
Durham E-Theses

Virtualising visualisation: A distributed service based

approach to visualisation on the Grid

Charters, Stuart Muir

How to cite:

Charters, Stuart Muir (2006) Virtualising visualisation: A distributed service based approach to

visualisation on the Grid, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/2659/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2659/
 http://etheses.dur.ac.uk/2659/ 
htt://etheses.dur.ac.uk/policies/


Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk


Virtualising Visualisation 
A distributed service based approach to visualisation on the 

Grid 

Stuart Muir Charters 

The c:opyright of this thesis rests with the 
author or the university to which lt was 
submitted. No quotation from lt, or 

Information derived from lt may be published 
without the prior written c:onsent of the author 
or university, and any Information derived 
from lt should be acknowledged. 

A Thesis presented for the degree of 

Doctor of Philosophy 

Visualisation Research Group 
Department of Computer Science 

e-Science Research Institute 
University of Durham 

United Kingdom 

April 2006 

-0 1 JUN 2006 



Dedicated to 
Lizzie my wife, for her love and support throughout my PhD. 

My parents, Ann and Graeme for providing me with the opportunities that I have 

had in life. 



Virtualising Visualisation 

A distributed service based approach to visualisation on the Grid 

Stuart Muir Charters 

Submitted for the degree of Doctor of Philosophy 

Abstract 

Context: Current visualisation systems are not designed to work with the large 

quantities of data produced by scientists today, they rely on the abilities of a single 

resource to perform all of the processing and visualisation of data which limits the 

problem size that they can investigate. 

Objectives: The objectives of this research are to address the issues encountered 

by scientists with current visualisation systems and the deficiencies highlighted in 

current visualisation systems. The research then addresses the question: 

"How do you design the ideal service oriented architecture for visualisation that 

meets the needs of scientists?" 

Method: A new design for a visualisation system based upon a Service Oriented 

Architecture is proposed to address the issues identified, the architecture is imple­

mented using Java and web service technology. The implementation of the architec­

ture also realised several case study scenarios as demonstrators. 

Evaluation: Evaluation was performed using case study scenarios of scientific prob­

lems and performance data was conducted through experimentation. The scenarios 

were assessed against the requirements for the architecture and the performance 

data against a base case simulating a single resource implementation. 

Conclusion: The virtualised visualisation architecture shows promise for applica­

tions where visualisation can be performed in a highly parallel manner and where 

the problem can be easily sub-divided into chunks for distributed processing. 



Declaration 

The work in this thesis is based on research carried out in the Visualisation Resarch 

Group, the Department of Computer Science, UK. No part of this thesis has been 

submitted elsewhere for any other degree or qualification and it is all my own work 

unless referenced to the contrary in the text. 

Copyright © 2004, 2005 by Stuart M. Charters. 

"The copyright of this thesis rests with the author. No quotations from it should be 

published without the author's prior written consent and information derived from 

it should be acknowledged". 

iv 



Publications 

The following publications describe describing this work as a whole or in part have 

been made: 

1. Visualisation for Informed Decision Making; From Code to Components 

Stuart M. Charters, Claire Knight, Nigel Thomas and Malcolm Munro 

Proceedings of the Workshop on Software Engineering Decision Support 

14th International Conference on Software Engineering and Knowledge Engi­

neering, Ischia, Italy, July 15-19 2002. pp. 765-772 

2. Visualisation in e-Demand: A Grid Service Architecture for Stereoscopic Vi­

sualisation 

Stuart M. Charters, Nicolas S. Holliman and Malcolm Munro 

Proceedings of the 2nd UK e-Science All Hands Meeting, Nottingham, UK, 

September 2003. 

3. Distributing Stereoscopic Scientific Visualisation across the Grid 

Stuart M. Charters, Nicolas S. Holliman and Malcolm Munro 

Proceedings of Computer Graphics and Imaging 2004, Kaua'i, Hawai'i, Au­

gust 2004. 

4. Visualisation on the Grid: A Web Service Approach 

Stuart M. Charters, Nicolas S. Holliman and Malcolm Munro 

Proceedings of the 3rd UK e-Science All Hands Meeting, Nottingham, UK, 

September 2004. 

V 



vi 

5. Thee-Demand Project: A Summary 

Paul Townend, Jie Xu, Erica Yang, Keith Bennett, Stuart Charters, Nicolas 

Holliman, Nicholas Looker and Malcolm Munro 

Proceedings of the 4th UK e-Science All Hands Meeting, Nottingham, UK, 

September 2005. 



Acknowledgements 

This work could not have been completed without the support, help and advice of 

so many people. 

Professor Malcolm Munro for supervising my PhD, for endless hours of his time 

and for giving me the opportunity to undertake this research. 

Dr Nicholas Holliman for introducing me to stereoscopic displays, and stereo 

graphics, for supervising my PhD and giving me the benefit of his industrial expe­

rience. 

Dr Nigel Thomas for providing the opportunity to stay at Durham and under­

take research that led to this PhD. 

To my examiners Professor Ken Brodlie and Professor Nick A vis for their time 

in reading this thesis. 

To all the members of the Visualisation Research Group, e-Science Research 

Institute and the Department of Computer Science for the discussions, socials and 

coffee room breaks! 

vii 



Contents 

Abstract iii 

Declaration IV 

Publications V 

Acknowledgements vii 

1 Introduction 1 

1.1 Scenario 1 

1.2 Visualisation . 3 

1.3 Stereoscopic Displays 3 

1.4 Grid Computing . 4 

1.5 Objectives . 4 

1.6 Criteria For Success . 5 

1.7 Major Contributions 6 

1.8 Thesis Overview . 7 

1.9 Summary 7 

2 Visualisation 8 

2.1 Overview. .. 8 

2.2 Information Visualisation . 10 

2.3 Scientific Visualisation 12 

2.4 Visualisation Systems . 13 

2.4.1 Visualisation Libraries 14 

2.4.2 Environments 16 

viii 



Contents 

2.5 

2.4.3 

2.4.4 

2.4.5 

2.4.6 

Distributed Visualisation Systems 

Applets ..... 

System Features . 

Current and Future trends in Visualisation Systems 

Summary .................... . 

3 Seeing Double, the wonderful world of Stereo 

3.1 Overview ..... . 

3.2 How we see stereo . 

3.3 The Basics of Stereo 

3.4 Stereoscopic Displays 

3.4.1 Eyeglass Displays 

3.4.2 Autostereoscopic Displays 

3.5 The science behind the magic 

3.5.1 Parallax Barriers 

3.5.2 Lenticular Optics 

3.5.3 Micropolarisers 

3.5.4 Holographic Elements 

3.6 Software Support for Stereo Devices . 

3.6.1 The Visualisation Toolkit 

3.6.2 

3.6.3 

IRIS Explorer 

Vis AD 

3.7 Summary 

4 The Grid 

4.1 The Grid Vision . 

4.2 The Batch Processing Grid . 

4.3 The Service Oriented Grid 

4.3.1 Grid Services 

4.3.2 Web Service . 

4.3.3 The Future of Services on the Grid 

4.4 Globus Revisited ............. . 

ix 

20 

25 

26 

26 

28 

29 

30 

30 

33 

34 

34 

35 

36 

37 

38 

38 

39 

39 

40 

41 

42 

42 

43 

43 

44 

45 

46 

46 

47 

48 



Contents X 

4.5 The Grid now and to come. 48 

4.6 Beyond the Grid 49 

4.7 Summary •• 0 0 50 

5 Virtualised Visualisation Architecture 51 

5.1 Definition 0 ••• 0 • 51 

5.1.1 Requirements 52 

5.2 Architecture . . . 54 

5.2.1 Overview 54 

5.2.2 Services 56 

5.2.3 Read Service 58 

5.2.4 Transform Service . 58 

5.2.5 Write Service 59 

5.2.6 Manage Service 60 

5.3 Tools .......... 62 

5.3.1 Composition Tool . 62 

5.3.2 User Interface 63 

5.4 Composition ... 63 

5.5 State in Services 65 

5.6 Requirements Review . 66 

5.7 Summary .. . . . . . 68 

6 Implementation 74 

6.1 Globus Toolkit 3 Alpha 2 Implementation 75 

6.2 Globus Toolkit 3.0.2 Implementation 76 

6.3 Web Service Implementation . 78 

6.3.1 Stateless Services 78 

6.3.2 Introducing State 83 

6.4 Stereo Render Service . 85 

6.5 Summary •• 0 •••• 85 



Contents 

7 Experiments and Scenarios 

7.1 Scenarios . . . . . . . . . . 

7.1.1 X-Ray Crystallography . 

7.1.2 Dark Matter Simulation 

7.2 Experimental Evaluation .... 

7. 2.1 Experimental Procedure 

7.2.2 Experiments . 

7.3 Results . . . . . . . . 

7.4 

7.3.1 X-Ray Crystallography Experiments 

7.3.2 Dark Matter Simulation 

Summary 

8 Evaluation 

8.1 Requirements ..... . 

8.2 Architectural Evaluation 

8.3 Implementation ..... 

8.4 Case Study Scenario Evaluation 

8.4.1 X-Ray Crystallography . 

8.4.2 Dark Matter Simulation 

8.5 Performance Evaluation .... 

8.5.1 X-Ray Crystallography . 

8.5.2 Dark Matter Simulation 

8.5.3 Generalizations and Overall Findings 

8.6 Information Visualisation. 

8.7 Summary ........ . 

9 Conclusion and Future Work 

9.1 Introduction .... 

9.2 Criteria for Success 

9.3 Conclusion .. 

9.4 Future Work . 

9.4.1 Architecture Developments . 

xi 

86 

86 

86 

87 

88 

89 

90 

92 

92 

95 

98 

102 

. 102 

. 104 

. 106 

. 109 

. 109 

. 110 

. 110 

. 111 

. 112 

. 114 

. 117 

. 120 

121 

. 121 

. 125 

. 128 

. 129 

. 130 



Contents 

9.5 

9.4.2 Fundamental Grid Research ..... 

9.4.3 Fundamental Visualisation Research 

9.4.4 Advanced Research 

Summary 

Appendix 

A X-Ray Crystallography Data 

B Dark Matter Simulation Data 

xii 

. 130 

. 131 

. 132 

. 133 

141 

141 

148 



List of Figures 

2.1 Conceptual Model of Visualisation Pipeline . . . . . . . . . . . . . . . 9 

2.2 Abstract Visualisation for choosing a car [Theisel and Kreuseler, 1998] 11 

2.3 Visualisation of Software Components [Charters et al., 2002] . . . . . 12 

2.4 Gravity Slope on the asteroid Eros [NASA Goddard Space Flight 

Center] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

2.5 Wind Direction shown through Splatting [Crawfis et al., 1993] 15 

2.6 SCIRun [Parker and Johnson, 1995] 18 

2.7 ParaView [Kitware] . . . . . . . . . 20 

2.8 MANICORAL Reference Model [Duce et al., 1998] 21 

2.9 Woods Model for Distributed Cooperative Visualisation . 22 

2.10 COVISE model .......... . 23 

3.1 The Human Visual System [Leigh] . . . . . . . . . . . . . . . . . 31 

3.2 2D Depth Cues [Holliman, 2004] (Photographer: David Burder) 32 

3.3 Equation governing the perception of Stereo Images [Holliman, 2004] 33 

3.4 Parallax Barriers [Holliman, 2004] . 38 

3.5 Lenticular Optics [Holliman, 2004] . 39 

3.6 Micropolarisers [Holliman, 2004] 40 

5.1 Initial Design . . . . . . 54 

5.2 Introduction of the Grid 55 

5.3 Introduction of the Manage Service 55 

5.4 Expanding Transform Services . 56 

5.5 Final Pipeline Definition . . . . 57 

5.6 Example configuration parameters for a stereo render service 59 

xiii 



List of Figures xiv 

5.7 Manage Service Class Definition . . . . 62 

5.8 Composition Tool Operation Flowchart 70 

5.9 Final Pipeline Definition with Support Tools 71 

5.10 How a service can scale . . . . . 71 

5.11 Stateful Service Class Diagram 72 

5.12 Stateful Isosurface Service Class Diagram . 73 

6.1 WSDL for a transform service . . . 80 

6.2 Overview of Implemented Services . 81 

6.3 Example of an implemented pipeline 81 

6.4 Using External Libraries with Services 82 

6.5 Stateful Message Logic . . . . . 84 

7.1 X-Ray Crystallography Pipeline 87 

7.2 X-Ray Crystallography Results 88 

7.3 Dark Matter Simulation Pipeline 89 

7.4 Dark Matter Simulation Result 90 

7.5 Chart of Experiment One Results 92 

7.6 Chart of Experiment Two Results 93 

7.7 Chart of Experiment Three Results 94 

7.8 Chart of Experiment Four Results . 95 

7.9 Chart of Experiment Five Results 96 

7.10 Chart of Experiment Six Results 97 

7.11 Chart of Dark Matter Experiment One Results. 98 

7.12 Chart of Dark Matter Experiment Two Results 100 

7.13 Chart of Dark Matter Experiment Three Results . 100 

7.14 Chart of Dark Matter Experiment Five Results 101 

7.15 Chart of Dark Matter Experiment Six Results 101 

8.1 Overview of X-Ray Crystallography Experimental Results 111 

8.2 Overview of Dark Matter Experimental Results .... 112 

8.3 Overview of Experimental Results from both Scenarios . 114 

8.4 Overview of Percentage of Experiment One for both Scenarios . 115 



List of Figures 

8.5 Component City Visualisation 

8.6 Component City Pipeline. 

9.1 Final Pipeline Definition ....... . 

9.2 X-Ray Crystallography Scenario Result 

9.3 Dark Matter Simulation Pipeline Result 

XV 

. 118 

. 120 

. 123 

. 126 

. 127 



List of Tables 

2.1 Comparison of Features in Visualisation Systems. . . . . . . . . 26 

7.1 Overview of X-Ray Crystallography Experimental Result Data . 99 

7.2 Overview of the Dark Matter Case Study Experimental Results 99 

8.1 Summary of Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 103 

8.2 Overview of X-Ray Crystallography Experimental Result Data . 111 

8.3 Overview of the Dark Matter Case Study Experimental Results 113 

8A Percentage of Experiment One Comparison . 

A.1 Experiment One: Single Machine . . . . 

A.2 Experiment Two: Locally Remote Data . 

A.3 Experiment Three: Remote Data 

AA Experiment Four: Split Pipeline . 

A.5 Experiment Five: Services on Different Machines 

A.6 Experiment Six: Loaded Machine ........ . 

B.1 Experiment One: Dark Matter . 

B.2 Experiment Two: Dark Matter 

B.3 Experiment Three: Dark Matter . 

BA Experiment Five: Dark Matter 

B.5 Experiment Six: Dark Matter . 

xvi 

114 

142 

143 

144 

. 145 

. 146 

. 147 

149 

150 

151 

152 

. 153 



Chapter 1 

Introduction 

Visualisation is a communication mechanism allowing humans to gain insight into 

information. It has been steadily rising in impact over the course of its develop­

ment, from early hand drawn diagrams to the latest computer generated interactive 

graphics. The size and range of problems to which it is applied is growing, as is the 

extent to which its use is pervading the sciences. 

A new novel architecture, the focus of this thesis, is researched to address the 

issues that arise from the growth in size of problems and from the widespread use 

of visualisation. 

The research fuses the areas of visualisation, stereoscopic display technology and 

grid technology together providing a solution capable of meeting the ever increasing 

demands of scientists and other users. 

An overview of these areas with an outline of the objectives of the research and 

an introduction to the remainder of the thesis are presented. 

1.1 Scenario 

Imagine if you will the following situation: 

A scientist working in the United Kingdom in his office is studying the creation 

of the universe and how it has developed since the big bang. In order to do this he 

has written a simulation, this simulation requires a large computational resource to 

compute; as he does not have such a resource available at his home institution he 



1.1. Scenario 2 

runs the simulation on a resource at another institution, for example, in Europe. 

The simulation is complex with a large number of entities, it takes a long time to 

complete, however at various points it outputs the current status of the simulation 

to files on disk. As the simulation contains a large number of entities it produces 

large files when the status is written to file. These files would take a large amount of 

time to transmit even across a high speed network, despite this the scientist wishes 

to monitor the simulation to ensure that it is progressing as it should. The scientist 

only needs to see a high level overview of the data to see how the simulation is 

progressing. 

When the simulation is completed the scientist wishes to view the results of the 

simulation at a high level until an item of interest is found. The scientist then 

wishes to view that part of the result space in more detail. On finding a result 

that requires more investigation he wishes to view that result on a device that can 

display in stereo as the simulation is of a 3D phenomena and it is important for the 

scientist to have a clear view of the interactions occurring to cause the phenomena. 

On viewing the result in stereo the scientist decides he wishes to consult another 

scientist, a professor based in the United States. The difference in time zones is such 

that the scientists cannot effectively collaborate at the same time. The professor 

is currently very busy and can only fit in examining the result around her other 

commitments. The American professor has different stereo equipment to the UK 

scientist so a pre-generated video of the result could not work as it would not work 

correctly on the stereo equpiment. They cannot send the large amount of data so 

the professor can recalculate the visualisation, even if the data was small enough to 

send the professor does not have the time to recreate the visualisation. 

A possible solution to this scenario is a visualisation system which will allow the 

extraction of high level data from a remote computer, allow visualisation at various 

levels of detail, dynamically generate images so as to cope with multiple types of 

stereo display equipment and support asynchronous collaboration. 



1.2. Visualisation 3 

1.2 Visualisation 

Visualisation is concerned with providing insight into data, where that data is nu­

merical and generated from experimentation or simulation it is termed scientific 

visualisation. Where different types of data, such as text, images and numbers, are 

brought into visualisation this is termed information visualisation. 

Visualisation is a diverse area of research and the term itself is heavily overloaded. 

Visualisation as a term can be divided into three main areas: 

Visualisations, visualisation technology and the visualisation process. 

Visualisations relate to the visual representations and graphical output produced. 

Visualisation technology relates to the software used to produce the visualisation. 

The visualisation process is the procedures used to take raw data and convert it 

into a visual representation that a user can view and interact with. 

The two main categories of visualisation, information visualisation and scientific 

visualisations, are examined as applied areas of research in chapter two. Visualisa­

tion technology encompasses the software solutions available to build visualisations 

for use by the end user. These systems include libraries, visualisation environments 

and distributed frameworks. These areas are all explored in greater detail in chapter 

two along with current and future trends in visualisation. 

1.3 Stereoscopic Displays 

We experience the world around us in stereo, we hear with two ears and see with 

two eyes. The world of computer displays has traditionally been mono, showing 

both 2D and 3D images with no perceived depth. Advances in display technologies 

now allow three dimensional images to be displayed stereoscopically. 

A multitude of different stereo displays exist, each is different and requires custom 

content to get the best from them. Autostereoscopic displays are the main focus 

of this review, these displays allow the viewer to see stereoscopically without the 

need for special head wear such as shutter glasses. Autostereoscopic displays are 

available in a variety of formats including single user desktop displays and multi 

user presentation displays. 



1.4. Grid Computing 4 

Images for display on stereoscopic displays must be generated specially, the mech­

anism for generating them involves creating two versions of the image, one tailored 

for the left eye and one for the right eye. Typically these two images are generated 

using multiple cameras in rendering a scene. Chapter Three discusses stereo display 

technology and image generation more fully. 

1.4 Grid Computing 

There is an increasing need and desire to leverage geographically disparate high per­

formance computing facilities to allow larger problems to be solved and to increase 

the utilisation of these resources, one solution to this is Grid computing. 

The Grid computing vision sees institutional boundaries being broken down and 

computing resources being freely traded to solve large scale problems. 

To achieve this vision an underlying software infrastructure to manage security, 

storage, communication and computational resources needs to be in place. A batch 

processing solution and a service oriented solution to the infrastructure problem 

have been developed. Chapter Four discusses these solutions in more detail. 

1.5 Objectives 

The objective of this research is to provide a mechanism by which a visualisation 

can be viewed locally by a user, for example on their desktop computer, but that can 

harness remote resources to perform the resource intensive parts of the visualisation. 

Increasing scientific study is carried out by both simulation, insilico experimen­

tation and real world observation and experimentation. This scientific study is 

increasingly collecting greater quantities of data, often of the order of terabytes 

and beginning to tend towards petabytes. To analyse these quantities of data re­

quires significant computational assistance. One such method, and perhaps the 

only method that is suitable for such large data sets is that of visualisation, the 

use of graphics and interaction, occasionally coupled with audio augmentation, to 

represent data and allow scientists to explore that data. 



1.6. Criteria For Success 5 

Despite a trend for large scale visualisation installations, such as CAVEs and 

RealityCenters in the past, the desire for local visualisation has increased as visual­

isation has become more of a 'normal scientific analysis activity'. This is reinforced 

by the views of users of visualisation services at insitutions with comments such as 

"prefer local visualization" and "I do visualization locally." [NERSC, 2002] 

The computational ability of CPUs has increased greatly, in accordance with 

Moore's Law. However this increase has been insufficient to allow the processing of 

large amounts of data quickly. Supercomputing resources, combining many hundreds 

or thousands of processors provide one solution but the demand for these resources 

can be great leading to large lead times for computational jobs. 

1.6 Criteria For Success 

This section outlines criteria that the completed research can be evaluated against 

to determine how far it has gone to meeting its objectives. These criteria will be 

revisited and discussed in the final chapter of this thesis. 

The criteria for success are an architecture that: 

1. Allows a visualisation to be displayed on a desktop display. 

This criteria means that the architecture should allow the output, a visualisa­

tion, to be displayed on a desktop display attached to a PC. 

2. Runs across multiple computers/resources. 

This criteria means that the architecture should be able to be deployed and 

executed on multiple different computers at the same time, this means that 

computers that are designed for a specific job can be used for that job. 

3. Performs visualisation of a data set 

This criteria means that the architecture developed should allow a data set to 

be analysed and processed such that a visualisation is produced. 

4. Supports interaction within the visualisation. 



1. 7. Major Contributions 6 

This criteria states that the architecture designed should be able to support 

interaction as part of the visualisation process. 

5. Supports collaborative visualisation. 

This criteria means that the architecture should provide support for collabo­

rative visualisation where participants are geographically distributed. 

6. Supports multiple display types, including autostereoscopic desktop displays. 

This criteria means that the architecture should be capable of supporting mul­

tiple display types, of these display types that can be supported autostereo­

scopic displays should be explicitly supported. 

7. Supports multiple visualisation types 

This criteria means that the architecture should not be specialised to support 

a single branch of visualisation, for example, scientific visualisation or infor­

mation visualisation, but should as far as is possible be generalised to support 

multiple types of visualisation. 

1.7 Major Contributions 

The major achievements of the research have been: 

• Definition of a Service Oriented Architecture for Visualisation on the Grid 

• Implementation of the Service Oriented Architecture 

• Real World Case Study Scenarios to demonstrate the architecture 

• Performance Analysis of a Service Oriented Architecture 

• Identification of areas for Future Work for both Visualisation and Visualisation 

Architectures 



1.8. Thesis Overview 7 

1.8 Thesis Overview 

Chapter One contains an introduction to this thesis, outlining criteria for success 

and the objectives of this research. The next chapters look at three areas of re­

search, visualisation, stereo and grid computing. Chapter Two focuses on Visualisa­

tion, looking at types of visualisation and the mechanisms through which they are 

achieved. Chapter Three looks at stereo graphics and display technologies. Chapter 

Four provides a look at Grid computing, what the vision is and how that has been 

realised. 

Chapter Five presents the design of the virtualised visualisation architecture with 

Chapter Six describing the implementation of that design. 

Chapter Seven presents an analysis of the performance of the architecture de­

scribed in Chapter Six through experimentation and problem scenarios. Chapter 

Eight uses the performance information to evaluate the architecture and finally 

chapter Nine presents conclusions about the architecture. 

1.9 Summary 

This chapter has presented a brief introduction to three areas, visualisation, stereo 

and Grid computing along with the objectives for this research including the criteria 

for success. 



Chapter 2 

Visualisation 

Visualisation is an exciting and expansive area of research, it combines the areas of 

computer graphics, problem solving and software engineering. There is both an art 

and a science behind good visualisation. 

This chapter examines the art and science of visualisation and the technology 

behind the generation of visualisations. 

2.1 Overview 

Visualization has been a corner stone of computing from its earliest days [Brodlie 

et al., 2004b] and provides a mechanism for users to gain insight into data they are 

investigating. 

A definition of visualisation (alternatively spelt visualization) is: 

Visualisation is "the ability to present information visually that is rapidly 

assimilated by human observers, and transformed into understanding or insight." 

[Bethel et al., 2003] 

This definition is reinforced by the following quotations as to the purpose of 

visualisation. 

"The purpose of computing is insight not numbers" [Hamming, 1962] 

For visualisation we can go as far to say that 

8 



2.1. Overview 9 

"The purpose of visualisation is insight not pictures" 

Ben Shneiderman quoted in Scientific American [Beardsley, 1999]. 

The purpose of visualisation therefore is insight, the mechanism to achieve that 

insight is pictures, those pictures are built from data, often numbers. 

Therefore a high level definition of visualisation can be stated thus: 

Visualisation is a high level interpretation mechanism for data. 

This view is reinforced by Globus and Raible in their paper "Fourteen Ways to say 

nothing with Scientific Visualization" [Globus and Raible, 1994] who show how to 

produce meaningless visualisations by concentrating on pretty pictures rather than 

ones which convey scientific meaning and insight. 

There are many types of visualisation, the most prevalent is scientific visualisa­

tion which is concerned with the visualisation of data from scientific experiments and 

simulations, this data is usually numeric in nature. The second main area of visual­

isation is information visualisation, the data visualised in information visualisation 

includes text, images as well as numerical data. 

The majority of visualisations are generated through the use of the visualisation 

pipeline the conceptual model of which was proposed by Haber and McNabb [Haber 

and McNabb, 1990] and is shown in figure 2.1 

._ __ o_at_a _ __,t--.. •1 L __ F_In_a_r _ _.H.._ __ M_•_P _ ____.H Render 

Figure 2.1: Conceptual Model of Visualisation Pipeline 

The pipeline model is not always explicitly exposed in visualisations, however, 

each of the stages: data where the user data is loaded; filter where the data is 

manipulated; map where a representation of the data is generated and render where 

the final output is produced, are all used. 

The pipeline model for visualisation is used as a basis for the design of many 

visualisation systems; the systems are discussed later in this chapter. 



2.2. Information Visualisation 10 

Ware [Ware, 2000) highlights five advantages of visualisation, these are listed 

below. 

• Ability to comprehend huge amounts of data 

• The perception of emergent properties 

• Shows errors in the data easily 

• Understanding large scale and small scale features. 

• Facilitation of hypothesis formation 

These advantages are shown through the following sections which discuss In­

formation Visualisation and Scientific Visualisation as two broad categories in the 

visualisation topic. 

2.2 Information Visualisation 

The use of interactive visual representations of abstract, nonphysically based data 

to amplify cognition. [Card et al., 1999) 

Information Visualisation is concerned with the visualisation of data, includ­

ing, text, images and numerical data. This area of visualisation subsumes many 

specialised areas of visualisation including software visualisation and medical visu­

alisation. 

The main focus of information visualisation is providing representations of ab­

stract data sets. These data sets may be structured such as software source code 

or unstructured. Many of the data sets have no real world representation, therefore 

the aim of information visualisation is to provide a representation that shows the 

structure of the data and allows users to explore the data and gain insight into it. 

Information Visualisation makes use of different types of representation. Many 

are abstract representations like that shown in Figure 2.2 whilst others map ab­

stract data onto real world metaphors allowing users to make use of their existing 

knowledge to aid in the interpretation of the data. 



2.2. Information Visualisation 11 

The abstract visualisation shown in Figure 2.2 is designed to help users choose 

a new vehicle, it shows six variables relating to the vehicles. Each car model is 

represented by a glyph, this glyph is located by the values of each of the six vari­

ables. This results in similar vehicles being grouped together and the relationships 

between them being exposed. This grouping of similar vehicles is an example of the 

visualisation being used to show emergent properties in the data. 

Figure 2.2: Abstract Visualisation for choosing a car [Theisel and Kreuseler, 1998] 

A use of real world metaphors has been made by Charters et. al. [Charters et al., 

2002] in mapping the properties of software components onto a cityscape metaphor 

as shown in Figure 2.3 this allows a user of the visualisation to use their preexisting 

knowledge of navigating a city to help them identify components that meet their 

requirements. The visualisation makes use of several sign post features to help users 

maintain their orientation within the visualisation and also contains a high level 

overview that allows users to select their initial area of interest. 



2.3. Scientific Visualisation 12 

Figure 2.3: Visualisation of Software Components [Charters et al., 2002] 

2.3 Scientific Visualisation 

The use of interactive visual representations of scientific data, typically physically 

based, to amplify cognition. [Card et al., 1999] 

This section examines the area of scientific visualisation. The area of scientific 

visualisation is the largest use of visualisation. It is driven by scientific data, usually 

numeric in nature, generated by scientific experiments and simulations. 

Scientific Visualisation could be seen as simply a subset of information visual­

isation however the techniques used and the basis for the data used in scientific 

visualisation set it apart. 

The data used in Scientific Visualisation is derived from scientific experiments 

and simulations. The visualisations generated are often deeply anchored to the 

physical nature of the phenomena being examined as this provides a base point of 

understanding to tie the visualisation too. The binding to the physical can however 

hinder the development of more informative, insightful and expressive visualisations 

that are abstract in nature. It has been argued that abstract representations are the 

future [Hanrahan, 2005], this may be the case but physical provides an ideal entry 



2.4. Visualisation Systems 13 

point for investigations into and representations of phenomena. 

The strong correlation between the physical and the visualisation provide a very 

good starting point for developing visualisations and choosing what techniques to 

use. Other areas of visualisation can suffer from the "blank canvas" problem where 

the data to be visualised has no identifiable physical form and as such an abstract 

form must be developed. 

Visualisation to an extent has always been accepted by the scientific commu­

nity, diagrams and pictures have long been used to convey information in scientific 

reporting. The challenge is to move from a desire to use visualisation as a pretty, 

artistic addition to the scientific investigative process, to as stated earlier, the use of 

visualisation as an integral part of the scientific investigative process to gain insight 

into the phenomena under examination. 

Scientific visualisations that have been produced are examined to provide an 

overview of the nature of the resulting images from the visualisation process. 

The visualisation of the asteroid Eros as shown in Figure 2.4 shows the physical 

shape of the asteroid with a false colour map superimposed across its surface. The 

false colour map ranges from red through yellow to green through blue highlighting 

the variations in the gravity slope across the asteroid. This visualisation shows the 

representation of an invisible phenomena on a physical representation of the object 

demonstrating how the abstract can be mapped onto the physical. 

A technique known as splatting is shown in Figure 2.5 in this instance the wind 

direction across a land mass is being shown. The coloured arrows show the direction 

that the wind is travelling, the grey cloud showing the wind body. This visualisa­

tion shows another technique used in scientific visualisation exposing the range and 

diversity of techniques that can be applied. 

2.4 Visualisation Systems 

Visualisation Systems are the mechanism by which visualisations are produced. 

These systems range from libraries that can be used to build bespoke systems 

through to commercial offerings developed as general purpose visualisation tools. 



2.4. Visualisation Systems 14 

Figure 2.4: Gravity Slope on the asteroid Eros [NASA Goddard Space Flight Center] 

Coupled with these are research developments pushing the boundaries and advanc­

ing the state of the art in visualisation. The visualisation systems surveyed are a 

representative sample of those available to visualisation researchers demonstrating 

the features that can be found in such systems such as: 

• Composition 

• Collaboration 

• Remote Resource Use 

• Cross Platform Operation 

2.4.1 Visualisation Libraries 

This section looks at some of the libraries that have been developed for the con­

struction of bespoke visualisation applications, the Visualisation Toolkit (VTK) and 

VisAD are discussed. 



2.4. Visualisation Systems 15 

Figure 2.5: Wind Direction shown through Splatting [Crawfis et al. , 1993] 

VTK 

VTK [Schroeder et al., 2003] is an object oriented toolkit developed in C++ and 

designed for building visualisation applications. The visualisation pipeline approach 

is used, however in VTK the composition of pipelines is done programmatically 

rather than graphically. 

The toolkit has modules that will run using technologies such as MPI allowing 

applications to be run in environments where multiple computers are combined 

within an institutional boundary, such as with a cluster computer. 

Several front end solutions have been built using VTK, including Para View from 

Kitware. These front end solutions allow the pipeline composition to be done graph­

ically and take VTK into the realm of a modular visualisation environment. 

The VTK libraries can support distributed applications with some modules al­

lowing execution in parallel. This can help cope with large datasets but the memory 

on the host system is still a major limiting factor. 

VTK does not support collaborative visualisation 'out of the box' as it is a col­

lection of libraries but synchronously collaborative application could be developed. 



2.4. Visualisation Systems 16 

Vis AD 

VisAD [Hibbard] is a Java component library used for the analysis and visualisation 

of numerical data. In the same way as VTK visualisations in VisAD are produced 

programatically but in VisAD the pipeline model is much less explicit. The VisAD 

library allows bespoke visualisation applications to be built, supporting distributed 

and collaborative visualisation features to be incorporated into those applications. 

VisAD concentrates its development on solutions to numerical visualisation problems 

and as such is less comprehensive than some other visualisation systems. 

2.4.2 Environments 

This section provides an examination of both Modular Visualisation Environments 

(MVEs) and of Problem Solving Environments (PSEs). MVEs and PSEs are soft­

ware applications that allow users to construct visualisation pipelines from software 

modules. These applications typically run on a single computer, be it a desktop PC 

or a supercomputer. 

Brodlie et al. present a examination of many historical and current MVEs and 

PSEs [Brodlie et al., 2004b]; an overview of one such MVE, IRIS Explorer is pre­

sented along with a look at SCIRun, a Problem Solving Environment. 

IRIS Explorer 

IRIS Explorer [Foulser, 1995] is an MVE that has benefited from both commercial 

development and academic research. The system was originally developed for the 

IRIX operating system before being spun out and developed for multiple platforms 

by NAG (http:/ /www.nag.co.uk/). The system is based on a series of modules stored 

in a library, these modules can be combined together to form visualisation pipelines 

in a graphical user interface that allows a 'drag and drop' style of interaction. 

The system can be extended by users developing their own modules for the 

system which can be imported to the library. 

The system has been extended to allow collaborative visualisation through the 

COVISA project [Wood et al., 1997], now part of the standard distribution. Collab-



2.4. Visualisation Systems 17 

oration is achieved by one user exporting the output of one of their modules, and 

another user importing this into the pipeline running on their system. This requires 

that both users have a copy of IRIS Explorer running and that they are performing, 

different place, same time collaboration as defined by Applegate [Applegate, 1991]. 

IRIS Explorer is usually executed on a single resource, as such its capabilities to 

load large datasets and to cope with large problems is severely limited. Essentially 

the bigger, in complexity or data size, the problem that is to be visualised the 

bigger, in terms of memory and processor capability, the computer that is required. 

Modules in the IRIS Explorer environment can be run on a remote computer using 

rsync but each module is limited by the capabilities of the resource that it is run on. 

The COVISA extensions to IRIS Explorer allows synchronous collaboration to 

take place but can duplicate the processing done by modules, by placing a copy 

locally to each participant. The data interchange between collaborators is not opti­

mised for efficiency and no synchronisation of the visualisation views is provided. 

The gViz project [gViz] is looking to 'grid enable' IRIS Explorer to allow the 

application to connect to and to steer simulations running on the Grid. The project 

has developed a XML web based visualisation pipeline designer, SVG Map Editor, 

which produces pipelines described in skML a custom markup langugage. These 

pipelines can then be read by an IRIS Explorer module that creates a map inside 

IRIS Explorer and allows modules to be launched on specified hosts. gViz is limited 

by the fact that it is grafting grid technology onto an existing product that has not 

been designed with that mode of operation in mind. Therefore the whole pipeline 

only exists whilst the client is running, whilst the application can attach, detach 

and re-attach to simulations that are left running it cannot be left processing data 

produced by the simulation. The gViz model also only allows a forward flow of 

data through the pipeline which makes advanced interaction pipelines difficult to 

construct. 

IRIS Explorer is hampered in its ability to meet the demands of grid computing 

through being tied to an application perspective where all modules run as part of the 

main application and nothing can exist or persist outside of that main application. 



2.4. Visualisation Systems 18 

SCIRun 

SCIRun [Parker and Johnson, 1995] is a PSE developed at the University of Utah, 

Scientific Computing and Imaging Institute (SCI). SCIRun differs from other MVEs 

such as IRIS Explorer in that it has been developed in a non-modular manner, for 

users to extend the functionality of SCIRun they must compile their additions into 

the system source code. SCIRun is targeted at shared memory parallel machines, 

however it now has extensions that allow it to run in other distributed environments. 

SCIRun does not contain any collaborative visualisation elements directly but 

can be used in a shared desktop manner through use of applications such as VNC. 

Figure 2.6 shows SCIRun being used to perform a medical visualisation, one of 

the areas that it has been developed to provide extensive support for. 

SCIRun does not support multiple display types directly, support for this must 

be developed separately and as with other modules compiled into the system. Scala­

bility in SCIRun is achieved by the core software being designed for a shared memory 

parallel architecture enhanced by extensions to support distributed processing. 

Figure 2.6: SCIRun [Parker and Johnson, 1995] 



2.4. Visualisation Systems 19 

Triana 

T'riana [Taylor et al., 2003] is a Peer-to-Peer (P2P) problems solving environment 

that allows a large number of resources to be used to distributed computation across. 

These resources run a Triana Service which communicates with a Triana Controller 

Service. The services communicate using the JXTA protocol. Each Triana Service 

is a general purpose service and can be re-tooled to provide different functionality. 

The Triana System is written in Java and uses the Java Sandbox security model 

to ensure that host machines are not compromised by rogue code being executed. 

GAPtk 

The Grid aware Applications Portal toolkit (GAPtk) [Sastry and Craig, 2003] is a 

toolkit that aims to provide a web-service interface onto existing legacy problem 

solving environments to allow them to interface with Grid middleware to allow the 

processing and visualisation of large amounts of data. 

The toolkit communicates between services using the Simple Object Access Pro­

tocol (SOAP). The toolkit contains two implementations of the client backend for 

maximum flexibility, a Java based Axis implementation and a custom C library. 

The toolkit offers two main types of service, one for data extraction and another 

for data analysis and visualisation. The data service allows querying of simple meta­

data from known data sources. 

Para View 

The Para View [Kitware] visualisation system is built upon the VTK library using a 

mix of Tcl/Tk and C++, the application grew from a joint US development project 

involving Kitware and Los Alamos National Laboratory and currently involves sev­

eral US research organisations. Para View like other visualisation environments al­

lows visualisation pipelines to be built as shown in Figure 2.7. In ParaView this is 

done as a set of operations layered on each other, similar to the paradigm used in 

3D modelling packages for graphics manipulation. The system allows users to select 

operations from a menu system and to alter their properties once they are added to 

the operation stack. There is no facility for adding external modules to the system 



2.4. Visualisation Systems 20 

Figure 2.7: ParaView [Kitware] 

and currently not all of the VTK operations are supported in Para View. Para View 

has been designed to allow scalability of the application through using MPI to allow 

parallel computation and parallel I/0. 

The Para View system is open source which allows other developers and re­

searchers to develop and contribute new features to the system and to examine 

the source code to determine how operations are achieved. 

2.4.3 Distributed Visualisation Systems 

This section examines research in the area of visualisation systems with a distributed 

nature. Visualisation systems that have a distributed component can be classified 

into several subsections. 

• Client/Server 

• Web Based 

• Applets 



2.4. Visualisation Systems 21 

The area of distributed visualisation systems is growing, due in part to the de­

mand for the use of non-traditional technologies, very large data sets and instant 

availability of visualisations; these are demands that cannot be served by infrastruc­

ture based on desktop computers [Brodlie et al., 2004a]. 

Brodlie et al. present a good overview of Distributed and Collaborative visuali­

sation systems [Brodlie et al., 2004b], these are discussed in this section. 

Distributed Visualisation Models 

Several architectures and models for distributed visualisation have been developed, 

these are examined in this section. 

MANIC ORAL 

The MANICORAL model was developed as a reference model for distributed 

cooperative visualisation as part of the Multimedia And Network In COoper­

ative Research And Learning project [Duce et al., 1998]. The model is shown 

in figure 2.8. 

D 

Ull 
Ull Ul2 

Ull -- Ul2 

Figure 2.8: MANICORAL Reference Model [Duce et al., 1998] 

The model contains input data, modules and output image. The modules 

perform the computation. In many visualisation pipelines such as the Haber 



2.4. Visualisation Systems 22 

McNabb [Haber and McNabb, 1990) each one of these modules is specialised 

to perform a specific task; filter, map or render. 

The MANICORAL model involves a large duplication of tasks, in Figure 2.8 

the read data, contour and view image tasks are all duplicated. There is 

communication between the contour modules which allows both pipelines to 

be loosely synchronized. 

A model which involves a duplication of the pipeline results in a wasted com­

putation, where the resources running the duplicate pipelines are dissimilar it 

becomes difficult to maintain synchronisation between the pipelines, unless a 

lowest common denominator factor is used to maintain balance. 

CO VISA 

1 

Figure 2.9: Woods Model for Distributed Cooperative Visualisation 

Integrated into IRIS Explorer, CO VISA is a central server collaboration system 

which distributes information to connected users. 

The COVISA model as shown in 2.9 allows modules in the visualisation pipelines 

to be shared between multiple users. This is achieved by adding a remote out­

put to a module and the remote user adding a remote input. The remote input 

feeds into a copy of the next module in the pipeline. In this way any changes 

in the host pipeline up to the point of the remote output are reflected in all 

pipelines. The central server approach allows users to specify if updates from 

their modules, below the remote output/input, are communicated to others in 

the collaboration. No floor control policy is implemented meaning a free for 

all approach to collaboration is taken. 

This type of model requires a central server, or a master user, this user must 



2.4. Visualisation Systems 23 

remain in the visualisation at all times making asynchronous collaboration 

difficult to achieve. The exporting of modules to other users across a network 

introduces delay in the propagation of data through the pipeline as changes 

must be fed to all receivers of the data. 

COVISE 

Local Workstation Remote Workstation 

·.. • t .. .. : , ,' 

<::§"BJ : lc~·~r 
Shared Data Space Shared Data Space 

Figure 2.10: COVISE model 

COVISE [Wierse, 1995] is a collaborative visualisation and simulation envi­

ronment designed for supercomputer based working, allowing modules to be 

spread across different machines to make best use of their characteristics. 

The COVISE model shown in Figure 2.10 uses a shared data space to distribute 

the original data to each client, the clients then process the data to produce 

the graphics for the visualisation. The clients are managed by a single central 

controller and the only data that is passed between users once the original 

data has been distributed is viewpoint synchronisation data. 

This model is useful where a static scene is generated at the start of the 

visualisation process with only small positional updates to b sent after that 

time and the visualisation is running on comparable resources that can handle 



2.4. Visualisation Systems 24 

the graphics and update load. As the bulk of the data transfer occurs at the 

start, this can be done using a high speed data transmission mechanism. For 

scenes where data is generated throughout the lifetime of the visualisation 

this model is less useful as the data must be replicated to multiple locations 

increasing the amount of data. Synchronisation of the scenes across multiple 

clients is an issue that needs to be carefully considered when this type of model 

is used. 

Client /Server 

This section looks at visualisation systems that split the visualisation process into 

two parts, one of which is a server and runs remotely and the other is a client that 

runs locally to the user. 

The most basic Client/Server architecture is that where the raw data is stored 

remotely, on a web server for example, and the client loads the data for visualisation 

from a URL. 

At the opposite end of the spectrum is the situation where the server performs all 

of the visualisation and just sends the final picture to the client, this type of archi­

tecture is used in the RAVE project [RAVE] which is concerned with visualisation 

to a PDA. 

There is a trade off with this type of system, when is it best to perform graphical 

calculations on the display device and when is it best to perform these on a remote 

device and send the completed frame to the display device. Often the solution is 

a hybrid, one that combines the sending of some completed graphics with some on 

device calculation!". This allows a level of local interactivity without requiring a large 

amount of data transfer whilst not overloading the local device with the graphics 

processing requested of it. 

Web Based 

This section looks at visualisation systems that make use of Web and Internet tech­

nologies. 

A web-based front end to Amira, termed WEB-IS2 [Wang et al., 2003], has been 



2.4. Visualisation Systems 25 

presented in which a web page containing a Java applet is loaded by the user and 

used to interact with a remotely running version of Amira, a MVE. 

The Java applet provides a GUI that allows the user to establish visualisation 

pipelines on the remote server which performs the computation and can then display 

the result to the user. The applet is customised to support a variety of platforms 

including PDA devices with a limited display area. In this case the number of 

options presented to the user is reduced, leaving only the most used and most useful 

features. 

The system is limited by the computational power of the service resource and the 

amount of memory available for a user session, if one user is performing a particularly 

memory intensive or processor intensive visualisation all users of the system would 

be impacted. 

2.4.4 Applets 

This section looks at visualisation systems that used Java Applets to provide visu­

alisation services to users via the web. 

Applet based systems such as VizWiz [Michaels and Bailey, 1997] provide a plat­

form independent environment that can be run from a Web Browser by a user on the 

internet. Such systems use the processing capabilities of the local machine to per­

form the visualisation. A limitation with Java Applets is the sandbox security model 

which prevents them from accessing data from the local machine. To work around 

this problem Applet systems are either coupled to a limited number of datasets made 

available or provide a mechanism via the a Web Browser to upload a data file to the 

remote server which can then read back and used by the Applet. The need for the 

Applet to download a remote dataset can result in a large delay before visualisation 

can begin especially if a large dataset is used. The performance capabilities of the 

local machine also greatly impact the effectiveness of the visualisation system to 

perform the necessary computations on the dataset. 



2.4. Visualisation Systems 26 

Feature/System IRIS Explorer SCIRun Para View 

Graphical Composition X X X 

Synchronous Collab. X 

ASynchronous Collab. 

Remote Resource Use X X 

Scalable X X 

Reusable Modules X X 

Accessible via Internet gViz 

Modules easily ported 

Multiple Architectures X X 

Parallel Implementation X X 

Table 2.1: Comparison of Features in Visualisation Systems 

2.4.5 System Features 

The range of features of a variety of visualisation systems support is shown in Table 

2.4.5. This list is helpful in identifying the features that are lacking from current 

visualisation systems and provides a comparison for use in evaluating a grid visu­

alisation solution. These features are derived from the criteria for success and the 

scenario outlined in the introduction. 

2.4.6 Current and Future trends in Visualisation Systems 

This section looks at the directions that visualisation systems are going in with the 

advent of Grid Computing and the developments that can be expected in the future. 

Visual Supercomputing 

The term visual computing was introduced by Brodlie et al. [Brodlie et al., 2004a) 

and is defined as: 

"Visual Supercomputing is concerned with the infrastructural technology for sup­

porting visual and interactive computing in general, and visualization in particular, 

in complex networked computing environments" 



2.4. Visualisation Systems 27 

They set out a vision for and the challenges to developing the 'next generation' 

of visualisation systems, including the use of autonomic computing technologies to 

build self-healing visualisation pipelines and the desire for a 'visualization secretary' 

to automatically find visualisation services and compose them into a correct pipeline 

for the non-expert user. 

The e-Viz project [e-Viz] has been established to begin work on developing such 

an infrastructure. The e-Viz project uses an XML based knowledge base to discover 

an appropriate visualisation process which is executed by the e-Viz server, either 

interactively or in batch mode, before the results are returned to the e-Viz client 

and the visualisation customer. The project will develop prototype software systems, 

conceptual models and interaction protocols which will be evaluated in a simulation 

environment simu VS. 

The Impact of the Grid 

Shalf and Bethel present a vision of the short to medium term future with their DiVA 

project which looks at a framework, the Distributed Visualization Architecture, for 

distributed, component based, Grid-enabled visualisation [Shalf and Bethel]. 

A list of properties of this framework is presented: 

• Distributed, Heterogeneous Components 

• Fundamental Graphics and Visualization Algorithms 

• Distributed Execution and Dynamic Scheduling 

• End-to-end Performance 

The conclusion that this type of development is a "daunting challenge" is made, 

but also that "Such a vision serves to promote growth of visualization technology into 

Grid environments, and to promote unity within the visualization and computational 

science communities." 



2.5. Summary 28 

2.5 Summary 

Visualisation, both as an art and a science, has an important role to play in the 

analysis of large data sets. 

Numerous techniques for visualisation are available these are embodied in visu­

alisation systems, either bespoke or general purpose, closed source or open source, 

stand alone or distributed. Each system has a different range of features but none 

provides a suitable environment to allow asynchronous and synchronous collabora­

tive visualisation using federated resources to scale in the analysis of very large data 

sets. 

It is this opportunity for research that must be addressed by new visualisation 

systems. The future impact of visualisation has the potential to be great as it is 

increasingly used for the analysis of scientific data. 



Chapter 3 

Seeing Double, the wonderful 

world of Stereo 

The world around us is three dimensional, through having two eyes and seeing 

stereoscopically we can make judgments about the world more easily. 

Typically a computer monitor does not afford us the luxury of allowing images 

to be seen stereoscopically. However recent advances have allowed the creation of 

displays that allow the the viewing of images in stereo. 

The creation of this type of display presents an opportunity to leverage this 

technology to display three dimensional visualisations in stereo, providing greater 

insight into the data being visualised [Ware, 2000]. 

The use of stereoscopic displays requires special images to be generated for each 

display. This chapter examines the types of stereoscopic display and the techniques 

for generating the correct stereo images for them. 

The proliferation of stereo capable devices at an attractive price point has led to 

it being difficult to ignore such devices and their capabilities. As takeup of devices 

increases so does the demand for applications to support them. The PC revolution 

putting a computer on every desk has altered working patterns and concepts of 

users. They expect to be able to work at their desk, on their computer, with their 

display. Therefore the demand for personal stereo capable devices is likely to be 

high. 

29 



3.1. Overview 30 

3.1 Overview 

Stereo graphics have increasingly been used by the scientific community as the tech­

nology to generate high quality interactive stereo has become available. This chapter 

examines how humans see stereo and the technology that is available works to pro­

duce the illusion of a three dimensional world on a two dimensional screen. The 

technology allows people to "suspend disbelief" and feel as though the things they 

are seeing actually do sit in front of or fall behind the screen they are viewing them 

on. 

3.2 How we see stereo 

One of the major driving factors behind the creation of stereo capable devices is 

human biology. It is only with an understanding of the human visual system and 

how it works that attempts to develop devices to fool our brains into thinking they 

are seeing a 3D object have been made. 

Figure 3.1 shows how the eye connects into the brain to form the human visual 

system [Leigh]. Through having two eyes and with their forward facing, horizontally 

displaced position in the human skull each eye sees a slightly different view of the 

world. These two views fused back together by the brain are what allows the world 

to be seen in stereo. 

Whilst the physical make up of the human body provides a large proportion of 

the information our brain requires for stereoscopic vision, extra information to aid 

the judging of depth can be found within the scene being viewed. A 2D image such 

as Figure 3.2 contains many cues that help determine depth. These can be used as 

'standalone' features or can augment the information gained from two views of the 

same scene. 

• Interposition 

• Linear Perspective 

• Light and Shade 



3.2. How we see stereo 

Pulvinar nucleus 

Lateral geniculate 
nucleus 

Optic radiation 

Figure 3.1: The Human Visual System [Leigh) 

• Relative Size 

• Texture Gradient 

• Aerial Perspective 

31 

In addition to the 2D depth cues presented above two more cues exist, these are: 

Motion parallax seen when the object under observation moves or the observer 

moves. 

Oculmotor cues from the physical working of the eye as it focuses on the scene 

being observed. 

All of the cues together with stereo vision provide an excess of information to the 

visual system, this excess means that the visual system can still determine depth 



3.2. How we see stereo 32 

Aerial distortion 

Perspective 

Figure 3.2: 2D Depth Cues [Holliman, 2004] (Photographer: David Burder) 

without all information being present. This is demonstrated by the fact that those 

people who do not possess stereo vision are able to function well in a 3D world. 

Binocular Vision provides several benefits over monocular vision; these are listed 

below: 

• Relative Depth Judgment 

• Spatial Location 

• Breaking Camouflage 

• Surface Material Perception 

• Judgment of Surface Curvature 

These benefits can be useful in visualisation where complex 3D phenomena are 

being studied and where depth judgment is of importance in observing the complex 

interactions between parts of the phenomena in order to understand what is going 

on [Ware, 2000]. 



3.3. The Basics of Stereo 33 

3.3 The Basics of Stereo 

This section looks at the area of stereo graphics covering methods for generating 

stereoscopic images and the factors that impact on the generation of correct stereo 

images. 

eye 
separation 
e 

image plane 

viewing distance, z .. 

The perceived 3D effect, P, depends on 
variables defined only when the viewer 
and the target display are known: 

e : varies between viewers. 
z: varies between displays. 
d :scales with display size. 

P= 

perceived 
point 

perceived 
depth, P 

Figure 3.3: Equation governing the perception of Stereo Images [Holliman, 2004] 

Stereo images are created using two images, one of these is created for the left eye 

and the other for the right eye. In generating these images the factors and equation 

shown in Figure 3.3 need to be considered. 

The eye separation of the user, e, cannot with most displays be altered for 

each user so an approximation of the 'average population' is used when displays 

are designed and manufactured. For different displays the parameters Z and d are 

known, but differ as they depend on the physical properties of the display. By using 

these parameters the location that the cameras should be positioned at to create 

the desired image can be found. 

As these factors differ for each display type, the camera positions must be tailored 

for each screen that is to be used in order to generate the correct image for that 

display. 



3.4. Stereoscopic Displays 34 

The generation of stereo images can occur physically or virtually. With physical 

generation a traditional camera is used to take the two images of the (physical) 

subject, these are then combined digitally. Alternatively two virtual cameras can 

be used to generate stereo images of virtual scenes using rendering software. 

The generation of correct stereo images is dependent on the device being used 

to display those images and the viewer of the images themselves. Figure 3.3 shows 

the controlling equation for stereo image generation. If the values for the equation 

are unknown then the quality and correctness of the stereo images is impacted on 

for the particular screen. It is not normally possible for a viewer's eye separation to 

be known when generating stereo images, as such a viewer with an eye separation 

outside of the 'average population' may have difficulty viewing the generated images. 

Therefore the display device that will be used to display the generated image must 

be known before the image generation which reduces the portability of generated 

images across displays. 

3.4 Stereoscopic Displays 

There are a wide range of stereoscopic displays available, these can be split into 

two broad categories, those requiring the user to wear eyeglasses and those that do 

not. For an indepth examination of display types readers are directed to Holliman 

[Holliman, 2004]. 

In the category of display requiring users to wear eyeglasses we look at shutter 

glass displays and polarised glass displays, also known as active and passive stereo 

displays. 

3.4.1 Eyeglass Displays 

This section looks at two types of stereoscopic display system requiring eyeglasses, 

those that require shutter glasses, often called active stereo displays and those that 

require polarising glasses, often called passive stereo displays. 



3.4. Stereoscopic Displays 35 

Shutter Glass Displays 

Shutter Glass displays, often known as active stereo displays, make use of frame 

sequential stereo, where a left image is displayed in one frame and the right image is 

displayed in the next frame. To correctly display these images to the left and right 

eye of the user they wear special glasses, shutter glasses, which contain filters that 

darken alternately synchronised with the display so that each frame is shown to the 

correct eye. These glasses tend to be heavy and cumbersome which affects the users 

experience of using and interacting with the display. 

Polarised Glass Displays 

Polarised Glass displays, often known as passive stereo displays, project the left and 

right stereo images at the same time. The two images are polarised differently, for 

the user to see the correct image in each eye they must wear glasses that only allow 

the correctly polarised image to reach each eye. These glasses are lightweight and 

less cumbersome than shutter glasses. 

A project polarised type of display is often used for large screen display and large 

group collaborations. 

3.4.2 Autostereoscopic Displays 

Autostereoscopic displays are stereoscopic displays that do not require the user to 

wear any special eye or headwear in order to see stereoscopic images. Three types of 

autostereoscopic display are examined, a standard, two view, fixed viewing position 

display, a multiview display and a tracked autostereoscopic display. 

Autostereoscopic displays are typically manufactured from Liquid Crystal Dis­

plays (LCD), a standard LCD panel is used with an additional parallax [Holliman, 

2004] barrier placed in front or behind the panel. The parallax barrier can either 

be fixed (always on) or switchable depending on the design chosen. A switchable 

barrier allows the LCD to be used as a traditional 2D monitor in addition to an 

autostereoscopic display but results in a slight reduction in stereo image quality due 

to an increase in cross talk between channels. 



3.5. The science behind the magic 36 

Two view Display 

This autostereoscopic display is more correctly described as a two view, fixed viewing 

position display. In this type of display a static parallax barrier is used, and a single 

stereo pair is shown on the display. The display has a fixed viewing position. 

An autostereoscopic display has been incorporated into a laptop computer by 

Sharp using a switchable screen, it also features in a mobile and is available in a 

desktop model. This type of display is typically used by a single user. 

Multi View Displays 

A multi view display has a wider viewing angle and multiple viewing positions when 

compared with a standard two view display. Where a standard display uses a single 

stereo pair to display the stereoscopic image a multi view displays use a number 

of stereo pairs. This means that viewers of the display can see a stereo pair from 

whichever angle they view the display. 

This type of display is often used in a collaborative manner with multiple users 

gathered around the display. 

Head Tracked Displays 

Head tracked displays are a specialised version of autostereoscopic displays, they are 

often variations of standard two view displays, but instead of having a fixed viewing 

position have optics that allow a user's view to be tracked. 

This type of display has a mechanism which can detect the location of the user's 

head and/ or eyes and alter the properties of the parallax barrier so that the user 

can see a correct stereo image from their location. 

This type of display allows the viewer a greater freedom of movement whilst 

using the display. 

3.5 The science behind the magic 

There are a wide range of stereo devices available in the market place each with 

different features and target markets. 



3.5. The science behind the magic 37 

The technology behind the displays, allowing them to display stereo images varies 

from device to device but the main principals of the technology fall into several main 

categories. 

• Wheatstone mirror stereoscopes 

• Polarised glasses with polarising display 

• Shutter Glasses with a view switching display 

• Analglyph glasses (red/blue stereo is an example) 

• Brewster Stereoscopes (Head Mounted Displays for example) 

• Parallax Barriers 

• Lenticular Optics 

• Micropolorisers 

• Holographic Elements 

Some of these technologies require the user to wear glasses or a head mounted 

unit to see stereo, others allow the user to see stereoscopically without the need for 

any special technology beyond the screen. It is this type of display, autostereoscopic 

displays, that we consider in detail below. 

3.5.1 Parallax Barriers 

Displays based on parallax barriers are constructed as shown in Figure 3.4. A layer 

containing strips of a light blocking material is made into a sandwich with a TFT 

display and a light source. 

The striped layer can be made of an electronically switchable material and there­

fore allows a display to be a switchable between 2D and 3D. This type of display is 

restricted to a usually fixed two view display. 



3.5. The science behind the magic 

Dl1111ay 

L 
R 
L 
R 

I :r=_ 

L 
R 
L 
R 

I 

Parallax 
barrier 

• Leftvlewlnl 
w1n110w 

•· Window wl., 
I, jiiDI jlltch 
b, barrier 111mh 

•·••between 
barrier ana piDII. 
I, dlltan~e tD 
Viewl"l wlndOWI. 

Figure 3.4: Parallax Barriers [Holliman, 2004] 

3.5.2 Lenticular Optics 

38 

Initially a non-switchable technology, lenticular based displays as shown in Figure 

3.5 made use of a series of cylindrical lenses across the surface of the display which 

are aligned to direct the light correctly to each eye. Recent developments by Ocuity 

[Ocuity, 2005] and Philips [Royal Phillips Electronics, 2005] have produced switch­

able lenticular displays which can operate at full brightness compared with parallax 

barrier displays. 

Some lenticular displays have been motorised to work with eye tracking systems 

allowing a greater freedom of movement by the viewer. 

3. 5. 3 Micropolarisers 

A micropolariser autostereoscopic uses polarised light from an LCD and a patterned 

retarder which acts like a parallax barrier. In front of these as shown in Figure 3.6 

is an analysising polariser , if this front polariser is removable the display can be a 

mechanically switchable 2D /3D display. 



3.6. Software Support for Stereo Devices 

Dls,lay 
PIUII 

L 

R 

<CL 
R 

L 

R 

.f. 

z 

.,.,.H,ilr'lltlon 
and Window width 
I, 'iDI pitch 
I, •rtlcular pitch 
f, focill illfllth 
z, dlstanc•ID 
vlewlnt winllllws. 

Figure 3.5: Lenticular Optics [Holliman, 2004] 

3.5.4 Holographic Elements 

39 

Holographic Optical Elements have been used in the creation of 3D displays [Trayner 

and Orr, 1996]. The optical elements are arranged in horizontal strips so that 

alternate strips form left and right viewing windows. 

A few practical problems remain with the approach, one of the most significant 

is colour fringing due to the diffractive nature of the elements. The system can track 

users by moving the light source and also made switchable between 2D and 3D with 

a modified light source. 

3.6 Software Support for Stereo Devices 

Given the proliferation of stereo devices the quantity of software that can drive them 

is increasing, particularly software that will support them "out of the box" . The 

special considerations required when generating stereo images have already been 

discussed. These considerations have generally been put to one side by software 



3.6. Software Support for Stereo Devices 

LCD 
panel 

Wittlaut the Ullllyslng palilrller the 
dllpiQ apel'liiiiS as a narmat 2D 
display u the • 11 tnsenstttva ta 
palll'llll!ll light. 

Wlttlthe matplng paiiJ'Iser 11: 1 35 
degrees In place th8 retarder acts 

a1 • pantlu barrier 111 1tuawn 11m1 
the display DpendBI in 

IIUIDIItlmlascajltc 3D made. 

Analy!ling 
palll'lser 

IUblllratll 

PidiBmed 
Retarder 

Palartser 

Plxellayer 

Palartser 

1 31" arientatlan 
~---------------+.r--~ 

{ 
• 411° axil 

DIll" axis 

41" orientation 
~---------------+4---~ 

1 3fi<> arlentatian 

Ught thll: pase.1 thraugh the LCD emerges with linear 
pa1ar1111:1an 11: 48 degrees md 11 either ratated a further 
48 arID degrees by the pllllllmed retarder element. 

Figure 3.6: Micropolarisers [Holliman, 2004] 

40 

developers who have used a "one size fits all" approach to stereo enabling their 

applications. 

This section looks at the stereo support offered by some visualisation packages 

and the ability or otherwise to include or alter stereo algorithms. 

3.6.1 The Visualisation Toolkit 

The Visualisation Toolkit (VTK) has been developed as a library of visualisation 

components that can can be joined together programmatically to form a visualisation 

pipeline, for more detailed information refer back to Chapter Two. 

The display component of the toolkit contains several stereo modes including, 

red/blue, frame sequential and Interlaced. However the stereo is generated from a 

fixed camera position within the scene. When the scene is interacted with, partic­

ularly when zooming into a region of interest occurs the disparity shown is greater 

than the display or the human visual system can accommodate. As such at best 

artefacts within the image appear and at worst the stereo effect is lost completely. 



3.6. Software Support for Stereo Devices 41 

For alternative stereo generation algorithms to be incorporated into the VTK 

viewer this would have to be done as a rewrite of or a modification to the viewer 

module. The source code of the software is available to allow this and the suppliers of 

VTK, Kitware accept contributions to the development of the package. It is perhaps 

a cumbersome and time consuming way of introducing updates. The system is also 

tightly coupled so any package that wanted to make use of the system would have 

to be recompiled with it. If it was not incorporated into the main body of the VTK 

library distribution the task of maintaining and distributing an alternative version 

of the viewer with each new release of VTK would have to be managed. 

3.6.2 IRIS Explorer 

IRIS Explorer is a modular visualisation environment, described in detail in chapter 

two, it has a library of modules which are joined together in a visualisation map to 

form a complete visualisation. The output of the visualisation is displayed within a 

viewer module which is contained within the visualisation environment. 

The module has limited stereo support modes but as it is contained within the 

visualisation environment the whole of the visualisation map must be shown on the 

stereo screen, not just the viewer module. This makes interacting with the map 

difficult and the amount of non-stereo content being displayed on the stereo screen 

makes for an uncomfortable experience. 

Much of the criticism levelled at VTK about the nature of the stereo also applies 

to IRIS Explorer. With IRIS Explorer standalone modules that can be added to the 

library can be developed this would allow a suitable viewer for each stereo screen to 

be developed and for some control over the way the visual content was produced. 

This would not negate the fact that the produced viewer would have to exist inside 

the environment, however it may be possible to link some external viewer to the 

system to counter this problem. 



3.7. Summary 42 

3.6.3 "isJ\1) 

The VisAD toolkit described previously is developed in Java and as such makes use 

of the Java3D libraries for three dimensional visualisation and stereoscopic visual­

isation. The toolkit therefore is limited by the support for different stereoscopic 

displays to that contained within Java3D. This support is generic and cannot be 

easily tailored to different stereo displays. It would be possible using Java3D to 

develop a custom stereo display that could be configured for individual displays but 

to work effectively it would require a user editable configuration file to allow the 

parameters of each screen to be set. 

3.7 Summary 

The technological advances allowing the creation of stereoscopic displays have opened 

new doors for three dimensional visualisations to be displayed. Displaying these visu­

alisations stereoscopically can provide a good insight into the data being visualised. 

To work effectively with autostereoscopic displays visualisations need to be de­

signed so that images for the display are correctly generated. This need has an 

impact on the software used to generate the visualisations. This chapter has ex­

amined a range of stereoscopic display devices and the techniques to generate the 

correct images for the displays so as to better inform the development of the visu­

alisation architecture. 



Chapter 4 

The Grid 

Grid Computing, an emerging area of research, the next generation computing tech­

nology, breaks down barriers between institutions allowing resources anywhere on 

the network to be utilised. This is the vision, a vision of the right computer for 

the job, computing power on demand allowing even the most intensive of computa­

tions to be performed with ease. Interoperability of billing, security and manage­

ment systems reducing the burden of administration. Currently two implementation 

paradigms are being used in an attempt to make that vision a reality. This chapter 

discusses the vision in depth and examines the implementations underway to realise 

the vision. 

4.1 The Grid Vision 

Foster and Kesselman [Foster and Kesselman, 1998] are two leading grid visionaries, 

building on the area of meta-computing they presented the grid as a utility, such as 

the electricity distribution network, providing computing power and resources that 

can be used on demand. This vision has since been refined to mean, multiple in­

stitutions collaborating together in a virtual organisation, federating heterogeneous 

resources using a meta-computing infrastructure in order to achieve a goal. 

A range of computing applications are immediately suited to the grid. They are 

those that certain decomposition techniques can be applied to such as: 

• Pipeline Decomposition. 

43 



4.2. The Batch Processing Grid 44 

• Functional Decomposition. 

• Data Parallel Decomposition. 

Other applications may need to be refactored to take account of the implications 

of grid computing. 

4.2 The Batch Processing Grid 

The High Performance Computing (HPC) community were the first adapters and 

drivers of the grid computing vision, consequently the batch processing grid was the 

first attempt to build a common infrastructure, or middleware, to allow users at 

differing institutions make use of resources in a standardised way. These users were 

used to submitting jobs and waiting for hours, days, weeks or even months for their 

job to run and return a result. To these users the idea of a shared job queue so 

that their jobs could run on a machine anywhere in the world potentially, making 

use of any available suitable resource was a huge leap forward. It would mean that 

a job that might sit in a queue for weeks might get serviced in a matter of hours 

or days. Worldwide computing load would be balanced, overworked local resources 

would have their loads reduced and spare computing capacity remotely would be 

soaked up. This vision of the "metacomputer" was presented by Smarr and Catlett 

in 1992 [Smarr and Catlett, 1992] having a five year horizon to realisation, over ten 

years later despite the progress made the dream is still that. Whilst this vision was 

utopia for traditional HPC users the reality was somewhat different, the importance 

of human factors in establishing trust and acceptance was forgotten. Institutions are 

reluctant to allow external users on their resources, and users are very good at craft­

ing programs suited to their institution's HPC resource and not suitable for running 

in a different enviroment. The issues of scheduling across institutional boundaries, 

of security, of predicting performance and of specifying required resources are all 

complex and challenging ones, some have been resolved, some have been partially 

resolved and many remain as open problems. 

The Globus Toolkit 2 [Alliance, 2004], was developed to allow this type of com­

puting to occur. The toolkit was developed by the Globus Project (now Globus Al-



4.3. The Service Oriented Grid 45 

liance) as a standard set of tools to provide access to heterogeneous resources. The 

toolkit included allocation managers, high performance data transfer (GridFTP) 

and monitoring and discovery services. 

This toolkit has been widely deployed in high performance computing centres 

around the world and has been used in many projects to provide a mechanism to 

distribute computation. However this has usually been within an existing HPC 

environment or using a national resource that has been tightly controlled and that 

has a common software set across the environment. 

4.3 The Service Oriented Grid 

The proliferation of the the grid vision throughout first the computer science com­

munity and then the scientific community as a whole brought a demand and a desire 

to perform computing that was not done in a batch processing manner and a need 

for more user friendly tools. The grid community in response made the move to a 

service oriented architecture as the next iteration in the development of grid software 

allowing resources to be interacted with through a mechanism based on current web 

technologies. 

The first attempt to produce a service oriented grid middleware was Globus 

Toolkit 3, which introduced Grid Services, a proprietary extension of Web Services, 

that introduced the notion of state and wrapped the tools in Globus Toolkit 2 with 

a new interface. 

This first attempt is being superceded with a non-proprietary implementation 

that retains compatibility with Web Services, and contributed to the Web Service 

development process, this implementation will be released as Globus Toolkit 4. 

Due to the flux that has plagued the Service Oriented Grid implementations the 

majority of current deployments are restricted to testbed grid infrastructure being 

used for specific projects. No national infrastructure has yet been deployed which 

may hamper attempts to migrate from the batch oriented grid software with projects 

preferring to remain with that which they know and which has infrastructure in 

place. 



4.3. The Service Oriented Grid 46 

4.3.1 Grid Services 

Grid services in the Globus Toolkit 3 were developed by the Globus Alliance as an 

implementation of the Open Grid Service Infrastructure (OGSI) version 1 [Banks 

et al., 2004], part of the the Open Grid Service Architecture (OGSA) framework 

[Foster et al., 2004] developed through community processes at the Global Grid 

Forum (GGF). 

Grid services in Globus Toolkit 3 built upon the Globus Toolkit 2, a toolkit 

designed for batch processing grids. The toolkit wrapped the functionality exposed 

by version 2 of the Globus Toolkit as services and allowed these to be exposed on 

the grid. 

These grid services are stateful in nature, to make use of a service, an instance 

has to be created by using a service factory. The created service is then used to 

perform the operations that are made available. Grid services are stateful as an 

instance is created for each user that wishes to use the service, each instance of the 

service can store data, known as Grid Service Instance Data, about the state of the 

service, the user and transactions being performed. Grid services have a lifetime 

associated with them, this lifetime may be infinite or finite. This means that grid 

services can be transient and stateful. 

4.3.2 Web Service 

As adoption of grid services began to increase the web service community examined 

the solution and those making use of version 3 of the toolkit provided feedback. 

They found the proprietary extensions hard to use and the web service community 

objected to the way that state had been introduced to services. This led to a re­

examination of the service oriented architecture for the grid. 

Whilst new proposals were being formulated it became apparent that whatever 

solution was presented, it would remain compatibility with web services and as such 

we examine the area of web services below. 

Web services are defined [Gudgin and Ewald] as as an endpoint for communica­

tion that: 



4.3. The Service Oriented Grid 47 

• Uses standard high-level Internet communication protocols like HTTP or SMTP 

• Transfers data using XML messages 

• Describes its message types using a portable type system which is both lan­

guage and platform neutral 

• Provides a way to access metadata describing the messages it accepts 

Web services are a stateless technology, in that they are designed to have one 

persistent instance per resource and that the same operations are called by all clients 

of the service. The web service must therefore be stateless otherwise operations 

called by one user may affect the computation being performed by other users. Web 

services are persistent and stateless, this is a fundamental difference to grid services 

which are transient and stateful. 

To address the move towards the use of web services and the fact that web 

service technology itself is still maturing, a white paper defining the WS-I+ profile 

that establishes a common set of technologies that are safe to use to try and ensure a 

level of compatability across web service based implementations has been published 

[Atkinson et al., 2004]. This is seen as an intermediate stage until the service oriented 

architecture for the grid is re-established in a new form. 

4.3.3 The Future of Services on the Grid 

Grid services are being re factored by several organisations including the Globus 

Alliance to build them with standard web service technologies, allowing them to 

interoperate with web services, and other services deployed on the grid. 

The Globus Alliance offering is based on the Web Service Resource Framework 

(WSRF) [Czajkowski et al., 2004] and will be called Globus Toolkit 4. 

The UK Open Middleware Infrastructure Institute (OMII) is also producing an 

implementation that will be WS-I+ compliant and will be called OMILl (omi-one) 



4.4. Globus Revisited 48 

4.4 Globus Revisited 

There are multiple incarnations of the Globus toolkit, a short review of these versions 

is conducted below. 

• Globus Toolkit 2 

The first major release of the toolkit, designed for use in a batch processing and 

HPC environment. It !includes tools for data transport, discovery, monitoring 

and resource allocation. 

• Globus Toolkit 3 

A complete revision of the toolkit based on the OGSI specification, introducing 

grid services and providing service wrappers of the version 2 tools. 

• Globus Toolkit 4 

A revised implementation of version 3 inline with the WSRF specification. 

The development of version 4 is still underway and no final public release has 

been made to date. 

4.5 The Grid now and to come 

The vision of grid computing is a utopia for computer scientists, limitless CPU, 

storage and other resources accessed from anywhere in the world, via high speed 

network interconnects, through a compatible set of tools, protocols and services. 

The reality is somewhat harsher, human factors, immature technology and perhaps 

a desire to run before walking means that grid computing is currently floundering, 

trying to gain a stable foothold with which to lay down some firm foundations. 

Despite this the vision still burns brightly, drawing in researchers like moths to a 

flame, stirring passions and stimulating academic discourse and debate. The current 

implementation arena is strewn with dead, dying and mortally wounded challengers, 

the old guard fights its corner whilst fresh young challengers enter to do battle, each 

generation learning from the mistakes of the previous one. A successor to the batch 

computing guard may come along but it is more likely that arms will be laid down 



4.6. Beyond the Grid 49 

and a spirit of mutual cooperation will prevail and that a symbiotic relationship will 

emerge. 

4.6 Beyond the Grid 

The term 'Interactive Supercomputing' is used to describe an ideal for high per­

formance interactive visualisation. It is related to the concept of 'on-demand com­

puting' where capacity is available as and when users require it on a computer. 

Interactive Supercomputing would mean that a visualisation pipeline could execute 

in an interactive manner, without advance reservation of computing cycles, without 

estimating the required computing power nor the wall clock time required. It is 

felt that this use of computing resources would follow the CPU graph of a typi­

cal desktop computer, large idle periods with peaks of high usage. To achieve this 

vision of interactive supercomputing, it is felt that the mindset of supercomputer 

operating system designers has to change from one of batch computing to one of 

mixed mode operation. Interactive applications would run in a state where they 

are idle, when they are required to perform computation they would signal the op­

erating system which would stop any more batch jobs being executed, and swap 

out any existing batch jobs, to free up the processing power required to complete 

the interactive job. Batch jobs can then be restarted and the system can return 

to a traditional batch operating system mode. This concept of operating is simi­

lar to the cycle scavenging operated by applications such as climateprediction.net 

[climateprediction.net] where an application runs in the background until the user 

requires interactive performance. 

This need for Interactive Supercomputing is highlighted by several current and 

future users of visualisation in the NERSC Visualization Greenbook Report [Hamann 

et al., 2003]. 



4. 7. Summary 50 

4.7 Summary 

The Grid provides a suitable platform for building high performance, scalable, evolv­

able and secure software solutions. To do this the following features are required 

from the grid middleware 

• Bulk Data Transfer Mechanism 

• Streaming Data Transfer Mechanism 

• Support for Service Oriented Software 

• Directory Services 

• Resource Management 

• Accounting Infrastructure 

e Security Infrastructure 

The provision of these features means that application developers can concen­

trate on the application logic that makes their application unique, avoiding having to 

re-implement house keeping features. This development model promotes standard­

ization and interoperability between grid systems allowing applications and services 

to be deployed widely. 

Whilst the concept of Interactive Supercomputing is presented as a future de­

velopment from Grid Computing the present development stage of Grid Computing 

makes it the only current candidate for building high performance scalable systems. 



Chapter 5 

Virtualised Visualisation 

Architect u:re 

The research challenge that the virtualised visualisation architecture addresses can 

be stated: 

"How do you design the ideal service oriented architecture for visualisation that 

meets the needs of scientists?" 

Working from the scenario described in chapter one coupled with the analysis in 

chapters two, three and four of current visualisation systems and their deficiencies 

also the technologies of stereo capable devices and the grid this chapter presents 

a definition of a virtualised visualisation architecture that takes these factors and 

considerations into account in order to answer the research question posed. 

5.1 Definition 

This section outlines the requirements for the design of the virtualised visualisation 

architecture and the architecture generated from those requirements. 

A virtualised visualisation architecture in its design is driven by the require­

ments for that architecture. These requirements are generated from the uses that 

the architecture would be put to and the deficiencies found in current models for 

visualisation systems and their implementations. 

51 



5 .1. Definition 52 

5.1.1 Requirements 

The uses that the architecture would be put to are listed below, these uses are 

derived from analysis of the scenario outlined in chapter one and the way in which 

visualisation systems are currently used. The uses of such an architecture include: 

I Analysis of Large Data Sets, which may not be local to the scientists. 

11 Interactive visualisation. 

Ill Collaborative Visualisation 

IV Visualisation of large data sets on computers with insufficient processing power 

to manage them. 

V Visualisations distributed across multiple institutions 

VI Visualisation at the desk 

VII Visualisations displayed using multiple display technologies 

The requirements for the virtualised visualisation architecture will drive its de­

sign, these requirements are built from the uses that the architecture will be put to 

and the issues discussed in Chapter Two with regard to current visualisation sys­

tems and the specific requirements of technologies such as stereoscopic displays as 

discussed in Chapter Three. 

1. That the virtualised visualisation architecture can run on a variety of machine 

architectures. 

Grids are often heterogeneous in nature, this is particularly the case when 

resources from different institutions are used as such any architecture should 

be capable of running on multiple platforms. 

2. That the visualisation can be displayed on a variety of different display plat­

forms, including stereoscopic devices. 

The range of devices available to scientists to display their visualisations on 

is increasing. The devices include stereoscopically capable devices such as 



5.1. Definition 53 

autostereoscopic displays. For a visualisation architecture to be of use to the 

scientists who make use of such devices it must support them. 

3. That the visualisation should be available on the desktop. 

Many scientists work at a computer in their office, whilst they may perform 

experiments in a lab or undertake fieldwork away from their institution the 

analysis of their data is primarily performed at their workstation. For a vi­

sualisation architecture to gain acceptance it must integrate into a scientist's 

normal working routine. 

4. That the architecture will operate across multiple institutional boundaries, 

accounting for security issues. 

In an increasingly connected world, institutional boundaries have been hard­

ened against the proliferation of worms, viruses and other undesirable and 

unauthorised network traffic. Firewalls with a limited range of open network 

ports sit at network boundaries, grid resources are located behind these fire­

walls. It is important therefore that to reduce the work in deploying services 

and to reduce the security risks associated with network communication that 

the virtualised visualisation architecture operates using standard network pro­

tocols. 

5. That the architecture will allow multiple scientists to collaborate from different 

locations, either synchronously or asynchronously. 

Science is often performed by distributed multi disciplinary teams; these teams 

may be spread across time zones which would make regular synchronous col­

laboration difficult. As such the virtualised visualisation architecture should 

support both synchronous and asynchronous collaboration. 

6. The architecture should cope with very large remote data. 

One of the key driving factors behind the concept of grid computing is highly 

distributed working. In a team engaged in scientific endeavour this can mean 

that one part of a team is generating data and another is performing the 

analysis. For this to be achieved scientists need to access non-local data sets, 



5.2. Architecture 54 

these could be large, tens of terabytes or more, and in some cases composed 

of multiple smaller data sets distributed across different locations. 

7. The architecture should allow visualisation to be performed interactively. 

One of the powers of visualisation is the ability to ask "What If?". To perform 

'what iffing' scientists need to be able to interact with their visualisations. 

Another form of interactivity that is required is the ability to receive updates 

from a changing data source, simulations or sensor, and reflect that in the 

visualisation. This would allow simulations monitoring tasks to be performed. 

5.2 Architecture 

The architecture is based on a service oriented architecture where services provide 

the functionality. This type of architecture is eminently suited to a distributed grid 

based system that fulfills the requirements enumerated above. 

5.2.1 Overview 

Figure 5.1: Initial Design 

Figure 5.1 shows a traditional three stage visualisation pipeline, an input (read), 

an operation (transform), and an output (write). These stages are connected by 

streams, this is the starting point for the definition of the virtualised visualisation 

architecture. 

The new architecture is shown in Figure 5.2. The links between each service are 

changed so that they operate across a grid. 

The grid is added between these services to signify that: 



5.2. Architecture 55 

Transform 

Figure 5.2: Introduction of the Grid 

• Different services can be located on different resources, within different insti­

tutions and at different geographic locations. 

• It also signifies that services can be connected using grid technologies. 

• The use of grid technologies for connections aids in achieving interoperability 

with other services. 

Manage 

Figure 5.3: Introduction of the Manage Service 

Introduced into the design as shown in Figure 5.3 is the manage service. The 

manage service has multiple roles in managing the visualisation pipeline. 

A feature which has been incorporated into the definition to assist with interac­

tivity within the visualisation is the bi-directional links between the manage service 

and each individual service. These links allow a service to make a request for more 

data or a change to a parameter. The request is sent to the manage service which 

ensures that it is completed by re-directing it to the correct service. The protocol 

used to change parameters and send control statements is the steering protocol. 



5.2. Architecture 56 

Each service in the pipeline produces an output, this output must be directed 

to the input of other services to complete the pipeline. These outputs are known as 

data streams, they are an active data transport mechanism in that they allow the 

one service to be writing data at the same time as the next service is reading the 

data. The data streams that connect each pipeline are such that as a service has 

finished processing a data item it can be sent to the next service in the pipeline. In 

this manner very large data sets can be processed in less time as each service in the 

pipeline is operating in parallel rather than in a batch manner where each service in 

the pipeline has to finish its entire computation before the next service can process 

the output data. 

5. 2. 2 Services 

Four types of service in the architecture have been shown so far. Read services, 

which have the responsibility of making data accessible to the pipeline. These could 

read from a flat file, a database, a simulation or even a sensor. Transform services 

come next in the pipeline and perform an operation on the data, typically converting 

it to one form or another. Write services are at the end of the pipeline and output 

the visualisation in some form, often to screen but equally validly to file or other 

storage mechanism. The Manage service exists to manage the pipeline. 

Figure 5.4: Expanding Transform Services 

The transform service can be divided into three sub types, this is shown in Figure 

5.4 where filter, map and render services are represented. 

The resource requirements of each of the three transform stages, can differ and 



5.2. Architecture 57 

the execution of them as individual units on different resources means that those 

requirements can be more readily met. As an example a map service may require a 

large amount of CPU and memory to perform a conversion to a visual representation 

whilst a render service may require a high performance graphics sub system. 

The sub division of the transform stage also brings the added benefit of increasing 

the resilience of the pipeline, for example, if the transform stage was executed on 

a single resource and that resource failed all the computational effort of that stage 

would be lost. In the revised transform stage with multiple resources the effect of a 

single failure is reduced as is the chance of a complete failure. The complete pipeline 

with the three transform services, filter, map and render in operation is shown in 

Figure 5.5. 

Figure 5.5: Final Pipeline Definition 

Each service produces a single output stream that can be directed into another 

service (except the Write service which does not produce an output stream) 

A pipeline may consist of multiple branches, these branches may stem from one 

or more reader services but will at some point in the pipeline join together. Each 

service therefore can accept multiple input streams from other services (except the 

Read Service which does not accept any input streams). 

A stream is a transport mechanism between services, it is an abstract concept 

representing a typed flow of data from one service to another. A single stream may 

have multiple destinations but will always carry the same information to each. 

The generic properties that each service exposes are: 

• An output stream (except Write Service) 

• Multiple Input Streams (except Read Service) 



5.2. Architecture 58 

• Ability to retrieve configurable parameters of a service and their parameters 

• Ability to change configurable parameters of the service 

The services within the architecture are read, transform, write and manage, 

together with a set of tools for composition and the user interface these are now 

discussed in more detail. 

5.2.3 Read Service 

Read services are the services which provide the input to visualisation pipelines, 

they do not take input from other services, but they provide an output stream of 

raw data. The raw data can be held in any form, flat file, database, simulation or 

even a sensor. The reader service converts the format into an output stream that 

can be used by other services. 

5.2.4 Transform Service 

Transform services perform an operation on their input data and produce an output 

stream, there are three types of transform service: 

Filter Service 

Filter services are used to separate data from a data set, it may be that a data 

set contains a large number of variables of which only a few are required for the 

visualisation. The filter service would separate the required variables from the data 

set reducing the amount of data that required transmitting to the next service. 

Filter services would also be used for performing calculations on data, for ex­

ample, if a visualisation required data derived from variables in the data set a filter 

service could be used to perform those calculations. 

Map Service 

Map services are used to create a visual representation of the data being visualised. 

In many cases this visual representation is a geometric representation of the visual-



5.2. Architecture 59 

isation but it may be a different representation. The map service will generally use 

the output of one or more filter services as input. 

Render Service 

Render Services are used to convert a visual representation to a displayable image. 

The render service is typically configured to the parameters of the output device the 

image is destined for. For stereoscopic devices the render service may render two 

images itself or may use other services to reduce the load. 

The scenario outlining the need for a distributed visualisation architecture in 

Chapter One and the study of stereo and auto-stereoscopic displays in Chapter 

Three highlighted the need to design the render service into a service that was 

easily configurable and interchangeable to support a wide variety of devices each 

of which would have their own unique configuration. A render service may need 

to have the ability to take parameters from a device such as an auto stereoscopic 

display which describe how the service should produce its output. An example of 

such a parameter set is shown in Figure 5.6: 

e = eye separation (float) 
d = image disparity (float) 
z= viewing distance (float) 
s = stereo type (side by side 1 interlaced 1 frame sequential ) 
v =number of views 

Figure 5.6: Example configuration parameters for a stereo render service 

Render services may also convert data to a non-visual output format such as 

sound or for a haptic interface. 

5.2.5 Write Service 

Write services are the terminus of the visualisation pipeline, typically they are a 

service which presents the image delivered from the render service onto a display 

device. However they may be a service that writes to a file or a service that creates 

a video clip of the visualisation. 



5.2. Architecture 60 

A Write service may also connect to an alternative output device such as a haptic 

interface. 

5.2.6 Manage Service 

The manage service acts as the intermediary between user tools and the visualisation 

pipeline and also between services in the pipeline and other services in the pipeline. 

The manage service allows users to create a visualisation pipeline through it and 

can perform housekeeping operations to do with state management and security 

delegation. 

The roles the manage service has are: 

• Pipeline Co-ordination 

• Context Management 

• Steering 

• Collaboration 

• Security Delegation 

Pipeline Co-ordination 

The manage service is responsible for instantiation of pipelines submitted via the 

composition tool. Once a pipeline has been instantiated the management service 

directs requests from services in the pipeline to the correct destination. 

Context Management 

Where stateful services are in use, identifiers for a session or user may be required, 

the manage service is responsible for maintaining a record of identifiers and the 

services to which they belong. The manage service can then present a single identifier 

for a pipeline to users. 



5.2. Architecture 61 

Steering 

The manage service is responsible for directing steering requests from other services, 

the pipeline and users of the pipeline to the correct destination. In managing steering 

requests in this way individual services do not need to be aware of all the other 

services in the pipeline. This allows greater flexibility to reconfigure pipelines. 

Collaboration 

The manage service allows pipelines to be used in a collaborative manner. By 

managing steering requests the manage service can provide mechanisms to allow 

or prevent users from steering a pipeline. The manage service allows asynchronous 

collaboration by allowing a pipeline to persist even when no users are connected to 

it. This allows one user to establish the pipeline and for other users to make use of 

the pipeline at a later time. 

Security Delegation 

Using services distributed across the grid and therefore across multiple institution 

boundaries means that steering and accounting policies may be in effect to use each 

service. The use of a manage service allows a user to delegate the credentials to that 

manage service as a proxy; this allows all administration to be done centrally and 

transparently. The manage service can also implement an access control policy for 

collaborative pipelines , this can be used to restrict access to the pipeline. 

Manage Service Design 

The manage service is designed to hide much of the complexity of managing visu­

alisation pipelines and as such it provides a lightweight interface to other services. 

Much of the complex management is done in the internal logic of the service. The 

class diagram in Figure 5. 7 shows an exemplar of the interface and some of the in­

ternal data structures that a manage service would provide for use by a composition 

tools a user and other services in the visualisation pipeline. 



5.3. Tools 62 

Manage Service 

Pipeline ID: Integer 
ServiceDetails:Service[ ] 

a uth en ti ea te( Secu rityCrede nti a Is): boo I ea n 
createContext(): Pipeline ID 
instantiatePipeline(Pipeline) 
destroyPipeli ne() 
steerService( service,parameter, value) 

Figure 5.7: Manage Service Class Definition 

5.3 Tools 

In creating and using visualisation pipelines additional user tools are required. These 

tools are an important part of the design and creation process and the use of the 

visualisation pipeline once it is operational but do not impact on the architectural 

definition of the virtualised visualisation architecture. This section examines the 

Composition Tool and the User Interface. 

5.3.1 Composition Tool 

The composition tool is used by the creator of a visualisation pipeline to discover 

available services, using service discovery services on the grid, and to compose them 

together to form a visualisation pipeline. The user can then enact the visualisation 

pipeline using a management service. Once a pipeline has been enacted using the 

management service it can be left to execute without the composition tool running. 

The flowchart in Figure 5.8 shows the operational order of composing a visuali­

sation pipeline before submitting it to the manage service for instantiation. 



5.4. Composition 63 

5.3.2 User Interface 

The user interface is the mechanism through which users of the visualisation pipeline 

can alter the configuration of the pipeline. The user interface is designed to be run 

on an as needed basis and connects via the management service. The user interface 

makes use of the steering protocol to issue changes. The user interface can be an 

entirely stand alone tool or it can be incorporated into the composition tool or 

into a writer service. Multiple user interface tools can be used with a visualisation 

pipeline for collaborative sessions. The manage service is responsible for managing 

these multiple interfaces in this instance. 

5.4 Composition 

In addition to the services within the pipeline other tools are required to support the 

development of visualisations. The composition tool shown in Figure 5.9 is used to 

construct visualisation pipelines. This is achieved by using grid infrastructure ser­

vices that allow the visualisation services to be discovered, then composed together 

to form a visualisation pipeline using the composition tool. This then instantiates 

the pipeline by communicating with the management service which manages the 

pipeline. The composition tool is no longer required once the pipeline has been 

created through the manage service for the pipeline to run, however it can be used 

to make adjustments to the pipeline composition during execution. 

The services, filter, map and render have no enforced ordering in the pipeline, 

however they are typically ordered as filter, map, render. 

To describe the composition of pipelines a simple notation based on regular 

expressions can be used where: 



5.4. Composition 

R 

T 

F 

M 

p 

w 

is a read service 

is a transform service 

is a filter service 

is a map service 

is a render service 

is a write service 

denotes a service join 

11 denotes branches in parallel 

() encloses parts of branches for readability 

64 

The notation excludes the manage service as it is assumed that a manage service is 

present for each pipeline. 

The minimum pipeline that can be created is a Read Service and a Write Service. 

However typically a pipeline would include one or more transform services. This can 

be written using regular expression notation: 

R+ T* w+ 

As an example, a pipeline with one of each service in the conventional order as 

in Figure 5.5 would be represented as: 

R.F.M.P.W 

A pipeline with two branches from the reader service that rejoined at the render 

service would be described in the notation as: 

The services within the pipeline can be self contained functional units or they 

can provide an interface to the grid, hiding a highly scalable service, as for example 

shown in Figure 5.10. This type of service would be required to deal with very 

large data sets. The figure also shows multiple services collaborating to provide the 

desired performance. In this manner time critical computation can be done using 

the local resources with less time critical computation performed at other locations. 

If a model for grid computation that includes a cost to use a resource is in operation 

this type of strategy can be used to reduce the cost of computation. 



5.5. State in Services 65 

5.5 State in Services 

The architectural definition presented thus far is built with stateful services in mind. 

The use of stateful services mean that each operation called in a service may not be 

side effect free. 

The use of stateful services allows persistent pipelines to be created and for 

them to be steered. As a minimum each service would hold the following stateful 

information. 

• Location of the input data 

e Location of the output data 

• Location and identifier of the manage service 

The class diagram in Figure 5.11 shows the minimal set of state information that 

a service would hold. 

In addition many services would also contain a set of configurable parameters, 

for example a service that is providing isosurfacing may contain a parameter that 

sets the value at which to draw the surface. It may contain another parameter which 

sets the colour that the surface should be. 

For the example above the state information definition may look like. 

Standard Stateful Data. 

inputJocations: URLO 

outputJocation: URL 

manage_service: URL 

session.identifier: String 

Service Specific Data 

surface_value: float min 0.0 max 1.0 

colour __r: int min 0 max 255 

colour _g: int min 0 max 255 



5.6. Requirements Review 66 

colour _b: int min 0 max 255 

The class diagram for a stateful isosurface service is shown in Figure 5.12 this 

shows how the service builds upon a common stateful service with specific data for 

the computation that the service will undertake. 

The use of state allows a service to relate the results of all computations per­

formed for the same pipeline, this can be important if computation reduction and 

bandwidth reduction strategies are employed. In a similar manner the use of state 

allows predictive computations to be undertaken and related to the correct pipeline, 

allowing low cost and idle cycles to be used on resources. 

5.6 Requirements Review 

This section demonstrates how the requirements for the architecture have been met 

by the definition of the architecture outlined. 

The requirements of the architecture are restated for completeness. 

1. That the virtualised visualisation architecture can run on a variety of machine 

architectures. 

The first requirement can only be met by the implementation. However by 

using a service oriented architecture with a connection across a network con­

necting each service means that the communication mechanism is platform 

independent and therefore the machine architecture that each service is run 

on does not affect the visualisation architecture. Grid middleware provides 

a homogeneous set of tools and services across heterogeneous architectures 

which simplifies development for different platforms and allows migration of 

code more easily. 

2. That the visualisation can be displayed on a variety of different display plat­

forms, including stereoscopic devices. 

The separation of the write service from the transform services, allows a spe­

cialisation of the write service as a display component and the render sub 



5.6. Requirements Review 67 

division of the transform service. This split allows a variety of display services 

to be written for different display platforms without having to re-implement 

the render service each time. 

3. That the visualisation should be available on the desktop. 

Following from the separation of render and write services, by decoupling the 

processor and memory intensive task of rendering from the local machine if 

required a low powered machine can be used to display the visualisation, such 

as a standard PC. The grid makes the decoupling of the final visualisation from 

the process to generate the visualisation possible and allows the scalability 

required to provide the required performance. 

4. That the architecture will operate across multiple institutional boundaries, 

accounting for security issues. 

The use of a standard for communications between services and the use of 

standard protocols for data transfer will allow the architecture to operate 

across multiple institutional boundaries. 

5. That the architecture will allow multiple scientists to collaborate from different 

locations, either synchronously or asynchronously. 

To support collaboration the architecture has many features, the decoupling 

of the composition tool and the user interface means that the pipeline can be 

manipulated by any user at any time. The manage service allows visualisation 

sessions to exist and run without any user connected to them. This means that 

asynchronous collaboration is possible as one user can establish a pipeline and 

other can connect and view it at a later time. The grid allows this type of 

pipeline to exist by allowing services to be deployed on remote computers and 

to persist. 

6. The architecture should cope with very large remote data set. 

The scalability model shown in Figure 5.10 allows services to increase the 

processing power they have available to perform their computations. The 



5. 7. Summary 68 

subdivision of transform services to filter, map and render also assists in cop­

ing with large data sets in distributing specialised computation to different 

resources on the grid. 

7. The architecture should allow visualisation to be performed interactively. 

The scalability and division of services allows interactivity to be achieved more 

easily as the services can employ techniques to increase the rate at which they 

process data. These techniques can be a simple linear scaling of processing 

power or predictive techniques which preempt the user's needs. 

The main features of the architecture that allow it to meet the requirements 

include the separation of all the stages in the pipeline and that these services can 

be built in a scalable way. The use of tools for composition and the user interface 

provides an important degree of separation which the manage service controls. 

5.7 Summary 

The definition section has outlined the requirements behind the development of the 

virtualised visualisation architecture, the way in which these requirements have been 

taken and incorporated into the design. Issues affecting the design of the virtualised 

visualisation architecture have been explored and explained. The conventional vi­

sualisation pipeline has been extended by: 

• Adding the grid between services and allowing services to scale using the grid. 

• Adding the Manage Service allowing persistent pipelines and asynchronous 

collaboration. 

• Allowing Steering of all services in the pipeline to enable the visualisation to 

be controlled by both services and users. 

• Decoupling the composition from the pipeline to remove the need for the com­

position tool to remain active during the pipeline's life. 



5.7. Summary 69 

• Decoupling the user interface from the pipeline to allow multiple users to 

exercise control over the pipeline and allow the development of user interfaces 

suitable for the devices being used to control the pipeline. 

• Allowing specialist render services to cope with tasks such as rendering for 

autostereoscopic displays. 

The development of a virtualised visualisation architecture is driven by require­

ments as outlined at the beginning of this chapter, the realisation of those require­

ments is achieved through the implementation of the design. This implementation 

and the issues encountered in creating that implementation to meet the requirements 

and the design are discussed in the next chapter. 



5.7. Summary 

OltSCO.Vt.ttf· .Avallabfe 
Services 

Submit t·o 
rrnanage siel'\i1ee 

No 

Figure 5.8: Composition Tool Operation Flowchart 

70 



5. 7. Summary 

Service Dlsc011ery 

User 
Interface 

Figure 5.9: Final Pipeline Definition with Support Tools 

r-----~' -1 
.: Service 

Within Institution 
' l--~·-~-··-•---~•••• --·•w-•--·-•-·• •-··- "~•-··•·-··-••--•••·••_,o . .-•-•·•· 

Outside Institution 

Figure 5.10: How a service can scale 

71 

/ 



5.7. Summary 72 

Stateful Service 

lnput_locations:URL[] 
Output_location: URL 
Manage_service: URL 
Session_identifier:String 

authenticate( Secu rityCredentials): boolean 
create Con text(): String 

Figure 5.11: Stateful Service Class Diagram 



5.7. Summary 73 

Stateful Service 

I nput_location s: U R L[ ] 
Output_location: URL 
Manage_service: URL 
Session_identifier:String 

authenticate(SecurityCredentials):boolean 
createContext() :String 

~ 

lsosurface Service 

Colour_r: int mln o max 255 

Colour_g: int minomax255 

Colour_b: int minomax255 

Surface_ value:float min o.o max 1.o 

Figure 5.12: Stateful lsosurface Service Class Diagram 



Chapter 6 

Implementation 

This chapter describes three implementations of a virtualised visualisation archi­

tecture as defined in chapter five. These implementations were developed as the 

technology of the service oriented grid was developed and underwent several fun­

damental changes. Each of the implementations is described here to highlight the 

issues encountered in developing the virtualised visualisation architecture. 

The first and second implementations were done using versions of the Globus 

Toolkit 3 from the Globus Alliance. The Globus software provides a middleware 

layer for computing on the grid and has been discussed in more detail in chapter 

four. 

The first implementation was using the version 3 Alpha release of the service 

based grid software from the Globus Alliance. This software then had a major up­

date before it was released as version 3.0.2 which involved a repackaging of many 

components in the toolkit and an alteration in the implemention of some function­

ality; this version of the Globus toolkit was used for the second implementation. 

Following the release of the 3.0.2 version of the software a discussion within the 

grid community took place about the philosophy and development approach to the 

grid service software, this led to a fundamental shift from stateful grid services to 

stateless web services. This fundamental shift in the statefulness of services had a big 

impact on the realisation of the design of the virtualised visualisation architecture 

and the third implementation. 

The final section of this chapter discusses the implementation of the architecture 

74 



6.1. Globus Toolkit 3 Alpha 2 Implementation 75 

using stateless web services and the changes that this required to the design of the 

architecture. An examination of how to introduce state to web services to allow 

control to be exercised over the pipeline through steering and to use of the visual­

isation architecture for interactive visualisation and for collaborative visualisation 

has also been undertaken. 

6.1 Globus Toolkit 3 Alpha 2 Implementation 

The implementation of the virtualised visualisation architecture using the Alpha 2 

release of the Globus Toolkit 3 from the Globus Alliance was the first implementa­

tion of the architecture to be attempted. The architectural definition was used for 

the development of interfaces in Grid Service Description Language (gWSDL), an 

extension of Web Services Description Language (WSDL) that introduced support 

for inheritance from multiple gWSDL documents. 

This inheritance allowed a base interface common across all services in the ar­

chitecture to be developed and for this interface to be specialised for the different 

types of service in the architecture, and again specialised by service developers if 

they wished to implement any extra functionality in their services. The multiple 

inheritance also allowed interfaces, such as a steering interface, to be developed. The 

advantage of this approach is that services can be developed in an iterative manner 

and new functionality incorporated by inheriting an interface and then adding the 

functions to the service. The use of these multiple interfaces allows some typing of 

services which can be of use when constructing visualisation pipelines. 

This implementation was started as a prototype proof of concept as it was un­

derstood that the release version of the Globus Toolkit 3 would be made available 

shortly and it was felt that an implementation using the release version of the toolkit 

would be preferable to one using an Alpha release. For this reason the main focus 

of the implementation was the construction of services, other issues, including data 

transport, security, composition and discovery were put to one side during the pro­

totype implementation. 

The data transport mechanism chosen for ease and simplicity was the Simple 



6.2. Globus Toolkit 3.0.2 Implementation 76 

Object Access Protocol (SOAP), this is the mechanism used by services for message 

passing and for calling functions in services. The mechanism is inefficient for large 

data transfers as it encodes messages in an XML wrapper and sends all data as 

UTF-8 text. 

To create a visualisation pipeline a user would for each type of service required 

call a factory service which would create an instance of the service that the user 

wanted, the factory would then return to the user an endpoint reference to the 

service instance created. The user would then be the owner of the instance and can 

manipulate that service and its properties to alter the behaviour of the service. The 

user can also destroy the service when they have finished using it. 

Each service instance can have Grid Service Data Items, these can be thought 

of as variables exposed publicly, these can be manipulated and could provide an 

mechanism for steering the services. 

6.2 Globus Toolkit 3.0.2 Implementation 

The implementation using the Globus Toolkit 3.0.2 was begun but never completed 

due to the move to web services as discussed later. However during this implementa­

tion the Globus Toolkit 3 Alpha 2 implementation of the architecture was examined 

and areas for improvement were highlighted. 

The main area to be examined was the area of data transport, it was recognised 

that for the architecture to be suitable for processing large data sets that an alter­

native data transport mechanism would be required. The type of data transport 

required was that of streaming, whereby as data is produced it is sent across the 

network to the next service in the chain. This type of data transport mechanism 

would allow the start of a large data set to be processed before the end of the data set 

had arrived. It would also be appropriate for devices that produced a theoretically 

infinite data set, such as environmental sensors. 

Due to the batch processing origins of grid software and in particular the Globus 

Toolkit, such a data transport mechanism has not yet been implemented for use in 

a service based architecture. 



6.2. Globus Toolkit 3.0.2 Implementation 77 

A compromise solution to the problem was decided upon for this implementation, 

that of HTTP Streaming, a mechanism that allows a file, referenced by a URL to 

be read across the network. To use this solution each service has to write its output 

locally to a file and the service must return a link to that file. One approach to the 

returning of the URL would be for the service to wait until it had started processing 

data and writing to disk and then return the URL, that way the service next in the 

pipeline would know that the file existed and was populated with data. However due 

to the nature of distributed communications, services have a limited time in which 

to issue a response before the calling service times out believing that the service it 

is calling did not receive the message or has ceased to be in existence and therefore 

is unable to process the request. It is not determinable as to when a service will 

begin processing data as each service is dependent on the services higher in the chain 

from it, as such simply extending the timeout level for a service would not solve the 

problem. Extending the timeout value to solve the issue would also have the effect 

of increasing the time before a true service failure was noticed. It is felt that this 

would be an undesirable side effect and one that should be avoided. 

The solution adopted was for a service to return a URL to the calling service 

before it began processing the data from the previous service in the pipeline. The 

URL returned was a system generated one, consisting of the local machine name and 

directory where data was stored combined with a millisecond time stamp from the 

local system, it is recognised that this URL generation technique is not guaranteed 

to be unique, however it is felt that the case of two or more identical URLs being 

generated on the same host was sufficiently remote to make it highly unlikely. An 

extension to the URL generation mechanism would be the use of a random number 

in addition to the time stamp which would reduce the probability of identical URLs 

further. 

An implementation of some services using the Globus Toolkit 3.0.2 was com­

pleted to test the HTTP streaming as a data transport mechanism, it was found 

to be less than ideal but an improvement upon the use of SOAP as a data trans­

port mechanism. One of the issues with the HTTP streaming mechanism was the 

incomplete transfer of data, this was observed on several occasions, it is thought 



6.3. Web Service Implementation 78 

that incomplete data transfers occurred when a service was reading data faster than 

the providing service was outputting the data, in this case the HTTP mechanism 

reached the end of the file written to disk and terminated the data transfer whilst 

the providing service continued to write data after this point. A solution to this 

issue has not been discovered as yet. 

The implementation of the virtualised visualisation architecture was not com­

pleted as the grid community entered a discussion about the future direction of grid 

services, the outcome of these discussions was that the future grid services would 

be based upon web services. The details of changes and the timescale for these 

changes were still uncertain at this stage. It was decided therefore that a move to 

web services, would be a technology change that would be better to make sooner 

rather than later due to the fundamental difference between grid services and web 

services over state. 

6.3 Web Service Implementation 

The Web service implementation brought together development from both of the 

previous implementations of the virtualised architecture as the implementation using 

Globus Toolkit 3.0.2 had not been completed. 

The web service implementation also required re-examination of the original 

design for the implementation of the architecture due to the stateless nature of web 

services. The other area that required re-examination was the interfaces written 

in gWSDL as the WSDL that would be used with web services does not support 

inheritance. 

The web service implementation was able to reuse some Java code from previous 

implementations of individual services to perform the filter, map and render parts 

of the pipeline. 

6.3.1 Stateless Services 

An examination of the interfaees developed for the initial implementation of the 

architecture in light of removing the requirement for inheritance showed that these 



6.3. Web Service Implementation 79 

would need to be rewritten. It was decided to split the five types of service, read, 

filter, map, render and write into three groups, read services, transform services and 

write services. 

The read service group contains just read services and the interface for this type 

of service was written with a focus on serving data, it did not need to provide a 

mechanism for the service to take in data. 

The transform services group contained the filter, map and render services, these 

services were grouped together as they each take in data and produce an output. 

These services were termed the transform group as their function is to change, or 

transform, the data they take in to produce a new output. 

The final group is the write service group containing the write services, this 

group is simply a consumer of data and does not need to provide a mechanism for 

the service to return data. 

With these three WSDL interfaces defined, five service interfaces were defined, 

one for each of the service types, the read service interface using the read group 

WSDL interface. The filter, map and render services each having their own java 

interface using the transform group WSDL interface and the write service having a 

java interface using the write group WSDL. 

The decision to use different Java interfaces for the services, especially in the 

transform group was made to maintain the functional differential between the ser­

vices. Each service in the group does the same general task, in the transform group 

this is read in data, perform some operation on that data and return an output; 

but they have different specialties within that generalisation. Filter services, reduce 

the data set size and/or change the data format; map services, map raw data to 

a visual representation; render services, take a visual representation and produce a 

geometric output or an image output. 

Web service instances are not created in the same way as instances of grid ser­

vices, web services run as a single instance in a web service container, there are no 

web service factories, this means that all users interact with the same instance of 

a web service. A user therefore has no ownership over the web service, this is why 

web services are stateless. A web service also has no grid service data items, nor 



6.3. Web Service Implementation 80 

<?xml wrsion="1.o" enooding=~Service Name 
<definllons name="lsosurtaceMapper" taiJIEl Nane1,a::e="http:#129 .234.198 .4:8080" xmlns lns=''http :1/129.234. 198. 4:8080" 
xmlns=''http :lschemas.xmlsoap.dtgAIIsdV' xmlns :xs ='1111p :IAIIIJJJIJ .w3 .org/200 11)(MLSchema" xmlns:soap=''http :lschEmas.xmlsoap.orgAIIsdLisoapf'> 

<twesl> 
<message name='TransfoiiTllrlerface_getPal"iiiTIEitels"/> 
<messagename='T!jlnROIITll!terf~_aetP=eiSResponse"> Method Name <part n3me="resul ~="xsd:anvuRi/>< ge> 
<message name='Transtoonl!terface...PI!!()es:~Datii~=·>;;;==~ <part n3me="String_ 1 "type="xs:d :st11119'7> 
<part name="URI TtvPe="xs:d:alllflJR1'7><1message> In put Para meters 

<message name='TIJI!ISfOIITll!terfaq~~sDataResponse"> 
<part name="rellld ~=''xsd:anvuRI"/><.tnessage~ 

<message name='Tran5fo11Tll!terf;jrocess0al32"> 
<part name="UR I nvpe="xs:d :a 1'7> 
<part name="UR ""2"type=''xsd:anyU 1'7></messag~> Return liype 

<message na11,1e='T!jlnsfOIUll!terfaq~__I!TI)Ce!>SData2Response"> , 
<part name= tesul' type="Xsd:anvu RI"/> <.tnessage > 

<portl\tpe name='TranSfoiiTllrterface"> 
<operation name='_'get Parameten;" paraml!erOnler='"'> 

<1nput message='tns :Transformlnferface_gl! Paraml!ers"/> 
<outplt message='tns:TransfOIITllrlerface.Jiet Parameters Response"/> </oper.aion > 

<operation name='brocess~~arametei'Unler="Strin.!L 1 URI_2"> 
<mput message='\ns :Tran ertace_process Daa'7J" =ut lt message='tns:TI"I!rlsfotmlrlerfa::e_p_rocessDat!IRe_si!QIIS!l"l> </operation> 

< tlon name='brocessoataz· par.metel'Order="URI 1 URI T> 
put message='\ns::Transformlritertace_processDaa:f'/> -

<outplt messaJie='tns:TransfOIITll!]erfa::ll_processData2R_espQns:e"/> </operation> </pod 1\tpe > 
<binding name='TransfonnlntertaoeBmdlng type='\ns:Transronntntertaoe''> 
<operation name=''get Paraneten;''> 
<input> 
<soap:body encoding 9tyle='1111p :lschemas.xrntsoap.orgSoap/enoodingl' use="encoded" namespa::e='http:#129 .234.198 .4:8080"/> <llnput > 

<outplt> 
<soap:body encoding Stvle=''http :lschEmas.xmlsoap.orgSoap/enoodlngl' use="encoded" nanespaoe='http:#129 .234.1 98 .4:8080"/> </outplt > 

<soap:operation soap:A:tlon='"'/> </operation> 
<operation name=''processData"> 
<Input> 
<soap:body encoding Style=''http :lschEmas.xmlsoap.orgSoap/enoodingl' use="encoded" nanespaoe='http:#129 .234. 198 .4:8080"/> <llnput > 

<outplt> 
<soap:body encoding_Style=''http :ISchEmas.xmlsoap.orgsoap/enoodlngl' use="encoded" nanespa::e='http:#129 .234.1 98 .4:8080"/> </outplt > 

<soiiJ!:operation soapA:tion='a/> </operation> 
<operation name=''processData2"> 

<Input> 
<soap :body encoding Style=''http :lschemas.xmlsoap.orgSoaplenooding/' use="encoded" nanespa::e='http:#129 .234.198 .4:8080"/> <llnput > 

<outplt> 
<soap :body encoding Style=''http :ISchEmas.xrnlsoap.orgsoaplenoodingf' use="encoded" nanespaoe='http:#129 .234.1 98 .4:8080"/> </outplt > 

<soap:!)peratlon soap~1on=~'/> </operation> 
<soap:bindlng transpOil= http:#schemas xmlsoap .orglsoaJII'http" :style="rpc'f> </binding> 

<service na~=''lsosiufaceMipper''> 
<port name= TransfOIITll!terfii:e Port" binding='tns: :Transformlntertace Binding"> 

<soap:address location="R EP I.JlC EJMTH_ACTUAL_U R L "/></pod> </service> </definitions> 

Figure 6.1: WSDL for a transform service 

any similar concept. Each operation within a web service must be self-contained 

and have no impact or bearing on any past or future operations. 

As web services are always running within the container, this means that the 

overhead associated with connecting to a service is reduced as a service instance does 

not have to be created for each user; the first call to the service when a container is 

started may have this instantiation overhead associated with it but all subsequent 

calls, by any user, are instantiation overhead free. 

The choice of technology used to deploy the web service architecture was made 

after surveying the available technologies. The Tomcat container from the Apache 

Foundation was chosen as it had been successfully used in the Globus Toolkit as 

the basis of the grid service container, it had a wide community user group and 

many tools and tutorials designed to work with it. The Tomcat container is also 



6.3. Web Service Implementation 81 

open source and free of a license fee and runs on many operating systems a vital 

requirement of a container for this type of architecture. 

The Sun Java Web Services Developers Kit, which also contains Tomcat as a 

container environment, was also chosen to help with the development of Java web 

services. The kit provides tooling to aid the conversion from Java to WSDL and 

from WSDL to Java when creating services. The kit also contains assistance with 

service packaging. 

Figure 6.2: Overview of Implemented Services 

In the initial web service implementation of the architecture as shown in Figure 

6.2 the issue of state was ignored and a 'one shot' pipeline approach was followed. 

That is, a user establishes a pipeline and uses it once, if the user wishes to reuse 

the pipeline they must start over and reconstruct a pipeline and all data must be 

reprocessed. This is an inefficient method of pipeline use but successfully avoids the 

complications required by state management. An example of a pipeline that was 

implemented is shown in Figure 6.3 

Composition 
Script 

~ 
·~ 

Figure 6.3: Example of an implemented pipeline 

In this implementation external libraries such as the Visualisation Toolkit (VTK) 

were used to provide functionality for some services, this use of external libraries 

whilst allowing reuse caused complications of its own. The design of these external 

libraries is based on reading data from file and outputting to screen. In the web 



6.3. Web Service Implementation 82 

service model, the preferred approach was to read from a data stream and output 

to file. This design model for the external libraries meant that they did not operate 

within the web service container, due to the low level calls that the libraries make 

and the sandbox security model of the web service container. A work around to this 

was to read all the data that was to be processed to a file on disk, to pass a local 

file path via a socket connection to a daemon running which calls the library as is 

shown in Figure 6.4. 

Service 

Container 

Figure 6.4: Using External Libraries with Services 

This method is used in a map service where, for example, isosurfacing is per­

formed. The data is read from the filter service to a file on disk, it is then processed 

using the VTK library whose output is also written to disk. This data can then 

be streamed to the render service. To achieve this the URL returned by the filter 

service is passed as a parameter to the map service which polls the file, waiting 

until it is written out by the filter service. When the file has been written by the 

filter service it is read by the map service to local disk. The location of the local 

file is then passed into a daemon that interfaces to the VTK library via a socket 

connection. The VTK library is then used to process the data file and produce an 

output file. It is the URL of the output file that is returned by the map service 

method call and used by the render service to obtain the data that it requires. 

The transfer of data, as with the previous implementation, is achieved using the 



6.3. Web Service Implementation 83 

Java COG kit from Globus to provide HTTP streaming of data to a service. 

To use stateful services within a web service based architecture change are re­

quired to the design and implementation of the individual services, these changes 

are discussed in the next section. 

6.3.2 Introducing State 

If state is required in the virtualised visualisation architecture then changes to the 

design of the web services must be made. The services must be designed to explicitly 

manage state and the steering of parameters. 

A decision must be made as to how state should be managed within the ar­

chitecture, should each service manage state itself or should state management be 

centralised for the creating of a shared context between services. 

The approach outlined allows each service to be concerned with the parts of state 

management that directly affect it without having to manage all the services that 

are using it. The addition of context allows services to be steered as web services 

are able to be reused without having to resubmit all parameters. 

The addition of context also allows the use of intelligent data management, if 

a set of steering parameters has been used before and the data is still cached then 

that data can be reused rather than a service having to re process it. Services can 

also be checkpointed allowing interesting points in the visualisation to be saved and 

restored at a later date. The diagram in Figure 6.5 shows the logic for dealing with 

messages that have a state identifier when they are processed by a web service. 

Local vs. Global State 

The addition of state to services can happen at different levels of abstraction. Each 

service can maintain the global state of the pipeline of which it is part, alternatively 

each service can just maintain state information relating to the computation that is 

is undertaking. 

If global state is implemented each service must contain information about users, 

security policies and the connections between all services in the pipeline. When a 

change happens in one part of the pipeline this change must be reflected at all 



6.3. Web Service Implementation 

Wait 
State 

Start 

Pass Message to 
Instance Thread 

No 

Wait 
State 

Reject Message 

Service 

Instance Threads 

Figure 6.5: Stateful Message Logic 

84 

other services. This type of state management has the advantage that each service 

does not need to rely on any third party if and when it requires access to state 

information however it introduces a significant overhead in maintaining the state 

and synchronizing across all services in the pipeline. 

Local state at each service reduces the overhead of maintaining state across 

the pipeline but introduces a requirement for an external maintainer of state. In 

the virtualised visualisation architecture this role is taken on by the Manage service. 

The manage service can maintain details of all users permitted to access the pipeline 

and proxy on their behalf to services, it can maintain details of connections between 

services. In the case of service failure a new service can be introduced and only the 

manage service needs to be aware of the change. 



6.4. Stereo Render Service 85 

6.4 Stereo Render Service 

A item of research aligned to the development of the virtualised visualisation ar­

chitecture a stereo capable render service was developed by Lock [Lock, 2003] who 

evaluated how different rendering applications could be distributed to provide a 

stereo capable render service, to this system a number of interfaces were provided 

including a web service interface to which other web services could provide data for 

rendering. 

This research shows how a stereo capable render service can be built and how 

external developers can generate services that can be used as part of the virtualised 

visualisation architecture. 

The research also examined a variety of "behind the scenes" distribution mech­

anisms highlighting the importance of choosing the correct distribution mechanism 

for the task being approached. 

6.5 Summary 

Three iterations of the implementation of the virtualised visualisation architecture 

have been discussed, moving from stateful grid services to stateless web services. 

Each of these iterations in the development highlighted issues with underlying Grid 

middleware and the mechanisms for achieving the desired results. Work arounds to 

these problems have been discussed and a possible solution for achieving state with 

web services has been presented. 

The parts of the pipeline implemented through the iterations of architecture 

were; read,map,filter, render and write services capable of producing visualisations 

for two case study scenarios and a prototype composition tool. The parts of the im­

plementation that were not achieved was; state management in services, the Manage 

service, and the user interface tools. 

In producing the services that were able to produce visualisations of the case 

study scenarios the end to end performance of these pipelines could be evaluated. 



Chapter 7 

Experiments and Scenarios 

In order to evaluate the virtualised visualisation architecture, two regimes were used. 

Quantative experiments to monitor the performance of the pipeline and qualitative 

scenarios to highlight how the architecture adapted to different problem classes and 

to give a user viewpoint evaluation. 

7.1 Scenarios 

Scenarios provide a qualitative evaluation of the virtualised visualisation architec­

ture. They allows different problem classes to be examined and allow the architecture 

to be examined from a user perspective. 

7 .1.1 X-Ray Crystallography 

This scenario is taken from the chemistry domain, the X-Ray crystallography field 

is one that examines the composition of crystals by reducing their temperature 

and exposing them to X-Rays. The way the X-Rays are affected by the crystals is 

measured and the structure of the crystal and the electronic field potential around 

atoms within the crystal can be measured. 

To visualise this data requires two types of visualisation be brought together. 

The first type of visualisation is a representation of the atoms and their connections 

within the crystal. The representation used for this is a standard for the chemistry 

field. Atoms are spheres of differing colours and the bonds between atoms are shown 

86 



7 .1. Scenarios 87 

as lines or bars. This type of representation is known as a ball and stick model. 

The second type of visualisation used is an isosurface. This is a standard visu­

alisation technique for fitting a surface through points of equal value. This type of 

surface is used in this representation for the electric field strength within the crystal. 

The value at which the surface is fitted can be chosen by the user. 

The visualisation pipeline for this scenario is shown in Figure 7.1 and consists of 

a data service which contains the data required for both parts of the visualisation, 

the data in this scenario is approximately 9MB. The data is split using two filter 

services, one which extracts the information required for the ball and stick model 

and one which extracts the information required for the isosurfacing. A mapping 

service to create the ball and stick model is used and another mapping service is 

used to create the isosurface. 

The render service brings the output of the two mapping services together before 

it is displayed to the user through a write service. 

Ball and Stick 
Mapper 

lsosurfacing 

Render 

Figure 7.1: X-Ray Crystallography Pipeline 

7.1.2 Dark Matter Simulation 

Presentation 

This scenario is drawn from the Physics domain, in particular the cosmology area. 

Simulations of the early universe are run to determine possible distributions of dark 

matter throughout the universe from the time of the big bang forward. The output 

of the simulatiot1 is a data structure showing the possible distribution of dark matter 

at that time. The simulation contains approximately 10 billion particles and each 



7.2. Experimental Evaluation 88 

Figure 7.2: X-Ray Crystallography Results 

time step in the simulation produces an output of around 300GB. If all time steps 

are taken together a total data set size of over 15TB is gathered. 

The visualisation of this data requires a multi resolution approach, it is not 

practical, even with ultra-high resolution displays to present all 10 billion particles 

for display. It is more appropriate to show the general structure of the distribution 

within the simulation. When areas of interest are found it is required to view these 

areas in more detail and eventually at the individual particle level. 

The pipeline to achieve this type of visualisation requires services to determine 

the density of particles throughout the simulation to present an abstract level view 

of the data using an initial 40MB dataset. 

7.2 Experimental Evaluation 

This section outlines the experiments performed on the architecture, to collect per­

formance statistics for evaluation. The section explains how the architecture was 

analysed and the results of the experimentation. 



7.2. Experimental Evaluation 

Density 
Mapping Render Presentation 

Figure 7.3: Dark Matter Simulation Pipeline 

7.2.1 Experimental Procedure 

89 

To perform the experiments a grid of standard desktop personal computers (PC) 

was established. These PCs varied in specification from relatively low powered 

Celeron processors to Pentium 4 processors. All machines were uniprocessor and 

installed with a similar software configuration based upon Red Hat Linux with 

Apache Tomcat installed to host the web services. 

The same computers within the grid were used in comparable experiments across 

scenarios to avoid differing results due to different capability machines. 

Each experiment was run fifteen times, this allowed a series of timings to be 

gathered and for statistical analysis to be performed on the results. 

The services were composed together using a script to maintain consistency be­

tween experiments and to reduce the impact of any human factors. The experiments 

were run manually sequentially by executing the service composition script, record­

ing the start time as output by the script and recording the time output by the 

display client after display of the visualisation is completed. There was no set delay 

between execution of the script and grid machines were not restarted or reinitalised 

to reflect the way in which operational grid machines would usually operate. 

The experiments were conducted during the normal UK working day, avoiding 

times such as lunchtime, this was to reduce the impact of variations in network 

traffic and the effect that this would have on the experimental results. 

The data collected during each experimental run was the wall clock time to 

completion, that is the time from the script being executed to the image being 



7.2. Experimental Evaluation 

• • 
. . 

:· . . . 
' -~ - .. 

•• 
.. 

• 

~ · 
• 

. . 
-·. 

: " .... · .: .. .· . " . .. . . . •. . . .• •. . .. -- . ~ . .. . . . . -. . .. .. . . --... :') · . . ·. · ......... _. ... . . ••• •. . ··~ '#:· .. . " ' . . . • 
• • ,. .. 6 • • . . .. •• • • • • • 0 - :. • • • • 

·~ • .,. • ~I I I • • T • • •t • o tl • • .. -.. ),- ··· ·. . ..... . .. :.·. ·. •. •.. . . .. .. " . . . . . .. 
. .... . . . 
~,.. . ·.. . . .· .. ... . .. 

·.\··· .. • . ... .. . ... • 

• 

Figure 7.4: Dark Matter Simulation Result 

90 

displayed on the presentation service display. The same computer was used for 

pipeline composition and the presentation service so timings from the system clock 

could be used to maintain an accurate and consistent measurement. 

7.2.2 Experiments 

This section describes the experiments that were used to evaluate the architecture. 

1. The first experiment run was to establish a control experiment against which 

the results of other experiments could be compared. The experimental set­

up was to run all of the services on a single machine with the data stored 

locally on that machine. It was also ensured that no other user processes were 

executing on the machine. 

2. The second experiment was to establish the impact of reading the data set 

from a locally remote service, that is one on the same campus network but 

not within the same physical network segment. The experimental setup for 

this experiment was identical to that in experiment one apart from the data 



7 .2. Experimental Evaluation 91 

service, which in this experiment was run on a remote computer within the 

campus network. This experiment was designed to highlight the impact of 

network distance on the performance of the architecture. 

3. The third experiment was again designed to establish the impact of reading 

data from a remote service, in this experiment however the data would be 

outside the campus network. The experimental setup for this experiment was 

identical to the second experiment, apart from the location of the data, which 

in this experiment was located outside the campus network. This experiment 

was designed to highlight the impact of network traffic on the performance of 

the architecture. 

4. The fourth experiment was to establish the performance difference by running 

branches of the pipeline on different computers. In this experiment the data 

service was run on one computer within the grid and each branch of the pipeline 

was run on a different computer. This experiment was designed to assess the 

benefits of distributing computation across multiple machines within a grid. 

5. The fifth experiment was to establish the performance difference by running 

all of the services on different machines. The experimental setup for this 

experiment involved running each service in the pipeline on a different machine 

within the grid. 

6. The sixth experiment was to establish the impact that locally running pro­

cesses could have on the performance of the architecture. The experimental 

setup for this experiment was identical to that of experiment one with the 

addition of a separate user level processor intensive task. The task run was 

the mprime tool which is designed to stress the processor subsystems of a 

computer and as such simulates the effects of heavy use of a resource. 

The different experiments tested the architecture under a variety of different 

circumstances to see how it would perform with possible conditions that would 

affect the architecture when it was deployed on the grid. 



7 .3. Results 92 

7.3 Results 

This section contains the results from the experiments above. The experiment num­

ber relates to the number above describing the experiments. The run number relates 

to the iteration of the experiment. 

7.3.1 X-Ray Crystallography Experiments 

Experiment One 

The first experiment run was to establish a control experiment against which the 

results of other experiments could be run. The experimental set-up was to run all 

of the services on a single machine with the data stored locally to that machine. It 

was also ensured that no other user processes were executing on the machine. The 

table A.1 shows the results from Experiment one and Figure 7.5 shows these results 

as a bar chart. 

The mean of the data is 19.8 seconds and the standard deviation is 1.11 

liJ 

-

- -

- - - f-- -

'---,- '---,- ~ ~ 

10 11 12 13 1~ 15 

Runlu.U•r 

Figure 7.5: Chart of Experiment One Results 



7 .3. Results 93 

Experiment Two 

The second experiment was to establish the impact of reading the data set from a 

locally remote service, that is one on the same campus network. The experimental 

setup for this experiment was identical to that of the control experiment apart from 

the data service, which was run on a remote computer. This experiment was designed 

to highlight the impact of network distance on the performance of the architecture. 

The experimental data is shown in Table A.2 and in Figure 7.6 as a bar chart. 

The mean of the data is 20.7 seconds and the standard deviation is 0.18 

Cry8blllography Exp1l1ment TWo 

25 

20 f--- f--- - - - f--- f--- f--- f---

~ 
t-- t-- t--

f-- f-- - - r- f-- f-- f-- f-- -

f-- t-- r- t-- r- t-- - t-- t-- - - - - -

f--- - r-- f--- f--- f--- - - - - - - - -

10 11 12 13 14 15 

Figure 7.6: Chart of Experiment Two Results 

Experiment Three 

The third experiment was again to establish the impact of reading data from a 

remote service, in this experiment however the data is outside the campus network. 

The experimental setup for this experiment was identical to the second experiment. 

Again this experiment was designed to highlight the impact of network distance on 

the performance of the architecture. 

The experimental data is shown in Table A.3 and in Figure 7.7 as a bar chart. 

The mean of the data is 20.3 seconds and the standard deviation is 0.19 



7.3. Results 94 

Cryetallography Experiment Thrtt 

25 - - --- -· - -- - -

~ 
- .... - ,... 

I~ ~ 11 1 -~; 

'~ 
I·~ I·" 

1\ 
!·'· 

I~ r;; 
10 

- - - - -
I~ r~ f. ~ 

'-: t 
- - -

1,~ 
1(:, _ r- ;;, 

~ f-- - r--

i 15 

i 
~ 

; 
I= 10 

~ ' I • ~ ~>1 

~ [!£ i'"' i"'l I ·~ ~'t J~ 1•\ 
6 8 10 11 12 13 14 15 

Rtm Mumhr 

Figure 7. 7: Chart of Experiment Three Results 

Experiment Four 

The fourth experiment was to establish the performance difference by running the 

two branches of the pipeline on different computers. In this experiment the data 

service was run on one computer, the ball and stick extraction and modeling services 

were run on another computer and the isosurfacing service was run on a different 

computer. 

Table A.4 shows the experimental data for this experiment and Figure 7.8 shows 

this data as a bar chart. 

The mean of the data is 20.0 seconds and the standard deviation is 0.18 

Experiment Five 

The fifth experiment was to establish the performance difference by running all of 

the services on different machines, the experimental setup for this experiment was 

to run each service on a different machine. 

The experimental data is shown in Table A.5 and in Figure 7.9 as a bar chart. 

The mean of the data is 20.7 seconds and the standard deviation is 0.16 



7 .3. Results 95 

Cryatmlag...,.hy Experiment Faur 

20 .--- r-- - - - - .--- .--- .--- .--- r--

r-- f-- - - - r-- f-- f-- f-- f-- f-- r-- r-- -

r-- r-- >----- - ~ r-- r-- f-- f-- f-- f-- r-- r-- -

f-- f-- I- - f-- f-- f-- f-- f-- f-- f-- f-- f-- -

.._,_ 
6 10 11 12 13 1• 15 

Figure 7.8: Chart of Experiment Four Results 

Experiment Six 

The sixth experiment was to establish the impact that locally running processes 

could have on the performance of the architecture. The experimental set up for this 

experiment was the same as the first experiment except that a processor intensive 

user process was executed at the same time to simulate the effects of heavy use of 

the resource by other users. 

The experimental data for this experiment is shown in Table A.6 and also in 

Figure 7.10 as a bar chart. 

The mean of the data is 41.9 seconds and the standard deviation is 77.1 

7.3.2 Dark Matter Simulation 

This section reports the results of the Dark Matter Simulation scenario being run 

through the same experimental series as the X-Ray Crystallography data, this sce­

nario made use of a simpler visualisation pipeline but a larger dataset. 



7.3. Results 96 

CryMaUaut.hy Experiment Five 

25 - -

21) - - 1- 1- 1- - - - - - - -

- - 1- 1- 1- - - - - - - - - ,___ 

- - 1- 1- 1- - - - - - - - - 1-

- - 1- 1- - - - - - - - r-- r-- 1-

~ '--.-- ~ ~ ~ .....,__ .....,__ '--,-

6 6 10 11 12 13 14 15 

Rlln Nw.Uer 

Figure 7.9: Chart of Experiment Five Results 

Experiment One 

All services in this experiment are run on the same machine to establish a base case 

against which to compare. 

The results of this experiment are shown in Table B.1 and Figure 7.11 as a bar 

chart. 

The mean of the data is 93.4 seconds and the standard deviation is 0.053 

Experiment Two 

This experiment involved all services apart from the data service being run on the 

same machine as experiment one, the data service was run on a remote machine 

within the campus network but on a different network segment. 

Table B.2 shows the experimental data for this experiment and Figure 7.12 shows 

this as a bar chart with error bars indicating one standard deviation. 

The mean of the data is 120.9 seconds and the standard deviation is 0.49 



7.3. Results 97 

C,.,.mllagraphy Exp1rlm1nt Bill 

3!lJ 

DJ 

250 

f:m 
g 
& . 
~ 150 

100 

50 

10 11 12 13 14 15 

RatR lihiMit•r 

Figure 7.10: Chart of Experiment Six Results 

Experiment Three 

This experiment involved all services apart from the data service being run on the 

same machine as experiment one, the data service was run on a remote machine 

outside the campus network. 

Table B.3 shows the experimental data for this experiment and Figure 7.13 shows 

this as a bar chart. 

The mean of the data is 126.4 seconds and the standard deviation is 5.4 

Experiment Four 

This experiment was not run for this scenario as the pipeline does not have multiple 

branches. 

Experiment Five 

This experiment involved the services within the pipeline being run on different 

machines within the local grid. 

Table B.4 shows the experimental data for this experiment and Figure 7.14 shows 

this as a bar chart. 



7 .4. Summary 98 

D•rk Mlllttr Slmul•llon Experiment One 

10 11 12 13 14 15 

Run Numb•• 

Figure 7.11: Chart of Dark Matter Experiment One Results 

The mean of the data is 122.9 seconds and the standard deviation is 2.9 

Experiment Six 

Experiment Six had the same experimental set-up as Experiment One except that 

the machine was loaded to simulate heavy use by other users to determine the impact 

that this may have upon the execution of a pipeline. 

The data for this experiment is shown in Table B.5 and in Figure 7.15 as a bar 

chart. 

The mean of the data is 108.8 seconds and the standard deviation is 8.8 

7.4 Summary 

Scenarios and experimentation are both used to analyse the performance of the 

virtualised visualisation architecture this allows both qualative and quantative data 

to be collected, this data is analysed and evaluated in the next chapter. A summary 

of the results for the two experimental scenarios are shown in Table 7.1 and Table 

7.2. This summary presents an average and standard deviation for each experiment 

within each scenario allowing an overview of the experimental results to be gained. 



7 .4. Summary 99 

Experiment Number Average Time( seconds) Std. Deviation 

1 19.82 1.11 

2 20.69 0.18 

3 20.34 0.19 

4 20.03 0.18 

5 20.69 0.16 

6 41.89 77.14 

Table 7.1: Overview of X-Ray Crystallography Experimental Result Data 

Experiment Number Average Time(seconds) Std. Deviation 

1 93.42 0.05 

2 120.86 0.49 

3 126.39 5.41 

4 N/A N/A 

5 122.94 2.94 

6 108.81 8.78 

Table 7.2: Overview of the Dark Matter Case Study Experimental Results 



7 .4. Summary 100 

Dark Matter Slmluatton Experiment Two 

uo -- -·- - - ·-- ·-- ------

120 r- r- t--

100 t-- t-- t-- t-- t-- t- 1-- 1-- 1-- f-- r- r- r- t--

i Ill 

~ 
t-- t-- r- t-- r- t-- 1-- t-- t-- t-- t-- t-- f-- t--

4 . e Ill 
I= t-- t-- t-- t-- t-- t- 1-- f-- f-- f-- f-- r- r- t--

«l 1-- 1-- !-- 1-- - 1-- 1-- 1-- 1-- - - - 1-- -
20 1-- 1-- 1-- 1-- - r--- I-- 1-- 1-- - - - 1-- -

0 .._,_ .._,_ .._,_ '-.- -.- '-.- -.- .._,_ .._,_ 
10 11 12 13 14 15 

Run Number 

Figure 7.12: Chart of Dark Matter Experiment Two Results 

Dark Matter Slmluatlon Experiment Three 

160 - ----

uo 

120 1-- 1-- 1-- - ,__ - - - 1-- !-- !-- - - 1--

100 1-- 1-- !-- - 1-- - - - 1-- 1-- 1-- 1-- 1-- 1--
i 
c 
0 

¥ Ill 1-- 1--... !-- - r-- - 1-- - I-- 1-- 1-- r- r- 1--. 
5 
I= 

Ill 1-- 1-- !-- - !-- - 1-- - 1-- 1-- 1-- 1-- r-- 1--

.00 t-- t-- 1-- r- r- !-- 1-- !-- 1-- f-- f-- f-- r- 1--

20 t-- t-- r- t-- r- t-- 1-- !-- t-- t- f-- t- t- 1--

'-r- .._,_ .._,_ '-.- .._,_ 
5 7 a 10 11 12 13 14 15 

Run Nmnb•r 

Figure 7.13: Chart of Dark Matter Experiment Three Results 



7.4. Summary 101 

Dart! Mllltllr Blmullllan Experiment Five 

uo - ---- -- -

1:!) t--- t--- 1- - 1- - ~ - 1- 1-

100 t--- t--- I-- - 1- - ~ - 1- 1- 1-- - - r--

t--- t--- I-- - I-- - t--- - I-- 1- r-- - - 1-loo 

i 
! I[) t--- t--- I-- - I-- - t--- - 1- 1- r-- - - r--

~ ~ 1-- 1-- 1-- 1-- ~ ~ 1-- r-- r-- r- r-- r--

t--- t--- I-- r-- 1- 1- ~ ~ 1- 1- 1-- ~ 1- r--

'---,.- '---,.- '-..-- '---,.- '-..-- .__,_ 
10 11 12 13 1~ 15 

Figure 7.14: Chart of Dark Matter Experiment Five Results 

Dark Matter Simulation Experiment Six 

1~ - - - -- - - - - - - -- --- --

1:!) 

100 t--- f-- - - - - t--- - - - - r----

i I[) t--- t--- - - - - - - r---- 1-- - - - !--

¥ 
~ 

~ 00 I= t--- t--- - - - - - - r---- 1- - - - r----

~ f-- f-- - - - - - - f-- r-- - - - t---

:!) ~ ~ 1-- - 1-- 1-- - - ~ 1-- r-- r-- r-- t---

0 .__,_ .__,_ .__,_ '-T- .......,_ 
10 11 12 13 1~ 15 

Figure 7.15: Chart of Dark Matter Experiment Six Results 



Chapter 8 

Evaluation 

This chapter evaluates the virtualised visualisation architecture specified in Chap­

ter 5. It does so by comparing the architecture against requirements set out at the 

beginning of Chapter 5. Two case study scenarios are used to evaluate the appli­

cability of the architecture and evaluate the performance of the architecture using 

the experimental results from Chapter 7. The architecture is also assessed for its 

suitability for types of visualisation other than Scientific Visualisation through a 

worked example of Information Visualisation. 

8.1 Requirements 

The requirements for the implementation as stated in Chapter 5 are: 

1. That the virtualised visualisation architecture can run on a variety of machine 

architect ures. 

2. That the visualisation can be displayed on a variety of different display plat­

forms, including stereoscopic devices. 

3. That the visualisation should be available on the desktop. 

4. That the architecture will operate across multiple institutional boundaries, 

accounting for security issues. 

102 



8.1. Requirements 103 

Requirement Architecture Implementation Dark Matter X-Ray 

1 y y y y 

2 y p p p 

3 y y y y 

4 y p p p 

5 y N N/A N/A 

6 y y p N/A 

7 y p p p 

Table 8.1: Summary of Evaluation 

5. That the architecture will allow a number of scientists to collaborate from 

different locations, either synchronously or asynchronously. 

6. The architecture should cope with very large remote data. 

7. The architecture should allow visualisation to be performed interactively. 

These requirements are used in the evaluation the architecture allowing the level 

to which they have been satisfied to be determined, a summary of the evaluation is 

presented in Table 8.1. 

The table indicates the level to which the architectural design, the case studies 

and the implementation of the architecture meet the requirements for the architec­

ture that have driven the research activity. 

The following symbols are used, listed with their definition 

Y- This requirement is met. 

P - This requirement is partially met. 

N- This requirement is not met. 

N /A - This requirement does not apply in this case. 

The table presents a summary of the evaluation. The architectural design is 

evaluated against meeting the requirements and shows that all of those requirements 

have been met by the design. The implementation is evaluated to show if the 

requirements have been implemented and the case studies evaluated against if the 



8.2. Architectural Evaluation 104 

requirement is demonstrated in that particular case study. The case studies were 

chosen to illustrate certain features of the architecture and the table shows the 

extent to which coverage was achieved. Not all features of the architecture were fully 

implemented and the table shows the extent to which each feature was achieved. 

This summary is discussed in more detail in the sections below. 

8.2 Architectural Evaluation 

This section examines in detail the design of the visualisation grid architecture 

against the requirements outlined previously. 

1. That the virlualised visualisation architecture can run on a variety of machine 

architectures. 

The architecture is designed in a service oriented manner which provides a 

separation between the implementation that performs the computation at each 

stage of the visualisation pipeline and the communication between each stage 

of the pipeline. This separation means that each stage of the pipeline can 

run on a different resource, and those resources may have different underlying 

architectures. Platform agnostic programming languages such as Java can be 

used to implement each stage of the pipeline thus providing another layer of 

separation between machine architectures. 

2. That the visualisation can be displayed on a variety of different display plat­

forms, including stereoscopic devices. 

The design of the architecture splits the final stage of the traditional visual­

isation pipeline, render, into two parts, a render and a write service. This 

separation allows a range of display devices to be used with the architecture 

without the need to produce a large number of specialist rendering implemen­

tations for each display type. The render service can be developed as a generic 

service with the write service, a very lightweight implementation, customised 

where required for the different display types. This separation of render and 

write service also provides the possibility of using non-visual display devices 



8.2. Architectural Evaluation 105 

such as haptic interfaces and auralisation or sanification outputs. 

3. That the visualisation should be available on the desktop. 

The render and write service separation also allow visualisation to be more 

effectively displayed upon desktop computers, this is particularly the case if 

the desktop computer has limited computational or graphical capabilities, the 

render service can render complex scenes and then send these to the desktop 

computer for display. More advanced implementations of the services could 

perform different parts of the rendering in order that the user had a more 

responsive and interactive experience when exploring the visualisation 

4. That the architecture will operate across multiple institutional boundaries, ac­

counting for security issues. 

The architecture is required to operate across multiple institutional bound­

aries, this is designed for by using standardised approach to the service oriented 

design making use of communication protocols which are internet standards. 

There are a wide range of differing security arrangements at different insti­

tutions and as such special configuration may be required for services to be 

deployed or to communicate however as far as possible the architecture has 

aimed to use standard mechanisms for communication to reduce the number of 

special arrangements required for such an architecture. The operation of the 

architecture across institution boundaries is often dependent on the implemen­

tation of the architecture, by using a service oriented architecture the ability 

to work across institutional boundaries is maximised but not guaranteed. 

5. That the architecture will allow a number of scientists to collaborate from dif­

ferent locations, either synchronously or asynchronously. 

The architecture is designed such that a number of scientists can collaborate on 

the same pipeline, this is achieved by a single pipeline existing and a manage 

service being put in place to co-ordinate the scientists and control access to the 

pipeline for steering and configuration. The architecture can support multiple 

render services and write services so that different displays can be used by each 



8.3. Implementation 106 

scientist and geographically local render services can be used by scientists who 

are geographically dispersed to improve performance. 

6. The architecture should cope with very large remote data. 

The architecture is designed in such a manner that each service has a standard 

interface to the rest of the pipeline, this interface hides the implementation 

details. Thus the implementation can be tailored in a manner that best suits 

the resource upon which the service is deployed. The implementation can be 

one that is capable of scaling massively to cope with data sets of any size. 

Therefore the architecture is designed to cope with large remote data sets. 

7. The architecture should allow visualisation to be performed interactively. 

Interactivity is an important part of visualisation and as such this has been 

designed into the architecture, the separation of the render and write services, 

allow interactivity at a image level and the provision of the manage service 

allows a higher level of interactivity by allowing users to exercise control over 

all parts of the visualisation pipeline. 

The architecture is designed to be highly flexible to cater for all of the needs that 

visualisation users have and allowing support for novel forms of technology such as 

Autostereoscopic displays and haptic interfaces to be incorporated without a total 

re-implementation of significant parts of the pipeline. 

8.3 Implementation 

This section discusses the implementation of the visualisation grid architecture eval­

uating against the architectural requirements and the criteria for success. 

1. That the virtualised visualisation architecture can run on a variety of machine 

architectures. 

The requirement for the architecture to run on a variety of different machine 

architectures has been met by making use of web service technology and the 



8.3. Implementation 107 

Java programming language. For platforms that support the Java language 

no change to the implementation of services needs to be made. 

For those platforms that do not support the Java language or where another 

implementation language is used for performance or integration reasons, the 

use of web service technologies means that data can be interchanged between 

different services and all services can be called by other services as they conform 

to a contract defined by the WSDL. 

2. That the visualisation can be displayed on a variety of different display plat­

forms, including stereoscopic devices. 

The architecture is designed such that each part of the pipeline is a separate 

service. The render service is separate to the service running the display, the 

result of this is that render services can be developed in such a way that they 

can cope with multiple display types and the service running on the display 

machine can be customised as required without having to re-implement the 

rendering code. The render service can therefore be deployed on a suitable 

resource, making use of scaling, distributed and parallel computing as appro­

priate and also maintain the ability to operate with a variety of display types. 

The implementation of this requirement was partially completed, a stereo ren­

der service was created by another project as reported in Chapter 6 but this 

has not been incorporated into the architecture to date. The render service 

created for the current implementation was able to perform some local stereo 

rendering using the stereo functionality in VTK. 

3. That the visualisation should be available on the desktop. 

The requirement that visualisation should be available on the user's desktop is 

again met by the distributed nature of the grid visualisation architecture, by 

off loading the majority of the computational requirements from the desktop 

computer of the user the visualisation is not limited by the capabilities of that 

resource. This allows large data sets to be visualised using a relatively low 

capability computer to display the results. 



8.3. Implementation 108 

4. That the architecture will operate across multiple institutional boundaries, ac­

counting for security issues. 

The requirement that the architecture should operate between institutions 

whilst accounting for security issues, is mitigated as far as is possible by the 

use of web service technology that is based on common protocols. However 

due to the different security arrangements in place at different institutions 

and the ever changing nature of these security arrangements the architecture 

may not work seamlessly without configuration as to the institutional secu­

rity arrangements and in some cases special provision for those resources that 

host services. The current implementation required special configuration to 

bypass a web cache at the network boundary this was implemented through 

the firewall at the campus network boundary. 

5. That the architecture will allow a number of scientists to collaborate from dif­

ferent locations, either synchronously or asynchronously. 

This requirement is met in the design of the architecture through the use of 

the manage service which allows a pipeline to persist even when there are no 

users connected. The manage service acts as a user proxy in this instance, and 

the co-ordination functions of the service allow synchronous collaboration to 

take place. However the manage service has not been implemented therefore 

the implementation is unable to meet this requirement. 

6. The architecture should cope with very large remote data. 

The current implementation does not work with very large data sets, the 

largest data set used currently is 40MB. However the service oriented nature 

of the architecture means that each service could be replaced with an extremely 

scalable version. To achieve this however the format of the data set used in 

the visualisation needs to be of a type where small segments of data can easily 

be extracted and where the whole data file is not required to be analysed to 

understand the data set. 

7. The architecture should allow visualisation to be performed interactively. 



8.4. Case Study Scenario Evaluation 109 

The requirement that the architecture should allow visualisations to be per­

formed interactively is met in part by the current implementation, as the visu­

alisation can be manipulated locally due to the implementation of the viewer. 

However the pipeline does not support true interaction due to the one-shot 

nature of the current implementation. The implementation of a Manage ser­

vice would allow a persistent pipeline and support for service steering and 

interaction to be implemented. 

8.4 Case Study Scenario Evaluation 

This section examines the scenarios taken from the science domain and implemented 

in the architecture to demonstrate the architecture in operation and provide a mech­

anism for evaluating the architecture and the implementation of the architecture. 

The architecture is flexible and non-prescriptive in how each of the services should 

be implemented internally. 

8.4.1 X-Ray Crystallography 

The X-Ray Crystallogniphy case study is taken from the chemistry domain and 

demonstrates the pipeline required to produce a visualisation from a multi-purpose 

data set. The source data set for the visualisation contains two kinds of data, one 

describes the position of atoms within the crystal structure being examined and the 

second describes the values of the electric field surrounding the crystals as measured 

by experimentation. As the data set contains two types of data it is a good case 

study to demonstrate complex pipelines with multiple computational branches each 

producing a different part of the final visualisation. 

The total size of the data set used in this case study is comparatively small 

and as such evaluation of the impact of critical paths through the visualisation has 

not been possible. However it allowed the demonstration of the pipeline working 

with data sets containing multiple types of data and pipelines producing two sepa­

rate visualisation representations that are required to be merged to form the final 

visualisation. 



8.5. Performance Evaluation 110 

The complexity of the pipeline allowed full coverage of all the experiments to 

determine the factors affecting the performance of the visualisation which would not 

have been possible with a less complex pipeline. The experiments and measurements 

of the architecture provided the data which could be used in the evaluation of the 

architecture against its requirements and criteria for success. 

8.4.2 Dark Matter Simulation 

The Dark Matter case study is taken from the cosmology domain in Physics. The 

visualisation for this case study is generated from a single large data set containing 

the position of dark matter particles as generated by a simulation of the distribution 

of dark matter since the big bang. The visualisation of this simulation shows how the 

dark matter is distributed through the universe at a specific point in time following 

the big bang. 

The pipeline to generate this visualisation is simpler than the one required for 

the X-Ray Crystallography case study and contains a single branch. The aim of this 

pipeline is to demonstrate that the architecture is capable of handling large data 

sets through the services in the pipeline and allows experiments to be performed 

to determine the effects of distributing the pipeline across multiple resources. The 

use of large data sets allows the validation of requirement six in particular and 

the data from the experiments can be compared against the results from the X­

Ray Crystallography case study. The experiments also aid in the evaluation of the 

architecture against the other requirements and also the criteria for success. 

8.5 Performance Evaluation 

This section discusses the results of the performance experiments run on the visuali­

sation grid architecture. These experiments were designed to investigate the benefits 

achieved by splitting the visualisation pipeline into multiple separate services and 

distributing those services across different resources. The experiments are designed 

to examine different factors in the composition of pipelines, this allows the factors 

that are important when distributing pipelines to be determined. 



8.5. Performance Evaluation 

Experiment Number Average Time(seconds) Std. Deviation 

1 19.82 1.11 

2 20.69 0.18 

3 20.34 0.19 

4 20.03 0.18 

5 20.69 0.16 

6 41.89 77.14 

Table 8.2: Overview of X-Ray Crystallography Experimental Result Data 

8.5.1 X-Ray Crystallography 

Overview ot Cryotallognophy Average Run Tlmeo 

140 

1~~--------------------------------------------,---~ 

100~--------------------------------------------4---~ 

~~--------------------------------------------4---~ 

i ; 00~--------------------------------------------,_--~ 
¥ • 
~ 40 +-------------------------------------------; 

I= 

r ~ 
! 

-~ +---------------------------------------------~--~ 

-40 +-------------------------------------------------~ 

b:p11lment """"'' 

Figure 8.1: Overview of X-Ray Crystallography Experimental Results 

111 

The X-Ray Crystallography pipeline scenario allowed the evaluation of pipelines 

that have multiple branches to produce the final visualisation. 

This pipeline has a small quantity of data transfer between computations, the 

result of this is that factors affecting the speed of computation have a much greater 

impact on the total running time of the pipeline than those that affect the transfer 

of data. This can be seen in Table 8.2 and Figure 8.1 where the average time for 

each experiment is around 20 seconds apart from Experiment Six where a heavily 

loaded resource is used. In this instance the average time doubles, however it is also 



8.5. Performance Evaluation 112 

important to note that the standard deviation also increases dramatically. Indicating 

that the effects of loading on a resource is harder to predict and quantify. The 

outlying values in Experiment Six that cause the large variation in the standard 

deviation are to be expected for this type of experiment. With heavy CPU loading 

on a single CPU machine execution of processes maybe delayed whilst other intensive 

processes are executing, the time to completion of a processes is difficult to determine 

and therefore the variation shown in the results for Experiment Six not unexpected. 

As the architecture is currently implemented the pipeline is run once only, in 

this way the result is displayed only once all computation is completed. In a multi 

branch pipeline the slowest branch of the pipeline therefore determines the total 

runtime. The slowest branch of the pipeline is therefore the 'critical path' , efforts 

to speed the pipeline that do not aid this branch therefore are wasted. Techniques 

such as critical path analysis could therefore be used to determine which parts of 

the pipeline to invest extra resources in. 

8.5.2 Dark Matter Simulation 

Dar1<. Matter Experiment Overview 

140 

1:!)-i-------

100-1-------

I 9J .. 

0 

Figure 8.2: Overview of Dark Matter Experimental Results 

The Dark Matter simulation allowed the evaluation of pipelines that have a larger 



8.5. Performance Evaluation 113 

Experiment Number Average Time(seconds) Std. Deviation 

1 93.42 0.05 

2 120.86 0.49 

3 126.39 5.41 

4 N/A N/A 

5 122.94 2.94 

6 108.81 8.78 

Table 8.3: Overview of the Dark Matter Case Study Experimental Results 

amount of data to be processed to produce a visualisation. The overview results for 

this case study are shown in Figure 8.2 and in Table 8.3. 

This increase in data size means that factors that affect the data transfer have a 

bigger impact than those that affect the speed of computation, however a larger data 

set also requires more computation and therefore the difference in impact between 

the effect of network bandwidth and reduced computational ability is less. 

The pipeline currently processes data sequentially and as such the size of the 

data set directly affects the speed of computation. Where data could be processed 

in a parallel manner the computation speed of the overall pipeline could be greatly 

improved. 

The resource intensive experiment (Experiment Six) in this scenario had a lower 

overall runtime than some of the other experiments this is perhaps due to the amount 

disk access performed by the visualisation task. The intensive process run to load 

the processor and simulate a heavily utilised resource performed little 1/0 and could 

execute whilst the visualisation task was waiting for 1/0 operations to complete. The 

large data movement by the visualisation task altered the distribution of time spent 

on different tasks compared with the X-Ray crystallography experiment where most 

time was spent in CPU processing tasks. In the Dark Matter Simulation a large 

proportion on the time was spent moving data as such different resource subsystems 

are stressed and the profile of the experiments is slightly different. 

The distribution of the pipeline causes a greater increase in the total runtime of 

the pipeline indicating that data transfer over a network is a major factor affecting 



8.5. Performance Evaluation 114 

Experiment X-Ray Dark Matter 

1 100% 100% 

2 104% 129% 

3 102% 135% 

4 101% N/A 

5 104% 131% 

6 211% 116% 

Table 8.4: Percentage of Experiment One Comparison 

this type of pipeline. The network distance however does not have a significant 

impact on the average runtime but the larger the network distance the larger the 

standard deviation indicating that it is less predictable as to its effects. 

8.5.3 Generalizations and Overall Findings 

Overview of Experiment• 

Expe1ln1ent Nlltnbtr 

Figure 8.3: Overview of Experimental Results from both Scenarios 

This section brings together the findings from the two scenarios for pipeline per­

formance and highlights some common themes that affect the pipelines. Figure 8.3 

presents the average run time for each experiment across both scenarios. Some lim­

ited comparisons can be drawn about the scenarios from this. Therefore Table 8.4 



8.5. Performance Evaluation 115 

Percentage of Experiment One 

f 
~ ... 

100 

50 

0 

EJcpell1nent M11mbtt 

I• CfY&1alogrophy • Dar1< M otter I 

Figure 8.4: Overview of Percentage of Experiment One for both Scenarios 

and Figure 8.4 show the consolidated experimental results for each experiment as a 

percentage of the base line experiment (experiment one). This allows for compar­

isons to be drawn between the two case studies. 

Factors that impact the computation produce a more variable effect to the total 

runtime of the pipeline than those factors that impact the data transfer time. There­

fore it may be easier to account for the impact of network connectivity, bandwidth 

and distance than machine loadings when selecting resources for use in a pipeline. 

When looking to improve the visualisation pipeline it appears that distributing a 

large number of small computational jobs would be more successful than distributing 

a smaller number of large jobs. There will be a balance between the amount of data 

and computation and the network transmission times to be found. This balance it 

is felt would be best investigated through further experimentation. 

This hypothesis is made due to the percentage changes across the experiments in 

the two case studies as shown in Table 8.4. In the case study that used a large data 

set a variation of 29% to 35% increase in the run time was observed across most 

experiments. If this variation is compared with that in the X-Ray Crystallography 

case study where a much smaller data set was used, it can be seen that the variation 

in that case study was a 1% to 4% increase in the total run time across experiments. 



8.5. Performance Evaluation 116 

This smaller variation in completion time suggests that a large number of small jobs 

would have a more predictable and shorter computation time. 

Comparison against Batch Processing Systems 

If Experiment One is taken to be equivalent to operation in a batch queue system 

for application run time then a comparison can be performed with the execution of 

the architecture in its distributed configurations. 

In a batch queue system jobs will remain in a queue until such times as all other 

jobs before them have been executed. Therefore if the computation is submitted 

and is the first job in the queue and the machine is currently idle the job can be 

executed immediately so the time to completion is the run time of the job. However 

if the queue is not empty the time to complete is: 

W = CJT + 2:::: QJ + RT 

where 

W = Total time to completion. 

CJT = Current Job Time to Completion. 

QJ = Queued Jobs Run Time. 

RT = Run Time of Visualisation Pipeline. 

The time for the queued jobs to complete could vary from less than one minute to 

over several hours or longer, therefore the time spent waiting for execution could be 

significantly longer than the time to complete execution of the pipeline submitted. 

In the service oriented architecture the execution time may be longer due to 

loading on machines and the time to transfer data across a network however execu­

tion is done on demand which reduces the number of resources that the scientist has 

to arrange time on, the 'eo-allocation problem'. By distributing the computation of 

the pipeline across a variety of resources the effect of delays at a single resource can 

be minimised. 

In the batch queue system once the execution of the pipeline is completed then 

the computation is discarded which requires a scientist to re-establish, re-configure 

and re-submit a pipeline to the queue if they wish to make any modifications. With 



8.6. Information Visualisation 117 

the service oriented architecture the pipelines can exist until the scientist has com­

pleted all of their analysis, this is termed pipeline persistence, this allows changes 

to the configuration to be made and parts of the pipeline re-executed as required. 

The advantages of a service oriented architecture over a traditional batch queue 

architecture are: 

• On demand Execution 

• Re-configurable pipelines 

• Scalability 

• Interactive Visualisation 

• Persistent Pipelines 

• Reduce need for eo-allocation of resources 

These advantages mean that a service oriented architecture makes visualisation more 

usable as an everyday scientific visualisation tool over approaches which rely on 

batch queue systems and require advance eo-allocation of resources. 

8.6 Information Visualisation 

The virtualised grid visualisation architecture has so far been shown to work for 

scientific visualisation, it can also be applied to other forms of visualisation such 

as information visualisation. The Component City visualisation is presented as an 

information visualisation that can be implemented using the distributed pipeline 

model of the architecture. 

A visualisation previously developed is discussed and it is shown how this visu­

alisation could be realised using the distributed architecture developed through this 

research. 

The visualisation presented is the Component City Visualisation [Charters et al., 

2002] which was developed as part of a project looking at software components. The 

project investigated the decision making process for selecting Software Components 



8.6. Information Visualisation 118 

Figure 8.5: Component City Visualisation 

and mechanisms to support that process. The visualisation developed in this project 

used concepts developed by Knight in Software World [Knight, 2000] to display 

groups of software components in a 3D landscape that represented a city, with 

buildings, roads and monuments. 

The visualisation uses a self-organizing map to group an input set of compo­

nents from a component repository each with a structured textual description. The 

components are grouped by the neural networks of the self-organizing map based on 

the description of their functional properties. The self-organizing map produces an 

output grid showing which components are functionally close together. This out­

put is the converted into a visual representation which is based upon the idea of 

an american city grid layout, the roads run along the grid lines and the buildings 

along those roads represent the components. Different types of buildings are used 

to indicate the number of components at each location, the buildings in use are, 

house, mansion and skyscraper. To the roads and buildings, monuments are added, 

these monuments are added at the centre and corners of the city landscape to aid in 

navigation around the city. The output produced by the visualisation is shown in 

Figure 8.5 which depicts the central monument in the foreground with houses and 



8.6. Information Visualisation 119 

mansions behind and fading into the distance. 

The visualisation was initially developed as a stand alone visualisation and the 

challenge is to see if this type of visualisation could be transferred to work with the 

visualisation architecture developed. Achieving this would demonstrate that the 

architecture can work for both scientific visualisation as shown by the earlier case 

studies and also information visualisation as shown here. 

The visualisation differs from the two previous case studies as the input data set is 

a structured XML document which contains textual data describing the components. 

The output of the self-organizing map is also a structured textual file. 

To implement the Component City visualisation in the visualisation architec­

ture the stand alone program must be decomposed into stages that can then be 

implemented in the visualisation architecture. This can be achieved through an 

examination of the way the visualisation is generated. A component repository pro­

vides the data to the visualisation so this can be re factored as a read service, the 

data is manipulated by a self-organizing map, this can therefore be wrapped as a 

filter service in the architecture. The output of the self-organizing map is then used 

to create the description of the cityscape by inserting the correct type of building 

to represent the number of components at a particular location and attaching the 

correct labels this will form the map service, the output from this service can then 

be rendered using an existing render service and an existing write service can be 

used as a presentation client for the user to interact with the visualisation. 

The pipeline formed for this visualisation can be seen in Figure 8.6, it can be 

seen that this pipeline is similar to the Dark Matter Simulation pipeline in that it 

is a simple pipeline with no branches. 

The re-factoring of the Component City visualisation to use the distributed ar­

chitecture would allow the visualisation to operate with more components in the 

input set as the self-organizing map could be run on a resource with large computa­

tional power and the rendering of the visualisation could be performed on a resource 

with a high graphical capability, the architecture would also allow multiple users to 

collaborate on the selection of components. 



8. 7. Summary 120 

Figure 8.6: Component City Pipeline 

8.7 Summary 

This chapter has evaluated the results of both scenario based examination of the 

grid visualisation architecture and the numerical experimental results. The scenario 

evaluations highlights the flexibility of the architecture and the ability to deal with 

multiple visualisation types. The quantative numerically based experiments evalu­

ate the performance of the architecture when pipelines enacting the scenarios have 

been executed. The meeting of the requirements by the architecture has also been 

evaluated. 



Chapter 9 

Conclusion and Future Work 

9.1 Introduction 

This chapter draws together the results and the evaluation of those results to present 

conclusions about the visualisation grid architecture and describes future work that 

builds upon the findings of the research. 

The major achievements of the research have been: 

• Definition of a Service Oriented Architecture for Visualisation on the Grid 

• Implementation of the Service Oriented Architecture 

• Real World Case Study Scenarios to demonstrate the architecture 

• Performance Analysis of a Service Oriented Architecture 

• Identification of areas for Future Work for both Visualisation and Visualisation 

Archi tectures 

These achievements and others are discussed in the sections below. 

This section outlines a review of the work done and then presents conclusions 

about the research undertaken. 

Visualisation is a tool that has been used for centuries to communicate and to 

help with problem solving. Visualisation has evolved into a branch of computer 

science where the power of, and the graphical ability of, computers is exploited to 

produce the visualisations. 

121 



9.1. Introduction 122 

There exist a wide range of tools available to perform visualisation tasks, these 

tools can be general purpose or specialized and provide a variety of different mech­

anisms to produce visualisations. 

One of the most common types of visualisation tool is the modular visualisation 

environment. It is this type of tool that has the most widespread general purpose 

use, these tools are often powerful but some deficiencies have been highlighted in 

their mechanisms for dealing with large data sets and for collaboration between 

multiple scientists. 

The work to develop an architecture suitable for visualisation using the grid is 

motivated by the needs of scientists and other information workers to process and 

analyse increasingly large datasets routinely. This style of working is demonstrated 

by the scenario outlined in Chapter One and is becoming increasingly common as 

the use of computers becomes a necessity for scientific analysis. 

The current state of the art in visualisation has been examined in Chapter Two 

along with an indepth look at several models for visualisation and several visualisa­

tion environments, these have been examined to identify weaknesses and strengths. 

These strengths have been built upon and applied to the visualisation architecture 

whilst the weaknesses have been addressed. 

Stereoscopic display technology discussed in Chapter Three and the unique chal­

lenges and opportunities it presents was examined highlighting the importance of 

generating the correct stereo images for the display technology being used. The 

implementation of services to support stereoscopic displays is discussed in Chapter 

Six. 

Grid technology in its various revisions was also extensively investigated in Chap­

ter Four highlighting the current deficiencies and the ways in which the area is 

progressing. 

Chapter Five of the thesis presented the conceptual design of the architecture, 

resulting in the model shown in Figure 9.1. This is a service based architecture 

that is designed to allow maximum flexibility in the implementation of visualisation 

pipelines, leveraging multiple resources each specialised for the task in hand to 

provide an efficient end to end pipeline that can cope with large data sets and 



9.1. Introduction 123 

Figure 9.1: Final Pipeline Definition 

interactive visualisation. 

The implementation of the architecture was completed using the Java program­

ming language making use of Web Service technology as outlined in Chapter Six. 

Three versions of the architecture were developed in an iterative manner each build­

ing upon the successes and learning from the failures of the previous version. These 

versions made use of grid technology as it evolved and was refined. 

The grid technology as it currently exists is not ideal for the development of 

a grid visualisation architecture. It is still maturing and some of the underlying 

technology has not reached an exploitable stage. This lack of maturity required 

work arounds to be developed in order to achieve desired goals. 

Changes in the underlying middleware, features that were not present or not fully 

functioning required the architecture to build in work around solutions to overcome 

the deficiencies. These work around solutions in many cases hampered the efficiency 

of the architecture, especially with regards to data transport and management. 

Chapter Four in the review of Grid Technologies and Chapter Six describing the 

implementation of the architecture have highlighted some of the difficulties with 

grid systems. The changes in paradigm from batch computing, to stateful services 

and finally stateless services are each huge shifts in the way that systems are built. 

These changes impact upon the way architectures are thought about, designed and 

reasoned about. 

In the grid visualisation architecture this has been particularly brought out with 

the change from stateful to stateless services. The initial reasoning about the archi­

tecture allowed for state to be held at each service and for pipelines to be composed 

of service instances. The move to stateless services meant that the service instances 



9.1. Introduction 124 

were lost and the 'state for free' was also removed. This change necessitated the 

design of the architecture to include a service with the role of managing state across 

the entire pipeline. For services in the pipeline the state that was lost will have 

to be grafted back on through a mechanism that is non-standard. This use of 

non-standard state management would reduce the interoperability of services across 

different systems. The proposals of the addition of state to services is described in 

detail in Section 6.3.2 in Chapter Six. 

Each grid middleware had its own learning curve, this curve was often steep with 

only partial transfer of knowledge gained with previous middlewares. The move be­

tween technologies in this way hampered the development of the architecture as each 

technology change required a return to the design and to restart the implementation 

from the ground up this is highlighted in extensive detail through Chapter Six in 

sections 6.1, 6.2 and, 6.3. 

The multiple implementations of the grid visualisation architecture undertaken 

began to highlight ways in which the underlying grid middleware could potentially be 

put to use. Many of these uses not been considered in the design of the middleware 

or during the implementation of it. One area where this has been particularly 

apparent is that of data movement. Current data mechanisms were established for 

the movement of data files. Data files are static and unchanging, for an effective 

visualisation system the ability to transport data streams (data that is constantly 

being produced) would be required. No mechanisms to support this exist. 

Two types of results about the grid visualisation architecture have been pre­

sented. The first type is the use of scenarios to show how the pipeline can be used 

to achieve different types of visualisation, both scientific visualisation and informa­

tion visualisation. The second set of results are a quantative experimental analysis 

of the performance of the architecture as implemented using the scenarios that have 

been described previously these results show that the architecture meets in whole 

or in part all of the requirements and highlights areas for development to allow the 

achievement of that areas that are currently lacking. 



9.2. Criteria for Success 125 

9.2 Criteria for Success 

The success of the research can be measured against the criteria for success which 

are restated here with an analysis of how they were achieved or otherwise, by the 

architecture. 

1. Allows a visualisation to be displayed on a desktop display. 

The architecture has achieved this criteria through the decoupling of the write 

service from the render service which allows a scalable and powerful rendering 

solution to be used with a low powered display client as has been implemented 

in the current version of the architecture. This criteria for success is demon­

strated through the two case study scenarios highlighted in Chapter 8 and 

through the design of the architecture in Chapter 5 with the separation be­

tween render services and write services. 

2. Runs across multiple computers/resources. 

This criteria has been demonstrated by both scenarios and the experiments 

that have been to run to evaluate the architecture the results of these exper­

iments are shown in Chapter 7. For example Experiment Four in the X-Ray 

Crystallography Scenario had services running on different resources for each 

branch of the pipeline. The results of these branches were then combined on 

another resource before being displayed. The design of the architecture in 

Chapter 5 highlights the reasoning behind the design decisions made to enable 

this to be achieved. 

3. Performs visualisation of a data set 

This criteria is demonstrated by the output shown in Chapter 8 from the 

scenarios and the output results are reproduced in Figure 9.2 and Figure 9.3 

for completeness. Figure 9.2 shows the X-Ray Crystallography Scenario with 

a the structure of a molecule from a crystal being displayed with an iso-surface 

representation of the Electric Field within the molecule superimposed on top. 

Figure 9.3 is produced from the Dark Matter Simulation scenario which looks 

at the growth of the universe and the spread of dark matter over time. The 



9.2. Criteria for Success 126 

visualisation shows a representation of the dark matter within the a region of 

the universe. 

Figure 9.2: X-Ray Crystallography Scenario Result 

4. Supports interaction within the visualisation. 

The architectural design is able to support interaction however the current im­

plementation is only able to support interaction at the write service level. The 

implementation of the manage service in the architecture would allow interac­

tion through the whole pipeline. The design of the architecture as discussed 

in Chapter 5 examines how the support of interaction with visualisation can 

be made possible with regards to remote interaction. 

5. Supports collaborative visualisation. 

The architecture design supports collaboration allowing multiple write service 

from a render service, or multiple render services each with one or more write 

services. This has not currently been implemented. The implementation of the 

Manage service would help to support synchronisation across multiple views 



9.2. Criteria for Success 

• 

• 
. . 

•' . -. ' . ' · 

.. 
.. 

• 

• 

·• . 

•• 
: '. • ~ •• • . : " : ;. • • • • 11 . . . . •.. . ' · . ·. -- . . . ~ . . . . . .. .. .• ~· .... .. : ·~ ....... -. .. . . .. .. .... " . . .. . . . . . . . "~·. ~ . . . . . 

.. • • • . . .. • • •• • •• • 1/1 • • • • • 

. .. 

' I .. • ~ • • •t • ' ll · • .. . .. . loo - ··· ·. .. . . , .. ", . .. .. . . ,. 
.. .. " -. . . . . .. . . -.:".. . . . 

.~\1. ·.. . • . .. 

•• , ... 
• 

... • 
• 

Figure 9.3: Dark Matter Simulation Pipeline Result 

127 

of the output. The design of the Manage service is discussed in Chapter 5 and 

this illustrates how collaborative visualisation can be supported. 

6. Supports multiple display types, including autostereoscopic desktop displays. 

The architecture can support multiple display types and other visualisation 

mechanisms such as sanification and haptics through the use of services ren­

dering and output of the visualisation. The stereo render service discussed 

in Chapter 6 demonstrates how the architecture can support autostereoscopic 

displays. The definition of write services in Chapter 5 explains how other 

types of output devices can be supported. The ability to support of multiple 

display types is a novel feature of the architecture developed. Current visu­

alisation systems have limited support for stereo display devices as discussed 

in Chapter Three, by allowing the development of custom render services and 

output services a plethora of output devices can be supported. The support 

for these devices can be achieved without modification to other services in the 

pipeline and therefore provides great scope of maximum device support by all 



9.3. Conclusion 128 

visualisations. 

7. Supports multiple visualisation types 

The architecture supports multiple visualisation types as demonstrated through 

the X-Ray Crystallography and Dark Matter Simulation scenarios and the 

Component City Information Visualisation scenario in Chapter 8. The X-Ray 

Crystallography and Dark Matter Simulation are both Scientific visualisations 

and reflect the scenario outlined in Chapter One describing the way in which 

scientists may work, and therefore the basis upon which the architecture was 

developed. The Component City visualisation demonstrates an alternative 

type of visualisation, an Information Visualisation. This type of visualisation 

makes use of the same stages in the visualisation pipeline but with very dif­

ferent data. Support for multiple visualisation types in important as multiple 

data sources are aggregated and as visualisation is used in other domains than 

numerical science. 

9.3 Conclusion 

The design of the architecture is such that it addresses many of the issues raised in 

the critical examination of existing visualisation systems 

• Single Resource Bounded 

In many of the visualisation systems examined the software was executed on 

a single resource, the grid architecture by splitting the visualisation pipeline 

into its component parts allows the computation in the pipeline to be spread 

across multiple resources. 

• Whole System Rebuild 

The visualisation environment SCIRun requires a rebuild of the entire system 

when it is extended or expanded, this does not encourage development of 

components for such a system by external developers, the grid architecture that 

has been developed solves this issue by encapsulating as services each stage of 



9.4. Future Work 129 

the pipeline and providing a common set of interfaces to allow developers to 

develop new services that can be easily integrated into the pipeline. 

• Client Centred 

Current modular visualisation environments are client centred in that the tool 

(client) used to compose the pipeline is the container within which the pipeline 

is executed. The result of this is that the client needs to be run on the resource 

where the pipeline is to be executed and that the client software must be 

running at all times whilst the visualisation pipeline is executing. 

The grid architecture by using services for each stage of the pipeline and 

a visualisation management service to control the pipeline overall can allow 

execution on any resource and supports pipeline composition using a tool that 

can be disengaged once the pipeline construction is completed. This means 

that a pipeline can be constructed on any resource, for example, the computer 

that the user has in their normal working environment. 

• Generalised Resources 

Currently visualisation systems are run on a single resource, this resource 

must be a generalised resource with a suitable processor, memory and graphics 

capability to handle all operations in the visualisation pipeline. In the grid 

architecture as each part of the pipeline is encapsulated as a separate service 

and can be deployed on a different resource the resource can be tailored to the 

needs of that service this deploying of services on suitable resources can allow 

more effective use to be made of specialised resources and reducing the need 

for them to do general computing. 

9.4 Future Work 

Many areas of further work have been identified by the development of the archi­

tecture for visualisation. 

These areas can be categorised into work that completes the architecture, fun­

damental research, both for grid middleware and visualisation, and more advanced 



9.4. Future Work 130 

research that builds on the concepts developed so far. 

9.4.1 Architecture Developments 

This section outlines areas of research that build upon and extend the current ar­

chitecture to make it more robust and comprehensive. 

Service Development 

The development of extra services that can be used in the architecture will allow it 

to be applied to a more diverse set of problems that will further stretch and test the 

architecture. 

Collaboration Support 

One of the aims of the architecture was that of collaboration between scientists, 

further developments to allow this particularly in conjunction with the development 

of context management within services which would allow greater flexibility in the 

visualisations developed. 

Context Management 

Context management is both a development that builds directly into the architecture 

as it stands and a more advanced area of development for the architecture and is 

therefore discussed more fully later in this chapter. 

9.4.2 Fundamental Grid Research 

This section outlines what I regard as important issues to address for grid middleware 

to allow service based applications such as the virtualised visualisation architecture 

to be developed. 

High Level Reliable Data Transports 

High level data transports means providing a mechanism for grid services to return 

data to other services without having to concern itself with the underlying transport. 



9.4. Future Work 131 

It also encompasses allowing a service to read data without having to worry about 

the underlying transport. 

This type of service should support blocking and multiple destinations for the 

data, either independently or collectively. 

One development that shows promise in this area is the Styx data transport 

mechanism [Blower et al., 2005] which simulates files on the local and remote hosts 

and can be used with a variety of web service transport mechanisms. 

Context and State Management 

Web services are stateless and many existing applications are written for a single user 

to execute at a time, and as such don't concern themselves with state management. 

A context management service would allow services to be written with concerning 

themselves with how to manage multiple users. This would also aid in leveraging 

existing code, for example modules from existing MVE systems. 

Various approaches to managing state in web services including session identi­

fiers, tokens and identifiers in URLs have been proposed by none have been stan­

dardised. 

9.4.3 Fundamental Visualisation Research 

This section looks at research that is vital to the development of visualisation or 

visualisation services. 

Standard Steering Library 

As simulations and visualisations become deployed widely and increasingly used 

in collaborative manner with international multidisciplinary teams the needs for a 

standard format for steering simulations and controlling visualisation services will 

be required. 

Current steering libraries include those developed by the RealityGrid team [Coveney 

et al., 2005] and also that developed by the gViz team [Aslanidi et al., 2005] these 

libraries could be used as the basis for the development of a standard visualisation 

steering library. 



9.4. Future Work 132 

Visualisation Ontology 

The development of a visualisation ontology would be an advance that would allow 

visualisation services to be described and searched for when deployed across the 

grid. 

Access Grid Integration 

A mechanism for collaboration that is becoming widely deployed in academic institu­

tions is the Access Grid. To allow visualisations to be brought into this collaborative 

environment would stimulate the use of visualisation in same time, different place 

collaborations. 

Initial work on using the Access Grid with visualisation has been done by the 

ICENI project [Kong et al., 2003] which illustrates how such integration may work. 

Standard Visualisation Data Formats 

The current range of visualisation system have a wide range of data formats for 

input and for data management between sections of the pipeline. To encourage 

interoperability and reduce time consuming and processor intensive data format 

conversions a standard range of formats for visualisation would be of great assistance. 

Automatically Scaling Services 

To take full advantage of grid technology and to allow services to deal with increas­

ingly large data sets, research into services that can scale themselves adaptively 

should be undertaken. 

9.4.4 Advanced Research 

This section outlines research that would build on the research that has already 

been undertaken. 



9.5. Summary 133 

Automatically Composed Pipelines 

End users do not want to be concerned with building visualisation pipelines, to this 

end a mechanism that would allow end users to specify the visualisation they require 

and for it to be automatically composed from the available services. 

Curation and Provenance 

Scientific experiments must be repeatable, at present their are no facilities for pre­

serving a visualisation in its entirety however it is done, the only storage mechanism 

is the recording of a visualisation output in a video format. This however does 

not store the method through which the visualisation was achieved, or any of the 

associated data with the visualisation and any collaboration surrounding it. 

The UK has established a Digital Curation Centre which is looking generally 

at the issues surrounding Digital Curation. Work on Provenance in e-Science has 

been investigated by the myGrid project [Zhao et al., 2003] among others and has 

highlighted some of the issues that need to be considered by scientists who wish to 

include provenance information into visualisation pipelines. 

9.5 Summary 

In this chapter conclusions about the research that have been undertaken are pre­

sented and directions for future research have been outlined. Current visualisation 

systems have many deficiencies, these deficiencies in the main stem from the fact 

that they were developed before the era of grid computing and before scientists had 

come to value the role visualisation can take in the analysis of large data sets. 

This research defines a new architecture centered around a the service based 

architecture paradigm which addresses the shortcomings identified with existing 

approaches to visualisation systems and provides a mechanism by which much of 

the technical complexity of grid computing can be hidden behind services. 

The architecture is designed to exploit highly heterogeneous environments mak­

ing use of multiple resources rather than a single supercomputer or HPC cluster. 

The architecture provides the ability for scientists to establish pipelines that persist 



9.5. Summary 134 

without concerning themselves with the eo-allocation of resources to achieve their 

analysis goals. The architecture allows the scientist to bring the visualisation to 

their desktop rather than take themselves to the visualisation suite which then pro­

vides the opportunity for visualisation to be come an integral part of the scientists 

normal working practises when it comes to data analysis rather than the icing on 

the cake. 

The architecture defined is highly flexible and shows great promise fore-Science 

visualisation of very large data sets. 



Bibliography 

Globus Alliance. Globus Toolkit 2.4. http:/ /www.globus.org/gt2.4/, 2004. 

L. M. Applegate. Technology support for cooperative work: A framework for study­

ing introduction and assimilation in organizations. Journal Organizational Com­

puting, pages 11-39, 1991. 

OV Aslanidi, KW Brodlie, RH Clayton, JW Handley, AV Holden, and J Wood. 

Remote visualization and computational steering of cardiac virtual tissues using 

gviz. In Proceedings of UK e-Science All Hands Meeting 2005, 2005. 

Malcolm Atkinson, David DeRoure, Alistair Dunlop, Geoffrey Fox, Peter Hen­

derson, Tony Hey, Norman Paton, Steven Newhouse, Savas Parastatidis, Anne 

Trefethen, Paul Watson, and Jim Webber. Web service grids: An evolution­

ary approach. Technical Report UKeS-2004-05, UK National e-Science Centre, 

http:/ /www.nesc.ac.uk/technicaLpapers/UKeS-2004-05.pdf, August 2004. 

T. Banks, A. Djaoui, S. Parastatids, A. Mani, S. Thecke, K. Czajkowski, I. Foster, 

J. Frey, S. Graham, C. Kesselman, T. Maguire, T. Sandholm, D. Snelling, and 

P. Vanderbilt. Open grid service infrastructure primer. Technical Report GFD.31, 

Global Grid Forum, http:/ /www.ggf.org/documents/GFD.3l.pdf, 2004. 

Tim Beardsley. Humans Unite! Scientific American, March 1999. 

W. Bethel, R. Frank, S. Fulcomer, C. Hansen, K. Joy, J. Kohl, and D. Middleton. 

Visual data analysis- report of the visualization breakout session. In 2003 SCaLeS 

Workshop - Volume II, 2003. 

135 



BIBLIOGRAPHY 136 

J. Blower, K. Haines, and E. Llewellin. Data streaming, workflow and firewall­

friendly grid services with styx. In S.J. Cox and D.W. Walker, editors, Proceedings 

of the UK e-Science All Hands Meeting 2005, 2005. 

K. Brodlie, J. Brooke, M. Chen, D. Chisnall, A. Fewings, C. Hughes, N. W. John, 

M. W. Jones, M. Riding, and N. Roard. Visual Supercomputing- Technologies, 

Applications and Challenges, STAR Report. In Procedings of Eurographics 2004. 

Eurographics Association, 2004a. 

K. W. Brodlie, D. A. Duce, J.R. Gallop, J. P. R. B. Walton, and J. D. Wood. 

Distributed and collaborative visualization. Computer Graphics Forum, 23(2): 

223-251, 2004b. 

Stuart K. Card, Jock D. MacKinlay, and Ben Shneiderman. Readings in Information 

Visualization: Using Vision to Think. Morgan Kaufmann Publishers Inc, San 

Francisco, California, 1999. ISBN: 1558605339. 

S. M. Charters, C. Knight, N. Thomas, and M. Munro. Visualisation for Informed 

Decision Making; From Code to Components. In Proceedings of the Workshop on 

Software Engineering Decision Support, 14th International Conference on Soft­

ware Engineering and Knowledge Engineering (SEKE), pages 765-772. ACM 

Press, July 2002. 

climateprediction.net. climateprediction.net. http:// climateprediction.net/, 2004. 

P.V. Coveney, G. De Fabritiis, M.J. Harvey, S.M. Pickles, and A.R. Porter. On 

steering coupled models. In Proceedings of the UK e-Science All Hands Meeting 

2005, 2005. 

Roger Crawfis, Nelson Max, Barry Becker, and Brian Cabral. Volume rendering of 

3d scalar and vector fields at llnl. In Supercomputing '93, 1993. 

K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. Snelling, 

and S. Tuecke. From open grid services infrastructure tows-resource framework: 

Refactoring & evolution. http:/ /www-106.ibm.com/developerworks/library/ws-

resourcefogsLto_wsrLl.O.pdf, March 2004. 
\ 



BIBLIOGRAPHY 137 

D. A. Duce, D. Giorgetti, C. S. Cooper, J. R. Gallop, I. J. Johnson, and C. D. Seelig. 

Reference Models for Distributed Cooperative Visualization. Computer Graphics 

Forum, 17(4):pp. 219-233,1998. 

e-Viz. e-Viz Project. http:/ /www.eviz.org/, 2004. 

I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, 

F. Maciel, F. Siebenlist, R. Subramaniam, J. Theadwell, and J. Von Reich. The 

open grid services architecture, version 1.0. Technical Report GFD.30, Global 

Grid Forum, 2004. 

Ian Foster and Cad Kesselman, editors. The Grid: Blueprint for a New Computing 

Infrastructure. Morgan Kaufmann, 1998. 

D. Foulser. Iris explorer: A framework for investigation. Computer Graphics, 29(2): 

13-16, 1995. 

Al Globus and Eric Raible. Fourteen ways to say nothing with scientific visualization. 

IEEE Computer, pages 86-88, July 1994. 

Martin Gudgin and Timothy Ewald. Pork Barrel Protocols. 

http:/ fwebservices.xml.com/pub/a/ws/2001/09/12/porkbarrel.html. 

gViz. gViz project website. Available at 

http:/ fwww.visualization.leeds.ac.uk/gViz/, 2004. 

R. B. Haber and D. A. McNabb. Visualization In Scientific Computing, chapter Vi­

sualization Idioms: A conceptual model for scientific visualization systems, pages 

7 4-93. IEEE Computer Society Press, 1990. 

Bernd Hamann, E. Wes Bethel, Horst Simon, and Juan Meza. NERSC "VISUAL­

IZATION GREENBOOK" FUTURE VISUALIZATION NEEDS OF THE DOE 

COMPUTATIONAL SCIENCE COMMUNITY HOSTED AT NERSC. The In­

ternational Journal of High Performance Computing Applications, 17(2):pp. 97-

123, Summer 2003. 



BIBLIOGRAPHY 138 

R. W. Hamming. Numerical Methods for Scientists and Engineers. McGraw-Hill, 

1962. 

Pat Hanrahan. The future of computer graphics: Realism or abstraction. In 

ISBT/SPIE 17th Annual Symposium Electronic Imaging Science 8 Technology, 

2005. 

Bill Hibbard. VisAD. http:/ /www.ssec.wisc.edu/ billh/visad.html. 

N. S. Holliman. Handbook of Optoelectronics, chapter 3D Display Systems. The 

Institute of Physics, November 2004. ISBN 0750306467. 

Kitware. Paraview. http:/ /www.paraview.org/. 

Claire Knight. Virtual Software in Reality. PhD thesis, Department of Computer 

Science, University of Durham, June 2000. 

Gary Kong, Jim Stanton, Steven Newhouse, and John Darlington. Collaborative 

visualisation over the access grid using the iceni grid middleware. In Proceedings 

of the UK e-Science All Hands Meeting 2003, 2003. 

M. Leigh. Human visual system. http:/ /www.cs.unm.edu/ leigh/pix/. 

Neil Lock. Stereo render service. Master's thesis, University of Durham, 2003. 

C. Michaels and M. Bailey. Vizwiz: a java applet for interactive 3d scientific visual­

ization on the web. In Proceedings of Eighth IEEE Visualisation 1997, page 261, 

1997. 

NASA Goddard Space Flight Center. 

http:/ /svs.gsfc.nasa.gov/. 

Scientfic Visualization Studio. 

NERSC. FY2002 User Survey Results - Visualization and Grid Computing. 

http:/ jwww.nersc.gov /news/survey /2002/viz.html, 2002. 

Ocuity. Ocuity reconfigurable 2d/3d displays. http:/ /www.ocuity.co.uk/Ocuity_2D-

3D_display _brochure.pdf, 2005. 



BIBLIOGRAPHY 139 

S. G. Parker and Chris Johnson. SCIRun: A scientific programming environment for 

computational steering. In H. W. Meuer, editor, Proceedings of Supercomputing 

'95, New York. Springer-Verlag, Berlin, 1995. 

RAVE. Rave. http:/ /www.wesc.ac.uk/projects/rave/, 2004. 

Royal Phillips Electronics. Philips 3d multiview lenticular display technology. 

http:/ jwww. business-sites. philips.com/3dsolutions/technology /index.html, 2005. 

Lakshmi Sastry and Martin Craig. Scalable application visualisation services toolkit 

for problem solving environments. In Proceedings of the UK e-Science All Hands 

Meeting 2003, 2003. 

W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The Visualization Toolkit: An 

object oriented approach to 3D graphics. Kitware Inc., third edition edition, 2003. 

John Shalf and E. Wes. Bethel. How the Grid will affect the Architecture of Fu­

ture Visualization Systems. Technical Report LBNL-51723, Lawrence Berkeley 

National Laboratory. 

Larry Smarr and Charles E. Catlett. Metacomputing. Communications of the A CM, 

35(6):45-52, June 1992. 

Ian Taylor, Matthew Shields, Ian Wang, and Roger Philp. Distributed P2P com­

puting with triana: A galaxy visualization test case. In Procceedings of 17th In­

ternational Parallel and Distributed Processing Symposium (IPDPS 2003), pages 

16-27. IEEE Computer Society, 2003. 

H. Theisel and M. Kreuseler. An enhanced spring model for information visu­

alization. Computer Graphics Forum, 17(3):335-344, 1998. http:/ jwww.mpi­

sb.mpg.de / theisel/ gallery/ enhanced_.springmodel/ enhanced_.springmodel.html. 

D. Trayner and E. Orr. Autostereoscopic display using holographic optical elements. 

In Stereoscopic Displays and Virtual Reality Systems Ill, 1996. 



BIBLIOGRAPHY 140 

Yunsong Wang, Gordon Erlebacher, Zachary A. Garbow, and David A. Yuen. Web­

Based Service of a Visualization Package "Amira" in the Geosciences. Visual 

Geosciences, 2003. 

Colin Ware. Information Visualization: Perception for Design. Morgan Kaufmann, 

2000. ISBN: 1558605118. 

Andreas Wierse. Performance of the collaborative visualization environment ( covise) 

visualization system under different conditions. In Georges G. Grinstein and 

Robert F. Erbacher, editors, Proceedings of SPIE Visual Data Exploration and 

Analysis !I, volume 2410, pages 218-229, 1995. 

J. D. Wood, H. Wright, and Ken W. Brodlie. Collaborative Visualization. In 

R. Yagel and H. Hagen, editors, IEEE Visualization '97, pages 253-259, 1997. 

Jun Zhao, Carole Gable, Mark Greenwood, Chris Wroe, and Robert Stevens. Anno­

tating, linking and browsing provenance logs for e-science. In Proceedings of the 

Workshop on Semantic Web Technologies for Searching and Retrieving Scientific 

Data, 2003. 



Appendix A 

X-Ray Crystallography Data 

141 



Appendix A. X-Ray Crystallography Data 142 

Run Start Stop Total - milliseconds 

1 1096293962096 1096293982095 19999 (19.999 sec) 

2 1096294021452 1096294041360 19908 (19.908 sec) 

3 1096294674220 1096294694089 19869 (19.869 sec) 

4 1096294718271 1096294734116 15845 (15.845 sec) 

5 1096294748327 1096294768416 20089 (20.089 sec) 

6 1096294801573 1096294821973 20400 (20.4 sec) 

7 1096294842633 1096294862792 20159 (20.159 sec) 

8 1096294902739 1096294923118 20379 (20.379 sec) 

9 1096294938350 1096294958479 20129 (20.129 sec) 

10 1096294978137 1096294998296 20159 (20.159 sec) 

11 1108726373947 1108726394247 20300 (20.3 sec) 

12 1108726412112 1108726510644 19899 (19.899 sec) 

13 1108726530452 1108726510644 20279 (20.279 sec) 

14 1108726530452 1108726550451 19999 (19.999 sec) 

15 1108726567666 1108726587545 19879 (19.879 sec) 

Table A.1: Experiment One: Single Machine 



Appendix A. X-Ray Crystallography Data 143 

Run Start Stop Total - milliseconds 

1 1113556984689 1113557005179 20490 (20.490 sec) 

2 1113557766323 1113557787243 20920 (20.92 sec) 

3 1113557836164 1113557856803 20639 (20.639 sec) 

4 111355 7926534 1113557947043 20509 (20.509 sec) 

5 1113558046236 1113558067146 20910 (20.91 sec) 

6 1113558098711 1113558119491 20780 (20.78 sec) 

7 1113558146119 1113558166619 20500 (20.5 sec) 

8 1113558193197 1113558214097 20900 (20.9 sec) 

9 1113558237360 1113558258060 20700 (20.7 sec) 

10 1113558281764 1113558302214 20450 (20.45 sec) 

11 1113558322222 1113558342712 20490 (20.49 sec) 

12 1113558370232 1113558391212 20980 ( 20.98 sec) 

13 1113563672386 1113563693115 20729 (20.729 sec) 

14 1113563720915 11135637 41575 20660 ( 20.66 sec) 

15 1113563764939 1113563785598 20659 (20.659 sec) 

Table A.2: Experiment Two: Locally Remote Data 



Appendix A. X-Ray Crystallography Data 144 

Run Start Stop Total - milliseconds 

1 1118997345256 1118997365625 20369 (20.369 sec) 

2 1118997453271 1118997473520 20249 (20.249 sec) 

3 1118997498196 1118997518535 20339 (20.339 sec) 

4 1118997757378 1118997777547 20169 (20.169 sec) 

5 1118997886975 1118997907164 20189 (20.189 sec) 

6 1118998071370 1118998091659 20289 (20.289 sec) 

7 1118998151755 1118998172585 20830 (20.83 sec) 

8 1118998195568 1118998215767 20199 (20.199 sec) 

9 1118998246492 1118998266631 20139 (20.139 sec) 

10 1118998288752 1118998308871 20119 (20.119 sec) 

11 1118998527826 1118998548266 20440 ( 20.44 sec) 

12 1118998577498 1118998597787 20289 (20.289 sec) 

13 1118998646757 1118998667177 20420 (20.42 sec) 

14 1118998743927 1118998764376 20449 (20.449 sec) 

15 1118999016619 1118999037219 20600 (20.6 sec) 

Table A.3: Experiment Three: Remote Data 



Appendix A. X-Ray Crystallography Data 145 

Run Start Stop Total - milliseconds 

1 1112956593543 1112956613572 20029 (20.029 sec) 

2 1112956678395 1112956698464 20069 (20.069 sec) 

3 1112956720966 1112956740885 19919 (19.919 sec) 

4 1112956765951 1112956786080 20129 (20.129 sec) 

5 1112956953521 1112956974110 20589 (20.589 sec) 

6 1112957006036 1112957026145 20109 (20.109 sec) 

7 1112957050460 1112957070449 19989 (19.989 sec) 

8 1112957195949 1112957215878 19929 (19.929 sec) 

9 1112957235436 1112957255335 19899 (19.899 sec) 

10 1112957278398 1112957298317 19919 (19.919 sec) 

11 1112957318005 1112957338124 20119 (20.119 sec) 

12 1112957363861 1112957383769 19908 (19.908 sec) 

13 1112957425229 1112957445208 19979 (19.979 sec) 

14 1112957470584 1112957490483 19899 (19.899 sec) 

15 1112957510361 1112957530260 19899 (19.899 sec) 

Table A.4: Experiment Four: Split Pipeline 



Appendix A. X-Ray Crystallography Data 146 

Run Start Stop Total - milliseconds 

1 1119279424722 1119279445311 20589 (20.589 sec) 

2 1119279477608 1119279498277 20669 (20.669 sec) 

3 1119279539587 1119279560176 20589 (20.589 sec) 

4 1119279680379 1119279701029 20650 (20.65 sec) 

5 1119279847700 1119279868750 21050 (21.05 sec) 

6 1119279891593 1119279912213 20620 (20.62 sec) 

7 1119279931440 1119279951980 20540 (20.54 sec) 

8 1119279969054 1119279989664 20610 (20.61 sec) 

9 1119280010364 1119280031434 21070 (21.07 sec) 

10 1119280052614 1119280073364 20750 (20.75 sec) 

11 1119280119491 1119280140130 20639 (20.639 sec) 

12 1119280390460 1119280411120 20660 (20.66 sec) 

13 1119280431339 1119280451979 20640 (20.64 sec) 

14 1119280471557 1119280492197 20640 (20.64 sec) 

15 1119280511104 1119280531803 20699 ( 20.699 sec) 

Table A.5: Experiment Five: Services on Different Machines 



Appendix A. X-Ray Crystallography Data 147 

Run Start Stop Total - milliseconds 

1 1113825655850 1113825698511 42661 (42.661 sec) 

2 1113826258837 1113826278895 20058 (20.058 sec) 

3 1113826460787 1113826480756 19969 (19.969 sec) 

4 1113827065286 1113827085225 19939 (19.939 sec) 

5 1113827148666 1113827468595 319929 (319.929 sec) 

6 1113827212298 1113827237374 25076 (25.076 sec) 

7 1113827273095 1113827292994 19899 (19.899 sec) 

8 1113827726687 1113827746646 19959 (19.959 sec) 

9 1113828065895 1113828085854 19959 (19.959 sec) 

10 1113828141524 1113828161783 20259 (20.259 sec) 

11 1113828738963 1113828758972 20009 (20.009 sec) 

12 1113828796496 1113828816815 20319 (20.319 sec) 

13 1113828857353 1113828877342 19989 (19.989 sec) 

14 1113828916268 1113828936467 20199 (20.199 sec) 

15 1113829083068 1113829103126 20058 (20.058 sec) 

Table A.6: Experiment Six: Loaded Machine 



Appendix B 

Dark Matter Simulation Data 

148 



Appendix B. Dark Matter Simulation Data 149 

Run Start Stop Total - milliseconds 

1 1114683019153 1114683112597 93444 (93.444 sec) 

2 1114683562053 1114683655488 93435 (93.435 sec) 

3 1114684645481 1114684738855 93374 (93.374 sec) 

4 1114684854041 1114684947455 93414 (93.414 sec) 

5 1114685293843 1114685387248 93405 (93.405 sec) 

6 1114685754396 1114685847780 93384 (93.384 sec) 

7 1114686026707 1114686120082 93375 (93.375 sec) 

8 1114686396058 1114686489613 93555 (93.555 sec) 

9 1114686821440 1114686914824 93384 (93.384 sec) 

10 1114689195914 1114689289439 93525 (93.525 sec) 

11 1114690138640 1114690232074 93434 (93.434 sec) 

12 1114690300713 1114690394107 93394 (93.394 sec) 

13 1114691018185 1114691111579 93394 (93.394 sec) 

14 1114691425621 1114691519005 93384 (93.384 sec) 

15 1114692418558 1114692511993 93435 (93.435 sec) 

Table B.1: Experiment One: Dark Matter 



Appendix B. Dark Matter Simulation Data 150 

Run Start Stop Total - milliseconds 

1 1114697306377 1114697427481 121104 (121.104 sec) 

2 1114697746349 1114697867253 120904 (120.904 sec) 

3 1114697914080 1114698035084 121004 (121.004 sec) 

4 1114698110663 1114698231677 121014 (121.014 sec) 

5 1114698463821 1114698584795 120974 (120.974 sec) 

6 1114699069492 1114699190496 121004 (121.004 sec) 

7 1114699458221 1114699579295 121074 (121.074 sec) 

8 1114699706808 1114699827792 120984 (120.984 sec) 

9 1114699906555 1114700026248 119693 (119.693 sec) 

10 1114700308103 1114700429427 121324 (121.324 sec) 

11 1114700505096 1114700624788 119692 (119.692 sec) 

12 1114700787232 1114700908246 121014 (121.014 sec) 

13 1114701185384 1114701306378 120994 (120.994 sec) 

14 1114701528227 1114701649412 121185 (121.185 sec) 

15 1114701701406 1114701822430 121024 (121.024 sec) 

Table B.2: Experiment Two: Dark Matter 



Appendix B. Dark Matter Simulation Data 151 

Run Start Stop Total - milliseconds 

1 1118654767182 1118654908245 141063 (141.063 sec) 

2 1118655025493 1118655150373 124880 (124.880 sec) 

3 1118655207826 1118655332665 124839 (124.839 sec) 

4 1118737890300 1118738015470 125170 (125.170 sec) 

5 1118738121622 1118738244689 123067 (123.067 sec) 

6 1118738323733 1118738448643 124910 (124.910 sec) 

7 1118738591628 1118738728541 136913 (136.913 sec) 

8 1118825089991 1118825216563 126572 (126.572 sec) 

9 1118825344177 1118825468976 124799 (124.799 sec) 

10 1118825587246 1118825712046 124800 (124.800 sec) 

11 1118826024195 1118826147482 123287 (123.287 sec) 

12 1118910148205 1118910274827 126622 (126.622 sec) 

13 1118910567868 1118910692247 124379 (124.379 sec) 

14 1118911051604 1118911176413 124809 (124.809 sec) 

15 1118911338807 1118911458619 119812 (119.812 sec) 

Table B.3: Experiment Three: Dark Matter 



Appendix B. Dark Matter Simulation Data 152 

Run Start Stop Total - milliseconds 

1 1119345388563 1119345510338 121775 (121.775 sec) 

2 1119346218850 1119346340545 121695 (121.695 sec) 

3 1119346629771 1119346751476 121705 (121.705 sec) 

4 1119347125814 1119347247519 121705 (121.705 sec) 

5 111934 7370556 1119347492341 121785 (121.785 sec) 

6 1119347821815 1119347943690 121875 (121.875 sec) 

7 1119348041691 1119348164147 122456 (122.456 sec) 

8 111935188455 7 1119352006352 121795 (121.795 sec) 

9 1119352098815 1119352220670 121855 (121.855 sec) 

10 1119352422100 1119352544416 122316 (122.316 sec) 

11 1119352910793 1119353043323 132530 (132.530 sec) 

12 1119353276619 1119353398424 121805 (121.805 sec) 

13 1119356579778 1119356706541 126763 (126.763 sec) 

14 1119356980935 1119357103241 122306 (122.306 sec) 

15 1119357776119 1119357897864 121745 (121. 745 sec) 

Table B.4: Experiment Five: Dark Matter 



Appendix B. Dark Matter Simulation Data 153 

Run Start Stop Total - milliseconds 

1 1114692630072 1114692742244 112172 (112.172 sec) 

2 1114692783563 1114692887863 104300 (104.3 sec) 

3 1114692938366 1114693042856 104490 (104.49 sec) 

4 1114693071898 1114693170469 98571 (98.571 sec) 

5 1114693346753 1114693445174 98421 (98.421 sec) 

6 1114693662827 1114693792955 130128 (130.128 sec) 

7 1114693833062 1114693938594 105532 (105.532 sec) 

8 1114693964732 1114694073358 108626 (108.626 sec) 

9 1114694136348 1114694240678 104330 (104.33 sec) 

10 1114694349725 1114694448637 98912 (98.912 sec) 

11 1114694482216 1114694602569 120353 (120.353 sec) 

12 1114694695653 1114694804980 109327 (109.327 sec) 

13 1114694998728 1114695117239 118511 (118.511 sec) 

14 1114695264651 1114695372366 107715 (107.715 sec) 

15 1114695512607 1114695623347 110740 (110.740 sec) 

Table B.5: Experiment Six: Dark Matter 

/ 


