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Abstract 

The clustering of dark matter, haloes & galaxies 

Raul Esteban Angulo de la Fuente 

In this thesis I study the spatial distribution of galaxies, haloes and dark matter particles 

using a suite of state-of-the-art cosmological N-body simulations of the growth of structure 

in the Universe. The subjects investigated are conceptually divided into three areas. 

One line of research, which is made up of Chapters 2 and 3, is to explore the power 

and limitations of measurements of the imprint of baryonic acoustic oscillations in the 

clustering of galaxies. I look at how the appearance of the power spectrum is altered by 

different effects such as nonlinear evolution or redshift space distortions. In these chapters 

I also explore the best way to analyse survey data and how well new datasets, from both 

spectroscopic and photometric surveys, will be able to constrain the dark energy equation 

of state. 

In a second strand, I study dark matter haloes and their substructures. In Chapter 4, 

I look at the dependence of the clustering strength of dark haloes on the concentration of 

the sample. I was able to go beyond the traditional 2-point statistics to extend previous 

analyses to higher order statistics thanks to the development of a novel way to extract the 

higher order bias parameters. In Chapter 5, I then zoomed into smaller scales to study a 

number of properties of the population of substructures within dark haloes. In particular, 

I consider the mass distribution of substructures as well as their radial distribution and 

orientation. I also demonstrate that mergers between substructures do indeed occur, 

which result from objects that are dynamically or geometrically linked before accretion. 

In the final line of research, presented in Chapters 6 and 7, I develop ideas about 

how to add more realism to current theoretical predictions for galaxy clustering, and 

how it would be possible to use low-resolution dark matter simulations to investigate 

uncertainties in future observations. 
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Chapter 1 
Introduction 

The publication of the theory of relativity by Einstein in 1916 revolutionized our un­

derstanding of the Universe and led to the birth of cosmology as a predictive and quanti­

tative science. Subsequent advances along both observational and theoretical fronts have 

delivered a comprehensive and robust insight into the properties of the Universe. Never­

theless, there are key pieces missing from the picture challenging fundamental aspects of 

cosmology. The subject of this thesis is to provide further knowledge that could help to 

solve some of these problems. 

In the first section of this introductory chapter (§1.1), we describe the simplest, most 

favoured description for the Universe- the Cosmological Constant-Cold Dark Matter (or 

ACDM) model. Note that since there are many excellent textbooks which carefully set 

out the main ideas of modern cosmology (e.g. Peebles, 1980, 1993; Padmanabhan, 1993; 

Peacock, 1999), we will simply provide a very focused and brief introduction to put into 

context the chapters that make up this thesis. It is not our objective to provide a detailed 

introduction to the field. 

In the second section (§1.2), we describe the specific contents of each of the subsequent 

chapters of this thesis. 

1.1 The ACDM model 

The current paradigm for the origin and evolution of structure in the Universe arguably 

rests on two pillars. The first is the presence of a class of as of yet unidentified particles, 

the "Cold Dark Matter" (CDM) that provides the link between the early, smooth Universe 

and the highly inhomogeneous one that we observe today. The second, "Inflation" explains 

the flat, homogeneous and isotropic appearance of the Universe as well as generating the 

initial seeds for the formation of structure. 

1 



1. Introduction 2 

1.1.1 Dark matter 

Although the nature of the dark matter remains uncertain, its abundance and properties 

have been long supported by independent astrophysical observations. For instance, the 

influence of dark matter is evident in the rotation curves of galaxies, in the distortion of 

the light travelling from distant galaxies and in the large scale distribution of galaxies 

and clusters. The importance of dark matter lies in the fact that it interacts only through 

gravity. Reaching about 25 percent of the total energy budget of the Universe, dark 

matter is the dominant matter component and hence plays a crucial role in the formation 

of structure. The collisionless character of the dark matter is a enormous advantage 

for understanding the final matter distribution, since the much more complicated and 

poorly understood gas physics laws can be neglected in the evolution of the large scale 

structure. In this way, gravitational instability alone provides the framework for the 

growth of density perturbations in the Universe. 

Alternative models where dark matter is not required have also been proposed. One of 

the most popular is a phenomenological modification of Newton's law of gravity on large 

scales called MOND (Bekenstein, 2004). Initially in such scenarios, only the rotation 

curves of galaxies were naturally explained, but recent extensions have been introduced 

to the theories to explain several other observations. In spite of this, these ideas have 

not been convincing in explaining gravitational lensing in places where there is no visible 

matter (Clowe et al., 2006), or in reproducing the current large scale structure given the 

observations of the early Universe. Nevertheless, there is still debate about the exact 

nature of gravity on cosmological scales (Angus et al., 2006). 

Although there is a compelling set of astrophysical evidence suggesting that dark 

matter is non-baryonic, collisionless, dissipationless and possesses small random initial 

velocities, it has not been detected directly. However, this situation may soon be about 

to change. There are several experiments designed to distinguish and detect different dark 

matter candidates proposed by super-symmetric theories (see Bertone et al., 2005, for a 

review of current candidates and evidence). On one hand, cryogenic particles detectors 

such as DAMA, XenonlO, CDMS or CRESST are carrying out direct dark matter searches. 

On the other hand, the "Large Hadron Collider" or the "International Linear Collider" 

could reach the energy levels required to unveil or rule out different proposed particles. 

On a different front, a parallel quest is focused on the sky, where annihilation between 

dark matter particles could be detected, by satellites such as PAMELA, in the form of')'-
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rays from the centre of clusters, the places in the Universe where the dark matter density 

is expected to be the highest. 

1.1.2 Inflation 

The second pillar of the current paradigm is an "inflationary period" during which the 

Universe underwent an exponential expansion (Guth, 1981). This imprints distinctive 

and key properties on the Universe. 

The first of these features is the presence of macroscopic anisotropies which result 

from the amplification of initial quantum fluctuations. The perturbations are assumed 

to be Gaussian and adiabatic with a nearly scale-invariant power spectrum (Starobinskij, 

1982). The Fourier amplitudes follow a power law with index approximately equal to 

1 ( however recent measurements prefer a value slightly lower than unity e.g. Sanchez 

et al., 2006). Later, the primordial power spectrum is modified during the early Universe 

due to a scale dependent growth rate, which results from perturbations entering the 

horizon at different times. The exact change of the shape depends on the type of dark 

matter and the relative densities of the components in the Universe. In particular, if 

the dark matter is cold, perturbations that entered the horizon prior to matter radiation 

equality cannot grow due to the collapse time scale being much longer than the time 

scale for the expansion of the Universe (Meszaros, 1974). This produces a damping 

in the power spectrum at small scales. On the other hand, baryonic perturbations of 

different sizes arrive at different phases of the cycle produced by their coupling with 

radiation (Peebles and Yu, 1970). This imprints oscillations on the primordial spectrum. 

The second main outcome of inflation was that any hypothetical initial non-zero spatial 

curvature was smoothed, leaving the universe with a energy density equal to the critical 

density associated with a fiat geometry. Although it is impossible to observe directly the 

inflationary period, the consequences of this epoch have been successfully measured in 

the cosmic microwave background radiation (CMB) by many experiments, most notably 

by the satellite missions COBE (Cosmic Background Explorer, Smoot et al., 1992) and 

WMAP(Wilkinson Microwave Anisotropy Probe, Spergel et al., 2003). 

1.1.3 Cosmological parameters 

The ACDM Universe is highly quantifiable thanks to that the main parameters of the 

model manifest themselves in a multitude of observables. For this reason, along with the 

ideas outlined above, the accurate census of the main cosmological parameters has been 
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of central importance in the establishment of the paradigm. 

Given the variety of constraints on the main cosmological parameters, it is remark­

able that modern observations have consistently pointed towards the same region in pa-

rameter space (although there are degeneracies between the parameters and controversy 

regarding the exact number of variables that are needed to describe the cosmological 

model). Currently, the current best estimates for the amount of baryons, dark matter 

and dark energy expressed in terms of the critical density for a flat geometry are respec­

tively Ob = 0.0462 ± 0.0015, Oc = 0.233 ± 0.013, OA = 0.721 ± 0.015 (Komatsu et al., 

2008). These numbers are derived from the measurements of the power spectrum of the 

anisotropies in the CMB radiation combined with the large scale structure and Supernovae 

type Ia. 

Perhaps the most striking result derived from these measurements is a flat geometry 

and a joint matter and radiation content much smaller than the critical density (note that 

this was already suggested more than 20 years ago). This implies that most of the energy 

budget (about 75%) in the Universe is in the mysterious form of dark energy. In one 

of the simplest possibilities, the dark energy corresponds to a cosmological constant, A, 

which generates negative pressure and, if dominant, can produce enough force to drive the 

Universe into an accelerated expansion. Indeed, during the first half of its life the Universe 

was dominated by matter and it continuously expanded but at a progressively lower rate. 

However, as the matter density drops, the dark energy overtakes and initiates a second 

period of acceleration in the history of the Universe. This incredible scenario was first 

directly suggested by the Hubble diagrams built from observations of Supernovae Type 

Ia (Riess et al., 1998; Perlmutter et al., 1999) but subsequent independent measurements 

confirmed the idea and now an accelerating Universe has became widely accepted. 

1.1.3.1 Dark Energy 

Clearly, along with accurate measurements of the main components and properties of our 

Universe a huge question arose: What is the nature of the dark energy which is driving 

the current accelerating expansion of the Universe? This enigma has been one of the 

biggest problems in theoretical physics during the last 10 years. Moreover, it represents 

perhaps the most drastic challenge for the ACDM model. In spite of the difficulty of the 

question, the answer may start to become apparent very soon. 

The next generation of cosmological experiments will have as a primary science goal 

the measurement of the properties of this mysterious force. If the current forecasts are 
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correct, then the constraints on the properties of the dark energy will be very tight, which 

will distinguish between the candidates for this substance, and hence, we could start to 

uncover the nature of what fills our Universe. 

There are many promising approaches to reveal the properties of the dark energy, 

including gravitational lensing (Huterer et al., 2006), the abundance of clusters (Haiman 

et al., 2001), and Supernovae Ia measurements (Wood-Vasey et al., 2007). But one of the 

most robust estimations relies on the use of the imprint of baryonic acoustic oscillations 

(BAO) on the pattern of galaxy clustering. This feature can be measured very precisely 

in galaxy surveys, relying only on the measurement of galaxy positions. By combining the 

physical size with the observed size of the BAO, we have a standard ruler in the Universe 

with which it is possible to constrain the properties of the dark energy accurately. N ev­

ertheless, the level of accuracy demanded for competitive and useful constraints requires 

an understanding of the systematic errors in this approach since they can be larger than 

the random uncertainties expected from future surveys, degrading the measurements and 

constraints. In the first two Chapters of this thesis we explore the detectability of BAO in 

future galaxy surveys. In order to be able to exploit the forthcoming data fully, realistic 

modelling of galaxy clustering and a understanding of the observational systematics are 

essential. Hence in these chapters we pay special attention to these aspects. 

Of course, with the ever increasing accuracy required by the measurements and the 

imminent arrival of the largest galaxy surveys in the history of astronomy, the level of 

understanding of uncertainty in our modelling of galaxy clustering will play a crucial role 

in the constraints we are able to derive. In the final chapters of this thesis, we present some 

tools to help in this direction. In particular, in Chapter 6 we introduce a new technique 

which allows us to extend the dynamical range probed by a numerical simulation. In 

Chapter 7, I illustrate how an extra level of sophistication can be introduced in the 

prediction of numerical simulations by constructing a light-cone. 

1.1.4 Growth of structures 

With the initial conditions and the main components of the Universe set, its evolution 

and final state are, in principle, also determined. As the radiation temperature decreased 

as a consequence of the expansion of the Universe, the baryonic matter recombined and 

then decoupled from the photons. At this moment the overdensities in the distribution of 

baryons and dark matter were free to grow due gravitational instability. Denser regions 

become denser while underdense regions become more underdense. The study of the evo-
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lution of these perturbations is probably one of the most interesting and elegant branches 

of cosmology. As long as the perturbations are small, their dynamic and growth can be 

computed analytically by expanding the equations of motion to either linear or higher 

orders {e.g. Bernardeau et al., 2002). However, once the perturbations are in the highly 

nonlinear regime their evolution can be only accurately followed by numerical simulations 

{see the review by Bertschinger, 1998). 

Once the density enclosed in a particular region exceeds some critical value, it de­

couples from the global expansion of the Universe and collapses, forming a dark matter 

halo. The process occurs hierarchically in the CDM models: small structures collapse 

first, then, they increase their mass by both smooth accretion of dark matter particles or 

by merging with other collapsed structures (Lacey and Cole, 1993). Note that, if the dark 

matter is hot, any early small perturbation is smeared out due to free-streaming and the 

first objects that form are big clusters which then fragment to form smaller haloes. 

In the simultaneous process, attracted by the substantial gravitational force exerted 

by dark matter haloes, baryons (gas) fall, heat up by shocks and get trapped within 

dark haloes. The gas eventually cools by radiative processes, condenses and fragments 

to form stars and galaxies (White and Rees, 1978). Although the main processes of 

galaxy formation are relatively well established, it is extremely difficult to follow them in 

detail. For instance, star formation, the multi-phase nature of the interstellar medium, 

the return of energy back into the medium by supernovae or AGN, are processes that 

cannot be described nor followed from first principles and therefore, ofter semi-analytic 

techniques are developed to predict the properties of galaxies and consequently obtain 

the ultimate aim of any theory; comparison with observations (Baugh, 2006). 

It is therefore clear that, the abundance, clustering and merger histories as well as 

internal properties of dark matter haloes are closely linked to fundamental properties of 

the galaxies they host. Given this relationship, it is also clear that that the study of 

such properties is necessary to understand the observable Universe. In particular, one of 

the most important properties in the study of the spatial distribution of galaxies is the 

clustering strength of the haloes that host such galaxies. The standard model (for a review 

see Zentner, 2007), the amplitude of the clustering of haloes is only a function of their 

mass, with massive haloes being more clustered than their less massive counterpart. In 

Chapter 4, motivated by previous work where the dependence of the linear bias parameter 

on the internal properties of haloes was investigated, we revisit this prediction and test 

it using higher order statistics. In principle, this effect could also be observed in galaxy 
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clustering (Croton et al., 2007) offering a further test for the ideas that underpin our 

current vision of the growth of the structure in Universe. 

The hierarchical formation of structures leaves a signature of CDM models inside dark 

matter haloes: The presence of numerous self-bound structures corresponding to remnants 

of the previously accreted haloes (e.g. Klypin et al., 1999b; Moore et al., 1999). This offers 

a direct test of the ACDM model. Unfortunately, the relationship between subhaloes 

and observed satellite galaxies is complicated, usually depending on the details of the 

adopted galaxy formation model, which therefore makes a direct comparison infeasible. 

In spite of this, the properties of the subhalo population still provides the framework for 

current comparisons between theory and observations. In the fifth Chapter of this thesis, 

using some of the largest cosmological simulations currently available, we explore the 

properties ofsubhaloes. Moreover, gravitational lensing could directly detect these objects 

(Kochanek and Dalal, 2004) in which case a robust theoretical prediction is required. 

The final distribution of galaxies on cosmological scales is far from homogeneous. 

In fact, it displays a very distinctive pattern as seen by the latest generation of galaxy 

surveys, the 2-degree Field Galaxy Redshift Survey (2dFGR, Colless et al., 2001) and 

the Sloan Digital Sky Survey (SDSS, York et al., 2000). Surprisingly, the vast richness 

of cosmic structures ranging from filaments, voids and clusters of very dissimilar size, is 

simply a consequence the gravitational amplification of the initial fluctuations seeded by 

inflation(Davis et al., 1985; Springe! et al., 2005). 

1.2 Outline of this thesis 

In this thesis, I will work mainly in three areas related to the spatial distribution of 

structures on cosmological scales. In one line of research, we focus on the large scale 

distribution of galaxies and on the detectability of BAO in power spectrum measurements. 

In a second line, we investigate the clustering of dark matter haloes and its substructures. 

In particular, we first look at the higher order clustering of haloes and then we concentrate 

on the properties of the substructures. In the third line of research I explore how to add 

more realism to current theoretical predictions and how it would be possible to investigate 

uncertainties in future measurement by using low resolution dark matter simulations. I 

continue by describing the contents of each chapter in more detail. 

In Chapter 2, we combine a specially designed N-body simulation with a semi-analytic 

model of galaxy formation to study in detail the visibility of the BAO in forthcoming 
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galaxy surveys. An interesting issue that we present in this chapter is how changes in 

the power spectrum due to galaxy bias, redshift-space distortions and nonlinear evolution 

degrade the visibility of the BAO. We then apply realistic methods to extract information 

about the dark energy equation of state, and in this way we forecast the performance of 

future cosmological experiments. 

Since many of the currently planned galaxy surveys will be carried out in photometric 

space, i.e. the distance of galaxies will be inferred from their photometric redshift, in 

Chapter 3, we extend the analysis presented in Chapter 2 to include the effects of such 

an approach. 

Chapter 4 investigates the dependence of the clustering of dark matter haloes on 

internal properties. Here we expand previous studies towards higher order statistics. We 

first present a novel approach to estimate the higher order correlation functions of haloes 

which we then apply to N-body simulations to compute, in narrow mass bins, the bias 

parameters up to order four. Finally, we explore whether the high order clustering of 

haloes correlates with an internal property of the sample, namely the concentration of 

the halo. 

We then zoom to smaller scales to discuss the characteristics of the halo substructures. 

In Chapter 5 we use the Millennium Simulation (Springel et al., 2005) to investigate some 

general properties of these structures. In particular, we examine the mass function, radial 

distribution and spatial orientation of substructures with respect to their host halo. In 

the second half of this chapter we study the possibility of substructure mergers and 

destruction. 

This thesis ends with two short studies. Chapter 6 contains a proof of concept about 

how to extend the dynamical range over which low resolution dark matter simulations can 

be used. In this chapter we present and test the algorithm that creates a halo population 

based on the dark matter density. Finally, we apply the procedure to create an ensemble of 

galaxy catalogues and in this way investigate the uncertainties in the two-point correlation 

function as well as the covariance matrix. Chapter 7 illustrates and discusses a method 

to create a light-cone containing consisting of haloes. 

Finally, In Chapter 8 we provide a brief summary of the main conclusions of this thesis 

and list some prospects for future work. 



Chapter 2 

2.1 Introduction 

The delectability of 

baryonic acoustic 

oscillations in future 

galaxy surveys 

The discovery that the rate of expansion of the Universe is apparently accelerating was 

one of the key advances in physical cosmology in the 1990s (Riess et al. 1998; Perlmutter 

et al. 1999). Understanding the nature of the dynamically dominant dark energy, which 

is believed to be responsible for this behaviour, is one of the biggest challenges now facing 

cosmologists. 

Over the past decade our knowledge of the basic cosmological parameters, which 

describe the content of the Universe, its expansion history and ultimate fate has im­

proved tremendously. This progress is the result of advances on two fronts: the advent of 

datasets which have provided fresh views of the Universe with unprecedented detail and 

the development of the theoretical machinery required to interpret these new measure­

ments. Currently, the values of many cosmological parameters are known to an accuracy 

of around 10% (albeit with caveats regarding degeneracies between certain combinations 

of parameters and also regarding the precise number of parameters that are allowed to 

vary in the cosmological model; see, for example, Sanchez et al. 2006). 

The cold dark matter (COM) model has emerged as the most plausible description 

of our Universe. In the most successful version of this model, more than 70% of the 

density required to close the Universe is in the form of dark energy. Currently, there is no 

model which can reconcile the magnitude of the dark energy component with the value 

expected from particle physics arguments. A simple phenomenological description of the 

9 
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dark energy is provided by the equation of state that relates its pressure, P, and density, 

p, which is encapsulated in the parameter w = P / pc2 • If the dark energy has the form of 

the cosmological constant, w == -1. The indications are that the dark energy now has a 

form close to that expected for a cosmological constant (Riess et al. 2004; Sanchez et al. 

2006). However, in the absence of a theoretical model for the dark energy, it is possible 

that the equation of state could depend on space and/ or time. 

A whole range of experiments and surveys is being planned which number amongst 

their goals determining the equation of state of the dark energy as a function of redshift 

(for a discussion, see Albrecht et al. 2006 and Peacock and Schneider 2006). Several 

techniques are being considered, which are sensitive to the influence of the dark energy 

on various features of the cosmological world model. These include the Hubble diagram 

of Type lA supernovae, counts of clusters of galaxies, the weak gravitational lensing 

pattern of faint galaxies and the measurement of the baryonic acoustic oscillation scale 

in the matter distribution as a function of redshift. The measurements and data analysis 

required to obtain useful constraints on the equation of state parameter are so demanding, 

and so open to potential systematic errors, that it is necessary to pursue as many different 

avenues as possible. 

In this chapter, we focus on the test using the baryonic acoustic oscillations (BAO). 

The BAO is the name given to a series of peaks and troughs on scales on the order 

of 100 h-1 Mpc, imprinted on the power spectrum of matter fluctuations prior to the 

epoch of last scattering, when the matter and radiation components of the Universe were 

coupled (Peebles and Yu 1970). The BAO are the counterpart of the acoustic peaks seen 

in the power spectrum of the temperature of the cosmic microwave background radiation, 

though they have a different phase and a much smaller amplitude (Sunyaev and Zel'dovich 

1970; Press and Vishniac 1980; Hu and Sugiyama 1996; Eisenstein and Hu 1998; Meiksin 

et al. 1999). The wavelength of the BAO is related to the size of the sound horizon 

at recombination. This does not depend on the amount or nature of the dark energy, 

but on the physical density of matter (Omh2 ) and baryons (Obh2 ). Given the values 

of these parameters, for example, from the cosmic microwave background or large scale 

structure data, the sound horizon scale is known and can be treated as a standard ruler. 

The apparent size of this feature in the power spectrum of galaxies or galaxy clusters 

does depend on the dark energy and its equation of state through the angular diameter 

distance-redshift relation (e.g. Blake and Glazebrook 2003; Hu and Haiman 2003) 

BAO in the galaxy distribution were first glimpsed in the early stages of the "2-
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degree-field galaxy redshift survey" (Percival et al. 2001) and finally detected in the 

power spectrum of the completed 2dFGRS (Cole et al. 2005). The equivalent feature, a 

spike, was also found in the correlation function measured from the luminous red galaxy 

(LRG) sample of the Sloan Digital Sky Survey (SDSS) (Eisenstein et al. 2005). Cole et 

al used the BAO to constrain the parameter combination (OM/Ob, OM) (where OM and 

nb denote the matter and baryon density parameters respectively). Eisenstein et al used 

the location of the spike in the correlation function to constrain the absolute distance to 

the median redshift of the SDSS LRG sample and hence constrained the value of OM. 

Hiitsi (2006b,a) carried out a power spectrum analysis of a similar LRG sample, and 

combined this measurement with other datasets to constrain the values of cosmological 

parameters. More recently, the BAO have been extracted from the power spectrum 

measured from a much larger sample of SDSS LRGs to constrain OM and Ob/Om ( 

Tegmark et al. 2006; Blake et al. 2007; Padmanabhan et al. 2007; Percival et al. 2007). 

To date, measurements of the BAO have only yielded constraints on the dark energy 

equation of state when combined with other datasets, such as the spectrum of temperature 

fluctuations in the microwave background or when restrictive priors have been adopted 

on certain parameters, such as the Hubble constant. 

The bulk of the work in the literature on the usefulness of the BAO has relied upon 

linear perturbation theory to assess the detectability of the features and to forecast the 

errors on the recovered value of w (Blake and Glazebrook 2003; Hu and Haiman 2003; 

Glazebrook and Blake 2005; Blake and Bridle 2005; Blake et al. 2006; Parkinson et al. 

2007). There are, however, a range of dynamical and statistical effects which can alter 

the appearance of the power spectrum relative to the linear theory prediction, even on 

the scale of the BAO, which we review in this chapter (Seo and Eisenstein 2003; Angulo 

et al. 2005; Springe! et al. 2005; Seo and Eisenstein 2005; Eisenstein et al. 2007b). Some 

simulation work has been done to study these effects, mostly using computational cubes 

of side 500 h-1 Mpc (Seo and Eisenstein 2003, 2005; Springe! et al. 2005; Eisenstein et al. 

2007b). These are only a small factor (2-3) bigger than the scale of the fluctuations of 

interest. Calculations with small boxes are subject to large sampling fluctuations and may 

even miss some features of the nonlinear growth of large scale fluctuations through the 

absence of long wavelength density fluctuations (Crocce and Scoccimarro 2006b). Very 

recently, larger simulation volumes have been used, of around a cubic gigaparsec and 

larger (Schulz and White 2006; Huff et al. 2007; Angulo et al. 2005; Koehler et al. 2007). 

However, such studies have tended to have relatively poor mass resolution, making it 
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difficult to model galaxies without resorting to simplified biasing prescriptions (e.g. Cole 

et al. 1998). 

Given the significant commitment of resources required by the proposed galaxy sur­

veys and the level of precision demanded by the BAO approach, it is imperative to ensure 

that accurate theoretical predictions are available both to help in the design of the survey 

strategy and to extract the maximum amount of information from the observations. This 

is a tough challenge computationally, because it requires ultra-large volume N-body sim­

ulations with sufficient mass resolution to identify the haloes likely to host the galaxies 

to be seen in the surveys, and a realistic model to populate these haloes with galaxies. 

In this chapter, we use a combination of suitable N-body simulations and a semi­

analytical model of galaxy formation to assess the visibility of the BAO. In Section 2.2, 

we describe the suite of N-body simulations used and outline the semi-analytical model. 

Section 2.3 gives a blow-by-blow account of how the power spectrum changes relative to 

the simple prediction of linear perturbation theory, as additional layers of realism are 

added to the modelling, starting with dark matter and ending with galaxies. We set 

out our approach for constraining the dark energy equation of state in Section 2.4, and 

present our results in Section 2.5. We give our conclusions in Section 2.6. 

2.2 Method 

In this section, we introduce the theoretical tools used to produce synthetic galaxy cata­

logues. First, we describe theN-body simulations (§2.2.1) which consist of a high resolu­

tion run (§2.2.1.1) and an ensemble of lower resolution runs (§2.2.1.2). Next, we discuss 

the measurement of power spectra from discrete distributions of objects and use the 

ensemble of low resolution simulations to estimate the errors on the power spectrum mea­

surement (§2.2.1.3). In the second part of this section, we explain how a galaxy formation 

model is used to populate the high resolution N-body simulation with galaxies (§2.2.2). 

2.2.1 N-Body Simulations 

TheN-body method is a long-established computational technique which is used to follow 

the growth of cosmological structures through gravitational instability (see, for example, 

the reviews by Bertschinger 1998 and Springe! et al. 2006). Our goal in this chapter is 

to simulate the formation of structure within a sufficiently large volume to follow the 

growth of fluctuations accurately on the scale of the BAO, and with similar statistics for 
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Figure 2.1: A test of the choice of starting redshift used in the N-body 

simulations. The upper panel compares the power spectrum measured 

at z = 15 in the BAS ICC when the simulation is started at z = 63 (dashed 

red curve) and at z = 127 (solid blue curve). The power spectra plotted 

in the upper panel have been divided by the linear perturbation theory 

prediction for the dark matter power spectrum at z = 15. The lower 

panel shows the ratio between the power spectrum measured from the 

simulation started at redshift 63 to that measured from the run which 

started at redshift 127. 
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power spectrum measurements to those expected in forthcoming surveys. At the same 

time, we require a mass resolution which is adequate to identify the dark matter haloes 

likely to host the galaxies which will be seen in these surveys. To achieve these aims, we 

use a memory-efficient version of the GADGET-2 code of Springel (2005) , which was kindly 

provided to us by Volker Springel and the Virgo Consortium. 

We use two types of calculation: a high resolution simulation, labelled the "Baryon 

Acoustic Simulation at the ICC' or BASICC, which is able to track galactic haloes, and 

an ensemble of lower resolution simulations, labelled L-BASICC, which we use to study 

the statistics of power spectrum measurements on large scales. Here, we describe some 
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BASICC 3.03 X 109 5.49 X 1010 50 

L-BASICC 8.99 X 107 1.85 X 1012 200 

Table 2.1: The values of some of the basic parameters used in the sim­

ulations. The columns are as follows: (1) The name of the simulation. 

(2) The number of particles. (3) The mass of a dark matter particle. 

(4) The softening parameter used in the gravitational force. In both 

cases, the length of the computational box is 1340 h-1 Mpc, and the 

same cosmological parameters are used, as given in Section 2.2.1. 
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of the common features of the simulations, before moving on to outline specific details in 

§2.2.1.1 and §2.2.1.2. 

We adopt a ACDM cosmology with the same parameters used in the Millennium Simu­

lation (Springe! et al. 2005), which are broadly consistent with the latest constraints from 

the cosmic microwave background data and large scale structure measurements (Sanchez 

et al. 2006; Spergel et al. 2007). The values of the parameters are: the matter den­

sity parameter, OM = 0.25, the energy density parameter for the cosmological constant, 

nA = 0.75, the normalization of density fluctuations, as = 0.9 and Hubble constant, 

h = Ho/(100kms-1Mpc-1) = 0.73. 

Due to memory restrictions, the Fourier mesh used to set up the initial particle dis­

placements has a dimension of 15803 grid points which is not commensurate with the 

cube root of the particle number mesh. We therefore avoided using a regular particle grid 

to set up the initial conditions, as this would have led to a spurious feature in the power 

spectrum of the initial conditions at the beat frequency between the particle grid and 

the Fourier mesh. Instead, we used a glass-like distribution (White 1994; Baugh et al. 

1995). The input power spectrum of density fluctuations in linear perturbation theory is 

calculated using the CAMB package of Lewis et al. (2000). The amplitude of the Fourier 

modes is drawn from a Rayleigh distribution with mean equal to the linear theory power 

spectrum and the phase is drawn at random from the interval 0 to 211'. The initial den­

sity field is generated by perturbing particles from the glass-like distribution, using the 

approximation of Zel'dovich (1970). 

The simulations were started at a redshift of z = 63. The Zel'dovich (1970) approxi-
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mation used to set up the initial pattern of density fluctuations produces transients which 

can be seen in clustering signal measured for the dark matter at expansion factors close 

to the starting redshift (Efstathiou et al. 1985; Baugh et al. 1995; Crocce et al. 2006). 

Later on, we will use the power spectrum from a high redshift output from the simula­

tion, z = 15, as a proxy for linear perturbation theory, so it is important to check that 

this power spectrum in particular, and also the power spectra measured at all subsequent 

outputs are insensitive to the choice of starting redshift. We test this by comparing the 

power spectrum of the dark matter at z = 15 in our standard run with the spectrum 

measured in a test run which started at z = 127, but which did not run all the way 

through to z = 0. The top panel of Fig. 2.1 shows that the power spectra measured for 

the dark matter in these two cases, divided by the power spectrum predicted by linear 

perturbation theory at z = 15. The fluctuations in the measured power at low wavenum­

bers around the linear theory prediction reflect the sample variance noise which is not 

negligible even in a simulation of the volume of the BASICC. The lower panel in Fig. 2.1 

shows the z = 15 power spectrum measured from the run started at z = 63 divided by 

that measured from the run started at z = 127. At large wavenumbers, the effect of tran­

sients is visible, although quite small, "' 1%. The focus of this chapter, however, is the 

form of the power spectrum over wavenumbers smaller than k = 0.4 hMpc-1
, for which 

the spectra measured at z = 15 for the two different choices of starting redshift agree to 

better than 0.3%. Our results are therefore unaffected by any transients resulting from 

the use of the Zel'dovich approximation. 

2.2.1.1 The high resolution simulation: the BASICC 

The BASICC simulation covers a comoving cubical region of side 1340h-1 Mpc, in which 

the dark matter is represented by more than 3 billion (14483 ) particles. The equivalent 

Plummer softening length in the gravitational force is E = 50 h-1 kpc, giving a dynamic 

range in length of almost 27,000. The volume of the computational box, 2.41 h-3 Gpc3 , 

is almost twenty times the volume of the Millennium Simulation (Springe! et al. 2005), 

and more than three times the volume of the catalogue of luminous red galaxies from the 

SDSS used to detect the acoustic peak by Eisenstein et al. (2005). The BAS ICC volume is 

within a factor of two of that proposed for a survey with WFMOS at z"' 1 (Glazebrook 

and Blake 2005). The simulation occupied the full 0.5 Terabytes of RAM of the second 

upgrade of the Cosmology Machine at Durham. The run took 11 CPU days on 506 

processors, the equivalent of 130,000 CPU-hours. 
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The particle mass in the BASICC simulation is mp = 5.49 x 1010 h- 1 M 0 . This is 

approximately 64 times larger than the particle mass used in the Millennium Simulation. 

The mass resolution limits the usefulness of dark matter halo merger trees from the 

BASICC, so we have chosen to output at a modest selection of redshifts: z=O, 0.3, 0.5, 1, 

2, 3, 4, 6, 8, 10, 15 and 63. Each of these outputs occupies "' 100 Gb of disk space. : In 

each snapshot we have identified groups of dark matter particles using a friends-of-friends 

algorithm (Davis et al. 1985) with a linking length of 0.2 times the mean inter-particle 

separation. We have stored groups with 10 or more particles, i.e. haloes more massive 

than 5.49 x 1011 h-1 M0 . There are 17 258 579 haloes in the z = 0 output of the simulation 

with ten or more particles. The most massive halo has a mass of 6.74 x 1015 h-1 M 0 and 

860 haloes have a mass in excess of the Coma cluster (~ 1015 h-1 M 0 ). 

The BASICC simulation sits between the Millennium and Hubble Volume (Evrard et al., 

2002) simulations. Its unique combination of mass resolution and volume makes it ideal 

for studying the large scale distribution of galaxies and clusters alike. 

2.2.1.2 The ensemble of low resolution simulations: L-BASICC 

We also generated an ensemble of 50 "low-resolution" simulations to study the sample 

variance in the BASICC and to test an analytic model for the errors expected on mea­

surements of the power spectrum, which we discuss in the next subsection. These low 

resolution runs (L-BASICC) have exactly the same cosmological parameters as the BASICC 

and the same box size (see Table 2.1), but they have fewer particles (4483 ). For each 

realization, a different random seed is used to set up the initial density field. The starting 

redshift of these simulations is z = 63. The particle mass is comparable to that employed 

in the Hubble Volume simulation (Evrard et al. 2002). Each L-BASICC simulation took 0.8 

days to run on 16 processors of the third upgrade of the Cosmology Machine. The total 

volume of the ensemble is 120 h-3 Gpc3 , more than four times that of the Hubble Volume, 

making this a unique resource for studying the frequency of rare objects in a ACDM uni­

verse. For L-BASICC, the position and velocity are stored for every particle at 4 output 

times (z = 0.0, 0.5, 0.9, 3.8); we also produce a halo catalogue at each redshift retaining 

objects with ten or more particles (corresponding to a mass of 1.8 x 1013 h-1 M0 ). As 

we shall see in later sections, the ensemble allows us to assess whether or not a partic­

ular result is robust or simply due to sampling fluctuations. Due to their limited mass 

resolution, it is not feasible to populate these simulations with galaxies using the method 

outlined below (§2.2.2). 
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Figure 2.2: The power spectrum of the dark matter in real space mea­

sured at the starting redshift of the BASICC, z = 63 (red points) . The 

corresponding prediction of linear perturbation theory is shown by the 

green (solid) line. The blue (dot-dashed) curve shows the power spec­

trum of the unperturbed glass-like distribution of particle positions. The 

dashed line shows the Poisson noise expected for the number density of 

dark matter particles used in the BAS ICC. The noise of the initial particle 

distribution is much less than Poisson. The arrow marks the position of 

the Nyquist frequency of the FFT grid. 

2.2.1.3 Power spectrum estimation and errors 
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The two point statistics of clustering, the correlation function , and its Fourier transform, 

the power spectrum, P(k) , are the most commonly employed measurements of clustering. 

In this chapter we focus on the power spectrum; in Sanchez et al. (2008) , we address 

the visibility of the acoustic oscillations in the correlation function . The standard way 

to quantify the amplitude of a density fluctuation is by means of the density contrast , 

<S(x, t) = (p(x, t) - p)jp. If we consider the Fourier transform of the density contrast , 

Pk, then the power spectrum is defined as the modulus squared of the mode amplitude, 
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There are two steps in the computation of the power spectrum from a distribution 

of discrete objects, such as dark matter particles, dark haloes or galaxies. Firstly, a 

density field is constructed by assigning the objects to mesh points on a cubic grid. In 

the simplest mass assignment scheme, the nearest grid point, the contribution of each 

object to the density field is confined to the cell in which it is located. In higher-order 

assignment schemes, the mass of the particle is shared with adjacent cells. Here, we use 

the cloud-in-cell assignment scheme (see Hockney and Eastwood 1981). Secondly, we 

perform a Fast Fourier Transform of the density field. The power spectrum is obtained 

by spherically averaging the resulting Fourier mode amplitudes in annuli of radius ok = 

21rjL = 0.0047hMpc- 1. 

The mesh we use to store the density field has N~FT = 5123 grid points. Estimating 

the density on a grid alters the form of the power spectrum at wavenumbers approaching 

the Nyquist frequency of the grid (kNyquist = 21rjL NFFT/2 = 1.2hMpc-1 in our case). 

The degree of modification and the precise wavenumber above which the power spectrum 

is distorted depend upon the choice of assignment scheme (Hatton 1999; Jing 2005). In 

practice, for the size of FFT mesh we use, this has little impact on the recovered power 

spectrum for wavenumbers of interest; the measured amplitude differs by less than 1% 

from the true value at a wavenumber k"" 0.8hMpc-1; in most cases we focus on the 

form of the power spectrum on large scales, k < 0.4 h Mpc- 1. Nevertheless, we correct for 

the effects of the cloud-in-cell assignment scheme by dividing each mode by the Fourier 

transform of a cubical top hat: 

where 

~(k k k ) o(kx, ky, kz) 
u Xl y, z => k L k L ' 

sinc2(~) sinc2(~) sinc2(~) 
2NFFT 2NFFT 2NFFT 

sin(x) 
sinc(x) = --. 

X 

(2.1) 

(2.2) 

Note this is different from the approach taken by Jing (2005), who applied a correction 

to the spherically averaged power spectrum. 

A further possible distortion to the form of the measured power spectrum is dis­

creteness noise and the associated Poisson or shot noise. Poisson-sampling a continuous 

density field with point objects of space density, n, introduces a spurious contribution 

that should be subtracted from the measured power spectrum: Pcorr(k) = Pmeas(k) -1/n. 

In the case of dark matter halo centres or galaxies, the need for such a correction is jus-
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tified. However, in the case of dark matter particles in our simulations, one should not 

subtract Poisson shot noise from the power spectrum because the particles were initially 

laid down by perturbing a glass-like configuration which is sub-Poissonian in nature. This 

is clear from Fig. 2.2, which shows the power spectrum measured for the dark matter in 

the initial conditions of the BASICC. The red curve shows the spectrum measured in the 

simulation and the smooth green curve shows the input spectrum predicted by linear per­

turbation theory. The two agree remarkably well over a wide range of wavenumbers. The 

power spectrum of the unperturbed glass-like particle distribution is shown by the blue 

curve. For the wavenumbers of interest, the power spectrum of the glass is many orders 

of magnitude below the discreteness noise expected for a Poisson distribution of objects 

with the same space density as the dark matter particles, as shown by the dashed line. 

In this chapter, we do not apply any shot noise correction to power spectra measured for 

the dark matter, but we do make such a correction for spectra estimated for samples of 

haloes and galaxies. 

To close this subsection, we turn our attention to the error on the measurement of the 

power spectrum. A commonly used expression for the fractional error in the measured 

power spectrum was derived by Feldman et al. (1994) (see also Efstathiou (1988), for a 

similar argument applied to the two point correlation function): 

a= ~(1 +_1 ), 
P V~ Pn 

(2.3) 

where nmodes is the number of Fourier modes present in a spherical shell of width 8k, 

which depends upon the survey volume V: for k » 27r /V113 , this is given by nmodes = 

V47rk28k/ (27r)3 
. The first term on the right hand side of Eq. 2.3 quantifies the sample 

variance in the measurement, which decreases as the square root of the number of modes 

or, equivalently, as the square root of the volume probed. The second term arises from 

the discreteness of the objects under consideration. The combination Pn quantifies the 

amplitude of the power spectrum in units of the Poisson shot noise, effectively giving the 

contrast of the power spectrum signal relative to the shot noise level. In the case where 

Pn » 1, a/P <X 1/k. On the other hand, when the amplitude of the power spectrum 

is comparable to the shot noise, and if P(k) <X k-1 , then the fractional error in the 

power is approximately independent of wavenumber. We have tested this prescription 

in both regimes against the diagonal element of the covariance between power spectrum 

measurements extracted from the ensemble of low resolution simulations, as shown in 

Fig. 2.3. Over the wavenumber range of interest, the agreement is reasonably good for 
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samples in which the shot noise is negligible compared to the clustering signal. For samples 

with low contrast power measurements, such as is the case for dark matter haloes used in 

the bottom panel of Fig. 2.3, the analytic expression works well until k,....., O.lhMpc-1 and 

then overpredicts the errors by up to 50%. We note that nonlinearities and the impact of 

the window function of a realistic survey could introduce off-diagonal terms in the power 

spectrum covariance matrix. In Section 2.5.3, we compare the constraints on the recovered 

oscillation scale using the scatter from the ensemble and using the simple mode-counting 

argument outlined above. We find good agreement which suggests that mode-coupling 

does not make a significant contributions to the errors on the scales relevant to the BAO. 

2.2.2 Modelling the formation and evolution of galaxies 

TheN-body simulations described in the previous section follow the growth of fluctuations 

in the mass which is dominated by collisionless matter. To connect the predictions of 

the cold dark matter theory to forthcoming galaxy surveys, we need to predict which 

structures host galaxies and how galaxy properties depend on halo mass. 

Some authors have chosen to incorporate galaxies into an N-body simulation empiri­

cally by using a parametric model called a halo occupation distribution function (HOD) 

to describe the probability distribution of galaxies expected in haloes of a given mass 

(Benson et al. 2000). The form of the HOD is constrained to reproduce a particular 

clustering measurement, such as the galaxy correlation function (e.g. Peacock and Smith 

2000; Seljak 2000; Scoccimarro et al. 2001; Cooray and Sheth 2002). This approach has 

been applied to the study of the detectability of acoustic oscillations by several authors 

(Seo and Eisenstein 2005; Schulz and White 2006; Huff et al. 2007). Two assumptions 

are made when using the HOD to populate anN-body simulation with galaxies. Firstly, 

the parametrisation used for the HOD is assumed to provide an accurate description of 

the manner in which galaxies populate haloes across a wide range of halo mass. Detailed 

comparisons between the clustering predictions made using HODs and those obtained 

directly from simulations of galaxy formation show that in practice, the HODs do a rea­

sonable job (Berlind et al. 2003; Zheng et al. 2005). Recently, one of the fundamental 

assumptions which underpins the HOD approach has been called into question. Using 

the Millennium simulations, Gao et al. (2005) demonstrated that the clustering of dark 

matter haloes depends on a second parameter, such as the formation time of the halo, in 

addition to halo mass (see also Harker et al. 2006 and Wechsler et al. 2006, Wetzel et al. 

2007). In practice, for typical galaxy samples, this effect is largely washed out due to the 
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mix of halo properties sampled (Croton et al. 2007). The second implicit assumption in 

the HOD method when applied to an N-body simulation is that all of the haloes in which 

galaxies are expected to be found can be resolved in the simulation; if the mass resolution 

of the simulation turns out to be inadequate, then the HOD realized will be distorted to 

compensate, compared with the true, underlying HOD in the Universe. 

In this chapter, we take a more physical approach and make an ab initio prediction of 

which dark matter haloes should contain galaxies by modelling the physics of the baryonic 

component of the Universe. We do this using a semi-analytic model of galaxy formation 

(for a review of this technique see Baugh 2006). The semi-analytic model describes the 

key physical processes which are thought to determine the formation and evolution of 

galaxies. We use the GALFORM code introduced by Cole et al. (2000) and developed in a 

series of papers (Benson et al. 2002, 2003; Baugh et al. 2005; Bower et al. 2006). The 

specific model we use is the one proposed by Baugh et al. (2005), which reproduces the 

abundance of Lyman-break galaxies at z = 3 and z = 4, the number counts of sub-mm 

detected galaxies (with a median redshift z rv 2), and a rough match to the abundance of 

luminous red galaxies (Almeida et al., 2008), whilst at the same time giving a reasonable 

match to the observed properties of local galaxies (e.g. Nagashima et al. 2005a,b; Almeida 

et al. 2007). 

A key advantage of using a semi-analytic model is that we can investigate how the 

manner in which galaxies are selected affects the accuracy with which the acoustic oscil­

lations can be measured. The model predicts the star formation history of each galaxy 

and uses this to compute a spectrum, broadband magnitudes and emission line strengths 

(for examples of the latter, see Le Delliou et al. 2005, 2006). We can therefore select 

samples of model galaxies by applying precisely the same criteria which will be applied 

in the proposed surveys. 

Our methodology mirrors the hybrid schemes introduced by Kauffmann et al. (1997) 

and Benson et al. (2000). We use a Monte Carlo technique to generate merger trees for 

dark mater haloes since our simulation outputs do not have the resolution in time or mass 

necessary to allow the construction of merger trees. (See Baugh 2006 for a discussion of 

the relative merits of these two approaches.) 

We first construct a grid of halo masses at the redshift of interest, which extends to 

lower mass haloes than can be resolved in the simulation. We then generate a number 

of Monte-Carlo realizations of mass assembly histories for each mass on the grid, using 

the algorithm introduced by Cole et al. (2000). The number of realizations is chosen 
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to allow robust predictions to be made for observables such as the galaxy luminosity 

function. The halo merger history is input into the semi-analytic code and the properties 

of the galaxy population are output at the redshift for which the galaxy catalogue is to 

be constructed. In the calculations in this chapter, we output the broadband magnitudes 

in the R, I and K bands and the equivalent widths of Hex and OII[3727] for each galaxy. 

Finally, haloes from the grid are matched with haloes of similar mass identified in the 

N-body simulation. The central galaxy in each halo is assigned to the centre of mass of 

the matched halo in the simulation. The satellite galaxies are assigned randomly to dark 

matter particles in the halo. Galaxies placed in the simulation box in this way are called 

'resolved galaxies'. The Monte Carlo merger trees will not, of course, correspond in detail 

with those of the matched halos in theN-body simulation. However, to the extent that 

the halo assembly bias discussed by Gao et al. (2005) can be neglected, the properties of 

the trees are statistically similar for haloes in the same mass range. 

Because of the finite mass resolution of theN-body simulation, galaxy samples gener­

ated by populating resolved haloes will be incomplete fainter than some magnitude limit. 

In principle, since we are using Monte-Carlo merger trees, we can follow galaxies down to 

arbitrarily faint magnitudes within a resolved dark matter halo. However, as we consider 

progressively fainter objects, some fraction of these galaxies should also appear in haloes 

which the simulation cannot resolve, causing the sample to become incomplete. Thus, in 

some instances we need to consider galaxies which we would expect to find in haloes be­

low the mass resolution of the simulation. These galaxies are called "unresolved galaxies" 

and are placed in the box in the following way. A volume-limited sample of galaxies is 

generated using the semi-analytic model, with a volume equal to that of the simulation 

cube. Only galaxies which reside in haloes from the grid which are less massive than the 

resolution limit of the N-body simulation are considered. (Recall that the grid of halo 

masses used in the semi-analytic calculation extends to lower mass than those resolved in 

the simulation). These galaxies are assigned to randomly selected dark matter particles 

which have not been identified as members of halos identified by the friends-of-friends 

algorithm. This approach was adopted for one of the mock catalogues used in Cole et al. 

(2005). As we will see below, the unresolved galaxies are a minority within any of the 

samples we consider. They have little effect on the measured power spectrum, producing 

only a modest change in the amplitude of the clustering signal. 

We can use the semi-analytic calculation carried out on the grid of halo masses to find 

the completeness limit of the galaxy catalogue in theN-body simulation. To do this, we 
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use the galaxy formation calculation carried out using the grid of halo masses to compute 

the cumulative luminosity function of galaxies, starting with the brightest galaxy, for two 

cases: 1) without any restriction on the mass of the halo which hosts the galaxy and 2) 

considering only those galaxies which reside in haloes above the resolution limit of the 

simulation. We then divide the second estimate of the cumulative luminosity function by 

the estimate made without any restriction on halo mass. 

The completeness ratios calculated in this way are shown for z = 0, 1 and 2 in Fig. 2.4. 

The vertical lines show the magnitude limit down to which the 'resolved galaxy' cata­

logues are 100% complete. The lower panel shows the cumulative luminosity function 

in the model at the same redshifts, with horizontal lines marking the space density of 

galaxies at the sample completeness limit. (The magnitudes plotted are observer-frame 

absolute magnitudes in the R-band. The apparent magnitude is obtained by adding the 

appropriate distance modulus for each redshift. All magnitudes are on the AB scale.) The 

z = 2 sample is complete down to MR- 5log h = -23, or, equivalently to a space density 

of 3.2 x w-5 h3 Mpc-3. Faintwards of this magnitude, the completeness drops sharply to 

around 30 - 40%. The situation is much more encouraging at z = 1. Here, the galaxy 

catalogue is complete to MR- 5logh = -22.3 (corresponding to a space density of just 

under w-4 h3 Mpc-3 ) and faintwards of this there is a much more modest drop in the 

fraction of galaxies resolved in the simulation. The simulation resolves around two thirds 

of the space density of galaxies expected in the proposed WFMOS survey. At z = 0, the 

galaxy samples are complete to a much higher space density, in excess of w-3 h3 Mpc-3 . 

2.3 The power spectrum of galaxy clustering 

In this section we examine the various phenomena which are responsible for changing the 

form of the power spectrum of galaxy clustering from that expected in linear perturbation 

theory. We systematically add in new effects and elements of sample selection, considering 

first the power spectrum of the dark matter, looking at nonlinear evolution (§2.3.1) and 

the impact of peculiar velocities (§2.3.2), before moving onto dark matter haloes (§2.3.3) 

and finally to synthetic galaxy samples (§2.3.4). 

For completeness, we first explain some of the terminology we use in this section. 

There are three types of phenomena responsible for distorting the linear theory power 

spectrum: i) non-linear growth of fluctuations, ii) redshift-space distortions and iii) bias. 

Non-linear growth refers to the coupled evolution of density fluctuations on different scales. 
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Figure 2.5: The growth of the power spectrum of density fluctuations 

in the dark matter, as measured in real space. The smooth curves show 

the predictions of linear perturbation theory at the redshifts indicated 

by the key. The power spectra measured in the low resolution ensemble 

at z = 0 are plotted to show the sampling variance for a simulation box 
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maximum wavenumber shown is 0.67 times the Nyquist frequency of the 

FFT grid , chosen to avoid any aliasing effects. 
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Redshift-space distortions describe the impact of gravitationally induced peculiar motions 

on the clustering pattern. We will refer to clustering measurements as being made in "real 

space" or "redshift space"; in the latter case peculiar motions are taken into account, as 

we describe in §2.3.2. The term "bias" has a range of meanings in the literature. Bias 

is used to describe the boost in the clustering of a particular tracer (e.g. galaxies or 

clusters) relative to a reference point, which could be the clustering of the dark matter 

in either linear perturbation theory or taking into account nonlinear evolution. One of 

the earliest uses of the concept of bias was in the application of the high peaks model to 

explain the enhanced clustering of Abell clusters (Kaiser 1984). In this model, clusters 

are associated with rare peaks in the initial, Gaussian density field. The bias is defined 

as the square root of the ratio of the two-point correlation function of peaks of a certain 

minimum height to the clustering of the mass expected in linear perturbation theory. 

When considering galaxies, it is perhaps more natural to think in terms of a modulation 

of clustering relative to that displayed by the underlying mass at the same epoch, since 

galaxies populate dark matter haloes. In this case, the galaxy clustering will be measured 

relative to that of the evolved matter distribution. On large scales, these two reference 

points, the clustering of the matter expected in linear perturbation theory or the evolved 

clustering, should be essentially the same. We shall see later that this is approximately 

the case for the scales over which we compare clustering signals to measure bias factors. 

2.3.1 The nonlinear growth of matter fluctuations 

The early stages of the growth of a density fluctuation are particularly simple to describe 

analytically. The fluid equations can be written in terms of the perturbation to the 

density and Fourier transformed. In the simplest case, when the density contrast 8 « 1, 

the Fourier modes evolve independently of one another. This is called linear growth. In 

this regime, the power spectrum changes in amplitude with time, but not in shape. The 

shift in amplitude is described by the growth factor D, which is a function of the densities 

of matter and dark energy (as quantified by the present day density parameters, nM and 

nA, for matter and dark energy respectively) and redshift (see Heath 1977; Peebles 1980): 

(2.4) 

where D(z = 0) = 1. 

We plot the power spectrum of the dark matter in real space measured from the 
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BASICC at different output redshifts in Fig. 2.5. The approximately linear growth of the 

power spectrum is readily apparent on large scales (low k). In an Einstein - de Sitter 

universe (OM = 1), the growth factor is equal to the expansion factor. If dark energy 

plays a role in setting the rate at which the Universe expands, the growth of fluctuations 

is suppressed relative to the Einstein- de Sitter case at late times. The BASICC started at 

Zs = 63, so if OM = 1, we would expect to see the power spectrum grow in amplitude by 

a factor of (1 + z8 )
2 = 4096 by z = 0. Using the approximate formula provided by Carroll 

et al. (1992), we expect a suppression in the growth of the power by a factor of 0.5537 

for the cosmological parameters used in the simulation. This gives an overall growth in 

power from the initial conditions to the present of a factor of 2268. This agrees to within 

0.6% with the factor expected from a direct numerical integration of the equation giving 

the growth factor (Eqs. 28 and 9 from Carroll et al. 1992), which gives 2281.01. In the 

simulation, we find that the power in the fundamental mode grows by a factor of 2285.21 

from the initial conditions at z = 63 to z = 0, which agrees with the growth predicted by 

linear perturbation theory to 0.02%. 

Fig. 2.5 shows that the growth of the power spectrum is clearly not linear at high 

wavenumbers. The shape of the spectrum at high k at late times is different from that 

at high redshift, because the growth of modes of different k becomes coupled. This 

behaviour can be followed to some extent using second- and higher-order perturbation 

theory (Peebles 1980; Baugh and Efstathiou 1994; Jain and Bertschinger 1994; Crocce 

and Scoccimarro 2006a). However, as the density contrast approaches unity, second-order 

perturbation theory breaks down (Baugh and Efstathiou 1994). The coupled evolution 

of the Fourier modes starts on surprisingly large scales, which demonstrates the necessity 

of a large volume simulation to accurately follow the development of the power spectrum 

(Smith et al. 2007). 

This can be seen more clearly if we divide the measured spectrum by the growth 

expected according to linear perturbation theory, as is done approximately in Fig. 2.6. 

In this plot, we have divided the power spectra measured from the simulation by the 

spectrum measured at z = 15, scaled by the square of the appropriate growth factor. 

This reduces the noise in the ratio arising from the finite number of modes realized at 

small wavenumbers in the simulation volume (Baugh and Efstathiou 1994; Springe! et al. 

2005). Any deviation away from unity signifies a departure from linear perturbation 

theory due to coupling between modes. The ratio shows a characteristic dip at low k, 

i.e. less power than expected in linear theory, before showing a strong enhancement at 
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Figure 2.6: The nonlinear growth of the power spectrum. Here we divide 
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higher wavenumbers (Baugh and Efstathiou 1994). It is remarkable that the transition 

between a deficit and excess of power happens at the same wavenumber, k ,..,_. 0.1hMpc-1 , 

at different epochs. The suppression in power at low k, on the order of a 3%, is not 

as strong as that seen in an Einstein - de Sitter universe (see figure 4 of Baugh and 

Efstathiou 1994). Nevertheless, this drives the spectacular boost in power seen at higher 

wavenumbers. The dip in power is largest around k ,..,_. 0.05hMpc-1, which corresponds to 

a length scale of 27r /k ,..,_. 125 h-1 Mpc, close to the wavelength of the acoustic oscillations. 

Several authors have proposed ansatzes which transform the linear perturbation theory 

power spectrum into the non-linear power spectrum (e.g. Hamilton et al. 1991; Peacock 

and Dodds 1994, 1996; Smith et al. 2003). We plot the predictions of the model proposed 

by Smith et al. (2003) in Fig. 2.6 using dashed lines. The ratio is computed by dividing 

the power spectrum at the epoch of interest by the suitably scaled prediction of the model 

for z = 15. The agreement is excellent at high redshift. At z = 0, at higher wavenumbers, 

the Smith et al. (2003) formula recovers the simulation results to within 5% over the range 

plotted. 

2.3.2 The impact of redshift-space distortions on the power spectrum 

In a spectroscopic galaxy survey, the radial distance to an object is inferred from its 

measured redshift. The shift in the spectral features of the galaxy is produced by two 

contributions to its the apparent velocity: the expansion of the Universe, which is respon­

sible for the Hubble flow at the true distance to the galaxy, and local inhomogeneities in 

the gravitational field around the object, which generate an additional, "peculiar" veloc­

ity. Since we cannot correct a priori for the effects of the local gravitational field when 

inferring the radial distance from the Hubble law and the measured redshift, an error 

is made in the distance determination. The impact of such errors on the form of the 

measured power spectrum of clustering is called the redshift-space distortion. 

Peculiar motions display two extremes which produce different types of distortion to 

the power spectrum: i) On large scales, coherent bulk flows out of voids and into overdense 

regions lead to an enhancement in the density inferred in redshift space, and hence to a 

boost in the recovered power. Kaiser (1987) derived a formula for the enhancement of 

the spherically averaged power, under the assumption of linear perturbation theory for 

an observer situated at infinity (the plane parallel approximation): 
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(2.5) 

where Ps(k) is the power spectrum in redshift space, Pr(k) is the spectrum in real space 

and {3 = (dlog6/dloga) /b::::: n~;l(z)jb, where b is the bias factor (b = 1 for the dark 

matter; for a discussion of the dependence of the growth factor on OM, see Linder 2005; 

Linder and Cahn 2007). ii) On small scales, the random motions of objects inside virialized 

dark matter haloes cause structures to appear elongated when viewed in redshift space, 

leading to a damping of the power. Peacock and Dodds (1994) discussed a model for the 

redshift-space power spectrum, which takes into account both limits of peculiar motions 

(see also Scoccimarro 2004). 

Fig. 2. 7 shows the ratio of the power spectrum measured for the dark matter in redshift 

space to that measured in real space, at redshifts z = 3, 1 and 0. The dotted lines indicate 

the boost expected in the redshift-space power, computed using the expression in Eq. 2.5 

(Kaiser 1987). This factor changes with redshift because the matter density parameter is 

changing. Fig. 2.7 shows that this behaviour is only approached asymptotically, on scales 

in excess of 100 h-1 Mpc. At higher wavenumbers, the power measured in redshift space 

is suppressed by random motions. The dashed lines in this plot show a simple fit to this 

ratio 

(2.6) 

where a is a free parameter, which is loosely connected to the pairwise velocity dispersion. 

The degree of damping grows between z = 3 and z = 1, but changes relatively little by 

z = 0. We shall see in later sections that the form of the redshift-space distortion to the 

power spectrum depends on the type of object under consideration. 

2.3.3 The power spectrum of dark matter halos in real and redshift 

space 

In modern theories of galaxy formation, dark matter haloes play host to galaxies. It 

is therefore instructive to compare the power spectra measured for different samples of 

haloes to that of the dark matter as a step towards understanding the power spectrum of 

galaxies. 

A common conception is that the clustering of haloes is a scaled version of the clus­

tering of the underlying mass, with the shift in clustering amplitude quantified in terms 
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Figure 2.8: The power spectrum of dark matter haloes measured in real space compared to a scaled version of the prediction of linear 

perturbation theory, which takes into account the growth factor and an effective bias computed on large scales k < O.lhMpc-1 . Each 

panel corresponds to a different output redshift. Different mass samples are considered, as indicated by the key, which correspond to 

low, average and high masses, defined in terms of the average halo mass present at each output time. The black dashed line shows the 

real-space power spectrum of the mass divided by the appropriate linear perturbation theory prediction. 
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Figure 2.9: The power spectrum of dark matter haloes measured in redshift space divided by the power spectrum measured in real space 

for the same sample. Each panel corresponds to a different output redshift. Different mass samples are considered, as indicated by the 

key, which correspond to low, average and high masses, defined in terms of the average halo mass present at each output time. The 

horizontal dotted lines show the expected ratio for the boost in the amplitude of the redshift-space power spectrum due to coherent flows, 

computed using an effective bias factor estimated on large scales. The dashed lines show the best fit model of Eq. 2.6, which turns out 

to be a poor description of the redshift-space distortions. No suitable fits were obtained at z = 3. 
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of a bias factor, b, where b2 = 1\a!os/ Pdm (Cole and Kaiser 1989; Mo and White 1996). 

As we commented earlier, since we use the dark matter power spectrum on large scales 

to define a bias, this is approximately the same as using the linear perturbation theory 

spectrum. Many authors have tested analytical prescriptions for computing the bias pa­

rameter using extensions of the theory of Press and Schechter (1974) (e.g. Mo et al. 1997; 

Sheth et al. 2001; Jing 1998; Governato et al. 1999; Colberg and ohers 2000; Seljak and 

Warren 2004). In the extended Press-Schechter theory, the bias is only a function of halo 

mass and redshift. However, recent analyses of high resolution, large volume simulations 

have revealed some dependence of halo clustering on a second parameter besides mass, 

such as the halo's formation redshift or concentration parameter (Gao et al. 2005; Harker 

et al. 2006; Wechsler et al. 2006). 

In Fig. 2.8, we show that this simple picture, in which the clustering of haloes is a 

shifted version of that of the dark matter, is actually a poor approximation to what we 

find in the simulation. We show the ratio of the power spectrum of a sample of dark 

matter haloes measured in real space to a scaled version of the linear perturbation theory 

power spectrum. The amplitude of the linear theory spectrum used in the ratio takes into 

account the growth factor appropriate to the output redshift and an effective bias, which 

is set by matching the linear theory prediction for the mass spectrum to the measured halo 

spectrum on large scales, i.e. for wavenumbers in the range 0.0046 < (k/hMpc-1) < 0.1. 

Each panel in Fig. 2.8 corresponds to a different output redshift from the simulation. For 

each redshift, we have defined three samples of dark matter haloes, which contain the same 

number of objects. The mass intervals are set relative to the average halo mass present in 

the respective outputs, with "low", "mean" and "high" mass samples considered. Each 

of these contains 20% of the total number of haloes present at each epoch, with the mass 

ranges used at each redshift indicated on the keys. The effective bias factors of the halo 

samples are also written in the key. For comparison, the dashed line in each panel shows 

the corresponding ratio for the dark matter. 

Fig. 2.8 shows that at z = 3, all of the haloes considered have effective biases much 

greater than unity, indicating they are more strongly clustered than the mass. This 

situation is reversed at z = 0. At this epoch, the halo mass resolution of the BASICC is 

smaller than the corresponding value of M* 1 (= 5.78 x 1012 h-1 M 0 at z = 0). The z = 0 

1M. is a characteristic mass scale defined as the mass within a sphere for which the rms variance in 

linear perturbation theory is a(M) = 8crit(z), where 8crit is the extrapolated critical linear overdensity 

given by the spherical collapse model at redshift z. 
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samples have a bias of unity or smaller. In addition to the difference in the effective bias 

parameters, the shape of the spectrum of the haloes in these extremes is also different (see 

also Smith et al. 2007). The plot shows the shape of the power spectrum, after accounting 

for the effective bias on large scales. Any difference between the curves plotted for the 

haloes and that for the dark matter (dashed line) shows a difference in the clustering 

signal over and above that quantified by a constant effective bias. Similar behaviour was 

found for samples of cluster mass haloes in the Hubble Volume simulation by Angulo 

et al. (2005). 

We now consider the clustering of haloes as viewed in redshift space, taking the centre 

of mass velocity of the halo as its peculiar velocity. In Fig. 2.9, we plot the ratio of the 

redshift-space power spectrum for the halo samples used in Fig. 2.8 to the power spectrum 

measured in real space. As we did before for the case of the dark matter (Fig. 2.7), we 

indicate the boost in power expected on large scales (small k) due to coherent bulk 

flows of haloes. The boost is calculated from Eq. 2.5 using the effective bias of the halo 

sample. The plot shows that the redshift-space power spectrum at low wavenumbers is in 

reasonable agreement with this simple model. However, a range of behaviour is seen at 

higher wavenumbers. For haloes comparable toM*, the boost in power in redshift space 

is less than predicted by Eq. 2.5. For the more extreme, massive haloes, there is actually 

more power in redshift space than is suggested by Kaiser's formula. This "excess" power 

was previously noted by Padilla and Baugh (2002) and Angulo et al. (2005). The Kaiser 

formula assumes linear perturbation theory and breaks down in the case of objects with 

strongly nonlinear clustering. In the case of the less extreme haloes, the reduction in 

power is not due to virialized motions of haloes within larger structures. The halo finder 

we have used is designed to return an overdensity corresponding to virialized structures 

and not substructures. If the haloes were really part of a larger structure and were 

executing random motions, the group finder would simply have lumped them together as 

one larger structure. We are perhaps seeing instead haloes that have started to merge 

with one another, and whose motions have broken away from a coherent large scale flow. 

We know of no analytical description of the redshift-space clustering of dark matter haloes 

which explains this behaviour. 

2.3.4 The power spectrum of galaxies 

The galaxy power spectrum can be very different from the power spectrum of a sample of 

dark matter haloes. The way in which the galaxies are distributed among haloes changes 
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the form of the power spectrum. In a mass-limited sample of haloes, the contribution 

of each halo to the power spectrum can be determined through its space density, which 

acts as a weighting factor when computing the contribution of the halo to the clustering 

signal. The number of galaxies per halo acts to modify this weight e.g. more massive 

haloes could contain more galaxies than less massive haloes. Furthermore, the presence 

of satellite galaxies within a halo means that one expects to see a damping in power 

on small scales in redshift space, due to the random motions of the satellites within the 

virialized dark halo. The precise modification of the power spectrum depends in detail on 

how galaxies populate dark matter haloes. As we discussed in §2.2.2, we have carried out 

an ab initio calculation of the number of galaxies per halo, using a semi-analytic model 

of galaxy formation. We are able to predict observable properties of galaxies, such as 

broadband magnitudes and the strength of emission lines. We consider a range of galaxy 

samples, defined either by a magnitude limit alone (set in the R-band) or by combining 

an R-band magnitude limit with a colour selection (in R-I) or a cut on the strength of 

the 011[3727] emission line: 

• Sample A: magnitude-limited to reach a space density of 5 x w-4 h3 Mpc-3 . 

• Sample B: magnitude-limited to reach half the space density of sample A, i.e. 2.5 x 

w-4 h3 Mpc-3 . 

• Sample C. The reddest 50% of galaxies from sample A, using the R- I colour. 

e Sample D. The 50% of galaxies from sample A with the strongest emission lines, 

using the equivalent width of 011[3727]. 

e Sample E. The bluest 50% of galaxies from sample A, using the R- I colour. 

e Sample F. The 50% of galaxies from sample A with the weakest emission lines, using 

the equivalent width of 011[3727]. 

The power spectra measured in real space from the various galaxy samples are plotted 

in Fig. 2.10. The spectra have been divided by the linear perturbation theory power 

spectrum multiplied by the square of an effective bias factor, which was estimated by 

comparing the galaxy spectra to the power spectrum measured for the dark matter for 

wavenumbers k < O.lhMpc-1 . In all cases, for the space densities we have chosen, the 

effective bias factors estimated for the samples are modest. For comparison, the ratio 

of the power spectrum of the dark matter in real space to the linear theory prediction 
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is also plotted, using a dashed line. The deviation of the dashed line from unity shows 

where nonlinear effects are important for the dark matter. Any differences between the 

plotted ratios for galaxies and mass indicate a scale dependent bias. The comparison 

between the dashed and solid curves in Fig 2.10 shows that a constant bias is only a good 

approximation on large scales, k < 0.15hMpc-1 . 

The redshift-space distortion in the galaxy power spectrum is shown in Fig 2.11, where 

we plot the ratio of the redshift-space spectrum to the real-space spectrum for the galaxy 

samples shown in Fig. 2.10. The horizontal lines show the Kaiser boost (Eq. 2.5) expected 

for the effective bias of the galaxy sample. This ratio is only attained on the very largest 

scales and seems to be an overestimate of the size of the effect at z = 1. The damping of 

the power on intermediate and small scales is readily apparent and, unlike the case with 

dark matter haloes, is well described by the form given in Eq. 2.6. 

2.4 Constraining the Dark Energy Equation of state 

In this section we outline the procedures we follow to place constraints on the dark energy 

equation of state parameter, w, by measuring the length scale imprinted by baryonic 

acoustic oscillations on the power spectrum of the various tracers of the density field. 

The transformation of a measurement of a distance scale into a constraint on w requires 

various approximations to be made, and depends upon the survey in question and upon 

the time variation assumed for the dark energy. Nevertheless it is instructive to go through 

this exercise, bearing these caveats in mind, to get a feel for how well future experiments 

will be able to measure w for the case of a constant equation of state. 

The form of the power spectrum of density fluctuations contains information about 

basic cosmological parameters, and measurements of the galaxy power spectrum on large 

scales have been exploited to extract the values of these parameters (e.g. Cole et al. 2005; 

Sanchez et al. 2006; Tegmark et al. 2006; Padmanabhan et al. 2007; Percival et al. 2007). 

The apparent scale of features in the power spectrum offers another route to constrain 

selected cosmological parameters through the dependence of the distances parallel and 

perpendicular to the line of sight on the matter density parameter, OM, the dark energy 

density parameter, OnE, the dark energy equation of state parameter, wand the Hubble 

constant. For such an approach to work, we either need to know the true physical scale 

of a particular feature in the power spectrum beforehand or to compare the relative size 

of a feature when measured parallel and perpendicular to the line of sight (Alcock and 
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Figure 2.12: The relation between the dark energy equation of state pa­

rameter, w, and the scale factor, a, defined by Eq. 2.8, for perturbations 

in the equation of state around Wtrue = - 1. Two cases are shown. In 

the upper panel, the values of the other cosmological parameters are 

kept fixed. In the lower panel, the ratio of the sound horizon scale to 

the angular diameter distance to the last scattering surface is held fixed. 

The relation between a and w is shown for z = 1 (solid lines) and z = 3 

(dashed lines). The horizontal and vertical lines guide the eye to show 

how a 1% error in a translates into an error in w. 
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Paczynski 1979). The baryonic oscillations present a promising candidate for such a 

feature. If we assume for the sake of argument that the cosmological parameters, apart 

from the equation of state of the dark energy, are well constrained, then the scale of the 

acoustic oscillations becomes a standard ruler. These features are expected on smaller 

scales than the turnover and have already been seen in current surveys at low redshift, 

although at too low a signal-to-noise ratio to use in isolation to extract a competitive 

constraint on the dark energy equation of state (Cole et al. 2005; Eisenstein et al. 2005). 

We can see how the value of the equation of state parameter parameter of the dark 

energy influences the form of the BAO with the following simple argument. To measure 

the power spectrum of galaxy clustering, we need to convert the angular positions and 

redshifts of the galaxies into comoving spatial separations. This requires a choice to be 

made for values of the cosmological parameters, including w. In our case, we set the 

parameters equal to the values used in the N-body simulations, with w = Wtrue = -1 for 

the particular case we have run. The effect of a change in the value of w, Wassumed = 

Wtrue + 6w is to change the separations between pairs of galaxies, which leads to a change 

in the appearance of the power spectrum. For small perturbations away from the true 

equation of state, we assume that the alteration in the measured power spectrum can 

be represented by a rescaling of the wavenumber from ktrue to kapp· The ratio of these 

wavenumbers gives a "stretch" parameter, a, which describes the change in the recovered 

oscillation scale: 

kapp 
a=--. 

ktrue 
(2.7) 

If Wassumed = Wtrue, then there is no shift in the BAO in the estimated power spectrum 

and a = 1. In the case of a wide-angle, deep galaxy survey with spectroscopic redshifts, 

the stretch parameter can be approximated by: 

a~ (DA(Z,Wassumed))-
213 

( H(Z,Wtrue) )
1

/
3

' 

D A(z, Wtrue) H(z, Wassumed) 
(2.8) 

where 

H(z,w) [ ]
1/2 

Ho Om(1 + z)3 + OoE(l + z)3(1+w) (2.9) 

c 1z dz 
1 + z 0 H(z)" 

(2.10) 

The values of the exponents in Eq. 2.8, 2/3 for the distance transverse to the line of 

sight and 1/3 for the distance parallel to the line of sight are motivated by the number of 
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Cartesian components in these directions (e.g. Eisenstein et al. 2005). The precise value 

of these exponents will depend upon the geometry and construction of the galaxy survey. 

For example, in a survey which relies upon photometric redshifts, the exponent parallel 

to the line of sight would be greatly reduced and it would be beneficial to compute the 

power spectrum transverse to the line of sight. Note that in Eqs. 2.9 and 2.10 we assume 

that w is independent of redshift. There are many models in which w is a function of 

redshift. In this case, the exponent of ODE in the expression for the Hubble parameter 

(Eq. 2.9) would be replaced by an integral over w(z). 

It is instructive to see how the constraints on a translate into limits on the value of w. 

We can do this approximately using Eq. 2.8, for the case of a redshift independent equation 

of state, considering perturbations around Wtrue = -1. We consider two illustrative cases: 

a "pessimistic" case in which we consider the constraints from BAO in isolation from 

any other data which constrains the cosmological parameters and an "optimistic" case, in 

which we perturb w and only consider cosmological models that give similar predictions for 

the CMB. The translation in the pessimistic case is shown in the upper panel of Fig. 2.12 

for two different redshifts. Here we have assumed fixed values for nM and nA and we have 

not marginalized over these parameters. This is the case discussed most commonly in the 

literature. Under these conditions, at z = 1, a 1% error in a corresponds approximately 

to a 4% error in the value of w. At z = 3, the boost is about 50% larger, with 8w ~ 68a. 

In the "optimistic" case, we only consider models which give the same angular location 

for the first peak in the CMB spectrum. Hence, when the value of w is perturbed, we 

restrict our attention to those models which give the same ratio of the sound horizon scale 

to the angular diameter distance to the last scattering surface as our default cosmology. 

Given the parametric forms quoted for these distances by Eisenstein and Hu (1998)), 

this is equivalent to keeping nb;nM and h fixed, and varying nM. We have called this 

case "optimistic" because it does not include any error on the fixed parameters. In this 

scenario, shown in the lower panel of Fig. 2.12, the error on w is now only around 50% 

larger than the corresponding error on a. 

We now explore two of the approaches which have been advocated in the literature to 

measure the value of w. Both methods involve making fits to the ratio of a measured power 

spectrum divided by a smooth reference spectrum. In the first approach, a parametric 

form is assumed for the ratio (Blake and Glazebrook 2003). The second approach is more 

general as it does not assume a specific form for the ratio, but instead uses the linear 

perturbation theory power spectrum without any further approximations (Percival et al. 
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2007; see also Eisenstein et al. 2005). We shall henceforth refer to these methods as 

the parametric and general schemes respectively. In their original forms, there are also 

differences in the way in which a "featureless" reference spectrum is constructed, as we 

will briefly discuss when describing these approaches below. 

Blake and Glazebrook (2003) (see also Glazebrook and Blake 2005) studied the fea­

sibility of extracting measurements of the acoustic oscillations from forthcoming galaxy 

surveys using linear perturbation theory. Their starting point is to divide the power spec­

trum, including the imprint of baryons, divided by a smooth reference spectrum which 

is chosen to be free from any signature of acoustic oscillations. This method therefore 

does not use any of the information contained in the overall shape of the power spectrum, 

which Blake & Glazebrook argue could be susceptible to large scale gradients arising from 

the effects we discussed in Section 2.3, such as galaxy bias or redshift-space distortions. 

Instead, they focused on the location and amplitude of the acoustic oscillations. The 

smooth reference spectrum is obtained using the zero-baryon transfer function written 

down by Eisenstein and Hu (1998). The parametric form suggested by Blake & Glaze­

brook as a fit to the resulting ratio is a Taylor expansion of the ratio of a power spectrum 

for cold dark matter plus a small baryonic component, divided by a pure cold dark mat­

ter power spectrum. The sound horizon, which is a free parameter in their method, is 

treated as the oscillation wavelength in this parametric form. This is an approximation, 

as the wavelength of the acoustic oscillations actually changes with wavenumber, albeit 

slowly, and is therefore not a constant (see eqn. 22 of Eisenstein and Hu 1998). Some 

authors have criticized this approach due to the sensitivity of the ratio to the choice of 

the reference power spectrum. Angulo et al. (2005) describe how realistic power spec­

tra, which include nonlinear growth, bias effects and redshift-space distortions, require a 

"linearization" process before they become adequately described by the parametric form 

put forward by Blake & Glazebrook. Due to the sensitivity of the ratio to the choice of 

reference spectrum at low wavenumbers, Koehler et al. (2007)) proposed ignoring power 

spectrum measurements below k ,...._, 0.05hMpc-1 to avoid this problem (although we note 

that they also discuss a different approach to measuring the equation of state parameter). 

Percival et al. (2007) proposed a new technique which has a number of appealing 

features compared with that of Blake & Glazebrook. Firstly, the shortcut of fitting an 

approximate parametric form to the ratio of the measured power spectrum to a reference 

is dropped in favour of using a full linear perturbation theory power spectrum (with a 

modification; see later) to model the ratio. This is completely general, and permits one 
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to use the most accurate description available of the linear perturbation theory power 

spectrum, such as the tabulated output of CAMB. Secondly, the reference power spectrum 

is defined separately in the case of the data and the linear theory model, by using a coarse 

rebinning of the relevant power spectrum. The reference is constructed using a spline fit 

to a reduced number of wavenumber bins over the range in which the spectrum in question 

is defined. Thus, any deviations in the general form of the measured spectrum away from 

linear theory are naturally accounted for in the reference spectrum. Thirdly, Percival 

et al. allow for a damping of the amplitude of the oscillations in the theoretical ratio 

beyond some wavenumber, which is treated as a free parameter in their fit. The quality 

of the fits is dramatically improved when damping of the higher harmonics is allowed. 

Percival et al. applied their method to extract the matter density parameter from the 

power spectrum of luminous red galaxies in the SDSS. 

The majority of the results we present are obtained using the general method suggested 

by Percival et al. For completeness, and because Percival et al. did not actually apply 

their method to the extraction of the equation of state parameter, we set out the general 

approach step-by-step below: 

1. A smooth reference spectrum (i.e. without any oscillatory features), Pref, is con­

structed from the measured power spectrum using a cubic spline fit over the wavenum­

ber range 0.0046 < (k/hMpc-1) < 1.2, using the measured spectrum smoothed over 

25 bins in wavenumber. The spline is constrained to pass through the data points 

in this coarse rebinning of the measured power spectrum. 

2. We compute the ratio, R(k), of the measured power spectrum, P(k), to the reference 

spectrum, Prer(k), obtained in step 1: 

P(k) 
R(k) = Prer(k) · (2.11) 

3. A linear perturbation theory power spectrum is generated with CAMB for the cosmo­

logical parameters used in the BASICC simulation. A smooth reference spectrum, 

Pr~f• is defined for this spectrum in the same manner as described for the measured 

spectrum in Step 1, using the same wavenumber bins. A ratio, RL, is derived for 

the linear perturbation theory spectrum by dividing by this reference spectrum. 

4. The linear theory ratio, RL, is compared with the measured ratio, R. Two modi­

fications are considered to the linear theory ratio. The first is a stretch or scaling 
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of the wavenumber used in the linear theory ratio, as described above, to mimic 

the act of changing the dark energy equation of state parameter, w. The goal here 

is to see what variation in w can be tolerated before RL is no longer a good fit to 

the measured ratio R. The second change is to allow for a damping of the oscilla­

tions beyond some characteristic wavenumber by multiplying the theoretical power 

spectrum by a Gaussian filter: 

W(k) = exp (- 2~;J, (2.12) 

where knl is a free parameter. Hence, the linear theory ratio is modified to: 

RL(k) = ( P: (ak)- 1) X W(k, kni) + 1 
pref 

(2.13) 

5. A likelihood is computed for each combination of the parameters knl and a, assuming 

Gaussian errors: 

(2.14) 

where the summation is over wavenumber and O"i is the error on the power spec­

trum estimated in the ith bin (as given by Eq. 2.3). We generate a grid of models 

using 2002 different combinations of a and kni in the ranges [0.9,1.1] and [0,0.4] 

respectively. 

6. Finally, the best fit values for a and knl correspond to those for the model with the 

maximum likehood. We obtain confidence limits on the parameter estimation by 

considering the models within ~x2 equal to 2.3 and 6.0; in the case of a Gaussian 

likelihood, these would correspond to the 68% (1-0" error) and 95% (2-0" error) 

confidence levels on the best fit. We note that in some cases presented later (see 

Fig. 2.15 ), the distribution of the likelihood is not Gaussian. 

In some cases, we also present constraints on w derived using a slightly modified version 

of the approach of Blake & Glazebrook. The main difference is that we follow step 1 to 

construct a ratio from the measured power spectrum, rather than using a zero-baryon 

transfer function. 

One issue to be resolved is the range of wavenumbers which should be used in the 

fitting process. To address this, we used the power spectrum of the dark matter measured 

at z = 6. We systematically varied the minimum and maximum wavenumbers used in 

our fit and compared the values of the scaling parameter, a, recovered. Our results are 
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fairly insensitive to the choice of the maximum wavenumber, particularly when damping 

of the oscillations is included in the fitting algorithm. However, the recovered a shows a 

systematic shift once the minimum wavenumber exceeds k "'0.1hMpc-1. For minimum 

wavenumbers smaller than this, there is little difference in the recovered value of a or in the 

size of the errors on a, as these modes have relatively large errors in our simulation. This is 

encouraging news for realistic survey geometries, for which the power spectrum measured 

at low wavenumbers will be distorted due to the window function of the survey. In the 

rest of the chapter, we use the power spectrum in the wavenumber interval k/(hMpc- 1 ) = 

[0, 0.4] to constrain the value of a. 

2.5 Results 

In this Section, we present the expected constraints on the dark matter equation of 

state using the power spectra measured from our simulations. We first show how our 

algorithm for extracting the equation of state parameter works in practice, for dark matter 

particles, haloes and galaxies, comparing the results obtained in real space and redshift 

space (§2.5.1). We then assess the need for an accurate model of the linear theory power 

spectrum and the relative merits of the general and parametric fitting procedures (§2.5.2). 

In §2.5.3, we present our main results, which are summarized in Fig. 2.19 and Tables 2.2 

and 2.3, which list the best-fitting value of a and the estimated error for different samples 

of galaxies at z = 1, along with the corresponding fractional error in w. Finally, in §2.5.4, 

we use the results presented in §2.5.3 to make forecasts for the accuracy with which several 

forthcoming surveys will be able to measure the value of w. 

2.5.1 The algorithm to extract the scale of the acoustic oscillations in 

action 

We present a series of plots for samples at z = 0, which illustrate the various stages in 

the fitting process. Fig. 2.13 shows the power spectra measured for different tracers, both 

in real space and redshift space. The sample of dark matter haloes includes all objects 

with a mass in excess of 5.4 x 1012 h-1 M0 . The galaxy sample is magnitude-limited 

with a space density of fi = 5 x 10-4 h-3 Mpc3 . For reference, the linear perturbation 

theory power spectrum for the mass at z = 0 is shown by the blue line in each panel: 

this is the power spectrum of the dark matter measured in real space at z = 15, scaled 

by the ratio of growth factors in order to have the amplitude expected at z = 0. It is 
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Figure 2.13: The power spectra of dark matter particles, dark matter 

haloes and galaxies at z = 0 (error bars). The real-space power spectra 

are plotted in the left hand column and the redshift-space power spectra 

appear in the right hand column. The red curves show the reference 

spectra derived from the measured spectra using a cubic spline fit, as 

described in Section 2.4. The blue curve is the same in each panel, 

showing the linear perturbation theory prediction for the z = 0 matter 

power spectrum (plotted using a high redshift output obtained from the 

BASICC simulation, which has been scaled in amplitude according to the 

difference in growth factors between the two epochs expected in linear 

perturbation theory) The errors on the power spectrum are estimated 

using Eq. 2.3. 
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Figure 2.14: The ratio of the measured power spectrum divided by a 

smooth reference spectrum. The symbols correspond to the measure­

ments plotted in Fig. 2.13 divided by the red curve in each panel of that 

figure. The red lines here show the best-fitting model in each case using 

the general method and the blue curves show the best fit for the para­

metric method. The errors on the power spectrum are estimated using 

Eq. 2.3. 

48 



2. The detectability of BAO in future galaxy surveys 49 

important to bear in mind that the y-axis in this plot covers more than a factor of one 

thousand in amplitude. Fig. 2.13 shows that there is considerable variation in the power 

spectra measured for different types of objects, and between the results in real space 

and redshift space, which re-inforces the points made in Section 2.3 regarding deviations 

from the predictions of linear perturbation theory on large scales. The red curve in each 

panel shows the corresponding reference power spectrum, which is constructed from the 

measured power spectrum as explained in Section 2.4. 

In Fig. 2.14, the symbols show the ratio obtained by dividing the measured power spec­

trum by the appropriate reference spectrum for the same samples plotted in Fig. 2.13. 

The ratios look remarkably similar for the different tracers up to k ;::::; 0.15hMpc-1 . Be­

yond this wavenumber, the appearance of the oscillations varies from panel to panel, but 

the ratio stays close to unity. This similarity illustrates how well the approach for pro­

ducing the reference spectrum works. The red curves in each panel show the best-fitting 

model produced in the general scheme whilst the blue curves show the fit obtained in 

the parametric approach. The best fits have somewhat different forms at wavenumbers 

below k"" 0.05hMpc- 1
. The constraints on the values of the parameters knl and a are 

presented in Fig. 2.15, where we show the 1, 2 and 3-a ranges in the case of two pa­

rameters, computed assuming Gaussian errors. There is a weak systematic trend for the 

best-fitting result for a to shift to lower values when galaxies are considered instead of 

the dark matter. The errors on the recovered parameters are larger in the case of galaxies 

than for the dark matter or for haloes, reflecting the lower signal-to-noise of the predicted 

galaxy power spectrum. 

2.5.2 Two tests of the algorithm 

Before presenting the main results of applying our algorithm to extract the acoustic os­

cillation scales for various samples drawn from the BASICC run, we use the L-BASICC 

ensemble to address two questions: 1) How accurately do we need to· model the linear 

perturbation theory matter power spectrum to avoid introducing a systematic bias into 

the results for the oscillation scale? 2) How does the performance of the new method 

for constraining the oscillation scale introduced in this chapter compare with earlier ap­

proaches? To help answer these questions, we use the power spectrum of the dark matter 

measured from the L-BASICC runs in real space at z = 0 and z = 3.8, the highest output 

redshift besides the initial conditions. The results of applying our standard algorithm for 

extracting the oscillation scale are shown by the red histogram labelled CAMB in Fig. 2.16, 
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Figure 2.15: The constraints on the parameters knl and a for the power 

spectra plotted in Fig. 2.13. The contours show the 1, 2 and 3-o- confi­

dence limits for two parameters. 
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Figure 2.16: The best fit value for the scaling parameter a, recovered 

from the ensemble of low resolution simulations, using the dark matter 

power spectrum in real space. The results are show for two different 

redshifts: z = 3.8 (top) and z = 0 bottom. The histograms marked 

CAMB and BG03 show the results for the general and parametric fitting 

procedures, respectively. The blue histogram shows the results if the 

general method is followed with the CAMB power spectrum replaced by 

the formula for the linear theory power spectrum presented by Eisenstein 

& Hu (1998). 
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which gives the distribution of the best-fitting value of a. The ensemble returns an unbi­

ased mean value for the stretch parameter, a= 1. At z = 3.8, the standard deviation on 

the best fit is 0.3%; by z = 0, this rises to 1%. 

To address the first issue above, regarding how well we need to model the linear 

theory power spectrum to get an unbiased result for the oscillation scale, we replace the 

CAMB generated power spectrum in our algorithm by the approximation introduced by 

Eisenstein and Hu (1998). These authors proposed a physically motivated expression for 

the linear theory power spectrum, with parameters set to achieve a reasonable match to 

the results obtained from detailed calculations using Boltzmann codes over a much wider 

range of wavenumbers than are typically considered for baryonic acoustic oscillations. 

Eisenstein & Hu's motivation was to provide physical insight into the form of the power 

spectrum in a cold dark matter universe and to produce a code which could rapidly 

calculate large numbers of power spectra for grids cosmological parameters. Of course, 

the correct approach in our fitting procedure is to use the same code to compute the linear 

theory spectrum as was used to generate the initial conditions in the N-body simulation. 

In the case of real data, we do not have the luxury of knowing which Boltzmann code 

to use, so we should use the one which claims to be the most accurate representation 

of the model we are testing. Nevertheless, it is instructive to perform this test to see 

what error is introduced by using a less accurate calculation of the transfer function. 

The choice of Eisenstein & Hu's code is particularly relevant for this purpose as Blake & 

Glazebrook used this formalism to inspire their parametric expression to fit the acoustic 

oscillations. The use of Eisenstein & Hu's formalism to model the linear theory power 

spectra generated with CAMB introduces a small but measurable systematic shift in the 

mean value of a. At z = 0, the mean a indicated by the blue histogram in Fig. 2.16 is 

0.98 ± 0.01. 

We answer the second question by adopting the fitting algorithm of Blake & Glaze­

brook (2003), which assumes a parametric form for the ratio of the power spectrum with 

baryons to a smooth, cold dark matter only power spectrum. Changing the fitting method 

in this way also introduces a similar magnitude of shift in the best-fitting value of a. The 

green histogram shows the results when we use the parametric approach introduced by 

Blake and Glazebrook (2003). The mean value of a in this case is 1.01 ± 0.01. These 

shifts are small but one must bear in mind that the corresponding bias in the dark energy 

equation of state parameter is several times larger than the shift in a. 



Sel I Sel II Real space Redshift space 

id n b nP kni a ~a ~a b nP kni a ~a ~a 

h3 Mpc-3 h/Mpc % % h/Mpc % % 

(SE07) (SE07) 

DM 0.99 3567 0.120 0.993 0.91 1.02 1.15 3635 0.110 0.989 1.05 1.17 

A 5.0e- 4 1.18 1.78 0.144 0.975 1.16 1.10 1.32 2.15 0.125 0.972 1.26 1.23 

B 2.5e- 4 1.33 1.11 0.155 0.971 1.34 1.18 1.47 1.34 0.139 0.966 1.35 1.23 

c 2.5e- 4 red 1.32 1.15 0.152 0.978 1.35 1.21 1.46 1.36 0.127 0.975 1.49 1.37 

D 2.5e- 4 strong 1.06 0.67 0.155 0.956 1.75 1.41 1.20 0.86 0.138 0.956 1.67 1.42 

E 2.5e- 4 blue 1.03 0.66 0.141 0.964 1.92 1.56 1.17 0.83 0.130 0.962 1.79 1.53 

F 2.5e- 4 weak 1.30 1.16 0.132 0.980 1.55 1.40 1.44 1.34 0.115 0.972 1.66 1.54 

haloes 5.9e- 5 1.56 0.81 0.197 0.980 1.32 1.07 1.71 1.04 0.148 0.975 1.43 1.25 

Table 2.2: The results of applying the general fitting procedure described in §2.4 to power spectra measured for different galaxy catalogues 

at z = 0. The first row gives the results for the dark matter and the final row lists results for a sample of dark matter haloes (all haloes 

with mass in excess of 2.7 x 1013 h- 1 M0 ). The first column gives the label of the sample, as defined in Section 2.2.2. The second column 

gives the space density of galaxies. The first two samples, A and B, are constructed by applying a magnitude limit. Samples C-F are 

derived from sample A by applying a second selection criterion, as listed in the third column. Samples C and E correspond to the red 

and blue halves of sample A respectively. Samples D and F comprise the 50% of galaxies from sample A with the strongest and weakest 

{in terms of equivalent width) 011[3727] emission lines, respectively. Column 4{10) gives the effective bias of the sample, computed from 

the square root of the ratio of the measured galaxy power spectrum in real ( redshift) space to the real space power spectrum of the dark 

matter over the wavenumber interval 0.01 < (k/hMpc- 1) < 0.05. Column 5{1) gives the ratio of the clustering signal to the shot noise 

for the power spectrum measurement, averaged over the wavenumber range 0.19 < (k/hMpc-1) < 0.21. Columns 6 and 7 {12 and 13) 

give the best-fitting values of the scaling parameter a and the 1- CJ error on the fit, in real (redshift) space. Column 9 {15) gives the 

error expected on the scale parameter from Seo & Eisenstein {2007). The rms Lagrangian displacement was set equal to 1 over the best 

fit non linear scale (1/knl) for each case. 
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Sel I Sel II Real space 

id n b nP knJ a ~a ~a 

h3 Mpc-3 h/Mpc % % 

(SE07) 

DM 0.99 1269 0.163 0.997 0.61 0.68 

A 5.0e- 4 1.34 0.87 0.188 0.980 1.30 1.10 

B 2.5e- 4 1.31 0.43 0.212 0.975 2.02 1.47 

c 2.5e- 4 red 1.39 0.48 0.235 0.977 1.81 1.32 

D 2.5e- 4 strong 1.31 0.40 0.624 0.971 1.90 1.14 

E 2.5e- 4 blue 1.30 0.40 0.219 0.973 2.31 1.47 

F 2.5e- 4 weak 1.37 0.47 0.218 0.987 1.91 1.38 

haloes 5.9e- 5 3.07 0.59 0.226 1.000 1.65 1.24 

Table 2.3: Same as 2.2 but at z = 1. 

Redshift space 

b nP knJ a ~a 

h/Mpc % 

1.29 1710 0.133 0.991 0.77 

1.60 1.19 0.164 0.976 1.21 

1.57 0.59 0.174 0.970 1.72 

1.65 0.65 0.208 0.975 1.52 

1.57 0.55 0.186 0.970 1.79 

1.56 0.54 0.159 0.962 1.98 

1.63 0.64 0.190 0.978 1.61 

3.34 0.77 0.146 0.994 1.82 

~a 

% 

(SE07) 
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Figure 2.17: The best-fitting value of the scale factor a as a function 

of redshift, for different tracers of the density distribution, in real space 

(top) and redshift space (bottom). The symbols show results from the 

high resolution BASICC simulation: dark matter (blue triangles), dark 

matter haloes with mass in excess of 5.4 x 1012 h-1 M0 (green circles) 

and galaxies (red squares). The error bars show the 1-cr range on a, 

calculated from b.x2 . The hatched region shows the central 68% range 

of the results obtained using the dark matter in the ensemble of low 

resolution simulations. Recall that a = 1 corresponds to an unbiased 

measurement of the equation of state parameter, w, and that 8w ~ 48a 

at z = 1. 
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Figure 2.18: The best-fitting value of the damping scale knl as a function 

of redshift, for different tracers of the density distribution, in real space 

(top) and redshift space (bottom). The symbols show results from the 

high resolution BASICC simulation: dark matter (blue triangles) , dark 

matter haloes with mass in excess of 5.4 x 1012 h-1 M0 (green circles) 

and galaxies (red squares). The error bars show the 1-a range on a. 

The hatched region shows the central 68% range of the results obtained 

using the dark matter in the ensemble of low resolution simulations. 
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Figure 2.19: The recovered value of the stretch parameter a for the 

galaxy samples listed in Table 2.1. Recall that a = 1 corresponds to the 

equation of state parameter w = -1. At z = 1, a shift in a away from 

unity implies a shift in the recovered value of w given by ow~ 48a. 

2.5.3 The main results 

57 

We now turn our attention back to the general results shown in Fig. 2.17 and Fig. 2.18, 

and discuss the conclusions for different tracers of the density field in turn. In these plots, 

the symbols refer to the constraints obtained from the high resolution BASICC simulation 

and the shading shows results from the ensemble of low resolution simulations, L-BASICC. 

The blue triangles in Fig. 2.17 show the values obtained for a from the power spectrum 

of the dark matter. There is a trend for the best-fitting value to deviate away from unity 

with decreasing redshift, although the result at z = 0 is still within 1-0" of a = 1. The 

mean of the ensemble of low resolution runs does not, however, show any deviation away 

from a = 1 as a function of redshift, although the scatter on the recovered value of a 

increases towards the present day. If we examine the analogous results for individual 

simulations taken from the low resolution ensemble, we find a wide range of behaviour 

for the best-fitting value of a for the dark matter. Some low resolution runs give results 

which look like the high resolution one, whereas others show deviations away from a= 1, 
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with values of a > 1, as z = 0 is approached. The trend seen for the dark matter in the 

high resolution run serves to illustrate the importance of sampling fluctuations, even in 

such large volumes. In redshift space, the scatter in the recovered value of a is larger 

than in real space (see also Seo and Eisenstein 2005; Eisenstein et al. 2007b). 

To obtain the errors quoted in Tables 2.2 and 2.3 on the parameters a and knl, we 

assume Gaussian mode counting errors on the power spectra measured in the BASICC 

simulation, as given by Eq. 2.3. In Fig. 2.3, we showed that this simple estimate of the 

errors on the power spectrum agreed fairly well with the scatter found in the measurements 

from the L-BASICC ensemble, particularly for the case of the dark matter. We have 

extended this comparison to look at how the errors on a and kn1 quoted in Tables 2.2 and 

2.3 match the scatter in these parameters obtained from the L-BASICC runs. We find the 

scatter estimated from the ensemble is somewhat larger than the error inferred using the 

mode counting argument. At z = 0, the mode counting errors are 20% smaller for a for the 

dark matter in real space. In redshift space, the discrepancy increases to nearly 30%. The 

mismatch between the two estimates is smaller at z = 1. The level of disagreement is not 

remarkable. It could be the case that the scatter from the ensemble has not converged, 

even with 50 realizations of the density field. A more likely explanation, particularly 

in view of the redshift dependence of the discrepancy, is mode coupling in the power 

spectrum measurements arising from nonlinearities and redshift space distortions, which 

could increase the variance in the power spectrum compared with the Gaussian estimate. 

Fig. 2.18 shows that there is a strong trend for the best-fitting value of the smoothing 

scale, kn!, to decrease with decreasing redshift. This results from the oscillations being 

erased and modified down to smaller wavenumbers as the nonlinearities in the density 

field grow. The variation of the smoothing scale knl on redshift is well described by a 

linear relation: knl =a+ bz. In real space, a= 0.108 ± 0.0082 and b = 0.054 ± 0.0110. In 

redshift space, a= 0.096 ± 0.0074 and b = 0.036 ± 0.0094. 

The constraints on a and knl for dark matter haloes (with masses in excess of 5 x 

1012 h-1 M0 ) are plotted with green circles in Figs. 2.17 and 2.18. The parameter con­

straints obtained for this sample of haloes are very similar to those found for the dark 

matter, except for the value of knl at high redshift. Considering haloes in place of dark 

matter represents a step closer to the observations, so it is reassuring that the conclusions 

do not change significantly. 

Finally, in Figs. 2.17 and 2.18, we show using red squares the results for magnitude­

limited samples of galaxies. The magnitude limit is varied with redshift such that in each 
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case the galaxy sample has a space density n = 5 x 10-4 h-3 Mpc3 . There is a weak 

systematic shift in the best-fitting values of a compared with the results obtained for the 

dark matter. At the same time the signal to noise of the power spectrum measurement 

is lower for the galaxy samples than for the dark matter, so the errors on the best­

fitting parameters are correspondingly larger for the galaxies. The galaxy samples are 

consistent with a= 1 at slightly over 1-0". The size of this systematic shift is comparable 

to the random measurement errors, so we cannot reach a firm conclusion. It will be very 

interesting to repeat our calculation with a larger simulation volume to reduce the size 

of the random errors and to assess if such shifts could genuinely provide an ultimate 

limitation to the accuracy of this method. 

As a result of using a semi-analytic galaxy formation model which makes predictions 

for the observable properties of galaxies, we can vary the selection criteria used to con­

struct samples and compare the constraints on the equation of state. The results of this 

exercise at z = 1 are presented in Tables 2.2 and 2.3 and in Fig. 2.19, where we consider a 

range of samples defined either by a simple magnitude limit, or by a magnitude limit ap­

plied in combination with a colour cut or a restriction on the strength of an emission line. 

The key result from comparing the constraints for different samples is that whilst there 

are no strong systematic differences between the results, the accuracy of the constraints 

varies significantly. For example, using a catalogue of red galaxies, we predict that one 

could measure the dark energy equation of state with an accuracy 40% better than with 

the same number density of galaxies chosen by the strength of their emission lines. 

We compare the error on the acoustic scale extracted from our simulations with the 

results of the prescription set out by Seo and Eisenstein (2007). The Seo and Eisenstein 

(2007) algorithm contains a parameter which is equivalent to 1/knl· If we use our best 

fitting values of knl. we find that the Seo & Eisenstein prescription gives a similar estimate 

of the error on the acoustic scale to that we obtain by fitting directly to the simulation 

results. However, if we use the value of knl suggested by Seo and Eisenstein (2007), 

which they extract from a dark matter simulation, we find that their prescription gives 

an optimistic estimate of the error on a. The reason we recover a larger value of knl from 

our galaxy samples than we do for the dark matter is due to the increased discreteness 

shot noise in these samples, which results in noisier power spectra at high k. This causes 

an elongation in the confidence levels in the knl versus a plane. 

It is interesting to compare the results for the dark matter and for the galaxy samples 

with those for a set of massive haloes. Tables 2.2 and 2.3 also give the constraints on a 
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and knl for a sample of massive haloes (see also Angulo et al. 2005). There are 142 000 

haloes in the BASICC output at z = 1 with a mass in excess of 2.7 x 1013 h-1 M 0 . Although 

the effective bias of this sample of massive haloes is greater than that of any of the galaxy 

samples listed in Tables 2.2 and 2.3, the reduction in space density means that nP ~ 1 

and the estimated error on w is comparable to that found for the galaxy samples. 

2.5.4 Forecasts for future surveys 

We can use the results presented in Tables 2.2 and 2.3 to make a rough estimate of 

the accuracy with which future surveys are likely to be able to constrain the scale of 

the acoustic oscillations. This can be done using a simple calculation motivated by the 

expression for the fractional error in the power spectrum given by Eq. 2.3. We assume 

that the error in the distance scale, ~a, scales with the volume of the survey, Vsurvey, and 

the product of the space density of galaxies and the power spectrum, nP(k = 0.2hMpc- 1 ), 

as: 

~a <X 1 (1 + _1_) . 
JVsurvey nP 

(2.15) 

The constant of proportionality can be set for a particular galaxy sample using the 

results given in Table 2.2 and 2.3 . 

The WiggleZ survey is currently underway and will measure redshifts for 400,000 blue 

galaxies over 1000 square degrees in the redshift interval z = 0.5- 1.0 (Glazebrook et al. 

2007). For the cosmological parameters adopted in this chapter, this gives a comoving 

volume of 1.13 h-3 Gpc3 . Using the blue colour selected sample or the large equivalent 

width sample from Tables 2.2 and 2.3, and assuming nP ,...., 1 for WiggleZ galaxies, 

somewhat higher than we find in our simulation, we estimate that this survey will measure 

the distance scale to an accuracy of ~a ,...., 2%, which is similar to that claimed by 

Glazebrook et al. using linear perturbation theory. 

The WFMOS survey has been proposed to motivate the construction of a new spectro­

graph for the Subaru telescope (Glazebrook et al. (2005)). This will target galaxies with 

a space density of n = 5 x w-4 h3 Mpc-3 in the redshift interval z = 0.5- 1.3 over 2000 

square degrees, covering a volume of 4.4h-3 Gpc3 . (There is also a WFMOS survey which 

will target z = 3 galaxies but over a much smaller solid angle.) Using sample A from 

Tables 2.2 and 2.3, and adopting nP = 1, we obtain an estimated error of ~a= 0.83%, 

again in good agreement with Glazebrook et al. 
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Photometric surveys can generally cover a larger solid angle than spectroscopic sur­

veys down to a fainter magnitude limit. The fainter magnitude limit results in a higher 

median redshift and a broader redshift distribution for the survey galaxies, which means 

that a larger volume is covered. However, the limited accuracy of photometric redshift 

estimates means that in practice Fourier modes are lost and the effective volume of the 

survey is greatly reduced. Blake & Bridle (2005) estimate that the factor by which the 

survey volume is reduced is ~ 12 (8z/(1 + z)/0.03), where 8zj(1 + z) is the error in the 

photometric redshifts. 

The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey 

will map 37r steradians of the sky (http:j jpan-starrs.ifa.hawaii.edujpublic/home.html). 

Cai et al. (2008) show that the median redshift of the 37r survey will be z ~ 0.5, with a 

tail extending to z ~ 1.2. The volume of the survey, assuming that 20,000 square degrees 

cover low-extinction parts of the sky and give high quality clustering measurements, is 

around 41 h-3 Gpc3 . Talking sample A from Tables 2.2 and 2.3, and setting nP > > 1, as 

appropriate for the relatively high space density of galaxies in a photometric sample, and 

allowing for the reduction in the effective volume caused by a photometric redshift error 

of 8zj(1 + z) = 0.03, gives a forecast error on the oscillation scale of .6.a rv 0.5%. In the 

more likely event that the photometric redshift errors are twice as large, 8zj(1+z) rv 0.06, 

this figure increases to .6.a rv 0. 7%. 

Remembering the crude conversion .6.w ~ 4.6.a from Section 2.4, this means that the 

next generation of galaxy surveys is unlikely to deliver 1% errors on a constant equation of 

state from BAO measurements used in isolation from other cosmological data. A survey 

with almost an order of magnitude more effective volume than Pan-STARRS will be 

needed to achieve this target. This will require an all-sky, spectroscopic galaxy redshift 

survey, such as the SPACE mission being proposed to ESA's Cosmic Vision call. SPACE will 

measure redshifts for galaxies in the interval 0.5 < z < 2, covering around 150h-3Gpc3
. 

Extrapolating from Sample A, we forecast that an error in the oscillation scale of .6.a rv 

0.15% could be achieved with SPACE. In the case of the pessimistic translation to an error 

on w considered in Section 2.4, this corresponds to .6.w rv 0.6%; in the optimistic scenario, 

we expect a constraint of .6.w rv 0.23%. 
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2.6 Conclusions 

In the next five to ten years, several proposed galaxy surveys will allow high precision 

measurements of the clustering of galaxies on the scale of the acoustic oscillations at in­

termediate and high redshifts. Both photometric and spectroscopic surveys are planned, 

which will cover volumes up to tens of cubic gigaparsecs and will contain hundreds of thou­

sands to hundreds of millions of galaxies. There is a clear need to ensure that theoretical 

predictions develop apace with sufficient accuracy and realism to allow such datasets to 

be fully exploited and to uncover any possible systematic errors in this cosmological test 

to uncover the nature of the dark energy. 

Early theoretical work in this area used linear perturbation theory (Blake and Glaze­

brook 2003; Hu and Haiman 2003; Glazebrook and Blake 2005). Recently, more phys­

ical calculations have been carried out using N-body simulations with cubes of side 

500- 1100 h-1 Mpc (Seo and Eisenstein 2003, 2005; Schulz and White 2006; Huff et al. 

2007; Seo and Eisenstein 2007). In this chapter, we have improved upon previous mod­

elling work in three ways. Firstly, we have used a simulation volume comparable to the 

largest of the currently proposed spectroscopic surveys. This allows us to accurately fol­

low the growth of density fluctuations on an ultra large scales in excess 100 h-1 Mpc, the 

scales of interest for the acoustic oscillations, which can only be followed approximately 

in smaller computational volumes. In particular, a large volume is necessary to obtain 

accurate predictions for bulk flows, which are sensitive to the power spectrum at low 

wavenumbers. The only published work with a larger simulation volume used the Hubble 

Volume simulation (Angulo et al. 2005; Koehler et al. 2007). The Hubble Volume has 

a larger particle mass than the BASICC, which restricted these studies to consider either 

cluster mass dark matter haloes (Angulo et al. 2005) or a simple biasing scheme to add 

galaxies (Koehler et al. 2007). Secondly, through the use of a large number of particles, 

we are able to resolve the majority of the haloes which are likely to host the galax­

ies which will be observed in the forthcoming surveys. Thirdly, we use a semi-analytic 

galaxy formation model to populate the simulation with galaxies. Unlike other studies 

which use phenomenological biasing schemes or the halo occupation model to add galax­

ies, this allows us to predict the shape and amplitude of the galaxy power spectrum and 

the signal-to-noise of the clustering expected for different galaxy selections. 

We use our N-body simulation in combination with a galaxy formation model to make 

the connection between the linear perturbation theory prediction for the matter power 
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spectrum and the power spectrum of galaxies. We do this in a series of steps, starting 

with power spectrum of the dark matter, looking at the impact of the nonlinear growth 

of fluctuations and peculiar motions or redshift-space distortions, before examining the 

power spectrum of dark matter haloes and, finally, galaxies. A number of conclusions are 

reached from this study: i) The nonlinear evolution of the dark matter power spectrum 

is apparent even on scales larger than the sound horizon scale. Although the deviation 

from linear theory is only a few percent, the coupled evolution of different Fourier modes 

means that these scales need to be followed accurately to get the correct behaviour at 

higher wavenumbers. ii) The form of the distortion of the power spectrum due to peculiar 

motions is extremely sensitive to the type of object under consideration, being quite 

different for the cases of dark matter, dark haloes and galaxies. Moreover, different galaxy 

selections give different redshift-space distortions. iii) Galaxy bias is scale dependent and 

sensitive to the selection applied for wavenumbers k > 0.15hMpc- 1 . Eisenstein et al. 

2007a discuss a technique which attempts to reconstruct the linear density field from 

an observed distribution of objects. The reconstruction can reduce the damping of the 

higher harmonic oscillations in the power spectrum, thereby increasing the statistical 

significance of the acoustic scale measurement and diminishing any systematic effects 

caused by departures from linearity. It will be interesting to apply this method to the 

galaxy samples presented in this chapter, to see if this approach still works at the required 

level in the case of biased tracers of the linear density field. 

We also present a new method to extract the dark energy equation of state parameter, 

based upon an approach put forward by Percival et al. (2007). The method involves 

dividing the measured power spectrum by a smooth reference spectrum and comparing 

the resulting ratio to the predictions of linear perturbation theory. The algorithm has 

three key advances over earlier work, which can be credited to Eisenstein et al. (2005) and 

Percival et al. (2007): i) The reference spectrum is derived from the measured spectrum, 

which avoids the need to apply major corrections to a linear theory reference. ii) The 

measured ratio is compared to a prediction generated using CAMB, which is more accurate 

than assuming a parametric form for the ratio based on a Taylor expansion. iii) The 

linear theory ratio is modified by allowing the higher-order oscillations to be damped, 

which improves the fit to the measured ratio. Changing the value of the equation of state 

parameter is approximately equivalent to rescaling the wavenumber in the predicted power 

spectrum ratio; at z = 1, a 1% shift in wavenumber is equivalent to a 4% shift in the 

recovered value of w. 
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We explore the constraints on the dark energy equation of state using different tracers 

of the density field. By applying our algorithm for extracting the oscillation scale to 

the L-BASICC ensemble, we have provided the most stringent test to date of usefulness 

of baryonic acoustic oscillations for measuring the equation of state of the dark energy. 

For the case of the dark matter, there is no significant bias in the recovered oscillation 

scale, compared with the value expected from linear perturbation theory. Within a given 

simulation, we find that 1% deviations from the underlying length scale are possible 

although these are only at the 1-a level. Such excursions are the result of sampling 

variance arising from the finite volume of the computational box, which are important 

even in a simulation of the volume of the BASICC. The error on the scale factor recovered 

from galaxy samples is larger than that found for the dark matter, reflecting the lower 

signal-to-noise of the galaxy power spectrum measurements. Different galaxy selections 

lead to variations in the clustering strength and hence in the error expected in the scale 

factor. 

Currently, the best constraints on the equation of state parameter come either from 

combining datasets, such as the power spectrum of galaxy clustering and measurements 

of the microwave background radiation (e.g. Sanchez et al. 2006) or from the Hubble 

diagram of Type Ia, with priors on the flatness of the Universe and the matter density 

(Riess et al. 2004). For example, Wood-Vasey et al. (2007) combine high redshift SNe 

Ia from the ESSENCE Supernova Survey with the measurement of the BAO made by 

Eisenstein et al. (2005), and, assuming a flat universe, constrain a constant equation of 

state to have w = -1.05~gj~(stat.)±O.ll(sys.), consistent with a cosmological constant. 

Possible contributions to the systematic error include the degree of dust extinction in the 

SNe host galaxy, evolution in the properties of SNe with redshift and local calibration 

effects such as a "Hubble bubble". We have used our simulation results to forecast the 

accuracy with which future galaxy surveys will use the BAO in isolation to constrain the 

scale of the acoustic oscillations, and under certain assumptions, w. We anticipate that 

Pan-STARRS, with accurate photometric redshifts, will have an accuracy comparable 

to that expected for the next generation of spectroscopic survey (WFMOS) and could 

potentially reduce the statistical errors on the value of w by a factor of 2 compared 

with the current constraints. However, the target of 1% random errors on w using BAO 

measurements is beyond the grasp of any of the surveys likely to be completed or even to 

start within the next decade. 

The predictions we have presented here are idealized in a number of respects. The 



2. The detectability of BAO in future galaxy surveys 65 

accuracy with which we expect the dark energy equation of state parameter will be mea­

sured assumes that the values of the other cosmological parameters are known with infinite 

accuracy. We have also neglected the impact of the survey window function on the power 

spectrum measurement; this will be particularly important in the case of surveys which 

rely on photometric redshifts. In future work, we plan an number of improvements: i) 

Use of an even larger simulation volume, to exceed that proposed in forthcoming surveys. 

One caveat on our quoted error on w is that some of the planned surveys will be larger 

than the volume of the BAS ICC, and will consequently have smaller sampling fluctuations. 

ii) The inclusion of the evolution of clustering along the line of sight. Although we have 

focused on z = 1, proposed surveys will span a broad redshift interval centred on this 

value. iii) The inclusion of a survey window function, mimicking the angular and radial 

selections, and including the impact of errors on photometric redshifts. Such calculations 

represent huge challenges in computational cosmology, due to the volume coverage and 

mass resolution required in theN-body simulations used, and the post-processing needed 

to include galaxies. However, such calculations are essential if the BAO approach is to be 

used to its full potential. 



2. The detectability of BAO in future galaxy surveys 66 



Chapter 3 
Implications of 

Photometric Redshift 

Errors for BAO 

Detection 

In this section we investigate the impact of using photometric redshifts on the accuracy 

with which the baryonic acoustic oscillation (BAO) scale can be measured from the power 

spectrum of galaxy clustering. Our aim here is to provide a simple quantification of the 

factor by which the effective volume of a survey is reduced when photometric redshifts 

are used in place of spectroscopic redshifts. 

The photometric redshift technique allows large solid angles of sky to be covered to 

depths exceeding those accessible spectroscopically at a low observational cost. However, 

the inaccurate determination of a galaxy's redshift results in an uncertainty in its position 

and this leads to a distortion in the pattern of galaxy clustering. We shall refer to a 

measurement of the power spectrum which uses photometric redshifts to assign radial 

positions as being in "photo-z" space. 

The errors introduced by photometric redshifts can be modelled as random perturba­

tions to the radial positions of galaxies. If we assume that they are Gaussian distributed 

with mean equal to the true redshift and width Uz ~ Az, then the Fourier transform of 

the measured density field, c5pz(k), can be written as 

(3.1) 

where kz = k.f and c5z(k) is the density field measured in redshift space. From this 

expression, the spherically averaged power spectrum can be approximately1 written as: 

1 It is an approximate expression since the redshift-space distortions and photometric redshift errors 

do not commute under a spherical average (see Peacock and Dodds, 1994). 
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P. (k) = P. (k) y'1i Erf(kuz) 
pz z 2 kO"z ' 

(3.2) 

where Erf is the error function defined as Erf(x) = };r J; exp( -t2 )dt. In addition, the 

power spectrum in photo-z space can be seen as that in redshift space with additional 

damping on small scales due to the large value of u z. On very large scales the main 

contribution to the power spectrum comes from modes with wavelengths larger than the 

typical size of the photometric redshift errors. Therefore, the clustering on these scales 

is essentially unaffected. On the contrary, on scales comparable to and smaller than the 

photo-z errors, structures are smeared out along the line-of-sight. The modes describing 

these scales along the line-of-sight contain little information about the true distribution 

of galaxies and contribute only noise to the power spectrum. 

We investigate these effects directly on the measurement of the matter power spec­

trum using large N-body simulations. We use the L-BASICC ensemble of Angulo et al. 

(2008), which consists of 50 low-resolution, large volume simulations. Each has a volume 

of 2.4(Gpcjh) 3 and resolves halos more massive than 1 x 1013 M0 jh. The assumed cos­

mological parameters are Om = 0.25, OA = 0.75, h = 0.73, n = 1 and us = 0.9. Their 

huge volume makes the L-BASICC simulations ideal to study the detectability of BAO 

in future surveys. Photometric redshift errors are mimicked as a random perturbation 

added to the particles' position along one direction (line-of-sight). The perturbations are 

drawn from a Gaussian distribution with various widths representing different degrees of 

uncertainty in the photometric redshift. 

In the upper panels of Fig. 3.1 we show the mean, spherically averaged power spectrum 

of the dark matter measured from the L-BASICC simulations at z = 0.5, along with its 

variance, in photo-z space (solid blue lines). The size of the photo-z errors are O"z = 0.01 

and O"z = 0.04 (equivalent to 15.8 and 63.4 h-1Mpc at z = 0.5) in the left- and right-hand 

panels respectively. We have also plotted the power spectrum measured in redshift space 

(solid red lines) and the analytical expression of Eq. 3.2 (dashed red line). By comparing 

the spectra in redshift and photo-z spaces, the additional damping described above is 

evident. Also, we see that Eq. 3.2 describes quantitatively this extra damping on scales 

where the power spectrum is not shot-noise dominated. 

In the lower panels of Fig. 3.1 we take a closer look at the BAO by isolating them 

from the large-scale shape of the power spectrum. We do this by dividing the power 

spectrum by a smoothed version of the measurement. It is clear that since the number 

of "noisy modes" increases with the size of the photometric redshift errors, the error on 
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Figure 3.1: The mean and standard deviation of the dark matter power 

spectrum averaged over an ensemble of 50 N-body simulations at z = 0.5. 

The top-panels display the power spectrum in three different cases: (i) 

redshift space (solid red line), (ii) photo-z space (blue line) in which the 

position of each dark matter particle has been perturbed to mimic the 

effect of photometric redshift errors, and (iii) the photo-z space power 

spectrum derived from Eq. 3.2 and the measured redshift-space power 

spectrum (red dashed lines). The horizontal dashed line illustrates the 

shot-noise level. In the bottom panels we plot the photo-z power spec­

trum divided by a smooth reference spectrum. This reveals the impact of 

photometric redshift errors directly on the baryonic acoustic oscillations 

(BAO). 
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the power spectrum and therefore on the BAO also increases. The visibility of the higher 

harmonic BAO is also reduced as the photometric redshift error increases. In order to 

quantify the loss of information, we have followed a standard technique to measure BAO 

as described in Angulo et al. (2008) (see also Percival et al. 2007 and Sanchez et al. 2008). 

The method basically consists of dividing the measured power spectrum by a smoothed 

version of the measurement. In this way, any long wavelength gradient or distortion in 

the shape of the power spectrum is removed which diminishes the impact of possible 

systematic errors due to redshift-space distortions, nonlinear evolution and, in the case 

described in this chapter, photometric-redshift distortions. Then, we construct a model 

ratio using linear perturbation theory, f1t! Psmooth, which we fit to the measured ratios. 

In the fitting procedure there are two free parameters: (i) a damping factor to account for 

the destruction of BAO peaks located at high k by non-linear effects and redshift-space 

distortions and (ii) a stretch factor, a, which quantifies how accurately we can measure 

the BAO wavelength. The latter gives a simple estimate of how well we can constrain the 

dark energy equation of state from BAO measurements alone. 

Fig. 3.2 shows the results of applying our fitting procedure to the L-BASICC ensemble 

at different redshifts. On the x-axis we plot the size of the photometric redshift error 

divided by (1 + z), whilst on the y-axis we plot the predicted error on a divided by the 

error we infer for an ideal spectroscopic survey (i.e. from the power spectrum in redshift 

space). Since the error on a scales with the error on the power spectrum and the latter 

is proportional to the square root of the volume of the survey, the square of the y-axis 

should be roughly equal to the factor by which the volume of a photometric redshift needs 

to be larger than the volume of a spectroscopic survey to achieve the same accuracy. 

Several authors have investigated the implications of photometric redshift errors on 

the clustering measurements in general and on the BAO in particular (Seo and Eisenstein, 

2003; Amendola et al., 2005; Dolney et al., 2006; Blake and Bridle, 2005). Our analysis 

improves upon these studies in several ways: (i) we have included photometric redshift 

errors directly into an realistic distribution of objects; (i) by using N-body simulations, 

our calculation takes into account the effects introduced by nonlinear evolution, nonlinear 

redshift-space distortions and shot noise; (iii) the use of 50 different simulations enables 

a robust and realistic estimation of the errors on the power spectrum measurements. 

These improvements lead to predictions that are somewhat different from previous 

ones. For example, for ~z = 0.03, Blake and Bridle (2005) predict a factor of "'10 

for the reduction of the effective volume of a photometric survey. Here, as shown in 
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Fig. 3.2, we find a reduction which is a factor 2 times smaller than this (i.e. a volume 

reduction factor of rv5). The main difference between our analyses is that Blake and 

Bridle (2005) use only modes larger than kma:x = 2/uz, arguing that wavelengths shorter 

than the size of the photometric redshift errors contribute only noise. In reality, there is a 

smooth transition around kma;x, with signal coming from all wavenumbers (with different 

weighting, of course). In addition, the neglect of nonlinear evolution (which erases the 

BAO at high wavenumbers) also contribute to Blake and Bridle (2005) overestimating the 

reduction in effective volume. These two effects together could explain the disagreement 

between our results and those found by Blake and Bridle (2005). 
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Figure 3.2: The ratio of the error on the measurement of the BAO 

scale in photo-z space to that in redshift space (i.e. from a perfect 

spectroscopic redshift) as a function of the magnitude of the photometric 

redshift error. Assuming that the error on the measurement scales with 

the square root of the volume, then the y-axis gives the square root of the 

ratio of volumes of photometric to spectroscopic surveys which achieve 

the same accuracy in the measurement of the BAO scale. Note that 

this quantity is independent of the redshift at which the measurement is 

made, i.e. it is independent of the degree of nonlinearity present in the 

dark matter distribution. 



Chapter 4 

4.1 Introduction 

l:he asseTJnbly bias of 

dark TJnatter haloes to 

higher orders 

The spatial distribution of dark matter haloes is not as simple as was once suspected. 

In the standard theoretical model for the abundance and distribution of haloes, the clus­

tering strength of haloes is predicted to be a function of mass alone, with more massive 

haloes displaying stronger clustering (e.g. Kaiser 1984; Cole and Kaiser 1989; Mo and 

White 1996). However, recent numerical simulations of hierarchical cosmologies, by cov­

ering larger volumes with ever improving mass resolution, have been able to reveal subtle 

dependences of halo clustering on other properties such as formation redshift, the inter­

nal structure of the halo and its spin (Gao, Springe!, and White 2005; Wechsler et al. 

2006; Harker et al. 2006; Bett et al. 2007; Wetzel et al. 2007; Jing, Suto, and Mo 2007; 

Espino-Briones et al. 2007). 

The dependence of halo clustering on a second parameter in addition to mass is gener­

ally referred to as assembly bias. However, the nature of the trend in clustering strength 

recovered depends upon the choice of property used to classify haloes of a given mass. 

Early simulation work failed to uncover a convincing assembly bias signal, as a result 

of insufficient volume and mass resolution, which meant that halo clustering could be 

measured for only a narrow range of mass and with limited statistics (Lemson and Kauff­

mann 1999; Percival et al. 2003; Sheth and Tormen 2004) The first clear indication of 

a dependence of halo clustering on a second property was uncovered by Gao, Springe!, 

and White (2005). These authors reported that low mass haloes which form early are 

more clustered than haloes of the same mass which form later on. No effect was seen 

for massive haloes. Wechsler et al. (2006) were able to confirm this result but also found 
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that halo clustering depends on the density profile of the halo, as characterized by the 

concentration parameter (Navarro, Frenk, and White, 1997). The sense of the dependence 

of clustering strength on concentration changes with mass. Wechsler et al. found that 

massive haloes showed a dependence of clustering strength on concentration, with low 

concentration haloes being the more strongly clustered (as confirmed by Gao and White 

2007, Jing, Suto, and Mo 2007 and Wetzel et al. 2007). This trend of clustering strength 

with concentration is reversed for low mass haloes. Although formation time and con­

centration are correlated (e.g. Neto et al. 2007), their impact on the clustering of haloes 

does not follow trivially from this correlation, suggesting that some other parameter may 

be more fundamental (as argued by Croton, Gao, and White 2007). 

Previous studies of assembly bias have focused exclusively on the linear bias parameter, 

which relates the two-point correlations of haloes and dark matter. Measurements from 

local surveys have shown that galaxies have significant higher order correlation functions 

and that the spatial distribution of galaxies and haloes is not fully described by two-point 

statistics (e.g. Baugh et al. 2004; Croton et al. 2004; Nichol et al. 2006; Frith et al. 2006). 

With large surveys planned at higher redshifts, there is a clear need for accurate models 

of the higher order clustering of dark matter haloes, and to establish whether or not the 

higher order bias parameters depend on other properties in addition to mass. 

In this chapter we measure the higher order bias parameters of dark matter haloes 

using a simulation which covers a volume more than an order of magnitude larger than 

the run analyzed by Gao and collaborators. We use a novel approach to estimate the 

higher order correlation functions of dark matter haloes. Our method builds upon the 

cross-correlation technique advocated for two-point correlations by Jing, Suto, and Mo 

(2007), Gao and White (2007) and Smith et al. (2007). By considering fluctuations in the 

density of haloes and dark matter within the same smoothing window, we can suppress 

discreteness noise in our measurements. This improved clustering estimator, which uses 

the counts-in-cells method, when coupled with the large volume of our simulation, allows 

us to recover the bias parameters from linear to fourth order, and to study the dependence 

of these parameters on the halo concentration. 

In Section 4.2, we give the theoretical background to the counts-in-cells technique we 

use to estimate higher order clustering and explain how the clustering of haloes relates to 

the underlying dark matter at different orders. We also introduce the numerical simula­

tions in that section. We present our results in Section 4.3 and a summary and discussion 

in Section 4.4. 
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4. 2 Theoretical background and method 

In this Section we give the theoretical background to the measurements presented in 

Section 4.3. We estimate the clustering of haloes and dark matter using a counts-in­

cells approach. An overview of this method is given in §4.2.1, in which we explain how 

to obtain expressions for the higher order auto correlation functions of a density field 

from the moments of the distribution of counts-in-cells. We also introduce the concept 

of higher order cross correlation functions, which combine fluctuations in two density 

fields. The concept of hierarchical amplitudes, scaling relations between higher order 

correlation functions and the two-point correlation function, is introduced in §4.2.3. The 

key theoretical results relating the higher order cross correlation functions of haloes to 

the two-point function and hierarchical amplitudes of the dark matter are given in §4.2.2. 

The simulations we use to measure the clustering of dark matter haloes are described in 

§4.2.4. 

4.2.1 The counts in cells approach to measuring clustering 

Here we give a brief overview of the approach of using the distribution of counts in cells 

to estimate the higher order auto correlation functions of a set of objects. An excellent 

and comprehensive review of this material is given by Bernardeau et al. (2002). We first 

discuss the higher order correlation functions for the case of a continuous, unsmoothed 

density field, then introduce the concept of cross-correlations (§4.2.1.1), before explaining 

how these results are changed in the case of a smoothed distribution of discrete points 

(§4.2.1.2). 

4.2.1.1 Higher order correlations: unsmoothed and continuous density field 

In general, the complete hierarchy of N -point correlation functions is required to fully 

characterize the spatial distribution of fluctuations in a density field. An exception to this 

occurs for the special case of a Gaussian density field, which can be described completely 

by its two-point correlation function. 

The N-point correlation functions are usually written in terms of the dimensionless 

density fluctuation or density contrast at a point: 

6(x) = p(x)j(p) -1, (4.1) 

where (p) is the mean density; the average is taken over different spatial locations. By 
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definition, (6(x)) = 0 when the average is taken over a fair sample of the density field. 

The Wh order moment of the density field, sometimes referred to as a central moment, 

because 6 is a fractional fluctuation around the mean density, is given by: 

JLN = (6(x1), ... ,6(xn)), (4.2) 

where, in general, the density fluctuations are correlated at different spatial locations. 

The Nth order central moments defined in Eq. 4.2 can be decomposed into terms which 

include products of lower order moments. This is because there are different permutations 

of how the N-points can be "connected" or joined together. This idea is illustrated nicely 

by tree diagrams in the review by Bernardeau et al. (2002). The terms into which the 

central moments are broken down are called connected moments and these cannot be 

reduced further. In the tree diagram language, an N-point connected moment has no 

disjoint points; all N-points are linked to one another when the spatial averaging is 

performed. The distinction between connected and unconnected moments may become 

clearer if we write down the decomposition of the unconnected central moments up to 

fifth order: 

(62) = (62)c + (6)~ (4.3) 

(63) = (63)c + 3(62)c(6)c + (6)~ ( 4.4) 

(64) = (64)c + 4(63)c(6)c + 3(62 )~ + 6(62 )c(6)~ + (6)~ (4.5) 

(65) = (65)c + 5(64)c(6)c + 10(63)c(62)c + 10(63)c(6)~ + 15(62 )~(6)c (4.6) 

+ 10(62 )c(6)~ + (6)~, 

where the subscript c outside the angular brackets denotes a connected moment. Remem­

bering that (6) = 0, these equations simplify to: 

(62) (62)c (4.7) 

(63) = (63)c (4.8) 

(64) = (64)c + 3(62 )~ (4.9) 

(65) (65)c + 10(63)c(62)c· ( 4.10) 

Hence, for the second and third order moments, there is no difference in practice 

between the connected and unconnected moments. 
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The N-point auto-correlation functions, eN, are written in terms of the connected 

moments: 

( 4.11) 

By analogy with the N-point auto correlation functions of fluctuations in a single 

density field, we can define the i + j-point cross correlation function of two, co-spatial 

density fields, with respective density contrasts given by 1h and 152 : 

(4.12) 

In the application in this chapter, the first index will refer to the distribution of dark 

matter haloes and the second index to the dark matter. When the density contrasts are 

evaluated at the same spatial location, i.e. x1 = . . . = Xi = Yl = . . . = Yi = 0, the 

connected moments ei,j are called cumulants of the joint probability distribution function 

of 61 and 62 (and are sometimes denoted as ki,j). 

To generate expressions for the higher order correlation functions of the cross-correlated 

density fluctuations, ei,j, we will use the method of generating functions (see §4.3.3.3 of 

Bernardeau et al. 2002). A moment generating function is defined for the central mo­

ments (J.ti,j) as a power series in 61 and 62, which can be written as X= (exp (61t1 + 62t2)), 

where t 1 and t 2 are random variables. This moment generating function can be related to 

the cumulant generating function ( '1/J) for the cumulants by (see Bernardeau et al. 2002 

for a proof): 

(4.13) 

Then, by taking partial derivatives of '1/J and x evaluated at t1 = t2 = 0, one can 

"generate" the cumulants and moments: 

c. ·(0) = k· . ... ~.J ~.J ( 4.14) 

Jli,j = ( 4.15) 

Following this method we can obtain expressions for the cross-correlation cumulants 

up to order i + j = 5, grouping terms of the same order: 
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( 4.16) 

( 4.17) 

(4.18) 

(4.19) 

( 4.20) 

(4.21) 

( 4.22) 

( 4.23) 

(4.24) 

( 4.25) 

Note that these results are symmetric with respect to exchanging the indexes and that 

we have used the fact that /-ll,O = /-l0,1 = 0, since, by construction (1h) = (62) = 0. 

4.2.1.2 Higher order correlations: smoothed and discrete density fields 

Sadly, density fluctuations at a point are of little practical use as they cannot be measured 

reliably, as typically we have a finite number of tracers of the density field, i.e. galaxies 

in a survey or dark matter particles in an N-body simulation, and so have a limited 

resolution view of the density field. Furthermore, estimating theN-point correlations for 

a modern survey or simulation is time consuming and short cuts are often taken, such as 

restricting the number of configurations of points sampled. To overcome both of these 

problems, moments of the smoothed density field can be computed instead of the point 

moments. 

The smoothed density contrast, 6 R, is a convolution of the density contrast at a point 

with the smoothing window, WR, which has volume V: 

6(x)R = ~ j dx3'6(x)WR(x- x'). ( 4.26) 
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Typically, the smoothing window is a spherical top-hat in which case W R = 1 for all 

points within distance R from the centre of the window and W R = 0 otherwise. After 

smoothing, the cumulants correspond to the i + j-point volume-averaged cross correlation 

functions: 

~i,j(R) 1 d3
x1 ... d3

Xi d3
y1 ... d3yj ( 4.27) 

WR(xi) ... WR(xi) WR(YI) ... WR(Yj) ~i,j· 

Eqs. 4.16-4.25 are still valid, with the cumulants replaced by volume-averaged cumu­

lants. 

Another issue introduced by the discreteness of the density field is the contribution of 

Poisson noise to the measurements of the cumulants. To take this into account, we can 

modify the moment generating function as follows (Peebles 1980): 

(exp(t1)- t1 - 1) n1 + (exp(t1)- 1) 1h, 

(exp(t2)- t2- 1) n2 + (exp(t2)- 1) 82. 

( 4.28) 

( 4.29) 

( 4.30) 

Here, n1 and n2 are the mean number of objects in density field 1 and density field 

2 respectively within spheres of radius R. Using this modified generating function, and 

defining 

we obtain the following relations between the volume-averaged, connected i+j-point cross 

correlation functions, ~i,j, and the central moments, f.-Li,j: 
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2-
n16,o I -

l-t2,0- n1 ( 4.31) 

n1n2 e1,1 I 
1-tl,l ( 4.32) 

2- I - ( 4.33) n2 eo,2 = J-to,2 - n2 

3-
n16,o J-t;,o + 2n1 - 3~-t~,o (4.34) 

n~n2 e2,1 I I 
l-t2, 1 - 1-tl ,1 ( 4.35) 

nln~ e1,2 I I 
l-t1,2 - 1-tl,l ( 4.36) 

3 -
p,~ 3 + 2n2 - 3p,~ 2 ( 4.37) n2 eo,3 = 

' ' 

4-
nl e4,0 I 6- 11 I 6 I 3 12 /-t4,o - n1 + l-t2,o - l-t3,o - l-t2,o ( 4.38) 

nyn2 e3,1 I 2 I 3 I 3 I I /-t3,1 + /-t1,1 - /-t2,1 ~ I-LI,1/-t2,0 ( 4.39) 

nin~ e2,2 I I 1+1 II 212 l-t2,2 - l-t1,2 - l-t2,1 1-tl,l - l-t2,0I-L0,2 - 1-tl,l ( 4.40) 

nln~ e1,3 I 2 1 3 1 3 1 I l-t1,3 + /-t1,1 - /-t1,2 - I-LI,li-L0,2 (4.41) 

4 - p,~ 4 - 6n2 + llp,~ 2 - 6p,~ 3 - 3p,~22 . ( 4.42) n2 eo,4 ' , , , 

Note that these expressions revert to those in the literature for autocorrelation mo­

ments in the case of either i or j equal to zero (see for instance Baugh et al. 1995). Also 

note that in the limit n1 ~ oo, n2 -> oo, they correspond to the expressions given by 

Eqs. 4.16-4.25. 

4.2.2 Hierarchical amplitudes 

At this point it is useful to define quantities called hierarchical amplitudes which are 

the ratio between the N-point, volume-averaged connected moments and the two-point 

volume-averaged connected moment raised to the N - 1 power: 

( 4.43) 

This form is motivated by the expected properties of a Gaussian field which evolves 

due to gravitational instability (Bernardeau et al. 2002). In the case of small amplitude 

fluctuations, i.e. on smoothing scales for which e2(R) « 1, the SN depend only on the local 

slope of the linear perturbation theory power spectrum of density fluctuations and are 

independent of time (Juszkiewicz, Bouchet, and Colombi 1993; see Bernardeau 1994 for 
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expressions for the SN). Similar scalings, but with different values for the SN, apply in the 

case of distributions of particles which have not arisen through gravitational instability, 

e.g. particles displaced according to Zel'dovich approximation (see Juszkiewicz, Bouchet, 

and Colombi 1993). 

In the case of a Gaussian density field, all of the SN are equal to zero. Initially, as 

perturbations grow through gravitational instability, the two-point connected moment 

increases. The distribution of fluctuations soon starts to deviate from a Gaussian, partic­

ularly as voids grow in size and cells become empty (& ~ -1). Voids evolve more slowly 

than overdense regions. There is in principle no limit on how overdense a cell can become. 

As a result, the distribution of overdensities becomes asymmetrical or skewed, with the 

peak of the distribution moving to negative density contrasts and a long tail developing 

to high density contrasts. To first order, this deviation from symmetry is quantified by 

the value of 83, which is often referred to as the skewness of the density field. Higher 

order moments and hierarchical amplitudes probe progressively further out into the tails 

of the distribution of density contrasts. 

4.2.3 Higher order correlations: biased tracers 

We are now in a position to consider the cross-correlation functions for the case of rel­

evance in this chapter, when the set of objects making up one of the density fields is 

local function of the second density field; the first density field is a biased tracer of the 

second. In our application, one density field is defined by the spatial distribution of dark 

matter haloes and the other by the dark matter. In the case of a local bias and small 

perturbations, the density contrast in the biased tracers ( &1) can be written as an expan­

sion in terms of the underlying dark matter density contrast (&2), as proposed by Fry & 

Gaztanaga (1993): 

~bk k 
&1(R) = L.t k!&2(R), 

k=O 

(4.44) 

where the bk are known as bias coefficients 1 ; b1 is the linear bias commonly discussed in 

relation to two point correlations. Note that, by construction, we require that (&) = 0, 

which implies bo =- 2:,~2 bk(&~)/k!. The bk, as we shall see later, depend on mass but 

this is suppressed in our notation. 

Using this bias prescription, and following the treatment Fry and Gaztanaga (1993) 

1See Dekel and Lahav (1999) for a discussion of the relation between stochastic and deterministic bias. 
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used for autocorrelations, we can write the volume-averaged cross-correlation functions of 

dark matter haloes in terms of the two-point volume averaged correlation function (eo,2) 

and hierarchical amplitudes of the dark matter, 8N: 

e-1,1 b1e0,2 + 0 (e6,2) 

e2,o bieo,2 + o (e6,2) 

e1,2 = b1e6,2 (c2 + 83) + 0 (e5,2) 

e2.1 = bie6,2(2c2+83)+0(e5,2) 

e-3.0 bre5.2 (3 c2 + 83) + o (e5.2) 

e-1,3 ~ (-4 ) b1~0,2 (383C2 + 84 + C3) + 0 ~0,2 

e-2,2 bie5,2 (84 + 683c2 + 2c~ + 2c3) + o (e6,2) 

e-3,1 bre5,2 (6c~ + 983c2 + 84 + 3c3) + o (e6,2) 

e-4,0 bfe5,2 (12c~ + 1283c2 + 84 + 4c3) + o (e6,2) 

6,4 = -4 2 ( F5 ) b1~o,2 (4c284 + 6c383 + C4 + 8s + 3c283) + 0 ~0,2 

e-2,3 = bie6 2(1283c3 + 68jc2 + 1283c~ + 6c2c3 + 2c4 + 8s + 
' 

8c284) + 0 (~) 

e-3,2 
34 2 2 = b1~0 2(12c284 + 18c383 + 18c2c3 + 36c283 + 9c283 + 

' 

8s + 6c~ + 3q) + 0 (~) 

e-4,1 bie6 2( 4c4 + 24c~ + 8s + 72c~83 + 16c284 + 36c2c3 + 
' 

24c383 + 12c28j) + 0 (~) 

es,o = b~e6 2(20c284 + 15c28§ + 60c~ + 30c383 + 5c4 + 
' 

120c~83 + 8s + 60c2c3) + 0 (~) 

( 4.45) 

( 4.46) 

(4.47) 

( 4.48) 

( 4.49) 

( 4.50) 

(4.51) 

( 4.52) 

( 4.53) 

(4.54) 

( 4.55) 

( 4.56) 

(4.57) 

(4.58) 

where Ck = bk/b1• Note it has been shown that these transformations preserve the hier­

archical nature of the clustering (Fry and Gaztanaga 1993). 
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4.2.4 Numerical Simulations 

To make accurate measurements of the higher order clustering of dark matter and dark 

matter haloes, we use the N-body simulations carried out by Angulo et al. (2008). Two 

simulation specifications were used: i) The BASICC, a high-resolution run which used 

14483 particles of mass 5.49 x 1011 h-1 M 0 to follow the growth of structure in the dark 

matter in a periodic box of side 1340h-1 Mpc. ii) The L-BASICC ensemble, a suite of 

50 lower resolution runs, which used 4483 particles of mass 1.85 x 1012 h-1 M 0 in the 

same box size as the BASICC. Each L-BASICC run was evolved from a different realization 

of the initial Gaussian density field. The simulation volume was chosen to allow the 

growth of fluctuations to be modelled accurately on a wide range of scales, including that 

of the baryonic acoustic oscillations (the BASICC acronym stands for Baryonic Acoustic 

oscillation Simulations at the Institute for Computational Cosmology). The extremely 

large volume of each box also makes it possible to extract accurate measurements of the 

clustering of massive haloes. The superior mass resolution of the BAS ICC run means that 

it can resolve the haloes which are predicted to host the galaxies expected to be seen in 

forthcoming galaxy surveys. The L-BASICC runs resolve haloes equivalent to group-sized 

systems. The independence of the L-BASICC ensemble runs makes them ideally suited to 

the assessment of the impact of cosmic variance on our clustering measurements. 

In both cases, the same values of the basic cosmological parameters were adopted, 

which are broadly consistent with recent data from the cosmic microwave background 

and the power spectrum of galaxy clustering (Sanchez et al., 2006): the matter density 

parameter, flM = 0.25, the vacuum energy density parameter, flA = 0.75, the normaliza­

tion of density fluctuations, expressed in terms of the linear theory amplitude of density 

fluctuations in spheres of radius 8h-1 Mpc at the present day, as = 0.9, the primordial 

spectral index n8 = 1, the dark energy equation of state, w = -1, and the Hubble con­

stant, h = Ho/(100kms-1Mpc- 1) = 0.73. The simulations were started from realizations 

of a Gaussian density field set up using the Zel'dovich approximation (Zel'dovich 1970). 

Particles were perturbed from a glass-like distribution (White 1994; Baugh et al. 1995). 

The starting redshift for both sets of simulations was z = 63. The linear perturbation 

theory power spectrum used to set up the initial density field was generated using the 

Boltzmann code CAMB (Lewis et al. 2000). The initial density field was evolved to the 

present day using a memory efficient version of GADGET-2 (Springel 2005). 

Outputs of the particle positions and velocities were stored from the simulations at 
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Figure 4.1 : The ratio Vmax/V2oo as a function of halo mass for gravita­

tionally bound haloes in the BASICC simulation, which have a minimum 

of 26 particles. Vmax is the maximum effective circular velocity of the 

largest substructure within the halo and V2oo is the effective rotation 

speed at the radius within which the mean density is 200 times the crit­

ical density, computed using all of the particles within this radius. Each 

panel shows the relation at a different redshift as indicated by the leg­

end. The red lines show the 20-80 percentile range of the distribution of 

Vmax/V2oo values, and the blue lines show the mean. 
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selected redshifts. Dark matter haloes were identified using a Friends-of-Friends (FOF) 

percolation algorithm (Davis et al. 1985) and substructures within these were found using 

a modified version of SUBFIND (Springel et al. 2001). Our default choice is to use the 

number of particles in a structure as returned by the FOF group finder to set the mass 

of the halo; at the end of Section 4.3.4 we discuss a variation on this to assess the 

sensitivity of our results to the group finder. The position of the halo is the position of 

the most bound particle in the largest substructure, as determined by SUBFIND. In this 

chapter, only gravitationally bound groups with more than 26 particles are considered. 

The SUBFIND algorithm also computes several halo properties such as the circular velocity 

profile Vc(r) = (GM(r)jr) 112, Vma.x, the maximum value ofVc for the largest substructure, 

and V2oo = Vc(r2oo), where r2oo is the radius of a sphere enclosing a volume of mean 

density 200 times the critical density. These properties are calculated using only the 

particles which are bound to the main subhalo of the FOF halo; i.e. ignoring all of the 

other substructure haloes within the FOF halo. In the best resolved haloes, substructures 

other than the largest substructure account for at most 15% of the total halo mass (Ghigna 

et al., 1998). Later on in the chapter we will present results for the clustering of haloes 

as a function of mass and a second parameter. We have a limited number of output 

times available to us, so it is not feasible to use the formation time of the halo as the 

second parameter. Instead, we will use the ratio Vma.x/V200· Fig. 4.1 shows Vma.x/V2oo as 

a function of halo mass at different epochs in the BASICC simulation. There is a trend 

of declining Vma.x/V2oo with increasing halo mass. In cases where the density profile of 

the dark matter halo matches the universal profile advocated by Navarro et al. (1997), 

Vmax/V2oo depends on the concentration parameter which characterizes the profile. Haloes 

in the extreme parts of the distribution of Vma.x/V2oo also have extreme values of the 

concentration parameter (Navarro, Frenk, and White 1997). More massive haloes tend 

to have lower values of the concentration parameter and lower values of the velocity ratio 

Vma.x/V2oo. The ratio Vmax/V2oo is easier to extract from the simulation, as it does not 

require a parametric form to be fitted to the density profile. There is a correlation between 

formation time and concentration parameter, and hence the ratio Vmax/V2oo, albeit with 

scatter (Navarro, Frenk, and White 1997; Zhao et al. 2003). 
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4.3 Results 

Our ultimate goal is to measure the higher order bias of dark matter haloes. As described 

in Section 4.2, we follow a novel approach to do this, employing cross moments between 

haloes and the dark matter. The first step in this process is to compute the densities of 

haloes and dark matter on grids of cubical cells of different sizes2 • A natural by-product 

of this procedure is the higher order clustering of the dark matter and haloes in terms 

of the auto-correlation functions. We first present the hierarchical amplitudes estimated 

for the dark matter (§4.3.1) and haloes (§4.3.2) using the autocorrelation function higher 

order moments. In §4.3.3 we show the measurements of the cross moments and in §4.3.4 

we present the interpretation of these results in terms of the bias parameters. 

4.3.1 Hierarchical amplitudes for the dark matter 

Fig. 4.3.1 shows the hierarchical amplitudes 8N measured for the dark matter at different 

redshifts. The upper panels show the results in real space and the lower panels include 

the effects of redshift-space distortions using the distant observer approximation. The 

points indicate the median value of the hierarchical amplitudes measured in the L-BASICC 

ensemble and the error bars indicate the variance in these measurements. The lines 

show the hierarchical amplitudes predicted by perturbation theory (Bernardeau 1994; 

Juszkiewicz, Bouchet, and Colombi 1993). At the highest redshift plotted, z = 4, the 

agreement between the measurements made from the simulations and the predictions of 

perturbation theory is impressive, covering scales from 5h-1 Mpc to 10oh-1 Mpc for 83 and 

84 • As redshift decreases, the simulation results for 8s and 86 are slightly higher than the 

perturbation theory predictions. The measurements of 83 from the simulations continue 

to agree with the perturbation theory predictions, but over a narrower range of scales. 

For smoothing scales on which the variance is less than unity, the hierarchical amplitudes 

are expected to be independent of epoch, depending only on the shape of the linear 

perturbation theory power spectrum of density fluctuations (Juszkiewicz, Bouchet, and 

Colombi 1993; Bernardeau 1994; Gaztanaga and Baugh 1995). Fig. 4.3.1 confirms that 

this is the case. As the density field evolves, the measured hierarchical amplitudes change 

remarkably little, particularly when one bears in mind that the higher order correlation 

2Tests show that density fluctuations in cubical cells can be readily translated into counts in spherical 

cells by simply setting the volume of the spherical cell equal to that of the cube. We use cubical cells 

for speed. The counts are regridded to improve the measurement of the rare event tails of the count 

distribution. 
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Figure 4.2: The hierarchical amplitudes (SN) measured for the dark 

matter as a function of the smoothing radius. The points show the 

amplitude for the SN obtained from the L-BASICC ensemble, after taking 

the ratio of the median correlation functions , as defined by Eq. 4.43. 

The error bars show the scatter in the measurements over the ensemble, 

obtained by computing SN for each simulation from the ensemble. Error 

bars are plotted at smoothing scales for which the fractional error is less 

than unity; triangles show scales on which the error exceeds unity. In 

both sets of panels, the dashed lines show the predictions of perturbation 

theory in real space. Note that no correction for shot noise has been 

applied to the measured amplitudes. The arrows indicate the cell radius 

for which the variance in the counts in cells for the dark matter is equal 

to unity, which is roughly the scale down to which perturbation theory 

should be valid; at z = 4, this scale is below R = lh- 1 Mpc. 
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Figure 4.3: The fractional scatter, a(SN)/SN, in the measured hierar­

chical amplitudes, as estimated from the 50 simulations in the L-BASICC 

ensemble. Different lines show the scatter for different orders as indi-

cated by the legend. 
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functions change substantially between z = 4 and z = 0. For example, for a cell of radius 

50h-1 Mpc, the two-point volume averaged correlation function increases by a factor of 

14 over this redshift interval, and the three-point function by a factor of 197. 

Nevertheless, the simulation results do tend to exceed the perturbation theory predic­

tions on all scales at all orders as the density fluctuations grow. 

The hierarchical amplitudes measured on small scales differ significantly from the pre­

dictions of perturbation theory. At z = 4, the simulation results are below the analytical 

predictions for cell radii smaller than R"' 5h-1Mpc. This behaviour is sensitive to the 

arrangement of particles which is perturbed to set up the initial density field. At later 

times, the memory of the initial conditions is erased on small scales and the measured 

amplitudes greatly exceed the expectations of perturbation theory. On these scales, the 

dominant contribution to the cross correlation moments is from particles within common 

dark matter haloes. Note that in Fig. 4.3.1 we do not correct the measured higher order 

correlation functions for Poisson noise, since the initial density field was created by per­

turbing particles distributed in a glass-like configuration which is sub-Poissonian. Hence, 

the dark matter density field is not a random sampling of a continuous density field (see 
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Angulo et al. (2008) for an extended discussion of this point). The turnover in the hi­

erarchical amplitudes seen at small cell radii (e.g. for R < 2h-1Mpc is due to the finite 

resolution of the L-BASICC simulations; the hierarchical amplitudes continue to increase 

in amplitude on smaller smoothing scales in the BASICC run. 

The lower panels of Fig. 4.3.1 show the impact of gravitationally induced peculiar 

motions on the hierarchical amplitudes. We model redshift-space distortions using the 

distant observer approximation, in which peculiar motions perturb the particle position 

parallel to one of the co-ordinate axes. Virialized structures appear elongated when viewed 

in redshift space. On large scales, coherent bulk flows tend to increase the amplitude of 

correlation functions. There is a modest reduction in the amplitude of the hierarchical 

amplitudes on large scales. On small scales, there is a dramatic reduction in the magnitude 

of the 8N. The overall impact of the redshift-space distortions is to greatly reduce the 

dependence of the hierarchical amplitudes on smoothing scale (see Hoyle et al. 2000). 

The estimated error on the measured hierarchical moments is shown in Fig. 4.3, in 

which we plot the fractional error on 8N obtained from the scatter in the measurements 

from the L-BASICC ensemble. The plot suggests that the skewness of the dark matter 

can be well measured on all smoothing scales considered from a volume of the size of 

the L-BASICC simulation cube. The range of scales over which robust measurements can 

be made of the hierarchical amplitudes becomes progressively narrower with increasing 

order. For example, at z == 0, reliable measurements of 86 are limited to smoothing radii 

smaller than R"' 30h-1 Mpc. 

4.3.2 The hierarchical amplitudes of dark matter haloes 

The hierarchical amplitudes of dark matter haloes are more complicated than those of 

the dark matter. In addition to a term arising from the evolution of the density field 

under gravitational instability, there is a contribution which depends upon height of the 

peak in the initial density field which collapses to form the halo (Mo, Jing, and White, 

1997). For example, if we consider the second and third order auto-correlation functions 

of haloes given by Eqs. 4.46 and 4.49, then the skewness for dark matter haloes, 8r, is 

given by: 

8r = e3,0 ( 4.59) 
(6,o) 2 

3b2 83 
( 4.60) = br + -,;;· 
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Figure 4.4: The hierarchical amplitudes of dark matter haloes, plot­

ted as a function of the peak height corresponding to the halo mass. 

In this plot, the hierarchical amplitudes are averaged over cell sizes of 

20h- 1Mpc < R < 50h-1Mpc. The dashed curve shows a theoretical pre­

diction based on the spherical collapse model (Mo, Jing & White 1997) 

and the solid line shows a revised prediction based upon an ellipsoidal 

collapse, by Sheth, Mo & Tormen (2001). The corresponding hierarchi­

cal amplitudes for the dark matter, averaged over the same range of cell 

radii, are indicated in each panel by the arrow. 
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The gravitational contribution to the skewness, S3 , is diluted by the linear bias factor, 

b1. In the case of rare peaks, or, equivalently, haloes with masses far in excess of the 

characteristic mass, M., at a given redshift, sr approaches an asymptotic value. In this 

limit, ~ ~ b1 and so sr ~ 3; similar arguments for the fourth and fifth order hierarchical 

amplitudes yield asymptotic values of sr = 16 and sr = 125 (Mo, Jing, and White, 1997). 

Massive haloes at high redshift can therefore have non-zero hierarchical amplitudes even 

if the dark matter distribution still has a Gaussian distribution and hence s~M = 0. 

We plot the hierarchical amplitudes of dark matter haloes in Fig. 4.4, as a function of 

the scaled peak height, 6c/ a( M, z). The simulation results are averaged over smoothing 

radii of 20h- 1 Mpc < R < 50h-1 Mpc. The dashed line shows the prediction obtained 

assuming the mass function of Press and Schechter (1974) and the spherical collapse model 

(see Mo, Jing, and White 1997). The solid line shows an improved calculation which uses 

the ellipsoidal collapse model and the mass function derived by Sheth et al. (2001). There 

is some dispersion between the simulation results at different redshifts. The measurements 

are in reasonable agreement with the theoretical predictions for large values of 6c/a(M, z). 

For more modest peaks, the hierarchical amplitudes of haloes averaged on large smoothing 

scales show a dip and are significantly smaller than the amplitude recovered for the dark 

matter. The strength of this dip is more pronounced in the measurements from the 

simulations than it is in the theoretical predictions. This discrepancy suggests that the 

theoretical models do not reproduce the trend of bias with halo mass for such objects, as 

we shall see in §4.3.4. 

4.3.3 Cross-correlation estimates of higher order clustering 

We now switch to estimating cross-correlation functions instead of auto-correlation func­

tions. To recap §4.2, to reduce the impact of discreteness noise on our measurement of 

halo clustering, we cross-correlate fluctuations in the spatial distribution of haloes with 

the fluctuation in the dark matter density within the same cell. As the order of the 

correlation function increases, the number of possible permutations of halo fluctuations 

and dark matter fluctuations increases. For a given order of correlation function, the 

relation between these permutations can be understood using the expressions for the 

cross-moments given in §4.2.3. The relationship at second order is particularly straight­

forward. The halo autocorrelation function, [2,0 (recall the first index gives the order of 

the halo density contrast and the second index gives the order of the dark matter density 

contrast) is related to the auto-correlation of the dark matter, [o,2, by [2,0 = br[o,2· The 
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Figure 4.5: Volume-averaged i + j-point cross-correlation functions, (i,j, 

measured for haloes of mass 1.1 x 1013 < (M/h- 1M 0 ) < 2.8 x 1013 

(619386 objects) and the dark matter at z = 0 in the BASICC simulation. 

The auto-correlation function of haloes is denoted ei+j,O and the auto­

correlation of dark matter by (O,i+j. Each panel shows a different order 

of cross-correlation. The key shows the different permutations of cross­

correlation function in each case. The moments have been corrected for 

Poisson noise due to the finite number of haloes. 

92 



4. The assembly bias of dark matter haloes to higher orders 

- !i,jl=!0,4l .......... !·J = 1,3 
- - - - !•J = 2,2 
-.-. - !•J - 3,1 
- ··· - · l,j = 4,0 

) 
·.. /'1 

····· .· .· 
I 

/ 
I".,. : -- / 
.I 

' ... .... : z = 1.0 

10 100 1 10 100 1 10 100 
R (Mpc/h] R (Mpc/h] R (Mpc/h] 

Figure 4.6: The fractional error on the four-point cross correlation func­

tions, estimated from the scatter over the L-BASICC runs. Each panel 

shows the results for a different redshift , as shown by the key. The leg­

end shows the different permutations of cross-correlation moment. To 

improve the statistics, all the haloes in the L-BASICC runs have been 

used in this case. 
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second-order cross correlation function, e1,1 , is related to the autocorrelation function of 

dark matter by e1,1 = b1e0,2· The primary difference between e2.o and e1,1 is therefore 

a factor of b1. This basic trend is approximately replicated for any order of correlation 

function: as fluctuations in the halo density are substituted by fluctuations in the dark 

matter, the amplitude of the cross-correlation is reduced by a factor which depends on 

b1. Above second order, this factor is modulated by higher order bias terms and the 

hierarchical amplitudes of the dark matter (see §4.2.2). The precise relation between the 

different permutations of cross-correlation functions depends upon the values of the bias 

parameters and therefore on the halo mass under consideration. 

We show illustrative examples of volume-averaged cross-correlation functions, ei,j , 

estimated from the BASICC simulation in Fig. 4.5. Each panel shows a different order of 

clustering, starting with the second moment in the top left panel and ending with the 

fifth order correlation function in the bottom right panel. In this plot, the haloes used 

have masses in the range 1.1 x 1013 < (Mha!o/h- 1M0 ) < 2.8 x 1013 and the clustering is 

measured at z = 0. The top-left panel of Fig. 4.5 shows that there is little difference in 

the amplitude of the second-order correlation function on large smoothing scales between 

the different permutations of i , j . This implies that for these haloes, the linear bias 



4. The assembly bias of dark matter haloes to higher orders 94 

term b1 :::::::J 1. The correlation functions are, however, different on small scales. The 

autocorrelation function of the dark matter (~0, 2 ) is steeper than the autocorrelation of 

haloes ( ~0,2). The cross-correlation functions are different on large scales for third, fourth 

and fifth orders. The difference in amplitude is fairly independent of scale for cells with 

radii R > 10h-1Mpc. Since the linear bias of this sample of haloes is close to unity, this 

difference is driven by the higher order bias terms and the hierarchical amplitudes of the 

dark matter. 

One might be concerned that replacing fluctuations in halo density by fluctuations in 

dark matter in the higher order correlation functions leads to a reduction in the clustering 

amplitude (as is indeed apparent in Fig. 4.5). However, this is more than offset by 

a reduction in the noise or scatter of the measurement. The fractional error on the 

measurements of the cross-correlation functions is plotted in Fig. 4.6. The scatter is 

estimated using the L-BASICC ensemble. Each panel shows the scatter at a different 

redshift. The cross correlation ~l,i+j- 1 (i.e. one part halo fluctuation, i + j -1 parts dark 

matter fluctuation) gives the optimal error estimate, with a performance comparable to 

the auto-correlation of the dark matter. At z = 1, it is not possible to measure the 

four-point autocorrelation function of this sample of haloes, even with a box of the size 

of the L-BASICC runs. Nevertheless, it is possible to measure the bias factors relating 

the four-point functions of haloes and mass using the cross-correlation. Our use of a 

cross-correlation estimator therefore allows us to extend the measurements of the higher 

order clustering of haloes to orders and redshifts that would not be possible using auto­

correlations. 

4.3.4 The bias parameters of dark matter haloes 

We now use the cross correlation functions to estimate the linear and higher order bias 

parameters of dark matter haloes. As we demonstrated in the previous section, the best 

possible measurement of the i + jth order correlation function is obtained when the cross 

correlation function is made up of one part fluctuation in halo density and i + j - 1 parts 

dark matter fluctuation: i.e. in our notation ~1,i+j- 1 . This approach, combined with the 

huge volume of our simulation, makes it possible, for the first time, to measure the third 

and fourth order bias parameters, and to do so using narrow mass bins. 

In this section, we use the higher resolution BASICC run, which can resolve the largest 

dynamic range in halo mass. We use the higher order correlation function measurements 

over the range of smoothing radii 15 < (R/h-1Mpc) < 50 to estimate the halo bias 
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Figure 4. 7: The bias parameters as a function of halo mass parametrized 

by v = 6c/a(M, z ). Each plot shows a different order of bias parameter: 

a) linear bias b1, b) the ratio of the 2nd order bias, b2/b1 , c) the ratio of 

the 3rd order bias, b3/b1 and d) b4/b1. In the lower panel of each plot, 

the residual bias parameters for the 20% of haloes with the highest or 

lowest values of Vmax/V2oo , a proxy for concentration, are plotted. In 

the upper panels, symbols show the measurements for different output 

redshifts, as indicated by the key. The same line colours are used to show 

the results for different redshifts in the lower panels. In the upper panel 

of each plot, we plot two theoretical predictions for the bias parameters, 

given by Mo, Jing & White (1997) and Scoccimarro et al. (2001). 
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parameters. The large volume of the BASICC simulation means that we can make robust 

measurements of the higher order correlation functions out to larger smoothing radii than 

is possible with the smaller Millennium simulation. The smallest scale we use is set by 

the requirement that the expansion relating the overdensity in haloes to the overdensity 

in dark matter (Eq. 4.44) is a good approximation, i.e. when ( « 1. The scales we use 

to extract the halo bias parameters are considerably larger than those Gao, Springe! & 

White (2005) and Gao & White (2007) were able to use in the Millennium. We use the 

simulation outputs at redshifts of z = 0, 0.5, 1, 2 and 3 to measure the clustering of haloes. 

The results for the first, second, third and fourth order bias parameters of dark matter 

haloes are presented in Fig. 4.7. Each panel corresponds to a different order. The upper 

half of each panel shows the respective order of bias parameter as a function of halo mass, 

expressed in terms of the peak height corresponding to the halo mass, 6c/a(M, z). The 

lower half of each panel shows the deviation from the bias parameter extracted for a given 

mass for samples of the 20% of haloes in the mass bin with the highest and lowest values 

of Vmax/V2oo, which we are using as a proxy for halo concentration. Different symbols in 

the upper panels show the measurements at different output redshifts in the BASICC run, 

as indicated by the key; the same colours are used to draw the lines showing results for 

samples defined by different Vmax/V2oo values at the same output redshifts in the lower 

panels. 

In Fig. 4.7, there is remarkably little scatter between the results obtained from the 

different output redshifts for the case of the overall bias as a function of mass. This is 

encouraging, as it shows that our results are not affected by resolution (haloes with similar 

values of 6c/a(M, z) at different output times are made up of very different numbers of 

particles). Gao, Springe! & White (2005) were able to measure the linear bias parameter 

up to haloes corresponding to peak heights of 3a; we are able to extract measurements 

for haloes corresponding to 5a peaks. 

In the upper sub-panels of Fig. 4.7, we show two theoretical predictions for the bias 

parameters of dark matter haloes. The dotted lines show the predictions from Mo, Jing, 

and White (1997), based on an extension of Press & Schechter's (1974) theory for abun­

dance of dark matter haloes and the spherical collapse model. The solid lines show the 

calculation from Scoccimarro et al. (2001) which uses the mass function of Sheth and 

Tormen (1999). Our results tend to agree best with the later, although the measurements 

favour a steeper dependence of bias on peak height at all orders. For less rare peaks, 

neither theoretical model gives a particularly good fit to the simulation results. A similar 
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trend, albeit with more scatter between the results at different output redshifts was found 

by Gao, Springe!, and White (2005) (see also Wechsler et al. 2006; Jing, Suto, and Mo 

2007). 

Previous studies have reported a dependence of clustering strength on a second halo 

property besides mass, such as halo formation time or concentration (Wechsler et al. 2006; 

Gao & White 2007). We do not have sufficient output times to make a robust estimate of 

formation time so we use a proxy for halo concentration instead, Vmax/V200 . We find that 

the clustering of high peak haloes is sensitive to whether the halo has a high or low value 

of Vmax/V200· The 20% of haloes with the lowest values of Vmax/V2oo within a given mass 

bin (i.e. those with the lowest concentrations) have the largest linear and second order 

bias terms. This result agrees with previous estimates of the dependence of the linear 

bias term on halo concentration (Wechsler et al. 2006). 

The peak height dependence of the third and fourth order bias terms for haloes split 

by Vmax/V2oo is more complicated. Fig. 4.7 shows that the third order bias depends on 

our concentration proxy in a non-monotonic fashion. The trend for the fourth order bias 

is reversed compared with the results for the first and second order bias parameters: low 

concentration haloes have a negative value of the fourth order bias. We note that it would 

not be possible to measure a fourth order bias at all using halo auto-correlation functions. 

One might be concerned that our results could be sensitive to the operation of the 

group finder. In particular, it is well known that the FoF algorithm can sometimes 

spuriously link together distinct haloes into a larger halo, through bridges of particles 

(e.g. Cole and Lacey 1996). We therefore carried out the exercise of relabelling the mass 

of each halo by the mass of the largest substructure as determined by SUBFIND. In the 

rare cases in which haloes are incorrectly linked into a larger structure, using instead 

the SUBFIND mass would result in a significant shift in the mass bin to which the halo is 

assigned. Moreover, one would expect that low concentration FoF haloes would be more 

prone to being broken up in this way. However, we found no change in our results upon 

following this procedure, demonstrating that the trends we find for the dependence of 

bias on mass and concentration are robust. 

4.4 Summary and Discussion 

In this chapter, we have combined ultra-large volume cosmological simulations with a 

novel approach to estimating the higher order correlation functions of dilute samples of 
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objects. The large simulation volume allows us to extract bias parameters on large scales, 

which follow linear perturbation theory more closely, and provides us with large samples 

of high mass haloes from which robust clustering measurements can be made. The cross­

moment counts-in-cells technique we use to estimate the higher order clustering of dark 

matter haloes has superior noise performance to traditional autocorrelation functions, 

allowing us to probe clustering to higher orders. These improvements made it possible to 

extend previous work on the assembly bias of dark matter haloes in a number of ways. 

We have been able to extract measurements of halo clustering for objects corresponding 

to 5a peaks, almost twice as high as in earlier studies. We have also presented, for the 

first time, estimates of the higher order bias parameters of haloes, up to fourth order, and 

using narrow mass bins. 

Our results are in qualitative agreement with those in the literature where they overlap. 

We find that the linear bias factor, b1 , is a strong function of mass, varying by an order 

of magnitude for peaks ranging in height from 8cfa(M, z) = 1 to 5. We use the ratio 

of the maximum of the effective halo rotation speed to the speed at the virial radius, 

Vmax/V2oo as a proxy for halo concentration. High mass, high Vmax/V2oo haloes are less 

strongly clustered than the same mass haloes with low values of Vmax/V2oo; haloes with 

8c/a(M, z) "' 4 display second order clustering that differs by :::::::: 25% between the 20% 

with the lowest values of Vmax/V2oo and the 20% of the population with the highest values 

of this ratio. 

It is reassuring that we recover a similar dependence of the linear bias on halo mass 

when labelling haloes by Vmax/V2oo as other authors found using the concentration pa­

rameter (Wechsler et al. 2006). This trend is the opposite to that recovered when halo 

samples are split by formation time. Gao, Springe!, and White (2005) found no depen­

dence of the clustering signal on halo formation time for massive haloes. This is puzzling 

since formation time and concentration are correlated, albeit with scatter (e.g. Neto 

et al. 2007). Croton, Gao, and White (2007) have argued that this suggests that an as 

yet unknown halo property is a more fundamental property in terms of determining the 

clustering strength (for theoretical explanations of the physical basis of assembly bias see 

e.g. Zentner 2007; Ariel Keselman and Nusser 2007; Dalal et al. 2008 ). 

The second order bias parameter, b2, displays qualitatively similar dependences on 

mass and Ymax/V2oo to b1 with the difference that b2 is negative around 8c/a(M,z) "' 

1. The third and fourth order bias parameters are more complicated, being essentially 

independent of mass until peaks 8c/a(M, z) "'2- 3 are reached, where there is a dip in 
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bias before a rapid increase for rarer peaks. The dependence on Vma.x/V200 is also different 

at third and fourth order. 

We compared our measurements for the bias parameters with analytic predictions. For 

haloes corresponding to rare peaks, the trend in linear bias versus peak height is interme­

diate between the predictions of Mo, Jing, and White (1997), which are based on Press & 

Schechter's (1974) theory for the abundance of haloes and the spherical collapse model, 

and the calculation of Sheth, Mo & Tormen (2001) and Scoccimarro et al. (2001), based 

on ellipsoidal collapse and an improved estimate of the halo mass function. Both analytic 

calculations predict a weaker dependence of b1 on peak height around 6c/ a-( M, z) "' 1 than 

we find in the simulation. The comparison between the simulation measurements and the 

analytic predictions is similar for b2 • For the third and fourth order bias parameters, the 

simulation results are in good agreement with the analytic predictions for modest peaks. 

For rare peaks, the bias parameters measured from the similar are again in between the 

two analytic predictions. 

Observations of clustering are already entering the regime in which our simulation can 

play an important role in interpreting the measurements. Existing observations of high 

redshift quasar clustering suggesting that these objects live in haloes corresponding to 

"'5-6 sigma peaks in the matter distribution at z = 4 (White, Martini & Cohn 2007). 

Future galaxy surveys, due to the volume covered and number of galaxies targeted, will 

yield measurements of clustering with unprecedented accuracy, to higher orders than the 

two-point function. The measurements presented in this chapter will provide invaluable 

input to future models of galaxy clustering based on halo occupation distribution models, 

which have been modified such that galaxy clustering is a function of mass and a second 

halo property. 
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Chapter 5 
The Fate of 

Substructures in Cold 

Dark Matter Haloes 

5.1 Introduction 

The presence of substructures within dark matter haloes is a distinctive signature of a 

universe where structures grow hierarchically. Low mass objects collapse at high redshift, 

and then increase their mass by smooth accretion of dark matter or by merging with 

other haloes. Once a halo is accreted by a larger one, its diffuse outer layers are rapidly 

stripped off by tidal forces. However, the core, which is much denser, generally survives 

the accretion event and can still be recognized as a self bound structure or subhalo within 

the host halo for some period of time afterwards. 

In early N-body simulations, haloes appeared as fairly smooth objects (Frenk et al., 

1985, 1988). However, as the attainable mass and force resolution has increased, subhaloes 

have been identified and their properties studied in detail by many authors over the past 

decade (e.g. Ghigna et al., 1998, 2000; Tormen et al., 1998; Moore et al., 1999; Klypin 

et al., 1999b,a; Springe! et al., 2001; Stoehr et al., 2002; De Lucia et al., 2004; Gao et al., 

2004; Nagai and Kravtsov, 2005; Shaw et al., 2007; Diemand et al., 2008; Springe! et al., 

2008). The properties of the subhalo population have important implications for galaxy 

formation, dark matter detection experiments and weak lensing. For instance, subhaloes 

are expected to host satellite galaxies within groups and clusters and their evolution once 

inside the host could give rise to observable changes. In particular, a merger between two 

substructures could trigger an episode of star formation or a morphological transformation 

(e.g. Somerville and Primack, 1999). 

In spite of this, the merger history of subhaloes remains relatively unexplored. This is 

a challenging problem which demands a simulation with high mass and force resolution. 
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In particular, obtaining a statistical sample of mergers involving the largest substructures 

requires a large sample of host haloes. Most studies of substructure in halos have focused 

on resimulating, at very high resolution, a small number of halos selected from a larger, 

lower resolution simulation. However, by studying only a few haloes, important aspects 

related to variations produced by differences in the accretion and merger histories of 

haloes, as well as any influence of the environment could remain hidden. This approach 

may also introduce systematic biases arising from the criteria used to select the haloes to 

be resimulated. 

In this chapter, we overcome these problems by using the largest dark matter simu­

lation published to date, the Millennium Simulation (MS, Springe! et al. 2005). The MS 

provides a large cosmological sample of dark matter haloes and associated substructures 

spanning a considerable range in mass, allowing us to assess robustly the properties and 

fate of the subhalo population. We complement our results with a higher resolution sim­

ulation of a smaller volume (hereafter HS) which has a particle mass almost ten times 

smaller than that used in the MS (Jenkins et.al, in prep). 

The layout of this chapter is as follows. In Section 5.2, we briefly describe the sim­

ulations used in this work along with the properties of our halo and subhalo catalogues. 

In Section 5.3 we investigate some general properties of subhaloes, namely their mass 

function, radial distribution and spatial orientation with respect to their host halo. The 

exploration of substructure mergers and destruction is presented in Section 5.4. Finally, 

we summarize our findings in Section 5.5. 

5.2 Method 

In this section we describe the N-body simulations we have used analyzed in this work. 

We also discuss the identification and characterization of the halo and subhalo catalogues. 

5.2.1 N-body Simulations 

The main simulation on which our analysis is based is the Millennium Simulation (Springe! 

et al., 2005). The MS covers a comoving volume of 0.125 h-3Gpc3 of a ACDM universe 

in which the dark matter component is represented by 21603 particles. The assumed 

cosmological parameters are in broad agreement with those derived from joint analyses of 

the 2dFGRS galaxy clustering (Percival et al., 2001) and WMAP1 microwave background 

data (Spergel et al., 2003; Sanchez et al., 2006), as well as with those derived from WMAP5 
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data (Komatsu et al., 2008). In particular, the total mass-energy density, in units of the 

critical density, is Om= Odrn + Ob = 0.25, where the two terms refer to dark matter and 

baryons, with Ob = 0.045; the amplitude of the linear density fluctuations in 8h-1 Mpc 

spheres is as= 0.9; and the Hubble constant is set to h = Ho/(100kms- 1Mpc- 1) = 0.73. 

The particle mass is mp = 8.6 x 108 h- 1 M 0 and the Plummer-equivalent softening of the 

gravitational force is E = 5 h - 1 kpc. 

To complement our results and to test for numerical effects we have also employed 

another simulation with better mass resolution to which we refer as HS. This simulation 

follows 9003 dark matter particles in a ACDM cube of side 100 h- 1 Mpc. The HS assumes 

the same cosmological parameters as the MS. However, the smaller box yields a smaller 

particle mass, mp = 9.5 x 107 h-1 M 0 , so objects of a given mass are resolved with 

almost 10 times more particles than in the MS. Finally, in the HS the softening length is 

E = 2.4h- 1kpc. 

The MS and HS were carried out using a memory efficient version of the Gadget-2 

code (Springe!, 2005). 

5.2.2 Halo and Subhalo catalogues 

In both simulations, particle positions and velocities are written at 64 output times which, 

for z < 2, are roughly equally spaced in time by 300 Myr. In each of these outputs we 

have identified dark matter haloes using the friends-of-friends (FoF) algorithm (Davis 

et al., 1985), with a linking length of 0.2 times the mean interparticle separation. The 

volume and particle number of the MS provide a unique resource of well resolved haloes 

to study. By way of illustration, there are 90891 haloes at z = 0 with mass in excess of 

5.4 x 1012 h-1 M 0 (one of the bins we use below), which corresponds to 6272 particles; at 

z = 1 the number of haloes in excess of this mass is still 61481. On the cluster-mass scale, 

for example, there are 356 haloes at z = 0 which are more massive than 4 x 1014 h- 1 M 0 , 

corresponding to 464576 particles. 

Well resolved FoF haloes are not smooth, but contain a considerable amount of mass 

in the form of substructures. These dark matter clumps or "subhaloes" are identified and 

catalogued using a modified version of the subhalo finder algorithm, SUBFIND, originally 

presented in Springe! et al. (2001). The statistics of the subhalo catalogue are impressive. 

At z = 0 SUBFIND lists 339840 structures with more than 200 particles in the MS within 

haloes of at least 5.4 x 1012 h- 1 M 0 • At z = 1 there are 194629 substructures with the 

same characteristics. Note that SUBFIND not only finds substructures within a FoF halo, 
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but it is also capable of identifying substructures within substructures. 

An important issue for studies of substructures is the definition of the boundary 

and position of the host halo. In our analysis, the centre of the halo is defined as the 

position of the particle possessing the minimum gravitational potential. This choice for 

the halo position agrees, within the softening length, with that found by a shrinking 

sphere algorithm (Power et al., 2003) for 93% of the haloes that are resolved with 450 or 

more particles. As shown by Neto et al. (2007), the 7% of cases in which the two methods 

disagree are due to the FoF algorithm artificially linking multiple structures. In these 

cases the position of the most bound particle provides a more robust identification of the 

centre, as noted by Neto et al. (2007). 

We define the halo boundary as the sphere of radius r2oo which contains a mean 

density of 200 times the critical density, Pcrit. Therefore, the mass of the halo is: 

(5.1) 

We keep in our catalogues only subhaloes within this sphere. Although the choice 

of the factor of 200 is motivated by the spherical collapse model in a Einstein-de-Sitter 

universe, it is somewhat arbitrary for our ACDM simulations. However, the r2oo definition 

has the advantage of being independent of both redshift and cosmology. Moreover, it has 

became a de facto standard in studies of substructures. Nevertheless, we have tested 

our results against other definitions of the halo boundary without finding any qualitative 

differences. In the following, when we refer to the mass and radius of a host halo, we 

always mean M2oo and r2oo. 

Finally, we build merger trees using an algorithm similar to that described by Springel 

et al. (2005) which follows the evolution of subhaloes. In this way, we can identify the 

haloes and subhaloes that will be involved in a merger during a subsequent snapshot. 

Note that these merger trees are constructed using only the information contained in the 

FoF and SUBFIND catalogues, and there is no attempt to force mass conservation, as would 

be required if the merger trees were to be used in a galaxy formation code (see Harker 

et al., 2006). The descendant of a subhalo is defined as the structure that contains the 

majority of the 10 percent most bound particles from the subhalo. When two satellite 

subhaloes have the same descendant in a following snapshot, we tag such an event as a 

substructure merger. 
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5.3 SubHalo properties 

Before presenting our results regarding subhalo mergers, we consider some general prop­

erties of the subhalo population. Although some of these properties have been studied by 

previous authors, the large volume and high resolution of the MS and HS reveal some fea­

tures which were inaccessible in earlier work. Furthermore, the knowledge of the subhalo 

properties will help us to understand the results presented in the next section. 

5.3.1 Subhalo mass function 

We first consider the distribution of subhalo masses - the subhalo mass function. The 

top panels of Fig. 5.1 show the mean number of substructures within dark matter haloes, 

per host halo, per logarithmic interval in subhalo mass. The results are displayed as a 

function of subhalo mass relative to the mass of the halo in which it resides, Msub/ Mhost· 

In this way we can easily compare results across a range of halo masses. In the ranges of 

overlap, the results from the MS and HS agree well; this provides a useful, but limited, 

test of convergence of our results. 

For the redshifts plotted in Fig. 5.1 there is only a small variation of the subhalo 

mass function with host halo mass. Indeed, a universal function describes the behaviour 

reasonably well over the range of subhalo mass resolved by our simulations: 

dN _A ( Msub )a exp [-2_ ( Msub )
2
] 

dln(Msub/Mhost) - Mhost a 2 Mhost ' 
(5.2) 

where N is the number of subhaloes per host halo. The values of A, a and a in this overall 

fit at each redshift are given in the legend of Fig. 5 .1. For this overall fit, we have forced the 

slope a to have the same value independently of redshift. In general, we find that a = -0.9 

is a good approximation to the best fit from z = 0 to z = 2.5. It is also important to note 

that the power-law fit widely used in the literature, (e.g. Gao et al. 2004) is only valid over 

a limited range of fractional subhalo masses, Msub/ Mhost < 0.04. We also see that the 

maximum subhalo mass for which a power-law successfully describes the mass function 

decreases at higher redshifts, Msub/ Mhost "' 0.015 at z = 1 and Msub/ Mhost "' 0.04 at 

z = 0. The bottom panels of Fig. 5.1 show the relative difference between the fit given by 

Eq. (5.2) and the mass function of subhaloes measured in host haloes of different masses. 

We have also fitted Eq. 5.2 to the subhalo mass functions in each halo mass bin, this 

time letting the slope a vary; we list the best-fit parameters for z = 0 in Table 5.1. At 

the low fractional mass end, where the subhalo mass function behaves as a power-law, 
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Mhost [h-1 M0J log10 A a (T loglO ( Msub/ Mhosd 

9.2 X 1012 -2.05 -0.87 0.17 -1.8 

2.7 X 1013 -2.06 -0.89 0.16 -2.5 

MS 7.9 X 1013 -1.98 -0.88 0.13 -2.8 

2.3 X 1014 -2.00 -0.90 -3.5 

6.8 X 1014 -1.86 -0.87 -3.8 

3.1 X 1012 -2.00 -0.83 0.16 -2.5 

HS 9.2 X 1012 -2.05 -0.88 0.17 -2.8 

2.7 X 1013 -2.15 -0.93 0.14 -3.5 

Table 5.1: The best-fit parameters to the mass function of subhaloes 

residing in haloes of different mass at z = 0, using Eq. 5.2. The columns 

are as follows: (1) TheN-body simulation from which the halo sample 

was extracted. (2) The mean mass of the host haloes. (3) The logarithm 

of the amplitude. ( 4) The power-law index. (5) The damping strength. 

(6) The minimum fractional subhalo mass included in the fitting. 
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we generally find slopes that are lower than the critical value, a = -1 (which separates 

divergent from convergent mass functions). The slopes we find are in broad agreement 

with previous estimates of the power-law index of the subhalo mass function, which range 

from -0.8 to -1.0 (Moore et al., 1999; Ghigna et al., 2000; De Lucia et al., 2004; Gao et al., 

2004; Diemand et al., 2004; Shaw et al., 2007; Diemand et al., 2007). In particular, our 

results agree with those from the much higher resolution simulations of individual galactic 

halos of Springe! et al. (2008), but are inconsistent with the steeper slope advocated, also 

for galactic halos, by Diemand et al. (2008). 

At the high mass end, the subhalo mass function departs from a power-law and de­

creases exponentially. This behaviour was previously detected inN-body simulations (at 

lower significance) by Giocoli et al. (2008) (and predicted analytically by van den Bosch 

et al. (2005)). However, this feature was not apparent in earlier studies which used res­

imulations of individual haloes. Resimulations of single objects have the advantage that 

computational effort can be focused. A halo can be resolved with a vast number of par­

ticles and its substructures identified over a large range of masses. Unfortunately, this 

approach comes at the price of losing the rich information contained in the variety of 

assembly histories, relaxation states and, more importantly, the population of high mass 
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subhaloes. As can be seen from Fig. 5.1, the abundance of these objects is much lower 

than that of smaller subhaloes - usually we would find just a few in each halo. Because 

these halos are so rare, the damping of the power-law at high Msub/ Mhost is missed in 

individual resimulations. By contrast, with the huge sample of haloes and their massive 

subhaloes in our analysis, we can robustly probe this subhalo mass range. 

Even though the subhalo mass function appears roughly universal (e.g. Moore et al. 

1999), we have detected at every redshift a small dependence on the mass of the host 

system. Small substructures of the same fractional mass are more abundant in high mass 

haloes than in low mass haloes. This correlation has also been seen in a number of 

other studies (e.g. Gao et al., 2004; Shaw et al., 2007; Diemand et al., 2007). However, 

we also find evidence that this trend holds only in the power-law region of the subalo 

mass function and actually reverses at the high mass end - low mass haloes seem to host 

relatively more massive subhaloes than do high mass haloes. 

Perhaps surprisingly, the variety of features present in the mass function of subhaloes 

is consistent with a relatively simple picture. There are two key ingredients that shape the 

subhalo mass function: {i) the mass function of infalling objects and (ii) the dynamical 

evolution of subhaloes orbiting within the host halo due to dynamical friction and tidal 

stripping. The first of these is responsible for the universality described above and sets the 

subhalo mass function to first order. As first found by Lacey and Cole {1993) using the 

extended Press-Schechter formalism, and confirmed by Giocoli et al. (2008) using N-body 

simulations, the mass function of subhaloes at infall is almost independent of host halo 

mass and redshift when expressed as a function of Msub/ Mhost, and can be described as 

a power-law with a high mass cut-off. 

After subhaloes fall into a host halo, their orbits sink due to dynamical friction and, 

at the same time, the subhaloes lose mass due to tidal stripping. These processes cause 

the subhalo mass function to evolve away from its form at infall. The rates for these 

processes depend on the fractional mass of the subhalo, Msub/Mhost• and on the dynamical 

timescale of the host halo. Therefore, if all haloes had identical structure and assembly 

histories, these processes would preserve a universal form for the subhalo mass function, 

independently of Mhost· However, haloes of different masses on average assemble at 

different redshifts in spite of the similar mass function of subhaloes at infall, and this 

breaks the universal shape of the subhalo mass function, as discussed by van den Bosch 

et al. {2005) and Giocoli et al. (2008). On average, massive haloes are younger than their 

less massive counterparts and they are more likely to have experienced recent mergers 
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(Lacey and Cole, 1993). These provide a fresh source of substructures which have had 

less time for orbit decay due to dynamical friction and to be tidally stripped. High mass 

haloes are therefore expected to have more substructures than low mass haloes. Another 

effect which acts in the same direction is that small haloes tend to accrete their subhaloes 

at higher redshifts when dynamical timescales are shorter. As a result, they strip out 

mass from the substructures more quickly than large haloes, where massive substructures 

can survive for longer. 

5.3.2 Most massive subhaloes 

The high-mass tail of the distribution of substructure is examined in greater detail in 

Fig. 5.2. The three panels in this plot display the distribution of the fractional mass, 

Msub/Mhost, for the first, second and third largest substructures within haloes of different 

mass at z == 0. As before, results from the MS and HS agree very well. 

In contrast to the results presented in the previous subsection, the distributions of 

fractional masses seem to be independent of the host halo mass. (We have also checked 

that they are independent of redshift.) In particular, in every halo, the fractional masses 

follow a log-normal distribution with mean (log10 (Msub/Mhost)) = -1.42, -1.79 and 

-1.99, and standard deviation O"Jogw(Msub/Mhostl = 0.517, 0.382 and 0.348 for the each of 

the three largest sub haloes respectively. Albeit with considerable scatter, these values 

imply that the most massive substructure contains typically 3.7% of the total mass of the 

halo while the second and third most massive subhaloes contain 1.6% and 1% of the mass 

respectively. 

Due to the large dispersions, the distributions can only be measured reliably in haloes 

resolved with a large number of particles. For instance, the mean fractional mass of 

sub haloes is overestimated for haloes resolved with fewer than "' 1000 particles (the exact 

limit depends on the scatter and mean of the true distribution), i.e. "' 1 x 1012 h-1 M 0 in 

the MS and"' 1 x 1011 h-1 M 0 in the HS. The upward bias is caused by the finite resolution 

of the simulations (there is a limit on the smallest subhalo that we can identify) which 

truncates the low mass tail of the distribution of fractional masses. 

Hints of a universal behaviour of the fractional masses of the largest subhaloes were 

already detected by De Lucia et al. (2004) (although they claim a weak dependence with 

host halo mass). Our results are broadly consistent with theirs but, with the large halo 

catalogues from the MS and HS, we are able to probe the full probability distribution 

function robustly. 
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Figure 5.2: The distribution of the fractional mass, Msub/Mhost 1 of the 

1st, 2nd and 3rd largest substructures in haloes of different mass at 
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The apparently universal shape of these distributions could, in principle, be under­

stood within the broad picture just discussed. Presumably it reflects the distribution of 

masses of the infalling haloes which, as we have seen, is independent of the host halo mass 

(Lacey and Cole, 1993; Giocoli et al., 2008). The large scatter must then result from the 

large range of accretion histories at a given host halo mass. We leave further investigation 

of these ideas for future work. 

5.3.3 Radial distribution of subhaloes 

Fig. 5.3 shows the number density of subhaloes as a function of radius, relative to the 

mean number density of substructures within r2oo in the same fractional mass range. 

Each panel focuses on substructures of different masses, from small subhaloes (10-4 < 

Msub/Mhost < 10-3
) in the leftmost panel to large ones (10-2 < Msub/Mhost < 1) in the 

rightmost panel. As in previous plots, lines of different colours show results for subhaloes 

that reside in haloes of different mass, and the different line types (solid and dashed) 

indicate the results for the two simulations. We also plot the radial profile of the dark 

matter as a black dotted line in each panel. 

Comparison of the MS and HS indicates that our results are insensitive to the mass 

resolution (although the overlap between the two simulations is limited). As in previous 

studies (e.g. Gao et al. 2004), we find that the radial distribution has little dependence on 

the host halo mass at a given Msub/Mhost· This is quite remarkable since each panel mixes 

subhaloes that: (i) are resolved by numbers of particles that differ by orders of magnitude 

and (ii) occupy haloes which are in a variety of dynamical states (age, relaxation, etc). We 

also see that in all cases, the radial distribution of subhaloes is less centrally concentrated 

than the dark matter, as was also found in previous studies (e.g. Ghigna et al., 1998, 

2000; Gao et al., 2004; Diemand et al., 2004; Nagai and Kravtsov, 2005; Shaw et al., 

2007; S pringel et al., 2008). 

In addition, we see a significant difference between the distribution of massive sub­

haloes (Msub > 10-2 Mhost) and that of small ones (Msub < 10-3 Mhost)· While the 

overall radial profiles seem to be fairly independent of subhalo mass, the more massive 

subhaloes tend to avoid the central regions of the host halo, while the less massive ones 

have a more centrally concentrated distribution (see also De Lucia et al., 2004). However, 

the distributions agree in the outer parts of the halo. 

Springe! et al. (2008) found a similar effect to ours in the Aquarius set of simulations of 

galactic halos which, although limited in number, span a huge dynamic range in subhalo 
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mass. 

These dissimilar density profiles for different subhalo masses have a simple dynamical 

explanation (e.g. Tormen et al., 1998; Nagai and Kravtsov, 2005). Once a halo falls into 

a more massive system, dynamical friction and tidal striping start to act. The accreted 

subhalo will rapidly be stripped of its outer layers and will lose a significant fraction 

of its mass during the first pericentric passage. This mechanism naturally differentiates 

the radial distribution of substructures of different masses: massive structures sink more 

rapidly due to dynamical friction and, as a result, also lose mass more rapidly by tidal 

stripping. Therefore they do not survive long in the central regions, in contrast to small 

subhaloes. The massive subhaloes which are present in the halo most have been accreted 

more recently than the average low mass subhalo. The timescale for dynamical friction 

depends on the relative mass of the subhalo and its host halo, not on their absolute values, 

which would explain the approximate independence of the distribution on the host halo 

mass. 

5.3.4 Angular distribution of subhaloes 

To end this section we investigate the angular distribution of subhaloes within dark matter 

haloes. Previous work has examined the relationship between the angular distribution 

of substructures and the shape of the host halo (Tormen, 1997; Libeskind et al., 2007; 

Knebe et al., 2008a,b). Here, we examine instead the orientation relative to the spin axis 

of the host halo. Fig. 5.4 shows the probability distribution function of the cosine of the 

angle between the angular momentum vector of the host halo and the vector joining its 

centre with that of the subhalo. We show results for two separate ranges of subhalo mass: 

sub haloes with mass smaller than 2% of the host halo mass (dashed lines) and those with 

masses greater than 2% (solid lines). We distinguish different host halo masses by different 

colours, and show different redshifts in different panels. Note that we only display results 

for the MS simulation for clarity. 

As shown by Bett et al. (2007), the accuracy of the measurement of spin direction in 

the MS degrades significantly (uncertainty> 15deg) for haloes resolved with fewer than 

1000 particles or for those where the spin magnitude, Iii, is such that: 

(5.3) 

where G is Newton's gravitational constant. Although the inclusion of haloes that do not 
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satisfy these criteria does not seem to affect our results quantitatively, we have chosen to 

show only those haloes that met these requirements, so that the angle relative to the spin 

axis can be reliably determined. 

We see from Fig. 5.4 that the angular distribution of subhaloes tends to be aligned 

perpendicular to the spin axis of the host halo. (We remind the reader that in this 

plot, an isotropic angular distribution would correspond to a horizontal line, while a 

distribution aligned at 90deg to the spin axis will peak around cosO"' 0.) The strength 

of this alignment effect depends on the fractional subhalo mass, Msub/Mhost. being much 

stronger for higher mass subhaloes. We also see that the angular distribution for a given 

Msub/Mhost is almost independent of the host halo mass and the redshift (Kang et al., 

2007, see also). 

We can understand this behaviour qualitatively as reflecting the growth of haloes by 

the accretion of dark matter (in halos or more diffuse form) along filaments. The central 

regions of haloes acquire most of their angular momentum at a relatively late stage from 

the orbital angular momentum of this infalling material, and so will tend to have spin 

axes perpendicular to the current filament (e.g Shaw et al., 2006; Aragon-Calvo et al., 

2007). On the other hand, insofar as the subhaloes "remember" the direction from which 

they fell in once they are orbiting inside the host halo, then their spatial distribution 

will tend to be aligned with the filament from which they were accreted, and so will be 

perpendicular to the spin axis. We can also understand the dependence of the strength 

of this alignment on subhalo mass in this picture. Subhaloes with large Msub/ Mhost on 

average have been orbiting in the host halo for less time than haloes of lower Msub/Mhost• 

due to the combined effects of dynamical friction (which causes higher mass sub haloes to 

sink faster) and tidal stripping (which converts high-mass subhaloes to low mass). We 

expect subhaloes increasingly to lose memory of their initial infall direction the longer 

they have orbited in the host halo (which in general is lumpy and triaxial). Since high 

Msub/ Mhost subhaloes have undergone fewer orbits, their current angular distribution 

should be more closely aligned with their infall direction, and therefore with the current 

filament, compared to subhaloes of lower mass. 

Our results seem generally consistent with previous simulation results on the alignment 

of the subhalo distribution with the shape of the host halo, and the relationship between 

the shapes and the spin axes of halos. Tormen (1997) found that the angular distribution 

of subhaloes as they fall into a host halo (crossing through r2oo) is anisotropic, and tends 

to be aligned along the major axis of the host halo. Previous studies (e.g. Knebe et al., 
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2004; Zentner et al., 2005; Libeskind et al., 2007) found that the angular distribution of 

subhaloes within a host halo is aligned along the major axis of the host halo. On the 

other hand, Bett et al. (2007) showed that the angular momentum of a halo is generally 

aligned with its minor axis and perpendicular to its major axis. Putting these results 

together, we would expect the subhalo distribution to be aligned perpendicular to the 

spin axis of the host halo, but ours is the first study to demonstrate this directly, and 

also to demonstrate that the strength of the alignment depends on subhalo mass. 

5.4 Mergers between subhaloes 

As we have seen, once a halo is accreted by a larger one, its outer layers are rapidly 

stripped by tidal forces. However, the core generally survives the accretion event and can 

still be recognized as a substructure or satellite subhalo within the host halo for some 

time afterwards. Furthermore, not only may the main infalling halo survive, but also 

substructures within it. In this case, there are substructures inside substructures. 

While orbiting inside the halo, dynamical friction causes the orbit of a subhalo to 

lose energy and to sink towards the centre of the host halo. As the subhalo sinks, it 

suffers further tidal stripping. Eventually, the subhalo may be totally disrupted: there is 

a merger between the satellite subhalo and the central subhalo. Nevertheless, on its way 

to destruction, a subhalo can survive for several orbits during which it may experience 

a merger with another satellite subhalo. In the following subsections we will investigate 

the merging of these substructures. 

The interaction between subhaloes was previously investigated in cosmological simu­

lations by Tormen et al. (1998), who studied the rate of penetrating encounters between 

satellite subhaloes, but not the merger rate. Makino and Hut (1997) derived an expression 

for the merger rate between subhaloes in galaxy clusters based on an entirely different 

approach, motivated by the kinetic theory of gases. In this case, the merger rate per unit 

volume between halos of mass M1 and M2 is Rmerge = n1n2a(v12)v12, where n1 and n2 

are the respective number densities, v12 is the relative velocity, and a( v12) is the merger 

cross-section. They used N-body simulations of isolated spherical halos to derive merger 

cross-sections for equal-mass halos as a function of their relative velocity, and then as­

sumed that mergers in clusters occurred between pairs of subhaloes drawn from random 

uncorrelated orbits, with a Maxwellian distribution of relative velocities. The Makino 

and Hut expression was then extrapolated to the case of unequal subhalo masses and 
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incorporated into a semi-analytical model of galaxy formation by Somerville and Primack 

(1999) and Hatton et al. (2003). We will investigate below whether the Makino and Hut 

(1997) kinetic theory approach has any applicability to subhalo mergers in a realistic 

cosmological context. 

5.4.1 Subhalo merger rate 

Fig. 5.5 shows the mean merger rate of satellite subhaloes, plotted against the fractional 

mass of its progenitor. This is the mass of the satellite before accretion divided by the 

mass of the host halo at the time of the merger. The rate is normalized per subhalo, 

with time in units of the age of the universe at that redshift. This normalized rate is 

thus roughly equal to the probability that a satellite subhalo will merge over one Hubble 

expansion time. A rate higher than unity indicates that the process happens on a timescale 

shorter than a Hubble time. There are two sets of curves in this figure: (i) the thinner, 

higher amplitude lines which show mergers between a satellite and a central subhalo, as a 

function of the subhalo mass, and (ii) the thick lines which correspond to satellite-satellite 

mergers, plotted as a function of the mass of the smaller subhalo. As in previous plots, 

different line colours show different host halo masses, and different line styles (solid and 

dashed) show the two simulations used. 

We see from Fig. 5.5 that over most of the subhalo mass range resolved by our sim­

ulations (for Msub/Mhost ~ 10-3 ), it is more likely for a satellite subhalo to merge with 

the central subhalo than with another more massive satellite subhalo. For instance, at 

z = 1, taking into account all host haloes, there are 17155 satellites which merge with a 

central subhalo over one timestep, while the number of satellites involved in a merger with 

another satellite over the same period is 509, a ratio of 40 : 1. The situation is similar 

at z = 0 even though the ratio decreases to 6 : 1 (1645 vs 290). In general, the likelihood 

of both merger rates slightly decreases at lower redshifts. This may reflect the slower 

build-up of structure (relative to the Hubble time) as the universe becomes dominated by 

vacuum energy. 

As we consider smaller subhalo masses, we see a decrease in the destruction rate (see 

the appendix for a discussion of overmerging effects due to insufficient mass resolution). 

This may be due to the inefficiency of dynamical friction for low mass structures. On the 

other hand, there is an increase in the satellite-satellite merger rate as the subhalo mass 

decreases. Presumably this is due to the increasing number of potential merger partners, 

reflecting the form of the subhalo mass function. Additionally, the abundance of both 
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types of mergers is similar in the range 10-3 < Msub/ Mhost < w-2. Unfortunately, at 

this point our results from low mass haloes become limited by resolution (i.e. we cannot 

identify smaller substructures) and the results from high mass haloes become dominated 

by Poisson noise (i.e. less than one merger event in the whole simulation). Over the range 

that is reliably covered, we can see no strong systematic differences in Fig. 5.5 between the 

results derived from host haloes of different masses. This agreement is quite remarkable 

given the relatively large dynamical range resolved in the simulations. 

A merger between two objects is not always a straightforward quantity to define 

in numerical simulations. The problem originates from the fact that any definition is 

intrinsically linked to the mass and time resolution of the simulation. For instance, if in a 

higher resolution simulation we identify the remnant of a subhalo down to a smaller mass 

threshold, then the mass ratio of the merger, as well as the time at which it happens, 

could, in principle, disagree with the values measured in a lower resolution simulation. 

Similarly, with better time resolution, one could follow the mass loss of a subhalo more 

accurately which, in principle, could also change the measured mass ratio of the merger. 

To avoid these problems, we have chosen to use in Fig 5.5 the mass of the satellite before 

accretion, rather than the mass at the moment of the merger. 

For all these reasons it is very important to note the agreement in Fig. 5.5 between the 

results from the MS (solid lines) and those from the HS (dashed lines). This agreement 

gives us confidence that our results are not sensitive to mass resolution. (Note that 

this is not true for subhaloes resolved with fewer particles as shown in the appendix.) 

Furthermore, the weak dependence of the quantities plotted in Fig. 5.5 on host halo 

mass confirms this conclusion. In practice, a subhalo of Msub/Mhost = 0.1 in a host of 

1012 h- 1 M0 exhibits the same behaviour as a subhalo of the same fractional mass but in 

a halo of 1014 h-1 M0 even though the latter is resolved with 100 times more particles. 

This is quite remarkable. 

One of the reasons for the insensitivity to mass resolution comes from our definition 

of a merger (see §5.2.2). We do not tag an event as a merger when we cannot identify 

the subhalo anymore, but rather when it has lost a fixed fraction of its most bound mass. 

This definition responds more to dynamical processes than to numerical ones. 

The implications of discrete time measurements are less clear for our definition of a 

merger. As an example, consider the case of very poor time resolution, and a halo that is 

just about to fall into a larger one. If tidal forces stripped off more than 95% of its mass 

before the next snapshot, then we would have identified this event as a merger. On the 
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other hand, if the time resolution were good enough, we could have identified the subhalo 

at intermediate stages, updating its mass and the corresponding most bound 10 percent. 

As long as stripping does not occur on a timescale much shorter than the time resolution, 

it is even possible to imagine that the line of descendants continues indefinitely. However, 

since a merger is not a discrete event, better time resolution does not necessarily imply a 

more accurate determination of a merger. With infinite time resolution, we would follow 

most of the merging process down to the point when mass resolution becomes important, 

i.e. every subhalo disruption would be caused by lack of mass resolution. 

However, the typical timescale for dynamical friction and tidal disruption is Trric "'tH 

for Msub/Mhost "'0.1 - 0.2 (Jiang et al., 2008), i.e. much longer than the time spacing 

of our simulation outputs ("' 300Myr). Furthermore, sub halo mergers seem to take place 

very fast. Both these factors suggest that time resolution is not an issue for this study. 

In fact, we have checked that our results do not change if we choose snapshots that are 

twice as widely spaced as those used to build the merger trees. Nevertheless, we advise 

the reader to keep these limitations in mind. 

5.4.2 Characterization of subhalo-subhalo mergers 

In most cases the subhalo-central merger occurs very close to the potential minimum of 

the host halo. The spatial location of satellite-satellite mergers, on the other hand, has a 

very distinctive distribution. In the following subsection we investigate this further. 

5.4.2.1 Radial distribution of satellite-satellite mergers 

First, in Fig. 5.6 we look at the spherically averaged radial distribution of satellite-satellite 

mergers. The figure shows the number density of mergers, relative to the mean density 

of subhaloes within r2oo, as a function of the distance to the centre of the halo. We also 

display, as dotted lines, the distribution of all the substructures from the MS1
. 

At every redshift plotted, the radial distribution of mergers is proportional to the 

radial distribution of subhaloes. This implies that most of the mergers between subhaloes 

1 At first sight, the distribution of all substructures seems to disagree with the results of Section 5.3.3. 

Since the subhalo population is dominated by small mass objects, one would naively expect the distribution 

of all substructures to follow that of the smallest subhaloes; as seen in Fig. 5.3, this has a slope which is 

always negative. However, in practice, the dominant effect is the high abundance of low mass host haloes 

in which only massive substructures can be resolved. As a result, the distribution of all subhaloes in the 

MS resembles the distribution of the most massive substructures 
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do indeed occur in the outer regions of the host halo. Note that in these regions the back­

ground density is lower than in the inner regions, making it easier to identify subhaloes. 

For this reason, we can follow satellite-satellite mergers down to structures resolved with 

50 particles, as opposed to the minimum of 200 particles we require for central-satellite 

mergers. 

Our results do not appear consistent with the naive expectation from a gas kinetic 

theory approach that the number density of mergers should be proportional to the number 

density of subhalo pairs, i.e Rmerge <X n;ub· This discrepancy indicates that most of 

the satellite-satellite mergers do not occur because of random encounters between two 

unrelated substructures. We investigate this idea further in the following subsection, 

where we look back at the orbits of the subhaloes that merge. 

5.4.2.2 Orbits of merging satellites 

Fig. 5. 7 shows the distribution function of the separation angle (} between the progenitors 

of subhaloes involved in a merger. The angle is measured from the centre of the host halo 

in which the merger is going to take place, at the last snapshot in which both subhaloes 

were identified outside the halo that later hosts the satellite-satellite merger. It thus 

represents the angle between the subhaloes at the time they fall into the host halo. The 

first point to note is that the distribution seems to be universal in the sense that it is 

roughly independent of the mass of the host halo. (We have also checked that it is roughly 

independent of redshift.) However, the most important feature is that the distribution is 

clearly dominated by small separation angles. About 65% of the mergers occur between 

subhaloes that were separated by less than 30 deg at the moment of accretion. (This 

percentage increases to 73% for an angle of 43 deg.) This demonstrates that the mergers 

are mostly between two or more systems that were already dynamically associated before 

they fell into the larger system. If the gas kinetic theory approach of Makino and Hut 

(1997) applied to this case, then the mergers would be between subhaloes on random 

orbits, and we would expect a more uniform distribution in cos(}. (It would not be 

completely uniform since the subhalo population is not isotropic, as shown in Fig. 5.4.) 

More information about the orbits of merging subhaloes is given in Fig. 5.8, where 

we display three representative examples of the two most common configurations of a 

satellite-satellite merger. These examples correspond to real sequences found in the MS. 

The plot tracks the position of substructures up to the snapshot of the merger (which 

happens at the rightmost position), starting on the left, 9 snapshots earlier. We show 
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right. The black circles correspond to the halo that hosts the merger, 

while red and green circles show the positions of the satellites involved 

in the merger. The circles' radii are proportional to the half mass radius 

of each substructure. Class 1: in this case the satellites were part of two 

separate haloes (red and green circles) before they were accreted into a 

larger halo (black circles). Class 2: both substructures belonged to the 

same halo before it was accreted into the larger structure which hosts 

the merger. 
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as a black circle the halo that hosts the satellite-satellite merger and, as green and red 

circles, the progenitors of the subhaloes involved in the merger. The red circle at the end 

of the sequence indicates the subhalo resulting from the merger. The radii of the circles 

are proportional to the half-mass radius of the subhalo. 

The two most common configurations are as follows: Class 1: the progenitors of the 

subhaloes correspond to two separate haloes which were accreted at approximately the 

same time. Note that, as shown by Fig. 5.7, these haloes were spatially close at the time 

of accretion. Class 2: the merger occurs between two substructures that were part of the 

same halo before it fell into the host halo. In other words, there is a halo that contains 

two substructures which survived the accretion and subsequently merged. The merger 

event which started outside the main halo is completed inside it, as a subhalo-subhalo 

merger. 

Most subhalo mergers occur between substructures that are accreted close together 

both in time and location. Generally, they were already part of the same system before 

it was accreted into a larger one, or were part of two separate haloes that were about 

to merge. This is probably a requisite for a subhalo merger to occur. The potential 

generated by the other satellite has to be at least comparable to that of the main halo. 

Hence, satellites accreted at different angles will follow relatively independent dynamical 

histories and are much less likely to merge. 

5.4.2.3 The mass ratio of subhalo mergers 

In Fig. 5.9, we inspect the relative masses of the satellite subhaloes which merge. The 

x-axis indicates the mass of the smaller subhalo and the y-axis shows the mass of the 

larger one. Interestingly, we find that, for the range of host halo masses plotted, the 

most common merger is that between two substructures of dissimilar masses, Msub,l rv 

10 x Msub,2 . Note that this trend is contrary to the naive expectation whereby the mergers 

are simply proportional to the abundance of substructures, in which case the maxima 

would be located around the line Msub,l = Msub,2. However, it is roughly consistent 

with the idea that substructure mergers happen between two structures that were part 

of the same halo before accretion. For instance, if the most common merger happens 

between the main subhalo and its most massive substructure, then, as we have seen, we 

would expect to find a mass ratio of 1:25 (see Fig. 5.2) and the maxima of Fig. 5.9 along 

Msub,l rv 10 X Msub,2 
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5.4.3 Merger probability since accretion 

Finally, in Fig. 5.10 we plot the fraction of subhaloes at a given redshift that have had a 

merger with another satellite subhalo since accretion into the current host halo. The top 

panels show mergers between satellites with a mass ratio greater than 0.03, i.e. in which 

the less massive subhalo has, at least, 3% of the mass of the larger one. In the bottom 

panels we consider mergers between subhaloes with more similar masses: the minimum 

mass ratio is 0.3. 

The fraction of current subhaloes which have experienced a merger in the past is 

a quantity strongly affected by resolution. For instance, in the history of a subhalo 

resolved with 1000 particles, because of our 200 particle mass cut on subhaloes, we can 

only record mergers with other subhaloes which account for at least one fifth of the final 

subhalo mass. On the other hand, if our current subhalo is resolved with 10000 particles, 

then a much wider range of merger mass ratios can be tracked. These considerations are 

further complicated by the fact that we expect the measured mass of a subhalo to be less 

than the mass of its progenitors at infall, due to tidal disruption and stripping; hence an 

object that is below our 200 particle limit at a particular redshift could have been above 

this mass cut when it experienced the subhalo-subhalo merger. 

To improve statistics, whilst at the same time attempting to avoid building a resolution 

dependence into our results, we relax the particle number constraint on subhaloes for this 

exercise. At the redshift a subhalo is identified (i.e. the redshift plotted in Fig. 5.10), 

we consider subhaloes of 30 particles or more. At the redshift of the subhalo merger, the 

progenitors must both have 50 particles or more to be counted. 

Fig. 5.10 shows that the probability of a subhalo merger is constant for subhaloes of 

different mass. About 1% percent of subhaloes have had a merger with another subhalo 

with a mass ratio > 0.3. For a mass ratio > 0.03, this fraction increases to ,....., 10%. We 

also note that these fractions show a weak decrease with redshift. 

5.5 Summary and conclusions 

We have used the Millennium simulation, together with a simulation which has 10 times 

better resolution but about 100 times smaller volume, to investigate the general properties 

of the substructures within dark matter haloes, including their merger rates. Our main 

findings can be summarized as follows: 

In agreement with previous studies, we find that the mass function of low and interme-
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diate mass subhaloes follows roughly a power-law. However, we also find an exponential 

cut-off in the mass function at high subhalo masses. We have provided an expression, 

Eq. 5.2, that describes this behaviour accurately. We also detect a small but systematic 

dependence of the number of subhaloes on the mass of the host halo. On average, at a 

given fractional mass, Msub/ Mhost, high mass haloes contain more low and intermediate 

mass substructures than their less massive counterparts. In contrast, we find evidence 

that high mass haloes contain fewer high mass subhaloes than do low mass haloes. In 

spite of this, the fractional mass of the first, second and third most massive substructures 

is insensitive to the mass of the host halo and of the redshift. 

We confirm that the radial and angular distributions of subhaloes are roughly indepen­

dent of the host halo mass and redshift. However, we find that the radial distribution does 

depend on the subhalo mass relative to that of the host halo. The subhalo distribution is 

less concentrated than the dark matter, but the radial distribution of low mass subhaloes 

tends to be more concentrated than that of high mass subhaloes. This difference can be 

understood as resulting from the different efficiency of dynamical friction in subhaloes of 

different mass. On the other hand, these discrepancies between the radial distributions 

of low and high mass subhaloes disappear in the outer parts of the halo, as it have been 

seen in recent ultra-high resolution simulations of galactic halos (Springe! et al., 2008). 

The angular distribution of subhaloes tends to be aligned perpendicular to the spin 

axis of the host halo. This is probably due to an anisotropic mass accretion - mergers 

happen preferentially along filaments. The alignment is strong for the most massive 

subhaloes, but is much weaker for low mass substructures since, on average, they have 

spent a few orbital times inside the halo which would randomize their orientation. 

We have found that satellite-satellite mergers do occur. Over most of the mass range 

resolved in our simulations, they are subdominant when compared with mergers between 

satellites and the central sub halo. However, we see some indication that satellite-satellite 

mergers dominate for the lowest mass subhaloes (Msub/Mhost < w-3). As many other 

subhalo properties, the merger rates appear to be a function of the fractional subhalo 

mass only, and are independent of the particular host or subhalo mass. 

The radial distribution of satellite-satellite subhalo mergers closely follows the radial 

distribution of subhaloes. This implies that most of the subhalo mergers happen in the 

outer layers of the halo. For the most part, these mergers involve subhaloes that are 

already dynamically associated before accretion into the main halo, i.e. they were either 

part of the same halo, or of two separate haloes that were accreted at similar times and 
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locations. At every redshift, most of these subhaloes which subsequently merged were 

closer together than 30 deg as seen from the centre of the halo that hosts the merger, at 

the time they fell in. 

Finally, we find that a small fraction of the high-mass subhaloes has experienced a 

merger with another subhalo since accretion into the current host halo. The values depend 

on the mass ratio of the merger, but vary from a few percent for mass ratios greater than 

0.3 to rv 10% for mass ratios greater than 0.03. 

In spite of using some of the largest simulations to date, our results could still be 

affected to some extent by numerical resolution. Due to the rarity of the events we are 

trying to study, it is difficult to find a range of substructure and host halo masses where 

we have, at the same time, (i) enough particles to resolve substructures well, (ii) enough 

haloes to distinguish real trends from cosmic variance, and (iii) enough subhaloes to 

establish their properties and dynamics. Fortunately, as we have shown, many properties 

can be described as a function of only the fractional subhalo mass. In these cases we 

are observing the same system resolved with many different numbers of particles, so it 

is reassuring that we find the same trends for different host halo masses. This gives us 

confidence that these results are robust. On the other hand, quantities which scale with 

halo mass are much less reliable and could still be affected by resolution effects. Much 

larger simulations, currently beyond reach, will be needed to check them. 

Appendix: numerical effects 

Numerical artifacts can pose serious problems in obtaining a robust estimate of different 

properties of the population of subhaloes. For instance, two-body encounters, particle 

heating, or force softening could easily dilute substructures that are not resolved with 

enough particles (Moore et al., 1996). These problems translate into an overestimation 

of the number of satellite-central subhalo mergers in each timestep. 

Such a feature is clear in Fig. 5.11, which is similar to Fig. 5.5, but for satellite-central 

mergers only and including subhaloes with less than 200 particles. For these objects, we 

can see a strong disagreement between the merger rate of substructures in the simulations 

with different resolution which is manifest as an upturn in the curves. However, the upturn 

disappears for subhaloes with N > 200 which is the limit set in this chapter. 

An overestimation of the destruction rate also has implications for other quantities 

such as the abundance and radial distribution of subhaloes. For instance, the subhalo mass 
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Figure 5.11: The mean number of satellite-central subhalo mergers per 

subhalo and per unit of time as a function of the subhalo mass. The 

solid lines show the results from the MS while the dashed lines show the 

result from the HS. The coloured lines represent the results from haloes 

of different mass, as indicated by the legend. Note that we display results 

from subhaloes with 20 particles or more. The upturn in Nm for low 

mass subhaloes is due to the inclusion of subhaloes resolved with fewer 

than 200 particles. Once the N > 200 criterion is applied, t he upturn 

disappears as shown in Fig 5.5. 
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function shows a cut-off at low masses compared with the expected power-law behaviour 

when we include subhaloes resolved with fewer than '"" 50 particles. (This quantity is 

less affected since most of the haloes are in the outer layers of the halo.) On the other 

hand, the inner region of the radial distribution is more sensitive to these effects. Once 

subhaloes with fewer than 200 particles are included in Fig. 5.3 the distribution becomes 

less centrally concentrated. 

Our convergence study indicates that 200 particles is the limit below which results are 

unduly affected by resolution. This is why we have adopted this minimum particle count 

throughout this chapter, except when otherwise stated explicitly. This choice should 

minimize finite-resolution effects. 



Chapter 6 

6.1 Introduction 

Extending the dynamic 

range of low resolution 

dark matter simulations 

Ever since the first measurements, the clustering of galaxies has been recognised as a pow­

erful tool to investigate some of the most fundamental questions in cosmology and galaxy 

formation. After many years of advances on both observational and theoretical fronts, 

accurate information regarding the total matter content in the Universe, the amount of 

baryons, the formation and evolution of galaxies, and even the nature of gravity, has been 

extracted successfully from the analysis of the three dimensional distribution of galaxies. 

In spite of this enormous contribution to physical cosmology, the usefulness of the 

galaxy distribution is far from over. New exciting windows have bee proposed to explore 

the nature of the dark energy and primordial non-Gaussianities, such as the imprint of 

the Baryonic Acoustic Oscillations (BAO, e.g. Eisenstein et al., 2005; Cole et al., 2005; 

Gaztanaga et al., 2008), the form of redshift space distortions (Guzzo et al., 2008; Perci­

val and White, 2008) and the clustering amplitude of dark matter haloes (Seljak, 2008; 

Matarrese and Verde, 2008; Carbone et al., 2008). In addition, higher order clustering 

could provide a fresh new view of the cosmological issues mentioned above. 

A key step in achieving the proposed goals is to obtain a complete understanding of 

the systematic and statistical errors associated with each clustering measurement. An 

accurate treatment in the error estimations of not only the survey geometry and number 

density of objects, but of cosmic variance, nonlinear evolution, scale dependent bias, 

redshift-space distortions, and discreteness effects, rather than being an extra level of 

sophistication, become essential ingredients in modern data analysis. The importance 

of this is accentuated by the imminent arrival of the ever larger galaxy surveys (e.g. 
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Pan-STARRS, Dark Energy Survey, EUCLID). 

One of the primary ways to study errors is through an accurate model of the ex-

periment itself. For the case relevant here (the spatial distribution of galaxies), this is 

optimally achieved in a three step process. First, the halo clustering is predicted by 

following the evolution of dark matter particles in an N-body simulation. Second, the 

properties of galaxies within these haloes are predicted using empirical or semi-analytical 

recipes (Baugh, 2006). And lastly, the appropriate flux limit, sample selection, redshift 

completeness and the geometry of the survey need to be applied to the catalogues. The 

combination of these steps results in a realistic mock of the observational experiment 

from which different sources of uncertainties can be studied. Unfortunately, the first 

step in this process is computationally very demanding, particularly when large scales 

are probed. There are two main reasons: i) The large number of independent N-body 

simulations needed to asses the errors. An adequate estimation of the variance would 

require several dozens of realizations of the density field (e.g. a 10% error on the variance 

for a Gaussian distribution requires "' 50 realizations), and an order of magnitude more 

simulations to robustly compute the full covariance matrix. ii) The huge dynamic range 

required to resolve haloes which are likely to host the galaxies observed. For instance, 

in box sizes of a few gigaparsecs, only cluster-mass haloes can typically be identified ro­

bustly (Fosalba et al., 2007; Teyssier et al., 2008). Although algorithms and computer 

hardware are constantly improving, finite computational resources impose a limit on N­

body simulations, and carrying out ensembles where future experiments can be recreated 

is currently a prohibitively expensive computational price. 

Several authors have devised a number of different algorithms to predict galaxy clus­

tering efficiently and to overcome the difficulties stated above. Amongst the simplest are 

realizations of Gaussian or log-normal density fields (e.g. Mesinger and Furlanetto, 2007; 

Percival et al., 2001). More complicated ideas have been implemented using second order 

perturbation theory (Monaco et al., 2002; Scoccimarro and Sheth, 2002). In a different 

approach, the use of dark matter particles to mimic galaxy clustering has been followed in 

several studies by using a prescription based on the local density (Cole et al., 1998; Cabre 

and Gaztanaga, 2008). However, none of them has achieved completely the combination 

of simplicity and accuracy desirable when modelling a given cosmological experiment. 

The objective of this chapter is to present a proof of concept of a new scheme to create 

efficiently mock catalogues of the large scale distribution of galaxies. Our approach uses 

the density field extracted from low resolution simulations to predict a halo population 
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whose properties are derived from higher resolution simulations. In §6.2 we provide details 

of our method along with the theoretical motivation. In §6.3 we apply our algorithm to 

an ensemble of N-body simulations to investigate the limitations of the procedure. The 

haloes created by this algorithm can be combined with higher mass counterparts, which 

are identified directly in the low resolution simulations, to extend the range of halo masses 

included in the simulations. The resulting hybrid halo catalogue can be fed into a semi­

analytic galaxy formation model or combined with a halo occupation distribution (HOD) 

model from which the final mock galaxy catalogue is generated. To illustrate the feasibility 

of the idea, our procedure is shown in action in §6.4 where we use a HOD to predict the 

errors in the clustering of LRGs. Finally, in §6.5, we present a brief summary of our 

findings. 

6.2 Method 

Here we present the procedure that we employ to generate a halo population for low 

resolution dark matter simulations. In the first subsection we give the motivation and 

main ideas behind the method (§6.2.1) and in the second subsection (§6.2.2) we detail the 

steps to be followed for a practical implementation. 

6.2.1 Theoretical Motivation 

Assuming that the abundance of haloes at a given position is a function of the local 

underlying nonlinear dark matter density (cf. §4.2), we can write the smoothed density 

field of haloes of mass M as: 

(6.1) 

where fM is a smooth and arbitrary function (in principle different for haloes of different 

mass), the 6(x) is the density contrast defined as p(x)j(p(x)) - 1 and the subscripts h 

and dm refer to the density field of haloes and dark matter respectively. R is the scale 

on which both density fields are smoothed. 

On large enough scales, the dark matter density approaches the mean value, l&dm(xiR)I « 
1, which allows us to express Eq. 6.1 as a Taylor series about 6dm (see e.g Fry and Gaz­

tanaga, 1993): 
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~ bk(M) k 
8h(xiR, M) = ~ ~8dm(xiR). 

k=O 
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(6.2) 

Note that the coefficients bk are usually referred to as the bias parameters. In particular, 

b1 is also known as the linear bias. Now it is straightforward to write down an expression 

for the expected number density of haloes in a given mass in a region in which the dark 

matter density field has been smoothed : 

where the brackets () represent an average over all different smoothing regions. As we 

will discuss below, it is possible to use this expression to construct a halo density field 

with the right abundance, clustering properties expected in a dark matter simulation. 

6.2.2 Implementation 

It can be seen clearly that the expected abundance of haloes at a given location (Eq. 6.3), 

is a function of 3 quantities: i) the dark matter density field at the same location, ii) the 

mean number density of haloes of the same mass and iii) the bias parameters. The core 

of our method is that it is possible to extract the dark matter density field directly from 

low resolution simulations and both the bias parameters and the mean number of haloes 

can be computed from a higher resolution N-body simulation. And, as a consequence 

of putting these ingredients together, a population of dark matter haloes, which spans 

an arbitrarily wide range of masses, can be easily created for low resolution dark matter 

simulations. 

This artificial population of haloes (which we will refer to as sub-resolution haloes) has, 

by construction, the right abundance and clustering on scales larger than the smoothing 

scale. In fact, not only the two-point statistics are reproduced but, in principle, the 

correct volume averaged higher order statistics are also present in the distribution of 

haloes (as can be seen from Eq. 6.2). 

There are, naturally, limitations in the sub-resolution halo catalogues. First, note that 

our expressions are only valid when c5ctm ~ 1 which sets, in practice, the minimum possible 

smoothing scale and ultimately, the smallest scale on which the clustering properties 

can be reproduced. Second, in a practical implementation, Eqs. 6.2 and 6.3 have to be 

truncated at a given order which creates two problems. i) As a natural consequence, 
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statistics of orders higher than the truncation can not be reproduced. ii) In regions where 

the dark matter density field is low, Eq. 6.3 could predict a negative number of massive 

haloes! e.g. to first order, b(M) > 1 and ddm < -1/b implies 6hh < -1. Consequently, we 

expect our procedure to break down for haloes more massive than M*. We will investigate 

these restrictions in more detail in the following sections when we present our algorithm 

in action. 

6.3 Results 

We now apply and test the procedure outlined in the previous section. In 6.3.1 we provide 

details of the implementation along with some general characteristics of the resulting halo 

catalogues. I section 6.3.2 we present three basic tests and a comparison with haloes 

identified directly in a high resolution N-body simulation. 

6.3.1 The sub-resolution halo catalogue 

Following the algorithm described in §6.2 we have computed a sub-resolution halo cat­

alogue for the three outputs (z = 0, 0.5 and 1) of each of the 50 simulations in the 

L-BASICC ensemble (see section 2.2.1 for details of these simulations). Note that one of 

these simulations simulates exactly the same initial density field as the BASICC simulation 

described in Chapter 2. 

The application of our algorithm consists of three basic steps. The first one is the 

construction of the dark matter density field in the simulations. We have achieved this by 

placing particles on a grid using the nearest grid point mass assignment scheme (Hackney 

and Eastwood, 1981). We use a grid of 2563 cells (the cell size is 5.2 h-1 Mpc) which is 

set so that (62) "" 1. We therefore expect to obtain an inaccurate estimation of the halo 

clustering on scales smaller than a few grid cells. 

The next step is to tabulate the bias and number density of haloes as a function of 

mass. We extract such relationships from the higher resolution BASICC simulation (see 

§2.2) in logarithmic mass bins of width 6.log10 M = 0.426. Both quantities are computed 

by smoothing the haloes and dark matter field in 2563 cells and then averaging the values 

across the grid. 

Finally, these three quantities are brought together to compute the expected number 

density of haloes on every point of the grid. There are several details of the placement of 

haloes that are worth noting. i) The actual number of haloes in each cell is generated from 
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a Poisson distribution with the expectation value as the mean. ii) The haloes are placed 

randomly within each of the smoothing volumes, each of them has a peculiar velocity 

equal to the mean velocity of the dark matter particles within the same cell. iii) Eq. 6.3 

has been truncated to linear order. 

As a result we have generated 50 independent sub-resolution halo catalogues at three 

redshifts. Each contains approximately 17 million haloes with mass between 5.48 x 

1011 h-1M 0 and 1 x 1016 h-1M 0 at z = 0. In the following subsection we will explore the 

properties of the catalogues. 

6.3.2 Abundance and clustering 

In this subsection we compare the abundance and clustering strength in our sub-resolution 

halo catalogues with the same quantities derived from haloes directly identified by a FoF 

algorithm in a high resolution simulation (for details of the FoF catalogues refer to §2.2). 

In the upper panels of Fig. 6.1 we show the differential halo mass function from 

our catalogues (blue filled circles) and that from haloes directly identified in the BASICC 

simulation. In the lower panels we can see in greater detail the differences between 

the two populations. As expected, this figure shows excellent agreement in the number 

density of low mass haloes. The difference is smaller than 10% for objects of mass M < 

7.51 x 1013 h-1 M 0 at z = 0, M < 2.7x 1013 h-1 M 0 at z = 0.5 and M < 1.14x 1013 h-1 M 0 

at z = 1. On the contrary, there is a strong disagreement at the high mass end. This is 

likely to be caused by the fact that Eq. 6.2 is inconsistent for highly biased haloes in low 

density regions where t5h < -1 ( the problem is alleviated in the low mass regime where 

b ;S 1). As a consequence of haloes of a fixed mass become more biased with increasing 

redshift, the behaviour of the halo mass function is reasonable for a reduced range of 

masses at high redshift. 

We extend the comparison by investigating the clustering strength in the sub-resolution 

catalogues. Each column of Fig. 6.2 displays the linear bias parameter as a function of 

the peak height, Oc/a(M, z) on the bottom axis and as a function of mass on the top axis. 

Note that we have computed the bias by smoothing the halo and dark matter density field 

in cells of size 167 h-1 Mpc, i.e. b = (t5hh)/(t5mm)· As in the previous plot, the vertical 

lines indicate the maximum halo mass in which the result from the sub-resolution haloes 

agrees to within 10% with that of the resolved haloes. Similar to the behaviour seen in 

Fig. 6.1, at the high mass end, the sub-resolution haloes tend to fail to reproduce the 

properties seen in the resolved FoF catalogues, which suggests a common origin for the 
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misbehaviour seen in the abundance and clustering of sub-resolution haloes. Note, that 

the 10%-difference mass limit is slightly smaller than that derived from the mass function 

at; z = 0 Mmax = 5.23 x 1013 h-1 M8 while at z = 0.5 and z = 1 4.3 x 1013 h-1 M8 and 

6.73 x 1012 h-1 M8 respectively. 

Finally, we explore the spherically averaged clustering of the halo catalogues in red shift 

space. Fig. 6.3 shows the ratio between the linear bias parameter measured in redshift 

space and that measured in real space for the sub-resolution haloes as well as for the FoF 

haloes. In linear perturbation theory, this quantity is equivalent to the square root of the 

Kaiser "boost factor" (Kaiser, 1987): 

(6.4) 

where (:J = Om(z)0·6 jb and b is the linear bias parameter. This expression is over plotted 

in Fig. 6.3 for comparison. 

Despite the scatter between the sub-resolution halo catalogues, we find reasonably 

good agreement between the theoretical expectations and the results from the BASICC 

haloes. Given the results presented in previous figures, it is not surprising to see the 

differences for haloes corresponding to high peaks. Nevertheless, our scheme to assign 

peculiar velocities to haloes performs satisfactorily in the regime where the abundance 

and clustering in real space are properly imprinted in the sub-resolution catalogues. 

6.4 Application: Large scale clustering of Luminous Red 

Galaxies 

Recently, the clustering of Luminous red galaxies (LRG) has been of great importance in 

probing different cosmological scenarios. The low number density but strong clustering 

of these galaxies means that the spatial distribution of LRG can be mapped over vast 

regions of the sky at low observational cost. This enables tight constraints to be placed on 

cosmological parameters, in particular by measuring the BAO feature (Eisenstein et al., 

2005; Gaztanaga et al., 2008; Cabre and Gaztanaga, 2008). Unfortunately, there is still 

an incomplete understanding of the uncertainties associated with their clustering. 

Semi-analytical modelling and observational evidence suggests that LRGs populate 

not only very massive haloes, but also they can be found in haloes with masses as small 

as 1011 h-1 M 8 (Almeida et al., 2008; Wake et al., 2008). Therefore, the modelling of 

LRG clustering, and the BAO feature imprinted on it, requires huge simulations with 
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considerable dynamic ranges in mass. Although such extremes can be achieved in modern 

supercomputers, the computational cost is enhanced to inaccessible levels when studying 

uncertainties or subtle features present in the clustering (such as small scale dependent 

bias) due to the multiple realizations required. 

In this section we approach this problem with the help of the algorithm that we have 

described in this chapter. Specifically, we have generated 50 LRG catalogues to compute 

the mean and variance of the tw(}-point correlation function. Details of the creation of 

the LRG catalogues as well as the clustering measurements are presented in the following 

subsections. 

6.4.1 The haloes and LRG catalogues 

The starting point in the creation of our LRGs mock catalogues is to predict the abundance 

and spatial distribution of the dark matter haloes that are likely to host such galaxies. 

For this purpose, we have created 50 hybrid halo catalogues, each of them spanning 4 

orders of magnitude in mass within a volume of 2.4 h-3Gpc3 at z = 0.5. 

The halo catalogues are hybrid in the sense that they consist of two types of haloes. 

High mass ones (M > 1.7 x 1013 h-1 M0 ) correspond to objects identified directly by a 

FoF algorithm, with at least 10 particles, in each of the L-BASICC simulations. Then, 

smaller masses sub-resolution haloes (5.48 x lOll < M/(h- 1 M0 ) < 1.7 x 1013) were 

created using the algorithm described in §6.2. In this way, we are effectively extending 

the dynamic range of the L-BASICC simulations towards lower masses. Combining the 

two types of haloes also eliminates the need to reproduce the troublesome high mass end 

in the sub-resolution catalogues. 

Once we have generated the catalogues that contain all the haloes that are expected 

to host LRGs, we use a Halo Occupation Distribution (HOD) model to determine how 

many LRGs on average populate each dark matter halo (for a review on the halo model 

see Cooray and Sheth, 2002). Following Wake et al. (2008) we can express the mean 

number of central LRGs, Nc as a function of the host halo mass, Mhalo as: 

(6.5) 

and the mean number of satellite LRGs, Ns as: 

(6.6) 
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Consequently, the total number of LRGs has a expected value: 

(6.7) 

where a, Mmin and M1 are, in principle, free parameters but that can be constrained 

either by observations or by semi-analytic modelling. Indeed, Wake et al. (2008), using 

the measured clustering of 2SLAQ LRGs, found that the numbers that best fit Mmin, M 1 

and a are 2.19 x 1013 h- 1 M 0 , 2.82 x 1013 h-1 M 0 and 1.86 respectively. In the second step 

of our modelling we have assumed that in Eq. 6.5 and 6.6 follow a Poisson distribution 

which combined with the values from Wake et al. allow us to place LRGs within our 

hybrid catalogues. Note that the alternative approach of applying a full semi-analytic 

modelling to the hybrid halo catalogues could also have been taken. 

Each of our final catalogues contain 398963 galaxies, or equivalently, a number density 

of 1.66 x 10-4h3 Mpc-3. Even though, on average, there is less than one LRG per sub­

resolution halo, jointly they host a total of 114243 galaxies which represents the 28% of 

whole LRG sample. Fig. 6.4 shows the resulting mean number of LRG in our catalogues 

per halo (top panel) as well as the total number LRGs (bottom panel), both as a function 

of the mass of the host halo. 

6.4.1.1 Correlation Function of LRG 

At this point, we are finally in a position to investigate the clustering of LRGs. We mea­

sure the correlation function of our catalogues following the procedure outlined by Barriga 

and Gaztaiiaga (2002), Eriksen et al. (2004) and Sanchez et al. (2008). This approach is 

considerably more efficient than a direct pair count when computing correlation functions 

on large scales in catalogues containing a large number of particles. 

In brief, the method consists of a pixelization of the density field from which the 

spherically averaged correlation function can be estimated as: 

(6.8) 

where t5i = (ni - (n) )/ (n) is the density fluctuation in the i-th bin of the grid. We have 

chosen Ngrid = 256. This method gives an accurate estimation of the correlation function 

for scales larger than a few grid cells. 

Fig. 6.5 shows the result of applying this procedure to compute the correlation function 

for LRGs in each of our 50 catalogues. The top panel displays the measurements in real 
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The triangles show the correlation function measured from dark matter 

samples diluted to match the number density of the LRG catalogues. To 

allow a full comparison, we have normalized each measurement (and the 

respective variance) so that (e(r)) = 1. Note that we display e(r) X r 2·5 

in the y-axis to enhance the acoustic peak. 
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Figure 6.6: The variance in the 2-pt correlation function measured from 

50 LRGs catalogues in real space (top) and redshift space (bottom) at 

z = 0.5. We also plot two theoretical estimates for the variance as dotted 

and dashed lines. 
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space while the bottom panel shows the results in redshift space. In both cases the mean 

and variance of the measurements are indicated by the filled circles and error bars. In 

order to contrast our results, we have also measured the correlation function for a set of 

dark matter particles at z = 0.5 from the L-BASICC simulations. Each of these dark matter 

samples has been diluted to have the same number density as our LRG catalogues. Note 

that they-axis displays e X r 2·5 instead of e, in this way the acoustic peak is highlighted. 

In addition, the results (including the errors) in both real and redshift space have been 

renormalized as described in the figure caption. 

By comparing the correlation function of LRGs with that of dark matter we can see 

the effects of galaxy bias. As it is clear from Fig. 6.5 that the scaled measurements agree 

fairly well with each other, the LRG bias is roughly scale independent over the range of 
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Figure 6.7: The normalized covariance matrix from our ensemble ofLRG 

mock catalogues (lower triangular region) and from an ensemble of DM 

catalogues with the same number density as the LRG (upper triangular 

region). The left plot show displays the results in real space while the 

left displays the covariance matrix in redshift space. 

separation plotted here. Nonetheless, there is a small dependence on scale in real space 

which seems to be accentuated in redshift space. However, the discrepancy can not be 

measured with enough significance due to the magnitude of the errors associated with the 

simulation volume. Further investigation of this issue is needed. 

In Fig. 6.6 we compare the variance measured from our ensemble of LRG catalogues 

(filled circles) with that measured from the diluted dark matter samples (triangles). The 

dotted and dashed lines show two theoretical predictions for the variance based on power 

spectrum measurements (see Sanchez et al. , 2008, for more details). 

We extend this comparison in Fig. 6. 7 where we display the normalized covariance 

matrix (Cohn, 2006; Smith et al., 2008), C~(r, r') = ((e(r)-e(r )) (e(r') -e(1·') )) I a(r )/ cr(r') , 

in real space (left hand side plot) and in redshift space (right hand side) . The above 

diagonal parts of the matrices show the measured covariance for the diluted dark matter 

samples. The below diagonal parts show the covariance for the LRG catalogues. 

In general we find that the theoretical predictions by Sanchez et al. (2008) and the 

sample of dark matter provide a fairly good description of variance in the LRG sample. 
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On the contrary, the predictions of Smith et al. (2008) overestimate the dispersion in our 

measurements, which, as discussed in Sanchez et al. (2008), appears to be due to the 

underestimation of the binning in the correlation function measurements (which reduces 

the variance between adjacent scales). 

In addition, the non-diagonal parts of the covariance matrix show a significant dis­

agreement between the LRG and dark matter samples. In particular, our LRG catalogues 

show stronger off-diagonal correlations than dark matter. This could originate in one of 

several factors. One possibility is the contribution of the higher order moments of the 

halo density field. As we showed in Chapter 4, the higher order moments of dark matter 

and haloes are considerably different. As an example, recall that even if the dark matter 

density field is Gaussian (i.e. the higher moments are zero), the dark haloes will have 

non-zero higher order correlations which will contribute into the covariance matrix. Of 

course, the observed disagreement in the covariance matrix could also have been intro­

duced artificially by our algorithm. Both of these issues require further investigation. 

6.5 Conclusions 

Due to the large areas of the sky that future surveys are expected to map, the derived 

information regarding galaxy clustering will be of great accuracy and it may even perform 

the task of distinguishing between different models for gravity or help to unveil the nature 

of dark energy. It is therefore fundamental to understand the systematic and statistical 

errors associated with the measurements. 

In this section we have illustrated the feasibility of a new scheme that allows a rapid 

and efficient creation of galaxy mock catalogues. Our method uses the dark matter 

density field from low resolution N-body simulations combined with the bias parameters 

and mass functions extracted from higher resolution simulations, to predict statistically 

the expected density field of dark matter haloes. Since low-resolution simulations are 

relatively easy to generate, our procedure allows the investigation of uncertainties in 

both the measurements themselves and in the procedures employed to extract useful 

information from the data. 

During this chapter we have shown that, on large scales, the generated halo population 

behaves fairly well over a considerable range of masses. At z = 0 in particular, the 

abundance and clustering strength in both real and redshift space, of haloes less massive 

than 7.51 x 1013 h-1 M0 agree within 10% with those computed directly from FoF haloes 
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identified in a high-resolution simulation. For high mass haloes or at higher redshifts, our 

procedure performs less satisfactorily. 

An interesting application of our scheme is to the creation of hybrid catalogues. High 

mass haloes can be extracted directly from the cosmological simulations whilst low mass 

ones can be artificially generated. In this way, we can employ our algorithm in the 

regime where it works best. As an example, we have created 50 such catalogues from 

the L-BASICC simulations which are combined with a HOD for LRGs. From the resulting 

galaxy catalogues we were successfully able to predict their mean correlation function 

along with the full covariance matrix. We found that the variance in a dark matter 

sample as well as analytical estimates are in agreement with measurements from the 

LRG catalogues. In spite of this, significant differences in the off-diagonal terms of the 

covariance matrix were also found. 

The algorithm presented here can be improved in a number of ways. Areas which could 

be improved include the way we compute the dark matter density field, the placement of 

haloes within the smoothing volume and the inclusion of higher order bias terms. Also 

extended features can be incorporated such as exclusion effects between haloes, or the 

implementation of a new function that better encapsulates the relationship between the 

halo and dark matter density field. We plan to address these ideas in the future. With 

these improvements, the technique presented in this chapter or similar ideas will hopefully 

help to improve the understanding and treatment of uncertainties in observations and, 

therefore, allow the full potential of measurements of the large scale distribution of galaxies 

to be reached. 



Chapter 7 

7.1 Introduction 

The construction of a 

halo light-cone 

Comparing theoretical models with experiments is a fundamental part of science. In 

cosmology for instance, confronting models with the observed clustering properties of 

galaxies has been of enormous importance not only for the understanding of the galaxy 

formation process but also in distinguishing between different cosmological scenarios (e.g. 

Gaztanaga et al., 2008). Naturally, in order to correctly interpret the observations, a 

suitable and accurate theoretical model is desirable. 

When studying the clustering and other properties of objects in the Universe, the data 

is commonly compared with models that are evaluated at a single cosmic epoch. This 

procedure is justified when dealing with local or narrow band galaxy surveys which focus 

on a very restricted redshift range. In such cases, the properties and distribution of the 

observed galaxies evolve little over the depth of the survey. Hence the observations can 

be safely approximated as a population of galaxies that resides at the median redshift of 

the observations. 

There are, however, several current and future surveys that are not limited to a small 

redshift range. Indeed, these experiments will observe galaxies over a considerable fraction 

of the age of the Universe. For instance, the DEEP2 survey has a principal redshift 

range of 0. 75 < z < 1.4 (Davis et al., 2007) and the main Pan-STARRS survey will 

detect galaxies up to redshift 1.2 (Cai et al., 2008). Furthermore, there are a number of 

observations, besides the clustering, that are sensitive to structure along the line of sight, 

e.g. the Integrated Sachs-Wolfe effect effect or gravitational weak lensing. 

In order to properly explore and understand such measurements, models are required 

where the variation of the spatial distribution and properties of galaxies with redshift 

are consistently taken into account. These models are usually referred to as light-cones 
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since objects appear in the catalogues when they cross the past light-cone of an observer. 

Several approaches have been made to construct these theoretical models (Yamamoto and 

Suto, 1999; Hamana et al., 2001; Blaizot et al., 2005; Kitzbichler and White, 2007; Munoz 

and Loeb, 2008). Amongst the most realistic are those derived from dark matter N-body 

simulations. In the following, I will briefly describe the algorithms used along with their 

advantages and disadvantages. 

The most straightforward way to construct a light-cone is to store the position and 

velocity of each dark matter particle whenever it crosses the light-cone of a fiducial ob­

server. This condition is checked on the fly between consecutive time-steps of the simu­

lation (Evrard et al., 2002). This approach generates an accurate description of the dark 

matter clustering. However, in practice there is a limit to the number of light-cones that 

can be generated, i.e. they cannot be built after the N-body simulation has finished. A 

further problem is the extra memory and CPU usage that building the light-cone adds to 

the calculation, which reduces the mass and time resolution of the simulation itself. 

One way to overcome the shortcomings of the approach of Evrard et al. is to store 

the position and velocity of each particle at discrete times (snapshots). Then the con­

struction of a light-cone is carried out by interpolating in post-processing the trajectory 

of particles between these snapshots. Since this is done a posteriori, it does not add extra 

hardware requirements to the simulation. In spite of this advantage, the high velocities 

and eccentric orbits of dark matter particles within a halo cause the interpolated posi­

tions to be inaccurate (a particle can spend many orbital times inside a halo between two 

snapshots, so an interpolation would not capture the main features of its trajectory since 

there are many fewer snapshots than time steps). As a result, the inner density profile of 

haloes are smoothed which leads to a upper limit on the minimum number of particles 

needed to identify a halo or subhalo robustly in comparison with the number of particles 

needed to resolve these structures in a snapshot (small overdensities are smeared out in 

the light-cones). 

A recent common approach is to identify haloes in the stored snapshots and then 

populate these haloes with galaxies whose position are interpolated (Blaizot et al., 2005; 

Kitzbichler and White, 2007). In this case the problems outlined above are diminished. 

It is possible to create a variety of light-cone geometries, depths, etc and, simultaneously, 

not distort the small scale clustering since the haloes and its substructures are identified in 

snapshots. Nonetheless, the galaxies properties have to be interpolated or taken from the 

closest snapshot which add discreteness effects or possible inaccuracies in the predicted 
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properties of the galaxy population. 

As is clear from the above, each of these methods have their own advantages and 

disadvantages and none of them completely fulfil the degree of accuracy and flexibility 

that would be ideal. The purpose of this chapter is to introduce a new method to predict 

the spatial distribution of galaxies in the light-cone from N-body simulations, in which 

the problems of the procedures mentioned above are solved. Instead of constructing light­

cones based on dark matter particles or galaxies, we follow dark matter haloes between 

snapshots, to predict their trajectories over time. In this way, we find the position of 

haloes at the exact moment at which they cross the light-cone as well as their merger 

history. Our method has the advantage of requiring only the interpolation of the halo 

positions (which are better described as a smooth curve between snapshots than those of 

the dark matter particles). In addition, it is straightforward to combine the halo light­

cone with semi-analytic models of galaxy formation to predict galaxy properties at the 

precise light-cone crossing. 

The layout of this chapter is as follows. First, in §7.2 we give the analytic formulae for 

the correlation function and mass function of haloes on the light-cone. These expressions 

will help in the a posteriori testing of our results. We describe our procedure to build a 

light-cone in §7.3. In §7.4 we present a comparison between our results and the analytic 

estimates. Finally, we summarize our findings in §7.5. 

7. 2 Haloes on the light-cone 

Several statistics of haloes and dark matter on the observed light-cone can be easily 

written analytically by a weighted integral of quantities expressed at a single redshift. 

In this section we will just list the relevant formulae (for a more detailed discussion see 

Matarrese et al., 1997; Yamamoto and Suto, 1999; Hamana et al., 2001; Munoz and Loeb, 

2008). 

One of the most basic statistics on a light-cone that covers a redshift interval [z1, z2], 

is the number density of haloes as a function of their mass, nLC(Zl < z < z2, M). This 

can be expressed simply by averaging the weighted number density of haloes as a function 

of redshift and mass: 

1Z2 dV 
dz-d n(z,M) 

( ) 
ZI Z 

nLc Zl < Z < Z2,M = 1z2 dV ' 
dz-

ZI dz 

(7.1) 
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where dVjdz is the comoving volume element per solid angle and n(z, M) is the number 

density of haloes of mass between M and M + dM at redshift z. 

In a similar way, we can define a effective linear bias parameter for haloes on the 

light-cone, in terms of a volume averaged bias factor: 

1Z2 dV 
dz d betr(z, M) 

bcc(zl < z < z,, > M) ~ " 

1
z, z dV , 
dz-

zl dz 

(7.2) 

and 

100 

dmb(m, z) n(m, z) 
betr(Z, M) = M 

100 
, 

dmn(m,z) 
M 

(7.3) 

where b(z, m) is the bias factor of haloes of mass mat redshift z. 

Putting these expressions together we can write the correlation function in real space 

for haloes on the light-cone: 

1
00 

1z2 dV dm dz~mm(z,r)-d b~ff(z,M) 
chh ( M ) M z1 z 
'>LC Zl < Z < Z2, > , T = 

1

z2 dV (7.4) 
dz-

zl dz 
and for the dark matter: 

1z2 dV 
dz -d ~mm(z, r) 

cmm( ) z1 Z 
'>LC Zl < Z < Z2, r = ~'--1----;:-;z'-'"2--d"V;-;---, 

dz-
zl dz 

(7.5) 

where ~mm(z, r) is the dark matter correlation function at redshift z. Note that this 

expression assumes that evolution of clustering is negligible on the scale r. 

7.3 Building a light-cone 

The first step in our attempt to populate the observed light-cone with galaxies is to 

predict the abundance, mass and position of dark matter haloes. In brief we achieve 

this goal by following the merger history of every halo. In this way, a unique trajectory 

is built for every halo and the precise moment of the light cone crossing can be found. 

The following subsection contains a more detailed description of our procedure (§7.3.1). 

In the subsequent subsection we apply this procedure to generate a light-cone from the 

Millennium simulation (§7.3.2). 
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7.3.1 Algorithm 

We start by replicating the simulation box as many times as needed to cover the redshift 

range and angular size in which we are interested. Due to the periodic boundary conditions 

of the simulation, there is a indistinguishable transition between replications. However, 

note that spurious clustering signals could appear on scales similar or larger than the box 

size. 

In a second step, we find the coordinates of dark matter haloes in each available 

snapshot using a Friends-of-Friends algorithm (FoF, Davis et al., 1985). We then predict 

the position and velocity of each halo between snapshots assuming that each dimension 

can be described by a polynomial in time: 

x(t) = A+ B t + Ct2 + Dt3
, 

v(t) B+2Ct+3Dt2
, 

where if t1 and t2 are the times of consecutive snapshots, 

A = x(ti), 

B v(t1), 

c -2 v(t1) - 3 x(ti)- v(t2) + 3 x(t2), 

D v(ti) + v(t2) + 2 [x(t1) - x(t2)], 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

v(t1) and x(t1) are the velocity and position of the halo, and v(t2) and x(t2) correspond 

to the same quantities but for its descendant halo. This is a key aspect of our algorithm. 

In each snapshot we identify the descendant of a halo as the structure that contains the 

majority of the 10% most bound particles. This allows us to create a unique path for 

each halo over its whole life. Also note that Eqs. 7.6-7.11 include the constraint that the 

time derivative of the position must be equal to the velocity. 

In addition, we interpolate the halo mass between snapshots assuming a smooth 

growth, i.e. 

M(t) = M(ti) exp [log(M(t2)) -log(M(ti)) (t-tl)] . 
t2- h 

(7.12) 

Once we know the position of a halo at all times, we look for the time at which its 

distance to our fiducial observer is the same as the distance that a photon would travel 
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from the time at which the halo lives to the observer. This is the moment at which the 

halo crosses the light cone thus we store this position, velocity and mass. An interesting 

issue regarding our method is the treatment of halo mergers, i.e. when two or more haloes 

have the same descendant in the following snapshot. In such cases it is possible that two 

or more haloes cross the light-cone in locations closer than their radii. Clearly, there 

should be a merger process and we should identify these objects as a single structure. 

However, here we have not implemented such procedure, and trace the haloes separately 

until the snapshot where they merge. 

Along with storing the coordinates of the halo we also store its merger history. The 

latter can be fed into a semi-analytic galaxy formation model. This represents a great 

advantage over previous attempts of constructing light-cones, because it implies that we 

can follow the galaxy formation process up to the exact point at which the host halo 

crosses the light-cone. Hence no interpolation of galaxy properties is needed. 

7.3.2 Light-cones from the Millennium Simulation 

In order to test and illustrate our algorithm, we have produced a light-cone from outputs 

from the Millennium Simulation (cf. §5.2). This light-cone spans from redshift 0 to 1 

which requires replicating the box 6 times along each axis. In order to decrease spuri­

ous periodicity in the halo distribution we have created our catalogue along the vector 

(x, y, z) = (0.91, 0.38, 0.099) (the observer is located at (0, 0, 0)). The angular dimension 

is 9 deg x 9 deg which corresponds to approximately to ten times the angular extent of one 

field of the proposed Pan-STARRS Medium Deep Survey. 

As a result, we have obtained 13077347 haloes more massive than 1.72 x 1010 h-1 M 0 . 

The most massive object is located at z = 0.334 and has a mass of 2.425 x 1015 h-1 M 0 

(which corresponds to 2816415 dark matter particles). In the following section we will 

investigate the properties of our catalogue in more detail. 

7.4 Results 

To start this section, we show an image in Fig. 7.1 of the halo distribution in the light-cone 

from z = 0 to z = 1. The brightness in each pixel is proportional to the logarithm of the 

density projected along the line of sight. The density field is estimated using a Gaussian 

kernel of size fixed to 6 Mpc. 

This image clearly shows the filamentary structure of the density field on large scales. 



Figure 7.1: The projected halo density in the light-cone in a slice of 

depth 50 Mpc. The picture covers from redshift 0 to 1 and corresponds 

to 9 deg. The brightness of each pixel is proportional to the logarithm 

of the density integrated along the page. 

~ 

~ 
:r 
CD 
(") 
0 
::1 
00 
~ 
"1 
~ 
(") 
~ s· 
::1 
0 
~ 

ll' 
:r 
ll' -0 

t"4 
atj" 
a-
1 

(.) 
0 
::1 
CD 

1-' 
CJ1 
~ 



7. The construction of a halo Light-Cone 

0 < z < 1 
Jenkins et al. (2001) -

10-BL-~~-L--L~-~-L-L-~~-L--L~-~-L~ 

B 10 14 16 

Figure 7.2: The mass function of haloes measured in the light-cone over 

the redshift range 0 < z < 1. The analytic expression, Eq. 7.1, using the 

Jenkins et al (2001) mass function is plotted (red line) for comparison. 

The vertical dashed line indicates the minimum mass of haloes identified 

in the Millennium Simulation. This limit corresponds to M > 1. 72 x 

1010 h-1 M 0 (20 particles). 
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Figure 7.3: The two-point correlation function for haloes in the light­

cone. Curves of different colour show results in real space for haloes 

of different mass. As indicated by the key, the lowest amplitude (red) 

curve corresponds to halos with mass in excess of 1.72 x 1010 h-1 M0 

while the top (blue) line indicates the correlation function for haloes 

with M > 1.58 x 1013 h-1M0 . These samples contain 13077347 and 

17776 haloes respectively. The analytic prediction for the dark matter 

correlation function in the light-cone (Eq. 7.5) is also over plotted as a 

dashed (black) line. 
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In addition, we can see the evolution in the abundance and clustering of haloes with 

redshift. A high number density of haloes at low redshifts (left hand side). On the 

other hand, haloes are rarer at higher redshifts (right hand side) due to the fixed mass 

resolution. 

A basic yet important test of our results is the distribution of halo masses. The mass 

function of haloes in the light-cone is plotted in Fig. 7.2. We show the results for haloes 



7. The construction of a halo Light-Cone 160 

with M > 1.72 x 1010 h-1 M0 in the redshift interval 0 < z < 1. We have also included the 

analytic prediction given by Eq. 7.1 which is computed using the mass function of Jenkins 

et al. (2001). Overall, the prediction and measurement from the light-cone are in very 

good agreement over the mass range resolved in the Millennium Simulation. However, at 

the very low mass end, there is a slight inconsistency. The number density of haloes is 

37% lower than the predictions. Such a discrepancy may result from the limitations of our 

algorithm. First, we can not identify the progenitors of haloes resolved with fewer than 

"' 20 particles since they are likely to fall below our resolution limit. Nevertheless, this 

problem can be alleviated easily by using a lower particle limit to construct the merger 

tree or simply by using only haloes above a higher mass cut. 

The auto-correlation function for haloes of different mass in real space is shown in 

Fig. 7.3. We compute ~(r), using the Landy and Szalay (1993) estimator which com­

pares pairs of objects at a given separation with objects whose positions are randomly 

distributed. Explicitly, 

(7.13) 

where DD, DR and RR are the data-data, data-random and random-random pair counts 

respectively, and nr and nd are the number of objects in the random and halo catalogues. 

The random catalogue is constructed following the same redshift distribution as the real 

halo catalogue, and with the same angular geometry as the light cone. Note that the use 

of a random catalogue is required due to the evolution of the mean density of haloes with 

redshift and the none periodic light cone boundary. 

Fig. 7.3 shows the clustering measurements for haloes in 6 different ranges of mass. 

On large scales, where the two-halo term dominates, we can see that the shape of the 

correlation function for haloes seems to be a scaled version of that for the dark matter. 

The amplitude increases as the sample is restricted to more massive haloes. On the other 

hand, each one of the haloes samples shows a dramatic turnover on smaller scales. This 

feature results from an exclusion effect between haloes, i.e. two haloes cannot be located 

closer than the sum of their radii. Since the virial radius increases monotonically with 

the mass of the halo, the cut-off appears on larger scales for more massive haloes. 

One key aspect in modelling galaxy clustering is the calculation of the bias of the 

host dark matter haloes. In Fig. 7.4 we test our results by comparing the bias derived 

from the light-cone against the analytical model presented in §7.2. Note that the model 
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Figure 7.4: The linear bias parameter as a function of scale for haloes in 

the light-cone. The bias is defined as b2 = e£~/ ere, where e£~ and ere 
are, respectively, the two-point correlation function for haloes and for 

dark matter in the light-cone. The symbols indicate our measurements 

while the dashed lines indicate the analytical prediction given by the 

square root of the ratio between Eq. 7.4 and Eq. 7.5. 
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is constructed using the expressions provided by Jenkins et al. (2001) and Scoccimarro 

et al. (2001) respectively for the number counts and bias of haloes. 

The measurement for high mass haloes shows fairly good agreement with the model. 

However, there is a noticeable disagreement for the smallest mass haloes. The origin of 

this discrepancy could lie in a number of factors. First, it has been shown that analytic 

biasing prescriptions fail to describe, to an accuracy better than 10%, the bias measured 

in numerical simulations over the whole halo mass range employed in the construction 

of the light-cone (see Fig. 4.7 in Chapter 4). In general, while these prescriptions work 

quite well for highly biased objects, they tend to over-predict the bias for haloes with 

smaller masses. Such discrepancies could explain part of the disagreement with our mea­

surements. Another possibility is that our model for the dark matter correlation function 

is an overestimation of the true one or that the definition of bias in the light-cone is 

flawed and requires improvement. Nevertheless, our haloes provide a reasonable descrip­

tion of the clustering expected in the light-cone, enclosing key features of its clustering 

and distribution. 

7.5 Summary 

In this chapter we have presented a new method to generate light-cones from cosmological 

N-body simulations. In contrast to previous approaches, our method consists of two steps. 

First, we compute the position of haloes at the moment of light-cone crossing. This is 

done by following their merger history which is interpolated between snapshots. Second, 

the halo light-cone can easily be combined with semi-analytic models of galaxy formation 

with which it is possible to generate a galaxy catalogue over a large redshift range. We 

plan to apply the second step to our halo catalogues in the future. 

The advantages of our procedure are: i) Since the net velocity of haloes is much smaller 

than that of dark matter particles, their trajectory between snapshots and, therefore, their 

time of light-cone crossing can be constrained accurately. Since we are dealing with dark 

matter structures, not particles, the small scale clustering of galaxies cannot be artificially 

distorted. In fact, our method is just a spatial redistribution of haloes. ii) The observable 

properties of the galaxies can be computed up to exactly the time in which they are 

observed. 

We have applied our procedure to build a light-cone from haloes identified in the Mil­

lennium Simulation. This light-cone contains haloes more massive that 1.7 x 1010 h-1 M 0 



on a solid angle of 9 deg x 9 deg from redshift 0 to 1. The tests carried out in Section 

7.4 show reasonable agreement between our results and analytic expressions for the mass 

distribution of haloes. 

Although our model already reproduces key features of the halo catalogue, it can be 

improved in several ways. The most important is probably an improved treatment of halo 

mergers. As two haloes can have the same descendant in the following snapshot, they 

can cross the light-cone in positions located closer than their joint radius. In fact, they 

could even end up one inside another. In the current implementation of our algorithm, 

we keep both haloes as a separate structure. However, it is possible to add a pruning 

process which would merge these objects and increase the mass (and subhaloes content) 

of the halo produced accordingly. Likewise, it is possible to follow the merger history of 

subhaloes between snapshots and include or exclude them from a host halo according to 

their light-cone crossing time. 

The creation of light-cones poses an interesting and much needed extra layer of so­

phistication in galaxy formation modelling. As new surveys continue to expand the region 

of the Universe that is mapped, these more accurate tools will become essential for the 

correct and complete exploitation of the new datasets. 
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Chapter 8 
Conclusions 

The subjects covered in this thesis can be grouped into three areas. The main results 

are discussed below along with possible directions for future work. 

8.1 Galaxy surveys and BAO 

Over the next decade, several ambitious galaxy surveys will carry out one of the most 

promising approaches to reveal the properties of the dark energy: the measurement of 

baryonic acoustic oscillations (BAO). Due to the large volumes mapped, the systematic 

errors may become larger than the random uncertainties, degrading the measurements 

and therefore the constraints on the dark energy. For this reason, in order to be able to 

exploit the forthcoming data to the full, precise theoretical modelling of galaxy clustering 

and associated errors is essential. In the first part of this thesis (chapters 2 and 3), I 

devoted particular attention to this issue by giving an assessment of the effects which 

alter the appearance of the power spectrum on large scales. I also developed a new 

technique to study uncertainties in theoretical predictions. 

In particular, in Chapter 2, I presented one of the most realistic predictions to date 

of the expected BAO signature in future galaxy surveys. A key piece of this analysis was 

the BASICC (Baryonic Acoustic Oscillation Simulation at the ICC) N-body simulation, 

which follows the evolution of more than 3 billion particles that represent the matter 

in a 2.4 Gpc3 jh3 region of the Universe. The analysis presented in Chapter 2 improved 

previous studies in three ways. First, the volume of the simulations used was comparable 

to that of future surveys. This allowed me to model the growth of structures on very 

large scales. Second, we were able to resolve most of the haloes that are likely to host 

the galaxies that will be detected in future surveys. Third, by combining the dark matter 

clustering with GALFORM, the semi-analytical model of galaxy formation developed at 

Durham, we were able to predict positions, velocities, colours and magnitudes, along 

with several other properties, for more than 1 million galaxies at z "' 1 in a physically 

motivated way. 

Using these simulated universes and applying analysis techniques based on those in-
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tended for use in the real data, I then explored the constraints on the dark energy equation 

of state from BAO measurements. One of the most important results presented is that 

1% deviations from the underlying acoustic scale are possible within a single simulation 

due to sampling fluctuations. However, the expected value is, at the sub-percent level, an 

unbiased estimator of the acoustic scale. Finally, I made a forecast of the accuracy with 

which different proposed galaxy surveys will measure the dark energy equation of state. 

Likewise, we emphasized the importance of accurate modelling of nonlinear effects to 

predict realistic clustering of galaxies, even on scales as large as those of the acoustic 

oscillations. In particular, we showed that i) the nonlinear growth of the dark matter 

power spectrum is evident even on scales of k < 0.03 hMpc-1 . ii) The form of the redshift 

space distortion to the clustering depends on the type of object selected to trace the 

density field, being very different for galaxies, haloes, and dark matter. iii) The galaxy 

bias exhibits a scale dependence, for k > 0.15 hMpc-1 , which is sensitive to the selection 

criteria applied. 

In Chapter 3 I extended the study presented in Chapter 2 by a short analysis of the 

impact of photometric redshift errors on the BAO signature. The distortions induced in 

both the overall shape of the power spectrum and in the appearance of the BAO were 

shown, along with a simple analytic model to predict the damping in the power spectrum 

induced by photometric redshift errors. These results will be useful in the task of finding 

out how to optimally extract the information enclosed in photometric surveys. 

8.2 Dark matter haloes and their substructures 

In the second part of this thesis (chapters 4 and 5) I focused on more theoretical aspects 

of the clustering of dark matter haloes and in the kinematic of their substructures, both 

of which could have important implications for models of galaxy clustering. 

The classic work of Press & Schechter (1974) predicts that the spatial distribution of 

halos is a function only of their mass. However, in recent years numerical simulations 

have reached sufficient precision to challenge this picture. The clustering strength of 

haloes, as measured by the 2-point correlation function and a linear bias parameter, is 

found to depend on other halo properties in addition to mass such as the age, spin and 

number of substructures. However, due to the challenging nature of the measurements, 

such dependencies were completely unexplored in higher order clustering. In chapter 

6, I eschewed the traditional 2-point statistics applied in previous studies to extend the 
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analysis to higher orders. This achievement was made possible thanks to the huge volume 

covered by the BASICC run and, most importantly, to the development of a novel way to 

extract the higher order bias parameters. 

The new method consists of cross-correlating density fluctuations in the halo distri­

bution with fluctuations in the dark matter. Under the assumption that the halo density 

field is a smooth, local function of the underlying nonlinear density field, we show that 

i) this new estimator is equally sensitive to the high order parameters as the traditional 

auto-correlation functions and, ii) it has a much better noise performance due to the larger 

number density of dark matter particles in modern cosmological simulations, compared 

with the number density of haloes. Using this fast, simple and yet robust, estimator we 

were able to measure in narrow mass bins and at different redshifts the bias parameters 

up to order 4 for haloes corresponding to 5u peaks. By comparing samples of haloes with 

low and high values of the concentration parameter, we showed that the higher order bias 

parameters also depend on the concentration as well as mass. 

The determination of the higher order bias parameters of dark matter haloes presented 

in this chapter will be useful for the modelling of galaxy clustering such as the halo 

occupation distribution models. At the same time, future surveys will cover volumes 

from which the accurate measurement of higher order moments will be possible, allowing 

a comparison with theoretical models. On a different front, an interesting application is to 

extend the use of higher order cross-correlations to other cosmological measurements, for 

instance, galaxy-cluster cross-correlations or the correlation of the microwave background 

anisotropies with the structure along the line of sight. The different permutations of cross 

moments would perhaps break degeneracies and provide useful information. 

The connection between dark matter structures and galaxies is a pillar in linking 

observations and theory. Therefore the study of dark matter structures in general and of 

substructure within dark matter haloes in particular, is of great interest. In Chapter 5 I 

investigated the properties and fate of substructures within dark matter haloes. In the 

first half of the chapter we revisited several properties of the population of subhaloes in 

a simulation with better statistics than those used previously. I found that the subhalo 

mass function departs significantly from a power law for massive subhaloes. I also found 

that both the radial and angular distributions of substructures are functions of subhalo 

mass. In particular, high mass subhaloes tend to be less radially concentrated and to 

have angular distributions which are more perpendicular to the spin of the host halo than 

their less massive counterparts. In the second half of the chapter, we investigated the 
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whether mergers between substructures can occur. Such events could have important 

observational consequences. In fact, an interaction between substructures could trigger 

an episode of star formation or a morphological transformation. We found that mergers 

between subhaloes do occur and that they tend to involve substructures that were already 

dynamically associated before accretion into the main halo. In general, the rate of subhalo­

subhalo mergers is lower than the rate at which subhaloes merge into the central halo, 

particularly for large substructures. However, for low mass subhaloes, these merger rates 

are equivalent and the subhalo-subhalo merger rate fate would be more likely, as there are 

more subhaloes to aim at. In the simulations, due to the finite dynamic range, we only 

see this scenario in practice in cluster-mass haloes, which are the best resolved. Since this 

type of interaction is usually neglected, our results have implications for the modelling of 

satellites in hierarchical galaxy formation models. 

8.3 Improving current mock catalogues 

In the last two chapter of this thesis I have presented new ideas under development to 

improve the modelling of the large scale structure in future observations. 

As discussed in Chapter 7, another important layer of realism required in the theo­

retical predictions is a consistent incorporation of evolution of the clustering along the 

line of sight. Even though this effect was neglected in Chapters 2 and 3, we developed 

and presented a method to construct a halo light-cone in Chapter 7. In particular, our 

method will be of great importance in the modelling of current and future surveys such 

as DEEP2, Dark Energy Survey and Pan-STARRS (all of which will include galaxies over 

a vast redshift range) as well as to study cosmological probes sensitive to the evolution 

of the clustering. 

In spite of the sophistication of our models, they are still limited in several aspects. For 

instance, the effects induced by the selection function and survey geometry were neglected. 

These ingredients can be incorporated easily to our current mock catalogues. A more 

pressing limitation of the models is their failure to reproduce the observed dependence 

of clustering strength with luminosity, which restrict the accuracy of the forecast errors. 

The solution to this problem may require a revision of the physical ingredients of the 

models. 

A fundamental aspect in any measurement is a realistic treatment of errors. The 

information to be extracted from future datasets would be devoid of meaning if it is 
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not accompanied by a proper assessment of the uncertainties on the measurement. The 

method presented in Chapter 6 provided a means to address this issue by allowing the 

generation, at low computational cost, of halo catalogues from low resolution simulations. 

In this way, we are therefore able to produce a large number of realistic galaxy catalogues 

from different realizations of a primordial density field and hence assess the error on a 

given measurement. I expect the ideas presented in this chapter to help the understanding 

of uncertainties in measurements of the large scale structure of galaxies, and to improve 

methods to extract cosmological information from clustering measurements and even in 

the optimization of future experiments. 

An immediate application of the ideas presented in these chapters would be their 

implementation into larger simulations to predict the location and properties of all the 

observable galaxies in the whole sky up to intermediate redshift. Resolving Milky-Way 

type haloes in a simulation that covers the whole sky up to redshift 1 is out of the reach 

for current supercomputers. However, the dynamic range can be extended using the 

method outlined in Chapter 6. Then, the construction of a halo light-cone would follow 

the method provided in Chapter 7. The galaxy population would be predicted using the 

semi-analytical model as described in Chapter 2. 

The studies presented throughout this thesis have attempted improve the current 

understanding of several aspects of the clustering of the dark matter, haloes and galaxies. 

We consider that our findings will result in a more accurate modelling of the observed 

large scale structure of the Universe as well as an improved treatment of systematic and 

statistical errors. We believe that all this will yield to a more complete exploitation of 

future surveys as well as leading to the improvement of our knowledge of the Universe 

that surrounds us. 
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