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The case of equality in the Livingstone-Wagner
Theorem

David Bundy, Sarah Hart

Abstract

Let G be a permutation group acting on a set Ω of size n ∈ N and let 1 ≤ k <
(n − 1)/2. Livingstone and Wagner proved that the number of orbits of G on k-
subsets of Ω is less than or equal to the number of orbits on (k + 1)-subsets. We
investigate the cases when equality occurs.

1 Introduction

Throughout this article we let G be a permutation group acting on a set Ω of size n ∈ N
and let 1 ≤ k < (n− 1)/2. In [6] Livingstone and Wagner proved the following theorem.

Theorem 1.1. (Livingstone, Wagner) [6] The number of orbits of G on k-subsets of Ω is
less than or equal to the number of orbits on (k + 1)-subsets.

Alternative proofs were subsequently given by Robinson [7] and Cameron [1] who extended
the result to Ω infinite. An investigation of the cases when equality occurs for Ω infinite
was then made by Cameron [1], [2] and Cameron and Thomas [5]. The case of equality
also follows from a stronger “intersection property” examined by Cameron, Neumann and
Saxl [4]. In this article, we will prove some similar results about the case of equality when
Ω is finite.
In Section 2 we consider the case when G is intransitive. We show (see Lemma 2.1) that
G must have one orbit of length at least n − k and (see Proposition 2.2) that the action
of G on this orbit satisfies a strong condition which in almost all cases forces G to be
k-homogeneous on this orbit.
Transitive but imprimitive groups are then investigated in Section 3. In this case there are
too many examples for a complete classification to be feasible, so we concentrate on finding
a necessary condition for the sizes and number of blocks in a system of imprimitivity. This
quickly reduces to a combinatorial problem of determining when the number of partitions
of k into at most r parts of size at most s is the same as for k + 1. This problem is also
of independent interest in invariant theory, where such partitions can be used to count the
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number of linearly independent semi-invariants of degree r and weight k of a binary form
of degree s. We are able to determine all the cases of equality for r ≤ 4 (see Theorem
3.1) and conjecture that for s ≥ r ≥ 5, there are only finitely many cases of equality (see
Conjecture 3.2 for details). Theorem 3.7 shows that for s ≥ r ≥ 5, equality can only occur
when 2k ≥ r(s− 1)− 1, that is k is close to half n. We have strong experimental evidence
for believing Conjecture 3.2 to be true. We observe that for large enough fixed r and s the
number of partitions of k into at most r parts of size at most s approximates to a Gaussian
distribution whose peak becomes sharper for larger r and s.
In the final section we make some observations about the case when G is primitive. Aside
from (k + 1)-homogeneous groups the only examples we know are the affine general linear
groups over a field of size 2 (see Proposition 4.2) and a list of 19 further examples of degree
at most 24, many of which are subgroups of M24. The absence in [4] of any examples of
degree greater than 24 suggests that such examples may also be rare or non-existent in our
situation.

Notation and preliminary results

For each 0 ≤ l ≤ n, let σl(G) be the number of orbits of G on the set of l-subsets of
Ω. A permutation group is said to be l-homogeneous if it is transitive in its action on
l-subsets, that is σl(G) = 1. Let ∆ be a G-invariant subset of Ω. Then G∆ will denote the
permutation group induced by G in its action on ∆.
Let H be a subgroup of a group G, χ be a character of G and ψ a character of H. Then
χ ↓ H will denote the restriction of χ to H and ψ ↑ G will denote the character induced
by ψ on G. Furthermore 1G will denote the trivial character on G.

Lemma 1.2. Let G ≤ Sym(n), 0 ≤ l ≤ n and ψl be the character of Sym(n) induced by
the trivial character on Sym(l) × Sym(n − l). Then 〈ψl ↓ G, 1G〉 is the number of orbits
of G on l-subsets of {1, . . . , n} and if 0 ≤ l < (n − 1)/2, then ψl+1 − ψl is an irreducible
character of Sym(n).

Proof. See [7].

Lemma 1.3. Let H ≤ G ≤ Sym(n) and 1 ≤ k < (n − 1)/2. Then σk+1(G) − σk(G) ≤
σk+1(H)− σk(H). In particular, if σk+1(H) = σk(H), then σk+1(G) = σk(G).

Proof. Let χ := ψk+1 − ψk be the irreducible character in the conclusion of Lemma 1.2.
Then

σk+1(G)− σk(G) = 〈χ ↓ G, 1G〉 ≤ 〈χ ↓ H, 1H〉 = σk+1(H)− σk(H).

In particular, if σk+1(H) = σk(H), then the right-hand side is zero and by Theorem 1.1
the left-hand side is non-negative, so must also be zero.
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2 Intransitive groups with equality

In this section we investigate intransitive permutation groups which achieve equality in the
Livingstone-Wagner Theorem.

Lemma 2.1. Let G ≤ Sym(n) and suppose σk(G) = σk+1(G) for some 1 ≤ k < (n− 1)/2.
Then G has an orbit of length at least n− k.

Proof. Suppose G has no orbit of length at least n−k. Then G ≤ Sym(n−l)×Sym(l) =: M ,
for some l ≥ k + 1. But σk+1(M) = k + 2 > k + 1 = σk(M), which contradicts Lemma
1.3.

Proposition 2.2. Let G ≤ Sym(n) and 1 ≤ k < (n− 1)/2 with σk(G) = σk+1(G). Let ∆
be an orbit of G of length at least n− k. Then σl(G

∆) = σl+1(G
∆), for all k− (n− |∆|) ≤

l ≤ min(k, |∆| − k − 2).

Proof. Note that an orbit of length at least n − k exists by Lemma 2.1. Let M := G∆ ×
Sym(Ω \∆) ≥ G and let m := |∆|. For t ∈ N, two t-subsets of Ω are in the same M -orbit
if and only if their intersections with ∆ are in the same G∆-orbit. In particular, these
intersections must be of the same size. Hence

σt(M) =

min(t,m)∑

l=max(0,t−(n−m))

σl(G
∆).

Now m ≥ n− k ≥ (2k +1)− k = k +1. Also k− (n−m) ≥ k +(n− k)−n = 0. Therefore

0 = σk+1(M)− σk(M) =
k+1∑

l=k+1−(n−m)

σl(G
∆)−

k∑

l=k−(n−m)

σl(G
∆)

= σk+1(G
∆)− σk−(n−m)(G

∆).

That is, σk+1(G
∆) = σk−(n−m)(G

∆). If 2k < m− 1 then the Livingstone-Wagner Theorem
forces σl(G

∆) = σl+1(G
∆), for each k − (n−m) ≤ l ≤ k.

On the other hand, suppose 2k ≥ m− 1. Then σk+1(G
∆) = σm−(k+1)(G

∆) and m− (k + 1)
is within the range to which the Livingstone-Wagner Theorem applies. We also have that

(m− (k + 1))− (k − (n−m)) = (n− 1)− 2k > 0.

Hence, by the Livingstone-Wagner Theorem, σl(G
∆) = σl+1(G

∆), for each k − (n−m) ≤
l ≤ m− k− 2. Note that min(k, m− k− 2) is k precisely when 2k < m− 1 and m− k− 2
otherwise, so the proof is complete.
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Proposition 2.2 provides the means to reduce the case of equality for an intransitive group to
that of equality for a transitive group. Indeed if G is intransitive with an orbit ∆ satisfying
the condition of Proposition 2.2, then we nearly always have equality σl(G

∆) = σl+1(G
∆)

for several consecutive values of l. (If there is just one value of l then either G is already
transitive or n = 2k + 2.) This almost forces G∆ to be k-homogeneous. The only known
exceptions with k < (n− 1)/2 are where G∆ ∼= M24 or M23.

3 Imprimitive groups with equality

There is an abundance of imprimitive groups which achieve equality in the Livingstone-
Wagner Theorem and a complete classification of them seems intractable. Nevertheless,
we are able to give a condition on the block sizes which is necessary if equality in the
Livingstone-Wagner Theorem holds. Observe that by Lemma 1.3, if σk(H) = σk+1(H)
holds for an imprimitive group H with r blocks of size s, then σk(G) = σk+1(G), where
G ∼= Sym(s) oSym(r) is the full stabiliser in Sym(rs) of the blocks of H. Note also that the
number of orbits of G on k-subsets is equal to the number of ways, P (r, s, k), to partition k
into at most r parts of size at most s. We require P (r, s, k) = P (r, s, k + 1). The following
result is established by Lemma 3.5, Proposition 3.6 and Proposition 3.9.

Theorem 3.1. Let r ∈ {2, 3, 4} with r ≤ s and 1 ≤ k < (rs − 1)/2. Then P (r, s, k) =
P (r, s, k + 1) if and only if one of the following holds.

(a) r = 2 and k is even.

(b) r = 3 and

k =





3s−3
2

, if s is odd,
3s−4

2
, if s ≡ 0 mod 4,

3s−2
2

or 3s−6
2

, if s ≡ 2 mod 4.

(c) r = 4 and k = 2s− 2 or r = s = k = 4.

We also make the following conjecture.

Conjecture 3.2. Let 1 < r ≤ s, 1 ≤ k < (rs−1)/2 and suppose P (r, s, k) = P (r, s, k+1).
Then one of the following holds:

(a) r ∈ {2, 3, 4} and the possibilities for s and k are as in Theorem 3.1; or

(b) r, s and k have the values given by a column of the following table
r 5 5 5 6 6 6 6 6 7
s 6 10 14 6 7 9 11 12 10
k 14 24 34 16 20 26 32 38 34
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Remark 3.3. The quantity P (r, s, k) − P (r, s, k − 1) is of interest in invariant theory.
By a theorem of Cayley and Sylvester (see Satz 2.21 of [8]) it is equal to the number of
linearly independent semi-invariants of degree r and weight k of a binary form of degree
s. Conjecture 3.2, if proven, would then give the values of r, s and k for which no such
semi-invariant exists.

We now define some more notation which we will use in this section. Let P(r, s, k) be the
set of partitions of k into at most r parts of size at most s, so P (r, s, k) = |P(r, s, k)|.
We will use the convention that P (r, s, k) = 0 if k < 0 or k > rs. By considering
dual partitions we observe that P (r, s, k) = P (s, r, k), so without loss we will assume
that r ≤ s. Elements of P(r, s, k) will be written (a1, a2, . . . , ar) where

∑r
i=1 ai = k

and s ≥ a1 ≥ · · · ≥ ar ≥ 0. Let A(r, s, k) be the subset of P(r, s, k) consisting of all
partitions of the form (s, a2, . . . , ar) and let B(r, s, k + 1) be the subset of P(r, s, k + 1)
consisting of all partitions of the form (x, x, a3, . . . , ar), for some x ≤ s. Furthermore, let
A(r, s, k) = |A(r, s, k)| and B(r, s, k) = |B(r, s, k)|. Note that A(r, s, k) = P (r−1, s, k−s).
We will define a bijection from a subset of P(r, s, k) to a subset of P(r, s, k + 1). Let
(a1, a2, . . . , ar) ∈ P(r, s, k) with s > a1 ≥ a2 ≥ . . . ≥ ar ≥ 0, and define

f(a1, a2, . . . , ar) = (a1 + 1, a2, . . . , ar).

Then f is a bijection from P(r, s, k)\A(r, s, k) to P(r, s, k+1)\B(r, s, k+1). In particular
we have the following result.

Lemma 3.4. Let r, s, k ≥ 1. Then

P (r, s, k + 1)− P (r, s, k) = B(r, s, k + 1)− A(r, s, k).

So the problem of determining when P (r, s, k) = P (r, s, k+1) reduces to that of determining
when B(r, s, k + 1) = A(r, s, k). We now consider in turn the cases when r = 2, 3 and 4.

Lemma 3.5. Let s ≥ 0. Then

P (2, s, k) =





0, if k > 2s, or k < 0,

s− ⌈
k
2

⌉
+ 1, if s ≤ k ≤ 2s,⌊

k
2

⌋
+ 1, if 0 ≤ k ≤ s.

In particular, if 1 ≤ k < s, then P (2, s, k) = P (2, s, k + 1) if and only if k is even.

Proof. Elementary.
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Proposition 3.6. Let s ≥ 3 and 1 ≤ k < (3s − 1)/2. Then P (3, s, k) = P (3, s, k + 1) if
and only if one of the following holds:

(a) s is odd and k = (3s− 3)/2,

(b) s ≡ 0 mod 4 and k = (3s− 4)/2,

(c) s ≡ 2 mod 4 and k = (3s− 2)/2 or (3s− 6)/2.

Proof. Let dk = P (3, s, k + 1)− P (3, s, k) = B(3, s, k + 1)− A(3, s, k). By Lemma 3.5,

A(3, s, k) = P (2, s, k − s) =

{⌊
k−s
2

⌋
+ 1 if s ≤ k < (3s− 1)/2,

0 if k ≤ s.

Moreover,

B(3, s, k + 1) = |{(a, a, b) | s ≥ a ≥ b, 2a + b = k + 1}| =
⌊

k + 1

2

⌋
−

⌈
k + 1

3

⌉
+ 1.

Hence

B(3, s, k + 1) ≥ k

2
− k + 3

3
+ 1 =

k

6
> 0.

So if A(3, s, k) = 0, then dk ≥ k/6 > 0. We may therefore assume that

s ≤ k < (3s− 1)/2 and A(3, s, k) =

⌊
k − s

2

⌋
+ 1.

Thus

dk =

⌊
k + 1

2

⌋
−

⌈
k + 1

3

⌉
−

⌊
k − s

2

⌋
.

Suppose s is odd. Then k + 1 ≡ k − s mod 2. Hence

dk =
k + 1− (k − s)

2
−

⌈
k + 1

3

⌉
=

s + 1

2
−

⌈
k + 1

3

⌉
.

Therefore

dk = 0 ⇔ k ∈
{

3s + 1

2
,
3s− 1

2
,
3s− 3

2

}
.

Since k < (3s− 1)/2, this forces k = 3s−3
2

.
Suppose s is even. Then

dk ≥ k

2
− k + 3

3
− k − s

2
=

1

6
(3s− 2k − 6).
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Assume dk = 0. Then 2k ≥ 3s − 6. Thus 3s/2 − 3 ≤ k ≤ 3s/2 − 1 and so
⌈

k+1
3

⌉
= s

2
.

Therefore

dk =

{
k
2
− s

2
− k−s

2
= 0, if k is even

k+1
2
− s

2
− k−s−1

2
= 1, if k is odd, a contradiction.

Thus k is even, 3s−6
2
≤ k ≤ 3s−2

2
and hence

k =

{
3s−4

2
if s ≡ 0 mod 4

3s−2
2

or 3s−6
2

if s ≡ 2 mod 4.

Theorem 3.7. Let 4 ≤ r ≤ s and 1 ≤ k < (rs − 1)/2. If P (r, s, k) = P (r, s, k + 1), then
k ≥ (r(s− 1)− 1)/2 or r = s = k = 4.

Proof. Suppose first that k < s. Then A(r, s, k) = 0 but B(r, s, k) > 0, since r ≥ 4.
Therefore by Lemma 3.4 P (r, s, k) < P (r, s, k + 1). Now suppose that k = s ≥ 5. Then

P (r, s, k) = P (r, k, k) = 2 + P (r, k − 2, k)

and
P (r, s, k + 1) = P (r, k, k + 1) = 3 + P (r, k − 2, k + 1).

Since (r(k − 2) − 1)/2 ≥ (4(k − 2) − 1)/2 = 2k − 9/2 > k, applying Theorem 1.1 yields
P (r, k − 2, k) ≤ P (r, k − 2, k + 1) and so P (r, s, k) < P (r, s, k + 1) in this case.
It remains to show for s < k < (r(s − 1) − 1)/2 that P (r, s, k) < P (r, s, k + 1). So we
assume for a contradiction that P (r, s, k) = P (r, s, k + 1) in this case. Observe that

P (r, s, k) = P (r, s− 1, k) + P (r − 1, s, k − s).

Since k < (r(s−1)−1)/2 and k−s < (r(s−1)−1−2s)/2 < ((r−1)s−1)/2, by Theorem
1.1, P (r, s − 1, k) ≤ P (r, s − 1, k + 1) and P (r − 1, s, k − s) ≤ P (r − 1, s, k − s + 1). So
under our assumption we have P (r− 1, s, k − s) = P (r− 1, s, k − s + 1). We now proceed
by induction on r.
Suppose first that r = 4. Then by Proposition 3.6, P (3, s, k − s) = P (3, s, k − s + 1)
implies 3s/2 − 3 ≤ k − s ≤ 3s/2 − 1. However k < (4(s − 1) − 1)/2 = 2s − 5/2, so
k − s ≤ s− 3 < 3s/2− 3, a contradiction.
Now suppose r > 4 and the result holds for r − 1 in place of r. Since P (r − 1, s, k − s) =
P (r − 1, s, k − s + 1), we obtain by induction that

k − s ≥ (r−1)(s−1)−1
2

= rs−r−s
2

.

Hence k ≥ (rs− r + s)/2 > (rs− 1)/2, a contradiction. Therefore by induction the result
holds for all r ≥ 4.
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Proposition 3.8. Let s ≥ 4 and 2s− 2 ≤ k ≤ 2s− 1. Then P (4, s, k) = P (4, s, k + 1) if
and only if k = 2s− 2.

Proof. Since r = 4 is fixed, for this proof we will abbreviate A(r, s, k) by A(s, k) and
B(r, s, k) by B(s, k). We first show that for all s ≥ 4, P (4, s, 2s− 2) = P (4, s, 2s− 1). We
need to evaluate B(s, k) more precisely. Now

B(s, k) = {(a, a, b, c) : s ≥ a ≥ b ≥ c ≥ 0, 2a + b + c = k}.

Now 0 ≤ b + c ≤ 2a implies 2a ≤ k ≤ 4a. Hence dk
4
e ≤ a ≤ bk

2
c. Thus

B(s, k) =

b k
2
c∑

a=d k
4
e
P (2, a, k − 2a).

By Lemma 3.5, the value of P (2, a, k − 2a) depends on whether 0 ≤ k − 2a ≤ a or
a ≤ k − 2a ≤ 2a. Now 2a − (k − 2a) = 4a − k ≥ 0. Also k − 2a ≥ a whenever a ≤ bk

3
c.

Therefore by Lemma 3.5

B(s, k) =

b k
3
c∑

a=d k
4
e

(
a− dk−2a

2
e+ 1

)
+

b k
2
c∑

a=b k
3
c+1

(bk−2a
2
c+ 1

)
. (1)

It follows that

B(s, 2s− 1) =

b 2s−1
3
c∑

a=d 2s−1
4
e

(
a− d2s−1−2a

2
e+ 1

)
+

b 2s−1
2
c∑

a=b 2s−1
3
c+1

(b2s−1−2a
2

c+ 1
)

=

b 2s−1
3
c∑

a=d s
2
e
(2a− s + 1) +

s−1∑

a=b 2s−1
3
c+1

(s− a)

= (1− s)
(b2s−1

3
c − d s

2
e+ 1

)
+ b2s−1

3
c (b2s−1

3
c+ 1

)− d s
2
e (d s

2
e − 1

)

+s
(
s− 1− b2s−1

3
c)− 1

2
(s− 1)s + 1

2
b2s−1

3
c (b2s−1

3
c+ 1

)

= b2s−1
3
c (

3
2
b2s−1

3
c+ 1 + 1− s− s + 1

2

)
+ d s

2
e (−d s

2
e+ s− 1 + 1

)

+1− s + s2 − s− 1
2
s2 + 1

2
s

B(s, 2s− 1) = 1
2
b2s−1

3
c (

3b2s−1
3
c+ 5− 4s

)
︸ ︷︷ ︸ + d s

2
e (

s− d s
2
e) + 1

2
(s2 − 3s + 2)︸ ︷︷ ︸

X3(B) X2(B)

Note that X2(B) depends only on s modulo 2 and X3(B) depends only on s modulo 3.
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We now work out A(s, 2s − 2) in a similar fashion. Firstly note that A(s, 2s − 2) =
P (3, s, s− 2) = P (3, s− 2, s− 2), and

P (3, s− 2, s− 2) = #{a, b, c : a ≥ b ≥ c ≥ 0, a + b + c = s− 2}.
This implies that d s−2

3
e ≤ a ≤ s − 2. Thus A(s, 2s − 2) =

∑s−2
a=d s−2

3
e P (2, a, s − 2 − a).

From Lemma 3.5, and noting that s − 2 − a ≥ a when a ≤ b s−2
2
c, we make the following

calculation.

A(s, 2s− 2) =

b s−2
2
c∑

a=d s−2
3
e

(
a− d s−2−a

2
e+ 1

)
+

s−2∑

a=b s−2
2
c+1

(b s−2−a
2
c+ 1

)

=

b s
2
c−1∑

a=d s−2
3
e
(a− (s− 2− a)) +

s−2∑

a=d s−2
3
e

(b s−a
2
c)

=

b s
2
c−1∑

a=d s−2
3
e
(2a− s + 2) +

s−2∑

a=d s−2
3
e

(
s−a
2

)− 1
2
#

{
i ∈ {

2, . . . , s− d s−2
3
e} : i odd

}

Now the number of odd numbers in the range {2, . . . , x} is
⌊

x−1
2

⌋
, so the number of odd

numbers in
{
2, . . . , s− d s−2

3
e} is

⌊
b 2s+2

3 c−1

2

⌋
=

⌊
2s−1

6

⌋
=

⌊
s−1
3

⌋
. Therefore

A(s, 2s− 2) = (2− s)
(⌊

s
2

⌋− ⌈
s−2
3

⌉)
+

⌊
s
2

⌋
(
⌊

s
2

⌋− 1)− ⌈
s−2
3

⌉ (⌈
s−2
3

⌉− 1
)

+ s
2

(
s− 2− ⌈

s−2
3

⌉
+ 1

)− 1
4
(s− 2)(s− 1) + 1

4

⌈
s−2
3

⌉ (⌈
s−2
3

⌉− 1
)− 1

2

⌊
s−1
3

⌋

=
⌊

s
2

⌋ (
2− s +

⌊
s
2

⌋− 1
)

+ s
2
(s− 1)− 1

4
(s− 2)(s− 1)

+
⌈

s−2
3

⌉ (
s− 2− 3

4

⌈
s−2
3

⌉
+ 3

4
− s

2

)− 1
2

⌊
s−1
3

⌋

A(s, 2s− 2) =
⌊

s
2

⌋ (⌊
s
2

⌋
+ 1− s

)
+ 1

4
(s− 1)(s + 2)︸ ︷︷ ︸ + 1

4

⌈
s−2
3

⌉ (
2s− 5− 3

⌈
s−2
3

⌉)− 1
2

⌊
s−1
3

⌋
︸ ︷︷ ︸ .

X2(A) X3(A)

Again note that X2(A) depends only on s modulo 2 and X3(A) depends only on s modulo 3.

Now P (4, s, 2s− 2) = P (4, s, 2s− 1) if and only if B(s, 2s− 1) = A(s, 2s− 2), which is if
and only if X2(B)−X2(A) = X3(A)−X3(B). We have

X2(B)−X2(A) =
(d s

2
e (

s− d s
2
e) + 1

2
(s2 − 3s + 2)

)−(⌊
s
2

⌋ (⌊
s
2

⌋
+ 1− s

)
+ 1

4
(s− 1)(s + 2)

)
.

A simple calculation shows that regardless of whether s is odd or even, X2(B)−X2(A) =
1
4
(3s2 − 9s + 6).

X3(A)−X3(B) =
(

1
4

⌈
s−2
3

⌉ (
2s− 5− 3

⌈
s−2
3

⌉)− 1
2

⌊
s−1
3

⌋)− (
1
2
b2s−1

3
c (

3b2s−1
3
c+ 5− 4s

))
.
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Calculating for each possible value of s modulo 3 shows that in each case,
X3(A)−X3(B) = 1

4
(3s2−9s+6) = X2(B)−X2(A). Therefore, for all s ≥ 4, P (4, s, 2s−2) =

P (4, s, 2s− 1).
We now show that P (4, s, 2s − 1) < P (4, s, 2s) for all s ≥ 4. Since P (4, s, 2s − 2) =
P (4, s, 2s− 1) for all s ≥ 4, by substituting s + 1 for s in Lemma 3.4 we have

A(s + 1, 2s) = B(s + 1, 2s + 1). (2)

Now A(s, 2s− 1) = P (3, s, s− 1) = P (3, s− 1, s− 1) as no part of a partition of s− 1 can
exceed s− 1. Similarly A(s + 1, 2s) = P (3, s + 1, s− 1) = P (3, s− 1, s− 1). Hence

A(s, 2s− 1) = A(s + 1, 2s). (3)

Now we consider B(s + 1, 2s + 1) compared to B(s, 2s).
Setting k + 1 = 2s and k + 1 = 2s + 1, respectively, gives:

B(s, 2s) =

b 2s
3
c∑

a=d s
2
e
(a− (s− a) + 1) +

s∑

a=b 2s
3
c+1

(s− a + 1)

=

b 2s
3
c∑

a=d s
2
e
(2a− s + 1) +

s∑

a=b 2s
3
c+1

(s− a + 1) ;

B(s + 1, 2s + 1) =

b 2s+1
3
c∑

a=d 2s+1
4
e
(a− (s− a + 1) + 1) +

s∑

a=b 2s+1
3
c+1

((s− a) + 1)

=

b 2s+1
3
c∑

a=d s+1
2
e
(2a− s) +

s∑

a=b 2s+1
3
c+1

(s− a + 1) .

If b2s
3
c = b2s+1

3
c, then B(s, 2s) − B(s + 1, 2s + 1) ≥ ∑b(2s+1)/3c

a=ds/2e 1 ≥ 2s−1
3
− s−1

2
> 0.

If b2s
3
c < b2s+1

3
c then b2s

3
c = 2s−2

3
, b2s+1

3
c = 2s+1

3
and

B(s, 2s)−B(s + 1, 2s + 1) ≥



b 2s
3
c∑

a=d s
2
e
1


− (

2b2s+1
3
c − s

)
+

(
s− (b2s

3
c+ 1

)
+ 1

)

≥ 2s−2
3
− s−1

2
− 4s+2

3
+ 2s− 2s−2

3

= 1
6
(−3s + 3− 8s− 4 + 12s) = 1

6
(s− 1) > 0.

Thus in any case B(s, 2s) > B(s + 1, 2s + 1). Therefore by equations (2) and (3),

B(s, 2s)− A(s, 2s− 1) > B(s + 1, 2s + 1)− A(s + 1, 2s) = 0.

Hence by Lemma 3.4 P (4, s, 2s− 1) < P (4, s, 2s).
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Proposition 3.9. Let s ≥ 4 and 1 ≤ k ≤ 2s − 1. Then P (4, s, k) = P (4, s, k + 1) if and
only if k = 2s− 2 or s = k = 4.

Proof. In the case s = k = 4 it be easily computed that P (4, 4, 4) = P (4, 4, 5) = 5.
Otherwise, by Theorem 3.7, if P (4, s, k) = P (4, s, k + 1), then 4(s− 1)− 1 ≤ 2k and, since
k is an integer, 2s− 2 ≤ k. We may now apply Proposition 3.8 to get the result.

Theorem 3.1 now follows immediately from Lemma 3.5, Proposition 3.6 and Proposition
3.9.

4 Primitive groups with equality

Primitive groups which are not (k+1)-homogeneous but achieve equality in the Livingstone-
Wagner Theorem for some k < (n− 1)/2 are fairly rare.

Remark 4.1. The known primitive but not (k + 1)-homogeneous groups G such that
σk(G) = σk+1(G), for some k < (n− 1)/2, are:

(a) AGL(m, 2), for m ≥ 4, n = 2m, k = 4,

(b) ASL(2, 3) or AGL(2, 3), for n = 9, k = 3,

(c) Sym(5), Sym(6), PGL(2, 9) or PΓL(2, 9), for n = 10, k = 4,

(d) M11, PSL(2, 11), PGL(2, 11), for n = 12, k = 4,

(e) PSL(3, 3), for n = 13, k = 4,

(f) PGL(2, 13), for n = 14, k = 4,

(g) 24 : Alt(6), 24 : Sym(6), 24 : Alt(7), for n = 16, k = 6,

(h) PGL(2, 17), for n = 18, k = 6 or 8,

(i) M22 or Aut(M22), for n = 22, k = 8,

(j) M23, for n = 23, k = 8, 9,

(k) M24, for n = 24, k = 6, 8, 9 or 10.

Observe that many of these groups are subgroups of M24.

Regarding case (a), we prove the following.

Proposition 4.2. Let G = AGL(m, 2), for m ≥ 4, acting naturally on an m-dimensional
vector space V over GF (2). Then σ4(G) = σ5(G) = 2.
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Proof. Observe that the stabiliser in G of any three points of V fixes the fourth point in
the unique affine plane containing these three points and is transitive on the remaining
points of V . It follows that σ4(G) = 2 and also G has a single orbit on the set of 5-subsets
which contain affine planes. Let ∆ be any set of five distinct points in V which does not
contain any affine plane. Then ∆ is not contained in an affine 3-dimensional subspace of
V . Furthermore the stabiliser in G of an affine 3-dimensional subspace W is transitive on
pairs (α, Λ), where α is a point not in W and Λ is any set of four points in W which is
not an affine plane. Therefore G has a single orbit on 5-subsets which do not contain any
affine plane. Thus σ5(G) = 2.
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