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Abstract

In this thesis we study smooth supergravity solutions and their relation to string
theory in two different contexts; quotient spaces and asymptotically flat solitonic
solutions.

We classify discrete cyclic quotients of p + 1-dimensional anti-de Sitter space.
These provide interesting models for string propagation where a non-perturbative
description is available. We establish which quotients have well-behaved causal
structures, and of those containing closed timelike curves, which have interpretations
as black holes. We explain the relation to previous investigations of quotients of
asymptotically flat spacetimes and plane waves, and of black holes in AdS.

We construct smooth non-supersymmetric soliton solutions with D1-brane, D5-
brane and momentum charges in type IIB supergravity compactified on 7% x S*.
Such solutions have been conjectured to be related to black hole microstates. The
solutions are obtained by considering a known family of U(1) x U(1) invariant met-
rics, and studying the conditions imposed by requiring smoothness. We discuss the
relation of our solutions to states in the CFT describing the D1-D5 system, and
describe various interesting features of the geometry.

We show that the solutions describing charged rotating black holes in five-
dimensional gauged supergravities found recently by Cveti¢, Lii and Pope [1,2] are
completely specified by the mass, charges and angular momentum, demonstrating

that an apparent non-uniqueness is a coordinate artefact.
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Chapter 1

Introduction

Einstein’s general theory of relativity is one of the most elegant mathematical de-
scriptions of natural phenomena ever produced. The fundamental tenet of relativity
is that the distribution of matter actually determines the geometry of space-time,
gravity is then a manifestation of this space-time curvature. Relativity is capable
of describing with great accuracy and precision almost every aspect of observed
gravitational physics.

Nevertheless, relativity sceems incomplete from a theoretical perspective. In the
1960’s Penrose, Hawking and Geroch used global methods of analysis to establish a
number of theorems which showed that singularities are a generic feature of classical
general relativity [7-9]. If certain reasonable assumptions hold then these singular-
ities are expected to arise in two situations of physical relevance. First, sufficiently
massive objects such as large stars can undergo gravitational collapse to form a black
hole. The matter is condensed into a singularity which is conjectured to be censored
from external observers behind an event horizon. Secoud, by running the collapse
argument backwards in time relativity predicts that our expanding universe has an
initial ‘big bang’ singularity.

These predictions signal the breakdown of relativity as a physical theory. To
elaborate, a space-time is defined to be singular if it is geodesically incomplete [10].
This implies that in finite proper time observers can reach boundaries of space-time
beyond which we cannot evolve the dynamical equations of the theory. Usually we

encounter additional problems as we approach these singularities such as divergent
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curvature, energy densities and tidal forces. Our current belief is that in the neigh-
bourhood of a potential singularity quantum gravitational effects step in to resolve
these difficulties.

At present, string theory provides the most developed, though still far from com-
plete, description of gravitational quantum phenomena (See [11-14] for an introduc-
tion). String theory is based on the deceptively simple premise that at Planckian
scales where the quantum effects of gravity are conjectured to be important, particles
are actually one-dimensional extended objects. The usual particles emerge as string
excitations and the known forces are described by the geometric splitting and joining
of these strings. Unlike theories of point particles, consistent quantization severely
coustrains the properties of potential string theories. At the perturbative level, this
demands supersymmetric theories that live in ten space-time dimensions. In the
low energy limit supergravity is recovered which is the supersymmetric extension of
standard general relativity.

Once one goes beyond perturbation theory one finds that the spectrum con-
tains extended objects called D-branes [15]. Through the open strings, which have
their endpoints confined to the branes, the D-branes realize gauge theories on their
worldvoluimne. On the other hand, they have another low energy interpretation as a
gravitational background for closed string propagation. The relation between these
two descriptions has motivated conjectured dualities which connect gauge fields and
gravitational theories.

The most developed example of such a duality ‘is the AdS /CFT correspon-
dence [16]. This conjecture relates string theory in a spacetime where the non-
compact part is asymptotically anti-de Sitter space (AdS), a space of constant neg-
ative curvature, to a conformal field theory (CFT) defined on a space isomorphic
to the boundary of AdS. The relation between the two theories is a “duality” in
the sense that there is a parameter such that in the region where it is small one
description is in the perturbative regime (weakly coupled) and the other is strongly
coupled, while the opposite is true when this parameter is large. The original ex-
ample proposed by Maldacena was an equivalence between type IIB string theory

compactified on AdS; x S? and four-dimensional N = 4 super Yang-Mills theory [17].
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In short, this equivalence includes a precise map between the states (and fields) on
the string side and the local gauge invariant operators on the N = 4 Yang Mills
side, as well as a correspondence between the correlators in both theories [18,19].
Since, as of yet, we do not have a reliable definition of non-perturbative type 1IB
string theory, it is difficult to prove this correspondence directly. Perhaps a more
appropriate viewpoint is to actually take N = 4 super Yang-Mills theory as the
definition of non-perturbative type IIB string theory on the AdSs x.S® background.

To gain insight into the stringy resolution of singularities localized in time such
as those that occur inside black holes and at the big bang we need a better un-
derstanding of string theory in time-dependent settings. Lorentzian orbifolds of
flat space are simple time-dependent solutions that provide (at least to leading
order) consistent time-dependent backgrounds for string theory. Thus these can
provide good toy models to study cosmological singularities in a controlled setting.
Although some progress has been achieved [23-38], the indications are that per-
turbative string theory breaks down on space-times which include space-like and
null singularities. To capture the physics of such singularities, a complete non-
perturbative description of string theory appears to be necessary. A classification of
smooth quotients of Minkowski spacetime was given in [39] recovering previous re-
sults on fluxbranes [40-44]'and uncovering the existence of an interesting non-static
smooth quotient—the nullbrane-—which can be understood as a desingularisation of
the parabolic orbifold [54], the supersymmetric toy model for a Big Crunch-Big Bang
transition singularity, by the introduction of a new scale (modulus) that smoothes
the singularity.

Since the AdS/CFT correspondence is conjectured to provide a fundamental,
non-perturbative description of string theory with gsymptotically AdS boundary
conditions, it could be employed to relate the time-dependence to the dual field the-
ory. Thus it is natural to wish to extend these investigations to consider strings on
orbifolds of AdS,1; x S?. Since AdS, like Minkowski space, is a maximally symmetric

space, it has a large isometry group which can lead to interesting examples of quo-

'Related work on the physics of luxbranes can be found in [45-53].
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tients. In addition, it is well-known that a black hole geometry can be constructed
from a quotient of AdS; [55,56]. Such an extension was initiated in [57], where an
AdS version of the isometry involved in the null brane quotient was constructed?.

In this thesis we take a systematic approach to this question, classifying all the
physically distinct quotients of AdS,., by one-parameter subgroups of its isometry
group. The classification of quotients of AdS; was thoroughly explored in [56]. This
was extended to AdS, in [68]. In chapter 3 we extend this to general dimensions, and
in particular address the case of AdSs, of great interest for string theory. (This ques-
tion has also been explored independently by Figueroa-O’Farrill and Simén [69]).
We focus on the causal structure of the quotients and the symmetry preserved under
quotienting. As AdS, 1 x S7 backgrounds are maximally supersymmetric, it is also
natural to study the question of how much supersymmetry was preserved by the
quotient and in [69] there is a detailed analysis of this question and the related issue
of the existence of a spin structure on the quotient.

Many of the quotients classified in chapter 3 contain closed timelike curves and
while there may be some interest in studying such -quotients, we shall neverthe-
less concentrate our attention on those quotients for which there is a well-founded
expectation that they will provide good backgrounds for string propagation. We
therefore study in detail quotients that can be given a simple physical interpreta-
tion: smooth quotients with a well-behaved causal structure. We take a conservative
definition of well-behaved causal structure, aiming to find space-times that are sta-
bly causal. This means the spacetime admits no closed timelike curves even when
the light cones are perturbed slightly (as they presumably are when quantum effects
are switched on). The causally regular quotients fall into two categories; there are
quotients where an action on AdS alone is well behaved and there are quotients
where we need to add a suitable action on the transverse sphere to avoid closed null
curves. Since smooth quotients are free of orbifold fixed points we can learn much
about their geometry and physical interpretation by choosing a good global coordi-

nate system. We systematically construct such coordinates by demanding that the

2Some other work concerning orbifolds of AdS can be found in (58-67].
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causal structure, preserved symmetries and action of the quotient are made explicit.
Disappointingly, all such causally regular quotients have a causal Killing vector 9,
thus do not provide models for the study of time-dependence. We also briefly study
those quotients which can be given a black hole interpretation following [55,56].
Smooth supergravity solutions may also be relevant in another context. Beken-
stein and Hawking showed that in order for black holes to be consistent with the
laws of thermodynamics they should be viewed as thermodynamical systems with
a temperature and an entropy [70-72]. The temperature is directly related to the

black body radiation emitted by the black hole, whereas the entropy is given by

A
Spy = e (1.1)

with G Newton’s constant and A the area of the black hole horizon. The usual
principles of statistical mechanics then suggest that there should be e° microstates
of the black hole for given macroscopic parameters. This is puzzling because in four
dimensions the geometry of a black hole is uniquely determined by just its mass,
charge and angular momentum. Early attempts to find the black hole microstates
were based on looking for small perturbations in the metric and other fields while
demanding smoothness at the horizon. No such perturbations were found; black
holes have ‘no hair’ [73]. There was, however, a suggestion that pure states would
be dual to geometries which were not smooth at the event horizon [74].

The fact that these differences are not visible in the classical description might
not seem a problem as it seems reasonable that the e53# microstates only differ
within a Planck sized neighbourhood of the singularity. However this leads to an-
other potential difficulty, the so-called information paradox [75]. By taking a semi-
classical approach Hawking showed that vacuum modes near the horizon evolve into
particle pairs; one member of the pair falls into the hole and reduces its mass, while
the other escapes to infinity as ‘Hawking radiation’. If the information about the
microstate resides ‘near’ the singularity then the outgoing radiation is unable to en-
code the details of the microstate, and when the hole has completely evaporated we
cannot recover the information contained in the matter which went in to make the
hole. This is a violation of the unitarity of quantum mechanics, and thus a severe

contradiction with the way we understand evolution equations in physics.
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String theory has made tremendous advances in understanding the microscopic
origins of this black hole entropy [76,77]. In the original calculations, two differ-
ent dual descriptions of a supersymmetric object were considered: a weakly-coupled
description in terms of perturbative strings and D-branes, and a strongly-coupled
description as a classical black hole solution. The picture of this black hole, as a
background for the perturbative string, is essentially the same as in semiclassical
general relativity. We have a singularity in spacetime that is shielded by a horizon
with essentially empty space in between them. The entropy was successfully repro-
duced by counting the degenerate supersymmetric vacua in the dual perturbative
D-brane description. This picture did not provide any understanding of where the
microstates were in the strong-coupling black hole picture.

The AdS /CFT correspondence provided a deeper understanding of the counting
of black hole entropy in string theory. Placing black holes in AdS space amounts
to a study of the boundary theory at finite temperature, the black holes were iden-
tified with the thermal ensemble in the dual CFT [18,19]. The microstates were
fundamentally thought of as states in the CFT, and it did not appear that they
could be thought of as living somewhere in the black hole geometry. The evolution
of the states in the CFT is unitary. Certain states can be identified with classical
geometries, but as has been emphasised in e.g. [18,78], the CFT provides a fully
quantised description, and reproducing the behaviour of the CFT from a spacetime
point of view will in general involve a sum over bulk geometries.

In a series of papers, Mathur and his collaborators have challenged this conven-
tional picture of a black hole in string theory (see [79] for a review). They argue that
the black hole geometry is merely a coarse grained description of the spacetime, and
that each of the e”8# microstates can be identified with a perfectly regular geome-
try with neither horizon nor singularity [80,81]. The black hole entropy is a result
of averaging over these different geometries, which produces an ‘effective horizon’,
which describes the scale at which the e“8#% individual geometries start to differ
from each other. They further argue that if a system in an initial pure state under-
goes gravitational collapse, it will produce one of these smooth geometries, and the

real space-time does not have a global event horizon, thus avoiding the information
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paradox. Thus the idea is that stringy effects modify the geometry of spacctime
at the event horizon, rather than being confined to Planck or string distances from
the singularity. In this picture the black hole interior is radically different from the
naive picture suggested by classical gravity. There are similarities with the com-
plementarity ideas [82], but unlike that picture, there is no obvious sense in which
the spacetime as seen by an infalling observer will be different. It is difficult to see
how the singularity behind the black hole’s event horizon can arise from a coarse
graining over non-singular geometries.?

Evidence for this proposal comes from studying a bound system of D1 and Db
branes, which is the simplest string theoretic object with entropy. Smooth asymp-
totically flat geometries in this D1-D5 systemn have been constructed that can be
identified with individual microstates in the CFT on the worldvolume of the branes.
The degeneracy of Ramond-Ramond (RR) ground states in this theory gives a mi-
croscopic entropy which scales as \/nn3; this was found to match a suitable counting
in a supertube description in [83,84]. However, this entropy is not large enough to
correspond to a black hole with a macroscopic horizon. It is therefore important to
extend the identification to states that carry a third charge n,, momentum along the
string. Thesc states have a microscopic degeneracy,/minsn,, and were used in [77]
in the calculation of the black hole entropy. Recently, Giusto, Mathur, and Saxena
have identified smooth geometries corresponding to some of these states (85, 86],
although the geometries constructed so far correspond to very special states, the
spectral flows of the RR groundstates studied earlier.* The overall evidence for the
picture of black holes advanced by these authors is interesting but not yet com-
pelling.

In chapter 4 we will extend these investigations to find more general solitonic

solutions in supergravity, and to identify corresponding CFT states. Whether or not

3Although it may be that most measurements in the dual CFT find it difficult to distinguish

between regular geometries and the conventional semi-classical picture of a black hole [87].
1Three-charge states were previously studied in the supertube description [88, 89]in [90, 91].

Other supersymmetric three-charge solutions have been found in [92-96], but the regular solutions

have not yet been identified or related to CFT states.
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the picture of black holes advanced by Mathur and collaborators proves to be correct,
these solitonic solutions can be viewed as interesting supergravity backgrounds in
their own right. It is particularly interesting that we can find completely smooth
non-supersymmetric solitons.

We find these solutions by generalising an analysis previously carried out for
special cases in [85,86,97,98]. We start with the nonextremal rotating three-charge
black holes given in [99], and systematically search for values of the parameters for
which the solution is smooth and free of singularities. We find that if we allow
non-supersymmetric solutions, there are two integers m,n labelling the soliton so-
lutions. Thus, we find new non-supersymmetric solitons. Further solutions, some of
which are smooth, can be constructed by orbifolds of this basic family. Some of the
supersymmetric orbifolds have not been previously studied.

The AdS /CFT correspondence provides an incentive to study AdS supergravity
solutions in the hope they can furnish information on the dual gauge theory. Sev-
eral gauge field theory phenomena such as confinement, confinement/deconfinement
phase transitions, and conformal anomalies, have been shown to be encoded in
the semi-classical physics of asymptotically AdS black holes [18]. Solutions of five-
dimensional gauged supergravity play an important role in this context. If we have
I1B supergravity on AdS; x.S% then rotation on the five sphere has three independent
angular velocities, corresponding to the Cartan sub algebra of SO(6). On dimen-
sional reduction to D = 5 gauged supergravity this Cartan sub algebra corresponds
to three U(1) gauge fields. This reduction is believed to be a consistent truncation,
meaning that all classical solutions of the five-dimensional theory can be uplifted to
[IB solutions. The U/(1) charges correspond to three R-charges in the dual N = 4
CFT.

Recently Cveti¢, Lii and Pope found asymptotically AdS non-extremal black
hole solutions in five dimensional gauged supergravity. They began with the three
U(1) charges set equal [1] then extended this to the case of distinct charges [2]. The
arresting property of these solutions is that they seem to violate the spirit of the no
hair theorem, i.e. they carry an additional parameter besides the mass, charges and

angular momentum. In chapter 5 we show that this parameter can be removed hy a
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coordinate transformation and redefinition of parameters. Thus, the apparent hair

in these solutions is unphysical.



Chapter 2

Preliminaries

In this chapter we survey some results and concepts that will be useful in chapter 3.
In section 2.1 we introduce the concept of a discrete quotient, reviewing the parabolic
orbifold as an example. In section 2.2 we outline the properties of Anti-de Sitter
space. In section 2.3 we discuss the BTZ black hole and describe how it originates

as a quotient of AdS.

2.1 Orbifolds of flat space

When we talk about an orbifold, we mean a quotient space obtained by identifying
points in a manifold under some discrete symnetry group. To be more precise, if we
have a manifold with a metric defined on it, the isometries of the metric define some
Lie group G with associated Lie algebra g. An element X € g of this Lie algebra

defines a one parameter subgroup I' of G by
' = {exp(tX)|t € R}. (2.1)

X also defines a Killing vector £x whose orbits are the integral curves of I'. The
topology of T is either R or S', depending on whether or not exp(tX) is the identity
elernent in G for some nonzero ¢.

Every one-parameter subgroup I' gives rise to an infinite family (indexed by
the subgroup itself) of discrete cyclic subgroups I', generated by an element v € T'.

Quotienting a manifold M on which G acts by the action of I'y consists of identifying

10
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points of M which are related by the action of ~. Siuc.c v = exp(lX), quotienting by
', consists of identifying points in M which are related by flowing along the integral
curve of the Killing vector £x corresponding to X for a time {. That is, the curves
joining two points on M that are on the same orb.it will be closed in the quotient
space. Immediately we see that if £x is timelike the resulting geometry will have
closed timelike curves.

We say that ', acts freely if for all z € M and v € T, yz = z implies that
v = 1. Free actions have no fixed points, points for which vz = z, for any v € I'y
where v # 1. If I, acts freely on M then the quotient space M/T', will be a
manifold. If ['; does not act freely (i.e. some elements in I, have fixed points) then
M will fail to be a manifold at precisely the fixed poiuts of I',. Such points are
called orbifold singularities. It is these singularities which distinguish orbifolds from
ordinary manifolds.

Thus taking a quotient hy a discrete cyclic suhgrmip we obtain an orbifold Af/T,
which is locally isometric to M but can have very different global properties. Orb-
ifolds in which some Fuclidean directions are quotiented by a discrete subgroup of
the isometry group have been extensively studied [100-103]. String theory defined
on such orbifolds has new light states (the so called twisted sectors) which are con-
fined to the orbifold fixed points. These twisted sector states resolve the conical
singularities in many cases.

In this thesis we focus on quotients generated by the action of some vector
field acting non-trivially in time. As a warm-up for the work of chapter 3 we will
briefly survey an interesting time-dependent background that can be constructed
as a Lorentzian orbifold of Minkowski spacetime; the so called parabolic orbifold
studied in [27,28,30,31]. Since this spacetime is locally flat, it is an exact classical
solution to string theory and string propagation is relatively easy to study. The

Killing vector generating this quotient is a null rotation
E=—Jyo+ Joz = +(.Z‘1 — I3)32 + 1'2(51 + 83), (2.2)

it consists of a boost in the z? direction plus a rotation in the 23-plane such that
the rapidity of the boost and the angle of the rotation have the same norm. If we

choose coordinates for R"? such that 2% = 2! £ 27 the action of the generator of the
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orbifold is:

zt ¥ + 2tx? + Pz
2 | - 2% 4+t~ (23)
T T

where t is the affine parameter of the orbit. This action has a line of fixed points
at x~ = x2 = 0. Since [|€]|> = (z7)3, the quotient does not introduce closed
timelike curves into the geometry. However, there will be closed lightlike curves
corresponding to = = 0. The orbifold action leaves one spinor invariant and thus

preserves one half of the spacetime supersymmetries. A more illuminating set of

coordinates is

=y, (2.4)
ot =yt oy ()

in terms of which the metric becomes
ds? = —dy*dy™ + (y~)*dy”. (2.5)

Notice that the transformation (2.4) breaks down at y~ = 2~ = 0 corresponding
to the fixed points of the action. These (f()()l‘(’lillat(%:“} are useful because they are
adapted to the action of the quotient, that is £ = J,. The orbifold identification is
then simply y ~ y + ¢ which makes the physical interpretation of the orbifold clear.
The spacetime (2.5), may be visualized as two cones (parametrized by y~ and y)
with a common tip at y~ = 0, crossed with the real line (for y*). y plays the role of
an ‘angular variable’ and the null coordinate y~ plays the role of a ‘radial variable.’
As a function of the ‘light-cone time’ y~ we have a big crunch of the y circle at
1~ = 0 which is followed by a big bang. Thus we have a supersymmetric toy model
of a cosmological singularity in which string propagation is under some control.

A natural next step is to embed such a scenario in string theory and analyse
whether the twisted sectors located at = = 0 manage to resolve such a singularity.
Unfortunately, unlike in Euclidean orbifolds, it turns out that this singular geometry
suffers from an instability. The addition of even a single particle causes the entire
universe to collapse into a spacelike singularity. Therefore the resolution of the

singularities is not accessible in perturbation theory [29-32].
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A closely related smooth quotient is the nullbranc introduced in [39]. As a
byproduct of our investigations of the quotients of Anti-de Sitter space, we were led
to realise that there is a rich structure of symmetries in the nullbrane which has not
been fully exploited in previous work on these solutions. We address this issue in

Appendix A.

2.2 Anti-de Sitter space

Anti-de Sitter space is the unique maximally symmetric solution of Einstein’s equa-
tion with constant negative curvature. (p + 1)-dimensional anti-de Sitter space

AdS,;; can be represented as the hyperboloid

P
—a? — a2+ Z I (2.6)
i=1
embedded in the flat (p + 2)-dimensional space with metric
P
ds* = —dzi — dz5 + Z dz?. (2.7)
i=1

[? is known as the radius of curvature of AdS and is related to the cosmological

p(p—1) 1

e The quadric (2.6) has the isometry group O(2,p) by

constant by A = —
construction. When we embed AdS,,;; in string theory, the presence of fluxes means
we have to specify its orientation which restricts this isometry group to SO(2,p).

Any Killing vector, &, in 50(2, p) can be written in terms of a basis Jg of s0(2,p) as

£ = w®J,, where w® = —w" and

Jig = 2200 — 1102, Jyy = 210+ 2,01, Ju = 220+ 1,05,  Jij = 1,0, —x;0;. (2.8)
A convenient global coordinate system on AdS,;; is defined in terms of the embed-
ding coordinates by

&£y = cosh ysinT,
X9 = cosh y cos T, (2.9)

Tm =sinhxZ,,, m=3,... ,p+2,

LFor the remainder of this chapter and in chapter 3 we set [ = 1.
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where the Z,, are embedding coordinates for an SP~', 5~ 32 = 1. The metric in
this coordinate system is
g = —cosh? xdr? + dx’® + sinh® xdQ, .. (2.10)

The explicit symmetries of this form of the metric are the time-translation
Jia = 0, (2.11)

and the SO(p) symmetries of the sphere,

i Y

Jmn = J’A:m,(r):f;n - :;"'n.a:i m,n = 3,... Pt 2. (212)
The other basis Killing vectors are

Jim = cos T tanh x,,d; + sin 73,0, + sin7 coth X (0 — Tmidin) 0z,
(2.13)
Jom = —sin T tanh X2, 0; + cos 72,0y + cos T coth X {(Omy — TmTn)0s

where m,n=3,...,p+ 2.

With x > 0 and 0 < 7 < 27 the solution (2.9) covers the hyperboloid once.
The hyperboloid is not simply connected: it has topology S! x RP*!, with the S!
representing closed timelike curves in the 7 direction. To obtain a causal spacetime
we unwrap the circle S! (i.e. take —0o < 7 < 0o with no identifications) and obtain
the universal covering of the hyperboloid without closed timelike curves. In this
thesis, when we refer to AdS,,;, we refer to this universal covering space.

What is the symmetry group of this simply connected AdS,.;? The isometry
group of the quadric (2.6), SO(2,p), has a maximal connected compact subgroup
SO(2) x SO(p). The SO(2) factor is generated by the Killing vector J;; whose
orbits are the closed timelike curves on the hyperboloid. In AdS,i; these curves
are not closed hence the Killing vector does not generate a circle subgroup but an
R subgroup. Therefore the symmetry group of AdS,, is the infinite cover 86(\2,/7))
of SO(2,p). in which the above SO(2) subgroup is unwrapped to an R subgroup.
As explained in chapter 3, this technical point does not alter the classification of
discrete cyclic quotients of AdS.

In the context of the AdS/CFT correspondence we are interested in the conformal

structure of AdS. If we introduce a coordinate 8 related to y by tan @ = sinh xy where
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(0<0<3)
ds® = cos*0(—dr* + d6° + sin® 0d7?). (2.14)

Conformally rescaling the metric by 1/cos%6 it becomes
ds* = —dr* + db* + sin? 8dz?. (2.15)

This is the metric of the Einstein static universe. However the coordinate € runs
(0 < 6 < %) rather than (0 < 6 < 7). Namely AdS,,; can be conformally mapped
into one half of the Einstein static universe. The conformal compactification is a
convenient way to describe the asymptotic regions of AdS. The striking feature of
AdS is that it has a time-like boundary at § = %, with topology S? x R. On this

boundary the isometries of AdS act like the conformal group acts in p dimensions.

2.2.1 Poincaré coordinates

Another useful set of AdS coordinates are Poincaré coordinates, let us define {y*, z}

i =2,....p+1in terms of the flat embedding coordinates in R*? introduced in
(2.6) by
1
=—-yt pu=2...,p+1
1 y
Tl = % [z2 + (1 + 7 vy’ )] (2.16)
1 v
= [ - (L= yty)]

In these coordinates, the AdS,;; metric is

9= = (nudy"dy” + dz*). (2.17)

Nw| —_

The explicit symmetries in this form of the metric are the Poincaré symmetries

acting on the slices of constant z. Using the identities

A7) .,.D+2 9.1

dar 1., AePrE du - ol gt 1
= - — Hvp - v’ o b -

Ay VT Ay Oy ! 2

we see that these are related to the usual so(2, p) basis hy

Py=0p — — (Jlu - Jup+2) (2.18)

Ly = yu0p — 90 — Ju .
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Timelike translations in the Poincaré patch correspoud to a timelike null rotation
in global AdS. On the other hand, spacelike translations in the Poincaré patch
correspond to a spacelike null rotation. Finally, Lorentz transformations in the
Poincaré patch are mapped to Lorentz transformations in R?*?.

The other symmetries in s0(2, p) are realised as coﬁformal symmetries acting on

the slices of constant z together with a suitable 0, component:
Jip + Jupr2 = =000y’ Y Oy + 2y,y" O + 22y,,0,, (2.19)

J1p+2 = —y“é)yu - Zaz. (220)

These coordinates will be useful for understanding the relation between certain
global AdS quotients and the near horizon limit of the corresponding discrete quo-

tients of brane geometries in supergravity.

2.3 The BTZ black hole

2 + 1 dimensional Einstein gravity has no local degrees of freedom, consequently all
vacuum solutions of Finstein’s equations in 2 + 1 dimensions have constant curva-
ture. It was therefore surprising when Banados, Teitelboim and Zanelli discovered
2 + 1 dimensional solutions with a negative cosmological constant that could be
interpreted as black holes [55]. These solutions are given by

(r2 —r2)(r? - 7'3){{)‘2 N r2dr?
2 T =) — 2

I 2
+r? [dqz)—’;’;dt] (2.21)

where 0 < ¢ < 27. This describes a rotating black hole with inner and outer

M J2N\ 2 |
r2 = 5 (1 + (1 - W) ) : (2.22)

There is a singularity at » = 0 in the sense that timelike geodesics end there.

horizons 4 given by

Since this space is locally isometric to AdS this is not a curvature singularity. The
curvature tensor is everywhere regular. For these solutions to describe black holes,

we need

M>0 |J] <M. (2.23)
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As M grows negative one encounters unphysical solutions with a naked conical
singularity. There is an important exceptional case. When one reaches M = —1
and J = 0 the singularity disappears. This is global AdS; which is seperated from
the continuous black hole spectrum by a mass gap of one unit. This state can not
be continuously deformed into the vacuum, because the deformation would require
going through a sequence of naked singularities not included in configuration space.

The fact that (2.21) only differs from AdSj3 in its global properties suggests it can
be obtained as a quotient of AdS;. These solutions were extensively studied in [56]
where the identifications corresponding to the black hole and its extremal limits
were explicitly identified. The Killing vector which generates the non-extremal (i.e

M > |J| > 0) BTZ black hole solution is
E=ry iy —r_Jos. (2.24)
This has norm
€2 = i (ai — ai) + 1l (23 — 23). (2.25)

Since € is timelike in some regions of AdSy the quotient of global AdS; generated
by this Killing vector will have closed timelike curves. The way to construct the
black hole is to excise the regions where |£]? < 0. and consider the quotient just
of the remaining portion of AdS;. The resulting geometry will be causally regular
by construction, but will clearly not be geodesically complete, having a ‘singularity’
corresponding to the boundary of the excised region. In [56] the authors explicitly
constructed coordinates covering the regions of AdS; with [£]* > 0 corresponding
to (2.21) with —oco < ¢ < oco. The surface r = 0 corresponds to [{[* = 0. It is the
identification ¢ ~ ¢ + 2m that makes the black hole. If ¢ is not a compact variable,
one simply has a portion of Anti-de Sitter space and the horizon is just that of
an accelerated observer. On the other hand after the identification extending the
spacetime beyond the surface 7 = 0 would produce closed timelike curves.

One limit of the BTZ solution that we will study in chapter 3is M =J =0

L dr
ds? = —r2di? + 7% +1dg”. (2.26)
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The Killing vector generating this spacetime is a null rotation

§=Jis — J. (2.27)

The norm [£|* = (z; — x4)? is positive semi-definite being zero at z? = 22 corre-

sponding to r = r, = 0 in the coordinates of equation (2.26). Thus this spacetime
has closed null curves on the horizon. In section 3.4.1 we show that by adding a suit-
able action on a transverse sphere to £ we can generate a causally regular spacetime

as a quotient of AdS,;; xSP.



Chapter 3

Quotients of anti-de Sitter space

In this chapter we study the quotients of p + 1-dimensional anti-de Sitter space by
one-parameter subgroups of its isometry group. We initiate this task by classifying
the possible physically distinct quotients. Having identified the potentially interest-
ing quotients we examine their properties paying close attention to causal structure.
Since we are particularly interested in smooth quotieﬁts we develop a formalism for
discussing their geometry and physical interpretation.

An important ancillary result of [56] relevant to our work is the classification
of the one-parameter subgroups of SO(2,2), this provides a menu of the possible
discrete cyclic quotients of AdS3. This classification was extended to SO(2.3) by
Holst and Peldan [68] in an attempt to extend the BTZ type solutions to AdS,.
In section 3.1 we show that the classification of physically distinct one-parameter
subgroups of SO(2,p) extends very naturally from the case p = 2 to higher p.
The subgroups considered in [56] all have higher-dimensional generalisations, whose
analysis is directly related to the analysis in the case of AdS;. There are only two
further physically distinct possibilities, one of which appears for all p > 3, and
the other of which appears for all p > 4. The prototype example of the former
was discussed in [68], and the latter contains the null brane-like quotient discussed
in [57]. We discuss the Killing vectors on the sphere in section 3.2.

In Section 3.4 we study in detail causally well-behaved quotients. We find that
there are two types of quotients with well-behaved causal structures. First, there are

quotients where an action on AdS alone is well behaved. These are generalisations

19
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of the two cases studied previously:

i.

ii.

self-dual orbifolds of AdS; [104,105] and their higher-dimensional generalisa-

tions, having no analogue in asymptotically flat configurations; and

the AdS analogue of the flat nullbrane construction [57], consisting of a double
null rotation action on SO(2,p) p > 4. This is the near horizon geometry of a
stack of D3-branes in the nullbrane vacuum for p = 4 and a stack of M5-branes

in the same vacuum for p = 6.

We give a comprehensive discussion of the structure of these quotients, extending

previous results. For the double null rotation, we construct a new symmetry-adapted

coordinate system, and find interesting relations to compactified plane waves. We

comment on related issues in the nullbranes in appendix A.

Secondly, there are quotients where the norm of the AdS isometry is non-

negative, but not always positive, so the pure AdS action would have singularities

or closed null curves. These can be removed by a suitable action on the transverse

sphere if the latter is odd-dimensional. This second type is qualitatively new. These

non-trivial actions on AdS can be divided into three categories:

1.

il.

1ii.

discrete quotients by rotations in AdS, the higher-dimensional analogues of

the AdS; conical defects;

discrete quotients by a null rotation, whose description in the Poincaré patch
corresponds to a spacelike translation (in pure AdSj, these would give rise to
the massless BTZ black hole [56]) and whose sphere deformations are the near
horizon limit of brane configurations in fluxbrane vacua classified in [106,107];

and

discrete quotients defined by an everywhere null vector field in AdS, (p > 3),
whose description in the Poincaré patch corresponds to a ‘translation’ along
a lightlike direction. Once more, when deformed by a non-trivial action on
a transverse sphere, this corresponds to the near horizon counterpart of the

corresponding quotients classified in [106, 107]
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In general our quotient spaces preserve some symmetries of AdS,1. A quotient
of AdS,4+ inherits all Killing vectors in so(2,p) which commute with the Killing
vector generating the quotient. Thus, there is the possibility that we can construct
interesting backgrounds by taking a further discrete quotient along one of these
preserved Killing vectors. In section 3.5 we consider this issue and uncover the
existence of a smooth causally regular quotient generated by two commuting double
null rotations.

It 1s important to stress that any of these string theory backgrounds are related
to many others through U-duality and by Kaluza—Klein reductions from or liftings
to M-theory. We shall not pursue this possibility in this thesis, even though it is
natural to wonder about the dual incarnations of our backgrounds.

Our emphasis differs from [56, 68] in that we are more interested in quotients
which are causally regular. However in section 3.6 we turn our attention to BTZ
type quotients. We confirm and elucidate the conclusion of [68], that for p > 2, the
only locally AdS,;, black hole solution is the higher-dimensional generalisation of
the non-rotating BTZ black hole, discussed previously in [118,119]. We explain the
origin of this restriction in general. We discuss the relation to other recent work and

comnent on the proper interpretation of another solution presented in [119].

3.1 One parameter subgroups of SO(2, p)

We wish to classify physically distinct quotients of AdS,,; by one-parameter sub-

e ——

groups of SO(2,p).! Annoyingly, it cannot be embedded in a matrix group; that is,

it does not admit any finite-dimensional faithful linear representations. Crucially,

o ——

however, SO(2,p) has two features in common with its quotient SO(2,p). First of

all, they share the same Lie algebra so(2,p) and furthermore, since conjugation by.

—

central elements is trivial, the adjoint action of SO(2, p) on so(2, p) factors through

"We will generally have in wind the guotient by a discrete subgroup, to construct another p+ 1-
dimensional spacetime; the prototypical example is the BTZ black hole [55,56]). It is also interesting
to consider the Kaluza-Klein reduction along such a direction to construct an p-dimensional space-

time. For the purposes ol classification, we can treat these two kinds of quotients together.
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SO(2, p). Similarly, the action of the spin cover Spin(2, p) of SO(2.p) on the spinor
representations factors through Spin(2, p). These happy facts allow a complete anal-
ysis of one-parameter subgroups and also the determination of the supersymmetry
preserved by a quotient.

As explained, for example, in [39], if I and T” are conjugate subgroups of isome-
tries of a space M, then their quotients M/I' and M/I" are isometric, the isometry
being induced from the isometry of M which conjugates I' into I”. Therefore to
classify such quotients A//T'. it is enough to classify subgroups up to conjugation.
A one parameter subgroup is determined by a Killing vector £ in the Lie algebra
50(2,p). Since £ = w®J,, the classification of physically distinct € is equivalent to
classifying antisymmetric matrices w? up to conjugation by elements of SO(2, p),

that is,

W~ w iff W= (T71)%w, T (3.1)

for some T € SO(2,p). As explained in [56,68], if we slightly extend the equivalence
relation, so that ' ~ w for 7% € O(2,p), then the problem is equivalent to the
familiar problem of classifying the matrices up to similarity. The distinct matrices
are then classified by their eigenvalues and the dimensions of the irreducible invariant
subspaces associated with them. This extension of the equivalence relation implies
that we will not distinguish between Killing vectors which differ by a sign reversal
of some of the embedding coordinates, that is Killing vectors that have different
orientations. Since the metric in AdS,,; is invariant under orientation reversing
transformations, the geometrical interpretation of these different discrete quotients
will be identical. However a distinction will arise in the sign of the fluxes that
stabilise the classical configurations. This fact can certainly have consequences
concerning the supersymmetry preserved by the disc1:et.e quotients.

Since the classification reduces to the study of the eigenvalues and eigenspaces of
the matrix w, we can ‘build up’ the general matrix from the different eigenspaces.
We will therefore first consider the different possibilities for invariant subspaces
consistent with the signature of spacetime, and then use these possible invariant
subspaces as building blocks to construct all the possible inequivalent matrices wep,

and hence classify the difterent quotients. In the following we shall say that the
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matrix wgy s of type k if its highest dimensional irreducible invariant subspace is of
dimension k.

The calculations are simplified by observing that as a consequence of the fact that
wap 1s real and antisymmetric, its eigenvalues come in groups: if A is an eigenvalue
of w? then — A\ is an eigenvalue of w%, and similarly if A is an eigenvalue then so is
A*. Another useful fact is that if v and u® are eigenvectors of w% with respective

eigenvalues A and u, so that

wiv? = M, whu® = pu®, (3.2)

then v%u, = 0 unless A + u = 0. Note that v® etc. are vectors in R*?; the indices
ON Wy, v* etc are raised and lowered with the metric n,, on R*?P. Thus, we see that
R%? decomposes into a product of orthogonal eigenspaces, but each such subspace
is associated not with a single eigenvalue A but with the pair of eigenvalues A, —\.
We will now study the properties of these orthogonal eigenspaces.

Let us first discuss the cases with non-degenerate eigenvalues. The simplest
case is when the eigenvalue is zero; then there is a éingle eigenvector v*, which is
orthogonal to all other eigenvectors, and by the non-degeneracy of the metric must
then have v®v, # 0. We can rescale v to set v?v, = 1, which we will refer to as A(*),

(1,0

or v"u, = —1, which we will refer to as A%, These cases correspond physically to

a direction in R*? which is not affected by the identification.

The next possibility is a pair of real eigenvalues, a, —~a, a > 0. Then we have
b _ b _ o s
wapl” = aly, wam’ = —am,. (3.3)

The only non-zero inner product is [,;n® = 1. To construct an orthonormal hasis,

we take
1+ m) (1~ m) (3.4
m=—((4+m), vy=—(—m). A4
) V2
We then have v, - v, = 1, vy - v, = —1, so this subspace has signature (—+). We

denote this by A it corresponds physically to a boost in some R'! subspace of
R2P.

If we have a pair of imaginary eigenvalues,

wWapk® = ibka, wapk™® = —ibk], (3.5)
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b > 0, the only non-zero inner product is k. k** = 1. Now we need to construct the
orthonormal basis in a slightly different way, because we need to respect the fact

that the action of w,; on R?? is real-valued. We can set

1 i
v = —=(k+ k"), vy=—(k-k"). 3.6
We then have w'v! = buy, wvh = —bvi. We have vy =1 v vy = 1, so this

subspace has signature (++), which we denote by A(®?. On the other hand, we

could have chosen
)

1
vy = k+ k%), vo—=——(k-k"). 3.7
1 \[2( ), v \/Q( ) (3.7)
This also gives a real action, but now v; -v; = —1, vy - v, = —1, so this subspace has

signature (——), which we denote by A%, These two cases correspond physically
to rotations in R? subspaces of R??.
The final possibility is a complex eigenvalue, which gives us the four eigenvalues

A, =X A%, =X (so we can take A = a + @b for a,b > 0). We have
wapl® = Mo,  wapm® = —Amy, (3.8)

4 b __ *_ %
wal™ =X, wam® = =A'm]. (3.9)

*

The non-vanishing inner products are I-m = 1 and I*-m* = 1, so l, m and I*, m* span
two orthogonal two-dimensional spaces; however, we need to mix them to obtain a

real basis. If we define

o= )+ nt )], v = 2[4 )~ Gl (310
V3 = %[(1 —I+(m-m")], wv= %[(Z 1"y = (m —m")], (3.11)

Then we will see that w,, acts on the v; with real coeflicients, and they span a space
of signature (— — ++), which we denote 222

Now we turn to the higher-dimensional irreducible invariant subspaces. If we
have a k-dimensional subspace associated to the eigenvalue zero, then we can pick

a basis of vectors m;, 2 = 1...., k such that

Wapn? =0, w,lbm? = M(i_1)e for i # 1. (3.12)
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We can then observe that m{m;_1), = miwem? = 0 for i = 1,..., k. We then need
mimy, # 0 for consistency with the non-degenerate metric. We can also use (3.12)
to show

. an® — gy, ,ab, _ P ey @
M| = Mg Mii1)b = =M 1241y (3.13)

and

MigM(;_ ) = Migw®my = 0 (3.14)

by antisymmetry of w,,. Now imagine & is even. Then these two relations taken
together imply that

MkaMy = £Mk/2)aMkja41) = 0, (3.15)

in contradiction with the non-degeneracy of the metric. Hence there cannot be -
dimensional invariant subspaces associated with a zero eigenvalue for k even. For k
odd, (3.13) implies

Migm] = (=) m (3.16)

for i + 7 = k+ 1. We can also set all other inner products to zero by a suitable

redefinition of the basis m?. We can then define an orthonormal basis by

1 1 ) k-1
Ugic1 = —=(my + mge1—;), v = —=(m; — myyq—;) fori=1,...,——  (3.17)
V2 V2 2
and v = miq1/2. We then have vy - v2;_1 = —vg; - V2, and we can choose vy, - vy

to be 41, so the subspace spanned by these vectors has either (k — 1)/2 negative
signature directions and (k + 1)/2 positive signature ones, or (k + 1)/2 negative
signature directions and (k — 1)/2 positive signature ones. The only possibilities
which are consistent with embedding as a subspace in R*” are M2 gnd N1,
and AV(2?® with signature (— — + + +).

If we have a k-dimensional invariant subspace with a real eigenvalue, we must

have a pair of them; we can define a basis such that the action of wg, is
wablll’ = aliq, wablﬁ’ = aliq + l(i—1)q for e =2, ..., k, (3.18)
and

w,,,,'m,tl’ = —amy,, w,,,,m? = —am;, + myi_1, for e =2, k. (3.19)
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By repeatedly using these relations, we can show that I; - [; = 0 and m; - m; = 0
for all 7,j. We can also show m; - [; = 0 for ¢ # k; we then need m, -l # 0 for

non-degeneracy. As in the case of a zero eigenvalue, we learn that
m; - ll = (—1)i+]m1 . lk, (320)

for i + 5 = k + 1, and we can set all other inner products to zero by a suitable

redefinition of the basis. An orthonormal basis is then formed by taking

1 1 .
Va;-1 = 75([1 + mk+],i), Va; — 7§(Z1 - mk+1_1‘) for ¢ = ]., Ceey k. (321)
We then have v9; 1 - v9;_1 = —ws; - U9, 50 the subspace spanned by these vectors has

an equal number of negative and positive signature directions. The only possibility

A which has signature (——++).

consistent with being a subspace of R?® is
If we have a k-dimensional invariant subspace with an imaginary eigenvalue, we

must again have a pair of them; we can define a basis such that the action of wg is

Waph? = ibk1g,  wapk? = ibkig + k(1o for i =2, k, (3.22)
and
wapky® = —ibk},,  wapk(® = —ibk, + kfi_y, fori =2, k. (3.23)

By repeatedly using these relations, we can show that k; - k; = 0 and k7 -k = 0
for all 7,5. We can also show k, - k} = 0 for 7 # k; we then need &, - kf # 0 for

non-degeneracy. As in the case of a zero eigenvalue, we learn that

ki -kl =(=1)""%k -k (3.24)

7

for i +j = k + 1, and we can set all other inner products to zero by a suitable
redefinition of the basis. The action of w becomes real if we define new vectors
w; = %(kl + kf) and z; = ﬁ(k, — k¥). There is then-a technical difference between
even and odd dimensions: in even dimensions, the non-zero inner products are w; - z;
for i+ 7 =k + 1, and an orthonormal basis is formed by taking

1 1 .
V2i-1 = ﬁ(wl + Ik+1—‘i)7 V9 = E(wl - $k+l—i) for ¢ = 1, Ly k, (325)

We then have vg;_1 -v9; 1 = —w9; - Up;. Thus, in even dimensions, we have a subspace

with an equal number of positive and negative directions, and the only possibility
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in R?? is AI"®? which has signature (— — ++). In odd dimensions, the non-zero
inner products are w; - w; = z; - z; for i + § = k + 1, and an orthonormal basis is

formed by

.

1 1 4
Vgi-1 = %(wi + Whp1-i), Vg = ﬁ(wi — Whyy-) fori=1,.., 9 (3.26)
Uk = Wi, Ukgl = Tip (3.27)
1 1 o k+3
V2i—1 — ﬁ(ll + fL'k+1_L')., Vg = E(.Tl - ];k+1—i) for ¢ = 2 oo ,k,. (328)
We then have vg; 1 - v9;-1 = —wg; - Uy; except for i = "42—1; Up - Up = Ug41 * Ups1. Lhe

subspace thus either has k—1 positive and £+1 negative directions or vice-versa. The
only possibility in R%? is A!//24) which has signature (— — + + ++). In the special
case b = 0, which will be important later, A’/7(4 reduces to a pair of A//(12)—that
is, to a pair of null rotations in independent subspaces. Finally, we could consider
invariant subspaces of dimension k associated with complex eigenvalues. We will
not give the details here, as it does not lead to any cases that fit inside R%?. The
subspace associated with the set of four complex eigenvalues always has at least 2k
negative directions.

We have now calculated the possible invariant subspaces that can occur in our
wap.2 Let us consider how we can assemble these blocks to form an p+4 2 dimensional
matrix we,. For p even (which includes the case p = 4 which we are particularly

interested in), the possibilities are

o Type I
C )\gz,z) n p ; 2)\(0,2)’
R o\(11) +P;2/\(0,2)7
l 22O §A<0’2).

Where the coefficient in front of a A corresponds to the number of times that

type of invariant subspace appears.

2Naturally, the same classification can be applied for the Lorentz group SO(1,p) in R'?; in
that case, the only possible subspaces are A1 A0 \(LD - 3(0.2) g AT corresponding

to trivial directions, boosts, rotations and null rotations respectively.
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e Type Il
.
I )\1_11(2,2) 4 p— 2/\(0,2).
2
e Type I1]
I A 11(24) P 4)\(0,2)
2 b
0 (a) ATT(12) 4 A0 4+ A 4 pP— 4)\(0,2)
2 b
0 (b) A1) FRPYCAY + 13;2)\(0,2)
2 b
0 (c) A11(12) L) 4 p— 2/\(0,2).
2
o Type V

A\V(23) FREYCAY) 4 P—- 4/\(0,2).
2

To discuss the physics of these different cases, we need a convenient representative

of each case. It is easy to construct suitable representatives; in most cases, this is a

minor generalisation of the analysis of [56,68]. For I¢ this is
€ =0b1(J12 — Jsa) + a(Jig — Ja3) + baJss + b3Jrs + -+ + beJpripra, (3.29)
with a,b; > 0. The norm of this Killing vector is
&€’ = (a® =)+ |2Ll*) ~ dabi(zizs + 224)
+b2(x2 + 22) + ba(2F 4+ 2d) + - + b% (:(:fHrl + xf,+2). (3.30)

Thus, this Killing vector can be everywhere spacelike for by = 0, but its norm is

unbounded from below for b; # 0. For type Ig we have

f = (llJM + a2J23 -+ b1J56 + -+ b%Jer]erz, (331)

®Recall that we have identified Killing vectors differing by conjugation by O(2, p); if we only
identified under conjugation by SO(2,p), we should take b;,7 > 2 to run over the reals, and
E=bi(—Jiz — Jaa) +al—Juy — Jaz) + badsg + by Jrg + - + beJpiipre and € = bi(=Jiz + J5a) +
da(Jya + J23) + badsg + bsJrg + - + b% Jp+1p+2 for a,by > 0 would also count as distinct cases.

Similar remarks apply in the other cases to follow.
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with norm

Eu€" = ai(e] —af) + aj(a} — 23) + B(aE + ) + -+ Uy a(ap +ap,,). (3.32)

This is everywhere spacelike for a; = ay (using 7®z,z, = —1), which is equivalent

to type I¢ with b; = 0. For a; # a5 the norm is unbounded from below. For type I;

we have
(&= DiJia + baJgy + byJsg + - - - + b%—’ Jp+1p+2, (333)
with norm
Eu6" = —bi(1 + |l ]®) + b5(a2 + 2f) + - + bzp;_'z(ﬂfiu +3h1,). (3.34)

For b; = 0, this is spacelike away from the axis z; = 0.¢ > 2, where the Killing

vector degenerates, so this axis is a line of fixed points. For type //g we have
&= (I,(.]M — JQ;;) + Jio+ Jis—Jog — Jag + by Jsg + - F pr—Q.]p_H,H_Q, (335)
with norm

4 = a1+ ||zL]|?) + 4alz) + z4)(z3 + x2)

+bf(ig i)k b%(;viH + :L'ZH). (3.36)

For a = 0, this is spacelike except on the subspace x; = 0,7 > 4, where the Killing

vector is null. For type I1j, we have
&= (b1 + 1)J12 + (b1 — 1)]34 + Jig — Jog + bayJsg 4+ -+ + blzi Jp+1p+2a (337)
with norm

&' = —bi(L+ =)
+2b1 (21 + z4)® + (72 + 23)°)

+05(w5 + 76) + -+ + baca (Thar + Tpia): (3.38)

For b; = 0, this is the same as type [ Iz with a = 0 (as one would expect). For type

I'1l; we have

E=0b(=Jig+ Jsa+ Jsg) + J15s — Jas + Jog — Jug + baJrs + - + szsz pr1p+2, (3.39)
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with norm

L1 = —b%(1 + |z |I?) — 4b(zg(z, - z3) + z5(zg — T2)) + (21 — 23)* + (T4 — 2)°

+b3(x2 +ad) + -+ b?ﬁ;_z(;zf,+1 ) (3.40)
This is everywhere spacelike if b = 0. For type 11/, we have
§=adw+ i3 = Jau +bidmg + - A bpoadypipra, (3.41)
with norm
Eud" = (w1 + 2a)” + a®(a3 — 28) + 01(27 + ) + -+ Vpa(ap +a5,0),  (342)

for type ') we have

g = Jig — Joz + b1 Jsg + by Jrg + - + bp;QZ Jp+1p+2, (343)
with norm
6" = — (i + )t + DA v ad) + b?p_}z (:L'iJrl + :1:§+2), (3.44)

and for type 111y, we have
§=Jia = Jaa + biJsg + bodrg + -+ bp2Jpyipaa, (3.45)
with norm
£.6" = (2 + 24)* + 03 (a5 + af) + b3(ad +a3) + -+ bg,%g(:cfwrl + :E12,+2). (3.46)

This last case is spacelike everywhere away from the subspace z; + 24 = 0, z; =

0.4 > 4, where it is null. Finally, for type V we have
E=Jun+is—Jau+ Jis— Jsg = Jus + brJrg +- -+ 5%4 Pp1p+2, (3.47)
with norm

8" = (wg—m1)® = dws(vy + x3)

+bi(zi 4 ad) + -+ b%%‘;(:c;f,+l + :L"fjw). (3.48)

When p is odd, the possibilitics are slightly different:
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o Type /
C A2 a0 P30
- 2 b
R gA)  a0n P340y
2 )
I 220 P lyen o
2 ?
R(0) AW e P e
2
o Type Il
R A T(22) 100 4 p— 3/\(0,2)
r 2 b
n NieD e PO y0a),
¢ 2
o Type Il
0 A TT(2:4) FRPYCAY + p— 5/\(0,2).
9 ;
0 (a) AT1(12) FESYIRD 4 P—S/\((J,z)1
. 2 i
0 (b) A1 i p— 1)\(0,2)
2 3
e Type V

AV(23) P 3)\(0,2)'
2

The physical interpretation of each block is now clearer. As mentioned above

A0 A0 /\(1’1)? A02)  3(20) correspond to trivial directions, boosts and rotations

respectively. We have two distinct null rotations: a null rotation M/(12) involving

two spacelike directions and a null rotation A" involving two timelike direc-
tions. There are three types of non-trivial four-dimensional elementary blocks: a
linear combination of timelike and spacelike null rotations deformed by the addition

2) 2)

) . 11(2, . . 11(2,2) . i
of a linear combination of boosts A, ( , a different, deformation A; ( involving the

addition of a timelike rotation and a spacelike rotation, and finally a linear combina-
tion )é?,?) of two actions involving a timelike and spacelike rotation on one side and
a linear combination of boosts on the other side. There is only one five-dimensional

ap . . . . . .
elementary block, AV®3 which can be interpreted as the linear combination of a
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timelike null rotation and two spacelike null rotations sharing the time direction and

I1124) " appears in six

one of the spacelike directions. The last elementary block, A
dimensions, and it consists of a double spacelike null rotation acting on orthogonal
subspaces, deformed by a simultaneous rotation in the plane formed by the two
timelike directions and two orthogonal spacelike planes.

For the cases which occur for both even and odd p, the difference between the
two cases is just that for either even or odd p, there'is a direction which does not

09 1t is therefore

participate in the quotient; that is, they differ by a factor of Al
not worth repeating the expressions for the Killing vectors in these cases for p odd.

For the one new case, type Ig(g), the Killing vector is
€= aJos + biJis + bador + -+ bpa Jpsapra, (3.49)
with norm
£,8" = a’(xd — a3) + bi(as + ai) + b:j(:r;é Rt b'f,%l(rfprl + 1:;2,+2). (3.50)

For a = 0, this is the same as type Iy with b; = 0 in odd dimension. It is spacelike
away from z; = 0,¢ > 3, which is an axis where the Killing vector degenerates.

Recall that we identified Killing vectors differing by conjugation by O(2,p).
When considering the amount of supersymmetry preserved by a quotient we need
to consider the SO(2,p) classification of [69]. The corresponding Killing vectors
are given in table 3.1, notice that now some of the blocks come in pairs Ay. It
can be checked that one element of the pair is always mapped into the other by
an orientation-reversing transformation. It should be stressed that in table 3.1, we
have not constrained the range of the different parameters appearing in these Killing
vectors. For a complete discussion concerning these constraiuts, we refer the reader
to [69].

This completes the basic classification of different one-parameter subgroups of
SO(2,p). We have observed that the Killing vector describing each distinct type
of quotient naturally decomposes into an so(2,n) Killing vector, with n < 4, and
a series of $0(2) rotations in independent planes. In section 3.4 we will construct
a coordinate system which makes this decomposition explicit. Then the action of

a given quotient on AdS,.; can be simply expressed in terms of the action of the
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Block Killing Vector
A(0:2) bJ34
AL aJis
A(20) bJia

A | g g
NTD | g1 — o

/\:i(2.2) tJig + Jis F Jog — Jyg + av(J.14 T Jos)
NLED | (b4 1)1+ (b= 1) Joa + J1a T Jag
/\(c?) b(£12 — Jsa) + a(Jia F Ja3)

-

/\‘/(2,3) J12 — JQ4 + J|3 - J34 + ‘]15 - J’”’

AN i — Jag & Jog — Jug + b(FJ1a + Jaa + Jsg)

Table 3.1: The Subspaces as orientation preserving Killing vectors.

corresponding quotient on AdSs3 (or AdS, or AdSs) subspaces of the AdS,;, together
with rotations in an orthogonal sphere. In addition, the action of the quotient on
the boundary of AdS,;; for p > 2 (p > 3, p > 4 respectively) is also expressed in
terms of the action on the bulk of the lower-dimensional space. This observation
will be used extensively in the study of the physics of these quotients.

The main purpose of this section was to explore the extension of the classification
of one-parameter quotients of AdS, 1, discussed in [56,68] for the cases p = 2,3, to
the general case. This extension proved to be reasonably direct. Perhaps surpris-
ingly, there was little novelty in the general analysis; almost all the cases that appear
for general p have appeared already for p = 2 [56] or 3 [68]. The one exception. type

I'11]}, extends a particular quotient considered for the case p = 4 in [57].
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3.2 Infinitesimal isometries of spheres

Here we set up the notation to describe the Killing vectors on spheres. For this
purpose, we find it convenient to identify the ¢g-sphere of radius R with the quadric

traced by
g+1

Z 22 = R? (3.51)
i=1
in R7"!. This has the virtue that the isometry group of the quadric, O(q + 1) acts
linearly in the ambient Euclidean space. We shall restrict this group to the subgroup
SO(q + 1) which preserves the orientation.
The conjugacy theorem for Cartan subalgebras of so(q + 1) allows us to bring

any Killing vector £ on S to the form

.
£€s = Zgi Rai—1i (3.52)

i=1 ‘
where r = [q—;—lj, R;; stands for a rotation in the ij-plane and the 8; are real

parameters specitying the rotation angles. This still leaves the freedom to conjugate

by the Weyl group, which we can fix by arranging the parameters in such a way that
01 >0,>--->16,].

For odd-dimensional spheres, Killing vectors with all 8, # 0 are everywhere nonva-
nishing, whereas in even-dimensional spheres every vector field, Killing or not, has
a zero.

It will be convenient in what follows to construct a coordinate system for S?
adapted to a given Killing vector £g; that is, one in which £s = d,,. Let us describe

in detail the case of even-dimensional spheres. First, rewrite (3.51) as
>zl + (g20)* = R, (3.53)
i=1 '

in which we introduce r complex coordinates for the two-planes where the action of

(3.52) may be non-trivial. A natural way to solve (3.53) is by

Zor41 = R cosf

, r (3.54)
z; = R sinfp; ¢ where Zp? =1.
i=1
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It is clear that in coordinates {8, p;, ¢},

{S:Z()iai ;
i-1

whence by a linear transformation in the space {;} we can rewrite £5 as 9. Indeed,
assume 6, # 0, and consider
'l/) = 01_1 w1,
(3.55)
Gi=i~ 0,07 o1 i=2,.,7.
By construction, {s becomes dy.
The case of odd-dimensional spheres follows formally from the above by setting

6 = w/2 in the above expressions.

3.3 Causal properties of AdS, ;| quotients and their
deformations

In Section 3.1 we reviewed the classification of one—parémeter subgroups of isometries
of AdS,;;. The small number of elementary blocks notwithstanding, the taxonomy
of inequivalent discrete quotients increases quickly with dimension due to the pos-
sibility of combining the action of different blocks acting in orthogonal subspaces of
R?P. Lack of spacetime prevents us from discussing all possible quotients in detail.
Our primary criterion will be that a quotient should have a well-behaved causal
structure.

We can divide our quotients into three different subsets according to whether
e the norm of the associated Killing vector field is non-negative (Table 3.2},
e the norm can take negative values, but is bounded below (Table 3.3); and
o the norm can take arbitrarily negative values (Table 3.4).

The quotients generated by Killing vectors with unbounded norm clearly contain
closed timelike curves corresponding to the very orbits of the Killing vector in regions

where it is timelike. Furthermore, even when we consider quotients of AdS,;; x 59
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Type of Quotient
L ifby=0

Ig if |a1| = |a
Ilge ifa=0
Iy if by=0

I Ty

INLy o =0

Table 3.2: Quotients generated by everywhere non-timelike Killing vectors.

Type of Quotient

Iy if niseven and |b;| > by > 0 for all 1

I[ﬂ:t Zf |b1| Z |b1| 2 OfOT all ¢

Table 3.3: Quotients generated by somewhere timelike Killing vectors which have

norm bounded below.

by adding a nontrivial action on the sphere, the resulting Killing vector will still be
timelike somewhere, so the quotients will still have closed titnelike curves. Therefore
the only way in which these quotients will enter into our discussion is in asking
whether any of them lead to ‘black hole’ spacetimes.

The quotients generated by the Killing vectors in Table 3.3 also clearly contain
closed timelike curves. However if we consider quotients of AdS,.; x S, the Killing
vector can be made everywhere spacelike by adding a suitable action on an odd-
dimensional sphere. Since odd-dimensional spheres admit Killing vectors whose

norm is pinched away from zero, whence the total Killing vector

§ = &aas + &5 (3.56)
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Type of Quotient

Ir  unless |a1| = |as|

Ir(0)

Iy unless n is even and |b;| > by > 0 for all i
le+

[+ unless |b;| > |b1] >0 for all @
Igpiunless a =0

[y

1T o)

111z unless by =0

|4

Table 3.4: Quotients generated by Killing vectors with norm unbounded below.

may be spacelike even if €445 is not. This can only happen if the norm of £aqg is
bounded below, since the norm of &5 is bounded above by compactness of S9.

The property of being spacelike everywhere is a necessary condition for the ab-
sence of closed causal curves, but it is certainly not sufficient (see [115] for another
example where it fails to be sufficient and a statement of a sufficient condition,
and [116] for a discussion on this topic and its relation with U-duality). Indeed, we
will show presently that even when £ is everywhere spacelike, if £p45 is timelike in
some region ) C AdS,y,, then any discrete cyclic quotient associated to & = {aqas+&s
will have closed timelike curves in the region (D x S?)/T" of the quotient. The key
point in the argument is to exploit the fact that the sphere has bounded diameter
in order to construct a timelike curve between two points identified by the action of

[ which, as in [115], is different from the integral curve of €.
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Let us first illustrate this coustruction with a simple example, which is depicted

in Figure 3.1.

b
S
|

-

Figure 3.1: Closed timelike curve in a discrete quotient of the Lorentzian cylinder.
The dotted lines represent the “lightcones” at z and at v - z. Notice that although

the orbit of £ is spacelike, the straight line between = and vV - z is timelike.

Let C = (R/27Z) x R denote a Lorentzian cylinder coordinatised by (8, 7) and
flat metric df? — dr2. Let € = 9y + a0, be a spacelike Killing vector, so that a? < 1.

The integral curve of ¢ through a point (g, 7¢) is the curve
L— (6o + L, 7o+ at) .

Let us define an action of Z on C| generated by the operation of flowing along the

integral curves of £ for a time ¢ > 0:
0, 7)— (8+£,1+al).

Consider the two points (0, 7) and (8 + N¢,7 + aN¥), which are identified in the

quotient C/Z. The geodesic joining this point to (8, 7) is the straight line

t— ([0 +tN{, T+ aN?),
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where [—] denotes the residue modulo 27, The norm of the velocity of this curve is
therefore

[NO? — N*a?0? < 47 — N*a?? |
which is clearly negative for N large enough. This curve is therefore a closed timelike
curve in the quotient C/Z.

Now let us go back to the general case. Let v = exp(£X) for some X € g and
¢ > 0, and let £ = €aqs + & be the Killing vector corresponding to X, with £aqs
timelike in some nonempty region D C AdS,;,. Let z € D x S?. Since the norms of
each component &a4s and &g are separately conserved along the integral curves of &.
these belong to D x 8%, and hence so does + - 2. For those Killing vectors with AdS
component in Table 3.3, the associated discrete cyclic groups I' have infinite order,
so we can consider points ¥ and ¥V - z for N arbitrarily large, which will give rise

to the same point in the quotient. We will construct a curve

c:[0,N{] - AdS,;, x S7

N ) ags, (YN - x)s) which

between ¢(0) = o = (waqgs, z5) and ¢(NE€) = ¥V -2 = ((v
will be timelike for N sufficiently large and hence becomes a closed timelike curve
in the quotient.

The curve ¢ is uniquely specified by its two components: caqs on AdS, ;1 and cg
on S7. We will take caqs to be the integral curve of £pqs, and c¢g to be a minimum-
length geodesic between zg and (v - z)s. Let L denote the diameter of the sphere;

that is, the supremum of the geodesic distances between any two points. Then the

arc-length along cg satisfies
Nt
| tesllae=nelesl < 2
0

where the equality is because ||¢s|| is constant along cs and the inequality is because
cs s length-minimising. Therefore,
2 2 2 2 L?
€l = Nenasli® + sl < nasll® + <o
which is negative in D x S7 for N large enough.

Let us remark that this argument applies to any Freund—Rubin background of

the form AdS x N, or more generally M x N, with A/ Lorentzian admitting such
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isometries, at least when N is complete. Indeed, the supergravity equations of
motion force N to be Einstein with positive scalar curvature. By the Bonnet—Myers
theorem (see, e.g., [108, Section 9.3]), if N is complete, then it has bounded diameter.

This leaves the cases in Table 3.2, where the AdS Killing vector is nowhere
timelike. It is clear that the above argument for closed timelike curves fails in this
case. One should note that this still does not directly imply the absence of closed
timelike curves; however, we will see in the next section that there are in fact no
closed timelike curves in any of these cases.

We should also note that in the cases where the Killing vector is null somewhere,
namely [y with b, = 0, I1ly,) and Ilg; with a = 0, we can use a similar argument
to sce that some quotients of AdS,.; x S7 still produce closed causal curves. The
point is that if we choose ¢ such that exp(fzg) € SO(g + 1) has order N, then z and

=N

-z can be null separated, as x5 = g, and the separation in the AdS factor
is mull if ||Eaqs|| = O at . Physically, this corresponds to deforming by a rotation
with rational angles on S7.

Clearly, however, deformations for which vs does not have finite order do exist,
and will not lead to closed causal curves by any of our arguments above. Hence, we
should discuss all the cases listed in Table 3.2 in the next section, as they can all

give rise to causally non-singular quotients.

3.4 Causally non-singular quotients

In this section, we shall discuss in detail the geometry of the discrete quotients that
are free of closed causal curves. These are based on the subgroups listed in table 3.2,
conveniently deformed when necessary by some non-trivial action on an odd sphere
leaving no invariant directions, so that the full Killing vector field (3.56) is spacelike
everywhere.

Before nitiating such a task, we would like to cominent on the general philosophy
that we shall apply in each of the particular geometries to be discussed. We know the
Killing vector describing each distinct type of quotient naturally decomposes into

an 50(2, n) Killing vector, with n < 4, and a series of s0(2) rotations in independent
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planes. Thus given any Killing vector in table 3.2, we can study the geometry of the
corresponding discrete quotient in different dimensional AdS spacetimes, starting
with the minimal (2,n) signature in the embedding space R4™ . Besides that, we
can also study further deformations on the sphere sector of the discrete quotient.
It is therefore natural to start our analysis in the lowest dimensional AdS,;, x S?
spacetime allowing our causally non-singular quotients, and afterwards, extend such
an analysis to higher dimensions.

This latter extension is entirely straightforward. Indeed, given some adapted
coordinate system describing the action of £a4s in AdS,,;, it is very simple to
construct an adapted coordinate system describing the action of the same Killing
vector field in AdS,,; with p > n. This is just obtained by considering the standard
AdS, 4, foliation of AdS,,; given in terms of the embedding coordinates by
2= coshyd' i=1,...,n+2

(3.57)

I , sm , o -
2™ = sinhy2™ m=1,...p—n

where y is non-compact and {Z'} satisfy the quadric defining relation giving rise to

m

AdS,, 1, whereas {#"} parametrise an SP7""" sphere of unit radius. For p =n + 1,
the range of x is given by —oco < x < +o00, whereas for p — n > 2, it is simply
given by x > 0. The metric description of AdS,;; in the AdS, ., foliation defined

in (3.57) is
JAdS, 1 = (COSh X)2 gAdSa + (dX)2 -+ (Sil’lh X)2 ggp-n—1 . (358)

The foliation given by (3.58) also gives us an interesting description of the asymp-
totic boundary. If we assume p — n > 2, taking the imit ¥ — oo and conformally
rescaling by a factor of 72X, we can describe the asymptotic boundary in terms of

an AdS, 1 x S"7"! metric,?

98 = GAdS,1 T gspn-1 - (3.59)

‘For p—n = 1, we would have —co < x < oo, and conformally rescaling by a factor of e~2/X|
as we take the limit |x| — oo, we would get a description of the boundary in terms of two AdS,
patches, each covering one of the hemispheres of the $P7' in the usual Einstein static universe

R x SP~! description of the boundary of AdS,4;.
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To sce the relation of this coordinate system to the usual Einstein static universe
description of the conformal boundary, let us write the AdS,,; metric in global
coordinates,

JAdS.., = — cosh® pdt? + dp? + sinh? p gn 1 . (3.60)

Then defining cos @ = 1/ cosh p, we can rewrite (3.59) as

1
cos? 0

ga - (_dt2 '+‘ d02 + Sin2 09811—1 + COS2 egsp—n—l ) (361)

This shows that the metric in (3.59) is indeed conformal to the Einstein static
universe metric on R x SP™!, where we are writing the SP~! as an S?~"7! fibred over
an S". The coordinates of (3.59) cover all of the Einstein static universe apart from
the R x S"~! submanifold where cosd = 0, which is conformally rescaled to become
the boundary of the AdS, ., factor in (3.59).

If there is a global adapted coordinate system for the action of €445 on AdS, .4,
we can use the above foliation to construct an a.dap'ted coordinate system for the
action on AdS,;;. If we deform the action by A(®?) blocks, these will act as rotations
of the SP~"~! factor in the above foliation.

When we consider the deformation of our AdS quotient by some non-trivial action
on the transverse sphere, we have two approaches to the construction of an overall
adapted coordinate such that the total Killing vector £ = d,, for some coordinate .
In most of the cases we consider®, there is a globally well-defined adapted coordinate
on AdSp;, such that £aqs = Js. As noted in Section 3.2, there is always a global
adapted coordinate system for the Killing vectors in the sphere, in which &g acts by
a simple “translation”, i.e. & = dy. Consequently, the full generator of the discrete
quotient is

§ =0y + 70y, (3.62)

By a linear transformation, ¢ = ¢,9’ = 1 — 7@, we are able to write { = J,,.
This coordinate system is very convenient for studying the causal structure and
asymptotic structure of the resulting quotient, so this is the technique we shall

mostly employ.

5The only exceptions are where the AdS Killing vector has fixed points.
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Unfortunately, there are examples where there is no such global adapted coor-
dinate system on AdS. The example of this type we shall be concerned with is the
quotient by a Killing vector with a single A///(1:?) block. In this case, we need to use
a different technique, exploiting the existence of adapted coordinates on the sphere.

The full Killing vector field (3.56) can always be written as
£ =0y +&aas - (3.63)

We can therefore write £ as a dressed version of its “translation” component accord-
ing to

E=U3d,U! where U = exp (—¢ €ags) - (3.64)
Consequently, if the original coordinate system was given by {4, 2}, where 2! stand
for all the remaining coordinates describing the manifold AdS,,; x S7, it is natural

to change coordinates to an adapted coordinate system defined by
y=Uz, (3.65)

which indeed satisfies the property £y = 0, so that {y'} are good coordinates for the
space of orbits. Equivalently, £ = 9y in the coordinates (3.65). Thus, we obtain an
adapted coordinate svstem on the full quotient for any AdS Killing vector. For the
case at hand, we split the coordinates {z'} appearing in the above discussion into
{2} = {@;, T}, where {Z} stand for the embedding coordinates of AdS,;; in R*?.

Since Epqs is a Lorentz transformation in R*?, its action on ¥ can be defined by
Eags = BT, (3.66)

where B is a (p + 2) x (p + 2) constant matrix. Thus, §(¢, &) = e ¥# 7, so that
di = e¥B (dj + Bydy) . (3.67)

One can now compute the metric in adapted coordinates {v, ¢;,¥}. This can be

written as

g=1&? (dp + B))* + g + gads,,, +2dy - Enas + [|€aasl|? dv? (3.68)

where the first two terms are just describing the metric on 7 in the adapted coor-

dinate system {v, £;} introduced in Section 3.2, and f ads Stands for the one-form
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associated with the Killing vector €445, that is,
Eads = Mii€ras Ay = mij (B -y)’ dy' . (3.69)

After these general considerations, we shall now proceed to discuss the different

geometrics that appear in these discrete quotients of AdS,;, x SY.

3.4.1 Non-everywhere spacelike £pqs

Let us first discuss the three cases in which €445 is not always spacelike. The first of
these is Ty with b; = 0, corresponding to the quotient of AdS,., by some combination
of rotations in orthogonal two-planes R? in the embedding space. These quotients
produce special cases of the conical defects, which were discussed extensively in,
for example [97]. An interesting discussion of the properties of the supersymmetric
orbifolds in string theory is also given in [109,110]. We will not discuss this case
further here, except to note that it is for these quotients where the existence of a
spin structure is not guaranteed. The condition for the existence of a spin structure
was discussed in [3].

To consider the other two cases in Table 3.2 which are not always spacelike,
[Ty and TIgewith a = 0, we follow our general strategy, and start by describing
the action of M11(1:2) op /\:”2"2) with ¢« = 0 in AdSs. The action of a more general
Killing vector of this form on AdS,., can then be built up by considering the AdS;
action deformed by the rotations A®? on the SP™% in the AdSz x S~ foliation of
(3.58). We will then add in the deformation on a transverse sphere S? to obtain an
everywhere spacelike quotient.

For the quotient of AdSs by A///(1:2) the relevant Killing vector is

Eads = Ji3 — Jaa. (3.70)

This Killing vector is spacelike almost everywhere, ||€aas||? = (2} + x4)2. There is a
single other Killing vector in s0(2, 2) which commutes with this one, & = Ji2—Jas. It
has norm ||&||* = —(x; + z4)?. The most convenient coordinate system for studying
this quotient is Poincaré coordinates. The form of the Killing vectors in Poincaré

coordinates was reviewed in section 2.2. It is easy to sec from those expressions that
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in the case of M2 we can orient the coordinates so that faqs = A, and & =

where the AdSs metric in Poincaré coordinates is

(—dt® + d2* + da?) . (3.71)

N|
I\J’_l

9AdS; —

We see that the effect of the quotient is simply to make the coordinate z periodic.
The Killing vector {yqs becomes null on the Poincaré horizon z = oo where this
coordinate system breaks down. In terms of the embedding coordinates, this is
the surface z; + x4 = 0, where {aq5 = 23(0) — 94). We note that this symmetry
has a null line of fixed points at x; + x4 = w3 = 0 (parametrised by z; — x4).
Away from the fixed points, the identification along £aqs will generate closed null
curves in the Poincaré horizon. These can be eliminated by deforming this quotient
by a suitable action on an odd-dimensional sphere. Since we do not have a good
global coordinate system on this quotient, the best way to describe the causally
regular deformed quotient will be to use the coordinates adapted to the action on
the transverse sphere, as described at the end of the last subsection. We will not
give the details of the application of this general technique for this particular case;

we just remark that for this case, the matrix B defined in (3.66) is

0 0 —-10
00 0 0

B= (3.72)
-1 0 0 1
0 0 -10

Following the supersymmetry analysis in [69], it is easy to conclude that for a suitable

choice of sphere deformation, the above quotient preserves v = 1 of the vacuum

1
supersymmetry, that is, it has four supercharges.

For the case where we introduce a deformation on a transverse S, we can in-
terpret the quotient as the near horizon geometry of a D1-D5 system that has been

quotiented by the action generated by
§=0;+ 01 Rig+ 0 Ry,

in which z stands for the common direction shared by the D1-D5 system, and R

stand for rotations transverse to the D1-D5’s. In the language developed in [106,107],
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this asymptotically flat spacetime would correspond to a D1-D5 system in a generic
intersection of flux 7-branes vacuum. Whenever 6, = £6,, it would be interpreted
as a D1-D5 system in the flux 5-brane vacuum, which also has four supercharges.
Note that the standard supersymmetry enhancement due to the near horizon limit, is
lost in this quotient, as the generator J;, which does not break any supersymmetry
in the asymptotically flat spacetime construction, becomes a null rotation generator
from the AdS perspective, which breaks one half of the supersymmetry.

We would also like to understand the boundary of this quotient. In the Poincaré
coordinates (3.71), the global AdS boundary is written in terms of an infinite series
of flat space patches,

gs = —dt* + da?. (3.73)

The action of the Killing vector on the AdS boundary compactifies the spatial co-
ordinate z; it might therefore seem that the quotient will have an infinite sequence
of boundaries. However, the Killing vector only has isolated fixed points on the
boundary, at the points where the line of fixed points xy + 4 = r3 = 0 meets the
boundary. In Poincaré coordinates, these correspond to the points at past and fu-
ture timelike infinity and at spacelike infinity. The different boundary patches are
therefore connected. We can extend the Poincaré coordinates to cover more of the
boundary by defining

v=t—z,tanT = 1. (3.74)

The boundary metric then becomes

9o = —5m=(—2dvdT + cos® Tdv?), (3.75)
cos?T

and the Killing vector we quotient along is €495 = J,. Since we only have a conformal
structure on the boundary, we can ignore the overall factor in this metric. In the
resulting metric, we see that the direction we quotient along is spacelike except
when T' = (n + 1/2)n, where it becomes null. These points correspond to one half
of future and past null infinity in the original Poincaré coordinates. This coordinate
system covers the whole of the conformal boundary with the exception of a null line
corresponding to one half of past and future null infinity in each Poincaré patch.

We could construct a similar coordinate system by defining v = ¢ + z—it would
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then cover that half but not the one where t —  remains finite. We can think of the
field theory dual to the quotient along a null rotation as living on the cylindrical
space described in (3.75), which has closed null curves at 7' = (n + 1/2)7.% Since
the deformation by an action on a transverse sphere does not alter the action on the

boundary, it cannot remove these closed lightlike curves in the dual theory.

A more interesting example of a not everywhere spacelike quotient is /\11(2’2) with
a1 = 0, where the Killing vector we quotient along is
Exas = T(J12 = Jag) + (13 — J3a) (3.76)

respectively. Both are null everywhere, ||é54s/|2 = 0. From now on, we shall focus
on &i4s; there is an analogous discussion and structure for &rgqs- There are three

other Killing vectors in §0(2,2) commuting with £},
G=Ju+tJu, SL=Jo+tJu &=Ju—Ju. (3.77)

These satisfy
& &1 = 2e€ikén, (3.78)

so they define an s{(2, R) symmetry which commutes with £} ;s. This sl(2, R) struc-
ture appears because when we write s0(2,2) = s{(2, R) ® sl(2, R), the AM@2) Killing
vector lies entirely in one of the s{(2, R) factors. A similar structure will reappear
for the same reason in our discussion of the self-dual orbifold in section 3.4.2; it was
first identified in that context in [104].

We would like to adopt a coordinate system adapted to this symmetry. Since
the & do not commute, we can only adapt our coordinates to one of them. We note
that ||& ]2 = ||&]]? = 1, ||&]|2 = —1. Since our interest is in cansal structure, it
seems natural to adapt the coordinates to the timelike vector &. We therefore want

to construct a coordinate system (¢, v, p) on AdS; such that 5,5 = 8, and & = ;.

SThere are some obvious similarities between this construction and the Milne coordinate system

on the orbifold of flat space by a boost.
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This requires

a(l,zl_l.l) _ 8(1‘4+CC1) 3 2
I R T G
3_ 2 34 22
3_@8_2_07 A+ ) gyt — 41y,
Nz o (3.79)
M:x‘?—ﬁ M:ﬁ—}—f
T : ot o
D - 42) N 4 1 O(a® + a?) — Ay gl
Ti_(‘r —z), —f)/,—_‘(l +a7) .

A combination which is thus independent of ¢, v is (z! — z')? + (2% — %)% We

will choose the p coordinate so that this combination is €?. A suitable coordinate

system satisfying these criteria and the condition —x} — 2% + 2% + 22 = —1 defining
the AdS; embedding is
2t — 2! = efsint,
2+ 2! = —e Psint — 2vef cost,
(3.80)
d — 1? = e cost,
23+ 2% = —e Pcost + 2uelsint .
The inverse coordinate transformation is given by
e?.p — (74 . .‘771)2 4 (."1?3 _ .’172)2,
!t — !
tant = R
v=¢ % { [(I3 +2H) 4 e (2P .772)] + [(:1:4 +z') Fe (gt - :cl)]2 .
(3.81)

Since these give finite values of ¢, v, p for all points in AdSj, this coordinate system

covers the whole spacetime. In terms of these coordinates, the metric is
gAds; = —dt? + dp2 —2e*dudt . (382)

In this coordinate system, the other two Killing vectors are

& =sin2t9, + cos2t (0, — ¢ %d,),
(3.83)
& = —cos2t0, +sin2t (9, — e %9,) .

We see that making identifications along the Killing vector d, will produce closed null

curves. To eliminate these closed null curves, we should introduce a deformation by
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a rotation on the transverse sphere. To simplify the discussion, we shall work it out
explicitly for a transverse S* having in mind the standard way of embedding AdSs;
in type IIB string theory, as the near horizon geometry of the D1-D5 system, giving
rise to AdS; x S% xT?. As discussed in Section 3.2, there are several inequivalent
quotients that one can take of S*. We will focus on a particular quotient which
preserves supersymmetry, namely the quotient where £ = 3, when we write the S*
metric as

gss = dO* + dyp* + dp* + 2cos20dy) - do. (3.84)

Thus, we consider the quotient along a total Killing vector £ = £aqs + Y5 = 0, +
70y. Since we have a global adapted coordinate system (3.82) on the AdS part of
the quotient, it is convenient to construct the global coordinate system on the full

AdS;3 x S* quotient by defining ¢ = 9 — «yv. The six-dimensional metric is then
g = —dt® +dp* —2e*°dvdt + d6* + (di)’ +vdv)* + dw* +2 cos 20 (dip +vdv)-dp. (3.85)

The quotient is now along £ = d,. We can see that this is an everywhere spacelike
direction; ||€]|]2 = 4% This is a necessary but not a sufficient condition for the
absence of closed causal curves, but it is easy to check explicitly that there are no
closed causal curves in the bulk of the quotient manifold in this case. As shown
in [69], the corresponding type IIB configuration preserves v = é of the vacuum
supersymmetry, that is, it has four supercharges. It is interesting to point out that
if we would have considered the action on the three sphere (3.84) generated by

&s = 0, the corresponding quotient & = Eaqgs + v £s would have preserved v = i of

the full type 1IB supersymmetry.

It is interesting to note that, like the null rotation,.the /\ii@’z)(a = 0) Killing vec-
tor also has a simple action in Poincaré coordinates. We can orient the coordinates
so that Eags = 0, + 9, in the metric (3.71). The additional symmetry 0, — 9, that
is manifest in these coordinates can be written in terms of the sl(2, R) Killing vec-
tors (3.77) as the combination & — &;. Although the Poincaré coordinates are not a
global coordinate system for the quotient, they allow us to relate these quotients and
quotients of branes in asymptotically flat spacctitnes: the /\,’.Ii(m)(a, = 0) quotieuts

can be understood as the near horizon geometries of a D1-D5 system quotiented by
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the discrete action generated by
f - idt + az + 01 RIQ + 92 R34 . (386)

The physical interpretation of these quotients is unclear. They can be supersym-
metric, and they are free from closed causal curves. It might be possible to give
them some interpretation using a limiting procedure in which one finally identifies
bulk points along a “null translation”, by infinitely boosting a spacelike translation.
In this case, there is still a supersymmetry enhancement since the asymptotically
flat quotient has four supercharges.

To discuss the conformal boundary of this quotient, we will use a technique that
will be used again in section 3.4.3, and relate the spacetime to a plane wave. If we
set 7 = e, the metric (3.85) becomes
g= T—lz[—dedt — 72dt? + dr? + r2(d6? + (d)) + ydv)? + dig?

+ 2cos 260 (dy)' + ~dv) - dy)]. (3.87)

The conformally related metric in square brackets is a symmetric six-dimensional
plane wave, written in a polar coordinate system deformed so that 3, is a mixture of
the null translation symmetry of the plane wave and a rotation in the four transverse
spacelike coordinates.

The conformal mapping between an AdS; x.S3 space and a plane wave is implicit
in previous work [111] which showed that such plane waves can be conformally
mapped onto the Einstein static universe. That is, since both spaces are conformally
flat, we would expect them to be conformally related. It is interesting to note the
relative simplicity of the relation: AdS3; x.S3 corresponds to the plane wave with the
axis 7 = 0 excluded, rescaled by a factor of 1/r%

More important for our present purpose is that the Killing vector we wish to
quotient along, d,, annihilates the conformal factor (as does & = 4,), so we can
use this conformal map to study the boundary of the quotient spacetime, and not
just to study global AdS; xS3. Note that unlike the double null rotation in section
3.4.3, the other Killing symmetries £ and & of this quotient do not also commute
with the conformal rescaling. They will hence appear as conformal isometries in the

boundary theory.
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The conforinal boundary of the quotient (3.87) lies at » = 0, and has the metric

(up to conformal transformations)
go = —2duv dt. (3.88)

Since v is periodically identified in the quotient, there is a compact null direction
through every point in the boundary. As in the null rotation case, these closed null
curves in the conformal boundary cannot be removed by a sphere deformation. This
fact can explicitly by checked in (3.85). It is interesting to note that we get the same
metric on the conformal boundary here as on either of the two boundaries in the
self-dual orbifold discussed in the next subsection.

If we regard (3.85) simply as a coordinate system on AdS; x.S3, we can relate
this description of the conformal boundary to the usual two-dimensional R x S!
Einstein static universe boundary of global AdS; xS3. In global coordinates, the

Killing vector field is given by
£ =(1+4cos(r — )0 - 8,), (3.89)

where we are using the global coordinates introduced in section 2.2, and further

writing I3 = cos g, 24 = sin, so that the metric on the boundary reads
gs = —dr* + dy?* . (3.90)

We see that the quotient is along a null direction; and has a single null line of
fixed points at 7 — ¢ = 7 (mod 27). While the coordinate system (3.85) covers all of
global AdS; x S3, it does not cover all of its conformal boundary, as these symmetry-
adapted coordinates break down on the fixed points of £1,5. The coordinates of
(3.85) cover all of the boundary apart from this null line. They are related to the
global description above in the same way that a symmetric plane wave is related
to the Einstein static universe in higher-dimensional cases [111] (in two dimensions,
there is no non-trivial plane wave). Thus we see that (3.88) provides a natural
description of the asymptotic boundary of the quotient, corresponding to excluding
these fixed points in discussing the quotient.

While it is clear that the deformed quotient (3.85) is free of closed causal curves,

we can show that this quotient does not preserve the stable causality of the orig-
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inal AdS; xS space. If we write (3.85) in the formn appropriate for Kaluza-Klein

reduction along v,

g = —(14+~y2*)dt* + dp® + db? + sin® 20dp* + 2y 'e®Pdt(dyp’ + cos 20dy)

+ (ydv + dy’ + cos 20dp — v~ e*fdt)?, (3.91)

we sce that the lower-dimensional metric obtained by Kaluza-Klein reduction along
v will have closed null curves, since the compact circle parametrised by ¥ is null.
This implies that there can be no time function 7 on AdS3 xS* such that Le7 = 0,
for if there was, the Kaluza-Klein reduced metric would be stably causal, which
is inconsistent with the appearance of closed null curves in the latter. Thus, the
discrete quotient cannot satisfy the condition of [115], and does not preserve stable
causality.

Following the discussion around (3.58), it is straightforward to describe the quo-
tient generated by €1, in higher dimensional AdS,; spaces. By construction, the
global symmetries of such a higher dimensional quotient will be the ones discussed
before times SO(p — 2), corresponding to the rotational symmetry transverse to the
subspace where 5445 acts. Notice that in this case, the metric on the boundary is

conformally equivalent to a plane wave metric,
gs = —2dvdt — r3dt* + dr® + r’gg-s (3.92)

In higher dimensions, there exists the possibility to deform the quotient by rotations,
i.e. M2 Let us focus on AdSs, for algebraic simplicity. The metric for AdSs in

the AdS; foliation adapted to the action of £ 4 is given by
gads, = cosh® x (—dt2 +dp® — 2 dvdt) + dx* + sinh? x d6? . (3.93)

The deformation consists in acting on the angular direction € through the generator
& = bdy. Thus, it is convenient to introduce the new coordinate 8’ = § — bv, so that

Eris + € = 8, The metric on the deformed quotient is
gads, ;- = cosh® x (—dt* + dp* — 2¢* dv dt) + dx? + sinh® x (df’ + bdv)® , (3.94)

where, once again, v ~ v + 27. As expected, the periodic coordinate v becomes

everywhere spacelike except at the fixed point of the deformed action. This is just a
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Eags+E&|)* =

b?[(2%)? + (2%)?] = b? sinh® y, which certainly vanishes at the origin of the 56-plane,

consequence of the fact that the norm of the deformed Killing vector is |

where the ﬁxéd point of & lies.

This particular deformation (b # 00) breaks all the supersymmetry and it can be
interpreted as the near horizon geometry of a bunch of parallel and coincident D3-
branes quotiented by the action of a null translation plus a rotation. It is certainly
possible to turn on supersymmetric deformations in higher dimensional AdS space-
times. In particular, it is possible to consider families of two parameter deformations
corresponding to A% (b)) & A0 (b,) in AdS;. Whenever b; = +b,, the quotient
will preserve supersymmetry. The corresponding aS}fﬁptotically flat interpretation
would be in termns of parallel and coincident M5-branes quotiented by the action of
a null translation plus a certain rotation in R*. The supersymmetric deformation

would correspond to the action having an su(2) holonomy.

3.4.2 Self-dual orbifolds and their deformations

The fifth Killing vector appearing in table 3.2, [ig) with |a;| = |as|, can be inter-
preted as the deformation of the self-dual orbifolds of AdSg, first introduced in [104],
and recently discussed in [105]. The norm of &aqs is spacelike everywhere. There-
fore, one can study these geometries with or without any further non-trivial action
on transverse spheres.

As already indicated above, the minimal dimension where this discrete quotient,
exists is for p = 2, i.e. AdS;. The addition of any rotation parameter b; would
increase this dimension by two. Since the elementary indecomposable block acting
on AdS; is a linear combination of boosts in R*2, this discrete quotient does not
have an analogue in an asymptotically flat spacetime, in the sense that there is no
quotient whose near horizon limit gives rise to these self-dual orbifolds.

The anti-de Sitter action, including the deformation parameters {b;}, integrates
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to the following R-action on R*™:

2! z! cosh at &+ z3sinh at \
z? 22 cosh at + 2% sinh at
z3 z3 cosh at + z! sinh at _
— , Vi (3.95)
2! z' cosh at £ 22 sinh at
g +s T2+ cog bt — x2+0 sin byt
26 226 cos bt + 2% +5 sin bt

where we set a; = @ and ay = *a. Notice that the above action is manifestly free
of fixed points for any value of the boost and rotation parameters {a,b;}.

In the following, we shall review the main features of the self-dual orbifolds of
AdSs, extending the discussion to uncover their embeddings in higher dimensional
anti-de Sitter spacetimes and their deformations both by rotations in anti-de Sitter

and non-trivial actions on transverse spheres, afterwards.

Pure AdS

Let us start our discussion by focusing on AdSs, so that there are no A(®? blocks. In
this case, as first described in [104], the quotient preserves an R x s[(2, R) subalgebra
of the original so(2,2) = sl(2,R) & s[(2, R) isometry algebra. A suitable system of
global coordinates adapted to the quotient and the timelike vector in s{(2, R) is [104]

2 = cosh z cosha¢ cost — sinh z sinh a¢ sint,

1? = cosh z cosh agsin ¢ + sinh z sinh a¢ cost,
(3.96)
@3 = — cosh zsinh a¢ cost + sinh z cosh agsin ¢,
4

z® = £ (cosh zsinh agsint — sinh z cosh ag cos t) .

The sign ambiguity in the last line of (3.96) corresponds to the two distinct cases
az = Fa; in the SO(2,p) classification reviewed in section 3.1. This illustrates
explicitly that these two cases are related by an orientation-reversing symmetry of
AdSs, namely the reflection x4 — —z4. It is important to stress that, at this point,
the coordinates {¢, . z} are just some particular global description for AdS;. All
of them are defined in the range —oc < t, ¢,z < +00. It is only when we identify

points in AdS;3 along some discrete step generated by €ags = 9, that our discrete
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quotients will differ from AdSs globally, by making the adapted coordinate ¢ a
compact variable with period 27 in some normalisation, i.e. ¢ ~ ¢ + 2.

As first proved in [104] for AdSs, corroborated in [105] and extended to any
higher dimensional AdS spacetime in [69], the supersymmetry preserved by these
self-dual orbifolds is one—half of the original one.

The metric in adapted coordinates (3.96) looks like
Gsq = —dt* + 5% d¢* + dz* — 2Bsinh 2zdt d¢ . (3.97)

Thus, it describes a non-static but stationary spacetime. One interesting feature
which has not previously been noted is that ¢ is a global time function, since
V,tV#t = —1/cosh? 2z, so the self-dual orbifolds are stably causal, and hence do
not contain closed timelike curves. This metric can be interpreted as an S' fibration

over AdS;, as the following rewriting indicates
gsd = —cosh? 2zdt? + dz? + (B d¢ — sinh 2z dt)* . (3.98)

This quotient was recently analysed in detail in [105], where its isometries, geodesics,

asymptotic structure and holography in this background were extensively studied.
An important point to note from that analysis is the structure of the conformal

boundaries. It was shown in [105] that the quotient has two disconnected conformal

boundaries. If we consider the coordinate transformation

sinhz = tanf 6 ¢ (—I, —YE) ,
22
the metric (3.97) becomes
1 .
9ud = —5 (cos® 0 (—dt* + 3* d¢®) + df* — 4Bsin 0 dt dg) (3.99)
cos

from which we learn that the metric on both conformal boundaries, located at
¢ — £7 is given by

go = kdtdo . (3.100)
Thus, there are closed lightlike curves on the conformal boundary. The appearance

of two disconnected boundaries can be further understood by noting that in the

adapted coordinates (3.96), the original AdS; conformal boundary is covered by
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four connected patches located at z — d+oo and ¢ — +oo. After the discrete
identification, two of these patches no longer belong to our space, leaving as a
consequence, the existence of two boundaries at z — Zo00, being disconnected.
These boundaries are causally connected through the bulk, as was shown in [105]
by analysing the geodesics in this space.

Unlike the previous cases, this quotient has no natural interpretation as arising
from a quotient of an asymptotically flat spacetilné. This is related to the fact
that the quotient does not take a simple form in Poincaré coordinates. However,
Strominger [112] showed that these self-dual orbifolds emerge as the local description
of a very—near horizon geometry when focusing on the vicinity of the horizon of an
extremal BTZ black hole.

Thus, even though this quotient does not emerge directly from the D1-D5 per-
spective, it is nevertheless possible to set-up an asymptotically flat spacetime which
reproduces the self-dual orbifolds in two steps [105]. This is achieved by adding
some momentum along the common direction shared by the D1’s and D5’s, and
taking the standard near horizon limit, keeping the momentum density fixed. One
then focuses on the vicinity of the horizon resulting from the previous limit. This
procedure generalises the construction in [99] to the D1-D5 system, and it provides
an independent way of understanding the DLCQ holography proposed in [105].

Following our general discussion presented at the beginning of section 3.4, it
is straightforward to extend the analysis to higher dimensional AdS, , spaces, for
p > 3. Indeed, we can use the foliation in (3.57) and replace the {Z;} appearing

there with the R = 1 version of (3.96). The resulting metric is
9sdy.r = (coshx)? gsq + (dx)* + (sinh x)* ggr—s . (3.101)

where gsq is the metric given in (3.97).

This allows us to see that in these higher dimensional cases, the boundary of the
quotient will be connected. The point is that the boundary of the quotient in higher
dimensions is given in these coordinates by xy — 00, as discussed earlier. Thus, the
boundary of the higher-dimensional quotients naturally contains a copy of the bulk
of the AdSs quotient. Since the AdS3 quotient is connected, this implies that the

boundary of the quotient is counected in higher dimensions. It also shows us that
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unlike the AdSs case, in higher dimensions there is a natural non-degenerate metric

on the boundary of the quotient.

Deformation by (%2

Even though we could discuss the turning on of the deformation parameters b; in
the general case, we shall just briefly mention their main new features in the string
theory embeddings described above. This means that we shall concentrate on AdSs
and AdS+, since these deformations are not available for AdS,.

This programme is particularly simple to carry on already in the foliation defined
by (3.57). As previously mentioned, A(®?) blocks correspond to rotations in R? planes
in the embedding space, and in the coordinates of (3.58), these motions can be
globally described as a single “translation” along one of the angular variables of the
S"~! factor. The definition of the adapted coordinate system in which @;\(%2)(s;)
takes the form of a single “translation” is precisely parallel to the discussion for the
transverse S? given in Section 3.2.

As an example, consider AdSs. In this case, we can only turn on one parameter,
by = b. It is clear that rotations in R? correspond to motions along the S' transverse
to the AdS; foliation of AdSs in (3.58), for p — n = 2. If we parameterise this circle
by 8, the Killing vector field {545 generating the full action of the deformed discrete
quotient is given by

aas = 0p + b0y (3.102)

in the adapted coordinates defined by (3.57) and (3.96).

It is now just a matter of applying a linear transformation in the {#,0} plane,
which will generate an extra fibration, to rewrite the metric in a globally defined
coordinate system adapted to the deformed Killing vector field £x4s. This metric is
given by

g = cosh® y gsq + dx? + sinh? x (df + bd(j))2 . (3.103)
By construction, this deformation will break ali the spacetime supersymmetry.

The techniques for AdS; are exactly the same, but there is a richer structure of

possibilities since we have an S* transverse to the AdSs action, which allows us to
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turn on two inequivaleut parameters by, by
biRya + by R3q

where R;; stands for a rotation generator in the ij-plane belonging to R*, where
the 3-sphere is embedded as a quadric. Let us describe this 3-sphere in terms of

standard complex coordinates

7 = a' +ix? = cosfe!VHY
_ (3.104)
2 =a>+iz* =sinfe¥ .
A supersymmetric quotient [69] is given by the choice by = —by = ;. The metric

describing the global quotient is given by

gads; /T = cosh? x gsq + dx? + sinh? y (d@2 + (db + 01d¢)2

+dip? + 2cos26 (db+ 6, dg) - dy) . (3.105)

Adding a transverse four-sphere and a constant flux on it, the above configuration is
supersymmetric. It actually preserves v = % of the supersymmetries preserved by the
original vacuum. Thus, it has sixteen supercharges. It is worthwhile mentioning that
the deformation described by by = —by does not break any further supersymmetry.
It is a further action that we can consider in our spacetime for free, supersymmetry
wise. Contrary to what intuition may suggest, as explained in more detail in [69],

the deformation b; = by breaks all the supersymmetry.

Sphere deformations

Let us start our discussion on sphere deformations of self-dual orbifolds on the
embedding of AdS; xS® in type IIB. The most general action that we can write

down on S? is given in terms of two real parameters
€s =61 Rip + 60 Ray (3.106)

Because of the freedom that we have to quotient by the action of the Weyl group,
we can always choose to work on the fundamental region defined by 6, > |6,|.
Among all these quotients, only a subset preserve supersymmetry. In particular,

if we consider the action generated by Jyz 4 Joy on AdSj, the only supersymmetric
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deformations are given by 8; = £6,, the signs being correlated. Interestingly, such
deformations still preserve the same amount of supersymmetry as the self-dual orb-
ifolds themselves. Thus, these supersymmetric deformations are for free, as pointed
out in [69], where the reader can also find the explall;"ttion for this phenomenon.
The discussion proceeds in an analogous way for higher dimensional AdS space-
times. If we consider the eleven dimensional configuration AdSs xS7, their defor-

mations are characterised by four real numbers
g = 0y Ryo + 02 R3q + 65 Rse + 04 Ros . (3107)

Due to the Weyl group action, we can restrict ourselves to the region defined by
6, > 0y > 63 > |64]. As discussed in [69], there are several loci in this parameter
space where supersymmetry is allowed. If 8, = 65 and 83 = —8; the quotient

preserves v = % Whenever one of the relations
01—92+93+94 = 0
61+92—93+94 = 0,

6’1—92-93—94 = 0

is satisfied, the supersymmetry will be v = 3. Finally, there is enhancement when-

WIW g )m

ever 8; = 0y = 03 = —6,, giving rise to v =

The discussion for AdS; x.S® is fairly simple. The action on the 5-sphere is given

in terms of three real parameters
65 = 01 Rl'Z + 02 R34 + 03 R56 . (3108)

if

oc—

The deformation preserves v = ll for 8, = 6y and 63 = 0. It preserves v =
6, £ 6, + 03 = 0, with uncorrelated signs. See [69] for more details.

The only supersymmetric deformation for AdS; xS* out of the two parameter
family

£s = 01 Rig + 62 Raaq (3.109)

. - o . . -l o 1
is given by 6, = 6, also preserving v = ;.

As an explicit example of a supersymmetric deformation of the self-dual orbifold,

we shall present one particular example of the above discussion, one embedded in
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AdSs xS°. More precisely. we shall focus on 6, = 2, 6, = 65 = 1. A simple
description of this quotient can be obtained by parametrising the 5-sphere in terms

of the coordinates

z' +42? = cos @, ¢+

AN
I

20 = 2% + 12! = sin 6y cos f, ¥ (3.110)

23 = 2" +12% = sin B; sinfy V7Y

One can check that £ = d,,. This is an example in which both £aqs and &g are
described in terms of adapted coordinates. Thus, by a simple linear transformation,

we can easily write the fully adapted ten dimensional metric as

g = cosh® x g + dX? + sinh® x df? + d6? + sin? 0, dO3 + cos? 0, (dby + 2(dy + do))?

+sin® Oy ((dy + dp)* + db® + 2cos 205 (dp + dg) - b) . (3.111)

As can be checked from the review of the results in [69] presented at the beginning
of this subsection, this particular example preserves v = % of the vacuum supersym-
metry. Thus, it has four supercharges.

Of course, there is no conceptual difficulty in dealing with deformations that con-
tain both A" factors on AdS and non-trivial sphere actions. The supersymmetric

quotients can also be found in [69].

3.4.3 Double null rotation and its deformations

The last Killing vector appearing in Table 3.2, I [ [y with b; = 0, can be interpreted
as a deformation, with deformation parameters b;, of the double null rotation discrete
quotient considered in [57]. Indeed, it consists of the simultaneous action of two
spacelike null rotations in transverse R'? subspaces, and a set of rotations with
parameters b; in different transverse R? planes. Since the norm of £aqs is positive
everywhere, even for b; = 0 V 1, there is no need to deform the previous action by a
non-trivial one on a transverse sphere to get an everywhere spacelike Killing vector
field € in (3.56).

The minimal dimension where such an object exists is for p = 4, i.e. AdS;, in
which case there are no A(®? blocks. The pure double null rotation discrete quotient

has a very natural interpretation in the Poincaré patch: it consists of the combined
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action of a null rotation plus a spacelike translation. Consequently, it has a very
straightforward origin in terms of the geometry of a bunch of parallel D3-branes:
the pure double null rotation discrete quotient in AdSs is the near horizon geometry
corresponding to a bunch of parallel D3-branes whose worldvolume is the nullbrane,
i.e. R'¥/Z, four dimensional Minkowski spacetime modded out by the simultaneous
discrete action of a null rotation in R'? and a spacelike translation along R, which
was first introduced in [39)].

The full anti-de Sitter action, including the deformation parameters, integrates

to the following R-action on R%P:

z! A A %tQ(ﬂil - 14)
2 x? — ta® + %t2(iﬂ2 - 1'6)
23 3 +t(z* — 2Y)
4 4 3, 142(.1 4
T zt —tad + St (a! — 2%)
. 2 A Vi (3.112)
5 2® + (2% — 2?)
z8 2% — ta’ + % (2? — 3°)
L2045 2275 cos it — %45 sin it
L2146 226 cos ;t + 2215 sin gt

which i1s manifestly free of fixed points for any value of the rotation parameters.

Pure AdS

Let us first consider the pure double null rotation in AdSs. This was analysed in [57].
We will extend this analysis by discussing the isometries preserved by the quotient,
constructing suitable adapted coordinate systems, and examining the action on the
boundary of AdS. In the process, we will uncover interesting relations to compactified
plane waves.

The Killing vector that we quotient along is
Eads = Ji3 — J34 + Jos — Jse. (3.113)

Its norm is |[€ags||? = (21 + 24)® + (22 + x6)?. This is clearly positive semidefinite,

and the quadric —(x; + z4)(x1 — 4) — (T2 + x6) (T2 — ¥6) + 5 + 25 = —1 defining
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the AdS embedding constrains the coordinates so that it is positive definite. There

are four linearly independent commuting isometries in s0(2, 4):

& = i — Jaa — Jos + Jsg,

& = Jis + Jaz — J3g + Jus.

(3.114)
&= Jia — Jou + Jis + Jus.
&1 = Jss — J1z + Jus.
These Killing vectors have the non-trivial commutation relations
[€1,&] = —26, [61,6] =28, [&,&] = -2&. (3.115)

They therefore form a Heisenberg algebra on which &, acts as an outer automor-
phism. The symmetry algebra of the quotient is hence (h(1) x R) @ R. The norms
of the Killing vectors are |[&4][2 = [|&al[* = ll€asll?, l1GII2 = 0, llgll? = ~1.

We want to construct adapted coordinates to describe this quotient; it is conve-
nieut for studying causality to adapt them to &aqgs, &3 and &. Let us therefore seek

to choose coordinates (¢, u, ¢, p,v) so that & = 9, & = —0,, and Eaqs = O04. This

requires
ot — o) _ Bt aat)
¢ ’ L) v
A =) o ot at) _
o ’ By oo
31:3 4 1 81‘5 6 P
8—¢ =T - 3 a—¢ =T — T,
da' —z') Iz +1z') 6 2
8’0 - 03 T = —2(1' — T ),
6 2 - 6 9
Ol : ) =0, M — 2@zt — Y, (3.116)
ov Jv
v v
Az —a') o 5 Ot+al) o,
at _(‘L _l)’ EY) _(‘T +I):
O® %) _ 4 _ 0 o’ —a?) 4 )
at - ‘_(I — 1 )a 8t = —(.L —+ a ),
ot _ ot

There are two quantities independent of {t,v,¢}: (z* — 2')? + (2® — 2%)? and 2* -
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(z° —2?%) — 2% (2" — 2'). We will choose coordinates {p, v} so that

(I4 _ 171)2 + (.”66 _ $2)2 — er
’ ) (3.117)
a (@b — ) =P (= at) = P
we must take —0o < p < 0o and —o0 < ¥ < 0o to obtain coordinates that cover

the whole spacetime. A coordinate systemn satisfying all these conditions is

' — 2! = efsint,
gt + 2t = (200 + 2v) cost — (e7 + (¢ + ¢?)e”) sint,
b — 12 =¢f cost,
(3.118)
28 + 2% = (290 + 20)sint — (e7° + (¢Y* + ¢%)e’) cost,
13 = eP(pcost + ¢psint),
1® = e’(—sint + ¢cost) .
The AdSs metric in these coordinates is
Ganr = —dt® + dp® + e*(dyp* + dg* — 2dtdv — 4ddtdo), (3.119)
and the other two Killing vectors are
& = —cos2t (0 — 243,) + sin 2t Oy,
’ (3.120)

& = sin2t (0, — 2¢40,,) + cos 2L Oy, .

Even though we will not give the explicit details, it is easy to check by working
out the inverse coordinate transformation that this coordinate system covers the
whole of AdS. Before any identification, the range of all adapted coordinates is
non-compact. The double null rotation quotient is simply described by making the
coordinate ¢ compact.

We would also like to understand the conformal boundary of this quotient. First,
we should note that even though the quotient is free of fixed points in the bulk, its
boundary has a continuous line of them. The action generated by I/ iy with b; =0
integrates to the real line, so the only possible fixed points are the ones for which

Eags vanishes. These points are given by
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The above does not belong to AdSs, since they do not satisty the quadric equation
(2.6). This is indeed true for the bulk of AdS (finite non-compact spacelike direction
in global AdS), but there is a continuous curve of fixed points on an infinite cylinder
of axis, global time 7, and a maximal circle base. To sce this, consider the standard

global description of AdSs,

x! = cosh y cos 7,

2

4~ = cosh xsin 7,

rr=sinhys i=3,...,6,

where {#'} parametrise a 3-sphere of unit radius. It is easy to see that any solution
to the fixed point conditions requires y — oo, from which we already learn such
points belong to the boundary of AdSs. It is also clear that % = #° = 0. Thus,
such fixed points belong to a maximal circle in the z* — z° plane. If the angular
variable describing such a maximal circle is b (0 < b < 27), the continuous line of

fixed points is determined by
7=0b (mod2n) .

Thus, the action of the quotient is well-defined on the global boundary of AdS
(i.e., the Einstein static universe) with a single null line deleted. However, we know
that the Einstein static universe with a null line deleted is conformal to a symmetric
plane wave [111]. This suggests that the boundary of (3.119) should be described
in terms of a plane wave.

Inspired by this, and the analysis of the [Ig; case in section 3.4.1, let us now
make a coordinate transformation Z = e7? in (3.119). The metric then becomes

1 4
Gdny = ﬁ(—thdv — Z2dt* + dZ? + dy® + do® — 4ydide), (3.121)
where 0 < Z < 0o covers the whole of AdS;s. By rescaling the metric by a factor of

72, we can conformally map global AdS; into the space with metric
g = —2dtdv — Z2dt* + dZ% + dy?® + do* — 4didg, (3.122)

with the conformal boundary lying at Z = 0. Since aqs = O, annihilates the
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conformal factor, this embedding coinmutes with the quotient; we can regard the
double null rotation as conformally embedded in (3.122) with ¢ compactified.”
Now, the space (3.122) is simply a symmetric plane wave. This can be made

obvious by making the further coordinate transformation®

V=v+ 1Yo,
=t,
(3.123)
X =14cost + ¢sint,
Y = —¢sint + ¢cost,
under which the metric becomes
g = —2dUdV — (X2 +Y? 4+ Z%)dU? + dX* + dY? + dZ*. (3.124)

This provides an interesting alternative description of the double null rotation, of
interest independent of the question of the conformal boundary. As in section 3.4.1,
this relation between the symmetric plane wave and AdS is anticipated by previous
work, since they are both conformally flat spaces and hence conformally embedded in
the Einstein static universe. We see also that AdS covers the half of the plane wave
at Z > 0, as we would expect, since it covers half the Einstein static universe. What
is remarkable is that the isometry we want to quotient along commutes with the
conformal rescaling, as noted above. In fact, not only does it do so; all the unbroken
symmetries of the double null rotation also do so, since they do not involve d,. Thus,

they are all symmetries of the conformally related plane wave metric (3.124). If we

“Note that this conformal embedding does not provide a true compactification of the spacetime,
since (3.122) is itself not compact. As noted above, this represents the necessary cxclusion of the

fixed points of the quotient in the Einstein static universe.
81t is worth noting that there is a simple relation between these and the embedding coordinates

for AdSs: xt—z! = (sinU)/Z, 2 +2' = —(VcosU —(X2+Y?2+2Z?)sinU)/Z, 28— 2% = (cosU)/Z,
9+ 22 = (VsinU — (X2 + Y2+ Z%)cosU) /2,23 = X)Z, 25 =Y/Z.
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introduce the usual basis for the Killing vectors of the plane wave,

£, = —cosUdxi + X'sinUdy,
£er = —sinUdxi — X' cosUdy,

' (3.125)
oo = Oy,
ey = —OU,
we can identify the isometries of the double null rotation quotient as
Eads = —Eer — &eo
& = =&y + &ea,
§2= ~&e; — &eps (3.126)
&3 = &y

§a =8y — Ennyy-
Thus, the double null rotation is conformally related to a compactification of the
plane wave of the type considered in [114].
To return to the question of the conformal boundary of the double null rotation,

we see that it is given by the surface at Z = 0 in (3.122), with metric
go = —2dtdv + dp* + d¢? — 4ddtde. (3.127)

This is itself a compactified plane wave, as can be seen by the application of the
coordinate transformation (3.123). One might be puzzled by this result, as one
would have expected to find the nullbrane as the conformal boundary of the double
null rotation. We demonstrate in appendix A that the nullbrane is in fact related
to (3.127) by a further conformal transformation. Thus, (3.127) and the nullbrane
describe the same conformal structure on the boundary. The description in terms of
the compactified plane wave (3.127) is preferable to the nullbrane for two reasons:
First, the nullbrane only covers a part of the boundary [it corresponds to the region
—7n/2 < I < 7/2 in (3.127)], so the former description is more global. Second,
the further conformal transformation to the nullbrane does not commute with the
symmetry & of the double null rotation. If we work with (3.127), all the unbroken

symmetries of the bulk spacetime after we perform the quotient are realised as
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symumetries of the boundary (rather than conformal isometries). This should be a
helpful simplification in studying the holographic relation for this spacetime.

The connection to plane waves also makes it easy to identify a time function for
the double null rotation. Writing the double null rotation metric (3.121) in the form
suitable for Kaluza-Klein reduction along ¢,

g= %[—Mvdt — (Z* + 4p®)dt?® + dy® + (do — 2pdt)?), (3.128)
we see that the lower-dimensional spacetime would again be a plane wave (up to
conformal factor). Hence, applying the results of [115], where time functions were
found for general plane waves, we can deduce that a suitable time function for the

nullbrane is

1 4dv
=t+ —tan | ————— . 3.129
T +2'm <1+22+4¢2> ( )
It is easy to check that
472
V, Vi = — (3.130)

(14 22 + 4¢92)2 + 1607
Thus, 7 is a good time function on AdS. Since Lg, ;7 = 0, its existence shows that
the double null rotation quotient of AdS preserves tlie property of stable causality
by the general argument of [115].

As recently discussed in [69] ¥, the supersymmetry preserved by this double null
rotation quotient in AdSs, and actually in any higher dimensional AdS spacetime
embedded in a supergravity theory, is v = % That is, this configuration has six-
teen supercharges. It is interesting to comment on the relation with the single null
rotation quotient. In that case, we argued that the standard enhancement of super-
symmetry when taking the near horizon geometry was lost after the identification.
This may suggest that the same phenomenon is taking place in the double null rota-

tion, since the action generated by the latter is the combination of two commuting

null rotations. However, the general solution to the eigenvalue problem

Ne=N;-Nge =0,

9n [57], it was claimed that the amount of supersymmetry p'rescrvcd by the double null rotation

quotient was v = 1. but as shown in [69], the latter is actually enhanced to v = 1.
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where N stands for the full double null rotation generator in the spinorial represen-
tation, and N; ¢ = 1,2 stand for nilpotent operators, is not given in terms of the
intersection of kernels of the nilpotent operators associated with each of the null
rotations, which would give rise to v = %, but there exist non-trivial solutions [69]
that enhance supersymmetry to one-half. Thus, in this case, the double null rota-
tion quotient preserves the same amount of supersymmetry as the corresponding
asymptotically flat analogue in terms of parallel and coincident D3-branes in the
nullbrane vacuum.

Deformation by A(®2), In order to turn on any deformation parameter, we must
consider higher dimensional AdS spacetimes. In particular, it is natural to consider
AdSy, since this is very naturally obtained in M-theory from the near horizon limit
of M5-branes. If we denote by b the deformation parameter, the deformed seven

dimensional quotient can be written as
gads; ;T = cosh? X ganr + dx? + sinh? x (dyp; + bal¢)2 . (3.131)

where g4, stands for (3.119).

Since we only turned on a single deformation parameter, b, the corresponding
seven dimensional quotient, when embedded in string theory, will break supersym-
metry. It is certainly possible to construct supersymmetric versions of the latter by

deforming the orbifold action with a non-trivial action on S*.

Sphere deformations

Let us start our discussion on sphere deformatious of the double null rotation quo-
tient by focusing on AdSs x S®. The family of deformations is described by (3.108),
that is, by three real parameters. As discussed in [69], the only supersymmetric loci
in the fundamental region defined by the action of the Weyl group is, besides the
or by #; — 6, +8; =0,

origin, given either by 8; = 8, and 65 = 0, preserving v = i,

- _1
preselvmg vV = ]

The discussion for AdS; xS* is analogous. In this case, there exists a two pa-
rameter family of deformations, given by (3.109). The only supersymumetric loci in

the fundamental region defined by the action of the Weyl group is either the origin,
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corresponding to the double null rotation quotient itself, or the line #; = 6,, which
preserves v = i.

As an explicit example of a sphere deformation of the double null rotation quo-
tient, we shall focus on a supersymmetric deformation on AdSs x S°. We will focus
on the same sphere action considered in section 3.4.2. As before, we apply the gen-
eral formalism developed in (3.64) for the full Killing vector £ = €aqs + €5. If we
introduce adapted coordinates so that £ = d, by defining v/ = ¥ — ¢, the full

ten-dimensional metric on the quotient space will be

g = Ganr + dO? 4+ sin® 0, O3 + cos® 0, (dp, + 2(dy + 7d¢))2

+sin® 6, ((d¢’ + vdp)? + dp® + 2cos 205 (dy)' + vdo) - ¢) . (3.132)

where gg4,, denotes the metric on the quotient of AdSs given in (3.119).
Again we could consider quotients involving both A% blocks acting on AdS and
sphere deformations. The techniques required to deal with them are exactly the same

as those used above. The reader can find an analysis of their supersymmetry in [69).

3.5 Further Identifications

We can produce additional quotient spaces by considering quotients generated by
more than one commuting Killing vector. For such a spacetime to be causally regular
it is certainly necessary that each of the Killing vectors that we quotient along is
everywhere non-timelike. However, this is not sufficient to rule out closed timelike
curves. Consider the quotient generated by &; and &. Since points in AdS,4, lie on
orbits of both & and &, the action of the quotient produces closed curves joining
points on any linear combination of these orbits. Thus, in order to construct a
causally regular spacetime, we need commuting Killing vectors for which any linear
combination is everywhere non-timelike. This is in practice a stringent restriction.
We discuss three causally regular quotients of this type, which are all generalisation
of quotients discussed in section 3.4.

In 50(2,2) the only everywhere non-timelike commuting Killing vectors live in

seperate si(2, R) factors of s0(2, 2) = s{(2, R) ®sl(2,R). Each factor has three Killing
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vectors
E=Jdut s, & =JutJy, & =JuF s, (3.133)
which satisfy
[fliafﬂ = 2¢k&r (3.134)
We have ||&F]|2 = ||€5]|? = 1 and we can build two other everywhere non-timelike

Killing vectors, corresponding to two versions of A2 ith @ = 0, by defining

§+ = gf - é;a

& = & & (3.135)
Unfortunately no combination of these nowhere timelike Killing vectors gives rise to
a causally regular quotient. In [117] it was claimed that the quotient generated by

two of the everywhere spacelike Killing vectors, i.c £&§ and &7, is causally regular.

However the linear combination & + &} is not everywhere spacelike
I + a3 |1* = (1 + a®) + 2a(a} — 25 — 25 + 73). (3.136)

Hence this quotient space has closed timelike curves. In [117] they worked in coor-

dinates for which & = 9, and & = —3,, given by
a1 = cosh (@) + ¢o) sin (7 — %),
T2 = cosh (¢ — ¢a) cos (T %),
x3 = sinh (¢ + ¢o) sin (7 %),
x4 = sinh (¢ — @) sin (7 Z—) (3.137)
The AdS4 metric in these coordinates is
gads, = (—dr’ + doi + dpj — 2sin27dgides) (3.138)

Where the action of the quotient makes ¢; and ¢, periodic. The closed timelike
curves are not apparent in the coordinate system defined by equation (3.137) be-
cause these coordinates do not cover the entire AdS; spacetime. Indeed for these

coordinates

T3 — 25 — T3 + 15 = sin 27, (3.139)
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Thus they only cover the region free of closed timelike curves. A simple way to see
these coordinate are not global is to observe that (3.138) is geodesically incomplete;
generic geodesics go off to infinite ¢, ¢, as T approaches nxz.

In AdS4 a more interesting quotient becomes possible. Consider the two com-

muting null rotations

&1 = Jiz — Jss,
&2 = Jia — Jus, (3.140)
now we have
& + a&ll? = (1 + o®) (2 + 25)% (3.141)

The discussion for this case proceeds in an analogous fashion to that of section 3.4.1
for the quotient of AdSs by A/(1:2) There is a single other Killing vector in s0(2, 3)

which commutes with & and & given by & = Jyjo — Jos. This has norm [|&]]° =

—(x, + x5)%. The most convenient coordinate system for studying this quoticnt is
Poincaré coordinates, where we can orient the coordinates so that & = 9;,& = 9,

and & = d,, where the AdS; metric in Poincaré coordinates is
1 2 2 2 2
gAdss = 5 (—dt* + dz* + da?* + dy?) . (3.142)
z

We see that the effect of the quotient is simply to make the @ and y coordinates
periodic. The Killing vectors &; and & become null on the Poincaré horizon z = oo
where this coordinate system breaks down. In terms of the embedding coordinates,
this is the surface z; + 5 = 0. There are two null planes of fixed points given by
21+25 = 3 = 0and x;+25 = 4 = 0. Away from the fixed points, the identification
along & and & will generate closed null curves in the Poincaré horizon. These can
be eliminated by deforming this quotient by a suitable action on an odd-dimensional
sphere.

This quotient can be generalised to higher dimensions, for so(2,p) there are at



3.5. Further Identifications 72

most p — 1 comunuting null rotations

& = Jiz— Jap,
& = Ju— Jup,
-1 = Jip-1) — Jp-1yp (3.143)

where
p—-1 p—1
1Y alill’ = ad(at + 1), (3.144)
i=1 i=1 .

Going over to Poincaré coordinates we can orient the coordinates so that & =

Op1, &2 = Oy, etc and Ji12 — Jop = 0;. The AdS,+1 metric in Poincaré coordinates is
1 .
IAdS, = 3 (—dt* + d2* + da? + daj + ...+ dal,_,)) (3.145)

The effect of the quotient is to make the z; coordinates periodic. Fach £ has a
region of fixed points on the Poincaré horizon.

In s0(2,4) there are two commuting double null rotations

& = Jiz— Jsg + Jos — Jse,

& = Jis+ Jag — J3s + Jus, (3.146)

With
161 + a&l)? = (x1 + 24 + axg + 26))? + (22 + 6 + a2y + 24))?, (3.147)
which is positive semidefinite being null where x; + 74 = |73 + z4|. A suitable

action on a odd dimensional sphere will make this causally regular. Seperately
the action of each quotient is free of fixed points, however when we consider the
combined quotient then we have fixed points whenever @ + x4 = |x2 + zg| and
|z3| = |z5|. The action of this quotient preserves a null symmetry corresponding to
&3 = Jyo — Jog + Jig + Jsg. We can construct a coordinate system adapted to this

quotient so that & = 0, & = 0y and & = 0,, which in terms of the embedding
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coordinates is

' — 2! = efcosT,

2t +a = —eP(200 + 2v)sinT — (7" + (02 + ¢*)e”) cos T,
2% — 2% = efsinT,
(3.148)
a® + 2% = e” (=240 + 2v) cosT — (7P + (62 + ¢*)ef)sin T,
23 = ef(pcosT + OsinT),
1% = ef(¢psinT + GcosT) .
The AdSs metric in these coordinates is
Ganr = —d7* + dp? + ¥ (dv* + d¢? — 2drdv ~ 4sin 27dgdi). (3.149)

As anticipated this coordinate system is not global, it breaks down at 7 = £% where
the expressions for 23 and x5 lose their linear independence.

There is one freely acting causally regular quotient of this type which we will call
the extended double null rotation because it shares many features of the double null
rotation . The minimal dimension where such an object exists is p = 6. The pure
extended double null rotation discrete quotient in AdS7 is the near horizon geometry
corresponding to a bunch of parallel M5-branes whose worldvolume is the extended
nullbrane, introduced in Appendix B. The Killing vectors that we quotient along

are

&= Jis— s+ Jog — Jus,

52 - J15 - J57 + J’z(j - J(ig, (3150)

that is two commuting double null rotations with two common spacelike directions.
Their norm is ||&; +a&s||? = (1 +a?)[(z, + x7)? + (z2 + 25)?]. This is clearly positive
semidefinite, and the quadric —(z,+27)(z, —x7) — (T2 +as) (x2—28) + x5+ 23 +2+ak =
—1 defining the AdS embedding constrains the coordinates so that it is positive

definite. There are six linearly independent isometries in s0(2,6) commuting with
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fl and 622
&3 = Jig — Js7 — Jos + Jys,

§s = Jig + Jog — Jsg — Juz,

& = Jis — Js7 — Jag + Jgs,

(3.151)
& = Ji6 + Jos — Jsg — Jer,
& = Jio — Jor + J1g + Jus,
€8 = Jza — Jia + Js6 + Jus.
These Killing vectors have the non-trivial commutation relations
[63764] = _2577 [53758] = 2€4~, [54» {8] - _263!
(3.152)

[€5,86] = —2& (&5, &8] = 266 [6n, &) = —26s.

If we define & = & +&and & = & + &g then &, 52, &7 and &g form a Heisenberg
algebra on which &g acts as an outer automorphism. The symmetry algebra of the
quotient is hence (h(1) X R) ¢ R which is the same as that of the double null rotation
quotient. The norms of the Killing vectors are ||£,]> = ||&[|* = ||&l]? = [|&]° =
1811 = [16l1%, 11&11* = 0, [1gsll* = —1.

The construction of adapted coordinates proceeds in a identical fashion to that of
the the double null rotation; to study causality we adapt them to &, &, &7 and &. Let
us therefore seek to choose coordinates (¢, u, ¢, ¥, p, v, B) so that & = 9, & = —d,

& = 0y and & = J4. A global coordinate system satisfying these conditions is

x’ — gzl = ePsint,
243t = —ef (207 + 2B + 2v) cost — (e + (2 + ¢? + P + B%)e")sint,
2% — 12 = e’ cost,

28 + 2 = e?(2dy + 248 + 2v)sint — (e7? + (¥ + ¢* + ¥° + %)e”) cost,
a* = e(ycost + ¢sint),
at = e’(—ysinl + pcost),

1° = e?(Bcost + Psint),

2% = e?(—fBsint + wcost) .
(3.153)
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where —00 < p < 00,—00 < ¢ < 00 and —o00 < 1 < 00 in order for the coordinates

to cover the whole spacetime. The AdS; metric in these coordinates is
Ganr = —dt* + dp* + 2 (dip?* + dd* + dF? + dv? — 2dtdv — dydtdp — 4dtdy)), (3.154)

and the other four Killing vectors are

&3 = —cos2t (g — 2030,) + sin 2t Jg,
& = sin2t (94 — 200,) + cos 2t g,
(3.155)
& = —cos2t (0y — 2v0,) + sin 2t 0,
& = sin 2L (Fy — 27v0),) + cos2L 0, .
The action of our quotient is simply described by making the coordinates ¢ and ¥
compact. We are interested in the conformal boundary of this quotient. Since the
quotient action integrates to the real line the only possible fixed points are where a

linear combination of & and & vanishes. These points are given by

=t et =t = =2%=0.

The above does not belong to AdS-, since they do not satisfy the quadric equation
(2.6). However there is a continuous null curve of fixed points on an infinite cylinder
of axis, global time 7, and a maximal circle base. Thus, the action of the quotient
is well-defined on the global boundary of AdS (i.e., the Finstein static universe)
with a single null line deleted. This indicates that the boundary of (3.154) can be
described in terms of a plane wave. Following our discussion of the double null
rotation quotient, we make a coordinate transformation Z = e * in (3.154). The

metric then becomes
1 , ,
Gdnr = ﬁ(—Zdtd,v—szt2+de+d¢2+d72+d¢2+dﬁ2—47dtd¢>—4,6dtd¢), (3.156)

where 0 < Z < oo covers the whole of AdS;. By rescaling the metric by a factor of

Z?, we can conformally map global AdS; into the space with metric
g = —2dtdv — Z%dt? + dZ* + d¢* + dv* + dyp® + dB* — 4ydtde — 403dtdsp, (3.157)

with the conformal boundary lying at Z = 0. Since &, = 9 and & = 9, annihilate

the conformal factor,we can regard the extended double null rotation as conformally



3.5. Further Identifications 76

embedded in (3.157) with ¢ and ¥ compactified. The space (3.157) is simply a
symmetric plane wave. This can be made obvious by making the further coordinate

transformation

=v+y¢p+ (Y,

Vv
U=t,
K = vycost + ¢sint,
(3.158)
L = —ysint + ¢cost,
M = Bcost + ¢ sint.
N = —fsint + ¢ cost,

under which the metrie becomes
g= —2dUdV—(K2+L2+]\/[2+N2+Z2)dU2+dK2—'rdL2+dM2+dN2+dZ2. (3.159)

Again, this relation between the symmetric plane wave and AdS is anticipated
by previous work. Since all the unbroken symmetries of the extended double null
rotation commute with the conformal rescaling they are all symmetries of the con-
formally related plane wave metric (3.159) although we will not give their explicit
form here. The conformal boundary of the extended double null rotation is given

by the surface at Z = 0 in (3.157), with metric
g = —2dtdv + dé® + dv* + dy? + dB* — dvdtde — 4Bdtdy. (3.160)

This is itself a compactified plane wave, as can be seen by the application of the
coordinate transformation (3.158).

The connection to plane waves also makes it easy to identify a time function for
the extended double null rotation. Writing (3.121) in the form suitable for Kaluza-

Klein reduction along ¢,

g —2dvdt—(Z*+ 4y  +48) dt* + dy* +d %+ (dp—2~dt)* + (d—28dt)?), (3.161)

= ?[
we see that the lower-dimensional spacetime would again be a plane wave (up to
conformal factor). Hence, applying the results of [115], where time functions were
found for general plane waves, we can deduce that a suitable time function for the

extended double null rotation is

1 4y
={+ =tan"! . 3.162
T g <1+Z2+4'y2+4,32> ( )
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An interesting issue that we did not address here is the amount of supersymmetry

preserved by this quotient.

3.6 Black holes as quotients

As discussed in section 2.3, certain causally ill-behaved quotients can be given an
interpretation as an analogue of black holes [55,56]. The idea is that one can ex-
cise regions where closed timelike curves will arise from the original spacetime, and
consider the quotient just of the remaining portion of AdS,;;. The resulting ge-
ometry will be causally regular by construction, but will clearly not be geodesically
complete, having a ‘singularity’ corresponding to the boundary of the excised re-
gion. This singularity is not a curvature singularity ’in the classical geometry, but
extending the spacetime beyond it would introduce causal pathologies; it is there-
fore expected on the basis of the chronology protection conjecture that quantum
corrections will lead to a true singularity at this location. The interesting question
is whether this singularity is naked—that is, visible from infinity—or concealed by
an event horizon. If it is behind an event horizon, we view the quotient geometry
as a black hole, generalising the BTZ solution [55,56].

In this section, we will study which quotients can lead to black holes of this type.
Unlike in the previous section, where deformation on the sphere introduced qualita-
tively new possibilities, we find that the quotients with a black hole interpretation
are the BTZ quotients in AdS3, and the higher-dimensional generalisation of the
non-rotating BTZ quotients, coupled with some action on the sphere.

First, we need to establish what region of the spacetime we remove. In [68],
where quotients acting just on the AdS factor were (;onsidered, it was argued that
we should remove the region where the Killing vector éa4s fails to be spacelike.
Clearly, the quotient will contain closed timelike curves in this region. However,
it is not in general true that all closed timelike curves will pass inside this region.
In particular, for cases with A(%2 components, this does not remove all the closed
timelike curves.

Closed timelike curves in the region where £45 is spacelike can be constructed by
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an argument very similar to that used in section 3.3. As discussed at the beginning
of section 3.4, for any of our quotients, we can construct a natural coordinate system
(3.57) on the AdS part, in which we decompose AdS,+; in terms of an AdS,4; and a
SP~m! factors, where the Killing vector generating the quotient is Eaqs = EAdSnys TErs
with €ads, ., acting only on the AdS,, part of the metric (3.58) and containing the
non-trivial block or blocks, while the &, is a combination of rotations (the A(0:2)
blocks) acting on the unit sphere SP"""!. Now consider an orbit where &£aqg is

spacelike, but £a4s, ., 18 timelike. As in section 3.3, we can construct a closed curve

-1

which follows the orbit of £agqs,., on the AdS,,; factor and a length-minimising

ntl
geodesic on the SP""! factor. There are identified points which are separated by
an arbitrarily large timelike distance in the AdS,,;, factor; since the separation on
S~ is bounded, this closed curve will be timelike for sufficiently large separation
on the AdS, . factor. Obviously, a similar argument applies when we consider the
deformation on the transverse sphere; there will be closed timelike curves wherever
the norm of the non-trivial blocks taken on their own is timelike.

Thus, it would seem that a natural region to excise is the region where £aqs, .,
is timelike. That is, the region to excise is determined by the norm of the non-
trivial blocks, omitting all the rotations (both A2 and the rotations on transverse
spheres). Note however that this is still not sufficient to eliminate the closed timelike
curves in all cases. That is, the resulting quotient is not guaranteed to be causally
regular. However, this is the only possibility we will consider here. It represents the
natural generalisation of the construction of black hole solutions of [55,56] to higher
dimensions. We will focus on seeing what black analogues can be constructed by
removing this portion of the quotient. We will see that the resulting spacetimes in
the black hole examples are in fact free of closed causal curves.

The singularity surface we consider is then where ||£aqs,.., || = 0 in AdS,4; x S
Our main concern for the rest of this section is to establish in which cases this

singularity surface is naked, and in which cases it is concealed by an event horizon.

Since {ags,,., is a Killing field,

Veuisn, 16a, 1) = 2igaas, ., (Venss,., Entsn ) = 0, (3.163)

S0 €ads,,, 1s always tangent to surfaces defined by |[€ags, ., [|* = constant. Hence,
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the ‘singularity’ defined by [[€ads,,,||* = 0 has a null tangent, and must be a timelike
or null surface. We think of such a quotient as an analogue of a black hole if there
is a non-trivial event horizon J~(J%) in the quotient. Since the singularity surface
is timelike or null, this can only happen if the singularity surface divides the future
null infinity J* of the AdS,,, spacetime into disconnected regions. The behaviour
of the Killing vector on the asymptotic boundary of the AdS spacetime is therefore

essential in determining if a given case is a black hole or not.

3.6.1 AdS; black holes

For the AdS; case, the addition of a deformation on the sphere does not significantly
modify the analysis of [56]: the only quotients which lead to black holes are the
ones whose AdS Killing vector field is associated with the Killing vectors I, for
|a1| # |agl|, and IIrs for a # 0, corresponding to non-extremal and extremal black
holes, respectively. These AdS Killing vectors correspond to type [, and type 11,
in the notation of [56] . When embedding these black holes in string theory, it
is certainly natural to embed them in type IIB, in terms of AdSs x S* xT*, coming

from the near horizon of the D1-D5 system. Thus, the most general Killing vector

field giving rise to black holes is given by
§ =¢&prz + 6 Rz + 02 Ry, (3.164)

where we are using the notation introduced in Section 3.2.
The metric on these solutions is easily constructed. For simplicity, we shall focus
again on the deformation for which 6, = 6, = v. Let us adopt BTZ coordinates on

the AdS space, so that {aqs, = 94, and adapted coordinates on the sphere, so that

1ONote that the M = J = 0 black hole solutions of [56], obtained by quotienting by AM7(12) do
not have a generalisation to include rotation on the sphere, as the associated AdS Killing vectors
are nowhere timelike, so these give causally regular quotients once a non-trivial £gs is included, as

described in scetion 3.3.
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&s = 0y. Then the metric is

g )
= (7~ )~ 1)

+ df* + dx® + di® + 2 cos 20dxdip, (3.165)

T_T4

+7°[d¢ — di)?

r2

and the quotient introduces the periodic identifications ¢ ~ ¢+ 2mm, ¢ ~ 4+ 27wym,
m € Z. If we introduce a new coordinate 1) = 1 — y¢, then £ = Js and the metric

in fully adapted coordinates is

B e 31t PP
& (7 =)~ %)

+ v2de? + 2vdp(di + cos 20dx) + d6? + dx? + dy® + 2 cos 20dxdy.  (3.166)

r_Ty
r2

+ r?de — dt]?

Note that the deformation on the sphere does not affect the leading 72 part of
the metric at large distances, so the structure of the asymptotic boundary of the
black hole is not changed. From the point of view of Kaluza-Klein reduction over
the sphere, this geometry is described as the rotating BTZ black hole with a flat
SU(2)p € SO(4) gauge connection A} = v turned on, in analogy with previous
discussions of conical defects [97]. Since the gauge field has zero stress-energy, it
does not modify the three-dimensional metric. Its presence does however modify
the supersymmetry conditions [97]. Unlike in the conical defect case, we cannot
make non-supersymmetric black hole solutions supersymmetric by adding a defor-
mation on the sphere, as we cannot balance the hyperbolic black hole holonomy by

a holonomy in SU(2).

3.6.2 Higher-dimensional black holes

Let us now investigate what happens in higher dimensions. For the excision we are
studying, the singularity is determined by the non-trivial part of the AdS action,
£Ads,.,» and the presence of horizons is determined by considering the intersection
of this singularity surface with the AdS boundary. We therefore focus on the AdS
part of the story, and only add in the sphere at the end.

We want to know if there is an event horizon in the quotient. Since the location

of the singularity is determined by &ags,.,, it is natural to study this using the
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decomposition (3.57). This considerably simplifies the task of studying the higher-
dimensional cases, by relating it to the lower-dimensional classification. It would
require considerable work to determine directly from the form of the Killing vectors
whether or not event horizons exist. By relating this question to the existence of
horizons in lower dimensions, we can avoid most of this work and also gain some
valuable insight into the differences between the AdS; case and higher dimensions.

For a Killing vector which does not contain a AY(23) block, a M//(24) block, two
MIT0:2) plocks, or a ATT0-2) and a AUV block, we can adapt the coordinate system
of (3.58) with n = 2; that is, we can decompose AdS,1 in terms of AdS; and gr-3
factors. The Killing vector then decomposes as £xqs = Eads, + &, where Eaqs, acts
ouly on the AdS; part of the metric (3.58) and contains the non-trivial block or
blocks, while the &, is a combination of rotations (the A(®? blocks) acting on the
unit sphere SP~*. Furthermore, & Ads; 18 precisely the Killing vector associated to the
same type of quotient in the analysis of [56].

We exploit this decomposition to simplify the problem of finding horizons. We
will show that there is a simple condition on the action in AdS3; which will imply
that the singularity is naked in AdS,;,. The existence of a non-trivial event horizon
in the quotient spacetime implies that there are points in the singularity surface
|€ads,||> = 0 which cannot be connected to the same asymptotic region in both the
past and the future. Conversely, if a point in AdS with ||£ags,||? = O lies on some
timelike curve which lies entirely in the region where ||€aqs,||* > 0 in the bulk and
starts and ends in some connected component of the region of the boundary where
[|€ads,||? > 0, this point on the singularity will be naked in the quotient. Thus, the
existence of such a curve implies the nakedness of the singularity.

Now, in the coordinates (3.58), we can consider the restriction to the AdS; factor
at some fixed point on the sphere factor that & acts on, and ask if there is such
a curve which in addition stays in this submanifold. This will supply a sufficient
condition for nakedness of the singularity which can be expressed in AdS; terms.
We therefore want to look for a timelike curve in AdS; which connects points in

the same connected component of the region of the boundary where ||€aqs,||> > 0

through the region where [|€aqs,(]> > 0 in the bulk, and passing through a point at
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[|€adss]|? = 0. But this is the same thing as the condition for a naked singularity
in AdSs: cases which do not lead to black holes in AdS3 do not lead to black holes
in higher dimensions either. Horizons can only arise in the cases where there is a
horizon in the AdS; quotient.

Consider now the cases which give black holes in AdS3; that is Ig for |a;| # |as|
and IIgy for a # 0. Consider first the rotating black holes. We will see that there
will be no horizons in the higher-dimensional cases. In the quotient of AdS3, we
obtained a solution with an inner horizon and a timelike singularity, so any point
on the singularity surface was connected to the boundary to both the past and
future, but it was connected to different components of the boundary, so this did
not imply the absence of a horizon. In higher dimensions, however, we can describe

the asymptotic boundary in terms of an AdSs; x S”~* metric,

g9 = gAdS; T Ggr-3. (3167)

Since the portion of the bulk of AdS; where €445, is spacelike is connected, the por-
tion of the boundary of AdS, ;1 where €aq4s, is spacelike will be connected, and hence
the curves which link a point on the singularity to the boundary have their endpoints
in a single connected component of the region of the boundary where ||£aqs,]|* > 0.
Thus, they imply that the singularity is naked in the higher-dimensional quotients,
as noted for the case p = 3 in [68].

This leaves only the cases where we quotient by a Killing vector with a single
A factor, which would correspond to a non-rotating black hole in AdS;. We will
see shortly that this case does have non-trivial event horizon for AdS,,;, p > 2.
This is thus the only case involving AdS3 blocks with an event horizon in higher

dimensions.!!

It remains to consider the Killing vectors containing blocks AY(%3) and A/(24),
and the cases containing two A2 blocks or a A(1?) block and a A1) block. However,
these do not lead to any more examples with horizons. For two A(M? blocks, this

is obvious, as the Killing vector is nowhere timelike. For the AV(2® block, we can

UWe are again excluding the case of A2 corresponding to an M = 0 black hole, on the

grounds that once we include rotation on the sphere, this will become a causally regular quotient.
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observe that it was shown in [68] (where this case is called type V) that there is no
horizon in this case in AdS,; this can easily be extended to show that there is no
horizon in higher dimensions by the arguments used above. For a A block and a
A1 block, we can similarly appeal to the analysis of [68].

For the A2%) | we analyse the situation in AdSs, and appeal to the argument set
forth above to extend the conclusion to general dimensions. In AdSs, the Killing

vector 1s

Ends = 15 — Jas £ Jog — Jig + O(FJ12 + Jza + Js6) - (3.168)

The norm of this Killing vector is
ll€aasll® = —b* + 4blwg(ws — 21) — x5(2g F 22)) + (23 — 21)* + (24 F 12)%  (3.169)

where {z1,. .., 26} are the R?* embedding coordinates. Adapting a global coordinate

system on AdSs,

z1 = cosh pcost, x5 = coshpsint ,
3 =sinh pcosfcos @, x4 = sinhpcosfsing, (3.170)
x5 = sinh psinfcosy), x5 = sinhpsinfsiny |

the norm becomes

l€ads|l? = —b® + 4bsinh psin 6 [~ cosh psin(3) £ t) + sinh pcos fsin(yp — )]

+ cosh® p + sinh? pcos® @ — 2 cosh psinh pcos § cos(¢p + 1) .

Thus, we see that the global time dependence of the norm is simply a simultaneous
rotation in the two angles ¢, % on the S® in AdSs. Thus, the region of the boundary
where the norm of the Killing vector is spacelike is clearly connected, and this case
does not give rise to a black hole in any dimension.

Thus, the only quotient with a black hole interpretation for p > 2 is the quotient
by an AdS Killing vector A1 (a) ®; A(®2)(b;). The resulting quotient is the higher-
dimensional generalisation of the non-rotating BTZ black hole. Special cases of this

solution for p = 3,4 have been discussed before in [68,118,119].!2 As above, the

2Note that in [68], it was claiimed that this does not lcad to a black hole for b; # 0. This is
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natural coordinate system on these quotients in general is the one given by the
decomposition (3.57). If we adopt adapted coordinates for the A("!) action on the

AdS; factor, this is

dr?

r2 —

¢ = cosh? y (—(7‘2 — 1)dt* + Tt 7'2dqb2> +dx? +sinh® xdQ,_3 . (3.171)

where we have re-absorbed the length scale r, associated with the black hole by
rescaling coordinates, so the period of the angular coordinate ¢ depends on .. The
quotient makes identifications in ¢ with some twist on the SP~3 determined by the
b;. We note that although these are deformations o_f the higher-dimensional BTZ
quotient by rotations, they do not look like rotating black holes in the usual sense:
0, is still hypersurface-orthogonal, and there is a single horizon.

The special case where we consider a simple boost, so b; = 0, was considered
in detail in [68,118,119]. In this case the quotient preserves, in addition to the
symmetry associated with £, an SO(1,p — 1) symmetry in the orthogonal subspace.
Various coordinate systems were defined on the quotient which are adapted to make
some or all of this symmetry manifest in [118,119]. We would like to briefly connect
to that work by showing how our preferred coordinate system above which makes
the AdS; structure manifest is connected to one of those coordinate systems.

In [119], “spherical” coordinates were defined, in which the metric takes the form
dp?
(p* 1)

These coordinates are one example of coordinates adapted to the SO(1,p — 1) x

g = (p* = 1) [~ sin® 6dt* + df® + cos® 0dSY,_s] + + pide*. (3.172)

SO(1, 1) symmetry of this spacetime. They are related to (3.171) by the coordinate

transformation
sinh y

It is interesting to note that this shows that the SO(1,1) manifest in (3.172) is

cosf = p=rcoshyx . (3.173)

precisely the time translation of the BTZ black hole. Note that the spherical coor-
dinates of (3.172) cover more of the spacetime than the BTZ coordinates of (3.171).

because [68] took the singularity surface to be ||Eaqs||2 = 0, which does not eliminate all closed
timelike curves in this case. We take the singularity surface to be {|€ags,||? = 0, cutting out more
of the global AdS spacetime; this gives a causally regular spacetime which can be interpreted as a

black hole.
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This illustrates that while the coordinates we have constructed adapted to the de-
composition of the Killing vector in terms of lower-dimensional quotients are useful,
they are not the best coordinate system for every purpose.

Another interesting coordinate system on this quotient is the ‘de Sitter’ coordi-
nates of [119], which were used in [120, 121], where this locally AdS,; black hole
arises as the asymptotic behaviour of the bubble of nothing solution. In that context,
it is convenient to adopt a coordinate system in which the metric is

dR?
1+ R2

g = (1+ R*)d¢* + + R* | —d7? + cosh? 7(d6? + sin® 0dQ,_3)| . (3.174)
P

These coordinates are adapted to the same SO(1,p — 1) x SO(1, 1) symmetry as in
(3.172). The coordinate transformation relating (3.174) to (3.172) is

tanh 7

p? =1+ R? cosf=coshrsind, tanhl= (3.175)

cos

These ‘de Sitter’ coordinates have the advantage that they cover the whole exterior
region of the black hole. They demonstrate that the black hole is not a static solution
in higher dimensions; there is no Killing vector which is timelike everywhere outside
the black hole event horizon.

As in the three-dimensional case, when we consider the quotient of AdS,; x 59,
we can write the AdS and sphere factors in adapted coordinates separately, so that
Eaas = Oy, and & = 0. Fully adapted coordinates are then obtained by setting
Vo= — v, which introduces O(1) cross terms between AdS and sphere coordi-
nates. Again, from the Kaluza-Klein reduced point of view, what we are doing is
introducing a flat SO(g + 1) gauge connection A} = ~ on the black hole solution
above, without modifying the metric.

One other issue deserves remarking on on the subject of black holes: in [119],
it was claimed that a rotating black hole solution could be constructed by taking a
quotient of AdS;. We want to point out that this is not the same as the deformation
by A2 discussed above; in fact, this quotient is not a black hole. The solution

of [119] was given by considering AdS; in the coordinates

g = sinh?p [— cos® 0dt* + df* + sin? Gdd)Q] + dp* + cosh? pd(Z)Q, (3.176)
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and making identifications along ¢ = ¢ at fixed ¢ = r:rf ::5‘5. This gives a ‘black
T2

hole’ metrie of the form

2,2 (2 2 ; 2
g = cos’f —(7 re) 0 r_)dt2 +7? (dd) — T._TQ (r? — 7’i)dt> ]
+

r2
2 dr? (r2—r2) . 2 (r? —r?)
+ + df? + sin? dip?) + ————" sin? Od@?,
=) (=) Ty U ey
(3.177)
where 12 = ri cosh? p — r2 sinh? p. Since the coordinates [ and é in (3.176) both

parametrise SO(1,1) symmetries (while x parametrises an SO(2) symmetry), we
can easily see that this quotient corresponds to the rotating BTZ black hole type
of quotient: that is, to a quotient by a Killing vector formed from AV (a,) @
M1 (ay), with ayaz # 0. This can be seen explicitly by noting that defining the

new coordinates x, 7 by

r
sinh? y = T = 12) sin@ |
+ .
5 9 (3.178)
_9 g T —TC
P -t = 5
cosh” y

o2 . 2
g =cosh®y | - = ) g2 152 (d¢> - (P - .ri)dt)
+
72 di? '
+ RN TE):| + dx? + sinh? ydy? |, (3.179)

showing that the quotient space has a rotating BTZ black hole factor and a circle
factor, as expected for this type of quotient. Now, we have argued above that the
presence of a rotating BT7Z black hole factor implies that the region of the boundary
of AdSs where the Killing vector we are quotienting along is spacelike is connected.
Thus, this quotient cannot lead to an event horizon. The apparent presence of an
event horizon in the coordinates (3.177) is attributable to those coordinates not

covering the whole of infinity.



Chapter 4

Non-supersymmetric smooth
geometries and D1-D5-P bound

states

4.1 Introduction and Summary

A radical resolution of the information paradox has been suggested whereby quan-
tum gravity effects do not stay confined to microscopic distances, and the black hole
interior is quite different from the naive picture suggested by classical gravity. In
this ‘fuzzball’ picture individual states have no horiz‘on and no singularity, but an
effective ‘horizon’ does arise after ‘coarse-graining’.

Support for this conjecture has come from studying the D1-D5 system. The
theory considered is type IIB supergravity compactified on S' x T with ns D5-
branes wrapping S! x T%, and n; D-strings wrapping the S*. The low energy physics
of the bound states of these branes is described by a 1 + 1 dimensional CFT with
¢ = 6nyns. This field theory has its fermions periodic around the S! and is thus in
the Ramond sector. The R ground state of the CFT has a large degeneracy, with
entropy Smicro = me The geometry usually claimed to correspond to the

37
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R ground state of the D1-D5 system with no angular momentumn is

—dt? + dy? (1+ %)
d = ey \/(1 0 Dydrr, - V2,
V(1 +%) r r (1+ %)

(4.1)

At r — oo the geometry is flat, at small » the geometry is locally AdSs; x S% x T*
and it is singular at » = 0. Lunin and Mathur showed [80,125] that this geometry is
not actually produced by any configuration of D1 and D5 charges by constructing a
family of smooth geometries corresponding to the whole family of RR ground states
in the CFT.

They found such solutions by first mapping this” ‘2-charge system’ to another
2-charge system, the FP system, by a set of string dualities. The bound state of
the F and P charges corresponds to a fundamental string ‘multiwound’ ns times
around S', with momentum P being carried on this string as travelling waves. Since
the F string has no longitudinal vibrations, it must bend away from its central
axis in a transverse direction to carry the momentum. It is possible to write down
the supergravity solution corresponding to such a configuration. Dualising back we
get a family of geometries for the D1-D5 systemn characterised by functions of the
displacement of the string in its transverse directions. Upon quantisation this family
of geometries should yield the e2V2TV/AIRS gtates expected from the entropy.

Each D1-D5 bound state has a finite transverse size which modifies the naive
metric (4.1) inside a region r < 7, such that each geometry is regular with no
horizon. Had the bound state been pointlike, the metric would have ended in a
point singularity at » = 0. If we ‘coarse grain’ by drawing a boundary to enclose
the region 7 < rg where these geometries differ significantly from each other then
for the area A of this boundary we find

14
4G ~ vV nins ~ Sm,i(:’rw (42)

Such an agreement was also found for the one parameter family of ‘rotating D1-D5
systems’ where the states in the sytem have angular momentum .J [126]. As a test of
whether this picture of the two-charge system indeed describes the correct physics

oune can perform dynamical experimnents with these different geometries. To this
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end the collision time for left- and right-moving excitations on the component string
was computed in field theory and compared to the time for graviton absorption and
re-emission in the supergravity picture; the two are found to match [80,127].

However, the 2-charge D1-D5 system has a vanishing macroscopic entropy so
does not actually correspond to a finite horizon area black hole. The 3-charge system
which has D1, D5 and P charges (P is momentum along the S') has a horizon radius
that is of the same order as other scales in the geometry and therefore has a finite
macroscopic entropy. This system exhibits all the physically important properties
of black holes so results from this system are expected to extend to black holes in
general.

Giusto, Mathur, and Saxena made a first step in this direction when they iden-
tified smooth geometries corresponding to the spectral flows of the 2-charge RR
groundstates studied earlier [85,86]. These states correspond to special subsets of
the 3-charge CFT. The form of all regular half-BPS U(1) x U(1) invariant 3-charge
solutions has recently been found and it could be that. these geometries will account
for a significant part of the entropy of the 3-charge black hole [95,96]. However,
these geometries have not as yet been explicitly related to CFT states.

In this chapter we find non-extremal 3-charge solitonic solutions in supergravity
and identify their corresponding CFT states. We find that these non-supersymmetric
soliton solutions are parametrised by two integers m,n. The previously studied
supersymmetric solutions correspond to m = n + 1. Further solutions with another
integer degree of freedom k are constructed by orbifolds of this basic family.

We identify the basic family of smooth solutions labelled by m, n with states in
the CFT constructed by spectral flow from the NSNS vacuum, with m + n units of
spectral flow applied on the left and m —n units of spectral flow applied on the right.
We find a non-trivial agreement between the spacetime charges in these geometries
and the expectations from the CFT point of view. This agreement extends to
the geometries constructed as orbifolds of the basic smooth solutions. We have
studied the wave equation on these geometries, and we find that as in [86], there is
a mismatch between the spacetime result, Ats,4ra = mRp, and the expectation from

the CFT point of view, Aty = mR. We believe that understanding this mismatch
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is a particularly interesting issue for further development. Finally, we discuss the
appearance of an ergoregion in the non-supersymmetric solutions. We find that the
ergoregion does not lead to any superradiant scattering for free fields.

This chapter is organised as follows. In section 4.2, we recall the metric and
matter fields for the general family of solutions we consider, and discuss the near-
horizon limit which relates asymptotically flat solutions to asymptotically AdS; x
S3 ones. In section 4.3, we discuss the constraints required to obtain a smooth
soliton solution. We find that there is a basic family of smooth solutions labelled
by the radius R of the S!, the D1 and D5 brane charges @1, @s, and two integers
m,n. Further solutions can be constructed as Z, orbifolds of these basic ones;
they will be smooth if 7 and n are both relatively prime to k. We also discuss
the asymptotically AdS; x S® solutions obtained by considering the near-horizon
limit. The asymptotically AdS; x S solutions corresponding to the basic family of
smooth solutions are always global AdSs x S up to some coordinate transformation.
In section 4.4, we verify that the solutions are indeed smooth and free of closed
timelike curves. In section 4.5, we identify the corresponding states in the CFT,
identifying the coordinate shift in the global AdS; x S solutions with spectral flow.
In section 4.6, we discuss the massless scalar wave eqnation on these solutions, and

show that the non-supersymmetric solutions always have an ergoregion.

4.2 General nonextremal solution

We will look for smooth solutions as special cases of the nonextremal rotating three-
charge black holes given in [160] (uplifted to ten-dimensional supergravity follow-
ing [138]). The original two-charge supersymmetric solutions of [97,98] were found
in this way, and the same approach was applied more recently in [85, 86] to find
supersymmetric three-charge solutions. In the present work, we aim to find all the
smooth solutions within this family.

In this section, we discuss this family of solutions in general, writing the metric
in forms that will be useful for finding and discussing the smooth solutions. We will

also discuss the relation between asymptotically flat and asymptotically AdS; x S3
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solutions. We write the metric as

s M
ds? = — / (d1‘2 d;l/Q) + ——=(s,dy — Cl'dl)2
1, Hs H s

72 T
- - H + Hg — [)cos?
+{ V HiHs + (a5 — f)( Lt - ;I)COS cos? fdy?
vV HiHjy
o H, + Hy — 2 . ‘
+ HiHs — (a3 — af)( Lt > f) sin” 0 sin? #d¢?
H1H5

(a1 cos” 0dy + ay sin® 0de)?

M
F
VHH

‘ZM cos 0
[(aicicsc, — agsysss,)dt + (aasissc, — areicss,)dyldy
VvV H; H5
2]\/[ sin’ 9
[(agcrcscp — ays1858,)dE + (a18155¢, — agcicss,)dylde
\/ H, H5
IZ8 9
— dz; (4.3)
pY
where
H, = f+ Msinh®6;, [ =72+ a?sin®6 + a2 cos®6, (4.4)
and ¢; = coshd;, s; = sinhd;. This metric is more usually written in terms of

functions H; = H, /f. Writing it in this way instead makes it clear that there is no

singularity at f = 0. As the determinant of the metric is
SJH .«
g = —7‘2},,[—1 cos® @sin’ 4, (4.5)

e}

it is clear that the inverse metric is also regular when f = 0. The above metric is in

the string frame, and the dilaton is

e?? = ’{11 )
H

(4.6)

From [85], the 2-form gauge potential which supports this configuration is

M cos? 0
Cy, = a7 [(azcis5¢p, — ar1s1¢s58,)dt + (@151¢5¢, — a2cysssp)dy] A dy (4.7)
|
M sin® 6
e
H,
MRy gy - M5

11 1

[(arc185¢, — agsicssy)dl + (azsicse, — aic1858,)dy] A do

(r? + a3 + Ms3) cos® Od A d.
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We take the T in the z; directions to have voluine V| and the y circle to have radius
R, that is y ~ y + 27 R.
Compactifying on T* x S! yields an asymptotically flat five-dimensional config-

uration. The gauge charges are determined by

Q1 = M sinh d; cosh ¢, (4.8)
()5 = M sinh 85 cosh ds, (4.9)
Qp = M sinh §, cosh d,, (4.10)

where the last is the charge under the Kaluza-Klein gauge field associated with the
reduction along y. The five-dimensional Newton’s constant is G® = GU9/(2rRV);
if we work in units where 4G® /7 = 1, the Einstein frame ADM mass and angular

momenta are

M
Maipy = 7(cosh 247 + cosh 205 + cosh 24,), (4.11)
Jy = —M (a, cosh 6, cosh 65 cosh 8, — ay sinh §; sinh d5 sinh 6), (4.12)
Jy = —M (ay cosh d; cosh &5 cosh d, — a; sinh d; sinh ds sinh ;) (4.13)

(which are invariant under interchange of the 4;). We see that the physical range of
M is M > 0. We will assume without loss of generality 6, > 0, d5 > 0, 4, > 0 and
a; > az 2 0.

We also want to rewrite this metric as a fibration over a four-dimensional base
space. It has been shown in [123] that the general supersymmetric solution in
minimal six-dimensional supergravity could be written as a fibration over a four-
dimensional hyper-Kéhler base, and writing the supersymmetric two-charge solu-
tions in this form played an important role in understanding the relation between
these solutions and supertubes in [126] and in an attempt to generate new asymp-
totically flat three-charge solutions by spectral ﬁov{/ [124]. The supersymmetric
three-charge solutions were also written in this form in [128]. Of course, in the non-
supersymmetric case, we do not expect the base to have any particularly special
character, but we can still use the Killing symmetries 0; and 3, to rewrite the met-

ric (4.3) as a fibration of these two directions over a four-dimensional base space.
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This gives

1 -
ds? = —— {—(f - M) [dt ~(f — M)"'M cosh 6, cosh ds(ay cos? 0dy + as sin® 9d¢)]2

v HHs
+f [d]j + f7'M sinh 6, sinh §5(ay cos? 8d4) + a, sin? 9dq5)]2}
- = r2dr?
vV HH 2
+ e { (r2 + a?)(r? + a2) — Mr? +do
H(FOf = M)T(F(f = M) + fa3sin®6 — (f — M)a?sin® 0) sin® 6d¢?
+2Maya, sin? 8 cos? Odyd e

+ (S = M)+ falcos™ 0 — (f — M)aj cos® 0) cos® O)’] } ! (4.14)

where { = { cosh §, — ysinh §,, § = ycosh d, — tsinh dy.

We can see that this is still a ‘natural’ form of the metric, even in the non-
_ supersymmetric case, inasmuch as the base metric in the second {} is independent
of the charges. This form of the metric is as a consequence convenient for studying
the ‘near-horizon’ limit, as we will now see.

In addition to the asymptotically flat metrics written above, we will be interested
in solutions which are asymptotically AdS; x S3. These asymptotically AdS; x S3
geometries can he thought of as describing a ‘core’ l‘eéion in our asymptotically flat
soliton solutions, but they can also be considered as geometries in their own right.
It is relatively easy to identify the appropriate CFT duals when we consider the
asymptotically AdS; x S geometries. To prepare the ground for this discussion, we
should consider the ‘near-horizon’ limit in the general family of metrics.

The near-horizon limit is usually obtained by assuming that @y, Qs > M, a?, a3,
and focusing on the region 1? < @, Q5. This limiting procedure is easily described
if we consider the metric in the form (4.14): it just amounts to ‘dropping the 1’
in the harmonic functions Hi, Hs, that is, replacing H; ~ Q, Hs = Qs, and also

approximating M sinh 9, sinh d5 &= M cosh 8, cosh é5 =~ /Q1(Qs in the cross terms in
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the fibration. This gives us the asymptotically AdS; x S? geometry
. 1 ~
2 = =l _(f—-M - — ML 2 2 2
ds V(e { (f — M)[dE ~ (f = M) \/QIQS(all cos? By + ay sin? 0dg)]
1[G+ [/ 01Qs(as cos? Ay + a; sin? 9d¢)]2}
r2dr? ,
d 2
@16 { (r2 + a?)(r?2 + a2) — Mr? +do
+(f(f = M) (S = M) + fajsin® 6 — (f — M)a; sin® ) sin® fd¢°
+2Mayas sin’ 6 cos? 8dydo )
+ (f(f = M)+ faicos® 8 — (f — M)aj cos® §) cos® 0dv?| } . (4.15)
This can be rewritten as
2 2 2 2 -1 2
2 _ P ] Js 2, 2 s
R
+02d6* + *sin’® 0ldg + — 2 (arc, — azsp)dyp + — 7 5 (azc, — a,5,)dr]?
R .
+02 cos® Bdep + ((12(',, asy)dg + ﬁ(alc,, — ags,)dr]?, (4.16)
where we have defined the new coordinates
Y e
== = — 4.1
pEg TE (4.17)
2
Pt = ﬂ—é[rQ + (M — a? — a3)sinh? 6, + a,aq sinh 26, (4.18)
and parameters
= Vi Qs, (4.19)
R? s ' .
Ms = 6_4[(M — aj — a3) cosh 26, + 2a;a; sinh 24,)], (4.20)
R2
J3 = 3_3[(]\/] — a} — a2)sinh 26, + 2a;a; cosh 26,)). (4.21)

Thus, we see that we recover the familiar observation that the near-horizon limit of

the six-dimensional charged rotating black string is a twisted fibration of S* over

the BTZ black hole solution [129].

4.3 Finding solitonic solutions

In general, these solutions will have singularities, horizons, and possibly also closed

timelike curves. Let us now consider the conditions for the spacetime to be free of

these features, giving a smooth solitonic solutiou.
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Written in the form (4.3), the metric has coordinate singularities when Hy =0,
Hs = 0 or g(r) = (r* + a®)(r? + a3) — M7? = 0. In addition, the determinant of
the metric vanishes if cos?8 = 0, sin®8 = 0, or 72 = 0, which will therefore be
singular loci for the inverse metric. The singularities at H; = 0 or Hs = 0 are
real curvature singularities, so we want to find solutions where H,>0and Hy >0
everywhere. The vanishing of the determinant at § = 0 and § = § merely signals
the degeneration of the polar coordinates at the north and south poles of S?; these
are known to be just coordinate singularities for arbitrary values of the parameters,
so we will not consider them further.

The remaining coordinate singularities depend only on 7. We can construct a
smooth solution if the outermost one is the result of the degeneration of coordinates
at a regular origin in some R? factor; that is, of the smooth shrinking of an S*. If
this origin has a large enough value of r, we will have H, > 0 and H; > 0 there, and
we will get. a smooth solution. The coordinate singularity at 12 = 0 cannot play this
role, as we can shift it to an arbitrary position by defining a new radial coordinate
by p* = 1? — r2. The determinant of the metric in the new coordinate system will
vanish at p? = 0.

The interesting coordinate singularities are thus those at the roots of g(r), and
the first requirement for a smooth solution is that this function have roots. If we
write

g(r) = (r* =r)(r? = r?) (4.22)

with r2 > r?| then

1 1 . ) o -
r2 = §(M —a®—a3) + 5\/(1\/1 —a? - a3)? — 4aja3. (4.23)

We see that this function only has real roots for
M — a? — al| > 2a,a,. (4.24)

There are two cases: M > (a; + ap)?, or M < (a, — az)?. Note that in the former
case, r2 > 0, whereas in the latter, 72 < 0 (which is perfectly physical, since as
noted above, we are free to define a new radial coordinate by shifting 7% by an

arbitrary constant).
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Assuming onc of these two cases hold, we can define a new radial coordinate by

p? =12 —r2. Since r?dr? = p*dp?, in this new coordinate system

e dp?
gpp = HlHST&—_(.Q_Tg)’ (425)

P Ty~
- '
and the determinant of the metricis g = — pQ%} cos? @sin §. Thus, in this coordinate
system, the only potential problems are at p* = 0 and p* = r2 — r2, that is, at the
two roots of the function g(r).

To see what happens at 7> = r? | consider the geometry of the surfaces of constant

7. The determinant of the induced metric is
g = _ cos? 0 sin® 9[?11/21?51/2g(7‘). (4.26)

Thus, at 72 = 'ri, the metric in this subspace degenerates. This can signal either an

2 2

event horizon, where the surface 7 = r{ is null, or an origin, where 72 2

=77 is of
higher codimension. We can distinguish between the two possibilities by considering
the determinant of the metric at fixed r and ¢; that is, in the (y, 8, ¢.1) subspace.

This is

¥ = cos’@sin? g {g(r) (r* + alsin’ O + a3 cos® 0 + M (1 + sT + s3 + 3127))
+rP M (il — sistst) + M*(M — af — a3)sisis),

+2M%a, agslc]ssc;,s,,c,,} ) (4.27)

This will be positive at > = 72 if and only if M > (a; + as)?. If it is, the constant
t cross-section of 72 = Ti will be spacelike, and r? = 'ri is an event horizon. Thus,
we can have smooth solitonic solutions without horizons only in the other case
M < (a; — ay)?.

To have a smooth solution, we need a circle direction to be shrinking to zero at
72 = r2. That is, we need some Killing vector with closed orbits to be approaching
zero. Then by a suitable choice of period we could identify p? = 0 with the origin
in polar coordinates of the space spanned by p and the angular coordinate corre-
sponding to this Killing vector. The Killing vectors with closed orbits are linear

combinations

é = 8y - (}’aw - [)).f)ag, (428)
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so a necessary condition for a circle degeneration is that (4.27) vanish at r? = 2,

so that some linear combination of this form has zero norm there. We can satisfy

this condition in two different ways.

4.3.1 Two charge solutions: ajay, =0

The first possibility is to set ag = 0, so ayaz = 0. Then for M < a?, r2 = 0, and we
set (4.27) to zero at r* = 0 by taking one of the charges to vanish. We will focus
on setting J, = 0, since these solutions will have a natural interpretation in CFT
terms. Recall that in string theory, we can interchange the different charges in this
solution by U-dualities.

For this choice of parameters, the metric simplifies to

ds* = 2= [-(f - M)(dt — (f — M)~ Mc,csa; cos?® 8dy)? (4.29)

=z
F

+ f(dy — f~"Ms,ssa, sin® 0dq§)2]
17 [ r2 r2sin? : r2+a?—M)cos? 9
+V/H\ H; (M‘jﬁ_M +df? 4 menfg el 0 dz/ﬂ) A

Since (4.27) vanishes at 72 = 0, the orbits of a Killing vector of the form (4.28)
must degenerate there. It is easy to use the simplified metric (4.29) to evaluate

a)

=0 = ) 4.30
a=0, B=- Tsion (4.30)
That is, if we define a new coordinate
~ a’]
= 4.31
0=t et (4.31)

the direction which goes to zero is y at fixed é.v. To make y — y + 27 R at fixed
®, 1 a closed orbit, we require

a)

R=melZ. 4.32
Msiss (4.32)
Around r = 0, we then have
- - dr? r2dy?
ds* = ... H\H ‘ 4.33
° Vs (a,$ v /\f[zsfsg> * (433)
This will be regular if we choose the radius of the y circle to be
M 5 .
R= 2215 (4.34)

Vai—M
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Thus, the integer quantisation condition fixes

me= (4.35)

Vai—M
With this choice of parameters, the solution is completely smooth, and 6, <]3, i are
the coordinates on a smooth S* at the origin 7 = 0. We recover the smooth super-
symmetric solutions of [97,98] for m = 1.

From the CFT point of view, it is natural to regard the charges @, Qs and the
asymptotic radius of the circle R as fixed quantities. We can then solve (4.34) and
(4.35) to find the other parameters, giving us a one integer paramcter family of
smooth solutions for fixed @), @5, R. The integer (4.35) determines a dimensionless

ratio aj /M, while the other condition (4.34) fixes the overall scale (a;, say) in terms

of Qh an R.

4.3.2 Three charge solutions

Solutions with all three charges non-zero can be found by considering ayay # 0.
Setting (4.27) to zero at 72 = r2 implies that

222, 2.2.2
(cicsc, + 515355)

M = a} + a3 — ajay (4.36)
51C185C55pCp
and hence that
51858
r? = —ayap = (4.37)
C1C5Cp
The Killing vector which degenerates is (4.28) with!
c S,C
= — SpCp  f=— PP . (4.38)
(a1c165¢, — A251555p) (ageicsc, — a151855p)
The associated shifts in the ¢, coordinates are hence
~ S.C ~ SyC
Y =1 - o vy, ¢=0¢-— 2 (4.39)
((11C105Cp - a25155sp) (CLgClC5Cp - (1131858p)
and y — y + 27 R at fixed . 1,5 will be a closed orbit if
5,C $pC
rr R=n, PP R=—-m (4.40)
(a1c165¢5 — a281855p) (azcrc5¢) — a181555p)

!This choice of parameters is most easily derived by requiring gy — 0 at p? = 0; having derived

it, one can then check that it also gives g,y — 0 at p? = 0 as required.
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for some integers n, m. As in the two-charge case, requiring regularity of the metric
at the origin fixes the radius of the y circle. We do not give details of the calculation,
but simply quote the result,

]\/151618565(816155C5Spcp)1/2

Varaz(cicic? — sisis?)

If we introduce dimensionless parameters

. a2 12 5155S5p 12
J=\= <l s={—" <1 (4.42)
a C1C5Cy

then the integer quantisation conditions determine these via

R=

(4.41)

jHi! i

=m-n
s+ 571 g — 571

=m+n. (4.43)

Note that this constraint is invariant under the permutation of the three charges.

We note that we can rewrite the mass (4.36) as
M = ayay(s* — 5)(j7%s72 = 1) = ayagnm(s™? — s%)?, (4.44)

so M > 0 implies s > j2 and nm > 0. Our assumption that a; > a, implies n > 0,
som > 0, and (4.43) implies m > n.

Thus, in this case, for given @, @5, R, we have a two integer parameter family
of smooth solutions. It is a little more difficult to make direct contact with the
supersymmetric solutions of [85] in this case, since one needs to take a limit a;, ag —
oo, but these would correspond to m = n+1, as it turns out that s = 1 and M = 0 if
and only if rn = n+ 1. We can also think of the two-charge solutions in the previous
subsection as corresponding to the case n = 0. To gain some insight into the
values of the parameters for other choices of m, n, we have plotted the dimensionless
quantities a, /v’ M. ay/v/M for some representative values in figure 4.1. The highest
point on the figure corresponds to m = 2,n = 0. Increasing n moves diagonally
downwards towards the diagonal, and increasing m — n moves down towards (0, 1).
For each point, there is a set of orbifolds labelled by k. Solutions with event horizons

exist in the region a;/vVM + ay/VM < 1 (off the bottom of the plotted region).
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to k. Thus, we get new smooth three-charged solutions by orbifolding by a k which
is relatively prime to m and n. We could have found such solutions directly if we had
allowed for the possibility that y — y + 27 Rk is the closed circle at p = 0, instead of
insisting that it be y — y + 27 R. We also have orbifolds similar to the two-charged
ones if one or both of m and n are not relatively prime to k. In particular, the
simple supersymmetric orbifolds studied in [86] correspond to taking m = kn' + 1,
n = kn' for some integer n’.2 The preserved supersymmetries in the solutions with
m = n + 1 correspond to Killing spinors which are invariant under translation in y
at fixed ¢. 1), so all the orbifolds of cases with m = n+ 1 will be supersymmetric. In
particular, orbifolds where k is relatively prime to n and n + 1 will give new smooth

supersymmetric solutions.

4.3.4 Asymptotically AdS solutions

In order to understand the dual CFT interpretation of these solutions, it is inter-
esting to see the effect of the constraints (4.41, 4.43) on the asymptotically AdS
solution (4.16). Consider first the two-charge case. If we set ay = 0, d, = 0 and
insert (4.34, 4.35) in (4.16), we will have

. . -1
ds* = — p_2+1 dr?* + p_2+1 dp® + p*dy*
- 62 €2 p p QD

+0* [d6* + sin® 6(dg + mdp)® + cos® §(dy + de/ﬁ)Q] . (4.45)

Thus, the asymptotically AdS version of the soliton is just global AdS; x S3, with
a shift of the angular coordinates on the sphere determined by m.

In the general three-charge case, the interpretation of the dimensionless param-
eter s changes in the asymptotically AdS solutions: it is now s = \/tanT(Sp. The

conditions (4.43) are unaffected, however, and inserting these and the value of the

2In [86], other examples where n # kn' are obtained by applying STTS duality to these oues.
This is possible because while (1, n) are U-duality invariant, k is not, so this transformation can

map us 1o new solutions.
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period (4.41) in (4.16), we will have

ds* = - '0—24—1 dr® + —p—2-+] _112- 2dip® 4.46
s = 7 , a t 1) et ptdy (4.46)

+0* [d6* + sin’ 0(d¢ + mdp — ndr /€)* + cos® 6(dy — ndip + mdr/0)?] .

Thus, again, the asymptotically AdS version of the soliton is just global AdSs x S3,
with shifts of the angular coordinates on the sphere determined by m, n.

Thus, in the cases where they have a large ‘core’ region described by an asymp-
totically AdS geometry, the smooth solitons studied in the first two subsections
above approach global AdS; x S* in this region. As a consequence, the orbifolds
studied in the previous section will have corresponding orbifolds of AdS3 x S3; some
of these orbifolds were discussed in [130,131]. The resulting quotient geometry is still
asymptotically AdSs x S3, as can be scen by introducing new coordinates ¢’ = ke,
7' = k7, p = p/k. The metric on the orbifold in these coordinates is then

-1
ds* = — (/2—122 + %) dr'? + (;—j + %) dp* + p?dy” (4.47)

2
df? + sin® ¢ (d(,/) + Tdcp’ - idr')

(,’2
+ k Kl

2 _2 / E I 2
+ cos H(dq,/) kdg& + MdT) ]

The redefined angular coordinate ¢’ will have period 27 on the orbifold.

4.4 Verifying regularity

In the previous section, we claim to have found a family of smooth solitonic solutions,
by imposing three conditions on the parameters of the general metric. We should
now verify that these solutions have no pathologies. In this section, we will use the
radial coordinate p? = r? — r2 (for the two-charge solutions, p? = r2), which runs
over p > 0.

The first step is to check that H; > 0, H; > 0 for all p > 0, as desired. In these

coordinates,

[ = p*+ (a] — a2)sin® 0 + (a3 — ajays”). (4.48)
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In the two-charge case, where ag = 0, the last terin vanishes, so f > 0, and hence

Hy >0, Hs > 0 everywhere. In the more general case, however, the last term is
a3 — ayay8° = —aay(s® — j%) < 0, (4.49)
so we do not have f > 0. Examining H; directly,
Hy = p* + (a® — al)sin® 0 + ajay(s* — 59 (s7%5 %52 — ¢2), (4.50)

so for Hy > 0 everywhere, we need the last factor to be positive. We know s2 > 52,

and we can rewrite the last bracket as

o & (8
(57272 — ¢3) = 3% (st?s’; —5%) >0, (4.51)

55p
so we indeed have f; > 0. We can similarly show H5 > 0. Thus, the metric in
the (¢, p, 6, ¢, ¥, z') coordinates is regular for all p > 0, apart from the coordinate
singularities associated with the poles of the S® at @ = 0, 7/2, so the local geometry
is smooth.

Next we check for global pathologies. We can easily see that these solutions
have no event horizons. The determinant of the metric of a surface of constant p,
(4.26), is negative for p > 0. That is, there is a timelike direction of constant p for
all p > 0, and hence by continuity there must be a timelike curve which reaches
the asymptotic region from any fixed p. We will demonstrate the absence of closed
timelike curves by proving a stronger statement, that the soliton solutions are stably

causal. Using the expression for the inverse metric in appendix C, we can evaluate

Lo 1 M2 (222 — s2s2s
Dlotg" = ———— [+ M(1 + s? + 2+ 5%) + G p L3 ») 0,
vV H Hs P p:+ri—r2
(4.52)

so Oyt is a timelike covector, and ¢ is a global time function for the solitons. Hence

the solitons are stably causal, and in particular free of closed timelike curves.
Finally, we should check regularity at p = 0. In the previous section, we chose R

so that the p, y coordinates were the polar coordinates in a smooth R%. If we define

new coordinates on this R? regular at p = 0 by

b = peos(y/R), a* = psin(y/R), (4.53)
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then
1

dy = ——
(2 + 23)

(z'dz? — 22dz?), (4.54)

and we need the other g, components in the metric to go to zero at least linearly in p
for the whole metric to be smooth at p = 0 once we pass to the Cartesian coordinates

', z?. In fact, we find that the g,, go like p* for small p in the (t,p,@,cz@,z/z,zi)

T
coordinates.

We also need to verify the regularity of the matter fields. The dilaton is trivially
regular, since H, > 0, H; > 0, but the Ramond-Ramond two-form requires checking.

The non-trivial question is whether the C,, go to zero at p* = 0. In fact, in the

gauge we used in (4.7), they don’t: we find

Ms,c,ss5c
Cp5= PEE2—— 4 O(pP),
a1C1C5C, — A25185Sp
Ms,c,s5¢5
Cyi = — +0(p%), (4.55)
A2C 1 CCy — A151855)
1+ s+ 52
Cp = — 2% 4 o),
510

We can remove these constant terms by a gauge transformation, so the Ramond-
Ramond fields are regular at p = 0. The physical imp.ortance of the constant terms
is that they correspond to electromagnetic potentials dual to the charges carried by
the geometry, and their presence is presumably related to the first law satisfied by
these soliton solutions, as in [132].

In summary, we have shown that the two integer parameter family of solutions
identified in the previous section are all smooth solutions without CTCs. In the
next section, we will explore their relation to the CFT description of the D1-D5-P

system.

4.5 Relation to CFT

We have found new smooth solutions by considering the general family of charged
rotating black hole solutions (4.3). These are labelled by the radius R, charges
(@1, @s) and three integers (m, n, k). They include the previously known supersym-

metric solutions as special cases, and add non-supersymmetric solutions and new
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supersymuctric orbifold solutions. We would like to see if we can relate these so-
lutions to the CFT description, as was done for the earlier supersymmetric cases
in [85,97,98].

If we consider the asymptotically AdS; x S? solutions constructed in section
4.3.4, which describe the ‘core’ region of the asymptotically flat solitons, we can
use the powerful AdS/CFT correspondence machinery to identify the corresponding
states in the CFT. The dual CFT for the asymptotically AdS3 x S3 x T* spaces
with radius ¢ = (Q,Qs)"/* is a sigma model with target space a deformation of the

orbifold (T*)V /Sy [133-135], where
N =nns = ——= (4.56)

where V is the volume of the T*. This theory has ¢ = 6n,ng. In section 4.3.4, we
showed that the corresponding asymptotically AdS solutions for a basic family of

solitons were always global AdS; x S3, with a shift on the angular coordinates on

?

the sphere specified by n, m. Following the proposal outlined in [97], we identify the
geometries (4.46) with CFT states with charges

h = (—:(m +n)? j = —(i(m +n)
A b (4.57)
h = ﬂ(m —n)?, j = I_Z(m —n).
Thus, these states have energy
- 1 .
E=h+h=2(m*+ nZ)i = E(m2 + n®)nyns, (4.58)
and momentum
g =h~-h= 4an—i1 = nmnns. (4.59)

Since the non-compact geometry is global AdSy, there is a single spin structure on
the spacetime. Because of the shifts in the angular coordinates, this spin structure
can be either periodic or antiperiodic around ¢ at fixed ¢, ¥: it will be periodic if
m + n is odd, and antiperiodic if m + n is even. Thus, the geometry is identified
with a RR state with the above charges if .+ n is odd, and with a NSNS state with

these same charges if m + n is even.
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These states can be interpreted in terms of spectral flow. Recalling that spectral

flow shifts the CFT charges by [136]

hW=h+aj+ QQi, 3 =9+ al—CQ, (4.60)
o, - - c -, - c

we can see that the required states can be obtained by spectral flow with a« = m+n,
3 = m — n acting on the NSNS ground state (for which h = j = 0, h = j = 0).
This spectral flow can be identified with the coordinate transformation in spacetime
which relates the (o, ¢,¥) coordinates to the (i, (5,1/;) coordinates. Thus, we see
that the non-supersymmetric states corresponding to all the geometries labelled by
m,n are constructed by starting with the maximally supersymmetric NSNS vacuum
and applying different amounts of spectral flow.

In [97], the special case m = 1,n = 0 was discussed. In this case, the spectral
flow is by one unit on both the left and the right, and maps the NS vacuum to a R
ground state both on the left and the right. We can sce the supersymmetry of this
state from the spacetime point of view: the covariantly constant Killing spinors in

global AdS have the form

£ _ +i%k £ _ +ilR

. 2
€ =e2e '2¢, ep=c¢ "% eg, (4.62)

e

so when we shift ¢, = oL + o, br = or + ¢, the Killing spinors €}, €} become
independent of p, corresponding to the preserved Killing symmetries in the R ground
state. If we consider m = n + 1, the spectral flow on the right is by one unit, so €}, is
still independent of ¢. These are the supersymmetric states considered in [85], which
are R ground states on the right, but the more general R states obtained by spectral
flowing by 2n + 1 units on the left. Our non-supersymmetric solitons correspond to
the more general non-supersymmetric states obtained by spectral flowing the NSNS
vacuum by m — n units on the right and m + n units on the left. In [85], an explicit
representation for the R sector state obtained by spectral flow by 27 + 1 units was
given,?

27+ 1) g = (JF ) (T )" ()2 D), (4.63)

*We use a slightly different notation than [85].
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where J*, 1s a mode of the su(2) current of the full CFT which raises h and j by
Ah =k, Aj =1, and |1) is the R ground state with j = +1/2 obtained by spectral
flow from the NS ground state. Similarly, one can give an explicit representation of

the NS sector state obtained by spectral flow by 27 units, following [137],
|2rYns = (Jf(zr_l))”‘"a(Jf(zr_g))"‘"f’ ()M 0) s (4.64)

The CFT state corresponding to the geometry (4.46) is then |m + n)g X |m — n)g
or [m + nyng X /m — n)yg, depending on the parity of m + n.
The situation is more interesting when we consider the orbifolds. The geometries

(4.47) should be identified with CFT states with charges

c (m+mn)*-1 , cm+n
h=—{(l4+—7F——), §J =-— ,
24 k? 12k )
5 (4.65)
o 1+(m—n)—l - cm-n
T 2 D T
In the supersymmetric case, when m =n + 1, h = TR j = ﬁ%, so these geometries

still have the charges of R ground states on the right. This particular R ground state
corresponds to the spectral flow of the NS chiral primary state with h = j = 2—04’“—;—1
However, the charges of the state in the left-moving sector are, in general, not those
of a R ground state or even the result of spectral flow on a R ground state. For
general m,n, neither sector is the spectral flow of a ground state. Thus, these
provide examples of geometries dual to more general CFT states.

To specify the CFT state completely, we need to say if (4.65) are the charges of
a RR or a NSNS state. To do so, let us consider the spin structure on spacetime.
When m or n is relatively prime to &, there is a contractible circle in the spacetime,
and as a result the spin structure is fixed. The contractible circle is (¢, ¢,v) —
(¢ + 27k, ¢ — 2wm, 1 — 27n). The fermions must be antiperiodic around this circle.
For the case where neither m nor n is relatively prime to k, we are not forced to
make this choice, but we will assume that we still choose a spin structure such that
the fermions are antiperiodic around this circle; this would correspond to the spin
structure inherited from the covering space of the orbifold.

In the supersymmetric case m = n + 1, and more generally for m + n odd, this

implies that the fermions are periodic under ¢' — ¢ + 27k at fixed ¢, 9. For k odd,
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this implies the fermions must be periodic under ¢' — ¢’ + 27, while for k even,
they may be either periodic or antiperiodic. Thus, for m = n + 1, we can always
choose the periodic spin structure for the fermions on spacetime. This spacetime
will then be identified with the supersymmetric RR state with the charges (4.65).
However, for k even, we can choose the antiperiodic spin structure for the fermions
on spacetime; this spacetime will then be identified with a NSNS state with the
same charges (4.65). In this latter case, neither the spacetime solution nor the CFT
state is supersymmetric.

The situation becomes stranger for m + n even. The antiperiodicity around the
contractible cycle implies that the fermions will be antiperiodic under ¢’ — ¢’ + 27k
at fixed ¢, 9. If kis odd, this is compatible with a spin structure antiperiodic in
¢, but if k is even, there is no spin structure on the orbifold which satisfies this
condition. The orbifold cannot be made into a spin manifold. The general conditions
for such orbifolds A/T" to inherit a spin structure from the spin manifold M were
discussed in [39]; see also [3] for further discussion relevant to the case at hand. It
will be interesting to see how this obstruction for k even, m + n even is reflected in
the CFT dual.

In the other cases, we can unambiguously identify the CFT state corresponding to
the geometry as the state with charges (4.65) in the séctor with the same periodicity
conditions on the fermions as in the spacetime (choosing one of the two possible spin
structures on spacetime in the case k even, m + n odd). It would be interesting to
construct an explicit description of these states, as in the discussion in [85, 86).

Thus, there is a clear CFT interpretation of the asymptotically AdSz x S3 ge-
ometries. However, the interesting discovery in this paper is that there are non-
supersymmetric asymptotically flat geometries, and we want to ask to what extent
these can also be identified with individual microstates in the CFT. Clearly the
appropriate CFT states to consider are the ones described above, but does the iden-
tification between state and geometry extend to the asymptotically flat spacetimes?
In particular, does it make sense to identify the asymptotically flat spacetime with a

CFT state in the general case where it does not have a large approximately AdSs x S3
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core region, and there is no supersymmetry?! We would not in general expect the
match to asymptotically flat geometries to be perfect, but there is one non-trivial
piece of evidence for the identification of the full asymptotically flat geometries with
the CFT states: the form of the charges still reflects the CFT structure. Plugging

our parameters into (4.10, 4.12, 4.13) gives

Qp = an]l??s, (4.66)
Jp = ——leRQS, (4.67)
Jy = nQ;f?é. (4.68)

These reproduce the quantisation of the CFT charges in (4.57). In the orbifold
case, we replace R by kR, as the physical period of the asymptotic circle is k times
smaller, and these values now agree with the charges in (4.65). This seems to us
like a very non-trivial consistency check, as it is very difficult to even express the
parameters M, a;, as appearing in the metric (4.3) in terms of Q,,@s and R and
the integers m,n, so there is no reason why we would have expected to get such
a simple result automatically. So this appears a good reason to believe properties
of the full asymptotically flat geometries are connected to the CFT states. Note,
however, that it does not seem to be possible to cast the ADM mass in such a simple
form. In the next section, we will also see that the predicted time delay involved in

scattering of probes does not quite match CFT expectations.

4.6 Properties of the solitons

We will briefly discuss some properties of these solutions, and their relation to the
dual CFT. We first discuss the solution of the massless scalar wave equation in

these geometries, following the discussion in [80, 86, 127] closely. We then consider

4The CFT state for some of the geometries is in the NSNS sector. We do not regard this as a se-
rious obstruction to an identification at the classical level: we are considering non-supersymmetric
geometries, so we can allow the fermions to be antiperiodic around the asymptotic circle in space-
time. At the quantun level, one might worry that these antiperiodic boundary conditions lead to

a constant energy density inconsistent with the assumed asymptotic flatness.
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the most significant difference between our non-supersymmetric solitons and the

supersymmetric cases, the absence of an everywhere causal Killing vector.

4.6.1 Wave equation

It is interesting to study the behaviour of the massless wave equation on this geom-
etry. This is a first step towards analysing small perturbations, and also allows us
to address questions of scattering in the geometry which indicate how an exterior
observer might probe the soliton. We consider the massless wave equation on the
geometry,

Ov = 0. (4.69)

It was shown in [138] that this equation is separable. Considering a separation

ansatz

U = exp(—iwt/R + i\y/ R + imyp + imed)x(0)h(r), (4.70)

and using the inverse metric given in appendix C, we find that the wave equation

reduces to

L PRV
sin20d0 \""" U ag X

W =2 5, 2 2 m;, mczb
7 : f) — — = —Ayx, (4.71
+ [ 7 (a7 sin” 0 + a; cos® 6) 020 S0 X X, ( )
Ld {g(r)d (w? - \?) M
pore l: . Eh] — Ah + [T(TQ + Ms} + Ms2) + (we, + /\sp)zﬁ h
A — nmy + mmy)? wo + A — nmy + mmy)?
w ¢ h ¢ P h _ 0
o 2 _ .2 + 2 _ 2 -
(r?—r3) (r2—r2)
(4.72)
where
22,2 _ 24242 2.2 _ 242
0= G%% ~ N1%% P9 = Q9% — %1% Sls5spcp. (4.73)

51C155Cs 51€185C5

We see that the singularity in the wave equation at 72 = 72 is controlled by the

frequency around the circle which is shrinking to zero there. This is a valuable
check on the algebra. If we introduce a dimensionless variable
2 _ .2

=Ty

2 _ 2"
(i el

(4.74)

r =
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we can rewrite the radial equation in the form used in [85],

d d _ 2 ¢?
4 a(z +1)— R S S S P _
T [1(1+1)d1h]+(0 z+1—v +1‘—I—1 . h =0, (4.75)
where
L2 237!
o2 = [(uﬂ —-A2)£117§5112] , (4.76)
(W2 —22) ) ‘ v

v= [1 +A - —R2—)(rj + Ms? + Ms2) — (we, + )\sp)zﬁz— . (4.77)
£ =wp+ M) —nmgy + mmy, (4.78)
¢ = A — nmy + mmy. (4.79)

We can then use the results of [85], where the matching of solutions of this equation
in an inner and outer region was carried out in detail, to determine the reflection
coefficient. This reflection coefficient can be used to determine the time At it takes
for a quantuim scattering from the core region near z = 0 to return to the asymptotic

region, by expanding R = a+b Y. e*" &' Their matching procedure is valid when

ot > 1 , (4.80)
and
R
At > PO (4.81)

Under these assumptions, their matching procedure gives
At = R0, (4.82)

where R, is the radius (4.41) for a smooth solution; in the orbifolds, R = R /k. We
note that this is in agreement with their result in the supersymmetric case, as in
the limit 4,, d5, d, — o0,

s"l’sg + s%sf, + sgs?, + s% + sg + sz + 1 N Qs + 1@y + QsQ)

$1C155Cs Qs

1
0= == (4.83)
7

in the notation of [86].
In the CFT picture, this travel time is interpreted as the time required for two
CFT modes on the brane to travel around its worldvolume and meet again. Thus,

from the CFT point of view, the expected value is Atcpr = 7Rs. As in [86],
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there is a ‘redshift factor’ p between our spacetime result and the expected answer
from the CFT point of view. It was argued in [86] that such a factor must appear
to make the spacetime result invariant under permutation of the three charges,
and it was proposed that this factor could bhe understood as a scaling between the
asymptotic time coordinate ¢ in the asymptotically flat space and the time coordinate
appropriate to the CFT. Evidence for this point of view was found by noting that
in the cases where the soliton had a large AdS; x S® core region, the global AdS
time 7 was proportional to nt, so AT = mR, in accordance with CFT expectations.
In our non-supersymmetric case, for fixed m,n, the appropriate limit in which we
obtain a large AdS region is the limit d;,ds > 1 for fixed 9, considered in section
4.3.4. We did not see any such scaling between the AdS and asymptotic coordinates
there, but p &~ 1 in this limit, so this is consistent with the interpretation proposed
in {86]. However, we remain uncomfortable with this interpretation. It is hard to
argue directly for such a redshift between the CFT and asymptotic time coordinates
in the general case where the soliton does not have a large approximately AdS; x S*
core. Indeed, in the dual brane picture of the geometry, where we have a collection
of D1 and D5 branes in a flat background, one would naively expect the two to
be the same. A deeper understanding of this issue could shed interesting light on
the limitations of the identification between CFT states and the asymptotically flat

geometries.

4.6.2 Ergoregion

Although our soliton solutions are free of event horizons, they typically have ergore-
gions. These already appear in the supersymmetric three-charge soliton solutions
studied in [85,86], where the Killing vector d;, which defines time-translation in the
asymptotic rest frame, becomes spacelike at f = 0 if @), # 0. However, in these
supersymmetric cases, there is still a causal Killing vector (arising from the square
of the covariantly constant Killing spinor), which corresponds asymptotically to the
time-translation with respect to some boosted frame. A striking difference in the

non-supersymmetric solitons is the absence of any such globally timelike or null
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Killing vector field.> The most general Killing vector field which is causal in the

asymptotic region of the asymptotically flat solutions is
V =0, +1Y09, (4.84)

for [v¥] < 1. However, when [ = 0, the norm of this Killing vector is
M
VH H;

The best we can do is to take v¥ = tanh ¢, for which this Killing vector is timelike for

V|* = (cp — v¥s,)? > 0. (4.85)

f > M. Note that as a consequence, the two-charge non-supersymmetric solutions
also have ergoregions.

In a rotating black hole solution, the existence of an ergoregion typically implies
a classical instability when the black hole is coupled to massive fields [139,140]. This
instability arises when we send in a wavepacket which has positive energy less than
the rest mass with respect to the asymptotic Killing time, but negative energy in
the ergoregion. The wavepacket will be partially absorbed by the black hole, but
because the absorbed portion has negative energy, the reflected portion will have a
larger amplitude. This then reflects off the potential at large distances, and repeats
the process. This process causes the amplitude of the initial wavepacket to grow
indefinitely, until its back-reaction on the geometry becomes significant.

One might have thought that in the supersymmetric three-charge solitons, the
instability would not appear as a consequence of the existence of a causal Killing
vector, by a mechanism similar to that discussed in [145] for Kerr-AdS black holes.
However, this instability is in fact absent for a different reason, which applies to
both supersymietric and non-supersymmetric solitons. The instability in black
holes is a result of the existence of both an ergoregion and an event horizon, so
in the solitons, the absence of an event horizon can prevent such an instability
from occurring. Indeed, from the discussion of the massless wave equation in the

previous section, we can see that the net flux is always zero, and the amplitude of

5For the asymptotically AdS spacetimes, there is a globally timelike Killing vector field, given
by 8, at fixed 1, g13 In (¢,y,9, ¢) coordinates, this is of the form V' = €9, — mdy + ndy, so it
A g @

cannot be extended to a globally timnclike Killing vector field in the asymptotically flat geometry.
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the reflected wave is the same as that of the incident wave. That is, although there is
an ergoregion, no superradiant scattering of classical waves occurs in this geometry,
and the mechanism that led to the black hole bomb does not apply here. There
might be an instability if we considered some interacting theory, as the interactions
might convert part of an incoming wavepacket to negative-energy modes bound to
the soliton, but we will not attempt to explore this issue in more detail.

Thus, for free fields, there is no stimulated emission at the classical level. We will
now show that there is also no spontaneous quantum emission.® There is a natural
basis of modes for this geometry; for the scalar field, (4.70). To establish which of
these modes are associated with creation and which with annihilation operators, we

need to consider the Klein-Gordon norm
(v, 0) =1 /2 & av/hin, g™ (99,0 — (3,9)¥), (4.86)

where Y. is a Cauchy surface, say for simplicity a surface { = {y, and n, is the
normal n, = d,t. The modes of positive norm, (¥, ¥) > 0, correspond to creation
operators, while those of negative norm, (¥, ¥) < 0, correspond to aunihilation
operators. Because of the complicated form of the inverse metric (see appendix C),
it is difficult to establish explicitly which are which. However, the main point is that
we can define a vacuum state by requiring that it be annihilated by the annihilation
operators corresponding to all the negative frequency modes in (4.70). This will
then be the unique vacuum state on this geometry. Since the modes (4.70) are
eigenmodes of both the asymptotic time-translation d; and of the timelike Killing

vector in the near-core 1‘ogion,
VI = 88, - mad, + ’n(")d,, (487)

these will be the appropriate family of creation and annihilation operators for ob-
servers in both regions. That is, these observers who follow the orbits of the Killing
symmetries will detect no particles in this state.

Thus, at the level of free fields, the solitons do not suffer from superradiance at

either the classical or quantum level.

5We thank Don Marolf for pointing out that the argument for non-trivial quantuin radiation in

the original version of [5] was erroneous, and for explaining the following argument to us.



Chapter 5

Uniqueness of charged Kerr-AdSs
black holes

The question of black hole uniqueness in higher dimensions has been attracting
considerable attention since the discovery by Emparan and Reall [147] of an asymp-
totically flat black ring in five dimensions. This is a solution with a regular event
horizon of topology S% x S!, supported against collapse by angular momentum. Since
there is a rotating black hole which carries the same mass and angular momentum
as this solution, this represents a breakdown of the usual no-hair behaviour: the
solution is not uniquely determined by the asymptotic conserved charges. Studies of
charged rings have uncovered further examples of non-uniqueness [148-152]. So far,
all these examples involve discrete forms of non-uniqueness: the existence of some
finite number of solutions with the same asymptotic charges. Although the classical
solutions in [149] involved a continuous parameter, this parameter can be physically
interpreted in terms of a local charge carried by the ring, so it will be quantized in
the fundamental theory. Furthermore, bounds on this charge for the existence of
a regular event horizon imply that these solutions give a finite number of solutions
with given energy. This is consistent with the expectation that the fundamental
quantum theory has a finite number of states of given energy iu finite volume. We
would expect that in general distinct classical solutions must correspond to different
quantuin states.

A new example with an apparent continuous non-uniqueness was recently found

115
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in [1,2]. They constructed solutions describing rotating charged black holes in five-
dimensional gauged supergravity, with the two angular momentum parameters set
equal. Studying first a case with a single U(1) gauge field [1], they found solutions
with four parameters: the mass, charge, angular momentum, and one additional
parameter. In (2], they extended this to a U(1)® theory with independent charges
and found a solution depending on six parameters. The solutions thus appeared
to involve a continuous non-uniqueness, which initially appeared to have physical
consequences. In light of the previous discussion, we want to understand the physical
significance of this extra parameter, to see how the apparent contradiction with
our expectation that there should be a finite number of solutions of given energy
is resolved. In addition, these solutions appear to provide a first example of non-
uniqueness involving black holes with a spherical horizon topology, so it would clearly
be interesting to understand them in more detail.

In this chapter, we establish that the extra parameter in the solutions of [1, 2]
is unphysical, representing a purely coordinate degree of freedom. In [1], it was
observed that if the charge () vanished, the additional parameter could be removed
by a coordinate transformation and redefinition of the other parameters. In sec-
tion 5.1, we extend this to the case with @ # 0. We discuss the extremal limits
in terms of these parameters, showing how the solutions of [153, 154] are recovered
in our parametrization, and briefly discuss the reduction to other known solutions.
We also discuss the possibility of discrete non-uniqueness, and show that although
the relation between our parametrization of the solutions and the physical mass and
charges is non-linear, there is only one black hole solution for given mass, angular
momentum and charges. We present a similar argument for the U(1)® solutions
of [2] in section 5.2. Thus, these solutions do not in fact present new examples of

non-unigueness.
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5.1 Charged Kerr-de Sitter Black Holes in five
dimensions

We consider first the solution of the minimal gauged supergravity obtained in [1],
describing a charged rotating black hole with a cosmological constant. The solution
can be written in the simplest form by introducing the left-invariant one-forms o

on S3,

o1 = cosdf + sinp sin Odep, (5.1)
o2 = —sinydf + cosysin bde, (5.2)
o3 = dy + cosfdo. (5.3)

The solution then takes the form

r*W 1 r?

2 _ . 2 2 2
dst = ~Trdi 4 dr? b D (oh 4 0d) 4 (o + ) (5.4)
A = \/,;Q dt——JJJ) (5.5)
where
-2 22 2
. PSR 24 (M +Q)
o= [1 5 T " ; (5.6)
I (g, M + 2M +Q Q2

W - 1-a?- L = [2ATH(M + Q) + 2(1 = MBI (M + Q) — 2Q(1 — ABJ?)]

72

t { — MBI+ JAAQ + 2(M + Q)]} . (5.8)

This is a solution of minimal gauged five-dimensional supergravity. It appears to
depend on four parameters, (M, J, @, 3). The first three can be related to the mass,
angular momentum and charge, but the physical interpretation of the fourth is
obscure: we will show that this solution can in fact be written in terms of only three
parameters.

The first step is to transform to a frame in which the metric is non-rotating at
infinity, so that it approaches the usual diagonal form of the AdS metric at large

distances, by making the shift

5’3 =03+ 2)\[311(“ (59)
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We then have
2 _ PWo, 1, o, 2, 2( = F 12
ds® = - e di® + Wdr + Z(U] + 03) + b°(a3 + fdi)*, (5.10)
A = ‘[Q [ (1 —ApJHdl - —Jaq , (5.11)
where
- J 24 QL=AI) - Q QAL AR
It is convenient to exchange 3 for a new parameter 0 (as in [155])
5= (1-A3J%. (5.13)
We then see that the gauge field becomes
36 J
A= \/;2th \/;Q 03, (514)
- 72

so the physical gauge charge is related to §QQ. We also see that [ involves the

parameters only in the combinations Jo(M + @)), 6Q and J@). This suggests that

we define the following new parameters:

qg = @0,
HM +Q),

SR

We then find that the solution depends only on the three parameters (g, j,p), and

has no remaining dependence on §:

‘ L3 | 2 ; Y
ds® = —T4b2 at? + odr? + %(af +03) + 6253 + fdt)?,
L V3q .,  V3qj.
= — f_ 3
72 272
where
v o= f(l—ﬁ—q2+2j2p)
4 rb rt /)’
j - _L(ZP_" _ q:)
22\ 2 )’
2 2

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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It is perhaps worth noting that this expression for W can be rewritten as
2 1 Loy 2
W =1-—4X*" — T—2(2p —2q) + 7—4(q + 2pj°). (5.22)

Thus, we see that the solution actually only depends on three parameters, cor-
responding to the three conserved quantities (M, @, J). The relation of two of the
parameters to these conserved quantities is fairly dire(.:t.: from the form of the gauge
potential, we see that

Q=q (5.23)

The angular momentum J can be calculated using the Komar integral technique
and is given by

J = %j(2p - q), (5.24)

" s0 7 is analogous to the angular momentum per unit mass parameter a in the usual
Kerr solution.

The remaining parameter p is related to the freedom to specify the mass, but in
a less simple way. We can define a thermodynamic mass as in [156] by insisting that

it satisfy the first law of thermodynamics for charged rotating black holes,
dM =TdS + 2QyxdJ + ¢udQ, (5.25)

where @y is the co-rotating electric potential evaluated on the horizon. This gives
the mass

m .
M = (3p ~ 3¢ dps®). (5.26)

In {157] the mass was calculated via the conformal boundary approach of Ashtekar,
Das and Magnon and found to be in agreement with this thermodynamic mass.
Note that although this looks like a linear relation, if we solve (5.24) for j in terms
of J, (5.26) will become a cubic equation for p in terms of M.

The reduction of this solution to previously known metrics was discussed at
length in [1). We will briefly revisit this issue to illuminate our parametrization
of the solution. Considering first the known BPS solutions, we note that the form
above reduces to the solution in [153] if we set p = 0 (after a redefinition of the

radial coordinate, 72 — r? — ¢), so this choice of parameters is well-adapted to this
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limit, while recovering the solution of [154] requires a more complicated choice: To

recover their solution, we write A = —1/¢% and set
RSN o

T (H 2€2> o 20

LA
p = 2(1+ 02 Ry, (5.28)

, el R2 R\

= 1+ 2 , 5.29
J 5 ( + 50 (5.29)

From the results of [154], we see that for this choice of parameters, the solution has a
degenerate horizon (a double root of W = 0) at r = Ry. The condition that W = 0

have a double root at » = Ry in general implies
2Xj%p + 2p — 2¢ = 2R% — 3\R} (5.30)

and
¢+ j°(0g* + 2p) = Ry — 2X\R2. (5.31)
Since these are two conditions on the three parameters (g, p, j), there is a family
of solutions with degenerate horizons with one extra parameter, generalising the
solution found in [154]. However, from the analysis in [154], we expect that only the
solution found there is BPS.
The other simple special cases are when j = 0,g =0 or A = 0. When j =0, if
we set p = m + ¢, the solution reduces to the RNAdS black hole studied in [158].

When ¢ = 0, if we set.

A=-I) j=a p= ( n (5.32)

the solution reduces to a special case of the five-dimensional Kerr-AdS metric ob-
tained in [159], where the two angular momentum parameters are equal, a = b.
Relating the form of the metric used in [159] to (5.17) requires a shift of the angular
coordinate to make the metric in [159] asymptotically diagonal and a redefinition
of the radial coordinate, 72 — r? + a?. When A = 0, the solution is related to a
special case of the general solution obtained in [160] where the two angular momen-

tum parameters are equal, ; = [ = [, and the three charge parameters are equal,

de = dg1 = de2. The relation between the parameters is

qg=msinh28,, j=1le %, p=me¥. (5.33)
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Relating the metric in [160] to (5.17) again requires a redefinition of the radial
coordinate, 72 — r? 4 [2 + 2msinh? §,.

As discussed in [1], the physically interesting solutions are those with a regular
event horizon and no closed timelike curves outside the horizon. That is, we want
to consider parameter values for which there is some r, such that W(r,) = 0,
W'(r,) > 0 (so that r, is the outer event horizon) and b*(r, ) > 0. Written explicitly

in terms of our parameters, these conditions are
ri(1—4N2) = 2r2 (p— q) + ¢* + 2pj> = 0, (5.34)
where we have introduced the notation b% = b(r,)?,
=3+ 20 (AP +p - q) — 200° + 57 (A¢® + 2p)] 2 0, (5.35)

and

0+ 25%pr — 24" > 0. (5.36)

These conditions will impose some constraints on the values of (p, 7, ¢). For example,

the requirement that (5.34) have a real positive root for 73 implies that
(0= @)% > (¢" + 2p5%) (1 — Ab2). (5.37)

Unfortunately, although our coordinate transformation and redefinition of parame-
ters simplifies the functions somewhat, it is still difficult to analyse the full set of
constraints.

An alternative approach is to use the above relations to replace the parameters j
and p in the metric by r, and b3, thereby automatically incorporating the constraint
b*(r,) > 0 for the absence of naked closed timelike curves. We can easily determine
the relation between j and b,

2 _ ry (4% — i) (5.38)

(2pr - ¢?)
and substituting this into (5.34) then gives a quadratic equation to solve for p, deter-
mining it in terms of r, b, and q. The resulting form of the metric is, unfortunately,
rather messy and unenlightening, and it would still be necessary to somehow incor-

~ porate the constraint that W/(r,) > 0, which will restrict the possible values of r,

and b, for given q.
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So far we have discussed continuous non-uniqueness. We should also consider
the possibility of discrete non-uniqueness!. As noted previously, (5.26) gives a cubic
equation for p as a function of the physical parameters M, J, @, so it is possible that
we will have more than one black hole solution for a given mass and charge. If we

define the dimensionless quantities

v = M2p—q), M= %:—\M,
J = 47/\21 Q=XQ (5.39)
then (5.24) tells us i
g = /{1—7 (5.40)
and substituting this into (5.26) gives
v — (2M + 3Q)y* + T2y + J2Q = 0. (5.41)

This is a cubic equation in v so for each (M, J, Q) there are possibly three different
solutions. However, for a solution to correspond to a black hole, W(r,) = 0 must
have at least one positive real root, at which b?(r,) > 0. We performed a numerical
analysis to check whether there are values of (M, J, Q) for which more than one
of the roots of (5.41) satisfy these conditions. We found that at most one root
of (5.41) has a black hole interpretation (see fig 5.1, fig 5.2 for representative plots),

thus ruling out any discrete non-uniqueness.

5.2 U(1)° case

In a further paper [2], the previous solution was generalised to a class of non-extremal
charged rotating black hole solutions in the five dimensional U(1)® gauged theory
of N = 2 supergravity coupled to two vector multiplets. This theory now has three

gauge fields A*, 7 = 1,2, 3, and two scalars ¢y, ¢o. The solutions they obtain can be

"We thank the referee of [6] for raising this issue
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We then have

45 = —R/',Sl/dl? n %"Qdﬂ PR o)+ (s - 2%&)2, (5.52)

Al = 7‘2!;{1' {[s,c,- + YA (i85 — sicyep)]dt + %l(c,—,s_,-sk - sicl,ick)ﬁg} (5.53)
where

2 = o—MA (5.54)

= {,u,l(H ¢ — H $i) — "/ul*‘)\] r? + 12l H S;
— I ptl? [2(1—[ c — H 8;) H 55 — Z sfsf} .
i i j

i<j
The radial coordinate used here is different from that used in the previous case: the
singularity in this metric will occur at r* = —pus?, Wwhere ¢; is the smallest of the
charge parameters, and not at r = 0 as before. We are therefore motivated to make

a change of radial coordinate to a new radial coordinate p,
r? :pQ—lZusz. (5.55)
34 ! '

With this new choice of radial coordinate,

X, = f;] , (5.56)
poit
where s
-\3 - 2 — 52) + p(s? - 82
R = pQ(H ['[,‘>3, f{l — 14+ l’l’(bl 1)3‘02’1’( i k)’ (557)

so the scalar fields, which are determined by the X;, depend on the parameters only
through the combinations p(s? — 7).

As in the previous case, we will find suitable parameters by examining the gauge
fields and the function f, appearing in the asymptotic form of the metric. We are

thereby led to define the five independent parameters

L Viil, (5.58)

N/ (H“i - Hsi) —I2A| (5.59)

ri o= p(eisisk — sicjex). (5.60)

r
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This may scem an awkward definition, but the r; in particular have several nice
properties:
ri—r? = p(s? —s9), (5.61)
so the combinations u(s? — S?) appearing in the H;, and hence in the scalar fields,
can be written as (17 — r?). Also,
L [sici + 'y/\lz(cisjsk - sic]-ck)] =7rjre — Iry, (5.62)

so the gauge fields can be written as

i Tk = L'y Ly .
A= DR gy T G (5.63)
p*H; 2p%H,
Finally, the metric in the new coordinates is
RY Rp? 1 i, f2
ds® = ——dt* + —dp* + ~R(o} + = (53 — 2= 5.64
T Th y 4"+ gRler ) = g (0s = 2pd0% (564

and after a certain amount of calculation, it is possible to rewrite fi, fo and YV as

. . 1 .
3 g2 2 2
R+ L (p ~3 E Ti), (5.65)

1

. L 1
fa L (Fp“ — EFZ712 + 7‘17‘27’3> , : (5.66)

. 1 1
Y = AR +p'+ (gZT?—)\L2~F2>p2+gfzzi:rf—ZFrlrgm

i

+%,\LQZ FLE [158(\2%3)2 - %Zr?} . (5.67)

i

h

The solution therefore depends only on five independent parameters, and a metric
will be uniquely fixed by specifying the mass, angular momentum and three gauge
charges. That is, this case is qualitatively the same as in the previous section. A
useful consistency check is that when the three charges are equal, this reduces to
the previous metric on setting

. 1 q
L=+2pj, T=—-——=2p—-¢q). rn=——. (5.68)
\/Qp( ) V2p

The conserved quantities for this solution were calculated in [132] and found to be

_ T 2 2
M = §(3F — Ei re — AL%),
T
J = =T'L
J YR
Q: = %(7‘1'7% - Try), (5.69)
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where the mass is defined to satisfy the first law of thermodynamics. There is
still the possibility of some discrete non-uniqueness in this case, but we doubt this

possibility is realised in practice.



Chapter 6

Discussion

In chapter 3 we classified the possible discrete cyclic quotients of AdS,;;. A feature
of this classification is that the majority of the classes exist for all p > 2. The
description of the quotient in the majority of cases is thus a simple generalisation of
the AdSs quotients. There are two special classes which appear in higher dimensions:
one for p > 3 and one for p > 4. As we increase p above 4 we only have the freedom
to add SO(2) rotations to our existing actions. However when we go to higher
dimensions we can get new examples by considering quotients generated by more
than one Killing vector. We analysed in detail the properties of those quotients with
a regular causal structure. One disappointment was that none of these quotients
can be considered time-dependent, they all possess a causal Killing vector.

Our general approach to selecting coordinates was to decompose our Killing
vector into an s0(2, k) part, and a series of s0(2) rotations in independent planes then
adapt the coordinates according to the unbroken symmetries in so(2, k). Following
the work on further identifications in section 3.5, it might have been enlightening to
instead adapt coordinates to the unbroken symmetries of 6(2, p) when we analyse
a quotient in higher than minimal dimension.

An arresting feature of the double null rotation quotients is that they are con-
formally related to a compactified plane wave. One could attempt to utilise this
plane wave description in studying the relation between AdS and the field theory
dual. Specifically when we break conformal symmetry in the CFT by going to finite

temperature, we would hope to find a black hole solution in the bulk which asymp-

128
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totically approaches AdSs in these coordinates. The everywhere timelike Killing
vector of the double null rotation ensures this would be a rotating black hole with
the two rotation parameters set equal, i.e. the solutions studied in chapter 5 with
some restrictions on the parameters. Similar comments apply to the extended double
null rotation and the asymptotically AdS; black holes found in [161].

In chapter 4 we found new non-supersymmetric soliton solutions in the D1-
D5 system, and identified corresponding states in the CFT. The existence of these
solitons, and the fact that they can be identified with states in the dual CFT,
might be regarded as further evidence for the description of black holes advanced
by Mathur and collaborators. However, it is still questionable whether we can really
describe a black hole in this way. First of all, the three-charge states described so
far are very special. The orbifolds we consider provide examples where the CFT
state is not the spectral flow of a RR ground state, but the geometries we consider
all have a U(1) x U(1) invariance. It is unclear whether the techniques used to date
can be extended to obtain even the geometries corresponding to spectral flows of the
more general RR ground states of {80, 126], let alone to reproduce the full ev®i™m»
states required to explain the black hole entropy. The much more difficult dynamical
questions — how the appearance of a global event horizon in gravitational collapse
can always be avoided, for example — have not yet been tackled. Nonetheless, the
study of these smooth geometries offers a new perspective on the relation between
CFT and spacetime, and it is interesting to sece that their existence does not depend
on supersymimetry.

There are two corresponding classes of issues for further investigation: further
study of the geometry itself, and elucidating the relation to the dual CFT. In the
first category, the classical stability of these solitons as solutions in IIB supergravity
should be checked. As we discussed in section 4.6.2, although they have ergoregions,
the usual black hole bomb instability will be absent at least for free fields, as there
is no net flux in a scattering off the geometry. It would be interesting to study
stability more generally; in particular, it would be interesting to know if the geometry
suffers from a Gregory-Laflamme [144] type instability if we make the torus in the

2% directions large.
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It would be interesting to study these solutions as backgrounds for perturbative
string theory. They provide new examples of smooth asymptotically flat geometries
that do not have a global timelike Killing symmetry, .of a rather different character
from those presented in [146]. The existence of supersymmetric special cases may
be a simplifying feature.

The most important direction of future work to elucidate the relation of these
geometries to the dual CFT is to construct explicit CFT descriptions of the states
dual to the generic orbifold spacetimes and study their properties from the CFT
point of view. The charges for the dual states found in (4.65) show that these states
are not simply the spectral flow of some chiral primary, so they do not maximize
the R-charge for given conformal dimension. They should therefore be closer to
representing the ‘typical’ behaviour of a CFT state (although they are clearly still
very special) and we expect there will be new tests of the relation between geometry
and CFT to be explored. It will also be interesting to see what happens in the CFT
when we consider the orbifolds with m + n even, k even, where the spacetime is not
a spin manifold.

Another important basic issue from this point of view is to understand the ap-
pearance of stationary geometries dual to non-supersyrmmetric states coupled to bulk
modes. We would have expected that the CFT states would decay by the emission
of bulk closed string modes. Even in the simple cases where the near-core geometry
is global AdS; xS3, the corresponding CFT state carries comparable numbers of left
and right-moving excitations, which we would expect can interact to produce bulk
gravitons. This physics does not seem to be represented in our dual geometries. It
will be important to study the decay of these non-supersymmetric states in more
detail, and to try to understand the relation to the soliton.

It would be interesting to try to find asymptotically AdSs; generalizations of
these solitons, by taking the solutions of chapter 5 and systematically searching the
parameter space. We expect regular solutions to be possible in this case following
the studies of black holes in gauged supergravities in [132]. In AdS it might be
possible to find non-supersymmetric solitons with a globally timelike Killing vector.

This is known to be possible for some Kerr black holes in AdS [145,159).
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In.chaptcr 5, we showed that the extra parameter in the solutions of [1,2] is
unphysical. Thus, these solutions do not in fact present new examples of non-
uniqueness. However, as stressed in [1,2], they do provide interesting testing grounds
for the AdS/CFT correspondence, and generalise known solutions in interesting
ways. In particular, they provide non-extreme versions of the interesting supersym-

metric asymptotically AdS solution found in [154].



Appendix A

Symmetry-adapted coordinates for

nullbranes

One possible resolution of the singularity that appears in the parabolic orbifold is
to add a compact spacelike transverse direction to the action of the U(1) subgroup
used to identify points. The resulting orbifold is the null brane introduced in [39].
As a byproduct of our investigations of the quotients of Anti-de Sitter space in this
paper—most particularly, the studies of the double null rotations in section 3.4.3—
we were led to realise that there is a rich structure of symmetries in the nullbrane
which has not been fully exploited in previous work on these solutions. The nullbrane

is a quotient of flat R'* by a combination of a null rotation and a translation [39],
5 = 84 - le + J23 - 84 + (.’L’l - 463)82 + :52(01 -+ 83), (Al)

where ! is the timelike coordinate and {z?, 13, 21} are spacelike ones. The norm
of this Killing vector is ||€||? = (! — 23)% + 1, so it is spacelike everywhere. This
quotient was shown to be free of closed causal curves in [39]. Furthermore, the
presence of d; removes all fixed points from the action of €. The translation does
not alter the supersymmetry anlysis from the parabolic orbifold hence the null brane

also breaks half the spacetime supersymmetries. There are three Killing vectors in

132
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the so(1,3) x R? Poincaré¢ algebra on R'* which commute with this &,

& = =0y — Jig + Jas,

£ = 0y — (Jua + Ja4), (A.2)
&= 0h+3s .
These have norms [|§]|2 = [|&]? = [|€]|? and [|&]|? = 0. The only non-trivial
commutation relation is (£, &) = —2&3. The coordinates defined on the nullbrane

in [39] do not make any of these additional symmetries manifest. We will now
construct an adapted coordinate system which makes the & and £ symmetries

manifest: that is, we want £ = 03, §&2 = 0 and & = 9. This requires

oz 9, Oy L 5 Ozt
5 A Y, =Y T, =
o6 0o Ey; 06
(?—I/_l = é?:l:3 = :[273:—1;_2 = ,E')I—/:l = xl _ (E:;’ (AS)
oY N N N
dz' ar® )
oo ov
Since 2! — 2 is independent of ¢, 1, 7, we will choose to define coordinates so that

z' — 2% = 4. A suitable coordinate system is

'+ 2t = 200 + a(P* + ¥?) + 20,

' -2 =,
~ ~ (A.4)
o’ =9 + ag,
Tt = é + 17,7,/_) .
In these coordinates, the flat metric is
g = —2dudv + (1 + u*)(dy® + dp?) + dudpdys . (A.5)

The nullbrane is constructed by compactifying the ¢ coordinate. The determinant of
the metric is — det g = (1 — 42)?, so this coordinate S}'rstem breaks down at @ = +1,
where the expressions for x2 and x4 lose their linear independence. Thus, althonugh
these are symmetry-adapted coordinates, they do not provide global coordinates for
the spacetime.

It is interesting to note that in these coordinates, the solution resembles a plane

wave written in Rosen coordinates. For the uncompactified solution, this is not
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unexpected; flat space is a trivial plane wave. The interesting observation is that the
compactification of ¢ preserves this structure. By a slight change in the coordinate
system, we can make a more direct relation to a non-trivial plane wave, and at the

same time obtain global coordinates. Instead of (A.4), we set

'+ 2 = 200 + u(¢? + ¥?) + 2v,

2l —a® =,
(A.6)
= + up,
vt = —uyp .
The flat metric is now
g = —2dudv + (1 + u?)(d® + d¢?) — dbdodu . (A7)

The determinant of the metric is — det g = (1+u?)?, so this is now a global coordinate
system.

The price we payv is that the symmetry & is no longer manifest; on the other
hand, this form treats the two Killing vectors & and & more symmetrically. In these

coordinates, £ = dy, £3 = 0, while the other two Killing vectors are

1 —u? U 1—w?
= — I5) 15) 2p——0, ,
& 14+ u? q5+1+u.2w+ Q/)1+u2 (A.8)
2u 1 — u? 2u ‘
o= —— O+ ——3, — 29—, .
& T+u2 ®  14+u2 1/}1+u2
The inverse coordinate transformation is
w=z' — 13
= ot + (2! — 13)a?
L+t -2
2? — (2" — z%)2*
v = L+ (z' —23)2] (A.9)
1
e (] (x z*) 212 4\2
22U = ( + ) m((l ) +(I ) )
2
(2t + (2! — 2%)a?)(a® — (2 - %))

REIGETIE:
The advertised relation to the plane wave can be-seen if we now set « = tan {J/.

Then
1
2

[—2dUdv + dip? + d¢?® — dypdddU] . (A.10)

cos
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The metric in square brackets is a conformally flat plane wave. Furthermore, the
symmetry £ = J, that we quotient along annihilates the conformal factor, so we
can think of the nullbrane as conformally related to a compactified plane wave.
The plane wave nature of this solution can be instantly recognised after the further
coordinate transformation

V = v+ o,

X = cosU + ¢psinU, (A.11)

Y = —¢sinU + ¢pcosU,
which brings the metric to the form
1

9= —5=[—2dUdV — (X* + V?)dU? + dX* + dY?]. (A.12)
cos? U

This form makes little of the symmetry explicit. The Killing vector we are quoti-
enting along is
E=sinUdx +cosUdy + (X cosU — YsinU)oy, (A.13)

and the other symmetries of the quotient are

£ =sinUdyxy —cosUdy + (X cosU + Y sinU)dy,

& =cosUdx +sinUdy + (=X sinU + Y cosU)dy, (A.14)

§3 = dy.
Note that not only does & annihilate the conformal factor; so do the other isometries.

Thus, all the isometries of the nulibrane are related to isometries of the conformally

related compactified plane wave. We can recognise them as

§=—8e; — Lea
&1 = —&er + Loy,
’ (A.15)
& = _éel - 5&5»
53 = 5(:\/7
where we write the isometries of the plane wave in the usual basis
&, = —cosUdxi + XisinUdy,
§er = —sinUdy: — X' cosUd,
(A.16)

&e\; = 6V;

€y = —0U.
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Thus, the quotient of the plane wave that is conformally related to the nullbrane is
of the type considered in [114]. The additional symmetry &, that would be present
in the plane wave is broken by the conformal factor. As we saw in section 3.4.3, this
is precisely the additional symmetry that appears in the double null rotation.

As in section 3.4.3, in addition to exposing this relation to the plane waves,
the global coordinates (A.10) allow us to easily find a global time function for the
nullbrane, hence demonstrating that it is a stably causal solution. We first rewrite

the nullbrane metric in a form suitable for Kaluza-Klein reduction along ¢,

1
g = ———[—2dUdv — 4*dU? + d* + (d¢ — 2vdU)?]. (A.17)
cos? [J

We see that Kaluza-Klein reduction will give a plane wave metric in one dimension
lower (up to conformal factor). Hence, applying the results of [115], a suitable time

function for the nullbrane is

1 1 4v
— Ztan | —— ). A.18
T U+2tan <1+4"/’2> ( )
It is easy to check that
4cos? U 4(1 + u?
V,vhy = oS L (A19

[(1 + 442)2 + 16v2] [(1+ 49?)2 + 16v?]
Thus, 7 is a good time function on flat space, and since L7 = 0, the nullbrane is

stably causal by the general argument of [115].



Appendix B

The Extended nullbrane

During the work of section 3.5 we uncovered a new causally regular smooth quo-
tient of flat space. This extended nullbrane is a quotient of R'*® by 2 commuting

combinations of null rotations and translations,

& 05 — i + Jos,

& = O — Jis+ Jaa. (B.1)

Any linear combination of these is always spacelike ||£; + a&||? = (14 a?)[1 + (z; +
74)?]. There are five linearly independent isometries in the so(1,5) x R® Poincaré

algebra on R'® which commute with &; and &,,

& = —05 — Jig + Jog,

€= 0y — (Jis + Jis),

& = —06 — Jis + Jaa, (B.2)
& = 03 — (Jis + Jas),
Er =0, + 04 .
These have norms [[&1* = l|&l* = [1&17 = lI&ll* = ll&]® = [1€6]1* and [|&]1* = 0.
The only non-trivial commutation relations are [£3,&4] = —2&7, [€5.&6] = —2&7. We

construct global adapted coordinates in exactly the same fashion as for the nullbrane.

A system of coordinates (v,u, ¢, v, 3,7) satistying & = 0y, §& = Oy and & = 0, is
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given by
' + 2t = 200 + u(@® + ¥?) + 2v,

-2t =,
2 = [+ ud,
) (B.3)
x’ = ¢ —uf,
x® = v+ u,
=y —uy.

The flat metric is now
g = —2dudv + (1 + u®)(dy? + d¢* + df* + dv*) — 48dpdu — 4ydipdu . (B.4)

It will come as no surprise that the extended nullbrane is conformally related to
a compactified plane wave. This can be seen explicitly by making the coordinate
transformation

V =v+d,

tanlU = u,

W = BcosU + ¢sinU;
(B.5)
X =—-08sinU + ¢cosU,
Y =vycosU + ¢sinl,
Z = —vysinlU 4+ ¢ cos U,

which brings the metric to the form
9= —ZU[—2dUdV — (W2 X241 Y24+ ZD)dU? + dW? +dX? +dY* +dZ%. (B.6)
cos

This relation enables us to prove stable causality for the extended null brane by a
replication of the argument for the nullbrane. The time function is given by

1 4
U4 -tan [ —— ). B.7
T=Udgtan <1+472+4[32) (B.7)

As a mathematical exercise the extended nullbrane can be generalised to a quotient

of higher dimensional flat space by adding a commuting nullbrane generator for each

extra two spacelike directions.



Appendix C

Inverse 3-charge metric

To calculate the inverse metric, it is convenient to start from the fibred form of
the metric (4.14), construct a corresponding orthonormal frame, and invert that.
For this reason, it is simpler to give the inverse metric in terms of the boosted

coordinates ¢ = t cosh d, — ysinh 6,, § = ycoshd, — tsinh 6,
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The inverse metric is

i 1 M? cosh® 6; cosh? 5572
gt = ———— (f + M + M sinh? §; + M sinh? §5 + 17 cosh 0, cosh 051 ) )
H,y My g(r)
(C.1)
v 1 M? sinh 6, sinh 5 cosh &; cosh d5a,a, (C.2)
vV H, g(r) ’ '
i 1 M coshd, cosh d5as(r? + a?) (C.3)
g = — — — .
Vv H, Hs g(r)
i 1 M coshd cosh dsa,(r? + a3) (C.A4)
9 = T/ ) .
Vv H, Hs g(r)
. 1
gV = ——— (f + M sinh? 6, + M sinh? &5
v H Hs
v M? sinh? &, sinh? 65(r? + a2 + a2 — M) (C.5)
g(r) ’ '
” 1 Msinhé, sinhdsai(r? + a2 — M) (C6)
g = — —— . .
Vv H, Hs g(r)
- 1 M sinhd; sinhdsas(r? + a2 — M) 7
g == = ’
Vv H, Hs g(r)
rr 1 (7’)
9" = 2 (C.8)
1115
(0 — }.]1 I:[ (Cg)
1Hs
4% = ~]A ] | 12 N (r* +a*)(a? — a3) — Ma] | (C.10)
vV H Hs \sin“0 g(r)
s _ _ ~1 _ A/I(L](I,Q, (C.11)
VH Ay 9(r)
g = _1 ] 1 . (r? + a?)(a2 — a?) — Md? . (C.12)
VI, Ty \cos®8 g(r)
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