 1.057 0.329 0.526 
(p-value) (0.862) (0.951) (0.589) (0.083) (0.290) (0.957) (0.069) (0.995) (0.:387) (0.214) (1.000) (0.945) 

I (/) MA 0.6:31 0.529 0.410 1.270 0.982 0.510 0.693 0.652 1.1:34 0.428 -99.000 -99.000 
(p-va.lue) (0.821) (0.942) (0.996) ( 0. 080) ( 0. 290) (0.957) (0. 723) (0.788) (0.152) (0.993) (0.000) (0.000) 

I (~) lVfA 0.498 0.797 0.737 1.146 -99.000 -99.000 0.973 0.415 0.333 1.024 0.:)29 0.526 
(p-value) (0.965) (0.549) (0.649) (0.144) (0.000) (0.000) (0.300) (0.995) ( 1. 000) (0.246) (1.000) (0.945) 

Japan, All Maturities 
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( cont·inued) 

l 0.307 0.772 0.463 0.732 0.433 0.555 0.585 0.235 0.324 1.247 0.401 0.384 
(p-va.lue) ( 1.000) (0.590) (0.983) (0.658) (0.992) (0.917) (0.883) (1.000) (1.000) (!l.089) (0.997) (0.998) 

1 (/) MA 0.289 0.797 0.561 0.615 0.481 0.555 0.741 0.365 0.160 1.377 -99.000 -99.000 
(p-va.lue) (1.000) (0.550) (0.911) (0.844) (0.975) (0.917) (0.643) (0.999) (1.000) (0.045) (0.000) (0.000) 

1 ("'-.) MA 0.405 0.628 0.388 0.565 -99.000 -99.000 0.781 0.222 0.664 0.764 0.401 0.322 
(p-value) (0.997) (0.826) (0.998) (0.907) (0.000) (0.000) (0.575) (1.000) (0.771) (0.604) (0.997) (1.000) 

Australia, All Maturities 

1 0.767 0.488 0.595 1.400 0.383 0.712 0.866 0.718 0.769 1.23:3 1.162 1.098 
(p-value) (0.599) (0.971) (0.870) (0.040) ( 0. 999) (0.691) (0.442) (0.681) (0.595) (0.095) (0.134) (0.179) 

1 (/) !'viA 0. 761 0.602 0.706 0.961 0.361 0.662 0.743 0.484 0.995 0.140 -99.000 -99.000 
(p-va.lue) (0.608) (0.861) (0.701) (0.314) (0.999) (0.774) (0.638) (0.973) (0.276) (1.000) (0.000) (0.000) 

1 ("'-.) MA 0.509 0.342 0.335 0.694 -99.000 -99.000 0.436 0.721 0.597 1.521 1.162 1.098 
(p-value) (0.958) (1.000) (1.000) (0.722) (0.000) (0.000) (0.991) (0.677) (0.868) (0.020) (0.134) (0.179) 

Canada. All Maturities 
>---' 1 0.427 
~ 

0.483 0.665 0.616 0.7.5G 0.558 1.391 0.916 0.555 1.175 0.632 0.567 
cr.> (p-value) (0.993) (0.974) (0.768) (0.842) (0.617) (0.914) (0.042) (0.372) (0.918) (0.126) (0.820) (0.904) 

1 (/) MA 1.201 0.452 0.490 0.672 0.756 0.544 0.768 0.338 0.622 0.618 -99.000 -99.000 
(p-value) (0.111) (0.987) (0.970) (0. 757) (0.617) (0.929) (0.597) (1.000) (0.834) (0.840) (0.000) (0.000) 

1 ("'-.) MA 0.558 0.126 0.652 0.562 -99.000 -99.000 0. 771 0.970 0.653 0.8U3 0.632 0.567 
(p-value) (0.915) (1.000) (0.788) (0.911) ( 0. 000) (0.000) (0.592) (0.303) (0.787) (0.403) (0.820) (0.904) 

Hong Kong, All Maturities 

l 0. 739 0.8:33 1.214 0.518 0.509 0.645 0.525 0.321 0.960 1.337 0.541 0.454 
(p-valm~) (0.646) (0.491) (0.105) (0.951) (0.958) (0.800) (0.946) (1.000) (0.316) (0.056) (0.932) (0.986) 

1 (/) rviA 0.719 0.978 0.,597 0.190 0.509 0.645 0.331 0.483 0.689 0.522 -99.000 -99.000 
(p-value) (0.680) (0.295) (0.868) (1.000) (0.958) (0.800) ( 1. 000) (0.974) (0.729) (0.948) (0.000) (0.000) 

1 ("'-.) !VIA 0.620 -99.000 1.440 0.621 -99.000 -99.000 0.504 0.488 0.445 0.867 0.541 0.454 
(p-va.lue) ( 0.837) (0.000) (0.032) (0.835) (0.000) ( 0.000) (0.961) (0.971) (0.989) (0.440) (0.9:32) (0.986) 

Short Maturity Yields (1-, 2- and :3-year) 

l 0.681 0.249 0.872 1.640 0.497 0.613 0.942 0.668 0.477 1.236 0.822 0.560 
(p-value) (0.743) ( 1.000) (0.433) (0.009) (0.966) (0.847) (0.338) (0.763) (0.977) (0.094) (0.509) (0.912) 
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(continued) 

I (/) MA 0.372 0.245 0.426 1.014 0.482 0.496 1.287 0.637 0.533 1.393 -99.000 -99.000 
(p-value) (0.999) ( 1. 000) (0.993) (0.255) (0.974) (0.967) (0.07:3) (0.813) (0.939) (0.041) (0.000) (0.000) 

I (""') !VIA 0.685 0.709 0.743 1.614 -99.000 1.064 0.469 0.668 0.524 0.855 0.822 0.543 
(p-value) (0. 736) (0.696) (0.639) (0.011) (0.000) (0.208) (0.980) (0.763) (0.946) (0.457) ( 0. 509) (0.929) 

Medium Maturity Yield:-; (5- aud 7-year) 

I 1.484 0.896 1.007 2.028 0.582 0.462 0.453 0.277 1.218 1.402 0.831 0.785 
(p-value) ( 0.024) (0.398) (0.263) (0.001) (0.887) (0.983) (0.987) ( 1.000) (0.103) (0.039) (0.495) (0.569) 

I (/) l'viA 1.270 1.053 0.838 1.608 0.582 0.462 0.605 1.031 1.242 0.935 -99.000 -99.000 
(p-value) (0.079) (0.217) (0.483) (0.011) (0.887) (0.983) (0.858) (0.238) (0.091) (0.347) (0.000) (0.000) 

I ( ""') ?vi A 1.129 0.302 0.551 1.321 -99.000 -99.000 0.426 0.335 0.488 1.077 0.831 0.776 
(p-va.lue) (0.156) (1.000) (0.922) (0.061) (0.000) (0.000) (0.993) (1.000) (0.971) (0.196) (0.495) (0.584) 

Long Maturity Yields (10- and 30-year) 

I 1.:359 0.458 0.907 1.188 0.721 0.695 1.101 0.372 1.254 1.167 0.88:1 0.571 
(p-value) (0.050) (0.985) (0.343) (0.119) (0.676) (0.719) (0.177) (0.999) (0.086) (0.131) (0.416) (0.900) 

>--' I (/) MA 0.273 0.398 1.338 0.734 0.714 0.673 0.948 0.758 1.470 0.482 -99.000 -99.000 
~ 
-._J (p-va.lue) ( 1.000) (0.997) (0.056) (0.654) (0.688) (0.756) (0.330) (0.614) (0.026) (0.974) (0.000) (0.000) 

I ( ""') JvlA 1.408 0.478 0.385 1.205 -99.000 -99.000 0.871 0.349 0.747 1.125 0.88:~ 0.571 
(p-value) (0.038) (0.976) (0.998) (0.110) (0.000) (0.000) (0.434) ( 1. 000) (0.6:33) (0.159) (0.416) (0.900) 

\ 



3.5.2 Technical Chart Patterns in Bond Yield Spreads 

This section discusses the empirical results for bond yield spreads. Table 3.8 presents 

the pattern count for the N adaraya-Watson kernel regression (Panel A) and local 

polynomial regression (Panel B) respectively. The top row is the aggregate count front 

all 43 yield spreads. 'vVe find the results here quite surprising uecause a comparison of 

thcc pattern count for bond yield sprccads and bond yidcls show a snbstantial cliffcn~nr:r 

across all chart patterns, despite the fact that the number of raw data for yield spread 

is higher than bond yield. This seems to suggest that yield spreads behave more like 

a random vvalk than bond yields. Furthermore, the most frequently observed patterns 

are Triangle and Broadening patterns, rather than Rectangle, Double or Head-and­

Shoulders that commonly found in equities or currencies markets. The fact that 

Broadening pattern count is higher than Head-and-Shoulders is even more perplexing 

in light of observations b.Y Edwards and :Magee (1966, p.148) 

It has been assumed in the past that Broadening Bottoms must exits, 

but the writer [Edwards] has never found a good one in his examination 

of thousands of individual stocks over many years and only one or two 

patterns which bore resemblance to it. 

Similar to the results from bond yield, the pattern count for local polynomial 

regression is higher than N adaraya-vVatson regression. Out of 262,170 raw data, only 

7,209 and 9, 136 chart patterns are found by N aclaraya-Watson and local polynornial 

regression respectively, a considerable lower number than bond yield data. The least 

detected chart pattern is Triple pattern. The country that shows the lowest pattem 

count is Australia. A comparison of Vasicek simulation to actual yield series shmv no 

large difference for any particular pattern, results that are different to bond yields and 

other assets. Thus, it is conclusive to say that yield spreads data are fundamentally 

different to individual stocks, bond yield or currencies. The critical question now is 

whether technical charts can be applied to yield spreads as in other financial markets, 

in an attempt to gain any investment edge. 

Next, Table 3. 9 displays the summary results for the unconditional and conditional 

yield spread return from the long-spread strategy. 20 All the yield spread returns 

from the long spread strategy have been normalized to zero mean and unit staudarcl 

deviation. Overall, the results here indicate some support for EMH since none of 

the overall mean return are statistically significant from zero, apart from HSTOP 

20The mean, standard deviation and skewness results for the short-spread strategy have the op­
posite signs to the long spread strategy, but all the values relllain the same. 

148 



for the local polynomial regression. None of the sign of the mean returns shows any 

systematic pattern that spread traders will be able to earn excess returns. 

Lastly, Table 3.10 and 3.11 show the results for information tests from the two non­

parametric regression respectively. Panel A of both tables are results from goodness­

of-fit test, while panel B presents the results from the Kolmogorov-Smirnov test for 

all yield spreads. Unlike bond yield markets, only four chart patterns was able to 

reject the goodness-of-fit null hypothesis for N aclctrcwa-Watson regression in the yield 

spreads. There is, however, an improvement shown by local polynomial regression, 

where eight chart patterns are able to reject the goodness-of-fit null hypothesis that 

the unconditional and conditional distributions are the same. But the Kolmogorov­

Smirnov test, for both regressions, rejects every single null hypothesis, apart from 

HSTOP pattern. Thus, it is fairly conclusive that the unconditional yield spread 

returns are not statistically different to the unconditional normali;>;ed returns. It is 

conceivable that spread traders may disagree with our results here, on the ground 

that even though chart patterns do not show statistically significant returns does not 

mean that other strategies will not earn excess returns. It may be true, but that 

is beside the point, since the objective here is to investigate whether chart pattern 

will provide additional information to spread traders. The answers to this question 

is negative. 
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Table 3.8: Technical Pattern Count for Bond Yield Spreads 

Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 
Panel A: Nadaraya-Watson Kernel Regression 

All Yield Spreads 
Actual 7209 409 983 1031 387 614 144 :394 1124 1071 403 508 141 
Vasicek 7223 318 1357 1177 217 506 77 273 1:362 118:3 222 449 82 

US, All Spreads 
Actual 3141 211 397 425 196 259 61 206 497 412 186 230 61 
Vasicek 3103 117 600 522 66 220 32 104 607 522 79 203 :31 

UK, All Spreads 
Actual 445 13 85 90 7 32 8 7 85 ss 10 19 4 
Vasicek 597 8 123 133 5 27 1 8 136 142 3 10 I 

Germany, All Spreads 
Actual 1124 75 1:34 155 72 88 21 81 144 168 91 76 1D 

f--' Vasicek 1162 8:3 17:~ 1:35 70 101 20 74 174 127 84 97 24 
c.r• 
0 Japan, All Spreads 

Aetna! 695 42 68 74 52 76 21 50 76 80 57 75 24 
Vasicek 85:3 80 123 94 64 59 16 62 114 92 49 81 19 

A ustra.lia. All Spreads 
Actual 393 5 71 56 11 46 8 4 77 85 0 23 7 
Vasicek 474 11 111 104 3 25 1 7 D8 D4 1 17 2 

Canada, All Spreads 
Actual 1019 45 170 178 :32 75 15 :31 187 176 43 50 17 
Vasicek 680 10 161 127 4 47 3 14 149 141 2 19 3 

Hong Kong, All Spreads 
Actual 392 18 58 53 17 38 10 15 58 6~ :] 16 :35 9 
Vasicek 354 9 66 62 5 27 4 4 84 65 4 22 2 

Panel B: Local Linear Regression 
All Yield Spreads 

Actual 9136 511 1315 1254 488 813 194 481 1430 1283 518 674 175 
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(continued) 
Sample Total HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 
Vasicek 9022 403 1744 1405 291 628 109 359 1685 1437 292 563 106 

US, All Spreads 
Actual 3992 264 .521 536 243 :346 84 252 624 .503 244 297 78 
Vasicek 3870 158 756 629 96 267 43 1:35 758 641 102 244 41 

UK, All Spreads 
Actual 571 17 111 113 9 39 8 7 115 107 15 25 5 
Vasicek 744 8 164 156 5 ~~5 2 10 178 164 5 15 2 

Germany, All Spread:; 
Actual 1401 89 179 182 94 119 30 90 182 197 114 102 2:3 
Vasicek 1444 106 211 160 94 122 28 100 206 157 105 124 31 

.Japan, All Spreads 
Actual 873 54 87 96 61 94 26 6"' 0 90 100 71 99 :30 
Va:;icek 1077 96 166 108 81 83 23 81 132 113 66 105 23 

>--' Australia, All Spreads 
CJl 
>--' Actual 525 10 112 64 16 62 12 5 100 92 4 39 9 

Vasicek 598 12 145 126 3 31 1 0 125 117 2 24 3 
Carmela, All Spreads 

Actual 1266 54 228 200 43 96 20 41 245 206 49 65 19 
Vasicek 844 13 203 149 7 55 6 18 187 170 5 27 4 

Hong Kong, All Spreads 
Actual 508 23 77 63 22 57 14 21 74 78 21 47 11 
Vasicek 445 10 99 77 5 :35 6 6 99 75 7 24 2 



Table :3.9: Summary Statistics of Conditional Bond Yield Spread Return (Long Spread Strategy) 

Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 
Return 

Panel A: Nadaraya-Watson Kernel Regression 
All Spreads, All Spreads 

!VIeau 0.0000 0.060 -0.004 0.023 (l.024 0.038 0.018 0.032 -0.016 0.014 0.008 0.007 0.022 
S.D. 1.0000 0.742 0.944 0.897 0.763 0.888 0.718 0.669 0.947 0.908 0.588 0.718 0.723 

Skew. 0.1200 0.222 -1.449 -0.:364 -1.140 -1.761 -0.008 0.108 -0.724 0.:365 0.072 0. 7:32 2.14:3 
Kurtosis :38.729:3 8.52:3 11.020 11.350 8.:396 21.830 0. 739 :3.862 12.410 6.965 1.:309 5.95:3 12.670 

US, All Spreads 
Mean 0.0000 0.053 -0.012 0.041 0.066 0.011 0.111 0.068* -0.077 0.071 0.030 0.005 0.027 
S.D. 1.0000 0.752 1.016 0.914 0.879 0.883 0.819 0.739 1.004 0.858 0.619 0.738 0.598 

Skew. 0.1030 0.014 -1.096 0.616 -1.075 -1.222 0. 124 -0.186 -1.757 0.099 -0.261 1.335 0.254 
Kurtosis 11.5246 :.U71 5.683 7.407 7.168 9.387 -0.010 3.075 15.180 5.779 0.500 6.849 0.088 

f-" UK, All Spreads 
(.Jl 

tv Mean 0.0000 0.563 0.204* -0.071 0.024 0.050 -0.042 -0.497 -0.062 0.060 -0.152 0.080 0.092 
S.D. 1.0000 1.412 0.719 1.304 0.831 0.624 0.701 0.847 0.905 1.196 0.449 0.766 0.671 

Skew. 2.2468 2.664 0.586 -2.227 0.298 0.849 0.9L:3 -1.880 -1.678 0.049 -0.367 -0.316 0.458 
Kurtosis 68.6957 5.940 2.387 16.250 -0.890 0.595 0.068 1.801 7.610 7.016 -0.404 -0.424 -0.953 

I 

Germany, All Spreads 
Meah 0. 0000 -0.078 -0.163 0.094 -0.136 0.174* 0.060 0.046 0.012 -0.068 -0.020 -0.082 -0.019 
S.D. 1.0000 0.722 1.144 0. 72:3 0.728 0.802 0.697 0. 536 0.988 0.905 0.5:32 0.691 0.870 

Skew. -0.676:3 -2.:339 -2.66:3 1.280 -2.256 1.167 -0.957 1.160 -0.367 1.167 -0.196 -1.090 0.417 
Kurtosis 68.7458 9.662 19.800 4.3:30 9.028 2.064 ] .742 4.025 5.551 15.200 1.467 :3.092 -0.140 

Japan, All Spreads 
Mean 0.0000 0.15(i -0.065 -0.088 0.011 0.041 -0.168 0.003 0.176 0.106 -0.061 -0.0Ci9 -0.014 
S.D .. ' 1.0000 0.641 0.842 0.750 0.466 0. 7:38 0.757 0.592 0.969 1.103 0.676 0.722 0.560 

Skew. -0.0591 0.897 -2.468 -0.4 7:3 -0.351 -0.123 -0.548 1.:366 0.598 0.991 1.099 -0.47 4 -0.277 
Kurto~is 26.8662 2.:367 12.4:30 -0.1:33 0.917 0.615 0.560 5.268 2.252 1.599 3.291 4.085 -0.091 

' Australia, All Spreads 
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(continued) 
Statistics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP I-IS BOT BBOT TBOT RBOT DBOT TPBOT 

Return 
Mean 0.0000 -0.374 0.028 -0.034 0.178 0.288* -0.136 -0.283 0.007 -0.000 - 0.316 0.445 
S.D. 1.0000 1.305 0.725 0.693 0.974 0.984 0.449 0.587 0.631 0.846 0.893 2.030 

Skqw. -0.3493 -0.968 -0.580 -0.153 0.423 2.119 0.288 0.108 -0.218 0.661 - 2.284 1.661 
Kurtosis 13.88Hi -0.468 7.309 1.535 -0.140 7.:320 -1.104 -1.597 2.500 2.045 - 6.907 1.315 

Canada, All Spreads 
Mei:m 0.0000 0.133* 0.047 0.109 0.184 * -0.153 -0.062 -0.057 0.062 -0.027 0.061 0.055 -0.051 
S.D. 1.0000 0.432 0.892 0.897 0.411 1.261 0.448 0.638 0. 97.5 0.848 0.517 0.547 0.269 

Skew. -0.1623 -0.902 -0.445 -0.319 -0.068 -4.450 -0.802 0.894 1.852 0.082 0.519 -0.003 -0.381 
Kurtosis 24.6661 0.968 4.671 3.520 -0.200 :30110 0.327 5.621 10.270 3.407 -0.007 1.867 0.394 

1-Iong Kong, All Spreads 
l1dean 0.0000 0. 066 -0.015 -0.248* -0.14:3 -0 040 0.048 0.079 -0.025 -0.183* 0.100 0.066 -0.056 
S.D. 1.0000 0.540 0.633 0.686 0.390 0.342 0.579 0.484 0.538 0.728 0.448 0.686 0.511 

>--' 
CJl 

Skew. -0.5951 -0.658 -1.187 -2.458 -0.023 0.430 0.656 -0.002 -0.543 -2.225 -0.533 1.580 -0.856 
w Kurtosis 206.748 0.591 4.480 10.280 -1. oo.s 0.692 -0.137 -0.067 3.023 6.529 0.366 4.262 -0.57:3 

Panel B: Local Polynomial Regression 
Long Spread, All Spreads 

Mean 0.0000 0.059* -0.001 0.002 0.032 0.038 0.070 0.032 -0.045 0.025 0.016 0.024 0.021 
s.n. 1.0000 0.732 0.938 0.879 0.755 0.799 0.756 0.670 0.976 0.954 0.64:3 0.759 0.684 

Skew. 0.1200 0.065 -1.200 -0.504 -0.923 0.141 0.432 0.015 -1.210 0.445 -0.333 0.644 2.065 
Kurtosis :38.729:3 7.51:3 10.260 11.460 7.564 8.156 2.110 :3.811 1:3.000 8.380 2.622 5.628 12.860 

US, All Spreads 
Mean 0.0000 0.055 -0.056 0.041 0.085 -0.007 0.219* ll.053 -0.118* 0.064 0.060 0.022 -0.016 
S.D: 1.0000 0.758 1.014 0.899 0.874 0.871 0.865 0.741 1.028 1.033 0.659 0.748 0.591 

Skew. 0.1030 -0.101 -1.223 0.482 -0.871 -0.709 o.5~n -0.160 -1.929 0.505 -0.049 1.021 0.414 
Kurtosis 11..5246 2.802 5.780 6.953 6.499 8.696 1.045 2.883 14.000 8.488 0.63:3 5.123 0.020 

UK, All Spreads 
l'vleati 0.0000 0.378 0.125* -0.071 -0.301 -0.017 -0.042 -0.497 -0.051 0.004 -0.067 0.200 -0.005 
S.D. 1.0000 1.284 0.709 1.280 1.000 0.625 0.701 0.847 0.871 1.162 0.632 0.955 0.620 
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( conhnued) 
Statist,ics Unconditional HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 

Return 
Skew. 2.2468 2.994 0.799 -2.494 0.063 0.619 0.913 -1.880 -1.079 0.005 0.031 0.557 0.817 

Kurtosis 68.7458 8.:377 2.444 16.190 -0.648 0.819 0.068 1.801 7.257 6.395 -0.339 0.245 -0.523 
Germany, All Spreads 

Mean 0.0000 -0.080 -0.050 0.0.51 -0.085 0.060 -0.073 0.042 -0.031 -0.034 0.052 -O.Ol.S 0.012 
S.D. 1.0000 0.722 1.087 0.711 0.723 0.764 0.664 0 . .S38 1.083 0.891 0.507 0.653 0.803 

Skew. -0.6763 -2.122 -2.397 1.229 -1.799 1.207 -0.601 1.201 -2.001 0.820 -0.193 -1.170 0.344 
Kurto~is 68.7458 8.703 19.200 4.231 7.646 2.429 0.97.5 3.687 14.770 14.060 1..596 :3 . .S9.S 0.159 

Japan, All Spreads 
Mean 0.0000 0.1.52* 0.030 -0.073 0.026 0.098 -0.008 -0.009 0.176* 0.178* -0.187* -0.144 0.046 
S.D.' 1. 0000 0.591 0.960 0.721 0.453 0.677 0.723 0.664 0.953 1.036 0.801 0.800 0.544 

Skew. -0.0591 0.918 -1.608 -0.455 -0.468 0.413 1.135 0.001 0.333 0.865 -0.281 -0.747 -0.392 
Kurtosis 26.8662 2.8:n 7.614 -0.111 0.5 72 1.089 2.182 .5.256 2.307 1.630 3.845 2.924 -0.040 

....... Australia, All Spreads 
c..n 
~ Mean 0.0000 -0.054 0.080 -0.084 0.054 0.275* -0.079 -0.27:3 -0.060 0.005 -0.750 0.226 0.331 

S.D. 1.0000 0.989 0.686 0.661 0.847 0.895 0.387 0.494 0.856 0.900 1.380 1.057 1.786 
Skew. -ll.:3493 -1.661 -0.146 -0.483 0.78.5 1.98.5 -0.048 -0.087 -1.2.5 7 O . .S.S5 -1.142 1.111 1.978 

Kurtosis 13.8816 1.924 6.573 0.504 0.645 8.482 -0.894 -1.327 5.924 1.591 -0.677 4.952 2.724 
Canada, All Spreads 

Mean 0.0000 0.113* 0.053 0.042 0.148* -0.008 -0.105 0.008 0. 039 -0.015 0.079 0.118 -0.044 
S.D.: l. 0000 0.480 0.920 0.854 0.395 0.833 0. 713 0.551 0.955 0.724 0.551 0.710 0.294 

Skew. -0.1624 -1.3:~6 0.383 -0.:312 -0.023 0.930 -Ul66 1.724 1.491 -0.188 0.429 2.393 -0.:342 
Kurtosis 24.6661 2.610 7.237 3.744 -0.222 7.325 L~92 5.289 9.192 5.499 -0.412 12.050 -CU52 

Hong Kong, All Spreads 
l\Iean 0.0000 O.ll2 -0.016 -0.271 * -0.143 0.024 0.070 0.155 0.016 -0.1 L1 0.067 0.074 ll.l11 
S.D. 1.0000 0.521 0.589 0.703 0.349 0.423 0 .. 563 0.426 0.520 0.699 0.358 0.-541 0.426 

Skew. -0.5951 -0.700 -1.053 -2.152 -0.028 0.476 0.470 -0.437 -0.349 -2.221 -1.101 0.900 -1.243 
Kurtosis 206.748 0.600 4.592 7.748 -0.638 0.128 -0.557 0.576 3.307 7.270 1.148 1.826 1.783 



Table 3.10: Information Tests for Bond Yield Spreads (Nadaraya-Watson Kernel Regression) 

Panel A: Goodness-of-Fit Test (Long Spread) 
Deciles 

Patterns 1 2 3 4 5 6 7 8 9 10 Q-Statistic: 
HSTOP 5.38 9.05 9.29 8.07 10.80 12.50 12.70 13.90 11.20 7.09 27.00 
p-value (-3.12) (-0.64) ( -0.48) ( -1.30) (0.51) ( 1.66) ( 1.83) (2.65) (0.84) (-1.96) (0.001) 
BTOP 9.36 11.00 9.0.5 7.73 9.77 9.56 11.00 11.00 12.10 9.46 14.10 
p-va.lue ( -0.67) ( 1. 03) (-0.99) ( -2.37) (-0.24) ( -0.46) (1.03) (1.03) (2.20) ( -0.56) (0.119) 
TTOP 7.95 11.50 10.30 9.21 9.21 10.90 10.30 10.60 11.10 9.02 11.50 
11-value (-2.19) (1.65) (0.30) (-0.84) ( -0.84) (0.92) (0.30) (0.61) (1.13) (-1.05) (0.246) 
RTOP 7.49 7.49 9.30 9.04 13.20 12.90 10.60 10.60 10.90 8..S:3 14.01 
p-va.lue (-1.64) (-1.64) (-0.46) (-o.6~n (2.08) (1.91) (0.39) (0.39) (0.56) (-0.97) (0.122) 
DTOP 7.82 9.4.5 9.77 9.61 13.80 10.10 8.96 10.60 10.10 9.77 13.20 

f-' p-valuc (-1.80) ( -0.46) (-0.19) (-0.32) ( 3.17) (0.08) (-0.86) (0.48) (0.08) (-0.19) (0.152) 
CJ1 
CJ1 TPTOP 8.3:3 12.50 5.56 10.40 14.60 9.03 10.40 9.72 7.64 11.80 8.64 

p-value (-0.67) ( 1.00) (-1.78) (0.17) ( 1.83) (-0.39) (0.17) (-0.11) ( -0.94) (0.72) (0.471) 
HSBOT 4.82 10.20 11.90 10.20 13.20 11.20 9.90 11.40 10.40 6.80 21.40 
p-value ( -3.4:3) (0.10) ( 1. 28) (0.10) (2.12) (0.77) (-0.07) (0.94) (0.27) ( -2 .08) (0.011) 
BBOT 10.10 10.60 10.10 10.20 9.25 9.70 9.25 11.90 8.81 10.10 7.58 
p-value (0.16) (0.66) (0.06) (0.26) (-0.84) (-0.34) (-0.84) (2.15) (-1.33) (0.06) (0.423) 
TBOT 9.43 11.70 9.24 7.84 10.60 10.60 9.80 11.00 10.20 9.62 11.00 
p-value ( -0.62) ( 1.82) (-0.83) ( -2.3.5) (0.60) (0.70) (-0.21) (1.11) (0.19) ( -0.42) (0.273) 
RBOT 5.96 9.93 11.70 7.94 12.20 12.20 11.40 15.60 7.20 5.96 36.50 
JrValue (-2.71) ( -0.05) (1.11) (-1.38) (1.44) ( 1.44) (0.90) (3.77) ( -1.88) (-2.71) (0.000) 
DBOT 7.09 11.80 11.00 9.65 11.20 9.6.5 11.00 8.86 13.60 6.10 22.80 

. p-value (-2.19) ( 1.:36) (0.77) (-0.27) (0.92) (-0.27) (0.77) ( -0.86) (2.69) (-2.93) (0.007) 
TPBOT 6.38 12.10 9.22 7.80 15.60 1.5.60 7.80 7.80 10.60 7.09 14.70 
jJ-valuc (-1.43) (0.81) (-0.31) (-0.87) (2.22) (2.22) ( -0.87) ( -0.87) (0.25) (-1.1.5) (0.100) 

Panel B: Kolmogorov-Smirnov Test 
continued next. page 



f-' 
(.;1 

Ol 

Statistics 
/' 

p-value 

HSTOP BTOP 
1.118 0.280 

(0.164) (1.000) 

TTOP RTOP DTOP 
0.484 0.943 0.526 

(0.974) (0.336) (0.945) 

(continued) 
TPTOP HSBOT BBOT TBOT RBOT DBOT TPBOT 

0.268 1.057 0.282 0.698 0.985 0.761 0.422 

(1.000) (0.214) ( 1.000) (0.715) (0.286) (O.G09) (0.994) 



Table :3.11: Information Tests for Bond Yield Spreads (Local Polynomial Kernel Regression) 

Panel A: Goodness-of-Fit Test (Long Spread Strategy) 
Dec:iles 

Patterns 1 2 :3 4 5 6 7 8 9 10 Q-Statistic 

HSTOP 5.87 8.61 9.59 7.8:3 10.80 11.70 11.90 14.50 11.90 7.24 :32.00 
p-va.lue (-:3.11) (-1.05) ( -0.31) ( -1.64) (0.58) ( 1.31) ( 1.46) (3.38) (1.46) (-2.08) (0.000) 
,BTOP 8.75 10.90 10.30 7.91 9.28 9.58 11.60 10.60 11.40 9.66 16.70 
p-value (-1.52) ( l. 06) (0.32) (-2.53) (-0.87) (-0.51) ( l. 98) (0.78) ( 1. 70) ( -0.41 ) ( U. 054) 
,TTOP 8.37 11.20 11.10 9 .. 57 8.21 10.80 10.80 1U.40 11.30 8.37 17.90 
'p-value (-1.92) (1.37) ( 1.28) (-0.51) (-2.11) (0.90) (0.90) (0.43) ( 1.56) (-1.92) (0.037) 

RTOP 7.38 6.76 10.20 9.22 13.50 11.90 10.00 11.30 11.90 7.79 21..50 
p-value (-1.93) ( -2.38) (0.18) (-0.57) (2.60) ( 1. 39) (0.03) (0.94) (1.39) ( -1.63) (0.011) 
DTOP 7.38 10.80 9.96 9.84 12.90 9.72 9.72 10.70 9.84 9.10 14.:30 

>--' p-valuc (-2.49) (0.78) ( -0.04) (-0.15) (2.77) (-0.27) (-0.27) (0.67) (-0.15) ( -0.85) (0.11:3) 
c.n 

i:PTOP 
____ , 

7.22 11.90 4.12 12.90 12.90 9.28 11.90 9.79 8.25 11.90 14.10 
p-value ( -1.29) (0.86) (-2.73) ( 1.:34) ( 1.34) (-0.34) (0.86) (-0.10) (-0.81) (0.86) (0.117) 
HSBOT 4.57 10.20 11.60 10.60 13.10 11.00 9.98 12.50 9.36 7.07 28.00 
.r}-value (-3.97) (0.14) (1.20) (0.44) (2.26) (0.74) (-0.02) ( 1.81) ( -0.47) (-2.14) (0.001) 
BBOT 10.30 10.80 10.10 10.10 9.16 10.:30 9.44 11.50 8.67 9 .. 58 8.64 
hvalue (0.44) ( 1.00) (0.18) (0.09) ( -1.06) (0.35) (-0.71) (1.85) ( -1.67) (-0.53) (0.471) 
TBOT 9.43 10.70 9.51 7.56 10.80 10.60 10.20 10.20 11.30 9.74 12.50 
~va.lue (-0.68) (0.81) ( -0.59) (-2.91) (0.90) (0.72) (0.25) (0.25) ( l. 55) (-0.:31) (0.186) 
RBOT 6.95 9.27 10.20 7.72 12.50 11.80 11.00 15.80 7.34 7.:34 38.30 
_p;-value 

I 
(-2.:n) ( -0.56) (0.18) (-1.73) ( 1. 93) (1.35) (0.76) ( 4.42) ( -2.02) (-2.02) (0.000) 

QDOT 7.12 11.60 9.79 9.64 11.40 9.94 11.00 9.64 13.20 6.68 23.80 
~value (-2.49) ( 1.36) (-0.18) (-0.31) ( 1.23) (-0.05) (0.85) ( -0.31) (2.77) ( -2.88) (0.005) 

TPBOT .5.14 13.10 10.90 6.86 13.70 14.90 8.57 9.71 10.90 6.29 17.20 
p~value (-2.14) (1.39) (0.38) (-1.39) ( 1.64) (2.14) (-0.63) (-0.13) (0.38) (-1.64) (0.046) 

Panel B: Kolmogorov-Smirnov Test 
continued next page 



....... 
CJl 
(X) 

(continued) 
Statistics HSTOP BTOP TTOP RTOP DTOP TPTOP HSBOT BBOT TBOT RBOT 

"( 

p-value 
1.426 

(0.034) 
0.171 0.357 0.790 0.863 

(1.000) (1.000) (0.560) (0.445) 
0 .. 326 

( 1000) 
1.089 

(0.186) 
0.184 1.140 

(1.000) (0.149) 
0.916 

(0.371) 

DBOT TPBOT 
0.66:3 

(0.771) 
0.514 

(0.954) 



3.6 Conclusion 

In this chapter, we examine the effectiveness of technical chart patterns in the bond 

markets. Specifically. we apply the charting algorithm to both bonds yield and bond 

yield spread markets. To the best of om knowledge, this is the first systematic 

evaluation of technical charts in the bond yields and bond yield spreads. Furthermore, 

we extend the capability of the nonparametric kernel regression by developing the 

nonparametric local polynomial kernel regression. 

In summary of the results, we find that chart patterns exist in the bond yield 

markets, in a manner that. can be captured by the chart algorithm. However, the 

results obtained from these chart patterns are broadly in supportive of the weak­

formed EMH, meaning that chart patterns may have only limited information in 

trading bond securities. Some patterns, such as the Head-and-Shoulders, could have 

value in US bond markets. But for other markets, the value of this pattern declines. 

In contrast to bond yields, relatively few chart patterns are detected by our non­

parametric regression algorithms in the yield spread markets. Furthermore, the condi­

tional returns obtained from these chart patterns provide no incremental information 

to traders at all. This shows that. yield spread data are hmdamentally different to 

individual stock or currencies. Perhaps other strategies are more suited in trading 

yield spreads than technical chart patterns. 

In conclusion, it remains a challenge for technical analysis to explain how technical 

charts are useful to traders in forecasting bond prices and how it can be incorporated 

in the relative spread trading. 
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Appendix 1: Maximum Likelihood Estimates of the 

Vasicek Model 

This section presents the maximum likelihood estimates of the Vasicek (1977) model 

on bond yield and yield curve spreads data. The main purpose of the one-factor 

model is to provide a comparison using simulated yield and the actual yield. The 

Vasicek model is dy1 = >.(JL- y1)clt + LTdW1, where (p,, >.,a) are the model parameters, 

interpreted as long-run equilibrium level, speed of mean reversion and volatility of 

the state variable y1 respectively. The estimates are computed using equations (3.30) 

to (3.32) in Section 3.5. Panel A of Table 3.12 displays the results for bond yields, 

and Panel B presents the results for yield spreads. Panel C tabulates the results for 

sovereign yield spreads, which is the spread between a foreign country (UK, Germany, 

Japan, Australia, Canada and Hong Kong) and US. 

An inspection of the results shows several interesting properties. One, bond yields 

have lower ).. values, rneaning that the yield spreads mean revert faster to the long-run 

equilibrium mean JI than bond yields. The autocorrelation statistics also show that 

yield spreads have lower persistency. Two, all bond yield spreads have positive mean 

value, which implies that on average the yield curve is upward sloping for all sample 

countries. 

Table 3.12: Vasicek lVIodel Parameter Estimate::; 

Bond Yield Obs.(T) f-L (J ).. rviax l'viin p(100) 
Panel A: Bond Yields 

DSBY1Y 11211 0.0625 0.0082 0.0005 0.1731 0.0088 0.9059 
USBY2Y 7619 0.0697 0.0088 0.0005 0.1695 0.0108 0.9248 
USBY3Y 11211 0.0668 0.0064 0.0005 0.1659 0.0132 0.9199 
USBY5Y 11211 0.0689 0.0057 0.0005 0.1627 0.0203 0.9320 
USBY7Y 9341 0.0751 0.0060 0.0005 0.1605 0.0263 0.9353 
USBY10Y 11211 0.0711 0.0046 0.0005 0.1584 0.0312 0.9394 
USBY30Y 7441 0.0794 0.0051 0.0005 0.1521 0.0417 0.9406 
UKBY2Y 6962 0.0828 0.0081 0.0006 0.1549 0.0318 0.9220 
UKBY5Y 6962 0.0845 0.0061 0.0006 0.1594 0.0356 0.9251 
UKBY7Y 6962 0.0852 0.0055 0.0006 0.1580 0.0375 0.9349 
UKBY10Y 6962 0.0852 0.0050 0.0005 0.1556 0.0391 0.9430 
GERBY2Y 5341 0.0495 0.0029 0.0004 0.0927 0.0188 0.9409 
GERBY3Y 4873 0.0510 0.0024 0.0004 0.0931 0.0218 0.9388 
GERBY5Y 5341 0.0539 0.0027 0.0006 0.0914 0.0246 0.9218 
GERBY7Y 4604 0.0565 0.0021 0.0005 0.0926 0.0274 0.9301 

GERBY10Y 5341 0.0583 0.0020 0.0006 0.0913 0.0302 0.9248 
JAPBY2Y 5250 0.0226 0.0012 0._0004 0.0849 .. 0,0001-- 0.9482--

-

JAPBY3Y 5250 0.0244 0.0012 0.0004 0.0845 0.0007 0.9454 
JAPBY5Y 5250 0.0276 0.0017 0.0004 0.0849 0.0015 0.9394 

continued next page 

160 



Bond Yield 
.JAPBY10Y 
AUSBY2Y 
AUSBY3Y 
AUSBY5Y 

AUSBY10Y 
CANBY2Y 
CANBY3Y 
CANBY5Y 
CANBY7Y 

CANBY10Y 
HKBY2Y 
HKBY3Y 
HKBY5Y 
HKBY7Y 
HKBY10Y 

Total 

USYS(1,5) 
USYS(1,7) 

USYS(1,10) 
USYS(1,30) 
USYS(2,5) 
USYS(2,7) 
USYS(2,10) 
USYS(2,30) 
USYS(3,7) 
USYS(3,10) 
USYS(5,10) 
USYS(5,30) 

USYS(10,30) 
UKYS(2,5) 
UKYS(2,7) 

UKYS(2,10) 
UKYS(5,10) 
GERYS(2,5) 
GERYS(2,7) 

GERYS(2,10) 
GERYS(3,7) 

GERYS(3,10) 
GERYS(5,10) 
JAPYS(2,5) 

JAPYS(2,10) 
JAPYS(3,10) 
.JAPYS(5,10) 
AUSYS(2,5) 
AUSYS(2,10) 
AUSYS(3,10) 

Obs.(T) 
5250 
5137 
5137 
5137 
5137 
5157 
5157 
5157 
5157 
5157 
3659 
3182 
2952 
2662 
2435 

204,816 

(continued) 

1-' rJ A lVIax Iviin 
0.0338 0.0025 0.0006 0.0823 0.0044 
0.0780 0.0066 0.0008 0.1615 0.0382 
0.0792 0.0069 0.0007 0.1557 0.0404 
0.0812 0.0066 0.0008 0.1495 0.0431 
0.0833 0.0059 0.0007 0.1425 0.0459 
0.0631 0.0081 0.0008 0.1329 0.0219 
0.0651 0.0065 0.0007 0.1301 0.0244 
0.0674 0.0059 0.0008 0.12.57 0.0313 
0.0699 0.0051 0.0008 0.1218 0.0344 
0.0710 0.0048 0.0008 0.1196 0.0373 
0.0487 0.0156 0.0018 0.1183 0.0057 
0.0527 0.0144 0.0017 0.1142 0.0006 
0.0570 0.0085 0.0014 0.1056 0.0229 
0.0581 0.0136 0.0023 0.1055 0.0074 
0.0598 0.0078 0.0017 0.1052 0.0333 

p(100) 
0.9272 
0.9156 
0.9165 
0.9202 
0.9244 
0.9108 
0.9129 
0.9164 
0.9225 
0.9231 
0.8621 
0.8728 
0.8378 
0.8488 
0.8367 

Panel B: Bond Yield Spreads 
11211 0.0063 0.0030 0.0023 0.0258 -0.0271 0.7526 
9341 0.0089 0.0039 0.0020 0.0294 -0.0321 0.7448 
11211 0.0085 0.0038 0.0016 0.0339 -0.0344 0.7765 
7441 0.0129 0.0052 0.0013 0.0437 -0.0391 0.8017 
7619 0.0043 0.0019 0.0032 0.0164 -0.0171 0.7893 
7619 0.0064 0.0024 0.0024 0.0229 -0.0220 0.7962 
7619 0.0074 0.0025 0.0017 0.0274 -0.0241 0.8008 
7441 0.0095 0.0035 0.0013 0.0369 -0.0281 0.8185 
9341 0.0042 0.0016 0.0034 0.0181 -0.0130 0. 7721 
11211 0.0043 0.0018 0.0023 0.0224 -0.0157 0.7940 
11211 0.0022 0.0009 0.0041 0.0119 -0.0091 0.7448 
7441 0.0053 0.0019 0.0021 0.0226 -0.0156 0.7994 
7441 0.0022 0.0009 0.0039 0.0113 -0.0084 0.8101 
6962 0.0017 0.0017 0.0034 0.0166 -0.0135 0. 7978 
6962 0.0023 0.0030 0.0033 0.0199 -0.0169 0.7865 
6962 0.0023 0.0043 0.0030 0.0287 -0.0216 0.7499 
6962 0.0007 0.0015 0.0042 0.0187 -0.0090 0.5504 
5341 0.0045 0.0021 0.0052 0.0195 -0.0084 0.8229 
4604 0.0072 0.0014 0.0014 0.0226 -0.0095 0.8941 
5341 0.0089 0.0024 0.0018 0.0271 -0.0130 0.8718 
4604 0.0055 0.0007 0.0015 0.0174 -0.0071 0.8886 
4873 0.0072 0.0014 0.0015 0.0211 -0.0098 0.8607 
5341 0.0044 0.0017 0.0042 0.0141 -0.008.5 0. 7843 
5250 0.0050 0.0009 0.0042 0.0133 -0.0047 0.8036 
5250 0.0112 0.0019 0.0026 0.0256 -0.0072 0.8442 
5250 0.0094 0.0017 0.0032 0.0223 -0.0064 0.7984 
5250 0.0062 0.0013 0.0044 0.0142 -0.0067 0.7566 
5137 0.0032 0.0018 0.0039 0.0153 -0.0145 0.7988 
5137 0.0053 0.0036 ().0028 0.0277 -Oc0240· 0.785.5 
5137 0.0041 0.0035 0.0048 0.0209 -0.0194 0.7289 

continued next page 
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( contin·ued) 
Bond Yield Obs.(T) p. () ,\ l'viax Min p(100) 

AUSYS(5,10) 5137 0.0020 0.0023 0.0080 0.0127 -0.0095 0.6890 
CANYS(2,5) 5157 0.0043 0.0028 0.0058 0.0165 -0.0121 0.7736 
CANYS(2,7) 5157 0.0068 0.0042 0.004 7 0.0226 -0.0135 0.7848 

CANYS(2,10) 5157 0.0079 0.0058 0.0045 0.0263 -0.0172 0.7921 
CANYS(3,7) 5157 0.0048 0.0022 0.0049 0.0200 -0.0085 0.7733 
CANYS(3,10) 5157 0.0059 0.0050 0.0065 0.0198 -0.0132 0.7806 
CANYS(5,10) .5157 0. 0037 0. 0041 0.0172 0.0114 -0.0097 0.7470 

HKYS(2,5) 2952 0. 0084 0.0059 0.0085 0.0212 -0.0193 0.7109 
HKYS(2,7) 2662 0.0113 0.0129 0.0096 0.0275 -0.0202 0.7666 

HKYS(2,10) 2435 0.0142 0.0083 0.0040 0.0336 -0.0208 0.7924 
HKYS(3,7) 2662 0.0079 0.0125 0.0209 0.0335 -0.0133 0.7739 

HKYS(3,10) 2435 0.0107 0.0079 0.0070 0.0373 -0.0140 0.8053 
HKYS(5,10) 2435 0.0061 0.0015 0.0047 0.0142 -0.0033 0.8381 

Total 262,170 
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Append II: Unconditional and Conditional Bond 

Returns 

This Ap]wnclix brieftv describes t.hP methndologv liS!' ro c;1lculate t.he 1\IH:onditinual 

and conditional bond returns. Two important assumptions are needed to compute 

the bond returns. First, all benchmark bonds in our sample countries, apart from 

Germany, are assumed to pay semi-annual coupons to bond holders throughout the 

samplf' Jlf'riod. Sf'cond. hf'.nchmark bonds are assmnf'd to t.rark dt par. Thr~ first 

assumption is not controversial since the government coupon bonds usually maintain 

similar coupon payout methods for many years, especially for benchmark issues. To 

show vvhy the second assumption is reasonable as well, we refer to the following Figure 

3.10. 

Figure 3.10: An Example of Historical Benchmark Bond Price and Bond Yield 
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This Figure displays the historical US 10-year benchmark bond price and the bond 

yield over period1978-2006. The evidence here shows that the benchmark bond prices 

ihwtnal!' JHTlll<UJcut.ly arunud Sl!J() whilt· tlH' l>otHI vidds val'illat.t' lwtwccu 3 awl lG 

percent. Although the bond prices deviate from par, in the long run, the average value 

of the bond price is close to par. As a matter of fact, the mean price in this example 

is $100.17, which is not significantlv different front ~100. Tlms. it is reasuuable ft>r 11s 

tu umiut.a.iu t ht' sccuud assmupt.iuu fur utlwr L>umls uf diffcrcut tm1turi t.iq;. 

The uext step is to compute the bond's durati011. Despite the recent growth in 

·nuid!~l'll financial engineniug,. th!· i\lac;nday dmat.itJII lw F. \Lw<lllLlv (19:31)) is still 
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the bedrock in measuring the price response of a bond to changes in interest rates. 

The basic equation for calculating the Iviacaulay cluratioll D is given as: 

'\"'n tC nM 
L.,i=l (l+y/2)' + (l+y/2)" 

D= p (3.33) 

where y is the bond yield (semi-annual coupons), Pis the bond pnce, i\1 is the par 

value and n is the number of semi-annual periods. Given this Macaulay duration D 

we call proceed to calculate the Modified duration D*: 

D * = ___!!______ 
1+-y 

(3.34) 

By the virtue of the second assumption, the bond yield is equivalent to the coupon 

rate at par. This information enables us to compute the l'v!odified duration D* in 

equation (3.34) with P = 100, !vi = 100, C = y and the bond yield :y1 at time t 

alld the maturity value. For example, the modified duratiou of a 10-year government 

bond at 5 percent yield and 5 percent coupon is D* = 7.7945. 21 Armed with the 

modified duration D*, it is possible for us to compute the approximate percentage 

bond price change of the bond with the following expression, eveu though we do llot 

have the actual bond price data: 

~p * ;\ 
r1 =-=-D xuy p t = 2, ... , T (3.35) 

where ~p = P1 - P1_L ~y = y1 - y1_ 1 , and ~P/P is the percentage change ill bond 

price, and ~y is the change in bond yield. This percentage bond price change is 

assumed to be the bond returns r 1 at time t 22 To provide further intuition to the 

percentage bond price change, we provide a graphical example of the unconditional 

bond returns r 1 in Figure 3 .11. The data used in this example is the US 10-year 

benchmark bond yield over the period 1962-2006. Basically, this Figure shows the 

dnily normalized bond price returns change compnted with the modified duration D* 

and daily bond yield change ~y via equation (3.35). 23 

This figure shows that the unconditional bond price returns capture several well 

21 See Fabozzi (2001) and Campbell, Lo and Mackinlay (1997, Chapter 10) for lllore details. 
22 Another approach for approximating a boml's duration using the :,'ield-to-l!wturity is derived 

by Shiller, Campbell and Schoenlwlr.z ( 1983). Their approximation to the bond's duration that is 

selling close to par is given by: D 0 :::o \-__'' , where p = (l + y1) -I ami 11 is the bond's ltlaturity. This 
relationship becomes equality if the bonJ is selling at par. The log-linear boml returns is then given 
as: ~'t+ 1 :::::: D 0 y1 - (D 0 

- 1 )Yt+ 1, where Yt is the yield-to-matmity at time t. See Campbell, Lo ami 
Mackinlay (1997, p.408) andHardouv_elis (Hl94) for more details.-- _- --

23 The i1H5dified cduration. D* will vary throughout our sample data because the level of bond )'ield 
is not constant. The normalization procedure is described in Sectio11 3.2. 
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Figure 3.11: Daily Normalized Unconditional Benchmark Bond Price Changes Using 
Modified Duration 
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known stylized facts, such as the increased in bond price volatility during the US 

monetary tightening in 1978-1981, and the large positive spike in bond price during 

the October 1987 equity market crash. Because of their relative accuracy and to 

maintain consistency throughout our work, the method described here is used to 

calculate both the unconditional bond price retums and the one-day conditional bond 

price returns. After applying the Nadaraya-Watson and local polynomial regressions 

to each bond yield series, we have twelve sets of nonnalizecl conditional bond yield 

changes 6y, which we convert to bond price percentage returns r 1 and compare these 

returns against the unconditional bond price returns from the whole sample period 

with thr goodness-of-fit and Kolmogorov-Smirnov distribution trsts. 
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Chapter 4 

An Empirical Investigation of Price 

Gaps in the Financial Markets 

4.1 Introduction 

It is well known that investors use technical analysis extensively to forecast future 

asset prices. (See Chapter 1) A significant part of technical analysis involves pat­

tern recognition and evaluating images, such as extracting meaningful information 

from chart patterns like Head-and-Shoulders, which we have examined in Chapter 

3. Therefore, human cognitive ability plays an important role in technical analysis. 

Early German psychologists have developed the Gestalt laws of per-ceptual or:gani­

zat·iun to explain how humans, or technical traders in our case, perceive external 

objects. Among these Gestaltist laws, one cognitive theory hypothesized that there 

is a tendency for hmwms to visually cmuplete fragmentary pictures and fill i11 the 

incomplete information. This is known as the Law of Closure. 1 To exemplify this 

law, we plot two objects in Figure 4.1 (a). One could easily recognize the left and 

right figure as a circle and triangle respectively, even though no complete circle or 

triangle has been drawn. According to the Law of Closure, we rnentally connect the 

dashed lines and fill the empty space between these dashed lines with imaginary lines, 

therefore forming the circular and triangular objects iu our mind. 

In relation to the dashed objects, such gaps (or empty space) can also occur 

between two trading periods in the financial markets, as shown in Figure 4.1 (b). 

Price gaps are defined to lx~ the vertir:al space created betwef!n the high ;.-mel low 

prices in one trading period and the high and low prices in next trading period. They 

are marked bv G in this sub-figure. For example, if the day-J1jgh at time_t is lower 

1See; fo!" exanipie, W~rtlieiri~er (1923, 1958) for a description of this and other cognitive laws. 
Early studies that verify the Law of Closure with simple incomplete geometric figures include Koftlw 
(1935). Street (1931) and Leeper (1935). See also Barlett (1916, 1932). 
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Figure 4. 1: Cognitive Psychology and Technical Analysis 
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(a) The Gestalt Law of Closure 

(b) Price gaps (marked by G) in the fin ancial ma rkets 

than the day-low st t ime t + 1, an upward price gap has occurred . On th other hand , 

if the day- low at time t is higher than t he day-high at timet + 1, a downward price 

gap has occurred. 

These price gaps have fascinated technical analys ts for a loug time, including Ed­

wards and J\rlagec (1 9GG ). P P-rhaps infhwnc<'d hy t.lw GP.stalt Law of Closmr, t.rchnical 

analysts have prescribed that such gaps must be covered in the future, even though 

they cannot say why this must be so and wheu the gaps will be covered. In chartist 

parlance , a gap is fill ed when prices fall back to cover the entire space created by price 

gap, aud partially fill ed when prices retrace to part ially cover the gap. This Gap-Fill 

hypothesis is described by Pring (1987, p.87) as : 

There is an old principal that market al hors a vacu um and that all gaps 

are eventually fi lled. 

The aim of this chapter is to evaluate whether this Gap-Fill hypothesis is empirically 
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justified. Until now, price gaps have not been analyzed statistically The price gap 

hypothesis has become a universal tool without any strong evidence, apart from the 

fact chartists know that gaps are important, as Edwards and Magee (1966, p.207) 

argue about this many years ago: 

These "holes" in the price trend graph were conspicuous. It was only 

natural that observers should attach irnportance to them, should try to 

assign some special significance to their occurrence. But the result was 

unfortunate, for there soon accumulate a welter of "rules" for their inter­

pretation, some of which have acquired an almost religious force and are 

cited by the superficial chart reader with little understanding as to why 

they work when they work (and, of course, as is always the case with any 

superstition, an utter disregard of those instances where they don't work.) 

Furthermore, no empirical study has provided an}' evidence on to whether gaps 

are sources of profitable technical indicators The line of research in many previous 

technical analysis papers c:oncentr(lte on [ 1] Profitability of simpler technical incli­

cators like moving average. filters and calendar efFects (See, for example, Brock. 

Lakonishok and LeBaron (1992), Kho (1996), Cooper (1999), Sullivan, White and 

Timmermann (1999, 2001) and Chapter 2), [2] Chart pattern recognition capability 

(See, for example, Osler (1998), Chang and Osler (1999), Lo, Mamaysky and Wang 

(2000), Dempster and Jones (2002), Dawson and Steeley (2003), Savin, Weller and 

Zvingelis (2003) and Chapter 3), [3] Neural network and artificial intelligence (See, for 

example, Neely, Weller and Dittmar (1997), Allen and Karjalainen (1999) and Neely 

and Weller (2003)) and [4] Theoretical models (See Treynor and Ferguson (1985). 

Brown and Jennings (1989) and Blume, Easley and O'Hara (1994)) 2 

Thus, this chapter extends the current literature on technical analysis by evalu­

ating several hypothesis relating to price gaps: 

1. Are price gaps filled, as technical analysts are universally led to believe? 

2. Do price gaps provide an extra dimension of information to traders? 

3. Do price gaps provide sources of profitable trading strategies? 

Although price gaps are easy to identify, they can take severa.l distinguishable 

forms. To test the information provided by these gaps, an objective method for 

identifying various types of price gaps is ne~ded. Oth~rwise, various -interpretations 
- - ~' - . - -

ofU:ie price gaps wiil ari~~- Tlms, we pre-set various conditions for different types of 

2 See Park and Irwin (2004) for a co!nplete review of the previous studies in teclmical analysis. 
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gaps and apply these conditions objectively to detect price gaps in financial markets. 

The goal of such a procedure is to reduce the subjective nature of our selection process. 

To this end, we first categorize price gaps into five specific types commonly taught 

by chartists. There are Congestion gaps, Breakout gaps, Runaway gaps, Exhaustion 

gaps and Island gaps. The characteristics of each type of gap are carefully studied and 

described. The next step is translating these verbal descriptions into computationally 

fertsiblc rtlgorithms so Rs to detect rtnd sort out the vrtrions price gaps. The finrtl step is 

evaluating the conditional price returns obtained from these price gaps by comparing 

them to the unconditional returns. 

Price gaps are usually not used as an isolated technical indicator. In fact, technical 

analysts commonly use other technical indicators in conjunction with price gaps when 

evaluating the significance of price trend. lndice:ttors indmling various chart pattcms 

and volume. Hence, we shall include both indicators in our price gap study. 

First, to test whether conditioning on chart patterns provide further information 

to technical analysts, we use a statistical smoothing algorithm to extract potentially 

useful chart patterns in conjunction with price gaps, as in the spirit of Lo, Mamaysky 

and Wang (2000, thereafter LMW). The smoothing method vve consider is known 

as the local polynomial regression. Using local polynomial regression has several 

attractive properties over the Nadaraya-Watson estimator used by LMW, such as 

reduced boundary bias. Moreover, by resorting to this regression technique, we can 

homogenized the appearance of chart pattern throughout the sample data. (See 

Chapter 3 for more details) Second, volume is hypothesized to contain information 

that is potentially useful to analysts. For example, the occurrence of a price gap 

together with increased volume is claimed to confirm a price trend while decreasing 

volume signifies that the price trend are more prone to reversal in the future. (See, 

Bulkowski (2005), Edwards and Magee (1966) and Blume, Easley and O'Hara (1994)) 

We test the Gap-Fill hypothesis and apply the technical charting algorithm to 

twenty-eight futures markets. The principal reason for this data choice is that short­

selling is permitted in the futures markets. Investors could either enter into a long or 

short positions in the event of a price gap, which can be an upward or downward price 

gap. Furthermore, futures markets allow us to test the Gap-Fill hypothesis across 

different asset markets, such as equity, currencies, fixed income and commodities. 

As a matter of fact, sorne futures markets have higher liquidity than the underlying 

financial instruments, a charad<~ristic which enhances prier'- clisco\rP.ry arid pl~Omot(~s --· 

market efficiency. 
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The rest of this chapter is as follows. The first part of Section 4.2 describes the 

various tvpP of price p;aps and its algorithmic identification. The second part of tlw 

same section describes the two conditioning variables used in conjunction with the 

price gaps, including chart patterns and volume. Next, Section 4.4 summarizes the 

underlying futures data and the adjustment technique used to extract the continuous 

time series. \iVe also include a number of graphical examples to facilitate the un­

derstanding of the algorithm and the smoothing technique. Section 4.5 presents the 

empirical results. Finally, Section '1.6 concludes. 

4.2 Identification of Price Gaps 

4.2.1 Types of Price Gaps 

Price gaps occur regularly in financial markets. The causes of prices gaps are many, 

some of which may be due to exogenous information shocks like the release of eco­

nomic data which has an unexpected component, (See, for example, Fleming and 

Remonola (1999a and 1999b) and Fleming (2003)) or a clustering of buy/sell orders 

at certain technical price levels. 3 (See, for example, Osler (2003) and Kavajecz <:tnd 

Odders-White ( 2004 )4
) Technical analysts have grouped these price gaps into different 

categories so that it is possible to identify future price gaps and to derive forecasting 

properties from these gaps. E8ch type of gap offers a different hypothesis (see next 

section) .5 

In broad generalities, there are several types of price gap that market technicians 

have identified. (See, for example, Edwards and Magee (1966), Schwager (1996), 

Bulkowski (2005) and Kaufman (2005)) 

1. Congestion gaps. Occur within a congestion or consolidation level. 

2. Breakout gaps. Occur when prices are breaking out of the congestion (trend­

less) area. 

3. Runaway gaps. Occur when prices are rapidly moving in one direction. 

4. Exhaustion gaps. Occur when the price trend is coming to an end or reversed 

itself. 
3 0ur study here is not to investigate the causes of price gaps. \Vhether price gaps are predictable 

is an interesting issue, but outside the scope of our study here and a work for future research. 
4 In part.i~ular, 1\a.vaje~z and Oclclers-Whit.e (:2004) find _ex_ic\ence t.hat. some technic~tl indi~at.ors· 

cau capture-changes in the state~of-tl1e lini!t book orders, indicators such as moving average. 
5 The ex-eli videncl gaps are not included in the presem study since they offers no new inforrnar.ion 

as market participants kuow iu advance the causes of the gaps. 
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5. Island Gaps Occur when there are upward and downward gaps in a matter of 

short-period, leaving an 'island of prices separated by two gaps from the rest of 

the prices. 

4.2.2 Observations on Different Price Gaps 

This section provides more information about the various price gaps identified previ­

ously. 

Congestion gaps occur frequently in financial data and can be attributed to the 

normal fluctuation of market noise. (Black (1986)). These gaps are commonly seen in 

areas of congestions, occurring below a critical resistance level and above an important 

support level, as shown in Figure 4.2.2. Simply, a resistance level is an area where 

prices can no longer advance due to excess supply of asset from sellers and a support 

level is a price level where prices do not fall further due to excess demand from buyers. 

These levels can be seen by the horizontal lines. The area bounded by the resistance 

and support levels is known as the "congestion" area. Therefore, the high and low 

prices on the clay a congestion gap occurs should remained within the support and 

resistance level. Cougestiou gaps are said to Ut' filled rapidly. l'vioreover, Edwanb 

a.nd Magee (1966, p.211) have described such gaps to have no value to traders, ;'The 

forecasting significance of Common or PatteTn Gaps is practically n'il." Thus, we 

should not expect such gaps to lent any forecasting capability to traders, neither 

should they provide any incrernental information. 

On the other hand, Breakout gaps often indicate the completion of some chart 

patterns and signal that a degree of bullishness or bearishness in asset prices is forth­

coming. Patterns including Triangle or Rectangle. (See next section for more de­

scription of the chart patterns.) Usually, a Breakout gap is accompanied by heavier 

volume, and new highs (for up Breakout gap) and new lows (for down Breakout gap) 

on the day of the gap is made. The Breakout gap may he filled after the initial break­

out. In Figure 4.2.2 an example of upward Breakout gap is given, which is shown to 

pierce through the resistance line. But what is the significance of Breakout gaps to 

investors? Edwards and Magee ( 1966) advise that if tvvo securities are experiencing 

the same technical chart pattern, the security that breaks out of the pattern with a 

price gap has a higher probability of maintaining its direction over the security that 

does not have a gap. However, having said that, they also claim that (p.214) "E:rcept 

joT the presumption of somewhat gr-ea.teT "steam.·· beh-ind the rnove, the BTeaka:wa.y 

gaps carTies 'IW particular measuring_ tmphcation, nor any otheT joTecastirEg sigiiifi~ · 

cance . ... For both Congestion and Breakout gaps, the congestion area bounded by a 

resistance and support line is presumed to span at least 10 trading clays. 
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Figure 4.2: An Illustration of Va.rious Price Gaps in the Financial Iviarkets 
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Runaway gaps occur amidst a "strong" price advance or decline. To quantify 

what a strong price movement is, the prices before and on the clay the Runaway gap 

occur should be new high (for an upward gap) or new low (for a downward gap). A 

Runaway gap is clearly seen in Figure 4.2.2, where the prices before the occurrence of 

the Runaway gap had increased rapidly. Prices after the occurrence of Runaway gaps 

are hypothesized to continue in the direction of the gap without pulling back to cover 

the gap in the short-term. To capture the characteristic of the strong price trend 

prior to Runaway gaps, we specify that prices must have at least two consecutive new 

highs or new lows before the day the gap occurs. The new highs or lows are compared 

to prices in the last 15 days. 

Closely related to Runaway gaps are Exhaustion gaps, which are usually described 

as "the last gasp" after a strong price trend. The high or low price recorded during 

the Exhaustion gap must be new high or new low and possibly accompanied by higher 

than average volume. Exhaustion gaps are usually preceded by other price gaps, such 

as Runaway gaps, as shown in Figure 4.2.2. Exhaustion gaps are claimed to be filled 

quickly, most often within 2 to 5 days. Since Exhaustion gaps must be made after a 

significant price trend, we define the new high or new low over a longer time frame 

of 22 days. 

Understandably, the hardest gaps to distinguish between are Runaway and Ex­

haustion gaps. This is because one is always uncertain whether the trend is terminat­

ing. It is only possible to differentiate these two gaps retrospectively, as Edwards and 

l'VIagee (1966, p.216) point out that, "this is fairly typical of many cases in which 'it 

'is impossible to say whetheT Conti.nv.ati.on o·r· E:dwu.stion is being signaled v:ntil 2 oT 

3 days afteT the gap is Tnade . . , However, there are clues to distinguish between these 

two gaps, as described by the Edwards and l'viagee later in the same chapter ( 1966, 

p.221): 

An Exlmustion Gap is seldom the fi.rst gap in a ruuaway move: it is usu­

ally preceded by at least one Continuation Gap. Thus, you may ordinarily 

assume (unless the contrary appears from other and more weighty inch­

cations) that the first gap in a rapid advance or decline is a continuation 

Gap. But each succeeding gap must be regarded with more and more 

suspicion, especially if it is wider than its predecessor. 

The pro blen1 for us_ now. is d~ci~ling how many Continuation gaps inust occurred 

l:ief61:e the gap can be categorized as an Exhaustion gap. For simplicity, we shall fixed 

the number at 1, meaning that at least one Runaway gap must. occur in the near term 
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before the current price gap is described as an Exhaustion gap. \Ale define near term 

to be 7 trading days. 

The last type of price gap is Island gap. An Island gap is an island of prices left 

out of the continuous fluctuations of price path separated by two gaps. This can be 

seen at the top right-hand comer in Figure 4.2.2. By itself, Island gaps are claimed 

not to be a major reversal indicator. Rather, they belong to minor tops in a larger 

chart formation, such as the Head in the Head-and-Shoulders formation. (Edwards 

and Magee (1966)) But given that interpretation, Island gaps are also said to predict 

some sort of retracement to earlier price movements after it occurs. Hence, if an 

Island top occurs, the general expectation is that near-term prices will decline. On 

the contrary, if an Island bottom occurs, the near-term prices will increase. Even 

Edward and Magee concede that it is not easy to make rnoney by trading the Island 

gap pattern. 

The next section transforms the above general descriptions algorithmically so that 

it is possible identify the price gaps. 

4.2.3 Identification of Price Gaps 

To define the above-mentioned price gaps, let 0 1, H 1, L 1 and C1 denote the open, 

high, low and close price at time t respectively. After a price gap is detected, it must 

be categorized into one of the first four price gaps without any overlapping definition. 

The only exception is Island gaps. This is because the Island gap contains two gaps, 

one up and one clown, separated by a trading day. 

The following are the conditions on each type of price gap. 

Definition 1: (Congestion Gaps) Congestion gaps are bounded by a support level and 

a resistance level. The following defined both upward congestion gap (UCG)and 

downward congestion gap (DCC) respectively: 

UCGl Lt > Ht-l 

UCG2 C1 am! Ot < Tviax(Ht-I, ... , Ht-Jo) 

and 

DCGl HI < Lt-1 

DCG2 0 1 and·01 < Mit,t(L1_ 1 , ... , Lt-w) 

174 



Definition 2: (Breakout Gaps) Breakout gaps occur when the gap forecast an initia­

tion of a trend in prices. There are two types of possible breakaway gaps. The 

first case is when the body of the gap penetrates the resistant/support level. 

and the second case is when the gap skips entirely the resistance or support 

level. The following defines the upward breakout gap (UBG) and downward 

breakout gap (DBG) respectively6
: 

UBGl L, > Ht-r 

UBG2 Either C1 or 0 1 or L 1 > f..1lax(H1_ 1 , ... , H 1_ 10 ) 

UBG3 H1 > sup(H1 : t = -1, ... , -10) 

and 

DBGl H, < Lt-l 

DBG2 Either C, or 0 1 or Lt < Min(L,_!, ... , Lt-w) 

DBG3 L 1 < inf(L1 : t = -1, ... , -10) 

Definition 3: (Runaway Gaps) Runaway gaps continue the ongoing trend. It is 

characterized by strong price movements prior to the gap. The upward runaway 

gaps (URG) and downward runaway gaps (DRG) can be characterized by the 

following conditions respectively: 

URGl L, > Ht-l 

URG2a H1_ 2 > "fviax(H1 : t = -2, ... , -2- k) where k = 15 

URG2b H 1_ 1 > Max(H1 : t = -1, ... , -1- k) where k = 15 

URG3 H1 > sup(H1 : t =·-I, ... , -15) 

and 

URGl HI< Lt-l 

URG2a L 1 __ 2 < Min(L1 : t = -2, ... , -2- k) where k = 15 

6 From our perspective, the color of the body iu candlestick charts does uot matter, as long 
as either the close, open or low price penetrates the resistant/support level. Color here refers to 
whether the open price is higher than the close, and vice versa. If L 1 penetrate the resistant/support 
level, it 111eans that the gap completely skips the resista11tjsupport. If either C'1 or 0 1 peuetrate 
the resistant/support level, the body of the bar peuetrates the resistant/support level. CaHdlestick 
chartists may disagree with our presumption here, for example, Nison ( 1991). BuL to confirm our 
suspicions on the lack of profitability ofca.nd!estick charts,~we cite a· number of eli1pli··ical studi~~ 
evaluate nurnerou:s'cai1dles£ickpatt~rn~, .all of which find them to be unprofitable. See recent studies 
by Fock, Klein and Zwergel (2005) aud l'viarshall, Youug and Rose (2005). 
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U RG2b L1_ 1 < Min(L1 : t = - 1, ... , - 1- /,;)where k = 15 

U RG3 L1 < inf (L1 : t = - 1, .. , - 15) 

D efin-it ion 4· (Exhaust·ion Gaps) Exhaustion gaps occur near the end of a t rend. 

One or more runaway gap must occur before in the last 7 days. The upward ex­

haustion gap (UEG) and downward exhaustion gap (DEC ) can be characterized 

with the fo llowing conditions respectively: 

UEGl Lt > H t-1 

UEG2 One upward Runaway gaps must occur in the last 7 clays. 

UEG3 H1 > sup( H1 : t = -1, ... , -22) 

and 

DEGl H t < Lt-1 

DEG2 One downward Runaway gaps must occur in the last 7 days. 

DEG3 L 1 < inf (L1 : t = - 1, .... - 22) 

D efinition 5: (Island R eveTsal Gaps) Island gaps are marked by both an upward 

gap and downward gap over two COJlsecut iv clays . The following is a possible 

characterizat ion of the one-day upward island gap (UIG) and downward island 

gap (DIG) respectively: 

UIGl Lt - l > H t-2 

UIG2 Lt -1 > H t 

UIG3 H1_ 1 > sup (H 1 : t = -1. .. , - 25) 

and 

DIGl Lt -2 > H t- 1 

DIG2 Lt > H t- 1 

DIG3 L1_ 1 < inf (L1 : t = -1. ... , -25) 

4.2.4 Width of the Price Gaps 

As a further evaluation on the information content of price gaps, we test whether the 

size of the price gap ha any effects on th conditional returns . The hypothesis is that 

the larger the price gap , the 111 0re informative it is. We categorize t he width of the 

price gaps into three sizes (Size 1. Size 2 and Size 3), all of which re late to the price 
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range prior to the day the price gap occurs. First, we measure the size of the gap by 

gapdift"1 = L 1 - H 1_ 1 for an upward gap, and gapdiff1 = H 1 - L 1_ 1 for a downward 

gap. For Size l, gapdiff is smaller or equal to the size of open and close price of the 

previous day. For Size 2, gapdiff is smaller or equal to the size of high and low price 

of the previous day. For Size 3, gapdiff is larger than the size of the high and low 

price of the previous day. More specificallv, 

l. (Size 1) gapdiH.u <:; lOt-I - Ct-1! 

2. (Size 2) gapdiff1.2 <:; IHt-1 - Lt-1! 

3. (Size 3) gapdifl1.3 > IHt-1 - Lt-1! 

where 0 11 H 1 , C1 are the open price, high price and close price at time t respectively. 

4.2.5 Conditioning Variable 1: Chart Patterns 

Local Polynomial Regression 

Chart patterns are the foundation of technical analysis. It is frequently claimed 

that chart patterw; provide acldition::d value in forecasting fimmcial prices. Indeed, 

LMW has provided some empirical evidence that chart patterns do alter the empirical 

distribution of the stock returns in the U.S. equity markets. (See Chapter 3 for more 

details.) 

To identify the chart patterns objectively, we use a nonparametric smoothing algo­

rithm known as local polynomial regression specified in Chapter 3. Local polynomial 

regression has several appealing properties over the N aclaraya-Watson kernel estima­

tors. One advantage is the similar bias order along the boundary and iu the interior, 

and this reduces the need to use specific boundary kernels. The other advantage is 

that we can estimate the regression parameters using least squares. (Fan and Gijbels 

(1996, Chapter 3) and Hastie, Tibshirani and Friedman (2001, Chapter 5)) 

It is assumed that the fiuancial price, y, is generated by the function f(-): 

:IJ = f(:t) + t ( 4.1) 

where r:'s are independent white noise, that is, E(r:) = 0 and Var(c) = l. Assuming 

that the (p+ 1 )1
" derivative off (:c) at point x0 exists, we can approximate the unknown 

regression function f(:r) locally by a polynomial of order p. A Taylor expansion for 

:c in the neighborhood of :c 0 gives: 

f"(x ) flPlx 
f(:r);::::; f(:co) + f'(xo)(:r- :co)+ --0-(:z:- :z:o) 2 + ... + --0 (:r- :z:o)~' (4.2) 

2 p 
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This polynomial is fitted locally by a weighted least square regression, nmmmzmg 

the following function: 

n [ p ]2 . . 1 , :r 1 - ~r 0 n~Jll L y;- L !3i(.r,- :r:o) I\, ( h ) 
1=l J=O 

( 4.3) 

where 1\h (-) is the kernel function assigning weights to each datum point, and h 

is the bandwidth parameter controlling the size of the local neighborhood. Let 

,87, j = 0, ... , p be the solution to this least squares problem, it is clear from the 

Taylor expansion that j'i(:r0 ) = j!;1.i is an estimator for jUlCr:0 ), for j = 0, 1, ... ,p. 

Denote X as the (n x p) design matrix: 

1 (:r1 - :ro) (T - r )P . 1 • 0 

1 (x2- xo) (T - 1' )P 
X 

,,2 '0 

1 (:r, - :ro) ( T r; )!' "Tl -. 0 

and let W be the (n x n) diagonal matrix of weights: 

W = diag{K11 (X;~ Xo)} 'i = 1, ... , n 

The weighted least square problem ( 4.3) can be written a.s: 

min(y - Xf])'W(y - X;:3) 
/3 

(4.4) 

( 4.5) 

(4.6) 

where /3 = (;30 , /31 , ... , f]p)'. The solution is provided by weighted least squares theory 

and is given by: 

(4.7) 

if (X'WX) is invertible. The estimator ](-) is the intercept term (J0 . To ensure 

that. (X'WX) is invertible, at least (p + 1) different points with positive weights are 

required. 

In our estimation, y is a vector of closing prices and X is a matrix of time point 

1, 2, ... , n, where n is the window of close prices to which we apply ( 4. 7) to each data 

point Tin that window in order to obtain n smoothed prices. In this chapter, we fixed 

n = 30, implying that once a price gap is discovered :at time t, the local polynomial­

YegJeS:sion is appl!ed to prices at interval {:Ut-I, ... , :y1 -::JO} 7 

7 Tn chapter 3, the fixed lengtl1 window is 45 days. The fixed le11gth window is smaller in this study 
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After all ,80 are computed, we determine the extrema in this window by checking 

the signs of {./' (T)} ;~y0 . }' (-) is given by parameter /11 in ( 4. 7). All extrerna are 

obtained by checking for the sign of }' ( T) against }' ( T -1). If }' ( T) > 0 and }' ( T -1) < 

0, a minimum extrema is found at T-1. On the contrary, if ./'(T) < 0 and /'(T-1) > 0, 

a maximum extrema is found at T - 1. If both ]' ( T) = 0 and ./' ( T - 1) = 0, we 

work backwards for each ,BLT to determine whether the current stationary point is 

a maximum or minimum since the extrema always gives an alternating sequence 

between maximum and minimum. \i\/e label all extrema in a window to be ( e1 , ... , em) 

Asymptotic results prescribe that odd p has a clear advantage over eve11 p, in the 

sense that the conditional bias for odd values of p are simpler that even values of p. 

(See Simonoff (1996) and Fan and Gijbels (1996)) Consequently, we shall use the first 

order only, p = 1, for all polynomial regression. 

Smoothing Parameters 

The key parameters in both nonparametric kernel and polynomial regression are the 

choice of kernel, size of bandwidth and definition of chart patterns. We shall discuss 

the first two in this section and leave the discussion of chart patterns to the next 

section. 

There are many choices in choosing vvhich the kernel functions J(h ( ·). The most 

common ones are Gaussian, Epanechnikov and uniform kernels. The advantage of 

Epanechnikov kernel is that it has compact support, but is not differentiable at 18 

Results by Fan and Gijbels (1996, Theorem 3.4) and Fan et al. (1995) prove that 

Epanechnikov kernel is the optimal kernel for all orders p, that is, it is the weight 

function that minimizes the asymptotic mean squared error of the local polynomial 

estimators. Thus in this chapter we use the Epanechnikov kernel as our pnmary 

kernel: 

.- ) 3 2 1\ ( z = - ( 1 - z ) + 
4 

( 4.8) 

After deciding the kernel function, the next step is to choose the bandwidth pa­

rameter. There are numerous approaches to this, including rule-of-thumb, cross val­

idation, nearest neighbour and plug-in methods. (See, for example, Hardle (1990), 

Simon off ( 1996) and .Jones, Marron ami Sheather ( 1996) for some theoretical anci 

because price gnps are short-tentt iuJicators. Tlms. the perioJ to which we extract the patterus are 
shorter thau just evaluating chart patterw; .alone. 

· 8 klteriia(i\'el};, orl'e .·could follow }Jv!W .and use the Gaussian kernel, defined as: ]( ( z) = 

Jkexp( -z2 /2), or the Uniform kernel, defined as: K(z) = 1[-ll.'i +Osj(z). 
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simulation analyses of these methodologies.) Many of these methods rely on asyrn p­

totic results to justify their selection. I3ut in this chapter, we are dealing with finite 

samples and rely heavily on visual approximation. This makes the asymptotic theo­

retic;:d results less relevant, as Cleveland and Loaders (1996) argued that there is a 

gap between the asymptotic theory and the problems encountered in finite samples. 

In particularly, they argue that global bandwidth selection tend to perform worse 

than nearest neighbours methods in practice, which contradicts the asymptotic the­

ory. Hence, no matter which method of computing the bandwidth, there is always a 

need to adjust the bandwidth visually by technical analysts. 

Taking these considerations into account, we use the most common approach, the 

cross validation method: (See Silverman (1986) and Hardie (1990)) 

hcv 
1 n , 2 ; L (Yt- .h,t) (4.9) 

t=l 

where 

h.t 
1 " 

( 4.10) - LWT.hYT 
n 

rfot 

which is the omit the T
1
h observation from local regression at the focal value y;. 

Ornitting the T
111 makes the fitted value indepe1H1eut of the observed value y;. After 

each price gap is found, the cross validation ( 4.9) is computed on a window of n 

closing prices so that it can feed into the local polynomial regression. As such, he,: is 

a local bandwidth rather than a global bandwidth. Similar to LMW, visual analysis 

of hcv shows that this bandwidth value over-smooth data. Thus, there is a critical 

need to reduce the value of hcv. After some trial and error, we fixed the bandwidth 

at (hcv x 0.45) for all data. 

Chart Patterns 

After obtaining the smoothing algorithm, the next step is defining the type of chart 

patterns of interestY Given the extrema (e 1 , e2 , ... , e111 ), where ern is the last extrema 

in a window of 30 days ( approximatel:v six trading weeks), we define the following 

chart patterns, including Head-and-Shoulders, Triangle, Rectangle, Broadening and 

Double. The strategy in applying the local polynomial regression to identify chart 

9 The chart patterns defined here are slightly different Lo the patterus described in Chapter 3_ 
because we alter the pa.ra_nlet.er._values. that define -the patterris. F'or example, the sl1o1ilcl~r~- extrema 
·c e-, 11 -:l: e,. _1) iu the Heacl-a]l(l-Shoulders pattern here are coustraiued to be less thau 0.5 perceut 
from their average, where as it is 1.0 percent in Chapter :3. 
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patterns is as follows. Step 1: we determine whether a price gap has occurred and 

whether it is an upward or a downward gap. Step 2(a): If the price gap is an 

upward gap, we check whether an inverse Head-and-Shoulders, Triangle, Rectangle, 

Broadening or Double has occurred in the last 30 clays, that is, we check for the 

Bottom chart patterns by applying the regression to the closing prices. Step 2(b): If 

the price gap is au downward gap, we check whether a Head-and-Shoulders, Triangle, 

Rectangle, Broadening or Double Top has occurred in the last 30 days. The rationale 

for this difference is that an upward gap starts from a support levd, ;:tnd therefore 

a bottom pattern is more appropriate than a top pattern. Similarly, if a downward 

price gap occurs, a short-term top pattern reflects a change in price trend better. 10 

Step 3: Analyze the conditional returns based on the information tests. (See Section 

3) 

The following describes the five commonly taught patterns, including Head-and­

Shoulders Top (HSTOP) and Head-and-Shoulders Bottom (HSBOT), Triangle Top 

(TTOP) and Triangle Bottom (TBOT), and Rectangle Top (RTOP) and Rectangle 

Bottom (RBOT), Broadening Top (BTOP) and Bottom (BBOT) and Double Top 

(DTOP) and Bottom (DBOT). (See, for example, Chapter 3, Bulkowski (2005), Ed­

wards and Magee (1966) and Kaufmann (2005) for some extensive description of chart 

patterns.) The extrema (em-4, em-;1, em-2, e 111 -I, e,,) are the last five ext.ren1a. before a 

price gap occurred. In our estimation, we only apply the regression to closing futures 

prices. One possible avenue for future research is to use both the high and low daily 

prices. 

Pattern 1: ( H ead-and-Sfwulder.s) The following conditions characterize the Head­

and-Shoulders Top (HSTOP) and Bottom (HSBOT) respectively: 

HSTOPl em is a maximum. 

HSTOP2 e,-2 > em-4 and ern-2 > e,, 

HSTOP3 max Je;- el ::; o.oo.s X e, where i = (rn - 4, rn) aud e = e,,_re,., 

HSTOP4 max Je;- eJ ::; 0.005 x e, where i = (rn- 3,111-1) and e = 

and 

HSBOTl e 177 is ct minimum. 

HSBOT2 e,_2 < e,_4 and em-2 < e, 

HSBOT3 ma.x Je;- eJ ::;,0_.005 X e, where ·i, = ('rn ~ 4;nt.) anC! e = em-";+e,., 

10 For robust11ess purpose, we also report the results for the Top pattems fm dowmvard price gaps 
and Bottom pattems for upward price gaps. 
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HSBOT4 max le;- el ::; 0.005 X e, where i = (rn- 3, rn -1) and e = c,_,;em-l 

Pattern 2: (Triangle) The following characterize the Triangle Top (TTOP) and 

Bottom (TBOT) with five extrema respectively: 

TTOPl e 111 is a maximum. 

TTOP2 em-4 > em-2 > em aud em-:l > em-1 

and 

TBOTl em is a minimum. 

TBOT2 em-4 < em-2 < em and em-3 < em-1 

Pattern 3: (Rectangle) The following conditions specify the Rectangle Top (RTOP) 

and Bottom (RBOT) respectively: 

RTOPl em is a maximum. 

RTOP2 max lei - el < 0.005 x e, where i (rn - 4, n1. - 2, rn) and e 

.3 

RTOP3 max lei- el ::; 0.005 X e, where i = (nl.- 3, rn- l) and e = e,_ 3;em-l 

RTOP4 nlin(em-4,em-2,em) > rnax(em-J,em-1) 

and 

RBOTl em is a minimum. 

RBOT2 max Jei - el < 0.005 x e, where 1 (rn. - 4, rn - 2, rn.) and e 

3 

RBOT3 max le;- el ::; 0.005 X e, where i =(In- 3, 11/.- l) and e = Cm-;J;Cm-l 

Pattern 4: (Broadening) The following conditions specify the Broadening Top (BTOP) 

and Bottom (BBOT) respectively: 

BTOPl em is a maximum. 

BTOP2 em-4 < em-2 < em and em-3 < em-1 

and 

BBOTl em is a minimum. 
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BBOT2 em-4 > em-2 > em and em-3 > em-1 

PatteT"n 5: (Double) Double top and bottom patterns need the top two (etapl, E:tap2) 

and lowest two (ebatl, ebat2) prices in a 30-day window, with the time at which 

these extrema occurred to be ( etapLt> etap2,t) and ( ebatu, ebat2,t) respectively, The 

following conditions specify the Double Top (DTOP) and Bottom (DBOT) re­

spectively: 

DTOPl em is a maximum. 

DTOP2 I -~ < 0 0025 - l · ( ) d - etopi +etop2 1nax e;- e _ . X e, w 1ere ·1. = etapl, etap2 an e = 2 

DTOP3 max letaplt - etap2,tl ~ 15 days 

and 

DBOTl em is a mmnnum. 

DBOT2 max le;- el::::; 0.0025 X e, where ·i = (ebatl, eiJOt2) and e = Enotl~ebot 2 

DBOT3 max lebat.I,t - ebat2,tl ~ 15 clays 

4.2.6 Conditioning Variable 2: Volume 

From the technical analysis perspective, volume may provide a further confirmation 

of the current trend in addition to the price gaps. Theoretically, Blume, Easley and 

O'Hara (1994) has provided us with some insights on how this might be possible 

in a rational framework. The hypothesis here is rather simple: if a price gap is 

accornpanied by higher volume, then it may reinforce the information of price gap 

and the direction of the price trend. 

To simplify the role of volume in this paper, we assume that the price gaps are 

further conditioned by increasing or decreasing volume trend. To know whether the 

volume is increasing, we first compute the average of the volume in the last 22 days 

at the day when a price gap occur. If the current volurne is higher than this average 

volume, the gap is categorized as an increasing volume (I. V.) price gap. On the other 

hand, if the volume is lower than the average volume in the last 22 days, then the 

gap is a decreasing volume (D.V.) price gap. 
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4.3 Return Measurement, Information Tests and 

Bootstrapping 

4.3.1 Sampling Conditional and Unconditional Returns 

For each price series, we apply the algorithm specified in the previous section to 

extract the conditional returns. In particular, once a price gap is detected at time t, 

we record the one-day continuously compounded returns from time t to t + 1 using 

formula Tt = ln ( P~ 1 ), where P1 is the time t closing price. As a result, we have 

10 sets of conditional returns upon detection of each type of price gap. To obtain 

additional information, we also record the conditional returns from t + 2 (day 2) to 

t + 4 (clay 5) to examine any abnormal behavior. Unlike the conclusion of technical 

chart patterus such as Head-and-Shoulders top in Chapter 3, detecting price gaps is 

rather immediate since there are less controversy about their formation. Hence, there 

is no requirement to wait for several clays before measuring the conditional returns, 

as in LMW. 

For each price series, we construct the unconditional continuously compounded re­

turns and compare them to the conditional returns. To make comparison easier across 

different markets, both the conditional and unconditional returns are standardized 

by subtracting the mean and dividing by the standard deviation: 

Zu = 
T;.,t - Mean(r;,1) 

S.D.(ru) 
(4.11) 

where the mean and standard deviation are computed for each individual price series. 

Moreover, to increase the power of the statistical tests, we join all the futures price 

contracts for the information tests describe in the next section. 

4.3.2 Information and Statistical Tests 

To conclude whether price gaps contain any particular information compared to the 

unconditional returns, we use the goodness-of-fit test and the Kolmogorov-Smirnov 

test as proposed by LMW. (See Chapter 3) The null hypothesis for these tests is that 

if price gaps are informative, conditioning on them will alter the empirical distribution 

of returns. On the other hand, if the information contained in such patterns has been 

incorporated into the returns, then the normalized conditional and unconditional 

return distribution should be similar. 

For the goodness-of-fit test, the procedure is to compare the quantiles of the concli­

tional returns with their unconditional counterparts. The first step is to compute the 
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deciles of unconditional returns and tabulate the relative frequency 6J of conditional 

returns that fall into decile j of the unconditional returns, j = 1, ... , 10: 

6 -J -
Number of conditional returns in decile .1 

total number of conditional returns 
(4.12) 

The null hypothesis is that returns are independently and identically distributed 

and thus the conditional and unconditional return distribution are identical. The 

corresponding goodness-of-fit test statistic Q is given by: 

v'7\J1 - 0.10) "'N(O. 0.10(1- 0.10)) (4.13) 

Q 
10 ( )2 "' TJ - 0.10T 2 

L 0.10T "' X9 (4.14) 
j=1 

where "ILJ is the number of observations that fall in decile j and the T is the total 

number of observations and (4.13) is the asymptotic Z-values for each bin. 

For the Kolmogorov-Smirnov test, the statistical basis is derived from the cumu­

lative distribution function F1(z) and F2 (z) with the null hypothesis that F1 = F2 . 

Denote the empirical cumulative distribution function FJ ( z) of both samples: 

- 1 n 
FJ(z) = T Ll(Z;~-.; ~ z), 'i = 1,2 

I. k=[ 

( 4.15) 

where J(-) is the indicator function and (Ztt)T~ 1 and (221 )[~ 1 are the two liD samples. 

The Kolmogorov-Smirnov statistic is given by the expression: 

(4.16) 

and the p-values are given by: 

CX:· 

Prob(J· ~a;)= L (-1)"exp(-2k:2:r2
), :r > 0 ( 4.17) 

k=-oo 

Under the null hypothesis, the statistic /' should be small. An approximate o--le vel 

test of the null hypothesis can be performed by computing the statistic and rejecting 

the null if it exceeds the upper 100o:th percentile for the null distribution. (See Press 

et al. (20_02,_Section.14.3) and DeGroot (1986)) 

Apart from the information test, a simple t-statistic tests whether the uncondi-
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tiona! mean returns are statistically ::;ignificantly different from zero. The formula for 

the test-statistic is: 

t = "" 
ajVT; 

(4.18) 

where z is the mean normalized conditional returns, a is the standard deviation of 

the nonnalized unconditional returns, and Tz is the number of observations for the 

conditional returns z for a particular price gap. The null hypothesis is z = 0. We 

apply equation ( 4.18) to all mean returns. 

4.3.3 Nonparametric Bootstrapping 

For comparison purpose, we conduct a number of bootstrap trials to test whether the 

rmmber of price ge:tps found is significautly differeut to the bootstrap distribution. Ac­

cording to Brock, Lakonishok and LeBaron (1992), bootstrapping has the advantage 

of performing a joint test of significance across different trading rules, and at the same 

time, accommodating the leptokurtic, autocorrelation and heteroscedasticity features 

of financial data. (See Efron (1979)) 

vVe employ the simple nonpararnetric bootstrap discussed in Levich and Thomas 

(1993) and Chapter 2. Nonparametric here refers to the fact that we are not imposing 

any form of statistical distribution to the time series. 11 The sampling procedure is as 

follows: First, given n returns, we scramble these returns to form a new n-climensional 

array, and rebased each scrambled returns with initial price of 100. Since we are 

sampling without 'l'eplacernent, the distribution properties of each bootstrap series are 

exactly similar to t.he i'LCt.nal n~turn. MoreowT, the initial i'Lnd final price are the si'Lme 

as the original sample data. Next, we apply the price gap identification algorithm to 

this scrambled futures prices to form the empirical distribution of the number of gap 

detected and the distribution of norrnalized conditional returns up to five clays after 

a price gap is detected. The procedure is repeated 1000 times. Lastly, we compare 

the actual number of price gaps with this distribution. A simple null hypothesis for 

the nonparametric bootstrap can be stated as follows: if there is no information in 

the original futures price series, then the number of gaps should not be significantly 

different from the number of gaps obtained by the shuffled series. Vve set the rejection 

point of this hypothesis at u significance level. (\Ve choose o = 10 percent) 

11 Alteruatively, Bruck, La.kolli;;ltok and LeBaron ( 1992) impu;;e aml fit four uull st.atisticullltudcls 
011 the stock index data, which are randmu walk model, autoregressive AR( 1) model, GARCH-in­

-- - ------ - Mean-model and Exponential'-GARCH inodel. ' 
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4.4 Futures Data 

4.4.1 Futures Data and Data Adjustments 

The primary data in our investigation are daily futures data obtained from Dcdas­

tT-ea:m, which include daily open, high, low, close prices, and volume. We choose 

futures data rather than underlying stocks or bonds primarily clue to the opportunity 

to hold short positions. Since the direction of price gaps can be either upward or 

downward, futures data alleviate the problem of short selling underlying assets in a 

downward gap. To some extent, a number of futures contracts has higher liquidity 

than the underlying instruments. 

Table 4.1 displays the 28 futures contracts to which we evaluate the price gap 

hypotheses. Then~ an~ fonr types of futures contracts, currencies, fixerl income, stock 

index and commodities, each have more than 10 years of daily trading data. The 

total number of data is 164,288 daily futures prices, which is deemed sufficient for 

our evaluation. 

Since futures contracts expire at delivery day, there is a need to join the successive 

contracts into a continuous price series. vVe follow the standard procedure similar 

to Levich and Thomas ( 1993), Kho ( 1996) and Sullivan, Timmermann and White 

(1999, Section V) in splicing futures contracts. A continuous artificial returns data 

is created by taking logarithmic returns from the nearby (front) futures contract. 

For all financial futures contracts, tlw neetrhy months an~ March, .Jum\ September 

and December contracts, and for commodity contracts, the nearby contracts vary. 

For example, the returns data. for US T-Bond March 2004 contract is collected from 

December 2003 to February 2004, and for June 2004 contract, returns data. is collected 

from March 2004 to ]'day 2004, and so on. The futures contract is switched on the last 

trading day before the current contract enters into the delivery month to avoid the 

complications arising during the delivery months, such as excess volatility, illiquidity 

and the presence of various options for fixed income futures. (See, for example, 

Milonas (1986), Johnston, Kraca.w and McConnell (1991) and Ma., 1\!Iercer and Walker 

(1992)) 

Next, after obtaining all the actual returns series of the futures contracts, with 

the open, high and low prices as a fraction of the close actual futures prices for each 

trading day, we then rebased the returns series into a continuous price series, assuming 

an initial price based index as 100. The returns are converted back t~ pr~c_efi \'(i_th _the 

---expi·essibrr:CP1 d'pt-ler,~fm·-t '= 1, ... ,n-and P~ = 100, where r 1 is the actual return 

at time t and P1 is the price index at time t. The open, high and low prices are then 

187 



Table 4.1: Futures Contracts 

Futures Contracts Sample Period Contracts Months Observations 
Currencies 

US-Yen Jan. 78-.Jun. 06 3,6,9,12 7184 
US-CHF Jan. 78-Jun. 06 3,6,9,12 7186 
US-GBP .Jan. 78-Jun. 06 3,6,9.12 7184 
US-A US Jun. 88-.Jun. 06 3,6,9,12 4555 
US-CAN Sep. 87-Jun. 06 3,6,9,12 4744 

Fixed Income 
US 2Y T-Bond .Jun. 90-.Jun. 06 3,6,9,12 4014 
US 5Y T-Bond Iviay. 88-J un. 06 3,6,9,12 4539 
US lOY T-Note May. 82-Jun. 06 3,6,9,12 6074 
US 30Y T-Bond Jan. 78-Juu. 06 3,6,9,12 7167 

EuroDollar Dec. 81-Jun. 06 3,6,9,12 6182 
UK Long Gilts Dec. 82-Jun. 06 3,6,9,12 5954 

JAP. JGB Dec. 86-Jun. 06 3,6,9,12 4704 
AUS. 3Y T-Note May. 88-Jun. 06 3,6,9,12 4579 

AUS. lOY T-Bond Dec. 84-J un. 06 3,6,9,12 5456 
CAN. lOY Bond Sep. 89-Jun. 06 3,6,9,12 4211 

Stock Indices 
S&P 500 Apr. 82-.Jun. 06 3,6,9,12 6095 

FTSE 100 May. 84-Jun. 06 3,6,9,12 5593 
Nikkei 225 Sep. 88-Jun. 06 3,6,9,12 4378 

Dax Nov. 90-Jun. 06 3,6,9,12 3938 
Commodities 

Gold Jan. 79-.Jun. 06 2,4,6,8,10, 12 6894 
Silver Jan. 79-.Jun. 06 3,5,7,9,12 6908 

Cotton Jan. 79-.Jun. 06 3,5,7,10,12 6894 
Crude Oil Apr. 83-Jun. 06 1-12 .5782 

Heating Oil Jul. 80-Jun. 06 1-12 6507 
Cocoa Jan. 79-.Jun. 06 3,5,7,9,12 6886 
Coffee Jan. 79-Jun. 06 3,5,7,9,12 6880 
Wheat .Jan. 79-.Jun. 06 3,5,7,9,12 6928 
Sugar .Jan. 79-.Jun. 06 3,5,7,10 6882 

Total Observations 164,288 
Source: Datastrearn 
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obtained by multiplying the actual fraction to this close price index. 12 

Figure 4.3 provides a. comparison of the actual and rebased price series. The chart 

type is candlestick, where white bar means the close price is higher than open price 

and black bar means that the close price is lower than open price. Evidently, there 

is little difference between the charts, apart from the level of prices. The returns 

and the open, high, low prices, as a ratio to the closing price, are similar to one 

another. The rebased future price series have all the actual returns from the nearest 

futures contract prices, and the open, high and low are also of the same dimension as 

the actual futures prices. Consequently, when we conduct the empirical tests on the 

rebased futures prices, the results should be similar to the actual prices, at least in 

the short tenr1. A gap in the actual price series will also exhibit itself in the rebasecl 

price series. As a robustness check, we have also spliced the futures data with another 

procedure based on expiry clay, assuming that the futures contract is switch 10 clays 

before the front contract expires. The results from this method are similar to the 

results from the first splicing procedure. For future research, it will be interesting to 

test the Gap- Fill hypothesis on intra-day data, as day traders rely heavily on technical 

indicators in their trading decisions. Moreover, intraday data allows us to observe 

the distribution of the volume throughout trading hours. 

One particular concern about using futures data is the level of rebased futures 

prices. Arguably, the rebased futures prices are not au exact replica of the underlying 

cash prices or cash index. Therefore, we can only evaluate the Gap-Fill hypothesis 

in the short-term, since over the long-term the cumulative difference between the 

rebased futures price level and actual price level differs suLt:>tautially. It rernaint:> a 

work for future research to test the Gap-Fill hypothet:>is on cash asset prices directly. 

4.4.2 Empirical Examples of Price Gaps and Chart Patterns 

In this section, we provide a visual sample of all price gaps detected using the algo­

rithm specified in Section 4.2. The futures data to which we applied the price gap 

identification algorithm is the US 30-year bond futuret:> contract over the entire sam­

ple period shown in Table 4.1. There are ten figures, oue for each type of price gap 

detected (See Figure 4.4 to Figure 4.8). In each figure, the vertical dashed line is the 

12 ln addition to the forward splicing lllethod used here, we have also tried the backward splicing 
method for robustness check. Backward splicing uses the latest price as the initial price and multiplies 
the futures retums backward h·olll T to t = 1 to obtain the futures prices. Even though the price 
level is different (because the initial price is different), the empirical. results obt.ainecl from appJyi_ng. 
the price· gaps ·algorithrii "olf thisdiitasef is tlie same, ._since- the retunis \.~sed for both methods are 
similar. See Chapter 2 for more description about the backward splicing procedure. In the Appendix 
I. we present a graphical view of all the rebasecl price series. 
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Figure 4.3: Actual and Rebasecl Price Series of S&P 500 Index Futures (June 2006 
contract, 21/03/06-31/05/06) 

.A.ctua' Price Series 
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day at which a price gap occurred. The solid horizontal line highlights the level of 

price relative to the price gap. The dark bar means that the close price is lower than 

the open price and grey bar is the opposite. 

In smnmary, Figure 4.4 shows the Congestion gaps are detected rn-between some 

resistance and support levels and Figure 4.5 shows the Breakout gaps penetrating key 

resistance and support levels. The Runaway gaps in Figure 4.6 show that a strong 

price movements occurred before the price gap is detected. The Exhaustion gaps in 

Figure 4. 7 show that a Runaway gap must occur in the last 7 clays before it can be 

classified as ;:m Exhaustion gap. Lastly, Figme 4.8 depids th<e Island gaps. 

The next set of figures (Figur<e 4.9 to Figur<e 4.1:3) 8J'f' pric:P gaps c:ondition<ed on 

one of the ten chart patterns discussed in Section 2.4. The thick clashed liue is the 

smoothed pricesobtain~d ti·om _applying_ the local polynomial regression f(-·) -with- · · 

cross validated bandwidth (hcv x 0.45) to the closing prices. The vertical clashed line 

is the day when a particular price gap occurred. As before, the darker candlesticks 

190 



are trading days where the open price is lower than the closing price. For upward 

price gap, we apply the inverse chart patterns, and for downward price gap, we 

apply the top chart patterns. For example, a downward price gap in Figure 4.9(a) 

is shown to be accompanied by a Head-and-Shoulders Top, while an upward price 

gap is accompanied by a Head-and-Shoulders Bottom in Figure 4.9(b). Obviously, 

not all Head-and-Shoulders patterns are as synnnetrical as the one shown in this 

Figure. One weakness of kernel regression and local polynomial regression is the 

inability of the extrema ( e 1 , ... , em) to match the actual turning points in closing 

prices precisely. Nevertheless, the local polynomial regression does provide us with a 

powerful indication that a chart pattern has indeed formed prior to the price gap. 
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Figure 4.4: An Illustration of Congestion Gaps. The dotted line is the day the price 

gap is detected and categorised. 
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Figure 4.5: An Illustration of Breakout. Gaps 
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Figure 4.6: An Illustration of Runaway Gaps 
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Figure 4.7: An Illustration of Exhaustion Gaps 
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Figure 4.8: An Illustration of Island Gaps 
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Figure 4.9: An Illustration of Price Gaps With Head-and-Shoulder Chart Pattern. 

The thick dotted line is derived form the local polynomial regression and which sat­

isfied the conditions for the Head-and-Shoulders chart pattern. 
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Figure 4.10: An Illustration of Price Gaps With Rectangle Chart Pattern 
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Figure 4.11: An Illustration of Price Gaps With Triangle Chart Pattern 
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Figure 4.12: An Illustration of Price Gaps \Vith Broadening Chart Pattern 
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Figure 4.13: An Illustration of Price Gaps With Double Chart Patteru 
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4.5 Empirical Evidence 

4.5.1 The Price Gap-Fill Hypothesis 

Table 4. 2 presents the empirical results from applying the price gaps identification 

algorithm described in Section 2 to the rebased futures data. The first three rows in 

Panel A are the total upward and downward price gaps detected, sorted across by 

the 10 gap patterns, and also conditioned on increasing volume (I.V.) and decreasing 

volume (D.V.). Following this is the result for each individual futures contract, where 

the first row is the number of gaps detected and the second row is the median number 

of price gaps from 1000 nonparametric bootstraps. 

The greatest number of price gaps is Congestion gaps, followed by Breakout, 

Runaway, Exhaustion and Island gaps. This observation is similar for both upward 

and downward gaps, and for many individual contracts. The number of upward and 

downward gaps are roughly balanced across the data. For example, the total number 

of upward price gaps is 11,547 against 10,922 downward price gaps. For fixed income 

and stock index futures, however, the total number of upward price gaps is always 

all higher than the downward price gaps. This is clue to the increasing futures prices 

in the last decades for these contracts. For example, lower interest rates in the last. 

decades has led to large increases in bond prices. which created more upward price 

gaps. This can be seen clearly in the Appendix A, where we plot all the futures prices. 

When conditioned on volume, it seems that price gaps are more associated with in­

creasing volume (I.V.) than decreasing volume (D.V.). For example, the total number 

of upward price gaps conditioned on I.V. is 6,578 compared to 4,966. If we breakdown 

the type of price gaps according to volume (See Row 2 and 3, Panel A), two contrast­

ing effects appear. First, the number of Congestion gaps (UCC and DCC) with D.V. 

is higher than I. V. What this may suggests is that congestion gaps are more prone 

to price reversals in the near future, since price gap is less significant (as proxiecl by 

lower volume). Second, Breakout (UBC and DBC), Runaway (URC and DRC) and 

Exhaustion gaps (UEC and DEC) show that the number of gaps with I.V. is almost 

twice the number conditioned on D. V .. For example, the number of I. V. for UBC is 

3,002 compared to 1,404 for D.V., and for UEC is 292 against 151. This indicates 

that these price gaps are more significant since more trading occurs when these gaps 

occurred. 

As we inspect the individual futu!·es contracts, it i:nloticeable_that-- the S&P 500 

index futures displays the least number of price gaps among all the futures contracts. 

For example, a comparison of S&P 500 futures to US10Y bond futures reveal that it 
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has nearly forty percent less price gaps (329 for S&P 500 and 523 for US10Y bond) 

than US10Y bond despite the fact that both contracts has similar number of raw 

data. One speculative reason for this could be that S&P index futures is the most 

efficient futures. But we cannot affirm this hypothesis here. 

A comparison of the number of gaps detected in actual series and to the median 

number in 1000 bootstrap series show that we cannot reject the null hypothesis that 

the price gaps count fron1 the actual price are equal to the bootstrap series. What 

this implies is that the number of price gaps shown by the actual futures prices may 

not be unusually high or low. In other words, the formation of price gaps may be 

due to randomness because if traders' actions or information news shock are causes 

of price gaps, then we should expect that the number of gaps from actual price series 

to be much higher than the randomly reshuffled series. But this is not the result 

displayed here. 

Turning to the Gap-Fill hypothesis, Panel B of Table 4.2 presents the percentage 

of the price gaps filled as a percentage of the total number of gaps recorded in that 

particular category and aggregated over all futures contracts13 To provide informa­

tion about the distribution of the number of days taken to fill the price gaps, we split 

the price gap sample into 9 categories, shown on the most left column in Panel B. On 

the right are the percentages of the gaps in each category (see total sample count in 

that category in Panel A). The fill here is taken to be complete fill and not partial 

fill. 

The percentage of price gaps being filled within a short period of time after their 

occurrence is high. For example, the percentage of price gaps covered within 1 clay 

vary from 20.70 to 33.80 percent, and the percentage of gaps covered within the next 

four days vary from 26.50 to 31.90 percent. Cumulative results shows that 70 percent 

of gaps across all categories are covered within 20 days and 80 percent of price gaps 

are filled within 50 clays for all price gaps. This provides quite strong support for 

the Gap-Fill hypothesis. Surprisingly, it is noted that only less than six percent of 

all gaps an~ not fillPd ctt all, which is a small percentage. One fnrthPr observation 

is that Breakout gaps have the lowest percentage filled in 1-day (row 1 in Panel B), 

which may indicates that the Breakout gaps capture prices that are breaking out of 

some important resistance or support levels. Therefore, prices continue to move in 

the same direction to the Breakout gap the following day rather than retracing to fill 

the gap. 

1:3The l·esirltscfor each illClividual contr;·cts are available 11p011 request. 
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Armed with some strong, evidence that price retrace to fill the price gap after their 

occurrence. The next question is whether such predictability give traders a risk-free 

method to generate excess returns. To answer this important question, Table 4.3 

displays the summary statistics of the normalized conditional returns from clay 1 to 

clay after the price gap is identified, and sorted by the various price gaps. The first 

column is the unconditional normalized return with zero mean and unit standard 

Jeviation. Conditional wean return with asterisk (*) implies that it is siguificantly 

clifff:n~nt from unconditional mf:an rdurn at 10 percr.nt significance level. Statistical 

significance here is measured using the simple test-statistic in equation ( 4.18). At the 

bottom of each row is the conditional mean return for increasing (I.V.) and decreasing 

(D.V.) price gap. 

Au analysis of the results for shows an interesting observatiou. The consequence 

of high percentage of gaps being filled in thr. short tr:rm mr:ans that fom out of five 

upward gap's mean returns are negative on clay 1. But after day 1, the average 

mean normalized returns aggregated from all futures data for these five types of price 

gaps demonstrate no persistent bias in either direction. As previously mentioned, 

Breakout gaps have lowest filled percentage at 1-clay. The statistics in row 1 of Table 

4.3 support this fact. First, the unconditional mean returus at day 1 for UBG and 

DBG are of the expected signs (positive and negative) respectively. Moreover, the 

mean returns on day 1 are statistically significant and largest in absolute tenns among 

all the five clays conditional Breakout gap mean returns. 

Turning to Runaway gaps, URG shows some persistence in the meau return, which 

is positive from day 2 to day 5, while DRG exhibit negative mean return from day 3 

to day 5. The average standard deviation of the conditioual returns for both URG 

and DRG are shown to be slightly higher than Congestion and Breakout gaps. For 

Exhaustion gaps (UEG and DEC), its standard deviation are highest as compared 

to the rest of the price gaps. Lastly, the one-day Island gaps display results that are 

contrary to the hypothesis that UIG should have negative mean returns while DIG 

should have positive returns. In fact, it is more common to see negative returns for 

both UIG and DIG. 

Regarding the information given by volume, both increasing (I.V.) and decreasing 

(D.V.) mean return shmv no consistent patterns across all price gaps, apart from clay 1, 

which we observe that increasing volume has a tendency to increase the value of mean 

return in the same direction as the total mean return for all price gaps. For example, 

-the-Ihean retiui1 f01·-UBG is 0.0:;153 cornpat:ed to 0.0522 for t\r.,--a~;~f t-he ;ue~r~r~~uru 
for URG is -0.0719, which is less negative than the I.V. with mean return of -0.1390. 
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Other than this, the mean returns for other days (2-5) show inconstant signs. Perhaps 

the dt'ertc; of vohm1f~ ]ac;t. for onlv 1 clav, ctft.er which the effects disctppear. This 

is partially consistent with the results presented by Cooper (1999), who produces 

evidence that increasing volume stocks exhibit weaker reversal than decreasing volume 

stocks in the US equity markets. 
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Table 4.2: The Gap-Fill Hypothesis. Panel A of the following Table (row 1 to row 3) shows the total number 
of price gaps identified by the price gap algorithm. The results horizonta.lly placed are the 10 different 
types of price gaps. Row 2 (I.V.) and row 3 (D.V.) display the total number of price gaps conditioned on 
increasing volume and decreasing volume respectively. The rest of Panel A present the results for each 
individual contract. The median number is the median number of price gaps from 1000 nonparametric 
bootstrap simulations. Panel B shows the time period taken by the price gap to be filled. The column on 
tlw left is tlw g periocls which we mPasnw the time taken for the gaps to be fillr~cl. The results on the right 
hand side of Panel B is the percentage of the price gaps for each type of price gap, for each corresponding 
time period. 

Futures Total Total UCG UBG URG UEG UIG DCC DBG DRG DEC DIG 
Up Down 

Gaps Gaps 
Panel A: Price Gap Count 

Total 11547 10922 5812 4406 648 446 235 5579 4264 515 322 242 
tv 
0 l.V. 6.578 6304 2713 3002 4:31 292 140 2640 3013 354 183 114 
Ol 

D.V. 4966 4618 3099 1404 217 151 95 2939 1251 161 139 128 
Currencies 

USYen 811 905 400 284 46 46 35 412 :351 52 55 35 
(Median) 8.37 932 44.5 293 42 30 27 484 314 56 46 32 
USCHF G05 658 304 208 42 33 18 296 255 17 41 19 

(Median) 595 656 308 218 36 20 13 333 231 47 29 16 
USGBP 685 616 320 259 48 41 17 301 246 31 21 17 

(Median) 703 664 :353 257 46 29 18 350 239 :37 22 16 
USA US 596 579 312 216 30 23 15 314 202 20 19 24 

(Median) 643 580 336 210 38 35 24 320 195 26 20 19 
USC AN 317 293 1.58 122 21 12 4 1.59 116 13 2 .3 
(Median) :H6 284 162 118 22 9 5 153 108 14 5 4 

Fixed Income 
US2Y 284 193 150 110 14 6 4 120 64 

., 
2 0 I 
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( cont'in'Ued) 

Futures Total Total UCG UBG URG UEG UIG DCG DBG DRG DEG DIG 
Up Down 

Gaps Gaps 
(Median) :303 228 150 112 24 12 5 137 73 11 4 3 

US5Y 21G 157 119 87 6 1 3 96 53 6 1 1 
(Median) 242 181 118 92 21 8 3 101 64 11 3 2 
US10Y 287 236 138 126 14 7 2 1:36 92 6 0 2 

(Median) 318 236 144 132 28 10 4 126 90 15 3 2 
US30Y 323 302 152 142 17 8 4 145 129 16 9 3 

(Median) 326 287 152 134 28 9 ;{ 140 118 21 6 2 
ED 277 259 136 114 16 8 3 143 91 1:3 10 2 

(Median) 89 326 189 174 16 6 4 189 121 10 3 :1 
UKLG 288 238 134 119 23 11 1 128 99 7 2 2 

(Median) 304 257 147 122 2:3 8 4 132 103 16 4 2 
tv 
0 

.JGB 473 :~74 215 181 :{9 32 6 205 130 18 13 8 
---1 (Median) 478 :~52 217 182 41 29 9 190 131 17 8 6 

AUS3Y .562 437 307 202 26 13 14 267 141 9 5 15 
(Median) 586 471 307 201 :33 27 18 287 143 18 10 13 
AUS10Y 714 633 406 247 21 14 26 388 194 20 10 21 
(Median) 721 61:3 396 229 41 33 22 369 185 25 16 18 
CAN10Y 324 292 173 120 14 12 5 169 93 17 8 5 
(Median) 320 268 156 120 25 13 6 150 94 14 6 4 

Stock Indices 
S&P500 176 15:3 94 70 12 0 0 87 60 5 () 1 
(Median) 205 153 89 89 21 5 1 76 G4 10 2 
FTSE100 405 309 211 148 24 16 6 166 112 12 5 14 
(Median) 402 314 200 150 31 15 5 169 118 17 6 4 

N225 399 344 220 141 23 11 4 172 135 17 10 10 
(Median) 383 360 198 138 25 15 7 172 140 26 14 8 

DAX 276 213 148 98 20 6 -t 119 76 12 3 3 
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( contin'Ued) 
Futures Total Total UCG UBG URG UEG UIG DCG DBG DRG DEG DIG 

Up Down 
Gaps Gaps 

(Median) 283 204 139 107 23 11 :3 108 79 11 4 2 
Commodities 

Gold .507 .529 260 18.5 29 22 11 272 204 26 1.5 12 
(Median) 534 541 280 204 ')~ _, 13 10 280 211 27 13 10 

Silver 401 426 189 140 27 35 10 197 170 2.5 27 7 
(Median) 431 438 221 162 28 12 8 216 17.5 27 11 8 
Cotton 408 433 200 167 19 17 5 191 215 16 7 4 

(Median) 426 410 215 162 31 13 5 203 157 32 13 5 
Crude 348 338 172 140 17 11 8 161 139 23 9 6 

(Median) 321 274 157 126 25 9 4 146 104 16 5 3 
Heat 417 421 201 155 29 23 9 202 164 27 19 9 

I'V (Median) 402 369 200 152 31 1:3 6 198 133 24 9 5 
0 
(X) Cocoa 428 520 218 176 21 7 6 246 2~)7 17 12 8 

(Median) 432 506 224 159 30 13 6 242 194 42 21 7 
Coffee :~60 :384 15:3 169 16 15 7 175 184 18 3 4 

(Median) 347 370 177 136 23 8 3 180 149 27 10 4 
Wheat 282 297 138 125 14 :3 2 150 130 14 3 0 

(Median) 276 283 136 113 20 5 2 129 117 27 8 2 
Sugar 378 383 184 1.55 20 13 6 162 182 21 11 7 

(Median) 407 378 203 158 30 12 4 185 150 29 10 4 
Panel B: Price Gap Being Filled (Percentage of Total) 

1-Day 33.80 20.70 32.90 30.30 24.30 33.80 22.10 30.60 27.60 32.20 
2-5 Day 28.90 30.20 27.00 26.50 31.90 30.10 29.20 28.10 29.40 26.90 

6-10 Day 9.39 11.00 8.49 L3.70 11.10 9.42 11.70 10.50 12.10 9.09 
11-20 Day 7.78 9.33 7.72 7.17 7.23 7.25 9.08 6.59 6.50 7.44 
21-50 Da_y 6.07 8.56 6.17 6.95 7.66 6.88 9.41 6.01 7.12 8.26 
51-75 Day 2.15 3.20 2.62 4.48 2.98 2.08 2.55 2.71 Li5 3.72 
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I>.J 
0 
c.o 

Futures Total 
Up 

Gaps 
76-100 Day 
101-200 Day 

>200 Day 
No Fill 

Total UCG 
Down 
Gaps 

1.14 
2.51 
3.92 
4.37 

( cont·inned) 
UBG URG UEG 

1.86 2.16 1.79 
3.68 4.78 4.93 
5.81 3.55 1.57 
5.70 4.63 2.69 

UIG DCG DBG DRG DEG DIG 

1.70 1.36 1.97 1.36 0.93 1.24 
3.40 2.24 3.44 3.88 3.41 2.07 
5.53 4.08 7.16 6.01 7.12 6.61 
4.26 2.76 3.37 4.26 4.33 2.48 



Table 4.3: Smnrnary Statistics of Unconditional and Conditional Normalized Returns. The following Table 
shows the summary statistics of the normalized conditional futures returns for each price gap, frorn day 
1 to day 5 after the occurrence of the price gap. On the second column is the normalized unconditional 
futures returns with zero mean and unit variance respectively. The summary statistics display from row 
1 to row 4 are mean, standard deviation, skewness and excess kurtosis respectively. Row 5 and 6 is the 
conditional mean return for increasing volume and decreasing volume price gap respectively. The asterisk 
(*) bPsirlPs ti1P- mean rdurn imply th<1t thf' rdnrn is stat.ist.ic;c1llv significant at 10% significant kvP-1. 

Statistics U nconditiona.l UCG UBG URG UEG UIG DCG DBG DRG DEG DIG 
Day 1 

·Mean -0.0000 -0.0318* 0.0453* -0.0719* -0.0400 -0.0822 0.0010 -0.0315* 0.1206* 0.0929 -0.0133 
S.D. 1.0000 1.0282 1.0788 1.1298 1.3820 1.1788 1.();369 1.0520 1.2709 1.4456 1.1430 

Skew. -0.2344 0.3711 0.6315 0.6084 -0.5856 -0.64 78 -0.3016 -0.4919 0.0632 0.3690 0. 7113 
Kurt. 10.6242 6.9602 9.3443 5.9317 5.2325 3.2534 4.1404 3.7185 7.1327 2.6084 5.7712 

I. V. l'v1ean - -0.0723* 0.0522* -0.1390* -0.1300* -0.0331 0.0167 -0.0498* 0.1850* 0.0952 -0.0301 
t0 

0.1300* -0.1550* >--' D.V. Mean - 0.0037 0.0306 0.0611 -0.0131 O.lH25 -0.0219 0.0898 0.0017 
0 

Day 2 
lVIea.n -0.0000 0.0010 -0.0164 0.1298* 0.1065* -0.0103 -0.0276 0.0266* 0.1168* -0.0426 -0.0058 
S.D. 1.0000 1.0346 1.0255 1.1307 1.3194 1.1763 1.0330 1.1062 1.4541 1.3191 1.0862 

Skew. -0.2344 0.2831 0. 7056 0.1394 -0.1640 0.6341 -0.2651 -0.8739 2.8380 0.1470 0.3561 
I,<:urt. 10.6242 5.7559 8.5284 2.3264 2.5668 6.5731 :1.9813 11.3040 23.5890 1.1235 1. 2055 

r.v., Mean - -0.0002 0.0231 ().0943 0.08.51 * 0.0256 -0.0555* 0.0304* 0.1290* -0.0026 -0.0710 
D.V. Mean - 0.0020 -0.1010 0.2010 0.14 70* -0.06:32 -0.0026 0.0173 0.0901 -0.0952 0.0523 

Day 3 
r-.:rean -0.0000 -0.0047 -0.0073 0.0259 0.1149* -0.0890 0.0022 -0.0021 -0.0.579 -0.1413* -0.();{26 
S.D. 1.0000 1.0382 1.1001 1.2186 1.3801 1.1951 ] .0307 1.0882 1.1866 1.4197 1.088~) 

" $kc\V -0.2344 0.2225 1.9764 -0.2092 -0.694:3 -0.0230 -0.16:36 -0.3828 -0.3985 -0.0896 0.46.53 
Kurt. 10.6242 6.2587 35.7200 3.2971 5.7672 2.8202 3.8251 6.6020 3.5091 1.3153 1.2454 

I.V .. Mean - -0.0048 -0.0002 0.0103 0.0637 -0.0843 -0.0334* -0.0131 -0.0661 -0.0935 -0.1520* 
D.V: Mean - -0.0046 -0.0224 0.0567 0.2120* -0.0960 0.0:342* 0.0244 -0.0399 -0.2040* 0.0738 
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(continued) 
Statistics Unconditional UCG UBG URG UEG UIG DCG DBG DRG DEG DIG 

Day 4 
Mean -0.0000 -0.0207 0.0305* 0.0172 0.0361 0.0783 -0.0038 -0.0141 -0.0100 -0.1~H1 * -0.1350* 
S.D. 1.0000 1.0014 1.0323 1.1:368 1.4166 1.2659 1.0484 1.08.35 1.2240 1.2860 1.0673 
Skew -0.2344 -0.2766 0.1337 -0.8971 -0.6516 1.4280 0.0394 0.4846 -0.1579 -0.0692 -0.7017 
Kurt. 10.6242 3.3699 4.3381 4.6530 2.0531 14.6780 4.3037 6.7417 2.7071 0.5615 2.9010 

I.V. rvlcan - -0.0022 0.0314* 0.0338 0.0084 0.1190* -0.00:33 -0.0082 0.0265 -0.2110* 0.0389 
D.V. Mean -0.0368* 0.0285* -0.0158 0.0886* 0.0182 -0.0043 -0.0284 -0.0900 -0 0401 -0.2900* 

Day 5 
.tviean -0.0000 -0.0047 -0.0346* 0.0455 -0.0073 0.1826* 0.0254* -0.0177 -0.0285 -0.1499* 0.1407* 
S.D. 1.0000 1.0402 1.0629 1.1350 1.4190 1.1147 1.0567 1.1020 1.2477 1.:3062 0.9887 

:skew -0.2344 0.3308 0.2158 -0.:3628 -0.6638 1.6552 0.2906 -0.1463 -0.2711 0.1004 0.7280 
Kurt. 10.6242 7.9087 4.9763 2.1136 2.94()6 1:3.9.570 7.G124 3.5132 4.7005 1.4448 1.2514 

I.V. Mean 0.0073 -0.0321 0.0368 0.0206 0.1950 0.0515 -0.0058 -0.0006 -0.068:3 0.0474 
tV D.V. Mean - -0.0153 -0.0400 0.0627 -0.0601 0.1640 0.0020 -0.0463 -0.0901 -0.2570 0.2240 
I-' 
I-' 



4.5.2 Information Content of Price Gaps 

This section presents the information tests results of the price gaps. The two main 

tests are goodness-of-fit and Kolmogorov-Smirnov distribution tests described in Sec­

tion 4.2. Table 4.4 tabulates the empirical results from the goodness-of-fit tests, 

aggregated across all futures contracts and sorted vertically according to the type of 

price gaps, from day 1 to day 5 after the occurrence of the price gaps. The result hor­

izontally placed is the ten deciles of the. normalized conditional returns in percentage 

form. According to the goodness-of-fit null hypothesis, the percentage for each bin is 

10.00 percent. The number in parenthesis below each percentage is the asymptotic 

z-values given in equation (4.13). The last column is the goodness-of-fit Q-statistic 

computed using equation (4.14), and the number in parenthesis below the Q-statistic 

is the p-value. 

The large Q-statistics for all price gaps on day 1 (except DIG) imply that we can 

reject the hypothesis that the distribution of unconditional and conditional normal­

ized returns are equal. But as we move further along from day 2 to day 4, there is 

a slight increase in the p-values, especially for UCG and UIG, implying that some 

of the conditional return distributions are indistinguishable to the unconditional dis­

tributions one day after the price gap occurs. Comparing across all price gaps, the 

highest Q-statistics are shown by Exhaustion gaps ( UEG and D EG), and the price 

gap that has the lowest Q-statistic is DIG. 

One particular feature of Table 4.4 is the variation m the distribution of the 

normalized returns display by different price gaps. For Congestion and Breakout 

gaps, the distribution of the returns seldom venture more than 1.5 percentage points 

from the null of 10.00 percent for each decile, for all five days. On the other hand, 

the difference from the null increases for Runaway gaps ( URG and D RG), sometimes 

this difference is more than three percentage points. For Exhaustion gaps (UEG and 

DEG), the percentage deciles range from 4.93 to 20.90, in stark contrast to Congestion 

and Breakout gaps. The basic observation is that the weight of the distribution tend 

to push to both ends of the deciles as we compare from UCG to UEG, which resulted 

in larger Q-statistic. 

Next, Table 4.5 presents the Kolmogorov-Smirnov two sarnple distribution tests 

aggregated from all futures contracts, sorted across by the type of price gaps, and 

from day 1 to day 5. The parameter 1 is the Kolmogorov-Smirnov statistic given 

in equation ( 4,16) and the numbers in parenthesis are the~p-values. LV. and D.V~ · -

represents the increasing volume and decreasing volume respectively when the price 

gaps occur. 
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For Congestion gaps (UCG and DCG), the clay 1 p-values are 0.000 and 0.021 

nc~pedivdy. But the results for dav 2 to day S me seemingly different from dav 1, 

because the p-values increase to more than 10 percent for these clays. This shows that 

any unusual price gaps effects for UCG and DCG dissipated after one day. 

For Breakout gaps, the opposite conclusion is found. On day 1, both UBG and 

DBG produce insignificant p-values at 0.400 and 0.111 respectively. But from clay 2 

to clay 5, the p-values decline to less than 10 percent. This provides some evidence 

that prices continue to behave abnormally for a few more days after the penetration of 

key support or resistant level. For Runaway gaps (URG and DRG), the results show 

that any dissimilarities between the conditional and unconditional returns dissipate 

by clay 3 and clay 1 for URG and DRG respectively. 

The results for Exhaustion price gaps (UEG and DEG) are fairly strong, where the 

p-values are statistically significant (ranging from 0.000 to 0.064) for all clays, thereby 

rejecting the null hypothesis that the conditional return distribution are similar to the 

unconditional normalized returns. The overall conclusion from both the goodness-of­

fit test and the Kolmogorov-Smirnov tests suggests that there may be some unusual 

information contained in the Exhaustion price gaps that investors can use. 

Similar to the goodness-of-fit tests. the only price gaps that do not show statisti­

cally insignificant for most clays are UIG and DIG, implving that there are no extra 

information that traders can use even after these type of gaps appear in the financial 

markets. This also confirms Edwards and Magee's forecast described earlier, that 

Island gaps are very difficult to trade on. 

Contrary to the hypothesis about the role of volume advocated by market techni­

cian, the results in Table 4.5 (row 2 and 3) does not seem to support the hypothesis 

that increasing volume on price gap clays decreases the p-value for 1 consistently, nei­

ther do decreasing volume exhibit any particularly striking results. For example, it 

was noted earlier that the number of increasing volume price gaps are more common 

than decreasing volume price gaps. The Kolmogorov-Smirnov statistic for increasing 

volume, however, is not always higher than decreasing volume. For example, the I.V. 

r for UEG is 1.37 compared to D.V. 1 of 1.60. What this suggests is that a higher 

number of gaps may not necessarily produce returns that are unusual compared to 

the unconditional returns. 
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Table 4.4: Goodness-of-Fit Information Tests. The following Table displays the Chi-square information 
test. The normalized returns are separated into 10 deciles. The null percentage for each decile is 10o/t1. 
The number in parenthesis for the dec:iles for each decile is the asymptotic p-valnes given by equation (??). 
The last column shows the Q-statistic computed using equation ( 4.14). The number in parenthesis is the 
p-value for the Q-statistic. 

Decile 
Gaps 1 2 3 4 5 6 7 8 9 10 Q-Statistic 

Day 1 

UCG 10.50 10.50 11.30 10.70 9.93 9.41 10.00 8.69 9.05 9.93 32.60 

( 1.26) ( 1.26) (3.31) ( 1. 70) (-0.18) (-1.50) (0.08) (-3.:)3) (-2.41) (-0.18) (0.000) 

UBG 8.65 10.10 10.70 11.60 11.00 9.12 9.44 8.87 8.85 11.70 55.000 

(-2.99) (0.12) ( 1.48) (:3.54) (2.28) (-1.94) (-1.24) ( -2.49) (-2.54) (3.79) (0.000) 

URG 11.30 13.10 11.30 11.:30 12.00 9.26 7.2.5 7.87 5. 71 11.00 32.800 

( 1.07) (2.65) (1.07) ( l.(J7) ( 1. 73) (-0.63) ( -2.33) (-1.81) (-3.64) (0.81) (0.000) 
tV 

UEG 16.40 11.20 8.30 8.30 6 .. 50 5.83 9.87 9.64 7.62 16.40 55.20 ....... 
~ 

( 4.48) (0.85) (-1.20) (-1.20) ( -2.46) (-2.94) ( -0.09) (-0.25) (-1.67) (4.48) (0.000) 

UIG 14.00 10.20 13.60 8.94 6.81 4.68 7.23 9.79 12.80 11.90 20.70 

(2.07) (0.11) ( 1.85) (-0.54) (-1.63) (-2.72) (-1.41) (-Cl.ll) ( 1.41) (0.98) (0.014) 

DCC 11.40 9.43 9.27 9.55 8.46 9.70 10.40 10.40 10.80 10.60 37.80 

(.3.49) ( -1.42) (-1.83) (-1.11) ( -3.83) (-0.75) (0. 99) (1.12) ( 1. 92) ( 1.43) (0.000) 

DBG L2.00 9.22 9.12 8.75 9.76 9.85 10.60 10.60 10.30 9.87 33.10 

(4.32) (-1.70) (-1.91) (-2.73) (-0.53) ( -0.3:)) (1.20) ( 1.36) (0.59) ( -0.28) (0.000) 

DRG 13.60 7.96 6.21 G.41 7.96 8.93 12.80 10.90 10.50 14.80 41.80 

(2.72) (-1.54) ( -2.86) (-2.72) (-1.54) (-0.81) (2.13) (0.66) (0.37) (3.60) (0.000) 

DEG 15.80 8.70 7.76 6.52 7.45 6.21 7.76 10.60 11.50 17.70 45.30 

(3.49) ( -0. 78) ( -1.34) ( -2.08) ( -1.52) (-2.27) (-1.34) (0.33) (0.89) (4.61) (0.000) 

DIG 14.90 7.02 8.68 10.30 9.09 9.09 11.60 8.2G 11. GO 9.50 10.70 

(2.53) ( -1.54) (-0.69) (0.17) ( -0.4 7) (-0.47) (0.81) (-0.90) (0.81) (-0.26) (0.295) 

Day 2 
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( cont'in'Ued) 

Decile 
Gaps 1 2 3 4 5 6 7 8 9 10 Q-Statistic 
UCG 10.70 10.50 10.50 9.43 8.88 9.31 9.76 9.86 10.30 10.70 22.00 

(1. 78) ( 1.39) ( 1. 26) ( -1.45) ( -2.85) (-1.76) ( -0.62) ( -0.36) (0.82) ( 1. 78) (0.009) 
UBG 9.94 10.30 11.10 11.30 10.20 9.53 9.71 9.83 8.35 9.78 26.40 

(-0.13) (0. 72) (2.33) (2.83) (0.42) ( -1.03) ( -0.6:3) (-0.38) (-3.65) (-0.48) (0.002) 
URG 9.72 8.80 12.00 8.18 7.56 8.95 9.26 8.64 ll.40 15.40 32.400 

(-0.24) (-1.02) (1. 73) (-1.55) (-2.07) ( -0.89) ( -0.63) (-1.15) (1.20) (4.61) (0.000) 
UEG 13.70 8.52 8.97 10.10 5.83 6.73 7.85 6.95 12.80 18.60 62.70 

(2.59) ( -1.04) ( -0. 73) (0.06) (-2.94) (-2.30) (-1.52) (-2.15) ( 1.96) (6.06) (0.000) 
UIG 13.60 11..50 8.09 9.36 7.23 8.94 9.79 7.23 13.20 11.10 11.10 

( 1.85) (0.76) ( -0.98) ( -0.33) (-1.41) (-0.54) (-0.11) (-1.41) ( 1.63) (0.54) (0.270) 
DCG 11.60 9.64 9.79 9.32 9.55 9.16 10.10 10.60 10.10 10.10 25.40 

(4.02) ( -0.89) (-0.53) (-1.69) (-1.11) (-2.09) (0.:36) (1.52) (0.27) (0.14) (0.003) 
tv DBG 11.20 9.47 8.54 9.62 8.75 8.54 10.50 10.60 10.80 12.10 55.70 
>--' 
Go (2.53) (-1.14) (-3.19) (-0.84) (-2.7:3) (-3.19) (1.10) ( 1.20) ( 1. 77) (4.47) (0.000) 

DRG 14.80 7.57 6.41 8.16 8.93 8.93 9.90 10.30 11.50 13.60 32.00 
(:3.60) (-1.84) (-2.72) (-1.40) (-0.81) (-0.81) (-0.07) (0.22) (1.10) (2.72) (0.000) 

DEG 18.00 8.39 9.01 6.52 8.39 7.76 7.76 9.01 12.10 13.00 33.40 
(4.79) ( -0.97) (-0.59) (-2.08) (-0.97) (-1.34) ( -1.34) (-0.59) ( 1. 26) ( 1. 82) (0.000) 

DIG 12.00 13.60 10.30 8.68 8.68 9.09 8.68 7.44 8.26 13.20 10.50 
(1.03) ( 1. 89) (0.17) (-0.69) (-0.69) ( -0.47) (-0.69) ( -1.:33) (-0.90) ( 1.67) (0.313) 

Day 3 
UCG 10.80 10.60 9.67 10.40 9.17 9.27 9.76 9.76 9.77 10.70 19.00 

(2.09) ( 1 . 52) (-0.84) (1.13) (-2.11) (-1.85) (-O.G2) (-0.62) ( -0.58) ( 1.87) (0.025) 
UBG 10.50 11.00 10.10 10.20 9.17 8.81 9.69 10.20 9.37 10.90 2Ui0 

(1.12) (2.28) (0.17) (0.52) ( -1.84) (-2.64) ( -0.68) ( ll.:3 7) (-1.39) (2.08) (0.010) 
URG 11.70 9.26 11.40 8.95 6.48 8.80 8.64 9.26 12.50 13.00 24.60 

(1.47) ( -0.63) ( 1.20) (-0.89) ( -2.99) ( -1.02) (-1.15) (-0.63) (2.12) (2.51) (0.003) 
UEG 12.80 9.87 8.07 8.30 6.05 8.:30 9.87 8.52 7.40 20.90 71.20 
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( cont·inued) 
Decile 

Gaps 1 2 3 4 5 6 7 8 9 10 Q-Statistic 
(1.96) (-0.09) ( -1.36) ( -1.20) (-2.78) (-1.20) ( -0.09) ( -1.04) (-1.83) (7.64) (0.000) 

UIG 14.50 11.10 8.09 10.60 7.23 11.50 7.66 13.20 6.38 9.79 15.00 
(2. 28) (0.54) ( -0.98) (0.33) (-1.41) (0.76) (-1.20) ( 1.63) (-1.85) (-Cl.l1) (0.091) 

DCG 10.90 10.20 10.10 9.16 8.64 10.10 9.48 10.40 10.20 10.90 26.00 
(2.15) (0.41) (0.36) ( -2.09) ( -3.39) (0.14) (-1.29) (0.94) (0.45) (2.33) (0.002) 

DBG 10.90 10.70 10.10 9.36 8.77 9.90 9.64 9.10 10.20 11.30 25.10 
( 1. 97) (1.61) (0.23) (-1.40) ( -2.67) ( -0.22) (-0.79) (-1.96) (0.49) (2.74) (0.003) 

DRG 13.20 11.80 9.51 10.70 8.74 8.54 7.57 7.57 9.71 12.60 19.000 
(2.42) (1.40) (-0.37) (0.51) (-0.95) (-1.10) (-1.84) (-1.84) (-0.22) (1.98) (0.026) 

DEG 20.20 8.70 9.01 6.21 11.20 6.21 8.07 7.45 8.39 14.60 54.90 
(6.09) (-0.78) ( -0.59) ( -2.27) (0.71) ( -2.27) (-1.15) (-1.52) ( -0. 97) (2.75) (0.000) 

DIG 14.00 10.30 12.40 10.30 7.85 8.26 7.85 7.02 9.92 12.00 11.50 
tv (2.10) (0.17) ( 1.24) (0.17) (-1.11) ( -0.90) (-1.11) ( -1.54) (-0.04) ( 1.03) (0.245) 
f-' 
Ol Day 4 

UCG 10.20 10.50 10.10 10.20 9.33 9.53 10.50 9.79 9.67 10.10 8.43 
(0.52) (1.35) (0.30) (0.60) (-1.71) (-1.19) ( 1.17) ( -0.53) (-0.84) (0.34) (0.495) 

UBG 10.40 9.42 9.85 9.74 9.19 9.15 10.10 10.30 10.80 10.90 16.10 
(0.92) (-1.29) ( -0.33) ( -0.58) ( -1. 79) (-1.89) (0.32) (0. 77) ( 1.88) ( 1. 98) (0.065) 

URG 10.60 10.30 8.33 8.64 10.20 9.57 9.41 9.57 9.10 14.20 15.80 
(0.55) (0.29) (-1.41) (-1.15) (0.16) (-0.37) ( -0.50) (-0.37) (-0.76) (3.56) (0.072) 

UEG 17.50 7.62 6. 73 5.83 7.40 5.61 7.85 11.90 10.50 19.10 92.10 
( 5. 27) (-1.67) ( -2.30) (-2.94) (-1.83) ( -3.09) (-1.52) ( 1.33) (0.38) (6.:38) (0.000) 

UIG 11.10 10.20 8.94 8.51 8.09 11.10 7.2:3 11.10 10.60 13.20 6.74 
(0.54) (0.11) ( -0.54) (-0.76) ( -0. 98) (0.54) (-1.41) (0.54) (0.33) ( l. 63) (0.336) 

DCG 11.20 10.50 10.00 9.52 8.94 8.96 9.84 9.68 9.86 11.40 .35.60 
(3.04) ( 1. 25) (0.09) (-1.20) ( -2.63) ( -2.58) ( -0.40) ( -0.80) (-0.35) (3.57) (0.000) 

DBG 12.10 11.00 9.87 9.38 8.02 8.91 9.31 10.00 10.70 10.70 52.40 
( 4 . .57) (2.07) (-0.28) (-1.35) (-4.31) ( -2.37) (-1.50) (0.08) ( 1. 56) (1.51) (0.000) 

continued next page 



( cont'inned) 
Decile 

Gaps 1 2 3 4 5 6 7 8 9 10 Q-Sta.tistic 
DRG 12.20 11.70 11.30 7.38 8.16 7.77 9.90 8.35 9.71 13.60 20.70 

(1.69) ( 1.25) (0.95) (-1.98) (-1.40) (-1.69) (-0.07) (-1.25) ( -0.22) (2.72) ( 0. 014) 
DEG 19.30 10.60 7.45 7.45 7.76 11.80 5.90 7. 76 8.39 13.70 46.70 

( 5.54) (0.33) ( -1.52) (-1.52) (-1.34) ( 1.08) (-2.45) ( -1.34) (-0.97) (2.19) (0.000) 
DIG 11.20 15.30 11.60 8.68 5.79 9.50 11.20 12.00 4.96 9.92 19.90 

(0.60) (2.74) (0.81) ( -0.69) (-2.19) ( -0.26) (0.60) ( 1.03) (-2.61) (-0.04) (0.019) 
Day 5 

UCG 10.80 10.:30 10.00 9.84 9.14 9.79 9.84 10.10 9.76 1().30 10.60 
(2.09) (0.87) (0.0:3) (-0.40) (-2.19) (-O.G3) ( -0.40) (0.30) (-0.62) (0.87) (0.300) 

UBG 11.80 10.70 11.50 9.42 8.40 9.06 8.40 9.28 10.80 10.60 61.GO 
( 4.04) (1.63) (3.28) (-1.29) (-3.55) (-2.09) ( -3.55) (-1..59) (1.83) ( 1.28) (0.000) 

URG 10.80 10.20 10.00 8.64 8.49 6. 79 10.50 10.20 10.20 14.20 21.40 
tv (0.68) (0.16) (0.0:3) (-1.15) (-1.28) (-:~.72) (0.42) (0.16) (0.16) (3.56) (0.011) 
>-' 
~T UEG 17.90 10.50 8.30 6.28 4.93 6.95 6.05 6.95 12.80 19.30 104.00 

(5.59) (0.38) (-1.20) ( -2.62) ( -3.57) (-2.15) (-2.78) (-2.15) ( 1.96) (6.53) (0.000) 
UIG 8.09 0.36 11.90 4.68 8.09 6.81 11.90 8.51 16.60 14.00 27.20 

(-0.98) ( -0.33) (0.98) (-2.72) (-0.98) (-1.63) (0.98) (-0.76) (3.37) (2.07) (0.001) 
DCG 10.50 10.30 10.20 9.73 8.21 9.91 9.28 9.66 10.60 11.60 40.90 

(1.16) (0.72) (0.41) ( -0.66) (-4.46) (-0.22) (-1.78) (-0.84) (1.61) (4.07) (0.000) 
DBG 11.80 10.:30 10.50 8.91 7.67 9.43 9.47 10.60 10.10 11.10 53.80 

(4.01) (0.69) (1.15) ( -2.37) ( -5.07) ( -1.25) (-1.14) (1.31) (0.23) (2.43) (0.000) 
DRG 14.20 10.10 9.51 8.93 7.96 7.96 7.57 10.50 10.30 13.00 21.80 

(3.16) (0.07) ( -0.37) (-0.81) (-1.54) (-1.54) (-1.84) (O.:H) (0.22) (2.28) (O.OO!.l) 
DEC 18.00 12.10 7.14 8.:19 7.45 9.63 8. 70 8.39 8.07 12.10 31.70 

(4.79) ( 1.26) (-1.71) (-0.97) (-1.52) (-0.22) (-0.78) ( -0.97) (-1.15) ( 1.26) (0.000) 
DIG 9.09 10.70 9.50 9.09 9.09 9.92 7.02 9.50 11.60 14.50 8.41 

(-0.47) (0.39) (-0.26) (-0.47) (-0.47) (-0.04) (-1..54) (-0.26) (0.81) (2.31) (0.493) 



Table 4.5: Kohnogorov-Srnirnov Distribution Tests. The following Table displays the Kolmogorov-Smimov 
test for all 10 normalized conditional price gap returns, up to 5 days after the occurrence of the price gap. 
Row 1 is the Kolmogorov-Smirnov 1 statistic given by equation ( 4.16) and row 2 is the p-values for each 
corresponding !:itati!:itic: given by equation ( 4.17). Row 3 and 5 arc the 1 sta.ti!:itic for increasing volume and 
decreasing volume respectively, while row 4 and 6 are the corresponding p-value. 

Statistics UCC UBC URC UEC UIC DCC DBC DRG DEC DIG 
Day 1 

1 2.46 0.89 1.42 1.31 0.77 1.51 1.20 1.45 1.64 0.51 
p-value (0.000) (0.400) (0.036) (0.064) (0.598) (0.021) (0.111) (0.031) (0.009) (0.955) 
l.V. 1 1.66 1.34 1..58 1.37 0.78 1.32 1.29 1.41 0.96 0.73 

p-value (0.008) (0.056) (0.014) (0.048) (0.572) (0.060) (0.071) (0.039) (0.316) (0.658) 
D.V.-y 1.04 0.31 0.69 UiO 1.20 0.68 ().;36 1.27 1.06 0.12 

p-value (0.226) (0.000) (0.734) (0.012) (0.110) (0.737) ( 1.()00) (0.079) (0.208) (0.995) 

tv 
Day 2 

>--" I 0.91 1.48 1.48 2.26 0.85 1.19 2.15 1.12 1.47 0.76 
00 

p-value (0.:376) (0.024) (0.025) (0.000) (0.463) (0.120) (0.000) (0.166) (0.027) (0.614) 
I.V. I 0.83 0.85 1.12 1.77 0.49 1.2:3 1.97 0.96 1.11 1.01 

]J-value (0.492) (0.460) (0.166) (0.004) (0.967) (0.099) (ll.001) (fU20) (0.166) (0.263) 
D.V.1 0.2.5 1.54 1.17 1.50 0.48 0.~~2 0.82 0.64 0.99 0.43 

p-value ( 1.000) (0.017) ( 0.] 27) (0.02:{) (0.973) (1.000) (0.515) (0.801) (0.282) (0.992) 
Day 3 

I' 0.95 1.27 1.36 2.12 0.91 1.09 Ull 1.20 2.03 1.01 
p-value (0.:325) (0.080) (0.050) (0.000) (0.383) (0.185) (0.263) (0.111) (0.001) (0.257) 
I.V. I 0.44 0.94 0.63 1.54 0.80 1.74 0. 74 1.14 1.23 1.12 

]J-value (0.990) (0.341) (0.825) (0.018) (0.544) (0.005) (0.645) ( 0.148) (0.098) (0.161) 
D.V.1 1.09 0.75 1.33 1.39 0.52 1.03 1.14 0.92 1.:38 0.35 

p-value (0.189) (0.624) (0.057) (0.043) (0.946) (0.236) (0.151) (0.361) (0.044) (1.000) 
Day 4 

I' 0.80 1.56 0.79 1.95 0.55 1.18 2.03 0.98 1.73 0.62 
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(cont'irmed) 
Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG 
p-value (0.538) (0.015) (0.564) (0.001) (0.927) (0.122) (0.001) (0.290) (0.001) (0.840) 
LV. 1 0.17 1.41 0.96 1.43 0.41 1.21 1..59 0.94 1.44 0.69 

p-value (0.000) (0.037) (0.311) (0.034) (0. 995) (0.105) (0.012) ( 0.:3:37) (0.032) (0.735) 
D.v.1 0.75 0.52 0.52 1.62 0.30 0.62 1.08 0.92 1.17 1.08 

p-va.lue (0.635) (0.952) (0.952) (0.011) (1.000) (0.843) (0.192) (0.362) (0.127) (0.193) 
Day 5 

I 1.00 2.54 0.82 2.43 1.55 1.42 1.41 1.04 1.83 0.96 
p-value (0.268) (0.000) (0.506) (0.000) (0.016) (0.035) (0.037) (0.231) (0.003) (0.311) 
I.V. I 0.35 1.72 1.09 1.84 1.59 1.50 0.60 1.14 1.15 0.22 

p-valuc (0.000) (0.005) ( 0.187) (0.002) (0.012) (0.022) (0.777) (0.146) (0.145) ( 1.000) 
D.v.1 1.14 1.09 0.88 1.75 0.37 0.74 1.24 1.05 1.67 1.19 

p-value (0.151) (0.185) (0.42~~) (0.004) (0.999) (0.643) (0.09~~) (0.221) (0.007) (0.119) 

N 
>--' 
r..o 



4.5.3 Does the Size of Price Gap Matter? 

Table 4.6 presents the results with gap size categorization. Panel A shows the number 

of price gap count for each size (Size 1 to Size 3), and sorted by the type of price gap 

(UCG to DIG). Recall the Size 1 gaps are price gaps that has lower absolute value 

than the difference between the open ami close prict: of the previous trading clay, the 

result in Panel A shows that such gaps are the most common, followed by Size 2 and 

Size 3 respectively. For Island gaps (UIG and DIG), no count is recorded for Size 

2 and Size 3, hence we cannot tests the hypothesis whether the size of price gaps 

will affect the results in the previous section. An interesting observation is that for 

Exhaustion gaps (UEG and DEC) the percentage of Size 3 over the total sample size 

is more than 20 percent, at ~~~ ;:::: 25.8 percent and i2
8
2 ;:::: 30.4 percent respectively, 

a percentage larger than other types of price gaps. For Breakaway gap, for example, 

the percentage of Size 3 over the total sample is }46~6 ;:::: 17.36 percent and }
2
3l

4 
;:::: 17.17 

percent for upward and downward gap respectively. 

Panel B of the same Table presents the surmnary statistics and the information 

test results for each size. To conserve space, the p-values for both the goodness-of-fit 

Q and Kolmogorov-Smirnov 1 statistics are omitted. Instead, an asterisk (*) is shown 

beside the statistic if the p-values are more than 10 percent. This also applies to the 

mean return t-tests. 

Previously we noted that the mean returns on UCG, UBG, URG and UEG are 

statistically negative on day 1, which is a result from the prices retracing to cover 

the gaps. When we split the size of price gaps, some interesting facts emerge. One, 

the congestion gaps (UCG) mean returns are all negative for all sizes. Surprisingly, 

the mean return for Size 1 is more negative than Size 2 or 3. It seem to suggest that 

a contrarian strategy might be profitable here. Two, all upward Breakout gaps have 

positive rnean returns and all downward Breakout gaps have negative mean returns. 

This means that a trend-following strategy is more appropriate when a Breakout gap 

appears. Three, for both upward Runaway and Exhaustion gaps, the Size 1 and Size 2 

mean returns are negative, but it is positive for Size 3. IVIoreover. the mean return for 

Size 3 is the largest compared to Size 1 or 2. The opposite signs are observed for the 

downward Runaway and Exhaustion gaps. What this is saying is that if the size of the 

price gap is large enough, theu stroug wmueutum effect may result from it The large 

standard deviation for Size 3 Runaway and Exhaustion gaps also implies that these 

momentum effects are accompanied with increased volatility. A further implication 

of this fact suggests that even though traders can earn higher retHrns by trading 

the URG, UEG, DRG and DEC price gaps, these higher returns are accompanied 

by higher risks (as measured by higher standard deviation). In other words, the 
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high return- high risk relationship still prevails. Furthermore, a casual look at the 

pattern count for Size 3 for these four gaps show that it is not a large number. It is 

undoubtedly fairly difficult to trade all these gaps over twenty-eight futures contract 

over a span of 25 years. Fourth, all Size 3 downward gaps (DCC, DBC, DRC and 

DEG) show negative mean returns. This means that downward momentum effects is 

strong when the size of the downward gap is large. 

For other clays (2-4), the Congestions gaps (UCG and DCG) do not show any 

unusual results for all sizes. The ]J-values for Q and 1 statistic for both UCC and 

DCG vary during these days. For Breakout gaps (UBG and DBG), the Q and 1 

statistics are randomly significant for three sizes. For example, on day 3 the Size 1 

UBC Q statistic is significant at 6.810, but on clay 5, it is significant at 40.700. Moving 

to Runaway gaps (URC and DRG), the mean test statistic, Q and 1 statistics are all 

significant on day 1. After which, snch strong n~sults disappear from day 2 onwards, 

and are inconsistent for all sizes. 

Turning to the Exhaustion gaps (UEG and DEG), we observed that all the Q 
and 1 statistics are significant at 10 percent level for all sizes at day 1. After day 1, 

however, Size 3 remains the only category that shows significant Q and 1 statistics 

consist.ent.ly for five days after the occnrrenc0. of the price gaps. Moveover, the con­

ditional normalized mean return for Size 3 show the most consistent direction, which 

is negative for DEC and positive for UEC (except day 5). Lastly, Island gaps (UIG 

and DIG) have very unreliable results for all days. This is consistent with our earlier 

findings. 

In summary, the results here support the hypothesis that the size of the price gap 

will improve the information content of the price gap on clay 1. We also show that 

Exhaustion gaps seem to be the only type of gaps that show statistically significant 

results. Judging by the results shown here and in the previous sections, the unusual 

effects exhibited by Exhaustion gaps may be caused by the short-term momentum 

effects in the futures prices. For example, Jcgadcesh and Titmau ( HJ03, 2001) report 

strong momentum effects in the US equity markets. Moreover, Moskowitz and Grin­

blatt ( 1999) find industry momentum effects. Recently, George and Hwang (2004) 

present evidence that stocks that are near the 52-\Veek exhibit momentum effects 

that are greater than Jegadeesh and Titman's results. Since our categorisation of the 

Exhaustion gap requires the current price to be either a new high (for upward gap) 

or a new low (for downward gap) over a period of 22 days. Our results here ruay 

just be a manifestation of the short-term momentum effects documented by these 

studies. Adding the large shocks (as measured by Size 3 gap), we therefore find that 
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Exhaustion conditional returns to be statistically diflerent from the unconditional 

returns. 
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Table 4.6: Price Gap Size Evaluation. Table 4.6 displays the results according to the size of price gaps. The 
first thn~e rows of the Table shows the total number of price gaps for each size, for each type of price gap. 
Row 2 and row 3 are the results for increasing and decreasing volume respectively. The rest of the table 
displays the summary statistics and the distribution tests results for each price gap, for up t.o five days 
after the occurrence of the price gap. To save space, the p-values for Chi-square and Kolmogorov-Smirnov 
distribution tests are omitted, to be replaced by an asterisk (*) if the p-values are more than 10%. Dashed 
(-) means that no price gap is detected for that particular size. 

Gap Statistics UCG UBG URG UEG UIG DCC DBG DRG DEC DIG 
Size 

Size 1 Count 3397 2563 435 216 235 3153 2440 303 146 242 
Size 2 Count 1739 1078 142 115 0 1731 1092 148 78 0 
Size 3 Count 676 765 71 115 0 695 732 64 98 0 

Day 1 
Size I Mean -0.0469* 0.0382* -0.1139* -0.1173* -0.0822 0.0203 -0.0053 0.0941 0.2224* -0.0133 

tV 
tV S.D 1.0285 1.0088 1.0834 1.2124 1.1788 1.0422 1.0.592 1.1216 1.2450 1.1430 w 

Q 31.600* 36.300* 15.600* 19.1 00* 20.700* 30.600* 16.700* 16.600* 24.000* 10.700 
-( 2.257* 0.856 1.34:3* 0.980 0.768 1.565* 0.728 1.294* 1.390* 0.512 

Size 2 Mean -0.0095 0.0332 -0. 26G5* -0.2856* - 0.0124 -0.0438 0.2717* 0.2158* 
S.D. 1.0050 1.0590 0.9254 1.4610 - 0.9924 0.9841 1.3025 1.3621 

Q 11.000 14.800* 18.400* 11.200 8.170 12.100 22.100* 22.300* 

I 0.793 0.670 L'i5~i* 0.947 0.735 0.551 1.348* 1.244* 
Size 3 Mean -0.0129 0.0862* 0.5752* 0.3508* - -0.1151* -0.1006* -0.1035 -0.1980* 

S.D. 1.0846 1.3094 1.5110 1.5240 1.1122 1.1217 1.7555 1. 7328 
Q 4.800 22.000* 52.000* 91.300* - 20.200* 27.400* 26.600* 25.500* 

I 0.176 1.004 1.429* 2.237* - 1.131 0.952 1.106 1.546* 
Day 2 

Size 1 !VIeau -0.0028 -0.0629* 0.1372* 0.0005 -0.0103 -0.0275 0.0162 0.1058* 0.0457 -0.0058 
S.D 1.0544 0.9698 1.0798 1.2260 1.1763 1.0688 1.1197 1.4227 1.1915 1.0862 
Q 25.500* 31.600* 17.000* 18.200* 11.100 26.200* 41.500* 16.200* 6.4 70 10.500 
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(continued) 
Gap Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG 
Size 

~( 0.759 2.207* 1.079 0.849 0.851 1.001 1.486 0.861 0.360 0.758 
Size 2 Meau -0.0082 0.0105 0.0992 0.0978 - -0.0254 0.0410 0.1824* -0.1067 

S.D. 0.9989 0.9818 1.0912 1.2401 0.9583 1.0219 1.4978 1.2616 

Q 9.480 7.400 11.800 21.400* - 2.860* 12.100 16.600* 17.400* 
-; 0.168 0.550 0.773 0.828 0.372 0.792 0.814 1.293* 

Size 3 Mean 0.0433 0.1014* 0.1461 0.3140* - -0.0332 0.0397 0.0173 -0.1231 
S.D. 1.0245 1.2364 1.4787 1.5357 1.0488 1.1808 1.5141 1.5333 

Q 12.500 15.500* 31.100* 50.000* 8.550 18.200* 7.880 45.100* 
-( 0.758 0.946 1.059 1.840* - 0.471 0.669 0.713 1.703* 

Day 3 
Size 1 Mean 0.0026 0.0174 -0.0142 0.0058 -0.0890 0.0083 -0.02:32 -0.0877 -0.0:391 * -0.0:326 

S.D 1.0354 1.0159 1.2537 1.2234 1.1951 1.0338 1.1017 1.1083 1.4153 1.0885 
tv Q 11.100 6.810 12.800 21.800* 15.000* 22.200* 19.100* 17.500* 29.500* 11.500 
tv 
,c.. 

I 0.776 0.461 0.774 0.649 0.907 1038 1.346 1.070 0.922 1.012 
Size 2 ti1Iear1 -0.0251 0.0029 0.1150 0.0120 0.0112 0.0200 -0.0656 0.0012 

S.D. 1.0474 1.0120 1.1132 1.5463 0.9856 0.9905 1.1860 1.2701 

Q 15.000* 14.700* 11.800 11.500 - 14.200 6.610 18.600* 9.950 
-; 0.972 0.355 0.979 0.821 0.831 0.506 0.563 0.513 

Size 3 Mean 0.0113 -0.1045* 0.0929 0.4225* - -0.0476 0.0350 0.1007 -0.4070* 
S.D. 1.0288 1.4359 1.20.59 1.4465 1.1221 1.1781 1.5121 1.5140 

Q 12.400 30.200* 12.500 68.400* - 11.500 9.040 13.200 40.800* 

I 0.427 1.971 * 0.799 1.784* - 0.498 0.785 0.798 2.043* 
Day 4 

Size 1 Mean -0.0099 0.0323* 0.0217 -0.0519 0.0783 0.0000 -0.0353* 0.0447 0.0275 -0.1350* 
S.D 1.0044 0.9689 1.1179 U474 1.2659 1.0852 1.0826 1.1389 1.1358 1.0673 

Q 4.800 8.020 11.400 29.900* 6.740 42.500* 43.900* 14.700 12.400 19.900* 
~I 0.282 0.714 0.668 1.089 0.546 1.200 2.005* 0.765 0.547 0.617 

Size 2 Mean -0.0455* 0.0082 0.0930 -0.0075 -0.0294 0.0534* -0.0601 -0.2151 * 
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(continued) 

Gap Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG 
Size 

S.D. 0.9801 1.0946 1.0792 1.4375 - 0.9688 1.1067 1.3178 1.2458 
Q 12.200 13.400 11.800 16.400* - 11.400 17.300* 23.800* 17.600* 

I l.lOfi 0.659 0.811 0.626 0.266 0.587 0.985 1.2:)7* 
Size :3 Mean -0.0109 0.0.559 -O.Hi23 0.2449* 0.0427 -0.0444 -0.1528 -0.3204* 

S.D. 1.0403 1.1426 1.3441 1.5107 1.0686 1.0482 1.3833 1.4944 
Q 7.990 19.900* 4.920 79.200* - 17.600* 8.870 8.500 47.100* 

I 0.430 0.818 0.628 2.088* 0.679 0.886 0.627 1.894* 
Day 5 

Size 1 Mean 0.0104 -0.0152 0.0325 0.0525 0.182G* 0.0209 -0.0204 -0.0372 -0.0522 0.1407* 
S.D L.Ol07 1.0490 1.0897 1.5127 1.1147 1.0361 1.1271 1.2744 1.2862 0.9887 
Q 9.G60 40.700* 14.300 68.!JOO* 27.200* 34.400* 44.100* 8.520 7.700 8.410 

I 0.75:-l 0.987 1.026 2.061* 1.554* 1.040 1.198 0.616 0.953 0.964 
tV Size 2 Mean -0.0392 -0.0765* 0.0145 -0.0049 - 0.0418* 0.0122 -0.0264 0.00.51 tV 
()l S.D. 1.0786 1.0337 1.0649 1.2150 1.0704 1. 0:396 1.1139 1.201.5 

Q 9.920 16.300* 8.990 1:3.300 7.060 7.690 8.620 3. 790* 

I 1.007 1.236 0.434 0.676 - 0.525 0.518 0.452 0.454 
Size :3 Mean 0.0080 -0.0406 0.1868 -0.1218 O.OOfll -0.0529 0.0076 -0.4186* 

S.D. 1.0842 1.1463 1.4960 1.4310 1.1146 1.1079 1.4209 1.38GO 
Q 18.300* 19.400* 24.900* 53.300* - 12.700 22.000* 21. 900* 39.1 00* 

I 0.86:3 0.958 1.509* 1.358* 0.360 0.736 0.854 1.788* 



4.5.4 Conditioning on Chart Patterns 

Table 4. 7 displays the results for the statistical test of price gaps conditioned on the 

occurrence of one of the chart patterns. (See Section 2.4) The results are aggregated 

over all futures contracts. Column 1 to 10 are the price gaps (UCG to DIG) and for 

each row represents the results for each chart pattern (HSBOT to DTOP). 

In Panel A, we provide the pattern count for all ten chart patterns for each type 

of price gap. For upward gaps, the Bottom chart patterns (HSBOT, RBOT, TBOT, 

BBOT, DBOT) are patterns where the last extrema em is a minimum in the 30-day 

window. (See Section 4.4.2 for some graphical examples.) Recall our hypothesis that 

an upward price gap is assumed to be followed after a Bottom chart pattern. But 

not every em for an upward price gap is a minima. In fact, a large number of upward 

gaps have the last extrema to be maxima. Rather than discarding these price gaps, 

we test whether these polynomial regressions satisfy any of the Top chart pattern. 

The pattern counts from this exercise is shown by HSTOP, RTOP, TTOP, BTOP 

and DTOP for the upward gaps in Table 4.7 (column 3 to 7). A similar procedure is 

undertaken for downward price gaps as well and shown by HSBOT, RBOT, TBOT, 

BBOT and DBOT in column 8 to 12. 

The evidence in Panel A shows that a large number of extrema ern do indeed 

satisfy the chart formation conditions for a Top pattern even when an upward price 

gap occurs. As a matter of fact, the count for HSTOP is higher than HSBOT for 

upward Congestion price gap (UCG) and the count for HSBOT is higher than HSTOP 

for downward Congestion price gap (DCC), observations that are contrary to our 

expectations. 14 

For upward Congestion gap (UCG), the most frequently seen pattern is Rectangle 

(RBOT, RTOP) followed by Head-and-Shoulders and Double chart pattern. The 

difference in the pattern count between RBOT (432) and RTOP (405) is low. For 

upward Breakout gap (UBG), the largest pattern count is RBOT (631), followed 

by HSBOT (469) and TBOT (219). Similarly, for dmvnward Breakout gap (DBG), 

RTOP (492) has the largest count, followed by HSTOP (394) ami TTOP (235). A 

comparison between the Congestion a.ncl Breakout gaps shows an interesting feature 

about the shift of bottom pattern count to top pattern count. For example, for 

upward Congestion gaps, the total number of bottom patterns (HSBOT, RBOT, 

TBOT, BBOT, DBOT) is 1,102 and the total number of top patterus (HSTOP, 

14 In comparison to LI\1\V, the definitions of the chart patterns as specified in Section 2.4 are more 
stringent. For example, lor Head-and-Shoulders, Rectangle and Double patterns, the difference in 
prices during the extrema points are fixed to be 0.5 percent. Because of such strict definitions. the 
algorithm detects less pattems ill our sample data thall ill LlvivV. 
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RTOP, TTOP, BTOP, DTOP) is 997, a difference of only 105. On the other hand, 

for upward Breakout gaps, the total number of bottom chart pattern is 1,586, but the 

total number of top pattern is only 315, a difference of 1 ,271. This implies that upward 

Breakout gaps (and to a large extent, Runaway and Exhaustion gaps) experienced 

some form of 'bottoming-out' before an upward price gap occurs. The opposite can 

be said for downward Breakaway gaps, where prices experience some form of 'topping' 

before a downward gap happens. 

Panel B displays all the summary statistics and iuforrnation tests results for each 

pattern. Like previous section, the p-values for Q and 1 statistics are omitted to con­

serve space and replaced by asterisk (*) if it is more than 10 percent. Basically, the 

results show that statistically significant p-values are randomly distributed among the 

price gaps and across aU teu chart patterns. This evidence seems to suggest that not 

one chart pattern is capable of producing reliable results, iu terms of statistically sig­

nificant jJ-vaJues for Q and 1 statistics that reject the hypothesis that the conditional 

returns are similar to unconditional returns. For example, on day 1, the Q statistic 

for RBOT is significant for UCG, UBG and DBG, but not the rest of price gaps. On 

day 4, the same pattern is now significant for UIG and DEC. Furthermore, it is diffi­

cult to discover auy pat terns that ex hi bit significcmt statistics for the goodness-of-fit, 

Kolmogorov-Smirnov and t-tests together, even for Exhaustion gaps. 

However, one main concern about the distribution tests is the low power of these 

tests, which is clue to the extremely low number of pattern count for some price gaps. 

The only way to alleviate this problern is to include more data. But even including 

more data may not necessarily increases the pattern count if the asset prices do not 

exhibit the chart pattern as defined in Section 4.2. As a result, one has to be careful 

in drawing conclusion about the results shown in this section. 
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Table 4.7: Price Gaps a.nd Technical Chart Patterns. Panel A shows the number of chart patterns detected 
conditioned upon the occurrence of each of the 10 price gaps. Panel B presents the summary statistics 
of the normalized conditional futures returns and the Chi-square and Kolmogorov-Smirnov distribution 
tests statistic. To save space, the p-values for Chi-square and Kolmogorov-Smirnov distribution tests arc 
omitted, to be replaced by an asterisk (*) if the p-values are more than 10%. Dashed (-) means that no 
chart pattern was detected for that particular price gap. 

Chart Statistics UCG UBG URG UEG UIG DCC DBG DRG DEC DIG 
Patterns 

Panel A: Pattern Count 
·HSBOT Count. 190 469 76 28 26 260 :38 0 0 0 

RBOT Count. 432 631 79 22 35 400 116 2 2 0 
TBOT Count 82 219 31 23 15 105 20 0 0 0 
BBOT Count 1.52 71 7 3 4 84 40 1 6 0 
DBOT Coullt 246 196 11 1 9 141 77 :3 4 0 

tv 
HSTOP Count. 31 tv 282 46 0 (J 0 155 :394 59 23 

00 
RTOP Connt 405 143 2 2 0 436 492 7S 23 37 
TTOP Count 80 19 0 0 0 77 235 34 9 13 
BTOP Count 88 4:3 5 4 0 158 81 12 l :3 
DTOP Count. 142 64 2 4 () 214 138 11 4 5 

Panel B: Summary Statistics and Information Tests 
Day 1 

HSBOT Mean -0.0063 -0.0204 -0.0377 -O.IG46 -0.0266 -0.0930 -0.2407 
S.D. 0.8382 0.9239 0.9209 1.0705 0.999:3 0.8729 0.8590 

Q 15.700* 11.800 9.530 11.300 10.200 10.800 7.790 

I 0.401 0.845 0.507 0.826 0.629 0.969 0.729 
RBOT i'dean -0.0361 0.0435 -0.0901 -0.4781 * -0.2650 -0.0146 -0.1772* 0.0895 ll..3622 

S.D. 0.7749 0.9001 1.24S3 0.8647 0.9151 0.8698 0.7423 0.7824 0.5811 

Q 47.500* 25.100* 9.480 12.500 7.000 11.500 16.200* 8.000 8.000 
~I 0.988 0.918 0.799 1.415* 0.937 0.423 1.293* 0.376 0.046 
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(continued) 

Chart Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG 
Patterns 
TBOT Mean 0.2076* 0.1008 -0.1606 -0.1786 -0.0027 -0.0510 -0.2748 

S.D. 0.8033 0.9847 1.3275 1.1908 1.0877 1.0282 0.8268 

Q 8.240 17.300* 6.740 7.870 8.~{30 5.950 10.000 

I 0.720 0.566 0.718 0.410 0.493 0.171 1.021 
BBOT Mean 0.0215 0.0617 -0.4887 -1.1006* -0.8925* -0.1432 0.:3737 0.2897 0.7870 

S.D. 0.8552 1.0166 1.5814 0.5567 0.6904 1.0813 1.2060 - 1.3488 

Q 6.290 13.100 .5.860 13.700 6.000 1.950* 8.500 9.000 7.330 

I 0.315 0.214 0.761 1.406* 0.697 0.300 0.867 0.424 0.477 
DBOT Me au -0.0231 -0.0027 0.2316 0.6437 0.0138 0.0026 -0.0772 -0.4676 0.6874 

S.D. 0.7863 0.7737 0.6997 0.5156 0.9553 0.9891 1.0666 0.2008 0.7737 

Q 8.720 18.300* 6.270 11.000 5.440 11.000 2.610* 7.000 11.000 
-; 0.528 0.572 0.232 0.835 0.352 0.214 0.294 0.263 o.mn 

I'V HSTOP Mean -0.0919 o.oom - - -0.0583 -0.0091 0.0513 0.0985 -0.1562 
I'V 
CD S.D. 0.9496 1.0170 0.8735 0.9615 0.8114 1.0108 0.8093 

Q 11.600 4.430 11.500 6.710 4.900 9.610 5.450 

I 0.875 0.175 - 0.637 0.252 0.499 0.360 0.640 
RTOP !\!lean 0.0838* 0.0820 0.1016 -0.4632 -0.0699 -0.0588 0.0913 0.2006 -0.0811 

S.D. 0.8189 1.0491 0.6311 0.0430 - 0.8616 0.9160 0.9596 0.6448 0.8487 
Q 14.800* 38.900* 8.000 18.000* - 15.400* 9.220 11.500 8.740 14.100 

I 0.996 1.051 0.297 o.:394 0.853 0.726 0.745 0.:382 0.70~> 

TTOP Mean -0.1162 -0.3052* - - -0.1157 -0.0188 0.4143 -0.0315 -0.3441 
S.D. 1.1211 2.0072 - 1.1566 1.0416 0.9476 0.7471 1.1284 

Q 14.500 8.890 - - 14.000 8. 700 16.000* 7.670 12.400 

-r 0.969 0.649 - 0.366 0.277 0.828 0.329 0.763 
BTOP !'dean -0.1316 -0.1633 -0.1293 0.0161 0.1046 -0.1192 0.4228 0.1350 -0.5573 

S.D. 0.9961 0.9739 0.5850 0.5414 - 0.9785 1.1432 1.1586 - 0.2346 
Q 5.410 15.800 9.000 6.000 3.270 11.500 19. 700* 9. 000 7.000 
-; 0.679 0.619 0.290 0.174 - 0.469 0.564 1.012 0.521 0.296 
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( contirmed) 

Chart Statistics UCG UBG URG UEG UIG DCC DBG DRG DEC DIG 
Patterns 
DTOP Meau 0.1171 0.1053 0.5564 0.0509 - -0 0712 -0.0913 0.4629 0.9307* 0.2201 

S.D. 0.8321 0.8730 0.0121 0.5941 - 0.9862 0.9847 0.7657 1.9268 1.3771 

Q 12.500 7.250 18.000* Hi.OOO* - 6.000 9.970 8.090 11.000 5.000 

I 0.454 0.409 0.420 0.022 - 0.450 0.590 0.808 0.527 0.353 
Day 2 

HSBOT Me au -0.0329 -0.0722 0.0915 -0.0855 -0.06:32 0.01.59 -0.200.5 
S.D. 0.9071 0.8909 0.9236 1.1636 0.815.5 0.9679 1.0888 
Q 11.300 12.200 1.:370* 7.710 2.460* 7.:380 6.740 

r 0.430 1.09.5 0.248 0.533 0.237 0.546 0.610 
RBOT }dean 0.0464 -0.0471 0.0151 0.0190 -0.3707 -0.0713 -0.2119* -0.45:38 0.1807 

S.D. 0.9037 0.8923 0.8931 0.930.5 0. 9750 0.8743 1.1366 0. 7:309 1.1.582 

Q 3.420* 35.800* 4.160* 6.180 19.000* 9.050 21.200* 8.000 8.000 
t0 ~~ 0.247 1.451* 0.139 0 . .579 1.157 0.818 1.492* 0.748 0.475 w 
0 TBOT !'vic an 0.1910* 0.0390 0.0443 0.4264* -0.0223 -0.10:34 -0.1663 

S.D. 1.1011 1.0949 0.9837 1.2024 0.8282 0.87:32 0.7656 
Q 7.020 5.430 8.680 0.610 3.000* 7.100 6.000 
~~ 0.491 0.178 0.354 1.018 0.203 ().1;{6 0.471 

BBOT !'dean -0.0441 0.1623 -0.4127 -0.1356 0.1419 -0.1143 -0.0712 -0.014:{ 0.1800 
S.D. 1.0022 1.0134 1.1663 0.7944 1.4622 1.1437 1.2299 - 0.6613 

Q 18.000* 2.940* 8.710 7.000 6.000 6.950 17.000* 9.000 7.330 

r 1.257* 0.253 0.697 0.425 0.456 0. 707 0.393 0.622 0.289 
DBOT l'viea.n 0.0488 -0.0067 0.0323 0.0920 -0.116.5 -0.1:326 0.1383 0.1002 1.2587* 

S.D. 0.8642 0.7766 0.9865 0.50.37 0.757!) 0.8151 1.0273 0.1841 1.065!) 

Q 14.200 10.100 6.270 6.000 9.890 19.500* 4.170* 7.000 11.000 
~I 0.232 0. 7 45 0.373 0.290 0.864 0.942 0.261 0.236 1.021 

HSTOP r--·Ica.II 0.0444 -0.0824 - - - 0.0191 -0.0305 -0.0590 -0.11.34 0.0817 
S.D. 1.0210 1.160.5 - 1.0342 0. 9826 0.8902 0.6479 1.3569 

Q 15.000* 7.910 - - 8.940 14.100 11.300 20.900* 10.600 
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(continued) 

Chart Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG 
Patterns 

I 0.209 0.846 - - 0.486 0.547 0.705 0.694 0.383 
RTOP Mean 0.0098 -0.1200 0.2730 0.1475 - -0.0148 -0.0951 -0.0470 0.128.3 0.1872 

S.D. 0.9063 0.9695 0.9210 1.0848 - 1.0085 0.9992 0.8717 0.5925 1.0504 
Q 14.400 18.900* 8.000 8.000 20.700* 12.100 8.330 22.700* 6.510 

I 0.671 1.491 * 0.321 0.465 - 0.401 0.600 0.648 0.771 0.242 
TTOP IVIean 0.1139 -0.0459 - -0.0375 -0.0270 -0.0286 0.3834 -0.2938 

S.D. 0.9956 1.0309 0.9306 1.0305 1.3467 1.0267 0.7554 
Q 2.000* 8.890 - 14.600 6.400 6.590 7.670 6.230 

I 0.415 0.490 - 0.299 0.338 0.683 0.510 0.622 
BTOP tvlean 0.1030 -0.1710 0.4200 -0.2969 - -0.0480 0.0764 0.2494 0.5384 0.3128 

S.D. 0.9456 0.9841 1.2098 0.5652 0.9436 1.1174 1.0593 0.3955 
Q 8.140 15.800* !.J.OOO 6.000 - 7.950 4.310 9.670 9.000 7.000 

~ I 0.623 0.467 0.158 w 0.391 0.49(:) 0.292 0.405 0.299 0.230 
f-' DTOP Mean 0.0430 0.1095 -0.4073 0.2671 - -0.0384 -0.089.3 -0.1021 -0.6232 -0.1124 

S.D. 0.8461 1.1510 0.0411 0.7437 1.0060 0.9047 o.77~n 0.5246 2.5386 

Q 8.850 10.100 8.000 11.000 8.150 7.650 4.450 21.000* 13.000 

I 0.469 0.418 0.361 0.157 - 0.102 0. 782 0.2:38 0.948 0.955 

Day 3 
HSBOT Mean 0.0962 -0.0486 0.0232 -0.5324* 0.0394 0.0716 -0.1542 

S.D. 0.9866 0.9568 1.162.5 1.1411 1.2:364 0.881.5 0.6622 

Q 14.200 18.900* 8.470 20.600* 10.200 5.770 7.260 

I 1.132 0.549 0.812 1.168 0. 72t:i 0.367 1.014 
RBOT !VI can -0.0045 -0.0200 -0.0200 0.3249* 0.0034 -0.0069 0.0448 -0.6476 -2.445~{* 

S.D. 0.8948 0.9024 UJ441 0.8259 1.1977 0.8663 0.9969 0.9476 1.7203 

Q 11.500 10.500 12.300 13.500 2.430* 14.400 12.600 8.000 18.000* 
~I 0.400 1.199 0.534 0.665 0.360 0.340 0.580 0.881 1.398* 

TBOT Mean 0.0031 0.0274 0.0729 0.4032* -0.0786 -0.0608 -0.2756 
S.D. 0.9850 1.1167 1.8144 1.7284 0.9208 0.9233 0.7958 
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( contin'Ued) 
Chart Statistics UCG UBG URG UEG UIG DCC DBG DRG DEG DIG 

Patterns 

Q 9.710 6.620 13.800 7.000 7.000 16.600* 8.000 
~( ().:305 0.484 0.624 0.395 0.341 0.188 0.694 

BBOT !VIc an 0.0109 0.1987 0.4597 -0.2879 1.0576* -0.0251 0.0795 0.2573 0.4989 
S.D. 0.9727 1.0633 1.1785 1.1949 1.0284 1.17:37 0.8796 - 0.5185 

Q 18.100* 10.800 8.710 7.000 11.000 7.670 4.500 9.000 7.330 

I 0.280 0.504 0.311 0.583 0.986 0.641 0.180 0.444 0.445 
DBOT l'vlean -0.0148 0.0737 0.6057 1.1572* -0.3069 0.0334 0.2071 * 0.4746 -2.1442* 

S.D. 0.7814 0.8547 0.9694 1.8441 1.2837 0.9679 0.8788 0.4869 1.4412 

Q 7.660 15.300* 11.700 11.000 9.890 4.040* 7.290 7.000 21.000* 

I 0.417 1.0:30 0.684 0.536 0.730 0.46S 0.905 0.349 1.704* 
HSTOP Mean -0.0267 -0.2490 - - -0.0921 -0.0279 -0.2428 0.3094 -0.0414 

S.D. 0.9631 1.0100 - 1.034S 1.0032 0.8678 0.9383 0.9833 
tV Q 6.940 11.000 - 9.4SO ·4.020* 9.980 28.700* :~.S20* 
eN 
tV !' 0.420 0.526 0.493 0.492 1.060 0.747 0.710 

RTOP !'vie au 0.0373 -0.1698* 0.1998 -O.OS83 - -0.0490 -0.0114 0.1169 0.2074 -0.0947 
S.D. 0.8444 0.9996 0.0012 0.:3636 - 1.0546 0.9887 0.8855 0.7479 0.9700 

Q 6.780 18.300* 18.000* 8.000 - 6.200 10.400 11.800 18.:300* 8.140 

I 0.398 0.973 0.176 0.277 - 0.:309 0.6:31 0.388 0.720 0.802 
TTOP !vi can -0.0778 -0.3134 0.1781 0.0019 0.0714 0.7084* -0.1110 

S.D. 0. 9890 0.6642 - 1.2394 0.9969 l.1S1S 1.0567 1.0899 

Q 7.750 19.400* - 19.000* 11.200 4.240 12.100 10.800 

I 0.610 0.617 - - 0.530 0.195 0.211 0.793 0.652 
I3TOP }vie an 0.0425 -0.2226 0.4605 -0.2611 -0.1630 -0.0407 -0.1996 0.0941 0.2215 

S.D. 0.9333 0.9000 0.7229 0.5612 0.9161 0.9478 0.9011 - 0.5809 

Q 10.400 9.330 9.000 6.000 - 12.800 0.358* 8.000 9.000 7.000 
- 0.39:3 0.779 0.270 0.454 1.104 0.227 0.610 0.546 0.222 f 

DTOP ~dean 0.0219 -0.1478 -0.1630 -0.4131 - -0.0801 -0.0034 -0.3251 0.3064 0.4758 
S.D. 0.7580 0.8105 0.5142 0.5114 - 0. 9260 1.1099 1.5677 0.4102 0.9599 
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(continued) 
Chart Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG 

Patterns 

Q 8.420 16.600* 8.000 6.000 - 6.650 9.830 2.640* 6.000 5.000 

I 0.701 0.918 0.414 0.886 - 0.925 0.410 0.583 0.329 0.317 
Day 4 

HSBOT Mean 0.0136 0.1082* -0.0964 0.1240 -0.2092 -0.1505* 0.1575 
S.D. 0.9721 0.9191 1.1355 0.9449 1.1672 1.0061 1.2532 

Q 16.000* 9.780 7.950 22.700* 6.310 16.200* 13.100 

I 0.300 0.631 0.386 0.643 0.420 1.212 0.495 
RBOT Mean U.0413 0.0509 0 1074 0.1921 0.0909 0.0290 -0.0260 -0.3751 -0.1666 

S.D. 0.9449 0.8673 0.9219 1.1332 0.9581 0.9534 0.9249 0.2984 1.1699 
Q 7.770 10.900 5.430 8.000 3.570* 8.050 9.690 8.000 8.000 

I CU34 u. 723 ().371 0.233 0.234 0.450 0.695 0.447 0.611 
TBOT Me au -0.1287 0.0461 0.1860 -0.3755* 0.2110 -0.0398 -0.4816 

tV S.D. 0.8213 o. 9571 0.8327 1.2520 0.6725 1.1202 1.2808 w 
w Q 4.100* 13.600 6.740 12.200 4.330 3.480* 13.000 

I 0.458 0.627 0.276 1.019 0.494 0.305 0.797 
BBOT Mean 0.0364 0.0021 -0.1076 -0.9722* 0.3224 0.0738 0.3097 0.6190 -0.1737 

S.D. 1.0996 1.1589 0.5863 1.6920 2.0336 1.0587 0.9788 - 0.3696 

Q 7.740 15.600* 5.860 7.000 6.000 13.100 4.500 9.000 14.000 

I 0.239 0.249 0.244 1. 027 0.567 0.441 0.518 0.265 0.049 
DBOT Mean 0.04.56 0.0608 0.1118 -0.:3279 0.0264 0.0012 -0.1174 -0.04.56 0 . .5689 

S.D. 0.8.524 0.9237 0. 7187 1.0365 1.6009 0.9888 0.9966 0.5577 0.4895 

Q 11.200 8.390 9.910 6.000 9.890 6.020 8.840 7.000 6.000 

I 0.513 0.545 0.437 0.530 0.697 0.29!.) 0.428 0.436 0.654 
HSTOP Me au -0.0307 0.3304* - - 0.0062 -0.1230 -0.1213 0.1287 0.1063 

S.D. 0.9.345 1.2498 1.0:333 0.9644 0.8813 1.0516 0.9644 
Q 6.370 10.500 - 12.500 14.800* 4.900 14.800* 15.800* 
-( 0.368 0.610 - 0.239 0.596 0.741 0.391 0.384 

RTOP Iviean -0.0438 0.0152 -0.0787 -0.2886 - -0.0401 -0.1185 0.0071 -0.2852 -0.1114 
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(continued) 

Chart Statistics UCG UBG URG UEG UIG DCC DBG DRG DEC DIG 
Patterns 

S.D. 0.8352 0.9999 0.0676 0.8668 - 0. 9842 1.0132 0. 7908 0.7467 0.8245 

Q 16.400* 4.200 18.000* 8.000 - 12.000 16.300* 13.700 22.700* 11.400 

I 0.738 0.320 0.123 0.582 - 0.533 0.686 0.282 0.960 0.885 
TTOP Mean -0.1196 0.2525 - -0.1205 -0.0696 0.1747 -0.2231 -0.27:35 

S.D. 1.0099 0.0903 1.2142 1.0806 1.2992 1.1476 0.7657 

Q 8.500 6.790 4.950 6.660 20.100* 9.890 13.900 

I 0.762 0.553 0.644 1.100 0.661 0.475 0.7.39 
BTOP ]'vie an -0.0125 0.0552 -1.1684 0.1530 - -0.0270 -0.1262 -0.3066 -0.7464 0.1304 

S.D. 0.95.53 0.9682 2.2502 0.4804 - 1.0379 1.0024 1.6020 - 0.2938 

Q 8.360 7.9:30 17.000* 11.000 8.080 18.400* 13.000 9.000 7.000 
-r 0.575 0.299 0. 733 0.400 0.342 1.004 0.587 1.015 0.143 

DTOP .1-dca.n -0.1101 0.1258 0.5893 0.0554 0.0141 -0.0848 0.1563 0.1085 -0.0743 
t0 
w S.D. 0.8099 0. 7685 0.8772 0.6400 - 0.8811 0.8638 0.7161 1.2354 0.6661 

""" Q 11.100 17.:300* 8.000 11.000 7.310 6.640 1:3.500 6.000 5.000 
-I 1 . 021 0.447 0.047 0.242 - 0.328 0.545 0.212 0.345 0.443 

Day 5 
HSBOT Mean -0.0331 -0.0064 -0.1126 -0.1594 0.3666* 0.0366 -0.0233 

S.D. 0.8760 1.0217 1.0664 1.432.3 0.8719 0.8968 0.6576 
Q 5 .. 580 5.180 8.210 19.100* 17.800* 14.200 16. 200* 
-r 0.483 0.492 0.471 0.913 0.462 0.447 0.523 

RBOT !vlean -0.0316 -0.1393* 0.2936* 0.0556 -0.0104 -0.0458 -0.0942 -0.3994 0.1876 
S.D. 0.8516 0.9799 1.1107 1.0382 0. 7853 0.8483 0.8139 0.4960 0.6684 

Q 13.200 14.600 10.500 5.270 8.710 7.550 9.340 8.000 8.000 

I 0.772 L~65 0.711 0.407 0.359 0.646 0.723 0.525 0.254 
TBOT !\lean 0.0373 -0.1038 0.3689 -0.1775 -0.2388 0.0002 0.1049 

S.D. 0.9106 1.0260 1.1859 1.2595 1.0879 1.0844 1.1164 

Q 14.800 8.810 7.:390 12.200 12.:300 16.600* 4. 000* 

I 0.126 0.51:3 0.497 1.068 0.767 0.472 0.429 
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(continued) 
Chart Statistics UCG UBG URG UEG UIG DCG DBG DRG DEG DIG 

Patterns 
BBOT Me au -0.0249 -0.0203 -0.3147 0.5525 -0.1855 0.1305 -0.1695 -0.1900 -0.7844 

S.D. 0.9542 1. 0390 1.2435 0.5550 0.9206 0.9274 1.1192 - 0.3536 
Q 21.000* 13.600 8.710 7.000 11.000 5.760 12.000 9.000 14.000 

I 0.383 0.297 0.739 0.287 0.508 0. 778 0.858 0.751 0.195 
DBOT Mean 0.0185 -0.1314* 0.2976 -0.7402 0.0682 0.0342 -0.0103 -1.0475* 0.0245 

S.D. 0.8405 0.8293 0.6929 1.4001 0. 95~~9 0.9816 0.8256 1.0858 0.6035 
Q 10.200 10.300 19.000* 11.000 9.890 2.330* 1.5 .1 00* 7.000 6.000 

I 0.290 1.186 0.744 1.056 0. 515 0.286 0.578 l.llO 0.173 
HSTOP lviean -0.0045 0.1562 - 0.0475 -0.065 7 0.1047 0.1813 0.0463 

S.D. 1.1871 0.6927 - - 0.9139 0.9668 0.8644 1.2168 0.7075 
Q 5.870 12.300 - 6.740 11.500 5.580 10.500 9.320 

I 0. 711 0.494 0.370 0.496 0.275 0.323 0.447 
tV 
CN 

RTOP ]'dean O.U87* 0.0862 -0.4442 -0.0761 - 0.0082 -0.0611 0.0338 -0.0647 0.2263 
c.n S.D. 0.7868 ll.8524 0.3980 0.3243 0.8446 0.9922 1.0442 0.8763 0.9746 

Q 24.900* 11.100 8.000 8.000 - 9.140 8.200 2.730* 10.500 10.300 

I 1.:374* 0.588 0.515 0.269 0.713 0.760 0.135 0.197 0.922 
TTOP l'viean 0.3009* -0.2379 - 0.1031 0.0134 0.4369 -0.1972 0.4588 

S.D. 1.0732 1.4879 1.2506 1.1880 1.3664 1.0400 0.8525 

Q 8.500 13.100 - - 11.700 14.100 16.000* 9.890 15.500* 
~I 0.8:39 0.492 - 0.~>75 0.400 1.086 0.412 0.842 

BTOP Mean 0.0299 -0.1221 -0.1517 -0.7588 ().17.30 -0.0081 -0.4705 -1.3468* -0.0539 
S.D. 0 9827 1.1464 0.4752 0.29.38 0.8258 1.()188 0.8612 1.0491 

Q 12.000 6.530 9.000 16.000* - 10.900 ll.200 9.670 9.000 7.000 

I 0.494 0.807 0.618 0.290 1.365* 0.664 0.877 1.143 0.440 
DTOP l'viean 0.0733 0.0778 -0.4325 0.4 766 -0.0983 0.0901 0.3295 0.3579 0.9470* 

S.D. 0.9527 1.0862 0.4146 0.9119 - 0.9027 0.9414 0.8956 0.1809 1.5035 
Q 6.590 G. 940 8. 000 6.000 - 15. 000* 10.800 8.090 16.000* 5.000 

I 0.492 0.360 0.515 0.181 - 1.315* 0. 755 0.510 0. 768 0.290 



4.6 Conclusion 

This chapter evaluates an old principle proposed by market technicians: the Gap- Fill 

hypothesis. Market technicians have hypothesized that when a price gap occurs, it 

will be filled in the future. Furthermore, price gaps are said to contain important 

infonnation in evaluating the current price movements. To test this Gap-Fill hypoth­

esis, we first categorize the all the price gaps into five type of price gaps commonly 

taught by chartists, including Congestion gap, Breakout gap, Runaway gap, Exhaus­

tion gap and one-clay Island gap. We then examine this Gap-Fill hypothesis in the 

futures markets. Apart from studying the information on the price gaps, we also 

include a number of conditioning variables in our tests for further evaluation since 

price gaps are seldom analyze alone. The conditioning variables include chart patterns 

and volume. To extract the chart patterns systematically, we applied a methodology 

known as local polynomial regression to the futures prices whenever a price gap is 

detected. 

There are several empirical results in our study are interesting and which con­

tribute to the literature on technical analysis. First, our results provide support for 

the Gap-Fill hypothesis. The percentage of price gaps filled within 20 clays is more 

than 75 percent across all types of gaps, including both upward and downward price 

gaps. 

Second, we examine whether such predictability in price retracernent give chartists 

an edge in trading. Broadly speaking, these retracements in prices provide only partial 

reliable sources of information for chartists, especially one day after the occurrence of 

the gaps. On day 2 to day 4, l'dany of the conditional returns generated from these 

price gaps have distributions that are not statistically different from the distribution 

of the unconditional returns aggregated over all futures markets. 

Third, we study whether price gaps are sources of profitable indicators. The 

overall conclusion is yet unclear. Even though many of conditional mean returns are 

statisticctlly significant (using test statistics), especially on day 1, the directiou of these 

conditional mean returns wtries cliffen~ntly from da:y 2 to day 5. Thus, it mav not he 

profitable for investors if they were to trade with price gaps alone. Furthermore, the 

evidence shows that volume does not provide any useful information in ascertaining 

the direction of price gaps, apart from day l. 

Fourth, the effects of the size of price gaps i::; also cmalyzed. 'vVe find that Ex­

hanstion price gaps are statistically significant across all five davs for the largest gap 

size category (Size 3). Moveover, the direction of the conditional mean returns is also 
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largely consistent for Size 3, which is negative for downward gaps and positive for 

upward gaps. Other types of price gaps show less reliable results. 

Lastly, we also find that conditioning on the chart patterns produces conditional 

returns that are indistinguishable from the unconditional returns. This implies that 

chart patterns are less useful, informative and profitable when combine with price 

gaps, results that are quite different to LJ\11\V. One may argue that our results may 

be plagued by small sample problem due to the low number of pattern count. But a 

comparison of the results with patterns that have larger counts do not provide any 

more consistent results. 

In conclusion, it is evident that not every price gaps are useful to investors. As a 

matter of fact, many price gaps may be caused predominantly by market noise and 

indistinguishable to the rest of the market movements. On rare occasions, however, 

some price gaps are found to provide important information to investors. It remains 

a challenge for technical analysis to explain why price gaps should be important and 

how it can be exploited by investors in a profitable manner. 
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Appendix: Splicing Futures Contract 

The aim of the splicing procedure is to join all successive futures contracts together 

without any of the gaps between different futures contracts. In Figure 4.14, we plot 

all the rebasecl price series with initial 100. 1Ne observe that all fixed income futures 

have experienced higher prices in the last decade, which is a direct consequence of 

lower interest rates in developed economies. On the contrary, equity futures display 

substantial variation in prices, especially during the recent euphoria in technology 

sector. 15 The commodity futures show signs of rapid increased in prices after nearly 

two decades of decreasing prices. 

15Tn !;hose clays, a merr change in a firm's namr to .com will gcnrrat.r sonw nnnsnal rctnrns. a.~ 
discovered by Cooper, DilllitroY and Rau (2001). See also Ofek and Richardson (2002) awl Barber 
and Odean (2001). 
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Figure 4.14: Rebased Futures 

yen clif 

160 

0 1000 2000 3000 4000 5000 6000 7000 0 1000 zooo 3000 4000 5000 6000 7000 

gbp 

0 1000 2000 3000 "1000 5000 6000 7000 0 1000 2000 3000 4000 

110 

100 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 5000 6000 7000 

US lOy 

300 

250 

200 

150 

100 

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 '1000 

US2y eel 
135 

130 130 ~ 
125 

120 120 

115 
110 

110 

105 

/ 100 
100 

0 1000 2000 3000 4000 0 fooo 2000 3000 4000 5000 6000 

239 



Figure 4.14: Rebased Futures (cont) 
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Figure 4.14: Rebasecl Futures (cant) 

silv cot 

600 
350 

500 300 

400 250 

300 200 

200 150 

100 

50 

1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 '1000 5000 6000 7000 

crude heat 
1000 

800 

0 1000 2000 3000 4000 5000 I] 1000 2000 3000 4000 5000 6000 

cocoa cofe 

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3 000 4000 5000 6000 7000 

G'W' sug 

140 
250 

120 
200 

100 

80 150 

60 100. v 
40 so 
20 

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000 

241 



Chapter 5 

Conclusion 

This thesis evaluates the effectiveness of technical trading systems in the financial 

markets, with main applications to the fixed income sector. Specifically, we attempt 

to answer whether technical indicators are able to provide a systematic strategy for 

baud traders to earn excess returns in the bond markets, and whether technical 

indicators, such as technical charts and price gaps, are able to provide additional 

information to investors. 

We have analysed several aspects of technical analysis. First, we investigate the 

profitability of a large number of technical trading systems in the bond futures mar­

kets. Second, we examine the informativeness of technical chart patterns in the bond 

yield markets and bond yield spread markets. Third, we categorize ami test the 

information contained in price gaps iu the futures markets. 

In summary of the above ernpirical results, we document the following maJor 

results: 

1. Technical trading systems are useful in capturing trends iu interest rates and 

bond futures prices. But the profitability of these systems varies over time and 

across different trading strategies. The issue of data snooping may not be solved 

by evaluating additional trading systems since the final results vary substantially 

over different bum! markets. \iVe also fiud the profitability of trading systems 

has decreased in recent years, but we cannot affirm whether this is clue to a 

more efficient market or clue to lower volatility. 

2. Technical chart patterns ma.y not provide additional information to boucl traders 

This is because we find the unconditional and conditional bond returns are not 

svstematica.!ly different from each other in the bond yield markets. Occasion­

ally, some patterns may appear to generate incremental information in some 

bond markets. But we cannot address why this is so. A more negative result is 
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especially acute for bond yield spread markets since we show that yield spread 

data arE' fundmnentally difh~rent to traditional prir:f: series such as <equity pric<es 

or currencies. Far fewer chart patterns are found in bond yield spread than 

bond yield, and the conditional returns obtained from yield spreads are not. 

statistically significant to unconditional returns. This implies other investment 

strategies may be more suitable for bond traders than technical chart patterns. 

3. Generally, some financial price gaps are found to contain significant information 

for investors. But the unusual effects displayed by most price gaps are short­

tern!. In other words, traders may have to act quickly to be able to take 

advantage of the gaps. Since our sample data contains twenty-eight futures 

contracts over a period of nearly twenty-five years, we opine that it will be a 

challenging ta.sk for traders to trade ou every gap over such a long period of 

time. 

In view of the above results, it is clear that using the technical indicators specified 

in this thesis may not be the panacea that investors have been searching for in order 

to earn excess returns consistently over time We opine that such a strategy is difficult 

to find, which may be clue reasonably efficient financial markets. Robert Shiller (2002, 

p. 23) summarises this view: 

The basic problem with efficient markets is that it is a half .. t.ruth. Pre­

sentiug market efficieucy a::> a concept to students aud cuua teur investors 

is useful lest they come to believe that it is easy to get rich quickly. It is 

not easy to get rich quickly by trading in speculative markets. 

Perhaps the only way to earn excess retums is to consistently develop a com­

petitive advantage, which may be a combination suitable trading strategy, astute 

capital management and sound risk management. Because the profitability of invest­

ment strategies tend to vary over time and across different markets, no prediction 

will be good for very long. Mistakes will be rnade, even by the standard of the best 

investment managers such as VVarren Buffett or George Soros. 1 

One possible extension of this thesis is to examine how market psychology and the 

technical indicators interacts, given the importance of market and investors' psychol­

ogy in asset pricing. 2 For example, investors are known to exhibit the characteristic of 

1See, for example, the 1989 Berkshire Hathaway Anuual Chairman's report to shareholders. iu 
which \Varren Buffett detailed the investmem mistake;> he made in the last 25 years. Ironically, the 
first. mistake he made was buying Berkshire Hathaway! 

2 As famously described by lVIaynarcl Keynes iu Treatise on Money (1930): 

The vast majority of those who are coucerned with buying aud selliug of securities 
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"over-confidence" (DanieL Hirshleifer and Subrahmanyam (2001)) and tend to over­

trade as a result. (Odean (1999)). 3 Controlling for these behaviour is important iu 

assessing whether technical analysis can provide genuine value to investors. 

Lastly, technical analysis may not be suitable for every investors. Some investors 

will prefer fundamental information to technical indicators, and some investors may 

prefer short-term trading to long-term investing. The crux of the matter is that 

investors must choose and develop the strategies for themselves in order to survive 

in the financial 'jungles', and this is what economic historian David Landes (1998) 

advocates from his important work on trade development: 

It always helps to attend and respond to the market. But just because 

markets give signals does not mean that people will respond to timely or 

well. Some people do this better than others, and culture can make all 

the difference. 

The only action he discovers that everyone (investors in our case) must do is (p.524): 

The one lesson that emerges is the need to keep trying. No miracles. No 

perfection. No millennium. No apocalypse. vVe must cultivate a skeptical 

faith, avoid dogma, listen and watch wdL try to dmifv and defin(xl emls, 

and better to choose means. 

know ahuost uothing whatever about what they are doing. They do not possess even 
the ruclillleuts of what is required for a valid judgement, ami are the prey of hope and 
fears easily aroused by transient events and as easily dispelled. This is one of the odd 
characteristics of the capitalist systeru ~uucler which \ve live. which. wheu we· are de<i.lirig 
with the real world, is uot to be overlooked. 

:JFm other biases, see, for exa111ple. Barberis and Thaler (2002) and Shleifer (2000). 
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