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Abstract 

The basic evolutionary structural optimisation concept (ESO) has been developed for 

several years. Recently, the first ESO algorithm based on the boundary element 

method (BEM) has been presented. In this thesis, this algorithm is used for the 2D 

shape optimisation. The aim is to develop a greater understanding of the role of 

certain governing parameters that drive the optimisation using this algorithm, and to 

make recommendations as to appropriate values of these parameters that give rise to 

good optimal solutions most efficiently. Two problems, a short cantilever beam and 

a fillet, are selected as test cases in this work. By using a wide range of numerical 

tests, the performance of the optimisation has been evaluated using a variety of 

methods including mean performance analysis and multi-objective optimisation 

approaches using Pareto curves and weighted sums. Recommendations are made as 

to appropriate values of these parameters that give rise to good optimal solutions 

most efficiently. Sensitivity analysis is another important method in engineering 

design. In this work a new algorithm to undertake a sensitivity analysis has been 

developed and used in a small number of investigations for boundary element 

structural optimisation process. ESO is selected when computational efficiency is 

thought the most important consideration, since it can reach the optimum in fewer 

iterations and lower run-time compared with sensitivity analysis in structural 

optimisation. 
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1. Introduction 

Analysis plays an important role in engineering design. The primary purpose of 

analysis is to assist engineers in making key decisions in the structural design 

process. In the past, although some early work indicates engineers were already 

thinking about structural optimisation one hundred years ago (Michell (1904)), the 

designer's skills and experience were the most important prerequisite for a 

successful engineering design. More recently, the advances in computational 

performance have led to the development of structural optimisation algorithms and 

their increased usage in industrial settings. In its most rigorous mathematical 

meaning, the term optimisation implies the search for the design than is in some 

sense the best. The particular sense might, for example, be the design that uses the 

minimum amount of material within given stress constraints. In the engineering 

world, the term can equally mean the improving of a design, especially when we 

recognise that a mathematical optimisation may weli yield a design that is 

impractical as an engineering solution. Recent work is incorporating such 

engineecing concepts as design robustness into an optimisation algorithm in order to 

bring the engineering and mathematical definitions of 'optimisation' closer together. 

With the development of scientific methods, optimisation has been widely used in 

engineering design. It can be applied to solve problems requiring a high level of 

performance. Improvements in our ability to perform these complex calculations 

have been made possible by advances in analysis methods, such as design sensitivity 

analysis, and by the increasing speed and memory capacity of digital computers. 

The finite element method (FEM) and the boundary element method (BEM), as 

computational methods have become essential tools in structural analysis. Since the 

FEM was developed in the late 1950s, it has been used in solving stress an~lysis 

problems for various types in almost all branches of engineering, such as 

aeronautical, civil, mechanical, and nuclear. It is an approximate technique in which 

the obj.ect is represented by discrete regions, or 'elements'. The entire domain is 

described in meshes in the FEM model. The displacement field is normally described 

in a piecewise polynomial fashion. A set of simultaneous equations is constructed by 

9 



applying the equations of equilibrium to each element, and the entire set of equations 

assembled for all elements can be solved for unknown displacement values using 

linear or nonlinear algebra as appropriate. Stresses and strains are then found using 

differentiation and by application of Hooke's Law. Refining the mesh, i.e. using 

more elements, wiH generally improve the accuracy of the FEM at the cost of the 

increased demand on computational resources. 

The boundary element method (BEM) is used in this work as the numerical stress 

analysis tooL In last few decades, the BEM has become an effective alternative 

which improves modelling time and accuracy over the finite element method (FEM). 

Especially, the BEM is highly suitable for shape optimisation because of its 

particular advantages such as building the model in a reduced dimension and rapid 

re-analysis capability. In addition use of the BEM can avoid some of the drawbacks 

found in the use of finite elements as the stress analysis engine for shape 

optimisation. 

In this thesis, reviews are firstly given of optimisation methods in general and also 

specifically of Evolutionary Structural Optimisation (ESO). Secondly, a brief 

comparison of the boundary element method with the finite element method will be 

made, before proceeding with a detailed overview of the boundary element method. 

Then the ESO algorithm used in this project is described. Results from some 

numerical tests are presented and recommendations made for the most appropriate 

and general values to be used for the parameters that guide the ESO scheme. Finally 

the results are discussed and conclusions drawn. 

The first ESO algorithm using a boundary element discretisation on a B-spline 

boundary geometric representation was presented by Cervera (2003) and Cervera & 

Trevelyan (2005a, 2005b ). The aim of the current work is to develop a greater 

understanding of the role of certain governing parameters that drive the optimisation 

using this algorithm, and to make recommendations as to appropriate values of these 

parameters that give rise to good optimal solutions most efficiently. 
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2. Structural Optimisation Review 

Structural optimisation is an important field of study due to its contribution to cost, 

material and time savings in engineering design. Many basic techniques have been 

developed for achieving the optimum, such as hill climbing and linear programming. 

Hill climbing is a heuristic method. One characteristic of a so-called heuristic 

algocithm is that ca.Fries on solving the problem and ignores whether the solution is 

correct. It starts by comparing the value of a certain function at an arbitrary point 

with those of many points around it, and then carries out evolution of the design by 

the tendency of moving towards the points whose function values are lower than the 

appointed one. The problem with this method is that it may search in a local, but not 

in the global, design space. For modelling in real applications linear programming 

(Cormen et.al (2001)) has been developed and used in a wide variety of fields. It is 

expressed in matrix form as 

maxumze ex 

subject to Ax ~ b 

x~O 

(2.1) 

where x is the vector of variables, ex is called the objective function and the Ax :S:b 

and x;;!) represents the constraints. The objective function and constraints are both 

linear. Commonly, the simplex algorithm fil'st introduced by Dantzig (1'951) is used 

for solving the linear programs. However, many optimisation problems are nonlinear. 

So nonlinear optimisation is widely used in variable fields, such as engineering 

design, economics, geography etc. 

2.1 Optimisation Methods 

There are many different methods available to solve structural optimisation problems: 

they may be broadly divided into the three categories of sizing, shape and topology 

optimisation. 
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2.1.1 Sizing Optimisation 

In the sizing optimisation approach, the optimisation is achieved by varying a series 

of sizes and dimensions. There are two main application areas in sizing optimisation: 

discrete structures and continuum structures. In the late 1960s, optimality criteria 

methods which solved problems in discrete structures were developed by Venkayya, 

Khot, Berke (1973) and others. For the problem of continuum structures, the 

geometry must be converted into a finite element model with adaptable loads and 

boundary conditions. Fleury (1979) applied the dual theory of convex programming 

to a separable approximation of the design problem. A discrete-continuum 

optimization criteria (DCOC) (Zhou and Rozvany (1996)) iterative algorithm using 

the reciprocal linear approximation of the displacement constraints was presented 

which improved the iterative performance. 

2.1.2 Shape Optimisation 

In structural optimisation problems, shape optimisation always deserves attention 

first because it is simpler than topology optimisation yet still allows the solution of 

many interesting and industrially relevant problems. Numerical shape optimisation 

schemes must be based around some method of obtaining stress and displacement 

solutions for the object under analysis. The finite element method (FEM) appears 

most commonly in the literature. Schnack and Sporl (1986) used a mechanical 

dynamic programming algorithm for structure optimization based on FEM. Mattheck 

and Burkhardt (1990} introduced a Computer-Aided Optimization (CAO) method 

using a commercial finite-element code, by reducing localized notch stresses in 2D 

and 3D elastic structures based on a biological growth analogy. Another method 

called SKO (soft kill option), which found an optimum structural topology by 

simulating adaptive bone mineralization, was applied by Baumgartner et al (1992). 

This method combined with CAO to carry out the optimisation by varying the 

Young's modulus according to a calculated stress distribution. In spite of the success 

of the FEM in general structural and mechanical analysis, the boundary element 
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method (BEM) (Trevelyan (}994)) has more recently emerged as an alternative that 

has a number of desirable features for shape optimisation. Parvizian and Fenner 

(1997) have compared mathematical programming with normal movement 

techniques in the optimization of 2D boundary element models. Their numerical 

results indicate that the normal movement approaches are easier to use in design. 

Meric (1995) applied sensitivity analysis and material derivative concepts in the 

shape optimisation of 2D heat conduction problems models by BEM. In the papers 

of Yamazaki et al (1993 and 1994) the direct differentiation method of the discrete 

boundary integral equation is applied to determine optimum shapes (in both 2D and 

3D models) of minimum weight subjected to stress constraints. Finally, gradientless 

methods such as the Response Surface Method and Genetic Algorithms have 

recently emerged as attractive options for optimisation of non-linear systems, or 

systems having multiple local optima. A Genetic Algorithm (GA) (Goldberg (1989)) 

is a search method based on natural selection and genetic processes like reproduction 

and mutation are used in the shape optimisation. Cervera and Trevelyan (2005(a:)(b)) 

have implemented evolutionary structural optimisation ideas in a boundary element 

context with some success. 

2.1.3 Topology Optimisation 

Topology optimisation was pioneered by Michell (1904), who studied statically 

determinate trusses for a number of loading and support conditions. It is a more 

complex task than shape optimisation. Since the advent of fast numerical stress 

analysis methods this work has once again become a subject of some attention. For 

instance, a homogenisation method was advanced by Bends0e and Kikuchi (1988). 

This method is a material distribution method· using an artificial composite material 

with microscopic voids. Eschenauer et al (1994) described a bubble method which is 

based on a solution concept comprising an iterative positioning of new bubbles 

followed by a hierarchically secondary shape optimisation of the new bubbles 

together with all variable boundaries. A level set method operates by building a level 

set model embedded in a scalar function ofa higher dimension (Wang et al (2003)). 

Such a level set model has flexibility in complex topological changes, and also 
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concisely describes the boundary shape of the structure. Another method for 

topology optimisation has been developed by Wang and Tai (2005). They further 

used GA to solve the topology optimisation problems by a bit-array representation 

method. 

2.2 Evolutionary Structural Optimisation 

The Evolutionary Structural Optimisation (ESO) method was first proposed by Xie 

and Steven (1993) and has been applied in many types of structural problems. It is a 

heuristic engineering design algorithm. ESO has been capable of solving a variet·y of 

problems of size, shape and topology optimisation in a wide variety of engineering 

problem types, including stress/displacement analysis, heat transfer, and fluid flow. 

The current work focuses on the stress/displacement problem. A concept of fully 

stressed design is inherently satisfied with this algorithm. It is considered to be fully 

stressed in the sense that all material in a structure is subject to its allowable stress 

under at least one of the load cases. The material can be removed if it is not used 

efficiently, i.e. has only small stress. The ESO in this context is based on the idea of 

removing inefficient material from an initially oversized domain. To remove the pan 

of material that is not needed, a so-called rejection criterion (RC) is used. For 

example, many ESO researchers describe algorithms that use the Von Misesstress as 

a rejection criterion to determine when removal should take place and how much 

material to remove. Finite element analysis results are typically presented as Von 

Mises stress. In three dimensions Von Mises stress is 

where u1. u2 and U3 are the principal stresses .. In a plane stress case, u 3 = 0. When UVM 

exceeds the material's yield stress, failure will occur. The process is carried out by 

removing material from low stress areas and possibly also adding material in regions 

of high stress by moving elements. 



It has to be mentioned here that the essential operation in an ESO scheme is the 

removal of material that is not being used efficiently. For simple stress ... based 

schemes this is usually performed by Iemoving parts of the object under analysis that 

are subjected to low values of stress. It is common to use von Mises stress in the 

criterion, since this is a widely used failure criterion that, importantly, considers both 

tensile and compressive stresses using pesitive numbers. In this regard, this 

description of stress makes no distinction between compressive and tensi:le stresses. 

But other stress components, strain energy, or design sensitivities could also be used 

as appropriate to govern optimisation for different materials (e.g. concrete, in which 

tensile strength might be neglected) or to consider different objective functions. 

In an FEM based scheme (Xie and Steven {1993)), elements are eliminated 

according to the criterion: 

(2.1) 

where Ue is the largest von Mises stress in the element, Umax is some predefined 

maximum permissible value of von Mises stress (often related to the yield stress of 

the material) and RR is the rejection ratio. In BEM based schemes, the criterion 

described by equation 2.1 may be applied to regions of the boundary, and material 

removed by redefining the geometric description of the object's boundary. 

Such a cycle is Iepeated using the same RR until a steady state is reached. Then an 

evolution rate, ER, is added to the RR. 

(2.2) 

in which the subscript refers to the iteration number. The iterations take place again 

until a new steady state is attained. 

Such an evolutionary process continues until a d'esired optimum is reached. Ideally 

the final structure becomes a fully stressed design where the material at each point of 

the structure is stressed to its full strength. Querin et al. (1998) introduced a 

performance indicator (PI) that measures how well the overall structure is 

performing against an idealised situation. The PI is defined as; 
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L (J'VMe~ 
PJ = .;l'e/emen='=-----

FL 
(2.3) 

where UvMe is the element von Mises stress, Ve is the element volume, F is a 

representational force an.d L is a feference length. 

A large number of numerical examples demonstrate the ESO method is very efficient. 

A two-bar frame (Xie and Steven (1'993)) as an example is followed. A design 

domain of the size 110 x 20 (m) as shown in figure 2.1 is disc:uetized into 25 x 60 

bilinear quadrilateral plane stress elements. Young's modulus E = l'OOGPa and 

Poisson's ratio P = 0.3 are assumed. The initial rejection ratio RR0 = 0.0:1 and the 

evolution rate ER = 0.01. Figures 2.2 (a}-(j) show the evolutionary process of this 

model from a rectangular plate into the fmal tress type structure. 

20 

F 

Figure 2.1: Design domain for the two-bar frame structure 
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(a)RR=0.03 

• '* ~ ..................... '• . : : :: : ~ : :: : : : : :.: : ; : : : ·: 
~ ~~-~-~~ ~ ~-~ ~~ ~-~ ~ ~ ~ ~ ~ ~-~ ~ ~~~ ....... _ ................... . ......................... 

(d) RR=0.12 
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(g) RR=0.21 

(b)RR=0.06 

(e) RR=0.15 
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(h) RR=0.24 
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.................. .................. ·················· .:::.::::::.·:::::·:::;:: 
. :: : :; ; : : : : : : ; :; : : : : ~ : : 
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(i) RR=0.27 

(c) RR=0.09 

(f) RR=0.18 

. :: : : : ~ : : : : : : : : : :: : : : : : 

(j) RR=0.30 

Figure 2.2(a-j): Evolutionary of two-bar frame structure (Xie & Steven (1993)) 
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2.2.1 Additive Evolutionary Structural Optimisation (AESO) 

AESO (Querin et al. (2000)) is a similar method to the basic ESO procedure 

described above. The AESO only adds the material where is most needed, but not 

remove any from the inefficient areas. This evolutionary process is driving by the 

following criterion: 

where f3e is the selected criterion, f3max is the maximum value for the selected 

criterion and IR is a parameter called the inclusion ratio. This parameter may be 

determined by 

(2.4) 

(2.5) 

where SS is steady state number, 0 gR ~1, a0 =1, anda1 •••• an are determined from 

numerical experiments with AESO. 

When a steady state is achieved, elements are not added any more. At this stage, SS 

is increased by 1 and the IR is re-calculated. Repeat such a process until the 

maximum criterion has been reduced or the performance indicator (PI) in equation 

(2.3) has been minimised. 

2.2.2 Bi-directional Evolutionary Structural Optimisation (BESO) 

In the BESO method (Querin et al. (1998)), elements ofthe structure can not only be 

added, but also removed. The addition and removal processes are the AESO and 

ESO methods. For example, when the optimisation criterion is the von Mises stress, 

elements can be added or removed if they satisfy the equations: 

(2.6) 

(2.7) 
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where Ue is the element von Mises stress, Umax is the maximum value of the von 

Mises stt:ess, RR is the rejection ratio, and IR is the inclusion ratio. 

When a steady state is achieved, elements are Bot added any more. Such a pt:ocess is 

repeated until the criterion reaches the limit value or the performance indicator (PI) 

(equation 2.3~ has been minimised, similar to AESO and ESO. 

2.3. Numerical Methods in Elastic Stress Analysis 

2.3.1 Compar:ison between Available Methods 

The vast majority of numerical stress analysis computations performed today are 

done using the finite element method (FEM). This is an approximate technique based 

on a discretisation of the domain, and may be applied to a wide variety of problem 

types, including linear and non-linear stress analysis, heat transfer, vibrations, 

acoustics, electromagnetics, and many others. In the case of elasticity, which is the 

subject of the cun:ent work, the displacement field is assumed to be described in a 

piecewise polynomial fashion. Confining this description to two-dimensional 

problems for simplicity, the finite elemeats will be (generally) triangular and 

quadrilateral in shape, and fill the complete extent of the material under analysis. 

Engineers familiar with the technique wiJ!l know also that it is not sufficient only to 

flU the domain with elements, but in order to achieve accurate stress solutions it must 

be ensured that the elements are sufficiently smaH, and sufficiently undistoned, so 

that each element is capable of capturing the stress field within its area. 



(a) Mesh by FEM 

(b) Mesh by BEM 

Figure 2.3: Comparison ofFEM and BEM in the same problem 

However, this method has some shortcoming as checkerboarding (Rozvany (2004)) 

and non-smooth boundaries (Reynolds (1999)). As an analysis tool in the typical 

structure optimisation (Xie and Steven(1993)), the drawbacks to use of the FEM are 

presented (Wen and Trevelyan (2005)): 

• Typically shape optimisation is a boundary related process so the vast 

majority of the finite elements are not producing information that directly 

guides the process. 

• Careful checking needs to be made to identify and remove ' islands', i.e. 

elements or groups of elements that become unconnected to the model and 

cause singularities in the solution. 
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• The methad tends to gwe nse to a mesh character known as 

'checkerboaroing', in which the elemetits and vaids fi:lll regians in. the same 

pattern as the black and white squares on a ch~ss board .. This results in single 

node contactbetw.een diaganalty adj~cent elements that is undesirable. 

• In the 'later stages of the aptimisatian, the geometry has converged to a ~truss

like state, and care needs ~to 1be t3.ken to ~ensure this is not represented in the 

finite 'element model1 by a line of elements jairted diagonally at their earners. 

• Preblems converging . to surfaces that are not hor.izontal or vertical {i.e. 

~lmost all! problems!) win be representedi in the finite element madel by non:

S1llaoth, 'staircase' type meshes on the boundar.y. These can gi;ve rise to 

artificial stress concentrationS that impede the optimisation pr()cess. 

The boun<htry element method' is similar to the tillite element method. :Jn brief, the 

twa rrtethads are both based: on the use of matcix algebra ta solve large systems of 

simultaneous .equations. They both use the concept of node points ta define the 

displacement on each element and shape functions to describe the variation of this 

displacement over the dement. The difference between ,them is that only the surface 

area ~af the object should be defined in BEM, hut the eiltite volume must be defined 

· in FtEM. Compared with FEM, BEM is highly ~suitable· for shape aptimisation. ·A 

_ _!!l~od~l q_~~ be huilt _easily_and: ·q~ckly~-and-importantly· th~-elem~nts-·ar~ -coOO.ned~ t~---- - -- --

the 1baundary of the object which is where the majority of concerns lie in an 

aptimisation scheme; The accuracy of camputation is high because the boundary 

integral equation can be used directly to determine ~the derivatives of the objective . 

and constraint functions, In the optimisation process re-generation of BEM models, 

whlch is to accommodate a change in the design geemetry, is both straightforward 

and fast (Tafreshi and Fenner (it991)). (Cervera and Trevelyan (2002)} also use the 

BEM as the analytical tool because it does not require remeshing of the domain, 

which can reduce the camputational effort per iteration and eliminates perturbatians 

due ~to changes in the mesh. Further advantages are available in optimisation through 

the use of re-analysis. Geometric perturbatiol1S af the bol:mdary from one iteration to 
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the next often involve only a small part of the model changing, It has been shown by 

Trevelyan and Wang (2001) that much of the computation in the re-analysis can be 

saved by re-using matrix terms from the previous iteration, and by using an iterative 

solver for rapid re-solution of the updated equation set. More detail on this aspect of 

the BEMis provided in section 3.2.5. 
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3. Boundary Element Method 

More than 100 years ago, the fundamentals of the boundary element method have 

been investigated in depth by Abel and Helmholtz. Fredholm (1903) was the first to 

salve the elasticity problems by discretization procedures. But his idea was held back 

by the lack of calculating speed before the appearance of the fast computers. In the 

1950s Mikhlin (1957) and Muskhelisvili (1953) improved applicatien of this type of 

technique in engineering. 

In the early sixties, the development of the high-speed computer made the BEM 

become more applicable. Jaswon (1963) and Symm (1963) solved the FFedholm 

equations using a collocation procedure for simple 2D potential flow problems. At 

the same time, Hess and Smith (1967) worked on solving potential flow problems 

for general geometries. Their works were extended to elasticity problems also in the 

1960's, in which the works of Rizzo (1967), Cruse and Rizzo (1968) and Cruse 

(1968) who were the first to describe the direct boundary integral equation method 

which is still popular in engineering software. Lachat (1976) introduced to BEM the 

concept of higher-order elements using quadFatic shape functions. The first text 

book describing the newly named boundary element method by Brebbia (l978) was 

published in 1978. Since then BEM has continued to develop. Brebbia (1989), Beer 

(1992), Becker (t992), Kane {1994) and Trevelyan (1994) have presented other text 

books in the field. 

There are two formulations in the BEM, the direct formulation and the indirect 

formulation. In the former, the physical variables, e.g. displacements and tractions in 

elasticity, are unknown. In the latter, the unknown physical variables are obtained by 

imaginary densities. The current work considers only the direct formulation. 
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3.1 Review of Linear Elasticity 

The concept of linear elasticity as the basis of the boundary element method has to 

be presented firstly in order to introduce the BEM. 

3.1.1 Stress and the Traction Vector 

The stress on any particular face is defined as the resultant force divided by the area. 

Stress can have units of Newtons per square metre (N/m2
) or Pascal (Pa) where 

1 Pa = 1 N/m2
• Three normal stresses (axx, O"yy, O"zz) are parallel to the coordinate axes, 

as illustrated in figure 3 .1. 

z 

y 

X 

Figure 3.1: Components ofthe stress tensor 

The stress tensor is symmetric in the equilibrium condition as shown 

(i, j == 1, 2 or 3) (3.1) 
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The components of the stress at the various points in a body must satisfy the 

equilibrium equations. 

a a JCJC a a yx a a zx f3 ~ 0 --+--+--+ = ax ay az x 

au au 0(]' 
____!!.... + ____!!_ + ___!!.... + p = '0 ax ay az y 

0(]' xz au yz au zz /] 0 --+--+--+ = ax ay az z 

where f3x. /3y and f3z are body forces. 

(3.2) 

Another way to define stresses is by the traction vector which is derived from the 

stress components in the coordinate directions, and is denoted tx, ty and tz. A set of 

equations can be written 

t X = (]' JCJCnX +CJ' yxny + (]' zxnz 

ty = (]' xynx + (]' yyny + (]' zynz 

tz = (]' xznx + (f yzny + azznz 

where nx, ny and nz are the components in the (x, y, z) directions of the outward 

pointing normal to the surface. 

For two dimensional plane stress problems Uzz = Uxz = Uyz = 0. A similar set of 

equations can be written: 

tx = (]' nnx +a yxny 

tY =a xynx +a YYnY 

(3.3) 

(3.4) 

(3.5) 
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3.1.2 Strain 

A solid body deforms when it is subjected to stress. The deformation of a body is 

often measured and characterised in terms of strain, which is denoted & , and is 

formed from the derivatives ofthe displacement vector(ux, uy, uz). 

For two dimensional plane strain problems, the strain components&== &xz = &yz = 0. 

The non-zero strains are 

Ou 
G =-X 

.XX ox ' 

o2
& 82& 2o2

& 
~ + ___:....:!:!.. - xy = 0 
& 2 ol axay 

(3.7) 

(3.8) 

Equation 3.8, which may be verified from equation 3.6, ts known as the 

compatibility condition. 

3.1.3 St~tess-Strain Relationship 

For an isotropic elastic state, the stress-strain relationship can be simply derived 

from the definitions of Young's modulus and Poisson's ratio using the principle of 

superposition. These relationships can be written 

G XX = ~ [ 0' XX - v( 0' Y.J1 + 0' 2Z) J 

& Y.Y = ~ [ u Y.Y - v(u zz + 0' xx) J 
& = ~.· [u - vt;u + u )] 

zz E zz l.:xx Y.Y 
(3.9) 
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where E is the Young's modulus, Pis the Poisson's ratio and 11. is the shear modulus. 

In an isotropic material, these material co11stants satisfy the following relationship: 

E 
p=---

2(1+v) 

3.2 The Bo1:1ndary Elememt Method for Stress Analysis 

3.2.1 The Boundary Integral Equation 

(3.10) 

The t:eciprocal theorem is well knoWR in mechanics. There are different ways of 

expressing the reciprocal theorem; one of them is given here as the beginning of the 

derivation of the boundary element method for stress analysis. 

Consider an object subjected to two load cases; we will call them A and B. Load 

case A contains some forces and displacement constraints. Load case B consists of a 

different set of forces and displacement constraints. The reciprocal theorem states 

that the work done by the forces from load case A on the displacements from load 

case B is equal to the work done by the forces from load case B 011 the displacements 

from load case A. They can be written 

Forces Ax Displacements8 = Forces8 x DisplacementsA (3.11) 

Being a little more scientific about the statement, in load case A the forces are made 

up of boundary .tractions t and body forces b, and the displacements u. For load case 

B a similar notation is used but we write t*, b* and u*. Since tractions are applied 

only at the boundary of the object, work is done only over the boundary, r. Body 

forces (e.g. gravitational or thermal loads) act throughout the volume, 0. So we can 

sum, or integrate, the work done by writing the reciprocal theorem as 

Jt*udr+ Jb*udO= Ju*tdf+ Ju*bdO (3.12) 
r o r o 
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Let load case B take the form of a concentrated point force at some position 'p ' in 

the volume. Kelvin's fundamental solutions, which are sometimes termed the "free

space Green's function", are u* and t*. The fundamental solutions for 2D linear 

elastic stress analysis (Trevelyan (1994)) are 

u* .. = 
1 

[(3-4v)ln.!.a .. +~ ar] 
Y 8n,u(l-v) r Y Ox; fJxi 

(3.13) 

t* .. = .. -1 8r[<1-Zv)£5,.+ 2ar Br]+ 1-2v [Br n.-~n.J 
I} 4n:(l-v)r an . I} 0xj axj 4tr(1-v)r axj I axj J 

(3.14) 

where i and j Iepresent directi0n indices, u* ij is the displacement in direction X; at 

some locati0n due to a concentrated point force in the direction Xj, p and v are the 

shear modulus and the Poisson's ratio, r is the distance from the point 'p' t0 the point 

at which the displacement is required, Oij is the Kronecker delta, which takes the 

value zero if i * j, and 1 if i = j. 

By the particular choice of the load case B the v0lume integral on the left hand side 

of equation 3.12 reduces to 

fb*·udQ = u(p) 
n 

(3.15) 

lf we assume the body forces in the real load case, b, t0 be zero, we can reduce 

equation 3.12 to a much simpler fonn 

u(p)+ Jt*·udr = Ju*·td'r (3.16) 
r r 

The volume integrals have been removed, and the only term that remains in this 

expression that relates to the inside ofthe material is the first one 'u(;p)', which is the 

displacement at the point 'p' inside the object. 

Moving the point 'p' to the boundary, we have the final form of the equation which 

is called the Boundary Integral Equation. 
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c(p)u(p)+ Jt*·udr= Ju*·td,f (3.17) 
r r 

A multiplier c(p) is introduced as a result of treating a singular boundary integral as 

the limiting value of a non-singular integral, taken in the sense of Cauchy principal 

value. Often c(p) takes the value of 0.5 because 'p' is on a .smooth boundary, To be 

more general, c(p) takes the value of 8 I 27r, where 8 is the internal angle subtended 

at point 'p'. 

In practice, it is very difficult, for all but the simplest cases, to solve the boundary 

integral equation analytically. The integration has to be done numerically by an 

approximate method. Engineers are usually familiar with classical numerical 

integration methods such as the Trapezoidal Rule an.d Simpson's Rule (Abramowitz 

and Stegun (r972)) for numerical integration. It is most common for both FEM and 

BEM implementations to use Gauss-Legendre quadrature (Davis & Rabinowitz 

(1984)). Like the Trapezoidal and Simpson's rules this involves the evaluation of the 

integrand at a number of points (or abscissae) and the weighted sum of such 

evaluations. In order to achieve accuracy of this numerical integration we perform it 

over a large number of subdivisions of r. These subdivisions are the boundary 

elements. This subdivision into small elements is also required to provide for 

interpolation of displacements and tractions between nodal values. So it is seen that 

the discretisation fulfils two purposes, one for ease and accuracy of numerical 

integration and one for interpolation. A subdivided form of the Boundary Integral 

Equation can be written in which the integrals are expressed as the sum of the 

integrals over all the elements 

c(p)u(p)+ L Jt*udre = L Ju*tdre 
elements r element! r 

(3.18) 

Boundary elements have nodes which are often placed at the end and at the mid

points of the el'ements like finite elements. These can define the geometry of the 

element and the displacement, traction and stress variation over the element. A 
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quadratic line element for 2D analysis is illustrated in figure 3.2, in which the local 

coordinate ~ is defined. 

Node 1 
~=-1 

Node3 
~=1 

Figure 3.2: Quadratic boundary element 

Interpolation is performed using shape functions which are identical in concept to 

their use in finite element methods. For the quadratic boundary element shown, the 

shape functions N; in the local coordinate ~ are given by 

(3.19) 

So the displacement, u, at any point on the element will be found using the 

interpolation 

3 

u(q)= INiui (3.20) 
i=l 

Expressing equation 3.19 as a vector multiplication, 

(3.21) 

where NT is the transpose of a vector containing the shape functions and u is a 

vector containing the values of the displacement at the three nodes. 
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The traction t, at any point is given by 

3.2.2 The BEM as a Matrix Method 

(3.22) 

(3.23) 

The ne:x:t important step is replacing the displacement u and traction t in equation 

3.17 by the interpolated forms. We can not perform the integration directly since the 

terms u and t, both remain unknown. By replacing with the interpolated form 

equation 3.17 becomes 

I I 

c(p)u(p )+ L J t *NTuJd; = L J u *NT Ud; 
elements -I elements -I 

(3.24) 

where J is called the Jacobian (Gradshteyn and Ryzhik (2000)) which is used to 

transform the variables of integration or di,£ferentiation from one set of variables to 

another. Recognise that the vectors u and t may be treated as constants and removed 

from the integral. 

I I 

c(p)u(p)+ L Jt*NTJdqu = L Ju*NT Jd;t 
elements -I elements -I 

(3.25) 

For every element on the boundary, the value of the integral can be calculated since 

every term in the integral is known. An expression is given as follows for p at node 1 

where the h terms arise from the integrals of the t* terms and the g terms arise from 

the u * integrals. This expression is somewhat simplified for clarity. Here it is needed 
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to notice the fundamental solutions are singular at the point 'p'. In reality, in a 2D 

analysis we would also include simi:lar terms involving displacement and traction in 

the y-direction as well as the x-direction. The term c(l) and all h and g terms are 

known. Obviously we have an equation including many unknowns, the displacement 

and traction at each node. However, a similar expression can be found by placing the 

force in the y-direction at node 1. Place the point 'p' at every node in turn, repeat the 

integration step in both directions at each node and a set of equations will be 

developed. These can be written in matrix form. 

Hu=Gt (3.27) 

where H is a matrix of all the h coe£ficients, G is a matrix of all the g coefficients, 

and the vectors u and t contain the displacements and tractions in each direction at 

the nodes on the boundary. 

3.2.3 The Solution 

Equation 3.27 is a statement of a set of n simultaneous equations with 2n unknowns, 

where n is the total number of degrees of freedom. So it can not be solved without 

reducing the number of unknowns. This is most simply achieved by applying the 

boundary conditions in such a way that at each node and in each direction we 

prescribe either the displacement or the traction. In practice this does not present a 

difficulty since a free surface has zero traction. 

The first step in the solution is to swap the columns of the matrices to bring all the 

terms that remain unknown to the left hand side and take all the terms as boundary 

conditions to the right hand side as follows: 

Ax= By (3.28) 
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where A and B are matrices containing columns of H and G, x is a vector of mixed 

displacements and tractions that remain unknown, and y is a vector of known 

displacement and tractions as boundary conditions. The matrix B and the vector y are 

known, so we can multiply out the matrix vector product to leave 

Ax=b (3.29) 

where b is the vector result of multiplying out the right hand side of equation 3 .28. 

Equation 3.29 can be solved using a variety of techniques. Popular solvers are direct 

solvers like Gauss Elimination, and iterative solvers like GMR.ES (Saad (1986)) 

(Generalised Minimum Residual Method). 

• Gauss Elimination. A combination of row operations reduces the system 

matrix to upper triangular form and then the solution is obtained through 

back-substitution. This method is guaranteed to arri:ve at a solution for a non

singular system. 

• GMRES. This is a conjugate gradient type solver that is applicable to the 

non-symmetric systems that characterise boundary element equations. The 

advantage of this method is speed, especially for larger systems of equations, 

though occasionally the solver may fail to converge satisfactorily. 

Convergence properties can be greatly improved through suitable 

preconditioning. 

The solution of equation 3.29 provides us with a full description of the 

displacements and tractions on the boundary, which allow ready calculation of stress 

components and principal stresses, etc. 
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3.2.4 Internal Solution 

We cart find the stresses and displacements in the simi1lar process when 'p' is at the 

inside the material. In this case the internal angle (} = 2;r at the collocation point 'p', 

so c(p) = 1. The equation 3.25 can be expressed 

I I 

u(p)+ L Jt*NTJd~u= L Ju*NTJd~t 
elements -I elements -I 

(3.30) 

Here u and t are both known. The only unknown is u(p), the displacement at the 

internal point, which can be found by evaluating the integrals. In the same way, the 

stresses at the internal point can be found by the derivative of the equation 3.30. 

3.2.5 Re-analysis 

By the term re-analysis we mean the solution of a system of equations that is similar 

to a set that has already been solved, and for which a solution is available. This is 

applicable to both finite element and boundary element systems. It is clear that this 

type of situation is a common one in any iterative shape optimisation scheme in 

which the geometry in successive iterations is formed by considecing a small 

perturbation from the previous geometry. 

The ewly work in reanalysis techniques has been reviewed by Arora (1976), and 

later by Abu Kassim and Topping (1987). In the early years of finite element 

analysis the moti,vation for re-analysis was simply that the run-time could be 

extremely long for analysis jobs that would today be performed in seconds. 

Therefore, any schemes that could provide savings would be helpful. More recent 

work is derived from more advanced motivations, usually the acceleration of a shape 

optimisation scheme or the acceleration of computations to allow contours to be 

updated dynamically as a model is changed, introducing a greater degree of 

interactiv:ity than is possible using a full analysis for each design change. Mackie 

(1998) developed an object-oriented approach with FEM reanalysis. However, 

34 



although the FEM reanalysis can reduce run time by inheriting the advantage of the 

previous runs for the next run, the subsequent remeshing is generally more 

cumbersome than the straightforward BEM reanalysis. However, Mackie has 

presented a functioning approach based on substructuring of FE models and making 

use of multithreading of operations. 

In the BEM, the use of re-analysis is more advanced and appears more commonly in 

the literature. This is because a geometric change is much more simply and robustly 

accommodated in the mesh, and the effects of the geometric change do not propagate 

as much through the model as they do in the FEM. The typical pattern of rows and 

columns that require updating in the governing matrix in a re-analysis is shown in 

figure 3.3. 

Figure 3.3: Modified portion of the matrix in a typical BEM reanalysis 

Note that this goverrung matrix, such as A in equation 3.28, is a dense and 

unsymmetric matrix. The updated A is largely similar to that in the previous 

analysis. 

BEM re-analysis was first applied by Kane eta/. (1990), whose scheme allows large 

geometric perturbation but is not guaranteed to converge. Leu (1999) presented a 

scheme based on a reduction method, in which the new solution is expressed as a 

linear combination of orthogonal basis vectors produced through a Gram-Schmidt 

procedure. This was applied to simple shape optimisation problems. 
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Both schemes of Kane and Leu suffer from the fact that they do not allow well for 

multiple perturbations of different parts of the model. The re-analysis makes use of 

an inversion or decomposition of the original system matrix. This means that the 

efficiency of the algorithms degrades after a number of different perturbations have 

been performed. Trevelyan and Wang (2001) presented a simple BEM reanalysis 

scheme which did not suffer from the drawback and was also guaranteed to converge 

given sufficient iterations. This approach is based on the GMRES iterative solver, in 

which the previous matrix is rewritten and a full matrix solution is performed in each 

analysis. The approach was further accelerated by Trevelyan, Scales, Morris and 

Bird (2005), who introduced an approximate complete LU preconditioner that 

greatly reduced the iteFations to convergence. 
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4. Nonuniform Rationa~l B-spl:ines 

Nonuniform rational B-splines (NURBS) have become a common standard for the 

representation of geometric information processed by computers. NURBS have 

excellent mathematical and algorithmic properties, which have contributed to their 

enormous popularity. The B-spline curves and surface have the similar pattern and 

properties. This chapter only introduces the B-spline curves. 

4.1 Introduction 

Pierre Bezier developed a method for shape description using the Bernstein basis or 

polynomial approximation function. A parametric nth-degree Bezier curve is defined 

by 

n 

C(u) = LB;,n(u)P; (4.1) 
i=O 

where the geometric coefficients P; are caUed the control points, which form the 

control polygon, and the basis or blending functions B;,n are the Bernstein 

polynomials given by 

n' . . 
Bi,n(u) = . ( · .) u'(1-u)"-• 

z! n-z ! 
(4.2) 

The use of such basis functions gives the Bezier curves, also applicable to Bezier 

surfaces, some important properties (Rogers (2001)) 

• The basis functions are real. 

• The degree of the polynomial defining the curve segment is one less than 

the number of control points. 

• The curve generally follows the shape of the control polygon. 
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• The first and last points on the curve are coincident with the first and last 

points ofthe control polygon. 

• The tangent vectm:s at the ends of the curve have the same direction as the 

first and last polygon spans, respectively. 

• The curve is contained within the convex hull of the control polygon, i.e., 

within the largest convex polygon defined by the control polygon vertices. 

• The curve exhibits the variation-diminishing property. This means that the 

curve does not osdllate about any straight line more often than the control 

polygon, or, in other words, no straight line has more intersections with the 

curve than with the control polygon. 

• The curve is invariant under an affine transformation. 

However, curves consisting of j~st one polynomial or rational segment can be 

inadequate. Their shortcomings are 

• The limitation of flexibility The number of specified polygon vertices fixes 

the order of the resulting polynomial that defines the curves~ 

• The limitation of control Specified polygon controls the shape of curves. 

However, the contFol gets inefficient when the specified polygon has more 

vertices that leads to a higher order of curves. 

• The limitation of changing Any point is a result of blending the values of all 

control vertices, so a change in one vertex affects the entire curve. This 

eliminates the ability to produce a local change. 

For all these reasons, an alternative solution can be to use curves which are 

piecewise polynomial, or piecewise rational such as B-splines. 
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4.2 B-spline Curves 

B-splines are a generalisation ofBezier curves. Both curves are controlled by a set of 

points P; (control points) lying on a polygon (control polygon). In general they do 

not necessari1ly interpolate their endpoints. However, the nonuniform B-spline basis 

functions allow this, passing through the first and last points. A B""spline curve 

differs from a Bezier curve in that it usually consists of more than one curve segment. 

Each segment is defmed and influenced by only a few control points, which are the 

coefficients of the B-Spline basis function polynomials. The degree of the curve is 

independent of the total number of control points. These characteristics allow local 

changes in shape; i.e. changes do not propagate beyond one or only a few local 

segments. 

4.2.1 Nonrational B-spline Curves 

The most general nonrational R-sp1ine curves are those defined by nonrational basis 

functions. That is, the basis function defining one segment may differ from those 

defining another. This allows us to interpolate one or more of the control points, 

depending on the modelling situation. The nonrational pth -degree B-spline curve is 

given by (Piegl and Tiller (1997)) 

II 

C(u) == LN;,p(u)P; (4.3) 
i=O 

where the P; are the (n+ 1) control points and the piecewise polynomials N;,p(u) are 

the pth -degree basis functions defiaed recursively as 

{
1 if U; ~ u ~ ui+l 

N. 0(u) = 
'· 0 otherwise 

_ u -u; ui+p+t -u 
N;,p(u)- Ni,p-1(u)+ .. Ni+l,p-t(u) 

ui+p -u; ui+p+t -ui+t 
(4.4) 
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The u; are knot values which form the knot vector U = {uo. u1 . ... ,um}. They relate the 

parametric variable u to the control points P;. The parameters determining the 

number of control points, n+ 1, knots, m+ 1, and the degree of the polynomial, p, are 

related by 

n+p+1==m (4.5) 

For nonuniform and nonperiodic B-spline curves, the knot vector is characterised by 

U = {~up+l' ... ,.um-p-r•8} 
p+l p+l 

(4.6) 

where end knots a and b are repeated with multiplicity p to interpolate the initial and 

final control points. If the entire curve is parameterised over the unit interval, then 

for most practical situations, a=O and b=l. Spacing the knots at equal intervals of the 

parameter describes a uniform nonrational B-:spline curve; otherwise it is nonuniform. 

For example, the following B-spline curve presented has a degree p=2, i.e. it is a 

quadratic curve, and six control points. The basic functions M.2(u) can be obtained 

by equation (4.4), 0 s u S1 and U= {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. We in turn 

compute N;,o(u), Ni,i(u~ and N;,2(u). The basis functions N;,l(u) are plotted in figure 

4.1. 
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u 

Figure 4.1: Nonuniform B-spline basis functions for n=S, p=2 

The B-spline curve is obtained as shown in Figure 4.2. We can see a set of six 

control points {Po(O,O), P1(2,4), P2(4,5), P3(6,0), P 4(8,1), P5(10,5)} , the resulting 

curve C(u) including four segments { C1(u), C2(u), C3(u) , C4(u)} . 
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Initial 8-spline curve 

Figure 4.2: Initial B-spline curve 
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The B-spline curve is governed by these control points. In figure 4.3, the new B

spline curve is shown by moving P2(4,5) to P'2(5,6). This change only affects three 

segments of the curve. A conclusion can be achieved from figure 4.2 and 4.3 that 

three control points influence each curve segment and tln:ee segments are influenced 

by a control point. 

P,' 
6~--------------------~~~~·~··~-~-~-=··=-~---------------~ 
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I 

' 

I 
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I 
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I 
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I 
I 

P. .... 
- ........ 

I 

I 
I 

I 

o~~-+----4----+----4----4--~~--~----~--~~--~--~ 

0 1 2 3 4 5 6 7 8 9 10 11 

B-spl ine after moving ~ to ~' 

Figure 4.3: B-spline after moving P2 to P2' 

4.2.2 Rational B-spline Curves 

Rational curves are defined based on homogeneous coordinates. As the 

generalization of the nonrational B-spline, rational curves are more advantageous 

than nonrational curves, because their mathematical forms offer us to represent some 

standard shapes, such as conics and circles, more efficiently. 

Using homogeneous coordinates the equation ( 4.3) can be modified to define 

rational B-splines, commonly known as NURBS (NonUniform Rational B-Splines). 
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Thus a NURBS curve is a vector-valued piecewise rational polynomial function of 

the form (Piegl and Tiller(l997)) 

n 

LN;,p(u)w;-1~ 
C(u) = -=-i"'-.~----

LN;,p(u)w; 
i=O 

(4.7) 

where P; are the control points, thew; are the so-called weights, and the N;,p(u) are 

the p'h -degree basis functions (equations (4.4)) defined on the nonpemodic and 

nonuniform Jmot vector in equation (3.6). In most cases a = 0, b = 1 and w; > 0 are 

assumed. 

Setting 

N. (u)w. 
R. 0 ( )= l,p I 

·1,p U n O$u $1 (4.8) 

LNj,p(u)wj 
j=O 

The equation ( 4. 7) can be rewritten into the following equivalent form 

II 

C(u) = L:R;,p(u)P; O~u~1 (4.9) 
i=O 

where the R;,p(uj are the rational basis functions. They are piecewise rational 

functions defined on the unit interval u e L0, 1 J. 

Figure 4.4 shows the Rational B-spline basis functions R;,2(u) which is obtained 

by equation (4.8), 0 ~ u ~1 and U= {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. Here the 

w;.=0.5. 
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Figure 4.4: NURBS basis functions for n=5,p=2, wi=0.5 

Figure 4.5 shows the NURBS curve with five control points {Po(O,O), P1(2,4), 

P2(3,1), P3(5,0), P 4(7,4)} 
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Figure 4.5: NURBS Curve 

1 

8 

44 



Figure 4.6: Rational cubic B-spline curves with W3 varying (Cervera(2003)) 

A rational cubic B-spline curve is shown in figure 4.6. We also can see how w; 

affects the curve. Heie the single weight w3 associated to Pa. If wa increases 

(decreases), the curve moves closer to (further from) P3, and so the curve is 

pulled toward (pushed away from) Pa. (Cervera(2003)) 
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5. Algorithm for ESO with BEM representation 

of B-spl:ines 

Cervera (2003) has developed the first ESO algorithm using boundary element and 

has implemented it in a program in a Microsoft Visual C++ environment. The 

Boundary Element Method (BEM) is used for the analysis and NURBS curves for 

describing the design domain where lines can change freely. NURBS are defined by 

their control points, and the optimisation progresses by iteratively moving these 

control points to accommodate a change in the geometry based on the results of a 

BEM stress analysis. In this part the complete optimisation algorithm is presented in 

detail. The main steps of evolutionary optimization are as follows: 

Step 1: Geometry Defmitions: The geometry of the structure is defined and the 

boundaries modelled by using B-splines; loads and constraints are applied; 

Step 2: Structural Analysis: A boundary element analysisis carried out; 

Step 3: Removal or Addition of Material: Material is removed from areas of 

low stress is added in areas of high stress. 

Step 4: Repeat such a procedure (from Step 2) until a stopping criterion is 

reached. 
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NO 

START 

GEOMETRY DEFINITION 
(CONSTRAINTS, LOAI!>S AND SYMMETRY LINES) 

REMOVAL OR ADD MATERIAL 

END 

Figure 5.1: Outline ofOptimisation Algorithm 

5.1 Geometry Definition 

According to the applied constraints, loads or some design requirements, the 

boundary domain can be di;vided into three types of curves: changeable, non

changeable and symmetry lineS. Changeable lines can change freely in the 

optimisation process, whereas those lines that can not change are identified as non

changeable. Symmetry lines can change but in a limited way. They are always 

straight lines; therefore, their variations are restricted along the direction of the line. 

When the adjoining line is a changeable line, the symmetry lines can be modi,fied by 

changing their length. NURBS curves define the entire changeable geometry since 

moving of control points is the only mechanism for modifying the geometry. 
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5.2 Boundary Element Analysis 

In the BEM the boundary integral equations are approximated by a set of discrete 

integral equations. The boundary surface is divided into elements, thus the response 

is given at the nodal points associated with the elements. Only the surface of the 

structure needs to be discretised. The results inside the structure are calculated at an 

arbitrary number of internal points. These points are randomly distributed throughout 

the interior domain in the algorithm described. That is in a slight contrast with the 

conventional engineering usage of the method in 2D which concentrates the internal 

points in areas of high stress gradient to improve the fidelity of contour 

representations of results. 

5.3 Removal and Addition of Material 

5.3.1 Area to Move 

The von Mises stress is chosen to drive the optimisation process. It is a useful 

measure since it not only provides a failure criterion that is reasonably generally 

applicable for ductile materials, but it is also provides a single stress value to 

compute the stress situation in each element. This is defined as 

(5.1) 

where U1, U2 and U3 are the principal stresses. This can be thought of as the norm of 

the three Mohr's circle diameters. It relates directly to the von Mises failure criterion, 

which is derived from the shear strain energy in a material, i.e. the strain energy 

associated with change in shape but not in volume. Most usefully it is a single 

positive number that expresses the severity of the stress situation for both tensile and 
. . 

compressive regmns. 
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Material is removed from areas of low von Mises stress and added in areas of high 

von Mises stress. Material can be removed from the structure at any node p which 

satisfies 

(5.2) 

and added to the structure if any node p satisfies 

(5.3) 

where Uvm,p is the node p von Mises stress, Uvm,max is the maximum von Mises stress 

in the model, and Uy is the yield stress or any other maximum stress criterion. RR is 

the removal ratio and AR is the addition ratio (0 ~. AR <1 )~ These ratios are 

conventional in the finite element based ESO (Xie and Steven (1997)). If a steady 

state is reached, in other words if no nodes can satisfy equation (5.2), then the RR is 

increased using 

(5.~ 

where j is the current iteration number and the parameter ERR is termed the 

evolutionary rate for removal. Similarly, if no nodes satisfy equation (5.3) then the 

AR is decreased by the evolutionary rate for addition, ERA, 

(5.5) 

5.3.2 Distance to Move 

At each iteration, material is either removed or added to the structure by changing 

the boundary definition. A set of control points is first identified that is in the near 

vicinity of those areas to be moved. Each set includes the three control points nearest 

to a specific area of high or low stress. It might be noted that in a topology 
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optimisation it has been found important to include only the single closest control 

point in tile set. However, we focus in the current work on shape optimisation so will 

include the three closest control points. 

The key parameters to guide how far the set of control points is moved are: 

• Length, Le, of the least/most stressed boundary element. 

• Distances of the three control points from the least/most stressed boundary 

node. These distances are denoted a, b, c. 

• An important factor related to the stress situation at the current iteration, 

which is called the removal factor (RF) if removing material, and the 

addition factor (AF) if adding. 

For instance, in the figure 5.2 the control point (P2~ situated at a distance a from the 

node of lowest stress is moved a distance calculated as follows 

Distance a 

Low 
stressed 
BOde 

Figure 5.2: Movement when Femov:ing material 

(5.6) 

It is by reducing RF as the optimisation progresses that one can achieve rapid 

geometric change at the outset and more of a fine-tuning at the later iterations. 
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5.3.3 Direction of Movement 

The direction of movement for each set is perpendicular to its nearest least/most 

stressed boundary element (figure 5.2). The material moves inwards for removal, but 

outwards for addition. 

5.4 Stopping Criterion 

According to the required aims in design, different objective fwlctions may be used. 

It is inherent in the described algorithm that the objective is a fully stressed design, 

but we discuss approaches should other objective functions be adopted, such as some 

function of stiffness or strain energy; In this a.lgocithm, a stopping criterion is defined, 

which is the simple method of monitoring the objective function during the progress 

of the algocithm. The process stops when the objective function (j) reaches a 

minimum/maximum. This is deemed to have been reached when the 

minimum/maximum value off has not been improved upon in 10 iterations. Two 

objective functions have be.en considered in this work, a strain energy criterion and a 

criterion based on minimising the maximum principal stress. 

Strain energy on unit volume is computed by the boundary integral 

(5.7) 

where t are the tractions over the boundary, and u the displacements over the part of 

the boundary r where the tractions are applied. Since most of the boundaries are 

usuaHy traction-free, equation (5.7) reduces to integration only over those elements 

at which loads or constraints have been applied as boundary conditions. 

It is generally desirable to minimise the strain energy. However, a simple objective 

function stated in this way will result in an optimum design in which the available 

space is completely filled with material, since this wiH provide the maximum 

stiffhess and therefore minimum strain energy. It is much more useful to minimise a 

specific strain energy UV, where Vis the volume of material in the structure. 

51 



Another objective function is related to maximum stress. It is defined as 

F = min(max Stress) (5.8) 

The term maxStress may be any desired stress component, but it is expected that 

maximum principal stress or von Mises stress will be the most likely to be useful. 

Although this method is simple, there is no guarantee that the resulting shape is 

actually the optimum for any arbitrary objective function except the fully stressed 

design. A better method is to use sensitivity analysis, which witl be presented in the 

next chapter. 

5.5 Geometry Control 

The geometry is represented by NURBS whose definition is govemed by a set of 

control points. Those control points can move freely for controHing the geometry 

change. A useful feature of NURBS is the fact that each control point has an 

influence over only a localised portion of the spline. This allows a detailed and 

localised control of the geometry through movement of control points as suggested 

by local stress distributions. In spite of this, and other benefits, numerical tests have 

shown that the algorithm presented in sedion 5.3 tends to distort, elongate or 

compress splines as the optimisation progresses. This ultimately causes a 

degradation of control over the spline geometry. This can be rectified by periodically 

inserting and/or deleting control points as required. 

5.5.1 Insertion of Control Points 

When the distance between two existing control points becomes too large to control 

the boundary geometry in sufficient detail, a new control point is considered to be 

inserted between them. The insertion is implemented when the distance satisfies 
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(5 .9) 

where k1nsert is a constant factor (kinsert 2: 1.5), do is the initial distance between two 

existing control points, i is the iteration number and di is the distance at iteration i. 

Cervera (2003) used k 1nsert = 1.5 for topology optimisation and 2.0 for shape 

optimisation. 

~ 

(a) 

(b) 

Figure 5. 3: Insertion of Control Point 

Figure 5.3(a) shows the initial placement of the control points. At the iteration i, the 

movement of the control points leads to the distance between Po and P 1, di, satisfying 

the equation 5.9. The new control point P' is inserted at the mid-point of Po and P1 

as shown in figure 5.3(b), and the algorithm advances as before. 
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5.5.2 Deletion of Control Points 

When the locations of a set of control points are too close, a control point is deleted 

to avoid localised boundary distortions. The lengths. of the lines of the control 

polygon provide the criterion to delete the point P1 using 

IF; -P;-11 < kdelete IP;-1 -P;-21 
OR IF;-P;-11 < k delete IP;+1-~· I (5 .10) 

where IP1 - P;-1! is the length of the line checked, IP1~1 - PJ-21 and IP;+I - P11 are the 

lengths of the previous and next control polygon lines and kdelete is constant factor 

(kdelete :S 1.5). 

(a) 

(b) 

Figure 5.4: Deletion of Control Point 
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Figure 5.4(a) shows the initial spline geometry, which during the optimisation 

process becomes changed to the shape shown in figure 5.4(b). Now the distance 

between PI and P3 satisfies IPj- Pj-11 < kdeleteiPj-1 - Pj-21, so the conti:ol point PI is 

deleted and the curve is updated. 

5.5.3 Subdivision of Distorted Elements 

It is not unusual that an element becomes distorted in optimisation algorithm. The 

optimisation runs too fast to achieve the stable geometry. The boundary element 

mesh is generated automatically at each iteration in this algorithm, of course, to. 

allow for the required speed ofprogressing the optimisation. The automesh is carried 

out by comparing element sizes and then reducing the larger element of outward and 

inward element (start and end element as well) to fit the special grading ratio. 

Considering the character of the B-spline, an individual element may need to be 

subdivided to maintain suitable solution accuracy if it is located in a portion of the 

B-spline that exhibits a high degree of curvature, An element is subdivided if its 

length satisfies 

(5.11) 

where Leis the length of the element, IPj- pj-11 is the distance between its end nodes 

and m is constant factor (m ;;::1;05). 

5.6 Topology Optimisation 

By topology optimisation we mean a shape optimisation that is further enhanced by 

the ability to insert, delete and merge holes. Holes may be inserted at the low 

stressed areas to realise the topology optimisation. The criterion to identify low 

stressed internal regions is similar to the one to the outside domain, as expressed in 

equation 5.2, and may be written 
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(5 .12) 

where a1p is the von Mises stress at an internal point, O"max is the maximum von Mises 

stress in the model and RR is the removal ratio . 

The process of inserting holes starts with calculating the von Mises stress for any 

internal points by equation 3.29. The internal point whose von Mises stress is the 

minimum locates the centre of the hole, and then other internal points around it are 

taken as the control points to create a new polygon. 

For the internal holes, the distance and direction to move the control points are both 

similar to the outside domain, though some important differences are described by 

Cervera and Trevelyan (2005a) relating to holes that approach external boundaries. 

The distance the control points are moved is related to: 

• Length of the least/most stressed element, Le; 

• Distance of the control point from the least/most stressed boundary node, a; 

• The removal factor (RF) if removing material, and the addition factor (AF) if 

adding; 

• The width, w, of a narrow strip of material between the hole and an external 

boundary. 

Least Stressed Element (LeJ 

Figure 5. 5: Movement of the Control Point in the Internal Holes 
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The direction of movement is general'ly perpendicular to the nearest least/most 

stressed element, unless in the case that the hole is very close to the boundary, in 

which case the direction of movement is parallel to the boundary which is the closest 

to the control point. 

5. 7 Concluding Remarks 

This section has described in detail the algorithm of Cervera. We note here that it is 

specifically the values of parameters RF, RR and ERR that are the subject of the 

current work. Cervera & Trevelyan. (2005(a)(b)) have developed a corresponding 

algorithm for shape optimisation in 3D problems based on the use of NURBS 

surfaces as a boundary description. Similar governing parameters are used. However, 

the scope of the current work is limited to plane stress problems. 
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6. Se.nsitivity Based Opti1misation 

Sensitivity analysis (SA) is a powerful tool that can play an important role in any 

modelling field. In engineering design, SA extends the engineer's information about 

the behaviour of a complex model and helps him/her make decisions in guiding the 

design. In a design optimisation process sensitiv:ities are the gradients of the 

objective functions, so that we define a design sensitivity, s;, as 

(6.1) 

where f is the objective function considered in the optimisation and Q; is the ;th 

design variable. 

Supposing that the sensitivity can be evaluated for each design variable in the 

process, the engineer is provided with readily useable information to determine the 

next design iteration. For example, in the optimisation for minimum weight of a pin

jointed frame or truss, the design variables are often the Cartesian coordinates of the 

member connection points, or nodes. At iteration p, we calculate the sensitivities, 

being the partial derivatives of the weight with respect to these coordinates, and in 

determining the geometry for iteration p+ 1 the engineer might choose to move the 

nodes in proportion with the sensitivity values. 

Design sensitivities are the central feature of the gradient based methods of 

optimisation, and there are numerous works that describe .their features and 

numerical stability, as well as examples of their application. A boundary element 

implementation, for example, is described by Tafi:eshi and Fenner (1991)~ 

Sensitivities may be obtained in two ways: 
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• Analytical differentiatien. Here the governing matrix system is differentiated 

with respect to the design variables. In a BEM context, this means that the 

fundamental solutions used in the integration and assembly stage are found in 

this derivative form, and this gives the most accurate sensitivity. The 

sensitivity is found to the same degree of accuracy as the boundary solution, 

and no further approximations are made. It can arrive at the analytical 

derivative for other than a trivial geometry only to the same degree of 

appFoximation as the boundary element solution. So it is not really a truly 

analytical derivative. 

• Finite difference method. Here the model is rebuilt following a change in one 

of the design variables (e.g. a coordinate value is moved) and a second 

analysis is performed. The objective function is evaluated for both the initial 

and changed models allowing direct computation of the sensitivity. 

Mathematically, if design variable Q; is changed to Q; + .tl.Q;, causing a 

change in the objective function fromfto f + 4f, the sensitivity may be given 

by 

!lf 
s.=--
, llQ; 

(6.2) 

This is less accurate than the analytical differentiation method,. because of the 

finite 4f (in fact the analytical differentiation approach may be considered as 

the limit of the finite difference approach as 4{~0). The attractiveness of the 

method lies in its ease of computation.. 

In the current wol'k gradient based optimisation is not applied, of course, and instead 

we use the evolutionary structural optimisation approach as described in chapter 5. 

This does not necessarily rule out the use of sensitivity information. The approach 

has been used successfully in a finite element evolutionary structural optimisation 

implementation by Steven et al. (2002), in a scheme which guarantees to achieve a 

true optimum. They presented a few element-based sensitivities, such as stiffness 

sensitivity, displacement sensitivity, stress sensitivity, and so on, and those 
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sensitivities are also used to achieve a minimum or maximum of some composite 

fitness functions or certain values to drive the evolutionary strategy. We now discuss 

how design sensitivities can be used in a BEM-based ESO procedure. This part 

presents the basic of sensitivity analysis briefly and its use in structural optimisation. 

6.1 SA in Structural Optimisation 

As described in detail in chapter 2, the main concept of ESO is the removal and/or 

addition of material, in response to stress levels, in order to improve structural 

efficiency. However, the method has significant limitation in the shape optimisation 

of design geometry for an arbitrary objective function. However, it is quite common 

that a specific objective function should be desirable that is not compatible with the 

ESO approach. For example, one might desire to converge to a solution in which the 

stress is uniform around a hole, or around multiple holes. 

One way of including arbitrary objective functions in an ESO framewOJ.:k is simply 

to monitor the objective function as the iterations progress (Cervera (2003)). A 

stopping criterion might be defined such that the process halts if, at iteration p + q 

the objective function has not improved upon its value at iteration p. For example, 

the objective function reaches a minimum at iteFation 60 (p = 60) and in all iterations 

between 60 and 68 (if q = 8) the objective function at iteration 60 has not been 

bettered. This accounts for the typically non-monotonic convergence of this type of 

scheme, by allowing the objective function to become worse in the hope that it will 

later improve :further. The value of q is a measure of how long we are prepared to 

wait before we conclude that the optimum has been reached. 

This approach is valuable, but provides no guarantee that the design at iteration p is 

in fact the optimum design for this objective function. We can say only that it is the 

best design among all designs passed through during the stress-level driven ESO 

optimisation process. 

In this work, we use the finite difference approach, so that at each iteration the 

control points are il1dividually perturbed a small amount in each coordinate direction 
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and an analysis performed to detennine the associated change in the objective 

function at each iteration. Equation (6.2) provides the sensitivities with respect to 

both the x- andy-coordinates (separately) of each control point. We denote the 

sensitivity sij where 

l!!f 
s .. =-
" /1x .. I] 

(6.3) 

where Xij is the coordinate of the ith control point in the Xj directien (x1 = x, x2 = y). 

In determining the design geometry for the next iteration we move the control points 

such that 

s .. 
x~+t :::::: x~ + -"-d 

I] . I] 

smax 
(6.4) 

where smax is the maximum value of sensitivity found in the iteration, d is some 

predetermined stepsize usually a function of the model dimensien, and the 

superscript on the x variables denotes the iteration. 

As a fmal remark, the use of finite difference sen.sitivities in preference to analytical 

differentiation ofthe fundamental solution is adopted for the foNowing reasons: 

• Ease of implementation and control 

• The fact that our design domain is defined using B-splines so that each 

control point exerts an influence only over the local geometry. This means 

that each analysis for a perturbed geometry may be efficiently performed 

usin.g a reanalysis (see section 3.2.4). Only the few elements in the immediate 

vicinity of the perturbed control point will change location and so on.ly a 

small portion of the governing system matrix will become changed. 

61 



• We recognise that in defining a change in geometry from iteration p to 

iteration p+ 1 we will be moving the control points a finite distance given by 

(6.4). It is not difficult to make a case that the accuracy of the sensitivity 

using finite differences will be greater than that using analytical 

differentiation if Axij ;::s d and we define the accuracy of the sensitivity as the 

ability to predict the value of the objective function at iteration p+ 1. 
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7. Parameter Selection for Shape Optitmisation 

Chapter 5 included a description of an evolutionary structural optimisation algorithm 

based on a boundary element discretisation of a B-spline representation of the 

problem boundary. The optimisation can proceed by defining where the material 

should be removed or added and how much material should be removed or added at 

each iteration step. The algorithm uses a small number of key parameters to define 

them. This part presents some numerical experiments that aim to determine suitable 

values of these parameters in order to produce good optimal designs with the best 

computational efficiency. 

7.1 Introduction 

In the algorithm, the main parameters for optimisation are RR, ER& RF, AR, ERA and 

AF. Their definition has been presented in chapter 5. RR is the removal ratio and AR 

is the addition ratio, which govern the areas in which material should be removed or 

added. ERR and ERA are termed the evolutionary rates. RF and AF are parameters 

which govem the distance through which control points are moved. In traditional 

ESO, typical values determined from numerical experience are RRo = 0.01, 

ERR= 0.01, AR0 = 0.99, ERA= 0 (Cervera (2003)). Although small values of these 

parameters tend to produce the most optimal designs, it is also desirable to consider 

the computational efficiency. For different requirements in design, saving the 

calculation time sometimes is regarded as the emphasis. 

Two problems of different character are selected as test cases. One is a short 

cantilever beam with whole geometric change during ESO process, the other is a 

fiUet with smaH geometric change. The following isotropic material properties are 

assumed: Young's modulus E = 210000N/mm2
, Poisson's ratio P = 0.3 and an 

arbitrary thickness t = lmm. 
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7.2 Short Cantilever Beam 

Figure 7 .l shows a problem that is classically called a short cantilever beam. This 

consists of an initial domain (figure 7.l(a)) of height lOOmm and width 50mm 

subjected to a vertical load over a short length of boundary on the right edge of the 

domain, with displacement constraints applied at the top and bottom of the left hand 

edge. The non-design domain where lines can not change freely consists only of the 

short boundary segments. over which loads and constraints are applied, so all other 

boundaries form the design domain where lines can change freely. Classically the 

problem converges to a minimum weight optimum of a two-bar frame (Xie and 

Steven (1993)) as il1lustrated in figure 7.1(b). 

(a) (b) 

~ . ....._ ____ _. 

Figure 7.1: Short cantilever problem; 

(a) original domain, (b~ form of optimum solution 

The objective function, F, to be minimised in this problem is based ona specific 

strain energy criterion 

F(i)=U(i) V(i) (7.1) 
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where i is the iteration number, U is the strain energy in the material and V is the 

volume. We define variables M and n by which we characterise the performance of 

an ESO optimisation scheme. We write 

M=minimum (F(nj) (7.2) 

where M is the minimum value of F that is achieved at any iteration, and n is the 

iteration number at which F is minimised. 

Based on the numerical experience gained during the current work, in addition to 

values Ieported in previous work, we consider a range of parameters in our study to 

be 0.005 $ RR $ 0.095, 0.0005 $ERR$ 0.0505, 0.05 $ RF $ 0.75. The short 

cantilever beam model has been optimised a total of 14535 times using different 

combinations of the parameter values within these ranges. In order to analyse the 

results of such a large number of runs, we break· the three-dimensional parameter 

space (RR, ERR, RF) into 105 subspaces, each containing a smaller region, and form 

the mean values of M and n, to be denoted below using oveibm:s, within each 

'Subspace. Bigure 7.2 shows ranges of these parameters. It is made up of 105 small 

cubes. Each small cube contains many sets of parameters values that have been 

tested. RR, ERR and RF have 19, 51 and 15 values respectively within their 

respective ranges defined above. 
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Figure7.2: Diagrammatic representation of the parametric space used 

From these results, the values of M and n are most sensitive to the value of the 

parameter RF. That means that RF is the most important parameter in the evolution. 

It was therefore decided to focus on a broad grouping of parameter sub spaces so that 

the mean effects of variation in RF could be investigated over the entire range of RR 

and ERR. Table 7.1 shows the average M and n results for the sub spaces contained in 

various RF ranges as shown. As might be expected the best optimum, i.e. minimum 

value ofM , occurs with the smallest RF, but an acceptable optimum is obtained in 

far fewer iterations in the subspaces encompassing 0.5 s RF s 0.55. 

RF 0.3-0.35 0.4-0.45 0.5-0.55 0.6-0.65 

M(Nmm4
) 16464 16698 16519 16551 

n 89 94 51 52 

Table 7.1: Mean performances over range of RF values 
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In order to establish the best values of the other parameters, we consider the 

subspaces over which 0.5 gF ~.55, and look in more detail at the effects of RR 

and ERR. The best portion of these subspaces is shown in table 7.2. 

~ 
0.005-0.035 0.04-0.065 

M(Nmm 4
) n M(Nmm 4

) n 

0.0315-0.0405 16631 50.7 16432 48.4 

0.0415-0.0505 16593 48.8 16768 51.8 

0.0515-0.0605 16596 48.9 17038 49.4 

Table 7.2: Mean performances over range of ERR and RR values 

According to the data in Table 7 .2, we consider that the best combination of 

parameters is in the region of RR ~ 0.05, ERR ~0.04 and RF=-0.5. The best M is 

achieved in this region, requiring 31 iterations to convergence. The evolution of the 

geometry and of the stress distribution for this 'optimal' set of parameters is shown 

in figure 7.3. No attempt should be made to compare stresses between the four 

solutions at the various iterations. The contours show distributions only, and the 

values of stress defining each contour colour at7e different in the four cases. Figure 

7.4 shows the corresponding evolution of the objective function. The optimum of M 

=16144 at the 31st iteration is highlighted. 
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8 Iterations 16 Iterations 24 Iterations 31 Iterations 

Figure 7.3: Evolution of the short cantilever beam example 

(von Mises stress contours) 
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Figure 7.4: Evolution of objective function 

We note that, since RR is incremented many times during the process using equation 

( 5. 4), this initial value is of significantly lower importance than ERR.· 
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7.3 Fillet 

The second problem of interest is the optimisation of a fillet profile (figure 7.5) to 

minimise the maximum principal stress in the fillet Here only the line AB forms the 

design domain and the problem takes on an altogether different character to the first 

problem. In addition to the two problems having different objective functions, the 

short cantilever beam optimisation involves whole geometry changes with removal 

of over half the initial volume, whi1le the fillet optimisation is more of a fine tuning 

of geometry. This difference in character has been reflected in the literature by 

different values of governing parameters being applied. The current work aims to 

determine a unified set of parameter values along with a suitable algorithm that will 

be successful for both problems. 

In this problem, we use a minimax condition as the objective function. 

F= min( max( u1 )) (7.3) 

A 

200mm --
- lOOMPa -

I. 400mm 

(a) 
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(b) 

Figure 7.5: Fillet example; (a) original domain, (b) form of optimum solution 

As an initial exercise for this problem, we investigated the optimisation process 

using the governing parameters RR = 0. 05, ERR = 0. 04, RF = 0. 5 which are 

considered the best sets in the first problem. The evolution proceeds as depicted in 

figure 7.6. 

1 0 iterations 20 iterations 

30 iterations 

Figure 7.6: Evolution of the process for fillet optimisation (30 iterations) 
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Figure 7.7: Evolution of the objective function 

Figure 7.7 shows the evolution of the objective function. A minimisation of the 

objective function is found at the 30th iteration. It is interesting to comment on the 

shape of the curve. While the corresponding plot for the short cantilever beam 

example (figure 7.4) presents a very classical convergence to an optimum, figure 7.7 

shows a rather different character. Indeed, it is only at around the 20th iteration that 

the objective function starts to improve on the initial model. We speculate that this is 

due to the fact that the objective function in the first example more closely matches 

that inherent in the ESO scheme, which is aiming to minimise weight to give a :fully 

stressed design. The relatively flat nature of the curve also reflects the nature of the 

problem being solved, i.e. one of fine tuning and not one of whole geometric 

changes. 

The results of the short cantilever example allow us to refine our range of parameteFs. 

In addition, we can reduce the number of optimisation runs by using a more 

sophisticated scheme to optimise the performance of the algorithm. Specifically, 

since we are aiming to minimise both M and n, this becomes a multi-objective 

optimisation problem in its own right. We will therefore apply classical methods of 

multi-objective optimisation to the determination of the best values of the governing 

parameters. The fillet example was therefore run 96 times using different values of 
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the parameters 0.035 ~ RR ~ 0.075, 0.02 ~ ERR ~ 0.05 and 0.2 ~ RF ~ 0.5. 

The results are shown in table 7.3. 

!~ 
0.035 0.045 0.055 0.065 0.075 0.085 

'll 

M n M n M n M n M n M n 

0.02 117.20 62 119.61 76 113.5 83 112.83 96 112.44 101 112.65 100 

0.03 116.92 64 119.08 72 113.54 89 114.09 92 112.44 101 112.54 103 

0.04 118.11 60 119.63 71 113.52 77 113.3 1 95 112.90 94 113.07 91 

0.05 117.24 64 120.73 79 114.65 83 114.38 82 112.01 86 112.42 107 

(a) RF=0.2 

~ 
0.035 0.045 0.055 0.065 0.075 0.085 

"' 
- _ 

n ~ ~"M M n M n M n M n M n 
"!!> ,. -

0.02 117.66 40 121.24 54 114.97 57 114.40 62 112.87 65 113.32 69 

0.03 118.51 36 117.21 43 114.89 60 113.20 60 114.55 56 113.26 69 

0.04 116.98 39 119.61 49 115.19 51 114.6 62 113.50 59 113.06 62 

0.05 117.75 43 119.64 46 114.97 55 115.27 53 115.05 53 114.29 72 

(b) RF=0.3 

!i. 0.035 0.045 0.055 0.065 0.075 0.085 

M n M n M n M n M n M n 
Ill 

0.02 118.26 29 115.92 41 117.13 44 115.83 47 113.53 49 113.60 49 

0.03 117.01 31 122.68 36 114.81 45 115.3 44 114.26 49 114.59 48 

0.04 117.09 30 118.83 31 113.89 39 115.17 45 113.35 45 114.84 44 

0.05 116.73 29 122.39 39 116.52 40 117.1 40 114.93 41 113.35 51 

(c) RF=0.4 
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0.02 119.46 23 119.79 30 118.76 31 115.32 36 114.62 40 114.0 37 

0.03 115.47 25 122.30 29 113.85 32 113.80 33 112.94 40 115.0 37 

0.04 119.82 24 121.08 28 117.63 29 113.78 33 115.5 36 114.26 35 

0.05 118.93 25 122.02 25 114.14 30 115.24 30 116.46 33 114.85 39 

(d) RF=0.5 

Table 7.3: Results for the fillet problem 

From the above data, the best optimum is found using the parameters RR = 0. 075, 

ERR = 0.05 and RF = 0.2. Using this set of parameters the evolution proceeds as 

shown in figure 7.8. At the 86th iteration the objective function has reduced to a 

minimum ofF= 112.01MPa. 

12 iterations 29 iterations 

60 iterations 86 iterations 

Figure 7.8: Evolution of the process for fillet optimisation (86 iterations) 
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Figure 7.9: Evolution ofthe objective function 

Figure 7.9 shows the evolution of the objective function which reaches Mat 86 

iterations. 

We seek a set of parameters to give a good compromise between minimisation of 

both M and n, which will not happen simultaneously using the same set of 

parameters. We analyse the results first by displaying a scatter plot of the results of 

the 96 runs as shown in figure 7.1 0. Each point represents an optimisation process 

using a set of parameters, and the performance is depicted graphically by plotting a 

point showing the minimum. objective function, M, and the number of iterations, n, 

required to reach this optimum. A Pareto curve is displayed on the figure using a 

dashed line showing the practical bounds on the optima that may be achieved. Five 

points are identified as good solutions that provide both a reasonable optimum and 

good computational efficiency, and are labelled using J-5 in the figure. Table 7.4 

shows the parameter values and performance relating to these five points. This 

suggests RF = 0.5 is important, with no strong conclusions to be formed about the 

other parameters. 
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Figure 7.10: Scatter plot of results for fiUet problem, showing Pareto curve 

No. n M RR ERR RF 

1 25 115.47 0.035 0.03 0.5 

2 30 114.14 0.055 0.05 0.5 

3 32 113.85 0.055 0.03 0.5 

4 33 113.78 0.065 0.04 0.5 

5 40 112.94 0.075 0.03 0.5 

Table 7.4: Best parameters for fillet problem (Pareto analysis) 

We can also apply a weighted sum method, in which we define a new objective 

function F 1 where, 

(7.4) 

so that a1 and a2 are weighting factors that reflect the relative importance of the 

quality of the optimum (M) and the convergence rate (n ). The best sets of parameters 

from the 96 parameter sets investigated found using different weights are shown in 

table 7.5. 
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a. I a~ F1 n M RR ERR RF 

0 1 23 23 H9.46 0.035 0.02 0.5 

0.1 0.9 32.65 23 11i9.46 0.035 0.02 0.5 

0.25 0.75 47.12 23 119.46 0.035 0.02 0.5 

0.5 0.5 70.24 25 115.47 0.035 0.03 0.5 

0.75 0.25 92.85 25 115.47 0.035 0.03 0.5 

0.9 0.1 105.65 40 112.94 0.075 0.03 0.5 

1 0 112.01 86 112.01 0.075 0.05 0.2 

Table 7.5: Best parameters for fillet problem (weighted sum method~ 

It is interesting to note that, once again, the value of RF == 0.5 is a dominant 

conclusion. It is only in the case (a1 ::= 1, a2 = 0) that a different value (RF = 0.2) is 

suggested. This is not altogether sw:prising since a2 = 0 represents a situation in 

which an engineer is wholly concerned about the quality of the optimum, and is 

entirely unconcerned with the speed of attaining the optimum. In this case, a very 

small RF, i.e. removal of only a very small amount of material at each iteration, will 

prevail. Note also that the best RF value reverts quickly to 0.5 even for small 

a2 = 0.1. 

The evolution towards optimum using RF == 0.5, RR = 0.075, ERR. = 0.03 is shown in 

figure 7.11 and the corresponding evolution of the objecti;ve function shown in 

Figure 7. 12. This is the case in table 7.5 considering a.1 = 0.9, a2 = 0.1. 
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1 0 iterations 20 iterations 

30 iterations 40 iterations 

Figure 7.11 : Evolution of the fillet example 
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Figure 7.12: Evolution of objective function 

It is interesting to note that a set of parameters that emerges, from table 7.6, as 

having good convergence properties to a good optimum, i.e. RF= 0.5, RR = 0.035, 

ERR = 0.03, is the same set of parameters that were found from the short cantilever 
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beam example. This suggests that this set of parameters might be useful for a range 

of shape optimisation problems. 

7.4 Conclusion 

A series of tests have been performed to establish appropriate values for the guiding 

parameters governing shape optimisation problems using the boundary element 

method on a spline-based ESO algorithm. These parameters determine the extent of 

the boundary that is deformed at each iteration, and also the extent of the geometric 

change over those sections ofboundary. 

Two example models have been investigated using a wide range of numerical tests, 

and the performance of the optimisation has been evaluated using a variety of 

methods including mean performance analysis and multi-objective optimisation 

approaches using Pareto curves and weighted sums. 

It is found that the parameter RF is the most important, i.e. the parameter 

determining the distance through which spline control points are moved. This is 

found to have an optimum value of 0. 5. The other parameters that define the extent 

of the boundary to be modified are of lesser importance, but recommended values 

areRR == 0.05 and ERR= 0.03. 
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8 .. Pa1rameter Selection for Sensitivity Ana1lysis 

In chapter 6 has been presented the optimisation based on sensitivity analysis, which 

guides the design by providing the gradients of the objective functions. The finite 

difference approach is applied in which the control points are individually perturbed 

a small amount in each coordinate direction and an analysis performed to determine 

the associated change in the objective function at each iteration as shown in equation 

6.3. This chapter gives numecical experiments to verify the efficiency of this 

approach. We choose the fillet as the model to investigate, the same model as in the 

chapter 7. The determination for stepsize d is presented in detaiL 

8.1 Fillet Problem 

The fiUet profile is shown in figure 8.1. The design domain is the changeable line, 

AB. This example model is similar to one that has been investigated using a wide 

range of numerical tests based on the ESO method. In those studies, the objective 

function was related to minimising the maximum principal stress or minimising the 

variation of maximum principal stress from its mean value on AB. In the current 

work, the maximum principal stress is still used as the objective function, but in this 

design optimisation process sensitivities provide the gradients of the maximum 

principal stress. The objective function fin equation 6.3 is defined as 

f= max(CT1 ) (8.1) 

and we require M = min(/) which provides a primary measure of the optimisation 

algocithm. 
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A 

r lOOmm 

200mm 

100mm lOOMPa 

1 .. 
400mm ..I 

(a) 

(b) 

Figure 8.1: Fillet problem; (a) original domain, (b) form of optimum solution 

Another variable in equation 6.4, stepsize d, should be predetermined. There are a 

number of considerations for determining d. The conclusion reached in chapter 7 is 

that the removal factor, RF, i.e. the parameter that governs the distance through 

which control points are moved, is the most important parameter. This can also be 

considered to be a factor affecting the stepsize din a sensitivity based scheme. We 

denote 

d = dsa(i) RF (8.2) 

where RF = 0.5 as before, and dsa(i) is related to the model size and the iteration i. 

The initial value, dsa (0), is defined by the ratio of the model dimension to a key 
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parameter c, e.g. for the model shown in figure 8.1 cdsa(O) = 400mm. The selection 

for the value of c will be discussed later. In order that the evolution of the geometry 

tends to increase in stability, the stepsize is desired to decrease as the number of 

iterations increases. So we defme 

dsa( i+ 1) = dsa(i) Fsa(i) (8.3) 

The value of the stepsize directly affects the change of the model volume, and the 

evolution history of the volume can reveal the extent of the change of the geometry. 

The term Fsa(i) is defined as followed 

(8.4) 

where v; is the volume at the iteration i and f"o is the initial volume. 

To set the value of c, the range of the stepsize has to be considered. Cervera (2003) 

obtained the ratio range of stepsize (M) to the model dimension (h) as 

1 o-s ~ !:l.dlh ~ 110-2
, by a series of tests for a general case using Concept Analyst, 

wheFe &1 = RF(dsa(i)- dsa(i+ 1)). This leads us to suggest a value of c in the range 

(102 ~ <1105
). However, in order to accelerate the conveFgence to the optimum, we 

can investigate the effect of lower values of c. In the current work three models with 

different dimension h ( 400mm, 600mm and 800mm) are chosen as the object. The 

range of c, 10 ~ ~0 is selected for carrying out the test with sensitivity an.alysis. 

Every process stops if the stepsize reduces to approximately zero (<0.0005~. 

We separately run the three different dimension models repeatedly with different 

values of c. Table 8.1 pFesen.ts the dimension.s of the example models, c, the initial 

stepsize dsa(O), the minimum of the objective function, M, and the number of 

iterations required to achieve the minimum, n. A scatter plot is displayed in figure 

8.2 showing M and n. Three kinds of spots are used to distinguish different 

dimension models. 
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h(mm) c dsa(O) (mm) M(Nmm4
) I) 

50 8 117.4893 157 

40 10 116.3375 101 

25 16 114.7256 102 

20 20 113.5133 1·02 
400 

16 25 114.8869 1·02 

13.33333 30 112.4154 1·01 

11.42857 35 112.1416 91 

10 40 1'10.7306 85 

50 12 109.946 102 

40 15 1114.3205 178 

30 20 1'13.1647 179 

600 25 24 1'11.0253 97 

20 30 1'10.4599 40 

15 40 109.8822 46 

10 60 109.3947 102 

50 16 111.9853 225 

40 20 111.7787 30 

25 32 110.2489 38 

20 40 111.4217 42 

800 16 50 108.9301 16 

13.33333 60 109.5317 76 

11.42857 70 109.5423 76 
~~ 

10.66667 75 107.1972 49 

10 80 107.2199 72 

Table 8.1: Results for fillet problem by sensitivity analysis 
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Figure 8.2: Scatter plot of results for fillet problem using sensitivity analysis 

It appears from the figure that perhaps not enough runs have been performed for a 

clear Pareto curve to emerge. However, points labelled 1 to 7 can clearly be seen to 

outperform those labelled 8, 9, 1 0 and 11 . Points for different h tend to cluster in the 

figure, and this is not surprising since the different initial geometry will lead to 

slightly different optima in the three cases. With this information, we can learn about 

suitable parameters in the algorithm. 

8.2 Parameter Selection 

From the data we obtain above, the initial stepsize dsa(O) seems to be a key parameter 

affecting the optimum. The points labelled 8, 9, 10 and 11 indicate that the 

algorithm converges to an optimum after a large number of iterations because of the 

small initial stepsize. In optimisation algorithms, it is normally the case that a 

smaller stepsize should be expected to yield an improved optimum having lower M. 

Viewing the data in Table 8.1 shows that the reverse is found. It is believed that the 

cause of this behaviour is that the step size decreases with the increasing the number 

of iterations, which leads to the process stopping before the models achieve the 
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optimum. This highlights a flaw in the algorithm, and further work is required in 

determining a suitable reduction in stepsize with the number of iterations to give 

more reliable convergence. However, for the algorithm presented in chapter 6, 

because dsa(O) is defined by the ratio of the model dimension to c, we consider 

c :::::: 10-20 is the best range as shown around the points labelled 4, 5, 6 and 7. 

However, it is interesting to note that for h = 800mm model the points labelled 1 and 

2 reach an improved optimum having a different shape to the optima for most runs 

(figure 8.3). 

(a) dsa(O) = 80 for the point 1 in figure 8.2 

(b) dsa(O) = 70 for the point 4 in figure 8.2 

Figure 8.3 : Optimum for the h = 800mm model 

Although they both converge to an optimum, different minima of the objective 

function are obtained. It is proposed that this is a problem having multiple local 

optima, and exhibiting an instability for certain values of stepsize that allows the 

algorithm to jump to a different optimum. Here we demonstrate this process 

graphically figure 8.4. The aim is to minimise f(x) using a simple gradient approach. 

A scheme starting with a larger initial stepsize, directly jumps to A and reaches the 

global optimum. On the other hand, a smaller stepsize is destined to arrive at B, only 

to achieve the local optimum. In the current work, we consider for the h = 800mm 

model c ~ 12 is the ideal range to get a good optimum. 
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Figure 8.4: Local and global optimisation 

8.3 Comparison with ESO 

It is necessary to compare the sensitivity analysis method in structural optimisation 

with ESO, the main method in this work. In order to provide a clear comparison, we 

use the same dimension fillet model as chapter 7. In the ngure 8.5(a), 

M = 110. 73MPa is achieved at 85 iterations by sensitivity analysis, while 

M = 112.94MPa at 40 iterations by ESO. In sensitivity analysis the optimisation 

process is directly guided by the objective function. Although longer run-time is 

needed, it undoubtedly is a good choice in practice when a high level of solution 

accuracy is required. In other words, if the objective function is one other than a 

fully stressed design or the equivalent specific stiffness or strain energy objective 

functions, ESO should be selected if the run-time is the first factor. 
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(a) Von Mises stress contour plot at 85 iterations by sensitivity analysis 

(the width of the model is 400mm) 

(b) Von Mises stress contour plot at 40 iterations by ESO 

(the width of the model is 400mm) 

Figure 8.5 : Comparison between sensitivity analysis and ESO 
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8.4 Conclusion 

Sensitivity analysis has been applied in the design optimisation process based on the 

boundary element method in this chapter. The ftnite difference approach is applied to 

calculate the effect of changes in the design variables on the objective function. The 

stability of this approach has been displayed by a series of tests. From the small 

number of runs that have been performed, we estimate c is a key parameter which 

deteF111ines the initial stepsize to guide the optimisation process. It is found that a 

good range of cis about [10, 20~ for the problem considered. Moreover, the design 

domain in this algorithm is described by a B-spline which is influenced only by the 

local control points. So it should be efficient to use reanalysis together with 

sensitivity analysis. 

The current work also compares the sensitivity analysis method in structural 

optimisation with ESO. Obviously, although longer run-time is a drawback for 

sensitivity analysis, it has the advantage in that it is guided by objective function and 

consequently produces an optimum that is better than ESO. In this chapter, a 

minimisation of maximum principal stress is the only objective function to be used. 

An extension to multi-criteria optimisation has been made by Steven et al. (2002) in 

a finite element based ESO scheme. The promising results presented in this section 

suggest that a similar success would be likely in the BEM based ESO scheme~ 
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9. Conclusions 

Future Research 

9.1 Conclusions 

and Recommendation for 

In this work the evolutionary structural optimisation algorithm (Cervera (2003) and 

Cervera & Trevelyan (2005a, 2005b)) based on Boundary Element Method has been 

used in 2D shape optimisation. An improved understanding has been developed of 

the role of some governing parameters driving the optimisation using this algorithm. 

As a result of a series of numerical tests, recommendations have been made as to 

appropriate values of these parameters by which good optimal solutions may be 

achieved efficiently. 

Two problems of different character are selected as test cases in this work. One is a 

short cantilever beam with whole geometric change during the ESO process; the 

other is a fillet with a smaH geometric change, They have been investigated using a 

wide range of numerical tests, and the performance of the optimisation has been 

evaluated using a variety of methods including mean performance analysis and 

multi-objective optimisation approaches using Pareto curves and weighted sums. It is 

found that the parameter RF is the most important, i.e. the parameter determining the 

distance through which spline control points are moved at each iteration. This is 

found to have an optimum value of 0. 5. The other parameters that define the extent 

of the boundary to be modified are of lesser importance, but recommended values 

are RR = 0.05 and ERR= 0.03. Precise definitions of these parameters may be found 

in section 5.3. Since these parameter values have been found appropriate for these 

two problems of very different character, it is hoped that they may be used reliably 

for a wide class of structural shape optimisation problems. Further work is required 

to validate the use of these parameters on a wider group of optimisation problems. 

A small number of investigations into a boundary element design optimisation 

process based on sensitivity analysis have been carried out in this work. By a series 

of tests the stability of this method has been obtained by applying the finite 
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difference approach to calculate the effect of small changes in the design variables 

(in this algorithm, the spline control points) on the objective function. A parameter c 

which is related to the dimension of the model is considered a key one to guide the 

optimisation process. The approximate Fange is 10-20 for the fillet problem 

considered. Like RF in the conventional ESO, c provides a measme of the amount of 

geometric change at each iteration. Difficulty was experienced in obtaining an 

appropriate set of paFameters to prov:ide for progressive reduction in the amount of 

geometric change per iteration as the optimisation converges to a solution, i.e. the 

fine tuning. In some cases, the reduction was performed too rapidly so that the true 

optimum was never achieved. It was also noted that the fillet problem converged to 

two different 'optimal' solutions, depending on the governing parameters adopted. 

The classical optimum shape (figure 7.1) is obtained with most paFameters used, but 

an undercut fillet (figme 7.4) is obtained when a large initial step size is used. The 

undercut fillet provides a better optimum for the objective function chosen. The 

convergence towards a local optimum, and missing a global optimwn, is a well 

recognised drawback of gradient approaches. 

The current work also compares the sensitivity analysis method in structural 

optimisation with ESO. In sensitivity analysis the optimisation process is directly 

guided by the objective function. Although a longer run-time is needed, it is 

undoubtedly a good choice for requiring high level solution in practice. However, the 

advantage of the ESO is that the optimum can be reached in fewer iterations and 

considerably lower run-time, which is why it is selected when computational 

efficiency is thought the most important consideration. MOFeover, for certain 

objective functions, the ESO scheme has been shown to provide the optimum 

solution. 

9.2 Recommendation for Future Research 

The initial aims of this work have been accomplished. However, some questions 

found during the work should be considered for future research. 
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Future research might expand the application scope of this work which is limited to 

plane stress problems. In addition to confirming the validity of the recommended 

parameter values for a wider set of problems, different objective functions might be 

used, such as displacement, natural frequency, buckling load and thermo-elastic; also 

extend to the multi-criteria and multidisciplinary structural optimisation. 

The design domain in this algorithm is described by a B-spline which is influenced 

only by the local control points. So it should be efficient to use reanalysis together 

with sensitivity analysis. This may be expected to reduce the run-time of the 

sensitivity based scheme 'Significantly. More research is also required in determining 

a scheme for the fine tuning of the process so that the amount of geometric change 

per iteration reduces as the optimisation progresses. A scheme has been presented in 

this work, but it is recognised that it needs further refinement to ensure that the 

scheme does not slow down to a stop before the optimum is reached. 

In this work, 3'0 problems were not investigated at all. There would be benefit in 

extending to structural optimisation for 3:0 problems. B-spline sl:lffaces can be used 

for representation of the geometry. 
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