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Stem Cells 

Adam P. Croft 

Bone marrow (BM) derived stem cells contribute to the regeneration of diverse adult 
tissues including heart, liver and brain following BM transplantation. Trans­
differentiation is a mechanism proposed to explain how tissue specific stem cells 
could generate cells of other organs, thus supporting the emerging concept of 
enhanced adult stem cell plasticity. New studies have demonstrated that spontaneous 
cell fusion rather than trans-differentiation is the cause of unexpected cell fate 
changes in vivo. In contrast, several authors have reported that trans-differentiation 
can occur in vitro in the absence of cell fusion, including the generation of neural 
derivatives from non-neural tissues. These findings have profound implications for 
stem cell biology and cell replacement therapy, and as a result require extensive 
validation. Mesenchymal stem cells (MSCs) have been isolated from the postnatal 
BM and more recently many other sites including adipose tissue, skin and placental 
cord blood. As such these cells have attracted interest as candidates for cell 
replacement therapies. This interest follows recent observations both in vitro and in 
transplant studies that these cells are capable of broader differentiation potential 
beyond those cell lineages associated with the organ in which they reside. The aim of 
the present thesis was to examine the developmental plasticity of MSCs in vitro 
including the capacity of these cells to cross lineage boundaries by differentiating into 
neuro-ectodermal cell derivatives. 

There are no universally accepted procedures for the prospective isolation of these 
cells. In the present thesis, procedures for the isolation of MSCs from rat BM and 
optimal conditions for the propagation of these cells in culture without loss of 
multipotent differentiation potential and proliferative capacity are first described. 
Secondly, the response of cultured MSCs with a consistent immunophenotype to 
defined culture conditions, previously reported to induce neuronal differentiation of 
MSCs are evaluated. Thirdly, evidence is presented that suggests that previous claims 
of trans-differentiation and apparent changes in cell phenotype have been incorrectly 
interpreted. Evidence is provided that MSCs respond to neural cues in vitro with a 
stress response, which is characterized by aberrant changes in the expression of 
constitutive neural proteins, an event previously interpreted as trans-differentiation. 
MSCs do not have the attributes of early or mature neural derivatives and therefore 
such changes in protein expression do not equate to true neural differentiation. 
Finally, evidence is presented that demonstrates that MSCs cultured under defined 
culture conditions release soluble factors that instruct a neurogenic cell fate decision 
on neural stem cells (NSCs). In addition, these soluble factors also increase neurite 
outgrowth of Tuj-1 + differentiating cell progeny. These effects may in part explain 
the therapeutic benefit of MSC transplantation in animal models of CNS lesions. 
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CHAPTER! 

Literature Review 



1.1 Introduction 

This chapter entails a concise review of the literature, which has considerably 

expanded in recent years, in response to observations of adult stem cell plasticity and 

the motivation to drive these cells into the clinic for therapeutic use. It is not possible 

to review all the literature in this field and therefore only a select number of seminal 

studies are discussed to illustrate key developments in the field of adult stem cell 

biology. MSCs isolated from the postnatal BM are considered in more detail and their 

ability to differentiate into neuro-ectodermal cell derivatives is comprehensively 

reviewed. Finally the therapeutic benefit of transplantation of MSCs into animal 

models of CNS injury is discussed. 

1.1.1 The concept of cell plasticity 

Cell plasticity has become a central Issue m stem cell biology following the 

demonstration that fully differentiated somatic cell nuclei have the ability to 

dedifferentiate, when transferred to enucleated oocytes (Munsie et al., 2000; 

Wakayama et al., 2001) or when fused experimentally with embryonic stem cells 

(Rideout et al., 2000; Wakayama et al., 1999). However, this remarkable plasticity 

was only achieved following considerable experimental manipulation. The traditional 

model of development states that adult stem cells have a differentiation potential 

restricted to the cell lineages associated with the organ in which they reside. Recent 

reports have claimed that adult stem cells may differentiate into developmentally 

unrelated cell types both in vivo and ex vivo (For review see: Blau 2002; Krause 2002; 

Anderson et al., 2001; Tsai et al., 2002). The traditional irreversible model of somatic 

cell differentiation was first questioned by the findings of early cell fusion and nuclear 

transfer experiments. Gurdon, 1968 demonstrated that when nuclei from amphibian 

intestine were introduced into enucleated oocytes, feeding tadpoles were generated. 

The results demonstrated that during cell specialization genetic material was not lost 

or permanently inactivated but that differentiation was dependent on the regulation of 

gene activity in response to cytoplasmic cues. The hypothesis stated that somatic 

nuclei injected into enucleated oocytes were conditioned by the cytoplasm and that 
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the reacquisition of multipotentiality, involved the activation of previously silent 

genes. 

It has long been known that cell fusion is an effective means of achieving 

reprogramming of cells (Blau 1989; Blau et al., 1985; Blau 2002; Miller et al., 1988). 

To determine if the differentiated cell state was irreversible Blau and colleagues 

generated stable, non-dividing heterokaryons (a cell having two or more genetically 

different nuclei sharing a common cytoplasm). Non-dividing multinucleate 

heterokaryons were formed by the fusion of human cells representative of each 

embryonic germ layer (Keratinocytes, fibroblasts, hepatocytes) with mouse skeletal 

muscle cells. These heterokaryons expressed muscle genes when activated in primary 

human diploid keratinocytes, fibroblasts and hepatocytes (Blau et al., 1985; Miller et 

al., 1988; Pavlath et al., 1989). This reactivation of previously silent genes occurs in 

the absence of DNA replication. Gene dosage and/or the balance of proteins derived 

from the two cell types determine which genes are activated. In order for a mature 

differentiated cell to dedifferentiate into a more primitive cell phenotype or undergo 

reprogramming, to differentiate into an alternate cell fate requires the expression of an 

entirely new set of genes. Collectively these experiments involving heterokaryon 

formation demonstrated that previously silent genes can be activated and expressed in 

differentiated cell types. Terminal differentiation implies a terminal cell fate decision, 

however the results of these studies and nuclear transfer collectively challenge the 

dogma that differentiation is fixed and irreversible, and show that the phenotype of 

the differentiated somatic cell is plastic. 

The issue of adult stem cell plasticity was placed at the forefront by the findings of 

nuclear transfer experiments (Munise et al., 2000; Wakayama et al., 2001), which 

involves the transfer of a diploid cell nucleus from a donor cell into another cell that 

has had its nucleus removed (enucleated). Cloning by nuclear transfer provides a 

method of creating genetically identical embryos. This technique involves the transfer 

of a nucleus from an adult somatic stem cell to an unfertilized oocyte devoid of 

maternal chromosomes. Embryonic development is then achieved under the control of 

the transferred nucleus. Stem cell lines from the cloned embryo are genetically 

identical (Wilmut et al., 1997; Wakayama et al., 1998; Wakayama et al., 1999). This 

3 



technique not only has implications for cell based therapies such as the creation of 

genetically identical organs for transplantation but the outcomes of such experiments 

may give profound insights into cellular plasticity and the mechanisms underlying the 

reprogramming of mature, differentiated nuclei to a status of totipotency (Rutenberg 

et al., 2004). Using these methods Munsie et al., 2000 isolated pluripotent mouse 

embryonic stem cells (ES) (see section 1.1.2.2 for an explanation of embryonic stem 

cells) from reprogrammed adult somatic nuclei. These cells were capable of 

generating all three embryonic germ layers in tumors and chimeric embryos. 

Wakayama et al., 2001 derived ES cell lines in vitro from the inner cell mass of 

blastocysts clonally produced by nuclear transfer. These experiments demonstrate that 

the adult stem cell is capable of been reprogrammed, an observation that implies 

plasticity, however it only occurs in response to extensive experimental manipulation. 

Recent excitement in the adult stem cell field was initiated by the observations that 

adult stem cells previously thought only to generate cell types of the organ in which 

they reside, may in certain defined conditions adopt cell fates other than cell types 

associated with their dermal origin, both in culture and following transplantation in 

vivo. These observations are consistent with reports from heterokaryon studies that 

demonstrate the plasticity of the differentiated state (Blau et al., 1985) but suggest that 

environmental cues may be sufficient to reprogram a somatic cell fate. This type of 

plasticity is evident during development in which cells respond to micro­

environmental factors by specific phenotypic alterations and these changes and 

subsequent lineage commitments result in the formation of a variety of cell types 

(Prindull and Zipori, 2004). Recent observations of adult stem cell plasticity suggest 

that these processes may not be confined to the embryo. 

1.1.2 Terminology 

There are many inconsistencies in the use of terminology in stem cell biology and 

therefore it is useful to begin the review by defining key terms used. 

1.1.2.1 Stem cells, precursor cells and progenitor cells 

A stem cell is an undifferentiated clonogenic, self-renewing progenitor cell with the 

capacity to generate one or more specialized cell types through asymmetrical cell 
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division (Anderson et al., 2001). In this way a stem cell can produce either a daughter 

cell that can either remain as a stem cell (self-renewal, symmetrical cell division) or 

commit to a pathway of differentiation. The pathway of differentiation and lineage 

commitment involves the production of a series of precursor cells, which proliferate 

before they differentiate. As a result these precursor cells are sometimes refereed to as 

transient amplifing cells because the proliferation amplifies the number of 

differentiated cells eventually formed. In addition, precursor cells display increasing 

commitment towards a particular cell lineage and thus concomitantly, their self­

renewal capacity and differentiation potential are reduced with each precursor step. 

The terms progenitor cell and precursor cell have been used interchangeably but 

progenitor cell will be used in this thesis to describe a less committed cell with a 

greater differentiation potential than a precursor cell. 

The mechanism, which determines self-renewal or commitment to differentiation, is 

currently not known for all stem cell populations but is dependent on both intrinsic 

(inheritance of genetic cell fate determinants) or extrinsic cues (environmental 

factors) (Spradling et al., 2001; Watt and Hogan 2000). The ability to self renew is 

seen as one fundamental and defining vroperty a stem cell must process however, 

there is inconsistency as to how sustained the self re-newal should be. In addition, 

multilineage differentiation potential is often quoted as another defining characteristic 

but some stem cells produce only one cell type, for example spermatogonial stem 

cells in the testis produce only spermatozoa (Meachem et al., 2001 ). 

There are also difficulties in identifing stem cells from precursor cells. Telomeres are 

the mitotic counting mechanism of cells and consist of a complex of guanine-rich 

repeat sequences and associated proteins, which cap and protect every eukaryotic 

chromosome against terminal DNA degradation (Blackburn, 2001 ). Telomeric 

shortening occurs with each cell division and complete loss of the telomere length is 

associated with DNA damage that cumulates in growth senescence of somatic cells in 

culture, after a defined number of cell divisions. Telomerase is an enzyme, present in 

certain cells including stem cells, which functions to add telomere repeats onto 

chromosome ends, and prevents replication dependent loss of telomeres and cellular 

senescence (Blasco, 2005). In most somatic cells except lymphocytes telomerase 
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activity is suppressed and therefore telomeric shortening occurs with each cell 

division. In humans and rodents, stem cells maintain telomerase activity (Forsyth et 

al., 2002) and human ES cells express high levels of telomerase, and as a result have 

an infinite lifespan in vitro when cultured under optimal conditions (Forsyth et al., 

2002). Many human precursor cells tum off telomerase activity and are therefore only 

able to undergo a limited number of cell divisions before replicative senescence 

(Cong et al., 2002). Many rodent precursor cells maintain telomerase activity and can 

divide indefinitely in optimal culture conditions (Mathon et al., 2001). It has also been 

reported that some precursor cells can revert to a stem cell phenotype in defined 

conditions. If this process also occurs in vivo as demonstrated to occur in intestinal 

crypts following stem cell ablation (Marshman et al., 2002), then the assumption that 

at least one daughter cell of a stem cell must remain a stem cell to maintain the stem 

cell pool may be incorrect. 

1.1. 2. 2 Pluripotency, multipotency and unipotency 

Mammalian stem cells can be operationally classified according to their 

developmental potential. ES cells are produced from the inner cell blastocyst 

(Thompson et al., 1998) and embryonic germ cells are produced from the primordial 

germ cells of the early embryo (Shamblott et al., 1998). These two cell populations 

are defined as pluripotent based on the fact that they can generate cell types of all 

three germ layers of the embryo proper, including germ cells. They cannot however, 

form the extra-embryonic tissues required for mammalian development and therefore 

are not considered totipotent. Tissue specific stem cells or adult stem cells are 

described as multi potent if they produce more than one cell type and unipotent if they 

produce just one cell type. It is of note that when cell suspensions prepared from 

postnatal organs are analyzed by florescence activated cell sorting (F ACS), stem cells 

are found as a small side population of cells and are only weakly fluorescent after 

staining with a fluorescent dye (Goodell et al., 1996; Wolf et al., 1993); these cells 

express a high level of a specific ABC transporter that actively pumps dye out of the 

cells (Zhou et al., 2001 ). This property is often used for the prospective isolation of 

adult stem cells but the biological significance of this property is unknown. 

1.1. 2. 3 Commitment, differentiation and trans-differentiation 
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Cell fate is determined by a variety of factors that control gene transcription during 

embryonic development and normal adult physiology. Cell commitment is therefore 

viewed as consisting of a series of irreversible steps to differentiation. In the embryo, 

this process consists of a descending hierarchy of diminishing capacities of 

differentiation, which begins with the ES cell, and development of all cell types of the 

embryo. During subsequent organogenesis, the potency of differentiation is further 

reduced, coupled with diminishing proliferative capacity. Most of these postnatal 

organs contain a quiescent self-renewing population of stem cells, the differentiation 

potential of which is restricted to lineages in which the stem cells reside. Trans­

differentiation denotes an alteration in the state of differentiation of cells that have 

already been specialized or programmed to a given cell lineage (Okada et al., 1999). 

The original quoted example is that of the conversion of pigmented epithelial cells of 

the iris into lens cells during lens regeneration in newts (Brockes et al., 2002). 

1.1. 3 Germ layer model of development and the stem cell concept 

As described above, in vertebrates ES cells are capable of generating all differentiated 

somatic cell types in the body. These cells are isolated from the embryo at a stage in 

development prior to their commitment to differentiate into particular lineages and 

therefore show a high degree of plasticity, with the capacity to generate somatic cell 

lineages of all three embryonic germ layers during growth as embryoid bodies in vitro 

(Itskovitz-Eldor et al., 2000) and formation of teratomas in vivo (Reubinoff et al., 

2000). ES cells give rise to tissue specific adult stem cells. These multi-potent stem 

cells generate the cell types comprising a particular organ or tissue during embryonic 

development and in some cases in the adult. Tissue specific stem cells exist in most 

postnatal organs where they have a haemostatic function regulating cell turnover and 

in regenerative organs such as the intestine and skin contribute to repair following 

injury (Blau 2002). Ongoing cell turnover in regenerative organs provides a rationale 

for the existence of stem cells, whereas in organs such as the heart and brain, which 

undergo only limited regeneration the presence of stem cells has been proven by their 

isolation and their subsequent growth in culture, and differentiation into multiple cell 

lineages in vitro or after transplantation in vivo. The role these cells play in repair and 

regeneration following injury is uncertain. Originally the existence of stem cells was 

implied retrospectively from genome marking experiments (Wu et al., 1968). More 
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recently stem cells have been prospectively isolated from a number of postnatal 

organs using cell surface marker proteins (e.g. Shi and Gronthos 2003; Gronthos et 

al., 2003; Spangrude et al., 1988; Morrison and Weissman, 1994). A long-standing 

concept has been that adult tissue specific stem cells have a restricted potential to 

generate differentiated cell types of the organ in which they reside. 

1.1. 4 Adult stem cell review 

1.1.4.1 introduction 

Consistent with embryonic stem cells, adult stem cells have the capacity for self 

renewal and the capacity to differentiate into mature effector cells (Watt and Hogan, 

2000). It was originally thought that adult stem cells resided only in those organs with 

high cell turnover rates such as the respiratory tract, blood, skin, gut and testis. 

However, the recent prospective isolation of somatic tissue stem cells from a wide 

range of postnatal organs suggests that the homeostasis of tissues capable of 

regeneration is mediated by stem cells. As part of the review of the current literature 

in the field of adult stem cell plasticity, the major adult stem cells are first introduced 

briefly with a more extensive review of MSCs in section 2.2 and CNS stem cells in 

section 2.4. Considered here are only those stem cells involved in plasticity 

experiments. 

Most postnatal organs are primarily comprised of terminally differentiated and 

postmitoitic effector cells, however many tissues retain a small population of tissue 

specific stem cells. The function of these cells is regeneration of damaged tissue and 

tissue homeostasis for example physiological replacement of skin and blood cells. 

Examples include epithelial stem cells in epidermis and intestinal crypts (Slack, 

2000), NSCs in the CNS (Mckay, 1997) and satellite cells in muscle (Charge and 

Rudnicki, 2004). The BM contains hematopoietic and MSCs (Prockop, 1997). An 

increasing number of tissues could be added to this list and some stem cells such as 

MSCs are been isolated from an increasing number of organs (de Silva Meirelles et 

al., 2006). Despite the isolation of tissue specific stem cells from certain organs, many 

of the properties of these cells are unknown as a result of the difficulties in the 

isolation, heterogeneity, identification in vivo and tracing of their progeny. The 
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pnmary function of tissue stem cells IS regeneration of damaged tissue and 

maintaining tissue homeostasis. 

1.1.4.2 Hematopoietic stem cells 

Hematopoietic stem cells (HSCs) were the first stem cells to be isolated and 

characterized and the first stem cell population to be used clinically. HSCs reside 

within the postnatal BM and are pluripotent stem cells with the capacity to 

reconstitute the adult blood system by differentiating into multiple hematopoietic cell 

lineages (Lagasse et al., 2001; Morrison and Weissman, 1994; Weissman, 2000). In 

early seminal experiments, infusion of BM cells was shown to rescue lethally 

irradiated mice by reconstituting their blood system (Ford et al., 1956; Nowell et al., 

1956; Till and McCulloch 1961 ). This functional repopulation of the blood system 

following ablation of the host hematopoietic system is considered the gold standard 

for the functional characterization of HSCs. Till and McCulloch found that the spleen 

of BM infused hosts contained macroscopic cell colonies containing differentiated 

progeny of multiple blood lineages (Till and McCulloch 1961 ). They were later able 

to demonstrate that these colonies arose from a single cell, thereby demonstrating that 

BM infused cells were indeed multipotential with the capacity to generate progeny of 

multiple cell lineages (Becker et al., 1963). Serial transplantation experiments 

indicated that at least some of the infused BM cells were capable of self-renewal and 

retained their differentiation potential over time (Wu et al., 1967). 

On the basis of these findings, a model of hematopoietic differentiation was proposed 

in which HSCs reside at the top of a cellular hierarchy and give rise to progeny with 

the capacity to differentiate into multiple blood cell lineages. HSCs form mature, 

terminally differentiated effector cells through a process of cellular differentiation in 

which progenitor cells become increasing more committed to a distinct cell lineage 

with a concomitant reduction in their differentiation potential and self renewal 

capacity. Therefore a model system is proposed in which HSC derived progenitor 

cells progressively loose stem cell characteristics including loss of multi potentiality as 

they differentiate and acquire the phenotypic characteristics of mature blood cells. 

Whilst there is abundant evidence for this model in the hematopoietic system, it is 

thought that a similar, if not, identical system operates in other mammalian organs. 
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Purified populations of HSCs have been prospectively isolated from human (Baum et 

al., 1992) and mouse BM (Spangrude et al., 1988). Two classes of HSCs have been 

identified on the basis of expression of cell surface antigens and long-term 

reconstituting ability. Both capable of reconstituting the blood system of mice, but 

short term (ST-HSC) have only a limited ability (two months) and long-term (LT­

HSC) have been shown to reconstitute the blood system for greater than six months 

(Morrison and Weissman 1994; Lagasse et al., 2001). ST-HSC are considered 

precursor cells derived from LT-HSC and which subsequently give rise to common 

myeloid and lymphoid precursor cells, which give rise to progressively more 

restricted precursor cells and terminally differentiate into effector cells of the blood 

and immune systems respectively (Weissman et al., 2001). 

The isolation of HSC was made possible by the development of in vitro and in vivo 

functional assays in which to evaluate lineage potential and self-renewal ability. 

Isolation protocols have been developed which allow for the prospective isolation of 

highly enriched (>80%) populations of HSCs (Lagasse et al., 2001). The success of 

these isolation and enrichment protocols relies on the use of florescence-activated cell 

sorting (F ACS) which allows positive selection of cells based on the expression of a 

set of cell surface proteins. Lineage depletion is also used to prospectively isolate 

cells by using panels of monoclonal antibodies to exclude cells expressing markers of 

mature hematopoietic cells (Matsuoka et al., 2001; Sato et al., 1999). However, the 

success of this enrichment, is the result of extensive characterization of HSC and 

progenitor cell surface marker expression, which has been used to distinguish these 

cells. An analogous system for other adult stem cell populations does not currently 

exit. As a result, it is not currently possible to achieve such highly purified 

populations of tissue specific stem cells, although clonal isolation has been achieved. 

Such a system however is not faultless and heterogeneity remains a problem even for 

the HSC system as cell populations enriched for HSCs, using the most optimal 

isolation procedures are heterogeneous with some cells failing to demonstrate 

pluripotency or long-term reconstitution ability (Morrison and Weissman, 1994). 

Despite these technical difficulties HSCs can be enriched up to a I 000 fold and 
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delivered to marrow ablated recipients to fully reconstitute the blood system (Bryder 

et al., 2006; Morrison and Weissman, 1994). This ability to reconstitute the blood 

system is utilized clinically to treat many blood disorders including leukemia and 

autoimmune disorders. The HSC system remains a model system and the gold 

standard characterization yet to be achieved for other adult stem cell populations. In 

addition, many of the cytokines and growth factors that promote the proliferation of 

different precursor cells have been identified and some are used clinically to mobilize 

HSCs from the BM into the systemic circulation where they can be harvested for 

transplantation (Lapidot and Petit 2002). 

The hematopoietic system functions with a high cell turnover, as the life span of 

effector cells is only short. This places great demands on the stem cell system and 

requires fine haemostatic controls to regulate differentiation. The system of 

differentiation has a number of advantages. Enormous amplification in numbers of 

cells is made possible by coupling certain steps in differentiation with increased 

proliferative potential. This places very little proliferative pressure on HSCs, which 

have a low cell turnover and primarily reside in the GO phase of the cell cycle 

(Bradford et al., 1997). This is thought to protect these cells from the mutagenic 

hazards of DNA replication and metabolic demands. Despite the success in the use 

and isolation of HSCs little is known about the regulation of cell fate decisions in 

these cells or the molecular basis of self-renewal and as a result expansion of purified 

populations of HSCs in culture is a problem and a limitation to their use (Bryder et al., 

2006). 

1.1. 4. 3 Hepatic stem cells 

The adult liver is capable of extensive regeneration, an activity evident in 

physiological response to liver injury in which replication and regeneration promote 

growth, to restore the liver's functional mass. The source of tissue specific stem cells 

responsible for this extensive regeneration is uncertain. Unlike most postnatal organs 

the generation of new cells in the injured liver involves two cell systems comprised of 

mature functional differentiated liver cells including hepatcytes, bilary epithelial cells 

and endothelial cells (Taub, 2004; Fausto and Campbell 2003; Fausto, 2000; 

Michalopoulos and DeFrances 1997). It is thought that these cells provide the primary 
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response to injury, a phenomenon unique to the liver. Progenitor cells with stem-like 

activity are located near the bile ducts and give rise to a proliferation of oval cells that 

subsequently generate hepatocytes and ductular cells. These progenitor cells are 

thought to function only as a reserve compartment that is activated when the 

regenerative capacity of hepatocytes is compromised by certain types of injury. The 

response to surgical resection of the liver is reconstruction of liver mass by the 

progeny of residual differentiated liver cells. In contrast, injury that impairs 

hepatocyte proliferation results in a transient amplification of progenitor cells which 

form new hepatocytes and bilary cells (Kubota and Reid, 2000; Sell, 2001 ). 

These studies raise the possibility that the liver contains stem cells with multilineage 

potential, which resides in or near terminal bile ductules (Theise et al., 2000). One 

group has claimed to have isolated hepatic progenitor cells from the adult murine liver 

without a preceding injury (Wang et al., 2003). In culture, these cells express markers 

of oval cells and with prolonged culture this expression profile changes. A decrease in 

oval cell markers is observed and cells begin to express albumin and cytokeratin 

suggestive of differentiation towards hepatocytic and bilary lineages. However, as yet 

there is no consensus on the prospective isolation of a purified population of stem 

cells from the adult liver. 

1.1.4.4 Skeletal muscle stem cells 

Skeletal muscle cells are referred to as satellite cells and are one of few adult stem cell 

populations that can be identified prospectively in vivo (Bischoff, 1986). They are 

responsible for postnatal growth and repair (Charge et al., 2004). The satellite cell has 

been defined as a quiescent mononucleated cell enshealthed under the basal lamina 

that surrounds multinucleated muscle fibers (Mauro, 1961 ). These cells are thought to 

constitute a stem cell population with the capacity to contribute to intact skeletal 

muscle fibers even after propagation in culture. In response to muscle injury these 

cells have been shown to proliferate to form myoblasts, which form either new 

satellite cells (self renewal) or differentiate into muscle fibers through fusion with pre­

existing muscle fibers. 
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Until recently, the difficulty in isolating pure populations of satellite cells has limited 

their use in cell based tissue repair assays (Montarras et al., 2005). These assays have 

instead utilized muscle precursor cells that correspond to the progeny of muscle 

satellite cells, obtained after activation and proliferation in culture, or following 

dissociation of whole muscle tissue (Qu-Petersen et al., 2002; Mueller et al., 2002; 

Skuk 2002). The barrier for direct isolation of these quiescent muscle cells has been 

the lack of definitive cell surface markers. Satellite cells have been shown to express 

surface markers such as M-cadherin (Morgan et al., 1993), Syndecan 3 and 4 

(Cornelison et al., 2001 ), and CD34 (Beauchamp et al., 2000), however none of these 

markers permits definitive pure isolation because of a lack of specificity. Recently 

satellite cells in a subset of muscles have been shown to express Pax-3, a member of 

the homeodomain/paired box family of Pax proteins (Buckingham et al., 2003; Seale 

et al., 2000). Recently, Montarras et al., 2005 directly isolated quiescent satellite cells 

from skeletal muscle using a GFP-tagged Pax-3 mouse line by flow cytometry. 

Transplantation of these cells into irradiated tibialis anterior muscles of 

immunodeficient nude mdx mice (mdx nu!nu) led to restoration of dystrophin 

expression. Mdx mice lack dystrophin, the structural protein that is mutated in 

Duchene muscular dystrophy. Therefore evaluation of fiber repair in these mice 

following transplantation provides a functional repopulation assay. Purified satellite 

cells were found to be more efficient than crude or cultured cell populations in 

contributing to muscle repair. In addition, it was found that culture of muscle 

progenitor cells markedly reduces their regenerative efficiency. Self-renewal capacity 

of engrafted purified satellite cells was also demonstrated, as in addition to 

contributing to muscle repair some cells persist as progenitor cells, adopting a satellite 

cell position and expressing Pax-7. Engrafted cells can be recovered from muscle into 

which they were transplanted and shown to produce muscle cells in culture providing 

further evidence of self-renewal capacity without loss of differentiation capacity. 

Despite recent success with the prospective isolation of a subset of purified 

populations of satellite cells, there is much heterogeneity in this cell population and 

their may be many subsets of satellite cells in which the markers for isolation may not 

be consistent (Beauchamp et al., 2000). 

1.1.4.5 Neural stem cells 
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Neurons of the mammalian CNS anse during embryonic development from 

neuroproliferative zones surrounding the ventricles of the neural tube (Pakkenberg et 

al., 2003). All cell types of the post mitotic neuron are formed from precursor 

neuroblasts that exit the cell cycle and migrate from these regions to the adult grey 

matter. During embryonic neurogenesis there is a massive proliferation of cells but 

only 15-50% of these post migratory cells survive suggesting that a selection process 

is occurring. Until only recently, the mammalian CNS was thought to be incapable of 

significant self-repair or regeneration (Bjorklund and Lindvall, 2000). Recent 

evidence has shown that NSCs with the capacity for long term self-renewal and 

multilineage differentiation have been reported to persist throughout adult life 

(Temple 2001). The adult CNS is also known to retain a range of progenitor cells with 

more limited capacities for growth and differentiation (Temple 2001). These cells are 

known to be abundant in the paraventricular areas and recent studies have shown 

them to be present in the parenchyma of various CNS regions (Palmer et al., 1999; 

Yamamoto et al., 2001). NSCs have been prospectively isolated from a number of 

brain regions following dissection and subsequent culture (Lois and Alvarez-Buylla 

1993; Morshead et al., 1994; Palmer et al., 1997; Reynolds and Weiss 1992). 

Proteolytic dissociation of adult brain tissue allows for the isolation of populations 

enriched for NSCs. However, there is no definitive cell marker for NSCs and 

therefore current protocols only allow for about 50-fold enrichment in NSCs (Uchida 

et al., 2000). In culture (Reynolds and Weiss, 1992; Loisand Alvarez-Buylla, 1993; 

Palmer et al., 1997; Palmer et al., 1999 and Kondo and Raff, 2000) and following 

transplantation back into the adult brain (Shihabuddin et al., 2000), these isolated 

NSCs population can generate cell progeny of all three principal neural lineages; 

oligodendrocytes, astrocytes and neurons. 

Consistent with the observations in culture, continuous generation of new neurons has 

been detected in the adult (Temple, 2001; Gould and Gross, 2002). In the adult CNS 

in vivo however, neurogenesis appears to be restricted at least under normal 

physiological conditions to two specific regions: the subventricular zone and 

hippocampal subgranular zone (Gage 2000). Beyond these two regions progenitors in 

other brain regions give rise to only new glial cells. Interestingly when these dividing 

cells are isolated from non-neurogenic regions and explanted in culture they are able 
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to generate all three neural cell lineages under defined culture conditions (Kondo and 

Raff, 2000) and when transplanted back into the hippocampus are able to form 

neurons (Suhonen et al., 1996; Shihabuddin et al., 2000). These results are consistent 

with micro-environmental signals playing a key role in influencing the fate 

specification of NSCs. 

In addition to postnatal neurogenesis recent evidence has shown that the brain 

responds to injury, but this response is limited and cannot result in full functional 

recovery. Various insults including ischemic injury have been shown to stimulate the 

proliferation of endogenous progenitors either in known neurogenic (Gould and 

Tanapat, 1997; Liu et al., 1998; Magavi et al., 2000) sites or in non-neurogenic sites 

(Johansson et al., 1999; Yamamoto et al., 2001 ). Collectively these results are 

consistent with the existence of multipotent cells with the ability to divide and 

differentiate into neural cell lineages within the CNS (Gage, 2000). However, the 

identity of NSCs in vivo is controversial (Barres 1999, Laywell et al., 2000) and the 

ability to culture neurospheres (proliferating neural cells) from regions of the adult 

brain not normally able to self-renew (Weiss et al., 1996; Palmer et al., 1995) raises 

the possibility that neurospehres can in fact arise from differentiated neural cells and 

precursor cells and not necessarily NSCs (Andersen 2001). 

1.1.4.6 Skin stem cells 

The germinal layer of the epidermis contains stem cells, which support a high 

epithelial cell turnover. The germinal layer extends from the epidermis to surround 

the dermal appendages such as hair follicles. It is currently uncertain whether the two 

tissues are distinct; with each containing a unique stem cell population or that a 

common stem cell supports both tissue compartments (Rochat et al., 1994). It has 

been shown that following severe epidermal injuries, that keratinocytes can migrate 

from the hair follicles to regenerate the epidermis (Taylor et al., 2000). Recently stem 

cells have been identified in the bulge zone of the follicular epithelium with the 

capacity to generate hair follicles and epidermis and replenish the epidermal basal 

layer (Fuchs and Segre, 2000; Lavker and Sun, 2000; Taylor et al., 2000). Current 

work is focused on determining the relationship and origin of these stem cell 

populations. 
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1.1.4. 7 Mesenchymal stem cells 

A large body of evidence demonstrates that stromal and connective tissue throughout 

the body contains clonogenic progenitor cells (CPU-F) a proportion of which has the 

capacity for differentiation into multiple mesenchymal cell lineages including adipose 

tissue, bone, cartilage, tendon and ligament (Bruder et al., 1998a; 1998b; Prockop 

1997). Despite the considerable interest in these cells there is still no well-defined 

protocol for the prospective isolation of these cells, a problem compounded by the 

lack of a definitive cell surface marker for the isolation of these cells. As a result, little 

is known about the precise phenotypic characteristics or localization MSCs in vivo. 

MSCs have been primarily isolated from the adult BM (Pittenger et al., 1999; Kopen 

et al., 1999), however more recently they have been isolated from other tissues 

including adipose tissue (Zuk et al., 2001), periodontal ligament (Seo et al., 2005), 

bronchi (Sabatini et al., 2005) and the synovial membrane (De Bari et al., 2003). A 

recent study carried out a systematic isolation of MSCs from different organs and 

tissues and evaluated their characteristics ( da Silva Meirelles et al., 2006). They report 

the isolation of MSCs from brain, spleen, liver, kidney, lung, BM, muscle, thymus 

and pancreas. Cells isolated from these regions all had the ability to differentiate into 

bone and fat. However, variation in the degree of differentiation was evident. These 

authors were also able to isolate MSCs from large blood vessels including the aorta 

and vena cava as well as capillaries. This data is consistent with the growing evidence 

that suggests MSCs are related to pericytes. A more in-depth review of MSCs is 

provided later in section 1.2. 

1. 1. 5 Claims for adult stem cell plasticity 

Although nuclear transfer experiments demonstrated that cells are capable of 

remarkable plasticity following reprogramming this was only possible following 

extensive experimental manipulation. Evidence that adult stem cells may be capable 

of differentiating into diverse fates under physiological conditions came following the 

detection of non-associated cell types in distinct organs following BM transplantation 

into sub-lethally irradiated host animals. Sub-lethal irradiation of animals results in 

complete ablation of the cells of the blood system including all hematopoietic stem 

cells and their differentiated progeny (Ford et al., 1956). Transplantation of BM 

purified hematopoietic stem cells and their derivatives or single cell transplantation of 
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HSC results in reconstitution of the blood system and this repopulating assay provides 

the functional definition of HSCs (Ford et al., 1956; Nowell et al., 1956; Till and 

McCulloch 1961 ). If a traditional view of stem cell biology is taken then HSCs can 

exclusively reconstitute the blood system of an irradiated host, consistent with its 

developmental potential having been restricted to the organ in which it resides. Early 

experiments demonstrated that following transplantation of tissues from a particular 

organ to an ectopic site in the body, the transplanted tissue retained its original 

phenotypic characteristics (Andersen et al., 2001). 

Cells are also known to retain their characteristics following culture ex vivo, although 

stem and progenitor cells may loose their differentiation potential (Blau et al., 1985). 

Consistent with this view, the definition of a adult stem cell is one in which a cell is 

capable of extensive self renewal and the capacity to give rise to progeny that can 

differentiate into multiple cell lineages associated with the organ in which they reside. 

However a large number of recent reports have described a phenomena in which cells 

isolated from one organ give rise to, or acquire the characteristics of cells of another 

organ simply through exposure to new environmental cues. This process is referred to 

as metaplasia, cell plasticity, or lineage switching or trans-differentiation. It was 

previously thought that the developmental potential of adult stem cells is restricted to 

the differentiated elements of the tissue in which they reside. The process or 

observation in which stem/progenitor cells differentiate into cells that are not of the 

same dermal origin is referred to here as trans-differentiation. It suggests that 

extensive experimental manipulation may not be required to reprogram adult stem 

cells, but that certain stem cell populations retain an intrinsic ability to differentiate 

into multiple cell lineages outside their organ of residence. It also suggests that micro­

environmental signals regulate the cell fate commitment of adult stem cells in vivo 

and exposure to new micro-environmental signals allows them to express a broader 

differentiation potential. 

The first evidence of unexpected cell fate changes in adult stem cell populations came 

from BM transplantation studies. BM is particularly advantageous for testing the 

potency of donor cell populations since BM tissue can be ablated by sublethal 

irradiation of host animals and functional repopulation of the organ by transplanted 
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donor cells can be evaluated accurately. Eglitis and Mezey, 1997 were one ofthe first 

investigators to report unexpected cell fate changes in BM derived stem cells. Donor 

cells (genetically labeled or sex chromosome detection) were detected in the brains of 

adult mice following BM transplantation. Engrafted BM derived cells expressed 

antigenic markers consistent with an astroglial cell fate. 

This study provided the first observation that indicated adult stem cells might have a 

broader differentiation potential than previously appreciated. A large number of 

publications subsequently reported similar observations in both BM derived stem cells 

and other adult stem cell populations. Ferrari et al., 1998 reported that mouse BM 

cells could give rise to skeletal muscle cells when transplanted into a mouse muscle 

that had been damaged by injection of a muscle toxin. Bjornson et al. 1999 used a BM 

repopulation assay to test the hypothesis that adult NSCs have the capacity to generate 

hematopoietic cell lineages. The authors reported that genetically labelled NSCs were 

capable of producing a variety of blood cell types of both myeloid and lymphoid cell 

lineages following transplantation of BM into irradiated hosts. Transplanted BM cells 

were subsequently shown to produce hepatocytes, endothelial, myocardial and CNS 

and glial cells. It was unknown however, from these studies which stem cell 

population in BM was responsible for this apparent plasticity. MSCs isolated from the 

postnatal BM when transplanted into the lateral ventricle or striatum of mice migrate 

into the brain and differentiate into astrocytes (Kopen et al., 1999). A single 

transplanted HSC has been shown to contribute to the epithelia of various organs of 

all three germ layers including liver gut, lung and skin (Krause et al., 2001 ). NSCs 

isolated from the adult mouse brain produce skeletal muscle (Galli et al., 2000), 

hematopoietic cell lineages (Bjornson et al., 1999) and when injected into a blastocyst 

contribute to cells of all three primary germ layers in the resulting embryos (Clarke et 

al 2000). 

These reports challenged the previOus dogma that the differentiation of adult 

stem/progenitor cells is restricted to cell lineages associated with the organ in which 

they reside and that somatic cell specialization may not involve irreversible genetic 

changes. The findings of these studies are complementary to the seminal 

demonstration of conserved genomic totipotentiality in adult somatic stem cells 
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following the successful cloning of an adult ewe (Wilmet et al., 1997; Wilmet et al., 

2002). Reports of apparent adult stem cell plasticity suggest that reactivation of 

previously silent genetic programs may not require experimental manipulation of the 

genome and that adult stem cells have an intrinsic capacity to form cell phenotypes 

beyond their dermal origin. This genetic potentiality remains silent until reactivation 

in response to the appropriate pattern of stimulation probably provided by the 

microenvironment. 

The reason why cells with such apparent plasticity have not been observed before is 

thought to be the result of methodology. In classical transplantation studies whole 

organs or tissue fragments have been transplanted and therefore transplanted stem or 

progenitor cells remain within their normal microenvironment even following 

engraftment into host tissue (Raff2003). Recent transplantation studies use single cell 

suspensions and therefore individual donor cells engraft into distinct host 

microenvironments. It is possible that these new microenvironmental signals 

influence the reprogramming of cells into distinct cell fates. Recent experiments have 

also involved genetically labelled donor cells so that rare cells expressing donor-cell 

genes could be identified in tissue sections. Genetic markers used include Y 

chromosome detection and transgenes encoding ~.)-galactosidase (j3-gal) or green 

florescent protein (GFP) (Alison et al., 2000; Korbling et al., 2002). 

1.1.6 Criteria/or establishing the occurrence ofcellfate changes 

Several authors have emphasized the need to establish clear criteria to prove 

functional trans-differentiation potential. Andersen et al., 2001, have suggested 

criteria required to establish that a cell fate transition has occurred. Firstly, the donor 

cell population must be prospectively isolated and transplanted without intervening 

culture manipulations. Secondly the transplanted stem cells should give rise to robust 

and sustained regeneration of target tissues. Thirdly the phenotype of converted cells 

must be confirmed not only anatomically and molecularly but also functionally, for 

example the formation of a neuron by a non-neural stem cell must be shown to result 

in a functional neuron (conducts action potentials). Finally, what is the frequency of 

trans-differentiated events compared to the total number cells transplanted. 
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I. I. 7 Reproducibility of results 

One of the major challenges to observations of adult stem cell plasticity has been the 

reproducibility of several seminal observations. As described previously Bjornson et 

al., 1999 demonstrated that single LacZ+ NSCs with the capacity to form neurosphere 

structures in vitro in which all three neural cell lineages were present were shown to 

have hematopoietic potential when transplanted into sublethally irradiated mice. 

Clonogenic assays from recipient BM showed that in these studies >95% of the 

colonies were positive for j3-galactosidase, which suggested that their origin was from 

the NSCs. Cultured NSCs did not display any hematopoietic potential without prior 

injection into the irradiated mouse host. This suggested that the microenvironment 

played a crucial role in the process of trans-differentiation of NSCs. However, 

Morshead et al., 2002 used a similar protocol to Bjornson et al., 1999 and rigorously 

tested the hematopoietic potential of mouse neurosphere cells and was unable to find 

any evidence of hematopoietic differentiation in a large group of sublethally irradiated 

mice each transplanted with 1 06 neurosphere cells, which suggested that 

hematopoietic potential was not a general property ofNSC. 

There have also been conflicting observations with reference to the ability of BM to 

contribute to neural tissue. As described previously, Mezey et al., 2000 using female 

homozygous PU .1 mice rescued these mice with BM transplants from male wild type 

donors. 4.6% of cells found in the CNS expressed the Y chromosome and were 

therefore identified as donor derived and up to 2.3% of these Y-chromosome positive 

cells possessed the neuronal markers NeuN and NSE. In contrast, Castro et al., 2002 

found no neuronal differentiation in eight lethally irradiated recipients of 2x 103 SP 

cells from ROSA26 donors or twelve recipients of whole BM cells even though in 

both groups neuronal injury was present. These are just two examples of studies in 

which there has been discrepancy and it is difficult to explain the reasons for these 

different observations but subtle differences in experimental conditions have been 

invoked by some authors to explain these differences. 

I. I.8 Mechanisms of stem cell plasticity 

Several possible mechanisms must be considered when attempting to explain 

observations of increased stem cell plasticity: (1) multiple tissue-specific stem cells 
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are present in different organs, (2) plasticity is the result of fusion of donor cells with 

host recipient cells in the organ under investigation. (3) cells undergo de- and re­

differentiation, or (4) true multi- or pluripotential stem cells, which exist in postnatal 

organs throughout life. Data exists to support all these theories. 

1.1. 8.1 Multiple tissue-specific stem cells are present in different postnatal organs 

HSC exit the BM and circulate in the systemic vasculature where they engraft in 

peripheral end organs (Weissman et al., 2001). HSC can be found in a number of 

organs and tissues other than the BM. As result, preparations of stem cells from 

tissues or organs may in fact be heterogeneous. Heterogeneity is an issue HSC cell 

biologists have contended with for years however, the relatively recent increase in the 

number of prospectively isolated adult stem cells means this issue is of significance. It 

has been proposed that if a stem cell is a single entry it should be possible to isolate 

prospectively. However, even among tissue specific stem cells there is inherent 

heterogeneity. In the CNS two distinct cell types have been reported to give rise to 

neurons, which may reflect the existence of more than one distinct type of stem cell 

(Alvarez-Buylla et al., 2001; Doetsch et al., 1999; Johansson et al., 1999). It is 

reportedly difficult to purify stem cells from the nervous system and this may reflect 

heterogeneity inherent to the stem cell pool (Morrison et al., 1999; Uchida et al., 

2000). Satellite cells from skeletal muscle are heterogeneous in respect to their protein 

expression profiles (Beauchamp et al., 2000). As a result caution must be taken when 

interpreting possible trans-differentiation events and a consideration must be given to 

the possibility of a heterogeneous starting cell population. Two studies have shown 

for example, that the perceived repopulation of the hematopoietic system following 

transplantation of muscle cells into sub-lethally irradiated mice is the result of HSC 

that reside within muscle (Kawada et al., 2001; McKinney-Freeman et al., 2002). In 

addition, the reported contribution of BM-derived cells to liver regeneration may be 

the result of the presence of oval cells (progenitor cells for hepatic and biliary 

epithelial cells), which reside in the BM. Therefore rigorous characterization of the 

starting stem cell population must be carried out prior to transplantation and this is 

especially true when observing trans-differentiation events. Some investigators have 

argued that the stem cell property should be considered a cellular function and not an 

entity (Blau et al., 2002). Accumulating evidence raises the possibility that many 
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types of cells from distinct organs and at differing stages of differentiation are capable 

of being recruited to function as stem cells. Thus the ability to act as a stem cell may 

be shared by numerous cell types expressing diverse genes. If this holds to be true 

then stem cells should be defined as a cellular function and not an identity. 

1.1. 8. 2 Pluripotent stem cells persist in postnatal organs throughout life 

There is a body of experimental evidence, which now supports the notion that the 

precursors to defined adult somatic stem cells may persist beyond the early steps of 

embryogenesis (Jiang et al., 2002a; Reyes and Verfallie, 2001). Multipotent adult 

progenitor cells (MAPCs) are a novel class of stem cells originally isolated from BM 

where they co-purify with MSCs. However, MAPCs have now been isolated from a 

number of adult tissues including BM, muscle and brain (Jiang et al., 2002b). MAPCs 

are pluripotent, and a single MAPC injected into a blastocyst contributes to all 

somatic tissues (Jiang et al., 2002a). Clonal MAPCs are able to differentiate in vitro 

into various lineages of mesodermal, ectodermal, and endodermal origin and 

contribute to terminally differentiated tissues grafted into postnatal organs, a capacity, 

which is increased during injury. Such pluripotent stem cells were not thought to exist 

in the postnatal organism. ES cells are characterized by their expression at the 

molecular level of a number of transcription factors thought to be highly specific for 

these undifferentiated cells, including Oct-4 and Rex-1 (Nichols et al., 1998; Scholer 

et al., 1989; Rosfjord et al., 1997; Ben-Shushan et al., 1998). Oct-4 is a transcription 

factor, which usually has a restricted distribution being expressed in the 

pregastrulation embryo, cells of the inner mass of the blastocyst and embryonic 

carcinoma cells (Scholer et al., 1989; Rosner et al., 1990). Oct-4 expression is down 

regulated, when cells are induced to differentiate in vitro (Pikarsky et al., 1994). Oct-4 

and Rex-1 are required to maintain the undifferentiated phenotype of ES cells and in 

adults Oct-4 expression is confined to germ cells (Nichols et al., 1998; Rosfjord et al., 

1994; Ben-Shushan et al., 1998; Niwa et al., 2000). However, MAPCs isolated from 

the adult express Rex-1 and Oct-4 consistent with their pluripotent differentiation 

capacity (Jiang et al., 2002a). Another group has recently reported the isolation of an 

adult stem cell population from BM under low oxygen tension and defined culture 

conditions, which has the capacity to generate cells associated with all three germ 

layers in vitro (D'Ippolito et al., 2004). Pochampally et al., 2004 described the 
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expression of Oct-4 in MSCs maintained in culture for a prolonged period of time in 

serum free media. It is not known how these stern cells relate to each other and 

whether or not they share the same identity but the data does suggest the possibility 

that a pluripotent stern cell with the capacity to generate cells of all three germinal 

layers persists in the adult BM throughout postnatal life. However, at present it is not 

unknown whether MAPCs exist in vivo and therefore there is currently no definitive 

proof that true pluripotent stern cells exist in vivo during postnatal life. 

1.1.8.3 Cellfusion 

Two publications in Nature (2002) suggested that the phenomena of the generation of 

unexpected phenotypes in vivo were the result of fusion of donor cells with the host 

tissue and not trans-differentiation of transplanted adult stern cells (Ying et al., 2002; 

Terada et al., 2002). When genetically altered BM from transgenic mice expressing 

GFP and the puromycin resistance gene were co-cultured with mouse ES cells, GFP 

positive clones were detected within three weeks of puromycin been removed from 

the culture (Terada et al., 2002). The expression of GFP and resistance to puromycin 

indicated that the GFP positive embryonic-like cells were derived from BM cells. The 

BM derived embryonic-like cells also possessed corresponding pluripotency defined 

by their capacity to spontaneously differentiate into cell types representative of all 

three embryonic germ layers and form teratomas following transplantation into 

NOD/SCID mice. Genomic analysis revealed these cells to be tetraploidy, indicating 

that cells were formed by fusion of BM cells and embryonic stern cells and not 

transdifferentiation. Similar results were reported when mouse CNS cells (also 

genetically altered) were co-cultured with ES cells (Ying et al., 2002). These authors 

found that chimeras generated from these cells were capable of contributing to 

somatic tissues, including liver, intestine, kidney and heart. In both these studies the 

frequency of reported fusion was extremely low, 2-11 hybrid clones per 106 marrow 

cells and one event per 105 CNS stern cells. This low frequency of fusion events is too 

low to account for the extensive contributions of somatic stern cells to embryonic 

tissues reported in previous studies. In both these studies the fused tetraploid cells 

inherited the selectable markers for both cell types and the properties of ES cells, 

therefore in both cases the ES genome was dominant. 
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It was the studies of Alvarez-Dolado et al., 2003 that provided the evidence that cell 

fusion could occur in vivo. Following BM transplantation BM derived cells (BMDCs) 

fuse in vivo with hepatocytes in the liver, purkinje neurons in the brain and cardiac 

muscle in the heart resulting in the formation of multinucleated cells. These authors 

employed a ere/lox recombination technique. In this method, transgenic mice 

expressing Cre recombinase ubiquitously under the control of a hybrid 

cytomegalovirus (CMV) enhancer B-actin promoter are used in conjugation with the 

conditional Cre reporter mouse line R26R. In this line, the lacZ promoter gene is only 

expressed following the excision of a loxP-flanked stop cassette by ere-mediated 

recombination. As a result, when ere-expressing cells from transgenic mice fuse with 

R26R cells, Cre recombinase excises the flanked stop cassette of the reporter gene in 

the R26R nuclei, resulting in the exclusive expression of LacZ in the fused cells. This 

lacZ staining can then be subsequently detected by X gal staining. These investigators 

used this method to study cell fusion in vivo. R26R reporter mice were sub-lethally 

irradiated and grafted with BM from mice constitutively expressing Cre recombinase 

and GFP. All animals displayed significant hematopoietic reconstitution when 

analysed 2-4 months following transplantation and B-gal positive cells were detected 

in heart, liver and brain. Analysis revealed these fusion events to be highly specific as 

BMDCs fused with hepatocytes in the liver, purkinje neurons in the brain and cardiac 

muscle in the heart resulting in the formation of multinucleated cells. Most 

importantly this study found no evidence of trans-differentiation without cell fusion in 

these tissues but did raise the possibility that cell fusion may contribute to the 

development and maintenance of key cell types and possibly be a source of cell 

replacement therapy. 

Cell fusion may be the mechanism for the generation of unexpected cell fates 

observed in various organs and as a result the phenomenon presented a major 

challenge to transdifferentiation. Lagasse et al., 2000 reported that intravenous 

injection of BM cells into mice, in which the gene for fumarylacetoacetate hydrolase 

(F AH) had been deleted, rescued the mouse by restoring the biochemical function of 

its liver. In this study a highly purified fraction of HSCs were used for transplantation 

and therefore the observation that HSCs regenerate the liver provided some of the best 

evidence for trans-differentiation. This study was particularly convincing because the 
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HSCs were purified and the donor type hepatocytes were functional and constituted 

up to 50% of the liver. However two recent studies revealed the observation to be the 

result of cell fusion and not an intrinsic capacity of HSCs to trans-differentiate into 

hepatocytes (Wang et al., 2003; Vassilopoulos et al., 2003 ). These studies 

demonstrate that donor type hepatocytes arise by cell fusion and not by differentiation 

of HSCs or their progeny into hepatocytes. 

In summary, cell fusion may be the mechanism that underlies plasticity in injury 

models and in tissues that tolerate tetraploidy, such as muscle, hepatocytes and 

purkinje cells. Cell fusion may underlie plasticity where the frequency of trans­

differentiation is extremely low but may be insufficient to explain those studies, 

which claim high levels of trans-differentiation events. Whilst cell fusion may not be 

the explanation for apparent plasticity in some cases it must be actively excluded, and 

some recent studies have been able to exclude this possibility. 

1.1. 8. 4 Cells undergo dedifferentiation and re-differentiation 

Cloning experiments including 'Dolly' the sheep made it clear that genetic 

information of a cell can be reprogrammed and somatic cells can dedifferentiate into 

pluripotent cells (Wilmut et al., 1997). Dedifferentiation is a well-established process 

in amphibians that can regenerate whole limbs (Verfaillie 2005). A number of studies 

have suggested that dedifferentiation may operate in mammalian somatic stem cells 

(Odelberg et al., 2000). 

1.2 Mesenchymal stem cell biology 
1.2.1 Definition ofMSCs 

MSCs are described as a self-renewing multipotent stem cell population, which 

generates progeny with the capacity to differentiate into multiple cell lineages of 

mesodermal origin (Caplan et al., 1994; Beresford et al., 1992; Friedenstein, 1992; 

Johnstone et al., 1998; Owen and Friedenstein, 1988). The principle source of adult 

mammalian MSCs is the postnatal BM stroma (Wexler et al., 2003; Friedenstein, 

1990), where these cells are believed to contribute to the regeneration of non­

hematopoietic BM tissues such as bone, cartilage, muscle, ligament, tendon, adipose 
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and the surrounding marrow stroma which functions to support hematopoiesis in vivo 

(Prockop et al., 1997). 

1. 2. 2 Historical background of MSC biology 

Circumstantial evidence for the existence of a stromal precursor cell within the BM 

tissue was first provided by studies demonstrating the regeneration of BM following 

the ablation of this tissue by various techniques (Knospe et al., 1972; Patt and 

Maloney, 1978). Such findings were consistent with studies in rodents demonstrating 

the development of a BM organ following transplantation to an ectopic site (Arnsel 

and Dell, 1971; Tavassoli and Crosby, 1968). More definitive evidence of marrow 

stromal cell precursors was provided by the pioneering studies of Friedenstein and 

colleagues, who described the growth in vitro of adherent colonies of cells 

morphologically resembling fibroblasts from BM derived explants (Castro-Malaspina 

et al., 1981; Friedenstein et al., 1970; Owen, 1988). Friedenstein reported that these 

colonies formed from the foci of two-four cells, had high replicative potential in vitro 

and formed colonies, which were heterogeneous in appearance (Friedenstein et al., 

1976). The authors demonstrated that the clonogenic stromal progenitor cells 

responsible for colony growth under these conditions, fibroblast colony forming cells 

(CFU-F) had the ability to differentiate into colonies that resembled small deposits of 

bone or cartilage (Ashton et al., 1980). Most importantly Friedenstein demonstrated 

that stromal cells derived from explanted CFU-F could be maintained in culture for 

20-30 population doublings and still retain their capacity to differentiate into fibrous 

tissue, bone and some cartilage when implanted into the peritoneum of rats in a 

porous capsule (Friedenstein et al., 1987). Collectively these studies demonstrated 

that the BM contained a cell population that is capable of protracted self-maintenance 

and capable of differentiation into multiple cell lineages of mesodermal origin. 

BM derived CFU-F are consistently heterogeneous in terms of their morphology, size, 

proliferation rate, expression levels of alkaline phosphatase and developmental 

potential (Friedenstein et al., 1982). Several groups have reported that stromal cell 

cultures grown from explanted CFU-F isolated by the relatively crude method of 

Friedenstein are capable of multilineage differentiation and readily differentiate into 

osteoblasts, chondrocytes, adipocytes, tenocytes and myoblasts in vitro (Owen 1988; 
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Caplan 1994; Wakitani et al., 1995; Friedenstein et al., 1987; Friedenstein et al., 1976; 

Pereira et al., 1995; Pittenger et al., 1999; Sekiya et al., 2002). These observations are 

consistent with the hypothesis that within the marrow stromal tissue, a hierarchy of 

differentiation exists supported at its apex by a small compartment of self-renewing, 

multipotent stromal stem cells referred to principally as MSCs (Owen and 

Friedenstein, 1988). 

1.2.3 Differentiation potential of MSCs 

However, studies documenting the differentiation potential of stromal cell cultures 

derived from BM CFU-F have noted extensive functional heterogeneity in both clonal 

and non-clonal cell populations (Kuznetsov et al., 1997; Phinney et al., 1999). 

Mauragraglia et al., 2000 examined the differentiation potential of 185 non­

immortalized human marrow stromal cell clonal populations derived from single cell 

derived colonies. Of these clones only half expressed osteo-chondrogenic 

differentiation potential and less than one third had trilineage potential that is the 

ability to differentiate into bone, cartilage and fat. In addition, the authors report the 

loss of multi-potentiality with increasing passage number although clones retained 

their osteogenic differentiation capacity suggested as the default pathway of 

differentiation. This finding was consistent with the previous observation that non­

clonal populations of BM stromal cells progressively lost differentiation capacity with 

culture expansion (DiGirolamo et al., 1999). Collectively these findings highlight two 

important concepts when culturing MSCs. Firstly, stromal cell cultures obtained from 

BM derived CFU-F are a heterogeneous mix of cells with varying developmental 

potentials. Secondly, current protocols for ex vivo culture expansion of BM stromal 

cell cultures is not permissive to the long term self renewal of MSCs. 

Most experiments examining the differentiation potential of MSCs have been reported 

using cells isolated by their adherence to tissue culture plastic. Several investigators 

have attempted to prepare more homogenous populations of cells based on the 

negative or positive selection of cells by cell surface markers. Pittenger et al., 1999 

reported the isolation of an adherent homogenous population of MSCs (homogeneity 

defined by the presence of consistent set of surface marker proteins), which could be 

extensively expanded in culture and consistently differentiated into three principal 
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mesenchymal lineages (fat, cartilage and bone) under defined culture conditions in 

vitro. This tri-lineage differentiation capacity was also demonstrated in culture 

expanded cells from single cell derived colonies, providing definitive proof that cells 

with multilineage potential exist in the BM and not just committed progenitors. 

1.2.4 Phenotypic characteristics of MSCs derived from marrow stromal cell cultures 

Despite the considerable interest in the potential therapeutic applications of MSCs 

there is still no well-defined protocol for the prospective isolation of these cells prior 

to cell culture and therefore little is known about the biological properties of these 

cells in vivo. Current procedures for isolation of human or rodent CFU-F are still 

based on those described by Friedenstein and colleagues which relied upon the rapid 

adhesion of stromal progenitor cells to tissue culture plastic and their subsequent rapid 

proliferation in culture (Friedenstein et al., 1982). Such protocols select for the 

progeny of CFU-F and not directly for the clonogenic precursors themselves. As a 

result, little is known about the phenotype of the primary clonogenic precursor cells 

responsible for colony development and stromal cell growth in vitro. The majority of 

information regarding the phenotypic properties of stromal progenitor cells is based 

on the analysis of marrow stromal cells (i.e. MSCs) in culture. This adherent cell 

population is, as described above, a heterogeneous starting population of cells in 

which only a minor fraction represent multipotent stem cells (Gronthos and Simmons, 

1995). 

Although the precise characteristics of the various progenitor sub-fractions of MSCs 

in culture are unknown, stromal cell cultures do processes a number of general 

properties, which can be tested in vitro. Cultured MSCs have the capacity to 

synthesize an extracellular matrix which includes type I collagen, fibronectin, type IV 

collagen and laminin of basement membranes (Keating et al., 2006). In addition, 

MSCs in culture express a broad range of cell surface proteins responsible for hetero­

and homotypic interactions among cell types and also serve as receptors for growth 

factors, cytokines, or extracellular matrices. These cell surface proteins are not 

specific and serve only to characterize MSCs as no specific antigen has been 

identified which associates the developmental potential of MSCs with a specific 

phenotypic trait. 
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Several laboratories have developed monoclonal antibodies, which react against 

human BM and stromal cells in culture. Antibody SH2 (Haynesworth et al., 1992); 

identifies an epitope on endoglin (CD105) (Barry et al., 1999), TGFj) receptor III 

present on endothelial cells, erythroblasts, monocytes and connective tissue stromal 

cells. SH3 and SH4 antibodies identify epitopes on CD73 a molecule involved in B 

cell activation and present on cultured stromal cells (Haynesworth et al., 1992). SB 10 

identifies activated leukocyte cell adhesion molecule, a ligand for CD6 (Bruder et al., 

1997). All four of these antibodies are routinely used as characteristic markers of 

culture expanded MSCs, however they do not represent the heterogeneity in the 

developmental potential of these cells. SH2 is reported to facilitate the enrichment of 

stromal progenitors from BM (Chiefetz et al., 1992). One the first antibodies that was 

shown to enrich for CFU-F in fresh human BM aspirates is STR0-1 a monoclonal 

antibody which reacts with an unknown cell surface antigen expression by a minor 

fraction of adult human BM (Simmons et al., 1991). Studies have demonstrated that 

STR0-1 was unreactive with hematopoietic progenitors but the STR0-1 + cell 

fraction contained all detectable CFU-F (Simmons et al., 1991). Purging human BM 

of STR0-1+ cells resulted in a 10 to 20-fold enrichment of CFU-F relative to the 

incidence of CFU-F in un-fractionated BM. This STR0-1 + population exhibited 

multilineage differentiation potential in vitro when assayed at the clonal level 

(Simmons et al., 1991; Gronthos et al., 1994) and differentiated into bone tissue when 

transplanted into SCID mice (Gronthos et al., 2003). The authors conclude that the 

data strongly suggests that putative BM stromal stem cells with multilineage potential 

are restricted to the STR0-1 + fraction, however STR0-1 as an antigen to define 

MSCs is not universally accepted. As a result, it is impossible to determine the 

proportion of stem cells, multipotential clones, and determined progenitors in stromal 

cell cultures or the anatomical distribution of these cells within the BM and perhaps 

other tissues, a significant obstacle in the understanding of stromal progenitor cell 

function. 

1.2.5 Functional definition of MSCs 

In the absence of definitive cell surface marker proteins, the demonstration of stem 

cell functionality in terms of self renewal and multi-lineage differentiation potential 
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provides the functional definition of MSCs and the gold standard for conformation of 

their isolation within a culture (Pittenger et al., 1999). In addition, MSCs also have the 

capacity to produce cytokines and growth factors that support and regulate 

hematopoiesis within the BM microenvironment a property which when tested in 

vitro can be used as a defining characteristic (Dexter et al., 1977; Gartner et al., 1980; 

Quessenberry and Lowry 1992). The lack of definition of MSCs is in part due to a 

lack of suitable assays whereby the properties of MSCs such as self-renewal can be 

accurately measured. Evidence for the isolation of multipotent HSCs is provided by 

an in vivo assay in which the hematopoietic system is ablated by irradiation and the 

demonstration of the reconstitution of the system by single HSC transplantation or 

BM transplantation provides the evidence of multipotentiality of HSCs (Lagasse et 

al., 2001; Morrison and Weissman, 1994; Weissman, 2000; Ford et al., 1956; Nowell 

et al., 1956; Till and McCulloch 1961 ). Such an assay does not exist for MSCs and is 

probably not feasible since MSCs contribute to many skeletal and connective tissues 

not easily disrupted in such a definitive manor. As a result, demonstration of the 

differentiation potential of MSCs at the single cell level is currently reliant on the 

demonstration of putative cellular differentiation in a number of in vitro assays and 

differentiation into bone and cartilage in vivo (Pittenger et al., 1999; Gronthos et al., 

2003; Friedenstein et al., 1976; Pereira et al., 1995; Sekiya et al., 2002). In stromal 

cell cultures demonstration of multi-lineage differentiation in vitro is a testament to 

the presence of multipotent MSC/progenitor cells but not definitive evidence for the 

presence of multi potent MSCs (Pittenger et al., 1999; Muraglia et al., 2000). However 

such assays demonstrate the developmental potential of the cultures tested and 

provides a functional assay for the presence of multipotent stem cells with 

mesodermal differentiation capacity. 

1. 2. 6 Differentiation of MSCs into mesenchymal cell lineages in vitro 

Conditions for differentiating cells in vitro are species dependent and are influenced 

by incompletely defined variables such as fetal calf serum batches (FCS) (Barnes and 

Sato, 1980; Lennon et al., 1995). Although the culture conditions for differentiation 

into every mesenchymal cell lineage has not been established for every species 

studied, mammalian MSCs have been shown to differentiate into bone, cartilage, fat, 

mytotubules and a mature stromal phenotype under defined culture conditions, as 
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demonstration of their multipotency (Prockop, 1997). MSCs do not differentiate 

spontaneously, a property, which allows them to expanded ex-vivo without lineage 

progression although they do lose their multipotent potential. 

Osteogenic differentiation of mammalian BM stromal cells in vitro is reported to 

occur in response to various bioactive factors including osteogenin, BMP-2, 

osteogenic growth peptide, and the synthetic glucocorticoid dexamethasone (Dex) 

(Bruder et al., 1998a; Jaiswal et al., 1997; Friedenstein et al., 1987). The effects of 

Dex are considered particularly relevant in osteogenic culture systems as endogenous 

glucocorticoids are involved in bone formation during development. The osteogenic 

potential of human MSCs is well characterized both in vivo and in vitro (Friedenstein 

et al., 1987; Bruder et al., 1998; Jaiswal et al., 1997). When cultured in the presence 

of the synthetic Dex, ascorbic acid, and B-glycerolphosphate, hMSCs differentiate 

into the osteogenic lineage with the generation bone-like nodules with a mineralized 

extracellular matrix containing hydroxyapatite, accompanied by a significant increase 

in alkaline phosphatase activity and the expression of bone matrix proteins (Jaiswal et 

al., 1997). These phenotypic changes can be used as specific markers of lineage 

commitment. These osteogenic culture conditions have also been reported as optimal 

for rodent in vitro differentiation. 

Chondrogenesis during development is a complex processes in which mesenchymal 

cells from the lateral plate mesoderm undergo a condensation step at the site destined 

for bone development (DeLise et al., 2000). The cartilaginous scaffold which forms 

defines the morphology of subsequent bone development. Induction of cartilage 

differentiation of MSCs in vitro is reliant on recapitulating many of the aspects of 

cartilage development in vivo (Sekiya et al., 2001 ). MSCs are maintained in a 

condensed culture system (pellet micro mass) under which maturation is sustained to a 

hypertrophic phenotype. Chondrogenesis is thought to be regulated by a number of 

growth factors, hormones and bioactive factors some of which are critical to promote 

cartilage differentiation of MSCs in culture (Johnstone et al., 1998; Barry et al., 1999; 

MacKay et al., 1998; Y oo et al., 1998). Transforming growth factor Beta has been 

shown to have a chrondroinductive effect on rat mesenchymal cells in vitro and in 

other animal and human cell systems (Sekiya et al., 2001; Mackay et al., 1998; 
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Seyedin et al., 1986; Johnstone et al., 1996). Thyroxine is a hormone believed to be 

involved in hypertrophy and endochondral ossification (Seyedin et al., 1986). In 

addition, Dex has also been reported to exert important effects on cartilage 

differentiation in vitro (Johnstone et al., 1996). MSC derived chondrocytes produce an 

extracellular matrix (ECM) rich in type II collagen and aggrecan both of which are 

essential structural proteins for the normal function of cartilage (Mundlos et al., 1997. 

Detection of these proteins and the accumulation of safranin 0-stained sulfated 

glycosaminoglycans act as lineage commitment markers (Kiraly et al., 1998). 

Adipogenesis has been extensively studied in vitro using murine preadipocyte cell 

lines such as 3T3. When MSCs are cultured in defined medium with dexamethasone, 

isobutylmethylxanthine, and insulin most cells differentiate into adipocytes in a 

similar fashion to 3T3-L 1 cells (Ailhaud et al., 1995). This differentiation is 

characterized by the accumulation of cytoplasmic lipid vesicles and the expression of 

genes that are expressed during adipogenesis such as peroxisome proliferator 

activated receptor y2 (PPARy2), lipoprotein lipase (LPL), and fatty acid binding 

protein (aP2) (Pittenger et al., 2000; Pittenger et al., 1999) 

1.2. 7 Clonal growth of MSCs 

To demonstrate the growth and developmental potential of stem cells it is necessary to 

analyze properties at the single cell level through developing clonal populations 

expanded from single cell derived clones. The clonal characteristics of MSCs have 

been determined by analyzing the intrinsic growth and developmental potential of 

explanted CFU-F in vitro (Muraglia et al., 2000). However, explanted marrow stromal 

cells establish colonies slowly (several days) following attachment to tissue culture 

plastic (Friedenstein 1976). Several reasons have been postulated to explain this 

observation including: the cells been quiescent upon initiation of culture, or needing 

to adjust to the in vitro culture conditions. A negative cell cycle regulator may be 

present in dormant MSCs in situ that must undergo turnover before rounds of mitosis 

can begin in the explanted cells. In addition, BM stroma may contain small groups of 

cells which are initially dormant, but which begin rapid proliferation. Clonal isolation 

studies require cells to be plated at low cell densities. Van den Bos et al., 1997 

reported that single hMSCs might undergo apoptosis prior to colony formation. This 
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observation suggests that cell contact and/or release of paracrine or autocrine factors 

by hMSCs, or elements of the stromal environment in situ, may provide survival 

signals sufficient to support the growth of MSCs. In addition, the marrow stromal 

environment is a complex environment with several cell types and a complex stroma 

or extracellular matrixes. Some authors have reported the isolation of more primitive 

cells I stem cells from the BM stroma by explanting these cells on substrates such as 

fibronectin, an extracellular matrix component formed by MSCs themselves (Jiang et 

al., 2002a; D'Ippolito et al., 2004). 

Despite the difficulties in clonal isolation, many investigators have been successful. 

Colony formation has been extensively studied in the guinea pig and rabbit 

(Friedenstein et al., 1970; Friedenstein 1976; Ashton et al., 1980; Owen et al., 1987; 

Owen and Friedenstein 1988). Clonal analysis of rabbit MSCs indicated that 

epidermal growth factor (EGF) increases colony size and reduces spontaneous 

differentiation (Owen et al., 1987). In serum free conditions, human MSCs required 

dexemethasone and L-ascorbate for colony formation and their growth was most 

responsive to a combination of platelet derived growth factor (PDGF) and EGF 

(Gronthos and Simmons, 1995). Robey and colleagues isolated 34 individual clones 

from BM derived cells and evaluated their potential to differentiate into an osteogenic 

phenotype following their seeding into porous ceramics carriers which were 

implanted in vivo (Kuznetsov et al., 1997). Only 20 of the clones used in the studies 

produced bone following 8 weeks of implantation. This data suggests that not all 

CFU-F from bone marrow has an osteogenic potential. Pittenger et al., 1999 tested 

clonal populations of homogenous MSC preparations (homogeneity defined by 

consistent expression of over 50 surface markers) from human BM. Of the 6 clones 

analyzed, 3 differentiated into bone, fat and cartilage under defined culture conditions 

whereas 2 formed only bone and fat and 1 only bone. 

The traditional model for MSC differentiation proposes that lineage progenitors are 

directly derived from MSCs. If this model were true, a random combination of 

phenotypes would be expected upon appropriate stimulation of clonal MSCs. 

However evidence presented by Muraglia et al., 2000 suggests a deterministic model 

of MSC differentiation. As described previously these authors demonstrated multiple 
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differentiation at the clonal level of human MSCs and that clones with the potential to 

generate cartilage, fat and bone occur at high frequency in the BM. However, 

following prolonged periods in culture clones enter senescence and lose 

differentiation potential with multi-lineage potential giving rise to hi-potential and 

uni-potential clones. They also report the existence of fixed combinations of lineages 

(i.e. osteo-adipo-chondro, osteo-chondro and osteogenic clones). Based on these 

findings they propose a model of differentiation in which cells proceed through a 

spontaneous process leading to osteogenic differentiation and progressively lose their 

multipotentiality. A hierarchy is evident in their differentiation in which the 

adipogenic lineage branches earlier than the osteogenic and chondrogenic lineages, 

which proceed together until possibly branching later. These features are consistent 

with a deterministic model of MSC differentiation. 

1.2.8 Global gene analysis ofMSCs 

Efforts at defining the phenotypic characteristics of MSCs have been compounded by 

the fact that these cells display a variety of morphologies and express various cell 

lineage antigens that can vary between different preparations and as a function of time 

in culture, leading to different conclusions about the biological nature of these cells. 

More recent efforts to define MSCs and characterize their phenotypic properties have 

relied on analyzing the expression of different gene families or classes of biological 

molecules. Human MSCs cultured under conditions that inhibit differentiation were 

shown to express numerous cytokines including interleukin 6 (IL-6), IL-11, G-CSF, 

macrophage colony-stimulating factor (M-CSF), stem cell factor, and leukemia 

inhibitory factor (LIF) (Haynesworth et al., 1996). Other investigators have reported 

the expression of a complement of expressed receptor tyrosine kinases and insulin­

like growth factor binding proteins in both clonal and non-clonal populations of 

MSCs (Grellier et al., 1995; Satomura et al., 1998). Pittenger et al., 1999 analyzed the 

expression of 50 genes including cytokine and mitogen receptors, matrix molecules 

and integrins in a homogenous population of human MSCs. 

The completion of the human genome, together with technologies to simultaneously 

measure the expression of thousands of genes has facilitated a global approach to 

complex biological questions. This systems biology approach has been utilized by 
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many stem cell biologists to begin to characterize the molecular signatures of stem 

cell populations. Such investigations will allow us to elucidate the genes involved in 

essential properties such as self-renewal and various programs of differentiation. In 

addition, such studies may offer unique signatures in which to identity and define 

stem cells. In this context a small number of studies have aimed to determine the 

microanatomical identity of MSCs by global gene expression arrays. Three papers 

have principally addressed the question of defining the molecular signature of MSCs 

by global gene expression analysis, each by alternate methods. Tremain et al., 2001 

carried out a serial analysis of gene expression (SAGE), which provides the means to 

analyze the entire complement of expressed transcripts in a cell. A catalog of 2,353 

expressed transcripts was analyzed in a single cell derived colony of human stromal 

cells elaborated from low-density cultures. Analysis of the transcript profile of a 

single cell-derived colony of human MSCs cultured under conditions that prevent 

differentiation, revealed that a single MSC colony expresses mRNAs of multiple cell 

lineages including mesenchymal cell lineages, chondrocytes, myoblasts, osteoblasts, 

and hematopoietic supporting stroma as well as various transcripts characteristic of 

endothelial, epithelial and neural cells. The authors note that it is surprising to find 

that these cells simultaneously expressed mRNAs characteristic of various committed 

mesenchymal cell lineages. They suggest that one explanation may be that cells 

within the colony individually enter into distinct differentiation programs leading 

ultimately to the generation of a molecularly heterogeneous cell population. 

Interestingly if the expression does indeed constitute differentiation then such events 

have occurred in the absence of external cues suggesting that fate determination in 

MSCs may be governed by intrinsic mechanisms as described for other stem cell 

populations. In addition, to mesenchymal lineage specific transcripts, MSCs also 

expressed mRNAs common to non-mesodermal tissues including neural cells. This 

expression is consistent with reports of enhanced MSC plasticity (as discussed in later 

sections) and suggests MSCs at least have the genetic potential for a broader 

differentiation potential however it is unclear from these studies whether expression 

of these transcripts reflects entry of MSCs into a developmental program that 

specifies neurogenic cell fates. In contrast to previous reports many cytokine 

receptors, integrins, and matrix molecules reportedly expressed in stromal cell 

cultures passed at high density were not expressed in the single cell derived colony. 
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The authors suggest that the explanation for these differences is the method of culture 

and that a single cell derived colony from low-density cultures is comprised of 

distinct subsets of cells. 

DNA micro-arrays allow large-scale gene expression analyses. Wieczorek et al., 

2003 analyzed 3 independent samples of MSCs by eDNA micro-arrays. Their analysis 

revealed a high concordance with previous expression studies and analysis revealed 

the expression profile to be closely related to vascular pericytes indicating that MSCs 

resemble pericytes. Seshi et al., 2003; consistent with previous studies also found 

using single cell micro-array analysis that MSCs simultaneously express transcripts 

associated with osteoblast, fibroblast, muscle, and adipocyte differentiation. These 

cells also expressed transcripts associated with all three germinal layers. Collectively 

these expression studies have been interpreted by some as indicating that MSCs 

represent a multi-differentiated cell type and this property has been evoked to explain 

the observations of plasticity in these stem cells. 

1. 2. 9 Other BM derived stem cell populations 

The developmental potential of CFU-F in culture is consistent with the hypothesized 

existence within the BM of a hierarchy of differentiation supported at its apex by a 

small compartment of self-renewing, multipotent MSCs (Owen and Freiedenstein, 

1988). The lack of defining characteristics of MSCs and the different methodologies 

used to cultivate and characterize MSC-related cell types means there is a lack of 

consensus on the hierarchy intrinsic to the MSC compartment. This is reflected by the 

reported findings of similar cells including multipotent adult progenitor cells (MAPC) 

(Reyes and Verfaillie, 2001) and marrow isolated adult multilineage inducible 

(MIAMI) cells (D'Ippolito et al., 2004). These cell populations have been described 

under highly defined culture conditions. Jiang et al., 2002 demonstrated that MAPCs, 

copurified with MSCs from BM could, at the single cell level, differentiate in vitro 

into cells with characteristics of mesodermal, ectodermal and endodermal cell 

lineages. MAPCs also contribute to most if not all cells when injected into the 

blastocyst. MAPCs have been isolated from muscle, brain and BM and all express 

pluripotent stem cell markers Rex-1 and Oct-4, markers that are usually confined to 

germ cells in the adult (Jiang et al., 2002). This expression and differentiation 
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potential is more consistent with an ES cell phenotype. It is not known what 

relationship theses cells have to MSCs. They may be a more primitive cell type than 

MSCs and in fact MSCs may derive from these cells. In addition, in culture these cells 

may represent an MSC-like de-differentiated phenotype. D'Ippolito et al., 2004 also 

isolated a cell population from adult BM under low oxygen tension and defined 

culture conditions. This cell population displayed pluripotent differentiation potential 

in vitro and expressed Oct-4 and Rex-1 however, the developmental potential of these 

cells following transplantation or in vitro is unknown. In summary, there may be 

numerous adult stern cell populations in BM and their relationship to MSCs is 

currently unknown. 

1. 2. 10 Ontogeny and anatomical location of MSCs 

As discussed previously, due to the lack of specific defining antigen for MSCs, which 

associates their developmental potential with a specific phenotypic trait, it is 

impossible as yet to determine the exact anatomical location of these cells in vivo. The 

lack of precise knowledge regarding the anatomical distribution of these cells in the 

BM is a major obstacle to their study. [3H]-thyrnidine labeling studies in rodents have 

demonstrated that CFU-F in vivo is essentially in a non-cycling state (Friedenstein et 

al., 1974). Despite the fact that the exact nature and localization of MSCs in vivo 

remains poorly understood, a large body of experimental evidence indicates a 

relationship with pericytes (vascular smooth muscle cells) (Doherty et al., 1998; 

Farrington-Rock et al., 2004). One approach to the study of MSCs in vivo has been 

the use of specific markers known to be expressed by MSCs in vitro in order to locate 

positive cells in vivo. Gronthos et al., 2003 reported that STR0-1 bright VCAM-1 + 

cells isolated from fresh human BM were a morphologically homogenous population 

of cells which expressed collagen type-1, but which lacked phenotypic characteristics 

of leukocytes or vascular endothelial cells. Interestingly, over 70% of the cells 

expressed a-SMA and 50% of these cells were capable of clonogenic growth in vitro. 

This suggests that a significant proportion of CFU-F must express a-SMA. In the 

adult, under steady state conditions the expression of a-SMA in human BM has a 

restricted distribution and is limited to vascular smooth muscle cells in the media of 

arteries, pericytes lining capillaries, and occasional flattened cells on the endosteal 

surface of bone (Bianco et al., 2001 ). No expression is found in other marrow stromal 
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elements such as reticular cells within hematopoietic cords, adipocytes or vascular 

endothelial cells. It is important to note however that a-SMA + cells have been 

reported that are not associated with vasculature for example, in the fetal BM 

(Schmitt-Graff et al., 1989). These observations have been interpreted as suggesting 

two possible identities and locations for MSCs in vivo, endosteal cells or vascular 

smooth muscle cells (pericytes ). The expression of bone sialoprotein and osteonectin 

that was reported in freshly isolated STR0-1 bright VCAM-1 +cells is consistent with 

a bone cell phenotype but inconsistent with a pericyte origin (Gronthos et al., 2003). 

As yet, there has been no direct demonstration of the histological expression of 

STR0-1 expression on pericytes and/or endosteal cells in BM and therefore this 

cannot be confirmed. Recent evidence has reported that the STR0-1 antibody does 

bind to blood vessel walls in frozen sections of human BM (Shi et al., 2003). The 

precise nature of the cells binding STR0-1 is unknown. 

Several observations support the interpretation that MSCs are indeed vascular 

pericytes. Previous studies have demonstrated co-expression of STR0-1 and a-SMA 

in a proportion of human BM cells in vitro (Simmons et al., 1991). Studies using the 

STR0-1 antibody have provided useful information, however, this approach is 

sensitive but may be non-specific, as the cell marker is only specific in a given 

context and STR0-1 is not universally accepted as a marker of MSCs. A number of 

other observations are consistent with a pericyte origin. Cultured MSCs also express 

h-caldesmon, metavinculin, calponin, and smooth muscle myosin heavy chains in 

addition to the expression of a-SMA ( Galmiche et al., 1993 ). This expression profile 

is consistent with a vascular pericyte phenotype. There are also a number of 

similarities in the properties of the two cells (vascular pericytes and MSCs). Cultured 

pericytes and MSCs synthesize a number of extra cellular matrix proteins comprising 

a mixture of basal laminins and interstitial collagens (Zuckerman et al., 1983). In 

addition, MSCs undergo clonal expansion when grown at low density in the presence 

of PDGF-BB under serum free conditions (Gronthos and Simmons, 1995). Data from 

mouse knockouts indicates PDGF-BB acts to recruit pericytes and maintain their 

viability in vivo (Hellstrom et al., 1999). Therefore MSCs and vascular pericytes have 

similar responses to PDGF. Pericytes participate in the maintenance of blood vessel 

homeostasis and recent evidence suggests that these pericytes may also be capable of 
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mesodermal proliferation and clonal growth in culture similar to CFU-F (Sims, 1991; 

Diaz-Flores et al., 1991; Doherty et al., 1998). Pericytes isolated from bovine retinal 

capillaries are STR0-1 + and exhibit the potential for differentiation into a variety of 

cell types including osteoblasts, adipocytes, chondrocytes and fibroblasts (Doherty et 

al., 1998; Brighton et al., 1992). 

An alternative approach to these investigations has been to infuse marked cultured 

cells in vivo and to subsequently analyze their tissue distribution. Anjos-Afonso et al., 

2004 purified MSCs from mouse BM and transduced these cells using a lentivirus 

vector expressing the eGFP reporter gene. These transduced cells retained their ability 

to differentiate in vitro and were injected systemically into minimally injured 

syngeneic mice. The highly enriched mouse MSC population incorporated into 

several tissues after systemic infusion into recipient animals that only received sub 

lethal irradiation. Donor derived cells engrafted in numerous organs and acquired the 

morphological and antigen profiles of hepatocytes, lung epithelial cells, 

myofibroblasts, myofibres and renal tubular cells in the recipient mice. Whilst this 

study provided an important observation it is not an accurate analysis of the natural 

distribution of MSCs in vivo because the cells might engraft non-specifically in 

different locations. 

A more accurate approach 1s the prospective isolation of cells with MSC 

characteristics from different organs and tissues and subsequent analysis of their 

phenotypic characteristics. MSCs have been isolated from a number of postnatal 

organs and tissues including adipose tissue (Zuk et al., 2001 ), tendon 

(Salingcamboriboon et al., 2003), periodontal ligament (Seo et al., 2004), synovial 

membrane (De Bari et al., 2003) and lung (Sabatini et al., 2005). A recent report has 

been published in which the authors systematically isolated MSCs from a number of 

organs and tissues in the adult mouse and evaluated their characteristics in vitro 

including imrnunophenotype and ability to differentiate towards an adipogenic and 

osteogenic cell fate (da Silva Meirelles et al., 2006). The investigators established 

long-term cultures from brain, spleen, liver, kidney, lung, bone marrow, muscle, 

thymus and pancreas. Variations in immunophenotype and differentiation potential 

were reported and were related to the site of origin suggesting that this may be a 
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functional role and organ specific. This study demonstrated that MSC cultures could 

be established from organs and tissues regardless of embryonic origin. The cells were 

operationally defined as MSCs on the basis that they could differentiate into 

mesenchymal cell lineages in vitro and were capable of prolonged self-renewal. 

However, despite a relatively consistent surface marker profile and morphological 

appearance, variation was reported in the frequency of cells, which actually 

differentiated into fat or bone and the degree of differentiation. To test the hypothesis 

that MSCs could be derived from the vasculature long-term cultures were derived 

from large blood vessels such as the aorta and vena cava as well as capillaries such as 

the kidney glomeruli. MSCs were not detected in peripheral blood ruling out the 

possibility that they were derived from circulating blood. These observations 

collectively are consistent with the distribution of MSCs throughout the postnatal 

organism been related to their existence in the perivascular niche and provide 

evidence that the MSC compartment is more widely distributed than previously 

appreciated. 

Da Silva Meirelles et al., 2006 suggest a working hypothesis on the basis of their 

findings in the context of the literature, which is important to consider. In this model 

MSCs act as a functional reservoir of undifferentiated cells which supply the cellular 

demands of the tissue in which they reside. In doing so they acquire the phenotypic 

characteristics of the local tissue and give rise to committed progenitors that gradually 

integrate into the tissue. The model suggests that a proportion of postnatal stem cell 

diversity may be attributed to local perivascular MSCs behaving as tissue specific 

stem cells. However, the contribution these cells make to regeneration following 

injury and normal cell turnover in these organs is currently unknown. 

I. 2.11 Therapeutic applications 

Within the past decade, MSCs have been recognized as potential candidates for cell 

and gene therapy. Unlike many other adult stem cells, MSCs are contained within a 

clinically accessible site and allow relatively straightforward isolation. Furthermore, 

MSCs can be readily expanded ex vivo to generate clinically relevant numbers in 

vitro, whereas this is currently technically challenging for other stem cell types, 
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including human ES cells. These features make human MSCs attractive for use in the 

clinic, especially for autologous therapies. 

The practical significance of MSC differentiation was demonstrated in animal models 

and a smaller number of human clinical studies. Bruder and colleagues (1998) 

demonstrated that MSCs grown on an appropriate scaffold had the capacity to repair a 

8mm defect in the femur of a rat. After 8 weeks the bone defect had completely 

healed compared to bone implanted with control cells. Other studies on the repair of 

segmental bone defects have been demonstrated in canines where implantation of 

allogenic MSCs resulted in enhanced bone formation (Bruder et al., 1998; Rombouts 

and Ploemacher 2003 ). In addition, similar reports of the repair of focal defects have 

been reported in articular cartilage and tendon (Krebsbach et al., 1998; Young et al., 

1995). In an animal model of osteoarthritis involving damage to the meniscus tissue, 

administration of MSCs by intra-articular injection resulted in engraftment and repair 

of the meniscus tissue (Murphy et al., 2003 ). Studies by Horwitz et al. (1999) 

demonstrated that genetically labeled MSCs showed long-term engraftment in 

patients with osteogenesis imperfecta with beneficial effects such as increased skeletal 

strength. 

For cell replacement to be effective in the allogenic setting it is also important to 

consider the host immune response to implanted cells. MSCs and their differentiated 

derivatives do not express HLA-Class II antigens in vitro and possess only low-level 

expression of co-stimulatory molecules (Majumdar et al., 2003). In addition, these 

cells were found not to elicit an allo-reactive lymphocyte proliferative response in 

culture (Tse et al., 2001). This finding suggested that human MSCs may be non­

immunogenic which has profound implications for their use in allogenic cell therapy 

and infusion of cells derived from a mismatched donor into a recipient. Engraftment 

of allogenic MSCs has been reported in patients with osteogenesis imperfecta, in 

patients with Hurlers syndrome or metachromatic leukodystrophy and idiopathic 

aplastic anemia without any evidence of graft verses host disease or immune rejection 

but with significant improvement in the clinical outcome (Horwitz et al., 1999; Quarto 

et al., 2001; Koc et al., 2002; Fouillard et al., 2003). In addition to the absence of 

class II HLA antigens, MSCs can also suppress primary mixed lymphocyte reactions 
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involving autologous or allogenic T cells or dendritic cells (Di Nicola et al., 2002). 

This suggests that MSCs may also be useful in suppressing ongoing immune cell 

induced reactions, including treatment of graft verses host disease. 

Administration of cells may be direct to the site of damage or injury or in other cases 

systemic administration may both be necessary and appropriate. MSCs have the 

capacity to engraft into various tissues and organs when infused systemically and this 

engraftment has been shown to be stable in the long-term (Liechty et al., 2000). Even 

more impressively, MSCs administered to the peripheral circulation have the capacity 

to migrate to a specific site of injury. This has been reported in animal models of bone 

fracture, cerebral ischemia and myocardial infarction (Shake et al., 2002; Wang et al., 

2002). It has also been demonstrated that this homing of cells to a site of injury can 

also result in actual MSC mediated functional repair. MSCs administered by intra­

articular injection into the knee joint following injury are capable of specific 

migration, engraftment and repair of the damaged meniscus and cartilage (Agung et 

al., 2006). Rombouts and Ploemacher (2003) reported the expansion and migration of 

MSCs to a wound environment by demonstrating that in an irradiated mouse host 

there was migration and expansion of donor GFP expressing MSCs within the spleen 

and bone marrow in contrast to non-irradiated hosts. However, the homing of the 

donor cells decreased with long-term ex-vivo expansion that obviously has relevance 

when considering the preparation of clinical grade MSCs. 

There is also evidence that MSCs contribute to the repair of tissues other than those 

that they are generally accepted to form. For example, Orlic et al. (200 1 a; 2001 b) 

reported that the local administration of MSCs to the heart could generate de novo 

myocardium suggesting that these cells may be useful in treating myocardial heart 

disease. Furthermore, infusion of BM cells into the infarct zone of patients following 

myocardial infarction appeared to have a beneficial effect on global heart function 

(Stamm et al. 2003). As mentioned above, MSCs have also been reported to 

differentiate into neural tissues. Subsequent to transplantation, MSCs have been 

shown to enter the brain and generate neurons (Mezey et al. 2003) whereas Chen et 

al., 2001 demonstrated that systemic infusion of MSCs aids recovery in animal 
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models of stroke. These findings collectively suggest that MSCs may be useful in the 

repair of the CNS following trauma or neurodegenerative disease. 

1. 2.12 Concluding remarks 

The data presented in this literature review provides an overview of MSC biology. As 

described many questions remain, there are still uncertainties as to the origin and 

nature of these cells, a problem compounded the lack of a defining antigen. This lack 

of consensus on the nature of MSCs and their anatomical location in vivo is one major 

obstacle to the study of these cells, since experimental comparison is difficult with 

different laboratories using different methodologies to isolate MSCs. However, MSCs 

do represent a source of stem cells that are readily available from the adult. Evidence 

shows that these cells can be expanded in culture and that they retain their ability to 

differentiate both in vitro and when transplanted into the appropriate site in vivo 

(Pittenger et al., 1999; Gronthos et al., 20003 ). MSCs may be used routinely in the 

clinic but standardized procedures for their prospective isolation from tissues must be 

developed to further understanding of their biology. 

1.3 Proposed neural differentiation of MSCs 
1.3.1 How to define a neuronal cell in vitro 

Many different criteria have been used to define and characterize neuronal cell 

populations in vitro including cell morphology, expression of neuronal specific 

markers and functional assays. Neurons display considerable heterogeneity in 

morphology and this asymmetry is a characteristic hallmark of these cells, a neuron 

possesses a cell body from which extends a single axon (Sevendsen et al., 2001). Also 

extending from the cell body are numerous dendrites that form synapses and 

communicate with other cells. Cell type specific markers can be used to assign 

phenotype to neural cells however some markers are expressed in other tissues. Nestin 

an intermediate filament protein is highly expressed in NSCs (Lendahl, 1990) and is 

used to identify these cells in culture but its expression has been found in other tissues 

(Kornblum et al., 2001 ). NSCs also express vimentin and the RNA binding protein 

Musashi that is highly expressed in precursor cells capable of generating both neurons 

and glia during embryonic and postnatal development (Kaneko et al., 2000). Tuj-1 is 
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one of the earliest markers expressed on newly formed neurons (Song et al., 2002). In 

more mature neurons the axonal filament proteins (neurofilaments), NF-L, NF-M and 

NF-H are expressed along with microtubule-associated proteins in the axons (TAU) 

and dendrites (MAP-2) (Sevdsen et al., 2001). MAP-2c is expressed neurons and 

neuro-progenitors that can generate neurons and glia. MAP2ab is specific for more 

mature neurons (Rosser et al., 1997). Functional criteria include the ability to fire 

action potentials and communicate with other cells through synapses. Collectively 

Reh et al 2002 suggested that that neuronal cells should be post mitotic, polarized 

with a single axon and multiple dendrites and able to fire action potentials and 

communicate with other neurons through synapses, requiring both neurotransmitter 

release and neurotransmitter receptors. 

1.3.2 The possibility of adult stem cell plasticity 

Investigations using animal and human BM transplants suggest that BM can 

differentiate into neurons and glia in the adult brain (Krause 2002). Using either 

genetic (Y chromosome) or reporter genes (GFP or LacZ) to track donor cells 

investigators claimed that BM derived stem cells contributed to the regeneration of 

several non-hematopoietic tissues. Three criteria are required to demonstrate somatic 

stem cell plasticity (Andersen et al., 2001 ), it is first necessary to identify the 

differentiated cells as being donor derived; secondly, to show that the cell is 

phenotypically similar to resident cells and thirdly, to prove functionality. Donor cells 

can be identified and distinguished from those of the recipient by using male cells 

transplanted into female recipients or transgenic donor cells into wild-type recipients. 

Retroviral marking can also be used to mark cells. Phenotypic markers of 

differentiation are usually examined by immuno-cytochemistry for organ specific 

proteins or in situ hybridization for cell type specific RNA expression. Functionality 

of donor-derived cells has proved a more problematic criterion to fulfill. Studies that 

have most successfully demonstrated functionality of donor-derived cells have used 

animals that are mutant for normal cell function in the target organs so that 

transplanted cells restore function to the recipients (For review see Corti et al., 2002). 

However, many of the claims of BM derived stem cell plasticity have failed to be 

reproduced and the possibility that these trans-differentiation events could be 
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attributed to cell fusion has been raised (Ying et al., 2002; Terada et al., 2002). Cell 

fusion was raised as an issue by two papers, which demonstrated that adult stem cells 

could fuse spontaneously in vitro with ES cells and take on their characteristics (Ying 

et al., 2002; Terada et al., 2002). Furthermore, more recent studies have demonstrated 

that cell fusion can occur in vivo and in particular BM derived stem cells can fuse 

with purkinje neurons assuming their characteristics (Alvarez-Dolado et al., 2003). 

These heterokaryons are stable and the purkinje cell, which becomes dominant, 

activates the purkinje cell specific transgene from the donor cell nucleus. As 

previously described, the use of the Cre/lox recombination system demonstrated that 

BM derived cells fuse spontaneously with hepatocytes in the liver, purkinje neurons 

in the brain and cardiac muscle in the heart, resulting in the formation of 

multinucleated cells. They found no evidence of trans-differentiation without cell 

fusion. 

MSCs isolated from the postnatal BM have been reported to adopt neural phenotypes 

in vitro and in vivo. Kopen et al., 1999 first reported that mouse MSC were able to 

adopt an astrocytic cell fate following injection into the lateral ventricle of neonatal 

mice. The authors reported the presence of BrdU labelled donor MSCs expressing the 

astrocytic marker GF AP within the striatum and hippocampus of the host CNS. The 

donor cells were therefore shown to migrate throughout the forebrain and cerebellum 

of the host CNS. Donor derived cells expressing neuronal and glial cell markers 

where detected in the adult mouse brain following intravascular administration of 

whole adult mouse BM into lethally irradiated hosts (Brazelton et al., 2000). 

Studies in Drosophila and mammalian skin, intestine, BM and brain reveal that these 

inherent stem cell features of self renewal and differentiation are tightly regulated by 

the cells and proteins which constitute the extra cellular environment in which the 

stem cells reside (the stem cell niche) (Fuchs et al., 2004). The premise of trans­

differentiation is based on the idea that the developmental potential of stem cells is 

dictated by the environment in which these cells reside. Removal of stem cells from 

their normal environment and either ex vivo culture or transplantation into an ectopic 

site can allow stem cells with a broader differentiation potential to adopt cell fates 

outside their normal organ of reside. Following the finding that adult BM derived 

45 



cells, when transplanted systemically migrate to the CNS and acqmre the 

characteristics of astrocyte grafts (Eglitis and Mezey, 1997), a large number of 

experiments have been published which describe the ability of MSCs isolated from 

the adult BM to differentiate into neuroectodermal derivatives including neuronal 

(e.g. Woodbury et al., 2000), glial (e.g. Wislet-Gendebein et al., 2003) and schwann 

cells (e.g. Caddick et al., 2006). 

1.3.3 Neuro-ectodermal differentiation ofMSCs in vivo 

The first evidence that adult stem cells from the BM may generate neuroectodermal 

CNS cell types came from studies of whole BM transplantation. Eglitis and Mezey, 

1997 reported the generation of glial cells (cells expressing GF AP) from BM in the 

brains of immunodeficient adult mice that received intravenous (IV) transplantation of 

genetically marked whole BM. Eglitis and Mezey set out to investigate the 

relationship between microglia and BM. Microglia are believed to derive from a 

hematopoietic cell line, whereas astrocytes and oligodendrocytes are believed to be 

derived from embryonic neuroectoderm and developmentally distinct from microglia. 

Some microglia are thought to have a neuroectodermal origin and Mezey and Eglitis 

sought to determine the extent to which cells outside the CNS could contribute to the 

maintenance of microglia in adult mice. BM cells were labelled with a retroviral 

vector carrying the gene for neomycin resistance or male donor marrow cells were 

used followed by in situ hybridization with a probe specific for the Y chromosome, 

for detection of male cells within the female recipient. Retroviral labelled male cells 

were infused into the systemic vasculature (tail vein) of sublethally irradiated female 

mice. Adult BM cells migrated to the CNS and engrafted within the brain 

parenchyma. Cells were detected throughout all regions of the brain and the level of 

engraftment paralleled the vascularity of a given region. Some donor-derived cells 

expressed the microglial antigenic marker F4/80 antigen whilst others expressed the 

astroglial antigenic marker glial fibrillary acidic protein (GFAP). Approximately 10% 

of engrafted cells acquired microglia antigenic markers (GFAP or F4/80 antigen). The 

identity of the remaining cells is unknown. The authors concluded that some astroglia 

and microglia could arise from a precursor in the BM. They also considered this effect 

to be a normal process because the number of donor derived cells detected in the brain 
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increased over time and did not appear to be a consequence of the transplantation 

procedure. 

In addition, to astrocytic differentiation under normal physiological conditions Eglitis 

et al., 1999 demonstrated that BM derived cells could generate GF AP-positive cells in 

an ischemic lesion model. Using the male BM to donate to female recipients followed 

by detection of the Y -chromosome by in situ hybridization to track donor cells, they 

demonstrated a preferential homing of donor BM cells to the site of hypoxic/ischemic 

lesion within the CNS. Following acute middle cerebral artery occlusion to model 

stroke, donor derived cells were detected around the focal lesion. 2.8% of the total 

cells within the ischemic hemisphere were donor derived in contrast to 1.8% of cells 

in the intact, unlesioned side. Therefore the ischemic lesioned side of the brain 

attracted 55% more donor derived cells. In addition, the percentage of total GF AP+ 

cells that were double labelled (Y -chromosome+/GF AP+) was 161% greater on the 

lesioned side of the brain. This data suggests not only that BM derived stem cells may 

have an intrinsic capacity for trans-differentiation into astrocyte cell fates but that this 

process may contribute to repair following injury. 

Two papers subsequently published in 2000 presented the first evidence of neuronal 

conversion in vivo. These studies relied on the replacement of BM with donor BM 

cells expressing a GFP transgene or sex mismatched. These studies collectively 

demonstrated that adult BM derived stem cells could migrate from the systemic 

vasculature, engraft and trans-differentiate into neurons as well as glial cells. 

Brazelton et al., 2000 demonstrated that BM derived cells migrated into the brain and 

differentiated into cells expressing neuronal antigens NeuN, Tuj-1 and NF-200, 

following intravascular transplantation into irradiated normal adult mouse hosts. 

Adult BM was harvested from transgenic mice expressing enhanced green fluorescent 

protein (GFP) and administered to recipients by tail vein infusion. Donor cells were 

subsequently detected months after transplantation. Donor cells were detected within 

the hippocampus, cortical areas, olfactory bulb and cerebellum. 20% of GFP+ cells 

that engrafted within the CNS were negative for the hematopoietic markers CD45 and 

CD 11 b suggesting that these cells responded to the brain microenvironment by 

differentiating into novel cell phenotypes. Only 0.2-0.3% of the total neurons within 
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the olfactory bulb were of donor origin by 8-12 weeks after transplantation. It is 

argued that the low conversion may be the result of experimentation on control 

animals and the number may be higher in lesioned animals. Neurons of donor origin 

displayed only an immature neuronal phenotype with minimal axonal branching. A 

proportion of the cells expressed multiple neuron specific genes including NF-200 

and Tuj-1. No GFAP positive donor derived cells were detected suggesting only 

neuronal differentiation and not astrocytic as previously described. 

Mezey et al., 2000 transplanted mice, homozygous for a mutation in the PU.1 gene 

with whole BM from normal adult hosts. PU.1 is a member ofthe ETS (DNA binding 

domain) family of transcription factors expressed exclusively by the hematopoietic 

system. Mice homozygous for this mutation are incapable of generating cells of the 

myeloid and lymphoid lineages and therefore these animals can be transplanted 

without irradiation. Within 24 hours after birth, PU.l homozygous recipients were 

given systemic infusions of BM from wild type male mice. 1-4 months after 

transplantation brains were harvested and analysed for the presence of donor-derived 

cells. 2.3-4.6% of donor derived cells were present in the host brain and 0.2-0.3% co­

expressed NeuN and Y-chromosome. Donor derived cells were detected throughout 

the brain in both cortical and sub-cortical brain areas and in the cerebellum. Unlike 

previous transplantation studies no GF AP positive cells were detected. 

Nakano et al., 2001 transplanted GFP-marked BM into lethally irradiated mice by 

either systemic infusion or direct injection into the striatum. Twenty-four weeks after 

intravenous transplantation only donor-derived microglia were detected. However, 12 

weeks following direct injection into the corpus striatum of irradiated mice, cells co­

expressing GFP and astrocytic and oligodendrocytic markers were detected. Therefore 

BM derived cells were shown to differentiate into three distinct glial cell phenotypes 

(oligodendrocytes, astrocytes and microglia). Priller et al., 2001a reported that only a 

minor proportion of BM derived cells expressing the neuronal marker NeuN were 

detected 4 months after BM transplantation using GFP-marked cells. However, fully 

differentiated BM-derived Purkinje neurons positive for calbindin and glutamic acid 

decarboxylase were found in the cerebellum 12-15 months after transplantation. BM-
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derived microglia were detected in three animal models of CNS lesions (Priller et al., 

2001 b). 

Whole BM contains several cell types including: HSCs, MSCs and their differentiated 

cell derivatives such as hematopoietic cells, osteoblasts, endothelial cells and 

fibroblasts. Studies using whole BM were unable to demonstrate which stem cell 

population was responsible for observations of neuroectodermal trans-differentiation. 

Infusion of MSCs isolated from adult BM directly into the rodent brain has been 

shown to result in migration of cells from the site of administration and engraftment 

into the host brain (Azizi et al., 1998 and Kopen et al., 1999). Systemic infusion of 

MSCs into irradiated 3-week old mice was followed by the appearance of progeny of 

the donor cells in a variety of non-hematopoietic tissues including the brain (Pereria et 

al., 1998). MSCs isolated in culture by selective adhesion to tissue culture plastic and 

then labelled with bisbenzamide were directly injected into the corpus striatum of the 

rat. 5-72 days later approximately 20% of infused cells had engrafted in the host brain 

(Azizi et al., 1998). The cells had migrated from the injection site to the corpus 

collosum, contralateral cerebral cortex and ipsilateral temporal lobe. After 

engraftment cells lost markers characteristic of a mesodermal derivatives such as 

immunoreactivity to fibronectin and collagen-! by 30 days and acquired 

characteristics of astrocytes. In contrast, implanted fibroblasts continue to synthesize 

fibronectin and collagen- I. Whilst this study demonstrated that MSCs isolated from 

the adult BM could migrate in a manor similar to paraventricular astrocytes, an effect 

not replicated by fibroblast implantation, the ability of the cells to adopt neural cell 

fates was not determined. 

Kopen et al., 1999 grafted purified MSCs directly into the lateral ventricle of neonatal 

mice. In these experiments the stromal cell fraction was depleted of CD 11 b+ cells (a 

marker of myelopoietic cells) and cells were labeled with bisnenzamide or 

bromodeoxyuridine (BrdU) prior to grafting in order to track cells. Transplanted cells 

were found to migrate throughout the forebrain and cerebellum without disrupting the 

host brain. MSCs displayed a characteristic migration pattern consistent with that of 

neural progenitor cells during development in early postnatal life. MSCs were found 

to line white matter tracts and the ependyma throughout the ventricles. BrdU labelled 
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cells expressing GF AP were detected in the corpus striatum, the molecular layer of 

the hippocampus and the cerebellum, suggesting that engrafted donor cells in these 

regions had differentiated into astrocytes. Donor MSCs were also detected in 

postnatal neurogenic regions including the olfactory bulb and ventral forebrain. In the 

cerebellum cells were found in the internal and external granular layers but not in the 

purkif1ie cells. Occasional sections of the brain stem contained BrdU labelled cells 

expressing neurofilament consistent with neuronal differentiation. The authors discuss 

the importance of the neonatal brain microenvironment in directing the migration and 

differentiation of MSCs in a manor consistent with normal developmental processes. 

1.3.4 Differentiation in vitro 

Studies that attempted to differentiate MSCs into neuro-ectodermal derivatives in 

vitro can be broadly placed in two categories (See Table 1.1; Figure 1.1 ), those that 

use chemical agents to induce a presumptive neuronal phenotype and those, which use 

growth factors and defined culture conditions consistent with those used to 

differentiate neural progenitor cells in vitro. Those using chemical induction describe 

the rapid and direct differentiation of cells into neural cell derivatives. In contrast, 

several more recent investigations have developed multiple stage protocols, which 

describe the differentiation of MSCs towards neural cell lineages through a series of 

progressive steps including progenitor cells. 

Woodbury et al., 2000, was the first to describe an in vitro protocol to differentiate 

MSCs into neural cell lineages using chemical agents, which resulted in a rapid 

change in cell phenotype. This presumptive neuronal phenotype was defined by the 

acquisition of a neuronal morphology and expression of pan-neural markers. The 

characteristic feature of this chemical induction was the rapidity of the effect, which 

occurred within hours. Woodbury et al., 2000 described a protocol in which rat MSCs 

acquired a neuronal phenotype following exposure to antioxidant compounds in 

serum free media. The neuronal phenotype was confirmed by the expression of NSE, 

NeuN, NF-M and TAU. MSCs were expanded in culture for more than 20 passages 

and subsequently exposed to serum free inductive media containing 1-10 mM ~­

mercaptoethanol (BME). Within 60 minutes of exposure to antioxidant compounds 

morphological changes were observed in exposed MSCs. Cells displayed a retraction 

50 



in cytoplasm with the concomitant formation of process-like extensions. Over the first 

3 hours cells progressively assumed morphological traits characteristic of neuronal 

cells. The cell bodies became increasingly spherical and refractile and exhibited a 

typical neuronal perikaryal appearance. A variety of neuronal morphologies were 

evident including simple bipolar neurons through to large extensive multipolar 

neurons. A small number of cells exhibited pyramidal cell morphologies whereas a 

large number of cells elaborated long processes with varicosities clearly evident. The 

investigators claimed that the differentiation was exclusively neuronal since no GF AP 

immunoreactivity was detected. The investigators suggested that one of the possible 

mechanisms by which this transition in cell phenotype may occur may be related to 

the antioxidant properties of BME. Consistent with this conclusion, other substances 

including dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) either 

alone or in combination were also found to be effective inductive agents. The most 

effective treatment was found to be 2% DMSO and 200~-tM BHA which resulted in 

78% of cells expressing NSE and assuming a neuronal morphology. Differentiation 

under these conditions was characterized by short cell survival presumably as a result 

of either the toxicity of antioxidant compounds and/or the removal of serum from the 

culture. 

For long term differentiation and promotion of cell survival cells were pre-induced in 

DMEMI20% FCS/1 Onglml bFGF for 24 hours followed by exposure to serum free 

inductive medium. This pre-induction protocol was shown to increase the number of 

cells responding to neural induction. During long-term studies of differentiation (6 

days) cells were cultured in a cocktail of inductive agents including: 2% DMSOI 

200~-tM BHA I 25mM KCl I 2mM valproic acid I 10~-tM Forskolin I 1~-tM 

hydrocortisone I 5~-tglml insulin. Rapid change in cell morphology was still observed 

and the expression of nestin in MSC presumptive neurons progressively decreased. 

Induced cells displayed increased expression of Trk A, the high affinity nerve growth 

factor receptor, which was detectable at 5 hours and continued to be expressed at 6 

days. This data was consistent with responsive cells acquiring a more mature neuronal 

phenotype when maintained under differentiation conditions. The characteristic 

features of this protocol in particular were the rapid change in cell morphology and 

exclusive neuronal differentiation and the high number of cells, which responded to 
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the inductive medium (78-79%). This early study indicated that MSCs might have an 

intrinsic neurogenic potential. 

Consistent with these observations a number of other investigators have used 

chemical agents to induce presumptive neural differentiation of adult MSCs. Deng et 

al., 2001, reported neural differentiation in 25% of human MSCs exposed to 

isobutylmethylxanthine (IBMX) and 1 mM dibutyl cyclic AMP ( dbcAMP) in serum 

free media. IBMX and dbcAMP increase intracellular cyclic AMP. This treatment 

increased NSE and vim en tin levels in induced MSCs. However no change in MAP 1 B 

or Tuj-1 was observed and other neuronal proteins such as NF-M, MAP-2, TAU, 

GFAP and MBP were not detected. Deng et al., 2001 claimed that an increase in 

cyclic AMP produces phenotypic changes in MSCs consistent with early neurons and 

glia. The morphological changes observed were consistent with those reported by 

Woodbury et al., 2000. Neural-like cells were detected following two days 

differentiation and by 6 days accounted for approximately 25%. Neural-like cells 

displayed highly refractile cell bodies, had long branching processes with growth cone 

like structures that made contact with undifferentiated MSCs. A reduction in cell 

proliferation was reported but there was no significant increase in cell death. 

Although Deng et al., 2001 demonstrated only limited neuronal differentiation based 

on morphological and marker expression, a potential mechanism was indicated. The 

finding that cyclic AMP induces a neuronal phenotype in MSCs is consistent with 

reports that cyclic AMP elevation of exogenous administration is associated with the 

terminal differentiation of neural cell lines including neuroblastoma and progenitor 

cells (Moore et al., 1996; Bang et al., 1994 ). Consistent with findings by Woodbury et 

al., 2001 no GFAP expression was detected. 

Hung et al., 2002 used a 3 ~-tm filter to size select a homogenous population of human 

MSCs. The purified MSCs have been referred to as size sieved stem cells and they 

have a greater self-renewal capacity than heterogeneous MSCs. These cells are 

multipotential and lack expression of hematopoietic markers but express Thy 1 and 

CD44, CD105 and CD29 consistent with a stromal cell identity (Hung et al., 2002) 

These cells were fibroblastic in appearance and when subjected to a pre-induction 

medium containing BME (with or without retinoic acid) followed by serum 
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deprivation, underwent morphological differentiation. Cells acquired a neural-like 

morphology within 2-3 hours, greater than 95% of cells acquired a neural-like 

morphology but this morphological change spontaneously reverted back to normal by 

5 hours. These cells expressed Tuj-1, NeuN, Nestin and NSE prior to differentiation. 

Following exposure to the inductive agents there were elevations in the expression 

levels ofnestin, NeuN, Tau and NSE proteins after 5 hours. Cells serum deprived for 

5 days expressed neurofilaments, but not MAP-2 and the levels of Tuj-1 and NeuN 

expression decreased. Theses investigators provided some of the first evidence of 

neuronal functionality following differentiation. The induced cells exhibited voltage 

sensitive ionic currents, and intracellular calcium levels could be elevated by a high 

K + buffer and glutamate in the medium. Despite the demonstration of some electrical 

excitability the lack of expression of common neuronal markers makes it difficult to 

assign a final identity to these induced cells. 

Kohyama et al., 2001 described the differentiation of MSCs into neurons using the 

demethylating agent 5-aracytidine (5-Aza-C) or transfecting MSCs with the neural 

inducer, noggin. These investigators isolated clonal lines from murine MSCs, which 

were fibroblastic in appearance. 20% of these cells when exposed to 5-Aza-C and 

neurotrophic growth factors; neuronal growth factor (NGF), brain derived 

neurotrophic factor (BDNF) and neurotrophin-3 (NT3) acquired a neural-like 

morphology progressively over 9 days. The differentiated cells expressed neural 

markers GFAP, Tuj-1, NeuN and Gal-C. This data indicates that MSCs can also 

differentiate into cells with the phenotypic characteristics of oligodendrocytes, and 

astrocytes, in addition to neurons. This was the first study to demonstrate that clonal 

lines isolated from MSCs have a trilineage neurogenic potential. Each line had a 

different neuronal versus glial marker expression. In addition, after 28 days of 

induction, the cells exhibited resting potential, rectifYing potassium current and could 

respond to neurotransmitters. These cells therefore appeared to have differentiated at 

least to some extent towards the neural lineage. MSCs have also been shown to 

assume morphology consistent with a schwann cell phenotype and express schwann 

cell markers such p75, GFAP, S-100, 04 and PO in response to culture with 

BME/retinoic acid and subsequently forskolin, bFGF, platelet-derived growth factor 

(PDGF) and heregulin. 
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It has long been known that the stem cell niche provides important regulation of stem 

cell proliferation and differentiation, a concept that continues to be supported by 

recent evidence (For review see: Wurmser et al., 2004). The studies in which 

chemical induction was used to induce phenotypic changes in MSCs such as those 

used by Woodbury and others suggested that MSCs isolated from postnatal BM may 

have an intrinsic neurogenic potential and therefore their differentiation potential 

exceeds the traditional potency attributed to these cells. Although the mechanism, 

which this change in cell phenotype occurred, was not determined by these studies, 

the data suggests that removal of cells from their normal micro-environment may 

release cells from the inhibitory niche signals which regulate their developmental 

potential and dictate their cellular plasticity. 

Sanchez-Ramos et al., 2000 demonstrated that a subset of both human and murine 

BM has the capacity to differentiate into early neural cells and express markers 

consistent with early neuronal development under defined culture conditions. The 

conditions used to differentiate MSCs in this study were consistent with conditions 

used to differentiate primary neural progenitor cells and embryonic stem cells towards 

a neuronal cell fate. Proliferation of cells was induced in response to epidermal 

growth factor (EGF). Before induction of differentiation, cultures were enriched in 

fibronectin immunoreactive cells and depleted of hematopoietic contaminants. 

Treatment of cultures with RA and BDNF resulted in a decreased number of 

fibronectin positive cells. This loss of fibronectin expression correlated with the 

progressive loss of large flat fibronectin positive cells with the appearance of small 

oval cells, which were process bearing and fibronectin negative. The authors claimed 

that these cells represented a population of early neuronal cells. Consistent with this 

conclusion western blot analysis of protein expression from cultures treated with 

proliferation or differentiation medium revealed the expression of nestin, NeuN and 

GF AP expression. Subsequent treatment with RA or RA + BDNF decreased the 

expression of the nestin protein and analysis of GF AP and NeuN by 

immunocytochemistry revealed that 0.5% of cells were NeuN positive and 1% were 

GF AP positive. NeuN and GF AP expression was also found at low levels in control 
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conditions (proliferative medium). This study provided the first evidence of early 

neural differentiation under physiological conditions. 

Long et al., 2005 demonstrated increased RNA expression of neuronal specific 

markers nestin, MAP-2 and TH when cells were cultured with EGF and FGF in serum 

free media for 14 days. Using mono-cellular culture conditions Jin et al., 2003 

investigated the induction of neuronal properties in whole BM stem cells in vitro. 

They evaluated the effects of different growth factors on the presumptive 

differentiation of MSCs and reported that certain growth factors induced both a 

neural-like morphology and expression of neural markers, however the localization of 

these neural markers including neuronal proteins was not consistent with the pattern 

of expression observed in primary neurons. 

1.3.5 Co-culturing of MSCs with primary neural cell populations may enhance neural 

cell trans-differentiation in vitro 

A number of studies have indicated that co-culture with neurons or astrocytes may be 

necessary for the full expression of a neural phenotype in MSCs induced to 

differentiate under defined culture conditions (Sanchez-Ramos et al., 2000; Rivera et 

al., 2006a, 2006b; Wislet-Gendebien et al., 2005). Early studies such as that of 

Sanchez-Ramos reported that the fraction of cells expressing NeuN when cultured in 

the presence of EGF or retinoic acid/BDNF increased when the cells were co-cultured 

with rat fetal midbrain cells (Sanchez-Ramos et al., 2000). MSCs have been shown to 

express components of the Sonic Hedgehog pathway (Shh) and retinoic acid nuclear 

receptors (Kondo et al., 2005). Consistent with this observation, a combination of RA 

and Shh synergistically induced the expression of a set of glutaminergic sensory 

neuron markers in MSCs primed with FGF -2 and forskolin (Kondo et al., 2005). More 

recently, Hermann et al., 2004 observed the formation of neurosphere-like structures 

expressing nestin after 5-7 days in MSC cultures maintained in serum-free media 

supplemented with bFGF and EGF. Kabos et al., 2002 also observed sphere formation 

under similar conditions but with whole BM. In both studies neurosphere-like 

structures could be differentiated in vitro into neurons and glia. In addition, Hermann 

et al., 2004 were able to demonstrate that differentiated neurons were capable of 

dopamine production and release, and of inward and outward currents. Wislet-
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Gendebein et al., 2003 observed that serum withdrawal resulted in nestin expression 

and this expression was a pre-requisite for the formation of neurosphere-like 

structures and progression towards further neural differentiation. Co-culturing of these 

cells with nestin positive NSCs resulted in the formation of heterogeneous cellular 

spheres which when plated out and differentiated, the MSCs expressed high levels of 

GF AP indicating increased astroglial differentiation. In fact, nestin positive MSCs 

were shown to increase astrocytic differentiation of NSCs in co-culture by releasing 

BMP-4 (Wislet-Gendebein et al., 2004). When nestin positive MSCs were co-cultured 

with cerebellar granule cells, the nestin positive MSCs expressed neuronal markers 

and exhibited both inward and outward currents and were responsive to 

neurotransmitters (Wislet-Gendebein et al., 2005). 

Alexanian, 2005 recently emphasized the importance of juxtacrine and paracnne 

interactions in the neural induction of MSCs. They demonstrate that MSCs co­

cultured with mouse proliferating NSCs or NSC conditioned media adopt a neural­

like morphology and express high levels of sox-2 and nestin and eventually 

differentiate into Tuj-1 and GF AP expressing cells. Rivera et al., 2006 reported that 

soluble factors derived from different brain regions are sufficient to induce a 

presumptive neuronal phenotype in MSCs during co-culture in vitro. The effect of 

conditioned media derived from the hippocampus, cortex or cerebellum on the 

phenotype of MSCs was tested. Hippocampal conditioned media had the strongest 

inductive effect and induced MSCs to adopt a neuronal fate defined by morphology 

and immunolabelling of neural markers such as growth associated protein 43 (GAP-

43) and neurofilaments. Although the mechanism is unknown, BDNF and NGF could 

not induce the same effect when added to the culture. Abouelfetouh et al., 2004 

reported the generation of neuron-like cells in MSCs co-cultured with a hippocampal 

brain slice. Suzuki et al., 2004 reported the formation of MSC derived cellular 

spheres with the capacity to differentiate into neurons, astrocytes and 

oligodendrocytes using chemical induction. However, proof of concept in this study 

was confined to pan-neural marker expression and morphology. These studies 

collectively suggest that signaling from the microenvironment is vital for the 

induction of neural cell fates by MSCs. It also indicates that more mature 

differentiation requires signaling provided by other cell types in vitro or neighboring 
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neural cells in vivo. The environment in which the cells are initially grafted may affect 

the neural cell fate specification of transplanted MSCs. 

I.3. 6 Experimental manipulation prior to transplantation 

A number of recent studies have used a two-stage approach to investigate the 

differentiation potential of MSCs. These studies first removed MSCs from their 

normal microenvironment and placed them in culture. In vitro these cells were 

provided with new environmental cues and stimulation with growth factors and then 

cells were subsequently transplanted in vivo in an attempt to stimulate differentiation 

of these cells. Munoz-Elias et al., 2004 reported that MSCs treated with 5ng/ml bFGF 

in culture and then transplanted into the lateral ventricles of El5.5 rats in utero 

formed spheres expressing vimentin and nestin but not mature neuronal markers 

within two days. Within two months, MSCs had migrated extensively throughout the 

embryonic brain and expressed more mature neural markers including NeuN. Deng et 

al., 2006 recently reported that MSCs spontaneously express neural proteins in culture 

and retain the expression of these proteins following transplantation into the neonatal 

mouse brain where these cells extensively migrate throughout the tissue. Suon et al., 

2006 recently reported the formation of MSC neurosphere-like structures in defined 

culture conditions. These cells were capable of expression of dopaminergic and 

GABAergic traits in vitro. After transplantation of MSC neurospheres into a 

parkinsonism animal model, MSCs retain GABAergic traits but lose dopaminergic 

traits. 

I. 3. 7 Mechanisms of proposed neuro-ectodermal differentiation of MSCs 

I. 3. 7.I Trans-differentiation of MSCs into neuro-ectodermal derivatives 

Cells may differentiate (trans-differentiate) into distinct phenotypes not normally 

found within a particular tissue without first de-differentiating to a more primitive 

phenotype. Trans-differentiation involves the removal of inhibitory factors or 

exposure of cells in new environmental signals that allow cells to express an intrinsic 

differentiation potential. Embryonic development involves a progressive restriction in 

developmental potential, however evidence has shown that these restrictions are not 

absolute and can be modified by altering single or multiple genes. For example, 

expression ofNeuroDl in the ectoderm can tum cells fated for epidermis into neurons 
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(Lee et al., 1995). As described previously a wide range of chemicals have been used 

to induce neural differentiation including antioxidants and chemicals that increase 

intracellular cyclic AMP (Deng et al., 2001). Recent findings case doubt on whether 

these chemicals truly induce neural differentiation of MSCs. Time lapse microscopy 

revealed the neural-like morphology to be the result of a collapse in the cytoskeleton 

and not differentiation (Bertani et al., 2005; Neuhuber et al., 2004). In addition, this 

effect was demonstrated in fibroblasts and in response to other agents such as 

detergents (Lu et al., 2004). Neural protein expression such as NSE was also 

expressed under these conditions suggesting that the MSC phenotype as defined by 

morphology and neural protein expression can be mimicked in culture. 

1. 3. 7. 2 Dedifferentiation 

As discussed previously, cells may revert to an earlier phenotype and become less 

restricted in terms of their developmental potential. Under these conditions it is 

thought that MSCs may re-differentiate into other cell fates in response to new 

environmental cues such as humeral or cellular signals. For example, 

oligodendrocytes progenitors from the optic nerve can be induced to acquire a wider 

range of stem cell characteristics when maintained in serum free media in low-density 

culture conditions (Tang et al., 2001). These more primitive cells can be re­

differentiated into neurons and glia. It is possible that a similar mechanism operates 

that accounts for the neural differentiation of MSCs in culture. 

1. 3. 7. 3 Rare pluripotent stem cells reside in adult tissue 

As described in the previous section there is evidence for the presence of pluripotent 

stem cells in BM (Jiang et al., 2002a). Isolation and enrichment of these cells 

involved the selection of a very small fraction of marrow mononuclear cells by 

immunomagnetic sorting to eliminate cells of blood lineages and proliferation for 

more than 20 population doublings. This resulted in a homogenous population of cells 

with the capacity to generate cells of all three primary germ layers in culture under 

defined conditions and when injected into the early blastocyst contributed to somatic 

cells of all three germinal layers. These cells are referred to as MAPCs but their 

relation ship to MSCs is not known and whether such cells exist in vivo is also 

currently unknown. However, it is possible that it is these cells and not MSCs in 
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culture that generate these neural differentiated cells. This is unlikely however, in 

cultures in which the proposed trans-differentiation frequency is high. In addition, 

maintenance of MAPCs in culture required highly defined culture conditions not 

consistent with normal MSC growth. 

1.3. 7.4 Concluding remarks 

The ability of MSCs to generate neural cell derivatives both in vivo and in vitro is an 

unexpected observation of which there is some doubt as to its validity in light of 

recent findings. As a result careful interpretation of results obtained both in vitro and 

vivo is required. Recent results however have been encouraging and some 

investigators have attempted to demonstrate functionality. The mechanism by which 

MSCs could adopt neural cell fates in culture is currently unknown but is likely to 

involve one of the following. ( 1) Residual populations of pluripotent stem cells reside 

in adult tissues, which retain the ability to differentiate into multiple cell types either 

when grafted into ectopic sites in vivo or differentiated under defined experimental 

conditions. (2) Tissue specific stem cells normally with a restricted differentiation 

potential can generate other cell lineages when exposed to new environmental 

conditions, a process referred to as trans-differentiation. (3) Presumptive isolation of 

adult stem cells from a particular tissue is contaminated with progenitor cells of a 

different embryonic germ layer. (4) Transformation of grafted cells occurs by cell 

fusion with host cells, mimicking differentiation. (5) Adult stem cells can undergo 

dedifferentiation and redifferentiate in response to new environmental cues. These 

issues will not be resolved until the molecular mechanisms of proposed trans­

differentiation events are determined. 

1.4 Effects of MSCs following neural injury 
I. 4.1 Introduction 

MSCs have previously been shown to improve neurological outcome and functional 

recovery in animal models of stroke (Chen et al., 2003; Li et al., 2001; Li et al., 2002), 

spinal cord injury (Chopp et al., 2000; Hofstetter et al., 2002; Neuhuber et al., 2005; 

Lu et al., 2005) and brain trauma following whole BM transplantation or 

administration of ex vivo expanded purified populations of MSCs isolated from the 
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postnatal BM (Mahmood et al., 2001; Lu et al., 2001). Higher cell engraftment was 

achieved when MSCs were infused into the rodent brain compared to whole BM 

infusion (Chen et al., 2001). The protective effects conferred by marrow-derived stem 

cells were both obvious and rapid (Chen et al., 2001). The mechanism of the 

therapeutic benefit of MSCs in these animal models is unknown. 

1. 4. 2 Effect of MSCs transplantation in animal models of CNS injury 

In rats subjected to stroke and trauma, intravenously injected MSCs pass through the 

blood brain barrier, migrate selectively to the damaged tissue and improve functional 

recovery (Li et al., 2001; Lu et al., 2001 ). Whole BM cells and ex vivo expanded 

MSCs intra-cerebrally transplanted into the ischemic boundary zone of adult rats and 

mice 24 hours following middle cerebral artery occlusion (MACO) express a neural 

phenotype (expression of key neural markers) and promote functional recovery (Chen 

et al., 2000; Chen et al., 2001). Li et al., (2000) transplanted adult BM MSCs pre­

labeled with BrdU directly into mouse striatum following MACO. BrdU reactive cells 

were detected 28 days following the insult. The cells had successfully survived and 

migrated from the graft site to the ischemic region. Transplanted animals displayed a 

significantly increased neurological outcome as accessed by the neurological severity 

score (motor, sensory functions and reflexes). 1% of BrdU reactive cells expressed 

NeuN whereas 8% expressed GF AP. The effect was not attributable to a reduction in 

the infarct size since no significant difference in infarct volume was found in 

transplanted animals. These results were also found to be consistent in the rat MACO 

model in which intra-cerebral implantation of MSCs was associated with improved 

functional recovery (Chen et al., 2000). After 14 days a minimal proportion of MSCs 

expressed NeuN, MAP-2 and GFAP. In addition, a composite graft of BDNF and 

adult BM resulted in superior grafting and improved functional recovery. NeuN and 

GF AP BrdU positive cells were detected at 7 days post MACO (Chen et al., 2000). 

MSCs are also able to migrate selectively to the site of the ischemic lesion following 

administration into systemic vasculature (Li et al., 2001; Lu et al., 2001 ). BM cells 

injected intravenously into rats subjected to MACO migrate across the blood-brain 

barrier into damaged ischemic tissue. Intravenously injected cells can be found in 

many organs including kidney, spleen, liver and BM (Lu et al., 2001). Few are 
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however found in the parenchyma with the majority encircling the microvessels in 

these organs. As few as 1.5-3% of 3 million implanted MSCs are found in the brain 

parenchyma 14-35 days following treatment (Eglitis et al., 1999). In the injured brain 

there is however selective migration to the injured hemisphere with 80% of cells 

within the area around the ischemic lesion (Mahmood et al., 2001). Li et al., 2001 

reported that intra-carotid infusion of MSCs 24 hours post ischemia improved the 

neurological outcome of rats subjected to transient MACO at 14 days compared to 

controls. Outcome measures were behavioral testing and neurological severity score. 

Therefore MSCs delivered to the carotid artery enter the ischemic adult rat brain. 

These cells survive and a small number of MSCs express proteins phenotypic or 

astrocytes or neurons. Intra-arterial administration appears to be a more superior 

method of transplantation, with intra-arterially administered cells migrating 

extensively throughout the ischemic core and penumbral regions compared with intra­

cerebrally grafted cells (Lu et al., 2001 ). 

During stroke the permeability of the blood brain barrier may be increased and 

chemokines released from neural tissue may attract MSCs to damaged tissue (Webb et 

al., 2000). It is thought that MSCs may use the same transport systems as 

inflammatory cells (a process of diapedesis) as there is an up regulation of adhesion 

molecules in local vasculature. MSCs are also capable of passing through the intact 

blood-brain barrier and migrate throughout the neonatal forebrain and cerebellum 

(Kopen et al., 1999). Adhesion molecules and their receptors are expressed on 

inflammatory cells and guide cells to injured tissue and transport them across the 

vascular endothelium including the blood-brain barrier (Webb and Muir 2000). 

Targeting adhesion molecules work in concert with chemokines. Using a two chamber 

cell migration assay (microchemotaxis chamber) MSCs have been found to respond in 

a dose dependent manor to chemotactic agents such as intercellular adhesion molecule 

1, monocyte chemoattractant protein 1 and macrophage inflammatory protein 1 which 

are known to be expressed by ischemic brain tissue (Kim et al., 1995). These agents 

significantly increased MSC chemotaxis, as did ischemic brain tissue extracts. This 

ischemic brain induced chemotaxis can be effectively blocked using antibodies to the 

chemoattractant agents (Wang et al., 2002). These results suggest that MSCs utilize 

the same mechanisms as inflammatory cells to migrate into the CNS and provide 
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insights into how MSCs selectively target their migration to injured tissue. Therefore 

any injury or disease that results in an inflammatory response may be characterized by 

MSC migration, the extent of which is dependent on the degree of the inflammatory 

response which is in tum related to the severity of the tissue injury. 

1. 4. 3 Potential mechanisms of functional recovery 

1. 4. 3.1 Trans-differentiation 

MSCs and whole BM cells grafted either directly or indirectly into the rodent brain 

following injury contain a small number of cells that express neuronal and glial cell 

specific markers (Chen et al., 2001; Chopp and Li, 2002; Li et al., 2001; Chen et al., 

2003). The expression of these markers appears to be dependent on specific 

microenvironment signals. As it appears that neuronal replacement may be one of the 

principal mechanisms by which functional recovery is achieved, the possibility that 

MSCs can differentiate into neuronal and· glial cell phenotypes must be considered. 

MSCs have been reported that express neural markers in the intact CNS following 

systemic infusion (Kopen et al., 1999; Azizi et al., 1998; Deng et al., 2006) and 

following injury (Chen et al., 2001 and Li et al., 2001) however expression of these 

limited number of markers is not sufficient evidence in itself to represent true 

differentiation. The beneficial effects of MSCs are seen within a few days and thus 

even differentiated cells are highly unlikely to integrate fully into the host tissue and 

form the complex connections required to improve function. Even if the transplanted 

MSCs can trans-differentiate into neural cell types the number of cells transplanted 

and the number of cells expressing neural proteins are too few to replace lost cells. As 

described previously many of these previously reported trans-differentiation events 

may be attributed to cell fusion with host cells rather than differentiation. However 

several independent reports have also demonstrated engraftment of MSCs with the 

expression of neural proteins and a neural-like morphology independent of cell fusion 

(Deng et al., 2006; Munoz-Elias et al., 2004). However, the question of whether this 

represents true differentiation remains to be established. Thus, tissue replacement as 

the mechanism by which MSC promote their beneficial effects is unlikely, although it 

is still possible that transdifferentiation contributes a small proportion of cells to 

neuron replacement. 
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MSCs are described as 'small molecular factories', which describes their secretary 

function in which MSCs release cytokines and trophic factors (for review see: Chopp 

and Li, 2002). It is believed that the release of these factors from MSCs within 

cerebral tissue or the microvasculature of the injured brain is the mechanism by which 

MSCs effectively promote restoration of function (Chopp and Li, 2002). MSCs have 

been shown to produce hepatocyte growth factor, VEGF, NGF and BDNF among 

other trophic and growth factors (Chen et al., 2001 b; 2002). It appears that it is the 

combination of trophic factors that has the beneficial effect rather than any single 

growth factor. More importantly, the combination of trophic factors released by 

MSCs is dependent on the specific micro-environmental signals (Chen et al 200lc). 

MSCs when cultured in different ionic microenvironments respond to the cues by 

adjusting growth factor expression (Chen et al., 200lc). As a result of this finding it is 

proposed that MSCs regulate their secretion of growth factors in response to tissue 

specific cues and thus secretion is dependent on the extent of tissue injury and the 

degree of disruption of the ionic microenvironment. This hypothesis is supported by 

several lines of experimental evidence in which culture of MSCs with tissue extracts 

from brains affected by stroke or injury significantly increased the release of MSC 

derived trophic factors and the pattern of secretary response differs according to the 

time the tissue is extracted from the affected brain (Chen et al., 2002; Chen et al., 

2002b ). Consistent with these findings the overall expression of trophic factors in 

injured brains is significantly higher in MSC treated animals compared to non-MSC 

treated animals (Chen et al., 2005; Munoz et al., 2005). 

Thus current experimental evidence supports a hypothesis in which MSCs home to 

sites of CNS tissue injury from the periphery in a chemoattractant mechanism similar 

to that described for inflammatory cells in response to chemokines released at the site 

of injury. Following these chemoattractant gradients MSCs enter the CNS passing 

through the blood-brain barrier and congregate at the ischemic boundary where they 

release growth factors in response to external tissue specific cues including changes in 

the ionic microenvironment. MSC secretary products encourage endogenous 

regeneration and repair including synaptogenesis, angiogenesis, neurogenesis, 

dendritic arborisation and a reduction in apoptosis. 
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1.4.3.2 Neurotrophic factor production by MSCs 

Previous studies have observed dense innervation by nerve fibers in BM, which lie in 

intimate association with marrow stromal cells (Afan et al., 1997). It has been 

hypothesized that MSCs produce neurotrophic factors to promote and maintain 

nervous innervation of BM and guide fibre development during growth or following 

injury (Tabarowski et al., 1996). 

Tremain et al., 2001 using SAGE analysis to analyze the transcript profile of a single 

cell derived colony of human MSCs detected the expression of several neurotrophic 

factors, including pigment epithelial derived factor, glial derived nexin 1 a, and 

macrophage migration inhibitory factor. These products have been shown to promote 

neuronal cell survival (Houenou et al., 1995; Fujimoto et al., 1997) as well as induce 

neurite outgrowth in cultured neurons (Monard et al., 1983; Houenou et al., 1999). 

The expression of these products may in part contribute to the therapeutic benefit of 

MSCs when transplanted into the damaged CNS. 

In response to media conditioned with traumatic brain extracts MSCs increase their 

release of BDNF, NGF, VEGF and HGF in culture (Chen et al., 2002; Chen et al., 

2002b ). The levels of these growth factors were dependent on the time of exposure. 

These observations demonstrate that human MSCs are sensitive to both the normal 

brain and the traumatic brain and respond by significantly increasing the production 

of many growth factors. MSCs are known to survive for prolonged periods of time in 

the injured brain and therefore this provides injured tissue with a continuous and 

microenvironment responsive secretion of neuroprotective and angiogenic factors at 

the local level, which may be the key to their functional benefit (Chopp and Li, 2002). 

More recently, Chen et al., 2005 using in vitro studies detected the synthesis of 

various growth factors, including NGF, BDNF, GDNF and NT-3 by MSCs in culture. 

Following intra-ventricular injection of MSCs, NGF levels were increased 

significantly in cerebrospinal fluid as detected by ELISA. Therefore in these studies 

the therapeutic benefit of MSC transplantation appeared to be mediated at least in part 

by their ability to increase brain NGF concentration. The effects of neurotrophic 

factors on brain plasticity are shown in Table 1.2. 
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1. 4. 3. 3 Effects of MSCs on angiogenesis in the injured brain 

Stroke induces angiogenesis, and angiogenesis is associated with improved 

neurological outcome (Zhang et al., 2000; Zhang et al., 2002). Under normal 

circumstances, injury-induced angiogenesis is insufficient to support the brain 

plasticity required for functional recovery. However, MSCs induce angiogenesis of 

brain endothelial cells in vitro and stimulate angiogenesis of an avascular cornea 

following transplantation (Hamano et al., 2000; Villars et al., 2000; Leung et al., 

1989). Angiogenesis is significantly increased in the ischemic brain compared to the 

intact brain when MSCs are infused intravenously 24 hours post MACO in the rat 

(Chen et al., 2003). The mechanism of MSC-induced angiogenesis is an increase in 

endogenous rat VEGF and VEGFR2 expression. Newly formed vessels improve 

tissue perfusion around the ischemic boundary zone and enhanced angiogenesis 

following stroke improves neurological recovery. Therefore MSC induced 

angiogenesis probably contributes to the improved outcome following MSC 

transplantation. MSCs are reported to significantly increase the vascular perimeter 

and numbers of capillaries in animal models of stroke. VEGF is a potent angiogenic 

factor and its expression is increased by bFGF (Tamada et al., 2000; Hamano et al., 

2000), which is one of the trophic factors released by MSCs in response to injury and 

a possible mechanism by which MSCs up regulate endogenous VEGF and induce 

angiogenesis. VEGF has been shown to improve functional outcome when 

administered 1 day or more after stroke in animal models (Zhang et al., 2000; Zhang 

et al., 2001 ). These findings demonstrate that some of the factors released by MSCs 

may act directly and others indirectly, by evoking the expression of trophic factors by 

endogenous cells, particularly astrocytes and endothelial cells. 

1. 4. 3. 4 Effect of MSCs on neurogenesis in the injured brain 

In highly regenerative tissues such as the skin the progeny of proliferating resident 

stem cells continually replaces dead or injured cells. The adult CNS however, was 

considered to be incapable of significant regeneration and self-repair. However, 

within the last four decades evidence has accumulated which demonstrates that 

neurogenesis persists within the postnatal brain (Altman and Das, 1965; Altman and 

Das, 1967) and more recently definitive evidence that new neurons are generated 

from stem cells within discrete regions of the adult brain (Temple, 2001). NSCs 
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capable of long-term self-renewal and multipotentiality have been found to persist in 

the adult mammalian CNS, including the subventricular zone and hippocampus 

(Gage, 2000; Rao et al., 1999; Gould et al., 1998; Mckay, 1997; Momma et al., 2000). 

The adult CNS also contains a range of progenitors with more limited capacities for 

growth and differentiation (Temple 2001). These adult neural progenitors are known 

to be abundant within the peri ventricular areas (as described above) and recent studies 

have revealed widespread occurrence within the parenchyma of various CNS regions 

(Palmer et al., 1999; Yamamoto et al., 2001). Consistent with these findings neuronal 

cell turnover within the CNS has been demonstrated (Gould and Gross, 2002). 

Although adult neurogenesis had originally been thought to occur in only a small 

number of discrete regions, more recent studies have demonstrated production of new 

neurons in many other CNS regions (Rietze et al., 2000; Pencea et al., 2001; Gould 

and Gross, 2002). More importantly, CNS injury stimulates the proliferation of 

endogenous progenitor cells in both known neurogenic sites (Liu et al., 1998; Magavi 

et al., 2000; Arvidsson et al., 2002; Nakatomi et al., 2002) and in regions where 

neurogenesis does not occur under normal physiological conditions (Johansson et al., 

1999; Yamamoto et al., 2001). These observations have been met with much 

excitement because of the potential to induce endogenous regeneration following 

injury. However, initial studies have shown regeneration of new neurons to occur at 

low frequency or simply the survival of existing neurons (Magavi et al., 2000). It is 

thought that one reason for this limited endogenous response to injury is the lack of 

trophic support and the presence of inhibitory signals within the brain 

microenvironment. Consistent with this concept, intra-ventricular infusion of growth 

factors can recruit endogenous neural progenitor cells and induce massive 

regeneration in the hippocampus following a transient ischemic event (Jin et al., 2002; 

Benraiss et al., 2001 ). 

Long-term recovery of function will reqmre neuronal replacement. Induction of 

neurogenesis by MSCs may contribute to functional improvement following stroke or 

neural injury. Transplantation of MSCs amplifies the endogenous response to injury 

possibly through the production of soluble growth factors that promote neurogenesis 

(Chen et al., 2003; Chen et al., 2005, Chen et al., 2001). Following transplantation of 

MSCs a significant increase in cell number was measured in the subventricular zone 
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after stroke (Chen et al., 2003). Many of these cells had markers of newly formed 

neuronal cells such as Tuj-1. Neurogenesis within the adult brain is mediated by 

trophic influences (Hsieh 2004; Takahashi et al., 1998). Neurotrophic factors 

produced by MSCs appear to induce neurogenesis in the adult brain following injury, 

amplifying the endogenous response; this may be a direct effect on resident 

NSC/progenitor or as a result of providing a more favorable microenvironment for the 

normal endogenous response to be more effective. 

1.4.4 Concluding remarks 

A large body of evidence demonstrates that MSC transplantation in various animal 

models of CNS injury has a therapeutic benefit, promoting functional recovery. The 

mechanism of this therapeutic benefit remains elusive and may result from a number 

of effects on endogenous brain plasticity. The contribution made by trans­

differentiation of MSCs remains to be determined but current evidence suggests that 

this process is insufficient to fully explain functional recovery following injury. 
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Treatment Starting Verification of neuronal/glial References 
Material phenotype 

Chemicals 
Isobutylmethylxantine (IBMX) + Human BMSCs Neuron-like morphology, expression Deng et al. (200 I) 
dibutyryl c AMP of neuronal markers determined by Rismanchi et al (2003) 

WB 
~-Mercaptoethanol (BME) RatBMSCs Neuron-like morphology, expression Woodbury et al. 
followed by butylated of neuronal markers determined by (2000,2002) 
hydroxyanisole (BHA) and WBand lHC Munoz-Elias et al 
dimethylsulfoxide (DMSO) (2003) 

Rismanchi et al (2003) 
Jori et al. (2005) 

5-Azacytidine Clonal lines derived Neuron-like morphology, expression Kohyama et al (200 I) 
from murine BMSCs of neuronal markers determined by 

RT-PCR and IHC, 
electrophysiological characterisation 
and calcium uptake imaging 

~-Mercaptoethanol (BME) + Size-sieved Human Neuron-like morphology, expression Hung et al (2002a) 
retinoic acid (RA) BMSCs of neuronal markers determined by 

WB and IHC, electrophysiological 
characterisation 

Butylated hydroxyanisole (BHA) Mouse BMSCs Expression ofNSE and NeuN Levy et a!. (2003) 
+dibutyryl cAMP+ Hellmann et al. (2006) 
Isobutylmethylxantine (IBMX) + 
retinoic acid (RA) +ascorbic acid 
Neurotrophic (or glial) 
{actorsl~ene trans{ection 
Combination ofGDNF, PACAP Size-sieved BMSCs Neuron-like morphology, expression Tzeng et al (2004) 
and dibutyryl c AMP of neuronal markers determined by 

WBand!HC 
Generation of neurospheres by Mouse BMSCs Neuron-like morphology, expression Locatelli et al (2003) 
culturing with b-FGF/EGF and of neuronal markers determined by 
induction with RA and sonic WB and IHC 
hedgehog 
Transfection with the Notch Human, mouse and Neuron-like morphology, expression Dezawa et al (2004) 
intracellular domain (NJCD) rat BMSCs of neuronal markers determined by Kamada et al (2005) 
followed by treatment with WB and lHC, electrophysical 
neurotrophic factors (such as characterisation 
BDNF) 
Transfection with noggin Clonal line-derived Neuron-like morphology, expression Kohyama et al (200 I) 

from murine BMSCs of neuronal markers determined by 
IHC calcium uptake imaging 

Glial growth factor (GGF) RatBMSCs Cells exposed to GGF-expressed Tohill et al (2004) 
GFAP and SIOO 

Human neural stem cell (NSC) Human BMSCs Formation ofneurosphere-like Hermann et al (2004) 
culture conditions aggregates with expression of 

proneural genes 
Co-culture with neural cells 
Co-culture with rat or mouse fetal Human and mouse Morphology and IHC labelling of Sanchez-Ramos et al 
midbrain cultures BMSCs neuronal markers . (2000) 
Co-culture with astrocytes Murine bone marrow Neuronal morphology, expression of Jiang et al (2002a, 

multipotent adult neuronal markers determined by IHC, 2003) 
progenitor cells electrophysiological characterisations 
(MAPCs) 

Co-culture with mouse NSCs RatBMSCs Nestin-positive cells selected in Wislet-Gendebien et al 
classical NSC medium could (2003) 
differentiate into GF AP-positive 
expressing astroglial-like cells when 
co-cultured with mouse NSCs 

Co-culture with cerebellar granule Rat BMSCs Nestin-positive cells selected in Wislet-Gendebien et al 
neurons classical NSC medium could (2005) 

differentiate into GF AP-positive 
astroglial-like cells or NeuN-positive 
and electrically excitable neuron-like 
cells when co-cultured with mouse 
NSCs 

Table 1.1 Methods used for the induction of a neuronal phenotype in MSCs. 
Adapted from Chen et al., 2006 
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Treatment Starting of neuronal/glial References 
Material 

Isobutylmethylxantine (IBMX) + Human BMSCs Deng et al. (200 I) 
dibutyryl cAMP Rismanchi et al (2003) 

~-Mercaptoethanol (BME) Rat BMSCs morphology, expression Woodbury et al. 
followed by butylated of neuronal markers determined by (2000,2002) 
hydroxyanisole (BHA) and WB andiHC Munoz-Elias et al 
dimethylsulfoxide (DMSO) (2003) 

Rismanchi et al (2003) 
Jori et al. 

5-Azacytidine Clonal lines derived Neuron-like morphology, expression Kohyama et al (200 I) 
from murine BMSCs of neuronal markers determined by 

RT-PCR and IHC, 
electrophysiological characterisation 
and calcium 

~-Mercaptoethanol (BME) + Size-sieved Human euron-like morphology, expression Hung et al (2002a) 
retinoic acid (RA) BMSCs of neuronal markers determined by 

WB and IHC, electrophysiological 
characterisation 

Butylated hydroxyanisole (BHA) Mouse BMSCs Expression ofNSE and NeuN Levy et al. (2003) 
+dibutyryl cAMP+ Hellmann et al. (2006) 
Isobutylmethylxantine (IBMX) + 
retinoic acid + ascorbic acid 

Size-sieved BMSCs Neuron-like morphology, expression Tzeng et al (2004) 
of neuronal markers determined by 
WB and!HC 

by Mouse Neuron-like morphology, expression Locatelli et al (2003) 
culturing with b-FGF/EGF and of neuronal markers determined by 
induction with RA and sonic WBandiHC 

Transfection with the Notch Human, mouse and Neuron-like morphology, expression Dezawa et al ) 
intracellular domain (NICD) rat BMSCs of neuronal markers determined by Kamada et al (2005) 
followed by treatment with WB and IHC, electrophysical 
neurotrophic factors (such as characterisation 

Clonal line-derived Neuron-like morphology, expression Kohyama et al (200 I) 
from murine BMSCs of neuronal markers determined by 

RatBMSCs Tohill et al (2004) 

Human BMSCs Hermann et al (2004) 

et al 

Neuronal morphology, expression of Jiang et al (2002a, 
neuronal markers detem1ined by IHC, 2003) 
electrophysiological characterisations 

Co-culture with mouse NSCs Nestin-positive cells selected in Wislet-Gendebien et al 
classical NSC medium could (2003) 
differentiate into GF AP-positive 
expressing astroglial-like cells when 
co-cultured with mouse NSCs 

Co-culture with cerebellar granule Rat BMSCs Nestin-positive cells selected in Wislet-Gendebien et al 
neurons classical NSC medium could (2005) 

differentiate into GF AP-positive 
astroglial-like cells or NeuN-positive 
and electrically excitable neuron-like 
cells when co-cultured with mouse 

Tablel.l Methods used for the induction of a neuronal phenotype in MSCs. 
Adapted from Chen et al., 2006 
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(Trophic) Factors Action on Recent reviews 
EGF Stem cell proliferation, Xian and Zhou, 2004, Front 

migration, differentiation and Biosci 9:85-92 
survival. 
Neural/glial precursor cell Wong, 2003, Cell Mol Life Sci 
proliferation, migration, 60:113-8 
differentiation and survival. 

bFGF Neural induction Akai and Storey, 2003, Cell 
115:510-2 

Stem cell proliferation, Reuss and von Bohlen and 
migration Halbach, 2003, Cell Tissue Res 
Neural/glial precursor 313:139-157 
proliferation 

NGF Neuronal plasticity Jaaro et al., 200 I, Trends 
Neurosci 24:79-85 

Regulation ofneuron number Kruttgen et al.,2003, 
Neuropathol Exp Neural 

Neuronal maturation and A62:340-50 
survival Heerssen and Segal, 2002, 

Trends Neurosci 25: 160-5 
BDNF Neuronal plasticity, maturation Kruttgen et a!., 2003, 

and survival Neuropathol ExpNeurol 
A62:340-50 
Heerssen and Segal, 2002, 
Trends Neurosci 25: 160-5 

CTNF Neural development and repair Murphy et a!., 1997, Prog 
Astrocytes differentiation Neurobiol 52:355-78 
Neuronal survival Sleeman eta!., 2000, Pharm 

Acta Helv 74:265-72 
RA Neurogenesis onset Appel and Eisen, 2003, Neuron 

40:461-4 
Ventral neural patterning McCaffrey eta!., 2003, Europ J 
Amplification of response to Neurosci 18:457-472 
neurotrophic factors 
Neural differentiation (motor 
neuron subtype) 

IGF-1 Neuronal development, Carro et a!., 2003, Mol 
Growth, elongation, and Neurobio/27: 153-62 
branching 
Neuronal cell death (prevention) Rabinovsky, 2004, Neural Res 

26:204-10 
LIF Neural precursor cell Metcalf, 2003, Stem cells 2! :5-

differentiation 14 
Neural development and repair Murphy eta!., 1997, Prog 
Neurotransmitter phenotype Neurobiol 52:355-78 

GDNF Neuronal morphology, survival, Markus et a!., 2002, Curr Opin 
development, and regeneration Neurobio/!2:523-53! 

Kirik eta!., 2004 Nature 
Neurosci 7:105-110 

Table 1.2: The effect of trophic factors on ~tern cell populations. Adapted from 
Bossolasco et al., 2005 
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Figure 1.1: Potential mechanism ofMSC neural differentiation. It has been proposed that an MSC 
may acquire a neuronal cell fate through either a series of progressive differentiation steps involving a 
number of progenitor cell stages to form a neuronal cell or an M SC may directly acquire a neuronal cell 
fate through a single step process. 



CHAPTER2 

Isolation and Characterisation of Postnatal BM 
Derived Mesenchymal Stem Cells In vitro 
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2.1 Introduction 

In order to define a cell as a multipotent stem cell, it must have the capacity to self 

renew and the ability to generate progeny of multiple cell lineages (Wagers and 

Weissman, 2004). The BM contains two prototypical stem cell populations: the well 

characterized HSCs which give rise to cells of all blood lineages and are able to 

reconstitute the hematopoietic system of irradiated mice (Till et al., 1964 ). The non­

hematopoietic stem cells of the BM stroma provide the structural and functional 

support for hemapoesis (Tavassoli and Friedenstein 1983). These latter populations 

of cells are derived from the complex stroma, and are referred to as MSCs because 

they can differentiate into multiple cell lineages of mesodermal origin (Prockop 

1997). 

MSCs have been isolated from a number of adult (da Silva Meirelles et al., 2006; Zuk 

et al., 2001; Seo et al., 2005; Sabatini et al., 2005; De Bari et al., 2001) and fetal 

tissues (Miao et al., 2006; Fan et al., 2005); however the principal source of MSCs in 

the postnatal organism remains the stromal tissue of the bone meduallary cavity 

(Wexler et al., 2003). The BM contains the highest numbers of colony forming 

progenitors compared to placental cord and peripheral blood when accessed by a 

CFU-F assay (Wexler et al., 2003). Despite considerable interest in the potential 

therapeutic applications of MSCs, there is still no well-defined method for the 

isolation and expansion of these cells in culture. Friedenstein et al., 1970, 1982 

initially isolated MSCs by their adherence to tissue culture plastic and these same 

procedures have been employed by many subsequent investigators (Piersma et al., 

1983; 1985; Howlett et al., 1986; Mardon et al., 1987; Beresford et al., 1992). The 

original reports by Friedenstein have been extensively replicated and extended by a 

number of other studies in which it was established that MSCs isolated by their 

adherence to tissue culture plastic were multi-potential with the capacity to 

differentiate into multiple cell lineages of mesodermal origin. This was observed both 

in culture (Pittenger et al., 1999; Bruder 1998; Muraglia et al., 2000) and following 

implantation in vivo (Haynesworth et al., 1992; Friedenstein et al., 1974b ). The 

relative ease of isolation and high proliferative potential in culture (Smith et al., 
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2004), led many investigators to evaluate the potential use of these cells as effective 

vehicles for cell and gene therapies (Nandoe et al., 2006; Vilquin and Rosset, 2006). 

The definitive evidence that BM contains cells with the capacity to differentiate into 

fibroblasts and other cells of mesodermal cell origin was first demonstrated by 

Friedenstein et al. (1974). Friedenstein reported the presence of adherent cells with a 

fibroblast-like morphology that grew as colonies and had the ability to differentiate 

into cells which resembled bone (Friedenstein et al., 1974; 1974b; Friedenstein et al., 

1987). It was further noted that these cells could be maintained in culture for 20-30 

population doublings and still retain their capacity for differentiation, which is a 

testimony to the stem cell-like characteristics of these cells (Friedenstein et al., 1987). 

As described previously, colonies of adherent cells were first described as CFU-F 

(Friedenstein et al., 1974). The CFU-F assay has since been used by many as a 

functional method to study mesenchymal progenitors (Clarke et al., 1989). These 

cells were later termed MSCs or marrow stromal cells, based on their ability to self 

renew and differentiate into mesenchymal cell lineages (Prockop et al., 1997). 

The identity of an MSC still remains controversial as there is no single universally 

accepted definition and little standardization in the procedures used to isolate and 

culture these cells (For review see: Short et al., 2003). BM stroma contains a mixture 

of mature cell types and progenitor cells at various stages of differentiation including 

fibroblasts, adipocytes, and osteogenic cells. MSCs can be isolated from a BM 

aspirate by preferential adherence to tissue culture plastic or by differential 

centrifugation through a percoll or ficoll density gradient to obtain a nucleated cell 

fraction (Pittenger et al., 1999). Cultures established by preferential adhesion are 

often heterogeneous in the first instance and difficult to clone (Friedenstein et al., 

1976). Cultures may only contain a limited number of cells with true CFU-F that 

would define them as a true stem cell (Wexler et al., 2003). Most researchers 

consider this population too crude to be referred to as a pure population of MSCs 

(Phinney 2002). One problem is that the adherent stromal cells possess many of the 

same characteristics of MSCs in terms of morphology, their ability to differentiate and 

expression of certain cell surface markers. As a result, the terminology is confusing 

and terms used may be inaccurate. This is further complicated by the fact that many 

independent investigators work with different starting populations of cells which 
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makes companson of findings between studies and laboratories more difficult, 

although efforts have been made to rectify this. Notably, Pittenger et al. (1999) 

provided what is considered the 'gold standard' for the functional definition of human 

MSCs. It was reported that a phenotypically homogenous population of MSCs could 

be isolated from a human BM aspirate using density centrifugation and that this 

population of cells had the capacity to differentiate into three principal cell lineages, 

oesteoblasts, chondrocytes and adipocytes, whereas fibroblasts (mature mesenchymal 

cells) did not process this ability (Pittenger et al. 1999). Furthermore, clonal analysis 

demonstrated that single cell colonies had a multipotent capacity confirming the 

identity of MSCs (Pittenger et al. 1999). In this study, we will refer to the adherent 

cell population obtained following percoll density centrifugation and differential 

adhesion as BM stromal cells, whereas MSCs should be considered a sub-population 

of this adherent culture with the ability to form colonies and exhibit the potential to 

form the three principle mesenchymal cell lineages (bone, fat and cartilage). 

In humans, MSCs are primarily isolated from aspirates of BM harvested from the 

superior iliac crest of the pelvis (Digirolamo et al., 1999; Pittenger et al., 1999). In 

addition, MSCs can be isolated from the tibial and femoral marrow compartments 

(Murphy et al., 2002) as well as the thoracic and lumbar spine (D'Ippolito et al., 

1999). Pittenger et al. ( 1999) showed that MSCs represent only 0.001-0.01% of the 

total number of nucleated cells in the BM (Pittenger et al., 1999). However, this 

population can be expanded ex vivo and enriched by standard culture conditions. 

Whole BM samples obtained from aspirates are usually subjected to fractionation on a 

density gradient solution such as percoll (Lange et al., 2005). The mononuclear cell 

fraction obtained at the interface is then explanted ex vivo by plating at densities from 

1x104 cells/cm2 to 0.4x106 cells/cm2 (Lodie et al., 2002; McBride et al., 2003). Cells 

initially adhere to the tissue culture plastic, possess a fibroblastic appearance and 

develop into symmetrical colonies between 5-7 days after plating. At this stage the 

cell population also contains a relatively high fraction of hematopoietic cells, most of 

these are lost in the first 2 weeks of culture. 

Contamination of cultures with hematopoietic cells can be monitored by staining for 

cell surface markers, including CD34, CD45, CD 11 b and CD 14, which are present on 
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hematopoietic cells but are not expressed by MSCs (Ortiz et al., 2003). Several 

earlier investigations have determined the ideal culture conditions for selection of 

MSCs (Friedenstein et al., 1976) and include the culture of cells in basal medium in 

the presence of 10% FCS (Pittenger et al., 1999). Under these conditions, MSCs 

develop as an adherent phenotypically stable monolayer of cells. It has been found 

that human MSCs proliferate most rapidly, and maximally retain their 

multipotentiality if cultured at relatively low cell densities (Sekiya et al., 2002). 

Under these conditions, MSCs can be propagated for 20-30 population doublings in 

an undifferentiated state and retain their capacity for multi-lineage differentiation 

(Coulter et al., 2000; Coulter et al., 2001 ). 

There remain a number of obstacles in the isolation and culture of MSCs, which limit 

both our understanding of their biology and the potential therapeutic application of 

these cells. This is reflected in the lack of universally accepted definition on their 

phenotype, a problem which itself arises from the extensive heterogeneity of MSC 

cultures. A consistent feature of explanted CFU-F colonies is their considerable 

heterogeneity in terms of their morphology, phenotype and developmental potential. 

A large number of studies have characterized the multi-lineage differentiation of 

MSCs in vitro derived from these adherent colonies, and these and other studies have 

observed functional heterogeneity in both clonal and non-clonal cell preparations 

(Phinney et al., 1999; Muraglia et al., 2000). A recent study reported the derivation 

of 185 immortalized MSC cell clones derived from human BM (Muraglia et al., 

2000). Less than one third were capable of differentiating into bone, cartilage and fat 

in vitro. In addition, the authors reported that these multipotential clones lost their 

capacity for chondrogenic and adipogenic differentiation with increasing passage 

number but retained their osteogenic differentiation as a default pathway of lineage 

commitment. This finding is consistent both with previous studies demonstrating a 

loss in multipotentiality in MSC cultures with expansion under standard conditions 

(DiGirolamo et al., 1999) and the initial reports of osteogenic differentiation of MSCs 

implanted in vivo following extensive ex vivo expansion (Friedenstein et al., 1987; 

Kuznetsov et al., 1997). Current methodologies for the putative isolation of MSCs 

select for the progeny of CFU-F and not the clonogenic precursors themselves and 

such starting populations are heterogeneous and there is no consensus of the 
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phenotype and therefore definition of MSCs. This problem is compounded in part by 

the lack of definitive cell surface markers. 

As described above, the property of plastic adherence itself is not sufficient to allow 

for purification of MSCs. Despite the fact that adherent BM stromal cells appear to 

possess the ability to differentiate, only a small proportion of such cells are CFU-F 

positive, indicating the BM stroma consists of a heterogeneous mixture of cells at 

different stages of development and maturation. As a consequence, many 

investigators have developed procedures to test for MSC enrichment and 

identification using selective cell surface markers. Stem cells and their differentiated 

progeny are often identified on the basis of the presence or absence of cell surface 

markers. However, there is currently no single antigenic marker that is specific to the 

MSC population. A number of antibodies have been developed in an effort to isolate 

and characterize human MSCs. For example, Stro-1 was developed by Simmons et 

al., 1991) and was found to react against non-hemapoetic progenitor BM stromal 

cells. Antibody SB-10 recognizes the CD166 antigen (activated leuckocyte cell 

adhesion molecule) that is present on undifferentiated MSCs but is absent from cells 

that embark upon the formation of bone (Bruder et al., 1998c ). Caplan and co­

workers developed the SH-2 antibody that reacts against an epitope of the 

transforming growth factor beta receptor, endoglin (CD105), (Haynesworth et al., 

1992) and the SH-3 and SH-4 antibodies, which recognize distinct epitopes of CD73 

( ecto-5' -nucleotidase). Neither of SH2, SB-1 0, SH3 or SH4 reacted with 

hematopoietic cells or mature osteocytes. Pittenger et al. (1999) reported that CD44, 

CD90 and CD29 are also important antigenic determinants, but that none of these 

antigens are exclusive to MSCs and can be found on a number of cell types including 

mature mesenchymal derivatives in addition to endothelial, epithelial and muscle 

cells. MSCs do express a large number of adhesion molecules, extra cellular matrix 

proteins, cytokines and growth factor receptors all associated with their function and 

cell interactions within the BM stroma. As a result antibodies that recognize cell 

surface antigens as described above cannot be used independently to examine the 

phenotype of MSCs or for direct cell isolation but must be used in combination to 

achieve enrichment. 
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A number of laboratories have developed protocols for enrichment of the MSCs based 

on the expression or absence of cell surface markers, including irnrnunodepletion of 

CD34/CD45/CD11 b (hematopoietic cell markers) positive cells and selection of 

CD 105 positive cells using immunomagnetic sorting (Cheifetz et al., 1992). 

However, the exact phenotype of the cells isolated by these procedures has yet to be 

confirmed and standardized across different laboratories. Indeed, a lack of 

standardization between laboratories, in terms of cell isolation, enrichment and 

immunophenotype, makes it difficult to compare results between different studies and 

draw firm conclusions. The lack of definitive markers that associate the 

developmental potential of MSCs with a specific phenotypic trait means that 

functional characterization of MSCs is the gold standard for proof of cell identity. 

This involves testing the developmental potential of MSCs in culture. 

2.2 Materials and Methods 
2. 2.1 Isolation of MSCs from postnatal BM 

Rat MSCs were isolated using established procedures with modification (Javazon et 

al., 2001 ). Cells were obtained from 6-8 month old Wistar Rats, which were 

individually euthanised by C02 asphyxiation. The femurs and tibiae were removed, 

cleaned of all connective tissue and placed on ice in 20 ml of collection media. 

Collection media consisted of RPMI-1640 supplemented with 10% FCS, 100 U/ml 

penicillin, 100 !!g/ml streptomycin, and 12 !!M L-g1utarnine. The ends of each femur 

and tibia were clipped to expose the BM. BM aspirates were obtained by inserting a 

21-gauge needle into the shaft of the bone and flushing it with 10 ml of collection 

media, the subsequent aspirate from one rat was plated into one T75 cm2 flask. The 

cells remained in the collection aspirate for 2 days, allowing stromal cells to adhere to 

the tissue culture plastic. The cells were then washed using complete culture medium 

(CCM) consisting of Dulbecco's Modified Egales Medium (DMEM) supplemented 

with 10% FCS, 100 U/ml penicillin, 100 !!g/ml streptomycin, and 12 !!M L-glutamine 

and 1 x non-essential amino acids to remove non-adherent hematopoietic 

contaminants. 
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The cells were subsequently grown in CCM at 3rC and 5% C02 for 3 days, the 

medium was replaced with fresh medium, the adherent cells were grown to 90% 

confluence were they were defined as passage 0 (PO). For passing, MSCs were 

washed with phosphate-buffered saline (PBS) and detached by incubation with 0.25% 

trypsin and 0.1% ethylene diamine tetraacetic acid (EDT A) for 5 to 10 minutes at 

37°C. CCM was added to inactivate the trypsin. The cells were centrifuged at 250 x g 

for 5 minutes, the medium was removed and cells were resuspended in 1 to 1 0 ml of 

CCM. The cells were subsequently seeded at 10,000 cells/cm2 between PO and P1 and 

then at 1 0 cells/cm2 during subsequent passing to initiate expansion, unless otherwise 

stated. 

2. 2. 2 Effect of plating density on population growth dynamics 

Passage 2 MSCs were plated in triplicate at initial seeding densities of 5, 10, 50, 100, 

500 and 1000 cells/cm2 in CCM. The media was changed every 3 days for 15 days. 

To assay cell number, cells were lifted with trypsin/EDT A, and cells from each plate 

were counted in duplicate with a hemocytometer. Phase contrast images were also 

obtained of cultures plated at different initial plating densities at each time point using 

a Nikon 330 inverted microscope. 

2. 2. 3 Selection of culture media 

Passage 2 MSCs were plated at 10 cells/cm2 on 60cm2 tissue culture dishes in 1 of 4 

basal media compositions: a-modified minimal essential medium ( a-MEM) 

(Invitrogen), DMEM (Sigma), IDMM (Sigma) or RPMI-1640 (invitrogen). Each 

medium was supplemented with 10% FCS (unless otherwise stated), 100 U/ml 

penicillin, 1 00 1-lg/mL streptomycin and 12 mM L-glutamine. The media was changed 

every 3 days for 15 days. Cell number was determined every 3 days using a 

hemacytometer. 

2. 2. 4 Selection of serum concentration 

To assay the effects of serum concentrations, cells were cultured in DMEM 

supplemented with either 1 ,2,5, 10,20 or 30% FCS and 100 U/ml penicillin, 100 

1-lg/mL streptomycin and 12 mM L-glutamine. Cells were maintained under these 
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conditions for 15 days and media was changed every 3 days, with cell numbers 

assayed every 3 days using a hemacytometer. 

2. 2. 5 Immunocytochemical staining 

PBS washed cells were fixed in 4% paraformaldehyde (PF A, in PBS) for 1 hour at 

room temperature followed by immunocytochemical staining as previously described 

(Palmer et al., 1999). After fixation, cells were incubated with primary antibodies 

overnight at 4°C in blocking buffer (5% goat serum, 0.2% Triton X-100 in PBS). 

Cells were then incubated for 1 hour with secondary antibodies conjugated to 

fluorescein isothiocyanate (FITC). Primary antibody concentrations used are as 

follows: Mouse anti-smooth muscle actin (SMA, Sigma, 1 :200), mouse anti­

fibronectin (Sigma, 1 :500) and mouse anti-collagen-! (Sigma, 1:1 00). Secondary 

antibodies were purchased from Jackson Immuno-Research laboratories and used at a 

concentration of 1 :250 dilution. 

2. 2. 6 Flow cytometry analysis of cell surface markers 

Cells required for flow cytometry analysis were washed and resuspended in F ACS 

medium (6.6g NaCl, 1.5g Na2HP04, 0.2g KH2P04, lg BSA, 1g Sodium azide, 

1 OOOml ddH20, filtered through a 0.2~-t filter) at a concentration of 1 x 106 cells/ml. 

200~-tl of cell suspension (2 x 105 cells) was pipetted into each well of a 96-well plate 

(Greiner), centrifuged at 300g at 4°C for 10 minutes and the supernatant discarded. 

50~-tl of the required primary mouse monoclonal antibody was added to the cells at the 

appropriate concentration and the plate incubated on ice for 20 minutes. Antibodies 

included (all anti-mouse monoclonal): CD90 (Chemicon, 1:1 00), CD45 (Chemicon 

1:1 00), CD44 (Chemicon 1 :50), CD29 (Sigma, 1:1 00). TRA 2-54 (1 :200), CD 56 

(1:50), CD73 (1:100), CDllb (1:50) and HLA Class I (1:200) All antibodies unless 

stated otherwise were obtained from the developmental hybridoma bank. Following 2 

washes with 150-200~-tl F ACS medium, 50~-tl secondary FITC antibody (anti-mouse Ig 

Fab2 fraction, FITC conjugated - DAKO) was then added to the cells (1 :20) and 

incubated on ice in the dark for 20 minutes. The cells were then washed twice with 

F ACS medium and transferred in 500 ~-tl aliquots to 5ml centrifuge tubes (Greiner) for 

flow cytometry analysis. 1 0~-tl of 0.25mg/ml propidium iodide (Sigma) was added to 
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each sample to assess viability of cell populations. Analysis was performed using a 

coulter EPICS XL flow cytometer. FITC and Cy-3 were identified by using a 530 and 

585 band pass filter respectively, and quantification was completed using CellQuest 

Software (Becton Dickinson). Ten thousand events were acquired per sample with 

fluoresence measured on logarithmic scales. Forward and side light scatter gates were 

set to exclude dead debris and clumps of cells. To calculate the percentage of positive 

cells, linear gates were set at 0.1 %, on samples stained only with secondary 

antibodies, and expression corresponding to a fluoresence signal exceeding this 

percentage was measured. 

2. 2. 7 Propidium iodide for quantification of cell viability 

To assess cell death cells were trypsinized, washed and processed for flow cytometry 

by forming a single cell suspension. The suspension was maintained on ice prior to 

analysis and stained with 1 ug/ml propidium iodide (PI) (Sigma) just prior to analysis 

by flow cytometry. 

2. 2. 8 Effect of growth factors on population growth dynamics 

To assess the short-term effects of growth factors on the expansion of MSCs, cells 

were grown in DMEM medium supplemented with 10% FCS and 100 U/ml 

penicillin, 100 ~-tg/mL streptomycin and 12 mM L-glutamine. In addition, the media 

was supplemented with either basic fibroblast growth factor (bFGF, Invitrogen), 

epidermal growth factor (EGF, Invitrogen), platelet derived growth factor (PDGF, 

Invitrogen) or leukemia inhibitory factor (LIF, Sigma) at concentrations ranging from 

0.2-1ng/ml. Cell numbers were assayed every 3 days for 15 days using a 

hemacytometer. In experiments examining the long-term effects of growth factor 

supplementation, MSCs were maintained continually from the time of isolation in a 

growth factor supplemented media. 

2. 2. 9 Determination of population doublings and average population doubling time 

The mean population doubling time was calculated according to the equation: 

TD = t plog2/(logNt - logNo ), where No is the number of seeded cells, Nt the 

number of harvested cells, and t is the time of the culture (in h). The finite population 

doubling was determined by cumulative addition of total numbers generated from 
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each passage. To calculate the number of seeded cells for primary culture the cells, 

MSC cells were cultured in a 25-cm2 plastic flask in complete medium. Three days 

after culture initiation, i.e., when confluency had been achieved, the cells were 

trypsinized and counted and the remainder split between two 25-cm2 flasks. The 

number of the cells in the time of confluency was taken as the number of harvested 

cells. Data were presented as mean±standard deviation. 

2. 2.10 Colony forming unit (CFU) assays 

CFU-F assays were carried out as previously described according to Javazon et al., 

2001. Rat MSCs were washed with phosphate buffered saline (PBS) and detached by 

incubation with 0.25% trypsin and 0.1% EDT A (Sigma) for 5-10 minutes at 3 rc. 
Complete serum containing medium was added to inactivate the trypsin. The cells 

were centrifuged at 250 x g for 1 0 minutes, the medium was removed, and the cells 

were re-suspended in 10 ml complete medium. The cells were counted in duplicate 

using a hemacytometer and then 1 00 cells were plated in a 60cm2 tissue culture dish. 

Cells were cultured for 12 days with medium replaced every 3 days. After 12 days, 

the media was removed, and cells were fixed in 1 00% methanol for 1 0 minutes at -

20°C. Culture dishes were subsequently stained with 0.5% crystal violet solution in 

1 00% methanol for 10 minutes. The cells were washed twice with distilled water, and 

the number of colonies were counted. Colonies less than 2mm in diameter and faintly 

stained colonies were ignored. To access the incidence of CFU-F in cultures 

established in the presence of various growth factors, cells were isolated and 

immediately cultured in media supplemented with either FGF-2, EGF, PDGF or LIF 

at a concentration of 1 ng/ml. 1 00 P2 cells isolated and cultured under these conditions 

were then transferred to 60cm2 tissue culture dishes and maintained for 14 days in 

growth media devoid of growth factors. 

2. 2.11 Osteogenic assay 

Cells were seeded at a density of 3 x 103 cells/cm2 in tissue culture dishes and 

cultured in DMEM media supplemented with 10% FCS, 100 nM dexamethasone 

(Sigma), 50 ~M ascorbic (Sigma) acid 2-phosphate (Sigma), 1 OnM ~­

glycerophosphate (Sigma). The cultures were maintained for upto 3 weeks and the 

culture medium was replaced every three days. After either 7, 14 or 21 days of 
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culture, cells were rinsed twice with PBS, and fixed with 10% buffered formalin for 

10 minutes at room temperature. Cells were stained with 5% silver nitrate solution for 

von kossa staining. Cells were incubated in 5% silver nitrate solution for 1 0 minutes 

in the dark, washed thoroughly and then exposed to bright light for 15 minutes. 

Examining 1 0 non-overlapping visual fields and determining the % area in each field 

that was mineralized, as identified by Von Kossa staining, quantified osteogenic 

differentiation. 

2. 2.12 Adipogenic assay 

Cells were seeded at a density of 2 x 104 cells/cm2 in tissue culture dishes. When the 

cell culture was confluent, the adipogenic differentiation was initiated by three cycles 

of induction/maintenance culture. Each cycle consisted of 3 days of culture in the 

induction media (DMEM 10% FCS, 1 1-!M dexamethasone, 0.2 mM indomethacin, 10 

ug/ml insulin and 0.5mM 3-isobutyl-1-methylxanthine) followed by 2 days culture in 

maintenance media (DMEM with 10% FCS and 10 1-!g/ml of insulin). After either 

7,14 or 21 days culture, cells were rinsed twice with PBS, and fixed with 10% 

buffered formalin for 10 minutes at room temperature. Fixed cells were then stained 

with 0.3% Oil-red-O (RA Lamb) to identify lipid accumulation within cells. The 

number of adipocytes generated following differentiation was quantified by 

examining 10 non-overlapping visual fields (approximately 25 cells/field of view) at x 

100 magnifications. The number of cells, which contained oil-red-O positive lipid 

droplets, was recorded. 

2. 2.13 Image analysis 

Labeled cells were visualized using an inverted fluorescent microscope (model E660 

Nikon) and a CCD camera (Spot RT; diagnostic instruments) with individual filter 

sets for each channel. Color images were generated using Adobe Photoshop (Adobe 

systems, Mountain View, CA). Phase contrast images were obtained either on the 

same microscope or an inverted bright field microscope Nikon 330. Phase contrast 

images were also generated using Adobe Photoshop. 

2. 2.14 Statistical analysis 
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Statistical analysis was carried out using Graph Pad Prism Software version 4. Results 

were analysed for statistical significance using ANOVA and all error bars are 

expressed as standard error+/- mean (Mean±SEM). All data unless stated otherwise is 

expressed as Mean±SEM. Post hoc analysis was done using Bonferroni or Dunnetts 

post hoc analysis for corrected planed comparison. 

2.3 Results 
2. 3.1 Isolation of MSCs from rat postnatal BM 

MSC isolation from postnatal BM is classically performed by adhesion to tissue 

culture plastic as originally described by Friedenstein and colleagues (Friedenstein et 

al., 1982). As described previously MSCs are isolated from the stromal fraction of 

BM and constitute a distinct population of cells from cells of the hematopoietic 

lineage. As a result, the principal contaminants when using BM explants to isolate 

MSCs are hematopoietic cells mainly erythrocytes. Hematopoietic cells do not adhere 

to tissue culture plastic therefore this property of selective adhesion to tissue culture 

plastic can be used as a means of isolating MSCs. 

In the current studies initial cell explants were obtained by flushing the cut ends of the 

long bones using sterile culture medium. The BM is a sterile site, and sterility is only 

compromised once the bone end is cut. Therefore to maintain optimal sterility the 

bones were dissected from the animal and then transferred to a class II biological 

hood were the bones were cut and aspirated. The aspirate was then centrifuged and a 

single cell suspension was generated by mechanical dissociation. There is little extra­

cellular matrix present in marrow and gentle mechanical disruption (by pipetting and 

passage through a 21g syringe needle) can readily dissociate stroma and 

Hematopoietic cells into a single cell suspension. 

The single cell suspensions were subsequently plated at a density of 104-105 cells/cm2 

in T75 cm2 tissue culture flasks. Under these conditions stroma cells rapidly adhere 

and can be easily separated from non-adherent hematopoietic cells by repeated 

washing. Preliminary isolation studies showed that this initial seeding density was 
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optimal for obtaining the maximal number of non-overlapping colonies. At higher 

seeding densities colonies overlapped and hematopoietic contamination was higher. In 

addition, a lower cell density was associated with low cell viability and therefore a 

low cell yield. Following centrifugation, and re-suspension, the total number of cells 

counted was between approximately 800,000 and 1000,000 cells. 

Within 24 hours of plating a number of adherent cells, mostly spindle shaped, 

although cell morphology was heterogeneous were apparent at the bottom of the 

tissue culture flask (Figure 2.1a). Other cells present in the culture (approx 30%) were 

highly refractile (phase bright) and remained in suspension (Figure 2.1a,b, c and d). 

these cells did not adhere to the bottom of the tissue culture dish. These cells are 

contaminating cells of the Hematopoietic lineage most of which are erythrocytes. By 

48 hours (Figure 2.1 b) adherent cells spread and acquired a more stromal-like 

morphology with foci of 2-4 cells. The cells in these foci remained relatively dormant 

for 2 to 4 days and then began to multiply rapidly. At 6 days small cell colonies (1 0-

20 cells) morphologically resembling fibroblasts were evident at low magnification 

(x10) (Figure 2.1c). These colonies continued to grow in size (50-100 cells in size) 

and eventually overlapped and merged forming a monolayer culture by 10-12 days 

following initial plating. At this stage isolated cells were described as PO and still 

contained a high fraction of contaminating cells ( approx > 10% ). However, all of the 

readily identifiable hematopoietic cells were lost as cells were maintained as primary 

cultures for 2-3 weeks (Figure 2.1 e,t). 

When PO cultures reached confluence, cells were passaged by enzymatic dissociation 

(Trypsin). Single cell suspensions were then replated at the appropriate seeding 

density. For the first passage (PO-P1), cells were replated at high cell density (1,000 

cells/cm2
) to maintain high cell viability. The culture reached >70% confluence 

within 3 days and was subsequently replated for expansion at low cell densities (10-

50 cells/cm2
). P1 cells were heterogeneous in morphology and consistent with 

previous reports (Javazon et al., 2001; Sekiya et al., 2002), three different phenotypes 

were observed: (1) fibroblastic elongated cells, (2) large flattened cells and (3) thin 

star shaped cells (Figure 2.le). The predominant cell phenotype observed in early 

growth phases ofthe culture was spindle shaped cells (Figure 2.1t). 
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2. 3. 2 Verification of MSC phenotype 

In the current study MSC identity was confirmed by flow cytometry for MSC 

associated, cell surface markers (Figure 2.2), immunofluorescent staining of extra­

cellular matrix proteins (Figure 2.3 a-c), CFU-F assays (Figure 2.3 d-f) and the ability 

of cells to differentiate into mesodermal cell lineages (Figure 2.4). Although there are 

no definitive markers for the identification of the MSC phenotype an analysis of 

markers expressed by MSCs can be used monitor consistency between cell 

preparations and an analysis of hematopoietic surface markers was used to monitor 

hematopoietic contamination within the cell preparations. Examples of surface 

molecule profiles for selected markers are shown in Figure 2.2. CD45 and CD11 b 

were used to monitor contamination of cultures with cells of the hematopoietic cell 

lineage. CD45 (leukocyte common antigen) is known to be highly expressed on all 

hematopoietic cells (Trowbridge et al., 1993). CD11b (MAC-1) is expressed on 

granulocytes, monocytes, NK cells and a subset ofT and B cells (Corbi et al., 1988). 

P2 MSC cultures were negative for the hematopoietic markers CD45 and CD 11 b. 

These markers were only detected in early cultures (data not shown). TRA 2-54 is a 

mouse monoclonal antibody, which is a non-isotype specific antibody against alkaline 

phosphatase (Andrews et al., 1984). All cells analyzed expressed TRA 2-54 (alkaline 

phosphatase), a marker commonly expressed by undifferentiated stem cells that 

decreases on differentiation (Andrews et al., 1984). TRA 2-54 was expressed by all 

cells (>98%) in the culture but at a relatively low level of expression. CD90 (Thy 1.1) 

is highly expressed in connective tissue, fibroblast and stromal cell lines, and is also 

expressed by hematopoietic cells (Reif 1989; Criag et al., 1993). Its use therefore as a 

marker of MSCs is not in distinguishing these cells from hematopoietic contaminating 

cells but in determining the undifferentiated status of cells. MHC-class I and CD90 

(Thy 1.1) were expressed at high levels on P2 cells (>98% ). The mean florescence 

intensity (MFI) of this staining has high as indicated as indicated by the rightward 

shift of the positive curve (solid peak). This expression was consistent with the 

undifferentiated state of the cells. CD29, CD73, CD 56 and CD44 are all expressed to 

varying degrees on MSCs isolated from a number of different sources and species ( da 

Silva Meirelles et al., 2006; Peister et al., 2004). Their expression does not necessarily 

relate to function but their expression coupled with the absence of hematopoietic 

markers is consistent with an MSC phenotype, but not definitive. The expression of 
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CD29 (~-1 integrin), CD56 (N-CAM), CD73 (Ecto-5'-nucleotidase) and CD44 

(surface glycoprotein) when present displayed moderate intensity staining, however 

not all cells in the culture expressed these markers. CD29 was expressed by 81% of 

cells; CD 56 was expressed by 92%, CD44 79% and CD73 81%. The reason why a 

proportion of cells do not express these markers is currently unknown but the variable 

expression levels of these markers within the culture and the expression profile as a 

whole is consistent with previous reports for the isolation of rat MSCs (Javazon et al., 

2001). 

Cultured MSCs synthesize an extra cellular matrix and therefore detection of these 

proteins can be used to confirm the identity ofthe cell population (Owen 1988). Using 

monoclonal antibodies directed at fibronectin and type-1 collagen we found that 

MSCs isolated by differential adhesion, all expressed these extra cellular proteins as 

detected by immunofluorescence staining (Figure 2.3a,c ). MSCs isolated by this 

procedure also expressed aSMA (a vascular smooth muscle cell marker, Figure 2.3b) 

at high levels consistent with their relationship to perivascular cells (Gronthos et al., 

2003). 

A large body of evidence demonstrates that stromal tissue isolated from postnatal BM 

contains clonogenic progenitor cells, some of which are multi-potent with the capacity 

to differentiate into a range of mesenchymal cell lineages (Bruder et al., 1994; 

Prockop, 1997). The colonies of cells morphologically resembling fibroblasts which 

develop from single cells in early cultures (Figure 2.1) are described as colony 

forming cells (CFU-F) and are the colongenic stromal progenitor cells responsible for 

colony growth. These progenitor cells therefore have the capacity for self-renewal and 

mesodermal differentiation. 

The colony forming ability of MSCs isolated usmg differential adhesion was 

evaluated by plating cells at low density (1 00 cells/60 cm2 dish) and accessing colony 

growth 12 days later by staining cells with crystal violet and counting the number of 

colonies formed. The incidence of CFU-F was calculated per 100 cells and expressed 

as a percentage (%) (Figure 2.12b). The Il10rphology of cells within early colonies 

was heterogeneous containing both spindle shaped cells and larger flattened cells 
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(Figure 2.3d). However, continued colony growth was the result of the proliferation of 

spindle shaped cells (Figure 2.3e) evident because cells with this morphology 

dominated late stage colony growth. These cell phenotypes dominated the centre of 

proliferating colonies whereas at the periphery of colonies where growth had slowed 

or ceased, cells with a large flattened morphology were evident (Figure 2.3f). The 

CFU-F frequency of P2 cells was highly variable but was within the range of 12-28%. 

Functional characterization of MSCs is the gold standard of which to test the stem cell 

characteristics of isolated presumptive MSCs (Pittenger et al., 1999). Cells were 

differentiated into either the osetogenic lineage (Figure 2.5) or adipogenic lineage 

(Figure 2.4). To induce adipogenic differentiation, cells were transferred to a serum, 

dexamethasone and insulin-containing medium for 3 weeks. Lipid droplet 

accumulation within cells was then evaluated. The presence of lipid droplets 

following differentiation was confirmed by oil red 0 positive staining. Lipid droplets 

were evident after only 7 days (Figure 2.4b) but 3 weeks was necessary to achieve 

maximal lipid accumulation (Figure 2.4d). Control cells maintained in non-inductive 

growth medium were negative for oil-red-O staining (Figure 2.4a). Lipid droplet 

accumulation progressively increased over the 3 weeks (Figure 2.4b,c, d). 

To induce osteogenic differentiation, confluent P2 cells were cultured m 

osteoinductive medium consisting of growth medium supplemented with 13-

glycerophosphate, dexamethasone and ascorbic acid (Jaiswal et al., 1997). Osteogenic 

differentiation was confirmed by the detection of a mineralized extra cellular matrix 

(Figure 2.5). Von Kassa staining was used to visualize the deposition of a calcified 

matrix on the surface ofthe culture dish as previously described (Jaiswal et al., 1997). 

The degree of extra cellular mineralization progressively increased from week 1 to 

week 3 of induction. These investigations collectively demonstrated that MSCs 

isolated by our procedures were capable of forming colonies (CFU-F, self renewal) 

and differentiating into bone and fat (multipoteniality). 

2. 3. 3 Effect of plating density 

Passage 2 rMSCs were plated at varying densities in standard culture medium 

(DMEM/10% FCS/L-Glutamine) on 75cm2 plates, and cell numbers were assayed 
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every 3 days for 15 days. As previously reported for human (Sekiya et al., 2002), rat 

(Javazon et al., 2001) and mouse MSCs (Peister et al., 2004), cultures showed a lag 

period in which little cell growth was evident for the first 3 days of culture (Figure 

2.6a). Thereafter a rapid expansion in cell number was evident (Figure 2.6a,b). The 

rates of expansion of the cultures were extremely sensitive to the initial plating 

density with significant differences in cell growth between cultures plated at different 

densities (Figure 2.6a,d). Rat MSCs showed decreased growth rates as the initial 

plating density of the culture increased (Figure 2.6a) with cultures seeded at 5cm2 and 

1 0 cm2 showing the greatest fold increase in cell number over the 15 day period 

(Figure 2.6b ). Cell expansion was significantly less in cultures with an initial seeding 

density of 500 cm2 or 1000 cm2 however cell growth was still apparent. Cells plated at 

an initial density of 10 cells/cm2 expanded 1828.3±114.4 fold over 15 days growth, in 

contrast to cells plated at a density of 1000 cells/cm2 which expanded 32.5±0.9 fold 

over 15 days growth. Therefore low initial plating densities are associated with higher 

growth rates and greater fold expansion over a given time period. Consistent with 

these observations the total numbers of cells generated over 15 days showed the same 

pattern as observed for fold expansion (Figure 2.6b ). The yield per cell following 15 

days growth was also greater for cells plated at a density of 5 cells/cm2 and decreased 

as initial plating density was increased (Figure 2.6e). We next tested the ability of 

single cells to reform colonies following growth at different initial plating densities. A 

CFU assay was used as previously described. Cells were seeded at densities ranging 

from 5-1000 cells/cm2 and cultured for 15 days. On day 15, 100 cells from each 

culture was transferred to a 60cm2 dish and incubated for 14 days. After 14 days, 

dishes were stained with crystal violet to evaluate colony growth. There was 

considerable variation in the colony forming efficiency of cells grown from cultures 

plated at varying initial plating densities. The CFU-F efficiency ranged from 34.7±2.4 

(in cells grown from seeding densities of 5 cells/cm2
) to 5.33±1.5 (in cells grown 

from an initial plating density of 1000 cells/cm2
). Therefore consistent with the results 

of expansion studies CFU-F efficiency was higher in cells grown from low initial 

plating densities. 1 way analysis of variance followed by Bonferroni post hoc analysis 

revealed that the CFU-F of cells seeded at 5 cells and 10 cells/cm2 was significantly 

(P<0.01) higher than cultures initially seeded at 50, 100 and 500 cells/cm2
. Cultures 

seeded at 1000 cells/cm2 had a CFU-F significantly (P<0.01) lower than all other 
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cultures. No significant difference in CFU-F efficiency was observed between 

cultures seeded at 50, 100 and 500 cells/cm2
• In summary, the CFU-F efficiency of 

cultures grown from high seeding densities is significantly lower than those grown 

from low seeding densities. 

2. 3. 4 Correlation of growth rate with morphology 

Visual evaluation of cultures of MSCs by phase contrast microscopy was used to 

monitor changes in the morphology of cells with changes in plating density and 

subsequent propagation (Figure 2. 7). Evaluation of cultures as a function of both 

plating density and incubation time showed a transition among the three 

morphologically distinct cell types. Cells in cultures at low confluence are 

predominately spindle shaped and cultures at this stage are associated with high 

growth rates. As cultures reach confluence and the cell growth rate decreases, larger 

flattened cell types dominate the cultures. Consistent with these observations, analysis 

of the morphology of cultures seeded at low cell density (5 cells/cm2
) revealed cells to 

have a predominately spindle shaped appearance (Figure 2.6a). These cultures were 

associated with the greatest fold increase in cell number (Figure 2.6d). In contrast, 

cultures seeded at an initial plating density of 50 cells/cm2 contained cells with a 

predominately star shaped morphology (Figure 2. 7b ). Cultures plated at a higher 

seeding density (1000 cells/cm2
) were dominated by cells with a flattened wide spread 

morphology (Figure 2.7c). These cultures were associated with a low growth rate. 

Morphological data therefore correlated with the overall growth rate of cultures. 

Cultures containing cells with a predominately spindle shaped morphology have a 

high proliferate capacity, whereas those cultures containing mainly flattened wide 

spread cells have a low proliferate capacity. Cultures established from low initial 

plating densities contained a higher fraction of spindle shaped cells compared to those 

initiated from high seeding densities, which contain a higher fraction of flattened well 

spread cells and have a low proliferate capacity. The presence of a high fraction of 

spindle shaped cells is an indicator of the proliferate capacity of the culture. 

2. 3. 5 Effect of media composition on MSC growth 

Basal media composition has been shown to have a significant effect on the expansion 

of MSCs isolated from adult BM (Peister et al., 2004; Javazon et al., 2001 and Sekiya 

89 



et al., 2002). To define the optimal media for expansion of cells, passage 2 rat MSCs 

were plated at a density of 10 cells/cm2 in T75cm2 tissue culture flasks and incubated 

in different media compositions including a-MEM, DMEM, IDDM or RPMI-1640 

for 15 days. Cell counts were carried out every 3 days to assess culture growth. 

Significant cell growth was observed under all conditions over 15 days, however 

significant differences in growth rate and total fold expansion was observed. 

Consistent with our previous findings a lag period of growth was evident for the first 

3 days under all conditions. During this period no significant difference in growth rate 

was observed between different basal media compositions. The relative growth rates 

ofMSCs in different medias were DMEM > a-MEM > IDMM > RPMI (Figure 2.8a). 

Cells grown in RPMI media had the lowest growth rate compared to other basal 

media compositions. Cells grown in RPMI media expanded 500 fold over 15 days and 

significant proliferation was observed at 6, 9, 12 and 15 days compared to the 3 day 

time point (P<0.01 ((for each tie point versus 3 days) I way-ANOVA with Dunnetts 

post hoc). However, the increase in proliferation with time in culture was significantly 

less than that achieved in other basal media conditions for the 6, 9, 12 and 15 day time 

points (P<O.OO 1 for comparison of fold increase in cell number at each time point for 

each media condition; 2 -way ANOV A followed by Bonferroni post hoc test). 

Cells maintained in IDMM, a-MEM or DMEM all showed significant expansion in 

cell number with time in culture (P<0.01 for comparison of fold increase in cell 

number at 6, 9, 12 and 15 compared to the 3 day time point; 1-way ANOVA, 

Dunnetts post hoc test). However, analysis of the fold increase in cell number 

achieved at each time point in each culture condition revealed no significant 

difference between cells grown in IDMM, DMEM or aMEM at 3, 6, 9, or 12 days 

culture (2-way ANOV A; Bonferroni post hoc comparison). Therefore growth rates 

were comparable between cells maintained in IDMM, aMEM and DMEM at early 

time points (3,6,9 and 12 days). 

Analysis of the total fold increase in cell number by 15 days revealed significant 

differences in the proliferation under different culture conditions (Figure 2.8b ). There 
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was no significant difference in the fold increase achieved in aMEM compared 

DMEM following 15 days culture although the greatest fold expansion was observed 

when cells were maintained in DMEM (370-fold increase in cell number compared to 

330 fold increase when cells were maintained in aMEM). However the fold increase 

in cell number observed in cells maintained in DMEM was significantly greater than 

RPMI (P<0.01; 1-way ANOVA Bonferroni post hoc comparison) and IDMM (P<0.01 

1-way ANOV A Bonferroni post hoc comparison) at the 15-day time point. Therefore 

the greatest proliferation was observed when cells were maintained in DMEM basal 

media. The ability of cells to form single cell colonies (CFU-F) was analyzed 

following expansion in different media compositions and was assessed by plating 1 00 

cells in a 60cm2 tissue culture dish following 15 days expansion. There were no 

significant differences in colony forming ability of cells grown in different media 

compositions (Figure 2.8c ). 

2. 3. 6 Effect of serum concentration on MSC growth 

Serum (FCS) concentration and quality are known to have effects on the proliferation 

and differentiation potential of MSCs in culture (Barnes and Sato, 1980; Lennon et 

al., 1995). Serum used in the current study was lot selected for optimal MSC growth 

and differentiation potential. To determine the optimal serum concentration for 

growth, cells were grown in DMEM media supplemented with either 1, 2, 5, 10, 20 or 

30 % FCS and cell numbers were assayed every 3 days for 15 days. Surprisingly, 

there was no significant difference in the growth rates between cultures for the first 12 

days (Figure 2.9a). However by day 15, there were significant differences between the 

total fold expansion observed in each of the cultures (Figure 2.9b). MSCs grown in 

the presence of 10, 20 or 30% FCS displayed significant growth compared to those 

cultures maintained in either 1, 2, and 5% FCS (P<0.01 1-way ANOVA followed by 

Bonferroni post hoc analysis). There was no significant difference in cell growth 

between cultures maintained in 10, 20 and 30% FCS. There was also no significant 

difference in cell growth between cultures maintained in 1-5% FCS. 10% FCS was 

the critical level at which significant cell growth was observed, increasing the serum 

concentration above 10% FCS did not result in any further increase in cell growth 

(figure 2.1). 
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CFU-F efficiency in cultures maintained in different concentrations of serum was 

variable (Figure 2.9c). Cultures grown in 5% FCS had a significantly greater CFU-F 

when compared cells grown in 1 and 2% FCS. However, cells grown in 10, 20 and 

30% FCS had a significantly higher CFU-F compared to cells grown in 1, 2 or 5% 

FCS. There was no significant difference in CFU-F between cultures maintained in 

10, 20 or 30% FCS. Therefore 5% FCS, was critical for CFU-F growth below which 

CFU-F growth was significantly reduced. 

2. 3. 7 Effect of passage on MSC growth 

Passage of MSCs in culture has been associated with loss of differentiation potential 

and proliferative capacity (DiGirolamo et al., 1999). These effects have also been 

reportedly associated with distinct morphological changes, which can be used to 

predict the expansion potential of cultures. P2 cultures (approximately 4 population 

doublings) contained cells with heterogeneous morphology with both spindle shaped 

cells, star-shaped cells and larger flattened cells were evident. The predominant 

phenotype in P2 cultures was spindle shaped cells (Figure 2.1 Oa,e) and P2 cell 

cultures displayed a high proliferation potential. In contrast, P12 cultures displayed 

reduced proliferation (Table 2.1) and analysis of cell morphology revealed the 

presence of only large flat cells (Figure 2.1 Ob,f). Table 2.1 shows the average 

population doubling time with serial passage. The average population doubling time 

increased with increasing passage. The average doubling time increased from 1.8 days 

at P2 to 13.1 days at P14. To examine the colony forming ability of cultures at 

different passages, P2 or P12 cells were re-plated at low density and colony growth 

examined 12 days later. P2 expanded cells retained the capacity to form colonies 

when re-plated at low cell density (Figure 2.1 Oc ). These colonies contained mainly 

spindle shaped cells with a high proliferative potential. In contrast, P12 cultures did 

not reform clearly defined colonies upon re-plating and the morphology of cells was 

large and flat (Figure 2.3d). 

Therefore increasing passage was associated with a reduction in colony forming 

ability and proliferation. These effects correlated with clear changes in morphology of 

cells within the culture. High passage and cultures with a low proliferative potential 

contained large flat cells and low passage cells with a high proliferative potential 
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contained a high proportion of spindle shaped cells. Immuno-phenotyping for surface 

markers was accessed using flow cytometry to characterize cultured 2nd, 81
h and l21

h 

passage MSCs (Table 2.2). Cells at all passages were negative for CD45 and CDll b. 

Expression of CD44, MHC Class I, CD 56, CD29 and TRA 2-54 was high in almost 

all cells and remained at a constant level of expression with increasing passage. CD73 

and CD90 labeling slightly decreased with increasing passage. 

Examining the capacity of MSCs to generate bone and fat assessed the potency of 

MSCs at different passages. Cells from P2, P8 and P 12 cultures were subjected to 

osteogenic and adipogenic differentiation. P2 MSC cultures retained the capacity to 

generate both bone and fat as did P8 cells as verified by oil red 0 (adipogenic 

differentiation) and von kossa staining (osteogenic differentiation). P12 cells retained 

only the capacity to generate bone and lost Adipogenic potential as confirmed by 

negative oil-red-O staining. Control P2, P8 and P12 cells not exposed to either 

adipogenic or osteogenic differentiation did not stain positive for either oil-red-O or 

von kossa staining demonstrating that MSCs maintained in culture retain their 

undifferentiated status and spontaneous differentiation was not evident. 

PI staining and quantification by flow cytometry was used to determine the level of 

cell death in cultures at different passages. The number of cells, which incorporated 

the fluorescent exclusion dye PI, was calculated. PI is excluded from healthy cells but 

enters dead cells following their loss of membrane integrity. It binds to exposed DNA 

and becomes highly fluorescent. This fluorescence was examined by flow cytometry, 

which determined the number of cells, which had incorporated PI and was therefore a 

measure of cell death. Analysis revealed a significantly (P<0.05, 1 way ANOV A, 

bonferroni post hoc analysis) higher level of cell death in P12 cultures when 

compared to P2 and P8 cultures (Figure 2.12, a). Cell death increased from 7.8±2.3% 

at P2 to 15.9±2.1% at P12. To examine the effect of passage on colony forming 

efficiency, cells were plated at low density (100 cells/60cm2 dish) and colony growth 

evaluated 14 days later (Figure 2.12b). CFU-F efficiency was significantly reduced in 

P8 cultures compared to P2 cells (P>0.05, 1 way ANOVA followed by Dunnetts post 

hoc analysis). CFU-F efficiency was reduced from 20.8±2.2 (P2) to 10±2.8 (P8). 

Therefore between passage 2 (4 population doublings) and passage 8 (25 population 
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doublings) the CFU-F efficiency was reduced by half. No colonies were detected on 

replating P 12 cells at low density. 

The differentiation potential was quantified for both Adipogenic and osteogenic 

differentiation of cells at different passages. Adipogenic differentiation was quantified 

by counting the number of oil red-O positive cells in 25 non-overlapping visual fields 

in three independent experiments. The number of adipocytes significantly (P<0.05, 1 

way ANOVA followed by Dunnetts post hoc analysis) decreased from 26.8±4.5% in 

P2 cells to 13.3±3.8% in P8 cells (Figure 2.12c). No Adipogenic differentiation was 

detected in P 12 cultures. Osteogenic differentiation was quantified by determining the 

% area of the visual field that was mineralized. 25 non-overlapping visual fields were 

analysed in three independent experiments. The % mineralization was approximately 

35% at all passages (Figure 2.12d). There was no significant difference in the % 

mineralization between cultures at different passages. The effects of passage are 

summarized in Table 2.3. 

2. 3. 8 Long-term growth potential of MSCs 

To access the long-term growth potential of MSCs cultured under optimal conditions 

as defined in previous experiments, cultures derived from 5 independent donor rats 

were maintained in culture until growth ceased (senescence). As indicated in figure 

2.13 there was a moderate variation in population doublings obtained with samples 

from different donors. Cultures expanded through 31-41 population doublings. The 

replicative potential of cultures is not reflected in their initial growth rates, which are 

comparable between cultures until 30-35 days in culture (after approx 25 population 

doublings ). Cells were isolated from donors of the same age and sex as described in 

materials and methods. Primary cultures (PO) reached confluence in about 1 week and 

2 population doublings. The average population doubling time at PO was 1.2 days. 

Following growth to confluence and subsequent re-plating MSCs slowed their 

proliferation rate and by passage 5 (16 population doublings) the average population­

doubling rate was 3 days. At passage 10 (approx 30 population doublings) was 

average population doubling time had increased to 8.9 days. Therefore with time in 

culture and increased passage (re-plating) the proliferation rate progressively 

decreased as indicated by a progressive increase in the average population doubling 
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time. The average population doubling time increased from 1.2 days (PO, 2 population 

doublings) to 13.1 days by passage 14 (39 population doublings). 

2. 3. 9 Effect of growth factors on the expansion of MSCs in culture 

To overcome the loss in differentiation potential and reduction in proliferation with 

serial passage in culture, MSCs were cultured in the presence of a number of different 

growth factors including either bFGF, EGF, PDGF and LIF at concentrations of 0.2-1 

ng/ml. With the exception of growth factor supplementation the cells were cultured 

under identical conditions to those used for previous studies. P2 MSCs were plated at 

10 cells/cm2 in DMEM supplemented with 10% FCS (control). In parallel cultures, 

the media was supplemented with either bFGF (FGF-2), EGF, LIF or PDGF at a 

concentration of 0.2, 0.5 or 1 ng/ml. Cell number was assayed every 3 days for 15 

days (Figure 2.14). Following plating initial cultures (0-9 days) supplemented with 

growth factors displayed increased growth rate when compared to control cells for all 

conditions tested (Figure 2.14). The total cell number at each time point for each 

culture condition was greater than the cell number achieved when cultures were 

maintained under standard conditions (control). This increased growth rate in 

response to growth factor supplementation was a dose dependent response. As the 

concentration of growth factor increased from 0.2-1 ng/ml the growth rate of the cells 

increased as indicated by an increased slope on the graph with increasing growth 

factor concentration. The pattern of this effect and concentration response was 

consistent for all growth factors examined. Despite the pattern of changes in cell 

number been consistent between conditions the absolute number of cells attained 

under each condition was significantly different. At a maximal concentration of 1 

ng/ml the cell number following 9 days culture under each culture condition was 

greatest in FGF -2 > PDGF > EGF > LIF. FGF -2 treated cultures contained 6519± 766 

cells at 9 days compared to 1246±116 in LIF treated cultures. During expansion in 

growth factor supplemented media cells maintained a constant immuno-phenotype 

comparable with cells maintained under standard growth conditions (Table 2.4). 

Analysis of the total fold increase in cell number at 15 days showed significant 

variation in the expansion potential of MSCs cultured in the presence of different 

growth factors. Treatment of cultures with either bFGF, PDGF or EGF all 
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significantly increased cellular proliferation compared to cultures maintained under 

standard growth conditions (Figure 2.15). FGF treatment was only effective at 0.5 and 

1 ng/ml. Fold increase in cell number was significantly increased in these cultures 

(P>0.01; 1 way ANOVA, Dunnetts post hoc test) but not in cultures maintained in 

media supplemented in 0.2 ng/ml bFGF when compared to control cultures. Cell 

expansion in response to FGF-2 treatment was therefore dose dependent. Cell number 

increased approximately 4000 fold in the presence of 0.5 ng/ml FGF-2, 6000 fold in 

the presence of 1 ng/ml bFGF compared to the 2000 fold increase in cell number 

observed under standard culture conditions following 15 days growth in culture. A 

similar pattem was observed in cultures treated with PDGF but the fold increase in 

cell number was less overall. At 0.5 ng/ml PDGF resulted in approximately 4000-fold 

increase in cell number and 1 ng/ml a 4500-fold increase in cell number. Therefore 

treatment with 0.5 or 1 ng/ml PDGF significantly (P>0.01, 1-way ANOVA, Dunnetts 

post hoc test) increased fold expansion in cell number compared to control conditions. 

Treatment with 0.2 ng/ml PDGF did not significantly increase cell number compared 

to control. EGF resulted in a significant increase in cell number when used at a 

concentration of 1 ng/ml. Although treatment of cultures with LIF appeared to 

increase initial growth rates following plating analysis of cell number at 15 days did 

not reveal any significant difference in fold increase in cell number for any 

concentration of LIF. Therefore addition of LIF (0.2-1 ng/ml) did not result in any 

significant additional increase in cell number compared to control cultures. In 

summary, addition of either bFGF (at 0.5 or 1 ng/ml), PDGF (at 0.5 or 1 ng/ml) or 

EGF (1 ng/ml) resulted in a significantly higher fold increase in cell number over 15 

days growth in culture compared to cultures maintained under standard growth 

conditions. 

Following the demonstration that MSCs cultured in the presence of FGF, EGF and 

PDGF show increased proliferation, we next attempted to analyze whether this 

increased proliferation was the result of the proliferative activity of stromal progenitor 

cells (CFU-F). It is possible that the addition of growth factors provides the 

appropriate trophic support to retain the long-term progenitors that support long-term 

proliferation in cultures. We therefore examined the incidence of CFU-F in cultures 

which were isolated and immediately cultured in media supplemented with either 
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FGF-2, EGF, PDGF or LIF all at 1 ng/ml. 100 P2 cells isolated and cultured under 

these conditions was transferred to 60cm2 tissue culture dishes and maintained for 14 

days, following which the number of colonies formed was determined (Figure2.17a). 

The CFU efficiency of control treated cultures was 22.6±0.67 %. The incidence of 

CFU-F in FGF -2 treated cultures was significantly higher (30.33±1.33 %; P>0.05 1-

way ANOVA Dunnetts post hoc test) compared to control cultures. In addition, the 

incidence of CFU-F in cultures maintained in the presence of LIF was also 

significantly greater (32.67±2.91; P>0.05 1-way ANOVA, Dunnetts post hoc test) 

than cells maintained under control conditions. The incidence of CFU-F in cultures 

maintained either in EGF or PDGF was not significantly different from the control 

cultures. Therefore the presence of either FGF -2 or LIF significantly increased the 

incidence of CFU-F when examined at passage 2. 

The size of colonies was then determined in order to examme the proliferative 

potential of cells isolated and maintained under these conditions (Figure 2.17b ). The 

diameter of CFU-F colonies was measured and colonies were placed in 3 size 

categories: 2-3, 4-5 or 6-7 em. There was a large degree of variation in the size of 

colonies obtained under each culture condition examined. Of the 60 colonies analysed 

from cells cultured in the presence of 1ng/ml LIF, 43 colonies (71.7%) were between 

2-3cm in diameter. Only 14 colonies were between 4-5cm (23.3%) and 3 colonies 

(5%) between 6-7cm. In contrast, the majority of colonies derived from FGF-2 treated 

cultures were large colonies. 6.7% (4 colonies) of colonies were between 2-3cm in 

diameter, 31.7% (19 colonies) were between 4-5cm in diameter and 61.7% (37 

colonies) were between 6-7cm. In PDGF treated cultures the predominant colony size 

was between 6-7cm (51.7%) whereas in EGF treated cultures the predominant colony 

size was between 4-5cm (52%). Very few colonies from EGF (18.3%) treated cultures 

or PDGF (16.7%) treated cultures were between 2-3%. 31.7% of colonies derived 

from PDGF treated cultures were between 4-5% and 51.7% of colonies derived from 

EGF cultures. 

This data indicates that LIF and/or FGF-2 supplementation of media in early passage 

cultures maintains a higher incidence of CFU-F when compared to cultures 

maintained under standard culture conditions. However, consistent with our previous 
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results CFU derived from cultures maintained in the presence of 1ng/ml LIF has only 

a low cell tum over with low replicative potential. It therefore appears that LIF may 

provide trophic support that maintains the MSC stem cell pool in vitro but does not 

provide signals that promote proliferation. The proliferative potential of colonies 

derived cells grown in the presence of LIF was less than that observed for control 

cells with 25% of control colonies between 6-7cm compared to 5% of colonies 

derived from LIF cells. This suggests that whilst addition of LIF may provide survival 

signals that maintain a higher number of CFU-F with propagation in culture it may 

also inhibit the proliferation of these cells promoting only a low CFU cell turnover. 

2. 3.10 Effect of passage on CFU-F potential when cells are cultured in growth factor 

supplemented media 

As described previously serial passage is associated with a reduction in CFU-F 

potential. To examine whether addition of particular growth factors to the basal media 

retains CFU-F potential, cells maintained in either 1-ng/ml bFGF, EGF, PDGF and 

LIF were re-plated at low cell density and colony growth accessed after 14 days 

(Figure 2.17). Analysis revealed that there was no significant difference in CFU-F 

efficiency between P2 and P8 cells in all growth factor supplemented conditions. In 

contrast colony formation was virtually undetectable in P 12 cells cultured under either 

standard culture conditions in or in the presence of 1 ng/ml EGF, PDGF or LIF. 

However cells continually cultured in the presence of 1 ng/ml FGF retained CFU-F 

potential at levels comparable with P8 cell cultures. 

2. 3.11 Differentiation potential of MSCs maintained in growth factor supplemented 

media following serial passage in culture. 

Cells were propagated under defined and optimal growth conditions in growth factor 

(either lng/ml EGF, FGF-2, PDGF or LIF) supplemented media. At P2 a sample of 

cells were cultured either in osteogenic medium or adipogenic medium for 3 weeks 

(Figure 2.18). Osteogenic differentiation was confirmed by von kossa staining and 

adipogenic differentiation was verified by oil-red-O staining. Positive von kossa and 

oil red-O staining was detected in all culture conditions. Consistent with previous 

findings early passage cultures of MSCs differentiated into fat and bone regardless of 

the addition of growth factors to the growth medium. However, Pl2 cells grown 
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continually in 1ng/ml EGF or PDGF or LIF supplemented media only differentiated 

into bone and lost the ability to differentiate into fat. The exception however, was P12 

cells grown continually in the presence of 1ng/ml FGF-2. These results show that only 

FGF treated cells retained their capacity to differentiate into multiple cell derivatives 

following serial passage in culture. 

2. 3.12 Lifespan of cultures maintained in growth factor supplemented media 

The lifespan of cultures maintained in growth factor supplemented media was 

analyzed by recording the number of population doublings before senescence under 

defined culture conditions. Cells were first isolated from 5 animal donors and cells 

from each donor were grown in the presence of either lng/ml bFGF, EGF, PDGF or 

LIF under standard tissue culture conditions. Control cultures were grown under 

standard culture conditions. The average lifespan of cells maintained under control 

conditions was 32.6 population doublings; in contrast, the average lifespan of bFGF 

treated cultures was 41.8, EGF, 34.1, PDGF, 36.3 and LIF 39.3 population doublings 

(Table 2.5). Therefore, growth factor supplementation resulted greater expansion 

potential prior to senescence. Consistent with the results of CFU-F assays, LIF and 

FGF treated cultures displayed the greatest expansion potential. Donor variation in the 

expansion potential of isolated cells can be excluded as the cause since cells from 

each individual donor were all plated under the conditions to be tested. Some degree 

of donor variation was evident in the response to growth factors. For example analysis 

of donor 1 cultures revealed that the lifespan for LIF treated and PDGF treated cells 

was not any greater than cultures maintained under control conditions. Despite these 

small variations, in general the expansion potential was greater in growth factor 

supplemented media. 

2.4 Discussion 
Presumptive isolation of MSCs has been described for a number of different species 

including: human, mouse, rat, dog, pig, sheep, goat, cat and rabbit. In these studies 

MSCs were isolated by selective adherence to tissue culture plastic as described by 

Friedenstein, 1974 and shown to differentiate into cell progeny of multiple 

mesenchymal cell lineages including bone, fat and cartilage. Despite the great interest 
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in MSCs there is still no well-defined protocol for the prospective isolation and 

expansion of these cells in culture. This difficulty is compounded by the lack of 

definitive cell surface markers. Most experiments have been carried out with cultures 

of MSCs that are isolated primarily by their tight adherence to tissue culture dishes. 

Several groups of investigators have developed protocols to prepare more 

homogenous populations, but none of these protocols has gained wide acceptance 

(Pittenger et al., 1999; Gronthos et al., 2003; Colter et al., 2000; Smith et al., 2004). 

In the present study, we first present data concerning the isolation of a fibroblastoid 

cell population from adult rat BM. This cell population displayed characteristics in 

culture, which allowed them to be classified as MSCs operationally. The cells sustain 

prolonged self-renewal in culture maintaining their ability to differentiate into an 

osteogenic phenotype after >35 population doublings. A proportion of these cells 

(ranging from 22-35%) were capable of forming colonies plated at low cell density. 

The incidence of cells which give rise to these colonies (CFU-F), which represent the 

clonogenic progenitor cells, some of which are considered multipotent, was lower 

than that previously reported in some studies for rat stromal cell cultures (Javazon et 

al., 2001), however the incidence was consistent with that reported by both mouse and 

human MSCs cultured under similar conditions (Sekiya et al., 2002; Peister et al., 

2004). This cell population also expressed a number of MSC associated cell surface 

markers including: CD44, CD56, CD29, TRA 2-54 and consistent with their 

undifferentiated status expressed high levels of CD90 and CD73. In addition, 

hematopoietic contamination was eliminated from the culture by 2-3 weeks as 

demonstrated by the absence of hematopoietic markers CD45 and CD11 b. The cells 

were also positive for the extracellular markers; collagen-1, fibronectin and smooth 

muscle actin. More importantly these cells could differentiate into osteogenic and 

Adipogenic cell lineages when induced under defined culture conditions. Osteogenic 

differentiation was confirmed by the deposition of a mineralized extra cellular matrix 

on the culture dish by Von Kossa staining. Adipogenic differentiation was confirmed 

by the accumulation of oil-red-O positive lipid droplets within differentiated cells. 

This multipotency and self-renewal allowed for an operational definition MSCs. 
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Whilst MSCs have been isolated successfully from a number of different species and 

a number of postnatal organs, there are a number of species and strain differences in 

the properties of MSCs and relatively subtle differences in the protocols for isolation 

and expansion, which have made results from experiments conducted in different 

laboratories difficult to compare (Peister et al., 2004 ). Optimal expansion of MSCs 

during culture is still difficult to achieve since they tend to loose both their 

differentiation potential and proliferative capacity when cultured under standard 

conditions (1 0% DMEM on tissue culture plastic) (DiGirolamo et al., 1999). 

In the current study we describe optimal conditions for the expansion of MSCs 

isolated from adult rat BM. Whilst the conditions used were optimized solely for 

MSCs isolated using our protocols, they highlight the importance of optimizing 

growth conditions and are consistent with many of the properties reported for 

expansion and culture of mouse and human MSCs (Sekiya et al., 2002; Javazon et al., 

2001; Peister et al., 2004 ). Consistent with previous reports, rat MSCs were prepared 

by plating all marrow cells at high density and incubating them until cultures reached 

about 90% confluence before expanding cells at low density. In contrast, mouse 

MSCs have proved more challenging to isolate and expand in culture, a technical 

difficulty that until recently, limited their use in transgenic mouse studies (Phinney et 

al., 1999). Human MSCs are reportedly isolated under the same conditions except a 

density gradient is used to · isolate the mononuclear cell fraction, which is 

subsequently plated at high density (Sekiya et al., 2002). 

In order to establish the optimal conditions for the expansion of MSCs in the present 

study, cells were first plated at varying initial seeding densities, and the fold 

expansion in cell number was assayed 15 days later. The rat MSCs isolated in this 

study were similar to mouse and human MSCs in that they expanded more readily at 

low plating density, an observation also consistent with previous reports for rat MSCs 

(Javazon et al., 2001). The cells expanded more rapidly if plated at very low initial 

plating densities, they readily formed single cell derived colonies and differentiated 

into osteogenic and Adipogenic cell lineages. The CFU-F potential (incidence of 

CFU-F) was greater in cells plated at low cell density. This indicates that low initial 

plating densities not only promote cell growth but also promote the growth of 
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clonogenic progenitor cells responsible for the differentiation potential of MSC 

cultures and their long-term propagation. The incidence of CFU-F has previously 

been shown to be dramatically affected by small changes in plating density for rat 

MSCs (Javazon et al., 2001). In contrast, human MSCs also expand more rapidly 

when plated at low cell density, but plating density had little effect on the incidence of 

CFU-F (Sekiya et al., 2002). We therefore determined that the optimal initial plating 

density for expansion was very low plating densities between 5-10 cells/cm2
• Under 

these optimal growth conditions, rat MSCs could expand > 1800 fold following 15 

days culture. Human MSCs have been reported to have a much lower expansion 

potential even when cultured at low plating densities (Prockop et al., 2003). The 

expansion potential of rat MSCs in this study was comparable with that reported for 

mouse MSCs plated at low cell densities (Peister et al., 2004). 

There have been several studies in human and rat MSCs which have described 

conditions for the optimal growth of these cells and have described evidence for a link 

between expansion potential and the morphology of certain subpopulations of MSCs 

within the cultures (Sekiya et al., 2002; Javazon et al., 2001). MSC cultures are 

known to be morphologically heterogeneous in culture and Mets and Verdonk 1981 

reported the presence of two morphologically distinct cell types. Type II cells were 

identified as large flat cells that propagated only very slowly in culture, in contrast to 

Type I cells, which are smaller spindle shaped cells which proliferated rapidly in 

culture. Colter et al., 2000 identified a subpopulation of cells in cultures of human 

MSCs that are small and proliferate rapidly, undergo cyclical renewal and when 

plated at low density are the precursors of more mature cells in the same cultures. 

These cells have been refereed to as recycling stem cells (RS-1 cells). Flow cytometry 

analysis revealed that stationary cultures of MSCs contained a large proportion of 

large flat cells and only a minor population of small agranular cells (RS-1 cells). As 

cultures approach senescence, large flat granular cells become the dominant 

phenotype. In rapidly proliferating cell cultures, the dominant cell phenotype is RS-1, 

which are small and agranular cells. In the present study, no flow cytometry analysis 

was carried out specifically to look at the proportions of these cell types. Visual 

evaluation of cultures initiated from different plating cell densities demonstrated 
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changes in the morphology of cells with time in culture, and between cultures initiated 

from different seeding densities. 

Evaluation of cultures as a function of both time in culture and initial plating density 

revealed the transition among three morphologically distinct cell types: thin spindle 

shaped cells, star-shaped cells and large flattened cells. High initial plating densities 

were associated with low expansion potential and cultures contained predominately 

large flat granular cells with low proliferative potential. In contrast, cultures plated at 

low initial plating densities were associated with high expansion potential and 

contained a very high proportion of spindle shaped cells, which were the predominant 

cell phenotype. Therefore, we conclude that low initial plating densities allow for the 

growth of spindle shaped cells, which have a high proliferative potential. The effect of 

plating density on the growth of cells may be the result of cell to cell contact signaling 

or due the release of factors into the media, but this is still under investigation. In 

summary, there is a correlation between expansion potential and the proportion of 

spindle shaped cells in the culture. Conditions that maximize the growth of these 

small spindle shaped cells maximizes the expansion potential of MSC cultures. 

Basal growth media composition and serum (FCS) concentration also had a 

significant effect on the expansion potential of MSCs even when plated at low initial 

plating densities, consistent with previous findings (Peister et al., 2004; Jaiswal et al., 

1997). Optimal MSC growth was achieved when cells were cultured in DMEM 

media, however, comparable expansion in cell number was achieved when cells were 

grown in the presence of IDMM and aMEM although growth rates were greater in 

DMEM media. Growth was however, significantly reduced when cells were grown in 

RPMI media. This media has been used as a growth medium in early cultures of 

mouse MSCs to retard the growth of hematopoietic contaminants. Basal media 

composition had no effect on CFU-F potential. Serum concentration and quality have 

been reported to have significant effects on the growth potential of MSCs (Barnes and 

Sato, 1980; Lennon et al., 1995). We found that a minimum concentration of 10% 

FCS was required for the growth of MSCs. This concentration was also required for 

growth of CFU-F in colony assayl) and the incidence of CFU-F was significantly 

reduced if the serum concentration was less than 10%. Increasing the serum 
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concentration above 10% had little additional effect on growth, or CFU-F potential 

and 1 0% FCS has previously been reported to be effective in promoting MSC growth 

but retarding the growth of hematopoietic contaminating cells, which require higher 

serum concentrations for growth (Prockop, 1997). 

Analysis of the growth kinetics of MSC cultures maintained under optimal growth 

conditions revealed that cultures can be grown to approximately 30-40 population 

doublings before senescence (cessation of growth). At senescence, cells still remain 

viable but growth ceases. The initial growth rate was comparable between cultures 

and therefore initial growth did not reflect long-term growth potential. The expansion 

potential of rat MSCs in this study was greater than the replicative potential 

previously reported for human MSCs (DiGirolamo et al., 1999; Banfi et al., 2000). 

Human MSCs have been expanded for approximately 20-30 population doublings 

(Banfi et al., 2000) and mouse MSCs can be expanded for approximately 20-30 

population doublings (Tropel et al., 2004 ). The reduction in growth rate when cells 

reach confluence and are subsequently re-plated is consistent with previous findings 

for both mouse and rat MSCs (Javazon et al., 2001; Sekiya et al., 2002). Concurrent 

with the slowing of growth rate, MSCs showed a change in appearance, from the 

initial spindle shape to the more flattened morphology which dominates slowly 

replicating cultures. Expansion of adult BM derived stem cells beyond the hayflick 

limit for primary cultures of 50 population doublings (Hayflick and Moorhead, 1961) 

has been reported in MAPC and MIAMI cells. However, there is no evidence that 

these cells are present in our MSC cultures since isolation of these cells requires 

highly defined conditions not consistent with standard MSC culture (Jiang et al., 

2002a; D'Ippolito et al., 2004). 

Serial passage of MSCs is associated with a loss in multipotentiality and expansion 

potential (DiGirolamo et al., 1999; Banfi et al., 2000). In the present study, 

morphological analysis of the effects of passage revealed that early passage (P2) 

cultures that displayed a high proliferation potential with an average population 

doubling time of 2.3 days contained a high proportion of spindle shaped cells and a 

comparatively lower proportion of large flat cells. In contrast late passage cultures 

(Pl2) contained mainly large flat, granular cells with low proliferation potential. 
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Therefore as MSCs are propagated in culture over multiple passages, growth potential 

is lost even under conditions that promote optimal expansion in early cultures. The 

loss of growth potential correlates with the appearance of large flat cells, which 

become the dominant phenotype. Therefore the conditions used in this study and in 

other studies are not optimal for the long-term propagation of CFU-F. 

Consistent with this observation we also found that colony development was not 

detected in colony assays of P 12 cells and was significantly reduced in P8 cultures. 

The average population doubling time increased from 1.2 days at PO to 13.2 days at 

P14. MSCs also lost their ability to differentiate to adipogenic cell phenotypes by P12 

but retained their ability to generate osteoblasts consistent with previous reports that 

the osteogenic differentiation pathway is the default pathway and adipogenic 

differentiation potential is lost first (Maurglia et al., 2000). The reason for a slight 

decrease in the expression of CD73 and CD90 with prolonged time in culture is 

unknown. However, CD90 is known to be expressed on undifferentiated MSCs and 

lost with commitment to differentiation (Chen et al., 1999) and therefore it may 

indicate spontaneous differentiation with increasing passage in culture. However, no 

differentiation into bone or fat was detected in these cultures. Changes in cell surface 

marker expression have reported in rat MSCs with increased passage in culture (Zohar 

et al., 1997; Vogel et al., 2003). 

To overcome the problems of reduced multipotentiality and loss of expansion 

potential in culture, investigators have used a number of approaches. One approach is 

the supplementation of the growth medium with mitogenic agents that increase self­

renewal of MSCs. An increasing number of growth factors and hormones have been 

shown to regulate CFU-F proliferation in vitro. PDGF has been shown to be a potent 

mitogen for CFU-F by numerous investigators (Castro-Malaspina et al., 1981; 

Gronthos and Simmons, 1995). EGF has been shown to increase colony size and 

reduce the spontaneous expression of alkaline phosphatase (a marker of osteogenic 

differentiation) and therefore maintaining the undifferentiated cell state (Owen et al., 

1987) in CFU-F colonies isolated from rabbit BM. EGF was shown to be a mitogen 

for an enriched (STR0-1+) population of human CFU-F under serum free culture 

conditions (Gronthos and Simmons, 1995). Similarly, bFGF (FGF-2) is a potent 
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mitogen for CFU-F isolated from multiple species including mouse, rat and human 

resulting in extended growth of cells in culture (>50 population doublings) (Tsutsumi 

et al., 2001). More importantly, cells maintained their differentiation potential during 

this extended growth in culture. PDGF and EGF have also been shown to act 

synergistically when added to growth medium (Gronthos and Simmons, 1995). Both 

stimulate equivalent numbers of colonies but when added together significantly 

increased average colony size compared to that achieved when either mitogen was 

added alone. LIF has also been shown to regulate the self re-newal of MSCs in culture 

(Majumdar et al., 1998). 

In the current study, the ability of growth factor supplementation to increase the 

expansion potential of MSCs without loss of potency was evaluated. FGF-2, EGF, 

PDGF and LIF were all examined. MSCs grown in the presence of FGF-2, EGF or 

PDGF all showed increased growth rates with significantly greater fold expansion in 

cell number evident at 15 days, when compared to cultures maintained under standard 

growth conditions. For all three growth factors the effect on expansion potential and 

growth rate was dose dependent. Growth rate of early cultures (1-9 days) increased 

with increases in growth factor concentration. Examination of fold increase in cell 

numbers at 15 days revealed that bFGF and PDGF were only effective at 

concentrations of 0.5-1 ng/ml and EGF was only effective at 1 ng/ml. At these 

concentrations there was a significantly greater expansion in cell number at 15 days 

compared to cultures maintained under standard growth conditions for this period. 

LIF supplementation did not result in a significant increase in fold expansion in cell 

number at any of the concentrations tested compared to control cultures, although 

there was a slight dose dependent increase in growth rate following initial plating. 

Cells cultured in the presence of FGF-2 showed the greatest fold increase in cell 

number and long term FGF-2 treatment increased the lifespan of cultures. Consistent 

with this observation a number of studies have reported that supplementation of the 

culture media with FGF-2 at concentrations ranging from 0.1-1 ng/ml increases the 

proliferation of MSCs, which retain their differentiation potential (Tsutsumi et al., 

2001). In this present study, we found that the loss multipotentiality observed with 

serial passage in culture was not evident in cells maintained in FGF supplemented 
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media. Under these conditions cells differentiated into both osteogenic and adipogenic 

cell lineages even when propagated to P 12. In contrast, under all other culture 

conditions tested, cells lost their adipogenic differentiation potential. The degree of 

osteogenic differentiation observed in P 12 cells was also higher when these cells were 

maintained long term in FGF -2 supplemented media. 

The incidence of CFU-F in cultures is the pnmary determinant of long-term 

replicative potential (DiGirolamo et al., 1999). However CFU-F incidence did not 

predict the loss of multi potentiality with serial passage in culture. Samples with high 

CFU-F efficiency have the greatest replicative potential and consistent with this 

observation we found colony growth was the result of the proliferation of spindle 

shaped cells. We found that cells cultured in the presence of either FGF-2 or LIF from 

the time of isolation displayed a higher incidence of CFU-F when tested at P2. In 

addition, the loss of CFU-F potential with serial passage was not observed in cultures 

maintained in FGF-2 supplemented media in which the incidence of CFU-F at P12 

was comparable with that observed at P2. This observation is consistent with the 

finding that FGF-2 treated cells retain their multilineage differentiation potential and 

expansion potential with serial passage in contrast to cells maintained under standard 

culture conditions. In summary, CFU-F potential is a good predictor of the growth 

potential of MSCs in culture and their ability to differentiate into mesenchymal cell 

lineages. FGF-2 was shown to increase colony size compared to control cells 

consistent with its ability to promote the growth ofCFU-F in culture. 

Ex vtvo expansiOn ts necessary to obtain a sufficient number of cells for cell 

replacement therapies. However, we are only recently starting to understand the 

effects of culture on stem cell potentiality and self-renewal. Developing protocols that 

overcome the loss in potentiality and expansion potential with prolonged culture will 

be vital in the future to provide adequate cell numbers for therapy. 
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Figure 2.1: MSCs harvested from postnatal rat BM and isolated by differential 
adhesion to tissue culture plastic. Whole BM aspirate was re-suspended in culture 
media and plated at high density (1 00,000 cells/cm2) in a T75 cm2 culture flask. (A) PO 
MSCs adhered to the tissue culture plastic as seen at 12 hours. (B) At 48 hours 
adherent cells displayed a fibroblastic morphology and could be readily distinguished 
from non-adherent cells, which were highly reflective and remained in suspension in the 
culture media. (C) Single cell derived colonies of 10-20 cells were evident at 5 days of 
culture. These colonies increased progressively increase in size. (D) By 12 days 
colonies were 150-200 cells in size. Cultures were grown to >80% confluence (5-6 
days). (E) PO cells were passaged andre-plated at 1,000 cells/cm2 (Pl). (F) P1 rMSCs 
at 70% confluence 3 days following first passage. Spindle shaped cells dominated the 
culture at Pl. Scale bars are 50 f.Jm. 
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Figure 2.2: Epitope analysis of passage 2 postnatal rat MSCs. Cell surface 
antigen expression of passage 2 rat M SCs was accessed by immuno-fluorescence 
detected by flow cytometry . Cytometric traces show the fluorescence intensity (x­
axis) and the number of cells (y-axis). Characterisation of P2 rat MSCs was 
examined by employing monoclonal antibodies directed against CD44 (Hy aluronan 
receptor), CD90 (Thy 1.1), CD45 (leukocyte common antigen) and alkaline 
phosphatase (non-specific isotype) (TRA-2-54), CD73 (Ecto-5-nucleotidase), 
CD11b (MAC-1), HLA-Class I, CD29 (VLA beta chain) and CD56 (N-CAM) to 
access the expression of these surface markers (solid peaks). A primary isotype 
matched antibody control was included in each analysis to exclude non-specific 
binding and background fluorescence (open peaks). MSCs were positive for CD90, 
HLA class I, TRA-2-54 and negative for the haematopoietic lineage markers CD45, 
CD 11 b. In addition, cultures were positive for CD73, CD 56, CD29 and CD44 
although heterogeneous expression was found with these markers. 
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Figure 2.3: Morphological and immuno-cytochemical analysis of P2 rat 
MS C. P2 M SCs grown on tissue culture plastic were fixed in 4% PF A and 
processed for irnmuno-cy tochemical analysis of mesodermal proteins using 
standard procedures. Following immuno-detection using monoclonal antibodies , 
P2 rat M SCs were found to express fibronectin (A), smooth muscle actin (B) 
and collagen-1 (C). The expression of these proteins was homogenous within 
the culture and consistent between cultures derived from animal donors (n = 8). 
The expression of these proteins is consistent with a mesodermal phenotype. 
For morphological analysis colony forming assays (CFU-F) were performed. 
100 cells were transferred into 60cm2 dishes and cultured for 12 days , methanol­
fixed and stained with 0.5% crystal violet. MSCs following isolation and 
propagation retained the capacity to form single cell derived colonies (D). These 
early colonies and early passage cultures were dominated by spindle shaped 
cells (E). Cells with a flattened, more wide spread morphology are found at the 
periphery of colonies and are more evident as cultures reach confluence (F). 
Scale bars 50 !J-m. 



Figure 2.4: Adipogenic differentiation of P2 MSCs isolated from rat 
postnatal BM. Rat MSCs were cultured as mono-layers in standard culture 
medium (DMEM 10% FCS) and allowed to become confluent (A). Adipogenic 
differentiation was initiated by three cycles of induction/ maintenance culture. 
Each cycle consists of 3 days of culture in induction media followed by 2 days 
of culture in the maintenance media. Adipogenic differentiation was 
demonstrated by the accumulation of lipid vesicles (B-F) confirmed by oil red 
0 histochemical staining (B,C,D,F). Multiple treatments resulted in increasing 
numbers of adipocytes, as shown by oil red 0 staining at 1 week (B), 2 weeks 
(C) and 3 weeks (D) differentiation. Phase linages were also obtained prior to 
staining to confirm presence of vacuoles within cells (E). Higher magnification 
(x20) reveals single M SCs with extensive accumulation of oil red 0 positive 
vacuoles (F). Scale bars: 50f.1m. 
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Figure 2.5: Osteogenic differentiation of P2 MSCs isolated from rat postnatal BM. Rat MSCs were cultured as 
mono-layers in standard culture medium (DMEM 10% FCS) and allowed to become confluent. Seeding cells at a density 
of 3 x 103 cells/cm2 and maintaining cells in an osteogenic induction medium initiated differentiation. Osteogenic 
differentiation was demonstrated by the clacification of the extracellular matrix (A xS magnification, B, xlO 
magnification) confirmed by Von Kossa histochemical staining. Continuous treatment resulted in an increasing area of 
calcification, as shown by Von Kossa staining at 1 week, 2 weeks, and 3 weeks differentiation. Scale bars: 50f1m. 
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Figure 2.6: Effects of initial plating density on MSC expansion. P2 cells were 
seeded at varying initial plating densities (5, 10, 50, 100, 500 and 1000) in 
DMEMmedia supplemented with 10% FCS and maintained in culture for 15 days. Cell 
numbers were assayed every 3 days for 15 days. The fold increase in cell number from 
the initial plating density is shown for each time point and each culture condition (A). 
The total fold increase in cell number for 15 days for each culture condition is shown in 
(B). The total cell number increase from the initial plating density for each time point 
over 15 days is shown (C). In addition the total yield per cell is also indicated (D). 
Following expansion for 15 days colony forming ability was assayed. 100 cells were 
transferred into 60 cm2 dishes, cultured for 14 days and stained with crystal violet. 
Colony forming efficiency is shown (E). All data are mean values + SEM from 3 
independent experiments in parallel cultures. Significant differences from the control 
group (1000 cells/cm2) are indicated with an asterisk (*P<0.05 **P<0.01). 
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Figure 2.7: Effect of initial plating density on MSC morphology. P2 
cells were plated at 10, 50 and 1000 cells/cm2 . Representative phase 
contrast micrographs are shown of (A) 10 cells/cm2, (B) 50 cells/cm2 and 
(C) 1000 cells/cm2 at xlO and x20 magnification. All images were acquired 
3 days following initial plating. Scale bars: 50f.1m. 
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Figure 2.8: Effects of media composition on MS C expansion. P2 cells were 
seeded at a density of 10 cells/cm2 in different basal media compositions 
(IDMM, a-MEM, DMEM or RPMI) supplemented with 10% FCS. Cell 
numbers were assayed every 3 days for 15 days. The fold increase in cell number 
from the initial plating density is shown for each time point and each culture 
condition (A) (**P<0.001 RPMI cultures compared to IDMM, alpha-MEM and 
DMEM). The total fold increase in cell number for 15 days for each culture 
condition is shown in (B) (**P<0.001 DMEM compared to RPMI cultures, 
+P<0.05 DMEM compared to IDMM). Following expansion for 15 days 
colony forming ability was assayed. 1 00 cells were transferred into 60 cm2 

dishes, cultured for 14 days and stained with crystal violet. Colony forming 
efficiency is shown (C) (no significant differences were identified between 
cultures). All data are mean values + SEM from 3 independent experiments in 
parallel cultures. 
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Figure 2.9: Effects of serum (FCS) concentration on MSC expansion. P2 
cells were seeded at a density of 10 cells/cm2 in DMEM supplemented with 1, 2, 5, 
10, 20, or 30% FCS. Cell numbers were assayed every 3 days for 15 days. The fold 
increase in cell number from the initial plating density is shown for each time point 
and each culture condition (A). The total fold increase in cell number for 15 days for 
each culture condition is shown in (B). (**P<0.001 at day 15 5,10,20 and 30% 
cultures had significantly greater cell growth compared to 1 and 2% cultures. No 
other significant differences were found using 2-way ANOVA). Following 
expansion for 15 days colony forming ability was assayed. 1 00 cells were 
transferred into 60 cm2 dishes, cultured for 14 days and stained with crystal violet. 
Colony forming efficiency is shown (C). (*P<0.05 compared to 10,20 and 30% 
cultures, ** compared to 1 and 2% cultures) All data are mean values±SEM from 3 
independent experiments in parallel cultures. 
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Figure 2.10: Effects of passage on morphology of MSCs in culture. P2 were 
cells grown to confluence as a monolayer followed by methanol fixation and staining 
with 0.5% crystal violet. Staining revealed a heterogeneous morphology (A). P2 
cultures were dominated by spindle shaped cells, but also contained larger flattened 
cells. P2 cells seeded at low-density formed single cell derived colonies, which were 
dominated by rapidly proliferating spindle shaped cells (C). Morphological analysis 
by phase contrast analysis of P2 cultures revealed three types of cells based on 
morphology: spindle shaped cells, star-like cells and large flattened cells (E). Large 
flat slowly proliferating cells dominated P12 cultures (B). Re-plating ofP12 cells at 
low density did not result in the generation of well-defmed colonies. The colonies 
that did form remained small and dominated by large flat slowly proliferating cells 
(D). Phase contrast analysis also confmned that P12 cultures contained mainly cells 
with a large flat morphology (F). Scale bars 50f1..m. 
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Figure 2.11: Differentiation potential of rat MSCs at different 
passage numbers. To evaluate the differentiation potential of culture 
expanded M SCs, cells were isolated from the same donor and expanded in 
parallel cultures up to passage 2 (P2), 8 (P8) and 12 (P12) according to 
optimal culture conditions. At the desired passage number cells were 
differentiated into either adipocytes or bone. Differentiation was confirmed 
by using the histological satin oil red 0 for adipogenic differentiation or Von 
Kossa staining for osteogenic differentiation. Control cultures were 
maintained under standard culture conditions and were negative for both oil 
red 0 staining and Von Kossa. The same pattern of differentiation was 
observed in 3 independent experiments carried out under identical 
conditions. Scale bars: 5011-m. 
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Figure 2.12: Quantification of the effects of culture expansion on the 
differentiation and CFU-F potential of rat MSCs. (A) Effect of passage 
on viability of cell cultures. Samples of cells from P2, P8 and P12 cultures 
were stained with PI and the number of cells positive for PI was quantified 
using flow cytometry. (B) 100 cells from P2, P8 and P 12 were transferred 
to 60 cm2 dishes and cultured for 14 days (n=3, carried out in triplicate). 
The number of colonies formed was accessed following fixation in PF A and 
staining with crystal violet. (C) Quantification of the number of adipocytes 
following adipogenic differentiation of P2, P8 and P12 cells. Adipocytes 
were verified by oil-red-O staining and the numbers of adipocytes (%) was 
quantified by the visualisation of 10 random fields of view (approx 25 
cells/field of view). (D) Quantification of osteogenic differentiation. 
Calcified extra-cellular matrix was stained using von Kossa staining. The % 
area of each visual field (10 non over lapping visual fields) staining positive 
was determined. All data are mean values±SEM from 3 independent 
experiments in parallel cultures. Significant differences from the control 
group (P2 cells) are indicated with an asterisk (*P<0.05 **P<0.01). 
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Figure 2.13: Population doublings of rat MSCs. Population doubling; of 
rat MSCs in vitro. Values indicate population doubling; after MSCs were 
grown to confluence and subsequently replated. 
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Figure 2.14: Effects of various growth factors on expansion of MSCs in 
culture. P2 MSCs were cultured in basal DMEM media supplemented with either 
FGF, EGF, PDGF or LIF. Cell numbers were assayed every 3 days for 15 days. 
The fold increase in cell number from the initial plating density is shown for each 
time point and each culture condition. All data are mean values + SEM from 3 
independent experiments in parallel cultures. 
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Figure 2.15: Effects of growth factors on MS C expansion. P2 cells were seeded 
at a density of 10 cells/cm2 in the presence of different growth factors, either FG F -2, 
EGF, PDGF or LIF supplemented media. Cell numbers were assayed every 3 days 
for 15 days. The total fold increase in cell number from the initial plating density is 
shown for each culture condition. All data are mean values±SEM from 3 independent 
experiments in parallel cultures. Significant differences from the control group (0) are 
indicated with an asterisk (* *P<O.O 1 ). 
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Figure 2.16: Single cell colony forming ability of MSCs maintained in 
growth factor supplemented media. Cells were maintained under either 
normal culture conditions (FCS) or in growth factor supplemented media 
(EGF, FGF, PDGF or LIF all at lnglml) immediately following isolation and 
culture and remained under these conditions until P2. Then 100 cells were 
transferred into 60cm2 dishes, cultured for 14 days under standard culture 
conditions (no growth factors) and stained with crystal violet. Colony 
forming efficiency (%, colony numbers/ I 00) for cells maintained under each 
culture condition is shown (A). All data are mean values±SEM from 3 
independent experiments in parallel cultures. Significant differences from the 
control group (FCS) are indicated with an asterisk (*P<O.OS). Size 
distribution of colonies obtained in a CFU assay (B). Values are from 35 
colonies per plate (n=3). Values are largest diameters of the colonies. 



Figure 2.17: Colony forming ability of cells maintained in growth 
factor supplemented media. Cells previously isolated and expanded 
in growth factor supplemented media (either EGF, FGF, LIF and 
PDGF) were grown to confluence. Control cells (FCS) were maintained 
under standard culture conditions (10% FCS supplemented DMEM). 
100 cells from cultures at different passage numbers were then 
transferred to 60cm2 dishes, cultured for 12 days and stained with 
crystal violet. Colony forming efficiency (CFU-F %) is shown. All data 
are mean values±SEM from 3 independent experiments in parallel 
cultures. *P<0.05, **P<O.Ol compared to P2 within each growth factor 
treatment using 1-way ANOV A and post hoc analysis. 
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Figure 2.18: Mesodermal differentiation potential of MSCs maintained in growth factor 
supplemented media. Cells were maintained in growth factor supplemented media (bFGF, EGF, PDGF or 
LIF, all lnglml) from initial isolation. P2 or P12 cells grown under these conditions were subsequently 
differentiated into either bone (osteogenic) or fat (adipogenic) for 3 weeks. Differentiation was verified by 
Von kossa staining (bone) or oil red 0 (fat). Scale bars 50{lm. 



Chapter 2 tabulated data 

!Passage Total doublings Average doubling time (days) 

0 2 1.2 
1 4 1.8 
2 7 2.3 
3 9 2.2 
4 14 2.8 
5 16 3.1 
6 19 3.2 
7 24 3.7 
8 27 3.8 
9 29 5.2 
10 32 8.9 
11 34 9.3 
12 37 10.1 
13 38 12.3 
14 39 13.1 

Table 2.1: Growth kinetics of one MSC primary culture 

Passa e 2 8 12 

CD44 78.9 + 5.6 76.8 + 11.2 79.8 + 8.6 
CD11b 0 0 0 
CD73 73.2 + 5.6 63.7 + 9.5 56.7 + 8.9 

HLA Class I 98.9 + 8.3 88.4 + 7.9 79.8 + 8.8 
CD45 0 0 0 
CD 56 68.8+7.7 66.5 + 2.3 72.3 + 9.3 
CD29 90.8 + 7.1 93.2 + 3.9 88.7 + 9.7 
CD90 99.2 + 3.4 97.6 + 2.3 77.6 + 8.4 

TRA 2-54 96.7 + 2.3 92.4 + 9.3 94.5 + 9.7 

Table 2.2: Effect of passage on the expression of cell surface markers. The 
number of cells positive for each cell marker as determined by single colour flow 
cytometry is shown. All data is expressed as mean + SEM from three 
independent experiments. 

Passage Cell death (%) CFUs (%) Adipocytes (%) Mineralisation (%area) 

2 8±2 21±3 27±5 35±2 

8 6±1 10±3 13±4 35±3 

12 16±2 0 0 37±2 

Table 2.3: Differentiation of early and late passage MS Cs 



Condition Control FGF EGF PDGF LIF 

CD44 76.5 + 6.7 79.7 + 2.3 81.2 + 7.8 83.2 + 9.3 78.6 + 4.5 
CD11b 0 0 0 0 0 
CD73 49.8 + 9.5 74.3 + 11.2 55.4 + 8.7 78.9 + 4.7 88.7 + 10.2 

HLA Class I 97.6 + 5.5 94.5 + 7.8 98.7 + 3.4 92.3 + 7.6 99.7 + 5.7 
CD45 0 0 0 0 0 
CD 56 74.8 + 9.1 77.8 + 5.7 71.2 + 6.9 87.3 + 11.2 76.5 + 9.3 
CD29 91.2 + 6.7 87.6 + 8.8 98.7 + 8.9 92.1+8.7 89.9 + 6.8 
CD90 71.2 + 4.4 95.6 + 12.3 82.3 + 9.5 77.6 + 3.4 90.8 + 7.4 

TRA 2-54 98.7 + 7.5 93.4 + 7.8 92.3 + 5.5 98.7 + 7.9 92.3 + 4.2 

Table 2.4: Effect of growth factors on the expression of cell surface markers. 
The number of cells positive for each cell marker as determined by single colour flow 
cytometry is shown. All data is expressed as mean + SEM from three independent 
experiments. 

Donor Control bFGF EGF PDGF LIF 

1 33.4 37.3 34.7 32.5 33.6 
2 29.3 48.4 28.3 36.2 37.4 
3 36.3 42.3 38.4 38.6 39.7 
4 32.8 44.9 34.3 41.2 44.2 
5 31.5 36.3 33.9 32.9 42.5 

Table 2.5: Number of population doublings before senescence of MSCs 
under defined culture conditions. 
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3.1 Introduction 

Embryonic stem cells (ES) are pluripotent cells derived from the inner cell mass of 

blastocyst stage embryos that can be propagated as a continuous cell line in an 

undifferentiated state (Thomson et al., 1998). ES cells isolated from human embryos 

have been shown to differentiate into somatic cell lineages of all three embryonic 

germ layers during growth as embryoid bodies in vitro (Itskovitz-Eldor et al., 2000) 

and the formation of teratomas in vivo (Reubinoff et al., 2000). Whilst there is 

enormous potential for the use of human ES cells both in research and in the clinic, 

their use has encountered numerous ethical concerns (Frankel, 2000). In addition, the 

requirement for autologlous stem cell therapy to overcome immunological 

considerations, has led to the search for alternative, easily accessible stem cell 

populations within post-natal adult tissues. 

In the adult, stem cells exist in many tissues and organs where they remain as a self 

renewing population producing a narrow range of differentiated cell types associated 

with the tissue in which they reside (Gage 2000; Weissman, 2000, Potten, 1998; Watt, 

1998; Alison, 1998; Pittenger et al., 1999). However, the concept that adult stem cells 

have a limited repertoire for differentiation is being challenged by the growing body 

of evidence which suggests that tissue specific stem cells have a broader capacity for 

differentiation and can give rise to cell lineages not associated with their germ line 

origin (review: Weissman et al., 2001). Accordingly, some stem cells in adult tissues 

appear to possess a greater plasticity than previously envisioned. For example, 

hematopoietic stem cells (HSCs) appear to have the capacity to form a wide variety of 

alternative cell types, including tissues of all three germ layers, notably endothelium 

(Orlic et al., 2001a; Jackson et al., 2001; Lin et al., 2000); skin epithelia (Krause et 

al., 2001), cardiac and skeletal myoblasts (Ferrari et al., 1998; Gussoni et al., 1999), 

hepatic epithelium (Petersen et al., 1999; Lagasse et al., 2000) and neuroectodermal 

cells (Kopen et al., 1999; Mezey et al., 2000; Sanchez-Ramos et al., 2000). In 

addition, neural stem cells have been shown to differentiate into hematopoietic cell 

lineages in vitro (Bjornson et al., 1999; Morshead et al., 2002) and transplanted 

muscle cells can reconstitute the hematopoietic system of irradiated mice (Jackson et 

al., 1999; Kawada et al., 2001). It has also been demonstrated that neural stem cells 
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injected into the early blastocyst contribute to a number of embryonic tissues in the 

resulting chimera (Clarke et al., 2000). 

MSCs are a prototypical stem cell population that reside in the bone marrow and are 

distinct from HSCs. Besides co-habiting with one another, MSCs provide the 

structural and functional support for HSCs and hemopoiesis (Tavassoli and 

Friedenstein, 1983). MSCs were first described in 1974 by Friedenstein (Friedenstein 

et al., 1974), who characterized them as fibroblastic stem cells capable of forming 

colonies. This designation also includes stromal bone marrow fibroblasts or 

mesenchymal stem cells (MSCs) (Luria et al., 1987; Caplan, 1994). Although MSCs 

have a low frequency in the adult bone marrow tissue, they can be readily explanted 

and cell numbers expanded ex vivo by virtue of their high proliferative capacity. 

Cultured MSCs possess a distinct immunophenotype and can be characterized by their 

expression of various cell surface markers. For example, a typical expression profile 

for a population of MSCs would include CD34-, CD45-, CD44+, CD90+, CD44+ and 

HLA class I+ (Wexler et al., 2003). Cultured bone marrow-derived MSCs are classed 

as being typical multipotent stem cells in that they retain their ability to differentiate 

into a range of mesenchymal tissue types, including osteocytes, chrondrocytes, 

adipocytes, tenocytes and stromal cells able to support hematopoesis (Pittenger et al., 

1999). 

Like HSCs, several groups have shown that MSCs also have a greater plasticity than 

had previously been contemplated. MSCs have been reported to differentiate into 

hepatocytes (Petersen et al., 1999), cardiac and skeletal muscle (Orlic et al., 2001a; 

Ferrari et al., 1998; Makino et al., 1999; Wakitani et al., 1995), as well as, neural- and 

glial-like cells (Sanchez-Ramos, 2000; Woodbury et al., 2000). The generation of 

neuroectodermal tissue from MSCs is of particular interest, especially as a candidate 

for autologous stem cell therapy to treat neurological disorders. Even though the 

mammalian central nervous system (CNS) is capable of regeneration following injury, 

this is of limited capacity and only occurs in distinct regions of the brain (Eriksson et 

al., 1998). Whilst it is now possible to establish cultures of neural stem cells from 

adult brain tissues (Westerlund et al., 2003; Carpenter et al., 1999; Uchida et al., 

2000), it is difficult to isolate such cells. Accordingly, the ability to produce neural 
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tissues from a readily accessible tissue such as bone marrow opens up an exciting 

possibility to produce neural cells for autologous transplantation. 

During the past few years, several studies have presented evidence for the generation 

of neurons from MSCs both in vitro and in vivo. However, more recent experiments 

have questioned the validity as to whether transplanted MSCs do differentiate to form 

somatic cells or whether grafted cells simply fuse with host tissues thus giving the 

appearance of taking on the identity of a differentiated cell type (Jiang et al., 2002a; 

Reyes and Verfaillie 2001; Labat et al., 2000; Ying et al., 2002; Terada et al., 2002). 

Whilst this important debate continues it should not deter us from the fact that the 

production of neural and glial cells has also been reported in mono-cellular cultures in 

vitro. These cell culture systems are free from the possibility of cell fusion with host 

tissues and have the advantage of control in terms of the homogeneity of the starting 

population of cells. 

Sanchez-Ramos et al., 2000 first produced neural precursor cells from MSCs by 

culturing them under growth conditions known to induce the differentiation of neural 

derivatives from ES cells and neural stem cells in vitro. In response to retinoic acid 

and brain derived neurotrophic factor (BDNF), a small proportion of human and 

murine MSCs form neural-like cells expressing pan-neural markers. This percentage 

was further increased by co-culture with fetal mesencephalic cells. Alternatively, 

Woodbury et al. (2000) described a method in which neural cells are produced from 

MSCs following treatment with antioxidants in serum-free conditions, including 2% 

DMSO which has been shown to induce differentiation in several neuroblastoma cell 

lines (Oh et al., 2006; Bolduc et al., 2001). Exposure of MSCs to antioxidants 

resulted in over >70% of the cell population assuming a neural-like morphology 

within 5 hours of treatment. Several groups have independently shown that cultures 

of MSCs treated in this way, markedly up-regulate their expression of neuronal 

proteins, including markers such as nestin, ~-III-tubulin and NeuN (Woodbury et al., 

2000). In addition, no evidence of glial fibrillary acidic protein (GF AP) expression 

has been reported, suggesting that only neuronal differentiation occurs under these 

growth conditions. Deng et al., 2001 documen~ed a similar neural induction 

procedure in which exposure to isobutylmethylxanthine (IBMX) (which has the effect 

of increasing intracellular cAMP) resulted in 25% of the BMSC population adopting a 
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neuronal morphology with expression of neural specific enolase but in the absence of 

GFAP expression. Using an alternative approach, Kohyama et al. (2001) described 

the differentiation of neural cell types following transfection with the neural inducer 

noggin. Noggin transfection produced neural-like cells that expressed neural proteins 

and possessed electrical characteristics normally associated with functional neurons. 

It is apparent that cultures of mammalian MSCs respond to a variety of stimuli and 

have the capacity to form cells that morphologically resemble neurons. However, it is 

currently not known whether such a transformation in cell identity is an artifact of the 

growth conditions experienced by the cells or is in fact real cell differentiation. 

Confounding this issue is the variability between existing studies. For example, there 

is little rationale for the evolution and the development of the strategies used to 

induce the formation of neural-like cells from MSCs and the technical merits of these 

approaches have not been clearly justified. Moreover, aspirates of bone marrow 

stroma are known to be heterogeneous and contain a broad range of cell types. 

Several investigators have gone to varying lengths to ensure that HSCs are reduced to 

a minimum and some effort has been made to immunophenotype the starting 

population (Woodbury et al., 2000; Deng et al., 2001). Some workers have produced 

enriched populations of MSCs using cell type markers known to be expressed by 

MSCs in vivo, whilst others have isolated MSCs on the basis of their preferential 

adherence to tissue culture plastic, or have isolated the mononuclear fraction of cells 

by ficoll density centrifugation (Kohyama et al., 2001). Accordingly, there are likely 

to be significant differences in the starting population of MSCs between independent 

studies assessing their ability to form neural derivatives. In our laboratory, we have 

attempted to standardize the starting population of MSCs before examining their 

ability to form alternative cell types. Here we report our preliminary findings 

comparing the ability of mammalian MSCs to form neural cell types using a range of 

different growth conditions. 

3.2 Materials and Methods 
3. 2. I Materials 

Tissue culture reagents and other materials were acquired from Sigma (Sigma­

Aldrich, Poole, UK) unless otherwise stated. All substances were of the appropriate 
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chemical, molecular biological or tissue culture grade. Colcemid (COL) was 

dissolved in ethanol and used at a final concentration of 1 Jlg/ml unless otherwise 

stated. Laminin, fibronectin and Polyomithine were purchased from sigma and were 

used to coat tissue culture plastic. Laminin was diluted in media and used at a final 

concentration of 5!J.g/ml to coat flasks overnight at 3rC. Fibronectin and 

polyornithine were used at final concentrations of 25!J.g/ml and 1 O!J.g/ml respectively. 

PMA (Sigma) was prepared in ethanol and used at a final concentration of 1 Of.!M. 

3.2.2. Cell Culture 

Rat MSCs (rMSCs) were isolated from the femurs and tibiae of 6-8 month old Wistar 

rats. The bone marrow (BM) was aspirated with 20 ml collection media (RPMI-1640 

supplemented with 10% fetal calf serum (FCS), 100 U/ml penicillin, 100 Jlg/ml 

streptomycin, and 12 J..I.M L-glutamine) into a T75cm2 flask to allow stromal cells to 

adhere to the culture surface. Adherent cells were then washed and maintained in 

complete culture medium (CCM: Dulbecco's Modified Eagles Medium supplemented 

with 10% FCS, 100 U/ml penicillin, 100 Jlg/ml streptomycin, and 12 J..I.M L-glutamine 

and 1x non-essential amino acids) at 37°C in 5% C02• Isolation of rMSCs was 

verified by their capacity to differentiate into mesodermal derivatives (bone, fat) 

Passage 8 (approximately 25 population doublings) cells were used in the experiments 

described herein. 

The mouse neuroblastoma N2a cell line and human neuroblastoma cell line was 

originally obtained from the American Tissue Culture Collection. Cells were seeded 

in T -25 tissue culture flasks (Gibco) plates at a density of 3 x 104 cells/cm2 and grown 

in DMEM (Gibco) supplemented with 2 mM L-glutamine, penicillin (20 units/mL), 

streptomycin (20 mg/mL) and 1 0% FCS (Invitrogen). Cells were maintained in a 

humidified atmosphere containing 5% C02 at 37°C and grown to >70% confluence. 

NSC/progenitor cells were isolated from the mesencephalon of day 14 rat embryos. 

Pregnant female Wistar rats at the specified gestational age of 14 days (E14) (the day 

of conception was confirmed by the presence of a vaginal plug, embryonic day 0) 

were killed by cervical dislocation and the uteri were aseptically removed and 
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transferred to Petri dishes containing sterile Dulbecco's phosphate buffered saline 

(PBS) with 30% glucose and penicillin (20 units/mL), streptomycin (20 mg/mL). E14 

striata were isolated and triturated in DMEM/F12 with a sterile Pasteur pipette. The 

cell suspension was filtered with a 70 ~-tm-mesh and viable cells were estimated by 

typan blue exclusion. The cells were plated (1 x 106 cells/75-cm2 uncoated tissue 

culture flask (Nunc)) in a chemically defined serum-free medium DMEM/F12 

including 0.6% glucose, 2mM L-glutamine, 3mM sodium bicarbonate and 5mM 

HEPES buffer, supplemented with N-2 (a multi-component cell culture supplement), 

EGF (lOng/ml, Sigma) and FGF (10ng/ml, Sigma) and 2 ~-tg/ml heparin. When the 

size of neurospheres reached approximately 50 cells, they were dissociated into a 

single cell suspension by titration and replated in fresh culture medium. Cultures were 

maintained in 3rC in a humidified incubator with 5% C02• Neurospheres with a 

maximum of 3 passages were used in this study. Differentiation of E 14 derived 

neurospheres was carried out as described in the results section, where appropriate. 

3.2.3 Analysis of cell surface marker expression 

Cells required for flow cytometry analysis were washed and resuspended in F ACS 

medium at a concentration of 1 x 106 cells/mi. 200~-tl of cell suspension (2 x 105 cells) 

was pipetted into each well of a 96-well plate (Greiner), centrifuged at 300g, 4°C for 

10 minutes and the supernatant discarded. 50~-tl of the required primary mouse 

monoclonal antibody was added to the cells at the appropriate concentration and the 

plate incubated on ice for 20 minutes. Antibodies include: (all anti-mouse 

monoclonal): A2B5 (1:50), B 159 (N-CAM) (1: 1 00), VIN-US-53 (N-CAM, 1 :200) 

and VIN-US-56 (glycoporetin, 1 :25) and were all obtained from the developmental 

hybridoma bank. Following 2 washes with 150-200~-tl FACS medium, 50~-tl secondary 

FITC antibody (anti-mouse lg Fab2 fraction, FITC conjugated - DAKO) was then 

added to the cells ( 1 :20) for a 20 minute incubation on ice in the dark. The cells were 

then washed twice with F ACS medium and transferred in 500~-tl aliquots to Sml 

centrifuge tubes (Greiner) for flow cytometry analysis. 10~-tl of 0.25mg/ml propidium 

iodide (Sigma) was added to each sample to assess viability of cell populations. 

Analysis was performed using a coulter EPICS XL flow cytometer. Using a 530 and 

585 band pass filter respectively identified FITC and Cy-3, and quantification was 

completed using CellQuest Software (Becton Dickinson). Ten thousand events were 
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acquired per sample with fluoresence measured on logarithmic scales. Forward and 

side light scatter gates were set to exclude dead debris and clumps of cells. To 

calculate the percentage of positive cells, linear gates were set at 0.1 %, on samples 

stained only with secondary antibodies, and expression corresponding to a fluoresence 

signal exceeding this percentage was measured. 

3.2.4 Western Blot Analysis 

Protein extracts (301J.g per lane) were separated by electrophoresis and transferred 

onto PDVF membrane (Amersham). For immunoblotting, membranes first incubated 

in blocking solution (I 0 mM Tris-HCl (pH 8.0), 150 mM NaCI) containing 5% milk 

powder, 0.2% Tween 20) for 1 hour followed by primary (TuJl (Con vance), 1 :5000; 

Nestin (Chemicon), 1:1 000; ~-Actin (Sigma), 1 :5000), MAP-2 (Sigma, 1:1 000), 

Synaptophysin (Sigma, 1: 1000), PKC (Cell signaling 1:1 000), NF -160 (Chemicon 

1 :500), GAP-43 (Sigma, 1:1 000) S 100 (Chemicon 1: 1 000) and secondary (mouse or 

rabbit lgG-HRP (Amersham, 1:1 000) antibody. Protein-antibody binding was 

detected on film (Hyperfilm ECL, Amersham) using chemiluminescence 

(Amersham). Densitometry following western blot analysis was carried out on blots 

obtained from three independent experiments and where analysed by ImageJ. 

3. 2. 5 Differentiation of MSCs into the osteogenic cell lineage 

Cells were seeded at a density of 3 x 103 cells/cm2 in tissue culture dishes and 

cultured with DMEM media supplemented with 10% FCS, 100 nM dexamethasone, 

50 ~-tM ascorbic acid 2-phosphate, 1 OnM j3-glycerophosphate. The cultures were 

maintained for upto 3 weeks and the culture medium was replaced every three days. 

After 7, 14 or 21 days of culture, cells were rinsed twice with PBS, and fixed with 

1 0% buffered formalin for 1 0 minutes at room temperature. Cells were stained with 

5% silver nitrate solution for von kossa staining. Cells were incubated in 5% silver 

nitrate solution for 10 minutes in the dark, washed thoroughly and then exposed to 

bright light for 15 minutes. 

3. 2. 6 Immuno-fluorescence microscopy 

For F-actin staining or a-tubulin staining it was necessary to preserve the structure of 

the microtubule cytoskeleton, cells were washed in PBS, extracted with 1% Triton X-
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100 in microtubule stabilizing buffer (PEM: 1 mM MgCh, 5 mM EGTA, 80 mM K­

pipes, pH 6.8). After permeabilisation cells were fixed with 0.5% gluteraldehyde in 

PBS. Free aldehyde groups were blocked by sodium borohydride (10 minutes) and 

lysine (2% solution) for 1 hour. For other staining, cells were washed with PBS and 

fixed in 4% PF A solution for 30 minutes followed by post fixation and 

permeabilisation in 0.5% Triton X-100 in PBS for 15 minutes. All samples were 

subsequently rinsed three times in blocking/wash buffer (2% PF A in PBS), incubated 

with monoclonal mouse antibody directed against either a-Tubulin DMIA (Sigma, 

1:1 00), Nestin (Chemicon, 1 :200), Synaptophysin (Sigma, 1:1 00), NeuN (Chemicon, 

1: 1 00), NF -160 (Chemicon, 1 :200), Vimentin (Sigma, 1 :200), Fibronectin (Sigma, 

1 :200), GAP-43 (Sigma 1: 100), Tuj-1 (Convance, 1 :8000), GF AP (Sigma 1 :500), 

MAP-2 (Chemicon, 1:1 00) and TAU (DHB, 1 :50). FITC-conjugated goat antibodies 

against mouse IgG (Sigma, 1:1 00) were used as secondary antibodies. To visualize 

the F -Actin cytoskeleton, cells were stained with TRITC-labeled phalloidin. Labeled 

cells were cells visualized using an inverted fluorescent microscope (model E660 

Nikon) and a CCD camera (Spot RT; diagnostic instruments) with individual filter 

sets for each channel. All images were captured using the same collection parameters 

for quantitative comparisons. The fraction of positive cells was determined for each 

culture condition by counting 10 non-overlapping microscopic fields (>20 cells/field) 

for each condition in at least three independent experiments. Colour images were 

generated using Adobe photoshop (Adobe systems, mountain view, CA) 

3. 2. 7 Intracellular staining for flow cytometry 

Suspensions of rMSCs (2 x 106 cells PBS washed cells) were pelleted in a 12 x 75 

mm culture tube. The pellet was re-suspended in 0.875 ml of cold PBS. Then 0.125ml 

of cold 2% PF A was added and the suspension incubated at 4 oc for 1 hour, 

centrifuged for 5 minutes at 250g, then the supernatant was removed. For 

permeabilisation cells were incubated with Triton X-100 (0.2% in PBS) at 3rc for 

15 minutes. To terminate permeabilisation 1ml of buffer (lxPBS + 2% goat serum+ 

sodium azide) and the suspension was centrifuged for 5 minutes at 250 x g. The 

supernatant was removed and internal staining then proceeded as described for 

immunocytochemistry. Non-specific ·binding was blocked by incubation with 5% goat 

serum in PBS for 1 hour at room temperature. A primary isotype matched control was 
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included in each experiment to exclude any background fluoresence. The cells used 

for this control analysis were fixed, permeabilised under identical conditions to 

experimental samples. For quantification of cells expressing a given marker, flow 

cytometry analysis was performed. The specificity of the assay was confirmed by the 

use of negative controls. 

3. 2. 8 Flow cytometry analysis 

All samples were maintained on ice prior to analysis. Analysis was performed using a 

coulter EPICS XL flow cytometer. FITC and Cy-3 were identified by using a 530 and 

585 band pass filter respectively, and quantification was completed using CellQuest 

Software (Becton Dickinson). Ten thousand events were acquired per sample with 

fluoresence measured on logarithmic scales. Forward and side light scatter gates were 

set to exclude dead debris and clumps of cells. To calculate the percentage of positive 

cells, linear gates were set at 0.1 %, on samples stained only with secondary 

antibodies, and expression corresponding to a fluorescence signal exceeding this 

percentage was measured. 

3. 2. 9 Measurement of neurite outgrowth 

N2a cells were differentiated either with DMSO or in the presence of DMSO and 

myelin associated glycoprotein (MAG, 0.3J..lg/ml, R&D). After 6 days cells were fixed 

in 4% PF A and processed for immunocytochemical staining with Tuj-1. Cells were 

viewed using an inverted fluorescent microscope and images acquired using digital 

camera. Images were taken of 10 non-overlapping visual fields (x10 magnification) 

for each culture condition and in 3 independent experiments in cells were cultured in 

parallel. The neurite lengths of every Tuj-1 + cell (1 0-15 cells/field approx) within 

each field of view was determined. Neurites exhibited by differentiating neuronal 

progeny from cultures of DMSO induced serum deprived N2a cells, that were 

immunopositive for TUJl were analysed using ImageJ 1.33 software, a public domain 

JAVA image processing program (NIH, USA). Pixel scale was set to microns 

according to image magnification. JPEG files obtained from light or fluorescent 

microscopy were opened in ImageJ and neurite lengths were measured by tracing 

along neurites with the freehand line tool then measuring length using the 

measurement tool. 
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3. 2.10 Analysis of cell death 

Cells were trypsinized, washed and processed for flow cytometry by forming a single 

cell suspension and maintained on ice. Cells were stained with 1 ug/ml propidium 

iodide (PI) (Sigma) just prior to analysis by flow cytometry. Annexin V staining was 

carried out according to the manufactures instructions. Briefly cells suspensions were 

washed in ice cold buffered PBS and centrifuged at 500 g at 4 oc for 5 minutes. The 

supernatant as discarded and the cell pellet was finally resuspended in ice cold 

binding buffer to a cell concentration of 5 x 1 05 cells/mi. Cells were then incubated 

with annexin V solution and PI for 10 minutes on ice in the dark. Cell samples were 

then diluted in ice-cold binding buffer and analysed by flow cytometry. 

3. 2.11 Statistical analysis 

Statistical analysis was carried out using Graph Pad Prism Software version 4. Results 

were analysed for statistical significance using ANOV A and all error bars are 

expressed as standard error+/- mean. All data unless stated otherwise is expressed as 

Mean±SEM. Post hoc analysis was done using Bonferroni corrected planed 

companson. 

3.3 Results 
3. 3.1 Transition in cell morphology in response to chemical induction 

It has been demonstrated both by ourselves and others that exposure of cultured 

mammalian MSCs to antioxidant compounds or compounds that increase intracellular 

cyclic AMP (Deng et al., 2001) results in generation of cells which display a 

morphology and protein expression profile consistent with cells of a neural phenotype 

(Woodbury et al., 2000, Rismanchi et al., 2003, Qian et al., 2004; Croft and 

Przyborski, 2004). We describe these cells as neuroprogenitor-like cells. To induce 

this phenotype, MSCs were maintained as sub-confluent cultures in DMEM, 10% 

FCS media supplemented with 5ng/ml basic fibroblast growth factor (bFGF) for 24 

hours prior to neural induction (in some studies 1 mM BME has been used as the pre­

inductive agent and is reported to have the same effect). Formation of the neural-like 

morphology was induced by the removal of serum and bFGF and the introduction of 

an antioxidant compound B~mercaptoethanol (BME, 0.1-10 mM) (Figure 3.2b, 3.3a), 

dimethyl sulphoxide (DMSO, 0.1-2.0% v/v) (Figure 3.1, 3.2a, 3.3b) or butylated 
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hydroxyanisole (BHA, 10-200 !!M) (Figure 3.2c and Figure 3.3c) at varymg 

concentrations. Following this procedure, a transition in cell phenotype occurs 

rapidly and stromal cells adopt a neural-like morphology over the following 5 hours 

(Figure 3.1, 3.2, 3.3). For example, in response to 2% DMSO in serum free media, 

responsive cells drastically changed their morphology (Figure 3 .1). During the first 

1-2 hours, responsive cells adopt a multipolar phenotype radiating peripheral process­

like extensions. Over the next 3 hours the perikaya of responsive cells becomes more 

spherical and refractile in nature. This process continues and cells display secondary 

(figure 3.lc, arrows) and tertiary branching, resulting in the formation of extensive 

network of neurite-like processes (Figure 3.ld). Within the first 5 hours the majority 

of cells alter their morphology, although there is variability between cells in terms of 

the onset of induction but it is unclear why this occurs. In our experiments, we 

observe that type I MSCs, that are characterized by their more spindle shaped 

morphology (Figure 3.1 b, arrows), are the first cells to respond to this treatment 

whilst larger flat cells show a delayed or inhibited response. It is unclear at this stage 

why this occurs. Staining for the pan neural marker Neuron-specific enolase (NSE, 

enolase enzyme associated with neuronal cells) was used to confirm these cells had a 

neural identity and consistent with the detection of increasing numbers of neural-like 

cells in the culture in response to DMSO the number of cells positive for NSE 

increased with time in culture. 

Figures, 3.1, 3.2 and 3.3 which collectively provide an analysis of the effects of 

DMSO, BME, BHA and forskolin on the morphology of MSCs in culture using phase 

contrast microscopy, Within 30 minutes of exposure of cells to chemical inductive 

agents in serum-free media, changes in morphology of some rat MSCs were observed 

and as described above spindle shaped cells tended to be the first to respond. As cells 

assumed a neuronal morphology the cytoplasm retracted towards the nucleus, forming 

a contracted multipolar, cell body, leaving membranous, process-like extensions, 

which radiated from the cell body. These radial processes resembled neurities. By 3 

hours the cell bodies of MSCs became progressively refractile, exhibiting what has 

been described as a typical perikaryal appearance. With increasing time of exposure 

(3-5 hours) the apparent processes became more elaborate, displaying primary and 

secondary branching and in some cases growth cone like structures appeared to be 

present on terminal processes, which is consistent with axonal growth. In summary, in 
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preliminary findings we were able to recapitulate the earlier observation of Woodbury 

et al., 2000 in which antioxidant compounds induce a presumptive neuronal 

phenotype as defined by morphology and the expression of pan neural markers. 

3. 3. 2 Efficiency in inducing changes in cell morphology: 

Treatment of cells with either antioxidant compounds or forskolin resulted in 

comparable morphological changes regardless of the agent used and these changes 

occurred over a consistent time span (5 hours). (Figure 3.2, 3.3) However, the 

absolute number of responding cells and the total number of neural-like cells 

identified after 6 hours induction was different depending on the agent used. 

Evaluation of cultures of MSCs treated with antioxidant compounds as function of 

time and concentration revealed that the number of neural-like cells increased as a 

function of these two parameters. As of induction increased from 0-6 hours the 

number of neural-like cells progressively increased but reached a plateau in all cases 

between 5-6 hours. In the presence of 1 O!!M BME the number of neural-like cells 

increased from 9.8±1.8 to 72.8±4.9% between 30 minutes and 6 hours. Similar results 

were obtained for 4% DMSO (42.6±6.9 to 86.7±3.6% between 30 minutes and 6 

hours) and 200!-tM BHA (14.8±1.8 to 67.8±8.3%, between 30 minutes and 6 hours). 

In addition, a dose response curve was demonstrated for all 3 antioxidant compounds 

(BME, DMSO and BHA). As the concentration increased the total number of neural­

like cells increased for each time point analyzed. This suggested that the limiting 

factor to this acquisition of a neural-like morphology was not time but the 

concentration of the inducting agent. 

The same pattern of response was demonstrated for cells induced with forskolin in 

serum free media. A dose response curve was demonstrated for forskolin (figure 3.3d, 

3.2d) with the number of neural-like cells increasing in proportion to the final 

concentration of forskolin, however a maximal response was observed between 50-

1 00!-tM. The absolute number of cells acquiring a neural-like morphology in response 

to forskolin treatment were significantly lower compared to the efficiency of 

induction using antioxidant compounds. The number of neural-like cells increased 

from 7.4±1.9 to 32.7±5.1 between 30 minutes and 6 hours post induction with 200!-tM 

forskolin. This observation is consistent with the report of Deng et 2001. These 
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investigators used IBMX, a compound that increases intracellular cyclic AMP 

through activation of Protein kinase A found that about 25% of cells assumed a 

neural-like morphology in response to this compound. The reason for the differences 

in the level of induction observed in antioxidant treated cultures compared to 

forskolin treated cultures is known but is likely to be linked to differences in the 

mechanism of action of the compounds. 

To examine whether the removal of serum contributed to the induction of a neural 

morphology in MSCs, controls were included in analysis in which cells were cultured 

under identical conditions as chemically induced cells and received the same pre­

conditioning treatment as induced cells but where subsequently cultured only in 

serum free media. 19 .8±3 .1% of neural-like cells wee found in cultures maintained 

only in serum free media. The morphology of these neural-like cells was comparable 

with those in induced cells, however, a large number of cells in serum free media 

showed a degree of cytoplasmic retraction but not a full neural-like morphology. 

Although only 20% of cells (approx) responded simply to the removal of serum the 

responding cells tended to be grouped in the culture and their small groups of 5-6 

responding cells were found with the culture. In addition, a small proportion of 

neural-like cells (ranging from 0.3-06% of cells) were reported in cultures maintained 

under control conditions, suggesting that MSCs may have an intrinsic neurogenic 

potential and can differentiate into neural derivatives. 

The most effective inducing agent was DMSO. 86.2% of cells treated with 4% DMSO 

acquired a neural-like morphology (figure 3.2a). Therefore only approximately 15% 

of cells did not respond and there was no apparent reason from image analysis, which 

examined why these cells did not respond. Non-responding cells were evident under 

all inductive conditions tested and ranged from 15-50% in number depending on the 

agent used. Image analysis at 24 and 48 hours revealed that neural-like cells were still 

present in cultures and were viable. However, it was evident that some spontaneous 

reversion had occurred and some had reverted to a stromal cell phenotype with a 

concomitant reduction in the number of neural-like cells present in the culture. This 

effect occurred in all inductive conditions, but was least evident in DMSO treated 

cells. Some of the cells partially lost contact with the substratum and others 

completely detached. For further investigation DMSO was chosen as the inductive 
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agent because of the efficiency of induction achieved and because DMSO is known to 

induce neuronal differentiation of neuroblastoma cell lines. The concentration chosen 

was 2% because 4% DMSO resulted in high levels of substrate detachment. 

Cell counts revealed that between 70-90% of cells treated with either BME, DMSO or 

BHA adopted a neural-like phenotype, which is consistent with the findings of other 

investigators (Woodbury et al., 2000; Rismanchi et al., 2003; Qian et al., 2004). 

However, there is considerable variability between experiments in the proportion of 

cells that respond to the treatment. We have identified a number of variables that may 

account for these changes in induction efficiency. One of the primary factors that 

appeared to influence the percentage of responding cells was the time that the cells 

had spent in culture (ie. number of population doublings). Earlier work has shown 

that MSCs gradually lose their multipotent potential for differentiation during ex-vivo 

cell expansion (Digirolamo et al., 1999; Sekiya et al., 2001 ). In agreement, the 

efficiency of inducing neural-like phenotypes in response to antioxidants was highest 

in cultures with minimal ex-vivo expansion. In general, the majority of experiments 

we report here are within 3-4 passages of the primary explant culture (unless 

otherwise stated, in later experiments P8 cells are used following a report that 

prolonged culture is required for efficient nestin expression in response to defined 

culture conditions (Wislet-Gendebein et al., 2003). Cell density and confluence of the 

culture also have a considerable affect on induction efficiency, as well as the 

formation of neurite-like processes and establishment of an intricate network. We 

found consistent results and a high percentage induction of neural-like morphologies 

when MSCs were seeded at a density of 10,000 cells/cm2 and grown to 80% 

confluence on tissue culture plastic prior to treatment with antioxidants. Under these 

growth conditions >85% of cells respond and form secondary and tertiary branches as 

described earlier. 

3. 3. 3 Characteristics of MSC presumptive neurite 

To further examine the structural alterations in response to DMSO treatment and the 

validity of this response, cells were stained for cytoskeleton proteins characteristic of 

neuronal development. Cells were first pre-treated with 5ng/ml bFGF for 24 hours in 

serum containing media. Cells were then transferred to serum free media 

supplemented with 2% DMSO for 5 hours following which cells were fixed and 
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processed for immuno-cytochemistry (Figure 3.4). The microtubule system was 

visualized using a a-tubulin antibody. Microtubules were collapsed around the cell 

body and although staining was detected in the processes radiating from the cell body, 

this staining was less dense compared to the cell body staining (Figure 3.4a). This is 

in contrast, to neuronal cells, in which developing neurites are microtubule rich. MSC 

neural-like cells, expressed a neuronal specific microtubule Tuj-1, the intensity of this 

staining was again concentrated in the cell body as opposed to the radiating 

cytoplasmic processes (Figure 3.4b). To visualize the actin cytoskeleton, cells were 

labeled with a TRITC conjugated Phalloidin which binds to F-actin (Figure 3.4c). 

Consistent with neurite development, presumptive MSC neurites contained a high 

concentration of F -actin. Cells also expressed GAP-43 however, the localization of 

this protein was not consistent with neuronal development and as the expression was 

not confined to the terminal portion of developing processes and in fact these regions 

were weakly stained in MSC presumptive neuronal cells (Figure 3.4d). 

To examine ifthe developmental potential ofMSCs is affected by chemical induction, 

induced MSCs (5 hour treatment with 2% DMSO) were differentiated in osteogenic 

medium (Figure 3.4e,t). Neural-like cells were capable of forming osteoblasts in 

culture as verified by a calcified extra-cellular matrix. Chemically induced cells 

therefore do not loose their developmental potential and retain their capacity to 

differentiate into mesenchymal cell lineages. The presumptive neural-like 

morphology of induced MSCs was also found to be fully reversible following the re­

introduction of serum and removal of the inductive agent. This reversibility occurred 

within the same time frame as chemical induction i.e. 5 hours (Figure 3.4g,h). 

To investigate the role of pre-induction and serum on the acquisition of a neural-like 

morphology MSCs were induced by 2% DMSO in either the presence or absence of 

serum (10% FCS) (Figure 3.5). The number of neural-like cells was determined by 

image analysis of cultures every hour for 6 hours following exposure to DMSO. The 

number of neural-like cells was greater in cultures induced in the absence of serum at 

each time point compared to induction in the presence of serum. By 6 hours, 

83.3±2.9% of cells had acquired a neural-like morphology in the absence of serum in 

contrast, to 44.9±12.5% of cells that acquired a neural-like morphology when 

induction was carried out in the presence of serum. To examine the effect of bFGF 
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treatment on induction, cells were cultured in the presence of 5ng/ml bFGF for 24 

hours prior to induction (pre-induction). The number of neural-like cells formed under 

these conditions was compared to non-pre-induced cells. The number of neural-like 

cells formed in cultures pre-induced (87.2±5.6%) with 5ng/ml bFGF was significantly 

(P<0.05 Students T-test) higher than non pre-induced cell cultures (77.1±3.1%). 

Therefore consistent with previous reports, FGF-2 pre-induction significantly 

increased the number of neural-like cells formed in response to chemical induction 

(Woodbury et al., 2000). 

3.3.4 Cell viability following 5 hours DMSO treatment 

Antioxidant compounds are cytotoxic at high concentrations. We therefore examined 

the effect of DMSO induction and serum removal on cell viability (Figure 3.6). Cells 

were cultured in either: DMEM + 10% FCS + 2% DMSO or DMEM + 2% DMSO. 

Cell viability was assessed using propidium iodide (PI). PI is excluded from healthy 

cells but enters dead cells following their loss of membrane integrity. It binds to 

exposed DNA and becomes highly fluorescent. This fluorescence was examined by 

flow cytometry, which determined the number of cells, which had incorporated PI and 

was therefore a measure of cell death. Cells were harvested every hour for 6 hours 

following induction under these conditions. The cells were then processed for flow 

cytometry. The number of PI+ cells in induced cultures was compared to non-induced 

MSCs. The number of PI+ cells ranged from 4-12% in induction carried out in serum 

containing media and there was no significant difference in the number of PI positive 

cells in induced versus non-induced MSCs at any time point. Cell death was higher 

when induction was carried out in serum free media and ranged from 5-19%. 

However, there was no significant difference between cultures induced in serum free 

media and control cells, although cell death was higher in cultures induced for 1 hour. 

Cell death was lower at subsequent time points. 

3.3.5 Expression of neural proteins in chemically induced MSCs 

To further investigate the phenotype of MSC derived presumptive neurons, the 

expression of neural and mesodermal proteins in chemically induced MSCs was 

examined by western blot analysis (Figure 3. 7), ~ntracellular staining quantified by 

flow cytometry (Figure 3.8) and immuno-fluoesecnce (Figure 3.9). Several 

independent investigations have demonstrated that changes in morphology subsequent 
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to treatment with antioxidants are also accompanied with the expression of a range of 

proteins commonly expressed by neural cell types (Woodbury et al., 2000; Lu et al., 

2004; Neuhber et al., 2004; Bertani et al., 2005). For western blot analysis cells were 

treated under a range of conditions including: control MSCs (FCS), serum free media 

for 5 hours (SF), pre-induced and then cultured in serum free media for 5 hours, 

preinduced for by exposure to antioxidants (BME, DMSO, BHA) for 5 hours in serum 

free media (Figure 3.7). Western blot analysis revealed that undifferentiated (non­

induced) MSCs expressed of GFAP, Tuj-1 and NF-160 at low levels when cultured 

under standard culture conditions. This expression was confirmed by flow cytometry 

following intracellular staining (Figure 3.8). Which demonstrated that small 

subpopulations of cells (12-45%) expressed low levels of synaptophysin, NeuN, NF­

M, GAP-43, Tuj-1 and a minor population of cells (4-19%) express TAU and/or 

MAP-2 at very low levels. These results are consistent with a number of studies that 

have reported that MSCs spontaneously express neural proteins in culture (Ratajczak 

et al., 2004; Tondreau et al., 2004; Deng et al., 2006). 

Western blot analysis revealed no change in the expression of GFAP in response to 

any of the culture conditions and inductive agents tested, however a basal expression 

level was detected (Figure 3. 7). Nestin expression was not detected in control 

conditions (serum containing media), however its expression was detected when cells 

were cultured in serum free media and was highly expressed in cultures treated for 5 

hours with antioxidant compounds in serum free media. Neurofilament 160 (NF-M) 

expression was detected at very low levels in cells maintained in serum containing 

media (control, FCS). However removal of serum and/or treatment with antioxidants 

was associated with an up-regulation in the expression of NF-M. Tuj-1 expression 

showed a similar pattern, low levels were detected in control cells and higher levels of 

expressiOn were identified following serum withdrawal and treatment with 

antioxidants. 

The effect of serum removal and neural induction in the presence of 2% DMSO in 

serum free media on the induction of neural protein expression by MSCs was 

confirmed by flow cytometry (Figure 3.8). 5-hour serum withdrawal without 

antioxidant treatment was associated with an up regulation in the expression of neural 

proteins by MSCs above the basal level of expression (Figure 3.8). An increased 
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expression as defined by an increase in the number of cells positive and an increase in 

the intensity of the fluorescence staining (Right shifted solid curve). Increased 

expression was observed for all neural proteins tested including synaptophysin, 

NeuN, NF-M, GAP-43, Tuj-1, GFAP, Nestin, MAP-2 and TAU. This increase in 

neural protein expression in response to serum withdrawal was greater in the presence 

of 2% DMSO. The number of positive cells and the mean fluoresce intensity of neural 

protein expression by DMSO induced MSCs was greater than in non-induced cells. 

These observations correlate with the effects of neural induction and serum removal 

on morphology. Cells with a neural-like morphology were observed in cultures in 

which serum was removed for 5 hours, and consistent with this finding serum 

removal was associated with an increased expression of pan-neural markers. 

However, the number of neural-like cells (level of induction) was greater in serum 

free cultures exposed to 2% DMSO for 5 hours (Figure 3.8). The number of neural­

like cells was higher and the associated induction of neural protein expression was 

greater. Following both serum withdrawal and DMSO induction there was a 

concomitant down regulation in the expression of the mesodermal marker vimentin. 

This is consistent with the commitment of MSCs towards a neural lineage with a 

down regulation in mesodermal properties. 

Localization of the expression of these proteins in response to serum removal and 

neural induction was confirmed by immuno-staining and florescence microscopy 

(Figure 3.9). The level of immuno-florescence staining was quantified by flow 

cytometry and the temporal expression of markers analysed over 5 hours (Figure 

3.10). The number of positive cells for each marker was assayed every hour for 5 

hours in response to DMSO induction in serum free media compared to cells 

maintained under standard culture conditions. No significant difference in the number 

ofpositive cells was observed for GAP-43, Synaptophysin, TAU and Tuj-1. Although 

the level of expression in those cells positive was increased in response to induction 

quantification of these effects revealed the number of positive cells for these markers 

is not significantly different to the number of cell positive under control conditions. 

However, consistent with the increase in the number of neural-like cells between 1-5 

hours following DMSO induction the number of cells positive for MAP-2, NeuN, 

GFAP, NF-M and Nestin significantly increased over 5 hours compared to the 

number of cells positive for these markers under control conditions. In addition, we 
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observed a concomitant down regulation in the number of cells positive for vimentin. 

The absolute number of cells expressing these markers showed considerable 

variability depending on the marker analysed. The results are consistent however with 

the number of neural-like cells increasing in response to DMSO induction and thus 

the number of cells expressing neural markers. 

3. 3. 6 Effect of the growth substrate 

To examine whether the formation of neural-like morphologies was influenced by the 

substrate on which cells were grown, we plated MSCs on tissue culture plastic coated 

with either poly-D-lysine (1 0~-tg/ml), Laminin (5~-tg/ml) or fibronectin (25~-tg/ml) prior 

to exposing the cells to treatment with antioxidants. None of these substrates had any 

significant effect on the percentage of cells that responded and form neural-like cells 

by 12 hours (Figure 3.11 b). However, coating of tissue culture plastic with a substrate 

did slow the acquisition of a neural-like morphology by MSCs as the number of 

neural-like cells at 6 hours was lower in cultures induced on a substrate compared to 

cells induced on tissue culture plastic (control). 

3.3. 7 Comparison ofthe effects ofDMSO induction on N2a cells versus MSCs 

N2a mouse neuroblastoma cells differentiate into neuronal cells when exposed to 

serum free culture or DMSO (Evangelopoulos et al., 2005). N2a and MSCs were 

induced under identical conditions. Both cells were exposed to 2% DMSO in serum 

free media for 5 hours. After 5 hours cells were fixed and processes for immuno­

cytochemistry (Figure 3 .12). N2a cells underwent significant structural alteration 

including the extension of processes. After 5 hours most N2a cells had assumed a 

neuronal morphology, MSCs under the same conditions also assumed a neural-like 

morphology in this time period and both populations of cells expressed GAP-43, 

NeuN, Tuj-1, NF-M, MAP-2 and NF-L. There were however, differences in the 

intensity of this staining in different regions of the cells i.e. there were differences in 

the localization of these proteins. In MSCs most staining was confined to the cell 

body and staining that was evident in processes was less intense compared to that at 

the cell body. In contrast, NF-L, NF-M, MAP-2 and GAP-43 was highly expressed in 

the developing neurites of N2a cells consistent with the role of these proteins in 

neurite development. 
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Because of these differences in the localization of key neural proteins involved in 

neuronal development especially the development of neurites we next chose to 

examined the validity of presumptive neurite in MSCs compared to N2a cells (Figure 

3.13a). Neurite development in N2 cells is microtubule dependent (Diaz-Nido et al., 

19991) and as shown in Figure 3 .13a treatment of induced N2a cells with a colcemid, 

a microtubule disruptive agent causes retraction of developing neurites. In contrast the 

neurite development in MSCs induced by DMSO is not microtubule dependent as 

treatment of induced neural-like cells with colcemid did not disrupt the MSC 

presumptive neurite. Following DMSO induction immuno-staining for microtubules 

revealed intense staining the neurite of N2a cells and not in MSCs (Figure 3.13b). 

Tuj-1 was also highly expressed in the neurites ofN2a cells in contrast to MSCs were 

the cell body was more intensely stained. Neuroblastoma derived neurite continually 

undergo reorganization by a process of actinoplast-tubuloplast segregation (Tint et al., 

1992). These segregations appear as bulb-like structures along the axon. Similar 

structures were observed in MSC processes. In N2a cells neurite outgrowth involved 

the clear extension of growth cone structures on the terminal portions of the 

developing processes, which highly expressed the growth cone protein GAP-43. 

MSCs did not however processes GAP-43 positive growth cones on the terminal 

portions of their neurites (Figure 3 .13b ). This is not consistent with neurite 

development and extension. 

Three myelin-associated inhibitors of regeneration have been identified. These are 

myelin-associated protein (MAG) (McKerracher et al., 1994; Mukhopadhyay et al., 

1994), Nogo-A (Chen et al., 2000b; GrandPre et al., 2000; Prinjha et al., 2000), and 

oligodendrocyte myelin glycoprotein (OMgp) (Kottis et al., 2002; Wang et al., 2002). 

In culture these inhibitors can be used to inhibit neurite development and outgrowth. 

To test the validity of MSC presumptive neurite we tested the ability of MAG to 

inhibit their outgrowth. MSCs and N2a cells were induced to differentiate in the 

presence of DMSO either alone in serum free media or in the presence of MAG 

(0.3~g/ml) for 6 days. MAG significantly inhibited neurite outgrowth in 

differentiating N2a cells in contrast MAG had no effect on neurite outgrowth of 

MSCs (Figure 3.14). Therefore MSC presumptive neurite were not MAG responsive. 

3.3.8 Effects of serum on the expression ofthe neural marker, nestin: 
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The formation of neural-like cells from MSCs proceeds maximally in the absence of 

serum. In agreement with other studies (Wislet-Gendebien et al., 2003), we have 

noted that withdrawal of serum from the media up-regulates the expression of nestin, 

an intermediate filament protein that is known to be expressed in neuroprogenitor 

cells (Figure 3.15). We suggest that the expression of nestin is a pre-requisite for the 

induction of a cell to adopt a neural-like morphology. Interestingly, we have also 

observed that cells that do not respond to neural induction agents do not up-regulate 

nestin subsequent to serum removal. Although it remains unclear what mechanism is 

responsible for the activation of nestin expression, it appears that induction of nestin 

expression is a key event that precedes further differentiation and dictates the 

percentage of cells that adopt the neural-like fate. Additional experiments in our 

laboratory have shown that administration of bFGF (5ng/ml) to cultures 24 hours 

prior to exposure to antioxidants also increases the expression of nestin even in the 

presence of serum (Figure 3.15). 

3.3.9 Expression of neural proteins following 6 days DMSO neural induction 

6 days differentiation was carried out in serum free media supplemented with N2 and 

2% DMSO. Under these conditions MSCs expressed neuronal proteins and assumed a 

neuronal-like morphology consistent with the results for 5 hours induction. The 

number of neural-like cells does decrease with time indicating that MSC neural-like 

cells spontaneously revert back to an MSC phenotype and that the conditions may be 

insufficient for long-term induction however the protocol used is identical to that used 

by several investigators. Nevertheless, neural-like cells expressing neuronal proteins 

were detected in culture following 6-day induction (Figure 3.16). Temporal analysis 

of this expression as quantified by flow cytometry to determine the number of cells 

positive for each marker showed the at the number of synpatophysin and MAP-2 

positive cells was not significantly increased by 6 day induction compared to the 

number of cells positive for these markers in control cells (Figure 3 .17). The number 

of nestin positive cells decreased with time consistent with the induction of a more 

mature neuronal cell fate. In addition there was a concomitant decrease in vimentin 

expression at 1 and 3 days post induction. However, vimentin levels returned to 

control levels by 6 days consistent with spontaneous reversion of neural-like MSCs to 

an MSC phenotype. NF -M was also highly expressed at day 1 but returned to control 
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levels by 6 days. In contrast the number of cells expressing GAP-43 was only 

significantly increased above control levels at the day 6-time point. 

These results were confirmed by western blot analysis (Figure 3 .18). Down-regulation 

in the protein kinase C a signal transduction enzyme which activates pathways 

leading to gene transcription and in some cases induction of growth and 

differentiation has been shown, to be associated with the neuronal differentiation of 

neuroblastoma cell lines in response to serum withdrawal (Charkravarthy et al., 

1995). We analysed the expression of PKC using a pan-PKC antibody, which is no 

specific for PKC isotypes. In MSCs induced for 6 days in the presence of DMSO the 

expression of GAP-43 is increased but begins to return to control levels by 6 days. 

Tuj-1 and NF-M shows a similar pattern whereas MAP-2 and synpatophysin show 

little increase from control levels. PKC was however down regulated following 6-day 

induction, although early induction was associated with increased expression of PKC 

this decreased by the day 6-time point. SHSY-5Y cells, a neuroblastoma cell line 

which undergoes neuronal differentiation in response to DMSO and serum 

deprivation were cultured and induced to differentiate under identical conditions to 

the MSCs for 6 days. SHSY-5Y cells differentiated into neuronal cells during the 6 

days DMSO induction and this was associated with a progressive increase in the 

expression of GAP-43, Tuj-1, NF-M, MAP-2 and synaptophysin. This protein 

expression was associated as it was in MSCs with containment down regulation in the 

expression of PKC. The down-regulation of PKC with differentiation is consistent 

with the reports of previous investigators. Therefore despite the similarity in the 

acquisition of neuronal-like morphologies the temporal expression of neural proteins 

in MSCs was not consistent with neuronal induction with the expression of Tuj-1, 

GAP-43 and NF-M decreasing over 6 days. Also the molecular mechanism of neural 

protein expression may be different in these cell populations since in MSCs neural 

differentiation was associated with a down regulation in PKC whereas in MSCs early 

differentiation involved induction and as the number of neural-like cells decreased 

over 6 days the 6-day time point was associated with lower levels of PKC expression. 

We have also used flow cytometry to examine the expression of cell surface antigens 

previously described to be associated with the neuronal phenotype on MSCs treated 

with antioxidants over a 6 day period (Figure 3.19). Expression of N-CAM (neural 
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cell adhesion molecule) was monitored using the monoclonal antibodies B 159 and 

VINIS-53. VINIS-53 staining increased progressively over the 6-day period and 

correlated with the increased expression of NSE. The neuronal gangliosides, GD2 

and GD3, are recognized by the antibody VINIS-56 and showed marked increases in 

expression over the 6-day period. Similarly, A2B5, a marker of early neurons and 

oligodendrocytes, was also increased following exposure to antioxidants. These 

patterns of immunoreactivity are consistent with the generation of neuronal cells. 

3. 3.10 Effect of 6-day chemical induction on cell viability 

Cell death in induced cultures was determined both by PI staining and Annexin V (an 

apoptosis marker) (Figure 3.20). DMSO induction carried out in the absence of N2 

was associated with higher levels of cell death than neural induction carried out in the 

presence of N2 supplementation. This indicates that it is the removal of serum that 

compromises long term viability and not the inductive agent. Replacement of serum 

with a defined culture supplement reduced the cell death associated with 6-day 

induction. 

3.3.11 Comparison of the localization of neural proteins in induced MSCs and 

differentiated SHSY-5Y cells. 

Analysis revealed significant differences in the intracellular distribution of key 

neuronal proteins (Figure 3.21). Tuj-1 was intensely expressed in SHSY-5Y neurites 

in contrast to MSCs in which staining was predominantly found in the cell body. In 

SHSY-5Y cells, synaptophysin, GAP-43 and SNAP-25 where expressed both in the 

cell body but not only found on the terminal portions of developing neurites 

consistent with a synaptic location. However, in MSC presumptive neurons the 

staining for equally distributed between the cell body and process-like extensions. 

Both SHSY-5Y cells and MSC presumptive neurons expressed vimentin, NF-M, 

MAP-2 and NF-L. However, in SHSY-5Y cells, NF-M, NF-L and MAP-2 were 

highly expressed in developing neurites in contrast to MSCs in which processes were 

only densely stained. Therefore the intracellular distribution of neural proteins in 

MSCs is not consistent with primary neuronal cells and does not appear to correlate 

with potential function. 

3. 3.12 Generation of neurosphere-like structures from MSC cultures 
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Experiments by others and us have shown that mammalian MSCs up-regulate the 

expression of nestin in response to serum withdrawal or treatment with basic 

fibroblast growth factor (Woodbury et al., 2000), suggesting that MSCs may have the 

capacity to generate a population of neuroprogenitor cells. We hypothesized that 

MSCs may also produce neuroprogenitor cells when cultured under conditions used to 

maintain neural stem cells. Neuroprogenitor cells can be routinely grown in serum 

free, non-adherent conditions where they proliferate in response to epidermal growth 

factor (EGF) and (bFGF) (Carpenter et al., 1999). Under these growth conditions 

neuroprogenitor cells express high levels of nestin (Figure 3.22). Kabos et al., 2002 

identified that unfractionated bone marrow contains cells with the capacity to form 

free-floating cellular spheres morphologically and phenotypically similar to 

neurospheres generated from fetal neural stem cells. Whole bone marrow plated on 

poly-D-lysine coated surfaces in a defined serum-free growth medium (DMEM/F12 

supplemented with B27 (Invitrogen)) containing bFGF and EGF gave rise to 

aggregations of cells that detached from the culture flask and became free floating 

clusters (Kobas et al., 2002). These aggregates of cells resembled neurospheres in 

morphology and expressed nestin. In addition, dissociation of the primary aggregates 

gave rise to secondary spheres demonstrating that a single cell had the proliferative 

capacity to form a new cell aggregate. Floating spheres of cells were also capable of 

differentiation into neurons and glia when plated on to laminin and maintained in 

medium containing retinoic acid and cAMP or bFGF (Kobas et al., 2002). 

Furthermore, these cells were also capable of engrafting into the hippocampus 

following transplantation into the right hemisphere of syngenic animals (Kobas et al., 

2002). To address the issue as to which stem cells in bone marrow had given rise to 

the sphere, Kabos and co-workers examined the expression of stromal and 

hematopoietic cell markers. From the resulting expression data, it was concluded that 

because cells in the spheres expressed CD90 and only a low levels of fibronectin that 

such cells were not stromal in origin but representative of the hematopoietic lineage. 

However, others and we have found CD90 is expressed at high levels on MSCs cells 

and that generation of neural precursor cells down-regulates fibronectin expression 

(Sanhez-Ramos et al., 2000). Therefore it is unclear whether a contribution from the 

BMSC cell population can be discounted. 

3. 3.13 Method to produce free floating cellular spheres: 
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In our laboratory, we have investigated the potential of MSCs to form free floating 

cellular spheres representative of neuroprogenitor cells (Figure 3.22). Pure 

populations of MSCs were isolated and plated at 8,000 cells per cm2 and grown to 

>80% confluency. At this stage the cells were dissociated by 0.05% trypsin and 

0.04% EDT A in phosphate buffered saline, neutralised with DMEM plus 10% FCS, 

collected by centrifugation and replated on to poly-D-lysine (lOf.tg/ml) coated tissue 

culture plastic. The growth medium was subsequently replaced with serum-free 

media (DMEM/F12 supplemented with N2 (Invitrogen)) containing EGF and bFGF 

(both at 1 Ong/ml). The majority of cells subsequently adhered to the tissue culture 

flask forming a monolayer. After 3 to 4 days, viable aggregations of cells started 

forming on the bottom of the flask. As these aggregates of cells became larger they 

detached from the flask and became free-floating spheres. Cells within these 

structures continued to proliferate, the spheres became larger in size, and at this point 

sub-culture was possible. These spheres were positive for NeuroD 1 and nestin (Figure 

3.22 e,f). 

MSC-derived spheres will continue to proliferate and grow in size in response to the 

mitogens in the culture medium. Sub-culturing and continued propagation of the 

culture is necessary to prevent spheres of cells becoming too large and thus reducing 

the possibility of necrosis at the centre of the cell aggregate. Sub-culturing can be 

carried out by pelleting the aggregates and mechanically dissociating the spheres into 

single cells using a fire polished glass pipette. The cells are then re-seeded into new 

flasks in fresh medium. We have shown that our MSC-derived spheres can be 

continually propagated if sub-culturing is optimal. 

Consistent with our previous results that suggested that nestin expression was a pre­

requisite for the acquisition of a neural-like morphology we also found that nestin 

expression correlated with sphere formation (Figure 3.23). Spheres were originally 

generated in serum free media supplemented with EGF and FGF-2 +N2. We found 

however, that it was the removal of serum that was the critical factor for the formation 

of cellular spheres. As cellular spheres were formed in low attachment conditions in 

serum free conditions without addition of growth factors. Growth factors were 

however, required for cellular proliferation. Western blot analysis showed that nestin 

expression could only be following the removal of serum, however the level of 
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expression was higher and sphere formation greater in cultures supplemented with 

EGF and FGF-2 compared to serum deprivation alone. We also found that own 

attachment conditions were vital for the formation of spheres and that high attachment 

conditions inhibited sphere formation and nestin expression (Figure 3.24). Nestin 

expression therefore also appeared to linked to the ability of cells to undergo cell 

rounding and cytoplasmic retraction as well the removal of serum. 

3. 3.14 Neural Differentiation of MSC derived spheroids 

To determine whether MSCs grown as free floating spheres produce neural 

derivatives, we assessed the expression of neural markers indicative of 

neuroprogenitors and differentiated neural derivatives. Immunocytochemical staining 

for nestin showed that small suspended aggregates of cells expressed nestin at high 

levels and that this expression was maintained as the aggregates increased in size to 

form solid free floating spheres (Figure 3.25a). These data indicate that the spheres 

contain a population of neuroprogenitor cells. To test the hypothesis that the cells in 

these spheres behave as neuroprogenitor cells, we differentiated MSC-derived spheres 

under conditions known to induce differentiation of embryonic neuroprogenitor cells 

(Svendsen et al., 1998). Seeding embryonic neuroprogenitor cells grown as 

neurospheres onto substrate coated surfaces and removing growth factors is sufficient 

to induce further neural differentiation resulting in the production neuronal and glial 

cells in endogenous NSC/progenitor (Svendsen et al., 1998). MSC cellular spheroids 

plated on PLO coated tissue culture attached and migrated from the site of attachment 

and expressed nestin on initial plating and after 3-4 days high levels of Tuj-1 

expression were evident (Figure 3.25 b,c). However cells remained rounded and 

failed to spread. Our experiments have shown that when MSC-derived spheres were 

plated on laminin (25f.tg/ml) in the serum free conditions in the absence of growth 

factors, the cells attach and begin to migrate out from the sphere. Nestin expression 

was initially high on plating but was down regulated in adherent cells whilst markers 

of more mature neural cells were detectable, including the neuronal protein, 13-III 

tubulin, and the astrocytic marker, GFAP. However, there was very little evidence of 

oligodendrocyte differentiation as indicated by the absence of 04 staining (data not 

shown). Cells acquired a more flat well spread morphology which in some cases still 

resembled a neuronal-like morphology. When cells were differentiated in the presence 

154 



of NGF (1 Ong/ml) and RA (0.5~-tM) in serum free media on Laminin coated tissue 

culture plastic cells positive for GAP-43, Tuj-1, GFAP, MAP-2 and NF-M (Figure 

2.25 d-i) were detected after 12 days differentiation. However, in most cases the 

morphology was more consistent with a stromal morphology as opposed to a neuronal 

morphology. 

Immuno-staining followed by flow cytometry was used to quantify the level of 

expression of neural and mesodermal markers in cellular spheroids maintained in 

serum free media supplemented with EGF and FGF-2 and in spheres differentiated in 

the presence ofNGF and RA for 12 days following plating (Figure 3.26). Fibronectin 

expression was found to be reduced in cellular spheroids. However, this expression 

was restored to normal MSC levels following 12 days plating under differentiation 

conditions. This observation suggests that cellular spheroids revert back to a 

mesodermal phenotype when plated in adherent conditions regardless of the 

differentiation media. Consistent with this notion nestin was found to be highly 

expressed in cellular spheroids but down regulated after 12 days plating, although a 

minor subpopulation still expressed nestin at moderately high levels. Most cells 

(<98%) expressed Tuj-1 at high levels in cellular spheres and although after 12 days 

differentiation most cells still expressed Tuj-1 the intensity of this expression were 

reduced. NF-M and GFAP expression was also highly expressed in cellular spheroids, 

however following 12 days plating, the expression of these markers was confined to 

only a minor subpopulation of cells, which still express these markers at moderately 

high levels. MAP-2 expression shows little change following 12 days differentiation. 

Therefore rather than an up-regulation in the expression of more mature neural 

markers following differentiation we observed a reduction in the expression of neural 

markers and an increase in the expression of fibronectin indicates that MSC spheroids 

reverted to a mesodermal cell phenotype. In addition, cellular spheroids co-expressed 

a number of more mature neural markers and nestin. Analysis of the temporal 

expression of these markers was carried out by western blot analysis (Figure 3.27). 

Western blot analysis revealed no change in the expression of GF AP and MAP-2 

during 12 day differentiation and although the expression of these markers higher in 

cellular spheroids than control MSCs no difference in expression was found after 12 

days re-plating under differentiation conditions. GAP-43 and Tuj-1 expression 

however decreased progressively with re-plating. S 100 expression was not detected in 
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cellular spheroids or cells replated under differentiation conditions. To see if BDNF 

supplementation resulted in the same expression profile cellular spheroids were 

replated in the presence of either RA+NGF or RA+BDNF for 12 days. No S100 

expression was detected. However, GFAP, Tuj-1, GAP-43 and NF-M were expressed 

under both conditions at equivalent amounts 12 days following re-plating under these 

conditions. 

In addition, comparison was made of the morphology and expression of key neuronal 

markers in MSC derived cellular spheroids and primary rat NPC when differentiated 

under identical conditions. Cells were plated on PLO coated tissue culture plastic and 

differentiated in the presence of RA+NGF for 6 days (Figure 3.28). Following two 

days differentiation MSC plated spheroids completely down regulate nestin 

expression, in contrast primary rat NPC remain nestin positive and produce nestin 

positive neurites, which extended and radiate from the primary site of attachment. 

After 6 days, Tuj-1 positive neurites can also be observed extending from the spheres 

original site of attachment. In contrast MSC plated spheres remained rounded without 

neurite production. Again at 6 days GF AP positive cells with an astrocyte 

morphology could be observed in NPC cultures in contrast MSC cellular spheroid 

cells highly expressed GF AP but were rounded and did not resemble atrocytes. In 

NPC cells MAP-2 positive neurite extension could be observed whereas MAP-2 

expression in MSCs was very low. Also 12 day differentiated MSCs retained their 

mesodermal developmental potential with the ability to generate bone. These results 

are inconsistent with a permanent transition in cell fate of MSCs towards a neural 

lineage. 

3. 3.15 Link of P KC to neural-like morphology and protein expression 

Following the observation that PKC is first up-regulated and then subsequently down­

regulated following 6 days neural induction we next examined the effect of PKC 

activation on the morphology and neural protein expression of MSCs maintained in 

culture. In the case of MSC induction removal of serum was associated with nestin 

expression and an up-regulated expression of neural proteins and an increase in PKC 

levels as determined by a pan-PKC antibody. Therefore the increase in PKC levels 

was associated with high levels of neural protein expression and as PKC levels 

decreased, neural protein expression was reduced. We therefore determined a working 
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hypothesis that serum removal activated PKC, which resulted in a neural-like 

morphology. Therefore activation of PKC should result in the acquisition of a neural­

like morphology despite the presence of serum within 5 hours (Figure 3.29). 

Consistent with this hypothesis, treatment of MSCs with 1 O!J.M PMA resulted in the 

formation of a neural-like morphology in MSCs maintained in serum containing 

media (Figure 3.29). The number of responding cells varied from approximately 25-

90% depending on the concentration of PMA used. 1 O!J.M PMA resulted in >90% of 

cells assuming a neural morphology even in the presence of serum however treatment 

of cells with 0.1 !J.M PMA resulted in only 25% of cells adopting a neural-like 

morphology. Therefore a dose dependent relationship was demonstrated (Figure 

3.30). 

We next examined the effect of PMA on neural protein expressiOn m MSCs 

maintained in serum containing media. 5 hours treatment of cells with 1 O!J.M PMA 

resulted in a significant increase in the number of cells positive for NF-M, NeuN, 

GFAP, Nestin and Tuj-1 (Figure 3.30). By 24 hours however the number of cells 

expressing these markers had decreased and was not significantly higher than control 

cultures. This decrease in neural protein expression is consistent with the 

morphological data, which showed that effect of PMA on morphology was transient 

and spontaneously reversed by 24 hours. With cells returning to a stromal like 

morphology. Colcemid results in disruption of microtubules and prevents the 

acquisition of a neural-like morphology in MSCs (See chapter 4). Therefore we tested 

the whether the effect of PMA on neural protein expression was secondary to changes 

in the morphology induced by PMA or a direct effect of PMA. This was achieved by 

pretreating cells with colcemid to prevent the acquisition of a neural-like morphology 

in response to PMA. Cells were then treated with 1 O!J.M PMA in serum containing 

media. The level of protein expression in MSCs pre-treated with colcemid was not 

significantly different from those cells not treated with colcemid suggesting that 

induction of neural protein expression by PMA is a direct effect however colcemid 

itself induced neural protein expression and therefore this data is difficult to interpret. 

Staining for F -actin and microtubules revealed similar cytoskeleton rearrangements as 

seen DMSO induced cells. Immuno-staining was also used to confirm the expression 

ofTuj-1, GAP-43, NF-M and nestin (figure 3.32). 
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3.4 Discussion 
Stem cells reside in specialised niches within specific adult tissues where they are 

subject to spatial and temporal regulation in respect to their developmental potential. 

Removal of certain stem cell populations from their normal microenvironment and 

their subsequent explanation in culture has been proposed to increase their 

developmental plasticity. Trans-differentiation in vitro is based on the idea that the 

developmental restrictions of tissue specific stem cells are dictated by the micro­

environmental signals in vivo and by explanting these cells in vitro and providing new 

signals we may be able to manipulate the developmental potential of such cells. The 

aim of the current work was to determine if stem cells isolated from adult bone 

marrow could differentiate into neural derivatives when cultured under defined 

conditions used in neural cultures to maintain and differentiate neural precursor cells 

in vitro or neuroblastoma cells. In addition, if neural cells can be derived from bone 

marrow stem cells by trans-differentiation we aimed to examine whether such 

differentiation occurred via a conserved neurogenic pathway or a mechanism distinct 

to this process. 

To investigate whether tissue specific stem cells have the capacity to generate neural 

derivatives by trans-differentiation we tested the neurogenic potential of 

Mesenchymal Stem Cells (MSCs) isolated from the adult bone marrow. Using two 

previously reported model systems of neural differentiation in vitro (Woodbury et 

al.,2000; Kobas et al., 2002); we evaluated the capacity of MSCs to differentiate into 

cells with properties indicative of neural derivatives. 

We were first able to recapitulate the earlier observations of both Woodbury et al., 

2000 and Deng et al., 2001 who showed that MSCs can adopt of neuronal-like 

phenotype in response to chemical induction using either forskolin, which increases 

intracellular cyclic AMP or antioxidant compounds. The neuronal-like phenotype was 

defined by the expression of pan-neural markers and morphological resemblance to 

primary neurons in culture. 

3. 4.1 MSCs are not capable of neuritogenesis or terminal differentiation following 

neural induction. 
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Neurons have a unique cytoarchitecture, which is characterized by axonal projections, 

which extend from the cell body and form numerous dendritic processes. These 

processes synapse with the axonal projections of other neurons. This pattern of neurite 

outgrowth results in the generation of neural networks, which convey the unique 

electrophysiological properties of neurons (Svendsen et al., 2001). To test for the 

ability of MSCs to form neuronal phenotypes capable of extensive neuritagenesis 

MSCs were first differentiated in neuronal induction medium and their neurite 

outgrowth evaluated. 

MSCs isolated from adult BM were first exposed to varymg concentrations of 

antioxidant compounds in serum free media previously reported to induce a neuronal 

phenotype in MSCs (Deng et al., 2001; Woodbury et al., 2000). Under these 

conditions, MSCs adopted a neural-like phenotype defined by the acquisition of 

morphology resembling neurons and expressed pan-neural markers (including Tuj-1, 

NF-M, MAP-2 and GAP-43etc). Neural-like cells were detected in response to all 

three antioxidant compounds. Responsive cells progressively assumed neuronal 

morphological traits over the first 3 hours. By 5 hours a maximal number of cells had 

responded. 

A dose response curve was demonstrated for both forskolin and antioxidant 

compounds. As the concentration of these agents increased the total number of 

responding cells increased. In fact the number of neural-like cells observed was 

increased at each time when, the concentration of these agents was increased. This 

indicated that time was not the limiting factor but the concentration of the agent used. 

It is not known however, why some cells do not respond to induction, although we did 

observe that small spindle shaped cells respond first followed by larger flat cells 

indicating that cell size may play a role in determining which cells respond. In 

addition, we observed that serum removal alone was sufficient to result in a small 

proportion of cells (<20%) adopting a neural-like morphology. This suggested that 

serum removal alone can contribute to neural induction and is consistent with 

observations that serum removal is a critical parameter in the formation of cells from 

MSCs with a neurogenic potential. However, it also suggests that reports in which 

approximately 20% of cell adopts a neural-like morphology in serum free culture such 

as reported by Deng et al., 2001 may simply be the result of serum removal and not an 

159 



effect of the inductive agent. Our data also indicated that there was some degree of 

spontaneous reversion with small numbers of cells reverted back to a stromal cell 

phenotype by 48 hours. This observation of reversibility of MSC neural-like cells is 

consistent with previous reports (Bertani et al., 2005). 

Neurons in culture have a unique architecture characterized by axonal projections, 

which extend from the cell body and form numerous dendritic processes terminating 

in actin rich growth cones (Charkravarthy et al., 1995). These neurites have the 

capacity to synapse with the axonal projections of other neurons a property, which 

conveys the unique electrophysiological properties. The neuroblastoma cell lines N2a 

and SHSY-5Y undergo exclusive neuronal differentiation in response to serum 

deprivation and/or 2% DMSO (Macleod et al., 2001; Evangelopoulos et al., 2005). 

Upon removal of serum and/or addition of 2% DMSO 52-91% of MSCs adopt 

morphology identical to that of N2a or SHSY -5Y cells induced to differentiate under 

identical conditions. Responsive MSCs rapidly (within 3-5hrs) lost their flat elongated 

morphology and as a result the cell body becomes increasingly spherical and highly 

retractile exhibiting a typical neuronal perikaryal appearance. Surrounding this cell 

body emerged a number of cytoplasmic processes initially interpreted as presumptive 

neurites. 

In neuronal cells neurite induction involves the extension one or more actin rich 

lamellipodia surrounding the cell body, followed by the emergence of microtubule 

rich neurites which terminate in actin rich growth cones (Chierzi et al., 2005). Growth 

cones are highly motile structures, which function to extend the neurite along the 

axonal projection and at its tip which resulting in secondary and tertiary branching 

that is high in microtubule content. Immuno-cytochemistry revealed presumptive 

neurites on MSCs were also rich in microtubules and terminated in growth cone like 

structures, which stained negative for microtubules. However, in contrast to neurons 

these growth cone structures stained only weakly for F -actin and although secondary 

and tertiary branches along the presumptive axon were identified, these branches 

stained almost exclusively for F -actin with no microtubules detected. 

In neurons neurite extension is microtubule dependent (Diaz-Nido et al., 1991) and 

growth cones are highly motile structures (Chierzi et al., 2005), which extend neurites 
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along their axonal projection and at its tip. Neurite outgrowth ofN2a cells was found 

in the present study to be microtubule dependent. However presumptive neurite 

development in MSCs is not microtubule dependent and there was no evidence of 

actin rich growth cone activity. MSC derived neurites were unresponsive to MAG in 

contrast to N2a cells differentiated under identical conditions. In addition, a 

comparison of the localization of key neuronal proteins including Tuj-1 and GAP-43 

showed that in MSCs the pattern of staining was not consistent with normal neuronal 

development. For example GAP-43 is a specific marker protein of growth cones 

(Avwenagha et al., 2003), although expressed in MSCs its expression was not 

confined to the terminal portion of developing processes, in fact expression was less 

intense in these regions. GAP-43 expression in MSCs was aberrant and mostly 

confined to the cell body in contrast to differentiating N2a and SHSY-5Y in rich 

intense expression was observed in terminal portions of developing neurites 

consistent with a growth cone structure. Jin et al., 2003 also reported that MSCs 

induced to differentiate into neural-like cells in response to various growth factors as 

defined by morpholology and marker expression had an intracellular distribution of 

neural protein expression not consistent with primary neuronal cells. We observed 

that Tuj-1, MAP-2 and microfilaments all were more densely expressed in the cell 

body and immuno-staining was weak in the presumptive neurites. Synaptic proteins 

such as synaptophysin and SNAP-25 were also not confirmed to synaptic sites and 

expression was observed through the cells. In contrast in differentiated SHSY-5Y 

these proteins were highly expressed in the terminal portions of developing neurites 

and only weak staining was observed in cell bodies. This pattern of staining is 

inconsistent with normal neural development since neurofilaments and MAP-2 as 

well Tuj-1 play key roles in neurite and axonal development and thus their pattern of 

staining in MSCs does not correlate with function and is more consistent with a 

aberrant pattern of expression. 

Therefore in terms of development of a neural-like morphology and formation of 

neurites MSC presumptive neuritogenesis was not consistent with terminal 

differentiation but was more consistent a retraction in the cell cytoplasm forming 

cytoplasmic extensions that were non motile and did not constitute true neurites. This 

may simply be a reflection of the inability of MSCs to differentiate into mature neural 

derivatives or that observations reported constitute early neural development in which 
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the morphology of cells is not yet fully developed and protein expression and 

localization is not yet finalized. However it may also be that the neural morphology 

and protein expression is an artifact of the culture conditions. The observation that 

presumptive neurite development by MSCs was not microtubule dependent and were 

not MAG responsive is inconsistent with normal neuronal development and suggests 

that this morphology is an artifact. 

The morphology of cells observed in DMSO treated cultures of MSCs was consistent 

however with a neuronal morphology and although rapid such structural alterations 

have been reported in fibroblasts (Bershadsky et al., 1990; Tint et al., 1991; Dugina et 

al., 1987) and neruobalstoma cells (Tint et al., 1992) differentiated in the presence of 

PMA, as observed in the present study. We observed that PKC was expressed at high 

levels whilst MSCs adopted a neural-like morphology and appeared to decrease as 

cells returned to a stromal-like morphology. We therefore treated MSCs with PMA. 

Protein kinase C activation resulted in morphological rearrangements consistent with 

that observed in DMSO cultures even in the presence of serum and these cells were 

neural-like in appearance. This therefore suggested that PKC activation may occur 

following serum withdrawal, which results in the acquisition of a neural-like 

morphology. The morphology of cells reverted to a stromal phenotype by 24 hours 

even in the continual presence of PMA. This is further evidence that activation of 

PKC results in a neural-like morphology since the reversal is likely to be the result of 

a down regulation in PKC because of the continual presence of PMA. It is important 

to note however, that PMA does not only activate PKC and is likely to activate a 

number of pathways. 

We next investigated the potential ofMSCs to adopt neural cell fates when cultured in 

conditions used to culture primary neural stem cells. We cultured MSCs as cellular 

spheres on non-adherent tissue culture dishes. These spheres were propagated for 3-4 

weeks in NSC medium supplemented with 20ng/ml EGF and 40ng/ml bFGF with 

medium changes every 3 days. Cultures of rat E14 NPC were grown under identical 

culture conditions in parallel for comparison. MSC spheres or NPCs were 

subsequently plated undissociated on laminin, fibronectin or poly-L-ornithine coated 

plastic wells. Growth factors were removed and substituted with 0.5!-!M retinoic acid 

and 1 Ong/ml nerve growth factor or 1 Ong/ml brain derived neurotrophic factor. Under 
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these culture conditions rodent derived neurospheres attached with minimal 

dissociation to the substrate and formed elaborate neurites over 3-12 days. These 

neurites were highly positive for nestin, MAP-2, and TUJ-1 the same results were 

obtained for all substrates tested and for both conditions tested. 

MSC derived spheres also attached to all substrates but behaved distinctly differently 

to neurospheres following the withdrawal of growth factors. On attachment cellular 

spheroids rapidly down regulated (within 24hrs) nestin but continually expressed high 

levels of TUJ-1 over 12 days. On all substrates in the absence of growth factors MSC 

derived spheres progressively dissociated forming a monolayer of cells. On laminin 

and fibronectin the cells flattened however, during this time there was no evidence 

of neurite development and cells remained rounded when plated on PLO coated tissue 

culture plastic. Cells expressing neural proteins were still identified in 12-day cultures 

but only at low numbers (5-10% approximately). GFAP and Tuj-1 positive cells were 

identified suggesting that spheres could differentiate into both neuron and glia. 

3.4.2 Changes in the protein expression profile of MSCs in response to neural cues in 

vitro. 

Neural development in vivo and in vitro is a highly specific process in which the 

temporal and spatial expression of neural genes is tightly regulated (For review see: 

Hagg, 2005). We examined the expression of proteins indicative of a neural 

phenotype in populations of both undifferentiated MSCs and MSCs following neural 

induction. We observed that undifferentiated MSCs express a subset of proteins 

usually associated with neuronal cell fate, but proteins specific for oligodendrocytes 

were absent. The proteins were expressed with varying degrees and in some cases 

were only expressed only by a subset of MSCs. The observation that MSCs 

spontaneously express neural proteins following prolonged culture under standard 

culture conditions is consistent with several recent reports with similar findings 

(Goolsby et al., 2003; Ratajczak et al., 2004; Tondreau et al., 2004). Woodbury et al., 

2002 suggest that this neural protein expression represents a multidifferentiated state 

in which MSCs are capable of intrinsic neurogenic potential. 

These neural proteins were up regulated following neural induction by exposure to 

2% DMSO, serum deprivation or when cells were grown as cellular spheres in NSC 
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medium. Again, there was variation in the extent to which these proteins were up 

regulated. Analysis of neural protein expression after 5 hours chemical induction or 

the generation of cellular spheroids revealed both these MSC derived cell types to 

express high Jevels of neural proteins including NF-M, Tuj-1, Nestin, GAP-43 and 

reduced levels of vimentin or fibronectin. However prolonged induction of 
:t 

differentiatiorl either in chemical induction for 6 days or plating of neurospheres in 
'I 
1 

the presence ~f RA+NGF for 12 days resulted in a downregulation of neural proteins 

and up-regula:hon of mesodermal proteins. In addition, the number of neural-like cells 

decreased under both conditions as cells reverted to a stromal phenotype. GAP-43 

expression in·· chemically induced cells did increase by 6 days. GAP-43 is a PKC 
i 

substrate (Oestreicher et al., 1997) and the down regulation in PKC expression 

observed during 6 day chemical induction may lead to this increase in GAP-43. 

Depletion of OAP-43 markedly alters neurite and growth cone morphology (Aigner 

and Caroni 1993) and overexpression of GAP-43 in the CNS promotes neurite 

spouting an effect that is dependent on PKC phosphorylation (Aigner and Caroni 

1995). This temporal pattern of neural protein expression is inconsistent with normal 

neural development in which neural protein expression is highly regulated. The 

conclusion from these observations is that either MSCs do not have an intrinsic 

neurogenic potential or that in vitro conditions are insufficient to promote terminal 

differentiation of these cells. 

3. 4. 3 Developmental potential of MSCs cultured under neural inductive conditions. 

Cellular differentiation involves the progressive restriction of cell fate as cells become 

increasing committed to a specific eel~ lineage. We hypothesized that if MSCs 
·. I 

cultured under defined conditions could be instructed to adopt a neural fate then such 

reprogramming would involve the progressive loss of mesodermal differentiation 

capacity with a concomitant down regulation of mesodermal specific genes 

accompanied by a gene expression profile consistent with a neural specification. We 

observed that ,when MSCs were induced to differentiate into presumptive neural-like 

cells either by chemical induction or the formation of cellular spheroids and these 

cells assumed;a neural-like morphology there was a down regulation in the expression 

of MSG: prot~~ins such as vimentin and fibronectin. On reversal of this morphology 

back to a stromal-like morphology the expression level of these proteins returned to 

normal levels. In addition, neural-like cells formed under both conditions did not lose 
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their ability to differentiate into the osteogenic lineage. This suggests that MSC neural 

like cells either do not fully committed to the neural lineage or are capable of rapid 

introversion between the two cell types. A number of investigators have reported this 

reversibility of the neural-like phenotype under similar conditions and the rapid 

interconvert ability between these two phenotypes (Hermann et al., 2004; Woodbury 

et al., 2002; Bertani et al., 2005). However, it was previously thought that increasing 

commitment of a stem cell towards a specific cell lineage is associated with a 

progressive restriction the differentiation potential of these cells. 

3. 4. 4 Regulation of nestin expression 

Consistent with a number of recent reports we found that expression of nestin was a 

pre-requisite for the formation of neural-like cells under both induction protocols used 

(Croft and Przyborski, 2004; Wislet-Gendebien et al., 2005). Nestin expression only 

occurred in responsive cells and unlike many of the markers used was not expressed 

in control or unresponsive cells. In addition, nestin expression was required for sphere 

formation. Conditions, which promoted nestin expression, were low attachment 

culture conditions and removal of serum. Although minimal differentiation potential 

of nestin positive cells was observed in our study under both conditions tested a 

recent study by Wislet-Gdebien et al., 2005 demonstrated that co-culture of nestin 

positive cells with cerebellar granule cells resulted in the formation of neurons with 

some proof of functional This indicates that nestin positive cells may require 

additional signals to differentiate fully. However numerous studies have claimed to 

demonstrate terminal differentiation in vitro without co-culture. 

3.4.5 Link between PKC expression and neural induction 

As discussed previously, protein kinase C activation by PMA is associated with 

morphological rearrangements in differentiating neruoblastoma cells (Tint et al., 

1992) and down-regulation of PKC occurs during serum deprivation induced 

differentiation of SHSY-5Y cells (Macleod et al., 2001). It is thought that terminal 

differentiation and neural protein expression in these cells is associated with PKC 

down-regulation. Consistent with these observations activation of PKC by PMA 

resulted in structural rearrangements in MSCs, which adopt a neural-like appearance. 

This occurs in the presence of serum suggesting that serum removal may result in a 

neural-like morphology through the activation of PKC when serum is removed. In 
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differentiating SHSY-5Y cells in response to DMSO we observed that neural protein 

expression including MAP-2, GAP-43 and Tuj-1 all increased. This was associated 

with a concomitant reduction in PKC expression determined by a pan-PKC antibody. 

However, in induced MSCs, PKC expression initially increased and then decreased by 

6 days. These changes in expression mirrored changes in morphology and protein 

expression in MSCs. Initially the expression of neural proteins increased 1-3 days 

following induction and then decreased by day 6. The number of cells with a neural­

like morphology also increased by induction and then progressively decreased in 

number by day 12. This has led us to develop a working hypothesis that PKC 

activation occurs in response to serum withdrawal and DMSO treatment, which 

results in the acquisition of a neural-like morphology and neural protein expression. 

The gradual down-regulation in the expression of PKC is associated with a reversal in 

morphology of neural-like cells to a stromal phenotype and a reduction in neural 

protein expression. This is in contrast to the neuronal differentiation of 

neuroblastoma cells in response to DMSO in which PKC down-regulation 1s 

associated with commitment to differentiation as demonstrated in the present study. 

3. 4. 6 Concluding remarks 

Several recent independent studies have reported that non-hematopoietic MSCs 

isolated from the bone marrow appear to have the potential to form cells resembling 

those derived from the neuroectoderm. Here, we demonstrate, that MSCs with a 

consistent immunophenotype can generate neural-like cells under a range of 

experimental conditions. Most notably, MSCs form neural-like cells under culture 

conditions that are most commonly used to propagate and differentiate neural stem 

cells and neuroprogenitor cells. In addition, MSCs also adopt a neural-like 

morphology during chemical induction under conditions that differentiate 

neuroblastoma cells to mature neuronal derivatives. We refer to MSCs that respond to 

these culture methods as neural-like cells because they adopt morphology typical of 

primitive neurons and they express pan-neural markers. There remain, however, 

several important questions. First, we must provide more comprehensive evidence 

that terminally differentiated, functional neurons can be produced from MSCs. 

Second, we need to determine the molecular mechanisms that control the transition of 

MSCs into neural cells. Is this phenomenon a recapitulation of embryonic 

neurogenesis or is an alternative, yet to be described, developmental pathway 
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involved? Third, it is well known that bone marrow stroma consists of a 

heterogeneous population of cells. Which cells in particular respond to the growth 

conditions we have examined here, and is it possible to isolate such cells, expand 

them ex vivo, and induce them specially to from neural-derivatives? No doubt 

answering these points will generate many more questions, however, it is essential 

that we understand the molecular processes controlling the differentiation of MSCs if 

we are to fully realise their potential. 
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Figure 3.1: Exposure of rat MSCs to 2% DMSO in serum free media. 
Cultures of untreated BM SCs display a characteristic stromal cell morphology 
with the presence of type I, flattened elon~ted cells and type II spindle shaped 
cells (A). BMSCs were switched to serum-free DMEM in the presence of 2% 
DMSO at time zero. Morphological changes to cells were evident within 1 hour 
of treatment (B). Type II cells are the first to respond and display a more 
neuronal like morphology , in which the cytoplasm appears to retract towards the 
nucleus and processes elon~te from the cell body (B, arrows). After 5 hours 
treatment (C), the vast majority of cells have responded and display extensive 
process like cytoplasmic extensions which include primary (arrow 1 °) and 
secondary (arrow r) branching. This branching leads to the formation of 
extensive networks within the culture (D). Following 5 hours in the presence of 
2% DMSO, BMSCs have adopted a morphology that resembles the structure of 
primary adult rat hippocampal progenitor cells (E). During this induction period, 
the percentage of cells expressing neuron specific enolase (NSE, Sigma) was 
determined by immunofluorescence using standard procedures. The inset plot 
shows the marked increase in expression of the neural marker, NSE, suggest ing 
that BMSCs treated with DMSO adopt a neural-like phenoty pe. All data are 
represented as Mean values±SEM from 3 independent experiments in parallel 
cultures Scale bars: 40J-lm (A,E); 20J-lm (B-D). 
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Figure 3.2a: Induction of neural-morphology following exposure to antioxidants. Photomicrographs show cultures 
of untreated MSCs displaying a characteristic stromal cell morphology (A). MSCs were then switched to serum free 
DMEM (at time zero) in the presence increasing concentrations ofDMSO. Photomicrographs were obtained of cultures at 
5 hours post induction (B) 0.1%, (C) 0.5%, (D) 1%, (E) 2% and (F) 4% DMSO. Cells that respond to treatment have 
perikaya, which are spherical, and highly retractile, with processes like extensions radiating from the cell body. At higher 
concentrations of DMSO the number of responding cells increases and cells are seen in which the processes display a high 
degree of branching resulting in the formation of an extensive network of neurite-like cell processes. (G) Quantification of 
the number of cells displaying a neural-like morphology in response to varying concentrations of DMSO. All data are 
represented as Mean values±SEM from 3 independent experiments in parallel cultures. Scale bars: 40 f-trn. 
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Figure 3.2b: Induction of neural-morphology following exposure to antioxidants. Photomicrographs show 
cultures of untreated MSCs displaying a characteristic stromal cell morphology (A). MSCs were then switched to 
serum free BME (at time zero) in the presence increasing concentrations of BME. Photomicrographs were obtained of 
cultures at 5 hours post induction (B) 0.1~-tM, (C) 1~-tM , and (D) 10~-tM BME. Cells that respond to treatment have 
perikaya, which are spherical, and highly retractile, with processes like extensions radiating from the cell body . At 
higher concentrations of BME the number of responding cells increases and cells are seen in which the processes 
display a high degree of branching resulting in the formation of an extensive network of neurite-like cell processes. (E) 
Quantification of the number of cells displaying a neural-like morphology in response to varying concentrations of 
BME. All data are represented as Mean values±SEM from 3 independent experiments in parallel cultures. Scale bars: 
40 f.1rn. 
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Figure 3.2c: Induction of neural-morphology following exposure to antioxidants. Photomicrographs show cultures 
of untreated MSCs displaying a characteristic stromal cell morphology (A). MSCs were then switched to serum free 
BHA (at time zero) in the presence increasing concentrations of BHA. Photomicrographs were obtained of cultures at 5 
hours post induction (B) 10~-LM, (C) 100~-LM, and (D) 200~-LM BHA. Cells that respond to treatment have perikaya, 
which are spherical, and highly retractile, with processes like extensions radiating from the cell body. At higher 
concentrations of BHA the number of responding cells increases and cells are seen in which the processes display a high 
degree of branching resulting in the formation of an extensive network of neurite-like cell processes. (E) Quantification of 
the number of cells displaying a neural-like morphology in response to varying concentrations of BHA. All data are 
represented as Mean values±SEM from 3 independent experiments in parallel cultures. Scale bars: 40 11m. 
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Figure 3.2d: Induction of neural-morphology following exposure to antioxidants. Photomicrographs show cultures 
of untreated MSCs displaying a characteristic stromal cell morphology (A). MSCs were then switched to serum free 
Forskolin (at time zero) in the presence increasing concentrations of Forskolin. Photomicrographs were obtained of 
cultures at 5 hours post induction (B) 10!-!M, (C) 50!-!M, and (D) 100!-!M Forskolin. Cells that respond to treatment have 
perikaya, which are spherical, and highly retractile, with processes like extensions radiating from the cell body. At higher 
concentrations of Forskolin the number of responding cells increases and cells are seen in which the processes display a 
high degree of branching resulting in the formation of an extensive network of neurite-like cell processes. (E) Quantification 
of the number of cells displaying a neural-like morphology in response to varying concentrations of Forskolin. All data are 
represented as Mean values±SEM from 3 independent experiments in parallel cultures. Scale bars: 40 J-lm. 



Figure 3.3a: Effect of lOJJ.M BME on the acquisition of a neural-like 
morphology in cultured MSCs over 5 hours. Cells were transferred to a 
serum free basal media supplemented with 10~--tM BME for 5 hours . Phase 
contrast images were obtained at 1 hour (B), 3 hours (C), 5 hours (D), 24 
hours (E) and 48 hours (F) . These images were compared to MSCs cultured 
only in serum free media for 5 hours (A). Scale bars: 50{1-m. 



Figure 3.3b: Effect of 2% DMS 0 on the acquisition of a neural-like 
morphology in cultured MS Cs over 5 hours. Cells were transferred to 
a serum free basal media supplemented with 2% DMSO for 5 hours. 
Phase contrast linages were obtained at 1 hour (B), 3 hours (C), 5 hours 
(D), 24 hours (E) and 48 hours (F). These in1ages were compared to 
MSCs cultured only in serum free media for 5 hours (A). Scale bars: 50!-l 
m. 



Figure 3.3c: Effect of lOOJA.M BHA on the acquisition of a neural-like 
morphology in cultured MSCs over 5 hours. Cells were transferred to a 
serwn free basal media supplemented with lOOf.!M BHA for 5 homs. Phase 
contrast images were obtained at 1 hour (B), 3 hours (C), 5 homs (D), 24 
homs (E) and 48 homs (F). These images were compared to MSCs cultmed 
only in serum free media for 5 homs (A). Scale bars: 50{lm. 
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Figure 3.3d: meet of lOOJA.M Forskolin on the acquisition of a neural­
like morphology in cultured MS Cs over 5 hours. Cells were transferred to 
a serum free basal media supplemented with 100~-tM Forskolin for 5 hours. 
Phase contrast images were obtained at 1 hour (B), 3 hours (C), 5 hours (D), 
24 hours (E) and 48 hours (F). These images were compared to MSCs cultured 
only in serum free media for 5 hours (A). Scale bars: 50pm. 



Figure 3.4: Effect of DMS 0 on MS Cs in culture and effect of re-introduction of 
serum. (A-D) Cells were cultured for 5 hours in the presence of 2% DM SO and then 
fixed and processed for immuno-cytochemistry. (A) a-Tubulin, immuno-labeling of 
microtubules shows processes extending from the cell body containing microtubules. 
(B) In addition these processes as well as the cell body were found to contain the 
microtubule ~-3 tubulin. (C) Visualization of the actin cytoskeleton using TRITC 
conjugated phalloidin. (D) Immunolabeling of GAP-43 protein, which shows 
concentrated staining in the cell body and the processes are only lightly stained. (E) 
Osteogenic different iation of undifferentiated P8 M SCs in culture verified by Von 
Kassa staining. (F) Osteogenic differentiation of MSCs exposed to 2% DMSO. Re­
introduction of serum into cultures previously exposed to 2% DMSO in serum free 
media (G) resulted in a reversion of the cell morphology back to a normal stromal 
morphology, 5 hours following re-introduction of serwn (H). Scale bar: 50f-tm. 
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Figure 3.5: Effect of FGF-2 pre-induction and the presence of 
serum on the acquisition of a neural-like morphology by MSCs in 
response to 2% DMSO. (A) MSCs were transferred to a neural 
induction medium containing 2% DMSO in either the presence (+FCS) 
of serum or the absence (-FCS) of serum (10% FCS) for 6 hours. The 
number of neural-like cells was recorded every hour by phase contrast 
microscopy. (B) M SCs were pre-induced for 24 hours in normal growth 
media supplemented with 5nglml bFGF before been transferred to serum 
free media supplemented with 2% DMSO (+FGF). The number of 
neural-like cells was recorded every hour for 6 hours by phase contrast 
microscopy and compared to cells not pre-induced ( -FGF). All data are 
mean values±SEM from 3 independent experiments in parallel cultures. 
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Figure 3.6: Effect of short-term neural induction on the viability of 
induced cells. Cell death following neural induction was accessed hourly for 
6 hours by live staining with PI (5~-tg/ml) and quantified by flow cytometry. 
(A) Exposure ofMSCs to 2% DMSO in the presence of serum. (B) Exposure 
of cells to the presence of 2% DMSO in the absence of serum. All data are 
mean values±SEM from 3 independent experiments in parallel cultures. 
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Figure 3.7: Western blot analysis of protein expression following 5 hour neural 
induction. Cells were cultured for 5 hours in either: serum media (control, FCS), serum free 
media (SF), serum free media following pre-induction for 24 hours with bFGF (SFb) or pre­
induction followed by exposure to 10 !-!M BME, 100!-!M BHA or 2% DMSO in serum free 
media Cells were harvested after 5 hours and processed for western blot analysis (n=3). 
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Figure 3.8: Expression of neural and mesodermal proteins following 
serum withdrawal or neural induction with 2% DMSO. Flow cytometry 
measurement of neural (Nestin, GAP43 , TuJl , NeuN, Synaptophysin and 
N euroD 1) and mesodermal-associated protein markers (Vimentin and 
Fibronectin) in rMSCs following either 5-hour serum-free culture (supplemented 
with N2, SF+N2) or 5 hours exposure to 2% DMSO in serum free media 
compared to cells maintained in the continued presence of 10% FCS. Flow 
cytometry data from representative experiments are shown as histograms with 
fluorescence intensity on the x-axis (solid peaks) and cell count on the y-axis. 
Background fluorescence was excluded by the use of isotype matched control 
antibodies (open peaks). 
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Figure 3.8 continued 
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Figure 3.9a: Expression of pan-neural markers as detected by immuno-cytochemistry following 5 
hours exposure to 2% DMSO in serum free media. Expression of pan-neural markers in MSCs 
following 5 hours growth in serum free media supplemented with 2% DMSO. The expression of these 
markers and their localization was determined by irnmuno-labeling with specific antibodies raised a~st 
these protein markers. Localization of primary antibody binding was determined by incubation with a 
FITC-conjugated secondary antibody. Images are shown in grey scale for clarity. Scale bar: 50f..lm. 
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Figure 3.9b: Expression of pan-neural markers as detected by immuno-cytochemistry following 5 
hours serum withdrawal. Expression of pan-neural markers in M SCs following 5 hours exposure to 
serum free media. The expression of these markers and their localization was determined by irnmuno­
labeling with specific antibodies raised against these protein markers. Localization of primary antibody 
binding was determined by incubation with a FITC-conjugated secondary antibody . Images are shown in 
grey scale for clarity. Scale bar: 50f.lm. 



..!!! 
~ 80 
Ill 

~ 60 
Ui 
&_40 
~ 0 

..!!! 
'i 
u 

~ 
:;; 
Ui 
0 
Q. 

~ 0 

GAP-43 

I 
Time (hrs) 

Vimentin 

Time (hrs) 

..!!! 
~ 80 
Ill 

~ 60 
Ui 
&_40 
~ 0 

..!!! 
'i 
u 
Ill 
> :;; 
Ui 
0 
Q. 

~ 0 

I 

0 

SYN 

i I 
Time (hrs) 

MAP-2 

3 

Time (hrs) 

5 

..!!! 
'i 
u 
Ill 

~ 
"iii 
0 
Q. 

~ 0 

..!!! 
'i 
u 

~ 
:;; 
Ui 
0 
Q. 

~ 0 

0 

TAU 

Time (hrs) 

NeuN 

3 

Time (hrs) 

5 

Figure 3.10: Temporal expression of pan-neural markers over 5 hours following neural induction in 2% 
DMSO in serum free media. Flow cytometry analysis of pan-neural marker expression. P8 MSCs were 
cultured in the presence of2% DMSO in serum free media for 5 hours. Samples were obtained from cultures at 
1, 3 and 5 hours post induction and processed for intra-cellular staining followed by flow cytometry. Expression 
levels (%positive cells) is indicated and compared to the expression level in non-induced cells maintained under 
standard growth conditions (time point 0). Data represents Mean±SEM from three independent experiments. 
(*P<0.05 **P<0.01 1 way ANOVA followed by Dunnetts post hoc analysis to compare to day 0, control). 
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Figure 3.11: Effect of culture substrate on the acquisition of a 
neural-like morphology in MSCs in response to 2% DMSO in 
serum free media. Cells were cultured on either Laminin, Poly-D­
ly sine, fibronectin or normal tissue culture plastic and then 
transferred to neural induction medium. The number of neural-like 
cells was recorded every hour for 6 hours (A) and again at 12 hours 
(B). All data represents Mean±SEM from three independent 
experin1ents. 
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Figure 3.12: Immuno-staining of 5-hour chemically induced MSCs compared to N2a cells 
induced to differentiate under identical culture conditions. M SCs and N2a cells plated on PLO 
coated tissue culture plastic were induced to differentiate in the presence of 2% DMSO in serum free 
for 5 hours. The expression of neuronal markers was localised by immuno-labeling with specific mouse 
mono-clonal antibodies against: GAP-43 (A), NeuN (B), Tuj-1 (C), NF-M (D), MAP-2 (E) and NF-L 
(F). Scale bars: 50prn. 
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Figure 3.13a: Structural features of N2a cells versus MSCs following 
exposure to 2% DMSO in serum free media. Process extension in N2a cells 
but not M SCs is microtubule dependent . (A) Control N2a cells (B) N2a cells 
treated with 2% DMSO for 3d. (C) DMSO treated N2a cells following 3 hours 
incubation with the microtubule destabilizing agent colcemid. Treatment results 
in retraction of processes towards to the cell body . Processes derived from 
MSCs are not microtubule dependent. (D) Control MSC. (E) 3d DMSO treated 
cells. (F) 3d DM SO treated cells followed by 3 hours colcemid treatment. 
Addition of colcemid has no apparent effect on process morphology in MSCs 
but because N2a process formation and extension is microtubule dependent , 
colcemid treatment causes the retraction of processes. Scale bar: 40!-lm. 



Figure 3.13b: Structural features of N2a cells vs MSCs following exposure to 2% DMSO in serum 
free media. N2a cells (A) and MSCs (B) possess microtubule containing presumptive neurites (alpha­
tubulin staining, green). In N2a cells these processes stain highly positive for TUJ-1 (C). However MSC 
derived processes stain only weakly for TUJ-1, with expression principally localized to the cell body (D). 
Neuroblastoma derived neurites continually undergo reorganization by a process of actinoplast-tubuloplast 
segregation (Tint et al., 1992). These segregations appear as bulb like structures along the axon (E, 
triangles). Similar structures are evident on MSC derived processes (F, triangles). A, B, E, F: alpha tubulin 
staining. C,D TUJ-1 staining. Microtubule containing processes (G) terminate in an actin rich growth cone 
(H) in N2a cells. Although similar structures are evident on M SCs (I,J) these are not actin rich and stain 
weakly for both tubulin (I) and actin (J). Alpha-tubulin (green) and Actin (red). Scale bar: 40J-lm 
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Figure 3.14: Effect of MAG on the neurite outgrowth of N2a cells versus MSCs following exposure to 2% 
DMSO in serum free media. N2a and MSCs were grown on MAG coated tissue culture plastic in standard 
basal media Cells were subsequently transferred to neural induction media (DMEM supplemented with 10% 
FCS) for 6 days (MAG+ DMSO+). Cells were then fixed and stained with anti-Tuj-1 to identify differentiated 
cells. Controls include: cells induced to diff~rentiate on normal uncoated tissue culture plastic (MAG- DMSO+) 
and cells grown to MAG but not induced (MAG+ DMSO-). (A) Immuno-florescent images of Tuj-1+ N2a and 
M SC cells following 6-day neural induction. (B) Quantification of neurite outgrowth in control or induced 
conditions following image analysis. Average neurite length is indicated and was quantified from 10 randomly 
selected fields of view for each experiment. All data are mean values±SEM from 3 independent experiments in 
parallel cultures. Significant differences are indicated (*P<0.001 'PP<0.05, 1 way ANOVA followed by Dunnetts 
post hoc analysis to compare the neurite length of each cell type to control (MAG-DMSO-). Scale bar: 40~-tm 
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Figure 3. 14 continued 



Figure 3.15: Expression of nestin in response to withdrawal of 
serum and in response to the addition of basic fibroblast growth 
factor. Under normal culture conditions, untreated BMSCs express only 
very low levels of nestin protein (A). The expression of nestin was 
examined by inununofluorescence staining under the following growth 
conditions: (B) removal of serum from the growth medium for a period of 
24 hours; (C) addition of bFGF (5nglrnl); (D,E) 5 hours treatment with 
2% DMSO. Upon removal of serum for 24 hours, there was a clear up­
regulation in nestin expression which appears to be higher in type II cells , 
with some cells beginning to display morphological changes typical of 
neuroprogenitor cells (B, arrows). Addition ofbFGF to serum containing 
media for a period of 24 hours (pre-induction conditions) also 
dramatically increases the expression of nestin with higher number of cells 
adopting a neural-like morphology (C, arrows). It should be noted that 
non-responsive cells possess a stromal, flat elongated morphology and 
continue to express only low levels of nestin. Following addition of 2% 
DMSO, only cells which have the ability to up-regulate nestin displayed 
a neural-like morphology and appear capable of further differentiation 
(D,E arrows). Scale bars : 40f.1m (A-E). 



Figure 3.16: Expression of neural and mesodermal proteins in 6 day induced MS Cs as determined by immuno­
cytochemistry. Cells were incubated in serum free media supplemented with 2% DMSO and N2. Cells were fixed after 6 
days and processed for immuno-cytochemistry. Scale bars: 50f-lm. 
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Figure 3.17: Analysis of protein expression in MSC derived presumptive neurons following 6 days 
differentiation in the presence of 2% DMSO in N2 supplemented media. Cells were grown in the presence of 2% 
DMSO in serum free media supplemented with N2 and maintained for either ld, 3d, or 6d after which cells were harvested 
and processed for intracellular staining and flow cytometry. The graphs illustrate the number of positive cells for each 
marker at each time point as determined by flow cytometry. All data are mean values±SEM from 3 independent 
experiments in parallel cultures. Significant differences from the control group (time point 0) are indicated with an asterisk 
(*P<0.05**P<O.Ol). 
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Figure 3.18: Western blot analysis of neuronal protein 
expression in MSC derived presumptive neurons versus 
SHS Y-SY cells induced to differentiate under identical 
conditions. Cells were incubated in serum free media 
supplemented with 2% DMSO and N2 for 6 days. Cells were 
harvested and processed for western blot analysis at intervals 5 
hours, ld, 3d, and 6d. (A) MSCs, (B) SHSY-5Y cells. 
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Figure 3.19: Regulation of cell surface antigen expression by MSCs treated with antioxidants in serum free 
media. Flow cytometry and immunofluorescence detection was used to monitor the expression of various cell surface 
antigens known to be associated with the neural lineage. BMSCs were treated with 2% DMSO and maintained for 6 days. 
Plot A illustrates the expression profile of the cell surface antigens A2B5 (•), VINIS-53 (.A. ), VINIS-56 (D) and B159 (6 
) during the 6-day treatment period. Flow cytometric traces (B) show the distribution of antigen expression in BMSCs 
exposed to antioxidants for 6 days. Neuron cell adhesion molecule (NCAM) expression was examined using the two 
monoclonal antibodies B159 and VINIS-53 that recognize distinct epitopes of the NCAM protein. Bl59 staining was 
consistently high (93-97% positive cells) without significant time dependent changes, however, in older cultures although 
the total number of B 159-positive cells was unchanged, an antigen bright population became evident (B, arrow). The 
number of cells staining positive for VINIS-53 did increase subsequent to antioxidant treatment and the level of VINIS-53 
expression remained reasonably stable over the six day period. In addition, a sub-population of VINIS-53 antigen bright 
cells (approximately equivalent to the number of B159 antigen bright cells) was identified in day six cultures (B, arrows). 
Together, these fmdings suggest that antioxidant treatment increases the number of BMSCs expressing NCAM and up­
regulates the concentrations of NCAM expressed on the cell surface. Increases in the neural associated cell surface 
antigens A2B5 and VINIS-56 further indicate that BM SCs exposed to antioxidants adopt neural-like characteristics. 
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Figure 3.20: Analysis of cell viability during long-term differentiation. Cell 
viability was determined by either annexin V staining (A) or PI staining (B) and 
analysis of the nwnber of positive cells was determined by flow cytometry. (A) 
Cells were cultured in 2% DM SO in serum free media in either the presence or 
absence of N2 supplement. Cells were harvested and processed for flow cytometry 
after 6 days. Cells were dual stained with Annexin V (FITC) and PI. The histograms 
(A) indicate the number of cells positively stained. The upper right quadrant 
indicates the number of cells positive for both annexin V and PI. In contrast , the 
upper left quadrant indicates the number of cells positive only for PI. The analysis 
was compared the an M SC control in which cells were maintained under standard 
culture conditions and an annexin V control. (B) indicates the nwnber of cells 
positive for PI staining 1,3,6 days following exposure to DMSO either in serum free 
media (B) or in N2 supplemented serum free media (C). All data are mean 
values±SEM from 3 independent experiments in parallel cultures. Significant 
differences from the control group (time point 0) are indicated with an asterisk 
(**P<O.Ol). 
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Figure 3.21: Immuno-staining of 6-day chemically induced MSCs compared to SHSY-SY cells induced to 
differentiate under identical conditions. MSCs and SHSY-5Y cells plated on PLO coated tissue culture plastic were 
induced to differentiate in the presence of 2% DMSO in serum free, N2 supplemented media for 6 days. The expression of 
neuronal markers was localised by immuno-labeling with specific mouse monoclonal antibodies against Tuj-1 (A), 
synaptophysin (SYN, B), GAP-43 (C), SNAP-25 (D), Vimentin (E), NF-M (F), MAP-2 (G) and NF-L (H). Scale bars: 50f-t 

m. 
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Figure 3.22: Generation of neuro-sphere-like structures in serum-free media. To generate spherical 
aggregations of cells from monolayer cultures, MSCs were plated on tissue culture plastic at 8,000 cells/cm2 and 
grown to >80% confluence in DMEM /10%FCS/200mM L-glutamine (A). MSCs were then transferred to a serum­
free culture medium consisting of DMEM/F12 supplemented with 200mM L-Glutamine, N2 supplement, bFGF 
(lOnglml) and EGF (lOnglml). Under these culture conditions small aggregations of cells began to develop on the 
bottom of the culture flask within 3-5 days (B). As these aggregations became larger they detached from the flaks 
and became free floating spheres within the media (C). At 7 days , these spheres were harvested by removing the 
media and centrifuging at 500 rpm for 3 minutes. Cell aggregates were then gently re-suspended and sub-cultured 
under the same growth conditions. Spheres of cells continue to proliferate and enlarge in response to EGF and bFGF 
(D). When cell aggregates become greater than 100!-lm in diameter, they were further sub-cultured by mechanical 
dissociation using a fire polished Pasteur pipette. When grown in suspension, cell aggregates stained positive for 
nestin (D), suggesting the presence of neuroprogenitor-like cells, they also stained positive stain positive for neuroD 1 
(F). Scale bars: 50{lm (A); 300{lm (B) ; JOO{lm (C); 30{lm (D); 500{lm (E-F). 
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Figure 3.23: Effects of the removal of serum on the sphere forming 
capacity of MSCs in culture. Removal of serum is essential for both 
spheroid formation and expression of nestin. rMSCs were maintained in low 
attachment culture dishes under defmed media conditions: - (A) 10% FCS 
DMEM (B) DMEM F12 + N2 + EGF (C) DMEM F12 + N2 + FGF (D) 
DMEM F12 + N2 (E) DMEM F12 + N2 + EGF + FGF. After 24 hours, cells 
were fixed in 4% paraformaldehyde and labelled with an anti-nestin antibody 
(green). Scale bar: 40f-lm (A-E). Nestin expression correlates with spheroid 
formation which occurs in cells grown in serum free conditions. Expression of 
nestin in serum free culture conditions was confirmed by western blot 
analysis. B-actin was used to control for protein loading. 
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Figure 3.24: Low attachment culture conditions are critical for nestin induction, cell rounding and sphere formation. 
Cells cultured on low attachment substratum undergo cell rounding and aggregflte to form nestin positive cell clusters following 
24 hours culture in serum-free media (A). Cells cultured on Laminin coated tissue culture plastic (high attachment substratum) 
do not express nestin or undergo cell rounding and therefore do not aggregflte in serum free media (C). As a result, no free­
floating cellular spheroids were detectable in cultures maintained in serum free media for 10 days (E). Cells grown on normal 
tissue culture plastic acquire an intermediate-like morphology in response to serum withdrawal (B). 27-42% of cells have a 
cytoplasm, which is collapsed around the nucleus, but unlike cell rounding on low attachment substratum this retraction leaves 
several cytoplasm extensions radiating from the cell body . (D) % of nestin positive cells under each condition after 24 hours 
and (E) the number of free-floating cellular spheres. All data is represented as Mean±SEM from 3 independent experiments in 
parallel cultures . Scale bars: 50f.lm. 



Figure 3.25: MSC derived cellular spheroids and presumptive differentiated cells. (A) MSC derived cellular 
spheroid expressing nestin 12 hours following plating on PLO coated tissue culture plastic. (B) Spheroid 
expressing Tuj-1 at high levels 24 hours following plating. (C) Spheroid derived cells 4 days following plating on 
PLO tissue culture plastic expressing Tuj-1. In an attempt to induce differentiation ofMSC spheroids, cells were 
plated on larninin coated tissue culture plastic in the presence of RA (0.5f.!M) and NGF (lOnglml) in serum free 
media for 12 days. Cells expressing neuronal proteins were detected by irnmunolabeling with antibodies directed 
against: GAP-43 (D), Tuj-1 (E,F), GFAP (G), MAP-2 (H), NF-M (1). Scale bars: 50f-lm. 
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Figure 3.26: Expression of neural and mesodermal proteins following differentiation of MSC derived 
cellular spheroids. Flow cytometry measurement of neural (Nestin, GFAP, TuJl, NF-M and MAP-2) and 
mesodermal associated protein markers (Fibronectin) in rM SCs following either culture as cellular spheroids or 
plating on larninin coated tissue culture plastic in the presence of lOnglml NGF and 0.5 !J.M RA for 12 days in 
serum free media. Flow cytometry data from representative experiments are shown as histograms with 
fluorescence intensity on the x-axis (solid peaks) and cell count on the y-axis. Background fluorescence was 
excluded by the use of isotype matched control antibodies (open peaks). The percentage of positively labelled 
cells (left) is given with the geometric mean fluorescence intensity (MFI) (right) for each antigen. 
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Figure 3.27: \VB analysis following differentiation of MS C cellular spheroids in the presence of 
NGF/BDNF and RAin serum free media for 12 days. (A) Time course of neural protein expression in 
response in RA and NGF for 12 days on Laminin coated tissue culture plastic. (B) Comparison of 
expression of neural proteins in cultures treated with RA+BDNF for 12 days compared to RA+NGF for 12 
days. NS=MSC spheroids cultured in DMEMF12 supplemented with EGF and FGF-2 for 3 days. 



Figure 3.28: Comparison of neural-like cells derived from cellular 
spheres with the neural progeny of differentiating NSCs. (A) MSC 
derived cellular spheroid following 2 weeks subculture in DMEM/F12 media 
supplemented with EGF 10 nglml and FGF-2 10 nglml. These cellular 
spheroids were nestin positive (B). The cellular spheroids were propagated in 
culture and proliferated in response to growth factors in non-adherent culture 
conditions (C). On plating these cellular spheroids on PLO coated tissue culture 
plastic the cells dissociated and adhered (D). Embryonic striatal NSCs, were 
derived from day 14 rat embryo's (E) and grown under identical culture 
conditions as MSC derived cellular spheroids. Neurospheres formed from day 
14 ventral midbrain had a similar morphology in culture to M SC cellular 
spheroids (F). Scale bars: 50t-tm 



Figure 3.28 continued: (G) Nestin is down regulated 2 days fol!owing 
plating of M SC cellular spheroids on Larninin coated tissue culture plastic. 
(H) Un-dissociated rat neurospheres plated for 2 days on Larninin coated 
tissue culture plastic still express nestin, which is highly expressed in 
developing neurites. (I) Un-dissociated M SC spheroids plated on PLO 
coated tissue culture plastic for 6 days express high levels of Tuj-1 but 
there is no evidence of extensive neurite outgrowth as observed in Tuj-1 + 
cell progeny of rat NSC/progenitor cells cultured under identical conditions 
for 6 days (J). (K) Expression of GFAP in MSC spheroids 6 days 
following plating on PLO coated tissue culture plastic compared to 
NSC/progenitor cells 6 days following plating under identical conditions 
(L). (M) No MAP-2 expression was detected in MSC spheroid progeny 6 
days following plating in contrast to rat NSC/progenitor cells in which high 
levels of expression were evident in developing neurites (N). Both 
undifferentiated MSCs and MSC cellular spheroids were capable of 
forming bone following osteogenic differentiation confirmed by Von Kossa 
staining. Scale bars: 50{lm 



Figure 3.29: Effect of PMA on the morphology of MSCs in 
culture. MSCs were incubated with 10[-LM PMA for 300 minutes in 
serum containing media. Cultures were fixed and stained at 30, 60, 180 
and 300 minutes post exposure and phase contrast images obtained. To 
visualise the F-actin cytoskeleton cells were labelled with TRITC 
conjugated phalloidin. Scale bars: 501J.m. 
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Figure 3.30: Effect of PMA at various concentrations on the 
acquisition of a neural-like morphology in MS Cs. Cells were 
incubated in various concentrations of PM A in serum containing 
media for 6 hours. The number of neural-like cells was assayed 
every hour for 6 hours. All data are Mean±SEM from 3 
independent experiments in parallel cultures. 
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Figure 3.31: Expression of neural proteins in cells cultured in the presence of lOtJ.M PMA and the effect of PMA on COL 
pretreated cells. Flow cytometry was used to quantify the number of positive cells for each marker under each culture condition. Cells 
were treated either with PMA (10!-lM) in serum containing media for 5 hours or 24 hours. To examine the role of rnicrotubules in the 
response of cells to PMA, cells were pre-treated for 20 hours with colcernid (COL) prior to PMA treatment. All data are Mean 
values±SEM from 3 independent experiments in parallel cultures. Significant differences compared to control are indicated (*P<0.05 , 
**P<O.Ol). 



Figure 3.32: The effect on lOJ.tM PMA in serum containing media 
on the morphology and neural protein expression profile of MSCs. 
(A) F-Actin cytoskeleton of 5 hour PMA treated MSC labeled with 
TRITC conjugated phalloidin. (B) a-Tubulin labeling of 5 hour PMA 
treated cells to visualize the microtubule system. Expression of Tuj-1 
(C), GAP-43 (D), nestin (E) and NF -M (F) in 5 hour PMA treated 
cells. Phase contrast image of PMA treated cells (G) and phase contrast 
image of PMA treated cells pre-treated with colcernid for 20 hours (H). 
Scale bars: 50f-tm. 



CHAPTER4 

Formation of Neurons by Non-Neural Adult 
Stem Cells: Potential Mechanism Implicates 

an Artifact of Growth in Culture 
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4.1 Introduction 

Adult stem cells which have been isolated from numerous tissue sources, including 

the central nervous system (Gage, 2000; Reynolds and Weiss, 1992), BM (Pittenger et 

al., 1999; Weissman, 2000) and skin (Watt et al., 1998) are thought to have a more 

restricted developmental potential, generating only differentiated cell types of the 

same cell lineage as the organ in which they reside. Cell fate is determined by a 

variety of factors that regulate epigenetic changes during embryonic development and 

in normal adult physiology. Traditionally, cell commitment has been viewed as 

consisting of a series of irreversible steps which involve increasing commitment to 

particular cell lineage (Anderson et al., 2001). 

However, this model of irreversible and restricted differentiation has been challenged 

by several recent experimental findings. Nuclear transfer experiments showed that the 

nuclei of adult cells could be reprogrammed to ES-like nuclei with corresponding 

pluripotency by the cytoplasmic factors of the oocyte (Munsie et al., 2000; 

Wakayama et al., 2001). This demonstrated that previously silent genes could be 

activated in the adult nuclei. Formation of stable heterokaryons following the fusion 

of terminally differentiated, disparate cell types, results in the expression of 

previously inactive genes through exposure to a novel cytoplasmic environment (Blau 

et al., 1985; Blau et al., 1983). These studies collectively demonstrate that the 

differentiated state of a cell requires continual regulation within the cell (Blau, 1992; 

Blau and Baltimore, 1991 ). This remarkable plasticity was however only achieved 

following considerable experimental manipulation. 

Recent transplant studies suggested this plasticity may occur under certain 

physiological conditions in which at least a subpopulation of adult stem cells are 

capable of generating cells of a different embryonic germ layer, a process referred to 

as 'trans-differentiation'. This term demotes an alternation in the differentiation 

potential of a cell already programmed to a given cell lineage (Eguchi G, 1993; 

Weissman et al., 2000). For example, when donor bone marrow cells are trtmsplahted 

into lethally irradiated recipients, genetic markers of the donor cell (Such green 
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florescent protein, GFP or Y chromosome) can be detected in various adult tissues 

outside of the haematopoietic cell lineages including skeletal muscle (Gussoni et al., 

1999; Ferrari et al., 1998), liver (Petersen et al., 1999; Lagasse et al., 2000; Theise et 

al., 2000), heart (Orlic et al., 2001a; Orlic 2001b) and brain (Eglitis and Mezey, 1997; 

Brazelton et al., 2000; Mezey et al., 2000). HSCs have been found to contribute to the 

epithelia of various organs of ectodermal and endodermal origin following 

transplantation of a single HSC into a lethally irradiated host (Krause et al., 2001). In 

addition, reports of a high degree of plasticity have not been confined to BM derived 

cells. NSCs were shown to differentiate into virtually all cell types when injected into 

blastocysts (Clarke et al., 2000). 

These findings have been met with considerable controversy with reports of 

conflicting results and low reproducibility. Some investigators have found little or no 

evidence to support the trans-differentiation of adult stem cells using similar or 

identical experimental paradigms to those described above (Massengale et al., 2005; 

Morshead et al., 2002; Wagers et al., 2002). Others argue that cell fusion and not 

trans-differentiation is the explanation for unexpected cell fate changes in vivo (Ying 

et al., 2002; Terada et al., 2002; Wang et al., 2003). The studies of Alvarez-Dolado et 

al., 2003 using transgenic markers to monitor the fate of single cells following 

transplantation or co-culture found no evidence of trans-differentiation but found stem 

cells from one germ layer could acquire the attributes of cells of other tissues by the 

formation hybrid cells as a result of spontaneous cell fusion. 

Stem cells reside in specialized niches within specific adult tissues where they are 

subject to spatial and temporal regulation in respect to their developmental potential. 

Removal of certain stem cell populations from their normal microenvironment and 

their subsequent explants in culture has been proposed to increase their developmental 

plasticity. Multilineage adult progenitor cells (MAPCs) have been isolated from 

mammalian BM (Jiang et al., 2002a) and shown to differentiate at the single cell level 

into ectoderm and endoderm derived tissues, regenerate the blood system and 

repopulate embryonic tissues in vivo, on implantation into a blastocyst (Jiang et al., 

2002a). In order to achieve these differentiation capabilities the cells are removed 

from their niche, explanted ex vivo under highly defined and selective culture 

conditions. These studies and others (D'Ippolito et al., 2004; Pochampally et al., 
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2004) demonstrate that certain cell populations in situ may seldom exhibit their full 

differentiation repertoire and the in vivo microenvironment may have a profound role 

in this repression. 

A multitude of studies have now been published which demonstrate an increase in 

adult stern cell plasticity following in vitro cultivation (To rna et al., 2001; Kabas et 

al., 2001; Hermann et al., 2004) and in cases where co-culture has been utilised to 

promote differentiation towards a particular cell lineage, some investigators have been 

able to demonstrate that differentiation has been independent of cell fusion (Sato et 

al., 2005, Newsome et al., 2004; Muasawa et al., 2005; Kajstura et al., 2005). These 

results imply either that certain adult stern cells have an intrinsic capacity for 

differentiation beyond their normal repertoire (with such plasticity suppressed in situ) 

or that adult such cells are reprogrammed in the their differentiation potential towards 

specific cell lineages by extracellular cues. Reprogramming of a previously 

specialised adult stem/progenitor cell in such a way as to enable a cell to differentiate 

towards a different cell fate would require the expression of a significantly different 

array of genes. The question is can this be achieved through the induction of 

epigenetic changes in vitro? 

MSCs are one adult stern cell population proposed to demonstrate increased plasticity 

following cultivation in vitro (Woodbury et al., 2000; Lange et al., 2005; Choi et al., 

2005). These cells are particularly good candidates for cell therapy because of their 

accessibility and capacity, for ex vivo expansion (Di Girolamo et al., 1999). Whilst 

retaining their capacity for mesoderm differentiation, MSCs have been shown to 

differentiate into endodermal and ectodermal derivatives under defined culture 

conditions independent of cell fusion (Lange et al., 2005; Hermann et al., 2004). One 

of the most striking examples of this has been the demonstration that MSCs can form 

neuroectodermal derivatives in vitro (Deng et al., 2001; Jin et al., 2003; Kohyrnarna et 

al., 2001; Hermann et al., 2004; Wislet-Grenbien et al., 2003) or following 

transplantation into the CNS (Brazelton et al., 2000; Corti et al., 2002; Mezey et al., 

2000; Nakano et al., 2001). Although such differentiation is reportedly limited, MSCs 

preconditioned by exposure to the mitogen basic fibroblast growth factor (bFGF) in 

culture have been shown to engraft and differentiate in a site-specific manor 
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following transplantation in the embryonic brain without evidence of fusion (Munoz­

Elias et al., 2004). 

To investigate whether non-neural tissue specific stem cells have an intrinsic capacity 

to generate neural derivatives by trans-differentiation we tested the neurogenic 

potential of MSCs isolated from the adult bone marrow. In contrast to recently 

reported findings we found that the formation of presumptive neural cells (defined by 

morphology and gene expression) were the result of a stress response to a change in 

the culture conditions, an event previously interpreted by other investigators as trans­

differentiation. 

4.2 Materials and Methods 
4.2.1 Jkfaterials 

Tissue culture reagents and other materials were acquired from Sigma (Sigma­

Aldrich, Poole, UK) unless otherwise stated. All substances were of the appropriate 

chemical, molecular biological or tissue culture grade. Cytochalasin B (CB) and 

colcemid (COL) were dissolved in ethanol and used at a final concentration of 10 

llg/ml and 1 llg/ml, respectively, unless otherwise stated. The broad spectrum protein 

kinase C inhibitors Staurosporine (Str) and Chelerythrine chloride (ChCl) were 

dissolved in dimethylsulfoxide (DMSO) and used at final concentrations of 10 ~-tM 

and 50 ~-tM, respectively. The mitogen activated kinase (MAPK) inhibitors were 

purchased from Calbiochem (UK), reconstituted in DMSO and used at the following 

concentrations: PD98059 (75 nM, selective MEK inhibitor), SB 202190 (1 0 nM, a 

potent inhibitor of p38), SB 203580 (1 0 nM, a highly selective inhibitor of p38) and 

SP 600125 (10 nM, a potent inhibitor of c-Jun N-terminal kinase, JNK) were 

reconstituted in DMSO. MAP Kinase and PKC inhibitors were added to the culture 

30 minutes prior to any further treatment. 

4.2.2 Cell Culture 

Rat MSCs (rMSCs) were isolated from the femurs and tibiae of 6-8 month old Wistar 

rats. The bone marrow (BM) was aspirated with 20 ml collection media (RPMI-1640 

supplemented with 10% fetal calf serum (FCS), 100 U/ml penicillin, 100 ~-tg/ml 
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streptomycin, and 12 JlM L-glutamine) into a T75cm2 flask to allow stromal cells to 

adhere to the culture surface. Adherent cells were then washed and maintained in 

complete culture medium (CCM: Dulbecco's Modified Eagles Medium supplemented 

with 10% FCS, 100 U/ml penicillin, 100 flg/ml streptomycin, and 12 JlM L-glutamine 

and 1x non-essential amino acids) at 3rC in 5% C02• Isolation of rMSCs was 

verified by their capacity to differentiate into mesodermal derivatives (bone, fat) and 

their cell surface expression ofMSC markers CD44, CD29 and CD90 and the absence 

of heamatipoetic markers CD45 and CD11b (data not shown). Passage 8 (P8) 

(approximately 25 population doublings) cells were used in the experiments described 

herein. To induce a presumptive neural phenotype, rMSCs were grown to >80% 

confluence in CCM. Unless stated otherwise, rMSCs were subsequently incubated in 

serum free DMEM/F12 media supplemented with N-2 supplement on tissue culture 

plastic. N-2 supplement is a media growth supplement used for growing post mitotic 

neurons in serum free media conditions. It contains insulin, human transferrin, sodium 

selenite, putrescine and progeste-rone. For some experiments the media was also 

additionally supplemented with bFGF at a final concentration of 20 ng/ml. Rat 

dermal fibroblasts were cultured in alpha-MEM, containing 10% FCS and 2mM L­

glutamine. 

4. 2. 3 Intracellular staining and analysis by flow cytometry 

A single cell suspension of cells was obtained by incubating cells with trypsin/EDT A 

at 3rC. Cells were then washed with PBS x2 and pelleted in a 12 x 75 mm culture 

tube. The pellet was then resuspended in cold 2% PF A-PBS solution. The suspension 

is incubated for 24 hours at 4 °C, centrifuged for 5 minutes at 250g, and then the 

supernatant is removed. The pellet was then permebiised in 1 ml of R T triton X -1 00 

(0.2-1% in PBS) and the mixture was incubated for 15 minutes at 37°C. Non-specific 

binding was blocked by incubation with 5% goat serum. Cells were incubated with 

primary antibody (TuJ-1 (Convance, 1 :500); Nestin (Chemicon, 1:1 00); Vimentin 

(Chemicon, 1 :200); Synaptophsin (Sigma, 1:1 00); GAP-43 (Sigma, 1 :200); NeuN 

(Chemicon, 1 :50); NeuroD1 (Abeam, 1 :100); Fibronectin (Sigma, 1 :200)) for 60 

minutes 4 oc in antibody buffer (PBS, 1% goat serum, 0.1% bovine serum albumin, 
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BSA), followed by incubation with fluorescein isothiocyanate (FITC) conjugated goat 

antibodies raised against mouse IgG (1: 1 00). 

4. 2. 4 Flow cytometry analysis 

All samples were maintained on ice prior to analysis. Analysis was performed using a 

coulter EPICS XL flow cytometer. FITC and Cy-3 were identified by using a 530 and 

585 band pass filter respectively, and quantification was completed using CellQuest 

Software (Becton Dickinson). Ten thousand events were acquired per sample with 

fluorescence measured on logarithmic scales. Forward and side light scatter gates 

were set to exclude dead debris and clumps of cells. To calculate the percentage of 

positive cells, linear gates were set at 0.1 %, on samples stained only with secondary 

antibodies, and expression corresponding to a fluorescence signal exceeding this 

percentage was measured. 

4.2.5 Cell morphology assays 

Digital images of phase contrast microscopy were acquired using a Nikon inverted 

microscope and camera (Nikon CM200). Measurements of cell footprint area 

(surface area occupied by the cell defined by its outer periphery of the cell) were 

determined by examining 10 non-overlapping microscopic fields (>20 cells/field) for 

three independent experiments using Image J software (NIH). The number of 

arborized cells was also counted for each visual field and treatment condition. For 

time-lapse microscopy, phase images of the same field of view were recorded at IS­

minute intervals using a Nikon inverted microscope equipped with a temperature­

controlled stage. 

4. 2. 6 Time-lapse microscopy 

MSCs were grown in specialised 60-mm glass chamber slide provided by the 

manufactor. Images were acquired using a Nikon inverted differential interference 

contrast microscope equipped with a temperature-controlled stage at 400x. Images 

were acquired at 15 min intervals. Images were prepared for display using Adobe 

Photoshop software. 
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4. 2. 7 Immuno-fluorescence microscopy 

To preserve the structure of the microtubule cytoskeleton, cells were washed in PBS, 

extracted with 1% Triton X-100 in microtubule stabilising buffer (PEM: 1 mM 

MgCh, 5 mM EGTA, 80 mM K-pipes, pH 6.8). After permeabilisation cells were 

fixed with 0.5% gluteraldehyde in PBS. Free aldehyde groups were blocked by 

sodium borohydride (10 minutes) and lysine (2% solution) for 1 hour. For Nestin 

staining, cells were washed with PBS and fixed in 4% PF A solution for 30 minutes 

followed by post fixation and permeabilisation in 0.5% Triton X-100 in PBS for 15 

minutes. All samples were subsequently rinsed three times in blocking/wash buffer 

(2% PF A in PBS), incubated with monoclonal mouse antibody directed against either 

a-Tubulin DMIA (Sigma, 1:1 00) or Nestin (Chemicon, 1 :200). FITC-conjugated goat 

antibodies against mouse IgG (Sigma, 1:1 00) were used as secondary antibodies. To 

visualise the F-Actin cytoskeleton, cells were stained with TRITC-labelled phalloidin. 

Labelled cells were cells visualised using an inverted fluorescent microscope (model 

E660 Nikon) and a CCD camera (Spot RT; diagnostic instruments) with individual 

filter sets for each channel. All images were captured using the same collection 

parameters for quantitative compansons. The fraction of positive cells was 

determined for each culture condition by counting 10 non-overlapping microscopic 

fields (>20 cells/field) for each condition in at least three independent experiments. 

Colour images were generated using Adobe photoshop (Adobe systems, mountain 

view, CA) 

4.2.8 Western Blot Analysis 

Protein extracts (30 flg per lane) were separated by electrophoresis and transferred 

onto PDVF membrane (Amersham). For immunoblotting, membranes first incubated 

in blocking solution (10 mM Tris-HCl (pH 8.0), 150 mM NaCI) containing 5% milk 

powder, 0.2% Tween 20) for 1 hour followed by primary (TuJl (Con vance), 1 :5000; 

Nestin (Chemicon), 1:1 000; ~-Actin (Sigma), 1 :5000) and secondary (mouse or rabbit 

IgG-HRP (Amersham, 1: 1000) antibody. Protein-antibody binding was detected on 

film (Hyperfilm ECL, Amersham) using chemiluminescence (Amersham). 

De_nsitometry following western blot analysis was carried out on blots obtained from 

three independent experiments and where analysed by ImageJ. 
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4. 2. 9 Statistical analysis 

Statistical analysis was carried out using Graph Pad Prism Software version 4. Results 

were analysed for statistical significance using ANOVA and all error bars are 

expressed as standard error+/- mean. All data unless stated otherwise is expressed as 

Mean±SEM. Post hoc analysis was done using Bonferroni corrected planed 

companson. 

4.3 Results 
4.3.1 Effect of serum on the induction ofNestin expression by rMSCs 

To identify conditions that may promote the differentiation of MSCs toward a neural 

lineage, we cultured rMSCs for 24 hours in bFGF (1 0 ng/ml) supplemented media in 

either the presence of 10% FCS in DMEMF12, or under serum free (SF) conditions 

using DMEMF12 + N2 supplement or DMEMF12 alone (Figure 4.1). We examined 

these cultures for the expression of Nestin, a class III intermediate filament protein 

commonly used as a marker of neural progenitors (Lendahl et al., 1990). In the 

present study we found that addition of 10 ng/ml bFGF for 24 hours was sufficient to 

induce Nestin expression in rMSC cultures. However, growth factor treatment in the 

presence of serum (1 0% FCS) resulted in only minimal induction of Nestin 

expression (9-10%) compared to induction following growth factor treatment in 

serum free cultures, DMEMF12 + N2 and DMEMF12 (28% and 34%, respectively) 

(Figure 4.la). This finding suggests that serum removal is required for increased 

induction of Nestin expression and implied that serum may itself have a regulatory 

role in the acquisition of a neural phenotype. 

Consistent with this observation, Nestin expression was virtually undetectable in cells 

continually maintained in serum supplemented media (9-1 0% Nestin positive cells, 

low expression) and removal of serum from the culture was sufficient to induce 

Nestin expression in a fraction of rMSCs (24% nestin bright) (Figure 4.1b). No 

significant difference was found between the level of Nestin expression in serum free 

cultures and cultures in which serum had been substituted by N2 supplement 

(DMEMF12 + N2, 31 %) indicating that serum removal was a critical determinant in 

the level ofNestin expression within the culture. 
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The intensity of Nestin expression was heterogeneous during growth factor treatment 

but correlated with the acquisition of a neural-like morphology (Figure 4.1 c). Cells 

maintained in media supplemented with 10% FCS had a fibroblastic morphology 

consistent with a stromal phenotype. These cells stained only very weakly for Nestin 

protein and within the confines of this study counted as Nestin negative. However, 

31-35% of cells expressed high levels of Nestin following 24 hours serum free 

culture, and all these Nestin positive cells developed a neural-like morphology. The 

same pattern of Nestin expression was observed for growth factor treatment in the 

presence or absence of serum (Figure 4.1c). Western analysis confirmed that the 

induction of Nestin was significantly higher in serum free cultures and that such 

regulation in expression was also evident for the neuronal marker TuJ-1 (Figure 4.2). 

4.3.2 Changes in protein expression profile by rMSCs cultured in serum free media 

Neural development is a controlled process in which the temporal and spatial 

expression of neural genes is tightly regulated (Gage et al., 2000). We examined the 

expression of neural proteins to determine whether serum withdrawal induced a true 

transition towards the neural lineage with the concomitant down regulation of 

mesodermal markers commonly expressed by MSCs (Figure 4.3). Cells cultured in 

serum containing media were negative for Nestin and NeuroD1 but a fraction of 

rMSCs did express TuJ-1, NeuN and Synaptophysin at low levels. GAP-43 was 

expressed on 95% of cells but also at relatively low levels. Culturing rMSCs in serum 

free media for 24 hours resulted in an up-regulation in the expression of the neural 

proteins tested, namely Synaptophysin, NeuN, GAP-43, TuJ-1, Nestin and NeuroD1 

(Figure 4.3). 

4.3.3 Changes in the morphology ofrMSCs in response to serum free culture 

The morphology of rMSCs grown in serum free conditions was recorded at regular 

time intervals using phase imaging (Figure 4.4). Cells were measured for footprint 

area and whether they resembled neuro11s (Figure 4.6). Upon removal of serum 23-

25% of rMSCs adopted a neural-like morphology within 5 hours (Figure 4.4, 4.6a). 

Such a response was significantly enhanced when rMSCs were exposed to 2% DMSO 
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in serum free culture, where 91% of cells displayed a neural-like morphology (Figure 

4.4, 4.6a). The structural features that underlie the change in cell morphology from a 

flat fibroblastic morphology to a neural-like morphology were demonstrated by time­

lapse imaging (Figure 4.5). The cytoplasm of responsive cells shrank toward the 

nucleus and this retraction left behind cytoplasmic extensions radiating from the 

nucleus to where the cell periphery had originally been located. Not all cells 

responded in the same fashion and there were varying degrees of cell shrinkage in 

response to serum withdrawal. Responsive rMSCs became increasingly spherical and 

highly refractile resembling typical neuronal perikarya. 

4.3.4 Organisation of the rMSC cytoskeleton during the formation of neural-like cells 

We examined the structure of the cytoskeleton in rMSCs during their transformation 

into neural-like cells (Figure 4.7). Rat MSCs were cultured in the presence of 2% 

DMSO in the absence of serum to induce a high percentage of cells to undergo 

cellular collapse. Staining for F -Actin and a-Tubulin over a 5 hour period showed 

that these cytoskeletal elements appeared to collapse toward the nucleus. Cells were 

then fixed at various time points from 0 to 5 h ours post treatment. Figure 4. 7 shows 

representative images of cells at each time point. We observed that both cytoskeletal 

systems appeared to collapse during cytoplasmic retraction. This collapse of the F­

actin and micrtubule systems towards the nucleus results in a rounded, cell 

morphology with numerous membraneacous extensions radiating from the centre of 

the cell. Staining shows these processes contained both actin and tubulin and we were 

therefore unable to determine which cytoskeletal system was the principal cause of 

this morphology. However, it was evident that this morphology was the result of 

cytoskeletal retraction and not the active process like extension, which is 

characteristic of authentic neuronal development. The membranueous extensions that 

remained following cytoskeletal collapse were merely an artefact of this retraction, a 

morphological characteristic previous interpreted as a neuronal morphology. 

Together with the time lapse imaging data (Figure 4.5), we propose that rMSCs 

acquire neuronal morphologies through the collapse of the cytoskeleton and not 

through the active process of cytoplasmic extension and neurite outgrowth as 
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traditionally observed in a growing neuron. Although the cytoplasmic processes in 

responsive cells contained both Actin and Tubulin, we were unable to determine 

which cytoskeletal system was principally the cause of this morphological change. 

To determine the cytoskeletal compartment which is the principal cause of cellular 

collapse, we selectively disrupted F-Actin and the microtubule systems independently 

using cytochalasin B (CB) and colcemid (COL), respectively (Figure 4.8, 4.9). Rat 

MSCs treated with CB in serum supplemented media resulted in a characteristic 

arborized morphology in >90% of cells (Figure 4.8). Disruption of the Actin 

cytoskeleton in this way resulted in cells with morphology closely resembling the 

structure of cells treated with DMSO or those cells that underwent collapse following 

serum withdrawal. In contrast, the selective disruption of the microtubule system 

using COL (a microtubule depolymerising agent) did not result in an arborized 

morphology. Although no polymerised a-Tubulin was detected, staining for F-Actin 

appeared to remain unaffected (Figure 4.9). These data suggest that F-Actin is 

principally disrupted in response to serum withdrawal and DMSO treatment and that 

the structure ofthe microtubule system changes as a result ofF-Actin retraction. 

To verity this conclusion we treated rMSCs with CB for 5 hours to induce cells with 

neural-like morphologies and then subsequently removed serum from the culture for 5 

hours (Figure 4.11 ). No additional morphological response was apparent as a result 

of serum removal. Similarly, the addition of COL for 5 hours post-CB treatment did 

not result in any further morphological changes despite an intact polymerised tubulin 

system still detectable following CB treatment. This supported the notion that F­

Actin disruption was the principal cause of morphological changes following serum 

withdrawal. Moreover, F-Actin alone was sufficient to maintain the neurite-like 

processes, whereas the growth and extension of true neurite is dependent on a 

dynamic microtubule cytoskeleton (Roisen et al., 1975). Interestingly removal of 

serum or addition of CB following COL treatment also did not result in any cell shape 

changes despite an intact F -Actin system being present (Figure 4.11 ). This suggests 

that microtubules provide the retractile force for F-Actin collapse and a-tubulin is 

required for F-actin mediated collapse of the cytoskeleton. 
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4.3.5 Re-organisation of the cytoskeleton and the expression of neural genes 

We next investigated whether the increased expression of neural proteins that occurs 

subsequent to induction of a neural-like phenotype is related to the collapse of the 

cytoskeleton. We chose to examine the expression of Nestin since this protein was 

not found in untreated rMSCs and its increased expression appeared to correlate with 

the formation of neural-like cells in response to serum withdrawal (Figure 4.12). 

Varying degrees ofF-Actin disruption were induced by treatment with CB over a 

range of concentrations (Figure 4.12b ). Merged images show that it was the arborised 

cells that expressed Nestin. A direct correlation existed between the extent of 

disruption and the number ofNestin expressing cells (Figure 4.12b). In addition, as 

amount of Actin disruption increased (as a consequence of increased CB 

concentration), the cellular footprint area reduced together with an increase in the 

number of arborised cells. Although microfilament disruption was slightly evident at 

0.1J.!M CB treatment, no significant up regulation in Nestin expression was detected 

by immunocytochemistry. Accordingly, disruption of the Actin cytoskeleton by 

treatment with CB resulted in neural-like cells that express high levels of Nestin in a 

concentration dependent manner. Western analysis performed on samples of cells 

treated with different concentrations of CB, ruled out the possibility that the 

appearance of Nestin bright cells was an artefact of cellular collapse and not simply 

the result of an increased amount of antigen per surface area (Figure 4.13). We also 

recorded that the effect of CB on Actin disruption and the induction of expression for 

certain other neural proteins appeared to be related to cytoskeleton disruption and 

reached maximal levels after 5 hours treatment (Figure 4.14c). 

Treatment of cultures with 1 OJ.!M CB resulted in cellular arborisation in which 92% of 

cells possessed a fully arborized phenotype by 5 hours (Figure 4.14a), which 

correlated with a reduced cell footprint area over the same period (Figure 4.14b ). 

Using flow cytometry we found that percentage of cells expressing NeuroDl and 

Nestin increased in a similar fashion to the number of cells changing shape over time, 

whereas levels of Vimentin decreased over this period (Figure 4.14c ). Intracellular 

staining and flow cytometry was used to quantify neural protein expression (Tuj-1, 

NeuroD 1 and Nestin) in response to 5 hours treatment with CB or COL in serum 

containing media (Figure 4.15). Both CB (Figure 4.15b) and COL (Figure 4.15c) 
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result in an up-regulation of Tuj-1. Both treatments also induce NeuroDl and nestin 

expression in cells with a concomitant reduction in vimentin expression. Therefore, 

the pattern of response is consistent between CB and COL treatment indicating that it 

is the disruption overall of the cytoskeleton which results in the neural protein 

expression and not the acquisition of a neural-like morphology per se which is not 

evident in COL treated cells. 

4.3.6 Cell signalling molecules that mediate the cytoskeletal regulation of neural 

protein expression in rMSCs 

Perturbation of cell shape by compounds that disrupt the cytoskeleton has been shown 

to alter the activity of several signalling molecules (Ren et al., 1999; Yujiri et al., 

1999; Subbaramaiah et al., 2000). For example, elements of the Ras, Raf, MAPK 

cascade are understood to associate with a microfilament signalling particle which is 

thought to mediate MAPK activation by the cytoskeleton (Carraway et al., 1999; Li et 

al., 1999). To investigate the molecular mechanism(s) underlying the induction of 

neural-like phenotype and expression of neural proteins by rMSCs, we used selective 

inhibitors to antagonise particular signalling molecules during this process. The 

protein kinase C (PKC) signalling pathway has previously been implicated in the 

regulation of both cell morphology and neural gene expression. We found that the 

up-regulated expression of NeuroD1 and Nestin by rMSCs cultured in SF media or 

treated with CB in serum containing media for 24 hours was significantly inhibited by 

broad-spectrum PKC inhibitors (Table 4.1 ). However, this attenuation may not be a 

direct effect on the inhibition of signalling molecules involved in neural protein 

induction since the presence of the inhibitors also reduced the morphological response 

to SF and CB treatments (Figure 4.16), an effect that may account for the reduced 

expression of neural protein in these cultures. 

In contrast, MAPK inhibitors did not affect the morphological response of rMSCs to 

Actin disruption (Figure 4.17). The induction of neural proteins in response to 

cytoskeleton disruption did not appear to involve MEK-ERK signalling but was 

dependent on both JNK and p38 signalling (Table 4.1, Figure 4.18, 14.19). Inhibition 

of either the JNK or p3 8 pathways significantly reduced the level of neural protein 
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expression, however, this reduction was partial in both cases. This may be because 

other signalling molecules operate that substitute for JNK and p38 signalling. 

4.3. 7 Reversal of morphological and protein expression responses to serum removal 

or Actin disruption 

The differentiation of multipotent stem cells involves a progressive restriction in cell 

fate with increasing commitment to a specific cell lineage. We hypothesised that if 

rMSCs cultured under defined conditions could be instructed to adopt a neural fate 

then such reprogramming would involve the progressive loss of mesodermal specific 

genes accompanied by a gene expression profile consistent with a neural lineage. To 

test whether the expression of neural proteins represented a firm commitment to the 

neural lineage or simply a transient reversible expression, we examined the levels of 

neural and mesodermal proteins following the re-introduction of serum or removal of 

CB (Figure 4.22). Cells cultured in serum free media or in the presence CB up 

regulated their expression ofNestin, NeuroD1 and TuJ-1 with the concomitant down 

regulation of the mesoderm marker, Vimentin. This change in the protein expression 

profile in both CB treated cells and cells cultured in serum free media was completely 

reversible following the removal of CB or re-introduction of serum to serum free 

cultures. The protein expression profile of these previously treated cells was 

comparable with rMSCs maintained in serum containing media. This reversal in the 

expression of neural proteins was accompanied by a reversal of the morphology of the 

cells from an arborized phenotype to a flat fibroblastic morphology (data not shown). 

This reversible behaviour suggested that rather than a differentiation response, the 

expressiOn of neural proteins may be a cellular stress response to cytoskeleton 

disruption. Aberrant expression of proteins in response to cellular stress is often 

transient (Kulka, 1989). We have also shown that the expression level of the neural 

marker, TuJ-1, was initially increased in response to serum free culture conditions but 

subsequently returned to lower levels over the next 5-6 days when maintained in the 

same type of growth media (Figure 4.20c,d) as determined by western blot analysis of 

protein expression following 6 days induction. This reduction in TuJ-1 expression 

was also associated with a progressive reduction in the number of cells displaying an 

arborised phenotype (Figure 4.20a,b ). Therefore the morphological and protein 
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response of rMSCs to serum free culture is a transient effect with cells progressively 

recovering over time. 

4. 3. 8 Role of protein synthesis in the expression of neural proteins and acquisition of 

neural-like morphology in response to inductive agents 

To determine whether new protein synthesis is required to produce the morphological 

and protein responses observed in serum free and DMSO treated cells, MSCs were 

treated with the protein synthesis inhibitor CHX at concentrations sufficient to inhibit 

protein synthesis in murine BM stromal lines by >95% (Gimble et al., 1989, Gautam 

et al., 1995) Treatment of MSCs with CHX at a concentration of 1 0~--tg/ml for 24 

hours arrested cell proliferation, indicating the effectiveness of CHX of inhibiting 

protein synthesis. MSCs pre-treated with CHX and then cultured in the presence of 

DMSO displayed neural-like morphologies. Therefore CHX treatment had no 

significant effect on the acquisition of a neural-like morphology indicating that 

protein synthesis was not required for cells to assume these neural-like morphologies 

(Figure 4.21 ). CHX treatment itself did result in a small proportion ( <20% approx) 

assuming a neural-like morphology, however further treatment with DMSO resulted 

in much higher numbers of neural-like cells (>75% approx). CHX pre-treatment in 

addition, did not significantly inhibit expression of nestin or Tuj-1, which were 

detectable at high levels both in CHX +DMSO and DMSO, treated samples as 

detected by western blot analysis (Figure 4.21 ). Therefore protein synthesis is not 

required the expression of neural proteins in response to DMSO or serum deprivation. 

This is inconsistent with a differentiation response, but consistent with a stress 

response and an inhibition in the breakdown of aberrant proteins, the concentration of 

which subsequently rises in the cell. 

4.3.9 Expression of neural proteins by dermal fibroblasts in response to Actin 

disruption 

We examined the behaviour of rat dermal fibroblasts under identical growth 

conditions as those used with rMSCs, to determine whether the induction of neural 

protein expression in response to Actin disruption was specific to rMSCs. Rat dermal 

fibroblasts adopted an arborized morphology and underwent cytoskeletal collapse in 
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response to CB treatment in serum containing media (Figure 4.23) and serum free 

media. This morphology was highly comparable to that observed following such 

treatment in rMSCs. Fibroblasts also showed up-regulated expression of Nestin and 

TuJ-1 in response to CB, expression that increased from 5 hours to 24 hours (Figure 

4.23b). These effects on rat fibroblasts were completely reversible (data not shown). 

4. 3.10 Rat MSCs express mesodermal, endodermal and ectodermal cell lineage 

markers 

If the induction of neural protein expression is a consequence of a stress response, it is 

likely that such a response would also result in the aberrant expression of other 

proteins not necessarily associated with neural development. Therefore, we examined 

the expression of several markers indicative of particular primary germ layers in 

untreated rMSCs and cells treated with CB (Table 4.2). We also tested the expression 

of various neural proteins representative of different stages of neural development. 

Rat MSCs expressed a range of neural proteins, however, these were not expressed in 

a pattern consistent with the sequential stages of authentic neural development. For 

example, Nestin, a reputed marker of neuroprogenitor cells, continues to be expressed 

in rMSCs at such at time when these cells also express neural proteins found in 

mature neurons and other lineage specific markers. In general the protein expression 

profile exhibited by rMSCs exposed to CB does not appear to conform to any 

particular pathway of development. This expression pattern suggests that the 

formation of the neural-like phenotype by rMSCs is unlikely to be a specific response 

to differentiate along the neural lineage but rather a typical stress response by the cell. 

4.4 Discussion 
Stem cells reside in specialized niches in adult tissues where they are subject to 

spatial and temporal regulation in respect to their developmental potential. Removal 

of certain stem cell populations from their normal microenvironment and their 

subsequent culture may be a potential explanation for their increased developmental 

plasticity. Multilineage adult progenitor cells have been isolated from mammalian 

bone marrow and shown to differentiate into tissues representative of all three germ 
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layers (Jiang et al., 2002a). In order to achieve these differentiation capabilities the 

cells are removed from their niche and maintained ex vivo under highly defined and 

selective culture conditions. Recent studies have reported that MSCs isolated from 

adult BM have the capacity to differentiate into neuro-ectodermal derivatives 

independent of cell fusion following cultivation ex vivo (Wislet-Gendebien et al., 

2003, 2005; Hermann et al., 2004). This implied that although such adult stem cells 

are predisposed to differentiate into cells of a particular lineage they may be much 

more 'plastic' than previously appreciated and that the developmental potential of 

these cells may be dictated by niche specific signals. 

These findings have profound implications for both cell replacement therapy and stem 

cell biology, and as a result must be extensively validated. Cell culture has the 

advantage of removing cells from their normal micro-environment and providing 

signals to direct differentiation towards specific cell fates. This approach has obvious 

benefits for investigating the mechanisms of cell plasticity and differentiation but 

tissue culture artefacts are major concerns. 

Despite the importance of these observations little has been reported on the 

mechanisms that underlie the unexpected potency of MSCs in vitro. MSCs may have 

an intrinsic capacity to differentiate into neural cell fates, a property which could be 

suppressed in the BM niche but not in culture, or following localisation of MSCs in 

other tissues in vivo. Untreated, cultured MSCs have been found to express genes 

representative of all three germinal layers (Woodbury et al., 2002). The expression of 

neural genes by undifferentiated MSCs has been confirmed and extended by several 

other investigators (Tondreau et al., 2004; Bossolasco et al., 2005). Expression of 

neural proteins has been found to change as a function of passage in culture 

(Tondreau et al., 2004) and in response to exposure ofMSCs to certain growth factors 

(Sanchez-Ramos et al., 2001; Jin et al., 2003, Hermann et al., 2004) and chemical 

agents (Woodbury et al., 2000; Deng et al., 2001). Such changes could also result 

from the emergence of transformed cell lines with aberrant properties. These cells 

could then be misinterpreted as trans-differentiation events following prolonged 

culture (Morshead et al., 2002). 
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In the current study we attempted to elucidate the mechanism by which cultured 

MSCs acquire a presumptive neuronal phenotype. Culturing rMSCs in the absence of 

serum was a critical determinant of the number of nestin positive cells that formed. 

Serum had an inhibitory effect on the expression of neural proteins by MSCs and 

maximal expression of neural proteins in response to growth factors was only 

achieved in serum free media. Moreover, cells with neural-like morphology were 

only detected in serum free media and these cells represented the Nestin positive 

population. Previous studies have explored what may be involved in the regulation of 

neural protein expression by cultured MSCs (Suon et al., 2004; Jori et al., 2005). 

However, these investigations are compounded by the diversity of procedures and 

inductive agents used to induce phenotypic changes in these cells. It is therefore of 

significance that we found that serum played a crucial regulatory role regardless of 

other inductive factors (i.e. growth factors) being present. 

Cultured neurons have a unique architecture characterised by neurite outgrowth and 

axonal projections (Svendsen et al., 2001). However, we have shown that the 

formation of neural-like cells by rMSCs was not the result of typical neuronal 

development but the result of cellular shrinkage. Targeted disruption of individual 

cytoskeletal compartments revealed that this morphological response was principally 

the result ofF-Actin disruption although an intact microtubule system is required to 

provide the retractile force for Actin collapse. Furthermore, CB-induced 

depolymerisation of Actin was completely reversible and this dynamic response was 

consistent with the reversibility of the morphological response to serum. A 

correlation between the extent of cytoskeletal disruption and the level of neural 

protein expression was first evident when cells cultured in serum free media were 

examined for their expression of Nestin. Only nestin bright cells possessed a fully 

arborized phenotype (most neural-like cells) whilst Nestin negative or Nestin dim 

cells showed an apparently unaltered fibroblastic morphology. Although these data 

agree with early reports relating to the acquisition of a neural-like morphology 

(Sanchez-Ramos et al., 2000), they do not support appear to represent authentic neural 

development. Furthermore, we found that induced rMSCs expressed only a limited 

repertoire of neural genes and all of these except Nestin and NeuroD 1 were 
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constitutively expressed in untreated cells, which is consistent with earlier reports 

(Woodbury et al., 2002; Tondreau et al., 2004; Bossolasco et al., 2005). In addition, 

the concentration of neural proteins in rMSCs, which formed neural-like cells, was 

also significantly lower than the equivalent expression in primary neuronal cells 

cultured under identical conditions (data not shown). 

Alteration to the architecture of a cell has previously been linked to changes in gene 

transcription. For example, genes involved in tissue remodelling are closely 

associated with dynamic changes in cell morphology induced by stress and shape­

changing physiologic processes (Higgins et al., 1992; Seebacher et al., 1992; Eckstein 

and Bade, 1996; Ryan et al., 1996, Feng et al., 1999; Coats et al., 2000; Providence et 

al., 2000; Kutz et al., 2001). These findings implicate a direct involvement of the 

cytoskeleton in the cell signalling apparatus. Consistent with this hypothesis, targeted 

re-organisation of cell morphology with microfilament disrupting agents can activate 

the transcription of shape responsive genes (Higgins et al., 1992; Lee et al., 1993). 

Drug-induced alterations in both the microfilament and microtubule networks, 

mobilise intracellular signalling elements activating the ERK, JNK and p38 MAPKs 

that have been shown to result in changes in gene transcription (Irigoyen et al., 1997; 

Rijken et al., 1998; Schmid-Alliana, 1998; Sotiropoulos et al., 1999; Ren et al., 1999; 

Irigoyen and Nagamine, 1999; Yujiri et al., 1999). In the current study we have 

provided evidence that PKC signalling is potentially involved in mediating the 

changes in morphology and protein expression by rMSCs during the formation of 

neural-like cells in response to serum withdrawal and disruption of the Actin 

cytoskeleton. 

Neuroblastoma cell lines undergo neuronal differentiation in response to serum 

withdrawal (Evangelopoulos et al., 2005). Expression of neural genes in these cells 

requires the nuclear accumulation of ERK, a process that is PKC dependent (Olsson 

et al., 2000). Continued differentiation and expression of neural genes is, however, 

associated with a down regulation of PKC (Carlson et al., 1993). In contrast, 

inhibition of PKC signalling in rMSCs attenuated the induction of Nestin and 

NeuroD1 proteins following serum free culture or F-Actin disruption. However, this 
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antagonism was associated with a significant inhibition of the morphological response 

of MSCs, implicating a central role for PKC in orchestrating F-Actin collapse in 

response to selective culture conditions. Signalling through JNK and p38 were 

required for induction of Nestin and NeuroD1 expression but not MEK-ERK 

signalling. The regulation of the signalling pathways studied in relation to neural 

protein expression by rMSCs is not consistent with neural differentiation by neuronal 

cell lines but is consistent with a pattern of cell stress induced activation of protein 

expressiOn. 

The finding in the current study, that primary rat dermal fibroblasts express TuJ-1 and 

Nestin at very low levels and up regulate these proteins in response to CB induced 

Actin disruption, suggested that neural cell marker proteins may not be exclusively 

expressed by cells of the neural lineage. Nestin and NSE are two neural marker 

proteins, which have now been detected in a number of non-neural tissues (Lendahl et 

al., 1990; Sjoberg et al., 1994; Reeve et al., 1986). Since fibroblasts have no known 

stem cell-like properties, the up regulation of neural proteins in response to Actin 

disruption may be further evidence that such changes are stress related and not a 

differentiation response. 

Evidence for the trans-differentiation of cultured MSCs into neurons has replied 

primarily on changes in cell shape and protein expression. We propose based on the 

evidence presented herein, that these criteria are not reliable indicators of true neural 

development. Definitive proof of neural differentiation will require the use of in vitro 

assays to test basic neurogenic properties such as synapse formation, neuronal 

polarity and electrophysiological properties. A small number of studies have 

analysed the electrophysiological properties of presumptive neurons derived from 

BMDSCs. Some investigators reported a lack ofNa+ and K+ channels and functional 

neurotransmitter receptors (Hofstetter et al., 2002; Padovan et al., 2003). Others have 

shown that electrophysiological properties of such cells were atypical when compared 

to primary neurons (Kohyama et al., 2001; Hung et al., 2002). No study has yet found 

any evidence of neuronal polarity or synapse formation, both of which are essential 

characteristics of functional neurons. Some investigators claim that the lack of 
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maturity of MSC derived neurons is the result of restrictive culture conditions 

(Koshizuka et al., 2004; Walczak et al., 2004). However functional neurons have 

been generated from embryonic (Miles et al., 2004) and neural stem cells in vitro 

(Song et al., 2002) under similar growth conditions. 

Consistent with results in the present study, others have demonstrated that changes in 

cell morphology do not provide a reliable indicator of neural differentiation since 

such changes can result from Actin collapse and not neural development (Neuhuber et 

al., 2004; Lu et al., 2004). In addition, micro-array analysis of MSCs induced to 

differentiate using the protocol devised by Woodbury et al. (2000) was shown not to 

represent a definitive program of neural differentiation since several genes are 

induced that are not associated with a neural fate (Bertani et al. 2005). Here we 

describe a potential mechanism by which Actin collapse in MSCs results in the 

expression of neural proteins. This expression pattern does not compare with neural 

differentiation but is likely to be a response to cell stress induced by the culture 

conditions. Importantly, we have found that serum withdrawal alone is sufficient to 

induce alternations to cell shape and protein expression and we propose that these 

changes have been misinterpreted as trans-differentiation on several recent occasions 

in which serum free media has been used for induction of MSC differentiation 

(Sanchez-Ramos et al., 2000; Hermann et al., 2004; Wislet-Gendebien et al., 2005; 

Magaki et al., 2005). 

We conclude that morphological and gene expression data are not sufficient indicators 

of trans-differentiation and as a result the findings of this study have profound 

implications for the interpretation of trans-differentiation events in vitro. The 

findings of the present study challenge the conclusions of several other authors and 

highlight the need for greater caution with the interpretation of findings, and the need 

for more appropriate experimental controls. 
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Figure 4.1: Expression of neural proteins by rMSCs is regulated by the 
presence of FCS. (A) Effect of FCS on FGF-induced Nestin expression. Cells 
were grown with the inclusion of FGF (lOng/ml) for 24 hours in the presence 
(white bars) or absence (grey bars: SF (serum free) + N2; or black bars: SF media) 
of 10% FCS and the proportion of Nest in positive cells recorded (*P<0.05 
compared to FCS treated cells , n=3, mean±SEM). (B) Effect of serum (FCS) 
withdrawal alone on Nestin expression. Cells were grown in the presence (white 
bars) or absence (grey bars : SF + N2; or black bars: SF) of 10% FCS and the 
proportion of Nestin positive cells recorded (*P<0.05 compared to FCS treated 
cells, n=3 , mean±SEM). (C) Immuno-staining and corresponding phase images 
showing cells maintained in FCS-supplemented media possessed a flat fibroblastic 
morphology , which was apparently unchanged following the addition of FGF. 
However, withdrawal of serum induced the appearance ofNestin bright cells with a 
neural-like morphology (Scale bar: JOpm) . 
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Figure 4.2 Quantification of Nestin and Tuj-1 expression in response to serum withdrawal and FGF treatment. 
Western analysis showing significant increased levels of the neural antigens Tull and Nestin in response to FGF in the 
presence of serum (FCS+FGF), but particularly in response to serum withdrawal (SF+FGF). All data are mean values ± 
SEM from 3 independent experiments in parallel cultures. Significant differences from the control group (FCS) are indicated 
with an asterisk (*P<0.05 +P<O.Ol, 1-way ANOVA+post hoc analysis) 
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Figure 4.3: Expression of neural and mesodermal marker proteins 
following serum withdrawal as determined by flow cytometry. Flow 
cytometry measurement of neural (Nestin, GAP43 , TuJl , NeuN, 
Synaptophysin and NeuroD 1) and mesodermal-associated protein markers 
(Vimentin and Fibronectin) in rM SCs following 24-hour serum-free culture 
compared to cells maintained in the continued presence of 10% FCS. Flow 
cytometry data from representative experiments are shown as histogran1s with 
fluorescence intensity on the x-axis (solid peaks) and cell count on the y-axis. 
Background fluorescence was excluded by the use of isotype matched control 
antibodies (open peaks). The percentage of positively labelled cells (left) is 
given with the geometric mean fluorescence intensity (MFI) (right) for each 
antigen. 
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Figure 4.4: Morphological response of rMSCs following withdrawal of 
serum. Phase images showing the morphology of rMSCs under various growth 
conditions. Cells maintained in 10% FCS supplemented media have a 
characteristic stromal morphology (control, scale bar: 80)-lm). Removal of FCS 
from the culture for 5 hours results in 25% (approx) of cells adopting a neural­
like morphology (Scale bars: x 20 50)-lm; x 40 25)-lm). Other cells in culture 
displayed extensive membrane ruffling or cell rounding. Addition of 1% DMSO 
to SF cultures resulted in the majority of cells forming neural-like morphologies 
(Scale bar: 40J1m). 
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Figure 4.5: Time lapse imaging of rMSCs during the first 5 hours of serum free culture. 
Images from two representative experiments (Example 1 and Example 2) are shown at 9 time 
points 0, 15, 30, 60, 90, 120, 180, 240 and 300 min; scale bar: 50J1m). 
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Figure 4.6: Quantification of neural morphology and cellular footprint area. 
(A) The percentage of cells displaying a neural-like morphology progressively 
increased following the removal of serum until reaching a maximal response between 
3-5 hours. This response is unaffected by the presence ofN-2 supplement and was 
poteniated by the addition of 1% DM SO (**P<O.O 1 when compared to cells 
maintained in SF media, n=3, mean±SEM). (B) The footprint area of individual 
cells was significantly reduced 5 hours after serum withdrawal (white bars) and to 
an equivalent extent following addition of 1% DM SO (5 hours) in SF media (light 
grey bar) and SF media plus N2 (dark grey bar) compared to control (10% FCS, 
black bar) . *P<0.05 when compared to control cells (n=3, mean±SEM). 
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Figure 4.7: Changes in the organization of the cytoskeleton that leads to the 
formation of the presumptive neural-like structure. Cells were cultured under standard 
serum conditions until > 70% confluence at which time cells were then switched to serum free 
media in the presence of 1% DM SO to increase the number of responsive cells. The cells 
were then fixed at several time points ranging from 0 to 300 minutes in 0.5% gluteraldehyde. 
The F-Actin cytoskeleton was visualized using the actin binding protein phallodin directly 
conjugated to a TRITC fluochrome. The microtubule system was visualized using a 
monoclonal alpha-tubulin antibody directed against tubulin in which binding was detected by 
an FITC conjugated secondary antibody. Each image is of a representative single cell within 
the culture at the time point specified. Scale bar: 10 f-tm. 
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Figure 4.8: Effect of selective cytoskeleton disrupting agents on the morphology 
and cytoskeleton of rMS Cs maintained in media containing 10% FCS. (A) 
Phase images showing the morphology of cells following exposure to lOf.!M 
cytophasin-B (CB) or lOf.lglml colcemid (COL) for 5 hours. CB treatment resulted in a 
characteristic arborized phenotype in 75-81% of cells whilst exposure to COL resulted 
in only partial cell shrinkage and extensive membrane ruffling. (B) The cellular 
footprint area (f.lm2) and number of fully arborized cells (% total cells I field) was 
determined (n= lO fields of view, +20 cells per field; mean ± SEM). Treatment with 
either CB or COL resulted in a significant reduction in the cellular footprint area 
compared to control cells (1 0% FCS alone) but only CB treatment resulted in an 
aborized phenotype (*P<0.05 compared to control cells (FCS), n=3, mean±SEM). 
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Figure 4.9: Effect of CB and COL treatment on the organization of the F-Actin and microtubule 
cytoskeleton. Disruption ofF -Actin gave rise to a highly arborized phenotype whereas de-polymerisation 
of the microtubule system with COL for 20 hours did not appear to affect the F-Actin cytoskeleton and 
these cells maintained their fibroblastic cell shape. Scale bar: lOflm. 
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Figure 4.10: Changes in the organization of the cytoskeleton in response 
to CB treatment. Cells were cultured under standard serum conditions until 
>70% confluence at which time cells were exposed to lOfA.M CB for 5 hours in 
the presence of serum. The cells were then fixed at several time points ranging 
from 0 to 300 minutes in 0.5% gluteraldehyde. The F-Actin cytoskeleton was 
visualized using the actin binding protein phallodin directly conjugated to a 
TRITC fluochrome. The microtubule system was visualized using a monoclonal 
alpha-tubulin antibody directed against tubulin in which binding was detected by 
an FITC conjugated secondary antibody . Each image is of a representative single 
cell within the culture at the tin1e point specified. Scale bar: 10 ~-tm . 



Sh CB Sh COL 

+ Sh SF + Sh SF 

+ Sh COL +CB Sh 

Figure 4.11: Role of microtubules in F-Actin induced cytoskeleton collapse. F-Actin and the microtubule network were 
visualized as previously described. Cellular arborisation was induced in virtually all cells (>90%) by the addition of CB (1 Of.!M) to 
FCS supplemented media, in order to mimic the serum withdrawal induced cytoskeleton collapse. In addition, the role of 
microtubules in F -Actin collapse was examined by pre-treating cells with COL (1 f.!M) for 20h before serum withdrawal or prior to 
CB treatment . Removal of serum (SF) or addition of COL for a further 5 hours to CB treated cells did not induce any further 
apparent morphological changes. Indicating that F-Actin collapse alone was responsible for the morphological response to CB 
induced actin disruption or serum withdrawal. Neither removal of serum or addition of CB for 5 hours has any additional affect on 
the morphology or cytoskeleton of COL treated cells despite an intact F-Actin system in these cells. Therefore microtubules 
provide the retractile force for F-Actin skeletal collapse following removal of serum or CB treatment as an intact microtubule 
system is an absolute requirement for the formation of an arborized phenotype in response to actin disruption. Scale bars: 50~-tm. 
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Figure 4.12: Regulation of Nestin expression in response to treatment with 
cytophasin-B (CB, 0.1-10J.LM) for 5 hours. (A) Cells incubated in 10% FCS had a normal 
fibroblastic morphology and Actin filaments organized in classical stress fiber patterns. 
The F -Actin microfilaments became progressively more disrupted as CB concentration 
increased and as cells progressively acquired an aborized phenotype. High levels of Nest in 
expression were confined only to those cells with a fully arborized phenotype (see merge 
images) (Scale bar: 80f!m). (B) Measurement of cell footprint area (~-tm2) and percentage of 
Nestin expressing cells (number of Nestin bright cells I total cells per visual field) further 
demonstrated that the expression of Nest in only occurred at higher concentrations of CB (1 -
1 Of!M) correlating with the proportion of fully arborized cells and the disruption of the F­
Actin cytoskeleton. Data represented as mean±SEM (n=10, +20 cells/field , n=3 
independent experiments , *P<0.01 compared to control cultures, FCS). 
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Figure 4.13: Regulation of Nestin and Tuj-1 expression in response to treatment with 
cytophasin-B (CB, 2-lOJ,tM) for 5 hours. Western blot analysis of Tuj-1 and Nestin 
expression in response to increasing concentrations of CB for 5 hours. Densitometry results 
of protein expression following western blot analysis. Data represents Mean±SEM from 3 
independent experiments (*P<0.05 compared to non-CB treated control cells, n=3). 
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Figure 4.14: Rat MSCs form neural-like cells and express neural proteins in 
response to cytophasin-B (CB) over time. Cells were treated with CB (lO~M) to 
disrupt F-Actin and subsequently fixed at various time points ranging from 0 to 300 
minutes. The percentage of arborized cells (A, data represented as mean±SEM (n=3)) 
and mean cellular foot print area (B, for 10 fie lds of view, +20 cells/field; *P<0.05 
when compared to vehicle treated cells) were measured at each time point. These 
data show that the morp hological response to CB treatment occur red progressively 
during the 5 hour trea tment period. (C) Expression of neural and mesodermal 
proteins was determined by flow c ytometric analysis of fixed and permeabilised at 
each time point. The number of cells positive for neural proteins, NeuroD 1 and 
Nestin, correlated with the increased number of arborized cells over time. In contrast, 
expression of the mesodermal-associated marker, Vimentin, progressively decreased 
over time. The percentage of cells positive for TuJ-1 did not change in response to 
CB. Data shown represent mean±SEM, n=3. 
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Figure 4.15: Expression of neural and mesodermal antigens in 
response to CB or COL treatment as determined by flow cytometric 
analysis. Flow cytometric analysis of neural and mesodermal cell markers. 
P8 rM SCs were cultured under standard conditions (A, control) or following 
5 hours treatment with CB lOf.!M (B) or COL 10 f.!g/ml (C). Cells were 
subsequently fixed, permeabilised and labeled with antibodies directed 
agflinst intracellular neural (Tuj-1, NeuroD 1, nestin) and mesodermal 
(vimentin) antigens. FITC conjugflted secondary antibodies detected binding 
of the primary antibodies. The open peaks indicate IgG isotype control 
corresponding to the antibodies in which they were generated. The solid 
peaks indicate are counts of the cell population that is positive for the 
antibody indicated in each individual histogram. The number of positive 
cells. is shown on they-axis and.the mean fluorescence intensity (MFI) of 
staining on the x-axis. Values of percentage positive cells and MFI are also 
indicated in each histogram. 
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Figure 4.16: Effect of broad-spectrum PKC on changes in cell shape 
induced by CB treatment. Cells were treated with 1 Of-LM CB in serum 
containing media (FCS) in the presence or absence of broad-spectrum PKC 
inhibitors. After 5 hours cells were fixed and permeabilised for 
immunocytochemistry. F-actin cytoskeleton was visualised using TRITC 
conjugated Phalloidin. (A) FCS + Vehicle, (B) FCS + CB, (C) FCS + CB + Str, 
(D) FCS + CB + ChCl. (E) The mean cellular footprint area was determined for 
cells cultured under each condition (mean±SEM, 10 fields of view, +20 cells per 
field). The footprint area of CB treated cells was significantly reduced compared 
to vehicle treated cells (FCS + vehicle (control)). The PKC inhibitors 
straurosporine (Str) and Chelerytrine (ChCl) partially inhibited the CB-induced 
reduction in the footprint area in response to CB treatment, however, the 
reduction was still significant compared to vehicle treated controls (*P<0.05 
compared to vehicle treated cells , +P<O.Ol when compared to FCS+CB treated 
cells) Scale bars: 50J-lm. 
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Figure 4.17: Effect of MAPK inhibitors on changes in cell shape induced 
by CB treatment. Cells were treated with 1 Of-1-M CB in serum containing 
media (FCS) in the presence or absence of specific MAPK inhibitors . After 5 
hours cells were fixed and permeabilised for immunocytochemistry . F -actin 
cytoskeleton was visualised using TRITC conjugated Phalloidin. (A) FCS + 
Vehicle, (B) FCS + CB, (C) FCS + CB + SP600125, (D) FCS + CB + 
SB202190, (E) FCS + CB + SB203580 and (F) FCS + CB + PD98059. (G) 
The mean cellular footprint area was determined for cells cultured under each 
condition ( mean±SEM , 1 0 fields of view, + 20 cells per field, data from 3 
independent experiments). The footprint area of CB treated cells was 
significantly reduced compared to vehicle treated cells (FCS + vehicle 
(control)). Addition of MAPK inhibitors had no significant effect on the CB­
induced reduction in the cellular footprint area, which remained significantly 
reduced compared to control for all CB treated cultures. (*P<0.05 compared to 
vehicle treated cells). Scale bars: 50ftm. 
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Figure 4.18: Expression of Nestin in response to CB or COL treatment as determined by flow 
cytometric analysis. Flow cytometric analysis ofNestin expression. P8 MSCs were cultured in either 
the presence or absence of FCS or the presence or absence of CB 1 0!-!M. Both these inductive agents 
were tested in the presence or absence of specific MAPK inhibitors. The level of nestin expression 
under these culture conditions was determined by flow cytometry. Data represents Mean± SEM from 
three independent experiments. (*P<0.05 Students t-test for paired comparisons). 



100 
en 
G) 

~ 75 
> 

:;::::; 

-~ 50 
a. .... 
a 
<: 25 
~ 0 

o~--~~~~~~~ 

FCS + 
CB 

SP 600125 

100 
0 

a; 
u 
.., 75 
> 
;:; 

-~ 50 
0.. ..... 
a 
<: 25 
~ 0 

+ 

+ + 

o•c=::=-J~I II I 

FCS 
CB 

PO 98059 

+ + 

+ + 

+ 
+ 

+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

100 
en 
G) 

~ 75 
> 

:;::::; 

-~ 50 
a. .... 
a 
<: 25 
~ 0 

o~--~L_~L-~~~ 

FCS 
CB 

SB 203580 

100 
en 

G) 
u 
II> 75 
> 

:;::::; 

-~ 50 
a. .... 
a 
<: 25 
~ 0 

+ + 

+ + 

o~==~--~~~~~ 

FCS 
CB 

SB 202190 

+ + 

+ + 

+ 
+ 

+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

Figure 4.19: Expression of NeuroDl (NDl) in response to CB or COL treatment as 
determined by flow cytometric analysis. Flow cytometric analysis of NeuroDl expression. P8 
M SCs were cultured in either the presence or absence of FCS or the presence or absence of CB 1 0~-tM. 
Both these inductive agents were tested in the presence or absence of specific MAPK inhibitors. The 
level of nestin expression under these culture conditions was determined by flow cytometry. Data 
represents Mean± SEM from three independent experiments. (*P<0.05 Students t-test for paired 
comparisons). 
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Figure 4.20: Expression of Tuj-1 and percentage of neural-like cells over 6 days of differentiation. Rat M SCs 
were maintained in serum free culture for 6 days and the number of arborized cells was determined at various time 
points (1, 3 and 6 days) compared to control cells which remained in serum containing media (A) (number of arborized 
cells/total number of cells per field, n=10 fields , +20 cells/field). Phase contrast images of 1% DMSO + N2 treated 
cells shows cells with a neural-like morphology at 24 hours and 6 days (B). The expression of the neuronal protein 
TuJ -1 was examined over 6 days by western blot analysis (C) showing that TuJ -1 levels progressively decrease over 6 
days with expression at its maximum following 24 hours serum free culture. The decrease in expression correlated 
with a significant decrease in the number of arborized cells following 6 days serum free culture (A). (D) Densitometry 
results of protein expression following western blot analysis. Data represents Mean±SEM from 3 independent 
experiments. Scale bars: 50~-tm . 
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Figure 4.21: Effect of protein synthesis inhibition on the acquisition of a 
neural-like morphology and expression of nestin and Tuj-1 in response to 
1% DMSO. Control MSCs (A) were pre-treated for 24 hours with CHX at a 
concentration of 10 !Aglrnl which arrested cell proliferation (B). CHX pre-treated 
cells were subsequently incubated with 1% DMSO in serum free media for 5 
hours (C) and compared to DMSO treated cells that were not previously 
incubated with CHX (D). Scale bars: 50pm. Western blot analysis was used to 
analyze the expression of nestin and Tuj-1 in response to 1% DMSO in CHX 
treated M SCs (E). 
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Figure 4.22: Effect of re-introduction of serum on the expression of 
neural or mesodermal marker proteins in cultures of rMSCs treated 
with CB or cells grown in serum free media. Cells were cultured for 5 
hours in the absence of serum or the presence ofCB (10~-tM) and then exposed 
to fresh growth medium supplemented with 10% FCS for a further 5 hours. 
Flow cytometric data from representative experiments are shown as 
histograms with fluorescence intensity on the x-axis (solid peaks) and cell 
count on the y -axis. Background fluorescence was excluded by the use of 
isotype matched control antibodies (open peaks). The number of positive cells 
for each antigen is indicated on the representative histogram. The cytometric 
data demonstrates that subsequent to growth in either serum free or CB 
treatment conditions, rM SCs can re-express neural and mesodermal markers 
just as they did prior to any treatment or growth condition when serum is re­
introduced into the growth media. 
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Figure 4.23: Effect of cytophasin-B (lOJA,M) treatment on rat dermal fibroblasts. 
(A) Immunofluorescent staining of the Tubulin cytoskeleton in untreated fibroblasts 
(10% FCS) and cells exposed to CB (lOf!M) or vehicle for 5 hours. Fibroblasts 
underwent cytoskeletal collapse when exposed to CB in a similar fashion to rMSCs 
(scale bar: JOpm). (B) Western blot analysis revealed that rat dermal fibroblasts 
expressed almost undetectable levels of TuJ -1 and Nest in in serum containing 
cultures, however, these proteins were up regulated following CB treatment for 5-24 
hours . 



Table 4.1: Effect of broad spectrum PKC and MAPK inhibitors on the 
expression of nestin and NeuroDl in MSCs following serum withdrawal and 
treatment with cytophasin B 

PKC inhibitor (Staurosporine) PKC inhibitor (Chelerytrine) 

Neuro01 Nestin Neuro01 Nestin 

Control 1.6.±. 0.8 1.3.±. 0.3 Control 1.0.±. 0.6 1.0± 0.5 

Control + Vehicle 2.3.±. 1.2 1.6.±. 0.9 Control + Vehicle 1.7 .±_0.6 1.6.±_0.6 

SF+ Vehicle 41.3.±_2.6 48.0.±_5.6 SF+ Vehicle 45.0.±. 7.2 36.3.±_6.9 

SF+ Str 3.0.±. 0.5* 5.3 .±. 1.4* SF+ ChCI 2.3.±. 1.9 1.3 .±. 0.8* 

CB+ Vehicle 68.6.±_4.2 72.6.±. 8.5 CB+ Vehicle 48.6.±.8.7 82.7 .±. 3.1 

CB+ Str 1.7 .±. 0.8* 2.6.±. 1.2* CB+ ChCI 3.3.±. 0.8* 1.3.±. 1.3* 

MEK inhibitor (PD98059) P38 inhibitor (SB 202190) 

Neuro01 Nestin Neuro01 Nestin 

Control 3.0.±. 1.2 1.3.±. 0.8 Control 1.7 .±. 1.2 2.0.±. 1.2 

Control + Vehicle 2.3.±_0.3 3.0.±_0.9 Control + Vehicle 3.0.±_0.5 3.3.±. 0.8 

SF+ Vehicle 54.6.±_4.9 49.0.±_2.0 SF+ Vehicle 50.3.±. 5.8 58.6.±. 10.4 

SF+ PO 98059 59.3.±. 7.9 4.4.±_5.7 SF+ SB202190 27.3.±.2.7* 8.0.±_2.3* 

CB+ Vehicle 58.6.±_6.6 90.6 .±. 3.1 CB+ Vehicle 51.6 .±. 810 75.0.±_4.0 

CB+ PO 98059 42.6.±. 13.8 86.6.±_4.0 CB+ SB202190 22.0.±_5.0* 44.6.±_5.2* 

P38 inhibitor (SB 203580) JUNK inhibitor (SP 600125) 

Neuro01 Nestin Neuro01 Nestin 

Control 3.3.±. 0.8 2.3.±_0.8 Control 2.8.±_0.4 4.7.±_2.3 

Control + Vehicle 5.±.0.6 4.0 .±. 1.1 Control + Vehicle 4.±. 1.5 2.3.±. 1.2 

SF+ Vehicle 59.3± 10.7 67.6± 11.9 SF+ Vehicle 53.3± 9.02 64.0± 7.2 

SF+ 203580 27.6.±_5.5* 21.0±3.5* SF + SP600125 4.6.±. 0.8* 6.3 .±. 4.1* 

CB+ Vehicle 52.0± 3.6 74.3.±_6.1 CB+ Vehicle 60.3.±_4.6 74.3.±. 5.7 

CB+ 203580 22.0± 11.1* 26.6.±. 5.1* CB + SP600125 27.3.±.4.3* 12.7 .±. 2.4* 



Table 4.2: Expression of neural, mesodermal and endodermal cell 
markers in MSCs following CB induced actin disruption 

Expression of neural proteins 

MSC Vehicle treated MSC CB treated 

Protein No. cells positive MFI No. cells positive MFI 

NeuN 41.2+2.3 2.23+0.4 86.7+4.1 9.09+0.8 

GAP-43 72.7+3.3 18.5+1.2 92.3+6.8 24.6+2.7 

Nest in 1.2+0.4 1.21+0.5 78.8+5.9 5.67+0.8 

Syn 45+2.8 2.83+0.8 95+8.4 4.41+0.9 

NF-68 43.5+1.5 3.03+0.6 22.3+1.2 1.52+0.3 

NF-160 56.7+2.7 3.1+0.5 18.7+2.2 1.23+0.3 

NF-200 33.4+5.6 2.8+0.4 21.6+1.7 1.11+0.3 

GFAP 96.5+7.8 10.4+1.1 89.7+5.9 13.2+0.4 

MAP-2 82.3+6.6 2.1+0.3 84.5+5.8 2.3+0.5 

Expression of mesodermal and endodermal proteins 

MSC Vehicle treated MSC CB treated 

Protein No. cells positive MFI No. cells positive MFI 

Fibronectin 92.3+8.6 27.4+1.2 34.5+ 1.6 3.6+0.7 

smooth muscle actin 91.2+7.8 22.9+2.1 93.4+7.8 21.3+2.1 

Vimentin 97.8+5.6 4.88+1.5 28.9+3.3 2.1 + 1.7 

cytokeratin 8 3.4+0.9 1.1+0.2 29.6+5.6 3.3+0.7 

cytokeratin 18 2.5+1.1 1.2+0.1 41.3+1.7 2.7+ 1.2 

alpha fetoprotein 71.4+8.8 3+0.3 64.6+8.4 4.7+0.2 

Collagen II 2.9+ 1.1 1.2+0.5 31.2+3.6 2.8+0.3 
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5.1 Introduction 

MSCs isolated from postnatal BM and expanded ex vivo have been shown to 

successfully engraft and survive in rodent brain following transplantation (Azizi et al., 

1998; Kopen et al., 1999 and Deng et al., 2006). More importantly, infusion of whole 

BM (Chen et al., 2000; Li et al., 2001) or purified MSCs either directly into the CNS 

(Chen et al., 2001; Li et al., 2000; Li et al., 2001 b) or indirectly into the systemic 

vasculature (Chen et al., 2001 b; Li et al., 2002; Honma et al., 2006; Shen et al., 2006; 

Lu et al., 2006) has been associated with end-organ repair in several animal injury 

models including stroke (Chen et al., 2003; Li et al., 2001; Li et al., 2002), traumatic 

brain injury (Mahmood et al., 2001; Lu et al., 2001;) and spinal cord lesions (Chopp 

et al., 2000; Hofstetter et al., 2002; Neuhuber et al., 2005; Lu et al., 2005). Functional 

recovery and improved neurological outcome following an ischemic lesion in the 

CNS is a major therapeutic goal and recent reports that infusion of MSCs has a 

therapeutic benefit in animal models of injury are of major clinical importance. 

However, despite the importance of these observations and extensive work by 

numerous investigators, the exact mechanisms by which MSCs promote functional 

recovery following injury remain elusive. Several publications have suggested that 

MSCs may contribute to the regeneration and repair of injured tissues by three 

mechanisms; by differentiating into appropriate cell phenotypes (trans-differentiation) 

(Mezey et al., 2000; Lu et al., 2006), by cell fusion with host cells (Ying et al., 2002; 

Terada et al., 2002) or by promoting endogenous restorative and regenerative 

mechanisms through the release of trophic factors and cytokines (Li et al., 2002; Chen 

et al., 2002; Chen et al., 2005; Kurozumi et al., 2005). 

A number of studies support the concept that MSCs may have an intrinsic neurogenic 

potential and are thus able to differentiate into neural cell derivatives and replace lost 

or damaged host cells by a process of trans-differentiation. In support of this theory, 

MSCs expressing neural cell antigens such as GFAP, NeuN and Tuj-1 have been 

detected in both the intact (Kopen et al., 1999; Brazelton et al., 2000) and injured 

brain following MSC transplantation (Chen et al., 2000; Li et al., 2002). The 
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expression of these markers is confined to a small subpopulation and expression alone 

is insufficient to conclude neural differentiation. No evidence of a mature neural 

phenotype has been described for MSCs following transplantation into the host brain. 

In addition, previous reports of trans-differentiation may have been misinterpreted, as 

cells can acquire the characteristics of host cells through cell fusion and not 

differentiation (Mezey et al., 2004). 

MSCs isolated from the adult BM can express neuronal and glial cell antigens under 

defined culture conditions (Sanchez Ramos et al., 2002; Hermann et al., 2004, 2006; 

Croft and Przyborski., 2004, 2006; Scintu et al., 2006) and following co-culture with 

neural stem/progenitor cells, independent of cell fusion events (Wislet-Gendebien et 

al., 2005; Rivera et al., 2006), MSCs retain their expression of these proteins 

following transplantation into the embryonic (Munoz et al., 2004) and adult rodent 

brain (Deng et al., 2006). MSCs maintained in culture have also been reported to 

spontaneously express neural proteins (Tondreau et al., 2004; Deng et al., 2006) and 

pluripotent stem cell markers (Lamoury et al., 2006; Pochampally et al., 2004). 

Presumptive neurons derived from MSCs have been shown to express a number of 

neurotransmitters and display electrophysiological activity consistent with a neuronal 

cell phenotype (Wislet-Gendebein et al., 2005; Trope! et al., 2006). These findings 

collectively support the notion that MSCs processes a limited neurogenic potential. 

Reports of trans-differentiation of MSCs into neural cell phenotypes are controversial 

with numerous conflicting reports (Croft and Przyborski, 2006; Wagers et al., 2002; 

Bertani et al., 2005; Neuhuber et al., 2004; Castro et al., 2002). Although the 

contribution of trans-differentiation to repair of host tissue is uncertain, MSCs have 

been shown to engraft and migrate throughout the host CNS and express cell markers 

consistent with a neural cell fate in the absence of cell fusion (Mezey et al., 2003; 

Crain et al., 2005). The number of MSCs found to express neuronal and glial cell 

markers following transplantation are too few to fully account for the rapid 

improvements in neurological outcome (Chen et al., 2001; Li et al., 2002). Therefore 

tissue replacement either by trans-differentiation of MSCs or fusion with host cells is 

an unlikely mechanism by which MSCs promote restoration of function. The function 
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of neural protein expression in MSCs and the role of neural antigen positive MSCs at 

the injury site are unknown. 

MSCs are thought to promote endogenous regeneration following brain injury by 

releasing numerous cytokines and trophic factors that activate restorative and 

regenerative processes in the host brain. MSCs produce numerous growth factors 

including; VEGF, NGF and BDNF in culture (Chen et al., 2005; Chen et al., 2002) 

and an up-regulated expression ofNGF, VEGF, CNTF and FGF-2 have been reported 

in host tissue following transplantation (Munoz et al., 2005). The predominant effects 

of these factors are neuro-protection with a reduction in apoptopic cell death and 

trophic effects including neurogenesis, synaptogenesis and angiogenesis (For Review 

see Chopp and Li, 2002). 

There is evidence to suggest that the transplantation of MSCs induces the proliferation 

and neurogenesis of endogenous neural stem/progenitor cells and promote the 

migration of newly formed neural cells to sites of tissue injury. It is now known that 

NSCs undergo neurogenesis in the adult brain and that newly formed cells can 

contribute to self-repair following injury although this is limited and unable to fully 

compensate for neuronal loss associated with injury or disease pathology. Many of the 

factors released by MSCs have also been found to regulate neurogenesis including 

BDNF, NGF, NT-3, FGF-2 and VEGF (Fiore et al., 2002; Scharfman et al., 2005; 

Schanzer et al., 2004; Palmer et al., 1995; Jin et al., 2003). Transplantation of MSCs 

in injury models is associated with an increase in the proliferation of neural progenitor 

cells in the subventricular zone (Chen et al., 2001; Chen et al., 2002). In addition, a 

recent study reported increased neurogenesis in the dentate gryus of the hippocampus 

following MSC transplantation into the intact brain, where the differentiated progeny 

of these cells were shown to migrate, engraft and survive within the adult brain 

(Munoz et al., 2005). 

There is however little known about the interactions of MSCs with endogenous 

NSC/progenitor cells. Cell lineage commitment of NSCs is determined in vitro by 

trophic influences (Takahashi et al., 1999; Lim et al., 2000; Tanigaki et al., 2001; 

Hsieh et al., 2004) and because MSCs are known to release an array of growth factors 
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we hypothesized that in addition to many other effects on brain plasticity MSCs may 

influence the cell fate determination of resident neural progenitor cells by the release 

of soluble factors which influence differentiation. 

In the present study we describe the co-cultivation of MSCs with multipotent neural 

progenitor cells isolated from day 14 rat embryos. We have developed an in vitro co­

culture system in which NSC/progenitor cells and MSCs were cultured in the same 

environment separated by a porous membrane to specifically examine the soluble 

interactions of MSCs with NSC/progenitor cells isolated from the embryonic striatum. 

This provides a dynamic system in which intercellular signaling can operate between 

the two cell populations. To accurately model the effects of an MSC graft which in 

vivo is known to contain both neural antigen positive and neural antigen negative 

MSCs, we induced MSCs to express neural proteins in order to identify any 

differences in the interactions of these neural antigen positive cells with NSCs when 

compared to the effects of antigen negative MSCs. 

The effects of MSC-derived soluble products from both induced and non-induced 

MSCs on the proliferation and cell lineage commitment of NSC/progenitor cells were 

examined. In addition, because reconstruction of neural circuitry will be vital for 

long- term functional recovery we also investigated the humeral effects of MSCs on 

the survival of neuronal progeny and the induction of neurite outgrowth and axonal 

development. 

5.2 Materials and Methods 
5.2.1 Cell Culture 

Rat MSCs were isolated as previously described (Croft and Przyborski, 2006). Cells 

were cultured in complete culture medium (CCM; Dulbecco's modified Eagle's 

medium (DMEM) (Sigma) supplemented with 10% fetal calf serum (FCS) 

(Invitrogen), 100 U/ml penicillin, 100 !!g/ml streptomycin (Invitrogen) and 2!-!M L­

glutamine (Sigma) and 1 x nonessential amino acids (Invitrogen)) in T-75cm2 tissue 

culture flasks (Nunc). Cells were grown in CCM at 37°C and 5% C02 until >70% 

confluence at which stage cultures were passaged by enzymatic dissociation. Rat 
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MSCs were washed with phosphate buffered saline (PBS) and detached by incubation 

with 0.25% trypsin and 0.1% EDTA for 5-10 minutes at 37°C. CCM was added to 

inactivate the trypsin. The cells were centrifuged at 450 x g for 10 minutes, the 

medium was removed and cells were re-suspended in 1-1 Oml of CCM. The cells were 

counted in duplicate using a hemacytometer and then plated at a density of 1 0 cells I 

cm2 for expansion. Passage 8 (approximately 25 population doublings) cells were 

used herein. The mutipotentcy of isolated rat MSCs was verified by their capacity to 

differentiate into mesodermal derivatives (bone and fat) in vitro and their cell surface 

expressiOn of CD90, CD73, CD44 and absence of CD45 and CDllb (data not 

shown). 

NSC/progenitor cells were isolated from the mesencephalon of day 14 rat embryos. 

Pregnant female Wistar rats at the specified gestational age of 14 days (E14) (the day 

of conception was confirmed by the presence of a vaginal plug, embryonic day 0) 

were killed by cervical dislocation and the uteri were aseptically removed and 

transferred to Petri dishes containing sterile Dulbecco' s phosphate buffered saline 

(PBS) with 30% glucose and penicillin (20 units/mL), streptomycin (20 mg/mL). E14 

striata were isolated and triturated in DMEM/F12 with a sterile Pasteur pipette. The 

cell suspension was filtered with a 70 ~-tm-mesh and viable cells were estimated by 

typan blue exclusion. The cells were plated (1 x 106 cells/75-cm2 uncoated tissue 

culture flask (Nunc)) in a chemically defined serum-free medium DMEM/F12 

including 0.6% glucose, 2mM L-glutamine, 3mM sodium bicarbonate and 5mM 

HEPES buffer, supplemented with N-2 (a multi-component cell culture supplement), 

EGF (lOng/ml, Sigma) and FGF (10ng/ml, Sigma) and 2 ~-tg/ml heparin. When the 

size of neurospheres reached approximately 50 cells, they were dissociated into a 

single cell suspension by titration and replated in fresh culture medium. Cultures were 

maintained in 37°C in a humidified incubator with 5% C02 • Neurospheres with a 

maximum of 3 passages were used in this study. The phenotype of these cells was 

confirmed by the expression of the NSC/progenitor marker nestin (Figure 5.7) and 

capacity to differentiate into neural cell types (Figure 5.2). 

Adult hippocampal progenitor cells (HCN/GFPH) from the subgranule cell layer of 

the dentate gyrus of F344 rats were clonally derived (Palmer et al., 1997) then 
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genetically modified via a retroviral based tetracycline-responsive vector containing a 

CMV promoter (Hoshimaru et al., 1996) to express the modified jellyfish (Aequorea 

Victoria) enhanced green florescent protein ( eGFP) (Okada et al., 1999). HCN/GFPH 

cells were cultured on polyornithine/mouse Laminin-coated flasks in media consisting 

of DMEM/Ham's F12 containing 1mM 1-glutamine and antibiotics supplemented 

with N2 medium and 20ng/ml bFGF. Cultures were maintained in 3 rc in a 

humidified incubator with 5% C02. Adult GFPH cells were differentiated under 

control conditions as previously described (Palmer et al., 1997; Gage et al., 1998), 

because lammin promotes a neural cell fate decision during differentiation cells were 

plated on PLO coated tissue culture plastic as single cells at a density of 10,000 

cells/cm2
. Cells were incubated for 12 days in DMEMF12 supplanted with N2 and 

0.5% FCS. Lineage commitment was determined by immuno-staining for cell type 

specific markers. 

The mouse neuroblastoma N2a cell line was originally obtained from the American 

Tissue Culture Collection. Cells were seeded in T-25 cm2 tissue culture flasks (Gibco) 

plates at a density of 3 x 104 cells/cm2 and grown in DMEM (Gibco) supplemented 

with 2 mM L-glutamine, penicillin (20 units/mL), streptomycin (20 mg/mL) and 10% 

FCS (Invitrogen). Cells were maintained in a humidified atmosphere containing 5% 

C02 at 37°C and grown to >70% confluence. 

5. 2. 2 Differentiation of E14 derived rat neurospheres on different surface substrates 

Culture substrate is known to have a profound effect of the cell fate determination and 

differentiation potential of NSC in culture including the promotion of a neurogenic 

cell fate (Song et al., 2002). Therefore because E14 derived neurospheres were a 

primary cell line derived in our laboratory it was necessary to optimize the 

differentiation protocols with a view to choosing a substrate that did not promote a 

neural cell fate. To access the differentiation potential, single cell suspensions were 

plated on either poly-L-omithine (PLO) (250 f-lg/ml) or laminin (5 f-lg/ml) or 

fibronectin (25 f-lg/ml) coated tissue culture plastic at a density of 10,000 cells/cm2
• 

Cells were incubated for 7 days in N2 supplemented DMEMF12 with 0.5% FCS. 

Lineage commitment was determined by immuno-staining for cell type specific 

markers. 
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5.2.3 Induction of neural protein expression in MSCs 

After passage 7 (25-30 population doublings, approx.) converston of MSC into 

neurosphere-like structures was initiated as described previously (Hermann et al., 

2004; 2006). Briefly, cells were dissociated with 0.05% trypsin/0.04% EDTA and 

plated on low attachment plastic tissue culture flasks (Nunc) at seeding density of 1-

2x105 cells/cm2 in DMEM:F12 supplemented with N2, 10 ng/ml EGF, 10 ng/ml FGF 

and heparin (sodium salt, 40ng/ml) and incubated at 5% C02, 92% N2 and 3% 0 2• 

After 7 days sphere formation could be observed. These spheres were propagated for 

an additional 2-3 passages by mechanical dissociation using a fire-polished pastuer 

pipette and replating of cells at a density of 1-2x105 cells/cm2
• The medium was 

changed once a week and growth factors added twice a week. 

5. 2. 4 Co-culture and in vitro differentiation analysis 

Differentiation of E 14 derived neurospheres under control conditions was initiated by 

plating spheres on poly-L-ornithine coated tissue culture 12-well plates. Cells were 

transferred to serum free media (DMEMF12) devoid of growth factors but 

supplemented with N2 and heparin (1 0 units per ml). In co-culture assays, 

differentiation was initiated under identical conditions but in the presence of Millipore 

cell culture inserts in which MSCs were seeded at a density of 10,000 cells. In this 

system the MSCs share the same media environment as the NSC/progenitor cells and 

are separated only by a porous membrane through which diffusible factors can pass. 

MSCs or MSC spheroids were seeded into 24mm diameter membrane cell culture 

inserts (Sigma) and put into six-well culture trays (Nunc). Co-culture of MSCs with 

adult GFPH cells was carried out under identical conditions to those described above 

for E 14 derived neurospheres. 

5. 2. 5 Bromodeoxyuridine (BrdU) and propidium iodide (PI) incorporation and 

analysis of proliferation and cell death. 

Cell proliferation was accessed by addition of 1 0~-tM BrdU (S-phase marker) (Sigma) 

in the culture medium for a period of 24 hours 0, 1, 2 and 3 days after plating, 

immediately followed by fixation in 4% PF A and analysis of total cell numbers and 

BrdU incorporation. For dual staining of BrdU with Tuj-1, fixed cells were incubated 

with first anti-BrdU antibody (1 :400 rat; Accurate) for 1 hour followed by anti-Tuj-1 
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antibody. Cells were then incubated with 2 N HCL for 30 minutes at 3rC and then 

washed with sodium perborate solution (50 mM, pH 8.5) and finally incubated with 

an anti-BrdU antibody for 1 hour at room temperature and then an FITC conjugated 

anti-rat secondary antibody for 1 hour at room temperature. Cells were washed once 

with HBSS followed by PBS, incubated for 3 minutes at room temperature for each 

wash. Cells were subsequently analysed by flow cytometry for quantification of the 

number of BrdU+. To access cell death samples of NSC/progenitor cells were 

obtained 0,1 ,2,3 or 4 days after plating under differentiation conditions. Cells were 

trypsinized, washed and processed for flow cytometry by forming a single cell 

suspension and maintained on ice. Cells were stained with 1 f.,lg/ml propidium iodide 

(PI) (Sigma) just prior to analysis by flow cytometry. 

5. 2. 6 Immunocytochemistry 

PBS washed cells were fixed in 4% PF A (in PBS) for 1 hour at room temperature 

followed by immunocytochemical staining as previously described (Palmer et al., 

1999). After fixation, cells were incubated with primary antibodies overnight at 4 oc 
in blocking buffer (5% goat serum, 0.2% Triton X-1 00 in phosphate buffered saline 

(PBS)). Then, cells were incubated for 1 hour with secondary antibodies conjugated to 

fluorescein isothiocyanate or cyanin-3. Primary antibody concentrations used are as 

follows: rabbit anti-Tuj-1 ([Covance Research Products Inc., Berkley, CA] 1 :500), 

GF AP (Sigma-Aldrich; 1 :500), Nestin (Chemicon, 1:1 00), mouse anti-RIP 

(Chemicon, 1:1 00). Mouse anti-smooth muscle actin (Sigma, 1 :200). Secondary 

antibodies were all purchased from Jackson ImmunoResearch laboratories and used at 

a concentration of 1 :250 dilution. All cultures were counterstained with 1 f.,lg/ml 

Hoescht 33342 (Sigma-Aldrch) to visualize individual cells. 

5. 2. 7 Evaluation and quantification of cells with different phenotypes 

Labeled cells were cells visualized using an inverted fluorescent microscope (model 

E660 Nikon) and a CCD camera (Spot RT; diagnostic instruments) with individual 

filter sets for each channel. Color images were generated using Adobe Photoshop 

(Adobe systems, mountain view, CA) The mean percentage + standard error of the 

mean (S.E.M) of immunofluescent cells was determined by counting 15 high power 

(x20 magnification) visual fields (approx 25 cells/field; 375 cells/slide) systematically 
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across the slide, visualized under florescence. The total number of cells was 

determined from Hoescht 33342 positive cells. Data was gathered from 3 

independently replicated experiments carried out under identical conditions. 

5.2.8 Intracellular stainingfor flow cytometry 

Suspensions ofrMSCs (2 x 106 cells PBS washed cells) were pelleted in a 12 x 75 mm 

culture tube. The pellet was re-suspended in 0.875 ml of cold PBS. Then 0.125ml of 

cold 2% PF A was added and the suspension incubated at 4 oc for 1 hour, centrifuged 

for 5 minutes at 250g, then the supernatant was removed. For permeabilisation cells 

were incubated with Triton X-100 (0.2% in PBS) at 37°C for 15 minutes. To 

terminate permeabilisation 1ml of buffer (lxPBS + 2% goat serum + sodium azide) 

and the suspension was spun for 5 minutes at 250g. The supernatant was removed and 

internal staining then proceeded as described for immunocytochemistry. Non-specific 

binding was blocked by incubation with 5% goat serum in PBS for 1 hour at room 

temperature. A primary isotype matched control was included in each experiment to 

exclude any background fluoresence. The cells used for this control analysis were 

fixed, permeabilised under identical conditions to experimental samples. For 

quantification of cells expressing a given marker, flow cytometry analysis was 

performed. The specificity of the assay was confirmed by the use of negative controls. 

Negative cells controls were HEK 233 cells for nestin, Tuj-1 and GFAP and primary 

rat astrocytes for fibronectin and smooth muscle actin. 

5. 2. 9 Flow cytometry analysis 

All samples were maintained on ice prior to analysis. Analysis was performed using a 

coulter EPICS XL flow cytometer. FITC and Cy-3 were identified by using a 530 and 

585 band pass filter respectively, and quantification was completed using CellQuest 

Software (Becton Dickinson). Ten thousand events were acquired per sample with 

fluoresence measured on logarithmic scales. Forward and side light scatter gates were 

set to exclude dead debris and clumps of cells. To calculate the percentage of positive 

cells, linear gates were set at 0.1 %, on samples stained only with secondary 

antibodies, and expression corresponding to a fluorescence signal exceeding this 

percentage was measured. 
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5. 2.10 Measurement of neurite outgrowth 

N2a cells or E 14 progenitor cells were differentiated either alone or in the presence of 

induced or non-induced MSCs as described above. After 12 days cells were fixed in 

4% PF A and processed for immunocytochemical staining with Tuj-1. Cells were 

viewed using an inverted fluorescent microscope and images acquired using digital 

camera. Images were taken of 10 non-overlapping visual fields (x10 magnification) 

for each culture condition and in 3 independent experiments in cells were cultured in 

parallel. The neurite lengths of every Tuj-1 + cell ( 10-15 cells/field approx) within 

each field of view was determined. Neurites exhibited by differentiating neuronal 

progeny from cultures of E 14 neural progenitor cells or serum deprived N2a cells, that 

were immunopositive for TUJl were analysed using ImageJ 1.33 software, a public 

domain JAVA image processing program (NIH, USA). Pixel scale was set to microns 

according to image magnification. JPEG files obtained from light or fluorescent 

microscopy were opened in ImageJ and neurite lengths were measured by tracing 

along neurites with the freehand line tool then measuring length using the 

measurement tool. 

5. 2.11 Statistical analysis 

Statistical analysis was carried out using Graph Pad Prism Software version 4. Results 

were analysed for statistical significance using ANOVA and all error bars are 

expressed as standard error+/- mean. All data unless stated otherwise is expressed as 

Mean±SEM. Post hoc analysis was done using Bonferroni corrected planed 

comparison. 

5.3 Resunts 

5. 3.1 Isolation of E14 derived NSC/progenitor cells and tri-lineage differentiation 

potential in vitro. 

We first isolated of NSC/progenitor cells from day 14 embryos according to 

established procedures (Tropepe et al., 1999). There are no known antigens, which 

specifically define NSCs. Therefore the identity of these isolated cells was confirmed 

by morphology, formation of neurospheres structures and differentiation into the three 

principal lineages of the CNS system, i.e. neurons, glia and oligodendrocytes. The 
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concept of culturing CNS stem cells is a selective one in which most primary CNS 

differentiated cells are eliminated from culture soon after plating while 

undifferentiated cells enter a state of active proliferation in response to growth factors 

EGF and bFGF. Therefore 4 conditions must be satisfied for NSC to remain in 

propagate in culture and become the predominant cell type. Firstly cells should be 

cultured at low density ( 5 x 1 04 cells/crn2
), secondly cells must be cultured in serum 

free media, thirdly trophic support in form of growth factors should be present and 

finally the absence of a strong adhesive growth substrate. In initial early cultures most 

cells attach loosely to the surface of the tissue culture dish and most of them died 

within 2-3 days. There is at this stage some degree of background differentiation but a 

small fraction undifferentiated precursors become hypertrophic, round up and begin to 

proliferate, while remaining attached to the plate (Figure 5.la). The progeny of the 

proliferating cells do not migrate away but instead selectively adhere to each other 

and form spherical clusters. These clusters because of their increasing mass eventually 

lift off the substrate and float in suspension as structures referred to as neurospheres 

(Figuure 5.1 b,c,d). Cells can be grown as undifferentiated cells in monolayer cultures 

(Figure 5.1e) and on removal of growth factors will embark on differentiation (Figure 

5.1±). It is important to note however, that not all the progeny found in a sphere are 

stern cells. Only a small fraction between 10-50% retains stern cell properties, the 

remaining cell undergoes spontaneous differentiation. Stem cell purification is by 

continual subculture. In the present study, Neurospheres were apparent by 7 days and 

could be serially passaged in culture (Figure 5.1 ). 

To verify the identity of the stern cells the neurospheres were differentiated under 

established conditions. NSCs were plated on Laminin coated tissue culture plastic in 

media devoid of growth factors but supplemented with 0.5% FCS. Cells were plated 

either as single cells (Figure 5.2b,c,d,e,t) or as neurospheres (Figure 5.2a). After 12 

days cells staining positive for Tuj -1 or GF AP or RIP were detected consistent with 

NSC having a trilineage potential. The number of cells expressing these markers 

progressively increased from day 3-6 (Figure 5.2e,t). 

Culture substrate has been reported to promote differentiation towards specific cell 

lineages for example Larninin has been reported to promote neuronal differentiation 
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of adult hippocampal stem cells (Song et al., 2002; Palmer et al., 1997). E 14 derived 

NSC/progenitors were plated on different substrates during differentiation to test the 

effect of substrate on the cell lineage commitment of these cells (Figure 5.3). Lineage 

commitment was determined by analyzing the expression of cell type specific markers 

using monoclonal antibodies: Tuj-1 + (neurons), oligodendrocytes (RIP+) and 

astrocytes (GFAP+) Tri-lineage differentiation was observed on all substrates tested 

including, Laminin, PLO and fibronectin. Differentiation on fibronectin and PLO both 

resulted in lineage commitment within the expected ratios with the majority of cells 

adopting an astrocytic cell fate (Tropepe et al., 1999). Laminin however, appeared to 

promote a neuronal cell fate because a higher number of neuronal cells (Tuj-1 +) were 

generated when E14 neurospheres were plated on Laminin coated tissue culture 

plastic (29.3±3.2%) compared to cells plated on either PLO coated plastic 

(12.5±3.5%) or Fibronectin coated tissue culture plastic (7.7±3.6%) (Figure 5.3). 

5. 3. 2 Induction of neural antigen expression in rat MSCs. 

MSCs have been shown to express neural proteins in culture and following 

transpiantation into the rodent brain (Tondreau et al., 2004; Deng et al., 2006). 

Although this expression can occur spontaneously in culture and is present at low 

levels in MSCs maintained under standard serum culture conditions, expression can 

be induced to increased levels through the culture of these cells under defined 

conditions (Hermann et al., 2006). Two populations of MSCs have been detected 

following transplantation into the intact and injured brain, those cells, which express 

markers of neural cell lineages, and those cells, which are negative for these markers. 

To investigate whether there are any differences in the interactions of these two 

populations with NSC/progenitor cells and their differentiated progeny we induced 

some MSCs to express neural proteins under defined culture conditions whilst others 

were maintained under standard culture conditions and retained a only a basal level of 

expression of these proteins (Figure 5.4). 

We induced expression of neural proteins in MSCs according to previous reported 

methodology (Hermann et al., 2004; 2006). MSCs previously maintained under 

standard culture conditions and expanded until passage 8 were subsequently 

transferred to serum free media (DMEM Fl2) supplemented with N2, EGF (lOng/ml) 
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and FGF (1 Ong/ml) for 7 days in low attachment culture dishes. Under these 

conditions, small aggregations of cells were evident within 4-5 days of culture (Figure 

5.4a). By 7 days these aggregations form free-floating cellular spheres (Figure 5.4b), 

which can be harvested and sub-cultured. Imrnuno-staining followed flow cytometry 

was used to quantify the expression of neural (Tuj-1, GFAP and nestin) and 

mesodermal (smooth muscle actin) proteins in induced and non-induced MSCs 

(Figure 5 .4c ). The number of positive cells and the mean fluorescence intensity (MFI) 

of staining were determined for each protein marker. Consistent with previous reports 

MSCs expanded ex vivo were found to express neural proteins (Tondreau et al., 

2004). However, this expression was found to be confined to small subpopulation and 

of low mean florescence intensity (MFI) (Figure 5.4c; Nestin 0.7% MFI 1.03; Tuj-1 

72% MFI 3.03; GFAP 38% MFI 2.41; Smooth Muscle Actin 98% MFI 6.78). In 

contrast following induction the number of cells positive for neural markers increased, 

as did the mean florescence intensity of this staining (Figure 5.4c; Nestin 99% MFI 

6.02; Tuj-1 96% MFI 5.54; GFAP 98% MFI 6.78; Smooth Muscle Actin 23% 1.43). 

The expression of the mesodermal marker, smooth muscle actin was found to be 

down regulated in induced MSCs. The high numbers of cells expressing these 

markers suggests that there is considerable co-expression of these markers within 

these cells. Whether or not these cells represent a trans-differentiated phenotype is 

controversial and is currently under investigation by others and ourselves. 

5.3.4 MSC soluble factors influence the cell fate determination of differentiating 

embryonic NSC/progenitor cells. 

We first tested the multi-potency ofNS/progenitor cells isolated from day 14 embryos 

under control conditions. These cells were propagated as neurosphere structures in 

non-adherent culture conditions according to established procedures (Tropepe et al., 

1999). Under these conditions the cells retain their multi-potent stem cell 

characteristics. First, they give rise to all three principal neural cell types, as defined 

by cell type specific markers for neurons (Tuj-1+), Oligodendrocytes (RIP+) and 

astrocytes (GFAP+) in vitro (Figure 5.5 control). Second, undifferentiated cells are 

positive for nestin, an immature cell marker (97.8±2.2) (Figure 5.7) but negative for 

markers of differentiated cell types. Thirdly, undifferentiated cells proliferate in the 

presence of 10ng/ml EGF and 10ng/ml FGF. To initiate differentiation under control 
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conditions NSC/progenitor cells were plated on PLO coated tissue culture plastic 

followed by the withdrawal of growth factors from the medium and the introduction 

of 0.5% FCS to maintain cell viability upon plating. These conditions induced 

differentiation in the following proportions: 19. 9±4.1 Tuj-1 + (neuronal), 41.4±2.0 

GFAP+ (astrocyte) and 7±1 RIP+ (Oligodendrocyte) (Figure 5.5, 5.6) this was 

consistent with previous reports (Tropepe et al., 1999; Wislet-Gendebien et al., 2004). 

We then analysed the effects of MSC derived soluble factors on the cell fate 

determination of NSC/progenitor cells using an in vitro co-culture system in 

comparison to progenitor cells cultured under control conditions in parallel cultures 

(Figure 5.5). NSC/progenitor cells were cultured either alone (control) or co­

cultivated in the presence of MSCs (induced or non-induced) under standard 

differentiation conditions for a period 12 days. Cell phenotype specific markers (as 

described for control conditions) were used to monitor the lineage commitment of 

differentiated progeny (Figure 5.5). Quantification of lineage commitment was carried 

out by image analysis (Figure 5.6). Cells staining positive for GF AP and Tuj-1 ( <1% 

approx) were discounted from the analysis. 

In the presence of non-induced MSCs, 6.3±0.8% of NSC/progenitor cells 

differentiated into neurons compared to 19.9±4.1% of cells under control conditions. 

Statistical analysis of linage commitment revealed the number of Tuj-1 positive cells 

(as a percentage of the total cell population) was significantly reduced in co-cultures 

of NSC/progenitor cells and non-induced MSCs compared to differentiation under 

control conditions (P<0.05, one-way ANOV A with Bonferroni post hoc tests, Figure 

5.6) consistent with a reduction in neuronal differentiation under these conditions. 

However, a significant increase in the percentage of cells NSC/progenitor cells 

expressing Tuj-1 was observed when cells were differentiated in the presence of 

induced MSCs (40.1±3.9%) compared to both control conditions (19.9±4.1%, 

*P<0.05 one-way ANOVA, bonferroni post hoc analysis, figure 5.6) and co-cultures 

of non-induced MSCs (**P<0.01). Therefore, differentiation in the presence of 

induced MSCs is associated with a statistically significant increase neuronal 

differentiation compared to control conditions and differentiation in the presence of 

non-induced MSC co-culture. 
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There was no significant difference in the percentage of GF AP+ cells between 

NSC/progenitor cells differentiated under control conditions ( 41.4±2.0%) and those 

differentiated in the presence of induced MSCs (33.8±2.1 %, figure 3). However, co­

culture of NSC/progenitor cells in the presence of non-induced MSCs was associated 

with a significant increase in the number of cells which differentiated into an 

astrocytic cell phenotype (GF AP+, 68.8±1.8) compared to control conditions 

(**P<0.01) and cells co-cultured with induced MSCs (**P<0.01, 1-way ANOVA, 

Bonferroni post hoc analysis, figure 5.6). Staining of cultures with RIP identified 

oligodrendrocyte differentiation. 5.5±0.7% ofNSC/progenitor cells were RIP positive 

when cells were differentiated in the presence of non-induced MSCs compared with 

5.1±0.6% in the presence of induced MSCs and 7±1.1% under control conditions. No 

significant difference in the number of RIP+ (oligodendrocyte) cells was observed 

between culture conditions (figure 5.6). 

In summary, co-culture of NSC/progenitor cells with non-induced MSCs promoted a 

predominately astrocytic cell fate (GF AP+) in differentiating cells. In contrast, 

induced MSCs promoted neurogenic differentiation. This increase in neuronal 

differentiation occurs in the absence of a significant reduction in the number of RIP+ 

or GF AP+ cells compared to NSC/progenitor differentiated under control conditions. 

This indicates that the presence of induced MSCs promotes an increase in the total 

number of progenitor cells that differentiate compared to control conditions and that 

this additional differentiation is predominately neuronal. 

5.3.5 Temporal expression of cell lineage specific markers in the differentiated 

progeny of E14 neuro-progenitors cultured in the presence of neural antigen positive 

MSCs. 

The results demonstrate that soluble factors released by MSCs induce particular cell 

fate decisions in cultured NSC/progenitors. To investigate the potential the 

mechanism by which this is achieved we first examined the temporal expression of 

cell type specific markers at 0, 3, 6 and 12 days in differentiating cultures in either the 

presence of non-induced MSCs (MSC), induced MSCs (induced-MSC) or absence of 

co-culture (control) (Figure 5.7). The aim of these experiments was to determine 
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whether the increase in neurogenesis observed in the presence of induced MSCs was 

due to the selective survival of neuronal progeny from NSCs, the increased 

proliferation of progenitors, and/or the instructive differentiation of progenitor cells to 

the neuronal lineage. We first monitored the effects of co-culture on the expression of 

cell type specific markers in the progeny of NSCs over time (12 days). A significant 

time dependent decrease in the percentage of cells expressing nestin was observed in 

all conditions consistent with the differentiation of progenitor cells towards specific 

cell lineages. No significant difference was observed in the percentage of cells 

expressing nestin at any time point for any experimental condition. 

Analysis of Tuj-1 expression revealed no significant differences in the percentages of 

Tuj-1 positive cells (neurons) between culture conditions 3 days post initiation of 

differentiation. By 6 days culture, the number of neurons had reached a maximum in 

control cultures and co-cultures of non-induced MSCs however; the number of 

neurons was significantly higher in co-cultures of induced MSCs compared to both 

control cultures (**P<0.01) and co-cultures of non-induced MSCs (**P<0.01, 1-way 

ANOVA and bonferroni post hoc analysis). Therefore the inductive neurogenic effect 

of induced MSCs was not apparent until 6 days co-culture and kinetics of Tuj-1 

expression were comparable with control conditions. Under control conditions, 

however, the number of neurons at 12 days was significantly reduced compared to 6-

day cultures (*P<0.05, 1-way ANOV A, Bonferroni post hoc analysis). A slight 

reduction in the percentage ofTUJ-1 positive cells was observed in non-induced MSC 

co-cultures at day 12 compared to day 6, however this was not statistically significant. 

In contrast no reduction in neuron number was evident in co-cultures of 

NSC/progenitor cells with induced MSCs between 6 and 12 days. At day 12 the 

percentage of Tuj-1 positive cells in co-cultures of NSC/progenitor cells and induced 

MSCs was significantly higher (* *P<O.O 1) than under control conditions or co-culture 

with non-induced MSCs. These results indicate that in addition to their inductive 

effects, the release of soluble factors by MSCs has a permissive effect on the long­

term culture of differentiated neurons. 

Analysis of GF AP expression was used as a marker of the number of astrocytic 

differentiation in the culture. Co-culture with induced MSCs did not significantly 
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affect the kinetics of GF AP expression with levels reaching a maximum by 6 days and 

remaining stable in long-term cultures (12 days). This observation was consistent with 

differentiation under control conditions and there was no significant difference in the 

level of expression of GF AP in control cultures compared to NSC/progenitor cells 

cultured in the presence of induced MSCs. Therefore soluble factors released by 

induced MSCs had no effect on astrocytic differentiation. In the presence of non­

induced MSCs the number of astrocytes (GF AP+ cells) was significantly increased at 

day 6 (*P<0.05) and day 12 (***P<O.OOI, 2-way ANOVA, Bonferroni post hoc 

analysis), post differentiation when cultures were compared with control conditions 

and co-culture of NSC/progenitor cells with induced MSCs. The expression of GF AP 

in co-cultures of non-induced MSCs was similar to that observed in control conditions 

with the number of GF AP+ cells reaching a maximum by day 6 and remaining stable 

in long term cultures. There was an increase in the percentage of GF AP+ between day 

6 and day 12-post differentiation, however this was not statistically significant. 

Examining the expressiOn of RIP accessed oligodendrocyte differentiation. The 

percentage of RIP positive cells increased from day 0 to day 12-post differentiation 

for all culture conditions. No significant difference in the percentage of RIP positive 

cells was observed following co-culture with either induced or non-induced MSCs. 

5. 3. 6 MSCs provide instructive signals that regulate the cell fate determination of 

NSC/progenitor cells in culture 

To determine whether the proliferation of progenitors might contribute to the 

observed increase in neurogenesis, 2.5 11M BrdU was added to parallel cultures for 12 

hours at 0, 24, 48, 72 and 96 hours after plating, followed by fixation and 

quantification of total cell numbers and the percentage of BrdU+ cells. The number of 

BrdU+ cells was counted at each time point. Under control conditions the number of 

proliferating cells (BrdU+) progressively decreased over 4 days from 83.3±1.3 at day 

0 to 6.1±2.0 at day 4 (Figure 5.8a). Similar kinetics ofBrdU staining was observed for 

co-culture conditions. This pattern is consistent with the commitment of 

undifferentiated proliferating progenitor cells in differentiated cell phenotypes. No 

significant difference in the percentage of proliferating cells in each culture condition 

(control or co-culture with induced or non-induced MSCs) was observed. These 
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results indicate therefore that the neither the presence of neural antigen positive or 

neural antigen negative MSCs had any significant effect on the number of 

proliferating cells between 1 and 4 days. 

Another possible mechanism by which the presence of MSCs may exert an influence 

on the percentage of cells of a particular cell lineage may be by selection through cell 

death. To examine this potential mechanism, the number of cells that incorporated the 

fluorescent exclusion dye propidium iodide (PI) was calculated. PI is excluded from 

healthy cells but enters dead cells following their loss of membrane integrity. It binds 

to exposed DNA and becomes highly fluorescent. This fluorescence was examined by 

flow cytometry, which determined the number of cells, which had incorporated PI and 

was therefore a measure of cell death. There was no significant difference in the 

numbers of PI positive cells between treatment groups at each time point over 4 days 

(Figure 5.8b). Therefore selection by cell death is unlikely to be the mechanism by 

which MSC derived soluble factors result in increased numbers of cells committed to 

particular cell lineages. A higher amount of cell death was observed on day 1 in all 

culture conditions as a result of the cell death associated with plating and induction of 

differentiation. 

Cell death was investigated at intervals of 3, 6 and 12 days in differentiating 

NSC/progenitor cells cultured either alone (control) or in the presence of induced 

MSCs (MSC-induced) or non-induced MSCs (MSC). The number of the Tuj-1 

positive cells that also stained positive for PI expressed as a percentage of the total 

Tuj -1 + cell population is shown in figure 5. 8c for all culture conditions. This staining 

procedure allowed us to selectively examine cell death in neuronal cell progeny (Tuj-

1 + cells). There was no significant difference in cell death in Tuj-1 positive cells at 3 

or 6 day intervals as determined by flow cytometry following dual labeling of cells 

with Tuj-1 and PI. At 12 days, cell death in control cultures was significantly higher 

than that observed at 3 and 6-day intervals (*P<O.OS, 2-way ANOVA, Bonferroni post 

hoc analysis) but in co-cultures of progenitor cells and induced or non-induced MSCs 

this increase in cell death was not observed. These results demonstrate that soluble 

factors released from MSCs promote neuronal cell survival in long-term cultures 

probably as a result of providing additional trophic support. 
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The induction of neurogenesis was evident from day 1 in both control cultures and co­

cultures of induced MSCs with NSC/progenitor cells (Figure 5.8d). However, the 

significant increase in Tuj-1 + cells in co-cultures of induced MSCs and progenitor 

cells (P<0.05 compared to control cultures at 4-day time point, 2-way ANOVA, 

Bonferroni post hoc analysis) was not evident until 4 days, in which the numbers of 

Tuj -1 + cells were significantly increased compared to control cells. The observation 

that the increase in neurogenesis was evident in early (4 day) cultures and no evidence 

of increased cell death or proliferation of progenitors was found is consistent with 

MSCs soluble factors providing instructive signals rather than selective signals, which 

regulate the cell fate decisions ofNSC/progenitor cells. 

5. 3. 7 Soluble factors released by MSCs instruct an oligodendrocytic cell fate on adult 

NSCs isolated from the hippocampus 

Following the observation that MSCs induced to express neural proteins can promote 

a neurogenic cell fate decision on differentiating embryonic NSC/progenitor cells, we 

next tested if the same effect could be observed in adult NSC/progenitor cells isolated 

from the hippocampus. Adult GFP+ hippocampal stern cells were differentiated under 

identical conditions to E 14 derived neurospheres and lineage commitment was 

evaluated using cell type specific markers (Figure 5.9). Adult progenitor cells 

differentiated under control conditions adopted the following cell fates: 16.9±0.9% 

neurons (Tuj-1+), 49.2±11.2% astrocytes (GFAP+) and 2.9±0.8% oligodendrocytes 

(RIP+) (Figure 5.9e). In the presence of induced or non-induced MSCs, neuronal 

commitment of differentiating adult hippocampal progenitor/stem cells was 

unaffected, with no significant difference in the number of Tuj-1 + generated during 

co-culture. Following co-cultivation with non-induced MSCs, the number of 

oligodendrocytes generated in differentiating stern cell cultures was increased to 

26.6+6.1% significantly (P<O.O 1, 1-way ANOV A, Dunnetts post hoc analysis) higher 

than that observed in control conditions. The number of astrocytes (37.6±5.1) and 

neurons (7 .6±2.8) has not significantly different from control conditions. This 

indicates that co-cultivation of adult stem/progenitor cells with non-induced MSCs 

promoted more progenitor cells to differentiate overall and the predominant 

phenotype was oligodendrocytic, however differentiation at the expense of other cell 
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fates was not observed. Therefore the additional differentiation was directed to an 

oligodendrocytes cell fate. Differentiation of adult stem/progenitor cells in the 

presence of induced MSCs resulted in a significant reduction in the number of cells 

differentiating into astrocytes and a trend towards an increase in oligodendrocytes. 

5.3.8 Effect of MSC co-culture on the proliferation and viability of adult 

NSC!progenitor cells 

Consistent with the results for E14 derived neurosphere differentiation, analysis of 

BrdU incorporation in the first 4 days revealed no significant difference in BrdU 

labeling between adult stem/progenitor cells differentiated in the presence or absence 

of non-induced or induced MSCs (Figure 5.10a). Also no significant difference was 

observed in cell death in cultures co-cultivated with MSCs or differentiated under 

control conditions (Figure 5.1 Ob ). Therefore effects of differentiation observed 

following co-cultivation such as increased commitment to the oligodendrocytes cell 

lineage is instructive and not selective. 

5. 3. 9 Soluble factors released by MSCs promote the neurite outgrowth of 

differentiating neuronal progeny of NBC/progenitor cells 

MSCs have been reported to promote axonal and neurite outgrowth of neuronal cell 

populations. As reconstruction of neural circuitry will be vital to promote recovery 

from CNS injury we investigated whether the soluble interactions of MSCs were 

extended to include effects on the differentiated progeny of progenitor cells. 

NSC/progenitor cells were first differentiated under control conditions to establish a 

baseline to compare the effects of MSC co-culture. Differentiated cultures were fixed 

and labeled with Tuj-1 at the specified time point in order to identify neuronal 

progeny. 

We found that 12 days culture under differentiation conditions was sufficient to 

induce modest neurite outgrowth in Tuj-1 + cell progeny of progenitor cells (Figure 

5.11 ). The average neurite length under control conditions was 22.06±2.73 f-1-m and 

the average maximum neurite length with any one field of view was 212±68.64 f-1-m. 

To determine if MSCs promote neuritogenesis in primary neurons described from 

NSC/progenitor cells we co-cultivated MSCs (induced and non-induced) in the 
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presence ofNSC/progenitor from the onset differentiation. The average neurite length 

of neuronal progeny as defined by Tuj-1 was determined under each culture condition 

following image analysis of cells within 10 random fields of view in 3 independent 

experiments. The average neurite length of Tuj-1 + cells co-cultivated in the presence 

of non-induced MSCs was 38.63±4.2 ~-tm and significantly increased compared to 

controls. Co-cultivation with induced MSCs also promoted a significant increase in 

neurite outgrowth compared to control it which the average neurite length of neuronal 

progeny was 57.48±5.7 f.-tiD. Therefore soluble factors released from MSCs promote 

neurite outgrowth of Tuj-1 + cell progeny and this effect was greater when cells were 

co-cultivated with induced MSCs. Both bipolar and multipolar neurons were observed 

under all culture conditions. Consistent with these observations the maximum neurite 

length (Mean±SEM) was significantly higher in so-cultures of progenitor cell and 

induced MSCs. Examples of neurite outgrowth under these co-cultures are illustrated 

in Figures 5.11 d-f which show both multipolar (d) and unipolar ( e,t) neurons. 

To test whether the induction of neurite outgrowth was the result of a direct action of 

MSC soluble factors or as a result of MSC induced activation of astrocytes, which 

subsequently release growth factors that promote neurite growth the effect of MSCs 

on the neurite outgrowth of differentiating N2a cells, was examined. N2a cells 

differentiate exclusively into neuronal progeny upon withdrawal of serum from the 

culture. Under these conditions modest levels of sprouting and neurite extension were 

observed by 12 days serum deprivation (Figure 5.12). Consistent with our previous 

observation with E 14 neural progenitor cells, co-cultivation of differentiating N2a 

cells with MSCs significantly increased the average neurite length in both non­

induced MSC co-cultures (22.34±1.94 ~-tm) and induced MSC co-cultures 

(32.04±2.54 ~-tm) compared to control (11.63±2.76 ~-tm) conditions. Induction of 

neurite outgrowth was also significantly greater when N2a cells were co-cultivated 

with induced MSCs. The maximum neurite length in co-cultures of induced MSCs 

and N2a cells (650±70.50 f.till) was significantly increased compared to control 

conditions (149.90±45.41 ~-tm). Therefore a consistent pattern of the effects ofMSC 

derived soluble factors on neurite outgrowth was observed in neuroblastoma cells. 
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5.4 Discussion 

Infusion of MSCs is associated with improved functional recovery following CNS 

lesions in several animal models (For Review see Chopp and Li, 2002; Corti et al., 

2003). The exact mechanism by which this therapeutic benefit is exerted is uncertain. 

MSCs have been shown to promote a number of activities within the adult CNS that 

improve neurological outcome following injury which include; angiogenesis (Hamano 

et al., 2000; Chen et al., 2001; Chen et al., 2003) neurogenesis (Li et al., 2002; Zhang 

et al., 2001), synaptogenesis, dendritic arborisation (Chopp et al., 1999; Zhang et al., 

2006) and a selective reduction in apoptosis in ischemic boundary zone of a focal 

lesion (neuro-protection) (Chen et al., 2003). These effects on brain plasticity are 

mediated primarily by the release of cytokines and growth factors produced by MSCs, 

which activate endogenous restorative and possibly regenerative processes within the 

host brain (Li et al., 2002). Current work suggests that the therapeutic benefits of 

MSCs are not attributed to a single modification of brain plasticity or the effects of a 

single cytokine but the synergistic and cumulative action of several factors, which act 

to improve restoration of function. 

Whilst the early effects of trans-planted MSCs are likely to result primarily from 

neuro-protective activities such as a reduction in cell death (Chen et al., 2003), the 

long-term restoration of function requires reconstruction of neural circuitry and 

replacement of lost or damaged neurons. It has also been proposed that MSCs have an 

intrinsic neurogenic potential and can differentiate to neural cell phenotypes both in 

vitro (Sanchez-Ramos et al., 2000; Deng et al., 2001; Kobas et al., 2002; Tondreau et 

al., 2004) and in vivo (Nakano et al., 2001; Hofstetter et al., 2002; Brazelton et al., 

2000) and therefore may replace damaged CNS tissue by a process of trans­

differentiation. These findings however, remain controversial and have been 

challenged by a number of recent publications offering alternative explanations for 

such unexpected cell fate changes including cell fusion (Alvarez-Dolado et al., 2003). 

Histological analysis in transplantation studies has revealed a small proportion of 

MSCs express neural markers (Chopp et al., 2000; Chen et al., 2002; Chen et al., 

2003) but here is no evidence as yet, that these cells either fully differentiate into 
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neural cells or integrate into the host CNS. In addition, the proportion of cells which 

express these markers are too few to fully compensate for loss of function. The 

function of these cells is therefore poorly understood. Direct replacement of neural 

tissue by MSCs is therefore unlikely be the mechanism by which these exert their 

beneficial effects. 

Recent experimental evidence from transplant studies has indicated an amplification 

of the endogenous neurogenic response to injury in MSC treated animals (Chen et al., 

2002; Chen et al., 2001; Mahmood et al., 2005; Chen et al., 2004), suggesting that one 

therapeutic benefit of MSCs may be to promote the formation of new neurons in the 

adult brain. There is now consensus that neurogenesis occurs within discrete regions 

of the adult brain; including the subventricular zone lining the lateral ventricles, the 

subgranular zone in the dentate gyrus of the hippocampus and the olfactory bulb 

(Gage 2000; Gage et al., 1998). NSCs in these regions have the capacity to generate 

mature functional neurons (Song et al., 2002; Van Praag ey al., 2002). Following 

neurogenesis, the differentiated cell progeny can survive and contribute to tissue 

repair. Increased proliferation of progenitors in neurogenic regions has been observed 

following injury consistent with an increase in cell progeny expressing immature 

neuronal markers and an increase in the progenitor cell marker nestin at the periphery 

of the injury site (Zhang et al., 2001; Li et al., 2002). Endogenous NSC differentiate 

and proliferate into neurons at the foci of a lesion and stem cells distal to an ischemic 

lesion proliferate and migrate chemotactically to the infarct and differentiate into 

viable neurons (Nakatomi et al., 2002). 

We used an in vitro co-culture system in which NSC/progenitor cells and MSCs were 

cultured in the same environment separated only by a Millipore porous membrane, 

(cell culture inserts) to specifically examine the soluble interactions of MSCs with 

NSC/progenitor cells isolated from the embryonic striatum. The advantages of this 

system are that live cells can be co-cultured and this allows intercellular signaling to 

operate between these two cell populations. This is crucial since in vivo these cells 

operate in such an environment in which they can respond to each other through the 

production of soluble factors. Therefore the effects of MSCs on NSCs must be the 
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result of the production of soluble factors by virtue of the system used to evaluate 

these effects. 

In this paper we demonstrate that MSCs can stimulate the differentiation of multi­

potent neural progenitors into specific cell fates by the release of soluble factors. 

These soluble factors provide instructive rather than selective regulation of cell fate 

commitment on NSC/progenitor cells as demonstrated by the fact that these factors 

had no effect on the proliferation of progenitors or cell death in short term cultures. 

More importantly we found that the nature of this signaling was distinctly different in 

MSCs induced to express high levels of neural proteins. Induced MSCs released 

factors that predominately directed a neurogenic cell fate decision on neural 

progenitor cells whereas non-induced MSCs instructed a predominately astrocytic cell 

fate decision. The conclusion from these observations is that MSCs provide 

instructive signals that regulate the cell lineage commitment of embryonic striatal 

NSC/progenitor cells, but that the nature of these signals is dependent on the 

developmental status of the MSCs. 

Following the demonstration that co-cultivation of MSCs with embryonic 

NSC/progenitor cells increased neurogenesis of these cells we next examined the 

ability of MSC derived soluble factors to promote the neuronal differentiation of adult 

neural stem cells. A recent study showed that MSCs increased number of 

differentiating adult NSCs adopting an oligodendrocyte cell fate (Rivera et al., 2006). 

This observation is consistent with those findings of our studies. In the above study 

both MSCs and NSCs were maintained in 1 0% FCS even during differentiation, in 

contrast to our own experiments in which serum concentration was only 0.5% during 

differentiation. In the presence of induced MSCs a significant reduction in the number 

of astroicytes demonstrated was observed and the number of oligodendrocytes in 

differentiating cultures was increased, however in contrast to the observation of E 14 

derived NSCs no significant difference in neuronal commitment was observed. The 

reason why induced MSCs promote neurogenesis of E14 derived neurospheres and 

not adult NSC/progenitor cells is currently unknown. This effect may be specific to 

adult NSC isolated from the hippocampus as regional differences in differentiation 

potential of progenitor cells has been reported (Palmer et al., 1999; Kondo and Raff, 
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2000). Therefore to investigate this other stem cell populations from different brain 

regions need to be examined to determine their differentiation potential in the 

presence of induced and on-induced MSCs. It is also possible that these effects are the 

result of differences in the expression of different receptor types and densities and 

therefore the sensitivities of these cells to different neurotrophic factors. 

We also observed that MSC derived soluble factors affect other aspects of neuronal 

plasticity and provide trophic support that maintains the long-term viability of NSC 

derived neuronal (Tuj-1 +) progeny. We report for the first time that MSCs promote 

neurite outgrowth of the neuronal progeny (Tuj-1 +) of neural progenitor cells. MSCs 

have previously been shown to promote axonal growth and neurite development in 

other neuronal cell populations both in vitro (Li et al., 2006; Tohill et al., 2004) and 

following injury in vivo (Hofstetter et al., 2002). The reduction in neuronal cell death 

observed in our long-term co-cultures is consistent with the reduction of cell death 

recently observed when neuroblastoma cell lines were induced to differentiate in the 

presence of MSCs (Crigler et al., 2006) and the increased survival of the 

differentiated progeny of endogenous progenitor cells in the intact brain (Munoz., 

2005). 

We are currently investigating the identity of the soluble factors released by MSCs 

that mediate their interactions with both progenitor cells and mature differentiated 

progeny. Identification of these factors may allow us to selectively direct the 

differentiation of NSC/progenitor into particular cell lineages. However, as described 

previously these effects are unlikely to be attributed to any single factor. MSCs have 

been shown to produce a variety of cytokines and growth factors the properties of 

which are influenced by the surrounding microenvironment (Chen et al., 2001c). 

MSCs have been shown to release VEGF, BDNF and NGF in response to 

conditioning with injured rat brain extracts (Chen et al., 2005). MSCs have been 

found to express bFGF, NGF, BDNF and their Trk A, Trk B receptor mRNAs (Garcia 

et al., 2004; Yaghoobi et al., 2006). A generalized up-regulation in the expression of 

these growth factors has been reported in the ipsilateral hemisphere of a cerebral 

lesion following transplantation of MSCs (Li et al., 2001 ). 
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Each of these growth factors has been shown to have independent effects on brain 

plasticity. Neurotrophic factors have a well-established role in survival, differentiation 

and function of CNS neurons. BDNF and NGF promote cell survival in the injured 

CNS tissue both in vivo and in vitro (Hefti, 1986; Kromer, 1987; Koliatsos et al., 

1993; Bullock et al., 1999; Gage 2000). bFGF administered within hours of an 

ischemic insult reduces the infarcat size through a reduction in cell death in the 

penumbra region (Ay et al., 1999). VEGF can promote both angiogenesis and neural 

repair, including promotion of axonal outgrowth and nerve cell survival (Hamano et 

al., 2000; Jin et al., 2003; Papavassiliou et al., 1997; Zhang et al., 2000). Over 

expression of BDNF in MSCs results in axonal growth at sites of spinal cord injury 

(Lu et al., 2005). The effects of MSC co-culture is this study may be explained by the 

activities of such factors including increased cell survival and neurite outgrowth. 

Several endogenous growth factors have been shown to increase within the brain in 

response to injury including bFGF (Hayashi et al., 1997; Gottlieb et al., 1999; Lin et 

al., 1997). bFGF has been shown to stimulate SVZ and hippocampal neurogenesis in 

vitro and in vivo (Palmer et al., 1999; Liu et al., 1994). MSCs enhance bFGF 

expression in the ischemic boundary zone and therefore may promote neurogenesis at 

the injury site by diffusible activity (Chen et al., 2003). Transplantation of MSCs into 

the ipsilateral hemisphere is associated also with increased expression of NGF and 

BDNF (Chen et al., 2002). BDNF promotes survival of neuronal progeny and NGF 

promotes regeneration of neural tissue (DeKosky et al., 1994; Dixon et al., 1997; 

Goss et al., 1998; Mocchetti and Wrathall, 1995). Therefore the up-regulation in the 

expression of these factors in CNS tissue following MSC transplantation may 

promote endogenous repair and regeneration. 

Less is known however, as to how such soluble factors might affect cell fate decisions 

of resident neural progenitor cells. NSC/progenitor cells are known to respond to 

trophic influences from the microenvironment and neurogenesis in the adult brain is 

largely mediated by trophic influences (Song et al., 2002). bFGF is known to be 

important for the self renewal and maintenance of the stem cell pool (Zheng et al., 

2004). CNTF is known to regulate neurogenesis in the adult mouse brain as well as 

EGF (Emsley and Hagg, 2003). NGF has been associated with regulation of neuron 
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number and BDNF is thought to play a key role in the maturation of neuronal progeny 

(Mattson et al., 2004; Louissaint et al., 2002). IGF-1 has recently been shown to 

induce an oligodendrocytic cell fate in vitro (Hsieh et al., 2004). Retinoic acid has 

also been found to be crucial in the early commitment of progenitor cells to the 

neuronal lineage (Takahashi et al., 1999). 

The soluble factors released by MSCs may act directly on endogenous cell progeny or 

via the activation of astrocytes. In the present study we observed that astrocytes 

present in co-cultures displayed morphology consistent with activation (process 

bearing). Therefore it is possible that this activation may have played a role in the 

effects ofMSCs. We were able to show that the effects ofMSCs on neurite outgrowth 

were directly the result of MSC derived soluble factors as this effect was seen even in 

the absence of glial cells when MSCs were co-cultured with differentiating 

neuroblastoma cell lines (N2a cells). Although we cannot directly evaluate the role of 

MSC induced glial cell activation on progenitor cell fate, it is known that astroglia 

promote neurogenesis (Song et al., 2002). It is possible that MSC expressing neural 

antigens promote neurogenesiss from NSC/progenitor cells in part through the 

activation of glial cells. 

The findings reported in this in vitro study draw many parallels with the effects of 

MSCs in recent transplant studies (Munoz et al., 2005; Chen et al., 2002). Although 

many of the effects of transplanted MSCs in vivo have been attributed to diffusible 

activity, in vivo data cannot be conclusive. A small number of investigations in vitro 

using either live cell co-culture or conditioned medium support a role of soluble 

factors released from MSCs affecting the behavior of NSC/progenitor cells and there 

progeny. We were able to demonstrate conclusively that these effects were mediated 

by soluble factors and not through the differentiation of MSCs or direct cell contact 

effects. We were able to show that MSCs provide instructive signals that regulate cell 

fate commitment of endogenous progenitor cells and that the nature of these signals is 

dependent on the developmental status of MSCs. 

A small number of recent in vitro studies have investigated the possible interactions 

between MSCs and NSCs. Conditioned media prepared from adult MSCs cultured 
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under standard conditions has been shown to induce an oligodendrocytic cell fate on 

NSC/progenitor cells isolated from the adult hippocampus at the expense of astrocytic 

differentiation (Rivera et al., 2006). Conditioned media obtained from the culture of 

nestin positive cells has been shown to induce an astrocytic cell fate on NSC isolated 

from the embryonic striatum, an effect in part mediated by the release of BMP-4 

(Wislet-Gendebien et al., 2004). In direct cell contact assays MSCs were shown to 

induce a neuronal cell fate in mesencephalic NSCs (Lou et al., 2003). The variation in 

these findings is likely to be attributable to a series of technical differences in the 

design of these studies and differences in experimental conditions. For example, the 

use of conditioned media is not always advantageous as some intercellular signaling 

may be mediated only by short-lived peptides, which are not stable in media. Co­

culture of MSCs with conditioned media prepared from different CNS tissue regions 

induces a neural cell morphology and protein expression profile in MSCs consistent 

with a neuronal cell fate (Rivera et al., 2006b ). The effect is greater in conditioned 

media prepared from neurogenic regions such as the hippocampus. This experimental 

data provides further evidence for the operation of two-way signaling between these 

populations. These reports suggest that the nature signaling mediated by diffusible 

factors between neural tissue and MSCs signaling may be regionally dependent. 

Therefore the interactions between the host brain and transplanted MSCs are likely to 

be complex and multidimensional and as of yet the exact nature of many of the 

factors, which mediate these interactions, is unknown. 

The results indicate a role for neural antigen positive MSCs in promoting 

neurogenesis at the injury site. The findings suggest that the function of MSCs 

expressing neural markers in vivo following transplantation into the injured brain may 

be to provide trophic support and instructive signals that promote endogenous 

neurogenesis from resident NSC/progenitor cells and survival signals that maintain 

long term viability of neuronal progeny. In addition, the induction of extensive neurite 

outgrowth observed following co-culture with both populations of MSCs (neural 

antigen positive and neural antigen negative) will support the reconstruction of neural 

circuitry. 
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The inhibitory environment of surrounding neural tissue limits the neurogenic 

response to injury in the adult brain, trophic support by MSCs as demonstrated by the 

current study may provide growth permissive conditions for endogenous neurogenesis 

and axonal growth and development. Whilst the contribution that these events play to 

the overall restoration of function following injury remain uncertain, these activities 

will be undoubtedly be important aspects of MSC induced recovery from CNS injury. 

In conclusion we demonstrate that MSCs are capable of considerable interaction with 

NSC/progenitor cells and that the nature of these interactions is defined not only by 

the microenvironment but also the developmental status of MSCs themselves. 
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Figure 5.1: Isolation and characterisation of embryonic rat 
NS C/progenitor cells. NSC/progenitor cells were derived from the 
mesencephalon of day 14 rat embryos according to established procedures. 
Single phase bright cells proliferate and give rise to small spheres 7 days post 
isolation (A). Secondary neurospheres 7 days after sub-culturing were highly 
hypertrophic, with phase bright cells within the sphere (B). Secondary 
neurospheres were propagated in culture by serial passage, without loss of 
differentiation potential (C, D). NSC/progenitor cells were grown as a 
monolayer culture by seeding dissociated cells on fibronectin coated glass 
cover slips in the continual presence of growth factors (EGF + FGF) (E). 
Removal of growth factors for 12 days resulted in the differentiation of 
progenitor cells into mature neural cells (F). Scale bars 50 11m. 



Figure 5.2: Multipotent differentiation of embryonic rat neurospheres. 
NSC/progenitor cells isolated from the embryonic rat mesencephalon displayed tri­
lineage differentiation potential. Passage 2 neurospheres were differentiated by 
plating cells on adherent surfaces (Laminin coated tissue culture plastic) in the 
absence of growth factors. (A) 24 hours after plating, dissociated neurospheres 
expressed high levels (>98%) of the immature marker nestin as they migrate from the 
periphery of the sphere. After 12 days incubation in differentiation medium, cells 
were fixed in 4% PFA and stained for markers of neurons (Tuj-1) (B), astrocytes 
(GF AP) (C) and oligodendrocytes (RIP) (D). The number of cells expressing 
markers (GF AP + Tuj-1 dual staining) of mature differentiated cells increased from 
day 3 (E) to day 6 of differentiation (F). Scale bars 50 11m. 
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Figure 5.3: Effect of surface substrate on the differentiation of rat E14 
derived NSC/progenitor cells. Embryonic NSC/progenitor cells were 
differentiated by plating cells on either Laminin, PLO or fibronectin coated 
tissue culture plastic dishes in N2 supplemented DMEM/Fl2 in the absence 
of growth factors and presence of 0.5% FCS. (A) Cells were stained for 
markers of neurons (Tuj-1, red), astrocytes (GFAP, green) and 
oligodendrocytes (RIP, green) and counterstained with Hoechst 33342 (blue). 
Scale bars 50 ~-tm. (B) Quantification of cell types in differentiating conditions. 
All data are mean values±SEM acquired from the analysis of 15 non­
overlapping fields of view and from 3 independent experiments in parallel 
cultures. 
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Figure 5.4: Generation of MSC cellular spheres positive for neural 
antigens following transfer to serum free media supplemented with EGF 
(lOng/ml) and FGF (lOng/ml). Photomicrographs show the presence of small 
aggregfltions of cells, which begin to develop on the bottom of the culture flask 
within 3-5 days (A). Free-floating spheres were evident within 7-10 days of 
culture (B). Scale bars 50 11-m. Flow cytometric analysis of neural and 
mesodermal cell markers (C). P8 MSCs were cultured under standard (control) 
or inductive (induced) cell culture conditions for 7 days. Cells were 
subsequently fixed, permeabilised and labelled with antibodies directed against 
intracellular neural (Tuj-1, GFAP and nestin) and mesodermal (smooth muscle 
actin, (S-actin)) antigens. FITC/Cy-3 conjugflted secondary antibodies detected 
binding of the primary antibodies. The open peaks indicate IgG isotype control 
cqrresponding to .the antibodies in which they .. were generated. The solid peaks 
indicate are counts of the cell population that is positive for the antibody 
indicated in each individual histogram. The number of positive cells is shown on 
they -axis and the fluorescence intensity of staining on the x-axis. 
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Figure 5.5: MSC soluble factors promote the differentiation of embryonic 
NSC/progenitor cells into distinct cell lineages. To induce multi-lineage 
differentiation under control conditions, progenitor cells were plated on poly-L­
ornithine-coated dishes in the absence of growth factors and the presence of 0.5% 
FCS (control). For co-cultivation, differentiation was initiated under identical 
conditions but in the presence of induced or non-induced MSCs. After 12 days , cells 
were fixed and immuno-stained with monoclonal antibodies directed agflinst Tuj-1 (A, 
neuron), GFAP (B, astrocyte) or RIP (C, oligodendrocyte). Some cultures were dual 
stained for GF AP (D, green) and Tuj-1 (D, red). All cells were counterstained with 
Hoechst 33342 (blue). Scale bars: 50~-tm. 
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Figure 5.6: Quantification of cellular differentiation under co-culture 
conditions. The % of cells positive for each cell type marker (Tuj-1 , GF AP and RIP) 
was determined for each culture condition (M ean±SEM; 1 0 fields of view) in 12-day 
cultures. All data shown are from at least three experiments in parallel cultures 
(Mean±SEM). Significant differences are indicated with an asterisk (*P<0.05, 
**P<O.Ol). 
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Figure 5.7: Quantification of the temporal expression of cell type specific 
markers during co-cultivation of NSC/progenitor cells with non-induced or 
induced MS Cs for 12 days. Differentiation of NSC/progenitor cells from control 
and co-cultures (induced or non-induced MSCs) were subsequently fixed at 3, 6 
and 12 days post differentiation and processed for immunocytochemistry. Graphs 
show the percentage of cells staining positive for each marker and at each time 
point analysed (mean ± SEM, 10 fields of view, experiment n=3). Significant 
differences are indicated with an asterisk (*P <0.05, **P <0.01, ***P<0.001). 
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Figure 5.8: Effects of MSC co-culture on the survival, proliferation and 
neuronal commitment of striatal NS C/progenitor cells. (A) Proliferation of 
NSC/progenitor cells and their derivatives was accessed by BrdU incorporation. 
Parallel cultures were incubated with BrdU (2.5!-lM) on different time points for 24 
hours, immediately followed by fixation and staining for BrdU. (B) Cell death in 
different culture conditions was accessed daily by live staining with PI (Sf.!glml) and 
quantified by flow cytometry. All data are mean values±SEM from 3 independent 
experiments in parallel cultures. No significant differences in BrdU incorporation or 
cell death were found between culture conditions for each time point. (C) Double 
labelling of cells with PI and Tuj-1 at 3, 6 and 12 days post differentiation under 
control conditions (control) and in the presence of non-induced M SCs (M SC) or 
induced MSCs (induced-MSC). Quantification of staining was determined by flow 
cy tometry. The % of TU J -1 + cells staining positive for PI is indicated. (D) 
Percentage of Tuj-1 positive cells in 4-day cultures of differentiated progenitor cells 
(control) or co-cultures of p_rogenitor cells and induced MSCs (induced-'MSCs) as 
quantified by immuno-cytochemistry. Significant differences between control and co­
culture groups are indicated with an asterisk (*P<O.OS). All data are mean 
values±SEM from 3 independent experiments in parallel cultures. 



Control 
MSC 

Induced 
E 

80 

70 

~60 
.!!!50 

B40 
+ 
Q.JO 
q: 
~20 

10 

Astrocyte 

* 

o~~_._.~~~~~-

40 

..!!! 
i20 
(J 

+ 
Q. 
ii110 

0 

60 

50 
~ 
-40 
..!!! 

~30 
+ 
:'i. 20 
:l 
t'- 10 

0 

Control MSC MSC induced 

Culture condition 

Oligodenrocyte 

* 

Control MSC MSC induced 

Culture condition 

Neuron 

Control MSC MSC induced 

Culture condition 

Figure 5.9: MSC soluble factors promote the differentiation of adult 
NS C/progenitor cells into distinct cell lineages. Undifferentiated adult 
NSC/progenitor cells (GFP+) were propal?flted in culture as mono-layers in the 
presence of bFGF (20ng'rnl) on PLO coated tissue culture plastic. To induce 
multi-lineage differentiation under control conditions, progenitor cells were 
plated on poly-L-ornithine-coated dishes in the absence of growth factors and 
the presence of 0.5% FCS (control, GFP A). For co-cultivation, differentiation 
was initiated under identical conditions but in the presence of induced MSCs. 
After 12 days , cells were fixed and immuno-stained with monoclonal antibodies 
directed al?flinst Tuj-1 (B, neuron), GF AP (C, astrocyte) or RIP (D, 
oligodendrocyte). All cells were counterstained with Hoechst 33342 (blue). (E) 
Quantification of cellular differentiation under co-culture conditions. The number 
of cells positive (%) for each cell type marker was determined for each culture 
condition (mean±SEM; 10 fields of view) in 12 day cultures. All data shown are 
from at least three experiments in parallel cultures. Significant differences are 
indicated with an asterisk (*P<0.05) compared to control cells. 
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Figure 5.10: Effects of MSCs on the survival, proliferation and neuronal 
commitment of adult hippocampal NS C/progenitor cells. (A) Proliferation 
of progenitor cells was accessed by BrdU incorporation. Parallel cultures were 
incubated with BrdU (2.5f!M) on different time points for 24 hours, 
immediately followed by fixation and staining for BrdU. (B) Cell death in 
different culture conditions was accessed daily by live staining with PI (5!! 
g'ml) and quantified by flow cytometry. All data are mean values±SEM from 
3 independent experiments in parallel cultures. No significant differences in 
BrdU incorporation or cell death were found between culture conditions for 
each time point. 
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Figure 5.11: MSCs promote neuritogenesis of the Tuj-1 positive (neuronal) 
cell progeny of NSC/progenitor cells in 12-day cultures. Immuno­
cytochemical staining (A-F) of 12 day differentiated cultures in the absence of 
MSCs (A), the presence of non-induced MSCs (B) and in the presence of induced 
M SCs (C). Further examples of extensive neurite outgrowth in co-cultures of 
induced MSCs with neural progenitor cells are illustrated in D-E. G-H 
Quantification of neurite outgrowth in control or co-culture conditions (induced or 
non-induced MSCs). After 12 days, cells were fixed and stained with Tuj-1 to 
identify neuronal progeny. Cells were then photographed and the average (G) and 
maximum (H) length of neurites was quantified from 1 0 randomly selected fields 
of view for each measurement. All data are mean values±SEM from 3 independent 
experiments in parallel cultures. Significant differences from the control group are 
indicated with an asterisk (*P<0.05). 
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Figure 5.12 MSCs promote the neurite outgrowth of differentiating N2a 
cells. Undifferentiated N2a cells (A) were grown under standard culture 
conditions (DMEM + 20% FCS) and used as a baseline for the determination of 
neurite outgrowth following differentiation. Control N2a were differentiated by 
the removal of serum for 12 days either alone (B) or co-cultivated with induced 
(C) or non-induced (D) MSCs. After 12 days, cells were fixed and stained with 
Tuj-1 to identify neurites . Cells were then photographed and the average (E) and 
maximum (F) length of neurites was quantified from 10 randomly selected fields 
of view for each measurement. All data are mean values±SEM from 3 
independent experiments in parallel cultures. Significant differences from the 
control group are indicated with an asterisk (*P<0.05). 



CHAPTER6 

General Discussion and Future Directions 

303 



6.1 Introduction 

Most researchers will be increasingly aware of the surge in publications documenting 

the ability of adult stem cells to differentiate into cells and tissues which lie outside 

the organ in which they reside (Paul et al., 2002; Anderson et al., 2001; Blau et al., 

2001; Tsai et al., 2002; Raff, 2003). In some cases, such differentiation can occur 

across germinal layers by a process referred to as 'transdifferentiation'. Results from 

these studies have implied that some adult stem cell populations may exist that retain 

a greater capacity for differentiation than previously appreciated. In some reports, 

certain adult stem cells have been described as possessing a developmental potential 

similar to stem cells derived from the early embryo (Jiang et al., 2002a). This work 

has been met with both interest and skepticism from the scientific community and has 

fueled the debate in the media as to whether such populations of adult stem cells 

could be used as an alternative to the more ethically controversial use of human 

embryonic stem cells (hES). 

The potential use of stem cells for cell replacement therapy has been envisaged as a 

possible treatment for the damaged or diseased CNS for some time (review Corti et 

al., 2003). Whilst this is an attractive concept, it requires a readily available source of 

donor cells suitable for transplantation. The CNS does retain some capacity for self­

renewal and the replacement of damaged cells although this regeneration is of limited 

capacity and occurs within distinct regions (Eriksson et al., 1998). Some of this 

regeneration is attributed to the presence of neural stem cells (NSCs ), a multi potent 

population of cells that have the ability to generate in all three neural cell types 

(astrocytes, oligodendrocytes and neurons) (Gage, 2000). Such NSCs would in theory 

be the most valuable in terms of cell replacement therapy however, access to these 

cells from a healthy donor is practically impossible, therefore fetal and adult 

postmortem tissues remain as alternative sources. 

hES cells derived from the human blastocyst have a unique capacity to differentiate 

into somatic cells of all three embryonic germ layers. This diverse potential for 

differentiation and their essentially unlimited proliferation in culture makes these cells 

an ideal starting population for the generation of purified populations of specific cell 
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types that could subsequently be used for cell replacement therapy. Several groups 

have described the differentiation of human ES cells into neuroectodermal derivatives 

in vitro (Carpenter et al., 1999), and others have reported the transplantation of these 

cells into the neonatal mouse brain as a testament of the ability of these cells to 

engraft into the CNS in vivo (Reubinoff et al., 2000). At present, only a subset of hES 

cells are able to differentiate into neural tissues following induction of differentiation 

(Carpenter et al., 2001 ). Subsequent isolation of these neural cells relies on selection 

and enrichment strategies involving the application of specific growth factors and 

mitogens to enhance the production of neural cells. Currently, this enrichment 

approach is unlikely to consistently produce the requisite amount of cellular material 

for cell transplantation therapies. In addition, the ethical debate surrounding research 

on hES cells continues and it is unlikely to be resolved in the near future. 

The technical and ethical considerations of hES cell derived therapies have in part 

driven the search for adult stem cell populations that may be used as an alternative in 

the generation of neural cells for cell replacement therapies. Adult stem cells may 

offer a number of advantages to their embryonic counterparts. Adult stem cells with 

the capacity to form cells of unrelated organs could be isolated from non-diseased 

tissues of the body and used as autologous grafts for cell replacement. This would of 

course remove the problems of tissue matching and graft verses host disease 

encountered by the use of allogenic cell transplantation. Furthermore, there is no 

evidence that normal adult stem cells result in tumor formation following 

transplantation unlike the risks involved with grafted hES cells. 

6.2 Trans-differentiation and the microenvironment (stem cell miche) 

The test of trans-differentiation in vitro is based on the idea that the developmental 

potential of tissue specific stem and progenitor cells is dictated by their environment 

(the stem cell niche in vivo). Inhibition of the these signals by removing cells from 

their normal environment might allow cells to reprogram and differentiate into other 

cell lineages. MSCs have been shown to give rise to neurons (Woodbury et al., 2000; 

Deng et al., 2001; Hermann et al., 2004), glia (Wislet-Gendebein et al., 2005) in vitro, 

neurons and glia in vivo (Chen et al., 2001; Kopen et al., 1999; Eglitis and Mezey et 

al., 2000) and in some cases have been reported to have a multipotent capacity 
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consistent with that of NSC with the capacity to generate all three principal neural 

lineages in vitro (Suzuki et al., 2004). In co-culture studies MSCs have been reported 

to adopt neuronal and glial cell phenotypes when co-cultivated with primary 

hippocampal neurons (Riveria et al., 2006) and embryonic NSCs (Sanchez-Ramos et 

al., 2000). In most cases only morphological and immunological evidence of 

differentiation has been presented in these studies. A number of recent studies 

including the data presented in this thesis raise a number of important doubts as to the 

validity of using this approach in determining the trans-differentiation potential of 

MSCs (Lu et al., 2004; Neuhber et al., 2004; Bertani et al., 2005). In addition, cell 

fusion has been suggested as a possible alternative explanation for reports of trans­

differentiation in vivo (Ying et al., 2002; Alvarez-Dolado et al., 2003). More recent 

developments in the post cell fusion era have been in understanding the molecular 

mechanism of possible trans-differentiation events in vitro. 

At the heart of these issues are how to define cell identity and what the standards for 

the 'proof of principle' should be. In many respects the answers to these questions are 

tissue dependent. To establish a neuronal identity, one must first consider 

morphology. Neurons have a very characteristic morphology and are both variable 

and complex (Svendsen et al., 2001 ). Essentially in order to function electro­

physiologically a neuron must produce a specialized growth cone, produce a single 

axonal fibre as it extends from the cell body and synapses with another neuron and 

extend a number of dendritic processes. This anatomical definition can be used to 

identify neurons (Svendsen et al., 2001), however such a definition has several 

disadvantages including misinterpretation of morphology, and other cells may mimic 

a neuronal morphology in appearance. One of the main obstacles to defining the 

identify of a cell is when we consider those cells on their way to becoming neuronal. 

Many of the early studies in vitro reported limited and immature differentiation 

towards the neural lineage (Sanchez-Ramos et al., 2000; Deng et al., 2001) and 

therefore under these culture conditions trans-differentiated cells may never reach the 

stage when they can be considered fully differentiated cells by a strictly anatomical 

definition, however these cells may still have the potential to become fully functional 

neurons under the appropriate conditions. Trans-differentiation of MSCs towards a 

neural cell fate, if it occurs is unlikely to involve two clearly defined stages of 
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differentiation i.e. mesodermal phenotype to neural phenotype, but is more likely to 

involve a progressive transition in which trans-differentiating cells retain some 

characteristics of both neuronal and mesodermal phenotypes. As a result one can 

envisage a stage in which cells may display an intermittent morphology. Recent work 

has shown that neural differentiation of MSCs is associated with a series of 

developmental processes, although these have not as yet been clearly defined (Wislet­

Gendebein et al., 2005). 

The studies presented in this thesis raise two major concerns when considering the 

phenotypic plasticity of MSCs in light of these findings. Most studies have and still 

do rely entirely on morphological and immunological characterization, as evidence of 

neuronal differentiation (Jin et al., 2003: Bossolasco et al., 2005; Long et al., 2005; 

2005; For review see: Wislet-Gendebein et al., 2005; Lu et al., 2005; Song and 

Sanchez-Ramos; 2003; Chen et al., 2006). As stated above the problem is one of how 

do we define a neuron. Reh, 2002 when considering neural stem cell differentiation in 

vitro states that neuronal cells have to fulfill several criteria to be considered neuronal. 

They should be postmitotic, polarized with a single axon and have dendrites, able to 

conduct action potential and synapse with other neurons to form electrically active 

connections. Sevendsen et al., 2001 also suggested that these criteria should be meet 

when considering trans-differentiation events involving neuronal differentiation. So 

far no study has been able to fulfill all these criteria for putative neurons derived from 

MSCs. 

6.3 Can MSCsformfunctional neurons? 

A normal mature terminally differentiated CNS neuron is defined not only by its 

polarity and cytology and its specific protein expression in defined locations, but its 

excitability, and ability to fire action potentials and communicate with other neurons. 

Several recent studies have demonstrated the in vitro generation of mature functional 

neurons from embryonic stem cells (Miles et al., 2004; Okabe et al., 1996) and 

embryonic or adult NSCs (Morshead et al., 1994; Davis and Temple, 1994). Song et 

al., 2002 demonstrated that adult CNS stem cells isolated from the hippocampus could 

develop into electrically active neurons and form neural networks and functional 

synaptic transmission when co-cultured with primary neonatal hippocampal astrocytes 
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or neurons. Song et al., 2002 was able to clearly demonstrate the developmental 

processes, which occurred at the cellular level as these progenitor cells formed 

functional neurons. The progeny of adult NSC first established neuronal polarity with 

appropriate dendrite and axon formation, which was verified by immuno-labeling for 

GAP-43 (axon growth cone marker) which was detected in terminal dendrites and fine 

processes. MAP-2ab expression (dendrite specific marker) was found to be expressed 

in soma and thick processes. They were next able to demonstrate the presence and 

development of synapses. Synapse formation was demonstrated by immunolabelling 

for synapsin and confirmed by ultrastructural analysis. Whole~patch clamp analysis 

was then used to demonstrate that these synapses were functional and could conduct 

action potentials. The differentiated neurons were shown to conduct tetrodotoxin­

sensitive action potentials after injection of depolarizing currents. Furthermore, 

spontaneous synaptic currents were detected in these neurons, demonstrating that they 

were able to receive inputs from surrounding neurons. 

In comparison to the above study, no study at present has demonstrated the generation 

of functional neurons from MSCs to the standards described above. Most studies have 

used only morphological changes and expression of pan-neural markers as evidence 

of differentiation. In light of the findings presented in this thesis and that reported by 

other investigators, this criteria is clearly insufficient. Several previous reports have 

attempted to demonstrate electrophysiological properties of MSC derived neurons 

(Hofstetter et al., 2002; Padovan et al., 2003). Authors of these studies found no 

evidence of functional neurotransmitter receptors and cells lacked voltage gated Na+ 

and K+ channels. In contrast, Kohyama et al., 2001 using whole patch clamp analysis 

of MSC presumptive neurons demonstrated a resting membrane potential of -50m V 

by day 28. The authors claim that this resting membrane potential is consistent with 

primary neurons cultured as positive controls. However, other investigators have 

noted that this membrane potential is higher than normal functional neurons (Chen et 

al., 2006; Carleton et al., 2003). Hung et al., 2002 investigated the 

electrophysiological properties of size-sieved MSCs induced to differentiate in the 

presence of BME. An elevated [Ca2+] occurred in MSC derived neurons in response 

to glutamate or high K + buffer. However, this response was slow or delayed 

compared to a normal neuronal response. In addition, these studies failed to 
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demonstrate neuronal polarity and synapse formation, both critical parameters for 

demonstration of functional neurons. Following transfection with the BDNF gene 

MSCs are reported to differentiate into neural cells when treated with all-trans retinoic 

acid (RA) (Zhao et al., 2004). These MSCs derived neural cells expressed pan-neural 

markers such as 04, GFAP and NeuN. Electrophysiological analysis of these cells 

using patch clamp technique demonstrated that these cells had a resting membrane 

potential of approximately -65m V and processed voltage dependent K +/Ca2+ 

currents. A recent study by Wislet-Gendebien et al., 2005 recently demonstrated that 

adult rat, nestin positive MSCs were able to differentiate into excitable neuron-like 

cells following co-culture with cerebellar granule cells. These cells expressed Tuj -1, 

NeuN and MAP-2ab. In addition, the presumptive neurons formed from nestin 

positive MSCs were shown to be electrophysiologically active. The authors were able 

to document the maturation stages of this development according to criteria 

established by Carleton et al., 2003). After 4-6 days of co-culture, neural-like cells 

showed some response to neurotransmitters including: GABA, glycine, glutamate and 

serotonin. At this stage, no functional voltage gated sodium channels were detected 

and cells displayed only a low resting membrane potential. However in the 2nd week 

of co-culture, neurons started to display Na+ currents, which were reversibly inhibited 

by tetradoxinin demonstrating the presence of voltage gated Na+ channels. Cells were 

able to fire single action potentials and in more mature cultures the resting membrane 

potential approached more negative values. 

Whilst the study by Wislet-Gendebein et al., 2005 provides the one of the most 

advanced reports of the electrophysiological characteristics of MSCs derived neurons, 

it still does not fulfill the criteria by which we would fully define a cell as neuron 

(Carleton et al., 2003). This study demonstrates that neuronal-like cells derived from 

nestin positive cells elicit electrical responses following application of several 

neurotransmitters and those responses can be inhibited by classical inotropic receptor 

blockers. However, the investigators have not yet demonstrated that these cells 

communicate via synapse formation. They report that they were unable to record any 

synaptic activity or repeated action potential firing. This is in contrast to neurons 

derived from adult stem cells, which display spontaneous firing and communication 

between cells. The authors did however, show a clear maturation and it is known that 
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m development in vivo synaptic activity and spontaneous firing are the last 

characteristics to be acquired (Carleton et al., 2003). It is also possible that terminal 

maturation requires additional signals, which may only be acquired in vivo. 

It is my opinion that it may be premature to conclusively define a cell in vitro as a 

neuron without demonstrating its ability to communicate with other neurons through 

synapses and spontaneously fire action potentials. However, on a spectrum of 

maturation, spontaneous synaptic activity and spiking activity only occur during late 

maturation stages (Carleton et al., 2003). Therefore, it may be the conditions, which 

promote terminal maturation of MSC derived neurons cannot be easily recapitulated 

in vitro, even in co-culture studies. Therefore conclusive proof may require animals to 

be transplanted with MSCs and then electrophysiological activity measured by slice 

culture. Alternatively organotypic slice culture may be a useful alternative method to 

investigate the differentiation potential of MSCs by electrophysiology. However, it is 

also my opinion that it may be premature to dismiss the neurogenic potential of MSCs 

in vitro simply by quoting negative electrophysiological data. As described, if MSCs 

induced to differentiate into neuronal cells in vitro under defined culture conditions 

only achieve early stages of neuronal maturation then they may not be electro 

physiologically active however, this does not mean that such cells do not have a 

neurogenic potential. In fact, consistent with this concept is the recent success of in 

vitro studies utilizing a two stage approach in which MSCs are first manipulated in 

vitro under defined culture conditions and subsequently transplanted in vivo where 

cells appear to undergo further maturation (Deng et al., 2006). The question this raises 

is how do we define a neurogenic potential and the answer to this is probably to 

ultimately demonstrate functionality, however one must find the conditions in which 

to achieve this functional maturation. 

An alterative but less satisfactory approach may be to analyze MSCs to see if they 

possess the machinery to terminally differentiate into neurons and this will require an 

understanding of the molecular mechanisms underlying the neural phenotypic 

plasticity of MSCs. These investigations have been approached in principally two 

ways, the first is an analysis of the gene expression profiles of MSCs (Woodbury et 

al., 2002) and the second is an analysis of the intrinsic and extrinsic factors that 
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govern cell fate decisions in MSCs (Chu et al., 2006; Jin et al., 2003; Bossolasco et 

al., 2005; Alexanian, 2005). Understanding the intrinsic and extrinsic factors that 

determine lineage commitment should allow a better understanding of proposed adult 

stem cell plasticity. 

There have been very few studies that have analyzed the possible molecular 

mechanisms that result in neural trans-differentiation of MSCs. However, early 

studies did demonstrate that agents, which increase cyclic AMP, result in the 

formation of cells with a neuronal morphology expressing neuronal markers (Deng et 

al., 2001). Recently, Jori et al., 2005 analysed the biochemical pathways involved in 

neuronal commitment of MSCs. They analysed the effect of K252a an alkaloid 

compound, which is a general protein kinase C inhibitor that inhibits CaM Kinase II, 

protein kinase A (PKA) and protein kinase C (PKC) (Hashimoto et al., 1991; 

Twomey et al., 1991; Tapley et al., 1992). K252a treatment has been used to sustain 

differentiation of MSCs into neural derivatives in numerous studies (Woodbury et al., 

2000; Deng et al., 2001; Black and Woodbury et al., 2001; Sanchez-Ramos et al., 

2002; Woodbury et al., 2002). Therefore increasing intracellular cyclic AMP can 

induce neural cell differentiation of MSCs and the maturation process is further 

sustained by K252a treatment (Deng et al., 2001). However K252a treatment could 

not itself result in neural differentiation (Jori et al., 2004). Jori et al., 2004 determined 

that forskolin treatment and K252a treatment both resulted in elevated intracellular 

cyclic AMP that activated the classical protein kinase A pathway as opposed to the 

EPAC-RAP pathway (exchange protein, Rangarajan et al., 2003), which has been 

suggested to be involved in neural differentiation (Bos, 1998; de Rooij et al., 2000). 

Therefore cyclic AMP induction following forskolin treatment is recruited in the 

classical PKA-dependent pathway. However, neural induction in the presence of a 

PKA inhibitor did not result in differentiation suggesting that this pathway is critical. 

As described, K252a inhibits PKC, PKA and Ca MK II and the Trk A receptor 

(Ohmichi et al., 1992; Rovelli et al., 2002). However neural induction in the presence 

of selective inhibitors of PKC, PKA or Ca MH II did not inhibit neural differentiation 

but did induce significant cell death. Therefore it was concluded that the pro­

differentiating effect of K252a was not the result of inhibition of these pathways, but 

it does rescue differentiating cells from cell death. The authors were able to 
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demonstrate that the neural induction effects of K252a were the result of inhibition of 

the calmodulin kinase, Ca MK II. This result is in contrast to several reports that 

demonstrate the induction of Ca MK II occurs with neuronal differentiation (Jensen et 

al., 1991; Donai et al., 2000; Bui et al., 2003). The investigators also found evidence 

that inhibition of the MEK-ERK pathway significantly reduced neural differentiation. 

Several recent studies have reported that nestin expression is a required pre-requisite 

for neural differentiation in MSCs and other stem cell populations (Croft and 

Przyborski, 2004; Wislet-Gendebien et al., 2005). In culture, nestin expression by 

MSCs is known to be dependent on two conditions, firstly the absence of serum in the 

culture media and secondly a minimum passage number of 10 (25 population 

doublings) (Wislet-Gendebien et al., 2005). Nestin is predominately expressed in 

neural progenitor cells (Lendahl et al., 1990). Nestin in the embryo is expressed in 

migrating and proliferating cells whereas in adult tissues nestin expression is 

restricted to areas of regeneration (Wiese et al., 2004). Our understanding of the 

mechanisms that regulate nestin expression is poor. 

The gold standard for proof of functionality in stem cell biology is the restoration of 

function following injury, through cell replacement. In the context of trans­

differentiation this implies the restoration of function through replacement of 

damaged cells with the progeny of stem cells from a different dermal origin to the 

damaged cells. This criteria has not been definitively demonstrated for MSCs in 

relation to neuroectodermal differentiation. Infusion of purified populations of MSCs 

either systemically or intra-cerebrally has been shown to improve functional outcome 

in several animal models of CNS lesions (For review see: Chopp and Li 2002). In 

these transplantation studies MSC donor cells expressing neuronal and glial cell 

markers have been observed within the injured adult CNS following either direct or 

indirect infusion of MSCs or whole BM (Chen et al., 2001; Zhang et al., 2005; Li et 

al., 2002). It is not known however, whether such cells have differentiated into a 

neuronal phenotype and thus whether these findings indicate trans-differentiation 

events. The reason for this controversy is because of the markers used to define donor 

cell identity. Some investigators have interpreted the appearance of donor MSCs 

expressing neural proteins to represent differentiation towards a neural cell lineage 
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and thus MSCs trans-differentiate into neural phenotypes and improve functional 

neurological outcome through replacement of damaged endogenous cells (Lu et al., 

2006). However transplant studies have revealed only a small fraction of MSCs 

express neural proteins and the numbers of these cells are insufficient to account for 

functional recovery and rapidity by which the therapeutic benefits of MSCs are 

observed (Chen et al., 2001; Li et al., 2002). In addition, the expression of these 

proteins by the small fraction of donor MSCs does not appear to correlate with the 

acquisition of a neural morphology. No significant branching, process formation or 

integration into host tissue architecture has been observed (Chen et al., 2001 ). In 

addition, recent studies have been able to offer alternate observations including cell 

fusion. Some investigators have found no evidence for trans-differentiation of BM 

derived stem cells in the absence of cell fusion (Alvarez-Dolado et al., 2003). It is 

important to note however, that this mechanism could represent a normal pathway 

towards differentiation and repair in damaged tissues (Blau 2002). The mechanism by 

which transplanted MSCs exert their therapeutic benefit is uncertain and the role of 

neural antigen positive donor MSCs is unknown. 

Studies presented in this thesis may offer an alternate explanation for the appearance 

of donor derived MSCs expressing neural proteins. In addition, we were able to show 

with the current studies that MSCs can express a range of neuronal and glial cell 

markers without differentiating into neural cell phenotypes at least in vitro. Therefore 

our work casts further doubt as to whether MSCs are capable of generating neural cell 

derivatives in vitro. 

6.4 Where does this leave neural differentiation of MSCs? 

The observation that cell fusion could be responsible for the observed trans­

differentiation events in the brains of adult mice following BM transplantation raises 

many doubts about the potential of BM stem cells to adopt neural cell fates (Rodic et 

al., 2004). However, cell fusion occurs at a very low frequency in vivo and cannot 

account for observations in vitro in which trans-differentiation occurs in cultures 

containing only one cell type (e.g. Hermann et al., 2004). In addition, recent work 

involving analysis of the brains of BM recipients has demonstrated that BM derived 

stem cells can contribute to host brain tissue in the absence of cell fusion events. 
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Cogle et al., 2004 analysed brain sections from three sex mismatched female BM 

transplant recipient patients. FISH and immunocytochemistry were performed to 

identify BM derived neural cells. In all three patients hippocampal cells containing Y 

chromosome positive cells were detected upto 6 years post transplant. These cells 

accounted for upto 1% of all neurons; cell fusion events could be ruled out since there 

was only one X chromosome detected. Crain et al., 2005 examined paraffin brain 

sections from female patients who had received BM transplants from male donors. 

They were able to detect Y -chromosome labeled cells in the neocortex, hippocampus, 

stratum and cerebellum. Both neurons and astrocytes were labeled, but most cells 

were of a glial phenotype. Cell fusion was eliminated as a possible explanation and 

therefore trans-differentiation of BM derived stem cells appeared to occur in these 

patients. However, these investigators report a very low number of trans­

differentiation events, too low to adequately replace lost or damaged neurons 

following disease pathology or injury. These results are consistent with a earlier 

investigation by the same laboratory in which the brains of female recipients receiving 

BM transplants from male donors were analysed for Y chromosome positive cells. In 

this case Y chromosome positive cells were detected in several brain regions. 

However most of these cells were non-neuronal, but neuronal cells were detected in 

the hippocampus and cerebral cortex (Mezey et al., 2003). 

Therefore these studies indicate that BM derived cells may contribute to adult brain 

regeneration by a process of neural trans-differentiation in the absence of fusion, but 

that the frequency of this differentiation is too low to have a significant impact on the 

regeneration of the adult CNS. Even following systemic transplantation of BM 

derived cells in animal models of CNS lesions the number of donor cells expressing 

neuronal and glial markers in animal models of injury is too low to account for the 

improvement in functional recovery following these transplants. Current work is 

focusing on determining under what conditions or circumstances, some form of BM 

transplantation might provide a adequate number of cells capable of replacing lost 

brain cells following injury or disease. Whilst these BM transplant studies 

demonstrate that stem cells present in BM can give rise to neural derivatives, it is not 

known what cell population undergoes this trans-differentiation under these 

conditions. 
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6. 5 Therapy perspectives 

At present, it is clear that under certain defined conditions MSCs are capable of 

differentiation into cells that resemble early neural cells and even possess these 

characteristics at a functional level in some cases (Hermann et al., 2004; Wislet­

Gedebien et al., 2004; 2005). However, there remain doubts as to the validity of some 

of these observations and MSC derived presumptive neurons have not yet met all the 

criteria required for describing them as fully functional neurons. In addition, the 

contribution trans-differentiation of MSCs plays m the functional improvement 

observed in animals transplanted with MSCs is unknown since alternative 

mechanisms have been proposed; including as suggested by data presented in the 

present thesis the induction of neural differentiation of resident NSC/progenitor cells, 

the progeny of which could replace lost or damaged neurons. Therefore the 

mechanism of the therapeutic benefit of MSCs is unknown. They do however clearly 

contribute to functional recovery following CNS injury. The prospects of cell 

replacement therapies for specific disease processes are unknown. Parkinson's disease 

for example, involves the selective degeneration of dopaminergic neurons in s 

Substantia Nigra of the midbrain. For MSCs to be considered a source of cells for 

autograft therapy it will be necessary to promote them towards to dopaminergic cell 

fate. A number of investigators are working on developing these protocols but at 

present little is known about the neurotransmitter specification of these cells (Guo et 

al., 2005). This will of course involve an understanding of the environmental cues that 

regulate fate specification in MSCs in different micro-environments. 

6. 6 Concluding remarks 

This work raises several key issues regarding the validity of in vitro observations and 

is particularly important to the field of transdifferentiation and the identity and 

behavior of cells in vitro. The excitement that surrounds the developmental potential 

of stem cells isolated from adult tissues is well justified, especially in its regard to 

neural differentiation, however, experimentation in this field must be closely 

controlled and the results carefully interpreted. The results presented here do not 

however, simply state that trans-differentiation of MSCs is not possible but, that they 

do emphasize that a knowledge of the molecular and cellular mechanisms underlying 

the regulation of neural protein expression and the acquisition of a neural morphology 
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are fundamental in establishing effective methods for induction of neural 

differentiation in MSCs. The criteria that an MSC derived presumptive neuron must 

meet is understandably high given the implications of these observations and the 

ultimate test for these cells is demonstration of differentiation into functional neurons 

that can integrate into the host CNS, synapse with neighboring neurons and 

spontaneously fire action potentials and replace lost or damaged neurons in the 

injured animal, and thus contribute to the restoration of function. It may just be matter 

of finding the right conditions to promote the terminal maturation of these cells, but 

alternatively these cells may be unable to attain such high levels of functional 

maturation, since it is not enough simply to express genes, cells must have the 

machinery to put all these proteins in place to allow them to attain the appropriate 

functions. Aside from the neural differentiation potential of MSCs, data presented in 

this thesis and by other investigators shows that these cells can act as reservoirs of 

soluble growth factors which are able to modify brain plasticity through their soluble 

interactions with resident NSCs and their associated progeny (Chopp and Li, 2002). 

These effects on brain plasticity undoubtedly contribute at least in part to the 

regeneration of the damaged brain. Understanding the chemical nature of these MSC 

derived signals may allow for the development of simple and effective treatments 

following CNS injury. 
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