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Abstract 

NMDA receptors are ionotropic, glutamate receptors which mediate fast excitatory 

transmissions within the central nervous system. They form tetrameric or 

pentameric heterologous complexes from seven NMDA receptor subunits NRI, 

NR2A-D and NR3A-B which each convey distinct expression patterns, functional 

and pharmacological properties to the receptor complex. Due to its involvement in 

excitatory transmission, over-excitation of the NMDA receptor, particularly the 

NR2B subunit, has been the focus of pharmaceutical therapeutic targeting for 

neurodegenerative conditions and chronic pain. This thesis discusses the potential 

importance and clinical effectiveness of targeting NMDA receptors and the 

difficulties in drug development arising from the receptor's heteromeric nature. 

The work herein focuses on the pharmacological characterisation of two novel 

NR2B-selective antagonists Compound A and Compound B, the physiological and 

pharmacological effects of NR3 subunit inclusion in the NMDA receptor complex, 

and the modifications of NMDA receptor physiology and subunit expression during 

chronic pain states. 

This research provides novel evidence to suggest that Compound A and Compound 

B bind with a high selectivity and affinity towards NR1/NR2B containing receptors. 

It provides novel evidence for a differential cytoprotective effect of the NR3 subunits 

showing significant cytoprotection in NR1/NR2B, but not NR1/NR2A, receptors and 

shows that NR3B inclusion in the receptor can differentially modulate the binding 

affinities ofNR2B-selective antagonists. 

This study also shows evidence for increased activity of spinal and supra-spinal 

NR2B'-containing receptors iridicating"NMDAreceptor modUiailon and involvement 

in a chronic pain model. 
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90minutes. Non-specific binding was defined with ketamine 
(1mM). 

Competition binding experiments showing the COMPOUND 
B displacement of [3H] MK-801 binding in adult rat 
forebrain, terminating the reaction after 30, 60 and 
90minutes. Non-specific binding was defined with ketamine 
(1mM). 

Chapter4 

Schematic diagram of immunoglobulin structure 

Immunoblot showing recombinant NR3B, NR3A and NR1 
subunits expressed in HEK 293 cells. Probed with anti­
rodent NR3B (2~g/ml). Representative from n=3 
experiments. 

Immunoblot showing adult rat forebrain (1) and spinal cord 
(2) membranes (30~g) and recombinant NR3B expressed in 
HEK 293 cells (3+4), probed with anti-rodent NR3B 
(2~g/ml). Representative from n=3 experiments. 

Immunoblot showing adult rat forebrain (1+4) and spinal 
cord (2+5) (30~g, respectively), and recombinant NR3B 
(3+6) subunits expressed in HEK 293 cells probed overnight 
with anti-rodent NR3B (2~g/ml). Representative from n=2 
experiments. 

Immunoblot showing post-mortem human putamen 
membranes (1) (50~g) and adult rat forebrain membranes 
(2) (30~g) probed with anti-human NR3B (2~g/ml). 

representative from n=3 experiments. 

Immunoblot (n=1) showing adult rat spinal cord 
meinbranes. (1+6), aduft' ~rat 'f'()rellrain membra-nes (2+ 7) 
(30~g) and human putamen membranes (4,5,8+9)(50~g) 
probed with anti-human NR3B (2~g/ml). Lane 3 was loaded 
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with sample buffer. 

Representative immunoblot (n=2) showing adult rat 
forebrain membranes (1) and adult rat spinal cord 
membranes (2) (301lg) and recombinant NR3B expressed in 
HEK 293 cells (3+4) probed with commercial anti-NR3B 
(1:1000). 

Representative immunoblots (n=3) showing adult rat 
forebrain membranes (251lg) (Lane 1) and adult rat spinal 
cord membranes (251lg) (Lane 2), probed overnight with 
anti-rNR1 (21lgfml) (A), anti-rNR2A (21lgfml) and anti­
rNR2B (21lg/ml). 

Schematic diagram showing the laminae layers in the dorsal 
and ventral regions of the rodent lumbar spinal cord. 

Control sections showing the immunoreactivity in tissue in 
the absence of primary antibodies in the cervical dorsal 
horn (A), the lumbar dorsal horn (B) and the thoracic 
ventral horn (C). Low resolution image of the cervical cord 
showing NR1 immunostaining (Bigini et al., 2006) with red 

arrows highlighting the dorsal and ventral areas of the cord 
focused upon in this study. 

Expression of NR1 (probed anti-rNR1 21lg/ml) (A), NR3B 
(commercial anti-rNR3B 1:1000) (B) in the dorsal horns 
laminae I, 11, Ill and ventral horns showing the motor 
neurons (MN) of the cervical rat spinal cord (n=2). Scale 
bars represent 100jlm. 

Expression of NR2A (anti-rNR2A 21lgfml) (C) and NR2B 
(anti-rNR2B 21lg/ml) (D) in the dorsal horn laminae I, 11, Ill 
and ventral horns showing the motor neurons (MN) of the 
cervical rat spinal cord (n=2). 

Expression of NR1 (probed anti-rNR1 11lg/ml) (A), NR3B 
(commercial anti-rNR3B 1:1000) (B) in the dorsal horn 
laminae I, 11, Ill and ventral horns .. showing--the motor 
neurons (MN) of the thoracic rat spinal cord (n=2). Scale 
bars represent 100jlm. 
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Expression of NR2A (anti-rNR2A 2Jlgfml) (C) and NR2B 
(anti-rNR2B 2Jlg/ml) (D) in the dorsal horn laminae I, 11, Ill 
and ventral horns showing the motor neurons (MN) of the 

thoracic rat spinal cord (n=2). Scale bars represent 100Jlm. 
Expression of NR1 (probed anti-rNR1 1Jlg/ml) (A), NR3B 
(commercial anti-rNR3B 1:1000) (B) in the dorsal horn 
laminae I, 11, Ill and ventral horns showing the motor 

neurons (MN) of the lumbar rat spinal cord (n=2). Scale 
bars represent 100Jlm. 

Expression of NR2A (anti-rNR2A 2Jlg/ml) (C) and NR2B 

(anti-rNR2B 2Jlg/ml) (D) in the dorsal horn laminae I, 11, Ill 
and ventral horns showing the motor neurons (MN) of the 

lumbar rat spinal cord (n=2). Scale bars represent 100Jlm. 

Expression of NR1 (probed anti-hNR1 1Jlg/ml) (A), NR3B 
(commercial anti-rNR3B 1:1000) (B) in the dorsal horn 
laminae I, 11, Ill and ventral horns showing the motor 

neurons (MN) of the cervical human spinal cord (n=1). 
Scale bars represent 100Jlm. 

Expression of NR2A (anti-rNR2A 2Jlg/ml) (C) and NR2B 

(anti-rNR2B 2Jlg/ml) (D) in the dorsal horn laminae I, 11, Ill 
and ventral horns showing the motor neurons (MN) of the 

cervical human spinal cord (n=1). Scale bars represent 
100Jlm. 

Representative immunoblots (n=2) showing solubilised 

membranes (lane 1) and unsolubilised membranes (lane 2) 
probed overnight with anti-rNR1 (2Jlg/ml) (A), anti-rNR2B 
(2Jlg/ml) (B), anti-rNR2A (2Jlgfml) (C) and anti-rNR3B 
(1:1000) (D). 

Immunoblot showing adult rat spinal cord homogenate 

(25Jlg/ml) (SC), solubilised membranes (S), unsolubilised 
membranes (DT), unbound material (UB) and elutions 1-5 
(E1-5), probed overnight with anti-NR1 (2Jlg/ml), anti­

NR2A (2Jlg/ml), anti:-NR2B (2Jlg/ml) and anti:.NR3B 
(1:iOOO). . Representative immunoblots from n=3 
experiments. 
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4.21 Immunoblots (n=1) showing solubilised and unsolubilised 138 
membranes at 0.75% [SOS] (1+2), solubilised and 
unsolubilised membranes at 0.5% [SOS] (3+4), solubilised 
and unsolubilised membranes at 0.25% [SOS] (5+6), 
solubilised and unsolubilised membranes at 0.1% [SOS] and 
solubilised and unsolubilised membranes at 0.05% [SOS]. 
Probed with anti-NR1 (2~g/ml) (A), anti-NR2A (2~g/ml) 
(B), anti-NR2B (2~g/ml) and anti-NR3B (1:1000). 

4.22 Immunoblots (n=1) showing solubilised and unsolubilised 139 
membranes at 0.5% [SOS] (1 +2), solubilised and 
unsolubilised membranes at 0.4% [SOS] (3+4), solubilised 
and unsolubilised membranes at 0.3% [SOS] (5+6), 
solubilised and unsolubilised membranes at 0.2% [SOS]. 
Probed with anti-NR1 (2~g/ml) (A), anti-NR2A (2~g/ml) 
(B), anti-NR2B (2~gjml) and anti-NR3B (1:1000). 

4.23 Representative immunoblots (n=2) showing purified 141 

fractions from an anti-NR1 affinity column. Spinal cord 
homogenate (25~gjml) (SC), solubilised membranes (S), 
unsolubilised membranes (OT), unbound material (UB) and 
elutions 1-5 (E1-5). Probed with anti-NR1 (2~g/ml) (A), 
anti-NR2A (2~g/ml) (B), anti-NR2B (2~g/ml) and anti-NR3B 
(1:1000). 

4.24 Representative immunoblots (n=2) showing purified 142 

fractions from an anti-NR2A affinity column. Spinal cord 
homogenate (25~g/ml) (SC), solubilised membranes (S), 
unsolubilised membranes (DT), unbound material (UB) and 
elutions 1-5 (E1-5). Probed with anti-NR1 (2~gjml) (A), 
anti-NR2A (2~g/ml) (B), anti-NR2B (2~g/ml) and anti-NR3B 
(1:1000). 

4.25 Representative immunoblots (n=3) showing adult rat 144 
forebrain membranes (20~g) (1), adult rat cervical cord 
membranes (20~g) (2) and adult rat thoracic/lumbar cord 
membranes (20~g) (3). Probed with anti-rNR2A (2~g/ml), 
anti-rNR2B (2~g/ml) and anti-rNR3B (1:1000). 

4.26 Re-probing the immunoblots in figure 4.f2 witl:utntj-:_mouse . 144 
~-actin (1:1000). >lhu:iiurfoblot.siio\Zi~g'~-d~lt rat forebrain 
membranes (20~g) (1), adult rat cervical cord membranes 
(20~g) (2) and adult rat thoracic/lumbar cord membranes 
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(20~g) (3). 

Chapter 5 

Schematic diagram representing electrode position and cell 
placement in the microscope bath beneath the barrels used 
for rapid agonist and antagonist application (From Jon 
Spencer, GSK). 

The percentage cytotoxicity of HEK 293 cells expressing 
various combinations of NMDA receptor subunits *p<0.05, 
**p<O.Ol, ***p<O.OOl one way ANOVA. 

Electrophysiological traces of peak amplitudes (pA) 
obtained from recombinant NR1/NR2B (A), 
NR1/NR2B/NR3B (B) and NR1 (C) receptors. Histogram 
(D) and data range charts (E) show the mean ± SD for 25 
individual experiments. 

Current/voltage (IV) relationships for NR1/NR2B (A) and 
NR1/NR2B/NR3B (B) receptors expressed in HEK 293 cells, 
showing no statistical differences between channel 
characteristics. 
Calcium permeability experiments, measuring the shift in 
reversal potential of the receptor channel between 0.3 and 
30mM extracellular calcium. 

Characterisation of magnesium sensitivity of recombinant 
NR1/NR2B (A) (n=8) and NR1/NR2B/NR3B (B) (n=6) 
receptors using current/voltage (1/V) relationships. 

Electrophysiological traces depicting the sensitivity of 
NR1/NR2B (A) and NR1/NR2B/NR3B (B) receptors 
towards lOOuM concentrations of magnesium and a 
histogram (C) representing the mean ± SD of data from all 
experiments. 

Electrohysiological traces representing the signals 
measured from NR1/NR2B (A) and NR1/NR2B/NR3B (B) 
receptor complexes when. expo~ed .to. 2Q~M AnC1gnesium 
chloride, -~m(f ·a. 'histog;~~;; ~(c)- sh~~-ng-the mean± so of all 

data sets. 
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Differential cytoprotective effects of the NR2B-selective 
antagonists ifenprodil (A), COMPOUND B (B) and 
COMPOUND A (C) upon NR1/NR2B and NR1/NR2B/NR3B 
receptor complexes * p=<0.05, **p=<0.01 Two-tailed T-Test. 

Electrophysiological traces representing inhibition of 
signals from recombinant NR1/NR2B (A) and 
NR1/NR2B/NR3B (B) receptors. Figure C represents the 
mean ± SO of percentage inhibition from all data sets. 

Electrophysiological traces representing the inhibition of 
NR1/NR2B (A) and NR1/NR2B/NR3B (B) receptor activity 
by 300nM CP-101606. Figure C shows the mean ± SO of 
percentage inhibition from all data sets. 

Electrophysiological traces representing the inhibition of 
NR1/NR2B (A) and NR1/NR2B/NR3B (B) receptor activity 
by 300nM CP-101606. Figure C shows the mean ± SO of 
percentage inhibition from all data sets. 

Electrophysiological traces representing the inhibition of 
NR1/NR2B (A) and NR1/NR2B/NR3B (B) receptor activity 
by 30nM CP-101606. Figure C shows the mean ± SO of 
percentage inhibition from all data sets. 

Electrophysiological traces showing the inhibition of 
NR1/NR2B (A) and NR1/NR2B/NR3B (B) receptor activity 
by the NR2B-selective antagonist Ro 256981 (101J.M 10 
seconds). Figure C shows the mean ± SO of percentage 
inhibition from all data sets. 

Electrophysiological traces showing the inhibition of 
NR1/NR2B (A) and NR1/NR2B/NR3B (B), by recombinant 
receptor activity by Ro-256981 (30nM, 60seconds). Figure 
C, shows signal from NR1/NR2B receptors before antagonist 
application, Figure E, shows signal from NR1/NR2B/NR3B 
receptors before antagonist application. Figure D, shows 
the mean ± SO of percentage inhibition from all data sets. 

Conmeq9on bindJJlg ~l"lowing.~o:-site displacementof [3H] 
CP-101606 by COMPOUND A in recombinant NR1/NR2B 
and NR1/NR2B/NR3B receptors. The results displayed are 
mean ± SO of three individual experiments and non-specific 
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binding was defined using 1mM ifenprodil. 

Competition binding experiments showing the displacement 
of [3H] CP-101606 by COMPOUND Bin recombinant 
NR1/NR2B and NR1/NR2B/NR3B receptors. Data shown is 
mean ± SD for two individual experiments and non-specific 
binding was defined using 1mM ifenprodil. 

Histogram representing specific binding data for [3H] Ro-
256981 in recombinant NR1/NR2B and NR1/NR2B/NR3B 
receptors. The data shown is mean ± SD for two individual 
experiments. Non-specific binding was defined using 1mM 
ifenprodil. 

Histogram to represent the specific binding data for [3H] CP-
101606 in recombinant NR1/NR2B and NR1/NR2B/NR3B 
receptors. The data shows the mean ± SD for two individual 
experiments. Non-specific binding was defined with 1mM 
ifenprodil 
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180 

181 

182 

6.1 Schematic (Tolle et al., 1993) and low resolution images (Liu 201 
et al., 1994) of the cord highlighting the dorsal (outer 
lamina) and ventral regions (motor neurons) investigated in 
this study (A) and control sections showing the 
immunoreactivity in tissue in the absence of primary 
antibodies in the lumbar dorsal horn (B), the lumbar ventral 
horn (C), the thoracic dorsal horn (D) and the thoracic 
ventral horn (E). 

6.2 Expression of NR1 protein in the dorsal (A) and ventral (B) 202 
horns of the thoracic cord in a sham animal probed with 
anti-NR1 (1J..Lg/ml). The outer laminae I, 11, Ill are labelled 
in the dorsal horn (A) and cell bodies of motor neurons 
(MN) in laminae IX in the ventral horn (B). Scale bar 
represents 100nm. 

6.3 Expression of NR2A protein in the ventral horns of lumbar 203 
spinal cord in sham (A) and FCA model (B) animals, probed 
with anti-NR2A (2J..Lgfml). The cell bodies of the motor 
neurons (MN) within laminae IX show high levels of NR2A 
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protein expression. Scale bar represents 100nm. 

6.4 Expression of phosphorylated NR2A subunit at tyrosine 205 
residue 1325 in the dorsal horn of sham (A) and FCA (B) 
lumbar cord tissue. Weak immunoreactivity is present 
particularly in the outer laminae (1, 11 and Ill) of the dorsal 
horn. Scale bar represents 100nm. 

6.5 Expression of phosphorylated NR2A subunit at tyrosine 205 
1387 in the dorsal horn of sham (A) and FCA (B) lumbar 
cord tissue. Initial evidence for increased phosphorylation 
of NR2A at tyrosine 1387 in the outer laminae (I, 11 and Ill) 

during the inflammatory response. Scale bar represents 
100nm. 

6.6 Expression of NR2B protein within the dorsal horns of 206 
lumbar spinal cord in sham (A) and FCA (B) tissue. NR2B 
shows expression in the outer laminae (I, 11 and Ill) in both 
sham and model tissue showing involvement in sensory 
inputs to the cord. Scale bar represents 100nm. 

6. 7 Expression of phosphorylated NR2B at tyrosine 1252 within 207 
the dorsal horn of lumbar sham (A) and FCA (B) tissue. 

6.8 

6.9 

Similar levels of immunoreactivity suggest no alteration in 
phosphorylation of Nr2B at this residue in the outer laminae 
I, 11 and Ill of the dorsal horns. Scale bar represents 100nm. 

Expression of phosphorylated NR2B at residue y1336 
within the dorsal horn of lumbar sham (A) and FCA (B) 
tissue. Initial evidence for increased phosphorylation of 
NR2B at this residue in the outer laminae I, 11 and Ill, 

suggesting potentiation of sensory NR2B-mediated 
transmission. Scale bar represents 100nm. 

Expression of phosphorylated NR2B at residue y1472 
within the dorsal horn of lumbar sham (A) and FCA (B) 
tissue. Initial evidence for enhanced phosphorylation of the 
NR2B subu'nit at residue 1472, in outer laminae I, 11 and Ill, 
important for blockade~ of receptof 'internalisation. Scale bar 
represents 100nm. 
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208 
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Expression of NR3B protein within the dorsal horns of the 
lumbar spinal cord in sham (A) and FCA (B) tissue. Initial 
evidence for increased NR3B expression in outer laminae I, 
11 and Ill following onset of the inflammatory response. 
Scale bar represents 100nm. 

209 

6.11 Expression of PSD-95 within the ventral horns of the lumbar 210 
cord in sham (A) and FCA (B) tissue. Initial evidence for 
increased expression of PSD-95 in the motor neuronal soma 

6.12 

(MN) of FCA model tissue (B) in comparison with sham 
tissue (A). Scale bar represents 100nm. 

Representative autoradiograms of adult rat lumbar spinal 
cord using (3H] Ro-256981 in sham (A) and FCA treated (B) 
animals. Representative image showing non-specific 
binding defined using ifenprodil (1mM) (C). 

213 

6.13 Autoradiographical data showing [3H] Ro-256981 binding 215 
within the dorsal and ventral horns of sham and FCA spinal 
cord. 
Data shown are the mean values ± standard deviation for 
n=4 sham and n=4 FCA spinal cords. Sham and FCA tissue is 
compared in the dorsal horn of the lumbar cord (A), the 
ventral horn of the lumbar cord (B), the dorsal horn of the 
thoracic cord (C) and the ventral horn of the thoracic cord 
(D). Levels of [3H] Ro-256981 binding are higher in the 
lumbar region than the thoracic region, consistent with 
NR2B immunoreactivities in IHC experiments. 

6.14 Representative horizontal (A+B) and coronal (C+D) 217 
autoradiograms showing [3H] Ro-256981 binding within 
sham and FCA-treated rat brains. Non-specific binding was 
defined using 1mM ifenprodil (E). 

6.15 Autoradiographical data showing [3H] Ro-256981 binding 219 
within the whole brain of sham and FCA-treated animals. 
Data shown are the means ± standard deviation of between 
n=3/4 sham and n=3/4 FCA whole brains. Sham and FCA 
tissue ··is compared· in 1° sorrfatoserisory coite:X fAr the zo 
somatosensory cortex (B), the cingulate cortex (C), the 
periaqueductal grey (D). 
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6.16 Autoradiographical data showing (3H] Ro-256981 binding 220 
within the whole brains of sham and FCA treated animals. 
Data shown are the means ± standard deviation of between 
n=3/4 sham and n=3/4 FCA whole brains. Sham and FCA 
tissue is compared in hippocampal regions CA1 (E), CA2 (F), 
CA3 (G), the dentate gyrus (H).* p=< 0.05 Unpaired Two-
tailed T-Test. 

6.17 Autoradiographical data showing [3H] Ro-256981 binding 221 
within the whole brains of sham and FCA-treated animals. 
Data shown are the means ± standard deviation of between 
n=3/4 sham and n=3/4 FCA whole brains. Sham and FCA 
tissue is compared in the thalamus (I) and all brain regions 
in both hemispheres combined (p=0.05) (J). * p=<0.05 
Unpaired Two tailed T-Test. 

Chapter 7 

7.1 Schematic diagram showing the binding affinities and 234 
selectivity towards NR2B-containing receptors of Ro-
256981, CP-101606, COMPOUND A and COMPOUND B, and 
the potential allosteric interaction of COMPOUND B with the 
channel pore. 

7.2 A schematic diagram showing the differential protective 236 
effect of the NR3 subunits upon the proposed NMDA­
mediated calcium toxicity in NR1/NR2A and NR1/NR2B 
receptors. 

7.3 A schematic diagram showing that the inclusion of an NR3B 240 
subunit into the receptor complex may have an allosteric 

7.4 

effect upon the LIVBP binding domain of the NR2B-selective 
antagonists. 
A schematic diagram showing the pathway of chronic pain 
transmission from the spinal cord, through the brainstem 
and into the cortex (Analgesia, UK) and the changes in the 
NMDA receptor which may contribute to the persistent 
response. 

242 



Heather Chaffey 

List of tables 

Chapter 1 

1.1 Modulatory properties inferred by the various NR2 and NR3 subunits on 5 
the receptor complex, data obtained from Gibb and Colquhoun, (1991), 
Cull-Candy et al., 2001 and Priestley, (2002). 

Chapter 2 

2.1 Preparation of standard solutions for lowry assay. 52 

2.2 Preparation of scintillation tubes for competition radioligand binding 63 
assays 

2.3 Preparation of transfection reagents 70 

Chapter3 

3.1 Summary of the competitive binding data obtained for the novel 94 
compounds COMPOUND A and COMPOUND B 

Chapter4 
4.1 Anti-rodent NR3B antibody yield (j.tg/ml) from each collection of 107 

antisera 
4.2 Anti-human NR3B antibody yield (j.tg/ml) from each collection of Ill 

antisera 
4.3 Qualitative summary of the average intensity of immunoreactivity for 129 

each subunit in the cervical, thoracic and lumbar regions of adult rat 
spinal cord. 
( +) = Very weak expression, + = Weak expression, ++ = Moderate 
expression, +++ = Strong sxpression, ++++ = Very strong expression. 

4.4 Qualitative summary of the average intensity of immunoreactivity for 134 
each subunit in the cervical region of adult human spinal cord. 
( +) = Very weak expression, + = Weak expression, ++ = Moderate 
expression, 
+++ = Strong expression, ++++ = Very strong expression. 

ChapterS 

5.1 Summarising the pharmacological, influence of the NR3B subunit upon 183 

NR2B-selective antagonists ifenprodil, Ro-256981, CP-1 01606, 

COMPOUND A and COMPOUND B. 



Heather Chaffey 

Chapter 6 

6.1 Qualitative summary of the average intensity of immunoreactivity 211 
detected with each of the antibodies, in the lumbar and thoracic regions 
of the spinal cord. ( +) = Very weak expression, + = Weak expression, ++ 
= Moderate expression, +++ = Strong sxpression, ++++ = Very strong 
expressiOn. 



Chapter 1 Heather Chaffey 

Chapter 1 

Introduction 

1.1 Neurotransmitters within the central nervous system 

Essential signalling mechanisms within the central nervous system (CNS) rely upon 

selective release of neurotransmitters and their interactions with specific receptors. 

As the primary excitatory neurotransmitter in the CNS, glutamate and its receptors 

are a major target for combating ·many disease states, which can manifest due to 

hyper or hypo-activation of these receptors. Widely expressed throughout the CNS, 

the N-methyl-D-aspartate (NMDA) receptor is a glutamate receptor that mediates 

neurotransmission via calcium influx upon neuronal depolarisation. As such it is 

vital for normal neuronal function and any modulations to this balanced system -may 

cause disease. 

This introduction will discuss the NMDA receptor, its multiple subunit structure, 

distribution, eo-assembly, physiology and pharmacology in detail with particular 

focus on the specific properties ofNR2B and NR3 subunits. 

1.2 Glutamate receptors within the central nervous system 

The amino acid L-glutamate is the most ubiquitous excitatory neurotransmitter in the 

central nervous system, mediating its effects via a large family of ionotropic and 

metabotropic receptors. 

Metabotropic glutamate receptors are seven transmembrane-domain G-protein-

coupled receptors that control intracellular signalling cascades (Nakanishi, 1994; 

Jordan et al., 1999; Roche et al., 1999; Chan et al., 2001) and provide modulatory 

and regulatory roles in neurotransmission (Takanishi et al., 1993; Malherbe et al., 

1999; Kew and Kemp, 2005). Eight family members (mGluR1-8) have been 

@ 
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identified to date, which have subsequently been divided into three groups according 

to sequence homology, secondary messenger coupling and pharmacology. As 

shown in Figure 1, group I, containing mGluRl and R5, predominantly couple to 

phospholipase C (PLC), whereas groups II (mGlu-R2 and R3) and m (mGlu-R4, R6, 

R 7 and R8) regulate adenylyl cyclase activity (Kew and Kemp, 2005). 

Ionotropic glutamate receptors (iGluRs) are ligand-gated channels divided into three 

groups (AMP A, Kainate and NMDA) and named according to the pharmacological 

tools used to selectively activate them. AMP A and kainate receptors display 

predominance for sodium and potassium permeability, whereas NMDA receptors are 

predominantly calcium permeable. 

lonotropic receptors (!GiuRs) 

AM PAR NMDAR 

K K K 

rvv 

Metabotropic receptors (mGiuRs) 

!Group I 

mGiuR5 

ea release 

.. 
Goups 11 , Ill 

AMP cAMP 

mGiuR2 
mG!uR3 
mGJuR4 
rnG!uR6 
mGiuR7 
mGiuR8 

Figure 1.1 A schematic diagram representing the two classes of glutamate receptor (A) 

(Verkhratsky and Kirchoff, 2007). 

2 
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1.3 The NMDA receptor 

Located throughout the central nervous system, the NMDA receptor forms a major 

subclass of excitatory L-glutamate receptor (Chazot and Stephenson, 1997; 

Stephenson 2001). NMDA receptors are heterologous complexes of essential and 

modulatory subunits, eo-assembled in various tetrameric or pentameric arrangements 

(Wafford et al., 1993; Sheng et al., 1994; Chazot et al., 1994). Seven NMDA 

receptor subunits have been identified to date, each providing specific modulatory 

influences on the receptor complex. Initial cloning of the NR1 subunit by Moriyoshi 

et al., 1991 was followed rapidly by the identification and cloning of the four NR2 

subunits NR2A, NR2B, NR2C and NR2D (Kutsuwada et al., 1992; Monyer et al., 

1992; Ishii et al., 1993) and the two NR3 subunits: NR3A (Ciabarra et al., 1995; 

Sucher et al., 1995) and NR3B (Nishi et al., 2001; Matsuda et al., 2002). 

The NR1 subunit is obligatory for NMDA receptor function and at least one NR1 

subunit is therefore always incorporated into the receptor complex. The NR1 

combines with at least one modulatory NR2 (A-D) subunit and more infrequently a 

modulatory NR3 (A-B) subunit. 

This heterologous nature confers a huge potential capacity for flexible modulation of 

the nervous system with different heteromers displaying individual biological and 

pharmacological characteristics. 

1.3.1 NMDA receptor activation and modulatory binding sites 

In addition to the complexity of NMDA receptors arising from multiple subunit eo­

assembly, two co-agonists glutamate and glycine, must be present in order to activate 

the receptor channel. 
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Early research expressing homomeric NR1 subunits (Boeckman et al., 1994) and 

homomeric NR2 subunits (Kutsuwada et al., 1992) failed to produce functional 

receptors fuelling the theory that neither subunit possessed the ability to function in 

isolation and that they must form heteromeric complexes. Research using site 

directed mutagenesis has since shown that the glycine binding site is present on the 

NR1 subunit (Kuryatov et al., 1994), with the glutamate binding site on the NR2 

subunit (Laube et al., 1998). It is thought that the agonists bind to the S 1 and S2 

regions (see section 1.3.3), inducing conformational changes and folding of the 

proteins, inducing channel opening (Priestley, 2002). 

The synthetic compound N-methyl-D-aspartate, an analogue of L-glutamate is 

frequently used as an agonist for research and it was the initial activation of these 

receptors by NMDA which led to its nomenclature. 

The receptor complex also has many other binding sites available for allosteric 

modulators such as a redox site, Zn2
+ and endogenous polyamine binding sites. 

There are also multiple phosphorylation and glycosylation sites on the cytoplasmic 

tail, which are very important for regulation of NMDA activity (Zigmond et al., 

1999; Kew and Kemp, 2005). 

1.3.2 NMDA channel kinetics 

NMDA receptors are membrane-bound, ligand-gated, non-selective cation channels 

characterised by voltage-dependent activity, high calcium permeability and 

comparatively slow activation/deactivation kinetics (Cull-Candy et al., 2001; 

Stephenson, 2001; Takai et,al~, 2003). NMDA receptor channel kinetics are largely 

influenced by subunit combination with each NR2 and NR3 subunit conferring 
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different modulatory properties on the receptor complex (see table 1.1). For example 

NR1/NR2A receptors show very fast (millisecond) deactivation following excitatory 

currents, whereas NR1/NR2D receptors deactivate much more slowly (seconds) 

(Cull-Candy et al., 2001; Wyllie et al, 1998). 

NR2A Fast deactivation High principal 

('t decay ~90ms) conductance state High sensitivity 

High permeability Ca2
+ ~SOpS 

NR2B Slower deactivation High principal 

('t decay ~370-400ms) conductance state High sensitivity 

High permeability Ca2
+ ~SOpS 

NR2C Slower deactivation, Lower principal 

('t decay ~370-400ms) conductance state Reduced 

Lowered permeability ~30pS sensitivity 

Ca2+ 

NR2D Very slow deactivation Lower principal 

('t decay ~800ms) conductance state Reduced 

Lowered permeability ~30pS sensitivity 

Ca2+ 

NR3AIB Low permeability Ca2
+ Lower conductance Reduced 

sensitivity 

Table 1.1 Modulatory properties inferred by the various NR2 and NR3 subunits on the 

receptor complex, data obtained from Gibb and Colquhoun, (1991), Cull-Candy et al., 

2001 and Priestley, (2002). 

At negative membrane potentials, current flux through the NMDA receptors is vastly 

reduced in the presence of micromolar concentrations of magnesium, forming a 

voltage-dependent magnesium block (Nowak and Wright 1992) which is relieved 

5 



Chapter 1 Heather Chaffey 

when the membrane is depolarized beyond ----4-0mV. An asparagine residue in the 

pore-forming region has been shown to play a major role in the magnesium 

sensitivity particularly in the NR2 subunits where NR2A and NR2B-containing 

receptors display higher sensitivities towards magnesium blockade than NR2C and 

NR2D-containing receptors (Cull-Candy et a/, 2001). Research by Williams et al., 

1998 also showed the importance of a tryptophan residue in the same region of the 

M2 domain for Mg2
+ sensitivity, with mutations to this residue greatly attenuating 

the magnesium blockade ofNR2B-containing receptors. 

The voltage dependence and degree of Mg2
+ inhibition can be modulated by 

permeant ions (Qian and Johnson, 2006; Antonov and Johnson, 1999), a factor 

which is thought to be important in receptor function and modulation of synaptic 

transmissions. Studies by Hori and Carpenter, (1994) and Zhang et al., (1996) show 

that large fluctuations in the concentration of permeant ions under pathological 

conditions can also alter Mg2
+ inhibition (Qian and Johnson, 2006), thereby 

modulating receptor role and function. 

1.3.3 NMDA receptor subunit structure 

Structurally, NMDA receptor subunits have a large extracellular N-terminal region 

followed by three transmembrane domains (M1, 3, 4) and a pore-forming domain 

(M2) which forms a re-entrant loop (Dingledine et al., 1999). The M2 domain 

contains an asparagine residue in a sequence of three amino acids, the QRN site 

(amino acid position between 598 and 612 depending on specific subunit) which is 

critical for Ca2
+ permeability and Mg2

+ sensitivity (Nishi et al., 2001; Stephenson, 

2001; Matsuda et al., 2002). Th~ third and fourth_ transmembrane domains,share a 

large extracellular loop (S2 region), which forms the agonist binding domain with 

6 
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the extracellular N-terminal (S 1 region) (Armstrong et al., 1998; Dingledine et al., 

1999; Kew and Kemp, 2005; Stephenson, 2001). The cytoplasmic C-terminus varies 

in size depending on the subunit and contains multiple sites for interaction with 

intracellular proteins (Dingledine et al., 1999). 

A B 
Channel closed 

Subunit 

Channel open _A 

G ~ 

Figure 1.2 Schematic diagram showing an NMDA receptor channel in the closed and open 

positions (A) and the predicted transmembrane topology of individual subunit (B) 

showing the extracellular amino terminals, the intracellular carboxyl terminals , the 

membrane domains (Ml-4) and the agonist and NR2B-selective antagonist binding sites. 

1.3.3.1 The NR1 subunit structure 

The 120KDa NRI subunit is essential for channel formation and incorporates the 

binding site for the receptor eo-agonist glycine. The NR1 gene consists of22 exons 
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that give rise to eight distinct splice variants, namely NR1-1a, NR1-1b to NR1-4a 

and NR1-4b, due to three sites of alternative splicing (Stephenson, 2001; Cull-Candy 

et al., 2001; Blahos and Wenthold, 1996). The splice variants can be characterised 

by the presence or absence of exon 5 (21 amino acid sequence) in theN-terminal 

region and by differential splicing of exons 21 (Cl) and 22 (C2) in the C-terminal 

region (Stephenson, 2001 ). Studies investigating the influence of each variant have 

shown that different splice variants can co-exist within the same receptor complex 

(Chazot and Stephenson, 1997b) and that there is no preferential assembly ofNR2 

subunits and particular NRl variants (Blahos and Wenthold, 1996). Research has 

shown the existence of intracellular pools of unassembled NR1-C2-exon-containing 

NRl subunits (Chazot and Stephenson, 1997b) and that homomeric complexes of 

NRl subunits containing the C2 exon can be expressed at the cell surface (Standley 

et al., 2000) and bind the NMDA selective antagonist MK.-801 (Chazot et al., 1991) 

fuelling speculation that they can form glycine receptors that function independently 

of glutamate binding (Stephenson, 2001 ). 

1.3.3.2 The NR2 subunit structure 

In order to form a functional NMDA receptor, NRl must eo-assemble with at least 

one of four modulatory NR2 subunits (2A-D), which are essential for glutamate 

binding. The NR2 subunits are larger than NR1, with molecular masses of~ 170-

180KDa for NR2A and NR2B (Kopke et al., 1993; McBain and Mayer, 1994) and 

~150KDa for NR2C and NR2D (Akesson et al., 2000). The quaternary structure of 

the NMDA receptor is therefore potentially very large, with masses ranging from 

630-850 KDa (Wenthold et al., 1992; Brose et al., 1993; Chazot et al., 1994; Blahos 

and Wenthold, 1996). There is approximately 70% amino acid sequence homology 
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between the NR2A and NR2B subunits, with a similar degree of homology between 

the NR2C and NR2D subunits (see figure 1.3A). However, this homology decreases 

to approximately 55% between the two pairs of subunits. (Stephenson 2001). Both 

the NR2C and NR2D subunit genes undergo alternative splicing to form two 

isoforms (Ishii et al. 1993; Suchanek et al. 1995) though the functional significance 

ofthese variations is largely unknown (see figure 1.3B). 

1.3.3.3 The NR3 subunit structure 

NR3A and NR3B make up the most recently discovered NMDA receptor subunit 

family. NR3A was first identified from the mouse genome in 1995 (Ciabarra et al., 

1995; Sucher et al., 1995) and was so named due to its similarity to known NMDA 

receptor subunits (27% homology to NR1 and NR2). The human NR3A gene 

(GRIN3A) shows 92.7% sequence identity to rat NR3A and is localized to 

chromosome 9q34 in the region 13-34 and translates into a protein with a molecular 

mass ~100KDa (Andersson et al., 2001). NR3B was then discovered in 2001 in the 

human and mouse genomes (Nishi et al., 2001; Matsuda et al., 2002) following 

identification of a unique sequence showing significant homology to the glutamate 

receptor family (Nishi et al., 2001) and particularly with NR3A with which it shares 

62% homology (Matsuda et al., 2002). The human gene (GRIN3B) contains eight 

coding exons, is localised to chromosome 19p 13.3 and the protein product has a 

molecular weight of~ 1 OOKDa (Andersson et al., 2001 ). 

9 
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A .----------------------------------- NR1 

-

_Q:.1_ 

B 
* 

NR1 1 ~ 1 

NR2A I I I 
NR2B I l i l 

* * NR2C I 1' 1 
NR2D I I f I 
NR3A I I I 
NR3B I I I 

I,----- NR2A 

~~----NR2B 

.--------- NR2C 

'-------- NR2D 

.------NR3A 
I 
I '-------- NR3B 

* * I 
I 
I 
I 

* I 
* I 

I 200 amino acids 

Figure 1.3 Phylogenic tree (A) showing NMDA receptor subunit homology and 

polypeptide sequences (B) showing transmembrane domains (black and grey boxes) and 

regions of alternative splicing (asterisks). Taken from Cull-Candy et al., 2 001. 

1.4 Regional distribution of the NMDA receptor subunits 

In the early 90's the regional expression ofNMDA receptor subunits was a focus for 

many research groups (Monyer et al. 1992; Buller et al., 1994, Akazawa et al., 1994 

and Sucher et al., 1995) using in situ hybridisation and immunohistochemical 

techniques. Since then, studies have been carried out using genetic, immunological 

and pharmacological probes to investigate NMDA receptor subunit expression and 

eo-association in different regions of the CNS. 

10 
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1.4.1 NR1 expression 

The NR1 subunit is ubiquitously expressed throughout the central nervous system in 

mature tissue. In situ hybridisation studies to map NR1 mRNA levels throughout 

development found that in the foetal brain, NR1 expression was low and restricted to 

the cortex and hippocampus but expression increased and became more widespread 

as development progressed (Takai et al., 2003). 

1.4.2 NR2A expression 

NR2 subunits display distinct expression patterns throughout development: NR2A 

subunit mRNA expression shows a similar distribution pattern to that of the NRI 

subunit; it is highly expressed throughout the forebrain in the hippocampus, cerebral 

cortex, thalamus and in the cerebellum (Monyer et al., 1992; Wenzel et al., 1996). 

At embryonic days 18-20, NR2A expression was evident throughout forebrain 

regions with expression increasing into the neonate and adult (Takai et al., 2003). In 

the cerebellum, low expression levels in the neonate increase steadily, reaching adult 

levels by post-natal day 22 (Wang et al., 1995). In the rodent (Nagy et al., 2004) and 

human lumbar spinal cord (Sundstrom et al., 1997), NR2A mRNA and protein 

expression have been shown in the dorsal horn, particularly laminae III-IV with 

varying levels in the ventral horn. 

1.4.3 NR2B expression 

NR2B is expressed predominantly in forebrain areas in adult tissue, particularly in 

the hippocampus, cerebral cortex and thalamic regions. In situ hybridisation studies 

show high levels of NR2B mRNA expression by ~mbryonic day 17 in 1he cerebral 

cortex, thalamus and spinal cord, with levels increasing after birth in these regions 

11 
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and the hippocampus, olfactory bulbs and striatum (Monyer et al., 1994; Wang et al., 

1995). Protein expression studies show a similar distribution of the NR2B subunit 

(Loftis and Janowsky, 2003). Laurie et al., 1997 showed that NR2B protein 

expression increased from birth to postnatal day 20 before declining slightly in 

whole neonatal rat brains. NR2B expression in the cerebellum is present until 

postnatal day 22 when levels are no longer detectable (Wang et al., 1995). Loftis 

and Janowsky, 2003 suggest a developmental role for granule cell maturation from 

this early down-regulation of NR2B expression which seemingly is replaced with 

NR2C expression (Monyer et al., 1994). 

In the rodent and primate spinal cord, NR2B shows expression in the superficial 

laminae of the lumbar dorsal horn and the motor neurons of the ventral horn (Nagy 

et al., 2004; Mutel et al., 1998; Rigby et al., 2002). Although overall, NR2B is 

expressed to a lesser extent than NR2A. 

1.4.4 NR2C expression 

The NR2C subunit is almost exclusively expressed in the cerebellum, particularly in 

Purkinje and granule cells (Rigby et al., 2002; Kew and Kemp, 2005; Stephenson, 

2001) with almost no expression in forebrain regions. Tolle et al., (1993) describe 

very weak detection ofNR2C mRNA in the dorsal horn of the rat spinal cord and in 

the periaqueductal grey. One study by Sundstrom et al., (1997) detected NR2C 

expression in human lumbar-sacral cord via immunoblotting, possibly suggesting 

differences in expression between species. 

1.4.5 NR2D expression 

The NR2D subunit is expressed highly in the embryo and newly-born rat, but 

12 
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expression levels decline with maturity with low levels in the adult brainstem, 

midbrain thalamus, subthalamic nucleus and substantia nigra (Wenzel et al. 1996; 

Wenzel et al. 1995; Monyer et al., 1992). Primate studies show NR2D expression in 

the adult thalamus (Jones et al., 1998) and human hippocampus (Scherzer et al., 

1998). Rodent studies show weak but diffuse NR2D expression in the spinal cord 

(Watanabe et al., 1994; Rigby et al., 2002), with a similar intensity of expression and 

distribution in human studies (Sundstrom et al., 1997; Rigby et al., 2002). 

1.4.6 NR3A-B expression 

Differing expression patterns of NR3A and NR3B suggest separate roles and 

importance throughout various stages of development. In the rat, NR3A is widely 

expressed during development particularly in the cortex, midbrain and hippocampus 

(Al-Hallaq et al., 2002) reaching peak expression between postnatal days 7 and 10 

thereafter decreasing substantially in adult animals with limited expression in nuclei 

in the thalamus, amygdala and the olfactory tract (Nishi et al., 2001; Ciabarra et al., 

1995; Sucher et al., 1995). Expression has also been detected in the mouse 

cerebellum at post-synaptic sites where it may form symmetrical synapses between 

climbing fibre terminals and cerebellar interneurons (Fukaya and Watanabe, 2007). 

A recent study revealed some interesting species differences between rodent and 

human expression ofNR3A. Eriksson et al., (2002) show that NR3A is expressed in 

both embryonic and adult human brain tissue, with a similar distribution pattern to a 

post -natal rat, calling into question the accuracy and comparable nature of rodent 

models with human receptors. 

NR3B is highly expressed in somatic motor neurons in the brain, brainstem and 

spinal cord beginning at postnatal day 1 0-14 and continuing to maximal levels into 

13 
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adulthood (Fukaya et al., 2005; Matsuda et al., 2003; Nishi et al., 2001). Expression 

within the motor neurons is mainly concentrated within the neuronal cell bodies 

rather than the dendrites which may indicate areas of intracellular NR3B storage 

(Matsuda et al., 2003) or an extrasynaptic location of NR3B containing receptors 

which may be activated following synaptic stimulation (Clark and Cull Candy 2002). 

A recent immunolocalisation study revealed evidence for more widespread 

expression of NR3B in the cortex, cerebellum, hippocampus and in spiny projection 

neurons of the striatum (Wee et al., 2007). 

1.5 NMDA receptor subunit eo-assembly 

The specific expression patterns of the NMDA receptor subunits suggests that 

specific NMDA receptor subunit eo-assembly is regulated in a spatio-temporal 

manner to fulfil specialised roles throughout the CNS enhancing the complexity and 

heterologous nature ofthe receptor. 

Many studies have investigated the subunits contained within native receptor 

assemblies, particularly in the rodent forebrain to look at the influence of specific 

sub-populations. According to these studies native NMDA receptors are composed 

of at least one NR1 subunit, one or more NR2 subunits (e.g NR1/NR2B or 

NR1/NR2A/NR2B) (Luo et al., 1997; Chazot and Stephenson, 1997) and possibly 

one or more NR3 subunits (e.g. NR1/NR2BINR3B) (Al-Hallaq et al., 2002) with 

some debate as to whether the subunits eo-assemble to form tetrameric and/or 

pentameric structures (Chazot, 2004). 

In forebrain structures immunoprecipitation and immunopurification studies have 

shown eo-association between NR1/NR2A, NR1/NR2B, NR1/NR2AINR2B (Chaiot 

and Stephenson, 1997; Blahos and Wenthold, 1996) and NR1/NR2D, 
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NR1/NR2AINR2D, NR1/NR2B/NR2D (Dunah et al., 1998; Stephenson, 2001). 

Research into subunit combinations in the spinal cord has been more limited. One 

group used solubilisation and immunoprecipitation ofNMDA receptors from human 

lumbar-sacral regions finding eo-associations between NR1, NR2A, NR2C and 

NR2D (Sundstrom et al., 1997). The native associations of the NR3 subunits and 

the other subunits with which they assemble have yet to be elucidated but would 

provide important information about NMDA receptor function and pharmacology. 

1.6 Physiological and functional properties of NR28 and NR3B receptors 

1.6.1 Physiological properties ofNR2B-containing receptors 

As discussed previously, subunit composition plays a critical role in receptor 

function and activity. NMDA receptors containing NR2B subunits therefore display 

distinctive properties such as a high sensitivity to magnesium blockade and increased 

sensitivity to glutamate (Fuller et a/, 2006; Cull-Candy et al., 2001). 

Electrophysiological measurements investigating channel kinetics showed that 

NR2B-containing receptors desensitise more slowly and take longer to recover than 

NR2A-containing receptors, thereby increasing the duration of channel opening 

(Vicini et al., 1998; Chen et al., 1999; Loft:is and Janowsky, 2003; Fuller et al., 

2006) and hence receptor activation. 

During synaptic development two populations of NMDA receptor develop, those 

which cluster at synapses and those which remain extrasynaptic (Cottrell et al., 2000; 

Thomas et al., 2006), though recent research suggests a more fluid movement of 

receptors between synaptic and extrasynaptic sites along the postsynaptic membrane 

(Choquet and Triller, 2003; Zhao et al., 2008). It is thought that these populations of 
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receptors may have different intracellular interactions with trafficking proteins and 

signalling cascades and therefore may have distinct roles in synaptic plasticity 

(Massey et al., 2004) and neuronal cell death (Hardingham et al., 2000) with 

extrasynaptic receptors potentially shutting down survival promoting pathways in the 

cell (Hardingham et al., 2000). It has been shown that extrasynaptic NMDA 

receptors promote neuronal plasticity via a key contribution to the calcium signal 

necessary to induce these changes (Harris and Pettit, 2007). 

Previous research has shown that NR2B-containing receptors occur both synaptically 

and extrasynaptically providing the potential for increased NMDA receptor activity 

via glutamate release both within and external to the synapse (Tovar and Westbrook, 

1999; Liu et al., 2004; Thomas et al., 2006). 

Via their key involvement in long-term potentiation (LTP) (Bliss and L0mo, 1973) 

and long-term depression (L TD), persistent activity-dependent increases and 

decreases in synaptic strength, NR2B-containing receptors are vital for information 

storage and synaptic plasticity in the brain (Y ang et al., 2005). The NR2B subunit 

has been associated with vital behavioural and physiological functions such as 

feeding, learning and memory (Bliss and Collingridge, 1993; Stanley et al., 1996, 

Kahn et al., 1999; Chazot, 2004). For example, NR2B-defective mice lack the 

suckling response and die shortly after birth (Kutsuwada et al., 1996) and over­

expression results in mice that exhibit superior ability in learning and memory tasks 

when compared to controls (Loftis and Janowsky, 2003). 

The NR2B subunit is important for localisation of the receptor, anchoring it to the 

membrane and connecting the receptor with specific intracellular signalling 

mechanisms that modulate receptor functions (Loftis and Janowsky, 2003). The last 

five residues of the C-terminal domain of the NR2B complex are thought to be 
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important for binding to the PDZ domain of PSD-95/SAP102 (Neithammer et al., 

1996; Lim et al., 2002) and are therefore critical for formation of multi-protein 

signalling complexes. Via PSD-95, NR2B is linked to many enzymes responsible 

for signal transduction within the cell, such as those essential for phosphorylation. 

NR2B is the most prominently tyrosine phosphorylated protein in the PSD fraction 

(Chazot 2004; Gardoni and DiLuca, 2006) which can contribute to potentiation and 

enhancement of receptor responses and alter intracellular signalling events (Lee, 

2006). An internalisation motif (YEKL) is located on the C-terminal of the NR2B 

subunit close to the binding site for PSD-95. Prybylowski et al., (2005) propose that 

phosphorylation of the tyrosine on this motif may inhibit internalisation of the 

receptor complex, thereby potentiating receptor localisation at the cell membrane 

and enhancing signal transmissions. 

NR2B also interacts with growth factors and hormones such as brain-derived 

neurotrophic factor (BDNF) via post-synaptic trkB receptors and tyrosine 

phosphorylation of the subunit (Levine and Kolb, 2000; Lin et al., 1999). It is 

reported that exposure to BDNF via these receptors increases single channel open 

probability, potentiating receptor activity. 

NR2B-containing receptors are also proposed to stabilise and maintain the 

intracellular enzyme serine/threonine kinase CaMKII in an active conformation 

(Bayer et al., 2001). lbis enzyme is activated by NMDA receptor mediated Ca2+ 

influx and by increasing phosphorylation of NMDA subunits and reducing 

desensitisation of NR2B-containing receptors it is thought to contribute to long-term 

potentiation (L TP) (Bayer et al., 2001; Lisman et al., 2002; Colbran et al., 2004.). 
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1.6.2 Physiological properties of NR3-containing receptors 

The modulatory properties of the NR3A or NR3B subunits are the most poorly 

characterised of all the NMDA receptor subunits, although initial studies show 

interesting differences between the NR2 and NR3 subunits. 

Critically, in the NR3 subunits, the asparagine residue at the QRN site of the second 

hydrophobic transmembrane domain is replaced with glycine followed by arginine at 

the N+ 1 site, properties which may be associated with reducing the Ca2
+ 

permeability and altering the magnesium sensitivity ofthe receptor (Matsuda et'al., 

2002; Nishi et al., 2001). eo-expression of mouse NR3A with NR1 and NR2A in 

vitro reduced glutamate-induced whole cell current and single channel conductance 

(Ciabarra et al., 1995; Das et al., 1998; Sucher et al., 1995; Perez-Otano et al., 2001) 

and in NR3A-/- mice the amplitude of NMDA receptor currents was increased in 

comparison to wild type neurons (Das et al., 1998). It has also been proposed that 

the NR3A doesn't undergo extensive molecular rearrangement upon channel gating 

due to symmetrical alignment of the M3 segments of NR1 and NR3A. The M3 

segments of both subunits form a narrow constriction in the outer vestibule of the 

receptor channel modulating the passage of cations (Wada et al., 2006) and therefore 

possibly reducing calcium influx. 

Nishi et al., (2001) also describe suppressed glutamate-induced current when mouse 

NR3B was eo-expressed in HEK 293 cells with NR1/NR2A subunits, referring to 

NR3B as a dominant-negative subunit. In partial contrast to this study, research 

carried out by Matsuda et al., (2002) found no significant reduction in current 

amplitude in HEK 293 cells eo-expressing mouse NR3B with NRl and NR2A, 

although they did fmd reduced Ca2
+ permeability of NMDA receptor channels in 

these cells. 
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Research to date has found that NR3A and NR3B eo-associate with NR1 and NR2A 

in heterologous cells and cultured neurons (Nishi et al., 2001; Matsuda et al., 2002, 

Das et al., 1998; Ciabarra et al., 1995; Sucher et al., 1995). Under native conditions 

the mechanisms behind NR3B trafficking and incorporation into the receptor 

complex remain unclear. It is known from recombinant work in mammalian cell 

models that expression of a functional receptor requires NR1 for formation of the 

channel pore and trafficking to the membrane. Co-transfection ofNR3B with NR2A 

or NR3B alone failed to produce functional receptors, however there remains some 

debate as to whether NRl and NR3 co-transfection results in functional glycine 

receptor formation (Chatterton et al., 2002). Evidence showing that NR3A has a 

soluble ligand binding domain with a high affinity for glycine (Kd 40nM) compared 

to a very low affinity for glutamate (Kd 9.6mM) (Yao and Mayer, 2006) fuels 

speculation for formation of such glycine channels in NR1/NR3 complexes. 

NR1/NR3B glycine-activated cation channels have been recorded in both oocytes 

(Chatterton et al., 2002) and mammalian cells (Pina-Crespo and Heinemann, 2004) 

though Perez-Otano et al., (2001) and Matsuda et al., (2002) found no such activity 

in their mammalian systems. Both NR3A (Perez-Otano et al., 2001) and NR3B 

(Matsuda et al., 2003) require association with NR1 in order to exit from the 

endoplasmic reticulum and express on the cellular surface. Within the C-terminal of 

the NR3B subunit, it is thought that amino acids 952-985 are important for receptor 

trafficking and may be able to mask the endoplasmic reticulum (ER) retention signal 

of the NR1 subunit (Matsuda et al., 2003). It is therefore possible that a receptor 

complex consisting of NR1/NR3B subunits may be actively transported to the 

membrane but full investigation of this controlled trafficking and specific subunit eo­

assembly has yet to be carried out. 
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The evidence currently available suggests important modulatory influences of the 

NR3 subunits on the NMDA receptor complex. Changes from NR3A to NR3B 

expression throughout development in the rodent may be important for regulation of 

calcium permeability throughout maturity and critical for maintaining control of 

intracellular calcium concentrations in NMDA receptors. 

1. 7 NMDA receptor signalling and trafficking 

The precise mechanisms governing NMDA receptor delivery to the synapse are 

complex and yet to be fully elucidated. However, their expression at the cell surface 

is known to be subject to plastic changes depending on the neuronal environment 

(Prybylowski and Wenthold, 2004). These alterations in NMDA receptor numbers 

and expression patterns are mediated via delivery, internalisation and translocation 

between synaptic and extrasynaptic sites (Prybylowski and Wenthold, 2004). 

In order to ensure that only functional NMDA receptors are delivered to the cell 

membrane, endoplasmic reticulum (ER) retention signals exist on the individual 

sub units. These retention motifs are masked upon formation of functional complexes 

and the receptor is able to exit the ER. Fukaya et al., 2003, showed that NRl was 

vital for the release of NR2 subunits from the ER in hippocampal pyramidal cells in 

vivo: in the absence of NRl, the NR2 subunits are retained and aggregated into 

intracisternal granules. 

NMDA subunits associate with members of the membrane-associated guanylate 

kinases (MAGUK.s) family, namely SAP102, (synapse associatea protein) afl'(i. 

PSD95 (post-synaptic density), which form scaffolding molecules linking the 
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receptor with intracellular enzymes and signalling molecules (Van Zundert et al., 

2004). Research suggests associations with protein complexes differ according to 

subunit composition of the receptor and its synaptic or extrasynaptic localisation, 

resulting in potentially different signalling cascades and functions (V an Zundert et 

al., 2004). PSD-95 binds directly to important signalling proteins such as GTPase­

activating protein, neuronal nitric oxide synthase (nNOS), Fyn and Ca2+ ATPases 

(Van Zundert et al., 2004). Associations of PSD-95 with kinesin motors KIF18 and 

KIF17 are important for NMDA receptor delivery to the synapse (Mok et al., 2002; 

Guillaud et al., 2003) and linkage of the protein huntingtin to PSD-95 provides some 

evidence for NMDA associated excitotoxicity in Huntington's disease models 

(Zeron et al., 2002; Prybylowski and Wenthold, 2004). Linkage with PSD-95 also 

enables phosphorylation of the subunits via enzymes such as tyrosine kinases and 

protein kinase C, important for movement of receptors from synaptic to 

extrasynaptic locations (Fong et al., 2002) and inhibiting internalisation of NR2B­

containing receptor complexes (Prybylowski et al., 2005). 

Recent data shows association of NR3A with microtubule-associated protein 1 S 

(MAPlS), which links this subunit with cytoskeletal proteins, possibly facilitating its 

anchoring and stabilization within the synapse and its potential for movement 

between synaptic and extra-synaptic sites (Eriksson et al., 2002). 

1.8 Pharmacological targeting of the NMDA receptor 

NMDA receptors play a vital role in excitatory transmissions within the central 

nervous system and therefore have long been implicated in disease pathogenesis. In 

the late 1980's Choi et al., 1988 noted toxic effects ofNMDA receptor activation in 
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primary cultured neurons which could be protected by NMDA antagonists. NMDA 

receptor mediated glutamate toxicity is now well documented with both in vitro and 

in vivo experiments. 

1.8.1 Non-selective NMDA antagonists 

The first generation ofNMDA antagonists were developed to treat stroke and trauma 

patients (Wang and Shuaib, 2005) and were either non-selective, non-competitive 

channel blockers such as phencyclidine (PCP), (+)-5-methyl-10,11-dihydro-5-H­

dibenzo[a,d]cyclohepten-5,10-imine (MK-801) (Kemp et al., 1987), memantine and 

ketamine, or competitive antagonists which act at the agonist glutamate or glycine 

binding domains. Some of the first compounds discovered such as (R)-2-amino-5-

phosphonopentanoate (R-AP5) (Paoletti and Neyton, 2006) and cis-4-

phosphonomethyl-2-piperidine carboxylic acid (CGS-19, 755) (Bennett et al., 1990; 

Murphy et al., 1988) are examples of competitive antagonists acting at the glutamate 

binding site on the NR2 subunits. They show good selectivity for NMDA receptors 

over other ionotropic glutamate channels but show modest selectivity variations 

between the NR2 subunits. Compounds acting at the eo-agonist glycine binding site 

such as 5-nitro-6, 7 -dichloro-1 ,4-dihydro-2,3-quinoxalinedione (ACEA-1 021 (Leeson 

and lversen, 1994) and 5, 7-dichlorokynurenic acid (5,7-DCKA) (Hess et al., 1998) 

also show minimal receptor subtype selectivity as they are targeting binding sites on 

the NR1 subunit. Animal studies using the channel blockers memantine and 

ketamine (Carlton and Hargett, 1995; Qian et al., 1996) have shown encouraging 

effects for treatment of neuropathic and inflammatory pain, which have also been 

seen in human studies (Mercadante et al., 1995; Eisenberg et al., 1998) and indeed, 

recently memantine and amantadine have been approved for treatment of late-stage 

22 



Chapter 1 Heather Cha:ffey 

Alzheimer's and Parkinson's diseases (Roesler et a/, 2003). However, the non­

selective nature of these compounds and the resultant level of unacceptable side 

effects at analgesic doses such as psychomimetic effects, impaired learning, memory 

and motor function have limited their widespread use and resulted in largely 

unsuccessful clinical trials. 

Subunit specific, activity-dependent modulators are therefore greatly favoured, as 

they have potential for increased therapeutic indices based on selectivity for specific 

sub-populations such as NR2B-containing receptors. 

1.8.2 NR2B subunit selective antagonists 

The heterogeneous nature of the NMDA receptor complex and the pharmacological 

modulations and specific regional distribution provided by the various subunit eo­

assemblies has enabled more selective NMDA receptor targeting. 

Pharmacologically, the NR2B subunit has become important as a target for subunit 

specific antagonists, which can potentially block or reduce the excitatory effects of 

the receptors (Williams 2001, Zhuo 2002, Chazot et al., 2002). It is thought that the 

more restricted expression patterns and the particularly low expression levels in the 

cerebellum may enhance therapeutic action whilst limiting the risk of serious motor 

side effects (McCauley 2005). NR2B-containing NMDA receptors have been 

implicated in many CNS pathologies such as stroke, drug-induced dyskinesias, 

dementias and chronic pain (Chizh et al., 2001; Chazot, 2004) due to their specific 

distribution in affected brain areas and physiological properties. For example, high 

expression levels of NR2B-containing receptors in pain related structures such as the 

forebrain and dorsal horn of the spinal cord (Monyer et al., 1994; Boyce et al. 1999) 
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make it a therapeutic target. A large proportion of NR2B-containing receptors are 

located extrasynaptically, which is thought to be important as their excess 

stimulation by glutamate diffusing from the synaptic cleft can result in glutamate­

induced toxicity. Toxicity as a result of Ca2
+ influx leads to loss of mitochondrial 

membrane potential, free radical production and hyper-excitation (Sattler and 

Tymianski, 2000; Chazot 2004). It has been shown that over-expression ofNR2B in 

the anterior cingulate and insular cortices of mice results in selective enhancement of 

persistent pain (Wei et a/, 2001) and that gene knockdown of NR2B reduces 

formalin induced nociception (Tan et al., 2005), implying that NR2B-containing 

receptors in the forebrain play an important role in chronic pain (Chizh et al., 2001; 

Wei et al., 2001; Petrenko et al., 2003; Chazot 2004). 

In the 1980s, it was discovered that ifenprodil (a phenylethanolamine originally 

developed as a vasodilating agent) (Williams, 2001) acted as an NMDA receptor 

antagonist, displaying neuroprotective effects but without the serious side-effect 

profile of other antagonists (Carter et al., 1988; Williams et al., 1993). lfenprodil is 

a non-competitive, voltage independent, activity-dependent antagonist (Williams, 

1993; Kew et a/, 1996; Chenard and Menniti, 1999), which is highly sensitive to 

extracellular pH and displays a high level of NR2B selectivity (Williams et al., 

1993), having a 400-fold higher affinity for NR1/NR2B than for NR1/NR2A 

receptors (Williams 1993; Kew et al., 1996). Inhibition with ifenprodil is activity 

dependent with a 40-fold higher affinity for the agonist-bound activated state 

(possibly present in excitotoxic conditions) than the inactivated state thereby 

increasing its side effect profile in comparsion to the channel blockers (Williams et 
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al. , 1993; Kew et al. , 1996). However, side effects such as hyperventilation, motor 

impairment and ptosis were seen (Boyce et al., 1999) partly as it has a high affinity 

for a1 -adrenergic, sigma and serotonin receptors (Williarns, 1993; Chenard et al. , 

1995) and is therefore not exclusively NMDA specific. 

The binding site of the ifenprodil molecule is distinct from the channel pore, the 

glutamate, glycine or the polyamine site (Grimwood et al. , 2000). It is located 

within the N-terminalleucine/isoleucine/valine binding protein-like domain (LIVBP-

like domain) (Perin-Dureau et al. , 2002). 3D mapping of this domain showed a cleft 

with a 'venus fly trap' mode of action (Perin-Dureau et al., 2002; Chazot, 2004). 

The presence of an aspartate and two phenylalanine residues within the lobes of the 

cleft appear to be essential for high affinity ifenprodil binding (Chazot, 2004). 

Figure 1.4 Schematic representation of the bi-lobular LIVBP ifenprodil binding site on the 

NR2B subunit showing the significant amino acids (Chazot, 2004). 

lfenprodil and its early analogues haloperidol and eliprodil still had problems with 

non-specific targeting and side-effects preventing their use clinically, though they 
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became very useful tools along with channel blockers like MK-801 to investigate 

receptor pharmacology and allosteric properties of binding sites. 
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Figure 1.5 Chemical structures of early NR2B-selective antagonists (Williams, 2001) and 

the channel blocker MK-801 (Nikam and Meltzer, 2002). 

The ifenprodil molecule subsequently became the congener for second generation 

NR2B antagonist development with a number of analogues such as Ro-256981, Ro-

04-5595 (Roche) and CP-101,606 (Pfizer) (Chazot, 2004). These compounds have 

been developed to display a higher affinity for NR2B-containing receptors with a 

reduced affinity for at-adrenergic receptors (Chenard et al., 1995). They work to 

enhance inhibition of the NMDA receptor (Lynch and Guttman, 2001) by increasing 

the effects of extracellular protons and possibly by decreasing the affinity of the 

receptor for eo-agonist glycine binding (Williams, 2001 ). 
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Figure 1.6 Chemical structures of second generation NR2B-selective antagonists (Nikam 

and Meltzer, 2002). 

Both CP-101 ,606 (Menniti et al. , 1997) and Ro-256981 (Fischer et al., 1997) are 

piperidine-containing compounds (B-linker analogues with hydroxyl functionality) 

and display structural similarity to ifenprodil, binding to the ifenprodil site on rat 

forebrain membranes with high affinities (Ko) of 9.4nM and (Kd) of 10nM for Ro-

256981 and CP-101,606 respectively (Chazot et al., 2002). 

Further work to identify the binding characteristics and subtype selectivity of these 

two compounds discovered two separate classes of antagonists. Ro-256981 binds to 

NR2B-containing receptors irrespective of the presence of another NR2 subunit, 

whereas CP-101,606 binding is highly affected by the presence of alternative NR2 

subunits within the receptor complex (Chazot et al., 2002). The heterogeneity of the 

receptor complex is therefore very important in defining antagonist affinities (Chazot 

and Stephenson, 1997). 

Both Ro-256981 and CP-101,606 have shown potent neuroprotective activity against 

glutamate-induced NMDA receptor-mediated toxicity in vitro and in vivo (Fischer et 

al., 1997; Tsuchida et al. , 1997; Boyce et al., 1999; Chizh and Headley, 2005). In 

vivo studies by Boyce et al., 1999 showed potent anti-nociceptive activity upon 

mechanical allodynia following nerve injury in rats with neither compound inducing 
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motor impairment at analgesic doses (3-1 Omg/kg), however some impairment of 

rotarod performance at high doses of Ro-256981 (up to lOOmg/kg) were noted and 

they concluded that CP-101,606 had the best therapeutic window (Boyce et al., 

1999; Boyce and Rupniak, 2002). 

Other studies showing CP-1 01,606 induced neuroprotection in primary neuronal 

cultures (Menniti et al., 1997) and in in vivo animal models of ischaemic brain injury 

(Diet al., 1997; Tsuchida et al., 1997; Wang and Shuaib, 2005) and chronic pain 

displayed reversal of mechanical hyperalgesia and reduced excitation of dorsal horn 

neurons following windup (Taniguchi et al., 1997; Boyce et al., 1999) with an 

improved side-effect profile in comparison to ifenprodil. The encouraging profile of 

CP-1 01,606 in animals led to clinical trials in humans for the treatment of traumatic 

brain injury and haemorrhagic stroke (Menniti et al., 1998). Phase I tolerability 

studies in healthy volunteers showed no adverse effects at therapeutic doses 

(200ng/ml) with the maximum tolerated plasma concentration of 4200ng/ml after 

which adverse effects included amnesia, dizziness and confusion (Menniti et al., 

1998; Boyce and Rupniak, 2002) were reported. An open-label phase I study in 

subjects with severe traumatic brain injury or intracerebral haemorrhage showed 

good penetration to the CSF and that CP-101,606 infusion for 24 or 72 hours was 

well tolerated with improvements on the Glasgow outcome score (Bullock et al., 

1999) and a double blind, placebo-controlled study of 53 subjects with traumatic 

head injuries showed good tolerability of the drug with no significant cardiovascular 

abnormalities reported (Merchant et al., 1999). 

To date, despite the improved safety profiles of these ifenprodil-like NR2B-selective 

compounds and promising data from clinical trials, they have not yet been approved 

for human use due to potential potassium channel mediated cardiotoxicity, poor oral 
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bioavailability (Kew and Kemp, 2005) and heterogeneity in the patient populations 

tested and therefore novel compounds structurally unrelated to ifenprodil are being 

developed (Claiborne et al., 2003). 

There are many other NR2B selective compounds in development and recently 

Merck and Co have disclosed a class of hydroxybenzimidazoles (McCauley et al., 

2004) and Gideon and Richter have a compound RGH-896, of undisclosed structure, 

entering phase Ha clinical trials for neuropathic pain (Parkas et al., 2003). 

1.9 NMDA receptor associations with pathology 

Tightly regulated control of NMDA receptor expression and function is required for 

normal physiological processing within the central nervous system. Their essential 

role and widespread distribution means disruption of NMDA receptor physiology is 

often evident in neuronal pathologies. Specific patterns of receptor heterogeneity 

may therefore provide therapeutic targets for many chronic conditions. 

1.9.1 Calcium-dependent excitotoxicity 

Excessive glutamate-mediated calcium entry into cells can lead to excitotoxicity and 

neuronal cell death. It is a mechanism of neuronal loss implicated in both acute 

disease such as ischaemia and chronic neurodegenerative diseases such as 

amyotrophic lateral sclerosis (Arundine and Tymianski, 2003). 

Within a cell calcium ions are vital for normal physiological processes such as 

signalling and synaptic activity, and therefore under normal conditions, homeostatic 

regulation of cytosolic Ca2
+ is tightly controlled (Arundine and Tymianski, 2003). 

Excessive glutamate release from synapses triggers NMDA, AMP A and Kaimite 
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receptor channel opening and Ca2+ and Na + influx. Increased internal Ca2
+ 

concentrations from excessive influx and release from intracellular stores overcome 

the regulatory mechanisms, the metabolic processes within the cell begin to fail and 

the cell dies (Choi, 1988; Sattler and Tymianski, 2000). The source-specificity 

hypothesis for Ca2
+ toxicity was proposed by Tymianski et al., 1993 and states that 

neurotoxicity in cells requires specific signalling pathways triggered by Ca2+ entry at 

specific receptors to be activated. Their experiments showed high levels of toxicity 

when Ca2+ entered via NMDA receptors, whereas Ca2
+ entry via voltage-sensitive 

channels was tolerated (Tymianski et al., 1993; Arundine and Tymianski, 2003). It 

is thought that this specific toxicity via NMDA receptors results from the formation 

of a ternary complex between NMDA receptors, PSD-95/SAP90 (post-synaptic 

density-95/synapse associated protein 90) and nNOS (nitric oxide synthase) (Sattler 

et al., 1999) increasing nNOS activity and thereby toxicity. The evidence from these 

studies therefore supports the potential beneficial effects of NMDA receptor 

therapeutic targeting. 

1.9.2 Huntington's Disease 

NMDA-mediated excitotoxicity and specific associations with the mutated 

huntingtin protein have been investigated as possible links with disease aetiology. 

Huntington's disease manifests as a hyperkinetic movement disorder with cognitive 

and psychiatric dysfunction and affects 5-10/1 00,000 population worldwide (Li et 

al., 2003). An autosomal dominantly inherited condition, it is caused by expanded 

CAG repeats in the first exon of the Huntington's disease gene (Li et al., 2003). eo­

expression of the mutant gene huntingtin with NR1/NR2B receptors increases 

current amplitudes and may increase the number of receptors expressed at the cell 
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surface (Chen et al., 1999b) potentiating NMDA activation and potential for toxic 

calcium accumulation within the cell. Cytotoxicity studies have also shown 

increased levels of cytotoxicity when NR1/NR2A and more so NR1/NR2B were eo­

expressed with the full length mutant huntingtin-138Q (Zeron et al., 2001) providing 

evidence for NMDA involvement in potential neuropathologies associated with the 

disease. Interestingly, NR2A and NR2B gene variations have recently been linked to 

modification of age onset in Huntington's disease accounting for 7.2% additional 

variance in the age of onset in patients (Arning et al., 2007). 

1.9.3 Schizophrenia 

Glutamatergic transmission via NMDA receptors has been implicated in some of the 

pathogenic mechanisms behind schizophrenia (Stefani and Moghaddam, 2004; 

Heresco-Levy and Javitt, 1998; Gao et al., 2000) based on observations that 

hypofunction of receptors as a result of NMDA antagonist treatment causes some 

transient psychotic states in healthy individuals (Du Bois and Huang, 2007; Loftis 

and Janowsky, 2003). Studies investigating the potential mechanisms of NMDA 

involvement have found abnormal glutamate receptor expression (Beneyto et al., 

2007). Grimwood et al., 1999 discovered up-regulation of NR2B-containing 

receptors in the superior temporal cortex using radioligand binding with eHJ 
ifenprodil. Gao et al., 2000 showed a 40% increase in NR2B mRNA in the CA2 

hippocampal region of schizophrenic post-mortem tissue in comparison to controls 

and elevated levels of NR3A were shown in the dorsolateral prefrontal cortex and 

inferior temporal neocortex in schizophrenic tissue in comparison to controls 

(Mueller et al., 2004). It has also been shown that inhibition of NMDA receptor 

activity during cortical development produces cognitive deficits phenotypically 
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relevant to schizophrenia in the adult (Stefani and Moghaddam, 2004) providing 

evidence for NMDA involvement in cognitive disorders and showing their 

importance for normal physiological development. 

1.9.4 Parkinson's Disease 

Parkinson's disease is a progressive neurodegenerative condition manifesting in 

dyskinetic effects with tremor, rigidity and cognitive dysfunction. Affecting 

millions of people world-wide, parkinsonian diseases arise due to dopamine­

glutamate imbalances within the striatothalamocortical loop, reducing stimulation of 

the motor cortex (Ulas et al., 1994). Reduced formation of dopamine in the 

substantia nigra causes increased activity of the striatal pathway to the external 

pallidum, lack of regulated inhibition of the subthalamic nucleus and glutamatergic 

hyperactivity in the basal ganglia (Albin et al., 1989; Loschmann et al., 2004). It has 

been proposed that this over-excitation at glutamatergic synapses may be NMDA 

receptor mediated as it is known that these receptors are vital in both the basal 

ganglia and striatum for normal physiological processes (Hallett and Standaert, 

2004). In addition it has been shown that receptor structure, function and abundance 

in the striatum of Parkinson's disease patients is altered by dopamine depletion 

(Hallett and Standaert, 2004) with selective increases in NMDA-sensitive glutamate 

binding (Ulas et al., 1994). Attempts to combat this up-regulation of NMDA 

receptors in diseased patients with selective antagonists has been a major focus for 

many studies with some success in animal models, where, for example, the NR2B­

selective compounds Ro-256981 (Loschmann et al., 2004) and CP-101,606 (Wessell 

et al., 2004) showed anti-parkinsonian activities. Development of NMDA 
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antagonists with increased selectivity and reduced side-effect profiles may therefore 

provide real potential for future treatments. 

1.9.5 Alzheimer's Disease 

Alzheimer's disease is the most prevalent neurodegenerative condition affecting 

millions worldwide. Few cases of familial early onset disease have been 

documented, however the majority of cases are sporadic with later-stage onset 

generally in the 6th decade of life. Manifesting as progressive cognitive decline with 

neuropsychiatric symptoms, amyloid plaques and neurofibrillary tangles in the brain 

remain indicative of this dementia. The aetiology behind disease onset is still not 

fully understood with many approaches such as pathophysiological mechanisms 

behind the misfolding of amyloid-beta and genetic mutations being explored 

(Albensi et al., 2004). Pharmacological therapies have mainly relied upon 

cholinergic inhibitors which partially enhanced patient cognitive states 

(Doraiswamy, 2003; Lipton, 2007) though recently therapeutic focus has shifted to 

NMDA receptor antagonism to combat the glutamatergic excitotoxicity and 

subsequent neuronal death seen in dementia (Albensi et al., 2004; Lipton, 2007). 

Memantine is a non-competitive, low-affmity NMDA receptor open channel blocker 

which has been clinically approved in Europe and the USA for the treatment of 

moderate-severe Alzheimer's disease (Doraiswamy, 2003; Albensi et al., 2004). The 

preferential binding of memantine to excessively activated NMDA receptors seems 

to reduce the adverse side-effect profile seen with other antagonists because normal 

physiological activity isn't disrupted to a high degree (Lipton, 2007) and there is 

some evidence to suggest memantine up-regulates production of BDNF, promoting 

:n 



Chapter 1 Heather Chaffey 

neuronal survival (Albensi et al., 2004). Second generation memantine derivatives 

are currently in development and it is hoped their safety profile and neuroprotective 

efficacy will be improved for more wide-spread use in neurodegenerative conditions. 

1.9.6 Amyotrophic lateral sclerosis (Motor neuron disease) 

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease 

characterised by the selective loss of somatic motor neurons in the spinal cord, 

brainstem and motor cortex (Samarasinghe et al., 1996; Shaw et al., 1994). The 

pathophysiology behind the disease and its rapid progression to paralysis and death 

remain largely unknown though advances, particularly in genetic techniques have 

increased knowledge and stimulated further research. 

90% of cases develop sporadically generally in older patients, though 1 0% of cases 

are familial with some genetic mutations in the Cu/Zn superoxide dismutase 1 

enzyme (SOD1). This SOD1 enzyme is a homodimeric cytosolic protein (Gorman et 

al., 1996) which breaks down highly toxic superanion radicals into harmless 

products making it very important for the cell's defence against free radical damage 

and excitotoxicity. 

Glutamate-mediated excitotoxicity via AMP A and NMDA (Samarasinghe et al., 

1996; Shaw et al., 1994) receptors as well as deficiencies in astrocytic glutamate 

uptake (Rao and Weiss, 2004) and damage to glutamate transporters (Rodriguez et 

al., 1997) have all been proposed as potential pathological mechanisms in both 

sporadic and familial diseases. All of these factors could lead to neuronal cell death 

via Ca2
+ toxicity disrupting metabolic processes, inducing proteolysis, stimulating 

free radical production and damaging mitochondrial membranes (Rodriguez et al., 

1997). Motor neurons are also particularly susceptible to Ca2
+ overload as they 
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naturally have reduced levels of calcium binding proteins and AMP A GluR2 

receptors which can flux Ca2
+ so the effect is exacerbated in these cells. 

Research into NMDA receptor expression levels found reduced density of NMDA 

receptor expression, up to 50% reduction in NR1 mRNA expression in the ventral 

horn (Virgo and De Belleroche, 1995) in motor neuron disease patients in 

comparison to control tissue (Shaw et al., 1994; Samarasinghe et al., 1996). These 

data are likely to reflect the overall loss of motor neurons from the spinal cord of 

diseased patients, however they confirm the presence of NMDA receptors on motor 

neurons and a study by Samarasinghe et al., 1996 highlights the possibility of 

modification in the composition of receptor subunits with widespread loss of the 

NR2A subunit in both dorsal and ventral horns of diseased patients in comparison to 

controls. 

A mouse model carrying the SOD1 mutation has been developed which displays 

similar disease pathology and clinical symptoms to MND patients. Wang and 

Zhang, (2005) have found that treatment of these mutant mice with the NMDA 

antagonist memantine significantly delayed disease progression and increased the 

lifespan of the mice in comparison to controls, indicating that NMDA mediated 

excitotoxicity may be involved in MND pathogenesis and may therefore be a target 

for future therapies. 

1.9. 7 Chronic Pain 

Chronic pain is a serious debilitating condition resulting from prolonged tissue injury 

or more commonly from prolonged hypersensitisation of nociceptive neurons. It is 

estimated that over 20% of the world's adult population are affected by persistent 

pain resulting in healthcare costs of €200 billion per annum. 
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At present, despite advances in the understanding of the pathophysiological 

mechanisms of chronic pain, the underlying neuronal and neurochemical 

mechanisms involved in inducing, maintaining and processing nociceptive 

information are complex and still not fully understood. 

It is known that upon activation of peripheral nociceptors, pain transduction is 

conducted through myelinated AB and unmyelinated C fibres to the dorsal root 

ganglion in the spinal cord (see figure 1.7). Signals are then transmitted via the 

spinothalamic tract to the thalamus and cortex for modulation of sensory input 

(Markenson, 1996) and motor responses. However, prolonged activation of 

nociceptors and a reduction in transduction threshold can lead to chronic stimulation. 

Since the late 1980s the major research focus has been on the identification of 

molecules involved in pain perception in order to develop analgesic treatments. 

I Spinothalamic tracts I 
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Figure 1.7 Schematic diagram representing afferent A6 and C-fibre input to the dorsal 

root ganglion, through the cord and into the spinothalamic tracts (Anaesthesia UK, 

www.frca.co.uk). 
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1.9.8 NMDA receptor and central sensitisation 

Glutamate is known to be a major excitatory neurotransmitter in the central nervous 

system (Petrenko et al., 2003; Chizh, 2002; Kemp and McKeman, 2002) and plays a 

major role in excitatory synaptic transmission and sensitisation. Glutamatergic 

synapses therefore play important roles in both acute and chronic nociceptive 

processing at both normal and pathophysiological levels. Upon acute noxious 

stimulation primary afferent terminals in the spinal cord release glutamate which 

primarily activates AMP A receptors on second order neurons (Chizh, 2002). 

However, prolongued activation of nociceptors stimulates continuous release of 

glutamate and neuropeptides, causing long-lasting membrane depolarisation, 

removal of the voltage-dependent magnesium block on the NMDA receptor and thus 

sustained receptor activation and persistent pain response (Chizh, 2002; Haley et al., 

1990; Ma and Woolf, 2002). 

Tissue injury or inflammation generating pain hypersensitivity can often have a 

protective effect, reducing the pain threshold to prevent further injury; however in 

some circumstances this hypersensitivity can become pathological. An example is 

neuropathic pain associated with damage to the nervous system (Ma and Woolf, 

2002), which can arise secondarily from conditions such as viral infections, 

chemotherapy or traumatic injuries (Boyce et al., 1999). This hypersensitivity 

mechanistically can result from two sources, peripheral or central sensitisation (Ma 

and Woolf, 2002). Peripheral sensitisation restricts increases in pain sensitivity to 

the site of injury (Ji et al., 2003) increasing sensitivity of primary afferent 

nociceptors (Zhuo, 2002; Ma and Woolf, 2002). There is some evidence that the 

numbers of NMDA receptors are thought to increase upon peripheral sensitization, 

enhancing transmissions (Petrenko et al. 2003). Central sensitisation involves the 
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hyper-excitation of nociceptive neurons within the central nervous system, 

particularly in the dorsal horn ofthe spinal cord (Ma and Woolf, 2002; Woolf, 1983; 

Cook et al., 1987) where the receptive field and responsiveness of the dorsal horn 

neurons are increased and their activation threshold is reduced (Cook et a/, 1987; Ji 

et al., 2003). 

Biochemical, electrophysiological and behavioural data (Medvedev et al., 2004) 

indicate that the NMDA receptor can mediate long-term synaptic plastic changes 

lasting from hours to days (Zhuo, 2002), phenomena termed long-term potentiation 

(Bliss and L0mo, 1973) and long-term depression, and the NMDA receptor is 

therefore essential for the development of central sensitisation (Ultenius et al., 2006) 

and thus chronic pain. 

It is thought that NMDA receptors play a major role in central sensitisation due to 

their ability to alter neuronal membrane excitability via activation of protein kinase 

C (Ma and Woolf, 2002). Upon membrane depolarization, Ca2
+ influx allows the 

translocation of protein kinase C from the cytosol to the membrane. Protein kinase 

C is then able to phosphorylate receptors including the NMDA receptor and in turn 

potentiate their activation, amplifying the NMDA response in a positive feedback 

manner greatly contributing to central sensitization (Zhen et al. 1997). 

In the 1980's two groups Davies et al., 1987 and Dickenson et al., 1987 first provided 

evidence for the role of NMDA receptors in nociception and their potential as 

analgesic targets observing that 'spinal delivery of NMDA receptor antagonists 

inhibited the hyper-excitability of the spinal cord nociceptive neurons induced by C­

fibre stimulation'. Many animal pain models have subsequently provided evidence 

for NMDA mediated nociceptive responses (Medvedev et al., 2004; Ultenius et al., 

2006; Boyce et al., 1999; Massey et al., 2004) which have initiated the current level 
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of biomedical and pharmacological interest in NMDA receptors driven by the 

potential therapeutic possibilities ofNMDA receptor antagonists. 

1.9.9 NR2B as an analgesic target 

NR2B-containing NMDA receptors have been a target for analgesic compounds 

since the requirement for subunit selective compounds with higher binding affinities 

and improved safety profiles became crucial. Studies have shown selective NR2B 

antagonist induction of anti-nociception without motor dysfunction demonstrating 

the improved safety profile and effectiveness of these compounds (Boyce et al., 

1999). 

Also, as knowledge of the physiological properties of NR2B-containing receptors 

has improved, evidence of their potential role in hyper-excitation and central 

sensitisation has increased. 

Expression studies using anti-NR2B antibodies, in situ hybridisation techniques and 

radiolabelled binding assays (Nagy et al., 2004; Tolle et al., 1993; O'Donnell et al., 

2004; Mutel et al., 1998; Chazot and Sheahan unpublished) have demonstrated the 

localisation of NR2B-containing receptor expression in pain-related structures such 

as the dorsal horn of the spinal cord, particularly in the outer laminae I-ll (Nagy et 

al, 2004), primary sensory fibres (Ma and Hargreaves, 2000), and forebrain 

structures such as the anterior cingulate cortex (Wei et al., 2001), cortex and 

thalamus (Sheahan and Chazot, unpublished). Research carried out by Wei et al., 

(200 1) demonstrated that over-expression of NR2B in mice can lead to enhanced 

pain behaviour in comparison with control animals, possibly caused by the slow 

receptor desensitisation and increased affinity for glutamate of NR2B-containing 

receptors, enhancing channel opening time and hence increasing activity. 

19 



Chapter 1 Heather Chaffey 

The extra-synaptic localisation of NR2B-containing receptors also contributes to the 

potential for enhancing NMDA receptor activation as excessive glutamate release 

within the synaptic cleft could lead to glutamate spillover, which preferentially 

activates high-affinity NMDA receptors, enhancing responsiveness of the network 

(Momiyama 2000; Van Zundert et al., 2004; Lambe and Aghajanian 2006). A recent 

study by Liu et al., (2007) suggests that activation of synaptic or extrasynaptic 

NR1/NR2B receptors increases NMDA activity and potentially initiates apoptotic 

signalling cascades promoting neuronal cell death. 

Increased tyrosine phosphorylation of the NR2B subunit, which potentiates activity, 

has also been recorded following induction of long-term potentiation, providing 

evidence for this subunits involvement in synaptic plasticity and potential 

hyperexcitation (Rosenblum et al., 1996; Rostas et al., 1996; Lee, 2006). Also an 

important study by Abe et al., (2005) shows evidence suggesting Fyn kinase­

mediated phosphorylation of Tyr 14 72 on the NR2B subunit is essential for 

maintenance of neuropathic pain via post-translational modifications up-regulating 

receptor activity, (Chazot, 2004) by blocking endocytosis, again providing evidence 

for the suitability of targeting NR2B-containing receptors. 

It has also been proposed that NR2B interaction with BDNF enhances channel open 

probability (discussed in section 1.6.3), increasing evidence for potential over­

activation of NR2B-containing receptors (Levine and Kolb, 2000; Loftis and 

Janowsky, 2003) and increasing their association with diseases such as chronic pain. 

This thesis discusses the potential importance and clinical effectiveness of targeting 
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NMDA receptors, the difficulties in drug development arising from the heteromeric 

nature of the receptor and the inferred functional and pharmacological implications. 

1.10 Hypotheses, Aims and Objectives 

To investigate the physiological and pharmacological characterisation of NR2B and 

NR3B-containing NMDA receptors and evaluate the influence of receptor 

heterogeneity on NMDA antagonist development, the following hypotheses were 

addressed in this study; 

• NR2B-selective antagonists display differential pharmacological properties 

and are influenced by NMDA receptor heterogeneity. 

• The NR3B subunit influences the physiological function and pharmacology 

ofNMDA receptor complexes. 

• Chronic pain states elicit alterations of NMDA receptor physiology through 

changes in subtype expression and/or protein post-translational modification. 

To address these hypotheses, this study aimed to; 

• Investigate two novel NR2B subunit-selective antagonists developed by 

GlaxoSrnithKline (COMPOUND A and COMPOUND B), characterising 

their binding properties and using them as tools to explore the 

pharmacological influences ofNMDA receptor subunit heterogeneity. 

• Generate rodent and human anti-NR3B polyclonal antibodies and utilise 

them with a panel of selective NMDA antibodies to determine the 

distribution and complex associations of NMDA receptors, particularly 

NR3B-containing receptors in adttlt rat and human spinal cord. 
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• Investigate the functional implications of NR3 subunit inclusion in the 

NMDA receptor complex upon cytotoxicity, physiology and pharmacology. 

• Investigate the distribution, expression and phosphorylation of NMDA 

receptor subunits in rodent spinal cord and whole brain from a chronic pain 

model and compare with controls. 
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Chapter 2 

Materials and Methods 
2.0 Materials 

All chemicals and solutions were supplied by Sigma-Aldrich Company, UK and Gibco 

Ltd, UK except where specified. 

2.1 Preparation of standard solutions 

2.1.1 Acrylamide gels 

Reagent 6% 7.5% 10% 

Running Gel Buffer 3ml 3ml 3ml 

Stock Acrylamide 2.4ml 3ml 4ml 

dH20 6.6ml 6ml 5ml 

TEMED 6Jl) 6Jll 6Jll 

APS 60Jll 60Jll 60Jl) 

2.1.2 APS (Ammonium Persulphate) 

0.228g in 1ml deionised H20 (dH20). 

2.1.3 Coumeric Acid 

11mg coumeric acid in 1ml dimethyl sulphoxide (DMSO). 

2.1.4 DMEM F12 Media 

DMEM F12 Ham's F-12 (1:1 MIX), 2x50ml foetal calf serum (FCS), 300Jll 

gentomycin (5mg/ml), 40ml sodium bicarbonate (pH 7.6). 

2.1.5 DTT 

200mM DTT in 1ml dH20. 
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2.1.6 Electrode Buffer 

6g tris-HCI, 28.8g glycine, 0.67g EDTA, I g SDS in I L dH20.(pH 8.8) 

2.1.7 Extracellular solution for patch-clamping 

I 30mM NaCI, 5mM KC I, 2mM CaCb, 30mM glucose, 25mM HEPES 

(pH 7.3, osmolarity 330). 

2.1.8 Extracellular solution for Ca2+ permeability experiments 

0.3mM Ca2
+ solution: 1 OOmM NaCI, 1 OmM HEPES, 1 OmM glucose, 

80mM sucrose, 0.3mM CaCb. (pH 7.3 osmolarity ~310). 

30mM Ca2
+ solution: 100mM NaCI, 10mM HEPES, 10mM glucose, 

30mM CaCb (pH 7.3 osmolarity ~310). 

2.1.9 Homogenisation buffer 

2.1.10 

2.1.11 

2.1.12 

50mM tris-HCI, 5mM EDTA, 5mM EGTA, 320nM sucrose in 200ml 

dH20 (pH 7.4 ). 

Intracellular solution for patch-clamping 

140mM CsCI, 4mM MgCh, 10mM EGTA, 10mM HEPES (pH 7.3 with 

CsOH (pH 7.3 osmolarity 312). 

Intracellular solution for Ca2
+ permeability experiments 

140mM NaCI, IOmM HEPES, l.lmM EGTA (pH 7.3 osmolarity ~290). 

Lowry assay reagents: 

Reagent A: 2% Na2C03, O.IM NaOH, 0.5% SDS in dH20. 

Reagent 8: 2% Sodium potassium tartrate in dH20. 

Reagent C: 1% CuS04 in dH20. 
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2.1.13 Luminol 

2.1.14 

2.1.15 

2.1.16 

2.1.17 

2.1.18 

2.1.19 

2.1.20 

1 OOmM tris-HCI, 22mg luminol in 1 OOml dH20 (pH 8.5). 

Lysis Buffer 

TBS, 2mM EDT A (pH 8), 1 : 100 protease inhibitor cocktail set III 

Phosphate buffered saline (PBS) 

8g NaCI, 0.2g KCI, 1.44g Na2HP04, 0.24g KH2P04 in 1L dH20 (pH 7.4). 

Radioligand Binding Assay buffer 

50mM tris-HCI, 5mM EDTA, 5mM EGTA in 500ml dH20 (pH 7.1). 

Radioligand Binding Wash buffer 

40mM NaH2P04-NaOH in 1L dH20 (pH 7.4). 

Running gel buffer 

1.5M tris, 8mM EDTA, 0.4% SDS (pH 8.8). 

Sample buffer 

30mM sodium hydrogen phosphate, 30% (v/v) glycerol. 0.05% (v/v) 

bromophenol blue, 7.5% (w/v) SDS in dH20 (pH 7.0). 

Solubilisation buffer 1% sodium deoxycholate 

50mM tris, 1% (w/v) deoxycholic acid, 0.15M NaCI, 5mM EDTA. 5mM 

EGTA, 1mM phenylmethylsu1phonyl fluoride, 1:100 Protease Inhibitor 

Cocktail Ill in dH20. 

2.1.21 Solubilisation buffer using sodium dodecyl sulphate 

50mM tris, various [SDS], 0.15M NaCl, 5mM EDTA, 5mM EGTA, 

1mM phenylmethylsulphonyl fluoride, I: I 00 protease inhibitor cocktail 

Ill. 
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2.1.22 

2.1.23 

2.1.24 

2.1.25 

2.1.26 

2.1.27 

Heather Chaffey 

Stacking gel buffer 

0.5M tris, 8mM EDT A, 0.4% SDS in I OOml dH20 (pH 6.8) 

Stacking gel 

2.3ml dH20, 0.65ml acrylamide, lml stacking gel buffer, 5fll TEMED, 

80fll ammonium persulphate (APS) (IO%). 

Tris/EDTA (TE) buffer 

lOmM tris, lmM EDTA (pH 8.0) in dH20. 

Transfer buffer 

25mM tris, 192mM glycine, 20% (v/v) methanol in 1LdH20. 

Tris buffered saline (TBS) 

50mM tris-HCI, NaCI 0.9% in IOOOml dH20 (pH 7.4). 

Tyrodes Buffer for FLIPR 

145mM NaCI, 2.5mM KCI, I OmM HEPES, 1 OmM glucose, I.5mM 

CaCh (pH 7.3 Osmolarity ~320). 
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2.2 Methods 

2.2.1 Glutaraldehyde method for conjugating peptides to carrier proteins. 

Method as previously described by Stephenson and Duggan, 1991. 

This procedure was used to conjugate the following rodent NR3B peptide (ISL, 

Paignton, UK) to thyroglobulin (carrier protein) through its amino terminal (N) residue. 

NR3B Rodent Peptide T G P P E G Q Q E RA E Q E C -amide 

Equal amounts (4mg) of peptide and carrier protein were dissolved in 2ml 0.1M 

NaHC03 buffer containing 0.5% (v/v) glutaraldehyde (freshly thawed). The peptide 

protein mixture was incubated in a glass tube for 16hrs at RT with vigorous mixing. 

200fll of 1 M glycine ethyl ester (pH 8) terminated the reaction. The peptide-protein 

conjugate was separated from the uncoupled peptide by dialysis against PBS for 4hrs at 

4°C (4x500ml), diluted to a final concentration of 1mg/ml and stored in lOOfll aliquots 

at -20°C. 

2.2.2 The 3-Maleimimdobenzoic acid N-hydroxysuccinimide (MBS) method of 

conjugating peptides to carrier proteins (cysteine coupling). 

Method as previously described by Stephenson and Duggan, 1991. 

This procedure was used to conjugate the following human NR3B peptide (ISL, 

Paignton, UK) to thyroglobulin through its amino-terminal cysteine residue. 

NR3B Human C T G P P E G S K E E TA E A E-amide 
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4mg of thyroglobulin were dissolved in KH2P04 buffer (pH 7 .2) containing 1 OmM 

Na2HP04 to a final concentration of 20mg/ml and the solution dialyzed overnight 

against 500ml 10mM KH2P04 buffer containing 10mM Na2HP04 (pH 7.2) at 4°C. 50J.1l 

of 1 OmM KH2P04 buffer (pH 7 .2) containing 1 OmM Na2HP04 was added to 4mg 

(200J.1l) of dialysed carrier protein, which was then activated by addition of 85J.1l stock 

MBS (3mg/ml of diamethylformanide). This mixture was then incubated at RT for 

30mins on an orbital shaker. 

The activated carrier protein was separated from free MBS by dialysis against 50mM 

KH2P04 buffer (pH6), containing 50mM Na2HP04 for 2hrs at RT (2x 1litre changes). 

1ml of 4mg/ml peptide, dissolved in lOmM KH2P04, pH 7.2, containing lOmM 

Na2HP04 was added to the dialysed activated carrier protein and incubated overnight at 

RT with gentle mixing. The peptide conjugate was separated from the uncoupled 

peptide by dialysis against PBS for a total of 4hrs at 4°C (4x500ml changes). 

The dialysed peptide-protein conjugate was diluted with PBS to a final concentration of 

1 mg/ml and stored in 1 OOJ.ll aliquots at -20°C. 
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2.2.3 Inoculation procedure. 

200111 of sterile PBS was mixed with lOOflg (I OOfll) of freshly thawed peptide­

conjugated carrier protein. This mixture was then emulsified with an equal volume 

(300fll) of Freunds complete adjuvant. This was mixed thoroughly using a wide bore 

syringe, until a viscous emulsion was obtained. 

The preparation was then injected intramuscularly into both hind legs of a New Zealand 

rabbit. Primary immunization was performed with Freunds complete adjuvant, whereas 

subsequent immunizations, at 1 month intervals, were performed with incomplete 

Freunds adjuvant. 

Rabbits were bled from the marginal ear vein 7-10 days post-booster injections, where 

1 0-15ml of blood was collected. The blood was allowed to stand at RT for 2hrs 

followed by clot contraction for 16hrs at 4°C. The cellular material was removed by 

centrifugation at 12000xg for lOmins at 4°C and the serum stored in 1ml aliquots at -

20°C. 

2.2.4 Generation of an NRJB peptide affinity column. 

The use of a peptide-carrier protein conjugate necessitates the affinity purification of the 

anti-peptide antibodies from the antiserum in order to remove non-specific binding from 

the anti-carrier protein antibodies. 

The synthesis of the peptide affinity columns is described by Stephenson and Duggen 

( 1991) and was carried out using an Immunopure rProtein A IgG Orientation Kit 

(Pierce, UK). 

49 



Chapter 2 Heather Chaffey 

0.3g of activated CH-sepharose was incubated in 100ml water at RT for 15minutes to 

swell, before being applied to a 25ml column and washed under gravity with 1 OOml HCI 

(I mM) at 4°C. The sepharose was then equilibrated with 25ml O.IM NaHC03 (pH 8.0) 

containing 0.3M NaCI and transferred to a capped tube in 1 ml of equilibration buffer. 

1 ml of 5mg/ml of the respective peptide was dissolved in equilibration buffer and 

incubated with the sepharose beads for 1hr at RT with gentle mixing. 

25ml wash with equilibration buffer terminated the reaction and all the remaining active 

sites were blocked by incubation with 3ml 0.1M Tris-HCI (pH 8.0) containing 0.5M 

NaCI for 1 hr at RT with gentle mixing. The sepharose beads were then washed 

alternately with 4x O.lM CH3COOH (acetic acid pH 4.0), containing 0.5M NaCI and 

0.1M Tris-HCI (pH 8.0) containing 0.5M NaCI. 

The column was then equilibrated and washed with 20ml PBS and stored in 1 Oml PBS 

containing 0.02% NaN3 at 4°C until use. 

2.2.5 Immunopurification of anti-NRJB using an NRJB peptide affinity column 

The NR3B peptide column was washed with 1 OOml TBS before application of 5ml of 

serum. The column was batch mixed for 2 hrs at room temperature and then the 

unbound serum was collected and retained. The column was then washed under gravity 

with 1 OOml of TBS. The anti-NR3B antibody was then eluted in 1 ml fractions using 

50mM glycine pH 2.3 and immediately neutralized with15Jll of 2M Tris. Eight 

fractions in total were collected. 

The absorbance of each fraction was measured at 280nm using a Jenway Genova 

spectrophotometer and the peak fractions containing the antibody were pooled and 
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dialyzed overnight in 300ml TBS. The dialysate was collected and the optical density 

(OD) was measured at 280nm. The absorbance value was divided by 1.35, to give the 

concentration in mg/ml. 0.02% NaN3 was then added to the purified antibody as a 

preservative and stored in the fridge at 4°C. The column was then washed and stored in 

TBS containing 0.02% NaN3• 

)-

-< 

0 
NR38 peptide 
conjugated to sepharose 
beads via protein A 

Anti-NR38 
immunoglobulin 

Non-spedfic anti-carrier 
immunoglobulins 

Figure 2.1 Schematic diagram showing anti-NR3B purification via specific NR3B peptide­

affinity. The specific anti-NR3B antibodies bind to the peptide conjugated to the column and 

are eluted. The non-peptide specific antibodies are washed away. 

2.2.6 Homogenised membrane preparation 

All animal studies were performed with full ethical and Home Office approval (Project 

licence PPL-6003437). 

Adult male Sprague-Dawley Rat forebrains (whole brain minus the cerebellum) or 

spinal cords (cervical, thoracic and/or lumbar regions) were homogenized. 

2ml of cold homogenization buffer (solutions 2.1.9) was used to homogenize each brain 

or spinal cord using a Dounce glass homogenizer. All the homogenized tissue was 

placed into JA20 centrifuge tubes and centrifuged at 2200rpm, 4°C for I 0 minutes. 
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Following removal of the supernatant, the pellet was re-suspended in homogenization 

buffer, and the previous two steps repeated. The supernatant was removed and pooled 

together in a clean JA20 centrifuge tube. The supernatants were centrifuged at 

15000rpm at 4°C for 30 minutes. 

The supernatant was then discarded and the pellet re-suspended in homogenization 

buffer. 

The amount of buffer in which to re-suspend the pellet was calculated as follows: 

The initial weight of the tissue x 5ml = 11.6g x 5ml buffer = 58ml. 

The re-suspended pellet was gently homogenized to a smooth mixture, aliquoted and 

frozen at -20°C. 

2.2.7 Lowry Assay to determine protein concentration 

The reagents A, B, C and D (solutions 2.2.12) required for the assay were prepared, with 

a l mg/ml stock ofbovine serum albumin (BSA). 

A series of standard solutions were prepared as follows: 
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Table 2.1 Preparation of standard solutions for Lowry assay. 

100 

80 

60 

40 

20 

0 

52 



Chapter 2 Heather Chaffey 

Each concentration of BSA and a series of test protein (5 Jll protein +95J.!I dH20) were 

made up in triplicate and vortexed. 

0.5ml of reagent D was added to each tube, vortexed and left to stand at RT for lOmins. 

50J.!I ofFolin:dH20 was then added to each tube, vortexed and left to stand at RT for 30 

minutes. Addition of 0.5ml dH20 terminated the reaction. The absorbance at 750nm 

was then measured and analysed. A standard curve of absorbance against concentration 

was plotted and the concentrations of the samples being assayed calculated. 

2.2.8 SDS-PAGE and Western blotting 

2.2.8.1 Preparation of the samples: 

5-l OJ.!l of rat forebrain or spinal cord preparation, 5J.!l of sample buffer (3x), 2J.d DTT 

(3mg/ml) (1 Ox) and 8J.!I dH20. 

The samples were then pulsed at 6000rpm and placed in a 95°C heat block for 5 minutes 

to denature the proteins. They were then pulsed again at 6000rpm, vortexed, and loaded 

into the wells using a Hamilton page loader. 

2.2.8.2 SDS-PAGE: · 

The stacking gel was prepared (solutions 2.1.22), excess water drained and the stacking 

gel quickly poured, with the comb set in place. I 0-15 minutes was allowed for the 

stacking gel to set, before rinsing again with water. The tank was then filled with 

electrode buffer (solutions 2.1.6) and the samples loaded. The gel was then run at IOmA, 

180V for 30 minutes before increasing the current to 15mA for 1.5-2hrs. 

53 



Chapter 2 Heather Chaffey 

2.2.8.3 Western blotting-Transfer: 

Hybond nitrocellulose membrane (Amersham International, Buckinghamshire, UK) 

was soaked in transfer buffer for 10 minutes prior to the transfer. The transfer system 

was built up on the white side of the cassette as follows; sponge, 2 pieces of blotting 

paper (Amersham International, Buckinghamshire, UK), nitrocellulose (Amersham 

International, Buckinghamshire, UK), gel, 2 pieces of blotting paper, sponge. The 

cassette was placed into transfer buffer (solutions 2.1.25) and transfer started at SOV, 

220mA for 2.5 hours. 

2.2.8.4 Incubating the nitrocellulose: 

The nitrocellulose was removed from the transfer tank and blocked to inhibit any 

endogenous reactive sites with 5% marvel (w/w), 0.2% Tween 20 (w/v) in TBS and 

SO!J.l 2M NaOH, for I hr at RT. 

The nitrocellulose was incubated in primary antibody against the protein of interest at 

varying concentrations. 2.5% (w/w) marvel in TBS buffer + 1°Ab (0.5-2!J.g/ml) 

overnight at 4°C. 

Unbound primary antibody was washed (4x10 min) with 2.5% marvel (w/w), 0.2% 

Tween 20 (w/v) in TBS. The nitrocellulose was then incubated in secondary (2°) anti­

rabbit horseradish-peroxidase linked antibody (Amersham International, 

Buckinghamshire, UK) (1 :2000 dilution) for 1hr at RT. 

The 2 °antibody was washed (4x10 min) with 2.5% marvel (w/w), 0.2% Tween 20 (w/v) 

in TBS, followed by rinsing in TBS. 
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2.2.8.5 Developing the nitrocellulose: 

In order to visualize the proteins on the blot the nitrocellulose was exposed to 6J.tl H20 2, 

1 Oml luminol (solutions 2.1.13) and 1 OOJ.tl coumaric acid (solutions 2.1.3) in order to 

complete the enzyme (2° antibody) -substrate (H20 2) reaction at RT for 1 minute. The 

blot was covered with clingfilm, taped inside the cassette and then exposed to the film. 

Following 1-5 minutes of exposure (antibody dependent) the film was removed and 

placed in Polymax RT developer and replenisher and Polymax RT fixer and replenisher 

(Kodak Professional, UK) and water. 

2.2.9 Cryostat sectioning of rat spinal cord and whole brain. 

2.2.9.1 Frozen preparations 

Whole spinal cords and brains were dissected from adult male Sprague-Dawley rats 

weighing approximately 270g and immediately frozen on dry ice and stored at -20°C 

until sectioning. 

The frozen tissue was orientated and mounted onto a specimen block at -20°C using 

Tissue-TeeM adhesive and Cryofreeze aerosol (Agar Scientific). The cryostat was 

adjusted and maintained at -20°C, with 20J.tm sections mounted directly onto poly-D­

lysine coated microscope slides. 

2.2.9.2 Formaldehyde fixed preparations 

Whole spinal cords dissected from adult male Sprague-Dawley rats weighing 

approximately 270g, were fixed using 4% paraformaldehyde and stored at 4°C. Three 

days prior to sectioning, the tissue was placed in 10% sucrose solution for 

cryoprotection. 
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Immediately prior to sectioning, the fixed tissue was frozen in liquid nitrogen -70°C for 

1 minute in isopentane before being orientated and mounted onto a specimen block with 

Tissue-Tek™ adhesive and Cryofreeze aerosol (Agar Scientific). Transverse sections of 

the spinal cord were sliced at 20J.1m and stored in I ml PBS in 24-well plates or mounted 

directly onto poly-D-Iysine coated microscope slides. 

2.2.10 Immunohistochemistry on adult rat and human spinal cord. 

Tissue sections were either processed in 24-well plates (Iwaki, Japan) (with 0.5ml 

solution/well) or directly on the slides post-mounting (in coplin jars). The procedure 

was carried out at room temperature except where stated. 

The procedure was carried out on approximately 20 spinal cord sections (20J.1m) each 

run, with variation of the primary antibody at concentrations ranging from O.OI-2J.1g/ml. 

The sections were incubated in 10% methanol, 3% hydrogen peroxide in lOml TBS 

buffer for 10 minutes with shaking. 0.2% glycine, 0.2% Tween 20 in 50ml TBS buffer 

was then added to the wells for 15 minutes with shaking, followed by 0.2% Triton-X-

I 00 in TBS for a further 15 minutes. 

50mM sodium citrate pH8.4 was added to each well and incubated for 30 minutes at 

room temperature before being replaced by 50mM sodium citrate pH8.4 at 80°C for 30 

minutes. A wash step in 0.2% Triton-X-100 in TBS followed for 15 minutes before a 

blocking step using 2% serum, 0.2% Tween 20 in TBS for 60 minutes incubation. 

Primary antibody (0.01-2J.1g/ml) in 1% serum in TBS was then added to the tissue for an 

overnight incubation at 4°C. 
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The tissue sections were then washed in 1% serum in TBS (3x0.5ml) followed by 

addition of secondary biotinylated antibody (0.1%) in 1% serum in TBS. The sections 

were washed in 1% serum in TBS (3x0.5ml). The vector ABC solution (made up 10 

minutes prior to use) was then applied for 5 minutes with shaking before washing steps 

in TBS (5x0.5ml). Diaminobenzidine (DAB) developing solution (1 DAB tablet per 

10ml TBS and 6J.1l hydrogen peroxide) was added to the wells for 10 minutes incubation 

in the dark. DAB was removed and the sections washed in dH20 before mounting onto 

plain microscope slides (0.8x1.0mm) for drying. Once the tissue was dry the coverslips 

were applied using DPX histological mountant. 

2.2.11 Optimised method for immunohistochemistry on adult rat spinal cord tissue. 

Tissue sections were either processed in 24-well plates (Iwaki, Japan) (with 0.5ml 

solution/well) or directly on the slides post mounting (in coplin jars). The procedure 

was carried out at room temperature except where stated. 

Tissue was incubated with 10% methanol in PBS, with 3% H20 2 for 30 minutes before 

washing (3x 5minutes) with PBS-Triton-X-100 (PBS-T, 0.2%, v/v) pH 7.4. The tissue 

sections were then inbubated in PBS-glycine (0.2% w/v) pH 7.4 for 30 minutes to 

quench excess fixative before 1 hour incubation with blocking buffer (PBS-Triton plus 

10% goat serum). The sections were then incubated in primary antibody (diluted in 

PBS+ 1% goat serum) overnight (concentrations ranging from 0.5-2J.lg/ml, depending 

on the antibody). The tissue sections were then thoroughly washed (3x5 minutes with 

PBS-triton X 100, before incubation for 2 hours with the appropriate biotinylated 

secondary antibody from the vecta-stain ABC kit (1 drop in 1 Oml PBS/1% serum). 30 
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minutes before the end of this incubation, the ABC solution was prepared (I OOfll 

solution A and I OOfll solution B in 5ml PBS) and then applied to the tissue for an hour 

incubation. The tissue was then washed with PBS-TritonXIOO (3x5minutes) and then 

with PBS (2x5minutes) before the developing steps using DAB developing kit for 

approximately I 0 minutes or until staining occurs. 

2.2.12 Solubilisation and immunopurification ofNMDA receptors 

2.2.12.1 Solubilisation using 1% sodium deoxycholate (DOC) 

Male Sprague-Dawley adult rat forebrain preparation (3mg/ml) or spinal cord 

(1.5mg/ml) was used for this assay. 

6 x Iml aliquots of homogenized membranes (3mg/ml) were centrifuged at 13000rpm 

for 3 minutes, the supematant removed and discarded. The pellet was re-suspended in 

solubilisation buffer (solutions 2.1.20) to obtain a final concentration of 1.5mg of 

protein/m]. The samples were pooled together and the re-suspended mixture stirred 

batch wise at either 4 or 37°C for Ihour. Following this incubation, the samples were 

centrifuged at IOOOOg for 30minutes at 4°C. The supematant containing the solubilised 

membranes was collected, and the pellet re-suspended in solubilisation buffer 

(detergent-treated membranes)- a sample of each was retained for blotting. 

The solubilised membranes were then dialyzed against 2 x 1 L of dialysis buffer for 1.5 

hours each at 4°C. This dialyzed material then became the source of the NMDA 

receptors. The same procedure was also carried out at 37°C in order to investigate 

optimal solubilisation conditions. 
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2.2.12.2 Solubilisation using sodium dodecyl sulphate (SDS) 

Male Sprague-Dawley adult rat forebrain preparation (3mg/ml) or spinal cord 

(1.5mg/ml) was used for this assay. 

2xlml (1.5mg/ml) aliquots of homogenized membranes were centrifuged at 13000rpm 

for 3 minutes and the supematant discarded. The pellet was re-suspended in 

solubilisation buffer (solutions 2.1.21) to obtain a final concentration of 1.5mg 

protein/m!. This solubilisation/protein mixture was incubated at RT, 4 or 37°C for 3 

minutes with shaking. 5 volumes of ice-cold Triton-x-1 00 were used to dilute the [SOS] 

and the mixture was centrifuged at 13000rpm for 10 minutes. The supematant 

containing the solubilised receptors was removed and dialysed against 2xlL of dialysis 

buffer for 3hrs at 4°C. The unsolubilised fraction remaining in the pellet was 

resuspended in solubilisation buffer. 

Following dialysis, the solubilised membranes were purified via an immunoaffinity 

column or via immunoprecipitation with anti-NR3B antibodies. 

2.2.12.3 Immunopurification 

The dialyzed solubilised material was then purified via an anti-NRI immunoaffinity 

column. Purification is achieved as NR !-containing receptors covalently couple to the 

anti-NRI column, which is then washed and the receptors eluted. The solubilised 

receptors were incubated on the column for 20 hours at 4°C, using a peristaltic pump for 

constant circulation at a rate of 1 Oml/hr. Following incubation, any unbound receptors 

were drained from the column and retained to calculate uptake efficiency and the 

column washed with 50ml wash buffer. 
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The NMDA receptors were eluted using glycine pH 2.3. 8xlml fractions were collected 

and neutralized with 2M tris to a final pH 7.4. In order to identify the receptor-

containing fractions, immunoblotting was carried out using anti-NRl, anti-NR2A, anti-

NR2B and anti-NR3B antibodies. 

The same procedure was also carried out using an anti-NR2A column in order to isolate 

NR2A-containing receptors. 

• • 
I 

Anti-NRl 

NRl subunit 

NR1/NR2A 

NR1/NR28 

NR1/NR2A/NR28 

Figure 2.2 Schematic diagram showing immunopurification of NR1-containing receptors 

from detergent-solubilised material. Only those receptor complexes containing NR1 

subunits will bind to the specific anti-NR1 antibodies and be purified. The monomeric non­

functional NR2A and NR2B subunits are washed away. 
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2.2.12.4 Immunoprecipitation using Seize X Protein A Immunoprecipitation Kit 

(Pierce, Rockford, IL 61105). 

Following the manufacturers instructions, 200flg of rat anti-NR3B antibody was cross­

linked with DSS (disuccinimidyl suberate) to Immunopure® Immobilized Protein A 

before antigen precipitation. 

Adult male Sprague-Dawley rat spinal cord homogenate (1.5mg/ml) was solubilised 

with 0.5% sodium deoxycholate (see 2.2.12.1) before solubilised membranes were 

applied to the immobilized antibody for either 4 hours or 16 hours incubation at 4°C. 

Immunoprecipitated receptors were then eluted from the column using ImmunoPure® 

Elution Buffer and the fractions analyzed using SDS-PAGE. 

2.2.13 Chloroform/Methanol Procedure for protein precipitation 

50fll of sample were made up to IOOfll with dH20, to which 4xvolume (4x100fll) 

methanol was added. The samples were vortexed and pulsed up to 13000rpm. I OOfll of 

chloroform was added, after which the samples were again pulsed at I3000rpm. 300fll 

dHzO was added and the samples centrifuged for I minute at 13000rpm. 

The top layer of the sample was removed ensuring no disturbance to the intermediate 

phase (containing the protein). 

I OOf..Ll of methanol was again added, and the samples vortexed and centrifuged for 4 

minutes at 13000rpm. The supematant was removed and the pellet allowed to air dry 

for 30 minutes at RT before dissolving in sample buffer and loading for SDS-PAGE 

analysis. 

6I 



Chapter 2 

2.2.14 Radioligand Binding 

2.2.14.1 Competition Binding 

Heather Chaffey 

Competitive binding experiments measure the binding of a single concentration of 

radioligand in the presence of various concentrations of unlabelled ligand (Motulsky 

1995) to determine the affinity of unlabelled ligands for receptors. 

During the experiment, both radiolabelled and unlabelled compounds compete for the 

available receptor binding sites providing a measurement of compound affinities. Once 

an equilibrated state of reaction has been attained, the amount of radiolabelled ligand 

bound to the receptor was measured following separation from the free, unbound 

radiolabelled ligand via filtration. The affinity of the unlabelled compound was then 

measured indirectly via its ability to compete with and displace the radio1abelled ligand. 

The parameters obtained are the concentration of unlabelled compound that inhibits the 

binding of the radiolabelled ligand by 50% (IC50) and subsequently the dissociation 

constant for the unlabelled compound (Ki). 

During binding experiments it is possible for the compounds to bind to non-specific 

sites distinct from the site of interest. It is therefore important to measure non-specific 

binding in the presence of a high concentration of unlabelled compound, that binds to all 

receptor sites of interest and subtract this value from the total binding to give specific 

binding. 

1mM ifenprodil was used to define non-specific binding for eH] CP-101,606 and eH] 

Ro-256981 assays and 1mM ketamine defined non-specific binding in eH] MK-801 

assays. All assays were also carried out in the presence of DTG (1 OJ.1M), a sigma-site 

antagonist to avoid non-specific binding, particularly in rat forebrain tissue. 
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A series of dilutions (10-3 -10-10 M) of the compound to be analyzed was prepared from a 

1 OmM (10-2 M) stock solution of compound dissolved in either 50mM Tris-HCL, 5mM 

EDTA and 5mM EGTA (pH 7.1) or DMSO depending on the compound. 

Adult male Sprague-Dawley rat homogenized forebrain was used as the source of 

NMDA receptors at a concentration of 1 mg/ml. (For recombinant receptors the forebrain 

is replaced with harvested recombinant NMDA receptors expressed in HEK293 cells). 

eH] Ro-256981 , eH] CP-101606 and eH] MK-801 were utilized as radioligands in 

order to compare the pharmacology of both compounds COMPOUND A and 

COMPOUND B (GlaxoSmithKline, Harlow, UK). Addition of I mM DTG (a sigma site 

antagonist) to the assay prevented non-specific binding to sigma sites. 

The scintillation tubes were set up as follows with a total of200j.ll/tube. 

Protl'in Compound J{:ulioli:,.:and \''"~ lrJ (; 

(lm:,.:/ml) (1W1 to tu- '' ) huiTtT (I m\)) 

Total l OOJ.ll 

Compound l OOj.ll 

Non-Specific l OOJ.ll 

Table 2.2 Preparation of scintillation tubes for competition radioligand binding assays. 

Following incubation on ice for 2hrs, the reaction was terminated and bound radio ligand 

washed with ice-cold 1 OmM sodium phosphate buffer and collected by rapid filtration 

through Whatman GF/B filters (Semat International , UK) using a Brandle Harvester. 

The filters were then collected and immersed in Ecoscint A liquid scintillation fluid 

(National Diagnostics, UK) overnight at RT before quantification using Packard tri-Carb 

1600TR spectrophotometer. The data was analyzed using GraphPad Prism version 4.0 
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to plot competition experiments as a one-site or two-site sigmoidal dose response curve 

with a variable slope. 

From these experiments the concentration of unlabelled ligand that inhibits the binding 

of the radioactive compound by 50% is the IC50 value, calculated as follows: 

For a one-site binding competition model: 

(Total-Nons~ecific) 
y = Nonspecific + I+ I o<log [DJ- og (ICSO) 

For a two-site binding competition model: 

Total-Nonspecific 
y = Nonspecific + 

[ 
Fraction I J 
l+ I 0 (x-log IC 

50 
I) 

y = the specific binding at a fixed concentration of displacing drug 

x = log10 concentration of the displacer 

log[D] =logarithm of concentration of unlabelled drug on x- axis 

Fraction I = The fraction of binding to the first type of receptor 

From the IC50 values, the inhibition constants (Ki) for the unlabelled ligand were 

calculated using the Cheng and Prusoff equation (Cheng and Prusoff, I973; Deupree 

and Bylund). 

ICso 
Ki = I+ [radio ligand] 

I«J 

Bmax can be calculated by the law of mass action 
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where: Bmax = Bo ~ + [L] )/ [L] 

IC50 = concentration of unlabelled ligand that inhibits 50% binding of radiolabeled 

ligand 

KI =the affinity of the radiolabelled ligand for the receptor 

Bo =the specific binding of the radioligand. 

2.2.14.2 Saturation Binding 

Saturation binding experiments were performed to determine the affmity ~) of a 

specific radioligand for a receptor and the density of receptor sites in a preparation 

(Bmax) (Deupree and Bylund). 

Adult male Sprague-Dawley rat forebrain homogenate (1mg/ml) was again used as the 

source ofNMDA receptors. A concentration range (0-30nM) of eH] Ro-256981 or eH] 

CP-1 01,606 was prepared with 1 OmM sodium phosphate buffer and incubated with 

1 OOfll forebrain homogenate (200fll total) for 2 hours on ice. Bound radio ligand was 

then washed and collected via rapid filtration and quantified (see 2.2.14.1 ). 

Saturation binding experiments were also analyzed using GraphPad Prism version 4. 

The affinity (K!) of the radiolabelled compound for the receptor was calculated as 

follows: 

y = l!max..:! 
Kl+x 

Where: 

y = specifically bound radiolabelled compound 

x = concentration of radio labelled compound 
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Bmax = density of receptor sites 

2.2.15 Plasmid DNA preparation 

2.2.15.1 Transformation of HB101 competent E.coli cells 

This method is essentially as previously described by Dagert and Ehrlich (1979). 

A 1 OOf.ll aliquot of frozen HB 101 competent cells (Promega Ltd, UK) was thawed on ice 

for 5 minutes. 20ng/f.1l of plasmid DNA to amplify was added to the competent cells 

and mixed gently. This cell mixture was then incubated on ice for 30 minutes before 

heat shocking the cells at 42°C for 1 min. The cells were incubated on ice for a further 2 

minutes, followed by addition of 900f.ll LB broth (47g broth in 1L dH20) to the 

transformed cells. This mixture was then incubated for an hour on a shaker at 37°C. 

1 OOf.ll of the cell suspension was spread onto previously prepared culture plates 

containing 1.5% (w/v) agar in LB broth containing ampicillin (50f.1g/ml). The culture 

plates were then incubated at 37°C for 18-20 hrs in an inverted position to prevent the 

build-up of condensation. 

2.2.15.2 Preparing glycerol stocks of transformed competent E. Coli cells 

500f.ll of terrific broth supplemented with 50% (v/v) sterile glycerol and 50f.1g/ml 

ampicillin to 500f.ll of the small overnight culture. Aliquots were then stored at -80°C in 

cryogenic vials until use. 

2.2.15.3 Amplification and preparation of plasmid DNA 
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Bmax = density of receptor sites 

2.2.15 Plasmid DNA preparation 

2.2.15.1 Transformation ofHB101 competent E.coli cells 

This method is essentially as previously described by Dagert and Ehrlich (1979). 

A I OOJll aiiquot of frozen HB I 0 I competent cells (Promega Ltd, UK) was thawed on ice 

for 5 minutes. 20ng/Jll of plasmid DNA to amplify was added to the competent cells 

and mixed gently. This cell mixture was then incubated on ice for 30 minutes before 

heat shocking the cells at 42°C for I min. The cells were incubated on ice for a further 2 

minutes, followed by addition of 900J.1I LB broth (47g broth in IL dH20) to the 

transformed cells. This mixture was then incubated for an hour on a shaker at 37°C. 

I OOJ.1l of the cell suspension was spread onto previously prepared culture plates 

containing I.5% (w/v) agar in LB broth containing ampicillin (50J.1g/ml). The culture 

plates were then incubated at 37°C for 18-20 hrs in an inverted position to prevent the 

build-up of condensation. 

2.2.15.2 Preparing glycerol stocks of transformed competent E.Coli cells 

500J.1l of terrific broth supplemented with 50% (v/v) sterile glycerol and 50J.1g/ml 

ampicillin to 500J.1l of the small overnight culture. Aliquots were then stored at -80°C in 

cryogenic vials until use. 

2.2.15.3 Amplification and preparation of plasmid DNA 
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Preparation of small-scale culture of plasmid DNA. 

I Oml of terrific broth containing ampicillin (50j.tg/ml) was inoculated with one isolated 

colony from the culture plates using a sterile loop and incubated for 18-20hrs on a 

shaker at 37°C. 

Preparation of large-scale culture of plasmid DNA. 

3mls of the small overnight culture were used to inoculate 500ml of terrific broth 

containing ampicillin (50j.tg/ml). This large culture was then incubated for 18-20hrs on 

a shaker at 37°C. 

2.2.15.4 Harvesting the large-scale culture and purification of plasmid DNA using 

the Qiagen plasmid maxi-kit (Qiagen, Crawley, West Sussex, UK). 

To harvest the transformed E.coli cells, the large-scale overnight culture was transferred 

into two ice-cold centrifuge tubes, and spun at 6500xg for I 0 minutes at 4°C. The 

supernatant was discarded, and the remaining pellet re-suspended in ice-cold Pl buffer 

(IOml). 

In order to lyse the bacteria containing the plasmid, 1 Oml of P2 buffer was added and 

mixed by gentle inversion, before incubation at RT for 5minutes. The mixture was 

neutralized with chilled P3 buffer (1 Oml) and mixed with gentle inversion before 

incubating on ice for 20 minutes. This solution was centrifuged at 14000xg for 30 

minutes at 4°C, before the clear lysate was transferred to a clean tube. 

During centrifugation, a Qiagen 500 tip was equilibrated with QBT buffer (lOml). The 

cell lysate was poured into the column and allowed to pass through under gravity flow. 
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The column was washed twice with QC buffer (30ml) and the plasmid DNA eluted 

using 15ml QF buffer. 10.5ml of ice-cold isopropanol (0.7 vol) was used to elute the 

DNA, and the solution centrifuged again at 14000g for 30 minutes at 4°C. The 

remaining pellet was washed carefully with ice-cold ethanol (1ml) and allowed to air 

dry for approximately 30 minutes. The purified DNA was dissolved in 5001J.l TE buffer 

(solutions 2.1.24) and stored at 4°C until the purity ofthe DNA was calculated. 

2.2.15.5 Quantification and determination of purity of the DNA yield 

The purity and the concentration of the plasmid DNA was determined by measuring the 

optical density at A 260nm and A 280nm. The ratio of the optical densities at these two 

wavelengths was determined. (OD~., 260 nm I OD~., 280 nm) should be within the range 

1.8-2.0. 

The plasmid DNA concentration is at A 260 nm. Therefore this absorbance relating to 

plasmid DNA concentration was multiplied by 50 as an OD of 1 corresponds to 

approximately 501J.g/ml for dsDNA. After calculating the plasmid DNA concentration 

in !J.g/!J.l, the final concentration was diluted to 11J.g/!J.l in TE buffer. The plasmid DNA 

was then stored in 1 OO!J.l aliquots at -20°C until use. 

Once thawed, the DNA was stored at 4°C to prevent freeze/thaw denaturation. 

2.2.16 Preparation of tissue culture medium 
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The tissue culture medium was prepared using 500ml Gibco DMEM F12 (1:1) 

(Cambrex Bio Science Verviers, Belgium) plus glutamate, 20ml sodium bicarbonate, 

50ml foetal calf serum and 1 Oml penicillin/streptomycin solution. The pH was adjusted 

to pH 7.6 before being filter sterilized (Nalgene™ 500ml filter unit). 

2.2.17 Sub-culturing HEK293 cells. 

The culture media was aspirated and the cells washed with 10ml PBS. 2ml 

trypsin/EDT A was added, the flask tapped and replaced in the incubator for 

approximately 30 seconds to remove cells. 1 Oml of pre-warmed new media was then 

added to the cells and the suspension titrated thoroughly to prevent aggregation. 2ml of 

this suspension was then seeded into each new flask or culture dish. 

For cell counting, the cell suspension was first centrifuged at 200g/5 min and the cell 

pellet resuspended in 10ml pre-warmed media. 1ml ofthe resuspended cell mixture was 

then used to count number of cells/ml. 

2.2.18 Transfection of HEK293 cells using lipofectamine reagent 

Transfections were carried out in 35mm culture dishes for western blotting, cytotoxicity 

assay and in 25cm2 culture flasks for radioligand binding. 

cDNA mixtures were prepared in ratios of 1:3 e.g, NR1:NRI/2B or 1:3:3 

NR1/NR1/2B:NRI/2B/3B. 

The transfection reagents were prepared as follows. 
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r 11 hl· 1 ., 11 hl' 2 

' 

Culture dishes 6~1 PLUS reagent 

I ~g Plasmid cDNA 

150~1 Optimem-1 media 

Culture Flasks 30~1 PLUS reagent 

5~g Plasmid cDNA 

750~1 Optimem-I media 

Table 2.3 Preparation of transfection reagents 

5~1 Lipofectamine 

150~1 Optimem-1 media 

25~1 Lipofectamine 

750~1 Optimem-I media 

Following al5minutes incubation at RT, the contents of the lipofectamine tube 2, were 

transferred into tube 1 and incubated for a further 15 minutes at RT. 

During the second 15 minute incubation, the HEK293 cells were washed (3x 2ml for 

dishes) (3xl0ml for flasks) with Optimem-1 medium. The contents of the remaining 

tubes were diluted with 2ml (35mm dishes) or IOml (25cm2 flasks) with Optimem-I 

medium, and added gently to the washed HEK293 cells. The cells were incubated in the 

transfection medium for 5 hrs (5% C02, 37°C). Following this incubation, the optimem­

I medium containing the plasmid DNA was replaced with the usual tissue culture 

growth medium (sections 2.2.16) and incubated for 48 hrs (5% C02, 37°C) before 

harvesting. l mM ketamine was added as an NMDA antagonist to those transfection 

mixtures which would be used in functional studies, to prevent cytotoxicity. 
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The above method was adapted for transfections for electrophysiology and FLIPR 

assays as follows: cells were seeded onto poly-D-lysine coated coverslips in 35mm 

culture dishes to be transfected for electrophysiology and in T175 culture flasks for 

FLIPR assays. Lipofectamine 2000 reagent replaced Lipofectamine PLUS reagent and 

incubation times were adjusted according to the manufacturer's instructions. 

2.2.18.1 Harvesting transfected HEK293 cells 

Each culture dish/flask was drained and the cells re-suspended in cold homogenization 

buffer (solutions 2.1.9) containing protease inhibitor cocktail Ill (Calbiochem) (1:100). 

The cells were scraped off the culture dish/flask and transferred to a glass-dounce 

homogenizer and homogenized for 30 strokes. The cell homogenate was then 

centrifuged at 13000 rpm for 5 minutes at 4°C. The supernatant was removed and the 

pellet re-suspended in homogenization buffer (lml per dish, 5ml per flask) and 

homogenized again. The transfected cells were stored in I OOfll aliquots at -20°C. 

2.2.19 CytoTox 96 Non-radioactive Assay (Promega Ltd, UK). 

1.5ml of media was removed from the cells and centrifuged for 2minutes at 13000rpm 

and the supematant retained. This supematant contains lactate dehydrogenase (LDH) 

released from the lysed cells. The pellet was re-suspended in 1 ml PBS and placed on 

the cells in the culture dish. The dish was then frozen for 2hrs at -20°C. The cells were 

thawed, centrifuged again (2minutes, 13000rpm) and the supematant retained, the 

contents of which was the total LDH. 
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A 1:10 and a 1:20 dilution of each of the supematants were prepared for the assay. 

Tissue culture medium DMEM:F12 was used as calibrator for the assay, with each 

dilution measured in triplicate (undiluted supematant, 1:10 and 1 :20). 50J.1l of substrate 

mix (Cytotox96 Promega) was added to each dilution before incubation for 30 minutes at 

RT in the dark. LDH was then quantified with absorbency readings at 490nm. 

2.2.20 Whole-cell patch-clamp electrophysiology on recombinant NMDA receptors 

expressed in HEK293 cells. 

HEK293 cells were passaged approximately every 3 days when cells were ~80% 

confluent. HEK293 cells were seeded onto poly-D-lysine coated coverslips in 35mm 

culture dishes 24hrs prior to transfection and incubated under normal conditions. 

Recombinant NMDA receptors (NR1, NR1/NR2B and NR1/NR2B/NR3B) labelled with 

GFP (green fluorescent protein), were transiently expressed in WT HEK293 cells using 

an optimized Lipofectamine™ protocol as described previously (section 2.2.18). 

Following 24hr incubation in the presence of the NMDA antagonist ketamine (1mM), 

successfully transfected (GFP-positive) cells were chosen for electrophysiology. 

Patch microelectrodes (GC120F-10 resistance 2-5MQ) were fabricated on a Sutter 

instruments P-87 electrode puller (Sutter Instruments Company, Novato, CA) whilst 

extracellular (solutions 2.1.8) and intracellular (solutions 2.1.11) solutions were warmed 

toRT (20-24°C) in a water bath. Solutions were set up to provide continual perfusion of 

the recording chamber with extracellular solution and alternating perfusion with the co­

agonists (IOOJ.1M Glutamate and lOJ.lM Glycine) and antagonists (CP-101606 and Ro-
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256981 1 OfJM and 300nM) through a multi-channel automated fast-switching solution 

exchange system (SF-77B; Warner Instrument, Hamden, CT). All experiments were 

conducted in the absence of extracellular magnesium to avoid voltage blockade of the 

receptor channel. 

HEK293 cells successfully transfected with NMDA receptor subunit combinations were 

identified using GFP and manipulated in the recording chamber into position beneath 

the perfusion barrels. The microelectrode was filled with intracellular solution and 

placed onto the head stage before being positioned onto the cell to make a seal. Whole­

cell patch clamp recordings were carried out at RT in voltage-clamp mode using an 

Axopatch 200B amplifier, controlled via the pClamp8/pClamp9 software suite (Axon 

Instruments Inc., Union City, CA). 

2.2.21 eH] Ro-256981 Autoradiography on rat spinal cord and whole brain 

Essentially as described previously by Mute! et a/, 1998. 

Selected slides were removed from the freezer and allowed to equilibrate to room 

temperature. The slides were incubated 2x I 0 minutes in Tris buffer (solutions 2.1.24) 

at RT followed by 1.5hr incubation in eH] Ro-256981 in Tris buffer (20nM). Slides 

were then washed in tris buffer (2x5minutes, 1xl5 minutes) on ice. In order to define 

non-specific binding, two slides were incubated in eH] Ro-256981 (20nM) containing 

ifenprodil (10-3M) for 1.5hrs on ice before repeating the washing steps detailed above. 

Following the washing steps, the slides were briefly dipped in ice-cold dH20 (IL) 

before air drying on the bench overnight. 

73 



Chapter 2 Heather Chaffey 

The slides were then taped into a Kodak developing cassette with Amersham tritium 

hypersensitive film and stored for 5 weeks at RT, before fixing (Kodak GBX fixer and 

replenisher) and developing (Kodak GBX developer and replenisher) (Kodak 

Professional, UK). 

The autoradiograms were analysed 'blind' using the ImageJ program, where eH] Ro-

256981 binding density was measured and calculated from a tritium standard mini-scale 

(Amersham, UK), developed along-side the samples. 

2.2.22 Fluorescence imaging plate reader (FLIPR). 

The FLIPR assay enables measurement of changes m the concentration of free 

intracellular calcium using fluorophores which bind and react to calcium, emitting 

fluorescence in a concentration-dependent manner, when excited by an argon laser. 

This assay was used to measure the concentration of intracellular calcium in HEK293 

cells expressing recombinant NMDA receptors. 
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Emission Light 

Excitation Light 

Figure 2.3 Schematic diagram representing the induction of fluorescence when Fluo-4 reacts 

with calcium in cells. The influx of calcium via NMDA receptors and calcium released from 

intracellular stores contribute to the fluorescent signal detected by the FLIPR machine. 

48hrs prior to FLIPR assay, HEK293 cells were transfected as described previously 

(section 2.2.18) with NRl , 38, NRl/28 and NRl/28/38 subunits. 24hrs post-

transfection, cells were removed from the culture flasks with trypsin!EDT A, centrifuged 

(200g/5minutes), re-suspended in pre-warmed fresh culture medium and counted. 

Approx 40000 cells/well were seeded onto Cornell™ black walled, clear bottomed poly­

D-lysine coated 96-well plates as shown below and returned to the incubator for a 

further 24hrs. 
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1 2 3 4 5 6 7 8 9 10 11 12 

WT 

NR1 

NR1/2B 
~40,000 cells/well 

NR1/2B 

NR112B 

NR112B/3B 

NR112B/3B 

NR1/2B/3B 

Prior to the assay the FLIPR system (Molcular Devices, UK) was switched on and 

allowed to equilibrate for 30minutes. The water system, CCD camera and the computer 

were initiated followed by the laser according to manufacturer' s instructions and a 

yellow test plate signal generated and stored. 

Dye loading of the cells: 

An aliquot of Fluo 4 was thawed slowly and protected from direct light. The Fluo 4 was 

diluted to a final concentration of I mM (equated to 60J.1lll Oml) in Tyrode' s buffer 

(solutions 2.1.27) (without magnesium) and 50J.1llwell applied to the cell plate using a 

multi-channel pipette. Cells were then incubated at RT in the dark for I-2hrs. 

Following the dye loading, the cells were washed 4x150J.1l rinses with Tyrodes buffer 

using a Denley Cell washer system which leaves the cells in 125JJ.l of fresh buffer after 

washing. 
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For agonist studies, 50~1 of each agonist was added to the respective wells of the cell 

plate within the FLIPR system. Each agonist dose-response curve is made up of 12 half­

log concentrations. Prior to agonist addition a single image of the cell plate is taken as a 

signal test. During the run 60 images were taken at I second intervals followed by a 

further 24 images at 5 second intervals with agonist addition being made 20 seconds 

after the first image was taken. Agonist induced receptor activation was therefore 

detected as an increase in fluorescence. 

For antagonist studies, following the washing step, 25~1 of antagonist was added to the 

respective wells of the cell plate and incubated for 20minutes at R T in the dark. As 

above, addition of the agonist was carried out in the FLIPR system and signals recorded 

with multiple time resolved images as previously described. Functional antagonism was 

indicated by a suppression of agonist induced increases in fluorescence. 

The fluorescence measurements were extracted and tabulated using an ASCII text file 

and analysed using Microsoft Excel. 
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Chapter 3 

Pharmacological characterisation of two novel NR2B-selective 

antagonists COMPOUND A aBld COMPOUND B 

3.1 Introduction 

NMDA receptors have been a potential therapeutic target for the treatment of 

neuropathologies since the 1980's when it was noted that application of NMDA 

antagonists attenuated glutamate induced toxicity in primary neurons (Choi et al., 1988). 

Their widespread distribution, expression in disease related areas of the nervous system 

and potential for mediating toxic effects via over-activation, has led to focused research 

and interest in pharmaceutical intervention into NMDA receptor function. 

Initially developed as universal non-selective channel-binding antagonists, compounds 

such as MK-801, Phencyclidine (PCP) and AP-5 showed an unacceptably high side­

effect profile rendering them inappropriate for clinical use. Therefore the focus of 

research shifted to increasing the specificity and selectivity of receptor targeting, 

utilising the heterogeneous nature of the receptor. 

Modulation of the receptor complex by the inclusion of the NR2B subunit has been 

specifically implicated in many disease pathologies including chronic pain, dementia, 

schizophrenia, stroke and neurodegenerative conditions (Chazot and Hawkins, 1999; 

Chazot, 2004). NR2B-containing receptors potentiate NMDA receptor activation and 

therefore antagonising them specifically may be therapeutically beneficial, whilst 

limiting the adverse side-effect profile. 
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The development of NR2B subunit selective compounds such as ifenprodil and its 

analogues eliprodil, CP-101606 and Ro-256981 have provided important research tools 

for the pharmacological characterisation of the NMDA receptor complex, which 

enhance the potential for increasing specificity of pharmaceutical intervention. 

In 2005, McCauley reviewed the new patents and patent applications put forward in 

2001-2004 for novel compounds developed as a result of new structural diversities in 

small molecule NR2B antagonists. Currently Gideon Richter have promising preclinical 

data for the novel compound RGH-96 (Bradford and Chazot, unpublished), which is 

entering phase Ila clinical trials for the treatment of neuropathic pain. Merck & Co and 

Pfizer have also disclosed new compounds showing that despite problematic side­

effects, the targeting of NR2B-containing NMDA receptors remains a pharmaceutical 

focus. 

This chapter will review and characterise the pharmacological profile of two novel 

NR2B-selective antagonists developed by GlaxoSmithKline; COMPOUND A and 

COMPOUND B. Radioligand binding assays (2.2.14) will be used to investigate the 

binding affinity of these compounds and propose potential binding sites of the Iigands in 

native adult rat fore brain (2.2.6, 2.2. 7) and recombinant receptor populations (2.2.15-

18). The ifenprodil analogues CP-101606 and Ro-256981 and the channel blocker MK-

801 will be utilised as radioligands for displacement assays and to compare the 

selectivity and binding kinetics of the novel drugs. 
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3.2 Results 

3.2.1 Competition binding to investigate the displacement of eHJ Ro-256981 by 

ifenprodil in adult Sprague-Dawley rat forebrain membranes. 

Adult rat forebrain membranes (IOOJ.Lg protein/tube) were used as the source of native 

NMDA receptors in this experiment where ifenprodil displacement of eH] Ro-256981 

was fitted to a 1-site sigmoidal variable slope model. This experiment acted as a control 

to demonstrate the effective displacement of the eH] Ro-256981 ligand by the batch of 

ifenprodil which would be used in subsequent experiments. A steep hills lope ( -0.9) 

and sigmoidal curve with Ki = 52 ± l.OnM demonstrates high affinity displacement of 

eH] Ro-256981 by ifenprodil and therefore high affinity binding towards receptor sites. 

The data shown is the average ± SD of three individual experiments, each performed in 

triplicate. 
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Figure 3.1 Competition binding experiment showing ifenprodil displacement of (3H] Ro-

256981 in adult rat forebrain membranes, best fit to a one-site binding model. Non-specific 

binding was defined with ifenprodil (lmM). 
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3.2.2 Competition binding to investigate displacement of (la] Ro-256981 with 

COMPOUND A in adult Sprague-Dawley rat forebrain. 

Adult rat forebrain membranes (100J.1.g protein/tube) were used as the source of native 

NMDA receptors in this competition assay with COMPOUND A [1 o-3M-10-10M]. 

Displacement of eH] Ro-256981 by COMPOUND A (10-3-10- 1~ was fitted to a 1-site 

sigmoidal variable slope showing one low affinity binding site piC50 4 ± 0.4 with a Ki = 

158 ± 14J.1.M. The hill slope ( -0.8) and low affinity binding may indicate heterogeneous 

receptor populations containing alternative NR2 subunits, to which COMPOUND A 

doesn't readily bind. Despite the presence of DTG, a sigma site antagonist, 

approximately 20% non-specific binding is evident. 

The data shown are an average ± SD of three individual experiments each carried out in 

triplicate. 
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Figure 3.2 Competition binding experiment showing one-site displacement of PH] Ro-

256981 binding by COMPOUND A in adult rat forebrain membranes. Non-specific binding 

was defined with ifenprodil (lmM). 
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3.2.3 Competition binding to investigate the displacement of [~ Ro-256981 with 

COMPOUND B, in adult Sprague-Dawley rat forebrain. 

Adult male Sprague-Dawley rat forebrain membranes (IOOJlg protein/tube) were used as 

the source of NMDA receptors in this competition assay with COMPOUND B [1 o·3M-

10"10M]. The COMPOUND B displacement curve of eH] Ro-256981 binding was best 

fitted to a one-site binding model with low affinity binding (Ki = 180 ± 7JlM). Again 

this low affinity binding may indicate that eH] Ro-256981 is binding to alternative sites 

within the native tissue, to which COMPOUND B is largely insensitive. The data 

presented are an average ± SD of three individual experiments, each performed in 

triplicate. Again, despite the presence of DTG, a sigma site antagonist, approximately 

20% insensitive binding is evident. These experiments were performed with three 

different batches ofradioligand (from different sources) and produced consistent results 

(not shown). 
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Figure 3.3 Competition binding experiment showing one-site displacement of (3H] Ro-

256981 binding by COMPOUND Bin adult rat forebrain membranes. Non-spedfic binding 

was defined with ifenprodil (lmM). 
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3.2.4 Competition assay investigating the displacement of [Ja] CP-101606 binding 

by COMPOUND A in adult rat forebrain membranes. 

Adult male Sprague-Dawley rat fore brain membranes (1 OOJ.lg protein/tube) were the 

source ofNMDA receptors in this competition assay investigating COMPOUND A [1 o-

3M-10-IOM]. 

The high affinity (Ki = 6 ± 2nM) displacement of eH] CP-1 01606 binding by 

COMPOUND A was fitted to a one-site variable sigmoidal curve model and shows that 

this novel compound displays high affinity binding towards NMDA receptors composed 

of only NR1/NR2B subunits. There is some evidence for low affinity binding to a 

second site at high concentrations of COMPOUND A, which may be other NMDA 

receptor populations, or alternative, non-sigma receptor sites present in the native tissue. 

The data shown are an average ± SO of two individual experiments each carried out in 

triplicate. 
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Figure 3.4 Competition binding experiment showing COMPOUND A displacement of (3H] CP-

101,606 in adult rat forebrain membranes, best fit to a one-site binding model. Non-specific 

binding was defined usin~ ~f~~pr~C!it£1011\f). 
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3.2.5 Competition assay investigating the displacement of [3H] CP-101606 binding 

with COMPOUND B in adult rat forebrain tissue. 

Adult Sprague-Dawley rat forebrain membranes were used as the source of NMDA 

receptors in this competition study investigating COMPOUND B [I o-3M- I o-10M]. 

COMPOUND B bound with a high affinity (Ki :::;: 8 ± 9nM) to native NR2B-containing 

NMDA receptors displacing eH] CP-101606 in a model best fitted to a sigmoidal 

variable slope, one-site model. This data suggests similarity between the novel 

compounds and CP-101606 with a seemingly high affinity for only NRIINR2B 

receptors and the same site of action. Complete displacement of eH] CP-1 01606 was 

not achieved at milimolar concentrations of COMPOUND B, indicating that this 

compound maybe more highly selective for NMDA receptors than CP-101606. This 

data may indicate that COMPOUND B and COMPOUND A differ in pharmacological 

interaction with the receptor complex in the brain. The data shown are an average ± SD 

oftwo experiments, each carried out in triplicate. 
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Figure 3.5 Competition binding experiment showing COMPOUND B displacement of (3H] CP-

1Ql,6()6 in a~ult rat forebrain.tissue,fittedto a one-site,binding mode); Non-specific binding 

was defined with ifenprodil (lmM). 
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In order to further characterise the binding affinity and selectivity of COMPOUND A 

and COMPOUND B, competition binding assays were carried out using recombinant 

rNR1/NR2B receptors, in order to compare binding pharmacological properties with 

native tissue. 

Before binding assays were undertaken, the expression of NRIINR2B receptors was 

confirmed. 

3.2.6 Confirmation of recombinant NMDA receptor subunit expression 

The recombinant NRIINR2B NMDA receptors were expressed in HEK293 cells, 

following transient transfection using Lipofectamine reagent (2.2.15-18), and harvested 

48 hours post-transfection. 

To confirm NMDA receptor subunit expression, SDS-PAGE and immunoblotting was 

undertaken using cell homogenate. Immunoreactivity at - 120 and 170KDa shows 

successful eo-expression of both NRI and NR2B subunits, respectively. 

1 2 3 4 

+- 170KDa 

120KDa __. 

Figure 3.6 Immunoblot confirming the expression of NR1 and NR2B subunits in HEK293 cells 

for use in radioligand binding experiments. Lanes 1+2 HEK 293 cells expressing NR1/NR2B 

receptors and probed with anti-NR1 (2pgfml). Lanes 3+4 HEK 293 cells expressing 

NR1/NR2B receptors probed with anti-NR2B (2~g/ml). Representative blot from n=3 

experiments. 
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3.2.7 Competition binding assay to investigate the displacement of eH] Ro-256981 

by COMPOUND A in recombinant NR1/NR2B receptor complexes. 

NR 1/NR2B receptors were transiently expressed in HEK 293 cells and harvested 48 

hours post-transfection for use in radioligand binding studies. 

This competition assay shows two-site displacement of eH] Ro-256981 binding by 

COMPOUND A [10-3M-10-10M] and therefore affinity for two receptor populations. A 

small proportion (24%) of binding to a high affinity site (Ki = 10 ± lOnM) was evident, 

but the largest proportion (76%) of binding was to a second lower affinity site (Ki = 26 ± 

3J.lM). The high affinity binding is likely to be towards the recombinant NRl/NR2B 

receptors, whereas the lower affinity site may be another non-specific site endogenously 

expressed in HEK 293 cells. 

The data analysed are an average ± SD of three individual experiments, each performed 

in triplicate. 
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Figure 3.7 Competition binding showing two-site displacement of (3H) Ro-256981 by 

COMPOUND A in recombinant NMDA NR1/NR2B receptors expressed in HEK293 cells. Non­

specific binding was defined with ifenprodil (lmM). 

86 



Chapter 3 Heather Chaffey 

3.2.8 Competition assay investigating the displacement of eH] Ro-256981 by 

COMPOUND B in recombinant NR1/NR2B receptors. 

NR1/NR2B receptor subunits were transiently expressed in HEK 293 cells and used as 

the source ofNMDA receptors for this competition assay. 

Displacement of eH] Ro-256981 binding by COMPOUND B [10-3-10- 1~] was fitted to 

a two-site model showing binding affinity to potentially two populations of receptors 

(binding ratio 33:67%). COMPOUND B displays high affinity binding (Ki = 5 ± 3nM) 

probably to NR1/NR2B receptors, with lower affinity (Ki = 19 ± 12J.1M) binding 

towards another population of receptors present in the HEK 293 cells. The data shown 

are an average ± SD of four individual experiments, each performed in triplicate. 
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Figure 3.8 Competition binding experiment showing two-site displacement of (3H] Ro-

256981 by COMPOUND Bin recombinant NR1/NR2B receptors expressed in HEK293 cells. 

Non-specific binding was defined with ifenprodil (tmM). 
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3.2.9 Competition binding assay to investigate the influence of COMPOUND A 

upon the binding of[~] CP-101606 in recombinant NR1/NR2B receptors. 

NR l/NR2B recombinant receptors were transiently expressed in HEK 293 cells and 

used as the source ofNMDA receptors in this assay. 

COMPOUND A displayed two-site displacement of eH] CP-101,606 showing high 

affinity binding (Ki = 5 ± 6nM) to NRIINR2B populations (binding ratio 82:18%). A 

small proportion of binding to a low affinity site at higher concentrations of 

COMPOUND A possibly results from non-specific binding to other receptor sites 

present endogenously in HEK 293 cells. 

The data plotted are an average± SD of three individual experiments, each carried out in 

triplicate. 
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Figure 3.9 Competition binding showing the two-site displacement of (3H] CP-101,606 by 

COMPOUND A in recombinant NR1/NR2B receptors expressed in HEK 293 cells. Non-specific 

binding was defined with ifenprodil (1mM). 
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3.2.10 Competition assay to show the influence of COMPOUND B upon the 

binding of eH] CP-101606 towards recombinant NR1/NR2B receptors. 

NR1/NR2B recombinant receptors were transiently expressed in HEK 293 cells and 

harvested 48 hours post-transfection for use as the source of NMDA receptors in this 

assay. 

COMPOUND B displayed high affinity one-site displacement of eH] CP-101606. A 

steep hill slope and high affinity binding (Ki = 9 ± 1 OnM) of COMPOUND B towards 

NR1/NR2B containing receptors is evident. COMPOUND B completely displaces the 

CP-1 01606 radio ligand, showing that the two compounds display equivalent 

pharmacology in HEK293 cells, and also highlighting potentially different binding 

interactions between COMPOUND B and COMPOUND A. 

The data presented are an average ± SD of three individual experiments, each performed 

in triplicate. 

Hillslope = -0.8 ± 0.3 

piCso 1 = 8.0 ± 1.0 

Ki= 9 ± 10nM 

o+--,--~~~~==~~--~ 
-10 ~ ~ ~ ~ ~ 4 

Log (Compound B) (M) 
-3 

Figure 3.10 Competition binding experiment showing one-site high affinity displacement of 

(3H] CP-101,606 by COMPOUND Bin recombinant NR1/NR2B receptors expressed in HEK293 

cells. Non-specific binding was defined using ifenprodil (lmM) . 
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To further characterise the binding site of the two novel compounds COMPOUND A 

and COMPOUND Band investigate their interactions, competition binding was carried 

out with eH] MK-801. MK-801 is a non-selective NMDA channel antagonist and 

enabled any allosteric interactions of the novel compounds with the channel pore to be 

investigated. 
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3.2.11 Competition curve to investigate the competitive binding between eHJ MK-

801 and ifenprodil in adult rat forebrain tissue. 

Following a 90 minute incubation period ifenprodil (1 o-3 -10-9M) displacement of eH] 

MK-801 binding was fitted to a one-site competition model in this assay using adult rat 

forebrain membranes as the source of NMDA receptors with a Ki = 120 ± I OJJM. 

Reducing the incubation times to sub-equilibrium (30 and 60 minutes) shifted the 

binding curve to the left indicating a reduction in open channel probability reducing the 

ability of eH] MK-801 binding and/or an allosteric linkage with the channel pore 

binding site, consistent with previous findings (data provided by Chazot, unpublished). 

The data presented for 90minute incubation are an average ± SD for three individual 

experiments carried out in triplicate. 
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Figure 3.11 Competition binding experiment showing low affinity ifenprodil displacement of 

(3H] MK-801 binding in adult rat forebrain membranes. Non-specific binding was defined 

with ketamine (1mM) and the reaction terminated after 30, 60 and 90 minutes. 
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3.2.12 Competition assay to investigate the influence of COMPOUND A upon the 

binding of eH] MK-801 to adult rat forebrain tissue. 

Adult Sprague-Dawley rat forebrain membranes (IOOJ..Lg protein/tube) were used as the 

source of NMDA receptors in this assay. The experiment was carried out on ice and 

terminated after either 30, 60 or 90 minutes to investigate time-dependent binding 

affinities. The data was fitted to a one-site competition model with similar low affinity 

binding of COMPOUND A at all three time-points (Ki = 14 ± OJ..LM, 18 ± 9J..LM, 15 ± 

lOJ..LM, respectively. This evidence suggests that binding of COMPOUND A has 

minimal allosteric linkage with the receptor channel and therefore MK-801 binding 

remains unaffected until high concentrations. 

The data shown are an average ± SD of two individual experiments, each carried out in 

triplicate. 
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Figure 3.12 Competition binding experiments showing the COMPOUND A displacement of 

(3H] MK-801 binding in adult rat forebrain, terminating the reaction after 30, 60 and 

90minutes. Non-specific binding was defined with ketamine (1mM). 
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3.2.13 Competition binding assay investigating the influence of COMPOUND B on 

the specific binding of eH] MK-801 in adult rat forebrain tissue. 

Adult Sprague-Dawley rat forebrain membranes (1 OO~g protein/tube) were utilised as 

the source of NMDA receptors for this assay. Again, the reaction was terminated after 

30, 60 and 90 minutes before and after equilibrium was achieved to assess time-

dependent responses. Following 90 minute incubation period COMPOUND B 

displacement of eHJ MK-801 was best fitted to a one-site model with a Ki = 13 ± 

15~M. A shift to the left of the curves sub-equilibrium at 30 and 60 minutes showed 

two-site binding with a high affinity piC50 = 8 and Ki = 4nM after 30 minutes. These 

results may be indicative of potential differences in the binding interactions and kinetics 

of the two compounds, as COMPOUND B shows greater allosteric interaction with the 

MK-801 binding site particularly sub-equilibrium than COMPOUND A. Data shown 

are an average± SO of between one-five experiments, each carried out in triplicate. 
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Figure 3.13 Competition binding experiments showing the COMPOUND B displacement of (lH] MK-

801 binding in adult rat forebrain, terminating the reaction after 30, 60 and 90minutes. Non­

specific binding was defined with ketamine (1mM). 
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_______ Rect'pt·ors---Gompet-it-in·-displaet·ment-witlnlm el-­

com po1mds 

COMPOUND A COMPOUNDB 
Native Low affinity Low affinity 

eH] Ro- Ki = 158J.1M Ki= 180J.1M 
256981 Recombinant Proportion of high Proportion ofhigh 

Affinity (24%) affinity 
Ki= 10nM (33%) 

Ki=5nM 
Native High affinity High affinity 

[~CP- Ki=6nM Ki=8nM 
101606 Recombinant High affinity High affrnity 

Ki=5nM Ki =9nM 

[~ MK-801 Native Low affrnity Proportion ofhigh 
Ki = 14, 18, 15J.1M affinity 

sub-equilibrium 
Ki = 4, 57nM, l3J.1M 

Comment High affinity antagonism High affinity 
NR1/NR2B populations antagonism 

Minimal influence on NR1/NR2B populations 
channel Potentially some inter-

pore binding sites. action with channel 
pore. 

Table 3.1 Summary of the competitive binding data obtained for the novel compounds 

COMPOUND A and COMPOUND B. 
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3.3 Discussion 

NR2B subunit-selective NMDA antagonists are some of the most clinically advanced 

compounds targeting this excitatory receptor family, with the potential clinical benefits 

of pharmaceutical intervention evident from animal models and in vitro systems. 

Continuing the generation and development of high-affinity, subunit-selective 

compounds is therefore very important to ensure specific, effective targeting with 

minimal adverse side-effects. 

This study focuses on the characterisation of two novel anti-NR2B antagonists 

developed by GlaxoSmithKiine COMPOUND A and COMPOUND B, using 

competitive radioligand binding experiments. 

The NR2B selective antagonist ifenprodil and its analogues Ro-256981 and CP-101606, 

and the channel blocker MK-801, were utilised in this series of experiments to 

characterise the binding properties and kinetics of the two novel compounds. 

To confirm assay protocol and validate the action of the test compounds, initial 

competition experiments were carried out with ifenprodil (I0-4-I0-9M) and tritiated Ro-

256981. Ifenprodil displayed high affinity binding towards NR2B-containing receptors 

in native tissue, with a Ki of 52nM, similar to previous findings of 37nM (Bradford and 

Chazot, unpublished), 20nM (Mute! et al., 1998) and 33nM (Grimwood et al., 2000). 

lfenprodil has been the prototypical NR2B-selective antagonist since it was shown to 

have a significantly higher affinity for NR2B-containing NMDA receptors than those 

containing alternative NR2 subunits (Williams, 1993; Williams, 2001) in both native 

(Tovar et al., 2000) and recombinant receptors (Williams, 1993). Originally developed 

as a vasodilating agent, as it binds to adrenergic-a I receptors, it was found to have 
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selectivity for NR2B-containing NMDA receptors, providing neuroprotection with more 

limited side-effects than the broad spectrum, non-selective channel blockers. 

Effective, high affinity displacement of fH] Ro-256981 binding by ifenprodil shows 

both compounds are actively competing for the same receptor binding sites. 

Ifenprodil and its analogues bind to a distinct site (LIVBP-like domain) on the NR2B 

subunit (see section 1.7.3) and act via increasing proton inhibiton at these receptors 

(Perin-Dureau et al., 2002). Sequence variation of the LIVBP-like domain between 

NR2 subunit family members enables the selective targeting of the NR2B subunit 

(Malherbe et al., 2003). 

The NR2B-selectivity of ifenprodil and its analogues therefore arises from specific 

modulation and interaction with this binding domain. Chemically, ifenprodil-like 

compounds contain a common motif thought to be important for NR2B selectivity, 

where a tertiary basic amine is attached via tinkers to an aryl ring (Nikam and Meltzer, 

2002) in an optimum spatial orientation (Williams, 2002). 

The number of bonds between the acidic groups appears to be important for subunit 

selectivity with Feng et al., (2005) showing that longer chain antagonists (containing 

seven instead of five bond lengths) displayed greater subunit selectivity aiding the 

design of new analogues. Of these analogues, Ro-256981 developed by Roche (Fischer 

et al., 1997) and CP-1 01606 developed by Pfizer (Menniti et al., 1997) showed 

advanced affinity and selectivity for NR2B-containing receptors via addition of a tinker 

bearing a hydroxyl group and a hydroxyl group in the aryl-ring, which reduced 

compound non-specific affinity for adrenergic, sodium and potassium channels 

(Williams, 2002). 

96 



Chapter 3 Heather Chaffey 

In animal models Ro-256981 has been shown to effectively attenuate glutamate induced 

NMDA currents (Malherbe et al., 2003) showing success in disease models (Loschmann 

et al., 2004). Ro-256981 binds to NR2B-containing receptors with high affinity despite 

the presence of alternative NR2 subunits (Chazot et al., 2002) highlighting the different 

populations of receptors which would be targeted by this compound. 

Like ifenprodil and Ro-256981, CP-101606 acts to inhibit NMDA receptor channel 

activity by potentiating proton inhibition (Chazot, 2000) and is able to distinguish 

between sub-populations of receptor, binding with significantly greater potency to 

NR1/NR2B populations (Chazot et al., 2002). 

Competition binding using these NR2B-selective tools was performed to characterise 

and assess the binding properties and affinities of the two novel compounds. 

Competition binding assays using unlabelled COMPOUND A and COMPOUND B(l o-

3-10-1~) and eH] Ro-256981 showed low affinity binding to NMDA receptors within 

the native adult rat forebrain tissue, with inhibition of eH] Ro-256981 binding at 

relatively high concentrations only (Ki = 158 ± 14 and 180 ± 7J.1M, respectively). This 

low affinity binding may result from the presence of heterogeneous NMDA receptor 

populations within the forebrain to which Ro-256981 binds but COMPOUND A and 

COMPOUND B do not, preventing high affinity binding. It could also be an indication 

that COMPOUND A and COMPOUND B bind to distinct sites or interact differently 

with the Ro-256981 binding pocket on the receptor complex. It is also possible that 

assay conditions were unfavourable for effective compound binding, for example if high 

concentrations of magnesium were present blocking receptor activity, or if rec~l'!?r 
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expression levels were different between tissue homogenates, however parallel 

experiments with the control compound ifenprodil showed competitive displacement. 

The lack of apparent effect by COMPOUND A and minimal high affinity displacement 

by COMPOUND B of eHJ Ro-256981 binding in the brain is surprising, yet consistent 

(observed with three separate batches of radio ligand which were all displaced as 

expected with the control compound ifenprodil). These data are in contrast to previous 

data, where this low affinity inhibition of eH] Ro-256981 is not seen with other NR2B 

antagonists such as ifenprodil, CP-101606 and RGH-896 (Chazot et a/, 2002 and 

Bradford, unpublished) (data not shown), which support confidence in the assay. 

In the second set of competition experiments, eH] CP-1 01606, a compound which binds 

primarily to NR1/NR2B receptors, was used to assess the binding properties of the two 

novel compounds in adult rat forebrain. Experiments with unlabelled COMPOUND A 

(I 0"3 -J 0"1<M) showed a steep, sigmoidal displacement curve indicative of high affinity 

competitive binding (Ki = 6 ± 2nM) to populations of receptor containing only 

NRIINR2B subunits. Under the same assay conditions, COMPOUND B (10-3-10-1<M) 

again displayed high affinity binding (Ki = 8 ± 9nM), with a single-site displacement of 

eH] CP-101606. COMPOUND A and COMPOUND B (Ki = 6 and 8nM, respectively) 

therefore show a greater binding affinity than ifenprodil (20nM), haloperidol (600nM) 

and eliprodil (200nM) (Mutel et al., 1998) and display comparable selectivity and 

potency with other NR2B antagonists such as Ro-256981 and CP-101606. The 

competitive antagonism of eH] CP-1 01606 binding in particular is comparable with 

published Ki values for unlabelled CP-1 01606 (8nM) (Mutel et al., 1998) and tritiated 
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CP-101606 (12nM) (Chazot et al., 2002), (13nM) (Menniti et al., 1997) showing that 

both COMPOUND A and COMPOUND B are potent NR2B-selective antagonists. 

Interestingly, even at high concentrations complete inhibition and displacement of eH] 

CP-101606 by COMPOUND B was not achieved. This provides evidence suggesting 

that CP-1 01,606 may bind to an alternative site/receptor population within the native 

tissue to which COMPOUND A but not COMPOUND B binds. 

To further assess the binding properties and selectivity of the novel compounds, the 

assays were repeated using recombinant NR1/NR2B receptors expressed in HEK 293 

cells. 

COMPOUND A (10-3-10-10M) displayed biphasic displacement of eH] Ro-256981, 

showing a site of high affinity binding, presumed to be NR1/NR2B receptors (Ki = 10 ± 

10nM) and a lower affinity site (Ki = 26 ± 3J.1M) possibly non-specific binding to other 

non-sigma receptor sites endogenously expressed in HEK 293 cells. The inhibition of 

eH] Ro-256981 binding by COMPOUND B (10-3-10-1<M) shows a comparable biphasic 

two-site binding curve with recombinant NR1/NR2B receptors as was seen with 

COMPOUND A, with a high affinity NR1/NR2B binding site (Ki = 5 ± 3nM) and a low 

affinity at the second binding site (Ki = 19 ± 12J.1M, ratio 33:67%). 

This low affinity site has previously been detected using other NR2B-ligands in HEK 

293 cells (Bradford and Chazot, unpublished) and reported in L (tk-) cells (Grimwood et 

al., 2000). To minimize the effects of this endogenous element in HEK293 cells and 

maximize NR1/NR2B receptor binding, immunopurification of the recombinant 

receptors could be carried out prior to the assay. It should also be noted that in vitro 
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modelling in HEK 293 cells also presents potential changes in the cell membrane, 

receptor trafficking and expression mechanisms in comparison to the host neurons in 

native tissue, which may affect pharmacology. 

Comparing this data with that obtained from adult rat forebrain tissue, the high affinity 

site seen in the recombinant NRI/NR2B receptors may be masked in the native tissue 

due to the presence of alternative receptor subunit combinations or receptor 

conformations. 

Competitive antagonism of COMPOUND A (10-3-10-10M) towards eH] CP-101,606 in 

recombinant NR1/NR2B receptors displayed a biphasic distribution with high affinity 

binding (Ki = 5 ± 6nM) to NRI/NR2B receptors comparable to that obtained in the 

native tissue (Ki = 6 ± 2nM). 

Displacement of eH] CP-101606 with COMPOUND B (10-3-10-10M) also showed 

comparable high affinity binding in recombinant NR1/NR2B receptors (Ki = 9 ± lOoM) 

and native tissue (Ki = 8 ± 9nM). Again these high affinity binding values are 

comparable with published values for eH] CP-101606 binding to NR1/NR2B 

recombinant receptors expressed in HEK 293 cells (Ko = 6nM) (Chazot et al., 2002) 

demonstrating high affinity novel compounds. The discrimination between two receptor 

populations shown by COMPOUND A in this assay provides further evidence for 

distinct binding interactions to receptor populations between the two novel compounds. 

In the recombinant NRIINR2B receptors, both COMPOUND A and COMPOUND B 

display high affinity inhibition of eH] Ro-256981 and eH] CP-10 1606 binding, which 

may indicate that HEK 293 cells lack components which prevent high affinity inhibition 
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of eH] Ro-256981 binding by COMPOUND A and COMPOUND B in the brain. Both 

COMPOUND A and COMPOUND B appear to have a high affinity for NRIINR2B 

receptors and are potentially more sensitive to receptors containing alternative NR2 

subunits as is evident from their competitive antagonism of eH] CP-1 01606 binding. 

The data may also suggest evidence for distinct, but possibly overlapping binding sites 

between the novel compounds and Ro-256981. 

To further investigate the binding site characteristics and any allosteric modulations of 

the receptor channel inferred by the two novel compounds, competition studies with 

eH] MK-801 were undertaken, terminating the reaction after 30 minutes, 60 minutes 

and 90 minutes to observe any time-dependent changes. Competitive binding with 

ifenprodil (1 o-3 -10-9M) and eH] MK -801 showed evidence for allosteric coupling 

between the ifenprodil binding site and the channel pore binding site. 

Displacement curves with both COMPOUND A and COMPOUND B were fitted to 

one-site binding models at equilibrium, with indication of differential allosteric coupling 

to the channel pore site using sub-equilibrium conditions. 

COMPOUND A displays very little competitive antagonism of eH] MK-801, with 

similar binding affinities at all three time-points (14, 18 and 15J.1M, respectively). 

In contrast, COMPOUND B shows increased binding affinity, with a curve shift to the 

left and shallowing of the curves following 60 and 30 minute incubation times, 

respectively. 

These apparent differences in the modulatory effects on the channel pore binding sites, 

shows that COMPOUND A and COMPOUND B may have overlapping bin~in~ sites or 
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distinctive interactions with their binding sites which mediate different open channel 

probabilities or different allosteric effects on the MK-801 binding site. 

From the evidence collected both COMPOUND A and COMPOUND B display high 

affinity antagonism towards NRIINR2B-containing receptors and could be classified 

along with CP-1 01606 in terms of NMDA receptor selectivity as both compounds 

appear to be sensitive to the presence of alternative NR2 or NR3 subunits in the receptor 

complex. 

Furthermore, the data indicates that COMPOUND B and COMPOUND A may have 

distinct pharmacological interactions with the receptor complex, which differentially 

effect channel open probability and allosteric coupling. 

In order to increase the efficacy and selectivity ofNR2B-selective antagonists as well as 

understand the implications of targeting this population, the heterogeneous nature of the 

NMDA receptor and the subunit eo-assemblies need to be considered. 
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Chapter 4 

Investigating NR3B eo-expression and eo-assembly in rat and 

hllDmalll spinal cord using subunit-selective antibodies 

4.0 Introduction 

Immunological probes are an essential, extremely useful tool within molecular biology. 

Since Paul Erhlich first proposed the antibody formation theory in 1900 huge advances 

in the field of immunology have led to the development of commercial antibodies which 

are utilised in research to provide an effective means of identifying, locating, targeting 

and characterising proteins both in vivo and in vitro. Antibody molecules are a large 

family of glycoproteins, produced by B-lymphocytes in response to the presence of 

foreign molecules in the body (Janeway et al., 2001). Structurally, immunoglobulins are 

composed of three protein domains, forming a bivalent Y -shaped molecule (Fig.4.1 ), 

composed of two heavy chain polypeptides (approximately 55KDa) and two light chain 

polypeptides (approximately 25kDa) held together by disulphide bonds. The amino 

terminals of the heavy and light chains associate to construct an Fab fragment with an 

antigen-binding domain specific to a particular epitope on an antigen molecule. The 

carboxy-terminals of the heavy chains associate to form the Fe fragment, which binds to 

specific proteins within the immune system. 
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~--- Antigen Binding Site -----... 

F(ab')2 Fragment 

F"r gmenl 

• Ughl Chains • Hea,vy Chains 

Figure 4.1 Schematic diagram of immunoglobulin structure 

Cloning ofNMDA receptor subunits has allowed the design and production of epitope­

specific antibodies, which have been used to study expression and to characterise the 

component parts of the receptor using immunohistochemistry and western blotting. The 

antibodies have also been used to affinity purify receptor complexes, allowing subunit 

compositions to be determined (e.g., Chazot and Stephenson, 1997; Blahos and 

Wenthold, 1996). The generation of polyclonal antibodies relies upon the humoral 

response of laboratory animals following immunisation with a specific peptide. In order 

to elicit a strong host response against the peptide molecule, the immunogenicity of the 

peptide may be increased via conjugation to a larger carrier protein such as 

thyroglobulin. Development of the immune response takes several weeks, after which 

blood samples are collected, from which the antibody may be purified. 
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In this study the heterogeneity of the NMDA receptor complex was investigated 

utilising a panel of previously validated subunit specific polyclonal antibodies; anti­

rNR1-1a (929-938) (Chazot et al., 1992), anti-rNR2A (1435-1445) (Cik et al., 1993) 

and anti-rNR2B (46-60) (Chazot and Stephenson, 1997). In addition, two further 

antibodies were generated, purified and characterised; anti-rodent NR3B (885-899) 

(Based on a sequence previously published by Matsuda et al., 2002 and a novel anti­

human NR3B (885-899) (sequence selected in house). This chapter presents novel data 

that collectively maps the protein expression of the NR1, NR2A, NR2B and particularly 

the NR3B subunit in rat spinal cord at the cervical, thoracic and lumbar level and human 

spinal cord at the cervical level using immunohistochemistry. Previously research has 

focussed on mRNA and/or protein expression of NR1, NR2A, NR2B, NR2C/D in the 

adult rat brain and lumbar cord regions (Nagy et al., 2004; Tolle et al., 1993) and adult 

human lumbar-sacral regions (Sundstrom et al., 1997), showing widespread NR1 

expression with more specific localisation of the NR2 subunits. One study mapped 

expression in a range of cord levels, investigating NMDA NRI and NR2 expression in 

cervical, thoracic and lumbar regions of the human spinal cord during first trimester 

development (Akesson et al., 2000). mRNA (Nishi et al., 2001; Fukaya et al., 2005) 

and protein (Matsuda et al., 2003) expression studies of the NR3B subunit in the adult 

mouse brain and spinal cord show motor neuron-specific expression, though a recent 

study provided evidence for a more widespread expression in the cortex, cerebellum, 

hippocampus and spinal cord of the adult rat (Wee et al., 2007). 

This chapter also describes the optimisation of NMDA receptor solubilisation and 

immunoaffmity purification to investigate the native eo-associations of the NR3B 
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subunit within the rat spinal cord. Immunopurification studies to date describe the eo­

associations ofNR1 and NR2 subunits in the adult rat brain (Dunah et al., 1998; Chazot 

and Stephenson, 1997) and human lumbar-sacral spinal cord (Sundstrom et al., 1997), 

though native spinal cord complexes containing NR3B remain unknown. 
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4.1 Results 

4.1.1 Rodent anti-NR3B characterization. 

4.1.2 Immunopurification of polyclonal rodent anti-NR3B 

The peptide corresponding to residues 885-899 in the C-terminus of the mouse NR3B 

subunit (ISL, Paignton, UK) was conjugated to thyroglobulin (section 2.2.1) and 

emulsified with Freund's adjuvant and injected into New Zealand rabbits (section 2.2.3). 

The induction of a secondary immune response in the rabbits generates polyclonal 

antibodies raised against both the peptide and its affiliated conjugated protein 

thyroglobulin. The production of non peptide-specific antibodies therefore necessitated 

purification of selective anti-NR3B antibodies via an NR3B peptide immunoaffinity 

column, which utilizes specific antigen-antibody interaction to pull down the peptide 

specific antibodies (see section 2.2.1 ). 

Following collection and preparation of the antiserum, immunoaffinity purification of 

5mls yielded the following concentrations of anti-mNR3B polyclonal antibody from 

each bleed, as determined by Lowry protein assays (section 2.2.7). 

-

Bll'l'd ant•i-r:odl'nt NR3B antihod~· ~ idd (.11:.!11111) 

1 57 

2 170 

3 190 

Table 4.1 Anti-rodent NR38 antibody yield (Jlgfml) from each collection of antisera. 
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4.1.3 Characterisation of anti-rodent NR3B antibody via western blotting with 

recombinant NMDA receptor subunits. 

To confirm the subunit specificity and characterization of the purified rodent anti-NR3B 

antibody previously published by Matsuda et al., 2002, western blotting was carried out 

on both native and recombinant receptors. 

HEK 293 cells recombinantly expressing the single subunits of rNR3B, rNR3A or 

rNRl-la were harvested 48hours post-transfection and utilized as the source of 

recombinant NMDA receptor subunits for this analysis. SDS-PAGE was followed by 

overnight incubation of the nitrocellulose with anti-rodent NR3B (2J.lg/ml) and resulted 

in evidence for selective NR3B recognition with an immunoreactive band at 

approximately lOOKDa. The lack of immunoreactivity with the NR3A subunit (which 

shares close sequence homology with NR3B) and NRI, shows no non-specific cross-

reactivity of the antibody, verifying the anti-rodent NR3B selectivity and displaying 

consistency with results published by Matsuda et al., 2002. 

The non-specific bands of approximately 90 and 80KDa are likely to be cross-reacting 

irrelevant proteins endogenously expressed in the HEK 293 cells. 

100KDa ___. 

38 3A NR1 
Figure 4.2 lmmunoblot showing recombinant NR38, NR3A and NRl subunits expressed in 

HEK 293 cells. Probed with anti-rodent NR3B (2JLg/ml). Representative from n=3 

experiments. 
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4.1.4 Characterisation of anti-rodent NR3B using western blotting with native and 

recombinant NMDA receptors. 

To analyse the binding selectivity of the anti-rodent NR3B antibody in native tissue, 

adult Sprague-Dawley rat forebrain and spinal cord membranes were prepared and 

utilized in immunoblotting experiments. 20J.1g/lane forebrain and spinal cord 

membranes were loaded for SDS-PAGE together with samples oftransiently transfected 

cells expressing NR3B as a positive control. The immunoblot was then probed 

overnight with anti-rNR3B, bleed 2 (2J.1g/ml). 

Immunoreactivity was detected in both the forebrain and spinal cord membranes 

showing the detection of NR3B in both tissues. In the forebrain homogenate, an 

immunoreactive band was detected at -llOKDa, a molecular weight similar to that 

detected in the HEK 293 cells expressing NR3B (I OOKDa) and consistent with 

previously published data (Nishi et al., 200 I; Matsuda et al., 2002), though interestingly 

in both forebrain and spinal cord homogenates an immunoreactive band -30KDa was 

also detected. This species may be due to NR3B subunit proteolysis and/or post-

translational modifications, but to ensure specificity a peptide block was performed. 

IIOKDa --+ 

IOOKDa --+ 

10KO:~--+ 

1 2 3 4 

Figure 4.3 lmmunoblot showing adult rat forebrain (1) and spinal cord (2) membranes 

(30~Jg) and recombinant NR38 expressed in HEK 293 cells (3+4), probed with anti-rodent 

NR3B (2~Jg/ml). Representative from n=3 experiments. 
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4.1.5 Characterisation of the specificity of the anti-rodent NR3B with antigenic 

peptide blockade. 

To confirm the selectivity of the anti-rodent NR3B antibody for the antigenic peptide 

and thus for the NR3B subunit, immunoblotting was carried out on both native and 

recombinant rNR3B sources using anti-rodent NR3B antibody which was pre-incubated 

with the peptide used to generate the antiserum. 

Pre-absorption of the anti-NR3B antibody with the respective antigenic peptide 

completely inhibited immunoreactive signaling confirming antibody selectivity for the 

peptide antigen. Detection of smaller molecular weight proteins may therefore be an 

indication of proteolysis of the NR3B subunit within native tissue which isn't replicated 

in recombinant models probably due to the absence of endogenous neuronal processing 

and transporting machinery. 

This antibody was utilized for immunohistochemical investigations detailed in chapter 

6. 
2 3 4 5 6 

IOOKDa 

30KDa 

Pre-incubation with antigenic peptide 

Figure 4.4 lmmunoblot showing adult rat forebrain (1+4) and spinal cord (2+5) (30Jlg, 

respectively), and recombinant NR3B (3+6) subunits expressed in HEK 293 cells probed 

overnight with anti-rodent NR3B (2Jtg/ml). Representative from n=2 experiments. 
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4.2 Anti-human NR3B characterization 

4.2.1 Immunoaffinity purification of polyclonal anti-human NR3B 

An anti-human NR3B antibody was generated from the antigenic peptide 

C T G P P E G S K E E T A E A E corresponding to amino acids 885-899 in the C­

terminal region of the NR3B protein. 

As previously stated, following the generation of an immune response in the host rabbit, 

resulting antisera was collected and purified using a newly generated human NR3B 

peptide immunoaffinity column (see section 2.2.2). 

Following the collection and preparation of antisera, 5mls from each bleed generated the 

following antibody yields. 

1 

2 

3 

323 

350 

439 

Table 4.2 Anti-human NR3B antibody yield (tJ.gfml) from each collection of antisera. 
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4.2.2 Characterisation of the anti-human NR3B antibody using western blotting on 

native NMDA receptors. 

To investigate the binding selectivity of the anti-human NR3B antibody, western 

blotting analyses were performed using adult human putamen membranes (50J.1g 

protein) (obtained as a gift from Dr Margaret Piggott, Newcastle University) and adult 

Sprague-Dawley rat forebrain membranes (30J.lg) to detect any cross-reactivity between 

species. Following SDS-PAGE, the nitrocellulose was probed overnight with anti-

hNR3B (2J.lg/ml, bleed 3), with resulting immunoreactivity in both species. A large 

molecular weight species (174KDa) was detected in the human putamen, together with 

smaller fractions around 11 OKDa (the expected molecular weight for NR3B) and 

~50KDa, similar to species detected by the anti-rodent NR3B antibody. Some cross-

reactivity is also evident from detection of NR3B at 11 OKDa and 50KDa in the rat 

forebrain. To confirm specificity, an antigenic peptide block was performed. 

2 

174KDa -----. 

11 OKDa _____. 

82KDa _____. 

57KDa _____. 

Figure 4.5 lmmunoblot showing post-mortem human putamen membranes (1) (SOJlg) 

and adult rat forebrain membranes (2) (30Jlg) probed with anti-human NR3B (2Jlg/ml). 

representative from n=3 experiments. 
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4.2.3 Characterisation of anti-human NR3B in both human and rat native tissue 

with antigenic peptide blockade. 

Immunoblotting was performed on adult Sprague-Dawley rat forebrain and spinal cord 

membranes (30J.1g, respectively) and human putamen membranes (50J.lg) and probed 

with either anti-hNR3B (2J.lg/ml, bleed 2) or anti-hNR3B which had been pre-incubated 

overnight with the antigenic peptide to which it was derived. 

Pre-absorption of the anti-hNR3B antibody with the antigenic peptide blocked specific 

antibody-protein interactions. The resulting blockade of all immunoreactive bands 

demonstrates the selectivity of the anti-hNR3B and shows that the high molecular 

weight species (174KDa) in the human tissue is NR3B, possibly in a dimeric form, and 

that this antibody cross-reacts with rat NR3B. 

A human NR3B recombinant clone was not available for further characterization. 

1 2 3 4 5 6 7 8 9 

174KDa---. 

50KDa___,. -

' . 
Pre-incubation with antigenic peptide 

Figure 4.6 Immunoblot (n=l) showing adult rat forebrain membranes (1+6), adult rat spinal 

cord membranes (2+7) (30Jtg) and human putamen membranes (4, 5, 8+9) (50Jtg) probed 

with anti-human NR3B (2J.lg/ml). Lane 3 was loaded with sample buffer. 
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4.3 Characterisation of the commercial anti-rat NR3B Upstate® 

A commercial anti-NR3B antibody generated against amino acids 916-928 in the C-

terminal domain, with a peptide sequence R R V R R A V V E R E R R was purchased 

for experimental use during generation and characterization of our antibodies. 

To characterize and verify the selectivity of this commercial antibody, immunoblotting 

was carried out with native NMDA receptors from rat forebrain and spinal cord 

membranes (301-!g/lane) and with recombinant NR3B expressed in HEK 293 cells, 

probing with commercial anti-NR3B (1: I 000). 

The commercial anti-NR3B displayed immunoreactivity in the native tissue, detecting 

species at ~ 11 OKDa in both rat forebrain and spinal cord, where expression of NR3B 

may be reduced. Other smaller species are detectable, including the species ~30KDa, 

which may be the result of post-translational modifications. No clear band of 

immunoreactivity can be detected in the recombinant NR3B, in contrast to the in house 

anti-rNR3B, which may be due to ineffective transfection and subunit expression, or due 

to a lack of specific reactivity in in vitro models. 

2 3 4 

IIOKD 

Figure 4.7Representative immunoblot (n=2) showing adult rat forebrain membranes (1) 

and adult rat spinal cord membranes (2) (30Jtg) and recomblnant NR3B expressed in HEK 

293 cells (3+4) probed with commercial anti-NR3B (1:1000). 
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4.4 eo-expression of the NMDA receptor subunits NRl, NR2A, NR2B and NR3B 

in the adult rat and adult human spinal cord. 

In order to map subunit expression within the rat and human spinal cord tissue, 

purification of anti-NR1, anti-NR2A and anti-NR2B antibodies was also carried out to 

produce a panel of subunit selective antibodies which were used for 

immunohistochemical and immunopurification investigations. 

4.4.1 Purification of subunit selective anti-NMDA antibodies 

New batches of anti-rNR1, anti-rNR2A and anti-rNR2B antisera (previously published 

Chazot et al., 1992; Cik et al., 1993; Chazot and Stephenson, 1997) were purified using 

selective peptide affinity columns to generate a panel of subunit selective antibodies to 

define NMDA receptor subunit localisation. Immunoblotting was performed with adult 

rat forebrain and spinal cord membranes (251J.g), and probed with the respective 

antibody overnight (21J.g/ml). 

The immunoblots show clear immunoreactivity towards each NMDA subunit species. 

Anti-rNR1, anti-rNR2A and anti-rNR2B display distinct immunoreactive bands at 

~120KDa, 180KDa and 180KDa, respectively, in both forebrain and spinal cord, 

concurring with previously published sizes for each subunit (Hawkins et al., 1999). 
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A B c 
2 1 2 2 

ISOKDa _.. 
ISOKDa _.. 

120KDa 

' . 

Anti-NRl Anti-NR2A Anti-NR2B 

Figure 4.8 Representative immunoblots (n=3) showing adult rat forebrain membranes 

(25J1g) (Lane 1) and adult rat spinal cord membranes (25J~g) (Lane 2), probed overnight with 

anti-rNRl (2J1g/ml) (A), anti-rNRZA (2J1g/ml) and anti-rNRZB (2J1g/ml). 
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4.4.2 Immunohistochemical investigations of NMDA subunit eo-expression in the 

rat spinal cord. 

All animal and human studies were performed with full ethical and Home Office 

approval (Project licence PPL-6003437). 

Adult male Sprague-Dawley rat spinal cords were dissected and rapidly frozen , before 

cryostat sectioning (see 2.2.9). Immunohistochemical analysis (see 2.2.10) was then 

performed on the cervical, thoracic and lumbar regions of rat spinal cord using the panel 

of subunit selective antibodies previously generated. Controls were carried out in the 

absence of primary antibodies (see figure 4.1 0). Both the dorsal (sensory) and the 

ventral (motor) areas of the cord were investigated and NMDA subunit expression 

mapped for each antibody according to the immunoreactivity in the spinal laminae 

shown below. 

Dorsal Horn 

Ventral Horn 

Figure 4.9 Schematic diagram showing the laminae in the dorsal and ventral regions of the 

rodent lumbar spinal cord (Tolle et al., 1993). 
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A B 

\ 

c D 

.. ,. 

Figure 4.10 Control sections showing the immunoreactivity in tissue in the absence of 

primary antibodies in the cervical dorsal horn (A), the lumbar dorsal horn (B) and the 

thoracic ventral horn (C). Low resolution image of the cervical cord showing NR1 

iinmunostaining (Bigini et al., 2006) with red arrows highlighting the dorsal and ventral 

areas of the cord focused upon in this study. 
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41.4.2.1 Expression of NRl, NRJB, NR2A and NR2B in adult rat cervical spinal 

cord 

Immunohistochemical analysis in the cervical region of the adult rat spinal cord revealed 

differential expression of the four subunits between motor and sensory areas confirming 

distinct cellular localization and likely modulatory functioning of the subunits. 

NR I is ubiquitously expressed throughout the spinal cord layers, with its abundant 

expression confirming that previously published for mRNA {Tolle et al., 1993; 

Furuyama et al., 1993) and protein (Nagy et al., 2004) studies in the lumbar region. 

NR3B expression is predominantly confined to the motor neuron cell bodies and 

dendrites within the ventral horn, with modest immunoreactivity in the dorsal sensory 

regions consistent with previous mRNA expression studies (Nishi et al., 2001). 

Immunoreactivity to both NR2A and NR2B was detected in dorsal and ventral horns, 

particularly in motor neuron cell bodies and outer laminae I, 11 and Ill, concurring with 

previous studies in cervical (Watanabe et al., 1994) and lumbar (Nagy et al., 2004) 

tissue and suggesting a role in motor and sensory transmissions. 
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Dorsal Ventral 

A 

B 
r:. 

Ill 

MN 

.. 

Figure 4.11 Expression of NR1 (probed anti-rNR1 2Jtgjml) (A), NR3B (commercial anti­

rNR38 1:1000) (B) in the dorsal horns laminae I, 11, Ill and ventral horns showing the motor 

neurons (MN) ofthe cervical rat spinal cord (n=2). Scale bars represent 100J1D1. 

120 

... 
{ 



Chapter 4 Heather Chaffey 

c Dorsal Ventral 

D 

Figure 4.12 Expression ofNR2A (anti-rNR2A 2J,tg/ml) (C) and NR28 (anti-rNR2B 2J,tgfml) (D) 

in the dorsal horns laminae I, 11, Ill and ventral horns showing the motor neurons (MN) of the 

cervical rat spinal cord (n=2). Scale bars represent 100JU11. 
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4.4.2.2 Expression of NRl, NR2A, NR2B and NR3B in adult rat thoracic spinal 

cord. 

Immunohistochemical analysis was then performed using the same panel of subunit 

selective antibodies on adult rat thoracic spinal cord sections. The tissue was probed 

overnight with anti-rNRl (1 ~g/ml), anti-rNR2A (2J.lg/ml), anti-rNR2B (2~g/ml) and the 

commercial anti-rNR3B (1: 1 000) and analysed using a Nikon Eclipse E300 light 

microscope with a Coolpix MDC lens Nikon Camera (Japan) (x400 magnification). 

Distinct patterns of sub unit expression were detected in the thoracic region of the adult 

rat spinal cord, showing prominent changes and potential evidence for varying NMDA 

subunit modulation and function in different cord regions. 

NRI expression is again abundant with immunoreactivity evident in the ventral horn and 

the dorsal horn. A prominent band of immunoreactivity was detected in laminae II of 

the dorsal horn, possibly implying increased NMDA receptor presence in this puncta of 

sensory neurons. The concentration of anti-NR1 was reduced in order to reduce the 

high level ofbackground staining seen in the cervical region. 

NR3B expression remains comparatively low and concentrated mainly within the motor 

neuron cell bodies ofthe ventral horn. 

NR2A expression appears to have shifted predominantly from the dorsal to the ventral 

horn with concentrated immunoreactivity within the motor neuron cell bodies within 

laminae IX, consistent with previous mRNA studies on human spinal cord 

(Samarasinghe et al., 1996). The predominant immunoreactivity of the NR2B subunit 

appears to shift from more wide-spread expression to the dorsal horn and in particular 

laminae I and 11, consistent with published data (Nagy et al., 2004; Mutel et al., 199~). 
_, . . . . ~ .-• ... ~ _.;. 
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Dorsal Ventral 
A 

• 

MN 

MN 

11 

Ill 

B 

11 
MN 

Figure 4.13 Expression of NR1 (probed anti-rNR1 1J1g/ml) (A), NR3B (commercial anti­

rNR3B 1:1000) (B) in the dorsal horn laminae I, 11, Ill and ventral horns showing the motor 

neurons (MN) of the thoracic rat spinal cord (n=2). Scale bars represent 100J1m. 
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Dorsal Ventral 
c . ... 

11 

Ill 

D 

MN 
MN 

Figure 4.14 Expression of NR2A (anti-rNR2A 2J1g/ml) (C) and NR2B (anti-rNR2B 2J1g/ml) (D) 

in the dorsal horn laminae I, 11, Ill and ventral horns showing the motor neurons (MN) of the 

thoracic rat spinal cord (n=2). Scale bars represent 100J1m. 
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4.4.2.3 Expression of NRl, NR2A, NR2B and NR3B in the adult rat lumbar spinal 

cord 

Immunohistochemistry was carried out on adult rat lumbar spinal cord using the panel 

of subunit selective antibodies previously used. The tissue was probed overnight with 

anti-rNR1 {lJ..lg/ml), anti-rNR2A (2J.1g/ml), anti-rNR2B (2J.1g/ml) and the commercial 

anti-rNR3B ( 1: 1 000). 

The immunoreactivity of the four NMDA receptor subunits in lumbar tissue shows a 

similar pattern to expression in the thoracic tissue. NR 1 shows abundant expression in 

both the ventral horns and the dorsal horns, again with particularly concentrated 

immunoreactivity in laminae 11. 

NR3B immunoreactivity is concentrated within the cell bodies of the motor neurons 

with minimal expression in the sensory dorsal horn. 

NR2A immunoreactivity remains predominantly in the ventral regions, in the cell bodies 

of the motor neurons. 

The NR2B subunit remams predominantly located in the dorsal regions, again 

particularly in the outer laminae, with some immunoreactivity within the motor neurons 

of the ventral horn. 
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Dorsal Ventral 
A 

B 

MN 

Ill 

Figure 4.15 Expression of NR1 (probed anti-rNR1 1J1gfml) (A), NR38 (commercial anti­

rNR3B 1:1000) (B) in the dorsal horn laminae I, 11, Ill and ventral horns showing the motor 

neurons (MN) ofthe lumbar rat spinal cord (n=2). Scale bars represent 100J1m. 
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Figure 4.16 Expression of NR2A (anti-rNR2A 2J.Lgfml) (C) and NR2B (anti-rNR2B 2J.Lg/ml) (D) 

in the dorsal horn laminae I, 11, Ill and ventral horns showing the motor neurons (MN) of the 

lumbar rat spinal cord (n=2). Scale bars represent 100J.Lm. 
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4.4.2.4 Qualitative summary of NMDA subunit expression in the dorsal and ventral 

horns spanning the three different upper regions of the adult rat spinal cord. 

From the immunohistochemical investigations on rat spinal cord, the four NMDA 

subunits appear to be differentially expressed both between the sensory and motor areas 

of the cord and between the different regions of the cord. The NRl subunit is 

ubiquitous and essential for all functional NMDA receptors with expression 

subsequently prominent throughout all regions. The modulatory NR2 subunits appear to 

be differentially expressed, with NR2A immunoreactivity predominant in the motor 

neurons in the ventral horns of the cord, whereas the NR2B sub unit appears to be more 

concentrated in the dorsal sensory horns, particularly in the thoracic regions. The NR3B 

subunit shows modest expression in the sensory areas of the cord, but in all regions 

shows predominant expression within the ventral horns. This data provide the first 

comparative study of the major NMDA receptor subunits in the dorsal and ventral horns 

of the upper levels of the rat spinal cord. Generally NR2A appears to be the major 

subunit in the ventral horn, whereas NR2B appears to be the major subunit in the dorsal 

horn. 
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NRl NR2A NR2B NR3B 

Dorsal horn ++++ ++ +++ (+) 

Cervical Ventral horn +++ +++ ++ +++ 

Dorsal horn ++++ ++ +++ + 

Thoracic Ventral horn ++++ +++ + +++ 

Dorsal horn ++++ + ++ (+) 

Lumbar Ventral horn ++++ +++ ++ ++ 

Table 4.3 Qualitative summary of the average intensity of immunoreactivity for each subunit 

in the cervical, thoracic and lumbar regions of adult rat spinal cord. 

( +) = Very weak expression, + =Weak expression, ++ = Moderate expression, 

+++ = Strong expression, ++++ = Very strong expression. 
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4.4.3 NMDA subunit expression in human cervical spinal cord 

Expression profiles of the NMDA subunits NR1, NR2A, NR2B and NR3B were 

mapped in the adult male human cervical spinal cord (obtained ethically under project 

licence PPL-6003437) using immunohistochemistry (see 2.2.10). The anti-hNR3B 

antibody {2J.1g/ml) was utilized along with the anti-rNR1 (lJ.lg/ml), anti-rNR2A 

(2J.lg/ml) and anti-rNR2B {2J.1g/ml). 

As in the rat tissue, NR 1 expression is abundant throughout the dorsal and ventral 

regions of the human cervical spinal cord showing consistency with previous studies of 

mRNA expression (Samarasinghe et al., 1996) and protein expression in lumbar regions 

of human spinal cord (Sundstrom et al., 1997). 

The NR3B subunit displays discrete expression in the motor neuron cell bodies and 

dendrites of the ventral horn, displaying a similar distribution pattern to that in the rat 

and consistent with mRNA studies in the mouse (Fukaya et al., 2005; Nishi et al., 2001; 

Matsuda et al., 2002). 

Consistent with published literature, NR2A showed wide-spread distribution, similar to 

that of NR 1 (Samarasinghe et al., 1996) with expression in the dorsal laminae, 

particularly 11 and Ill and in the cell bodies of the motor neurons in the ventral horn. 

NR2B expression is predominantly concentrated in laminae I and 11 of the dorsal horn 

consistent with previous primate studies (Rigby et al., 2002) and immunoreactivity seen 

in the rat. Evidence for prominent expression in the motor neurons in the ventral horn 

sh<;>ws initial evidence for species difference in NR2B protein expression between the rat 

and human. 
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Figure 4.17 Expression of NR1 (probed anti-hNR1 1~g/ml) (A), NR3B (commercial anti­

rNR3B 1:1000) (B) in the dorsal horn laminae I, 11, Ill and ventral horns showing the motor 

neurons (MN) of the cervical human spinal cord (n=1). Scale bars represent 100~. 
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Figure 4.18 Expression ofNR2A (anti-rNR2A 2Jtg/ml) (C) and NR2B (anti-rNR2B 2Jtg/ml) (D) 

in the dorsal horn laminae I, 11, Ill and ventral horns showing the motor neurons (MN) of the 

cervical human spinal cord (n=l). Scale bars represent 100Jlm. 
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4.4.4 Qualitative summary of NMDA receptor subunit expression in the dorsal and 

ventral horns of the adult human cervical spinal cord 

Immunohistochemical investigations into the subunit expression in adult human cervical 

spinal cord have revealed some initial evidence for NMDA receptor subunit localization 

differences between the rat and human. 

Both species show abundant NR I expression throughout cervical regions in both the 

dorsal and ventral horns, consistent with previous findings (Samarasinghe et al., I996; 

Sundstrom et al., I997). 

In the human tissue, NR2A shows strong immunoreactivity in the dorsal and ventral 

horns, showing a similar distribution pattern to NR I, however in the rat spinal cord; 

more prominent expression was evident in the ventral horn, suggesting more widespread 

inclusion and prominent role for NR2A in receptor complexes in the human. 

NR2B showed prominent immunoreactivity specifically in the superficial laminae of the 

dorsal horn and in the ventral horn of the adult human cervical cord, whereas in the rat, 

NR2B was more prominent in the dorsal horn and showed more limited expression in 

the ventral areas. This evidence suggests that NR2B may have a greater role in motor 

neuronal transmissions in the human than in the rat. 
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Spinall·ord len•l Region lntcnsit~ of immu,norl·acti' ity 

NR1 NR2A NR2B NR3B 

Dorsal horn ++++ +++ ++ (+) 

Cervical Ventral horn ++++ +++ ++++ ++ 

Table 4.4 Qualitative summary of the average intensity of immunoreactivity for each subunit 

in the cervical region of adult human spinal cord. 

( +) = Very weak expression, + =Weak expression, ++ = Moderate expression, 

+++ = Strong expression, ++++ = Very strong expression. 

134 



Chapter4 Heather Chaffey 

4.5 eo-associations of NMDA sub units in the rat spinal cord 

eo-expression of specific NMDA subunits within particular cells and regions of the 

spinal cord has been established, however, the specific eo-associations, particularly of 

the NR3B subunit, which combine to form functional NMDA receptors within these 

neurons is a characterisation needed to further understand the pharmacology and 

function of these channels and for therapeutic receptor targeting. 

Optimisation of solubilisation conditions to isolate these membrane bound receptors was 

undertaken followed by generation of NRI, NR2A immunoaffinity columns to pull 

down and isolate specific NMDA receptor subunits and their eo-associations from 

native receptors in adult rat cervical spinal cord. 

4.5.1 Solubilisation and immunopurification of adult rat spinal cord receptors 

using 1% SDS. 

The cervical region of adult rat spinal cord (3-4mg/ml protein) was homogenized and 

solubilised using 1% SDS, a technique utilized by Lau et al., 1996 and Chung et al., 

2004 to purify NMDA receptors from adult rat forebrain. 

Immunoblotting was carried out following solubilisation with 1% SDS (2.2.12.2), 

loading the solubilised and unsolubilised fractions for analysis. The nitrocellulose was 

probed overnight with anti-rNRl (2~g/ml), anti-rNR2A (2~g/ml), anti-rNR2B (2~g/ml) 

and the commercial anti-rNR3B (1:1000), with the resulting detection of NRI 

(120KDa), NR2A (180KDa), NR2B (180KDa) and NR3B (IOOKDa) and therefore 

efficient solubilisation of all four subunits from the rat spinal cord. 
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This solubilised material was then applied to an anti-NRl immunoaffinity column to 

investigate the eo-associations of the NRI subunit within this tissue. 

A 

1 2 

120KDa 

NR1 

B 

... 
180KDa 

1 2 

NR2B 

c 
1 2 

NR2A 

D 

--. 
100KDa 

1 2 

NR3B 

Figure 4.19 Representative immunoblots (n=2) showing solubilised membranes (lane 1) 

and unsolubilised membranes (lane 2) probed overnight with anti-rNR1 (2~gjml) (A), 

anti-rNR2B (2~g/ml) (B), anti-rNR2A (2~/ml) (C) and anti-rNR3B (1:1000) (D). 

4.5.1.1 Immunopurification of 1% SDS solubilised adult rat spinal cord 

homogenate using an anti-NR1 immunoaffinity column 

Following the solubilisation of the cervical spinal cord homogenate in 1% SDS and 

dialysis of the solubilised material, the solubilised fraction was applied to an anti-NRI 

immunoaffinity column overnight at 4°C to investigate eo-associations with the NRI 

subunit. Following washing steps, the bound fraction was eluted with glycine pH 2.3, 

immediately neutralized with 2M Tris pH 7.4 and analysed using immunoblotting. 
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The NRl subunit has been successfully solubilised, purified and eluted in elutions 2-4, 

confirming the functioning of the column. Both the NR2A and the NR2B subunits have 

also been solubilised, though show no eo-associations with NR1 under these conditions 

as there is no evidence of these subunits in the column elutions implying disruption of 

the native receptor complex and protein instability. In these assays, NR3B solubilisation 

was inconsistent, likely to be due to such low expression levels in the spinal cord. 

To reduce the denaturing conditions of solubilising in 1% SOS, optimization of 

detergent concentrations was investigated. 

SC S DT UB E 1 E2 E3 E4 E5 

A Anti-NR1 

B Anti-NR2A 

C Anti-NR2B 

' D Anti-NR3B 
t 

Figure 4.20 Immunoblot showing adult rat spinal cord homogenate (25J1g/ml) (SC), 

solubilised membranes (S), unsolubilised membranes (DT), unbound material (UB) and 

elutions 1-5 (E1-5), probed overnight with anti-NR1 (2J.lg/ml), anti-NR2A (2J.lg/ml), anti­

NR2B (2J.lg/ml) and anti-NR3B (1:1000). Representative immunoblots from n=3 

experiments. 
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4.5.1.2 Optimisation of SDS solubilisation between 0.75 and 0.05%. 

To investigate the optimal SDS concentrations for effective solubilisation and eo-

association, the concentration of the detergent SDS was reduced in increments between 

0.75% and 0.05%. Following solubilisation, the material was analysed using 

immunoblotting, probing overnight with anti-rNR1 (2~-tg/ml), anti-rNR2A C2~-tg/ml) , 

anti-rNR2B (2~-tg/ml) and commercial anti-NR3B (2~-tg/ml). The first set of 

immunoblots showed that the abundant NRI subunit solubi lised effectively down to 

0.05% [SDS], possibly due to large intracellular pools which are easy to solubilise. 

Both NR2A and NR2B were solubilised at 0.5% [SDS], with lower concentrations 

seemingly unsuccessful at removing these subunits from the cell membrane. NR3B was 

solubilised effectively to 0.1% [SDS], suggesting it may be more readily removable 

from the cell membrane than the NR2 subunits. 

1 2 3 4 5 6 7 8 9 10 

A Anti-NRl 

B Anti-NR2A - - -
C Anti-NR2B 

D Anti-NR3B 

Figure 4.211mmunoblots (n=1) showing solubilised and unsolubilised membranes at 0.75% 

(SDS) (1+2), solubilised and unsolubilised membranes at 0.5% (SDS) (3+4), solubilised and 

unsolubilised membranes at 0.25% (SDS) (5+6), solubilised and unsolubilised membranes at 

0.1% (SDS) and solubilised and unsolubilised membranes at 0.05% [SDS). Probed with anti­

NR1 (2J1g/ml) (A), anti-NR2A (2J1gfml) (B), anti-NR2B (2J1g/ml) and anti-NR3B (1:1000). 
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4.5.1.3 Optimisation of SDS solubilisation between 0.5 and 0.2%. 

The variable extents to which the four subunits were solubilised between 0.5 and 0.1% 

required further optimization; therefore concentrations between 0.5 and 0.2% SDS were 

also investigated using the same immunoblotting procedure. 

Again, NRI was effectively solubilised down to 0.2% SDS. NR2A was effectively 

solubilised at concentrations down to 0.3% before the levels of NR2A in unsolubilised 

material were greater. NR2B and NR3B were also effectively solubilised at 0.2% SDS 

in a similar manner to NRI. From these concentration ranges of SDS, all four subunits 

were solubilised effectively at 0.3% SDS and therefore it was decided to proceed to 

immunopurification using this detergent concentration, applying the solubilised material 

firstly to an anti-NR 1 column and secondly to an anti-NR2A column. 

2 3 4 5 6 7 8 

A Anti-NRI 

B Anti-NR2A 

C Anti-NR2B 

D Anti-NR3B 

Figure 4.22 Immunoblots (n=1) showing solubilised and unsolubilised membranes at 0.5% 

[SDS) (1+2), solubilised and unsolubilised membranes at 0.4% [SDS] (3+4), solubilised and 

unsolubilised membranes at 0.3% (SDS) (5+6), solubilised and unsolubilised membranes at 

0.2% [SDS). Probed with anti-NR1 (2tJg/ml) (A), anti-NR2A (2J1gfml) (8), anti-NR28 

(2J1g/ml) and anti-NR38 (1:1000). 
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4.5.1.4 Immunopurification of 0.3% SDS solubilised material from adult rat 

cervical spinal cord using anti-NRl and anti-NR2A immunoaffinity columns 

Using the optimized concentration of 0.3% SOS to effectively solubilise the NMDA 

receptor subunits, immunopurification was carried out to determine whether the native 

receptor complex associations could be elucidated. 

Solubilised material was applied to either an anti-NRI immunoaffinity column or an 

anti-NR2A immunoaffinity column as described previously (2.2.12.3) and following 

overnight incubation, the bound fractions were eluted and analysed with 

immunoblotting. The nitrocellulose was probed with anti-rNRl (2J.lg/ml), anti-rNR2A 

(2J.lg/ml), anti-rNR2B (2J.lg/ml) and commercial anti-NR3B (2J.lg/ml). 

4.5.1.5 Immunopurification using an anti-N:Rl affinity column. 

NRl has been successfully solubilised, purified and eluted from the column. NR2A has 

also been effectively solubilised, bound to the column (demonstrated by lack of protein 

in the unbound lane) and possibly eluted in fractions 4 and 5. Faint immunoreactivity 

shows minimal solubilisation ofNR2B with an indication, but no clear elution. NR3B 

has also been solubilised, with seemingly specific immunoreactive bands in elutions 2 

and 3, which are of a higher molecular weight possibly due to dimerisation of associated 

subunits. This experiment gives potential evidence of NRl, NR2A and NR3B eo­

association from native adult rat spinal cord preparations. 
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SC S DT UB E 1 E2 E3 E4 E5 

A Anti-NRl 

B Anti-NR2A 

C Anti-NR2B 

D Anti-NR3B 

Figure 4.23 Representative immunoblots (n=2) showing purified fractions from an anti-NR1 

affinity column. Spinal cord homogenate (25J.Lg/ml) (SC), solubilised membranes (S), 

unsolubilised membranes (DT), unbound material (UB) and elutions 1-5 (E1-5). Probed with 

anti-NR1 (ZJ.Lg/ml) (A), anti-NR2A (ZJ.Lg/ml) (B), anti-NR28 (ZJ.Lg/ml) and anti-NR38 (1:1000). 

4.5.1.6 Immunopurification using an anti-NR2A affinity column 

Applying the 0.3% SDS solubilised material to an anti-NR2A immunoaffinity column 

resulted in NR2A uptake onto the column but minimal immunoreactivity in the elutions. 

NR 1 has been solubilised and purified in elutions 1 and 2 via eo-association with the 

NR2A subunit. Low level expression of NR3B in the cervical spinal cord is evident 

from weak immunoreactivity, though the subunit has been solubilised. The majority of 

the solubilised NR3B remains unbound to the column, though immunoreactivity in 

elution 2 may be evidence for eo-association of NR3B with NR2A. Therefore, again 

there is possible evidence for eo-association ofNRl , NR2A and NR3B in native adult 

rat cervical spinal cord. It has previously been suggested that NR3A has weak 

interactions with anchoring proteins and possibly other subunits (Perez-Otano et al., 
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2006) and therefore NR3B may behave simi larly, solubilising effectively but loosing 

interactions, reducing purification efficiencies. The difficulty in solubilising and eluting 

NR2B and in maintaining receptor complex eo-assembly is likely to be the result of low 

expression levels in the cervical cord and possibly protein instability and sensitivity 

towards the strongly ionic detergent SOS. 

SC S DT UB E 1 E2 E3 E4 E5 

A Anti-NR2A 

B Anti-NRl 

. 
I ' i \ 

C Anti-NR2B 

D Anti-NR3B 

Figure 4.24 Representative immunoblots (n=2) showing purified fractions from an anti­

NR2A affinity column. Spinal cord homogenate (25J,tg/ml) (SC), solubilised membranes (S), 

unsolubilised membranes (DT), unbound material (UB) and elutions 1-5 (E1-5). Probed with 

anti-NR1 (2J.Lgfml) (A), anti-NR2A (2J.Lgfml) (B), anti-NR2B (2J.Lgfml) and anti-NR3B (1:1000). 
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4.6 NR2A, NR2B and NR3B protein expression levels in different spinal cord 

regions 

To further optimize the likelihood of effective solubilisations, different regions of the 

adult rat spinal cord were analysed using immunoblotting to investigate expression 

levels ofNR2A, NR2B and NR3B. 

SDS-PAGE was carried out with adult rat forebrain membranes (20J.lg), cervical spinal 

cord membranes (20J.lg) and thoracic/lumbar spinal cord membranes (20J.1g) and the 

nitrocellulose probed overnight with anti-rNR2A (2J.lg/ml), anti-rNR2B (2J.lg/ml) and 

commercial anti-rNR3B (2J.lg/ml). Re-probing the nitrocellulose with P-actin (an 

endogenous 'house-keeping' protein) enabled quantitative comparisons oflane loading. 

The imrnunoblot shows that NR2A appears to be the most prominent subunit expressed 

both in the forebrain and spinal cord across the regions. NR3B is particularly expressed 

within the lower regions of the spinal cord which are more associated with motor 

systems. The NR2B subunit is more prominently expressed in forebrain regions, with 

some expression mainly in the lower spinal cord regions. NR2A, NR2B and NR3B 

therefore have higher expression levels in the lower regions of the spinal cord and it 

may be important for future investigations to isolate receptors from this region of the 

cord, or for whole cord preparations to be used, as one of the main difficulties in 

successful purifications appears to be the low abundance of expression. 
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A Anti-NR2A 

B Anti-NR2B 

C Anti-NR3B 

Figure 4.25 Representative immunoblots (n=3) showing adult rat forebrain membranes 

(20J1g) (1), adult rat cervical cord membranes (20J1g) (2) and adult rat thoracic/lumbar cord 

membranes (20J1g) (3). Probed with anti-rNR2A (2Jigfml), anti-rNR2B (2J!g/ml) and anti­

rNR3B (1:1000). 

1 2 3 

A NR2A 

B NR2B 

C NR3B 

Figure 4.26 Re-probing the immunoblots in figure 4.22 with anti-mouse p-actio (1:1000). 

Immunoblot showing adult rat forebrain membranes (20J1g) (1), adult rat cervical cord 

membranes (20J1g) (2) and adult rat thoracic/lumbar cord membranes (20J1g) (3). 
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4. 7 Discussion 

The importance of unravelling the heterogeneity of the NMDA receptor complex and 

understanding the impact of different subunit combinations on receptor signaling is 

evident when considering pharmaceutical intervention. 

Antibodies remain one of the most useful, diverse molecular tools for investigating these 

factors and have been widely used for NMDA receptor characterization since the 

molecular cloning of the respective subunits. In this chapter a panel of subunit-selective 

polyclonal antibodies was used to investigate NMDA subunit expression in the adult rat 

and human spinal cord, and to decipher native NMDA receptor subunit eo-associations 

in the adult rat spinal cord. 

The panel of selective anti-NR1 (929-938), anti-NR2A (1435-1445) and anti-NR2B (46-

60) polyclonal antibodies utilized throughout this thesis for western blotting, 

immunohistochemsitry and immunopurification have previously been characterized and 

validated in our laboratory (Chazot et al., 1992; Cik et al., 1993; Chazot and 

Stephenson, 1997). In order to investigate the expression patterns and associations of 

the NR3B subunit, an anti-rodent NR3B (885-899) polyclonal C-terminal antibody 

previously published and characterized by Matsuda et al., 2002 was generated and 

affinity purified via coupling specifically to a newly generated antigenic peptide 

sepharose column. The synthetic peptide TGPPEGQQERAEQEC corresponding to 

amino acids 885-899 in the mouse NR3B C-terminal region is identical to the rat NR3B 

sequence except for one amino acid change substituting at the end of the sequence from 

cysteine to arginine. To confirm the characterisation and specificity noted by Matsuda 

and colleagues, the anti-NR3B (885-899) was tested against native adult rat forebrain 
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and spinal cord tissue and recombinant rat NR3B clones (pCISNR3B, pCISNR 1-1 a, 

pCISNR3A cDNA transfection into HEK 293cells) and the peptide specificity 

confirmed using peptide blockade. Immunoreactivity towards the recombinant NR3B 

cON A identifying a species approximately I OOKDa and a lack of cross­

immunoreactivity with the NR3A cDNA was in agreement with results published by 

Matsuda et al., who also confirmed specificity with recombinant NR3B expression in 

HEK293 cells (Matsuda et al., 2002). Immunoreactivity in the native tissue identified 

molecular weight species at approximately 1 OOKDa, but also a more prominent smaller 

molecular weight species at approximately 30KDa. This protein species was confirmed 

as antigenic peptide specific, upon pre-absorption of anti-NR3B with the antigenic 

peptide, therefore this smaller species is likely to be a proteolytic fragment or due to 

post-translational modifications of the subunit present in native neurons. 

During the development and characterization of the anti-NR3B (885-899) antibody, an 

Upstate® commercial polyclonal rat anti-NR3B antibody was purchased for expression 

studies. The commercial anti-rNR3B was raised in rabbits against the C-terminal amino 

acids 915-927 RRVRRA VVERERR and showed immunoreactivity towards a diffuse 

species of ~ 11 OKDa in adult rat forebrain and spinal cord homogenate and towards a 

smaller species ~30KDa likely to result from post-translational modifications, consistent 

with that of the in house anti-rodent NR3B (885-899). 

A novel anti-human NR3B (885-889) raised against the synthetic peptide sequence 

CTGPPEGSKEETAEAE in the C-terminal of the human NR3B sequence, was also 

generated and affinity purified via a novel antigenic peptide sepharose affinity column. 

The anti-hNR3B (885-899) antibody was characterized using western blotting with post-
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mortem human putamen homogenate (obtained as a gift from Dr Margaret Piggott, 

Newcastle University) where immunoreactivity identified a large peptide specific 

species ~ 174KDa which may be due to NR3B subunit dimerisation. A prominent 

doublet species evident at ~82KDa may be a proteolytic fragment of this larger NR3B 

species caused by postmortem delay. The human anti-NR3B (885-899) also showed 

immunoreactivity towards adult rat forebrain and spinal cord membranes, identifying 

the same small molecular weight species ~30KDa despite eight amino acid changes in 

the sequence. This evidence for cross-reactivity with the rat NR3B protein was also 

confirmed using ELISA data and was again shown to be specific with antigenic peptide 

blockade. ELISA assays (data not shown) were performed on each bleed of the anti­

human NR3B antibody and showed that it has a high titer (1 in 30000) and cross-reacts 

with the rat antigenic peptide due to sequence homology with the first 6 amino acids of 

the peptide, which may form the primary epitope. 

The expression pattern of the various NMDA receptor subunits has been the focus of 

many studies particularly within the rodent brain and spinal cord, though many focus on 

single subunit expression (e.g. Samarasinghe et al., 1996) or expression of multiple 

subunits in one particular region of tissue (e.g. Nagy et al., 2004). This study enhances 

current knowledge by directly analysing NRl, NR2A, NR2B and NR3B subunit 

expression in human cervical tissue and within rat cervical, thoracic and lumbar tissue, 

providing the first parallel data set on NR3B protein expression in different spinal 

levels. Immunohistochemical analysis probing adult rat tissue with anti-NRl (929-938) 

shows abundant expression throughout the cervical, thoracic and lumbar regions 
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confirming the presence of NMDA receptors on glutamatergic synapses (Nagy et al., 

2004) throughout the spinal cord adding to previously published mRNA (Tolle et al., 

1993; Furuyama et al., 1993; Goebel et al., 1999) and protein (Nagy et al., 2004) 

expression studies in rat lumbar cord. NRl protein expression was evident in both the 

dorsal and ventral horns, showing NMDA receptor involvement in both sensory and 

motor system transmissions. High levels of immunoreactivity may also result from the 

large intracellular pools of monomeric NR1 subunits, associated with endoplasmic 

reticulum, which may serve as a reserve for receptor up-regulation (Chazot and 

Stephenson, 1997). 

Expression of the NR2A subunit followed a similar abundant pattern to that of the NRl 

subunit showing that NMDA receptors in the spinal cord may be predominantly 

composed of receptors containing NR1/NR2A subtypes. This data is consistent with 

previous findings detailing prominent NR2A mRNA expression in adult rat (Nagy et al., 

2004) and human spinal cord (Samarasinghe et al., 1996), but in contrast to Tolle et al., 

1993 who report undetectable levels ofNR2A mRNA in rat lumbar spinal cord. 

Interestingly, Nagy et al., 2004 and Watanabe et al., 1994 report a distinctly increased 

level of NR2A mRNA expression in laminae Ill of the dorsal horn in comparison with 

laminae I and 11, thought to be particularly located within post-synaptic areas, however 

no such clear distinction in protein expression is apparent in this study which may be 

accounted for by post-translational protein transportation within the cell to processes 

located in other regions. The distribution of low-threshold cutaneous primary afferent 

terminals within laminae Ill and the presence of NR2A immunoreactivity on synapses 
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opposed to primary afferent terminals suggest a role for NR2A-containing receptors in 

low threshold sensory transmission (Nagy et al., 2004). 

In this study prominent expression of NR2A is apparent within the cell bodies of motor 

neurons consistent with previous results showing protein expression ofNR2A in lamina 

IX and NR2A presence on synapses in the ventral horn (Nagy et al., 2004) and 

suggesting a role for NR2A-containing receptors in motor systems. 

Expression patterns of the NR2B subunit show some distinction from the NR2A 

subunit, implying a different functional role within distinct loci. NR2B protein 

expression was concentrated in the superficial laminae I and predominantly 11 in the 

dorsal horn throughout each region of the spinal cord particularly evident in the thoracic 

and lumbar regions. These findings are consistent with previous research showing 

NR2B mRNA concentrated in lamina II (Watanabe et al., 1994) and NR2B protein 

expression in rat lumbar cord (Shibata et al., 1999; Nagy et al., 2004), though in contrast 

to a study showing undetectable levels ofNR2B mRNA in adult rat lumbar cord (Tolle 

et al., 1993). Implications of NR2B subunit involvement in nociceptive transmission 

resulted from the detection of prominent expression in the superficial laminae of the 

spinal cord where most nociceptive primary afferents terminate and has since been 

proven with many studies where NR2B gene knockdown attenuates formalin-induced 

nociception in the rat (Tan et al., 2005) and NR2B-selective antagonists induce 

antinociception (e.g., Boyce et al., 1999). Current data contributes to the evidence for 

NR2B involvement in windup of spinal neurons with both synaptic (Nagy et al., 2004) 

and extrasynaptic (Momiyama, 2000) NR2B-containing receptors in this region. It is 
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this combined evidence that is driving forward the search for effective NR2B 

antagonists. 

NR2B protein expression was also detected in the large cell bodies of motor neurons in 

the ventral horn, particularly within the cervical region, suggesting a role for the NR2B 

subunit in motor neurons as well as sensory neurons. These results confirm previous 

findings showing NR2B mRNA (Shibata et al., 1999) and protein (Nagy et al., 2004) 

expression in somatic motor neurons and therefore pharmaceutical targeting of NR2B­

containing receptors is likely to additionally affect motor systems. This modulation 

could therefore present adverse side effects, when targeting sensory areas; however it 

could potentially be advantageous and therapeutically useful for diseases such as motor 

neuron disease where antagonists may be able to reduce motor neuronal cell death due 

to glutamate toxicity, as well as targeting the sensory areas to combat conditions such as 

chronic pain. 

NR3B expression was predominantly located within the large cell bodies of motor 

neurons and their dendrites in all three regions of the rat spinal cord consistent with 

previous mouse mRNA data (Nishi et al., 2001; Matsuda et al., 2002; Fukaya et al., 

2005). The immunoreactivity of NR3B within the motor neuron cell bodies may result 

from the presence of large intracellular pools of monomeric subunit or extrasynaptic 

receptors (Matsuda et al., 2003), activated following synaptic stimulation (Clark and 

Cull-Candy, 2002). It is possible that NR3B is transported from internal stores and 

incorporated into the receptor complex upon up-regulation of synaptic input in order to 

regulate calcium entry into the cell. 
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There was also evidence for some minimal immunoreactivity ofNR3B within the dorsal 

horn particularly within the thoracic and lumbar regions suggesting that NR3B may 

additionally be involved in modulation of sensory pathways. A previous study 

identified rat NR3B mRNA in the hippocampus (Andersson et al., 2001) and recent 

research suggests more wide-spread localization with NR3B protein expression in the 

cortex, striatum and hippocampus (Wee et al., 2007), evidence to suggest NR3B­

containing NMDA receptor modulation of sensory signaling. 

In the human cervical spinal cord, NR1 protein was abundantly expressed in both dorsal 

and ventral horns and again predominantly in neuronal cell bodies, consistent with 

previous studies examining mRNA expression (Samarasinghe et al., 1996) and protein 

expression in lumbar regions of human spinal cord (Sundstrom et al., 1997). 

Expression of NR2A protein in the human cervical cord, showed a similar wide-spread 

distribution to that detected in the rat tissue, but with seemingly increased expression in 

the dorsal regions. Prominent immunoreactivity was evident in the superficial laminae 

I, II and Ill of the dorsal horn and in the motor neuronal cell bodies of the ventral horn 

consistent with mRNA studies in human spinal cord (Samarasinghe et al., 1996), 

lumbar-sacral (Sundstrom et al., 1997) and cervical regions (Luque et al., 1994). 

In the human cervical tissue, NR2B protein expression is predominantly located in the 

superficial laminae I and II contrasting with a previous study which showed 

undetectable levels of NR2B protein in human lumbar-sacral cord (Sundstrom et al., 

1997). The expression pattern of NR2B implies a similar involvement of NR2B­

containing receptors in nociceptive afferent signaling in the human and the rat. There is 

also prominent immunoreactivity of NR2B in the motor neurons of the ventral horn, 
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greater than that observed in the rat cervical tissue, possibly implying a greater role for 

NR2B in motor transmissions in the human. 

Interestingly, expression levels of the NMDA NR2 subunits between rodent species 

varies considerably. The immunoblot below carried out using adult mouse tissue, shows 

that the predominant subunit expressed in the forebrain and spinal cord is the NR2B 

subunit, however in adult rat tissue, the predominant NR2 subunit appears to be NR2A 

showing an expression pattern more closely related to the human. These important 

species differences have yet to be fully characterized but this initial evidence could have 

important implications for the design of subunit specific drugs and the use of animal 

models when relating data to human NMDA targets. 

NR2B » NR2D > NR2A 

FB se FB se FB se 
FB = Forebrain SC = Spinal cord 

Chazot, unpublished 

Expression of the NR3B protein in the human cervical tissue showed a similar 

distribution to that of the rat with predominant localization in the motor neurons of the 

ventral horn consistent with expression in rodent studies (Matsuda et a/, 2003; Fukaya et 

al. , 2005; Wee et al., 2007). Undetectable expression ofNR3B in the dorsal horn ofthe 

human cervical cord may be initial evidence for either a species difference or for 

expression changes between the cervical, thoracic and lumbar regions, as in the rat 

NR3B expression in the dorsal horn appeared to increase as the spinal cord was 

descended. 
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These data provide evidence for protein expression and eo-localisation ofNR1, NR2A, 

NR2B and NR3B in adult rat spinal cord in both dorsal and ventral horns and for the eo­

localisation of NR1/NR2AINR2B in human dorsal horn and NR11NR2AINR2B/NR3B 

eo-localisation in adult human ventral horn ofthe cervical spinal cord. 

eo-localisation ofNR1, NR2A, NR2B and NR3B within the same cell type (and even 

the same cell) does not necessarily translate into the eo-assembly of all four subunits to 

form functional NMDA receptors expressed on the cell surface. Therefore it was 

important to investigate the native spinal cord NR3B-containing receptor eo-assemblies, 

via immunopurification. 

In order to carry out immunopurification, the NMDA receptors present in the rat spinal 

cord homogenate must be available in a stable, detergent-solubilised preparation 

although previous research has found that the NMDA receptor is notoriously resistant to 

detergent extraction (Chazot and Stephenson, 1997). 

The detergent most widely used for extraction of NMDA receptors from rodent brain 

tissue is 1% (wt/vol) sodium deoxycholate (pH9.0) (Chazot and Stephenson, 1997; 

Blahos and Wenthold, 1996; Sundstrom et al., 1997) though inconsistent levels of 

subunit solubilisation were achieved from spinal cord preparations in this study (data not 

shown) possibly due to the lower expression levels of the subunits in the spinal cord. 

Temperature optimization was attempted to increase solubilisation efficiencies (Blahos 

and Wenthold, 1996) though immunoblotting analysis of the solubilised receptors 

showed minimal differences in the efficiency of solubilisation of the NR 1, NR2A, 

NR2B and NR3B subunits between 4 and 37°C. The inconsistencies in solubilisation 
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efficiency with 1% DOC between experiments may be due to reduced receptor 

abundance in the spinal cord or possible differences in the stability of the complexes 

between the forebrain and spinal cord. Blahos and Wenthold, 1996 stated that 'the 

NMDA receptor complex is dissociated more readily than it is solubilised' causing 

inherent problems when trying to extract in-tact native complexes for analysis. 

To achieve increased efficiency of solubilisation, particularly of the NR2 and NR3 

subunits, detergent extraction using SOS (pH7.4) was attempted, following a protocol 

published by Richard Huganir's group in 2004 (Chung et al., 2004). As expected, this 

strongly ionic detergent successfully solubilised high yields of all four subunits NR1, 

NR2A, NR2B and NR3B, though immunoaffinity purification demonstrated that the 

NMOA complex had been dissociated by the stringent conditions. The concentration of 

SOS required for effective solubilisation but maintenance of complex association was 

therefore optimized. 0.3% (wt/vol) SOS was the lowest concentration that successfully 

achieved good solubilisation and provided some limited initial purification data. 

Immunopurification using the anti-NR1 column showed potential evidence for eo­

association of NR1/NR2A/NR3B and possibly NR2B subunits, with a high molecular 

weight species in the elutions possibly suggesting subunit dimerisation of NR3B. 

lmmunopurification using an anti-NR2A column yielded clear association of 

NR1/NR2A, though solubilisation of NR2B remained problematic. The association 

between the NR 1 and NR2A subunit reflects the abundant expression of these two 

subunits in the spinal cord seen in the immunohistochemical analysis, and it may be the 

reduced expression of NR2B and NR3B in this region of the spinal cord which made 

effective solubilisation and detection very difficult. It is also possible that associations 

154 



Chapter4 Heather Chaffey 

between the NR1, NR2 and NR3 subunits differs in strength between the brain and the 

spinal cord, with weaker associations being disrupted in the spinal cord preventing 

successful purifications. 

The NR1/NR2A and possible NRIINR2B, NR1/NR2A/NR2B associations observed are 

consistent with previous co-immunoprecipitation data of NMDA subunits from adult rat 

forebrain (Blahos and Wenthold, 1996), immunopurification data from adult mouse 

fore brain using an anti-NR 1 column (Chazot and Stephenson, 1997) and 

immunoprecipitation from adult human lumbar-sacral cord (Sundstrom et al., 1997). 

Initial evidence for the eo-association ofNR3B with NRI or NRIINR2A and possibly 

NR1/NR2B or NRIINR2AINR2B from adult rat spinal cord supports previous data 

showing NR1/NR2A!NR3B association in recombinant HEK293 cell in vitro models 

(Nishi et al., 2001; Matsuda et al., 2003). It has also been shown that the NR3A subunit 

(shares 62% homology with NR3B) associates with NR1/NR2A/NR2B in adult rat brain 

preparations (Al-Hallaq et al., 2002) and adult human brain and spinal cord (Nilsson et 

al., 2007). 

In order to maximize the likelihood of effective solubilisation and purification ofNR3B­

containing NMDA receptors whole spinal cords, or preparations containing thoracic and 

lumbar sections should be used to ensure the greatest abundance of subunit expression, 

as it is evident from the immunoblotting studies that subunit expression is increased in 

lower regions of the cord. 

The data in this chapter provides novel evidence for eo-localisation of the NR3B protein 

and NRI, NR2A and NR2B throughout the cervical, thoracic and lumbar regions of rat 

spinal cord and human cervical cord. It also presents initial data to suggest variable 
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expression patterns of the NR3B sub unit between spinal cord regions and eo-association 

ofNR3B with NRI and NR2A in native receptors from adult rat cervical spinal cord. 

Further characterization of native NMDA receptor complexes within the spinal cord is 

required, particularly of the little known NR3B subunit to fully understand the 

mechanisms of NMDA receptor signalling and the consequences of pharmaceutical 

targeting. 
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Chapter 5 

The influence of NR3 sub units on NMDA receptor 

cytotoxicity, physiology and pharmacology 

5.1 Introduction 

5.1.1 Effect of NR3 subunits upon NMDA-mediated cytotoxicity 

Influx of calcium, mediated in part by NMDA receptors plays a vital role in normal 

neurological functions. However, over-activation of NMDA receptors leading to 

calcium toxicity has been implicated in various neuropathologies, for example 

dementias and neurodegenerative disorders such as motor neuron disease. 

NR2B-containing receptors in particular have been implicated in the aetiology of 

disease states due to hyperexcitability ofNMDA receptors (Fuller et al., 2006) and have 

therefore been a target for novel NMDA antagonists with selective subunit specificity. 

Interestingly, in contrast to the NRl and NR2 subunits, previous research suggests that 

NR3A and NR3B reduce Ca2
+ permeability when part of the receptor complex (Nishi et 

al., 2001; Matsuda et al., 2002), potentially reducing intracellular calcium levels and 

reducing associated adverse effects. 

This chapter explores the possibility that this reduction in Ca2+ permeability induced by 

the NR3A and NR3B subunits would be reflected in vitro as reduced calcium toxicity 

and cytoprotection. 

The immunohistochemical data in the previous chapter provides initial evidence for 

NR3B eo-localisation with NRl, NR2A and NR2B in both rat and human spinal cords. 
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The cytotoxicity experiments therefore investigated the potential influences of the NR3 

subunits upon both NR2A and NR2B-containing receptors. 

5.1.2 Effect of NR3 upon the functional and biophysical characteristics of the 

NR1/NR2B receptor channel 

In addition to the cytotoxicity assay, whole-cell patch clamp electrophysiology (2.2.20) 

was used to investigate the influence of NR3B upon NR1/NR2B functional properties 

such as calcium permeability, current amplitude, magnesium blockade and reversal 

potential. 

Ionic flux across the cell membrane mediated by NMDA receptor activity was measured 

using intracellular voltage clamp recordings. Here the cell membrane potential is 

controlled at -60m V and the ionic current crossing the membrane is measured via an 

electronic feedback system. 

agonist 

control 

:::.C::::, 
Figure 5.1 Schematic diagram representing electrode position and cell placement in the 

microscope bath beneath the barrels used for rapid agonist and antagonist application 

(From Jon Spencer, GSK). 
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Previous research suggests that the NR3 subunits have a modulatory role within the 

receptor complex. Recombinant expression ofNR3A with NRIINR2A and NR1/NR2B 

(Al-Hallaq et al., 2002) and NR3B with NR1/NR2A (Nishi et al., 2001; Matsuda et al., 

2002) suggest reduced Ca2
+ permeability of the receptor in addition to lowered 

magnesium sensitivity of the complex. This novel study reports the effect of NR3B 

upon NRIINR2B and NRIINR2A receptors and therefore provides important 

information regarding putative motor neuron NMDA receptor complexes. 

5.1.3 Pharmacological influences of the NR3B subunit upon NR1/NR2B receptors 

Some of the most promising NMDA antagonists generated to date are NR2B subunit 

selective compounds. In order to understand the pharmacological interactions between 

these compounds and to develop new higher affinity, potentially more selective 

antagonists, the associations of NR2B-containing receptors and the influence of the 

NR3B subunit upon compound pharmacology is vital. 

Research to date has shown evidence for two classes of NR2B subunit selective 

compounds, one which binds only to NR2B-containing receptors and one which binds to 

NR2B-containing receptors in the presence of other NR2 subunits (Chazot et al., 2002). 

There is currently no data regarding the influence of the NR3 subunits upon NR2B 

receptor pharmacology or NR2B-subunit selective compounds. Using the cytotoxicity 

assay (2.2.19), whole-cell patch clamp electrophysiology (2.2.20) and radioligand 

binding (2.2.14 ), this study therefore provides the first novel data investigating the effect 

of NR3B upon the NR2B-selective compounds Ro-256981, CP-1 01606, ifenprodil and 

the novel antagonists COMPOUND A and COMPOUND B. 
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5.2 Results 

5.2.1 Differential cytoprotective effects of NR3A and NR3B upon cell death 

mediated by NR1/NR2A and NR1/NR2B receptors expressed in HEK 293 cells. 

The Promega CytoTox 96™ cytotoxicity assay can be used as a measure of cell lysis in 

mammalian cells. The assay allows quantitative measurements of lactate dehydrogenase 

(LDH), a stable cytosolic enzyme which is released upon cell lysis. LDH from the 

cultured supematants is measured with a 30 minute coupled enzymatic reaction that 

results in conversion of a tetrazolium salt into a red formazan product which can be 

quantified through measuring absorbance at 490nm. 
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5.2.1.1 Differential cytotoxicity of various recombinant NMDA receptors. 

Recombinant NMDA receptor complexes; NR1/NR2A, NR1/NR2AINR3A, 

NR1/NR2AINR3B, NR1/NR2B, NR1/NR2B/NR3A and NR1/NR2B/NR3B were 

expressed in HEK 293 cells. Following 48hr incubation in the absence of an NMDA 

antagonist, the cytotoxicity assay was performed (n=6-10 individual experiments). 

eo-expression ofNR1/NR2B receptor subunits resulted in the highest incidence of cell 

mortality (50 ± 11 %), in comparison to no DNA and NR1 controls. eo-expression of 

NR1/NR2A receptor subunits resulted in a significantly lower level of cell death (19 ± 

2%). The inclusion of the NR3 subunits with NR1/NR2B receptors significantly 

reduced cell death in comparison to NR1/NR2B receptors alone; NR1/NR2B/NR3A and 

NR1/NR2BINR3B eo-assemblies showed 29 ± 3% and 23 ± 3% cell mortality, 

respectively, reflecting significant levels of cytoprotection (figure 5.2). However, eo­

expression of NR3 subunits with NR1/NR2A receptors showed no significant influence 

on cell mortality. NR1/NR2AINR3A and NR1/NR2AINR3B resulted in 17 ± 3% and 

23 ± 2% cytotoxicity with no significant cytoprotection (figure 5.2). These data provide 

evidence for a differential influence ofNR3A and NR3B upon cytotoxicity mediated by 

NR1/NR2B and NR1/NR2A receptors. 
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A 

*** 
** 

* 

~ 

' Ren·ptor combination 'll·an ± SE'I 
No DNA 3±0.6 

NR1 9±1 
NR1/2B 50± 11 

NR1/2B/3A 29±3 
NR1/2B/3B 23±3 

NR1/2A 19±2 
NR1/2A/3A 17±3 
NR1/2A/3B 23±2 

Figure 5.2 The percentage cytotoxicity of HEK 293 cells expressing various combinations of 

NMDA receptor subunits *p<0.05, **p<O.Ol, ***p<O.OOl one way AN OVA. 
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5.2.2 Functional influence of NR3B upon NR1/NR2B receptor physiology 

In order to investigate the functional effects of the NR3B subunit on the NR1/NR2B 

receptor complex, patch clamp electrophysiology was carried out on recombinant 

receptors transiently expressed in HEK 293 cells. The parameters measured were 

current amplitude, reversal potential, calcium permeability and magnesium sensitivity. 
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5.2.2.1 Peak NMDA current amplitude of cells transfected with NR1/NR2B and 

NR1/NR2B/NR3B receptors. 

Whole-cell patch clamp recordings were made from cells transfected with NRl , 

NRIINR2B and NR1/NR2BINR3B receptors (n=25, respectively). GFP-positive cells 

were taken as a marker of successful transfection. The peak amplitude resulting from 

receptor channel activation with 10 second application of co-agonists glutamate 

(100!-lM) and glycine (IO!!M) was measured. Pooled data show minimal channel 

activity (18 ± 5pA) for control NRl expressed as a single subunit (C). Functional 

activity in cells expressing NR1/NR2B and NR11NR2BINR3B showed peak amplitudes 

averaging 675 ± 146pA and 592 ± 130pA, respectively; however, there was no 

statistically relevant reduction in peak amplitude in the presence ofNR3B (0 and E). 

A NR1/NR28 

Glutanate (100 ~M)+ Glydne (10 ~M) 

5sec 

< -2 
.eo 

J ~ -
50 pA -m 

a. -750 

Peak amplitudes 

B NR1/NR2B/NR3B 

Glutamate (100uM) + Glydne (10uM) 
I I 

5 sec 

E_ 

··. ·: . 
5 sec -1000-L---,.----.------r---

NR1 NR112B NR1128138 

IWOA receplor c001J0Sition 

n=25 P=>0.05 (NR1128 and NR1/28/38) 

. . 

Figure 5.3 Electrophysiological traces of peak amplitudes (pA) obtained from recombinant 

NR1/NR2B (A), NR1/NR2B/NR3B (B) and NRl (C) receptors. Histogram (D) and data range 

charts (El show the mean± SD for 25 individual exueriments. 
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5.2.2.2 Reversal potentials of cells transfected with NR1/NR2B and 

NR1/NR2B/NR3B receptors. 

The current/voltage (1/V) relationship was measured in cells transfected with 

NR1/NR2B (A) and NR1/NR2B/NR3B (B) receptors (n=21, n=15, respectively). 

Taking into account the junction potential (potential between two salt solutions, i.e. 

different concentrations of ions) the reversal potential (Erev) for NR1/NR2B was -3.9 ± 

1.6mV and for NRI/NR2B/NR3B -3.6 ± 1.6mV. Therefore the characteristics of each 

channel were very similar, again the presence of NR3B had no statistical effect on 

reversal potential. 

Reversal potentials (IV ramps) 

A NR1/2B 
IV IIR11211 

'L!. 

i 
ii Qf, 

~ 
& 

~ -SO -6) 40 6l !iO 

5 .!)5 Erev =-3.9 ± 1.6mV (I'F21) () 

-1 RedlflcaUon ratio (1.7cuo"'IVI =1.1 

.;f, 

WIBge(mV) 

B 
IVHR112808 

NR1/2B/3B 15 

" = ;; 
E 

! 
i-ro 80 

il 

Erev= -3.58t1.6mV(n=16) 
-Hi 

1A>Itogo ln"l Rectification ratio (1.7cr_1gii1V) =1.03 

Figure 5.4 Current/voltage (IV) relationships for NR1/NR28 (A) and NR1/NR2B/NR38 (B) 

receptors expressed in HEK 293 cells, showi(lg g~ sta.ti~~l differ~nces J,J,etwee~ channel <C 

characteristics. 
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5.2.2.3 Calcium permeability experiments investigating the shift in reversal 

potentials of HEK 293 cells transfected with NR1/NR2B and NR1/NR2BINR3B 

receptors. 

The 1/V relationship for each receptor complex was used to investigate calcium 

permeability of the two receptor complexes. GFP-positive NR1/NR2B (n=lO) (A) and 

NRIINR2B/NR3B (n=9) (B) cells were exposed to 0.3mM and 30mM extracellular 

calcium concentrations in succession. The subsequent shift in reversal potentials 

between the two solutions was calculated for each receptor complex. Taking into 

account the junction potential the shift in reversal potential was measured (15.9 ± lOmV 

and 21 ± 9mV for NR1/NR2B and NR1/NR2B/NR3B, respectively), no statistical 

differences were detected, contrasting previous research (Matsuda et al., 2002) and 

showing no differences in calcium permeability in this assay. 

A 

2.5 

NR1/NR2B 
1.5 

0 .5 

-60 -60 -0.5 20 40 60 60 

-1 

-1.5 

-2 Reversal potentia l = 15.9!10 

B 
NR1/NR2B/NR3B 

:DmM 

2.5 

-80 

Reversal potentia l = 21±9 
-1 .5 

-2 

Figure 5.5 Calcium permeability experiments, measuring the shift in reversal potential of 

the receptor channel between 0.3 and 30mM extracellular calcium. 
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5.2.2.4 Sensitivity of NR1/NR2B and NR1/NR2B/NR3B receptor complexes to 

magnesium blockade using current/voltage (1/V) relationship. 

The IN relationship for each receptor complex was used to investigate the voltage-

dependency of the magnesium blockade at both I OOJ.LM and 20J.1.M concentrations. The 

magnesium blockade is almost maximal at hyperpolarised potentials ( -70m V) and is 

released when the membrane potential becomes more positive. I 00 and 20J.LM Mg2+ 

block of NRIINR2B receptors remains at almost 100% until the membrane potential 

reaches approximately -35mV, whereas both concentrations of Mg2+ blockade are 

relieved at membrane potentials of ~ -50-60mV in NR1/NR2B/NR3B receptors 

providing evidence for reduced sensitivity of NR3B-containing receptors towards 

magnesium. 

A Magnesium blockade 

NR1/2B 
0 .8 

0.0 

80 

-1.2 

B 

NR1/2B/38 

80 

·1.2 

Figure 5.6 Characterisation of magnesium sensitivity of recombinant NR1/NR2B (A) (n=8) 

and NR1/NR2B/NR3B (B) (n=6) receptors using current/voltage (1/V) relationships. 
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5.2.2.5 Investigating the sensitivity of NR1/NR2B and NR1/NR2BINR3B receptor 

complexes towards lOOflM magnesium blockade. 

GFP-positive NR1/NR2B (n=8) and NR1/NR2BINR3B (n=6) cells were selected for 

patching. I OOj.lM MgCh was applied for 1 0 seconds following activation of the 

receptors using 1 OOj.lM glutamate and 1 Oj.lM glycine. 83 ± 5% inhibition resulted from 

1 0011M MgCh application to NR1/NR2B receptors whereas 69 ± 3% (mean ± SD) 

inhibition of NR1/NR2BINR3B receptors showed a slightly reduced level of sensitivity 

towards the magnesium blockade (previously suggested in the literature to be due to 

amino acid alteration in TM2 region, Matsuda et al. , 2002). Kinetically 1 OOj.lM MgCh 

displayed both fast onset and rapid reversal of inhibition. 

100uMMQ2+ 
I I 100uM Glutamate +10uM glycine 

1 OOJJM Mg2+ blockade 

A 

NR1/2B 

C Inhib ition with 1 OOuM Mg 2 -

90 -.-
80 
70 B ----.---

NR1/2B/3B 
~+ 100uMGiutamale+10uMg¥ine 

I 

6 60 
"' 50 :n 
t 40 

~ 30 
20 
10 

0 

_j1~ 
n=B n=6 

5 sec 

Figure 5.7 Electrophysiological traces depicting the sensitivity of NR1/NR28 (A) and 

NR1/NR2B/NR3B (B) receptors towards lOOuM concentrations of magnesium and a 

histogram (C) representing the mean ± SD of data from all experiments. 
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5.2.2.6 Investigation the sensitivity of NR1/NR2B and NR1/NR2BINR3B receptors 

towards 20p.M magnesium blockade. 

Again, GFP-positive NR1/2B (n=8) and NR1/2B/3B (n=6) cells were selected and 

exposed to 20J.1M MgCb following activation of the receptor channels with 1 OOJ.1M 

glutamate and lOJ.1M glycine. The application of20J.1M MgCh resulted in 49 ± 5% and 

44 ± 3% (mean ± SD) inhibition of both NRIINR2B and NRIINR2B/NR3B receptor 

combinations, respectively. Once again, there is a slightly lower sensitivity with the 

inclusion of the NR3B subunit; however, there is no significant difference between the 

data sets. 
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NR1/2B 
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Figure 5.8 Electrohysiological traces representing the signals measured from NR1/NR2B (A) 

and NR1/NRZB/NR3B (B) receptor complexes when exposed to 20J1M magnesium chloride, 

and a histogram (C) showing the mean± SD of all data sets. 
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5.2.3 Pharmacological influence of NR3B upon NR2B subtype selective antagonists 

In order to investigate the pharmacological influences of NR3B, cytotoxicity assays, 

whole cell patch-clamp electrophysiology and radioligand binding were carried out 

using NR2B subunit-selective antagonists. 

5.2.3.1 Cytoprotective effect of NR2B-selective antagonists upon NR1/NR2B and 

NR1/NR2B/NR3B receptors expressed in HEK293 cells. 

Cytotoxicity assays were performed in parallel on recombinant NR1/NR2B and 

NR1/NR2B/NR3B receptors expressed in HEK 293 cells in the presence of the NR2B-

subunit selective antagonists ifenprodil (100nM, 1J.1M, 10J.1M), COMPOUND A (lOnM, 

lOOnM, 1J.1M) and COMPOUND B (lOnM, lOOnM, 1J.1M) (n=4 respectively) and with 

no antagonist as a control. The level of cell death with no antagonist present was 

significantly reduced from 41±4% to 23±5% in the presence ofNR3B. 

All three compounds effectively antagonized NR1/NR2B receptor activity in this 

functional assay, particularly 10J.1M ifenprodil and 1J.1M COMPOUND A which 

significantly reduced cytotoxicity to 17 ± 6 %and 16 ± 4% respectively. 

The presence ofNR3B appears to slightly increase the binding of ifenprodil towards the 

receptor complex, reducing cytotoxicity at 1 OOnM, 1 J!M and 1 OJ!M to 16 ± 6%, 18 ± 5% 

and 9 ± 5%, respectively. The binding affinity and effective cytoprotection of 

COMPOUND B is similar in the presence and absence of NR3B. Binding affinity of 

COMPOUND A appears to have been reduced by the presence of NR3B, with no 
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significant reduction in cytotoxicity, showing that inclusion of this subunit may modify 

the binding site or allosteric interactions of the two novel compounds. 
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Figure 5.9 Differential cytoprotective effects ofthe NR2B-selective antagonists ifenprodil (A), 

COMPOUND B (B) and COMPOUND A (C) upon NR1/NR2B and NR1/NR2B/NR3B receptor 

complexes* p=<O.OS, **p=<O.Ol Two-tailed T-Tests. 
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5.2.3.2 Investigating the influence of the NR3B subunit upon the NR2B subtype-

selective antagonist CP-101,606 (10 J.LM) in recombinant NR1/NR2B and 

NR1/NR2BINR3B receptors. 

Cells transfected with NRIINR2B (n=9) and NRIINR2B/NR3B (n=ll) were exposed to 

co-agonists (glutamate (lOO!J.M) and glycine {lO!J.M)) and the NR2B-subtype selective 

antagonist CP-101606 for 10 seconds. A fast onset of blockade and minimal wash-out 

after several minutes demonstrated high affinity binding of the antagonist to the 

complex. Pooled data showed no significant effect of the NR3B subunit with 84 ± 2% 

and 83 ± 3% (mean ± SD) inhibition of NRIINR2B and NRIINR2B/NR3B receptor 

complexes, respectively. 
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Figure 5.10 Electropbysiological traces representing inhibition of signals from recombinant 

NR1/NR2B (A) and NR1/NR2B/NR3B (B) receptors. Figure C represents the mean± SD of 

percentage inhibition from all data sets. 

173 



Chapter 5 Heather Chaffey 

5.2.3.3 Investigating the influence of the NR3B subunit upon the activity of the 

selective NR2B antagonist CP-101,606 (300nM, 10 seconds) in recombinant 

NR1/NR2B and NR1/NR2BINR3B receptors. 

Cells transfected with NRIINR2B (n= l2) and NR1/NR2B/NR3B (n= IO) receptors were 

exposed to co-agonists (glutamate (IOOJ..LM) and glycine (lOJ..LM)) and the NR2B subtype 

selective antagonist CP-1 01606 (300nM) for I 0 seconds. Inhibition was calculated to 

be 28 ± 6% and 20 ± 3% (mean ± SD) for NR1/NR2B and NR1/NR2BINR3B receptor 

complexes respectively, with no significant reduction in sensitivity of CP-1 01 ,606 in the 

presence of NR3B. In order to maximize inhibition and investigate time-dependent 

blockade at 300nM, application time ofCP-101606 was increased to 60seconds. 
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Figure 5.11 Electrophysiological traces representing the inhibition of NR1/NR28 (A) and 

NR1/NR2B/NR3B (B) receptor activity by 300nM CP-101606. Figure C shows the mean± SD 

of percenta2e inhibition from all data sets. 
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5.2.3.4 Investigating the influence of the NR3B subunit upon the activity of the 

selective NR2B antagonist CP-101,606 (300nM, 60 seconds) in recombinant 

NR1/NR2B and NR1/NR2B/NR3B receptors. 

300nM CP-101606 was applied to cells transfected with receptor complexes NR1/NR2B 

(n=4) and NR1/NR2B/NR3B (n=4) for 60 seconds. A slower, gradual onset of time-

dependent inhibition was observed, which was maintained after antagonist app lication, 

indicating potent high-affinity binding to both receptor complexes and no significant 

modulation induced by the NR3B subunit. 
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Figure 5.12 Electrophysiological traces representing the inhibition of NR1/NR2B (A) and 

NR1/NR2B/NR38 (B) receptor activity by 300nM CP-101606. Figure C shows the mean± SD 

of percentage inhibition from all data sets. 
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5.2.3.5 Investigating the influence of the NR3B subunit upon the activity of the 

selective NR2B antagonist CP-101,606 (30nM, 60 seconds) in recombinant 

NR1/NR2B and NR1/NR2B/NR3B receptors. 

Antagonism ofGFP-positive cells NR1/NR2B (n=5) and NR1/NR2BINR3B (n=5) using 

CP-101606 (30nM), applied for 60seconds was then investigated. No significant 

alterations in binding affinities were observed between the two receptor populations 

although inhibition of NR1/NR2B receptors was greater (40 ± 9%) than inhibition of 

NR1/NR2B/NR3B complexes (29 ± 14%), again suggesting possible reduced sensitivity 

of the compound in the presence ofNR3B. 
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Figure 5.13 Electrophysiological traces representing the inhibition of NR1/NR28 (A) and 

NR1/NR28/NR3B (B) receptor activity by 30nM CP-101606. Figure C shows tbe mean± SD of 

percentage Inhibition from all data sets. 
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5.2.3.6 Investigating the influence of the NR3B subunit upon the activity of the 

selective NR2B antagonist Ro-256981 (10J.1M, 10 seconds) in recombinant 

NR1/NR2B and NR1/NR2B/NR3B receptors. 

1 OJ.!M of the selective NR2B antagonist Ro-256981 was applied to GFP-positive cells 

NR1/NR2B (n=6) and NR1/NR2B/NR3B (n=6) for 10 seconds following activation of 

NMDA currents with co-agonists. Ro-256981 showed high-affinity interaction with 

percentage inhibition of 100 ± 14% and 93 ±2% (mean ± SD) for NR1/NR2B and 

NR1/NR2B/NR3B complexes respectively, with fast-onset of action and minimal wash-

out towards both receptor complexes. 
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Figure 5.14 Electrophysiological traces showing the inhibition of NR1/NR2B (A) and 

NR1/NR2B/NR3B (B) receptor activity by the NR2B-selective antagonist Ro 256981 (10~M 

10 seconds). Figure C shows the mean ± SD of percentage inhibition from all data sets. 
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5.2.3.7 Investigating the influence of the NR3B subunit upon the activity of the 

selective NR2B antagonist Ro-256981 (30nM, 60 seconds) in recombinant 

NR1/NR2B and NR1/NR2BINR3B receptors. 

Ro-256981 (30nM) was applied to GFP-positive NRIINR2B (n=5) and 

NRIINR2B!NR3B (n=4) cells for 60 seconds to investigate time-dependent inhibition. 

At 30nM, the presence of the NR3B subunit in the receptor complex significantly 

reduced the percentage inhibition from 41 ± 12% (NR1/NR2B) to 10 ± 7% 

(NR1/NR2BINR3B) implying potential alterations in binding affinity, the complexes 

reaching the cell surface or allosteric modulations of the antagonist binding site. 
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Figure 5.15 Electrophysiological traces showing the inhibition of NR1/NR2B (A) and 

NR1/NR2B/NR3B (B), by recombinant receptor activity by Ro·256981 (30nM, 

60seconds). Figure C, shows signal from NR1/NR2B receptors before antagonist 

application, Figure E, shows signal from NR1/NR2B/NR3B receptors before antagonist 

application. FigureD, shows the mean± SD of percentage inhibition from all data sets. 
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5.2.3.8 Competition binding to investigate the pharmacological influence of NR3B 

expression upon the displacement of eH] CP-101606 by COMPOUND A. 

Competition binding was carried out on recombinant NR1/NR2B and 

NR1/NR2B/NR3B receptors expressed in HEK 293 cells. The two-site displacement of 

eH] CP-101606 by COMPOUND A showed high affinity binding (82% in NR1/NR2B 

cells, 53% in NR1/NR2BINR3B cells). Therefore, NR3B reduced the number of high 

affinity sites (by 29%), and therefore appeared to reduce the affinity of COMPOUND A 

for the NR1/NR2B receptors (Ki = 14 ± 22nM in the presence ofNR3B). The increase 

in lower affinity sites (Ki = 12 ± 15J..LM in the presence ofNR3B) may be the result of 

reduced receptor numbers reaching the cell surface and/or modulation of the compound 

binding site by inclusion ofNR3B in the receptor complex. The data displayed are mean 

± SD taken from three individual experiments performed in triplicate. 
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Figure 5.16 Competition binding showing two-site displacement of (3H] CP-101606 by 

COMPOUND A in recombinant NR1/NR28 and NR1/NR2B/NR38 receptors. The results 

displayed are mean ± SD of three individual experiments and non-specific binding was 

defined using 1mM ifenprodil. 
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5.2.3.9 Competition binding to investigate the pharmacological influence of NR3B 

upon the displacement of eH] CP-101606 by COMPOUND B. 

Competition binding was carried out to investigate the displacement of eHJ CP-1 01606 

by COMPOUND B in recombinant NRIINR2B and NR1/NR2B!NR3B receptors 

expressed in HEK 293 cells. In cells expressing NRIINR2B receptors, COMPOUND B 

displacement of eHJ CP-101606 was fitted to a one-site curve, showing high affinity 

binding (Ki=l4 ± llnM) to this receptor population. However, eo-expression ofNR3B 

with NR1/NR2B receptors results in the binding of COMPOUND B to two receptor 

populations, one with high affmity (Ki = 0.4nM, 54%), likely to be NRIINR2B 

receptors and one with a lower affinity (Ki = 11J.M, 46%). Therefore the presence of 

NR3B in the receptor complex introduces low affinity binding sites and thus appears to 

reduce the affmity of COMPOUND B for the NRIINR2B populations. The data 

displayed are mean ± SD taken from two individual experiments performed in triplicate. 

C) 

CD .E 0, 
CDC 
'I'""·-
o.O 
'I"'" C.) 

Q. ·­o:t::: 
C.) 

-Cl) 
J:c.. 

coz...rn 
~ 0 

-10 -9 -8 -7 -6 -5 

Log [Compound B) (M) 

NR1/2B 

NR1/2B/3B 

NR1/28 NR1/28/38 

Hillslope = -0.6 ± 0.2 -0.1 ± 0 

l.piCso = 8.0 ± 1.0 10 ± 1.4 

2.p1Cso = 6.4 ± 1.1 

l.K = 14 ± llnM 0.4 ± 0.6nM 

2.Kt= 1 ± 1uM 

-4 

Figure 5.17 Competition binding experiments showing the displacement of PH] CP-101606 

by COMPOUND Bin recombinant NR1/NR2B and NR1/NR2B/NR3B receptors. Data shown 

are mean ± SD for two individual experiments and non-specific binding was defined using 

1mM ifenprodil. 
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5.2.3.10 Radioligand binding assay investigating the specific binding of eH] Ro-

256981 in recombinant NR1/NR2B and NR1/NR2B/NR3B receptors. 

NR1/NR2B and NR1/NR2B/NR3B receptors were transiently expressed in HEK293 

cells and harvested for parallel binding experiments with eHJ Ro-256981. This 

histogram represents the specific binding of eH] Ro-256981 at 16 and 25nM and shows 

a reduced, but not significantly reduced level of binding in the presence of the NR3B 

subunit at both concentrations of radioligand. This data shows that the binding of this 

NR2B-selective antagonist may be affected by the presence of NR3B in the receptor 

complex due to modulation of the Ro-256981 binding site, or a reduction in the number 

ofNR1/NR2B receptors at the cell surface. 

The data presented are generated from the mean ± SD for two individual experiments 

performed in triplicate. 
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Figure 5.18 Histogram representing specific binding data for PH] Ro-256981 in recombinant 

NR1/NR2B and NR1/NR2B/NR3B receptors. The data shown are mean ± SD for two 

individual experiments. Non-specific binding was defined using 1mM ifenprodil. 
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5.2.3.11 Radioligand binding assay investigating the specific binding of eHJ CP-

101606 in recombinant NR1/NR2B and NR1/NR2B/NR3B receptors. 

Parallel binding experiments were carried out with eHJ CP-101606 on NR1/NR2B and 

NR1/NR2BINR3B receptor populations expressed in HEK 293 cells. This histogram 

represents specific binding of eHJ CP-1 01606 at 4 and 9nM and shows a reduction in 

the level of binding in the presence of the NR3B subunit, however the data are not 

significant. This preliminary data may provide further evidence for a modulatory effect 

of the NR3B subunit upon the pharmacology of the receptor complex by altering the 

binding site of CP-101606 or reducing the number of NR1/NR2B receptor sites 

available. 

The results displayed are mean ± SD from two individual experiments carried out in 

triplicate. 
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Figure 5.19 Histogram to represent the specific binding data for PH] CP-101606 in 

recombinant NR1/NR28 and NR1/NR2B/NR38 receptors. The data shows the mean ± SD for 

two individual experiments. Non-specific binding was defined with lmM ifenprodil. 
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Assa~ ( om pound F fft·t·t of\ IU B 

Ifenprodil Trend to Increase 

Cytotoxicity 

Assays COMPOUND No effect/trend to decrease 

% cytoprotection B 

COMPOUND 

A Decrease 

CP-101606 

Trend to Decrease 

Electrophysiology 

0/o current 
Ro-256981 

Trend to Decrease 
inhibition 

COMPOUND 

B Decrease binding affinity 

Competition 

Radioligand COMPOUND 

Binding A Decrease binding affinity 

Competition 

CP-101606 

Specific Decrease binding affinity 

Binding 

Ro-256981 

Specific Decrease binding affinity 

Binding 

Table 5.1 Summarising the pharmacological influence of the NR3B subunit upon NR2B­

selective antagonists ifenprodil, Ro-256981, CP-101606, COMPOUND A and COMPOUND 

B. 
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5.3 Discussion 

The heteromeric nature of the NMDA receptor complex gives nse to large 

variations in channel characteristics which need to be elucidated before the 

functional implications of such receptors in native tissue can be fully understood. 

The most recently discovered and most poorly characterised NR3 subunits were the 

focus of investigation in this chapter investigating their functional and 

pharmacological modulation ofNR1/NR2A and NR1/NR2B receptor complexes. 

The percentage of cell death in HEK 293 cells eo-expressing various NMDA 

receptor subunit combinations was measured using the promega non-radioactive 

cytotoxicity assay, as previously described by Cik et al., 1995. The membrane 

potential of the HEK293 cells is approximately -10 to -20rn V (Chazot, 

unpublished) and therefore depolarised enough to relieve blockade by magnesium 

in the culture medium and activate the receptors. In the absence of an NMDA 

antagonist the }-glutamate and glycine present in the culture medium were 

sufficient to activate the receptors allowing excessive calcium influx and cell 

mortality. It has previously been shown that calcium influx is a major cause of 

toxicity in HEK 293 cells expressing recombinant NMDA receptors in studies 

using calcium chelators such as EDTA (Cik et al., 1995; Chazot et al., 1999) and 

expression of the mutant NMDAR1-1a (N598Q)/NMDAR2A which reduces 

calcium permeability of the receptors (Cik et al., 1994). 

HEK293 cells transfected without plasmid DNA acted as a negative control and 

resulted in a low background cell toxicity of 3 ± 0.6%. HEK293 cells transfected 

with the NRI subunit alone acted as a positive single-subunit control and showed 9 
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± 1% cell death. Co-transfection of NR l/NR2B receptor sub units resulted in the 

highest incidence of cell death (50± 11%) due to calcium toxicity mediated by}­

glutamate activated NMDA receptor Ca2
+ influx. Co-transfection of NR1/NR2A 

subunits to form another diheteromeric complex commonly found in native adult 

tissue (Chazot et al., 1997; Stephenson, 2001) resulted in significantly lower levels 

of cytotoxicity (19 ± 2%) compared to that resulting from NR1/NR2B eo­

expression. This differential degree of cell death may be the result of variations in 

transfection efficiencies within the model system; however, this result is consistent 

with previous work associating NR2B-containing receptors with NMDA-mediated 

excitotoxicity (Fuller et al., 2006; Loftis and Janowsky, 2003; Liu et al., 2007). In 

comparison to the NR2A subunit, NR2B confers increased duration of channel 

opening, increased permeability to calcium and a higher sensitivity to glutamate 

(Fuller et a/, 2006; Cull-Candy et al., 2001). These factors are likely to enhance 

NR2B-containing NMDA receptor activity and therefore result in increased levels 

of cell death. 

Triheteromeric complexes generated from co ... transfection of NR3A with 

NR1/NR2B and NR3B with NR1/NR2B receptor complexes resulted in significant 

reductions in the levels of cell death (29% and 23% cytotoxicity, equating to 42% 

and 54% cytoprotection respectively) in comparison to NR1/NR2B alone. The 

differential level of cytoprotection between the NR3A and NR3B subunit may 

imply that NR3B reduces calcium permeability to a greater extent than NR3A 

therefore potentially having a greater impact in our model. 
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These novel results provide possible evidence that the proposed reduction in Ca2
+ 

influx mediated by the NR3 subunits (Nishi et al., 2001; Matsuda et al., 2002, AI-

Hallaq et al., 2002) is sufficient to significantly reduce cytotoxicity and have a 

profound cytoprotective effect in vitro. In these studies despite the likely formation 

of both diheteromeric (NR1/NR2B and NR1/NR3B) and triheteromeric 

(NR1/NR2B/NR3B) complexes from the co-transfection of three subunits 

(Brimcombe et al., 1997), the presence of the NR3 sub units had a significant effect, 

consistent with the findings ofNishi et al., 2001. 

Interestingly, no significant cytoprotection was seen when NR3A and NR3B were 

co-transfected with NR 1/NR2A receptors. This result opposes that which would 

have been expected from previous work by Nishi et a/, 2001 and Matsuda et al., 

2002 who found reduced calcium permeability in recombinant NR1/NR2AINR3B 

receptors in comparison to NR1/NR2A receptors alone. It is possible that in this 

system, the NR3 subunits are not associating with NR1/NR2A receptors and are 

therefore not being expressed at the receptor surface. It is also possible that any 

cytoprotective effect of the NR3 subunits is beyond detection limits when 

compared with the level of cell death resulting from NR1/NR2A receptors which is 

comparatively lower than NR1/NR2B. 

The cytoprotection seen with inclusion of NR3A and NR3B in NR1/NR2B 

receptors may be initial evidence to suggest a mechanism of NR3 retention of 

NR2B-containing receptors within the ER reducing protein trafficking and 

expression at the cell surface which would reduce Ca2
+ influx. There may also be 

specific interactions between the NR2B/NR3B-containing receptors and 
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intracellular signalling cascades which alter the internal processing of calcium, 

neutralising excess concentrations with uptake into stores or disrupting CaMKII 

kinase stability, an enzyme linked with NR2B and important for promoting Ca2+ 

influx (Bay er et al., 2001; Lisman et al., 2002). 

The stoichiometry of the heteromeric complex may also play a role in NR3 subunit 

modulation. For example, inclusion of NR3B in the receptor complex may 

substitute for one NR2B subunit, forming a tetramer composed of two NRl 

subunits, one NR2B subunit and one NR3B subunit. This formation would reduce 

the number of NR2B glutamate binding sites, potentially reducing the influence of 

the NR2B subunit and attenuating receptor activation however this hypothesis is 

not supported by the electrophysiological peak current amplitude data. It has also 

been suggested that the NR3A subunit doesn't undergo extensive molecular re­

arrangement upon channel activation, and with NRl forms a narrow vestibule, 

modulating the influx of cations (Wada et al., 2006). The NR3B subunit may 

therefore act similarly, when part of the receptor complex. 

Electrophysiological experiments were then undertaken to further characterise the 

effects of the NR3 subunits on NMDA receptor biophysical properties and 

function. NR3B and its influence on NR1/NR2B receptors was the focus for these 

experiments to reflect receptors present in adult rat tissue and because this receptor 

combination showed the highest degree of cytoprotection. 

The peak amplitudes resulting from NMDA-mediated currents in HEK 293 cells 

co-transfected with NR1/NR2B and those with NR1/NR2BINR3B were measured 

upon application of co-agonists glutamate ( 1 OOJJ.M) and glycine ( 1 OfJ.M). 
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Experiments were carried out in the absence of magnesium to ensure no voltage­

dependent blockade of the receptor channel. Both populations of cells showed 

functional activity with similar fast onset activation and deactivation kinetics 

though no significant difference in peak amplitude was observed between cells co­

transfected with NRIINR2B/NR3B and those with NR1/NR2B. Previous 

electrophysiological studies showed reduced glutamate induced whole-cell current 

in NR1/NR2AINR3A (Ciabarra et al., 1995; Sucher et al., 1995) and 

NR1/NR2AINR3B (Nishi et al., 2001) recombinant receptors, however, in contrast 

Matsuda et al., 2002 found no significant reduction in current amplitudes in cells 

eo-expressing NR1/NR2AINR3B when compared to NR1/NR2A receptors. These 

conflicting results provide evidence to support the theory that NR3 subunits have a 

modulatory rather than a dominant negative (Nishi et al., 2001) role when part of 

the receptor complex and may have diverse interactions with different NR2 

subunits, also evident from the cytotoxicity data. A recent study has highlighted 

the potential for different effects ofNR1 splice variants when investigating in vitro 

interactions. Interestingly, it was noted that eo-expression of NR1-la and NR3B 

with either NR2B or NR2D in Xenopus laevis oocytes resulted in potentiated 

currents, though eo-expression of NR1 (regardless of variant) and NR3B with 

either NR2A or NR2C showed the dominant attenuation of currents previously seen 

(Cavara and Hollmann, 2007) suggesting important differential modulation 

depending upon receptor composition. The electrophysiological studies carried out 

in this chapter were carried out on cells eo-expressing the NR1-la splice variant 

with NR3B and NR2B and therefore the data supports these previous findings as no 
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dominant attenuation of current was observed. These differences in modulatory 

properties conveyed by alternative receptor eo-assemblies may explain the 

discrepancies between the data presented in this chapter and the literature. 

It must also be remembered that expression efficiencies will vary between systems 

and cell labelling with GFP was taken as a marker for successful expression of 

potentially all three cDNA plasmids, but may not be absolute. In future 

experiments, it may be advantageous to tag the NR3B subunit or all three subunits 

with fluorophores, so that cells eo-expressing all subunits could be identified. 

The current/voltage (1/V) relationship of both receptor populations revealed no 

significant alteration to the reversal potential of the receptor channel being -3.9 and 

-3.6mV for NR1/NR2B and NRIINR2BINR3B respectively, a novel finding 

showing that the species of ion permeant to the receptor is the same in the presence 

and absence of NR3B. The IN relationship was then used to measure Ca2+ 

permeability between the two receptor populations. Measuring the reversal 

potential of glutamate induced currents in 3mM and 30mM external calcium 

resulted in a shift in potential of 15.9 ± IO.OmV for NRIINR2B and 21.9 ± 9.0mV 

for NRIINR2BINR3B and therefore no significant reduction in calcium 

permeability of the receptor in the presence ofNR3B. The large variability in these 

measurements may be an indication of variable transfection efficiencies and 

therefore must be considered when drawing conclusions. These findings further 

suggest a differential modulatory effect of NR3B upon NR2B subunits in 

comparison to NR2A as previous research by Matsuda et al., 2002 reported a 
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reduced shift in reversal potential from 16.6 ± 0.6mV for NRIINR2A and 9.3 ± 

0.8mV for NR1/NR2A/NR3B equating with attenuated Ca2
+ permeability. 

The conflicting data between the cytotoxicity and electrophysiological experiments 

may be evidence for a different, non-NMDA interaction of the NR3 subunits, such 

as with internal calcium stores, which may reduce intracellular calcium 

concentrations, seen as a cytoprotective effect in whole cell functional assays, 

which would not be detected in NMDA channel physiology. Calcium imaging via 

fluorescence imaging plate reader (FLIPR) was attempted to investigate 

intracellular calcium concentrations in large cell populations, with and without 

NR3B, however the data obtained was inconclusive and is therefore not shown. 

The sensitivity of NR1/NR2B and NRIINR2B/NR3B receptors towards 

magnesium blockade was characterised by IN relationships and percentage 

inhibition of current amplitude in 1 OOJ.I.M and 20J.1M external magnesium. At both 

concentrations of magnesium, blockade ofNRIINR2B receptors remains maximal 

until the membrane potential reaches~ -35mV, however, both 100J.1M and 20J.1M 

Mg2
+ blockade are relieved at much lower membrane potentials of ~ -50-60m V in 

receptors containing the NR3B subunit. This data is consistent with previous data 

suggesting the NR3 subunits confer reduced magnesium sensitivity towards the 

receptor complex due to a key amino acid change (asparagine to glycine) within the 

M2 domain (Matsuda et al., 2002). The percentage inhibition of 1 OOJ.I.M 

magnesium was reduced from 83 ± 5% in NRIINR2B receptors to 69 ± 3% in the 
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presence ofNR3B and with 20f.1M Mg2
+ from 49 ± 5% to 44 ± 3% though there is 

no statistical difference between receptor populations. 

Implication of NR2B-containing receptor involvement in hyperexcitability of 

NMDA receptors has led to the development of novel subunit selective antagonists 

for therapeutic targeting. The subunit composition of the receptor complex has 

proved to be an important factor for pharmacological affinity of compounds for the 

receptor and for targeting specific sub-populations of receptor in different CNS 

regions. The interactions and influence mediated by the NR3B subunit upon NR2B 

receptor pharmacology is therefore potentially very important particularly for 

regulation and assessment of the impact of receptor targeting in motor neurons, 

where NR3B is predominantly expressed. 

The cytotoxicity assay was performed with HEK293 cells co-transfected with 

NR1/NR2B and NR1/NR2B/NR3B receptors in the presence of three NR2B 

specific antagonists and using no antagonist as a control. 

When no NMDA antagonist was present, NR1/NR2B/NR3B receptors showed a 

significant reduction in cell death compared to NR1/NR2B receptors again 

confirming a cytoprotective property of the NR3B subunit. The addition of 

ifenprodil to cells eo-expressing NR1/NR2B receptors resulted in a reduction in cell 

death to 21% and 17% at 1 f.! M and 1 Of.lM concentrations, showing effective 

antagonism of NR2B-containing receptors. Interestingly, the eo-expression of 

NR3B with NR1/NR2B seemingly increased the sensitivity of ifenprodil, reducing 

cytotoxicity to 16 ± 7%, 18 ± 5% and 9 ± 5% at 1 OOnM, 1 f.!M and 1 Of.!M, 
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respectively. This apparently enhanced binding affinity of ifenprodil for receptors 

containing NR3B may be the result of conformational and/or allosteric changes of 

the ligand binding domain or an impact on the activation state of the NMDA 

receptors as it has been reported that ifenprodil binds with higher affinity towards 

receptors in the activated state (Mutel et al., 1998). Ifenprodil is also reported to 

bind to other non-NMDA receptors such as voltage-gated Ca2+ channels (Church et 

al., 1994) which may be modulated by NR3B and up-regulated, increasing binding 

and reducing intracellular Ca2
+ in HEK 293 cells. 

Antagonism with the novel compounds COMPOUND B and COMPOUND A 

resulted in significant reduction in cell death to 23 ± 7% and 16 ± 4%, respectively 

at 1J.1M in cells eo-expressing NR1/NR2B receptors. The addition ofNR3B into 

the receptor complex slightly reduced the sensitivity to COMPOUND B although 

overall the protective effect remained similar to that observed in NR I /NR2B cells. 

In the presence of NR3B, antagonism with COMPOUND A showed reduced 

sensitivity and binding affinity as no significant reduction in cytotoxicity was 

observed. This may be due to an allosteric effect of the inclusion of NR3B in the 

receptor complex, altering the binding site of COMPOUND A and reducing its 

affmity, or it could be due to a reduction in the numbers of NR2B subunit 

expressing on the cell surface, thereby reducing the number of available binding 

sites. 

This data provides initial evidence for differential cytoprotective effects of the two 

novel compounds COMPOUND B and COMPOUND A upon recombinant NMDA 

receptor-mediated cytotoxicity in vitro and potentially shows that COMPOUND A 
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is more sensitive to the presence of alternative subunits, a finding also highlighted 

in chapter 3. The sources of variability seen in these assays should be taken into 

consideration and are likely to result from the natural variability in the health and 

age of the cell cultures. Also, due to physical limitations in the number of assays 

which could be performed at one time, experiments were repeated over a number of 

weeks, increasing the likelihood of variability occurring. 

Whole-cell patch clamp electrophysiology was then used in order to investigate the 

pharmacological effect ofNR3B inclusion in NR1/NR2B receptor complexes upon 

Ro-256981 and CP-101606. Both Ro-256981 and CP-101606 are highly selective 

NR2B-containing receptor antagonists commonly used as tools for receptor 

characterisation. Following agonist activation of receptor currents, application of 

CP-101606 (10f.1M, 300nM and 30nM) displayed fast onset of blockade, but very 

slow, minimal wash-out after several minutes, demonstrating high affinity binding 

to both NR1/NR2B and NR1/NR2B/NR3B complexes. A trend towards reduced 

inhibition in the presence of NR3B with short 10 second application of 300nM 

CP 101606 supports previous findings that this compound binds with higher affinity 

towards only NR2B-containing receptors (Chazot et al., 2002) over receptors 

containing NR2B plus other subunits. Overall however, no significant differences 

in the percentage inhibition were observed implying a distinction between the 

allosteric modulatory effects of the NR2 and NR3B subunits on ligand binding 

domains. 

Application of Ro-256981 (10f.1M) also showed high functional potency towards 

both receptor complexes inhibiting NMDA receptor mediated currents by 
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approximately 1 00%, with fast onset of action and minimal wash-out. At 30nM, 60 

second application of Ro-256981 showed a time-dependent response with 

apparently reduced inhibition ofNR1/NR2B/NR3B receptor-mediated currents (10 

± 7%) in comparison to NR1/NR2B (41 ± 12%). These data show that the 

sensitivity of Ro-256981 may be reduced in the presence of NR3B implying that 

NR3B confers distinct pharmacological changes to the receptor complex in 

comparison to alternative NR2 subunits, although due to the small replicate 

number, further characterisation would be required to confirm results. 

Parallel radioligand binding assays also enabled pharmacological characterisation 

of the influence ofNR3B upon NR2B-selective compounds. COMPOUND A and 

COMPOUND B both show high affinity eH] CP-101606 displacement curves with 

NR1/NR2B receptors (Ki= 5 ± 6nM and 14 ± 11nM respectively) which are shifted 

to the right in the presence of NR3B. In cells eo-expressing NR1, NR2B and 

NR3B, COMPOUND A and COMPOUND B displayed low affinity binding sites 

(12 and 11J.M, respectively), providing further evidence for reduced sensitivity of 

these compounds toward triheteromeric NR1/NR2B/NR3B complexes. 

Interestingly, the presence of the NR3B subunit may also be reducing receptor 

numbers or NR2B subunits at the cell surface, or affecting antagonist binding sites. 

Herein, it is shown that in comparison with NR1/NR2B receptors, eo-expression of 

NR1/NR2B/NR3B reduced the specific binding of both eH] Ro-256981 (3000 to 

2000 fmoles/mg at 25nM) and eH] CP-101606 (1300 to 1000fmoles/mg at 9nM). 
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The pharmacological modifications of antagonist sensitivities in the presence of 

NR3B are likely to be due to physical alteration of the compound binding sites, 

reduced numbers of NR2B subunit expression at the cell surface or alterations in 

functional receptor expression levels. Compound binding sensitivities would be 

reduced if the number of functional receptors reaching the cell surface was lowered 

by changes in receptor trafficking mechanisms or increases in the number of 

receptors undergoing endocytosis. Previous research suggests that receptors 

containing NR3A (sharing large sequence homology with NR3B) undergo rapid 

endocytosis from dendritic plasma membranes during post-natal development. 

Specific removal is regulated by PACSINl/syndapin which binds selectively to 

NPF motifs in the carboxyl terminal of the 3A subunit. (Perez-Otano et a/, 2006). 

It is possible that NR3B shares this binding motif and is similarly internalised 

rapidly, reducing the number ofreceptors and thus binding sites available, however, 

the protein complexes required for this internalisation are likely to be different in 

our model from those of native dendritic membranes. 

This potential reduction in receptor numbers reaching the cell surface or the 

reduced expression of the NR2B subunit supports the cytotoxicity data as a 

reduction in the number of NR2B subunits would probably lower Ca2
+ influx into 

the cell thereby reducing toxicity. However, this potential reduction of NR2B at 

the cell surface was not reflected in the channel conductance as no significant 

changes were apparent between the NR1/NR2B and NR1/NR2BINR3B 

populations, therefore further investigation is required. 
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It is evident from the data presented that both NR3A and NR3B have distinct 

modulatory influences on the NMDA receptor complex which may alter receptor 

physiology, pharmacology, subunit expression, transportation and signalling. 

Elucidating these modulations conferred by the NR3 subunits is therefore very 

important for understanding the full extent ofNMDA receptor heterogeneity and its 

implications for receptor function and pharmacological development of new drug 

candidates. 
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Chapter 6 

NMDA subunit expression in a chronic pain model 

6.1 Introduction 

The hyper-excitation of the NMDA receptors within the central nervous system has been 

implicated as a pathogenic mechanism in a wide-range of disease states including 

neurodegenerative conditions, stroke, head trauma, schizophrenia and chronic pain. 

Increasing understanding of the molecular mechanisms behind chronic nociceptive 

signalling via prolonged activation of excitatory neurotransmitters and their receptors 

led to the focus of research upon NMDA receptors, their function and pharmacology. 

Persistence of the nociceptive response is mediated, in part, by synaptic changes and 

long-term potentiation of NMDA receptor signalling, resulting in central sensitisation, 

an enhanced responsiveness of neurons within the spinal cord and brain stem. 

Pharmacological intervention of these signalling pathways may therefore provide 

potentially novel, effective analgesic treatments for chronic pain. As discussed 

previously in chapters I, 4 and 5 the undesirable side-effect profile of broad-range 

NMDA receptor antagonists necessitates the selective targeting of specific receptor 

populations within nociceptive signalling and processing pathways. NR2B-containing 

receptors have since become the focus for NMDA receptor targeting, due to their 

expression patterns and proven involvement in nociceptive transmission (eg, Wei et al., 

200 I; Zhuo., 2002; Nishimura et al., 2004; Wu et al., 2005). 

The development of novel pharmaceutical compounds requires effective animal 

modelling to closely reproduce clinically relevant symptoms and phenotypes of disease. 
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The development ofNR2B-selective compounds has been reliant upon animal models of 

peripheral nerve lesion and inflammation (Karlsson et al., 2002; Wu et al., 2005), nerve 

injury (Dickenson et al., 1997) or subcutaneous injection of an inflammatory mediator 

into the rat hind paw with measurements of inflammation and pain recorded within 

several hours of the insult (Chaplan et al., 1994). These models therefore display 

predominantly acute nociceptive phenotypes and show limite-d success as bases for 

developing chronic therapies in the clinic. A requirement therefore exists for improved 

animal modelling of chronic pain which mimics the more persistent responses displayed 

in the clinic. 

This chapter will discuss and utilise tissue from a novel animal model of chronic 

inflammatory pain, developed by Alex Wilson and colleagues at GlaxoSmithKline 

(Wilson et al., 2005). The model was developed for therapeutic advancement of 

analgesic compounds including NR2B-selective antagonists and aimed to induce the 

peripheral and central sensitisation seen in chronic pain states. Inflammatory pain is 

induced by injection of the inflammatory mediator Freund's Complete Adjuvant (FCA) 

into the left knee joint of adult male Random-Hooded rats with weight bearing and joint 

diameter measurements made daily for up to 90 days post-FCA. 

Previous research has shown changes in NMDA receptor expression including up­

regulation ofNR2B-containing receptors (Wu et al., 2005), down-regulation ofNR2A­

containing receptors (Karlsson et al., 2002) and increased phosphorylation of NR1, 

NR2A and NR2B subunits in dorsal horn neurons (Zou et al., 2000; Gou et al., 2002) 

during inflammatory pain states. This chapter presents novel data investigating NMDA 

receptor subunit expression and phosphorylation states in rat brain and spinal cord tissue 
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from this pain model. NR 1, NR2A, NR2B, NR3B and PSD-95 protein expression and 

phosphorylation of NR2A (pY1325, pY1387) and NR2B (p1252, p1336, p1472) was 

investigated using immunohistochemical analysis (2.2.11 ). Functional NR2B-

containing receptors were mapped using autoradiographical analysis (2.2.22) with the 

NR2B-selective compound eH] Ro-256981, to provide a data set detailing modulation 

ofNMDA receptor complexes during chronic pain states. 
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6.2 Results 

Inflammatory hyperalgesia of the left knee joint was induced in adult male Random 

Hooded rats via injection of 150j.1.l Freund's Complete Adjuvant (containing 1mg/ml 

Mycobacterium tuberculosis). Sham control animals were injected with a saline 

solution. 16 days post-injection the rats were sacrificed and whole brains (n=8 sham, 

n=8 FCA) and spinal cords (n=8 sham, n=8 FCA) dissected and either snap frozen on 

dry ice or fixed in 4% paraformaldehyde until processing. 

6.2.1 Immunohistochemical characterisation of subunit expression in the spinal 

cord of adult male rats subjected to a novel chronic pain model 

Immunohistochemical analysis was carried out on the lumbar and thoracic regions of the 

fixed spinal cord tissue (n=4 sham, n=4 FCA) as detailed in 2.2.11. 

Following cryostat sectioning of the spinal cords (2.2.9.2) and blockade of endogenous 

peroxidase activity, the tissue was probed overnight with primary antibodies from the 

panel previously described in chapter 4; anti-NR1 (1j.1.g/ml), anti-NR2A (2J..Lg/ml), anti­

NR2B (2J..Lg/ml), anti-NR3B(885-899) (2J..Lg/ml) and also anti-PSD-95 (I: 1 000) and 

phosphorylation antibodies anti-NR2A (py1325, py1387) (1: 1000) and anti-NR2B 

(p1252, pl336, p1472) (1:1000) provided as a gift from Professor Seth Grant, Sanger 

Institute. Sections probed without primary antibodies acted as controls (figure 6.1 ). 

Both the sensory (dorsal) and motor (ventral) regions ofthe lumbar and thoracic spinal 

cord were analysed and immunoreactivity of each antibody compared between the sham 

and model (FCA) tissue for changes in expression. 
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Figure 6.1 Schematic (Tolle et al., 1993) and low resolution images (Uu et al., 1994) of the 

cord highlighting the dorsal (outer lamina) and ventral regions (motor neurons) 

investigated in this study (A) and control sections showing the immunoreactivity in tissue 

in the absence of primary antibodies in the lumbar dorsal horn (B), the lumbar ventral horn 

(C), the thoracic dorsal horn (D) and the thoracic ventral horn (E). 
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6.2.1.1 NRl expression 

The ubiquitously expressed NRl subunit showed abundant expression throughout the 

outer laminae of the dorsal horn and large cell bodies of the motor neurons in laminae 

IX in both the thoracic and lumbar regions of the spinal cords. An example of NR 1 

immunoreactivity in thoracic spinal cord is shown in figure 6.1. No detectable change 

in immunoreactivity between the sham and model tissue perhaps indicates that there is 

minimal modulation of the total numbers of NMDA receptors in an inflammatory state 

compared to control tissue, an observation supported by previous results showing no 

change in the number of neurons between control and nerve lesioned animals (Ultenius 

et al., 2006). 

A B 

Figure 6.2 Expression of NR1 protein in the dorsal (A) and ventral (B) horns of the thoracic 

cord in a sham animal probed with anti-NR1 (l!J.g/ml). The outer laminae I, 11, Ill are 

labelled in the dorsal horn (A) and cell bodies of motor neurons (MN) in lamina IX in the 

ventral horn (B). Scale bar represents 100J11D. 
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6.2.1.2 NR2A expression 

Immunohistochemical analysis of NR2A protein showed immunoreactivity in the 

ventral horns of lumbar cord in both sham and FCA animals. NR2A expression showed 

no apparent changes in immunoreactivity between the sham and FCA tissue, consistent 

with previous research that detected no differences in immunoreactivity of non-

phosphorylated NR2A in a rat model of peripheral nerve injury (Uitenius et al., 2006) 

but contradicting a study which detected reduced NR2A mRNA expression after 

peripheral nerve lesion (Karlsson et al., 2002). Prominent NR2A protein expression 

was detected in the motor neuronal cell bodies of lamina IX in the ventral horn with 

more limited expression in the dorsal horns showing that NR2A plays a role in sensory 

and motor modulation consistent with previous research (Nagy et al., 2004). 

A B 

MN 

MN 

Figure 6.3 Expression of NR2A protein in the ventral horns of lumbar spinal cord in sham (A) 

and FCA model (B) animals, probed with anti-NR2A (2J.lgfml). The cell bodies of the motor 

neurons (MN) within laminae IX show high levels of NR2A protein expression. Scale bar 

represents 100J.1.ID. 
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6.2.1.3 NR2A phosphorylation 

Changes in the phosphorylation of the NR2A subunit between the sham and FCA 

animals was analysed using two antibodies; one which recognised single 

phosphorylation at tyrosine 1325 (p1325) and one which recognised single 

phosphorylation at tyrosine 1387 (p1387). Both tyrosine residues are located in the C­

terminus of the NR2A protein and can be phosphorylated by the Src family of protein 

tyrosine kinases (Lee, 2006). It has been proposed that Src-mediated tyrosine 

phosphorylation of the NR2A subunit potentiates NMDA receptor function by reducing 

tonic Zn2
+ inhibition (Zheng et al., 1998). 

Phosphorylation of the NR2A subunit was evident in both the dorsal and ventral horns 

of lumbar and thoracic spinal regions. Immunoreactivity with the anti-py1325 antibody 

showed no detectable changes in NR2A phosphorylation at this residue between the 

sham and FCA animals (figure 6.3). Analysis with the anti-py1387 antibody showed 

initial evidence for enhanced phosphorylation of NR2A at this residue during an 

inflammatory response with increased immunoreactivity of the dorsal and ventral horns 

in the FCA lumbar tissue in comparison with the sham tissue (figure 6.4). However, 

immunoreactivity in the thoracic tissue was unchanged possibly indicating that 

phosphorylation may be confined to the lumbar region at the site of tibial and fibular 

nerve entry into the cord. The over-all immunoreactivity of the phosphorylated subunit 

was reduced possibly because it is detecting only NR2A as part of functional receptors 

at the cell surface which are phosphorylated and at synapses which are not as 

prominently labelled as cell bodies with this technique. 
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Figure 6.4 Expression of phosphorylated NRZA subunit at tyrosine residue 132 5 in the dorsal 

horn of sham (A) and FCA (B) lumbar cord tissue. Weak immunoreactivity is present 

particularly in the outer laminae (1, 11 and Ill) of the dorsal horn. Scale bar represents 

100J1m. 
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Figure 6.5 Expression of phosphorylated NRZA subunit at tyrosine 1387 in the dorsal horn of 

sham (A) and FCA (B) lumbar cord tissue. Initial evidence for increased phosphorylation of 

NR2A at tyrosine 1387 in the outer laminae (I, 11 and Ill) during the inflammatory response. 

Scale bar represents 100J1ID. 
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6.2.1.4 NR2B expression 

NR2B protein expression was concentrated in the outer laminae I, 11 and Ill of the dorsal 

horn and motor neuronal somata in the ventral horn, consistent with previous studies 

(Boyce et al., 1999; Nagy et al., 2004; O'Donnell et al., 2004). No detectable 

differences in immunoreactivity between the sham and FCA tissue suggest that NR2B 

expression is unchanged in the spinal cord under these inflammatory conditions. 

Previous studies have shown up-regulation of forebrain NR2B receptors after 

inflammation (Wu et al., 2005) and up-regulation ofNR2B mRNA in the rat dorsal horn 

following nerve lesion (Karlsson et al., 2002). Figure 6.5 shows NR2B 

immunoreactivity within the dorsal horn of the lumbar cord of both sham and FCA 

animals. 

A B 

11 

11 
Ill 

Ill 

Figure 6.6 Expression ofNR28 protein within the dorsal horns oflumbar spinal cord in sham 

(A) and FCA (B) tissue. NR2B shows expression in the outer laminae (I, 11 and Ill) in both 

sham and model tissue showing involvement in sensory inputs to the cord. Scale bar 

represents lOOJUD. 
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6.2.1.5 NR2B phosphorylation 

Phosphorylation of the NR2B subunit was investigated using three antibodies which 

recognised tyrosine residues Yl252, Y1336 and Y1472 respectively, again located in 

the C-terminal of the protein, which are phosphorylated via the Fyn family of kinases 

(Nakazawa et al., 2001 ). Analysis with all three antibodies revealed phosphorylated 

NR2B subunits in the dorsal and ventral horns throughout the spinal cord. 

Immunoreactivity with anti-pY1252 showed no detectable changes in phosphorylation 

between the sham and FCA tissue (figure 6.6). Immunoreactivity with anti-pY1336 and 

anti-pY1472 showed initial evidence for increased phosphorylation ofthe NR2B subunit 

at these residues in both the dorsal and ventral horns of the lumbar cord of FCA animals 

compared to sham tissue (figure 6.7 and figure 6.8). These findings are consistent with 

previous research which shows increased phosphorylation of NR2B with induction of 

LTP (Nakazawa et al., 2001) and blockade of NR2B receptor internalisation via 

phosphorylation at Y1472 potentiating receptor activity (Prybylowski et al., 2005). 

A B 

11 

Ill 

Figure 6.7 Expression of phosphorylated NR2B at tyrosine 1252 within the dorsal horn of 

lumbar sham {A) and FCA (B) tissue. Similar levels of immunoreactivity suggest no alteration 

in phosphorylation of Nr2B at this residue in the outer laminae I, 11 and Ill of the dorsal 

horns. Scale bar represents 100~m. 
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A B 
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Figure 6.8 Expression of phosphorylated NR2B at residue y1336 within the dorsal horn of 

lumbar sham (A} and FCA (B) tissue. Initial evidence for increased phosphorylation of NR2B 

at this residue in the outer laminae I, 11 and Ill, suggesting potentiation of sensory NR2B· 

mediated transmission. Scale bar represents 1001JD1. 
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Figure 6.9 Expression of phosphorylated NR2B at residue y1472 within the dorsal horn of 

lumbar sham (A) and FCA (B) tissue. Initial evidence for enhanced phosphorylation of the 

NR2B subunit at residue 1472, in outer laminae I, 11 and Ill, important for blockade of 

receptor internalisation. Scale bar represents 100~m. 

208 



Chapter 6 Heather Chaffey 

6.2.1.6 NR3B expression 

NR3B protein expression was prominent in the motor neuronal cell bodies in lamina IX 

of the ventral horn in all regions of the spinal cord of both sham and FCA animals. 

Somatic motor neuronal expression of NR3B is consistent with previous research 

mapping NR3B protein (Matsuda et al. , 2002) and mRNA (Nishi et al., 2001). 

Moderately high levels of immunoreactivity in the dorsal horns were detected, with 

potentially initial evidence for an increase in NR3B protein expression in the FCA 

animal dorsal horn in laminae I, 11 and Ill (figure 6.9). This provides novel data 

suggesting that inflammatory conditions may up-regulate NR3B expression in sensory 

areas. 

A B 

Figure 6.10 Expression of NRJB protein within the dorsal horns of the lumbar spinal cord in 

sham (A) and FCA (B) tissue. Initial evidence for increased NR3B expression in outer 

laminae I, 11 and Ill following onset of the inflammatory response. Scale bar represents 

1001lJil. 
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6.2.1.7 Post-synaptic density 95 (PSD-95) expression 

Analysis of the post-synaptic density using an anti-PSD-95 antibody revealed very weak 

immunoreactivity, particularly in the dorsal horns, where it may be difficult to detect 

due to its predominantly synaptic localisation. In the ventral horn, the large motor 

neuronal soma show immunoreactivity (figure 6.1 0), supporting previous data 

suggesting that intracellular pools of PSD-95 exist and can exhibit plastic changes and 

movement between synapses. 

A B 

MN MN 

Figure 6.11 Expression of PSD-95 within the ventral horns of the lumbar cord in sham (A) 

and FCA (B) tissue. Initial evidence for increased expression of PSD-95 in the motor 

neuronal soma (MN) of FCA model tissue (B) in comparison with sham tissue (A). Scale bar 

represents lOOJUD. 
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6.2.1.8 Qualitative summary of NMDA receptor subunit expression and 

phosphorylation state in the lumbar and thoracic regions of spinal cord from 

control and model tissue. 

The data are semi-quantified and shown as the average intensity of immunoreactivity 

detected from parallel experiments in spinal cords from 2-4 sham animals and 2-4 FCA 

treated animals. 

Lumbar coni Thoracic l'ord 

Sham Model Sham Model 

VB DB VB DB VB DB VB DB 

Anti-NRl +++ +++ +++ +++ +++ +++ +++ +++ 

Anti-NR2A +++ ++ +++ ++ ++++ ++ ++++ ++ 

Anti-pyl387 ++ ++ +++ +++ ++ ++ ++ ++ 

Anti-pyl325 ++ ++ ++ ++ ++ +++ ++ ++ 

Anti-NR2B ++ ++ ++ ++ (+) (+) (+) (+) 

Anti-pl252 +++ ++ +++ ++ ++ ++ ++ ++ 

Anti-pl336 + + ++ ++ ++ ++ ++ ++ 

Anti-p1472 ++ + ++ ++ ++ ++ ++ ++ 

Anti-NR3B +++ ++ +++ +++ +++ +++ +++ +++ 

Anti-PSD-95 + (+) + (+) + (+) + (+) 

Table 6.1 Qualitative summary of the average intensity of immunoreactivity detected with 

each of the antibodies, in the lumbar and thoracic regions of the spinal cord. 

( +) =Very weak expression,+= Weak expression, ++ = Moderate expression, 

+++ = Strong expression, ++++ =Very strong expression. 
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6.2.2 Autoradiographical analysis of the distribution and density of NR2B­

containing receptors in the CNS of adult male rats exposed to a chronic pain 

model. 

Following dissection and rapid freezing of the tissue, autoradiography was carried out 

on lumbar and thoracic spinal cord regions and whole brains of FCA treated animals 

compared with sham animals (2.2.22). The NR2B-subtype selective compound eH] 

Ro-256981 was used to map NR2B expression in these tissues, defining non-specific 

binding with ifenprodil (lmM). Following autoradiography, the tissue sections were 

exposed to tritium-sensitive film together with slide-mounted tritium standards, used 

during analysis to calculate optical density values, and thus the concentration of bound 

radioligand (Bq/mg). The autoradiographs were exposed for 5-6 weeks at room 

temperature and developed for 5 minutes 

6.2.2.1 Analysis of autoradiography on the adult rat spinal cord 

Autoradiographical analysis on the adult rat spinal cord showed a high level of specific 

binding within the dorsal and ventral horns of the sham and FCA treated animals (Figure 

6.11 ). Effective displacement of eHJ Ro-256981 using 1 mM ifenprodil (figure 6.11) 

showed specific binding towards NR2B-containing receptors and is consistent with 

previous findings (Sheahan and Chazot, unpublished). 

The outer laminae of the dorsal horn and lamina IX of the ventral horn were regions of 

the spinal cord selected for analysis due to the high level of NR2B expression in these 

areas and their involvement in sensory and motor pathways. 
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Figure 6.12 Representative autoradiograms of adult rat lumbar spinal cord using (3H] Ro-

256981 in sham (A) and FCA treated (B) animals. Representative image showing non­

specific binding defined using ifenprodil (1mM) (C). 
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6.2.2.1.1 Mapping the expression of functional NR2B-containing receptors in the 

spinal cord of sham and FCA treated adult rats using eH] Ro-256981. 

Binding of eH] Ro-256981 within each region ofthe sham and FCA-treated spinal cord 

was compared using optical density measurements to calculate the concentration of 

bound radioligand (Bq/mg). 

eH] Ro-256981 binding in the outer lamina (I and II) of the dorsal horn showed 

prominent distribution of NR2B-containing receptors in this region of the cord 

consistent with previous immunohistochemical findings. Comparing the two regions of 

cord analysed, overall more eH] Ro-256981 binding was evident in the lumbar cord, 

likely to be due to a greater proportion of grey matter, though the density changes 

between the sham and FCA tissue were most evident in the thoracic cord. 

In the lumbar region enhanced NR2B expression was evident in the dorsal horn with 

increased eH] Ro-256981 binding, however, not to a significant level, possibly showing 

that induction of inflammation in this model results in up-regulation of NR2B­

containing receptors. These data are consistent with previous findings in forebrain (Wei 

et al., 2001; Wu et al., 2005) but contradict previous IHC findings, likely either to be 

due to the comparative insensitivity of IHC method or that IHC can't distinguish 

between an individual subunit and those in a functional complex. In the thoracic cord, 

both the dorsal and ventral horns showed increased binding of eH] Ro-256981 in the 

FCA-treated animals in comparison to sham animals. This provides evidence for up­

regulation of NR2B-containing receptor expression or activity in a region other than 

where the initial insult enters the spinal cord. 
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Figure 6.13 Autoradiographical data showing PH] Ro-256981 binding within the dorsal and 

ventral horns of sham and FCA spinal cord. 

Data shown are the mean values ± standard deviation for n=4 sham and n=4 FCA spinal 

cords. Sham and FCA tissue is compared in the dorsal horn of the lumbar cord (A), the 

ventral horn of the lumbar cord (B), the dorsal horn of the thoracic cord (C) and the ventral 

horn of the thoracic cord (D). Levels of PHI Ro-256981 binding are higher in the lumbar 

region than the thoracic region, consistent with NR2B immunoreactivities in IHC 

experiments. 
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6.2.2.2 Analysis of autoradiography on the adult rat brain 

eH] Ro-256981 autoradiography on sham and FCA-treated rat brain revealed specific 

binding confined to forebrain regions, consistent with data showing minimal NR2B 

subunit expression in the cerebellum (Bradford and Chazot, unpublished, Thompson et 

al., 2000). 

The structures important for nociceptive signalling and processing were selected for 

analysis to determine any up-regulation in NR2B expression as a result of the 

inflammatory response. These structures were the somatosensory cortices, the anterior 

cingulate cortex, the periaqueductal grey, the thalamus and the hippocampal regions 

(CAI, CA2, CA3 and dentate gyrus) and were analysed from horizontal and coronal 

brain slices. 
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Figure 6.14 Representative horizontal (A+B) and coronal (C+D) autoradiograms showing 

pH] Ro-256981 binding within sham and FCA-treated rat brains. Non-specific binding was 

defined using 1mM ifenprodil (E). 
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6.2.2.2.1 Mapping the expression of functional NR2B-containing receptors in the 

brain of sham and FCA treated adult rats using eH] Ro-256981. 

Binding of eH] Ro-256981 within each region of the sham and FCA-treated whole 

brains was compared using optical density measurements to calculate the concentration 

ofbound radioligand (Bq/mg). 

Overall, the level of eH] Ro-256981 binding in the FCA-treated animals was enhanced 

in comparison to sham tissue showing that this chronic pain model stimulates up­

regulation of NR2B-containing receptors. The somatosensory cortices, the cingulate 

cortex and the periaqueductal grey showed minimal increases in eH] Ro-256981 

binding levels in both the left and right hemispheres. The cingulate cortex and 

periaqueductal grey are components of the descending modulatory pathway of pain 

transmission which act to induce 'endogenous analgesia' and attenuate responses, 

therefore no significant up-regulation of excitatory NR2B-containing receptors may 

imply a reduced role for this subunit in descending transmission. The brain regions 

showing significant increases in eH] Ro-256981 binding were the thalamus, the 

hippocampal regions CA 1, CA3 and the dentate gyrus showing differential, rather than 

universal up-regulation. Interestingly, in CA3 and dentate gyrus, significant changes 

were only detected in the right hemisphere where information from the left knee would 

be processed. Increases in NR2B expression in the hippocampal regions may be 

indicative of the onset of stress-induced plastic changes of pain transmission and would 

thus be more evidence for the induction of chronic conditions in this model. 
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Figure 6.15 Autoradiographical data showing PH] Ro-256981 binding within the whole brain 

of sham and FCA-treated animals. 

Data shown are the means ± standard deviation of between n=3/4 sham and n=3/4 FCA 

whole brains. Sham and FCA tissue is compared in 1° somatosensory cortex (A), the 2° 

somatosensory cortex (B), the cingulate cortex (C), the periaqueductal grey (D). 
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Figure 6.16 Autoradiographical data showing PH] Ro-256981 binding within the whole 

brains of sham and FCA treated animals. 

Data shown are the means ±standard deviation of between n=3/4 sham and n=3/4 FCA 

whole brains. Sham and FCA tissue is compared in hippocampal regions CAt (E), CA2 (F), 

CA3 (G), the dentate gyrus (H).* p=< 0.05 Unpaired Two-tailed T-Test. 
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Figure 6.17 Autoradiographical data showing (3H] Ro-256981 binding within the whole 

brains of sham and FCA-treated animals. 

Data shown are the means ±standard deviation of between n=3/4 sham and n=3/4 FCA 

whole brains. Sham and FCA tissue is compared in the thalamus (I) and all brain regions in 

both hemispheres combined (p=O.OS) (J). * p=<O.OS Unpaired Two tailed T-Test. 
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6.3 Discussion 

The involvement of NMDA receptors in nociceptive transmissions has been widely 

researched (e.g., Fisher et al., 2000, Wei et al., 2001, Wu et al., 2005, Wilson et al., 

2005) with strong evidence to suggest involvement in plastic neuronal changes and 

chronification ofthe response. 

As discussed previously, the pharmacological development of effective analgesics relies 

heavily upon accurate, representative animal models which mimic clinical symptoms. 

This chapter presents novel data showing modulation of NMDA receptor subunit 

expression in an animal model of chronic inflammatory pain (Wilson et al., 2005). The 

model seeks to stimulate onset of peripheral sensitisation as a result of knee joint insult 

and to allow this primary afferent discharge to stimulate centrally mediated changes in 

the spinal cord (central sensitisation), a marker of chronification. This activity­

dependent facilitated transmission of dorsal horn nociceptive neurons occurs due to 

glutamate and neuromodulator activation of multiple intracellular signalling pathways 

via ionotropic and metabotropic glutamate receptors and protein kinases. Synaptic 

efficacy is increased by changes in ion channel activity, such as increased 

phosphorylation, increasing channel open-time, removing magnesium blockade of 

NMDA receptors and promoting receptor trafficking to the membrane (Woolf and 

Salter, 2000). The onset of NMDA receptor modulation, particularly -the increased 

phosphorylation and up-regulation of NR2B-containing receptors, shown in this chapter 

provides some evidence supporting the attainment of chronicity in this model. This is 

consistent with data presented in the initial study where hypersensitivity of the animal 

was maintained over 90 days, despite significant reductions in inflammation, and 
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effective NR2B-selective antagonism was observed suggesting central plastic changes 

had occurred (Wilson et al., 2005). 

In this study, analysis of the lumbar and thoracic regions of the spinal cord and the brain 

was carried out to record ascending and descending modulation of the nociceptive 

response. 

The immunohistochemical data showed abundant NR 1 expression throughout sensory 

and motor regions of sham and FCA-treated tissue, consistent with previous data 

showing no apparent difference in NRl protein or mRNA expression after nerve crush 

injury (Virgo et al., 2000). This data provided evidence to suggest that the overall 

number of NMDA receptors remains unchanged during chronic responses, but that 

receptor composition is altered by the enhancement of activity showing the NMDA 

complex to be a flexible assembly. There were also no apparent bilateral differences 

between the ipsilateral and contralateral sides of the cord. An interesting addition to the 

current data would be to investigate the time at which NMDA modulation begins, to 

gain a more accurate insight into the onset of chronification. 

Expression of NR2A and NR2B protein remained unaltered in FCA treated animals in 

comparison to sham animals providing possible evidence to suggest that the NR2A 

subunit is not replaced by NR2B under such circumstances to enhance receptor 

activation. However, these findings are in contrast to previous work which showed 

reduced NR2A mRNA following peripheral nerve injury and previous research 

showing up-regulation of NR2B mRNA after nerve injury (Virgo et al., 2000), up­

regulation of forebrain NR2B receptors after inflammation (Wu et al., 2005) and a 
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specific 28% increase in NR2B protein expression following colitis (Li et al., 2006). 

Also, the autoradiographical data in this chapter shows increased eH]-Ro256981 

binding towards NR2B-containing receptors possibly indicating up-regulation ofNR2B­

containing receptors in the spinal cord and brain, and therefore sensitivity of the 

immunohistochemical assay must be considered. 

NMDA receptor phosphorylation is a critical mechanism for protein regulation, function 

and involvement in intracellular signal transduction. Initial evidence for enhanced 

phosphorylation of both the NR2A and the NR2B subunit shows that the 

activation/function of the existing subunits may be enhanced in addition to or instead of 

up-regulating the subunit protein. Src-mediated tyrosine phosphorylation of the NR2A 

subunit potentiates NMDA receptor function by reducing tonic Zn2+ inhibition (Zheng et 

al., 1998) therefore phosphorylation at residue y1387 in both the lumbar dorsal and 

ventral horns in FCA-treated tissues suggests enhanced receptor activity in both sensory 

and motor systems. However, immunoreactivity in the thoracic tissue was unchanged 

possibly indicating that NR2A phosphorylation-mediated receptor enhancement is 

confined to the lumbar region at the site of nerve fibre entry into the L4 cord region. 

Fyn-mediated tyrosine phosphorylation of the NR2B subunit at residues y1336 and 

y 14 72 was enhanced again in the lumbar cord in the dorsal and ventral horns, showing 

enhanced receptor activity at the site of afferent entry into the cord, where nociceptive 

afferents from the injured knee synapse with the dorsal horn neurons. Repeating low 

frequency stimulations, causing slow synaptic potentials gradually produce a cumulative 

summation of responses, a phenomenon known as windup. A resulting cumulative 

depolarisation occurs, releasing the voltage-dependent magnesium block on NMDA 
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receptors, inducing increased activation and phosphorylation of receptors increasing the 

action potential response (Thompson et al., 1990; Ji et al., 2003) and leading to early 

onset central sensitisation within the cord. 

These findings are consistent with previous research showing increased phosphorylation 

ofNR2B with induction of LTP (Rosenblum et al., 1996; Nakazawa et al., 2001) and 

imply enhanced receptor activity on sensory and motor neurons and potential onset of 

hyperalgesia (demonstrated by animals in the model upon mechanical stimulation). 

Phosphorylation of the tyrosine residue 1472 is thought to inhibit NR2B-containing 

receptor internalisation thereby potentiating receptor presence at the cell surface and 

augmenting transmissions. Phosphorylation at this residue prevents AP-2 adaptors from 

binding to the critical internalisation sequence YEKL in the C-terminal of NR2B, 

blocking endocytosis and potentiating surface expression (Lee, 2006). This may again 

be evidence to suggest that the NR2B protein itself is not up-regulated, just the 

phosphorylation, holding the receptor at the cell surface for longer, increasing binding. 

Expression of NR3B showed initial evidence of up-regulation in the lumbar cord 

posterior dorsal horn in the FCA-treated animals in comparison to the sham tissue 

suggesting that inflammatory conditions may up-regulate NR3B expression in sensory 

areas. It is possible that this up-regulation of NR3B may have a protective role, to 

counteract and regulate Ca2
+ entry into the cells in the event of NR2B-mediated hyper­

activation. Prominent expression in the outer laminae also suggests NR3B involvement 

in afferent terminal transmissions, providing further evidence for a more extensive role 

than previously considered and consistent with recent data (Wee et al., 2007). 
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Expression in the motor neurons in lumbar and thoracic regions (lamina IX) remained 

prominent throughout both the FCA and sham tissues and again no observable 

differences were detected between the ipsilateral and contralateral sides of the cord. 

Expression levels of PSD-95 were low in both the FCA-treated and sham cords, with no 

detectable differences between the comparable sections oftissue. Immunoreactivity was 

most prominent in the soma of motor neurons in lamina IX, likely to be due to the large 

area for staining in these cells and lack of sensitivity in smaller neuronal processes or 

possibly intracellular storage pools of protein. It would be expected that PSD-95 would 

have abundant expression throughout the spinal cord, over-lapping with that of the 

NMDA receptor subunits, in both the posterior and anterior horn due to its vital role as a 

multivalent adaptor and anchoring protein (Garry et al., 2003). A previous study 

showed PSD-95 expression restricted to lamina II of the dorsal horn (Garry et al., 2003), 

therefore these contrasting results may be indicative of detection sensitivity issues as the 

PSD-95 complex is constantly changing and re-locating within the cell according to 

requirement. 

Autoradiographical analysis of sham and FCA-treated spinal cords and whole brains 

enabled detailed, quantifiable mapping of the expression and modulation of NR2B­

containing receptors via the specific binding of the NR2B-selective antagonist eH] Ro-

256981. Transverse sectioning of thoracic and lumbar spinal cords and horizontal and 

coronal sectioning of the brains facilitated specific binding to NR2B-containing 
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receptors in the spinothalamic tracts and higher brain centres important in nociceptive 

processing. 

The spinal cord autoradiograms showed prominent specific radioligand binding in the 

superficial laminae of the dorsal horns and lamina IX ofthe ventral horns (figure 6.12), 

which displayed a similar bilateral distribution, reflecting previously published patterns 

ofNR2B expression (Nagy et al., 2004). This specific binding in the sensory and motor 

regions was analysed to investigate the potential up-regulation of NR2B expression and 

its involvement in both afferent and efferent pathways following nociceptive 

stimulation. 

Comparing the two regions of spinal cord tissue, the overall level of specific eH] Ro 

256981 binding was greater in the lumbar cord than in the thoracic cord probably due to 

the increased grey matter proportions in this region containing a larger quantity of 

neuronal cell bodies and dendrites, but also because this is the site of entry to the cord of 

the afferent neurons from the knee insult. 

In the thoracic cord, eH] Ro-256981 binding was increased in similar proportions in 

both the dorsal and ventral horns, potentially implying an increase in NR2B-containing 

receptors as a result of enhanced transduction, possibly descending as both sensory and 

motor transmissions from higher brain centres to different areas of the cord. 

This data may provide initial evidence for an increase in eH] Ro-256981 binding in 

diseased tissue as a result of either up-regulation of the NR2B subunit, or increased 

NMDA phosphorylation maintaining NR2B-containing receptor expression at the cell 

surface, though further work to increase the number of samples would be required for 

more accurate conclusions. This data is consistent with previously published results 
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detailing increased expression ofNR2B in lumbar-sacral spinal cord regions after colitis 

(Li et al., 2006) and the genetic enhancement of inflammatory pain by over expression 

offorebrain NR2B receptors (Wei et al., 2001). 

Autoradiographical analysis of sham and FCA-treated rat whole brains revealed NR2B 

expression confined to forebrain regions consistent with previous data (Sheahan and 

Chazot, unpublished; Stephenson, 2001 ). Minimal background binding in the 

cerebellum is consistent with previous fmdings in the laboratory (Sheahan and Chazot, 

unpublished; Bradford and Chazot, unpublished) and may result from an additional 

binding site of eH] Ro-256981. A previous study also showed some NR2B 

immunoreactivity in cell bodies and dendritic arbors of Purkinje cells {Thompson et al., 

2000). 

Analysis of the forebrain areas was concentrated on the structures important for 

nociceptive processing and comprising the sensory-discriminative and emotional­

affective areas of pain perception (Tracey et al., 2002). Structures involved in the 

ascending spinothalamic tract were investigated, with cortical sensory areas, and the 

descending pathway thought to modulate endogenous analgesia. 

To detect any bilateral changes, the left and right hemispheres were analysed separately, 

with a greater proportion of significant modifications being evident in the right 

hemisphere. This observation shows that despite overall increases in eH] Ro-256981 

binding throughout the brain (p=0.05), the resultant modifications occur primarily in the 

contralateral hemisphere directly processing information from the insult on the left knee. 

It would be interesting to see if this hemispheric separation remained throughout a 
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longer time-course to distinguish any patterns of hyper-sensitisation and observe any 

masking of bilateral differences. 

Radioligand binding in the primary and secondary somatosensory cortices was slightly 

increased in the FCA-treated tissue in comparison with the sham brains in both the left 

and right hemispheres, though no significant increase was observed. To perceive acute 

rapid pain in the somatosensory cortex fast conducting, first order neurons enter the 

spinal cord synapsing in the dorsal horn, with second order neurons crossing to the 

contralateral side and forming the axons of the spinothalamic tract. The spinothalamic 

tract ascends to the thalamus terminating in the ventral posterolateral thalamic nucleus 

(VPL) where third order neurons then ascend and pass into the sensory cortex and 

sensations are perceived (Young and Young, 1997). However, in chronic pain, spinal 

cord reorganisation modifies pathways and slower, more chronic pain is transmitted via 

a more diffuse pathway called the spinoreticulothalamic tract which is located more 

medially in the brain stem, synapses in the reticulothalamic system, which projects to 

medial parts of the thalamus and consequently to more widespread regions of the cortex, 

particularly those responsible for an emotional response to pain, such as the limbic 

system, rather than the somatosensory cortex. Therefore the small changes in the 

sensory cortex seen in this model, but the significant changes seen in the hippocampus 

may again provide more evidence for the onset of slower, chronic nociceptive 

transmissions. 

eH] Ro256981 binding in the thalamus was significantly increased in FCA-treated 

tissue in comparison to sham brains providing evidence for increased NR2B expression 

and/or NR2B-containing receptor activation in this model, consistent with up-regulation 
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of forebrain receptors following inflammation (Wu et al., 2005). The thalamus is a 

large nuclear mass forming 80% of the diencephalon (Tortora and Grabowski, 2003), an 

area of the forebrain vital for the integration and dissemination of ascending and 

descending sensory impulses from the spinal cord and brain stem to the cortices (Young 

and Young, 1997) and back again. As previously described, nociceptive transmissions 

ascending the spinal cord arrive in the medial thalamus for processing and dispersal to 

cortical areas responsible for emotional and motor responses. Increased NMDA 

receptor activity in the thalamus therefore provides evidence for the onset of centrally 

mediated enhanced activity and persistent responses in this model. 

eH] Ro-256981 binding to the hippocampal formation showed prominent NR2B 

expression in the neuronal cell bodies of the CAl, CA2 and CA3 fields, and in the 

granular cell layer of the dentate gyrus consistent with previously published data 

(Thompson et al., 2002). Significant increases in eH] Ro-256981 binding were 

apparent in FCA -treated tissue in comparison with sham tissue in the CA3 region where 

some hemispheric differences were again evident. NMDA receptors and their 

involvement in neuronal plasticity, LTP and L TD have been well characterised in the 

hippocampus which is critical for learning and formation of new memories (Bliss and 

L0mo, 1973; Bliss and Collingridge, 1993; Kim et al., 1996; Y ang et al., 2005, Toyoda 

et al., 2006.). The increase in hippocampal NR2B-containing receptor activity in this 

model may be the result of increases in synaptic strength and possibly the onset of L TP 

induced by the summation of excitatory post-synaptic potentials (EPSP), excessive 

membrane depolarisation and enhanced NMDA receptor activation enabling increased 

calcium influx. The calcium signal within the cell is thought to contribute to the 
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plasticity of a synapse inducing either L TP or L TO to increase or reduce synaptic 

strength accordingly (Bienenstock et al., 1982). 

Hippocampal connections with the cingulum and the cortex may transmit perceptions of 

pain and thus form stress responses and fear memories in animals experiencing 

hyperalgesia and mechanical allodynia from external stimuli. Previous findings have 

demonstrated that behavioural stress induced by repeated tail shock in adult rats, 

facilitated LTD in hippocampal CAI regions (Yang et al., 2005) possibly as a 

mechanism to regulate neuronal activity (Zhuo 2002). It is proposed that the stress­

induced increase in corticosterone levels activates glucocorticoid receptors and inhibits 

uptake of synaptically released glutamate, enabling glutamate spill over from the 

synaptic cleft and subsequent activation of extrasynaptic NR2B-containing NMDA 

receptors. It is therefore possible that a similar mechanism of plasticity could arise from 

stress induced by FCA treatment in this model, facilitating increased NR2B-receptor 

activation. 

Small increases in eH] Ro-256981 binding were observed in FCA-treated tissue in 

comparison with sham tissue in the cingulate cortex and periaqueductal grey, possibly 

indicating the onset of descending modulatory inhibition, though no statistically 

significant increases were measured. Overall, the level of radio ligand binding was much 

lower in the periaqueductal grey possibly showing a lower expression level of NR2B­

containing receptors in this region. Supraspinal structures such as the cingulate cortex 

and the periaqueductal grey-rostroventral medulla are part of a descending pathway 

involved with endogenous analgesic control and transmit descending facilitatory 

modulation to the dorsal horn neurons in the spinal cord via glutamate, inhibitory 
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transmitters GABA and glycine, and with the release of endogenous opioids (Zhuo 

2002, Tracey et al., 2002). Connections with reticular formation nuclei inhibit the 

transmission of ascending nociceptive signals via secondary neurons (Young and 

Young, 1997) and peripheral nociceptive signals from descending higher cortical 

pathways can also be controlled. It has been shown that direct electrical stimulation of 

the PAG in humans and in rats can inhibit reflex responses to noxious stimulation 

(Tracey et al., 2002) and therefore this descending pathway may provide potential 

targets for pharmaceutical intervention to stimulate the internal analgesic mechanisms in 

chronic conditions. 

In conclusion, the novel data presented in this chapter provides evidence to suggest the 

attainment of chronic pain in this model, which could therefore be used to provide more 

clinically significant representations of persistent pain. 

Immunohistochemical analysis showing an up-regulation of phosphorylated NR2A and 

NR2B proteins and autoradiographical data detailing the up-regulation and/or increased 

expression of NR2B-containing receptors in both the spinal cord and forebrain in this 

model confirm the critical involvement of NMDA receptor modulation in nociceptive 

transmissions and therefore support the pharmacological targeting of NR2B-containing 

receptors for analgesia. 
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Chapter 7 

OveraU discussion and further work 

This thesis has investigated the physiological flexibility of the NMDA receptor, 

analysing subunit expression and assessing changes in receptor physiology and 

pharmacology conveyed by the distinct modulatory properties of its component 

subunits. 

The work contained herein was focused on investigation of three main hypotheses: to 

investigate the potential of selective pharmacological targeting of NR2B-containing 

receptors and to characterise two novel NR2B-selective antagonists, to investigate 

the influence of the NR3 subunits upon receptor physiology and NR2B-selective 

antagonist function, and to investigate changes in NMDA receptor physiology during 

chronic pain states. 

7.1 Characterisation of COMPOUND A and COMPOUND B 

In chapter 3, characterisation of the two novel NR2B-selective antagonists 

COMPOUND A and COMPOUND B, revealed that both compounds displayed a 

high affinity for native and recombinant receptors composed exclusively of 

NR1/NR2B subunits. Low affinity displacement of eH] Ro-256981 suggests that 

the novel compounds are sensitive to the presence of alternative NR2 or NR3 

subunits or interacting proteins in the receptor complex, or that they have possibly 

distinct but overlapping binding sites to that of the Roche compound. 

High affinity competitive antagonism with eHJ CP-101606 showed that 

COMPOUND A and COMPOUND B compete for the same NR1/NR2B receptor 

populations and are likely to compete for the same binding sites on the receptor 

complex. Incomplete displacement with COMPOUND B suggests that CP-101606 
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binds to an alternative receptor population or non-NMDA receptor component in the 

native tissue to which COMPOUND A also binds, but COMPOUND B does not, 

implying different interactions between the two novel compounds. These data 

provide evidence that these novel antagonists potentially show an advanced 

selectivity profile in comparison to the most effective NR2B antagonists currently in 

the public domain, sharing properties with the Pfizer compound CP-1 01606 and 

showing higher selectivity than the Roche antagonist Ro-256981 (Represented in 

figure 7.1 ). 

Distinct displacement patterns of eHJ MK-801 demonstrated the potential for 

differential modulation of the channel pore between the two compounds, showing 

that COMPOUND B binding effects open-channel probability and may have some 

allosteric interaction with the channel pore MK-801 binding site. Therefore 

COMPOUND B may have a distinct mode of action and possibly site of action to 

COMPOUND A. 

Ro-256981 
K,=9.4nM 

j \ 
CP-101606 COMPOUND A COMPOUND 8 

r· /<~~~~=// ~;=~ 
MK-801 binding 
site 
1 

V 

NR1/NR2B 

Figure 7.1 Schematic diagram showing the binding affinities and selectivity towards NR2B· 

containing receptors of Ro-256981, CP-101606, COMPOUND A and COMPOUND B, and the 

potential allosteric interaction of COMPOUND B with the channel pore. 
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Investigating the functional effects of the two novel compounds with cytotoxicity 

assays revealed differential antagonistic effects of COMPOUND A and 

COMPOUND B in recombinant NR1/NR2B receptors. Effective cytoprotection was 

evident for both compounds at lJ.!M concentration. To further characterize these 

novel NR2B antagonists, whole-cell patch clamp electrophysiology could be carried 

out as a functional assay to look at binding efficacy, effectiveness of current 

inhibition and reversible inhibition. Site-directed mutagenesis studies could also be 

carried out to analyse the binding sites of each compound in detail. 

7.2 Expression and differential cytoprotective effects ofNR3 subunits 

To further enhance the understanding of the impact of alternative subunits upon 

NR2B receptor populations and NR2B-selective antagonists, interactions with the 

NR3 subunits were investigated. It has been shown that the NR3 subunits are 

expressed predominantly in motor neurons but more recent studies suggest a wider 

distribution throughout the brain (Wee et al., 2007, Nilsson et al., 2007), particularly 

in the human and therefore their impact upon NMDA receptor physiology and 

pharmacology is important to understand. 

This thesis presents novel data, showing the eo-expression of the NR3B subunit with 

NRl, NR2A and NR2B protein in adult rat and human spinal cord, in the motor and 

possibly sensory regions and provides putative evidence for their eo-assembly in 

these structures. Further work in this area would be fundamental to understand the 

native interactions of the NR3B subunit in the spinal cord and the brain. In future 

experiments lumbar/thoracic spinal cord homogenate should be used for 

solubilisation to maximize receptor subunit expression, particularly of NR2B and 
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NR3B. Direct immunoprecipitation with the anti-NR3B antibody may be a more 

effective tool than immunopurification, though it would be important to confirm 

antibody specificity using tissue from knock-out mice (Neimann et al., 2007). It 

would also be very interesting to investigate any potential changes in native NR3B 

eo-assemblies in human tissue both from normal patients and from patients who 

have suffered a neurodegenerative illness. 

Chapter 5 presents novel evidence for a differential cytoprotective effect of the NR3 

subunits upon NRIINR2A and NR1/NR2B receptors in vitro, highlighting the 

potential for different interactions and effects within native receptor populations. 

Ca2• 

NR1/NR2A 

caz• 

NR1/NR2A/NR3A 

No 
cytoprotection 

Ca2• 

NR1/NR2A/NR3B 

No 
cytoprotection 

caz• 

NR1/NR2B 

caz• 

NR1/NR2B/NR3A 

21% reduction in 
cytotoxicity 

Ca2' 

NR1/NR2B/NR3B 

27% reduction in 
cytotoxicity 

Figure 7.2 A schematic diagram showing the differential protective effect of the NR3 

subunits upon the proposed NMDA-mediated calcium toxicity in NR1/NR2A and 

NR1/NR2B receptors. 
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A significant reduction in cell death when both NR3A and NR3B are eo-expressed 

with NR1/NR2B receptors may indicate an endogenous mechanism triggered to 

counteract the hyper-excitation of the NR2B-containing NMDA receptors and 

reduce cytotoxicity in native systems. Indeed, initial evidence for an increase in 

NR3B expression throughout the spinal cord presented in the rat model of chronic 

pain, shows that this endogenous protective mechanism may be induced in 

pathological conditions. 

From this work, it was possible to hypothesise that neurodegenerative conditions 

mediated in part by NMDA calcium toxicity may develop from defective NR3 

expression. Recently a study was published suggesting that 10% of the normal 

European-American population lacks NR3B due to a homozygous occurrence of a 

null allele in the gene (Niemann et al., 2007). The question arising about the 

phenotypic consequences of this genetic loss was partly answered in the same study 

which looked specifically at ALS (motor neuron disease). The researchers reported 

no obvious impairment of motor neuronal function or increased susceptibility for 

ALS in the absence of NR3B suggesting that 'NR3B is functionally redundant' 

(Niemann et al., 2007) in humans. However, species differences are clearly apparent 

as animal models have shown that NR3B knockout mice develop progressive paresis 

and die at P5 with loss of motor neurons in the spinal cord (Qu et al., 2004) and 

genetic ablation ofNR3B in mice showed a moderate but significant impairment of 

motor co-ordination and enhanced anxiety-like behaviour consistent with effects of 

NR3B loss in higher brain centers such as the hippocampus and amygdala (Niemann 

et al., 2007). 

These apparent variations between species therefore require further investigation, to 

confirm the role of NR3B in the receptor complex. It would be interesting to 
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investigate the cytoprotective effects of human recombinant receptor combinations 

in the presence and absence of NR3B and compare them with the rodent studies. 

Also more expression and purification studies are required to map NR3B expression 

in rodents, monkeys and humans to see if there is an evolutionary stage at which 

NR3B became redundant, confirming or refuting the recent publication. It would 

also be interesting to see if expression levels of NR3A are increased as a 

compensatory mechanism in individuals lacking the NR3B subunit as recent studies 

showed NR3A expression in the adult human (Eriksson et al., 2002; Niemann et al., 

2007) whereas only minimal expression in the adult rodent is evident (Sucher et al., 

1995). 

To further investigate the cytoprotective properties of the NR3A and NR3B subunits 

it would be interesting to repeat the cytotoxicity assays co-transfecting both NR3A 

and NR3B with NR1!NR2B receptors, to see if a combination of both NR3 subunits 

enhances the cytoprotective effect. The recent studies showing NR3A expression in 

the adult human (Eriksson et al., 2002; Niemann et al., 2007), suggest that 

potentially both NR3A and NR3B could be expressed together in the same receptor 

complex. 

7.3 Physiological impact of NR3B in NR1/NR2B receptors 

In chapter 5, electrophysiological analysis of the physiological impact of NR3B 

upon NR1/NR2B receptors showed that current amplitudes and calcium 

permeabilities remained unchanged in this system, contrasting with literature 

previously published on eo-expression of NR1/NR2AINR3B (Nishi et al., 2001; 

Matsuda et al., 2002). However, recent work, published only in abstract form, 

suggests that receptor currents are significantly altered depending on eo-expression 
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of NRl splice variant, suggesting that NRl-la expressiOn with NR2B/NR3B 

potentiates currents, whilst expression with NR2AINR3B attenuates currents (Cavara 

and Hollmann, 2007). Whilst this study supports the electrophysiological data 

presented in this thesis, it contradicts the cytotoxicity data which suggests 

suppression of receptor activity. It is therefore apparent that further research is 

required to explain these contradictions in the current data set and it may become 

evident that NR3B interacts with other protein complexes in the cell to reduce 

internal calcium concentrations. Repetition of these studies using single channel 

electrophysiology could enable more detailed study of the differences in receptor 

channel activity imposed by NR3B and may reduce the potential for subtle changes 

in whole receptor populations measured with whole-cell assays. Further experiments 

using FLIPR analysis could also be used to measure intracellular calcium 

concentrations in large cell populations expressing various combinations of rodent 

and human NR3 subunits. Effective subunit tagging before transfection could also 

ensure that measurements were taken from cells eo-expressing all three subunits and 

transfection with different NRl splice variants should be investigated. Tracking the 

movement of NR3B within a cell or neuron may indicate whether it interacts with 

alternative intracellular complexes, and purification of NR3B from the cell surface, 

may indicate any non-NMDA associations. 

7.4 Pharmacological impact ofNR3B in NR1/NR2B receptors 

Novel pharmacological interactions of the NR3B subunit with NR1/NR2B 

containing receptors were also presented in this thesis, providing evidence for 

potentially important modifications of compound interaction. eo-expression of 

NR3B in the receptor complex appeared to enhance the apparent affinity of the 
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NR2B-antagonist ifenprodil for the receptor complex, increasing the level of 

cytoprotection conveyed by this compound. Furthermore, in the cytotoxicity assay 

COMPOUND A sensitivity appeared reduced in the presence of NR3B, with no 

significant reduction in cytotoxicity measured. Interestingly, in binding assays, the 

inclusion of NR3B in the receptor complex appeared to reduce binding affinities of 

COMPOUND A, COMPOUND B, CP-101606 and Ro-256981 to the receptor. 

These data provide initial evidence to suggest a potentially important 

pharmacological impact of the NR3B subunit upon NR2B-selective antagonists. 

t 
ICOI\~POlJND A binding+ 

l---ICOI\o~P01JND B binding + 

1Ro-<t569:111 binding + 

,._,.-,,u ..... uo binding + 

NR1/NR2B NR1/NR2B/NR3B 

2x LIVBP binding sites lx LIVBP binding site 

Potential allosteric 
modulation by NR3B 

Figure 7.3 A schematic diagram showing that the inclusion of an NR3B subunit into the 

receptor complex may have an allosteric effect upon the LIVBP binding domain of the 

NR2B-selective antagonists. 

To expand upon these findings it would be important to repeat the binding 

experiments and the cytotoxicity assays with wider concentration ranges of the five 

compounds and to repeat the binding assays with ifenprodil for direct comparison. 

Surface binding experiments, using cross-linking reagents could show if the 
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expression ofNR2B at the cell surface is reduced upon inclusion ofNR3B. Whole­

cell electrophysiology could be carried out to analyse the effects of all five 

compounds towards recombinant receptors and site-directed mutagenesis studies 

could be used to investigate and compare the binding sites of each antagonist. 

It may also be possible to culture motor neurons and sensory neurons in vitro and 

see if they respond differently to the antagonists thereby investigating whether the 

NR3B subunit has similar effects in native neurons as in receptors expressed in HEK 

293cells. It would also be interesting to see if eo-expression of NR3A with 

NR1/NR2B affected the antagonists in a similar manner to NR3B. 

7.5 NMDA receptor modulation in a chronic pain model 

Autoradiographical and immunohistochemical analysis of rat spinal cord and whole 

brain from a chronic pain model showed initial evidence for increased NR3B 

expression and NR2A phosphorylation in comparison to controls, suggesting 

increased NMDA receptor activity and up-regulation of NR3B as an endogenous 

cytoprotective mechanism. Increased binding of eHJ Ro-256981 and increased 

phosphorylation of NR2B in comparison to control tissue also provides evidence for 

increased expression of NR2B and/or potentiation of NR2B-containing receptor 

activity via inhibition of endocytosis. These modulations to NMDA receptor 

activity, induced by persistent nociceptive inputs, suggest attainment of a level of 

central sensitization and chronicity in this model. 

This work provides evidence for a simultaneous increase in NR2B receptor activity 

in both the dorsal and the ventral horns of the spinal cord, particularly in the thoracic 

region showing hyperactivity and increased sensitivity in both sensory and motor 
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systems. Also, significant increases in eH] Ro-256981 binding in the thalamus and 

hippocampus show the onset of increased receptor activity in supraspinal structures 

and the recruitment of emotional brain centers during chronic pain states, possibly 

effecting memory formation in these animals and relaying the onset of stress and 

fear. 

These physiological changes in receptor properties and the up-regulation of NR2B-

receptors at the cell surface in chronic pain states are consistent with previous 

publications and provide further evidence to support the targeting of NR2B-

containing receptors for analgesia. 

Chronic pain 
pathway 

1=-=-1---f 

Figure 7.4 A schematic diagram showing the pathway of chronic pain transmission from 

the spinal cord, through the brainstem and into the cortex (Anaesthesia, UK 

www.frca.co.uk) and the changes in the NMDA receptor which may contribute to the 

persistent response. 

242 



Chapter 7 Heather Chaffey 

To confirm the results presented in this thesis, the assays could be repeated using a 

larger number of animals and replicates for each study. Perfusion fixation may 

increase the quality of the tissue for immunohistochemistry, the whole brains should 

be analysed and the immunoreactivity in the tissue could be quantified using a slice 

densitometer (Ultenius et al., 2006) to avoid subjective conclusions. It would also 

be interesting to compare tissue from this model with that from an acute model, and 

analyse different time-points during the experiment to determine the stage at which 

persistent pain occurs and where NMDA involvement is enhanced. It would also be 

interesting to perform high resolution studies to see if up-regulation of receptor 

activity is concentrated synaptically or extrasynaptically. 

7.6 Overall :fmdings 

• The novel compounds presented in this thesis are high affinity, selective 

NR2B antagonists, which have potential to be developed as clinical 

analgesics following further investigations into their side effect profile and 

effectiveness in vivo. 

• The NR3 subunits show differential cytoprotective properties when eo­

expressed within recombinant NMDA receptor complexes, providing 

significant cytoprotection towards NR1/NR2B receptors but not to 

NR1/NR2A receptors, though the mechanism by which this reduction in 

cytotoxicity is mediated requires further investigation. 

• The inclusion of NR3B in NR1/NR2B receptor complexes appears to 

modulate the binding affinities of some NR2B-selective antagonists, possibly 

by allosterically altering their binding sites. 
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• The up-regulation of NR3B and NR2B subunit expression and increased 

phosphorylation ofNR2B and NR2A provides evidence for NMDA receptor 

subtype involvement in the onset of persistent pain and further supports 

NR2B-subunit targeting for analgesic development. From the evidence 

published (Wilson et al., 2005) and the work presented in this thesis, this 

chronic pain model appears to provide an effective mimic of clinical 

symptoms of long-term inflammatory pain, and therefore would provide an 

essential tool for assessing future drug candidates. 
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