
Durham E-Theses

Autonomous characters in virtual environments: The

technologies involved in arti�cial life and their a�ects on

perceived intelligence and playability of computer games

Wood, Oliver Edward

How to cite:

Wood, Oliver Edward (2005) Autonomous characters in virtual environments: The technologies involved in

arti�cial life and their a�ects on perceived intelligence and playability of computer games, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2374/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2374/
 http://etheses.dur.ac.uk/2374/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

AUTONOMOUS CHARACTERS IN VIRTUAL ENVIRONMENTS: THE

TECHNOLOGIES INVOLVED IN ARTIFICIAL LIFE AND THEIR

AFFECTS ON PERCEIVED INTELLIGENCE AND PLAYABILITY OF

COMPUTER GAMES

by

Oliver Edward Wood

2 1 SEP 2005

Submitted in conformity with the requirements
for the degree of MSc

Department of Computer Science
University of Durham

~~
Copyright © 200~0liver Edward Wood

A copyright of this thesis rests
with the author. No quotation
from it should be published
without his prior written consent
and information derived from it
should be acknowledged.

Declaration

The material contained within this thesis has not previously been submitted for a

degree at the University of Durham or any other university. The research reported

within this thesis has been conducted by the author unless indicated otherwise.

The number of words in this thesis, including footnotes and endnotes but ex­

cluding the bibliography, tables and figures is 46,962.

2

Abstract

Computer games are viewed by academics as un-grounded hack and patch exper­

iments. "The industry lacks the formalism and requirement for a "perfect" solution

often necessary in the academic world "[Woob]. Academic Artifical Intelligence (AI)

is often viewed as un-implementable and narrow minded by the majority of non-AI

programmer. "Historically, AI tended to be focused, containing detailed problems

and domain-specific techniques. This focus makes for easier study - or engineering

- of particular solutions. "[Cha03].

By implementing several well known AI techniques into the same gaming envi­

ronment and judging users reactions this project aims to make links between the

academic nature of AI, as well as investigate the nature of practical implementation

in a gaming environment.

An online Java implemented version of the 1970's classic Space Invaders has been

developed and tested, with the Aliens being controlled by 6 different approaches to

modelling AI functions.

In total information from 334 individuals games was recorded.

Different types of games AI can create highly varied gaming experience as high­

lighted by the range of values and high standard deviation values seen in the results.

The link between complex behaviour, complex control systems and perceived

intelligence was not supported.

A positive correlation identified between how fun the users found the game and

how intelligent they perceived the Aliens to be, would seem to be logical. As games

get visually more and more impressive, the need for intelligent characters cannot be

denied because it is one of the few way in which games can set themselves apart

from the competition.

Conclusions identified that computer games must remain focussed on their end­

goal, that of producing a fun game. Whilst complex and clever AI can help to

achieve it, the AI itself can never overshadow the end result.

Copyright Notice

The copyright of this thesis rests with the author. No quotation from it should

be published without their prior written consent and information derived from it

should be acknowledged.
3

Acknowledgements

I would like to thank Liz Burd, my supervisor, for her many suggestions and constant

support during this research. I am also indebted to Liz's Mum, who undertook the

daunting task of checking my spelling. I am also thankful to Andrew Hunter for

his enthusiasm and encouragement during the early months of this project. I must

also thank Ian Kavangher who has proof read this thesis, a task my spelling and

grammar demand.

4

Dedication

My mum and dad have ended up being my best friends throughout life so far, and I

cannot thank them enough for the love and support I recieve from them. This thesis

certainly would not have come about without them, and I can only thank them for

the oppertunities that the last few years have afforded me.

Eric Dybsand, whom I have never met, but whos work I have cited more than

once, was one of the true pioneers in the field of Game AI. He passed away on April

15, 2004 as I was compiling my first draft of this document.

5

Contents

1 Introduction 16

1.1 Project History 16
1.2 Scope of the project . 16

1.3 Introduction to the computer game paradigm 17

1.4 Aims of this thesis 18
1.5 Overview of thesis structure 18

2 Literature survey 20

2.1 Types of control system 20
2.1.1 Movement scripts 21
2.1.2 Finite State machines . 23
2.1.3 Hierarchical State Machines 28
2.1.4 Fuzzy state machines . . 32

2.1.5 Behavioural Animation . 36
2.1.6 Pathfinding techniques 38
2.1.7 Planners 39

2.1.8 Neural Networks 40

2.2 People and previous work on the subject 46

2.2.1 Craig Reynolds and the Behavioural Animation 46

2.2.2 Blumberg's research group 46
2.2.3 Th ••• 0 •••••• 47
2.2.4 Demetri Terzopoulos 48
2.2.5 Perlin 50
2.2.6 Steve Grand . 52
2.2.7 John Laird. 55
2.2.8 Lars Liden . 57

2.3 Technologies 59
2.3.1 Overview of games engine architectures 59

6

CONTENTS 7

2.3.2 Cheating and sensory honesty 59
2.3.3 Landscape Technologies 61

2.3.4 Emotions .. 64

2.3.5 Decision trees 68

2.3.6 Genetic algorithms 70

2.3.7 Blackboarding . . 74

2.4 Off the shelf AI-in-a-box 75

2.4.1 DirectiA 76

2.4.2 RenderwareAI . 76

2.4.3 AI Implant 78

2.4.4 SimBionic 79

2.4.5 Conclusions 80

2.5 Direction of technology movement . 81

2.5.1 The move away from symbolic AI 81

2.5.2 The move away from deterministic systems . 81

2.5.3 Reactive systems 82

2.6 Summary ••••••• 0 83

3 Experiment 85

3.1 Criteria for assessment 85

3.2 Theories 0 ••••• 86

3.2.1 Hypothesis . 86
3.2.2 Justifications 86

3.3 The gaming platform 87

3.3.1 Why Space Invaders 87

3.3.2 Differences from the original game . 89

3.3.3 Space Invaders Architecture ... 90

3.4 Types of brain 93

3.4.1 Descriptions of movement scripts 95

3.4.2 Finite State machine 97

3.4.3 Fuzzy state machine 99

3.4.4 Behavioural animation flock . 105

3.4.5 Neural net . . 107

3.4.6 Scuttle flock . 110

3.5 Data Collection method . 112

3.5.1 Qualitative Data . 112

CONTENTS 8

3.5.2 Quantative Data 112

3.5.3 Movement Analysis . 115

3.6 Conditions of data collection . . 116

3.7 Chapter Summary 117

4 Results 118

4.1 Hypothesis One • 0 •••••• . 118

4.1.1 Expected Observations . 118

4.1.2 Observed results - Proved True . 118

4.1.3 Explanation of the difference . . 123

4.2 Hypothesis Two 123

4.2.1 Expected Observations 123

4.2.2 Actual observation - Proved False . 124

4.2.3 Explanation of the difference . . 124

4.3 Hypothesis Three 126

4.3.1 Expected Observation 126

4.3.2 Actual Observation- Proved TRUE . 126

4.3.3 Explanation of the difference . . 126

4.4 Hypothesis Four 129

4.4.1 Expected Observations 129

4.4.2 Actual Observations- Proved False . 129

4.4.3 Explanation of the difference 129

4.4.4 Limitations of the implementation . . 131

4.5 Neural network incidents 134

4.5.1 Running to the bottom of the screen . 135

4.5.2 Hiding on one side of the screen . 135

4.5.3 Protective Columns . . 135

4.6 Chapter Summary 135

5 Conclusions and Further Ideas

5.1 Evaluation of thesis aims ...

137

. 137

5.1.1 To investigate the affects of different AI technologies within

the field of computer games 137

5.1.2 To implement a range of AI technologies within a computer

game. 138

5.1.3 To measure users reaction to the games, without the user

knowing which AI technologies they are playing against. . .. 138

CONTENTS 9

5.1.4 To measure critical game statistics live whilst the users are

playing the game. 139

5.2 Conclusions 139

5.2.1 Different technologies can produce different effects . 139

5.2.2 Complex AI technologies are needed 140

5.2.3 Clever AI does not guarantee a fun gaming experience . 141

5.2.4 Users do not interpret intelligent moves as intelligence . 142

5.2.5 Cheating is counter-productive 143

5.2.6 Disney, not Minsky! 144

5.2.7 Academic AI can Game AI can both benefit from more coop-

eration

5.3 Further Work

5.3.1 More complex gaming environment

5.3.2 User reactions

5.3.3 Cogency ...

5.3.4 More neural networks .

5.3.5 More complex technologies .

6 Glossary

145

147

147

147

148

148

149

150

List of Figures

2.1 The Movement Script controlled Cat starts moving in its initial di-

rection. 22

2.2 The Movement Script controlled Cat reaches the limit of its platform 22

2.3 The Movement Script controlled Cat turns around 22

2.4 The Movement Script controlled Cat starts moving in its opposite

direction . 22

2.5 The Movement Script controlled Cat reaches the limit of its platform 22

2.6 The Movement Script controlled Cat starts moving in its original

direction, and the cycle starts again.

2. 7 Vicious dog control architecture . . .

2.8 A finite state machine for nervous character (transition condition la-

22

25

bels removed to increase visibility) 26

2.9 A hierarchical finite state machine for a nervous character (transition

condition labels removed to increase visibility) 27

2.10 A finite state machine for controlling a pedestrian 29

2.11 A hierarchical state machine showing one state in the crossing road

example. 30

2.12 Hierarchical state for crossing the road allowing the pedestrian to

exhibit more "intelligent" behaviour 31

2.13 Fuzzy membership functions for both characters in the example . . 33

2.14 XOR values, it is not possible to separate the triangles (false outputs)

and diamonds (true outputs) using a single line as can be represented

by a perceptron . 42

2.15 Artificial life, and its place in the development of realistic animations

[Ter99]. It should be noted that the term "ALife" means "Artificial

Life", another research field closely related to AI 49

10

LIST OF FIGURES

2.16 A simple example of a node map. Red nodes and their connecting

vectors show an NPC how it could move around a simple two room

environment.

2.17 A Sim has to decide what action to take. Taken from [For]

2.18 The 3d emotion-space

2.19 A decision tree giving high-level direction for an NPC

11

62

63

67

69

2.20 Example of how a very simple genetic algorithm can be used to rep­

resent the weighting within a simple neural network 70

2.21 the "genes" of two neutral networks representations are crossed as

they are "bred" . 71

2.22 A single crossover point is used to "breed" to genetic strings. 72

2.23 Mutation at work- a rogue gene is introduced when breeding occurs. 72

2.24 MESAs DirectiA hierarchical structure 77

3.1 Screen shot of the original Space Invaders arcade game 88

3.2 The basic structure of the applet 90

3.3 The red rocket (the player) shoot bullets up and the yellow Aliens.

The Aliens are shooting back at the player too. Visible below the

game are the questions that the user must fill in to reset the game

and play again. 91

3.4 The "plug'n'play" brain switching facility. The ability to switch dif­

ferent Brain types into the Alien without any affect to the end user

is key to the experiment 94

3.5 Flow of decisions in the movement script 96

3.6 The finite state machine for controlling Aliens 98

3. 7 Membership Function turn the input value of the Aliens Health into

three values, one each for the three membership functions "usGood",

"usOK" and "usPoor" which are then used to help determine a course

of action for the Alien 100

3.8 Membership Function turn the input value of the Ships Health into

three values, one each for the three membership functions "them­

Good", "themOK" and "themPoor" which are then used to help de-

termine a course of action for the Alien 100

LIST OF FIGURES

3.9 How "run" if affected by the Ship and the Aliens health values. The

"run" behaviour causes the Alien to flee to the bottom of the screen.

The higher the "run" value the faster the Alien will move. The values

12

are not shown as a continuous surface as their values as discrete. . . . 101

3.10 How "hide" if affected by the Ship and the Aliens health values in the

fuzzy logic controlled Brain. The "hide" behaviour causes the Alien

to avoid being above the Ship and risk getting shot. The higher the

value of "hide" the more strenuously Alien will attempt to move out

of the way. The values are not shown as a continuous surface as their

values as discrete 102

3.11 How "attack" if affected by the Ship and the Aliens health values in

the fuzzy logic controlled Brain. The "Attack" behaviour causes the

Alien to try and stay above the Ship and thus be able to fire upon it.

The values are not shown as a continuous surface as their values as

discrete.
3.12 The fuzzy logic controller process stages.

3.13 Priorities varying with Alien health values

3.14 The connection in the neural network that controls N euroAliens.

3.15 The applet requests the users username and password (authentication

done by the University Of Durham servers). The username is used to

track an individuals results for a given game session .

3.16 Information and form when reporting to the database

4.1 Lengths of the game play in milliseconds

Mean: 58

Variance:1848

. 103

. 104

. 106

108

113

114

Standard Deviation: 43 120

4.2 Average "score value" of an alien

Varience: 1050

Standard Deviation:32 121

4.3 Average game score

Mean: 18

Varience: 1050

Standard Diviation: 32 121

LIST OF FIGURES

4.4 Number of aliens spawned during the game cycle

Mean: 76

Varience:l15

Standard Diviation:ll

13

122

4.5 Average user rated intelligence, with the columns ordered by techno­

logical complexity. To prove Hypothesis Two a positive relationship

should be seen. 125

4.6 Average user rated fun factor, plotted against the level of user per­

ceived level of intelligence, grouped by game type 127

4. 7 Average user rated fun factor, plotted against the level of user per-

ceived level of intelligence. 127

4.8 The average number of moves per second, and the average user rating

of intelligence, for 6 data points, one for each game type. 130

4.9 The average number of moves per second plotted against the average

user rating of intelligence 130

4.10 A possible model of how frequency and cogency of movement changes

might relate to user perceived intelligence 132

List of Tables

2.1 An example of how an NPC can be committed to different member-

ship functions by differing amounts 34

2.2 How the rules of the RuleBlock and the values of the membership

functions combine to give resultant states and levels of commitment

to them. 34

2.3 How the results of table 2.2 combine to give a final statement of how

the NPC is committed to the various actions it could perform. 35

2.4 The four design-settable values which in turn affect how the NPC acts.

The parameters can affect either how the NPC senses the world, or

how its actions are performed. 65

2.5 An example of how combinations of emotions can affect the NPC

parameters. 66

2.6 How the parameters have been affected because of the the combina-

tion of Fear and Surprise. 66

3.1 How players and Aliens reaction to the two offensive weapons in the

game. A blank space means that a given character does not react to

than weapon. 92

4.1 The order in which users rated the intelligence level of the various

technologies, and how complex they are considered to be by the au-

thor. Both increase as you descend the list 125

4.2 Correlation values between how intelligence the user perceived the

Brain type to be, and how much fun they found the game to play. . . 128

5.1 The amounts of resources available to AI programmers attending the

GDC 2004 AI Round Table. Percentages rounded to nearest whole

number

14

143

LIST OF TABLES

5.2 The amounts of resources available to AI programmers attending the

GDC 2002 AI Round Table. Percentages rounded to nearest whole

number. The 15-40 figures included 15% for decisions and the rest

for perception. The 100% was a turn-based game that thought until

it was done thinking. The 5-60 range was most commonly 5%, but

15

was allowed to use more on demand[Rou] 143

5.3 The amounts of resources available to AI programmers attending the

GDC 2001 AI Round Table. Percentages rounded to nearest whole

number. 144

Chapter 1

Introduction

1.1 Project History

As part of the undergraduate dissertation "Investigation into flocking using boids

technology" [Woo03] I became interested in the technologies involved in controlling

artificial characters. Initially a study into the technologies involved in the commer­

cial film industry was proposed, but the lack of easily accessible software to evaluate

became a problem. It was during this period of research that it became apparent

that the area of AI in computer games was a rapidly changing field, and that it

was also very interesting due to the interplay between the technical needs of the

programming environment (CPU and memory efficiency are very high on the list of

things games developers have to bear in mind) and the simple fact that no matter

how clever the AI involved with a game it must be fun to play against.

1.2 Scope of the project

This project will go on to discuss a range of different methods for implementing

Artificial Intelligence in computer game character. Artifical Intelligence methods

find many uses in a wide range of situations in the field of computer games apart

from controlling character. Things that will not be discussed include:

• Board Games such as Go and Chess

• AI based camera control in games

• Turn based games and strategy games (though they might be mentioned in

passing there will be no discussion of technologies that drive them)
16

CHAPTER 1. INTRODUCTION 17

• Automating characters talking. Especially in Role Play Games the need for

methods to automate the conversations with NPCs is an area of research itself.

1.3 Introduction to the computer game paradigm

Since the early days of computers there have been computer games. Indeed elec­

tronic games pre-date computers [HHKM]. Modern computer games tend to fall

very neatly into one of several genre, all of which can potentially involve Artificial

Intelligence. A rudimentary knowledge of the genre and what they involved will

greatly aid understanding of the rest of this thesis. The following are the major

games genre within which most computer games will fall:

Classic Classic games such as Chess, Go, and Draughts are generally regarded to be

classic domain of academic research applied to the field of computer gaming.

However many also consider this area "have [been] more-or-less been "solved"

by AI techniques" [Woob].

RPG Role Play Games, originally very much in the "dungeons and dragons" style

were one of the first type of computer game to achieve wide distribution. In the

last few years many AI programmers have stated that RPG character might

well be the future of AI game implementation as it is an area where great

improvements are possible[DeuOO].

God Game With their highly recognisable "viewed from the air" perspective games

such as SimCity, Black and White, Populous and Civilisation are excellent ex­

amples of a genre that were early hotbeds of innovative approaches to computer

game AI. God games often have a huge number of autonomous characters on

screen at any one time, many of whom are often representation of human

beings and must be seen to behave as such.

First Person Shooter Games such as Doom, Quake and Unreal saw high levels of

violence, fast action sequences and ever improving 3D graphics demand clever

and cunning opponents. It is the 1st Person Shooter games which have been

seen to be"advancing the art" [Woo99b] in the last couple of years.

Sport Simulation The sports simulations genre is one where the majority of the

action that is seen on-screen will involve human characters. Any representation

of a human on screen that behaves oddly will be seen much more easily that the

CHAPTER 1. INTRODUCTION 18

same behaviour in a non-human character because the player (who is human)

is used to seeing real human behaving normally.

Arcade/ Action Defined to encompass many other sub-genre. Actions games cover

every subject from flight simulators (a large enough genre in its own right) to

the platform games such as Mario Brothers and Sonic The Hedgehog that

dominated the late 80's and early 90's.

1.4 Aims of this thesis

This thesis is being written as the summation of an academic years work reviewing,

summarising and investigating the technologies involved in implementing Artificial

Intelligence within modern computer games. It has the following aims:

Literature Survey To investigate and research completely the technologies used

in modern computer games, from both an academic and industrial perspective.

Implementation To describe, in as much details is is necessary, the implementa­

tion of Space Invaders, and its deployment to users.

Results To collect and analyse a large number of user generated results, and to

draw conclusions about computer game AI from them.

Conclusions To draw conclusions about the affects of AI within computer games,

and about the direction the industry is taking at the present time.

1.5 Overview of thesis structure

This thesis is split into chapters, each of which are referenced and numbered in the

index. The chapters are organised as following:

Introduction Giving an overview of the computer games genre and this thesis.

Literature Survey Covering both the technologies involved in computer game AI

and the works of several academics whom have contributed greatly to the pool

of publicly available information that forms the back-bone of the majority of

commercial game AI.

CHAPTER 1. INTRODUCTION 19

Experiment Describing both the reasoning behind, and the practical implemen­

tation of, the experiment that was conducted. The types of AI that were

implemented and the expected observations are also covered in this section.

Results Correlation and analysis of the data that was collected during the experi­

mentation phase.

Conclusions and Further Ideas Drawing conclusions both about computer game

play and about the computer games industry. Further ideas will discuss ex­

perimentation and lines of thought that were not covered in this project.

Bibliography Describes all of the information sources which have been cited through­

out this thesis.

Chapter 2

Literature survey

This chapter is broken into four sections, detailing different areas relating to the

technologies found within computer games. Methods of controlling the movement of

agents is detailed first, followed by a summation of the work of several academics who

have investigated areas of research that are associated with autonomous characters.

Peripheral technologies are then covered followed by "off the shelf" AI software

which is available as middleware for games developers.

2.1 Types of control system

Automatons characters (those not controlled by a player - often referred to as NCPs

- Non Player Characters) will generally move around their environment. How a

character moves around its environment with relation to a human player is often

taken as a sign of how intelligent that character is. Thus by designing a control

structure that results in an agent appearing to move intelligently the designer raises

the player's interest in the game.

The following technologies are ordered chronologically, though only approxi­

mately. Exactly when certain technologies came into use is not known because

they evolved from existing technologies. This also reflects the fact that as the tech­

nologies progressed the complexity of the behaviours that a given technology could

show increased.

20

CHAPTER 2. LITERATURE SURVEY 21

2.1.1 Movement scripts

Technology description

"Movement scripts" is a generic term that is being used to describe the simple

movement that is performed by characters in technically simple games. A good

example is the enemy characters in an early platform games such as Super Mario

Brothers. The enemies are seen to "patrol" a given area.

Take for example the cat seen in Figures 2.1 to 2.6. The cat starts in the middle

of the platform (Figure 2.1) and moves in its initial direction, until it reaches its

maximum displacement, as set by the games designer and most probably the size

of the platform that the cat sits atop (Figure 2.2). The cat makes an about turn

(Figure 2.3) and then starts to move in the new direction (Figure 2.4). Once its

maximum displacement in the new direction has been reached the cat makes another

about turn (Figures 2.4 and 2.5) and then continues on in its original direction of

travel (Figure 2.6).

Other stimuli such as detecting the edge of a platform can be used to adjust the

direction of travel. This would lead to a character who appeared to "explore" its

environment, all be it in a simplistic manner.

Pseudo-code which could define this behavior is as follows

Pick inital direction of travel;

IF (possible to move) THEN (move as far as timeframe allows) ELSE

(change direction of travel);

Capabilities of the technology

Movement scripted characters tend to perform simple repetitive movements (such

as patrolling a platform) and can switch between different behaviours depending on

the situation (such as attacking a player when they are within range) and as such

can be viewed as simple finite state machines.

Limitations of the technology

Movement scripts are very limited in what they can do. They can control the actual

placement of a character on the screen, and in more complex examples they can

switch between two or three different combinations of moments, but if their behav­

iour extends much beyond that then they would be classified as a state machine.

CHAPTER 2. LITERATURE SURVEY

Figure 2.1: The Movement
Script controlled Cat starts
moving in its initial direc­
tion.

Figure 2.3: The Movement
Script controlled Cat turns
around

Figure 2.5: The Movement Script
controlled Cat reaches the limit of
its platform

22

Figure 2.2: The Move­
ment Script controlled Cat
reaches the limit of its plat­
form

\'',.,_,:.1

,i:~;~?) ==>

Figure 2.4: The Movement
Script controlled Cat starts
moving in its opposite direc­
tion

Figure 2.6: The Movement Script
controlled Cat starts moving in
its original direction, and the cy­
cle starts again.

CHAPTER 2. LITERATURE SURVEY 23

Movement Scripts can be used in games where the player dies if they touch an NPC,

for example the Super Mario series. Movement Scripts are really an animation tech­

nique rather than an AI technique and as pointed out in "A Tool For Constructing

3D Environments With Virtual Agents" [VP] "Animation can create dynamic envi­

ronment, but its pre-scripted nature runs against the interactional freedom a virtual

environment should have" .

Comparisons

Movement Scripts are a simple way to introduce movement patterns and thus in­

terest to simple characters such as enemies in platform games. Their limited ability

to display more complex behaviour is due to their evolution into state machines.

Movement Scripts should not be confused with scripting, which is an auxiliary tech­

nology used in many places within games. Tasks such as adapting agents to work

within different game level layouts are easily accomplished with scripting.

Summary

Movement scripts have one major failing, they are predictable. Even with built in

randomness they are, by their very nature, eventually predictable. This behaviour

seemed to be the crux of the majority of early games, learning the patterns of the

enemies, including the "end of level" bosses 1. As the game progresses players see

more enemies, they get faster or more powerful, and maybe their movement patterns

get more complex, but the aim of the game is to learn their patterns resulting in the

player being able to defeat them. Whilst there have been thousands of games that

have been built on movement scripting, mostly of the "platform" varieties, it is the

underlying technologies that inherently limits the interest that players can have in

the game because of the lack of complexity of behaviours that is possible.

2.1.2 Finite State machines

Technology description

Movement Scripts told characters when and how to move, but finite state machines

take this one step further. The ability to switch between apparent behaviours de­

pending on the current situation is a very powerful tool and thus state machines

1 End of level bosses were NPC that the player met at the end of a given game level. They
tended to be far more powerful that the NPC met thus far in the game.

CHAPTER 2. LITERATURE SURVEY 24

(both finite and not) form the main backbone of control technology in the majority

of modern games. There are many forms of Finite State Machine, as they are an easy

way of "keeping control" of a complex system. For example Tomlinson and Blum­

berg use ActionTuples which have entry and exit conditions, and would appear to

form a basic state machine, to investigate the highly complex field of emotions and

learning within a pack of digital wolves in "Social behaviour, emotion and learning

in a pack of virtual wolves" [TBOl]

Capabilities of the technology

The best way to describe a game implementation of a game finite state machine

is by example. Consider a highly mobile enemy in a first person shooter (Such as

Doom or Quake, both games which use FSMs to control NPC characters), possibly

a creature such a vicious dog. Whilst the movement scripts of earlier games might

have lead to creatures whose patterns you could learn and defeat more easily, a

more complex finite state machine driven enemy can display behaviours that are

more difficult to defeat.

In a typical example of an FSM game we would see a dog control system capable

of hunting, attacking and pulling away if the dog feels that its existence is being

threatened. Whilst each of these individual states might be a movement script

itself, the machine as a whole provides more than simple repetitive single script.

By controlling movement between states using the internal states of the creature we

give the appearance of the creature reacting to its situation, and thus increase the

level of user perception of the creatures intelligence.

Limitations of the technology

The concept of a state machine means that it can be used to harness many other

technologies, because they can be "wrapped up" and placed inside one of the states!

This means that it could be said that there is nothing that a state machine cannot

do, as it can make use of other technologies as and where they are required. It is

this ability, and their ease of implementation (due to programmers familiarity with

the field) that makes them such a mainstay of gaming technology.

However, a state machine does have some limiting properties. As described in

section 2.1.3 (Hierarchical State Machines), state machines can have problems when

switching between states. The ability to create sub-states such as is achievable

in hierarchical state machines, reduces the level of complexity and the number of

CHAPTER 2. LITERATURE SURVEY 25

If (health > 50%)

If (distance < 10)

If (health < 10%)

Figure 2. 7: Vicious dog control architecture

CHAPTER 2. LITERATURE SURVEY 26

connections between states, that would need to be created to have a state machine

that could perform the same sorts of tasks. It also removes the likelyhood of a

trigger firing and moving between two states in an unlikely manner. See figures

2.8 and 2.9 for a state machine and a hierarchical state machine that appear to

do the same job. In the example the character will stand and occupy its time (by

scratching and dancing) until an alien comes too close. The character will then

run to a safe distance, and go back to scratching and dancing. It is possible that

the character could move straight from running away to dancing, but this series of

action would look very odd. Therefore some actions such as the previous example

would generally be avoided if possible, although without removing the possibility of

it happening should we desire it. By the introduction of the sub-state this can be

achieved relatively easily and cleanly.

The hierarchical state machine (Figure 2.9) contains less connections, and thus

would require less computational work to make updates to the state.

Figure 2.8: A finite state machine for nervous character (transition condition labels
removed to increase visibility)

CHAPTER 2. LITERATURE SURVEY 27

Figure 2.9: A hierarchical finite state machine for a nervous character (transition
condition labels removed to increase visibility)

CHAPTER 2. LITERATURE SURVEY 28

Comparisons

One of the major features, and both a benefit and a hindrance, of finite state ma­

chines is their predictability. It is important to make the distinction between "repet­

itivity", the major problem with movement scripts in gameplay, and "predictability"

of Finite State Machines. Finite State Machines, by their very nature are "deter­

ministic" in that if you know what inputs they are receiving you can determine what

the output will be, depending on the current state. This means that characters are

always predictable, however this predictability can be masked if there are large num­

ber of states and transitions. One method of decreasing the level of determinism of

a finite state machine is to add a degree of randomness to which input is selected to

determine the output given a "collision". For instance, when two inputs are firing

and they point to different final states, by randomly selecting one of the inputs to

rule over the others and thus determine the output state we reduce the ability of

an external body (a player for example) to be able to predict what the finite state

machine is "going to do next" in a given situation. The designer however still retains

a high level of control over how the NPC reacts though.

Summary

As stated before Finite State Machines form the backbone of the majority of game

AI engines. As noted by Mark Tully of Free Radical Games, "You hear a lot of

fancy stuff about neural nets, learning and decision trees bounded around with talk

about AI, but at the end of the day, what [TimeSplitters][Gama] and I suspect most

computer games come down to is a good old state machine". [hou03]

2.1.3 Hierarchical State Machines

Technology description

A hierarchical state machine is a state machine where any of the states can itself

contain a state machine. This means that all of the sub-states effectively contain

links to all of the states to which their parent state has links.

Capabilities of the technology

Whilst finite state machines provide a great leap in realism as compared to movement

scripts, the abstraction via composite states allows Hierarchical State Machines to

offer increased the levels of complexity of behaviour, well beyond that which Finite

CHAPTER 2. LITERATURE SURVEY 29

State Machines can achieve, as well as simplifying the number of connections between

states that are required. This ability to represent states and transition within one

state can be used to great effect and is a main feature of several commercial film

production software systems such as Softimage XSI[sofa].

To make it clearer where the use of a hierarchical finite state machine might be

more effective than a "standard" finite state machine consider the following example.

We wish to animate a series of characters walking in a pedestrian fashion, browsing

in shop windows, waiting at traffic lights to cross the road, not bumping into one

another and so forth. Using a finite state machine this would be relatively easy to

code, possibly producing a state diagram like the one in Figure 2.10.

bro•ning waiting

walking
..... ~ .. ~ J ,__ ______ ----i

'---------.../

Figure 2.10: A finite state machine for controlling a pedestrian

Whilst this could produce some credible results, if we wanted to make the an­

imation more interesting one solution would be making people do multiple things

at the same time thus mimicking human behaviour (such as whilst waiting at the

crossings people may scan the traffic, or chat to the person next to them, or stand

and read the Financial Times). Whilst this is also possible to code using a basic

finite state machine, each of these states would require transitions to the other states

that "waiting" currently has, and these would also require all of the transition pa-

CHAPTER 2. LITERATURE SURVEY 30

rameters of the existing transition. By using a hierarchical state machine we can

"wrap up" these additional states within the "waiting state" and thus only have

to worry about switching out of the waiting state and which state we are currently

within. A diagram of the "waiting to cross" can be seen in Figure 2.11.

(~T-~Hing to cross)

l talldng to nleghbor _

(r~~)~
I

Figure 2.11: A hierarchical state machine showing one state in the crossing road
example.

This ability to roll states together and form composite states means that the

complexity of state transition diagrams is greatly reduced, but also means that levels

of priority can be introduced within a characters behaviour. Using the previous

example, if a character was crossing the road, and a car came around the corner

unexpectedly, it would be more important (in terms of realism), for the character to

get out of the way of the car than to avoid bumping into the other people around

him. Indeed it can be seen in real life that people will bump into one another in

the effort to escape oncoming danger. By using a finite state machine the priority

to move out of the way of on coming pedestrians would be just as high as that

of moving out of the way of a car, and thus a pedestrian might be seen to travel

towards a car, to get out of the way of another pedestrian. By grouping behaviours

according to how important they are a measure of controllability can be instilled

into our characters. See Figure 2.12 in intelligent road crossing behaviour example.

CHAPTER 2. LITERATURE SURVEY

crouing tile road

1 St ... " , ,

(dcxlgybossy people J

be polilll!D
oidpeople

31

Figure 2.12: Hierarchical state for crossing the road allowing the pedestrian to
exhibit more "intelligent" behaviour

Limitations of the technology

Hierarchical state machines inherit the ability of state machines to wrap and incorpo­

rate other technologies and act as an overseer. However a state machine, hierarchical

or not, cannot do anything itself. It is completely reliant on other technologies it is

using within each state.

Summary

Whilst it was stated earlier that the majority of games engines are based around

state machines, it is more probable that they are actually based around hierarchical

state machines as these provide more control over which states are selectable.

Hierarchical finite state machines offer the ability not only to simplify the number

of transitions that are required, but also to "do the right thing at the right time",

a problem that has afflicted autonomous character developers for years.

CHAPTER 2. LITERATURE SURVEY 32

2.1.4 Fuzzy state machines

Technology description

Fuzzy State Machines (FuSMS) which are driven by underling Fuzzy Logic, have

their roots in finite state machines. Fuzzy logic is based around the modelling of the

"greyness" of the world. "Fuzzy logic uses real-valued numbers to represent degrees

of membership in a number of sets - as opposed to the Boolean values of traditional

logic" [Var02]. Whilst Propositional logic, 1st order logic and temporal logic all

deal with the facts, objects and relations that they are aware of being either true,

false or unknown (eg. black or white worlds), fuzzy logic uses two mechanisms to

represent knowledge. Firstly there is the "degree of truth" about what exists in the

world. Secondly is the "degree of belief" about the facts[RN95]. For example, an

NPC could be 50% certain that the thing in front of it is a fish and 98% that there

is a something in its view.

Capabilities of the technology

Several commercial engines exist for handling fuzzy logic and fuzzy state machines.

Louder Than A Bomb!'s Spark! [Ita] bills itself as a "Fuzzy Logic Editor that makes

creating and integrating fuzzy logic into applications simple" and would certainly

appear to be a useful tool for developers. Using Spark! as an example is a good way

of demonstrating basic FuSMs/Fuzzy Logic theory, especially in relation to games.

Spark! allows you to create the vital "membership functions" which govern what

response is given to a stimuli.

There are four key membership functions:

Triangle Triangles have 3 points, and are the most basic of the membership func­

tions

Trapezoid Have four points.

S-Curve Have an arbitrary number of points, but must be anchored at zero for the

beginning and end points.

Singleton Is a single value, and represents a "non-fuzzy" discrete value.

Based on the returned responses from the membership functions a fuzzy state

machine can determine not only the potential state, but also the degree to which

that state is "firing". It also allows multiple states to be active, and it is then the

CHAPTER 2. LITERATURE SURVEY 33

responsibility of another process to decided which single state is used to control the

character at this point, or how to combine states in this situation .

<V"'
;j
rl

.... ~

~~----------~-4------------~/!
·················-·······-··-·· ··········-~

~ 01 i-, ----'..------r--------\------------,
i .::l'" +---------"r-----,1------------\--------:--------c

~ ~~~
~" +--------x-------------\-----+-----·
<1>

1l "i-------r-----'"<------------+-~----------; '----====-.J
<1> !

::£ "+-i --------.r'-------T--------------\'--------

07

Figure 2.13: Fuzzy membership functions for both characters in the example

To represent how states are connected a Fuzzy Control Language (FCL) is used,

which takes the form of a series of IF THEN statements which link states, as defined

in the membership functions, to output states. This is best examplained using an

example.

Let us consider an NPC and its enemy (a human player) who are involved in a

combat situation in a 1st Person Shooter game. The NPC can detect its own level

of health, and that of the player, and must make a decision as to what action to

take.

If both the NPC's health and the current enemy it was engaging's health were

modelled using the same membership functions (as seen in Figure 2.13) then a

possible rule block 2 written in FCL might look something like this ...

IF us(excellent) AND them(excellent) THEN tactic(fight hard)

IF us(excellent) AND them(good) THEN tactic(fight hard)

IF us(excellent) AND them(near death) THEN tactic(fight)

IF us(good) AND them(excellent) THEN tactic(fight hard)

IF us(good) AND them(good) THEN tactic(fight hard)

IF us(good) AND them(near death) THEN tactic(fight)

IF us(near death) AND them(excellent) THEN tactic(run for cover)

IF us(near death) AND them(good) THEN tactic(fight defencivly)

IF us(near death) AND them(near death) THEN tactic(fight)

2a set of Fuzzy Control Language statements

CHAPTER 2. LITERATURE SURVEY 34

Membership Functions Response
Our Near Death 0.2

Our Good 0.8
Our Excellent 0.0

Their Near Death 0.0
Their Good 0.15

Their Excellent 0.45

Table 2.1: An example of how an NPC can be committed to different membership
functions by differing amounts

Membership Functions Contributing State Commitment
Near Death and Excellent run for cover 0.09

Near Death and Good fight defensively 0.03
Good and Good fight hard 0.12

Good and Excellent fight hard 0.36

Table 2.2: How the rules of the RuleBlock and the values of the membership func­
tions combine to give resultant states and levels of commitment to them.

Above have we created an NPC which will judge when to engage the player in

fighting and when to run and hide. This example represents quite an aggressive bot,

and only hides when there is a very good chance of it getting killed.

So far it would have been possible to confuse the above and a standard finite

state machine, as the current behaviour seems to switch between states. However

because of the additional level of abstraction that the membership functions provide,

separating the actual value of health level from the returned level of the response

(eg. good - 0.6), it becomes possible to select multiple states, and for each of those

states to have a level of commitment. For instance if the monsters health is 0.4 and

the current players' is 0.65 then the 2.1 would represent the membership function

return values.

Using the Ruleblock to show which membership values to combine this would

mean that our states would be have the resulting values of those seen in table 2.2.

These values were generated by multiply the membership values of the membership

functions together. The Ruleblock states that if the NPC has a value for "Near

Death" and the player has a value for 'Excellent" then these two values should be

multiplied together to get a value for the "Run for cover" tactic. Multiplication is

only one method of combining value, and different functions can have wildly differing

effects.

CHAPTER 2. LITERATURE SURVEY 35

State Commitment
run for cover 0.09

fight defensively 0.03
fight hard 0.48

Table 2.3: How the results of table 2.2 combine to give a final statement of how the
NPC is committed to the various actions it could perform.

Two of the combinations of memberships functions resulted in the same tactic -

fight hard. In this case the Fuzzy State Machine might decide to select that state,

or it might combine the values of the two commitments. Decisions such as these are

left to the programmer or designer during implementation. If they are combined

that would give a final state commitment table looking for instance like table 2.2

Its pretty clear that in this case the NPC would probably take the "fight hard"

tactic, though the other tactics would have some influence over the bots actions.

Limitations of the technology

fuzzy Logic models levels of greyness of the world. That is to say that it leaves

behind the "crisp values" [Cha03] of classic logic. Because of this values that would

normally be disregarded by classic logic rule-based systems, such as those close to

false, remain under consideration allowing them to have an attenuated affect on the

actions being performed. This can result in fuzzy systems being computationally

[Cha03] expensive. Choosing how to create membership functions has been seen as a

problem, though iterative and trial and error methods seem to be the most practical.

It has also been noted that "the number of rules in a system grows exponentially with

the number of inputs and outputs " [Var02] and thus methods of optimisation are

required. Methods include single state output3
, hierarchical behaviours 4

, parallel

behaviour layers 5 , caching and Combs Method which can give slightly different

results to fuzzy logic [Com99], but can be much faster.

Summary

Fuzzy logic systems have had many uses since their introduction, but "Neural Net­

works and Fuzzy Logic rank at the top of the list of AI technologies that every­

body's heard of and few understand" [Woob]. The move away from deterministic

3Single State Output:calculating what to do, but not necessarily how much you need to do it
by. For instance, "hit them", rather than "hit them with a force of 0. 7 "

4 Hierarchical behaviours: Removing out rules which you do not have to consider
5 having different refresh timings for different sections of the AI

CHAPTER 2. LITERATURE SURVEY 36

finite state machines was started with hierarchical state machines, but fuzzy state

machines introduce the vital concept of being able to consider two or more states

at once, as well as having a measurable commitment to those state. Current games

on the market that use FuSMs include Unreal (and most likely several of the Unreal

followups), and S.W.A.T.2 where it was used to direct which tactical response of

the units is not only influenced by current siltation they find themselves in, but also

by the units personalities[JWOl]. "Fuzzy logic can provide a powerful tool in an

AI programmer's arsenal. It can add depth and unpredictability to your game AI"

[Var02].

2.1.5 Behavioural Animation

Technology description

Behavioural animation is a term that is often used to refer to the field of animation

that was typified by Craig Reynolds [Rey] with his boids project. The essence of

behavioural animation techniques in the concept of telling characters "what do, not

how to do it".

"Behavioural animation is a type of procedural animation, which is a type of

computer animation. In behavioural animation an autonomous character determines

its own actions, at least to a certain extent. This gives the character some ability

to improvise, and frees the animator from the need to specify each detail of every

character's motion" [Rey].

Capabilities of the technology

Reynolds[Rey] original boids experiments (see [Rey87]) were based around modelling

a flock of birds by using three rules. At any one point an algorithm that is "based"

in the boid is trying to balance staying away from obstacles, pointing in the same

direction as it's flock mates, and staying near enough to its flock mates. By saying

that the algorithm is "based" on the boid we are trying to infer that the algorithm

considers the situation from the reference point of each boid. When object orientated

methods are used to code boids implementations, each boid can be created as a

separate object, and each has its own copy of the algorithm, hence the term "based".

The field of behavioural animation has been used in many commercial situation,

especially for "lightening the load" for animators working on crowd scenes (Batman

Returns, Cliffhanger, The Lion King, From Dusk Till Dawn, The Hunchback of

Notre Dame). By getting the majority of the members of a crowd to "pull their

CHAPTER 2. LITERATURE SURVEY 37

own strings" [Rey] this leaves the animator's time free to detail with situations that

cannot be automated such as face to face interactions.

Limitations of the technology

Behavioural Animation techniques are generally used in a reactive context. It stems

from the works of Rodney Brooks and especially his seminal paper "Intelligence

without representation" [Bro91b]. At any one point (a frame of an animation for

example) a reactive system can only make judgements based on what it "knows" at

this point in time. As a result there is no sense of continuity, which can cause prob­

lems. For example in the implementation of a simple boids system documented in

"Investigation into flocking using boids technology" [Woo03] problems were seen with

boids "flickering" between two very different states such as "feeding" and "fleeing"

which resulted in unrealistic behaviour.

Comparisons

Behavioural Animation techniques would seem very applicable as an underlining

technology in many other AI technologies used in the games field. Being used on

its own it can create some very impressive and realistic results, however it can be

limited because it only has the ability to do one thing, rather than a variety of

things, one at a time. This means that behavioural animation is ideally suited to

being one of the states in a state machine, or for creating very simple behaviours

where no concept of time is needed such as fish swimming or birds flocking.

Summary

Behavioural Animation's major strength is in its simplicity. It should also be noted

that Craig Reynolds boids ideas were somewhat revolutionary and no doubt helped

evolve the field of animation away from "hard-scripted" techniques used previously.

The term "behavioural animation" may well be redefined to encompass more than

simple reactive behaviourial models such as is seen in the flocks of birds and fish as

developed by Reynolds. The work by Tu on physically realistic fish [TT94] took the

field of behavioural animation one step further. Whilst the fish were self animating

in the same sense as Reynolds' project they were far more advanced than simple

reactionary entities. The additional level of complexity in the modelling of the body

and its interaction with the world around it does not really affect the Tu's project

("Artificial Fishes: Physics, Locomotion, Perception, Behaviour" [TT94]) inclusion

CHAPTER 2. LITERATURE SURVEY 38

under the heading of "behavioural animation", however the sensory systems, per­

ceptual modelling and other "mental" processes that surround how the fish decides

where is going to go, and the learning processes involved with how it moves itself,

goes far and beyond simple behavioural animation.

2.1.6 Pathfinding techniques

There is much discussion on whether or not pathfinding and collision detection

strictly comes under the realms of AI [Wooa] however both are heavily used in

computer games, and both can have great impact on the AI modules of the game.

Pathfinding is very much in the realm of "classic AI research", but in the computer

games industry is has found its champion in A*. There are many times when it

is not applicable (see "Chapter 3 -Pathfinding with A*" in AI Game Programming

Wisdom [Var02]), but A* seems to be the most highly implemented of all search

strategies[Pat].

Technology description

A* was developed from two other search techniques, Dijkstra's algorithm and Best

First Search. For discussions of these two algorithms, and of A* itself please refer

to "Amit's Thoughts on Path-Finding and A-Star" [Pat]. Dijkstra's Algorithm

"examines the closest not-yet-examined vertex, adding its vertices to the set of

vertices to be examined". It will always find a shortest path (multiple my exist)

so long as none of the vertices have negative weights. Best First Search works in

a similar way, but selects "the vertex which is closest to the goal" [Pat] as judged

by a heuristic function. Best First Search will not always find the shortest route,

however it runs considerably faster than Dijkstra's algorithm.

Both algorithms have their benefits, and their drawbacks. Depending on which

factors are important at a given point, a different algorithm would be selected.

A* attempts to combine the power of Dijkstra's algorithm with the efficiency of

best First Search by using a combination of heuristics to expand nodes. In simple

cases it will be as fast as Best First and create paths that are comparable to Dijkstra's

algorithm.

A* combines two measures to select which nodes to expand, "g(n) represents

the cost of the path from the starting point to any vertex n, and h(n) represents

the heuristic estimated cost from vertex n to the goal. Each time through the main

loop, it examines the vertex n that has the lowest f(n) = g(n) + h(n)." [Pat]

CHAPTER 2. LITERATURE SURVEY 39

There are many issues relating to A* and especially to the selection of heuristics,

and good discussion about them can be found in [Pat] and [RN95].

Limitations of the technology

Whilst A* looks like the answer to all pathfinders dreams, with its property that

"no other optimal algorithm is guaranteed to expand fewer nodes than A*" [RN95]

it is by no means the answer to all pathfinding problems. According to a recent

conference (2003 Game Developer's Conference) "most games use up to 50% of their

AI budget on pathfinding" [Wooa]. Notes from the same conference also say that

many developers consider "pathfinding to be solved" [Wooa] because the majority

of developers have tried and tested various methods and "agree that A* and [its]

variants are the best answer for relatively static environments".

As powerful as A* is, it is important to be able to spot the times when it is not

the appropriate algorithm to pick. There will be times when one of the following

situations occurs meaning that A* would be far more complex than is required ...

Straight Line The best path to pick would be a "line of sight" straight path and

as such there is no need of A* 's powers:

Out of sight - out of mind Whilst the issue of "cheating" and the perception of

cheating (see section 2.3.2) should be high in the minds of developers, if a

player defiantly cannot see what an NPC is doing, there is not need to incur

the overhead costs that an A* would result in.

Previous Experience If an NPC has navigated a path once before a, better solu­

tion would be local caching as this save a lot of time and CPU overheads.

For more discussion on the use of A* see [Var02] and the papers referenced

within.

2.1. 7 Planners

Planning is seen very much as a field of classic AI research, however it is not only

limited to highly controlled situations such as "Blocks World" but can be applied

to the games environment too.

The use of planners would seem most suited to First Person Shooters, for plan­

ning how the NPC's will achieve their goals. Classic planners such as STRIPS [FN]

CHAPTER 2. LITERATURE SURVEY 40

are likely to have overhead requirement far in excess of anything that could be pro­

vided in the CPU intensive environment of 3D games. Planners that are found in

games are most likely to be developed specifically of the task at hand, although

3rd party planners have been used by researchers for instance John Laird used the

SOAR planner [htta] to implement a predictive agent for Quake [LaiOl].

Planners are often based on the Sense, Model, Plan, Act model of reasoning.

In the world of computer games the sensing and modelling can be done relatively

easily (unlike in a "real world" situation which would involve activities such as image

interpretation). Further details about sensing will be covered later in this thesis.

The Acting section of the quartet is also more easily achieved in a virtual world

as it does not need to deal with problems such as mechanical gears slipping and

bumps in the floor such as might be encountered by a robotic vehicle. The planning

section remains virtually unchanged however. The NPC will need to have modelled

its goals and a set of actions and implications in a form of propositional logic, most

probably a form of symbolic representation. Using the information set consisting of

the initial situation, the goal state and the operators, a planning algorithm need to

construct a list of actions (operators) that will result in the path from the initial

state to the goal state.

For more advanced bats, such as those found in Quake II and Unreal, planning al­

most certainly is the approach that drives the bats to collect weapons enhancements

etc. Although in the early to mid 90's there was a definite trend to turn away from

symbolic AI, as was personified by Fred Brooks, recently it has made a reappearance

to help control the high level goals. "A creature must cope appropriately and in a

timely fashion with changes in its dynamic environment" said Brooks[Bro91c] and in

the highly dynamic world of computer games modelling and planning every low level

action could easily prove to have far to higher overhead. However, for planning high

level goals such as "Find a weapon", "Hunt down player" planners might well have

more use. The lower level actions could then be undertaken by other systems such

a A* searches, reactive techniques, and other technologies discussed in this thesis.

"Off the shelf" Games AI solutions such as DirectiA [dir] appear to use high level

tools such as their "tactics" level to control the rough movements of a character.

2.1.8 Neural Networks

Neutral networks came to light in 1943, and were thought as first to be the answer to

modelling the workings of the human brain. However the type of networks that were

CHAPTER 2. LITERATURE SURVEY 41

being produced, and the methods for training them would lead to a drop in their

popularity. It was not until much later that the neutral network became "popular"

again, because new methods of training came into existence- back propagation.

Neural networks are, at present, seen by many as the future of computer game

technology. New uses are being found doing everything from steering cars, to pro­

viding more useful camera angles.

Artificial Neural Networks Basics

Artificial Neural Networks are based around the concept of modelling the neurons

found in the brain. Neurons have a central node (the "soma" or "cell body") which

has two different structures growing out from it. Dendrites make connections to

other neurons by means of connecting to the synapses found on the end of the

Axon. Axon's can stretch a distance from the cell body, often nearly a centimeter.

When the neuron "fires" due to the actions of other neurons on its dendrites, an

electrical pulse will be sent down the axon, which will be connected to the dendrites

of other neurons. A neuron only fires when a certain tolerance is broken for instance

enough of its dendrites are in an excited state.

This whole process is modelled in ANN by representing these tolerances of each

neuron, and by weighting the influence that each neuron or input has on any given

neuron.

There are two major classifications of neural networks, and many subclassifica­

tions. The primary classes to be defined are forward-feeding networks and recurrent

networks. Forward-feeding networks are arranged in layers, with each neuron only

having input form the previous layer, and output to the next layer, with no connec­

tions that jump layers or make connections within layers. Especially these networks

can be represented as directed acyclic graphs as their connections are uni-directional.

The layers within a neural network are referred to as "hidden layers" as there

is no way of directly observing them. The measures of influence that each neuron

has on the layer below it are referred to as "weights". They are modified during the

learning process to adjust how the network reacts to stimuli.

Forward feed networks have no concept of memory and no representation of

internal state, as they only have (by recursion) input based on the input layers.

That is to say that they are reactionary, and as such somewhat limited, however

they are far easier to calculate, and are far better understood than more complex

types of ANN. It is probably worth pointing out that the human brain cannot be a

forward feed neural network- or we'd have no short-term memory [RN95]!

CHAPTER 2. LITERATURE SURVEY 42

Perceptrons

Perceptrons are a specific subset of forward feed networks in that they have no

hidden layers. The input nodes map directly onto the output nodes via a set of

weights. The lack of hidden layers means that Perceptrons are greatly limited as to

what they can represent. They are limited to linearly separable problems, that is, if

the results were to be graphed, and the separation to be made by drawing a line on

the graph, a perceptron could only draw a single straight line, eg. would be unable

to separate a case such that seen below (Figure 2.14).

XOR

•

(! ---------~------

P1lmary lnpU1

Figure 2.14: XOR values, it is not possible to separate the triangles (false outputs)
and diamonds (true outputs) using a single line as can be represented by a perceptron

This would seem a major failing, as there are not a great number of linearly

separable functions, however the saving grace of perceptrons is that there exists an

algorithm that will always train them to recognise linearly separable functions, given

enough examples.

Training Perceptrons

When the majority of ANN are initialised the weights within them are randomised.

This means that the answers they produce are highly unlikely to be correct, until a

process of training has been completed. Training involves using a set of examples,

feeding each one through the network and comparing the answer that the ANN

produces to the real (previously known) answer. The term Epoch is used to represent

the timeframe over which the networks weight's are all updated with regard to each

of the examples. Generally several epochs will take place during the training of an

ANN.

CHAPTER 2. LITERATURE SURVEY 43

Although perceptrons can only represent linear separable functions, there exists

an algorithm that can train a perceptron to optimality given enough examples. "If

a possible solution for the perceptron existed, the [Rosenblatt] training algorithm

would find it" [Cha03]. This rule remained virtually unchanged until the introduc­

tion of the "delta rule" of Widrow and Hoff's Adaline project[WH]. The addition

of the learning rate (delta) was added to reduce the chances of an "overshoot".

To train the network firstly an error value which relates how close the ANN's

prediction was to the real known value is calculated. This is created using an error

function, which is relatively simple for a perceptron.

Error (E) = Real(R) - Predicted(P)

If the error is negative we will need to increase the Predicted value, and if the

error is positive we will need to reduce the predicted value. The only way to affect

the output value is by tweaking the weights within the ANN. We tweak the weights

by using a learning rate as well as the error calculated and the input value.

NewWeight = OldWeight + a x Input x Error

For a fuller explanation of the Perceptron Learning Rule see [RN95].

Multilayered Forward Feed Networks

Multilayered Forward Feed Networks have hidden layers and thus "multiple layers",

they offer the ability to make decisions on much more complex situations than those

that are linearly separable, and thus are probably far more useful in the field of

computer gaming.

The problems with multilayered ANN is that they are far more complex than

simple perceptrons and initially were thought to be "an important research problem"

but that "there is no reason to suppose that any of the virtues [of perceptrons] carry

over to the many-layered version" [MP88].

Whilst perceptrons can be trained to an optimal configuration, it is possible that

multilayered ANN cannot be guaranteed to converge.

Back Propagation

Back propagation is a method for updating the weights within a multilayered net­

work. Whilst based on the Perceptron update rule, it is slightly more complex in

CHAPTER 2. LITERATURE SURVEY 44

that the value of an output node will have been contributed to by several intermedi­

ate weights, rather just a single layer's weights. This means that the "blame" must

be split between all contributing weights, being propagated backwards through the

ANN's layers. For a detailed explanation of back propagation see "AI: A Modern

Approach" [RN95].

Applications of ANN

As mentioned before, many garners and the game development community, seem to

see neural networks as an up and coming technology. There are two major factors

which drive this conclusion, learning and generalisation.

Learning Because ANN can "learn" or refine their behaviour to a set of stimuli,

they could be implemented in games as mechanisms for learning how to react

to a player. The learning of player's gaming style is an important technique

in playing games, especially in the First Person Shooter genre. 6

Generalisation ANN have the curious, and extremely useful, property of gen­

eralisation. Such properties are best utilised in fields such as handwriting

recognition, the ability to produce the correct answer based on input that has

the same features as "correct" input but that is different in form (such as two

different peoples scribing of the letter "a"), it is generalisation that means the

ANN can be used in situations where the exact input has not been seen be­

fore. For example, in the very successful (and very entertaining) Colin McRea

Rally II, neural networks were used to control the NPC racers. Jeff Hannan,

lead AI developer for CMR2, "tried to create a set of rules to control the car,

but was unsuccessful" [httb]. When this method failed a neural network that

could follow the "racing line" (which appears to have been hardcoded into the

track information) was developed to control the cars instead. This meant that

the developed "standard feed forward multilayer perceptron" [httb] was able

to perform to an impressive standard, and that developers "[were] then able

to adjust racing lines almost at will, to add a bit of character to the drivers"

[httb] without losing the ability for the NPC to follow the track. The network

was trained using RPROP learning algorithm [RB93].

Whilst the ability to learn is one of the greatest attractions of neural networks,

it also raises many questions, primarily "do we wish our NPC's to learn?''. This

6John Laird in [LaiOl] gives an excellent example of advanced players behaviours including
learning from previous experience. See the Dennis Fong story in [LaiOl]

CHAPTER 2. LITERATURE SURVEY 45

would seem an odd question to ask, but there are two possible paradigms of use for

neural networks, pre-learning and active learning.

Pre-learning is the training of a neural network and then the "freezing" of that

network in its trained state. This means that the ANN does not change as it plays

against the player during the game, but instead remains static. This would seem to

negate many of the benefits of having a learning structure such as an ANN in control,

however it does solve many practical problems. It means that the developer has a

very high level of control over exactly what AI gets shipped with the product when

it goes to market. This avoids many of the problems that might be encountered

with active learning neural networks (as discussed further on). This method has

been used successfully in several games.

Active Learning, is the flipside to Pre-learning, where the ANN is continues to

learn as it takes part in the game. Many developers seem to be very wary of allowing

this to happen, as once the product as shipped they have no control over what each

player is seeing on their screen. It is this uncontrollability that makes developers

nervous, not because technically it is any more difficult to implement, but because

payability is their end goal - not staggering AI achievement. Whilst one does not

preclude the other, if a player finds themselves playing against either of the extremes

of a learning driven AI, an idiot or a god, they will have a poor gaming experience.

This issue was brought up at the Games Developers Conference in 1999 a developer

of an up and coming sports games "planned to include an option to reset the AI

should the player feel it had become feeble-minded (or too strong a player, as the

case may be)" [Woo99a].

Whilst the most interesting property of neural networks is their ability to learn,

continual learning throughout a game is unlikely to be their more useful implemen­

tation. Andre LaMothe (CEO of Xtreme Games LLC, and author of many books

on game programming) has said "I have tried using NNs for pattern recognition

etc., but the design time of AI based on NNs is fairly high, but it has good payback

when doing games that you want to "teach" rather than program. A good example

is using a NN to learn responses to fighting moves of another player. The position

of the opponent can be thought of an input vector and then used as an input to a

NN." [LaM99]

CHAPTER 2. LITERATURE SURVEY 46

2.2 People and previous work on the subject

There are many groups researching into the field of autonomous characters, and

whilst not necessarily focussing their research on computer game characters much

of the work is highly applicable to the field of gaming.

2.2.1 Craig Reynolds and the Behavioural Animation

In 1986 Craig Reynolds made a computer model of co-ordinated animal motion such

as bird flocks and fish schools. It was based on three dimensional computational

geometry of the sort normally used in computer animation or computer aided design.

Reynolds called these generic flocking creatures boids. The basic flocking model

consists of three simple steering behaviours which describe how an individual boid

maneuvers based on the positions and velocities its nearby flockmates.

The three key steering behaviours used by Reynolds (details of which can be

found on the website [Rey]) lead to a very realistic, co-ordinated, reactive flocks7 ,

but possibly more importantly developed the field of research known now as "Be­

havioural Animation". Ann Marion coined the phrase "puppets that pull their own

strings" [Rey] which gives a better idea about what behavioural animation is. While

in some limited sense autonomous characters have a mind, their simplistic behav­

ioural controllers are more closely related to the field of artificial life than to Artificial

Intelligence. (See section for more information about behavioural animation.)

Reynolds now works for Sony Computer Entertainment America Member of the

Research and Development group, investigating autonomous character technology

for games and other interactive entertainment applications on the PlayStation@2

platform.

2.2.2 Blumberg's research group

Bruce Blumberg is the head of the Synthetic Character Group at the Massachusetts

Institute of Technology [Tee]. The group has had many interesting areas of research,

all connected with autonomous characters, often with a specific focus of trying to

replicate the feature of living creatures which are difficult to reproduce in computer

generated characters. Past projects have included:

Dobie T. Coyote A young pup simulation using reinforcement learning.

7 Reynold originally was creating a flock of birds, but the same technology has been adapted to
represent fish, sheep, wildebeest and a variety of other animals which live in groups

CHAPTER 2. LITERATURE SURVEY 47

Alpha Wolf Designed to allow synthetic characters to learn dynamic social hierar­

chies. The agents (wolves) feature a simple model of social behaviour, incor­

porating learning, emotion, perception and development.

Duncan the Highland Duncan, a sheep herding Terrior, was developed to ex­

plore a variety of issues ranging from spatial learning and object permanence

to temporal representations for Synthetic Characters. Duncan exhibited a

range of interesting behaviours including object perception and spatial "com­

mon sense" (for example: looking in areas where a sheep was likely to be rather

that methodically searching the whole area).

More information about the MIT group can be found on their website, charac­

ters.media.mit.edu [Laba].

2.2.3 Tu

Xiaoyuan Tu's PhD Dissertation "Artificial Animals for Computer Animation: Bio­

mechanics, Locomotion, Perception, and Behaviour" [TT94] won the ACM Doctoral

Dissertation Award in 1996. Her work was based around "physics-based modelling,

modelling and control of reactive behaviour and behavioural animation" [TT94]. It

used a combination for a physically realistic locomotion model and image interpre­

tation based perception 8 , instead of "sensory cheating" to model a group of fish

and their interactions not only with one another but also with other "actors".

Setting a new standard in its levels of realism, the fish in Tu's software were

used as inexpensive test beds for other technologies such as vision systems in place

of using real life robots:

The project had three major contribution,

Physical Fish Model Modelling a fish's body using weights and elastic deforma­

tions, moved by a set of motor controllers, that generate realistic fish motions.

Perception model Not only modelling the physical limitations of a fish's vision

system, but also incorporating an attention model, something which had not

been done before in the field of animation. This turned out to be critical to

realistic behaviour.

Behaviour Model The behaviour model itself had three major sections:

8not unlike many of the creatures developed at MIT under Blumberg, especially Duncan

CHAPTER 2. LITERATURE SURVEY 48

internal motivations which form its dynamic mental state.

behaviour models a set of behaviour routines which directly map to physical

behaviours such as foraging, mating, wandering etc.

intension generator to arbitrate between different behaviours. It also had

control of the perception attention model.

As well as these key contributions the project also encompassed many auxiliary

technologies which were required to maintain the level of realism. Things such as

realistic and efficient modelling of the fluid world which the fish inhabited were found

to be necessary for realistic results.

2.2.4 Demetri Terzopoulos

Dr. Terzopoulos, a University of Toronto Computer Science[dem] professor, has

gained prominence for his outstanding contributions to computer vision and com­

puter graphics and did pioneering work in artificial life, an emerging field that tran­

scends the traditional boundaries of computer science and biological science.

Terzopoulos worked in conjunction with Xiaoyuan Tu, and is credited with the

co-development of several animated video sequences which can be found on his

website[dem].

His work has progressed in a number of direction including NeuroAnimator[GTH98]

(in conjunction with Radek Grzeszczuk) a system for "replacing the numerical simu­

lation and control of model dynamics with a dramatically more efficient alternative."

A novel approach to creating physically realistic animation that exploits neural net­

works. NeuroAnimators are automatically trained online to emulate physical dy­

namics through the observation of physics-based models in action. Depending on

the model, its neural network emulator can yield physically realistic animation one

or two orders of magnitude faster than conventional numerical simulation. Further­

more, by exploiting the network structure of the NeuroAnimator, it introduce a

fast algorithm for learning controllers that enables either physics-based models or

their neural network emulators to synthesise motions satisfying prescribed animation

goals. See [Grz] or [GTH98] for a full description.

Terzopoulos' article "Artificial Life for Computer Graphics" [Ter99] is a very

interesting study of the state of art in 1999 of technologies relating to artificial life

and, particularly relating to its use to simulate realistic motion in films and movies.

He proposes that to generate realistic animation results, more than just physically

accurate models and physical modelling using techniques such as inverse kinetics

CHAPTER 2. LITERATURE SURVEY 49

are required. This is closely linked to an area that Tu speaks of in her t hesis, she

states that "during the last decade, much attention in the graphics community has

centred on realistic low-level motion synthesis, with only a few researchers pursuing

the modelling of realistic behaviour" [TT94].

Terzopoulos also states that the links between artificial life and computer ani­

mation were forged in 1986 by Craig Reynolds with his "Boids" experiments. Re­

searchers became aware of the need to model t he mental states of the artificial

creatures in their animations rather that just how they moved if they wanted to

raise the levels of realism. This resulted in the following diagram (Figure 2. 15)

Physical

Kinematic

Geometric

Figure 2.15: Artificial life, and its place in t he development of realistic animations
[Ter99]. It should be noted that the term "ALife" means "Artificial Life", another
research field closely related to AI

In Figure 2.15 we see how behavioural and cognitive modelling build onto t he

work done in physical realistic modelling to create an more realistic effect .

Animators, even at the cutting edge at the time had spent time modelling how

creatures moved, and animat researchers such as Reynolds had spent their time

modelling what creatures wanted to do but when the two came together to

results were infinity more impressive. The diagram (figure 2. 15) also incorporates

evolution, which can be seen as line of development that runs at a tangent to be-

CHAPTER 2. LITERATURE SURVEY

havioural modelling.

50

The article goes on to mention the work of Blumberg et al as well as Tu and

the Creatures Project (see Grand and Cliff in this chapter) and concludes with

hopeful statement that researchers might go on to creatures "that are self creating,

self-controlling, self-animating and self-evolving" [Ter99].

Terxopoulos appears to have moved his research area away from autonomous

agent in the latter years, however his contribution especially in the area of perception

and the work with Tu should not be under estimated.

2.2.5 Perlin

Ken Perlin, possibly most famous for his functions for generating noise in 3D space

for the purposes of realistic artificial textures, developed a system called Improv.

This technology was first demonstrated in 1996, with an animated wire-frame

character who decided when to reach out for a flying bird, and smoothly animated

itself to do so.

lmprov is a natural language scripting technology designed to select and blend

between animation clips.

"These characters can also use noise-influenced models for decision making at

many levels: ranging from low-level animation triggering (e.g., eye blinking), to

mid-level behaviours (e.g., approach/avoid), to high-level attitudes that develop

over time. These characters are not attempting to be intelligent in their behaviour,

but rather to use carefully-crafted statistical models to engage their audience of

users." [Labb]

As described in [PG96] lmprov's basic architecture is built on a three level ab­

straction system. At the lowest level is the geography level, which is manipulated in

real-time. Above that is an Animation Engine, which "utilises descriptions of atomic

animated actions (such as Walk or Wave)" [PG96]. Sitting above the Animation

Engine is a Behaviour Engine, which deals with high level actions such as "Go to the

shops". This is a very similar system to many that have been developed since, and

was similar to a previous system developed by Bruce Blumberg and others described

in the paper "Multi-Level Direction of Autonomous Creatures for Real-Time Virtual

Environments" [BG95].

Improv connected together many technologies to achieve its goals. The geometric

models were governed by degree of freedom (DOF) which could be used to limit

the rotate, position and degree of movement of a object. By using Inverse Kinematics

CHAPTER 2. LITERATURE SURVEY 51

the DOF could be used to make sure that physically impossible positions for a foot

are not generated by basing the position of the foot object on the position of the

leg object.

DOF could also be used to define more complex animation techniques such as

mesh deformations. By defining a normal facial expression, and a Smile deformation,

the user can control how much Smile is shown, varying between 0 (blank expression)

and 1 (full-blown Smile). In this particular case the user could also give negative

values for the smile, resulting in the look of disappointment.

Perlin Noise Functions can be incorporated to help govern eye blinking, move­

ment variation and other such small motions which make for a more realistic visu­

alisation.

Actions are defined using a simple scripting language, where actions are defined

much like functions in a programming language and are made of sets of tuples. These

govern the Action-Part (eg. ArmUp could be the first section of a Waving action),

the rotates of a objects, and references to noise functions that can be used to vary the

actions slightly. Action poses and sequences can also be imported from commercial

packages such as Softlmage and will be indistinguishable from those created using

Improv script.

Actions are gathered together into Action Groups. Action Groups govern

which actions can be selected at a given time, for instance, Walk, Run and Stand

would all be in the same group as it is not possible to do them all at the same time.

However, much like the DOF mesh deformations it is possible to have degrees of

stance. For example if Walk was selected by the script and currently the character

was running, then Run would reduce smoothly to zero, as Walk increased from 0 to

1, and thus the character would smoothly translate between the two.

Action Buffering is a technique used to make sure that animation do not show

odd behaviour. The example given is a character with his hands behind his back,

moving to clap them in front of him. Without the buffer action of "hands at side"

his hands would pass right through his body moving to start to clap. By Action

Buffering "Hands behind back" with "Hands at side" whenever the character moves

from "Hands behind back" it will always be done via "Hands at side". This method

is not foolproof and is reliant on the designers being able to spot possible sources of

conflict, and code solutions to work around them, however it could be very effective

and computationally very inexpensive.

It is the Behaviour Engine that is the most interesting section of the Improv

project. The scripting system is organised into groups, with higher groups repre-

CHAPTER 2. LITERATURE SURVEY 52

senting those actions which have goals with longer time frames, and lower groups

being more related to physical actions.

Scripts contain actions, trigger and conditioning statements. They can also con­

tain non-deterministic behaviours, the given example being picking between scissors,

paper and stone.

Another tool available to authors are the Decision Rules which allow the author

to combine "factors" as well as weightings to provide the facilities for the "actors"

(agent) to decide what they should do with regard to their situation.

When multiple "actors" are involved in a "production" they are referred to as "a

cast" and have access to a blackboard for sharing information. This allows the cast

to maintain correct timings for actions (so that they do not laugh part way through

a joke being told by one actor), and also allows sharing of information when the

Improv system is being run over a network or on multiple processors.

Whilst not exactly like any other project covered in this thesis, Improv has many

similarity to technologies found in current computer games, where higher level goals

of NPC agent (such as "find a gun") will be broken down into smaller steps, and

finally into animation sequences. Some commercial packages also provide similar

facilities, for example Masa Group's DirectiA [dir] has a set of Tactics tools and

a Motivation System which is mounted on top the Pathfinding and Steering tool

levels.

2.2.6 Steve Grand

In 1993 Steve Grand had a seminal moment in his life, he visulised the digital brain

structure of a "Norn". Norns were the creatures which were in inhabitants of Albia,

the virtual world in the computer game Creatures, published by Millennium Interac­

tive. The idea stemmed back into the late 1980's when Grand had tried to pitch "a

mouse that lives on your desktop" [Gra95]to his bosses. When it was finally launched

the Creatures series was an immediate hit. It incorporated some very high fashion­

able technologies such as neural networks and genetic algorithms, but they worked

together well and the end results were revolutionary. Several papers including "Crea­

tures: Entertainment Software Agents with Artificial Life" [GC98] and "Creatures:

Artificial Life Autonomous Software Agents for Home Entertainment" [GCM97]cover

the academic descriptions and implication of the Creatures series and an internal

memo [Gra95] will interest the readers as it is written form the point of view of

describing the highly technical brain structure to non-technical staff.

CHAPTER 2. LITERATURE SURVEY 53

Norns Brains

Each Nom's brain "is a heterogenous neural network, sub-divided into objects called

'lobes' "[GCM97]. A lobe is a groups of cells with specific electrical, chemical and

morphological characteristics. Connections can be made between cells in different

lobes. Each cell has 6 key characteristics:

Input Types Cells may receive input from between 0 and 2 dendrites9
.

Input Gain Allows adjustment of the effects of input dendrites. High gain in­

creases the effect of input dendrites, low gain decreases the effect of input

dendrites.

Rest State Genetically defined numerical state to which a cell returns when unex­

cited.

Relaxation Rate The exponential rate with which the cell returns to its rest state

following perturbation.

Threshold The trigger vale to which the cell must be perturbed to fire.

SVRule (State Variable Rule) Genetically defined functions which governs how

input values affect the output values of a cell.

For a more in-depth discussion see [GCM97].

The dendrites which connect cells themselves also have many parameters, gov­

erning for how long they fire, their weightings, and how they interact with SVRules.

The lobes in the Norns brains are devotes to certain task. Some are devoted to

some relatively minor tasks, such as driving the attention mechanism.

Decision Lobe This is a small but highly dendritic area, where relationship mem­

ories are stored and action decisions get taken. Has only 16 cells, each of

which represents a single action, such as "use it" and "eat it" here the "it" in

questions is the current object.

Concept Lobe This is a large space where event memories are laid down and

evoked. Each cell has four dendrites which form connections. They move

connections if the strength falls to zero.

9Interconnections between cells, in keeping with the biological terms used.

CHAPTER 2. LITERATURE SURVEY 54

Perception Lobe This area combines several sensory inputs (verbs, mise, drives)

into one place. It has around 128 sensory inputs. Uses an atrophy mechanism

to keep track of only the active cells rather that face combinatorial explosion

of trying to track all combinations.

Attention Lobe This focuses the Norns attention onto one object in its vision.

Cells represent each object in the field of vision, and these compete to be the

object of attention.

Building on the natural ability of neural networks to generalise, Norns use a

system of DriveRaisers and DriveReducers to model chemical influences, and inturn

these model desires such as "the drive to reduce pain". The higher the concentration

of a given chemical results in a more pressing drive. Environmental stimuli affect

the levels of chemicals.

The example given is that of the interaction with a shower. By activating the

shower the Norn reduces the "hotness" and "coldness" (stabilises temperature),

decreasing tiredness and increasing sleepiness. Drive raisers and reducers produce

Punishment and Reward chemicals respectively through the reactions.

DriveRaiser => Drive + Punishment

DriveReducer + Drive => Reward

Drive reduction leads to strengthening the weights of synapses which fired when

the drive was reduced. This leads the Norns not only learning what to do with

objects, but also when to do it, based on their internal state (as modelled by the

DriveRaisers and DriveReducer), thus a Norn learns to eat when hungry, but not

when full.

Norn Genetics

In keeping with being biologically feasibility defined creatures the Norns are all

different, and all specified using a system of digital genetics. As well as defining

things such as the colourings and physical features of the Norns, generic algorithms

are used to specify the weighings and initial dendrite connections as well.

When Norns breed and little Norns are produced, they are not exact copies

of their parents. A cross over point is picked and the child's genes are composed

partly of parents genes (up to the cross over point) and partly of the other parents.

Genes are 8-bit values, and "can safely be mutated into an 8-bit value, without

fear of crashing the system" [GCM97]. When splicing occurs between parents it is

CHAPTER 2. LITERATURE SURVEY 55

only done so at gene boundaries. If crossovers happen part way through genes then

undesired effects can result, as values inside a gene might well be interdependent.

Summary

Since Millennium Interactive were bought out and CyberLife continued without

Grand, his new company CyberLife Research has continued and new projects such

as Lucy [Gra04] that continue to break new ground, though now with a physical

embodiment rather than in virtual environments.

2.2.7 John Laird

John Laird's research "centers around the architecture underlying intelligence. [He]

see[s] that as a necessary precursor to building general, autonomous intelligent

agents, which is [his] ultimate goal" [Laib].

Lairds major contribution to the field of AI is the SOAR architecture [htta]

which he has used to implement various other projects including "It knows what

you're going to do: adding anticipation to a Quakebot" [LaiOl] looking at adding

anticipation of a players moves to a Quake bot[Sofc] as well as several other projects

such as [LD]. SOAR has also been used for non-Quake projects including "Building

Advanced Autonomous AI systems for Large Scale Real Time Simulations" [LJ98].

"Soar is a theory, implemented as a software architecture, that seeks to describe

and realise the fundamental, functional components of intelligence." [LNR87]

problem spaces as a single framework for all tasks and subtasks to be solved

objects with attributes and values as the single representation of temporary

knowledge

production rules as the single representation of permanent knowledge

as the single representation of permanent knowledge automatic subgoaling

as the single mechanism for generating goals

chunking as the single learning mechanism

There are many papers about SOAR and its working, though for an overview of

how SOAR works, and many of the key concepts, the instructional video [Newa] is

a superb introduction.

CHAPTER 2. LITERATURE SURVEY 56

SOAR has been used for both academic and military research and for limited use

in games. Haunt 2 (which is based on a 1980 project called Haunt which "was the

first rule-based system to have over 1000 rules" [Laia]) is a graphical adventure based

around a ghost who is stuck in a house trying to escape. A commercial rendering

engine (the Unreal Tournament (UT) engine[httc]) is used for visualisation in Haunt

2, and the AI of characters you interact with is SOAR backed. A series of interfaces

were developed to allow SOAR to be distributed, for it and the visualisation to be

run on the same, or distributed, machines [a102]. The project was based around

"[the] hope that complex AI characters will lead to games where the human player

is faced with challenges and obstacles that require meaningful interactions with the

AI characters" [a102]. This desire comes from the fact that the majority of interacts

with characters in games are distinctly stilted due to their scripted nature (stated

examples include Monkey Island and Bladerunner).

Haunt 2 is a wide reaching project, and includes many interesting technologies,

from temperature modelling to physiological drive modelling and goal-driven behav­

iours. It is also one of the few projects using interesting AI that is not a 1st person

shooting game (through makes use of its rendering engine).

SOAR is undoubtedly an impressive piece of "good old fashioned AI" 10 , but un­

like many of the planning technologies in existence at the moment, appears to be

able to be flexible enough to be used in the field of computer games. Whilst there are

no doubt computational overheads (the sheer number of states expanded in the sim­

ple example in "Soar Video" [Newa] would seem to point to substantial overheads),

from the graphs in "A test bed for developing intelligent synthetic characters" [al02]

reasonable refresh rates and speeds are still achievable so long as the total number

of characters on screen at one time is kept reasonable. The possibility of "Level

of Detail" style updates is not discussed, though it might be possible to update

characters less often where they are not within the players direct senses region.

John Laird's work , including [Lai01][LNR87][Laia][a102],is firmly grounded in

academic and mathematically sound principles, and SOAR has proven itself in both

small and large instillations. It is his work that bridges the gap between academia

and gaming that seems to be of most interest to this project.

10In Artificial Intelligence: The Very Idea,[Hau89] Haugeland coined the term GOFAI, which
stands for Good Old Fashioned Artificial Intelligence, describing, loosely, the AI research techniques
of the 1970s, it being mostly symbolic and relating to planning.

CHAPTER 2. LITERATURE SURVEY 57

2.2.8 Lars Liden

Lars Liden's PhD "The Integration and Segmentation of Visual Motion Signals: Ex­

periments and a Computational Model of Cortical Mechanisms" is based on cognitive

science and neural systems. A natural interest in computer games and computing

lead to his working for various software companies, most notably Valve and Presto

Studios.

Whilst at Value he was Senior Software Engineer from May 2000 until March

2002 and was responsible for the award winning AI featured in "Half-Life" and

"Counter-Strike". Before that he had worked at Presto Studies working an Artifi­

cially Intelligence engine used to generate the character in the games "Star Trek:

Hidden Evil" and "Beneath". He also supervised and advised production staff during

production of game levels for "Hidden Evil". Level design can have great implication

on the AI structures used within the game, and visa versa.

Half-Life is seen as something of a turning point in computer game AI. "Tradi­

tionally game AI is a set of hard-coded if-then decisions. Value took another ap­

proach, designing a module-based AI system that provides practically infinite flexi-

bility and monsters growth potential" "Jaspur's HalfLife FAQ" [Thi] from http:/ jwww.gameai.com

citegameAI

Some of the ways in which Half Life differed from games that came before it

including (taken from [Thi]):

Monster behaviour based on player's actions moment by moment. In Half­

Life, monsters might advance only when it makes sense to. They assess how

much health the player may have, where the player is heading, how many

of their own kind are left in a room, and whether they have enough health

themselves to fight. Such conditions and others dictate whether a monster will

chase, attack, or retreat. While in other games monsters are basically suicide

squads, in Half-Life monsters do not want to die.

Squad (group) behaviour Valve's module-based AI technology also adds the new

approach of squad behaviour and cooperation among monsters. Adversaries

can make a threat assessment, recruit others and then plan a co-ordinated at­

tack against the player. Flocking behaviour achieving realistic motion for crea­

tures that travel in swarms, flocks, or packs is just as important as achieving it

for those that move individually. To do that, Valve has crafted an innovative

Flocking Behaviour Model that realistically depicts the organic movement of

animals such as birds and fish.

CHAPTER 2. LITERATURE SURVEY 58

Multi-sensory monsters Half-Life monsters possess a rich and varied group of

senses for detecting a player's presence-namely, sight, hearing, and smell. For

instance, some monsters can not see at all, but locate the player by sound.

Others have the ability to track the player who has moved on by using a scent

trail. This forces players to rethink their tactics and weapons choices.

These behaviours are achieved by two mechanisms, tasks and schedules. As

explained in "VERC ·Half-Life AI, Schedules and Task", "A task is a specific action

performed by a monster, like playing a sequence, running to take cover, or throwing

a grenade. A schedule is a set of tasks performed in a specific order, like finding a

path to a corpse, running to the corpse, and performing a specific animation." [Delb].

This method of combining scripting for fine detail control with a much more general

architecture led to the ground breaking AI in Half Life. It was further extended in

Counter Strike[Sofb] which was based on the same game engine.

CHAPTER 2. LITERATURE SURVEY 59

2.3 Technologies

Although the major focus of this thesis is to explain the technologies behind making

creatures in games appear intelligent there exists a wealth of auxiliary technologies

that support any AI implementations. Indeed it is often only because of these

additional technologies that game AI can be as successful as many current games

demonstrate.

2.3.1 Overview of games engine architectures

The archectres of computer games as a whole is vastly more complex that should

be covered by this document, however a short overview could be helpful. Computer

games have the following major components:

Visualisation system Or "Rendering Engine". Displays the "world" to the player.

Modelling System Or "Physics Engine". Maintains geometric information about

the game environment and models how individual items (players, NPC, game

items) interact

Control system "Input/Output" engine, to regulate and handle input from the

player and output of the other engines.

AI engine Can be a collection of smaller AI components (probably one per NPC)

or a "monolythic" AI engine which controls all NPC.

Auxiliary Technologies A collection of technologies which do highly specified

tasks relating to other sections of the game architecture and their interac­

tions.

2.3.2 Cheating and sensory honesty

Sensory Honesty is a condition that is unlikely to appear in any field other than

that of computer games and artificial life simulations.

When a digital creature (such as an NPC) inhabits a virtual environment, it will

need to be able to sense this environment to be able to function. To do this is makes

a call to the underlying games engine, which can then return it a variety of data.

Because the games engine must keep track of all of the inhabitants of the digital

world over which is reigns, if an NPC had the ability to make a request such as

"The current position of the player?" this request could be given by the engine,

CHAPTER 2. LITERATURE SURVEY 60

pin-pointing where, in a possibly enormous playing field, the player is. However if

there was no possible way that if this scenario where played out for real with real

people in a mocked up environment, that the person playing the role of the NPC

could have been able to see, hear or smell the player than this situation is highly

unrealistic. In effect it means that the NPC can see though walls, round corners

and possesses a variety of other fascicle skills.

Such "errors" decrease a players level of believability in a game, and can be

spotted very easily by a regular game player. Such traits as tracking the players

position whilst on the other side of a wall, and taking very short times to locate a

player in a large environment all contribute to a feeling that "the NPC is cheating!".

A basic system of helping sensoral honesty is for the underlaying games engine

to only passback objects which are, as a minimum, in the same area of play as

the NPC. This is further improved upon by passing only objects which are in the

field of vision of the NPC. If senses other than vision are being considered than

objects which are behind the player, or behind and occluding object, but which are

emitting a sound (running footsteps or bullets being fired for example). Games such

as "Thief:The Dark Project" have highly evolved mechanisms for modelling sounds

and other stimuli. See "Building an AI Sensory System: Examining The Design of

Thief: The Dark Project "[Leo] for more details.

Another advancement in sensoral honesty is not passing actual data objects back

to an NPC.

The field of sensory honesty also becomes apparent when trying to create real­

istic responses to visual stimuli in the work of Xiaoyuan Tu[TT94]. The research

took a step forward from simply providing information about the objects in the

field of vision rather than to whole world by actually rendering an image, taken

from the fishes' perspective. Image interpretation technologies to extract the object

information from within this image. Tu found this was the only way to get the fish

to learn and react correctly, and this might well be true of other experiments trying

to replicate realistic behaviour.

"We equip our artificial animals with directable, virtual eyes capable of foveal

vision. This aspect of out work is related to that of Cliff and Bullock, but our

realistic animal models have enabled us to progress a great deal further" [TRG].

CHAPTER 2. LITERATURE SURVEY

2.3.3 Landscape Technologies

61

Virtually all NPC's have to "live" in some form of terrain, be it an alien landscape

in 1st Person Shooters such as Quake or the gentlest green rolling slopes in Empire

Earth. These landscapes have to be represented in some way digitally.

Spatial representations

Early games had very little need of spatial data structures. Multi-Users-Dungeons

(MUDs) simply maintained a list of areas (rooms for example) and how they were

interconnected. They would also track which online users were in each room at a

given time [Bar]. As games progress to the "platform shooter" the need for world

co-ordinates became necessary as characters would be inhabiting a world where only

a small section would be shown at a given time, rendering the use of "screen co­

ordinates" of no use, especially on the "sideways scroller" style games such as Super

Mario.

The realm of 1st First Shooters resulted in the use of a combination of methods

for mapping a world. The world itself was defined by a map, and to reduce the

search space that the NPC would have to deal with if performing calculations a

"Navigation Nodes" map was produced. See Figure 2.16 for an example of a node

map of a simple two-room environment.

The method of node based navigation appears to have continued from then on,

and methods traversing these node maps feature heavily in books such as "AI Game

Programming Wisdom" [Var02] and "AI Game Programming Wisdom 2" [Var04]. In

fact many would include node map traversal as a game AI technique in its own right.

The building of such node maps is also a field of intense work, especially the task

of automating the placement of nodes within a given world map. This is the sort of

feature which "off-the-shelf" AI packages provide.

Nodes within the map can be annotated with information about what they rep­

resent, for example nodes at the bases of ladders in a 3D landscape could announce

this fact and thus characters who cannot climb ladders can rule thus node out of fu­

ture path searches. See "Navigating Door, Elevators, Ledges and Other Obstacles"

by John Hancock in [Var02] and "Jumping, Climbing, and tactical Reasoning: How

to get more out of a navigation System" [Var04] and their referenced documents for

excellent discussion of the advanced uses of nodes11 .

11 Navigation Waypoint is another commonly used term for a Node.

CHAPTER 2. LITERATURE SURVEY 62

Figure 2.16: A simple example of a node map. Red nodes and their connecting
vectors show an NPC how it could move around a simple two room environment.

Smart Terrain

The Sims is a game which does not neatly fit into any genre. Part God-game, part

living dolls house, The Sims is one of the fastest selling games ever. More than four

million copies have been sold. The "livin' large" expansion pack just passed the two

million mark. In just four weeks of release the "house party" expansion pack has

sold more than five hundred thousand units [TV].

The underlaying technology that drives The Sims landscape was revolutionary

at its time of development. It breathed new life into ALife, a technology that had

faded into the background of gaming technology.

Smart Terrain was the brain child of Will Wright. It is based on Christopher

Alexander, the architectural theorist, "who saw building as means to enhance human

interaction" [Sha04]. It works by "objects within the game advertising the.ir ability

to satisfy some of these needs to any Sims who wandered nearby" [Casml].

The idea is not complex (at least in concept) as explained by Steve Woodcock

at http:/ jwww.gameai.com [Woob] "I had the opportunity to talk to designer Will

Wright at the 2000 GDC and learned that the game's "smart terrain" is really

like a very well designed object-oriented simulation engine built around some very

sophisticated A-Life and Fuzzy State Machine (FuSM) technology. The approach of

CHAPTER 2. LITERATURE SURVEY 63

embedding an individual object's instructions within the object itself is practically

the definition of clean object-oriented programming style, and lends itself well to a

game like this." [Woob] An example given is that of a beach ball . Any Sims user

can download the beach ball code from a website. Wrapped up in that code are the

graphics for displaying the beach ball, but also the code to tell the Sim who ends

up using it how to play with it , and also that it quenches the desire for fun [Casml].

As the Sims move around their environment their desires and needs are modelled

as a series of integers that move up and down depending on what they do. Interac­

tions with objects affect these internal registers, and they in turn affect what objects

a Sim interacts with. When a Sim is deciding what objects to interact with (or as

the user would observe, what that are doing at a given time) they pick the object

that best satisfies their needs at that moment. Taken from [For] is the following

example, see Figure 2.17.

Hunger +20
Comfort -12
Hygiene -30
Bladder -75
Energy +80
Fun +40
Social +10
Room -60

Mood +18

Find Best Action

Toilet
lVIood +26

-Urinate (+40 BlacMe1·)
-Clean (+30 Room)
-Vnclog (+40 Room)

Bathtub

Mood +20

-T~1ke Bath(+40 Hygiene)
(+30 Comfo11)

-C lean {+20 Room)

Figure 2.17: A Sim has to decide what action to take. Taken from [For]

CHAPTER 2. LITERATURE SURVEY 64

Smart Terrain is a very clean and encapsulating method of packaging the envi­

ronment to allow new object and exchanging of objects between users. It also results

in a very convenient method for the NPC's (the Sims) to make decisions about their

environment. By using simple object location caching and simple search methods

The Sims appear to the user to navigate around their environment with meaning

and purpose. The popularity of the game, and the amount of time users invested in

"looking after" their living-dolls is a standing testament to the technology.

The Sims as a very good example of where a highly customised AI solution has

been developed to create the illusion of highly intelligent AI, but is really a simple

case of careful use of smoke and mirrors!

2.3.4 Emotions

The topic of emotions within the computer games field could have several meanings.

Affecting the emotions of users, expressing emotions in NPC's or modelling emotions

and their affects on NPC's behaviour.

It is the last two of these options, that especially in combination, could be a

powerful tool for increasing the levels of users belief in the intelligence of the NPC's.

FEAR Engine

The FEAR engine is "a language independent open-source project providing portable

support for the creation of genuine AI within realistic simulated worlds. It stands

for Flexible Embodied Animat aRchitecture. [It attempts] to bring the best of AI

to games, and the best of games environments to AI." [Tea]. In the book AI Game

Development [Cha03] Alex Champandard, who is a key member of the FEAR de­

velopment Team discusses AI in games as a whole, but with specific reference to the

FEAR engine.

In Chapter 39 "Under the Influence" of [Cha03] Champandard discusses the

modelling of emotions in NPCs, using the FEAR engine as an example.

The modelling of emotions can be done in many ways. In "Creating emotions as

Finite States" [Cha03] suggests a completely connected Finite State Machine, with

transitions between states meaning that "two complementary emotions may not be

active at the same time " for example Surprise and Anticipation. Because the graph

is fixed any flexibility in the system comes from a system of design-settable values for

each state governing Precision, Power, Delay and Accuracy. For any given emotional

state these four values are adjusted between 0 and 1. In turn they adjust how the

CHAPTER 2. LITERATURE SURVEY 65

Parameter Name Influences Description
Accuracy senses Indicates the randomness of

an action. 0 results in a ran-
dom action, 1 the precise ac-
tion required.

Power actions Used to scale actions, a 0
meaning then NPC is com-
pletely frozen, a 1 results in
actions taking place unat-
tenuated

Delay senses Controls the delay between
an action being an event be-
ing perceived and passed on
to the NPC to handle

Precision actions Controls the level of accu-
racy of the sense of space
in an NPC. 0 results in a
random value being added
to the angle and distance of
a given object, 1 results in
perfect accuracy.

Table 2.4: The four design-settable values which in turn affect how the NPC acts.
The parameters can affect either how the NPC senses the world, or how its actions
are performed.

NPC acts.

For longer descriptions of these parameters see [Cha03].

How these values are affected is held in a matrix, juxtaposing pairs of emotions.

These can be seen in Table 2.5

A good example would be an NPC that is suffering from a combination of Fear

and Surprise, because a nasty large creature has just jumped out from behind a

corner. Its values can be seen in Table 2.6

Whilst this modelling of emotions to affect the behaviour of an NPC is academ­

ically very interesting, it is perfectly possible that an NPC might well be modelling

emotions and actively using them to modify how it is behaving, but the user may

not interpret what they see as emotions. The addition of some simple cues such as

facial expressions might well significantly help to increase user empathic reactions.

The beauty of the method discussed above is that two of the outputs parameters

(power and precision) can be used to adjust the NPC's animations. By including

CHAPTER 2. LITERATURE SURVEY 66

Surprise Anticipation
Precision 0.7 Precision 0.9

Fear
Power 0.2 Power 0.4
Delay 0.0 Delay 1.0

Accuracy 0.9 Accuracy 0.2
Precision 0.0 Precision 0.1

Anger
Power 1.0 Power 0.9
Delay 0.3 Delay 0.8

Accuracy 0.8 Accuracy 0.3

Table 2.5: An example of how combinations of emotions can affect the NPC para­
meters.

Parameter Value Result Possible Empathetic Inter-
pretation

Precision 0.7 Drop in spacial accuracy Slight drop in accuracy re-
suits in mild fumbling, re-
suiting in a sense of urgency
about actions

Power 0.2 Slowing down of actions NPC would appear to be
hesitant, or "frozen with
fear"

Delay 0.0 NPC reacts instantly to stimuli NPC seems twitchy or
flightly - bringing up "fight
or flight" type responses

Accuracy 0.9 Slight drop in the accuracy of actions Backs up the drop in preci-
sion, building on a sense of
panic

Table 2.6: How the parameters have been affected because of the the combination
of Fear and Surprise.

CHAPTER 2. LITERATURE SURVEY 67

a simple reference to which emotions were being used an NPC's model could easily

be adjusted to only the correct facial expression, but also attenuated to the correct

degree.

Tomlinson and Blumberg's Wolves

The MIT Synthetic Characters Group did various experiments with a pack of virtual

wolves. One of these is discussed in the paper "Social Behaviour, emotion and

Learning in a Pack of Virtual Wolves" [TB01].

When the wolves perform any action, it does so in an "emotional style". The

emotion at a given time is dependant not only on the external stimuli, the in­

ternal registers of the wolves but also of their memory of the characters they are

interacting with. The emotions that can be expressed are based on the Pleasure­

Arousal-Dominance dimensional model presented by Mehrabiean and Russell [MR].

The emotional state of a creature is based on a point in 3D space where the dimen­

sions are Arousal, Dominance and Pleasure. See Figure 2.18 for a diagrammatic

explanation of where emotions fit into this space. Another example might well be

"anger" which is equivalent to low pleasure, high arousal and high dominance.

arousal

Ofear

pleasure

dominance

Figure 2.18: The 3d emotion-space

The separation of the emotional state of the wolves, and the actions they per­

form is explained further in "Leashing the Alpha Wolves: mixing user direction with

autonomous emotion in a pack of semi-autonomous virtual characters" [TDB+02].

CHAPTER 2. LITERATURE SURVEY 68

"A clear division between action and emotion is a useful mechanism for making

semi-autonomous characters who obey the direction of a human participant and

still present a consistent personality".

As with so many of the SCG's project there are some very innovative technologies

used, most adapted from non-computer science research. The wolves form Context­

Specific Emotional Memories (CSEMs) resulting in them "remembering" how they

felt around certain objects. Multiple CSEMs can be formed for a given object, and

which CSEM influences the NPC depends on the other stimuli.

Though Tomlinson and Blumberg are working strictly in the academic field, and

not in the field of computer games, their work with the Alpha Wolves (the wolf

technology used in several of their projects) is often based around novel human

interaction and visual art installations. The jump to integration into computer

games would not be a massive leap.

2.3.5 Decision trees

In the simplest case a decision tree is a set of if...then statements to allow a system

to make a decision about a given set of data. The example given in the tutorial

[Dela] describes a decision tree that evaluates whether or not a person should go

outside or not given a set of weather conditions. For a given dataset a path down

through the tree is plotted, with decisions at confluences being made because of the

data for that condition ("Is it sunny- Yes or No"). "Decision Trees and Evolution­

ary Programming" [Dela] then goes on to discuss the problems with generating or

training a decision tree, using Recursive Partitioning.

Decision trees are widely used in computer games, and have been since the very

early days of games. Games which "worked out" which animal/fruit/object you

were thinking of were prevalent in the early days of educational games based on the

BBC and Sinclair Spectrum platforms were based around simple decision trees.

Decision trees are still widely used in games, and NPC's in 1st Person Shooters

are an ideal example. In Figure 2.19 we see a possible decision tree to give high level

direction to an NPC looking to kill a player. The commands ("find the player",

"attack the player form behind") would have to be implemented in using another

technology, as decision trees would not seem the most effective way to perform these

behaviours.

Decision trees can be used to model finite state machines, a technology with

which the majority of games AI designers will be familiar.

CHAPTER 2. LITERATURE SURVEY

no

Find ammunition

Do you have a
vtAAnnn?

Do you have ammunition?

Can you see the
niAVAf

Find player

no

Find weapon

Can they see you?

Tako oovor)

Attack them from behind

Figure 2.19: A decision tree giving high-level direction for an NPC

69

CHAPTER 2. LITERATURE SURVEY 70

2.3.6 Genetic algorithms

Genetic algorithms are very fashionable in the world of Computer Science at present,

and work well in conjunction with neural networks, which are themselves very fash­

ionable at present.

Genetic algorithms take their inspiration from natural, in the spiralling com­

plexities of the double helix of life, DNA. They use the ability of combinations and

patterns to represent information, and they manipulate this information over time

with biologically inspired methods.

Information Representation

Just as genes in human DNA represent information such as the colour of your hair,

its digital equivalent can be used to represent a wide variety of information.

For example, the weights of nodes in a neural network can be easily represented

in a genetic algorithm. Within a given layer of the network each weight (gene) has

a specific place (locus) on the "DNA".

(

5 9

"5149"

Figure 2.20: Example of how a very simple genetic algorithm can be used to represent
the weighting within a simple neural network

Breeding

So far genetic algorithms will not appear to be very special at all, just a set of strings

which can be encoded from and re-interpreted to, simple problems.

When trying to solve a problem using genetic algorithms, a large number of

individuals trying to solve the same problem, but all with slightly different DNA,

means that pairs of individuals can be "bred" together, and their DNA mixed to

(hopefully) create a new and more successful individual. This is almost identical

CHAPTER 2. LITERATURE SURVEY 71

to genetic mixing in nature. Two creatures breed and their genes are mixed. The

resulting offspring inherits some traits from one parent and some from another.

·n .. ·

Figure 2.21: the "genes" of two neutral networks representations are crossed as they
are "bred"

Crossover points

When two genetic codes are "breed" the gene at a given locus on the child string

cannot come form both parents, it must come from only one. This means that the

method for deciding which parent it is to come from must be decided. There are

many methods, and nature itself uses recessive and dominant genes, however the

most common method is the "cross-over point" method.

A given point along the string is picked, and the genes that come before that

point are taken from one parent, and after the point from the other. The major

failing of this method is that of co-dependence.

A situation is conceivable, especially in a neural network modelling exercise,

whereby pairs of genes work especially well together. If one gene is on one side of

the crossover point, and the other is located on the opposing side, then one will get

copied and the other will not. This is obviously not ideal.

The placement of the crossover point can also have a great affect on the speed

of convergence to the fitness function. There are several methods of placement, all

of which have varying effects:

Scattered A random binary vector is created and selects the genes where the vector

is a 1 from the first parent, and the genes where the vector is a 0 from the

second parent, and combines the genes to form the child.

Single point a single point in the vector is selected. The genes from one parent are

selected from prior to the selected point, and from the other parent thereafter.

Two point Select two random integers m and n between 1 and Number of vari­

ables. Vector entries numbered less than or equal to m from the first parent

CHAPTER 2. LITERATURE SURVEY 72

are added on to vector entries numbered from m+ 1 to n, inclusive, from the

second parent Vector entries numbered greater than n from the first parent.

00!00
001~0

' ' ' .,.

DNA one

DNA two

mud DNA

Figure 2.22: A single crossover point is used to "breed" to genetic strings.

Mutation

Just as in the real world when two parents breed their offspring might contain genetic

information that did not come from either parent. Mutation is a key feature in the

history of living creatures and it too has its part to play in digital genetic algorithms.

By including a little random information into the mix of genes, new patterns that

could not have been created from the original gene pool are formed. If they turn out

to be more effective than those that exist already thet they might well be selected

for breeding, if they are not as effective then they will "die out" and nothing is lost.

0000
00~0

.,.

DNA one

DNA two

guJd.DNA

Figure 2.23: Mutation at work- a rogue gene is introduced when breeding occurs.

CHAPTER 2. LITERATURE SURVEY 73

Fitness

The results of breeding are new gene patterns, that are hopefully better at achieving

the task at hand. To achieve this it would seems sensible to only be breeding pairs

of individuals that are good at doing whatever the task is. To do this the system

needs to be able to assess how "good" an individual is at doing the task that is

trying to be automated. This function is performed by a Fitness Function, which

gives a measure of how well a given set of genes performs a task.

An interesting example is given in '"A "Hello World!" Genetic Algorithm Ex­

ample' [Mat] whereby a genetic method is being used to model a string which will

eventually "evolve" into the phrase "Hello World!". The fitness function is shown

below (code is C++)

void calc_fitness(ga_vector &population) {

string target = GA_TARGET;

}

int tsize = target.size();

unsigned int fitness;

for (int i=O; i<GA_POPSIZE; i++) {.

fitness = 0;

for (int j=O; j<tsize; j++) {

fitness+= abs(int(population[i] .str[j] - target[j]));

}

population[i] .fitness fitness;

}

To work out how "fit" a function is (e.g. how close it is to the target string) the

ASCII values for each character are compared to the target string for that position.

A "distance" of zero means that the target string has been reached.

Fitness functions are often the key to getting genetic algorithms to work from

for a given situation.

Uses

Genetic algorithms have seen more and more use in computer games, as noted by

Andre LaMothe in [Gen99]" I perform many searching algorithms using GAs [genetic

algorithms]and I have tried using NNs [neural networks] for pattern recognition etc".

CHAPTER 2. LITERATURE SURVEY 74

A most interesting use of GA's is described in "Using a genetic algorithm to tune

first-person shooter hots" [NCMce] whereby a genetic algorithm is used to find the

optimal settings for the fuzzy logic controlled of an NPC in a First Person Shooter.

2.3. 7 Black boarding

Originally used primarily as information repositories, and with their origins in sym­

bolic AI, blackboards taken their name from their realworld counterparts - black­

boards. At their simplest they are a blank canvas for storing information on with

little or no organisation. However as blackboards have become more and more used

over time their complexity has increased and they are now used not only for storing

the information about a problem which is to be solved, but also can help actually

solve the problems because of how they are constructed. Many of the innovations in

blackboard technology appear to have taken their cues from realworld blackboards.

Imagine a group of people standing around a blackboard trying to solve a prob­

lem. They initially use the board to store information segments (small pieces of the

problem, mostly collated from a variety of sources and referring to different sections

of the problem as a whole). This is not unlike the blackboard architectures in early

AI, simply as a data repository.

As the group continue solving their problem they become more organised and

gather sections of the problem that they know about into the same areas of the

blackboard. This rudimentary organisation can greatly increase the efficiency of a

blackboard environment, both digital and realworld. Some blackboard systems for

instance organise information denoted as "data" differently to those denoted "goals".

Some system will also annotate information held in the blackboard with a "credibility

rating". The black boarding system used in "A Black System for Interpreting Agent

Messages" [Ste] used a preprocessor to help remove messages which are about the

same event, but have been generated by different agents, and "only differ only by

their sender ID and time-stamp" [Ste].

Continuing to solve their problem the group standing around the blackboard

might well nominate a single person to "control" the board. This one person often

ends up mediating the discussion, as well as controlling what goes onto the board.

In the C4 architecture developed at Synthetic Character Group at MIT this role is

played by the arbiter, a module which controls which Knowledge Sources are ac­

cessible at a given time. When queried Knowledge Sources indicate whether or not

they have any relevant information on a given subject - it is the job of the arbitra-

CHAPTER 2. LITERATURE SURVEY 75

tor to select which of these sources then provides the most useful information. It

is also significant that Knowledge Sources (KS) may also only communicate with

one another via the blackboard. There are various methods for selection of which

KS to allow to modify the blackboard at a given instance, with early implemen­

tations simply picking the highest of the self-generated relevance. More complex

strategies for picking involve using methods of attention focusing, emotional engines

and personality amongst other things. More discussion on data-driven and goal­

driven arbitration can be found in [CL92] and [IB02b]. More discussion of MIT's C4

architecture which makes extensive use of blackboarding can be found in [IBDBOl].

2.4 Off the shelf AI-in-a-box

As the need for competent AI in games ever increases so companies have started

to produce "Brain in a box" type solutions much like those seen in the field of

game engines. There is no longer a need to write a 3d modelling and rendering

environment, you can simply buy in the rights to one and build your game on top

of it. Small amounts of tweaking and a fresh set of graphics taken far less time and

money to implement, and the results can be very impressive.

Game AI is a slightly different matter, and as this thesis attempts to show, there

are many different ways to implement intelligent systems, and thus creating one

single product which can be flexible enough to be able to incorporate many different

approaches, but yet efficient enough to make games fast of playable.

There are several reasons why a company might choose to use an AI middleware

package.

• staff may not possess the AI expertise to develop the desired algorithms and

processes

• project schedule is tight and there's insufficient time to develop the desired

level of AI for the game from scratch

• AI middleware product contains the exact algorithms or processes that may

achieve the desired level of AI

Of course there are many other factors which influence the choice whether or not

to bring in AI technology. These might include the following

• "'not invented here" syndrome, and the fear of not having complete control

over all game processes that most game developers desire

CHAPTER 2. LITERATURE SURVEY 76

• perceived performance hit that may be realized by having to rely on the AI

middleware "engine" or library routines for some processing

• the AI middleware may not do exactly what the developer wants

• the learning curve for implementing and integrating the AI middleware into

the game might be too steep

For an excellent introduction to AI middleware and the issues surrounding it see

Gamasutra [Dyb04].

There are several off-the-shelf AI products in existence and use today. This

section contains an overview of 4 of the most common, each of which takes a slightly

different approach to modelling AI.

2.4.1 DirectiA

Developed by Mathematiques Appliquees S.A. of Paris, France. This product can be

characterised as a behaviour-oriented SDK. It is based on a hierarchical structure,

with upper levels providing direction and lower levels turning this into individual

actions. MESA's press pack contains the a diagram (Figure 2.24), which explains

this structure very well.

Some of the complex agents involved with the upper levels of the system include

"a motivation engine to model the emotions and needs of the agents, a behaviour

engine to model the agent's decision processes, a communication engine that sup­

ports agent intercommunication, a perception engine to process input from the game

world, an action engine to enable the agent to interact with the game world, and a

knowledge engine to organise the agent's understanding of the game world." [Dyb04]

DirectiA has been used by the French military as part of a massive digital training

project where the AI models the part of the opposing force. It has also been designed

to be as memory and CPU efficient as possible, as consoles with limited resources

make up a massive section of the game playing community.

2.4.2 RenderwareAI

RenderwareAI (RWAI) as part of a suite of games building tools from Criterion

Software Inc. As well as producing RWAI they can also supply a physics engine,

a rendering engine and many other tools. RWAI does work well with the other

tools, but it can be used with other engines too. It takes the form of a series of

CHAPTER 2. LITERATURE SURVEY

High-Level
Tools

Low-Level
Tools

Figure 2.24: MESAs DirectiA hierarchical structure

77

C++ libraries, and requires more programming knowledge t hat some off-the-shelf

packages.

It is designed around a hierarchical structures much like other packages, with

upper layers making decisions about higher level goals, and lower levels being used

to achieve these goals.

The four major layers are as follows:

Architecture layer Handles initialisation, updating and termination of the RWAI

layers. This layer is used for exchanging information between the games engine

and other RWAI layers.

Services Layer Consists of several managers each of which provides a specific ser­

vice to RWAI. Managers include NextMove, used to find paths for characters

through the world, Graph Manager which manages path data, Entity Man­

ager provides visibility and proximity servies for entities and a SoundSources

Manager which models sound and olfactory perception facilities.

Agents Layer Agents include (but not limited to) Go To, Follower, Wanderer ,

Run Away

CHAPTER 2. LITERATURE SURVEY 78

Decision Layer Selects an "agent" from the layer above 12

When used in conjunction with the other Renderware products RWAI provides

"a powerful AI middleware SDK" [Dyb04], but when being used with other games

engines the engines will need to provide similar facilities to those in the other Ren­

derware products.

2.4.3 AI Implant

AI.implant, from BioGraphic Technologies in Montreal is a premium product, de­

signed to integrate not only with game engines, but also with the most common tools

used to develop games. It "has a sophisticated animation control engine that intro­

duces AI to the computer game and video media character development process".

In the modern market is is assumed that computer games must look amazing on

screen, and this is often the focus of the development process. This seems to have

been the focus of the AI.implant product, with tools designed to interface with Maya

and 3d Studio Max (some of the most commonly used tools), meaning that designers

as well as programmers can get involved in the AI development process. This seems

to be a unique facility that no other AI middleware provides, and targeting the

designers rather than the programmers is probably a wise move because at present

it is the games designers who have the most influence in the game production process.

AI.implant is essentially a very impressive animation control system, not only

selecting which animation to play, but which selection to playback, and how to play

it back. It does not actually play the animation itself, that is left to the rendering

engine.

The AI facilities in AI.implany are provided by "binary decision trees". "The

BDT can be used to create complex decisions of arbitrary depth. It is even possible

to construct a Finite State Machine (FSM) using the BDT appropriately. FSMs

are an AI tool that are widely used in game AI, so BDTs should be easy for game

developers to understand and helpful to have around." [Dyb04].

Behaviours are linked to states in the BDT. They can be hand crafted, or drawn

from a pool of pre-defined behaviours from four categories:

• Basic Navigation

• Group Behaviour

12It should pointed out that "agent" in this instance does not refer to an NPC but to one of the
routines implemented by the agent layer

CHAPTER 2. LITERATURE SURVEY 79

• Targeted Behaviour

• State Change Behaviour

Multiple behaviours can be applied to an individual character. There is no

information on exactly how these behaviours are combined, though "aceSolver will

calculate a final motivation based on each behaviours intensity and priority" [Dyb04].

2.4.4 SimBionic

SimBionic is produced by Stottler Henke, and incorporates a visual editor to allow

AI creators to put together a "brain" for NPCc in an intuitive way. It is based

around what amounts to a state machine, but is far more complex than most simple

state machines.

There are several key structures that are used by SimBionic to build these state

machines.

Descriptors Used to identify and reference objects. Attributes of an object are de­

scribed using descriptors. Attributes can be organised into hierarchies. An ex­

ample can be found in [Dyb04] referring to how the attributes "clean, jammed,

dirty" will apply to Weapons.

Declarations Symbolic values used within SimBionic include those for actions,

predicates, behaviours, global variables, constants and local variables.

Entities Defines NPC, object and agents in the world. If an object exhibits a

behaviour it is considered to be an entity by SimBionic.

Actions define all the possible behaviours an entity can perform. Action implement

behaviours.

Behaviours dynamically determine the decision and actions performed by an en­

tity. Behaviours can call other behaviours, and these called behaviours can

determine what action is performed by the original calling behaviour. Condi­

tions are set using visual links in the editing process.

Global and Local Variables Support for various types is included include the

"any" and "invalid" types.

Constants globally accessible static values.

CHAPTER 2. LITERATURE SURVEY 80

Core Predicates built in functions which provide access and evaluations services

that are relative to entities, behaviours and messages on blackboards.

Custom Predicates User written code to perform functions not found in the core

predicates, for example code to check if another character can see you by

line-of-sight checking.

Core Actions built in functions that provide blackboard maintenance functions

and group maintenance features.

Custom Actions Code to perform an activity that is of use to an entity. Typically

they will include the code to perform their purpose as well list of predicates.

The actual state machines that SimBionic can create are constructed in a visual

editor using a drag and drop method. Conditions, actions and connectors are all

easily created and manipulated. Once you have reached a stage where you are happy

with what you have created then you can compile your project and integrate it into

the game environment via a series of c++ header files and DLL's.

By relying on Finite State Machines SimBionic makes itself a viable alternative

to the hand crafted FSMs that are used in so many games today. The visual editor

means that designers can get involved in the AI design process more easily than if

they were required to write C++ code. Closer tie-in between the game designers

and the AI components of a game can only be a positive benefit.

2.4.5 Conclusions

"Off the shelf" AI solutions are, at present, gaining more and more popularity as

solutions for implementing AI in computer games so much so that in late July of 2004

the BBC carried an article on the front page of its news website (http:/ /news.bbc.co.uk)

about the sale of Criterion Software who make Renderware[Newb]. Off the shelf so­

lutions to AI are now used in many games, including "Grand Theft Auto III", "Call

of Duty" and "Pro Evolution Soccer". This comes only 4 years after the general

agreement at a Games Developers Conference AI Roundtable that "There were no

single development tools mentioned as off the shelf solutions. People use internal

Finite State Machines and scripting." [Woob]

CHAPTER 2. LITERATURE SURVEY 81

2.5 Direction of technology movement

Over the last twenty years the technology behind computer games has improved

exponentially. From the early work of Sid Meier developing games that players

could not spot the patterns of movement in the NPC 13 , through the platform genre

and games such as Super Mario Bros, and ending in the current realm of the First

Person Shooter, AI in computer games has undergone several revolutions.

2.5.1 The move away from symbolic AI

When AI is considered in a non-gaming environment it is symbolic AI which is often

thought of first. Techniques such as partial order planning are not currently found

in games because of resource overheads that planners such as STRIPS[FN] require.

Indeed the move away from symbolic AI that was seen in the AI research field,

has coincided with the rise in computer game AI. Indeed the pioneering work done

by Rodney Brooks in papers such as "A Robust Layered Control System for a Mo­

bile Robot" [Bro] and Craig Reynolds in "Flocks, Herds, and Schools: A Distributed

Behavioural Model" [Rey87] would seem research ideally suited to the gaming envi­

ronment. Ignoring Movement Scripts, which are so basic as to really be considered

an animation technique rather than an AI technology, the simpler forms of game AI

match very neatly with the non-symbolic AI research from the late 1980's. Behav­

ioural Animation was invented by Craig Reynolds, and simple layered control mech­

anisms are discussed in "A Subsumption Architecture For Character-Base Games"

[Yis04] is a subsumption architecture exactly as Brooks[Bro]laid down. Yakis[Yis04]

also brings to light the work of Arkin[Ark98] who showed that a subsumption ar­

chitecture cleanly decomposes into concurrently executing layers of Finite State

Machines. Mark Tully of Free Radical Games, said in conversation "You hear a lot

of fancy stuff about neural nets, learning and decision trees bounded around with

talk about AI, but at the end of the day, what [TimeSplitters][Gama] and I suspect

most computer games come down to is a good old state machine" [hou03].

2.5.2 The move away from deterministic systems

Many of the technologies described in this thesis are deterministic. Certainly the

earlier and simpler technologies (Movement Scripts, Finite State Machines and Be­

havioural Animation) are deterministic, which means that they will be prone to

13See [Gamb] for a longer explanation

CHAPTER 2. LITERATURE SURVEY 82

being predicable. This is less of a problem when using techniques such as behaviour

animation to animate a swarm of creatures, but could be the downfall of a simple

Finite State Machine. More advanced technologies such as Neural Networks and

Fuzzy Logic are by their very nature non-deterministic, meaning that players are

less likely to be able to predict the next move an NPC might make. This is of course

is a fine balance to be kept, as if an NPC is truly unpredictable it is unlikely that a

user will see its actions as being intelligent, however if it is too predictable then the

user will not enjoy playing against it.

Introducing non-deterministic behaviour to a deterministic system can be achieved

very easily by adding a small random values to the decision making mechanism. For

example if a Finite State Machine could move to one of two or more states then the

decision is make randomly.

2.5.3 Reactive systems

In [Cha03] Alex Champandard states "the reactive approach is ideally suited to

computer games because it's so fast and simple" which is true. However reactive

systems can be combined so that some reactive systems govern long term goals. In

[Yis04] reactive methods are combined in a subsumption architecture so that higher

levels control the tactics and behaviours whilst lower levels control movement.

As the complexity of games increases there might well be a greater need for

more high-level control. Indeed in several of the "off the shelf" AI solutions fea­

ture upper levels of control such as "Team tactics", "Motivation" and "Cooperative

Behaviours". Such high level control might see planning and non-reactive systems

playing a more dominant role in game AI. For example is a First Person Shooter

to be able to shoot at the player an NPC would first have to have a gun. If they

do not have one then they will have to find one. This might involve path finding

and other techniques. As games take on larger and more complex story lines it is

quite foreseeable that planning, and a move away from purely reactive technologies,

might start playing a much more prominent role. This would allow NPCs to per­

form actions that were detrimental in the short-term, but that had more long term

implications. Currently reactive system will tend to pick the action which is best

for the current situation, which might well limit the ability to develop longer term

plot lines.

Whilst this might seem like a backwards step it allows the game designers to

have more direct control over the NPC, without to having to revert to the hard-

CHAPTER 2. LITERATURE SURVEY 83

coded scripting methods seen in early games. Designer require high-level control,

and non-reactive systems allow this. Reactive systems can then be used highly

effectively for the low-level movement control. Patrick Deupree (responsible for the

AI in HalfLife:Opposing Forces AI) is quoted as saying "I would prefer to see things

move into a semi-scripted AI system. I'm not a big fan of trying to completely use

pure AI for character behaviour in a single player game. It seems that many of

the games that have done this involved less fun and more babysitting. I think that

there are some moments where you just really want to coax the AI to do something

specific and that the level designer is the best person to know where and when they

should do it." [DeuOO] The term "pure AI" would seem to relate to using a single

AI method to try and solve all of the problems being encountered in a game. In

the Section "Technology Tradeoffs" the technique of combining AI technologies is

covered.

2.6 Summary

This chapter has been split into control systems, technologies, people, supporting

technologies, off the shelf solutions and a summary of the directions that AI in

computer games is taking.

The technologies for controlling automated characters range from Movement

Scripts, which are essentially an animation technique rather than a decision making

tool, to Neural Networks, which are are capable of learning, adapting and general­

ising. Some technologies can mimic the behaviour of others, and each will have its

own

The people who's work was summarised are all academics rather than people

working directly in the computer games industry. This is primarily because people

in the industry rarely write up their research because it is the property of the com­

pany under whom it was developed. There are some exceptions, most notably two

excellent books and papers by Steve Grand, the creator of Creatures. There include

"Growing Up with Lucy: How to Build an Android in Twenty Easy Steps" [Gra04]

and "Creation: Life and How to Make It" [GraOl], both of which are both entertain­

ing reads and very interesting.

The academics who are covered in this thesis are those who work in areas which

would seem to have the most relevance to computer gaming. They are working on

symbolically represented, highly structured systems, but which are designed not for

solving problems such as picking the best order in-which to move boxes to rearrange

CHAPTER 2. LITERATURE SURVEY 84

them, but on creating engaging, animated and emotional characters. The work

on cognitive modelling by people like Terzopoulos, Tu and Funge holds the key to

connecting characters to gameplay, because it allows them to think about what they

want to do, and other technologies can then be used to implement these desires.

Several commercial solutions to the problem of implementing AI in games were

discussed. Each uses a different approach, though variations of Finite State Machines

are very common. "Off the shelf" AI solutions are gaining more and more popularity,

and with time, will probably be in more common usage than in-house hand-coded

solutions.

Finally the direction of future technologies was discussed. As computer games

get ever more complex, involving and graphically stunning, the need for AI solutions

which are not only realistic (games will no longer tolerate NPC who are anything but

cunning, intelligent and believable), but also to be able to handle any situation they

find themselves in, not just those pre-conceived by the games designer. By being

able to observe and interpret their environment, make rational decisions about what

they are going to do, and them be able to turn these plans into actions, NPC would

be able to inhabit a digital world and interact with players (and other NPC). This

may however mean a return to higher level planning and modelling tacts that there

has been such a move away from in the last ten years.

Chapter 3

Experiment

Within this chapter the criteria for assessing the success of this project are discussed

followed by what hypothesis were desired to be tested, and then the chosen imple­

mentation framework - Space Invaders. The types of AI implemented within this

game framework are then discussed and details of the information collected during

the data collection phase of the project and finally the conditions of data collection

are then described.

3.1 Criteria for assessment

To be able to assess how successful any experiment is there must be a set of goals

or criteria that the experiment is trying to fulfill. The following criteria were drawn

up for this project:

1. To investigate the affects of different AI technologies within the field of com­

puter games.

2. To implement a range of AI technologies within a computer game.

3. To measure users reaction to the games, without the user knowing which AI

technologies they are playing against.

4. To measure critical game statistics live whilst the users are playing the game.

It was decided to test a series of different AI technologies against one another

in the field of computer games. By implementing a single game into which different

technologies could be "plugged into" it is possible to test how users react to different

technologies, and to gauge how intelligery
5
users perceive them to be, without other

CHAPTER 3. EXPERIMENT 86

factors which might change is a non-modular system was used to implement different

types of AI.

3.2 Theories

The characters within any computer games will no doubt have a great affect on the

gaming experience since the only thing that will be varying between the characters

in each gaming environment will be the AI that is controlling them it is reasonable

to assume that the AI will have a great affect on a gaming experience.

It was with that in mind that the following hypothesis were created.

3.2.1 Hypothesis

Four hypothesises were generated. These will be reviewed within the experimenta­

tion section.

Hypothesis One 'That different implementations of the AI controlling NPC will

result in radically differing gaming experiences.

Hypothesis Two That by increasing the complexity of NPC control mechanisms,

and thus increasing the complexity of behaviours that result, leads to the user

perceiving the NPCs to be of greater intelligence.

Hypothesis Three That if users believe themselves to be playing against more

intelligent NPCs they will have a more enjoyable playing experience.

Hypothesis Four That users perceive cogent and decisive movements as intelli­

gent.

3.2.2 Justifications

Hypothesis One If using different AI resulted in there be no affect on the game­

play, then there would be no reason to develop more complex AI technologies.

Hypothesis Two Very simple AI (of the level of complexity found in movement

scripts) cannot be used to create complex movement and behaviours because

it is too rigid and unadaptable. Only through increased complexity is this

flexibility possible.

CHAPTER 3. EXPERIMENT 87

Hypothesis Three If players believe a game to be simple, and that you are only

losing because of your own inaccuracy or a perceived "cheating" by the com­

puter (such as increasing the speed of opponents beyond that expected), then

they have a less enjoyable gaming experience. If they perceive themselves to

be playing a more intelligent opponent who out-smarts them rather than sim­

ply using "tricks" to win the players should have more fun because they can

try and outsmart the opponent.

Hypothesis Four Because of the lack of information fed from the opponents to the

players the only information that the players can use to assess the intelligence

of the Aliens is how they move1 . Cogent and decisive movements should appear

as being more intelligent because the Aliens appear to be "doing something

specific" as opposed to rapid and frantic movement which might be highly

intelligent (Aliens might be moving to the point which best meets several long

term goals for example) but appears unco-ordinated.

3.3 The gaming platform

"Space Invaders was the first blockbuster videogame. It brought video games out of

arcades and bars into restaurants, corner stores and brought video games into the

public consciousness. It was translated to Atari 2600 video home game system and

the home version was also a huge commercial hit. "[Kui04]

Space Invaders is based round a simple context. Aliens are invading planet Earth,

and the player must shoot them down with his tank. Aliens can try and drop bombs

on the player, and if hey are hit too many times they die and the game is over.

Over the course of the game the Aliens get gradually faster and require more

shots form the player to kill them.

3.3.1 Why Space Invaders

When deciding on a platform to test theories about AI in games many possibilities

were considered. Each game was considered and the following criteria:

Familiarity If users are familiar with the concepts of how to play a specific game

without the need to learn it they are more likely to play it, and learning curves

are greatly flattened and thus data for new players has less variance.

1 Unlike some of the "smoke and mirrors" that are used in games such as Half Life were characters
make comments to tell users what they are doing

CHAPTER 3. EXPERIMENT 88

Figure 3.1: Screen shot of the original Space Invaders arcade game

Non-human characters If a games (such as Quake or Doom) that features hu­

manoid NPC is used it is conceivable that users will have pre-formed ideas

about how a character should react. This may result in the users marking

not "how intelligent" a character appears to be, but "how naturally" the NPC

reacts.

Ease of interfacing If possible the AI controlling NPCs should be as modular as

possible, resulting in as litt le modification outside of t he AI code as possible.

Distributability If the game and surrounding software can be mounted on a web­

site this greatly increases the ease of playing the game and should thus make

collecting data far easer. The lack of having to install programs or distribute

EXE of JAR files, which may cause more problems.

Space Invaders fitted these criteria particularly well:

Familiarity The majority of the public will recognise Space Invaders on sight and

have a good idea about how the game works (its aims and rules) without

having to be told.

Non-human characters The Aliens and the Ship are very stylistically portrayed

and hopefully will not be expected to behave like a humanoid.

CHAPTER 3. EXPERIMENT 89

Ease of interfacing Being Java based and thus object orientated, it should be

easily possible to switch in different AI technologies without having to re-write

large sections of code.

Distributability Java applets can be mounted within a webpage allowing easy dis­

tribution without he need for configuration, installation or any other complex

task. It will also mean that other technologies such as PHP and MySQL can

be used to collect data without having to involve the user.

A search for an open source Java implemented Space Invaders which could be

easily adapted for use was made, but no suitable software was found. By re-using

the codebase from a previous project, with some modifications, a simple application

was created. With a little modification this was mounted as a Java Applet on a

web page.

3.3.2 Differences from the original game

There were several small modifications which were made to the way the game was

played. These include

Movement of the Aliens In the original game Aliens could only move left and

right, and then down the screen when they reached the extent of their horizon­

tal pattern. In this version of Space Invaders the Aliens have full 2d movement

available to them

"Touching base" wins In the original game if an Alien touched the ground the

game was over. This was not as easy as it sounds because of the limitation

of their movement. Because of their increased freedom of movement, this

restriction was removed as games ended far too quickly.

Barriers In the original game there were "barrier" that the player could hide behind

and which were gradually eroded away by the Aliens bombs. These were

removed as they appeared to add nothing to the investigation of AI.

Fixed Alien types In the original game there were a variety of different Alien

NPC who moved at different speeds and were more or less difficult to kill. As

this investigation was exploring how players reacted to different Alien types it

was decided that each game session would only feature one Alien type.

CHAPTER 3. EXPERIMENT 90

3.3.3 Space Invaders Architecture

Overview

The Applet is based around a very simple frame cycle. It instantiates a single

instance of the Display class upon startup. The display class runs in its own thread

and 30 times a second calls an update method.

MovementScript

StateMachine

Fuuy

Swarm

Neuro

Scuttle

Figure 3.2: The basic structure of the applet

Run Cycle

The update method called once every 30th of a second loops through all of the

objects held in the GameObjects list and calls their update() method. This allows

each character to update its position and to react to any other objects (see table 3.1

for which characters interact with which). Should any object need removing they

register their intent to do so. The update cycle then requests each character to draw

itself to the screen using a double buffering method. There are two approaches to

animation using Java and other programming languages, unbuffered animation and

double buffering.

CHAPTER 3. EXPERIMENT 91

Unbuffered animation At the beginning of each cycle the screen is blanked with

the background colour and then each graphics item (eg. an alien or the players

ship) is drawn in its new position. Unfortunately this can be very flickery and

not very pleasing to the eye.

Double Buffering Graphic items are drawn to an off-screen image the same size

as the on-screen graphic area. At the beginning of each animation cycle the

off-screen image is then drawn onto the screen in a single transaction, blanking

over the top of anything already on screen. This results in less flickering.

How fun was this game?

How intelligently did the
aliens behave?

(Submit)

0000000000
1 2 3 4 5 6 7 8 9 10

0000000000

1 2 3 4 5 6 7 8 9 10

Figure 3.3: The red rocket (the player) shoot bullets up and the yellow Aliens. The
Aliens are shooting back at the player too. Visible below the game are the questions
that the user must fill in to reset the game and play again.

CHAPTER 3. EXPERIMENT 92

Bullet Bomb
Player No interaction Player looses a life
Alien Alien losses a life No interaction

Table 3.1: How players and Aliens reaction to the two offensive weapons in the
game. A blank space means that a given character does not react to than weapon.

At the end of each run cycle any object that require removing from the GameOb­

ject list are removed, and the new on-screen image is drawn from the off-screen

image. Items are removed after the update and draw cycles have been completed

to reduce the need to resize the lists containing all the items during the cycle. This

allows the use of Java array rather than Vectors (which can be dynamically resized)

but which are far less efficient. A screenshot of the game being played can be seen

in Figure 3.3

Draw Objects

Anything that gets drawn to the screen is a instance of a class which implements

the GameObject class. This allows all characters, be they NPCs or the player to

be handled the same way by the Display. The interface for a GameObject is very

simple:

String getName() Used to distinguish what type of object is being pulled form a

list due to Java's native polymorphism not "remembering" classes of objects

in lists.

int getX() Returns the items current horizontal position in global co-ordinates.

int getY() Returns the items current vertical position in global co-ordinates.

void reactTo(GameObject g) Allows characters to react to other characters, eg.

when a bullet hits an Alien.

void draw(Graphics g) Draws the character to an off-screen image for display at

a later point.

void update() Called every "frame" to allow characters to move and/or think.

Alien Structure

The Aliens, as stated before, are GameObjects. Their most important feature is

their Brain, which is an instance of a class that implements the Brain interface. The

CHAPTER 3. EXPERIMENT 93

Brain interface has one method void think() which is called by the void think()

method in the GameObject class every time the frame is updated. This allows

Aliens to think once per update turn.

Each Alien maintains several internal registers which track values of importance

to the Alien. These include its position (in the form of a X andY coordinates) and

a Health value. Each Alien starts with a Health value of 5, and this is reduced by 1

each time the Alien is it hit by a player bullet. When the Health is reduced to zero

the Alien is considered "dead" and is removed from the game.

The type of Brain that the Alien has depends on the type of game that has been

called by the webpage in which the applet is embedded. The variable "GameType"

is passed is on the initialisation of the applet. This can be seen in Figure 3.4.

Possible gametypes2 (and their numerical identifiers) are:

GamType=O Movement Script

GamType=l State Machine

GamType=2 Fuzzy State Machine

GamType=3 Swarm (behavioural animation)

GamType=4 Neural Network

GamType=5 Scuttle (managed randomness)

Other than the Brian type all Aliens are handled the same way. The only ex­

ception to this is that the Neural Network aliens have to report back to the Display

how they performed, and so require slight modification to the "Death" routine. This

will be explained in the Section 3.4.5 covering the Neural Network brain.

The design and implementation phases of development the system was designed

to be as modular as possible. This allowed AI modules to be swapped in and out

with ease and made development work far easier.

3.4 Types of brain

Each brain may have implemented the same interface but they work radically differ­

ently. Each was designed to implement a specific technology, attempting to maintain

2The variable "GameType" determines which kind of Brain the Alien is equipment with. This
means that GameType and "Type of Brain" are interchangeable as one denotes the other

CHAPTER 3. EXPERIMENT

r-=l
L::_j

I Brain

Alien

Behavooural
Animation

ThinkO

I

94

Figure 3.4: The "plug'n'play" brain switching facility. The ability to switch different
Brain types into the Alien without any affect to the end user is key to the experiment

CHAPTER 3. EXPERIMENT 95

the levels of complexity achievable at the times when such technology was common

place. For example it would be perfectly possible to have a state machine where one

state used a neural network to calculate its movement. This would seem to defeat

the object of the experimentation, and so technologies used within the each Brain

were only those in question (in the case of neural networks for example) or where

necessary - the State Machine uses Movement Scripts in each state as that is an

"earlier" technology.

Each Brain has the same bodily functions available to it, it can move the Alien

about the screen, sense its environment, and it can attach the player by dropping

bombs that travel down the screen. The action of bombing is also refered to as

"Firing". The player can also attack the Aliens by shooting Bullets which travel up

the screen. This action is also refered to as "Firing".

3.4.1 Descriptions of movement scripts

How does it move?

The Aliens are all initialised in random positions within the top 40 pixels of the

screen. The Movement Script picks a starting direction (left or right represented as

-1 or 1 respectively). The Alien then moves as far as its speed will allow each time

(collision detection allowing) until it reaches the edge of the screen. It then changes

direction (multiplies the direction by -1) and moves down the screen one "move".

This movement is designed to replicate the type of movement seen in the original

Space Invaders. See Figure 3.5 for clarification of this process. The Flow starts at

the "Alien Initialised" state.

When does it shoot?

The brain attempts to drop bombs whenever the player is within 5 pixels horizon­

tally. Every time the brain succeeds in firing it records the system time. When it

next decides to fire it checks the system time and if the difference between the two

is less that 500ms then it does not fire. This timing mechanism stops the Aliens

from having an unfair advantage by being able to "carpet bomb" the playing area.

Expectations

Movement scripts have no "intelligence" at all. That is to say they cannot make

decisions of any kind, which is surely the basis of intelligence. They do however

CHAPTER 3. EXPERIMENT 96

!
Allen Initial

Initialized f-- Direction
Chosen

1
Next Move

r-t' Calculated

!
Change Check If off

direction screen

Calculate l furthest
Move down Check If polntwecan

screen space Is free move In
appropriate

direction

Move to that
position ~+---------'

Figure 3.5: Flow of decisions in the movement script

CHAPTER 3. EXPERIMENT 97

move in what appears to be a very rational manner.

The simplicity of Movement Scripts will result in very simple movements, and

this should be interpreted by users as a sign of lack of intelligence. This would

support Hypothesis One.

Due to the non-decisive manner of the Movement Scripts the aliens themselves

will move in a very smooth, controlled and cogent manner. It is possible that users

might interpret this as intelligence and thus support Hypothesis Four.

3.4.2 Finite State machine

How does it move?

A Finite State Machine can implement any technologies desired inside each state,

including other state machines (thus creating a hierarchical state machine), however

to employ more complex technologies that a state machine would seem to defeat the

aim of this research. Taking this into account each of the states in the state machine

was itself a Movement Script. The states, and the transition between them, can be

seen in Figure 3.6

There are no state transitions moving out of the "Low on health" state (which

causes the Aliens flee for the ground and thus safety) because there is no method

for an Alien to increase its health levels once it has been shot and thus return to a

useful and healthy state.

When does it shoot?

Whenever the Alien is within 5 pixels of the ship horizontally the Aliens attempt to

drop bombs. This action is governed by a timing mechanism much like that used in

the Movement Scripts.

Expectations

Because of the ability to change their behaviour users should believe the Aliens to

be more intelligent than Movement Script controlled Aliens. The obvious sign of

this "intelligence" should be the "avoiding bullets" state which should be a great ad­

vancement on the Movement Scripts. The intelligence behind fleeing to the bottom

of the screen may well not interpreted that way.

CHAPTER 3. EXPERIMENT 98

Bullet closer than 14 pixels

~
A Bullet Is close Low on health

Find direction Plot cOU"se towCI"ds
diametrically opposite the ~of the screen and
b.JIIet and try to move in try to move In that

that direction. direction.

Health
below 3

Bullet
closer

than 14
pixels

No bullet
close

Attack Player

Uses the same
mechanism as the

Movement Scripts to stay
within 40 pixels of the

Health below 3

player and move from
side to~

Figure 3.6: The finite state machine for controlling Aliens

CHAPTER 3. EXPERIMENT 99

3.4.3 Fuzzy state machine

How does it work

A set of membership functions abstract the raw data of the health levels of the

ship and the player. The six membership functions and how they are related to the

individual health ratings of the Ship (eg. the player) and the Alien can be seen in

Figure 3.7 and Figure 3.8.

At the beginning of each think() cycle the system updates the six membership

functions. Based on their values the Fuzzy Control Set is then used to calculate

3 "intermediate" values (called run, hide and attack) that are passed in as the

arguments to three behaviour routines. The intermediate values are then used to

attenuate the projected affects of the three behaviour routines, each of which is

trying to modify the movement of the Alien in the horizontal and vertical planes.

These values are then normalised in proportion to the three "intermediate" values.

run run is proportional to usPoor and inversely proportional to themGood

hide hiding is inversely proportional to usOK and themGood

hide= ((1- usOK) + themGood)/2

attack attack is proportional to usGood and themPoor

attack = (us Good + themPoor) /2

This information is most easily understood as a series of graphs. These can be

seen in figures 3.9 to 3.11. Instead of showing the 3 Membership Functions, which

would require three separate graphs, the Ship Health and Alien Health values that

generated the membership functions are used instead.

The flow of information through the fuzzy logic controller might appear to be

very convoluted and confused with too many stages, each has its purpose. The

states can be seen in Figure 3.12.

When does it shoot?

The timing of firing is governed by a similar system as the State Machine brain. It

is only called if the Attack behaviour is being calculated, and if the Alien is within

20% of the screens width of the horizontal position of the Ship.

CHAPTER 3. EXPERIMENT 100

AUon Membership Functions

1.2,------·-----------------------------,

.
~
>

fo6r--------~--,~----~~-~-------~

I

0.5 1.5 3.5 4.5

Figure 3.7: Membership Function turn the input value of the Aliens Health into
three values, one each for the three membership functions "usGood", "usOK" and
"usPoor" which are then used to help determine a course of action for the Alien

Sl~p Membership Function•

0.5 1.5 2.5 35 4.5

Sblp H•~tth Valut

Figure 3.8: Membership Function turn the input value of the Ships Health into three
values, one each for the three membership functions "themGood", "themOK" and
"themPoor" which are then used to help determine a course of action for the Alien

C HAPTER 3 . E XPERIMENT 101

"Run" values

Figure 3.9: How "run" if affected by the Ship and the Aliens healt h values. The
"run" behaviour causes the Alien to flee to the bottom of t he screen. The higher the
"run" value the faster the Alien will move. The values are not shown as a continuous
surface as t heir values as discrete.

CHAPTER 3. EXPERIMENT 102

"Hide" Values

0 Ship H.alth

Figure 3.10: How "hide" if affected by the Ship and the Aliens health values in
the fuzzy logic controlled Brain. The "hide" behaviour causes the Alien to avoid
being above the Ship and risk getting shot. The higher the value of "hide" the more
strenuously Alien will attempt to move out of the way.The values are not shown as
a continuous surface as their values as discrete.

CHAPTER 3. EXPERIMENT 103

"Attack" Values

.5
"Attack" V~lun

0

Figure 3.11: How "attack" if affected by the Ship and the Aliens health values in
the fuzzy logic controlled Brain. The "Attack" behaviour causes the Alien to try
and stay above the Ship and thus be able to fire upon it. The values are not shown
as a continuous surface as their values as discrete.

CHAPTER 3. EXPERIMENT

Fuzzy Logic generates the
3 Intermediate values.

'RI.l'l fcx- "Hide from
the b.JIIets"

gruld''

Behavio.r Behavlo..r

e e
Summatlm co:l av~agi~

Aliens
Health

"Stay
d:xJve the
player co:l

attack"

Behavio.r

Figure 3.12: The fuzzy logic controller process stages.

104

d
Behavlo.r

calculatlm

CHAPTER 3. EXPERIMENT 105

Expectations

The finite State Machines major flaw is that it is finite. This results in the Alien

only being able to perform one action at a time. This might well result in "choppy"

behaviour, with the Alien appearing to cut between two actions which have opposite

directions of travel, without any middle ground. This could conceivably result in

the Alien flicking back and forth between two directions. Fuzzy logic state machines

tend to have far smoother translations between states, and as a result such "flicking"

should not be seen.

This smooth transacting should look much more deliberate to the user, and thus

if users perceive it to be more intelligent than the previous two Brain types (MS

and FSM), Hypothesis Four is supported.

The increased abstraction that the membership functions and attenuation values

allow should result in the Aliens displaying a wider range of behaviours because of

the ability to mix the three key behaviours. This would appear to satisfy the first

part of the Hypothesis Two "That by increasing the complexity of NPC control

mechanisms, an thus increasing the complexity of behaviours [seen in the Aliens]"

and thus hopefully a corresponding increase in the users ratings of intelligence.

3.4.4 Behavioural animation flock

How does it work

The concept of mixing different behaviours, and the resulting emergent behaviours

that can be seen is not that far removed from the fuzzy logic controller (FLC)

described previously in Section 2.1.4. In this case three behaviours which are similar

to the ones used in the FLC, but their influence on the Alien's movement is much

more rigidly controlled.

The three behaviours are modelled as follows:

Dodge Is fixed priority of 0.9. If there is a bullet within 14 pixels the behaviour

attempts to move the Alien diametrically out of the way.

Attacking Proximity is proportional to the health level of the Alien. Attempts to

stay in a bracket of 40 pixels above the Ship.

Run Inversely proportional to the health of the Alien. Attempts to move towards

the ground as the Alien becomes weaker.

CHAPTER 3. EXPERIMENT 106

In any update cycle each behaviour is requested to calculate its ideal change in

the horizontal co-ordinate and vertical co-ordinate of the Alien. It is also used to

calculate a priority. In the case of bullet dodging the priority value is held fixed,

however the values of the Attacking and Run values are adjusted with regard to the

health of the Alien. How the priorities slide can be seen in Figure 3.13.

Behavioral Amlnatlon

Figure 3.13: Priorities varying with Alien health values

To combine the direction modifications that each behaviour wants to make to

the Aliens direction a combinatorial function much like that of the FLC is used.

Each horizonal direction change is multiplied by its appropriate priority, and all 3

are then summed and divided by the sum of the priorities. The same is done for

the vertical direction changes, and the result is normalised into a range of -1 to 1 in

both directions to catch any problems that evolve due to attempting to move too

far in a given update cycle.

When does it shoot

The Aliens only try to shoot when they are above the ship (within 40 pixels) and

when the Attacking behaviour is active.

Expectations

Behavioural animation requires far less overheads than an FSM using FCL, and

although is does appear to have very similar visible results and thus it should provoke

CHAPTER 3. EXPERIMENT 107

approximately the same levels of user perceived intelligence.

This goes against Hypothesis Two, in that an FCL is more complex that a

Behavioural Animation, and is capable of displaying far more complex behaviour,

but if the users cannot distinguish the finer detail of these behaviours, they might

well rate a behavioural animation as intelligent as the FCL.

The Aliens have no reaction to how "healthy" the Ship is. This means that the

game play will remain the same as the game continues. This may affect the users

rating of the level of "fun" that the game attracts.

3.4.5 Neural net

How does it work

The NeuroBrain required small changes to the Aliens architecture. This was to allow

performance tracking and the breeding program to take place.

Brain structure

The NeuroBrain is a three layer perceptron, with 1 hidden layer, and every node on

each layer being completely connected to the nodes in the layers directly above and

below it. A diagram can be seen in Figure 3.14.

The first layer is the Input Layer and only contains four nodes. These relate

to the differences in the x and y co-ordinates between the Alien and the Ship (pair

one) and the Alien and the nearest bullet (should one exist). These values are scaled

between -1 and 1.

The next layer is the hidden layer. Each node is connected to every node in the

layer above via a weighted connection. Each node also has a bias node. Each update

cycle the new values for the input nodes are requested from the Alien's "body". Each

node in the hidden layer then sums together all of the input nodes values, each being

multiplied by its appropriate weight. The bias value is then subtracted away from

this total. Should the total break a threshold value (1) then the value of the hidden

layer node is set to 1 (and considered active).

The lowest layer is the output layer, and it works in exactly the same way as

the hidden layer except that once all the summing has been calculated, instead of

being flattened to a binary value to indicate "on or off" the value is capped at 1 and

cropped at -1. These values are then used by the Alien body to attempt to move.

So for a given node (i), in the layer with (n) nodes above it its sum value is:

Total= (2=~= 1 node(k) * weight(k))- bias(i)

CHAPTER 3. EXPERIMENT 108

Figure 3.14: The connection in the neural network that controls NeuroAliens.

If this is a hidden layer node then this value

Total >= 1 ---+ Total = 1

Total <= 1 ---+Total = 0

If the node is an output layer node then Total>= 1---+ Total= 1 Total< -1---+

Total= -1

Genetic Algorithm

The weights and bias values within the layers of the neural network are represented

as a simple genetic algorithm. For simplicity they are held as 4 arrays of double

values. When breeding takes place it is these arrays which are crossed to produce a

new child. The arrays are:

Input Weights A 10x4 array, with a "row" per hidden layer node and a "column"

per input node.

HiddenBias a 10x1 array, each cell representing the bias value of a given hidden

layer node.

CHAPTER 3. EXPERIMENT 109

Output Weights A 10x2 array, with a "row" per hidden layer node and a "column"

per output node.

OutputBias a 2x1 array, each cell representing the bias value of a given output

node.

Fitness Function

When an Alien is removed from the game (either by dieing or by moving off the

bottom of the screen) it reports its "ticker" value to the Display. This value is a

measure of "how well" the Alien has performed.

The fitness value is adjusted at the end of the update cycle. Values generated

in the update cycle are used to judge how well the Alien performed this time. Two

separate mechanisms are used to gauge the Aliens performance, these are:

Horizontal adjustment value (on the output layer) is greater than 0.5

results in a increase of 0.3 in the ticker value. Failing to move results in a subtraction

of 0.3. This mechanism is designed to keep the Aliens moving, resulting in a dynamic

gaming experience.

Dodge Bullet - if there was a close bullet (eg. closer that 14 pixels) and the

output was high enough to mean the Alien moved a substantial amount, then the

Alien is rewarded (ticker +=3) and will thus hopefully learn to hope out of the way.

If the Alien does not move, then the ticker is lowered by 3. If there was not a bullet

close then the fitness function in not adjusted by this mechanism.

Breeding

On initialisation of the game the Aliens that are created have their genes completely

randomised. Each weight is between 0 and 1, and each bias is between 0 and -1. From

this point onwards new Aliens will have genetics based on the best two performing

Aliens, rather than completely random sets however.

When an Alien is removed from the game it reports the ticker value to the Dis­

play. The Display keeps track of the genetic makeup of the best two performing

Aliens, and creates new Aliens genes based on these two. This process is always ac­

tive and the "lead" Alien's genetics will be replaced as and when a higher ticker value

comes along. The top two performers are referred to Primary and Secondary.

To create a new set of genetics a simple process is undertaken. Firstly a new

Brain, with blank arrays of weights and bias are created.

CHAPTER 3. EXPERIMENT 110

A boolean value is picked. This determines the ordering of Primary and Sec­

ondary. An integer is picked between 0 and 9. This is the crossover point.

The first N bits of the input weights and the hidden bias are copied from either

the primary or the secondary genes. The remaining bits are copied from the other

set of genes.

The OutputWeight and OutputBias are both two bits wide and thus one bit

comes from the primary and the other the secondary.

When does it shoot

If the Ship is within 10 pixels horizontally of the Alien it will attempt to fire using

a time delay mechanism to prevent against carpet bombing.

Expectations

When the game is first loaded the Aliens will move randomly due to the random

nature of their weights. This results in Aliens "zipping" about the screen in a

confused manner. As the user kills more and more Aliens they should start to

appear to be behaving more rationally.

There are two possible views the users could have when observing this behaviour.

Users may realise that the Aliens are "getting more intelligent" and thus should

achieve higher ratings of intelligence. This would serve to support Hypothesis Two.

However it is possible that the early movements of the Aliens with conflict with

Hypothesis Four (because the Aliens will be moving randomly at first) and thus

result in lower ratings of intelligence.

3.4.6 Scuttle flock

Designed as an example of a how code developed for games can be designed for

effect rather than in grounded AI theory, scuttle flock is based around a simple set

of timers and random number generators. It has little of no intelligence, possibly it

could be argued even less than in the Movement Script software.

How does it work

On initialisation the Alien picks two random numbers between -1 and 1. These are

the initial horizonal and vertical speeds.

CHAPTER 3. EXPERIMENT 111

At each update cycle the Alien moves as far as it can in the directions given

by the current speeds. It then checks if the difference between the last time it

changes direction and the current system time is more than a threshold value. This

threshold value is 2000ms plus a random value, which at most will be 2000ms. If

this threshold is past then the Alien creates a new random direction and resets its

"direction changed" timestamp.

When does it shoot

If the Alien is within 5 pixels horizontally of the Ship it attempts to drop bombs.

Timing of firing is controlled by a mechanism much like previous implementations,

with the time between being able to fire being set to 2000ms (2 seconds).

Expectations

The Aliens using a Scuttle Brain move in a very cogent and decisive manner. Because

the time between changes in direction is signification (at least 2 seconds) users should

be drawn into believing that the Aliens are changing direction for a reason. The

Aliens were also designed to be fun to play against, because they should zip about the

screen providing a fast moving and dynamic game. The trigger distance for causing

the Aliens to fire was shortened to 5 pixels as a conscious decision to reduce the

amount of firing that took place. This decision was taken because during testing

of the code it was found that low flying Aliens were very likely to kill the Ship,

reducing the amount of fun a user would have.

By greatly reducing the complexity of the Brain's structure the level of complex­

ity of behaviour that could be displayed were greatly reduced. If Hypothesis Two

is to be proved then users will have to rate this game as being less intelligent than

the majority of the other Brains.

However as the Aliens move in a very controlled manner, Hypothesis Four might

well be supported if users rate this game highly in the intelligence factor.

The Hypothesis Third states that if users believe themselves to be playing against

an intelligent agent they should have a more enjoyable experience. This Brain was

designed to be fun to play against, as thus if users are rating it as intelligent as

well this may well be due to the factors covered in Hypothesis Four rather that the

Hypothesis Three.

CHAPTER 3. EXPERIMENT 112

3.5 Data Collection method

Two different experiments were conducted to collect data of two kinds during the

game play runtime. Qualitative accessment of user reactions was made via a form

attached to the game play page, and quantitive information was recorded via the

game itself and stored to a database. In a separate experiment a slightly modified

version of the system was used to access how the Aliens moved when using different

Brains.

3.5.1 Qualitative Data

To aid with accessing the hypothesis two, three and four, a mechanism to gauge users

reaction was required. It was decided that a simple method which more users were

likely to take part in would be of more benefit rather than a complex questionnaire

which users might well ignore, or simply tick the boxes randomly in order to get the

game to start again. With this in mind a two question form was written in HTML

and PHP that was stored directly in a MySQL database. The questions were:

How fun was this game based on a 1 to 10 scale, users could tick only one of the

radio buttons. This appertains to Hypothesis Three.

How intelligently did the aliens behave? based on a 1 to 10 scale, users could

tick only one of the radio buttons. This Appertains to Hypothesis Two, Three

and Four.

When users opinion are stored in the database each row recorded the users local

username3 , the gametype, and the users rating for the "fun" and "intelligence" of

the Aliens that they are played against. Each row also had a unique ID number, to

support verification of the data.

3.5.2 Quantative Data

Due to being a web mounted applet collection of data is not a simple matter. The

"sandboxed" nature of Java applets, and certain security restrictions meant that

writing directly to a file or database was not possible.

A PHP script (a common serve side language) was written which could be called

via a URL call in the java. Because the PHP was located on the same server as the

3 Durham.ac.uk requires you to be a registered user to view certain websites, and the usernames
of those viewing the page is available to the PHP code. See Figure 3.15

CHAPTER 3. EXPERIMENT

\)1•r:r iJ iJ ~~
=~~~~"~~.~:::.::~ .. · ••• ,,.,,.,,.,,,,,,.,,,u,,,,,,,~"'''''"''''"'~'' ' "''''- '' '' '''"''''''''''''''"'''''''"''''" *--,-..... ,;;_r fi ..:,;;;;;o :-··~--g;;;-;;&;;d ti~·~;;; .. cti··-§-~ :#···-···

L __________ _

• d13uek 41575
• dlOOm: 1g.sst

~;,nt high·-.. -... -. -·-···1

• dJOOm: 2U8•'1!1III!IIIIIII!········ • dl3dlf. 2426~~

: ~~~:~/i~J; F11ew-w www.durat .oldr~ '*'
• d10WUp: 113
• d22emi: 203 Rulm: Vrl(ve[$1tyofOumamiTStooll'l
• dlgi'Jt. I &98 Scheme: basic
• d26mc 1978

·--
How fun
was this 0 0 0 0 0 0 0 0 0 0
game?

How
intelligently

1 2 3 4 5 6 7 8 9 10

did the 0 0 0 0 0 0 0 0 0 ()

au ~ns >'fo """'"'

113

Figure 3.15: The applet requests the users username and password (authentication
done by the University Of Durham servers). The username is used to track an
individuals results for a given game session

CHAPTER 3. EXPERIMENT 114

java this caused no security issues. The PHP was passed any information that was

to be stored via its calling URL and the

HTTP_GET_VARS

command used to extract this information. A MySQL database was then connected

to and the information was stored as individual rows. MySQL and PHP were selected

is it is available under the GPL licence, and because of the authors experience in

working in both environments.

When a game needed to report to the database the applet spawns another thread

to handle the job. This was introduced to help combat the affect that network

latency can have on the game play. The reporting procedure can be seen in 3.16

URLCornection con = new LRL
f'htJp:/fwww.dur.ac.i.J</o.e.wood/
passwordjtest.php ?theGame = 14&
theStrlng=GameStat&theNJmber
=14441").~tion();

truminto
Xdcs3oew _results. results(user
name,time, theGame,theString,
theNumber) values
('$username','$time','14,Game
Start',14441)"

Figure 3.16: Information and form when reporting to the database

The following information was collected regarding each game that .the users ini­

tialised:

StartTime Date stamped using the System.currentTimeMillis() method.

GameType 0 to 5, indicating which type ofbrian the player is taking on.

FinalScore The final score when the player dies.

FinalTime System.currentTimeMillis() is used again when the player dies.

CHAPTER 3. EXPERIMENT 115

AliensSpawned The number of Aliens the game had to create, which will be the

same as the number of Aliens killed.

Each set of data items is stamped with a unique ID number, generated at the

start of the game. If the users closed the game before dying not all five data items

will be created (specifically finaltime is only created once. the game play cycle has

been left), then all results with the same id number are removed from the test set.

This ensures that all of the data collected should be in a usable form and "open

ended" results should not be possible (ie. where a game has been started and not

finished it will not be included rather than appear as a very long game.)

3.5.3 Movement Analysis

Testing Hypothesis Four ("That users perceive cogent and decisive movements as

intelligent.") relies on being able to access two different variables. One is the users

perception, which is covered by the form on the website collecting users perceived

levels of intelligence. The other is the level of "cogenicity" of the Aliens movement.

Cogent is defined as "Appealing to the intellect or powers of reasoning; convinc­

ing." [ComOO]

A decisive decision is one which is not easily changed, and carries a mark of

finality. An Alien that moved decisively would not alter its course as much as one

which did not act as decisively and cogently. It was on this basis that the decision

was made to monitor how often an Alien significantly changed its direction as a

measure of its cogenicity and decisiveness. This was measured automatically by

running the program several times and collecting data as the Aliens played against

an automated player.

Modifications to the program

The following modifications were made to the applet to aid the analysis of the

movements of the Aliens.

Frame Counter was added to Alien.java that increments each time the Aliens

update() routine is executed.

Movement Counter was added to Alien.java that calculated each time the

Aliens update() routine is executed. If the attempted direction of movement is

more than 80% different from the previous frames attempted direction then the

movement counter is incremented.

CHAPTER 3. EXPERIMENT 116

Automated Player To increase the independence of the results for each brain

type the player was automated. A very simple playing style was adopted that

mimicked a style the the author had seen several players using. The automated

player slides along the base of the screen firing as often as possible, and when the

far side is reached the direction of travel is reversed.

Reporting when an Alien dies (either by leaving the screen or being shot) it

reports back how it died ("shot" or "offscreen"), and then the two counter values

it has been tracking - the number of frames it existed for, and how many times it

made significant changes to its direction of travel in that time.

Testing

The applet was loaded and reloaded, with the results of each game being saved in

the form of a Comma Separates Values text file for ease of use. In total 334 games

were played resulting in a total of 2300 individual data points.

3.6 Conditions of data collection

To collect a large enough sample of data the address of the website where the applet

was advertised using an internal e-mail list used within the Durham campus to

communicate with a the members of St Cuthberts Society, one of the many colleges

at Durham. The newsletter that is sent out is received by over 1000 students,

all studying degree level programmes. In total it was advertised on 5 different

occasions, over the period of a mouth. It is possible that other students and staff at

the university played the game after hearing about it via word of month, although

nobody who was not a registered user of the universities computer system could

have accessed the website.

In total 56 different usernames registered their opinions about the Aliens behav­

iour.

Users play created 344 individual data sets relating the gametype, perceived

intelligence and fun factor. The results of this experiment are discussed in chapter

4.

CHAPTER 3. EXPERIMENT 117

3. 7 Chapter Summary

This chapter discusses a set of experiments to test AI technologies. By developing

software for the Aliens Brains which does not require any alteration to the rest of

the Alien or the gaming environment will ensure that it is possible to observe users

playing against a wide range of AI technologies whilst minimising the effects of other

environmental variables.

This chapter has defined expected results for each technology, with justifications.

If the results of the experiment prove different to those expected then Chapter 4

will attempt to explain why, and will draw conclusions not only from the observed

results, but also why they differed from those expected.

The choice of the Space Invaders environment for development does limit the

ability implement more advanced features such as NPC being able to pick-up items,

but the speed of development and ease of deployment make the implementation of

a wider range of technologies possible within the timeframe available.

Chapte:r 4

Results

This chapter discusses the results of the experiment detailed in chapter 3. The

experiment ran for several weeks and data collection was terminated on Thursday,

June 3, 2004 at 14:40. Access to the database was removed to stop additional

information being added, and a copy of the database was made to a set of flat­

formatted Comma Separates values text file. The data was then analysed to either

prove or disprove each hypothesis.

The format of this chapter is as follows; each hypothesis is treated separately in

three sections, firstly what was expected to be observed is described. Then what

was actually observed is described, and how it reflects on the hypothesis is discussed

and then why the observed results differ from the expected results.

4.1 Hypothesis One

Hypothesis One proposed that "That different implementations of the AI controlling

NPC will result in radically differing gaming experiences".

4.1.1 Expected Observations

It is expected that all of the data that is collected for each game will have a high

degree of variance, in particular the lengths of the game play, average "score value"

of an alien, and average game score.

4.1.2 Observed results- Proved True

The following were measured, processed and graphed.

118

CHAPTER 4. RESULTS 119

• the average lengths of the game play (milliseconds).

• average "score value" of an alien 1

• average game score

• number of aliens spawned during the game cycle 2

As expected the games all have high degrees of variance and thus high values for

the standard deviation. See figures 4.1 through to Figure 4.4 for graphical analysis

of the data.

Features worth noting in the four graphs include:

Game Play Lengths: The Finite State Machine driven games are roughly four

times longer than those of other technologies. This corresponds with the very

high scores on the Finite State Machine games too. Interestingly the number

of Aliens spawned is comparatively not much higher than that of other games.

See Figure 4.1 for a graphical view of this information.

Score Value of Aliens: The Aliens are "worth more points" if they are killed lower

down the screen (because they pose more of a threat). The Aliens controlled by

the Finite State Machine were worth on average 9 time more point at their time

of death, than those controlled by other technologies. This is probably due

to their tendency to run towards the ground when they have been damaged.

Fuzzy state machine Aliens also do this, but they move faster if they are

damaged. See Figure 4.2 for a graphical view of this information.

Over all game score: The combination of longer games, with Aliens worth more

points, resulted in the Finite State Machine games being far higher scoring

that the other games. See Figure 4.3 for a graphical view of this information.

Number of Aliens Spawned: There is not a significant variation in the number

of Aliens that were spawned, which must mean that the differences in game

scores cited above is due to the higher cost of Aliens as shown above, rather

than an increased number being killed. See Figure 4.4 for a graphical view of

this information.

1 When an Alien is killed by the player it's hight on the game playing field is used to calculate
its contribution to the players score. The lower down the screen (and thus closer to the player)
the Alien is the more points it is worth when dead.

2 An alien is created and added to the game ("spawned") when it is either a) shot by the player
or b) leaves the screen via to bottom

CHAPTER 4. RESULTS 120

Average Play Length

160.0

140.0 +--------------4,---r---~

"'
120.0

i
c
~ 100.0
~

t,
.! 80.0 ..
li .., . 60.0

I
40.0
~

20.0 -

00
Mowtmenl Script State Machine fiJZZY State Machine Beha.ioral Animation

Brain Type

Figure 4.1: Lengths of the game play in milliseconds
Mean: 58
Variance:1848
Standard Deviation: 43

-

-
-

Neural Netwoll< Scunle Flock

CHAPTER 4. RESULTS

910

00.0

700

i
:i
li 60.0

i 50.0
c:
a ..
i 400

I
~~.0

:JJ.O

100

0.0

;---

D ''
Movement Script Stale Machine

121

D D r=l
Fuzzy Slate Machine Bsh<Mo,al Animation Neu1al Network Scullle Flock

Brain Types

Figure 4.2: Average "score value" of an alienVarience: 1050Standard Deviation:32

i 7000
0.
~6000

1

isooo
i ...
Ill 4000 ...
!
~:mJ

f~
1000

0

@

CJ
Movement Script

~

r-l CJ r.::=J
State Machine Fuzzy Stale Machine Beh..,;oral Animal ton Neural Notworl< Scuttle Flock

Brain Typaa

Figure 4.3: Average game scoreMean: 18Varience: 1050Standard Diviation: 32

CHAPTER 4. RESULTS

100

90
~ @; ' .&f:;r.

I·

00
"" .

~
"' 70 • r;:-- ¥! -...
'i
I 60

r--
~

... -I 50 ~
<
'S

• 40 - &' H

...
E
" " • 90 r -

!
20

;'!

- ,,
10 -

0
Movement Scrip1 State Machine funy 51 ate Machine Behaviorotl Animation Neural Network

Brain Typos

Figure 4.4: Number of aliens spawned during the game cycle
Mean: 76
Varience: 115
Standard Diviation:ll

122

~
W{

~

"'------'

-
-

~

-
Scunle Flock

CHAPTER 4. RESULTS 123

4.1.3 Explanation of the difference

There are only two entities within the game that can change from one gaming

experience to the next. One is the player themselves, and the other is the behaviour

of the Aliens. All other factors such as the Bullets which are fired by the player

and the Bombs that are dropped by the Aliens will remain the same from different

games types.

This means that any change in gaming style between different game types is most

likely due to the change in the Aliens behaviour. If the player changes their style

of game play (switching from sweeping firing runs to stationary "sniping" styles for

example) it might well be in response to the change in how the Aliens play the game.

It is worth noting that what this has actually shown is that different gaming

styles (of the Aliens) result in different gaming experiences, rather than different AI

techniques result in different gaming experiences. The different gaming styles that

are seen do result because of the differing types of AI that control them, but there

is a reasonable case to argue that the majority of the effects seen could have been

created by several of the AI technologies. For example, it is possible to create the

Behavioural Animation flocking by using a Fuzzy Logic control mechanism. This is

not true of all the AI technologies however, for example it is not possible that the

movement Scripts could be used to model the Neural Network learning.

4.2 Hypothesis Two

Hypothesis Two stated "That by increasing the complexity of NPC control mech­

anisms, and thus increasing the complexity of behaviours that result, leads to the

user perceiving the NPCs to be of greater intelligence".

4.2.1 Expected Observations

If the AI types were to be ordered in complexity they would be placed in the following

increasing order:

Game Type 0 Movement Script

Game Type 5 Scuttle Flock

Game Type 3 Behavioural Animation

Game Type 1 State Machine

CHAPTER 4. RESULTS

Game Type 2 Fuzzy Logic

Game Type 4 Neural Network

124

If the results of the experiment measuring user rated intelligence are placed in

the same order then a positive progression of the user rated intelligence should be

shown. It is however possible that because the "Scuttle flock" will be rated far

more intelligent than its ranking above because it is designed to look intelligent,

rather than be intelligent.

4.2.2 Actual observation - Proved False

When the average user rated intelligence for each game type is plotted with the

columns ordered by complexity (as described above) what would be desirable is a

positive progression with the simpler technologies being rated as less intelligent that

the more complex ones.

The results show that this is not what occured as can be seen in Figure 4.5. Users

rated games (in increasing order of intelligence) Neural networks, Scuttle Flock,

Movement Scripts, Finite State Machine, Behavioural Animation, Fuzzy State Ma­

chine.

The Monte Carlo 3 distance is just above the middle of the range being 10 of 18.

This would lead to the conclusion that the hypothesis is neither proved or disproved.

However, the lack of a discernable positive progression as seen in Figure 4.5 would

lead to the conclusion that this hypothesis is disproved.

4.2.3 Explanation of the difference

Users rated gametypes 2 (Fuzzy Logic) and 3 (Behavioural Animation) as being

the most intelligent, closely followed by types 1(State Machine) and 0 (Movement

Script). Only type 4 (Neural Network) was rated as being significantly less intelli­

gent. The reason for the poor performance of the Neural Networks might well be

down to a design decision made early in the project. At the beginning a NeuralNet

game the Aliens are initialised with completely random genes. This means that at

the beginning of the game the Aliens move highly erratically and will only start to

move in a more rational manner as they "learn" to meet the fitness function.

3The Monte Carlo distance is calculated by counting the number of places in the list that each
item is from its original place. Eg. if two lists are identical the distance will be 0, and if two 6
item lists are completely +inverted then the distance is 18

CHAPTER 4. RESULTS 125

Technological Complexity User Rated intelligence Placement in list
difference

(!)Movement Scripts Neural Network 5
(2)Scuttle Flock Scuttle Flock 0
(3)Behavioural Animation Movement Scripts 2
(4)State Machine State Machine 0
(5)Fuzzy State Machine Behavioural Animation 2
(6)Neural Network Fuzzy State Machine 1
Monte Carlo distance 10

Table 4.1: The order in which users rated the intelligence level of the various tech­
nologies, and how complex they are considered to be by the author. Both increase
as you descend the list .

User rated perceptions of intelligence

Game type (ordered by technological complexity)

Figure 4.5: Average user rated intelligence, with the columns ordered by technolog­
ical complexity. To prove Hypothesis Two a positive relationship should be seen.

CHAPTER 4. RESULTS 126

If the Aliens had been "pretrained" so that their genes were not completely

random at the beginning of the game this result may not have been seen. See

section 5.3 for a possible future experiment to investigate this.

4.3 Hypothesis Three

"That if users believe themselves to be playing against more intelligence

NPCs they will have a more enjoyable playing experience".

4.3.1 Expected Observation

There should be a positive correlation between the average intelligence rating and

the average fun rating that users give each game. Exactly which game type they rate

highly is not important for the proving of this hypothesis, it is only users perceptions.

4.3.2 Actual Observation- Proved TRUE

Two graphs were used to access whether or not there was a positive relation between

the user perceived levels of intelligence and how much fun they rated the game.

Figure 4.6 shows the level of fun plotted against the level of user perceived level of

intelligence. Figure 4. 7 is based on exactly the same data, but shows the average

values of the user rated fun factor, across all game types, plotted against the level

of user perceived level of game intelligence.

As seen in Figure 4.7, there is a positive correlation between those games that

users rated as more fun and those games which they rated as more intelligent. The

correlation value between the intelligence rating and the fun factor stands at +0.88,

which, based on the dataset of over 300 data points this would denote a 99.5%

certainty that this is not due to chance.

4.3.3 Explanation of the difference

The positive relationship between how intelligently the users rated the Aliens they

played against, and how enjoyable they found the game, appeared to be very strong.

The correlation value being +0.88 points to a very strong relationship between the

average intelligence ratings and the average fun values.

Exactly which game type users rate highly is not important for the proving of

this hypothesis. However the different game types did display a range of correlation

CHAPTER 4. RESULTS 127

Average "Fun" by gametype against Percleved Intelligence

10 • """"

r-------------------~--------~~----_,r-------------------~~

r-------------------------Tr-----rr-~ -- r----.r-------~ ---

.~ u 5 t--------------i l-lf.r--11-:---.1 1--­
~ § ...

2 r-

Percleved Intelligence

-

o""""""""' ..---..--------,
• An.tlt*macNne

D~UUJ.a.~

~o--

10

Figure 4.6: Average user rated fun factor, plotted against the level of user perceived
level of intelligence, grouped by game type

~
'ii 4 t-----------------1
"' §
~ 3 t-------rr-----1
>
<(

Average •tun" ratings across an game types

Figure 4.7: Average user rated fun factor, plotted against the level of user perceived
level of intelligence.

CHAPTER 4. RESULTS 128

Game Type Correlation Between Intelli-
gence and Fun

0 - Movement Scripts +0.46
1 - State Machine +0.28
2 - Fuzzy Logic +0.43
3 - Behavioural Animation +0.24
4- Neural Network +0.38
5 - Scuttle Flock +0.52

Table 4.2: Correlation values between how intelligence the user perceived the Brain
type to be, and how much fun they found the game to play.

values as can be seen in the Table 4.2. These values were obtained by using the

raw results of each user's intelligence and fun ratings, collated by game type, as the

input to the correlation formula.

Users like to be challenged by the games that they play. Any game that involves

simple or repetitive tasks is unlikely to result in an interesting gaming experience.

There are notable exceptions, for example the 1980's game Frogger [Ven04] involved

simple movements and "characters" (logs, cars, etc) with very simple movement pat­

terns, but in general users are likely to become frustrated with the limited methods

of increasing the difficulty of the game play 4 .

If the user is killed by a character that does not appear to be behaving intelli­

gently this might lead to increased frustration because the user believes that they

are not being beaten by an NPC who is more skilled than them, rather one who is

simply faster or stronger. This would lead to the user believing that they could win,

"if only the game was fair".

If the user is killed by a character that they believe to be intelligent enough,

then this only leads the user to want to try again, and try and outsmart the NPC.

This is far more addictive gameplay, and will have much lower levels of frustration.

An analogy to the field of problems in the business world might be made. "do not

see problems, see challenges" is an old motto trying to change how people view a

problem that they can not get past by fostering a sense of determination. Whilst

beating an unintelligent opponent is a problem (feeling that the game is biased in

favour of the NPC would not be uncommon), beating an opponent who you have to

outsmart is a challenge. If the opponent is visibly faster and more difficult to kill

than those the user has previously encountered then the user feels that the computer

4 Common meth~ds of increasing the difficulty of gameplay with simple characters include (but
are not limited to) increasing the speed of the opponents, increasing the number of times you need
to shoot opponents to kill them and increasing the speed at which opponents can fire.

CHAPTER 4. RESULTS 129

is tilting the playing field in favour of the NPC, possibly because this is the only

way it can beat them. However if the user notices that the NPC is not using a

bias to beat them, but instead is behaving more cunningly, this fosters a sense of

challenge, whereby the user has to adapt their playing style to win. The feeling of

resentment that might occur because users think that "the computer is changing the

rules because that is the only way it can beat me" are not as likely to occur because

the user can see that the NPC has adapted and grown in intelligence, rather than

"cheated".

4.4 Hypothesis Four

"That users perceive cogent and decisive movements as intelligent."

4.4.1 Expected Observations

As described in Section 3.5.3 information about how cogently an Alien moves could

be recorded. These results can be plotted against the values that came about from

users rating how intelligent they perceived the Aliens to be. If the user rated per­

ceived intelligence is used as the X-axis and the level of movement is plotted against

it, a positive correlation should be seen.

4.4.2 Actual Observations- Proved False

The desire for a negative relationship between the average number of direction

changes made per frame and the user rating of perceived intelligence was not born­

out by the results as shown in Figure 4.8, nor by the value of correlation being

-0.35. However Figure 4.9 represents a trendline which is sloping in the "correct"

direction, but the r2 value of 0.1192 shows that the trendline does not match well

with the data points. Coupling this with the low correlation value would lead to

the conclusion that although there is a weak link, it does not appear to be strong

enough to be considered as a justification for proving Hypothesis Four correct.

4.4.3 Explanation of the difference

When a person is accessing how intelligently another person is, purely by looking at

how they move, cogent and decisive movements would appear to be more intelligible

than short lived or twitchy movements. Consider the case of two men walking down

CHAPTER 4. RESULTS

3
Oi
>

Cogent movement and intelligence

Game Type

l·c·A~-;a;··runb;~oTcr;ng;s~;p;·r··secooa-·•-us;·;;erci;;di~i~-~~-g-eoc;Rati~0-1

130

Figure 4.8: The average number of moves per second , and the average user ra ting
of intelligence, for 6 data points, one for each game type.

Cogency and Intelligence

··········-··!

• R'=01192 1

i 4+---~
g !I

~
l 3+---~!
t
:3
&
~ 2+---~ ..

5 10 15 20 25 30 35

Figure 4.9: The average number of moves per second plotted against the average
user rating of intelligence

CHAPTER 4. RESULTS 131

a street at night. One stays on the pavement, and sways his path a little to the left

and right to avoid obstacles. The other "pin-balls" from one side of the street to

the other, narrowing avoid collisions and making rapid changes of direction. The

casual observer would assume that the first gentlemen was walking home, and that

the second was drunk and not in control of his movement. There might well be logic

and intelligible thought behind the movement of the drunk man (as there often is

in such circumstances), but it is not apparent.

The same is true of observing an NPC move about the screen. If the NPC shoots

about the screen not moving in the same direction for very long, users might well

assume that is is moving randomly and thus less intelligently, than an NPC which

appears to be moving decisively.

The hypothesis assumed that a lower frequency of direction change (and therefore

longer times spent travelling in the same direction) would appear to be more cogent

and decisive. As described below, frequency of change of direction might appear to

be a sliding scale, with the mid point possibly relating to higher levels of user rated

intelligence. This however would have to be tested in another experiment and is

discussed in section 5.3.

Movement of an NPC is largely a reaction to its environment, and thus a change

in direction could be assumed to largely be due to a change in the environment.

Unless the environment is changing with a frequency similar to that of the change

of direction of the NPC, the movement of the NPC would not appear to be related

to the changes in the environment. If the NPC changed direction at a much slower

rate to the change in environment then this might lead users to believe than the

NPC was unintelligent because of its slow reaction speeds. If the NPC changes

direction more rapidly than the environment is changing then the movement might

well appear random and thus equally unintelligible.

This is shown in diagrammatic form in Figure 4.10.

4.4.4 Limitations of the implementation

The implementation that was undertaken had several limitations which are best

explained. Several of these could have directly affected the results of the experiment.

Movement only The AI coded only controlled the movement of the Aliens. This

is primarily because the game was wholly focused on character movements. A

more complex gaming environment such a a First Person Shooter might have

allowed for more complex interactions with the player.

CHAPTER 4. RESULTS 132

Middle
Cherqlng Grcx..nd: Chenging

dlroctlm too The 1\PC dlroctlm too
little : - i:q)ea"S to be , .. much:

LXYespcnslve mB<ing '~ Twitchy
considered
changes of
direction.

Figure 4.10: A possible model of how frequency and cogency of movement changes
might relate to user perceived intelligence

Simplistic graphics To lower the learning curve of the game and allow users to

become familiar with it very quickly, the graphical interface of the game was

designed to be very similar to the 1970's original. However this meant that it

was too simple to allow complex expression which might have allowed features

such as expression to be implemented.

Limited Actions Again due to the nature of the game chosen the actions that an

Alien could perform were very limited (move and shoot to be exact). Whilst

this is not necessarily a bad thing in itself, it did limit the ability to extend

the AI to perform more complex task.

U nemotive Characters The Aliens and the Ship in the game do not inspire emo­

tions in players. Whilst non-human characters can easily provoke emotive re­

sponses from players (see "Bamse-land: A Virtual Theatre with Entertaining

Agents Based on Well-Known Characters" [BNSJ for an interesting experiment

using non-human characters which do) the Aliens and the Ship defiantly do

not. They have no method for showing emotions, which cannot help with user

empathy. Emotional responses and "symaphetic interfaces" also go a long a

way towardss aiding users immersion. "This is done particularly well in Dogz

[see [BR97]], to the point where people are convinced that more learning is

going on than is actually the case" [BDI+02]

The use of a more complex environment would have gone a long way to helping

all of the problems described above, however it would have had significant consid­

erations which would have had to be taken into account. If the Quake environment

CHAPTER 4. RESULTS 133

was used (as discussed in section 3.3.1) the following issues would have had to have

been taken into account.

Development time Working within a rigid development framework, combined

with working in an unfamiliar language (see "language barrier")could have

led to much longer development times. Whilst having to write all of the sup­

porting framework for the Space Invaders that is no part of the AI,did take up

large amounts of time, the ability to tweak code and insert additional calls to

the underlaying data structure meant that the devolvement of the AI portions

of the game was relatively quick. Working within a pre-formed code struc­

ture would have made the development of the AI portions of the game more

difficult, though it might well have resulted in a more graphically-impressive

game.

Distribution problems The game being mounted inside a web-based applet made

distribution, advertising, and data collecting very much easier than if the

game had been "static". Getting a large number of users to sit and a specific

computer on which the software was installed and play the game would have

been difficult, and building data collection methods into the code-framework

might well have posed technical difficulties. By having the game available

online users could play when is was convenient to them, hopefully meaning

more results were collected.

Language barrier Quakebots 5 are generally written in C++ if they are client­

side based or Quake-C, the developers own language. See [War] for more

information on the languages involved in writing a Quakebot. As the author

has very little experience with working in either language this would have

greatly increased development time.

Ethical issues Whilst the majority of modern games involve violence in some form,

including Space Invaders, the explicit violent imagery used in Quake might

disturb some users. Whilst Space Invaders involves firing at creatures it is

highly stylised and unlikely to offend many people. Quake however involves

double barrelled shotguns and is far from stylised. Quake II received a 15 rating

from the British Board of Film Classification, meaning that age restrictions

and legal disclaimers would have been necessary if it had been used.

5the NPC that users can create with their own AI code onboard

CHAPTER 4. RESULTS 134

The subject of knowledge representation within an existing game SDK is covered

in "Towards an AI Behaviour Toolkit for Games" [HFR] "Most AI approaches are,

by their very nature, knowledge-intensive, and internal knowledge representations

used by games - which are, almost without exception, custom solutions developed

for that specific game, which means that an AI toolkit hoping to be general must be

extremely versatile in order to allow the AI component adequate access to the game

information it needs." Whilst this project is not developing a whole AI toolkit this

passage does highlight the problems of working with somebody else's framework.

In "AI Game Developement" [Cha03] Alex Champandard describes the three

capabilities that an NPC should be able to perform. These include:

Primitive Behaviours Such as picking up objects, making meaningful gestures

and using objects.

Movement Moving between areas of the game and avoiding obstacles.

Decision making To achieve higher-level goals that are not immediately available

to the NPC some form of decision making mechanism.

The Aliens in Space Invaders certainly cannot perform many of the tasks which

would be covered by the "Primitive Behaviours" category. The reason for this is

simple, the game simpley does not have any need for a more complex environment,

and so the Aliens do handle all of the tasks available to them.

When Champandard[Cha03] uses the phrase "Decision Making" he would seem

to be inferring decisions more complex than simply "which direction to move". Again

the simplicity of the Space Invaders world would seem to have inhibited the Aliens

from performing more complex cognitive processes. This does not mean that some

of the technologies used could not handle harder and wide reaching decision making

processes, but that Space Invaders did not allow them too.

4.5 Neural network incidents

During the development of the Neural Network Brain several different Fitness Func­

tions were attempted. The following are accounts of the problems that were en­

countered until the fitness functions as described in 3.4.5 was settled on. These

observations were made when testing the fitness functions by leaving the game play­

ing against an automated player (as described in 3.5.3) over an extended period

(upwards of 12 hours) to see what patterns emerged.

CHAPTER 4. RESULTS 135

4.5.1 Running to the bottom of the screen

An early implementation of the game allowed the Aliens to win not only by shooting

the player too many times but also by touching the bottom of the screen as found

in the original Space Invaders. When "winning" was incorporated into the fitness

function (and genes were carried over from one game to the next) the Aliens quickly

"learned" that all running at the ground en-masse meant that the player could not

kill them all and thus they won. This led to the removal of the ability of touching

the ground and thus winning, from the game.

4.5.2 Hiding on one side of the screen

An implementation bug resulted in there being a very narrow column on one side

of the screen which the Aliens could enter and a Ship could not get close enough

to fire and kill them. The Fitness Function incorporated a reward for staying alive

the longest and the Aliens "learned" to hide in this pixels-wide strip of immunity.

The bug was removed, by allowing the Ship to check its position as legal against the

occupation grid rather than the screen width, and this behaviour disappeared. The

reward for staying alive within the Fitness Function was replayed with one where

the Alien was rewarded for moving resulting in a more mobile opponent.

4.5.3 Protective Columns

During testing occasionally the Aliens can be seen to be lining up in vertical columns.

This results in only the Alien at the bottom of the column being shot at whilst the

rest shelter behind. The lowest Alien appeared to absorb several direct hits, and

then to "jump out of line" and re-enter the queue much further up, away from

harm. The Alien appeared to get back to safety just before they sustained terminal

damage. This interesting, and as yet unexplained phenomenon, could possibly be

explained if the Aliens internal representation of the Health value was available as

an input to the Neural Network, except that it was not . See Further work (5.3) for

possible future investigation of this phenomenon.

4.6 Chapter Summary

There can be no doubt of the fact that different types of games AI can create highly

varied gaming experience. The range of values and high standard deviation values

CHAPTER 4. RESULTS 136

seen in Figures 4.1, 4.2, 4.3, 4.4, would seem to prove this.

Hypothesis Two was not supported, however the reason for this might lie with the

formulation of the hypothesis rather than the experiment. The hypothesis assumes

the more complex behaviour will be interpreted as a sign of greater intelligence,

however this itself assumes that users are able to interpret the movements of NPC

for what they are, which does not happen as easily as the author assumed. See

section 5.2.4 for deeper discussion of this phenomena.

The positive correlation identified between how fun the users found the game

and how intelligent they perceived the Aliens to be, would seem to be logical. As

games get visually more and more impressive, the need for intelligent characters

cannot be denied because it is one of the few way in which games can set themselves

apart from the competition.

The experiments that were conducted, and the hypothesis that they were de­

signed to answer, are not the only sources of information from which conclusions

can be drawn. The wealth of information about how the computer games indus­

try views itself should also provide ideas for discussion in the next chapter - the

Conclusions.

Chapter 5

Conclusions and Further Ideas

This project has had a wide range of influences and has delved into both the academic

and gaming sides of the AI research field. The experiments that were undertaken and

the result that came about because of them have attempted to show how different

methods of implementation affect game play and players reactions.

It is felt that all of the criteria for success laid down in Section 5.1 have been

met. Section 5.2 describes how they were met and what conclusions can be drawn

from them. Later sections will go on to discuss the implications of the project, any

further work that could be undertaken, and any final notes on the project which the

author would like to being to attention.

5.1 Evaluation of thesis aims

This section will be formatted as follows: each criteria for assessment 3.1 is dealt

with separately, and summations and conclusions are drawn afterwards.

5.1.1 To investigate the affects of different AI technologies

within the field of computer games

The literature survey in Chapter 2 covered both the academic side of AI research,

as well as the technologies that are seen in modern computer games. Due to the

secretive nature of industrial development very little contact with the industry was

possible, with the single exception of an email from a developer at Free Radical dis­

cussing the technologies used in Timesplitters 2[Gama]. The majority of information

was gleaned from a wide range of websites, especially [Woob] ,[Cha] and [LLC04] all

137

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS 138

of which are excellent free resources. Books of note include AI Game Development

[Cha03] and AI Games Wisdom I and II ([Var02] and [Var04]).

Hypothesis One hypothesised that all of the technologies would produce radically

different gaming experiences, and the results would seem to support this. If all

technologies produced similar gaming experiences there would have been no benefit

developing new technologies in the last twenty years.

5.1.2 To implement a range of AI technologies within a com­

puter game.

The different Brain types represent a wide range of techniques for modelling AI func­

tions. They cover both discrete (finite state machine) and non-discrete (fuzzy logic)

techniques and well as deterministic (behavioural animation) and non-deterministic

(neural network) methods.

As stated before, several of the techniques can be used to replicate the behaviour

of the other technologies. For example it is possible to use a Finite State Machine to

replicate the behaviour of a Movement Script, or to write the fitness functions of a

Neural Network to result in an ANN which replicates the behaviour of a Behavioural

Animation swarm. Where possible the technologies were written and configured

to try and show aspects of their behaviour that are not easily replicated in other

technologies.

The different technologies that were designed, coded and tested all produced

radically differing gaming experience, as is show by the large ranges and standard

deviations in the graphs of section 4.1.2. Whilst the results were not exactly as

expected hopefully this thesis has gone some way to explaining why they differed.

5.1.3 To measure users reaction to the games, without the

user knowing which AI technologies they are playing

against.

The modular "plug'n'play" nature of the applet that was developed meant that it

was only the backend coding of the Alien that changed. For more information on

the architecture please refer to Section 3.3.3. When the Brain was changed the user

would have not seen any difference in the presentation of the game as the Brain was

only responsible for controlling the movement of the Alien, and not for displaying

it.

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS 139

This resulted in the users rating what they actually saw on the screen rather

than preformed expectations. If the type of Brain that was being used had been

displayed on screen players might have adjusted their responses in light of what they

know about a given technology.

5.1.4 To measure critical game statistics live whilst the users

are playing the game.

By using an applet which users accessed online using a web browser collection of

"live" statistics was made possible. The use of PHP and MySQL as detailed in

Section 3.5.1 meant that very little of the workload of the reporting facility was

based on the users browser which might have affected gameplay. Indeed the applet

simply opened a connection to a URL and then closed it, all the rest of the work

was done by the serverside PHP. The URL that was called contained all of the

information that was to be stored in the database, and the PHP script extracted

this. It then contacted the MySQL database and stored the information.

Because of where the prepossessing of the reporting system took place the user

would not have noticed any drop in the speed of the game, nor would they have

experienced any interruption. This meant that the data collection process has no

adverse affect on the users gaming experience.

5.2 Conclusions

The experiments that were undertaken, and the investigation into the field of com­

puter game AI undertaken for the literature survey in Section 2 lead to a range of

conclusions being drawn, not only focusing on the experiments and their results,

but on the games industry and games playing.

5.2.1 Different technologies can produce different effects

All of the experiments used different technologies to craft the internal working of

the Alien Brain to get the Alien to move about the screen. Some of the technologies

relied on each other 1
, but on the whole they had very separate appearances.

This does not mean that you cannot use one technology to mimic another, though

as it is only possible to mimic a simpler technology, there would seem to be very little

1 Movements Scripts provided the actions that resided within the state of the Finite State
Machine for example.

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS 140

point. For example a Neural Network could easily be trained to mimic Behavioural

Animation by using a fitness function which maximises its positive value when the

ANN picks outputs which would correspond to Reynold Three Rules (see "Flocks,

Herds, and Schools: A Distributed Behavioural Model" [Rey87] for more information

on the Three Rules).

Each technology has its advantages and disadvantages, meaning that there will

be situations where a particular technology will be better suited to that others. This

is not to say that the situation could not be handled by another technology, but that

it would result in a side-effect of some description:

Inefficiency: A larger more complex AI technology might well require far more

system resources that a simple one which would have done the job just as

well.

Ineffectuality: The final effect that the designer was trying to achieve might not

be reproducible by certain technologies.

Difficulty in implementation: Implementing a complex technology will be more

difficult that that of a simple one, and if the job requires only a simple tech­

nology there is no need to implement a more complex one2 •

Conclusion: There are a wide range of differing technologies for imple­

menting AI in NPCs, and they all have their purposes. Some technologies

can be used to replicate the end-effects of other, simpler, technologies,

though this would not necessarily be computationally efficient.

5.2.2 Complex AI technologies are needed

There is no way that a character that displays many of the common traits that an

NPC in a modern First Person Shooter could be controlled with a technology such

as Movement Scripts. Because of the need for radically different behaviours such as

hiding, hunting and fleeing, a single movement script could not provide all of these.

Different movement scripts could be used individually for each of these behaviours,

2Possible exceptions include situations where one single AI engine is being used to control all of
the individual characters in a game, whereby controlling a character with its own simple mechanism
would actually make implementation more complex. An example of this is where the "C4" archi­
tecture is used to control off of the characters in "Object Persistence for Synthetic Creatures" [IB]
and other MIT Synthetic Characters Group projects including [BG95][BDI+o2][IBDB01j[IB02a] ,
but for simple characters only certain sections of the architecture are used - there is no need for
the sheep in the example given to use the whole Brain as they are using basic flocking rules as laid
down by Reynolds in [Rey87]

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS 141

however to hold all of these together and arbitrate between moving between them,

a Finite State Machine or other more complex technology would be necessary.

Although experimentation did not prove that more complex technology results

in higher levels of user perceived intelligence (as stated in Hypothesis Two), as

computer games improve over time and with magazines making claims such as "Ubi

Soft has been touting the enemy AI in Far Cry as some of the best ever released in

a [First Person] Shooter" [IE03], it is difficult not to believe that the underlaying

technologies are not getting more complex. It is also difficult to believe that users

are not believing NPCs to be more intelligent, after all if modern 3D games such

as FarCry [Stu04] has opponents similar to those found in earlier games such as

Wolfenstein 3D [iD04] they would not be as addictive and enjoyable. Games where

the ability of NPC to learn is key to the gaming experience (Black and White[Stu] for

example) would simply not be possible with simpler technologies as those available

8 years ago.

Conclusion: Modern games require complex NPC, and with features

such as learning and squad behaviours becoming more and more preva­

lent, AI in games has moved on from simple decision making and anima­

tion. More advanced technologies 3 are no longer a luxury, but a necessity

to produce the effects that users expect to see.

5.2.3 Clever AI does not guarantee a fun gaming experience

Just because a game employs the most impressive and complex AI technologies, it

does not guarantee it is fun to play. Just the same as games in past years which

have featured very impressive graphics engines, but that are no fun to play.

There is little doubt that of the need for complex AI technologies, but they must

be seen as a means to an end, not the end result themselves. It must be used as

a tool to produce visually pleasing results, and where necessary error catching and

"situation fudging" might need to be implemented.

To provide higher levels of user perceived intelligence there are several tactics

which could be employed by both games designers and game AI programmers. The

following are drawn both from the experience of the author throughout this project,

and also from the experiences of Lars Liden, Senior Software Engineer for Valve

Software (producers of the Half Life series):

• Increasing the level of empathy that a player feels for a character can greatly

3 Include, but not limited to, Neural Networks, Genetic Algorithms and Cognitive Modelling

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS 142

increase users immersion within the gaming environment.

• do not cheat - "players usually eventually detect cheating or at least get the

feeling that the NPC's behaviour seems somehow "unnatural" "[Lid]

• "Tell the player what you are doing" [Lid] - interpreting what an NPC is doing

might be a subtle affair - by making the manoeuver explicit you reduce the

chance that it is miss-interpreted.

• Recognise and react to mistakes the AI makes. Turn them into features rather

than glitches.

Conclusion: The aim of all computer games is to provide a fun and

visually pleasing experience. At no point should the AI that has been

chosen to be implemented interfere with this experience. The AI is not

the point of the game, merely part of the infra-structure that provides

it.

5.2.4 Users do not interpret intelligent moves as intelligence

Unless the NPC have a way of communicating with the player 4
, users might find

interpreting the movements of NPC difficult. When you have no clues or cues as to

what the Alien is intending to do, finding meaning in seemingly random actions is

virtually impossible.

This situation is not aided by the fact the there is very little empathy between

the users and the Aliens, mostly due to the non-humanoid appearance of the NPC.

If a user have some level of empathy with the NPC, intelligent behaviour which is

not actually there is more readily extrapolated from the actions performed by the

NPC. If a user does not have to guess what an NPC is doing they might well believe

it to be more intelligent that it actually is. Hypothesis Three stated that users have

more fun playing against NPC they believe to be intelligent, and experimentation

proved this to be true. The more intelligent a designer can make an NPC appear to

be, the more fun a user is likely to have playing against it.

Conclusion: Designers should make is as easy as possible for users to

be able to tell what an NPC is doing. Visual and audio clue and cues are

an excellent way to do this.

4For example in Half Life[Inc] supporting characters (friendly NPC) shout at the player and
tell them what they're doing meaning that the player does not get exasperated when they appear
to run off randomly down a corridor because the player knows that the characters "Thought they
saw something move down there!"

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS 143

Percentage of tiny 5% 10% 10- 20% 25- 40% near
CPU available 15% 30% CXl

for AI coding
Percentage of 7% 19% 26% 19% 7% 7% 7% 7%
developers

Table 5.1: The amounts of resources available to AI programmers attending the
CDC 2004 AI Round Table. Percentages rounded to nearest whole number.

Percentage of 2% <10% 15%- 20% 5%- 100%
CPU available 40% 60%
for AI coding
Percentage of 9% 32% 9% 32% 9% 9%
CPU available
for AI coding

Table 5.2: The amounts of resources available to AI programmers attending the
CDC 2002 AI Round Table. Percentages rounded to nearest whole number. The
15-40 figures included 15% for decisions and the rest for perception. The 100% was
a turn-based game that thought until it was done thinking. The 5-60 range was
most commonly 5%, but was allowed to use more on demand[Rou]

5.2.5 Cheating is counter-productive

Though not noted in the experiments undertaken, the ease with which "cheating"

can be employed to allow the NPC in a game to be able to locate the player or

a weapon by giving them access to the underlaying data structures, means that it

is often a quick solution to larger problems such as writing search algorithms with

minimal overheads. The problems associated with cheating are well covered in other

documents as well as Section 2.3.2 of this thesis.

With the changing focus of the majority of games projects away from graphics

(now being taken as a given pre-requisite for any large budget game) and towards

improved AI which is being seen as a selling point, more and more CPU cycles and

memory are being made available to the developer. With the (slight) increase in

CPU cycles available (see tables 5.3, 5.2 and 5.1 for figures relating to the number of

CPU cycles available to developers), there should be less and less need for cheating

to occur.

It is worth noting that the work of Tu[TT94] postulated that the use of sensory

cheating actually impedes the ability to create genuinely intelligent behaviour.

Conclusion: If a user has the slightest suspicion that they are playing

against an unfair NPC they are likely to have less tolerance for the game.

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS 144

Percentage of 5% 10% 15% 15- 35%
CPU available 20%
for AI coding
Percentage of 32% 17% 17% 17% 17%
developers

Table 5.3: The amounts of resources available to AI programmers attending the
GDC 2001 AI Round Table. Percentages rounded to nearest whole number.

A careful balance must be struck.

5.2 .6 Disney, not Minsky!

Whilst academic AI research is always trying to find the all-inclusive solutions which

are based in highly controlled environments, game AI solutions have to be based on

producing a perfect end result. It is inconceivable that a game might be shipped

with "broken AI", just as is should not be shipped with a graphical engine that

sometimes blanks the screen. A major flaw in any part of the games architecture

could spell a major financial disaster.

It is the need for the AI to at least be "visually correct" 5 and this leads to

developers steering clear of technologies they cannot control once the software is "out

in the wild". Technologies such as Neural Networks and learning systems engender

feelings of distrust. At the Game Developers Conference in 1999 Steve Woodcock

noted "A developer of an upcoming sports game announced that he was working on a

way to integrate unsupervised learning ANNs into his game, although he planned to

include an option to reset the AI should the player feel it had become feeble-minded

(or too strong a player, as the case may be)" [Woo99a]. This lead onto the discussion

on what had the most impact on the use of advanced AI techniques in computer

games. Woodcock reports that "a learning AI is, by definition, unpredictable. This

leads to huge problems when it comes time to do quality assurance testing on your

game - how can anything be tested reliably if it behaves differently from game to

game? How can a developer fix a bug if it's impossible to recreate the conditions

that led to a certain behaviour? " [Woo99a]

There appears to be a great level of distrust in learning adaptive systems within

the games industry. At the 2003 Games Developers Conference AI Roundtable

the following came up "Question: is anybody using any kind of AI technologies like

5Visual Correct: if there are mistakes and glitches they should not be easily viewable by the
user. For example NPC should not get stuck in corners when navigating, though if they do not
always take the shortest path it is unlikely that the user will notice.

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS 145

Neural Networks or Genetic Algorithms? Answer: No. Neural Networks and Genetic

Algorithms cost $$$ both in testing and development costs. You probably will not

understand how they work, you can not guarantee reproducibility and you will not

know how to change them to do something the producer is demanding" [Wooa].

When a game goes to press it must be guaranteed to work. "It is a world where the

illusion of intelligence is far more important than actual intelligence" [Lid].

The phrase "more Disney that Minsky" comes from "Issues of Autonomous Char­

acter Design (The Truth About Catz and Dogz" [BR97] and makes reference to the

factors which have influenced the Catz and Dogz projects. Marvin Minsky might

well have written books such as "Society of Mind" [Min88], but the Disney Corpora­

tion's Productions always look stunning, because they concentrate on the end-effect

rather than process.

Conclusion: If a pure AI solution is possible, and can be guaranteed

to produce "visually correct" results every time then it can be used.

Otherwise the designers and programmers must do all they can to make

sure that the final production is not flawed in any way in which the user

can detect.

5.2.7 Academic AI can Game AI can both benefit from

more cooperation

"To date there exists a disparity between AI research and game development tech­

nologies "[1101]. The academic AI community seems to view the games AI com­

munity with reserve. Computer games are viewed by academics as un-grounded

hack and patch experiments. Academic AI is often viewed as un-implementable

and narrow minded by the majority of non-AI programmer. Academic AI research

is generally focussed on having a "pure" solution based in a highly controlled en­

vironment. Games AI researchers are generally focused on having a flexible and

customisable solutions that works with the bounds of very limited CPU cycles and

memory. Academic AI researchers seem to be focused on symbolic representations,

game AI researchers try to create an NPC that can sneak up on the player, kill them

in an inventive way, and then run away without getting stuck in a corner.

Sections of the academic AI research field appear over the last decade to have be­

come very stale. Since the pioneering work of Fred Brookes [Bro], [Bro90], [Bro91c],

[BS93], [Bro96], [Bro91a] and the non-symbolic AI revolution, symbolic AI appears

to have made no great moves forward.

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS 146

The computer games industry on the other hand has made huge gains in realism

and the ability of its NPC players in the last decade. As the games grow in size

and complexity, and the expectations of garners ever increases the need for more

grounded and theory bases AI is becoming ever more present.

If the two halves of this divide can start to form more bridges and links, combin­

ing the grounded theories of academia with the enthusiasm and corporate backing of

the games industry, the results could be push the envelopes of both AI development

fields beyond where they could reach on their own.

Initially there would seem to be very little that could draw these two communities

together, but as games get more complex the need for more grounded and theory

based solutions is becoming more apparent. Equally academics are realising that

games AI is taking new and cross-disciplinary approaches to the same challenges

that have been studied for years.

Academics are also starting to use some of the tools that are spinoffs of the

games industry. Ready built 30 environments and data structures such as those

found in the Quake and Half Life SDK's6 are the fastest way to start testing your

ideas out. There is no longer the need to build your own implementations, you can

use one that has been tested by millions of garners all over the world on a wide

range of different systems. As more and more academics start visiting conferences

such as the Games Developers Conference [Hom], hopefully some of the tried and

tested methodologies, especially in fields such as planning and cognitive modelling

might filter through to the games developers. It is the social forums such as the

AI Round Tables held at GDC which seem to hold the key to work such as John

Funges Cognitive Modelling [FunOO][Fun] bridging the gap between academia and

gaming. "Both academia and industry are closer than ever to be being in a position

to attempt to answer [the question: "where do we go from here"]" [IB02a]

Hopefully the cross-over work of people such as Blumberg and the Synthetic

Character Group [Laba] and the Massachusetts Institute of Technology , John Funge

[J.F], Xiaoyuan Tu, Demetri Terzopoulos and Craig Reynolds[Rey] will help to build

these links which both communities will benefit from.

With the need for more cognitive modelling and longer timeframes than reac­

tionary systems can provide game AI might be in for a revolutionary next couple of

years. With 30 graphics, professional soundtracks and professional directors now

the standard in the majority of full-price computer games it is the characters within

6SDK - Software Development Kit - a series of digital "hooks" onto the game engine code, and
their supporting libraries.

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS 147

these games that will be the only area where one game can stand out from the

competition. "So far, AI in a game is more art than science "[HFR] is paradigm

which prevails at present, but with the need to move from practical solutions for

individual cases to more scientific and mathematically sound principles hopefully

the gap between academic and game AI will lessen, to the benefit of both parties.

Conclusion: Both parties can benefit from working closer together.

The differences in ideologies could be productive, with different perspec­

tives on the same subjects producing new ideas to old problems.

5.3 Further Work

When undertaking a "blue sky" project with a generic title, as work progresses there

will always be areas of interest that had to be abandoned because of a lack of time.

They might well form the basis of a future project, and as such should be noted so

as not to be forgotten.

The following sections are areas of research that given time and money, the

author would have undertaken as a result of them having come to light in this

project.

5.3.1 More complex gaming environment

As has been raised in several sections of this thesis the gaming environment that

was developed was not complex and did not allow many of the features commonly

found in modern games to be performed7. This was the price to pay for having a

faster production cycle, a gaming environment that users are quickly adapt at using

and that is easily distributable.

If further work was to be done gauging users reactions to different AI techniques

then a more complex environment, preferably one involving humanoid characters

such as Quake or Half Life would have to be used.

5.3.2 User reactions

Because the portability and ease of distribution of the web-applet that was created,

large numbers of data sets were created from a large number of unique users. How­

ever, if more information had been collected, including a wider range of questions

7Features such as: Power-up, objects that can be collected, different playing areas and weapon
selection

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS 148

about how they viewed the game this might well have lead to a better understanding

of how the AI affected the games play. The reason that the implementation only

featured only two questions was to try and stop users "clicking through" to get the

game started again as quickly as possible.

In a future experiment it might be interesting to colour the different opponents

to represent which AI is controlling them, and to have the user fill in longer questions

but after they have played the game several times. This would hopefully give players

the chance to access the capabilities of the AI, forming thought such as "the green

guys seems to run around aimlessly at first, but improved as time went on" which

could then be recorded.

5.3.3 Cogency

Hypothesis Four related how cogently the Aliens moved to how intelligent the users

perceived them to be. Sadly this experiment did not prove the Hypothesis correct,

and the author can only assume that this was because of how "cogency of move­

ment" was being measured. In a future experiment improved measurement of user

perceived intelligence, and possibly user perceived cogency of movement.

5.3.4 More neural networks

The neural networks as implemented started with completely random genetics con­

trolling them, and learned as they died (the Alien had to die before it's genes could

be propagated). The method of pre-training is discussed in Section 2.1.8 and would

make an interesting addition to the range of technologies that were tested.

Another method that might be of academic interest would be to store the genes

of dead Aliens in an online database, allowing the Aliens to evolve over a much

longer timeframe than a single game. This "global genetic algorithm" could also

involve many other ideas such as

• Allowing the users ratings to impact how the new genes are made up.

• Use the Aliens own health levels and those of the Ship to form input to the

neural network

• Move away from a completely connected Network as is used at present and to

allow new connections to be formed, and disused connections to be removed.

CHAPTER 5. CONCLUSIONS AND FURTHER IDEAS

5.3.5 More complex technologies

149

Many of the technologies that were implemented were very simple examples of their

area. This was because the simplicity of the gaming arena meant the advantages of

more complex technologies would simply have been lost because there was not the

level of detail for them to work with. For example a Hierarchical State machine was

not used at any point, because it would not have been any more complex than the

Finite State Machine of which Hierarchical State Machines are the superset. If a

more complex environment had been used a state such as "hunting" could have had

subsets of the form of "Collect Weapon" and "Track Player", but because of the

simplistic nature of the Space Invaders game there was no need for these separate

states.

If a more complex environment were to be used then a range of technologies that

were not explored could be implemented, for example:

• Hierarchical State Machines

• Emotion Engines

• Active Landscaping (known as "SmartTerrian" in The Sims [Art])

• Planners

• Blackboarding- possibly in the field of "Teamwork" allowing NPC to hunt in

groups.

Chapter 6

Glossary

Due to the technical nature of this thesis several terms might not make immediate

sense upon first reading. This section is designed to help clarify any abbreviations

and technical jargon.

1st Person Shooter A genre of computer game, set in a 3D envirnment, and seen

from the first person perspective. The "shooter" nature comes from the fact

that all FPS are concerned with killing hoardes of NPC, generally with a

variety of large guns. Example include Doom, the Quake serious, the Unreal

series and the Half Life series.

A* A very popular search method, which combines the best features of the Best

First Search and Dijkstra's Algorithm. See [Pat] for more information.

ACM Association for Computing Machinery. See http:/ jwww.acm.org for more

information.

AI Artificial Intelligence.

AL Artificial Life, the creation of synthetic characters, which "Live" in a digital

environment.

animat Another term for a digital character. Tends to refer to animations rather

than NPC.

Alife Artificial Life - the study of replicating life using digital methods. See AL.

ANN Artificial Neural Network, digital representations of Neural Networks.

150

CHAPTER 6. GLOSSARY 151

ASCII American Standard Code for Information Interchange. Often used to refer

to the character set used commonly used in computing projects.

Axons The tentacle like structures which interconnect neurons.

Back Propagation A method of training ANN, based on calculating and attribut­

ing the error between a known answer and the one generated by the ANN.

BDT Binary Decision Tree, a control system.

Best First Search A search method. See [Pat] for more information.

Black and White Lionheads Studios new, significant, God Game. Features neural

networks, genetic algorithms and genuine learning

Blocks World A digital environment which is often cited as being used by Planners

such as STRIPS.

Boids Short for "Bird-aids", the first "creatures" created by Craig Reynolds [Rey87].

Brain The class file which provided a common interface to all of the different AI

technologies implemented in the thesis. Also used to refer to the different AI

types eg. A Neural Network Brain.

C4 An architecture developed by the SCG at MIT

Colin McRea Rally II A driving game which made use of ANN to control the

NPC drivers.

Crossover point The point along a string of digital-DNA at which two strings are

crossed when digital breeding occurs.

CSEM Context Specific Emotional Memories, using in several SCG projects to

allow character to form memories about how they feel about objects.

CSV Commas Separates Values, a method of storing files making them more easily

interpretable by a variety of different software because of the lack of proprietary

methods.

Dendrites Dendrites make connections to other neurons by means of connecting

to the synapses found on the end of the Axon.

CHAPTER 6. GLOSSARY 152

DLL Dynamic Link Library, a file containing a collection of Windows functions

designed to perform a specific class of operations.

DNA DeoxyriboNucleic Acid. The chemical which stores the genetic information

about each living creature.

Doom A First Person Shooter game by iD. Often cites as being "the first First

Person Shooter", though an earlier game, Wolfenstien 3D (also developed by

iD) actually came first. Doom raised the bar for its time, in terms of both

graphics, AI and playability.

Dijkstra's Algorithm A search method which is guarantied to find a shortest

path to the target. See [Pat] for more information.

EXE The extension which denotes an executable file in aDOS/Windows develop­

ment environment.

FCL Fuzzy Control Language, a language which generally takes the form of a series

of IF .. THEN statement which connect membership functions to output states.

Finite State Machine A series of states which are interconnected by transitions

which are activated by a variety of conditions, normally linked to NPC's stim­

uli.

Frogger An early computer game which involved getting the players frog represen­

tation from the bottom of the screen to the top without being hit by cars or

falling into the river.

FSM Finite State Machine.

FuSM Fuzzy State Machine, a form of state machine which is not finite. More than

one state can be active at any time, and degrees of activation are possible.

FPS See 1st Person Shooter.

GA Genetic Algorithm.

GameObjects The class used in the Space Invaders implementation to wrap up

information about items in the game and provide a common interface.

GDC Games Developers Conference. Held annually, more information can be found

at http:/ jwww.gdconf.com .

CHAPTER 6. GLOSSARY 153

God Games Computer games where the user often has a "top down" view of the

playing arena. The aim of the game is often to help the NPC to progress and

develop.

Half Life A FPS which is cited as "raising the bar" in computer game AI.

Haunt2 A game developed by John Laird to test other technologies under research.

HTTP GET VARS A PHP command to retrieve the local username of a user

who is logged into the dur.ac.uk servers.

Improv A natural language scripting technology designed to select and blend be­

tween animation clips. Developed by Ken Perlin see [Labb] for more informa­

tion.

Inverse Kinematics A physical modelling method used to calculate the placement

of the items of a model to place a give piece of the model in a give place.

Java A platform independent language commonly used to develop programs.

Jar An achieved Java file, allowing easier distribution because of the need to only

use one file rather than a set of files.

Lucy A robot in development by Steve Grand. See [Gra04] for more information.

middleware Generic term for software which mediates and communicates between

two other software identities.

MUD Multi-User-Dungeon, an early form of "live RPG"in-which online users can

interact.

MySQL An open-source database engine, as used by the University of Durham.

See http:/ /www.mysql.com for more information.

Navigation Nodes Also known as Waypoints.

NN Neural Network. Generally considered to mean the digital form (see ANN) but

also covers biological neural networks such as brains too.

NeuroAnimator Demetri Terzopoulos and Radek Grzeszczuk's project using ANN

to emulate physical dynamics through the observation of physics-based models

in action. See [GTH98] for more information.

CHAPTER 6. GLOSSARY 154

N euroBrain The class file used to create an ANN for the Space Invaders imple­

mentation.

Norn A digial creature as found in Creatures[GC98]. Neural Network controlled,

and genetic algorithm represented.

NPC None Player Character, a character in a game which is not controlled by the

human player. Most likely an opponent or supporting character within the

game.

Perceptron An early form of neural network.

PHP A server-side scripting language. See http:/ /www.php.net for more informa­

tion.

Populous Another very early God Game, one of the first feature the idea. of helping

NPC Humans to prosper by acting an a. beneficent God.

Playstation A gaming platform produced by Sony.

Quake A FPS, often cited as being the next game to 'raise the bar" in both com­

puter game AI and graphical presentation after Doom.

Quakebots NPC and user created characters who can interact within other players

and NPC.

Quake-C A language used to create Quakebots.

RPG Role Play Game.

RPROP A method of training ANN, a form of back prorogation. Used to train

the ANN found in Colin McRea Rally II. See [RB93] for more information.

RuleBlock A collection of FCL statements which make up a control set for an

NPC.

St Cuthberts Society A member of the college system at the University of Durham.

An open and friendly democratically elected group of individuals who choose

not to live by the rules of the formal college system. See http:/ /www.cuths.com

for more information

SCG Synthetic Character Group. Bruce Blumberg's research group at MIT. Often

focuses on novel approaches to interface and social interaction.

CHAPTER 6. GLOSSARY 155

Sim A digital inhabitant of the game The Sims. An NPC.

SimCity A very early God Game, developed by Sid Meier.

SmartTerrain A technology developed where items in the digital environment en­

capsulate how to display them to the screen, what actions can be performed

with them, and what needs they satisfy. First used in The Sims game.

STRIPS The STanford Research Institute Problem Solver. A planning program

and part of the "classical" approach to AI.

SOAR Soar is a general cognitive architecture for developing systems that exhibit

intelligent behaviour. See http:/ /sitemaker.umich.edu/soar for more details.

soma The centre of a neuron.

Sonic the Hedgehog Another early platform game, written to rival Super Mario

Brothers, based on the Sega platform.

Space Invaders A very early form of computer game.

Super Mario Brothers An early platform game making use of Movement Scripts.

Based on the Nintento platform.

Unreal A series of FPS games, the graphical engines of which are often used as the

base for both academic work and other games.

waypoints A node on a navigation map.

XOR Exclusive OR logical function. True if either of the two inputs are True, but

False if both at True, or both are False.

weights The values which reside at each node within an ANN and adjust how the

network reacts by adjusting what influence a given input to that node has.

Bibliography

[a102] ET AL, J .E L.: A test bed for developing intelligent synthetic charac­

ters. In: In Spring Symposium on Artificial Intelligence and Interactive

Entertainment AAAI, 2002

[Ark98] ARKIN, Ronald C.: Behaviour-Based Robotics. MIT Pres, 1998

[Art] ARTS, Electronic: The Sims Homepage.- http:/ /thesims.ea.com

[Bar] BARTLE, Richard A.: Interactive Multi- User Computer Games. -

http:/ /www.mud.co. uk/richard/imucg.htm

[BDI+02] BLUMBERG, Bruce ; DOWNIE, Marc ; IVANOV, Yuri ; BERLIN, Matt ;

JoHNSON, Michael P.; TOMLINSON, Bill: Integrated learning for interac­

tive synthetic characters. In: Proceedings of the 29th annual conference

on Computer graphics and interactive techniques, ACM Press, 2002. -

ISBN 1-58113-521-1, S. 417-426

[BG95]

[BNSJ

[BR97]

BLUMBERG, Bruce M. ; GALYEAN, Tinsley A.: Multi-Level Direction of

Autonomous Creatures for Real-Time Virtual Environments. In: Com­

puter Graphics 29 (1995), Nr. Annual Conference Series, S. 47-54

BOHLIN, Peter ; NILSSON, Victoria ; SIVERBO, Magdalena. Bamse­

land: A Virtual Theatre with Entertaining Agents Based on Well-Known

Characters. citeseer.ist.psu.edu/bohlin98bamseland.html

BEN RESNER, AndrewS.: Issues of Autonomous Character Design (The

Truth About Catz and Dogz). In: HTTP:/ /WEB.MEDIA.MIT.EDU/ BEN­

RES/VERBIAGE/CDGC97.HTML (Hrsg.): Proceedings of the 1997 Com­

puter Games Developer Conference, Santa Clara, CA, 1997

[Bro] BROOKS, R. A Robust Layered Control System for a Mobile Robot

156

BIBLIOGRAPHY 157

[Bro90] BROOKS, Rodney A.: Elephants Don't Play Chess. In: Robotics and

Autonomous Systems 6 (1990), Juni, Nr. 1&2, S. 3-15

[Bro91a] BROOKS, R.: Intelligence without Reason - MIT AI Lab Memo 1293.

(1991)

[Bro91b] BROOKS, Rodney A.: Intelligence Without Reason. In: MYOPOULOS,

John (Hrsg.) ; REITER, Ray (Hrsg.): Proceedings of the 12th Interna­

tional Joint Conference on Artificial Intelligence (IJCAI-91}. Sydney,

Australia : Morgan Kaufmann publishers Inc.: San Mateo, CA, USA,

1991.- ISBN 1-55860-160-0, S. 569-595

[Bro91c] BROOKS, Rodney A.: Intelligence without representation. 1991 (Artifi­

cial Intelligence 4 7), S. 139-159

[Bro96] BROOKS, R. From earwigs to humans. 1996

[BS93] BROOKS, Rodney; STEIN, Lynn A.: Building Brains for Bodies. 1993 (

AIM-1439). - Forschungsbericht. - 16 S

[Casml] CAss, Stephen: Mind Games. In: IEEE SPectrum Webonly

(http:/ jwww.spectrum.ieee.org/WEBONLY jpublicfeaturejdec02/mind.html)

[Cha] CHAMPANDARD, Alex J.: AI Depot Website. - http:/ jai-depot.com

[Cha03] CHAMPANDRED, Alex: AI Game Developement. New Riders, 2003

[CL92] CARVER, Norman ; LESSER, Victor: The Evolution of Blackboard Con­

trol Architectures. 1992 (UM-CS-1992-071). - Forschungsbericht

[Com99] COMBS, William E.: The Fuzzy Systems Handbook 2nd Ed. Academic

Press, 1999

[ComOO] COMPANY, Houghton M. American Heritage Dictionary 4th. 2000

[Dela] DELISLE, Kirk: Decision Trees and Evolutionary Programming. -

http: j j ai-depot.com/Tutorial/DecisionTrees.html

[Delb] DELNAY, Caleb: VERC · Half-Life AI, Schedules and Task. -

http:/ jcollective.valve-erc.comjindex.php?doc=1018030771-90025600

[dem] Demetri Terzopoulos- Home Page.- http:/ jwww.cs.toronto.edu/ dt/

BIBLIOGRAPHY

[DeuOOj DEUPREE, Patrick: GenerationS. 11 2000.

http:/ /www.generation5.org/content/2000/deupree.asp

[dir] Direct IA Website. Wednesday, August 18, 2004.

http:/ /www.directia.com

158

[Dyb04] DYBSAND, Eric: Gamasutm - AI Middleware.

http:/ /www.gamasutra.com

2004. -

[FNJ FIKES, R. E. ; NILSSON, N. J. Strips: A new approach to the application

of theorem proving to problem solving. Artificial Intelligence

[For] FORBUS, Kenneth D.: Under the hood of The Sims. -

http:/ /www.cs.northwestern.edu/ forbus/c95-gd/lectures

[Fun] FUNGE, John. Cognitive Modeling for Computer Games. Wednesday,

August 18, 2004

[FunOO] FUNGE, John: Cognitive Modelling for games and Animation. In: Com­

munications of the ACM 43 (2000), July, Nr. 7

[Gama] GAMES, Free R.: Timesplitters 2 Online Home.

http:/ /www.timesplittersgame.com

[Gamb] GAMESPOT.COM: The Sid Meier Legecy.

http:/ /www.gamespot.com/features/sidlegacy /form.html

[GC98] GRAND, Stephen ; CLIFF, Dave: Creatures: Entertainment Software

Agents with Artificial Life. In: Autonomous Agents and Multi-Agent

Systems 1 (1998), Nr. 1, S. 39-57

[GCM97J GRAND, Stephen ; CLIFF, Dave ; MALHOTRA, Anil: Creatures: Ar­

tificial Life Autonomous Software Agents for Home Entertainment. In:

JOHNSON, W. L. (Hrsg.): The First International Conference on Au­

tonomous Agents (Agents '97}. Marina del Rey, California, USA : ACM

Press, 5-8 1997, S. 22-29

[Gen99] GENERATIONS: Andre LaMothe. 12 1999.

http:/ /www.generation5.org/ content/1999 /lamothe.asp

[GraOl] GRAND, Steve: Creation: Life and How to Make It. Phoenix mass

market, 2001

BIBLIOGRAPHY 159

[Gra04] GRAND, Steve: Growing Up with Lucy: How to Build an Android in

Twenty Easy Steps. Weidenfeld and Nicholson, 2004

[Gra95] GRAND, S: I Am Ron's Brain -A "how it works"

guide to the Albia brain model / http:/ jwww.cyberlife-

research.com/ articles/ creaturesarchivejbraindesc.htm. 8/5/95.

Forschungsbericht

[Grz] GRZESZCZUK, Radek. Fast Neural Network Emulation and Control of

Physics-Based Models. Wednesday, August 18, 2004

[GTH98J GRZESZCZUK, Radek ; TERZOPOULOS, Demetri ; HINTON, Geoffrey:

NeuroAnimator: fast neural network emulation and control of physics­

based models. In: Proceedings of the 25th annual conference on Computer

graphics and interactive techniques, ACM Press, 1998.- ISBN 0-89791-

999-8, S. 9-20

[Hau89] HAUGELAND, John: Artificial Intelligence: The Very Idea. Bradford

Books, 1989

[HFR] RoULETTE, R. ; Fu, D. ; Ross, D.: Towards an AI Behaviour Toolkit

for Games. - AAAI Symposium on AI and Interactive Entertainment,

2001

[HHKMJ HERMAN, Leonard ; HORWITZ, Jer ; KENT, Steve ; MILLER, Skyler:

The History of Video Games. Wednesday, August 18, 2004. -

http:/ /www.gamespot.com/gamespot/features/video/hov/index.html

[Hom] HOMEPAGE, CDC: CDC. - http:/ /www.gdconf.com/

[hou03] OF FREE RADICAL GAMES HOUSE, Mark T. In Conversation via email.

2003

[htta] HTTP:/ /SITEMAKER.UMICH.EDU/SOAR. University of Michigan SOAR

Project. Wednesday, August 18, 2004

[httb] HTTP:/ /WWW.GENERATION5.0RG/CONTENT /2001/HANNAN.ASP. Jeff

Hannan interview about Colin McRea Rally 2.0. Wednesday, August 18,

2004

[httc] HTTP:/ /WWW.UNREALTOURNAMENT.COMj.

HomePage. Wednesday, August 18, 2004

Unreal Tournament

BIBLIOGRAPHY 160

[IB] ISLA, Damian ; BLUMBERG, Bruce. Object Persistence for Synthetic

Creatures. Wednesday, August 18, 2004

[IB02a] ISLA, D. ; BLUMBERG, B. New challenges for character-based ai for

games. 2002

[IB02b] ISLA, Damian ; BLUMBERG, Bruce: AI Game Programming Wisdom:

Blackboard Architectures. Charles River Media, 2002

[IBDB01] ISLA, Damian; BURKE, Robert C.; DOWNIE, Marc; BLUMBERG, Bruce:

A Layered Brain Architecture for Synthetic Creatures. In: IJCAI, 2001,

s. 1051-1058

[iD04] ID: Wolfenstein 3D. 2004.- http:/ /www.idsoftware.com/gamesjwolfenstein/wolf3d/

[IE03] IGN ENTERTAINMENT, Inc: Far Cry IQ Test. In: PC Games (Septem­

ber 30-2003)

[Inc] INC, Sierra E.: The Offical Half Life Homepage.

http:// games.sierra.com/ games/half-life

[J.F]

[JW01]

[Kui04]

[Lab a]

[Labb]

J .FUNGE: Jfunge homepage. - http:/ jwww.jfunge.com

JOHNSON, Daniel ; WILES, Janet: Computer Games with Intelligence.

In: Australian Journal of Intelligent Information Processing Systems,

2001, s. 61-68

KUITTINEN, Petri: History of Arcade Games. 2004. -

http:/ /www.hut.fi/ eye/videogames/arcade.html

LAB, MIT M.: MIT Syntetic Character Group.

http:// characters.media.mit.edu/

LAB, New Yourk University Media R.: NYU-MRL Improv Home. -

http:/ /mrl.nyu.edu/projects/improv /

[Laia] LAIRD, John: Haunt.- http:/ /ai.eecs.umich.edu/people/laird/haunt.html

[Laib] LAIRD, John: John E. Laird's Homepage.

http:// ai.eecs. umich.edujpeople/laird/

BIBLIOGRAPHY 161

[Lai01] LAIRD, John E.: It knows what you're going to do: adding anticipation

to a Quakebot. In: MULLER, Jorg P. (Hrsg.); ANDRE, Elisabeth (Hrsg.);

SEN, San dip (Hrsg.) ; FRASSON, Claude (Hrsg.): Proceedings of the Fifth

International Conference on Autonomous Agents. Montreal, Canada :

ACM Press, 2001, S. 385-392

[LaM99] LAMOTHE, Andre: GenerationS. 12 1999.

http://www .generation5.org/ content /1999 /lamothe.asp

[LD] LAIRD, J. ; DucHI, J. Creating human-like synthetic characters with

multiple skill levels: A case study using the soar quakebut

[Leo] LEONARD, Tom: Building an AI Sensory System - Ex-

[Lid]

[LJ98]

[LL01]

ammzng The Design of Thief The Dark Project.

http:/ jwww .gamasutra.com/ gdc2003 / features/20030307

LIDEN, Lars: The Use of Artijical Intelligence zn the Com-

puter Games Industry. Wednesday, August 18, 2004.

http: j j ai.eecs. umich.edujpeople/laird/ game-seminar /Liden. ppt

LAIRD, J. ; JONES, R. Building Advanced Autonomous AI systems for

Large Scale Real Time Simulations. 1998

LAIRD, John E. ; VAN LENT, Michael: Human-Level AI's Killer Appli­

cation Interactive Computer Games. In: AI Magazine (June 2001)

[LLC04] LLC, CMP M.: Gamasutra. 2004.- http:/ jwww.gamasutra.com

[LNR87] LAIRD ; NEWELL ; ROSENBLOOM: Soar: An architecture for general

intelligence. In: Artificial Intelligence 33 (1987), Nr. 1, S. 1-64

[Ita] Louder Than A Bomb!.- http:/ jwww.louderthanabomb.com/

[Mat] MATTHEWS, James: A "Hello World!" Genetic Algorithm Example. -

http://www .generation5.org/ content /2003/ gahelloworld.asp

[Min88] MINSKY, Marvin: Society Of Mind. Simon and Schuster, 1988

[MP88] MINSKY, Marvin L. ; PAPERT, Seymour A.: Perceptrons: An Introduc­

tion to Computational Geometry. The MIT Press, 1988

[MR] MEHRABIEN, A; RUSSEL, J: An Approach to Environmental Psychology.

- Cambridge MA MIT Press 1974

BIBLIOGRAPHY 162

[NCMce] NICHOLAS COLE, Sushil J L. ; MILES, Chris. Using a genetic algorithm

to tune first-person shooter bots. University of Nevada. Department of

Computer Science

[Newa]

[Newb]

[Pat]

[PG96]

[RB93]

LEHMAN NEWELL, Newell: Soar Video.

http:/ jacs.ist.psu.edujpapers/soar-mov.mpg

NEWS, BBC: Games giant EA spreads its wmgs.

http:/ /news.bbc.co.uk/1/hi/technology /3936369.stm

PATEL, Amit: AmitP's Game Programming Site. Wednesday, August

18, 2004.- http:/ /www-cs-students.stanford.edu/ amitp/gameprog.html

PERLIN, Ken ; GOLDBERG, Athomas: Improv: A System for Scripting

Interactive Actors in Virtual Worlds. In: Computer Graphics 30 (1996),

Nr. Annual Conference Series, S. 205-216

RIEDMILLER, Martin; BRAUN, Heinrich: A Direct Adaptive Method for

Faster Backpropagation Learning: The RPROP algorithm. In: Proc. of

the IEEE Intl. Conf. on Neural Networks. San Francisco, CA, 1993, S.

586-591

[Rey] REYNOLDS, Craig: The Work of Craig Reynolds.

http:/ jwww.red3d.com/cwr/

[Rey87] REYNOLDS, Craig W.: Flocks, Herds, and Schools: A Distributed Be­

havioural Model. In: Computer Graphics 21 (1987), Nr. 4, S. 25-34

[RN95] RUSSELL ; NORVIG: AI: A Modern Approach. Prentice Hall, 1995

[Rou] RoUNDTABLES, GDC 2002 Moderator's Report - A.: Neil Kirby. -

http:/ /www.gameai.com

[Sha04] SHACHTMAN, Noah: From Sims to Slammin' Steel. In: Wired (2004)

[sofa] Soft/mage Home. - http:/ /www.softimage.com/home/

[Sofb] SoFTWARE, Valve: Counter Strike online homepage.

http:/ /www.counter-strike.net

[Sofc] ID SOFTWARE: Quake Home. Wednesday, August 18, 2004. -

http:/ jwww.idsoftware.com/ games/ quake/

BIBLIOGRAPHY 163

[Ste] STEVEN, Marc C.: A Blackboard System for Interpreting Agent Mes­

sages. Wednesday, August 18, 2004. - aigames.org

[Stu] STUDIOS, Lionhead: Balcv and White Homepage. Wednesday, August

18, 2004.- http:/ /www2.bwgame.com

[Stu04]

[TB01]

STUDIOS, Crytek: FarCry Homepage. 2004. - http:/ /www.farcry­

thegame.com

TOMLINSON, B. ; BLUMBERG, B. Social Behaviour, Emotion and Learn­

ing in a Pack of Virtual Wolves. 2001

[TDB+02] TOMLINSON, Bill ; DOWNIE, Marc ; BERLIN, Matt ; GRAY, Jesse ;

LYONS, Derek ; COCHRAN, Jennie ; BLUMBERG, Bruce: Leashing

the Alpha Wolves: mixing user direction with autonomous emotion in

a pack of semi-autonomous virtual characters. In: Proceedings of the

2002 ACM SIGGRAPH/Eurographics symposium on Computer anima­

tion, ACM Press, 2002. - ISBN 1-58113-573-4, S. 7-14

[Tea] TEAM, FEAR: FEAR Project Homepage. - http:/ /fear.sourceforge.net

[Tee]

[Ter99]

OF TECHNOLOGY, Massachusetts I.:

http:/ /web.mit.edu/

MIT Homepage.

TERZOPOULOS, D: Artificial life for computer graphics. In: Communi­

cations of the ACM 42 (1999), August, Nr. 8, S. 32-42

[Thi] THIERBACH, Jason: Jaspur's HalfLife FAQ.

http:/ /www.bluesnews.com/faqs/half-life.html

[TRG]

[TT94]

[TV]

[Var02]

[Var04]

TERZOPOULOS, Demetri ; RABIE, Tamer ; GRZESZCZUK, Radek: Per­

ception and Learning in Artificial Animals, S. 346-353

Tu, Xiaoyuan ; TERZOPOULOS, Demetri: Artificial Fishes: Physics,

Locomotion, Perception, Behaviour. In: Computer Graphics 28 (1994),

Nr. Annual Conference Series, S. 43-50

TV, Tech: TechTV- The Cult of the Sims.- http:/ /www.techtv.com

VARIOUS: AI Game Programming Wisdom. Charles River Media, 2002

VARIOUS: AI Game Programming Wisdom 2. Charles River Media, 2004

BIBLIOGRAPHY 164

[Ven04] VENTURES, WebMagic: Coin-Op Museum - Frogger. 2004. -

http:/ jwww.klov.com/F /Frogger.htrnl

[VP] VOSINAKIS, Spyros ; PANAYIOTOPOULOS, Thernis: A tool

for constructing 3D Environments with Virtual Agents. - cite-

seer .ist. psu.ed u / vosinakis03tool.htrnl

[War] WARREN, Mike: The mikeBot Project: Edi-

torial: Client-side Quake Bats are not Evil.

http:/ jwww. planetquake.corn/rnikebot / clientsideeditorial.htrnl

[WH] WIDROW, B ; HOFF, M E.: Adaptive switching circuits. In: IRE

WESCON. New York. Convention Record., , S. 96-104

[Wooa]

[Woob]

WooDCOCK, Steve: AI Roundtable Moderators Report 2003. Wednes­

day, August 18, 2004. - http:/ jwww.garneai.com/cgdc03notes.htrnl

WOODCOCK, Steve: Game AI.- http:/ jwww.garneai.com/

[Woo99a] WOODCOCK, Steve: The State of the Industry. 8 1999. -

"http:/ /www.garnasutra.com/features/19990820/"

[Woo99b] WooDCOCK, Steven: GenerationS. 12 1999.

http:/ jwww.generation5.org/ content /1999 j swoodcock.asp

[Woo03] WOOD, Oliver: Investigation into flocking using boids technology.

http:/ /www.dur.ac.uk/o.e.woodjpapers.php, 2003

[Yis04] YrSKIS, Eric: AI Game Programming Wisdom 2 - A Subsumption Ar­

chitecture For Character-Based Games. Charles River Media, 2004

