
Durham E-Theses

Atomic service-based scheduling for web services

composition

Han, Shukang

How to cite:

Han, Shukang (2006) Atomic service-based scheduling for web services composition, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2355/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2355/
 http://etheses.dur.ac.uk/2355/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Atomic Service-Based Scheduling for Web 

Services Composition 

MSc Thesis (Research) 

The copyright of this thesis rests with the 
author or the university to which it was 
submitted. No quotation from it, or 
information derived from it may be 
published without the prior written 
consent of the author or university, and 
any information derived from it should be 
acknowledged. 

Shukang Han 

Department of Computer Science 

University of Durham 

September, 2006 

0 7 JUN 2007 



Copyright 

The copyright of this thesis is reserved to the author. Any information quoting from 

this thesis should be acknowledged. 

- 1 -

0 



Acknowiedgements 

First of all, I would like to thank my supervisor, Dr. William Song, for many 

insightful conversations during the development of the ideas in lab work, and for 

helpful comments on research ideas. Also thank my co-supervisor, Prof. Malcolm 

Munro, who offered many helpful suggestions as well. 

My parents have financially supported me and gtven me a lot of inspiration 

throughout the research period and I would like to give my special thanks to them. 

Finally, I also appreciate the help from colleagues in the department to aid my 

research work. 

- 2-



LIST OF CONTENTS 

Copyright ...................................................................................................................... 1 

Acknowledgements ...................................................................................................... 2 

Abstract ......................................................................................................................... 8 

Keywords ...................................................................................................................... 9 

Chapter 1 Introduction .......................................................................................... tO 

1.1 Background .................................................................................................... 11 

1.2 Web Services .................................................................................................. 11 

1.2.1 Overview ............................................................................................. 11 

1.2.2 Web Services Specifications ............................................................... 13 

1.2.3 Applications of Web Services ............................................................. 14 

1.3 Semantic Web ................................................................................................. 14 

1.4 Service Composition and Scheduling ............................................................ 16 

1.5 Criteria of Success ......................................................................................... 16 

1. 6 The Structure of Thesis .................................................................................. 1 7 

Chapter 2 Literature Sur\'ey ................................................................................. 19 

2.1 Overview and Structure ................................................................................. 19 

2.2 Web Services Definition and Structure .......................................................... 20 

2.2.1 Formal Definitions of Web Services ................................................... 20 

2.2.2 Service-Oriented Architecture ............................................................ 21 

2.2.3 WSDL ................................................................................................. 24 

2.3 Markup Ontology Languages and Service Modelling ................................... 26 

2.3.1 DAML+OIL ........................................................................................ 26 

2.3.2 RDF ..................................................................................................... 27 

2.3.3 OWL-S ................................................................................................ 28 

2.3 .4 Service Modeling ................................................................................ 30 

2.4 Service Composition and Matchmaking ........................................................ 31 

2.4.1 Software Reusability ........................................................................... 31 

2.4.2 Composition ........................................................................................ 32 

2.4.3 Current Composition Approaches ....................................................... 36 

- 3-



2.4.3 .1 BPEL ........................................................................................ 36 

2.4.3.2 Service Composition Using Conceptual Graph ....................... 38 

2.4.4 Matchmaking ...................................................................................... 40 

2.5 Service Scheduling ......................................................................................... 41 

2. 5 .1 Job Scheduling .................................................................................... 41 

2.5 .2 Scheduling Algorithms ........................................................................ 42 

2.6 Summary ........................................................................................................ 43 

Chapter 3 Atomic Service-Based Scheduling .................................................... 44 

3.1 Introduction .................................................................................................... 44 

3.2 Key Definitions .............................................................................................. 45 

3.3 Service Decomposition and Composition ...................................................... 46 

3.3 .1 Top-down Convention ......................................................................... 48 

3.3 .2 Bottom-up Convention ........................................................................ 49 

3.3.3 Composition Based on Workflow ....................................................... 50 

3.3 .4 Graph-related Service Composition .................................................... 51 

3.3.4.1 Relationship between Service and Graph ................................ 51 

3.3.4.2 A Flight-Booking Example on Decomposition ........................ 52 

3.4 Atomic Service ............................................................................................... 53 

3 .4.1 Service Type ........................................................................................ 54 

3 .4.2 Properties ............................................................................................ 55 

3 .4.3 Structure .............................................................................................. 57 

3 .4.4 Composite service ............................................................................... 59 

3 .4.5 Case Analysis ...................................................................................... 60 

3.5 Service Description and Matchup Based on Atomic Service ........................ 63 

3.5.1 Document-based Service Description ................................................. 63 

3.5.2 Matchup Regulation and Semantic Integration ................................... 65 

3.6 Scheduling ...................................................................................................... 66 

3.6.1 Scheduling Model and WSSL ............................................................. 67 

3.6.1.1 Scheduling Model based on OWL-S ....................................... 67 

3.6.1.2 Web Services Scheduling Language ........................................ 69 

- 4-



3.6.1.3 The Significance ofWSSL in Service Scheduling .................. 73 

3.6.2 Fashions of Scheduling ....................................................................... 74 

3.6.2.1 Sequential ................................................................................. 74 

3.6.2.2 Parallel ..................................................................................... 74 

3.6.2.3 Critical Points ........................................................................... 75 

3.7 Summary ........................................................................................................ 76 

Chapter 4 System Design and Implementation ................................................. 77 

4.1 Synoptic Analysis ........................................................................................... 77 

4.1.1 Functional End .................................................................................... 77 

4.1.2 Correlations of Atomic Services ......................................................... 77 

4.1.3 Business End ....................................................................................... 78 

4.1.3.1 Service Catalogue .................................................................... 78 

4.1.3.2 Business Integration ................................................................. 79 

4.1.4 Interrelationship between Both Ends .................................................. 79 

4.2 Dynamic Sessions .......................................................................................... 80 

4.2.1 Normal Session ................................................................................... 80 

4.2.2 Special Session .................................................................................... 82 

4.2.3 Exception Handling Session ............................................................... 83 

4.3 Visualisable Service System .......................................................................... 84 

4.3.1 System Introduction ............................................................................ 85 

4.3.2 Features ............................................................................................... 86 

4.3.3 Illustration of Service Composition and Scheduling .......................... 87 

4.3.3.1 Sequence Scheduling ............................................................... 87 

4.3.3.2 Priority Scheduling .................................................................. 88 

4.3 .4 Future Improvement. ........................................................................... 89 

4.4 Summary ........................................................................................................ 90 

Chapter 5 Reasoning and Evaluation ................................................................. 91 

5.1 Theory Basis .................................................................................................. 91 

5.1.1 Evidence: An Example on Composing Basic Functions ..................... 91 

5 .1.2 General Relationship between Services .............................................. 94 

- 5 -



5.2 Criteria of Atomic Service ............................................................................. 95 

5.2.1 Motivation: Why Atomic? .................................................................. 95 

5.2.2 Standard of Recognition ...................................................................... 95 

5.3 Performance and Comparison ........................................................................ 96 

5.3.1 Service Structure and Description ....................................................... 96 

5.3.2 Service Composition ........................................................................... 96 

5.3.3 Service Scheduling .............................................................................. 97 

5.3.4 Equipment Requirements .................................................................... 99 

5.4 Summary ........................................................................................................ 99 

Chapter 6 Conclusions ....................................................................................... ! 00 

6.1 Overview ...................................................................................................... 100 

6.2 Discussion .................................................................................................... 103 

6.3 Criteria for Success ...................................................................................... 1 05 

6.4 Conclusions and Future Work ...................................................................... 105 

References ................................................................................................................. 1 08 

Appendix Thesis Glossary ................................................................................... 113 

- 6-



LIST OF FIGURES 

Figure 1-1: W3C Semantic Web Stack ........................................................................ 15 

Figure 2-1: Structure ofSOA ....................................................................................... 22 

Figure 2-2: Web Services Architecture ........................................................................ 24 

Figure 2-3: A Simple RDF Statement .......................................................................... 27 

Figure 2-4: An Upper Ontology for Web Services Defined by OWL-S ...................... 29 

Figure 2-5: The Infrastructure ofWeb Services Composition ..................................... 35 

Figure 2-6: The List Process in Conceptual Graph ...................................................... 39 

Figure 2-7: The Pick Process in Conceptual Graph ..................................................... 39 

Figure 3-1: Top-down Convention ............................................................................... 49 

Figure 3-2: Bottom-up Convention .............................................................................. 50 

Figure 3-3: Relationship between Service and Graph ................................................. 51 

Figure 3-4: Top Ontology of Flight Booking System .................................................. 53 

Figure 3-5: Structure of Listing ............................................................ , ...................... 53 

Figure 3-6: Structure of Atomic Service ...................................................................... 57 

Figure 3-7: Process of Online Purchase ....................................................................... 62 

Figure 3-8: Infrastructure of Document-Based Service ............................................... 64 

Figure 3-9: Sequential Services ................................................................................... 74 

Figure 3-10: Parallel Services ...................................................................................... 75 

Figure 3-11: Critical Points .......................................................................................... 75 

Figure 4-1: Index of Category ...................................................................................... 78 

Figure 4-2: Scheduling Sessions .................................................................................. 80 

Figure 4-3: Normal Session ......................................................................................... 81 

Figure 4-4: Special Session .......................................................................................... 83 

Figure 4-5: GUI of Visualisable Service System ......................................................... 85 

Figure 4-6: An Example of Sequence Scheduling ....................................................... 88 

Figure 4-7: An Example of Priority Scheduling .......................................................... 89 

Figure 5-l : Mouse Event Flow .................................................................................... 93 

Figure 5-2: Basic Interrelationship between Services ................................................. 94 

Figure 5-3: Comparison on Current Service Scheduling Approaches ......................... 98 

- 7-



Abstract 

With the rapid development of Internet technologies and widespread of Internet 

applications, Web Services has become an important research issue of World Wide 

Web Consortium (W3C). In order to cope with various requirements from service 

users, services need to be thoroughly and precisely described, thus improvement 

needs to be made in describing services as more properties should be added to the 

current service description model based on OWL-S, an ontology structure consisting 

of service profiles and operations. Semantics is widely considered as one of the core 

supplements, which is able to provide the metadata of services, so as to better match 

requirements with services in the service repository. 

On the other hand, Web Services has attracted people from various fields to perform 

relevant experiments on how to cope with users' requirements. Service providers tend 

to coordinate service implementation by means of interacting with available resources 

and reconstructing existing service modules. The integration of self-contained 

software components becomes a key step to meet service demands. 

This thesis makes contributions to current service description. The introduction of the 

term "Atomic Service" is not only considered to be a more refined service structure, 

but also serves as the fundamental component for all service modules. Based on this, 

the thesis will discuss issues including composition and scheduling, with the purpose 

of building interoperations among composable service units and setting up the 

mechanism of realising business goals with composite services under the guidance of 

the service scheduling language. This notion is illustrated in a demonstration system 

to justify the manageable interrelationship between service modules and the way of 

composition. 

- 8 -



Keywords 

Web Services, Atomic Service, Description, Composition, Scheduling 

- 9-



Chapter 1 Introduction 

The widespread of Internet is capable of converging services and resources at 

different locations for people to use. The enhancement of the WWW technologies has 

made numerous services and transactions available on-line and the requirements of 

these online activities have been increasing at tremendous speed ever since. More and 

more people are performing transactions using the Internet services and it is a 

convenient way for their personal information to be managed automatically by online 

systems. 

Companies, especially business corporations, would prefer deals to be operated online 

rather than in traditional service mode. Compared to the traditional business 

mechanism, online activities are able to make good use of the Internet for better 

resource utilisation and service management. The mechanism of realising services, 

however, needs to be thoroughly analysed at the company side as being the service 

provider, while it can be totally unknown to service users. Service users, who only 

care for the quality of the result, do not care much about the internal processes of a 

requirement. The way a service is dealt with should be managed by service producers. 

They have to know the details of various requirements, the resources used and the 

means of presenting results to customers. 

The increasing requirements of online services facilitate the proposal and application 

of Web Services, which aim to provide an interface for using available software 

components via standard network protocols. In order to ameliorate the quality of 

services, issues such as service description (how to describe an available service in an 

appropriate and precise way), service matchup (how to make a user's requirement 

recognisable by a server), service composition (how to use existing services as 

fundamental components to be integrated to fulfil a new task), and service scheduling 

(how to organise pieces of software in a restricted time period) have to be addressed. 

- 10-



1.1 Background 

The World Wide Web has been developing in various aspects at tremendous speed 

since it was invented by Tim Bemers-Lee over a decade ago [36]. The boom of the 

Internet technologies not only facilitates useful information via the web more 

accessible by users, but also enables the Internet resources to be more interoperable 

by both service requestors and service providers. As the demand of online transactions 

increases, it is critical for web applications to cope with various requirements from 

service users. 

1.2 Web Services 

Being one of the focusing points raised by W3C (World Wide Web Consortium), the 

research on Web Services has been carried on throughout the web application area for 

years. From a service user's points of view, they may raise various kinds of demands 

and expect them to be fulfilled, while for service providers, the optimal solution is to 

make user requirements more applicable and realisable by using existing services or 

with just minor modifications. Therefore, it comes to the problem whether the 

expectations of service outcome from both sides can be matched properly. It all 

depends on what their definition of Web Services is. 

1.2.1 Overview 

The concept of Web Services was proposed several years ago with the purpose of 

making the applications and services on different platforms interoperable to each other. 

However, the term Web Services can be confusing for its appearances in many 

different occasions. Generally speaking, Web Services can be viewed as an 

application which is able to be invoked by others through its API. Applications can be 

located distributedly, each of which has its own programming interface to allow 

requests from other applications or programmes to perform communications, 

especially exchanging data between them. 

- 11 -



Here is an example of a general Web service: a person would like to make a query of 

the local weather. The query system itself can be viewed as a service. Being a service 

user, the person needs to submit his requirement to a service registry, which is a 

repository of all kinds of service information. According to the description from the 

user, the repository will search for the most matchable service and return the result to 

the user. Therefore, this weather query service is invoked and executed upon the user 

requirement and terminated by retrieving the result, which is needed to be checked 

with the original demand from service users. On the other hand, this weather forecast 

service, published by providers such as weather stations, can be invoked by other 

applications as a component, which means the service itself is available to be 

composed into a more complex service. 

A more refined definition regards Web Services as a new platform which facilitates 

interoperable distributed applications. The UDDI Consortium characterises Web 

Services as "self-contained, modular business applications that have open, 

Internet-oriented, standards-based interfaces" [43]. It uses service-oriented 

architecture (SOA) and intends to offer services through standard web protocols. In a 

SOA environment, services are made available within the service repository by 

service producers for access of users to meet their requirements. 

According to W3C Working Group Note [41], Web Services is "a software system 

designed to support interoperable machine-to-machine interaction over a network." In 

order to implement abstract Web Services, an agent is needed for sending and 

receiving messages. Therefore, the agent can be a piece of software which acts as a 
. . 

servtce carrter. 

In a word, regardless of different versions of definitions and no matter in which way 

Web Services is interpreted, the general process of engaging Web Services depends on 

the interaction between service requestors and service providers based on service 
- 12-



description and message exchanging via appropriate protocols. 

1.2.2 Web Services Specifications 

In order to provide better understanding and applications of Web Services, the 

organisations including W3C, Microsoft and IBM have worked through the years, 

trying to set up some generally-approved standards so as to cover as many aspects of 

Web Services as possible. Those standards specify the regulations to build Web 

Services and criteria to evaluate them. Most commonly used standards include Web 

Services Description Language (WSDL), Simple Object Access Protocol (SOAP), and 

Universal Description, Discovery, and Integration (UDDI), which we are going to 

describe as follows. 

Web Services Description Language (WSDL) [10] is an XML format language 

published to describe Web Services. WSDL provides services along with SOAP and 

XML Schema and presents description on communications of services. 

Simple Object Access Protocol (SOAP) [19], as mentioned above, is one of the 

protocols for message exchange via the network. It manages XML-based messages 

and is widely used in the environment of SOA (Service-Oriented Architecture). SOAP 

mainly uses the RPC (Remote ProcedUre Call) pattern to make connections between 

clients and servers. 

The access to a directory is necessary for both service requestor and service provider. 

The former aims to find exact services to meet their requirements whereas the latter 

uses the directory as a medium to publish their services. Web Services provides a 

platform-independent, XML-based registry for businesses by means of nominating 

Universal, Description, Discovery and Integration (UDDI) as one of its core 

standards. 

- 13-



Web Services has not only the functional part, which deals with the implementations 

of fundamental service functions, but also the business part whose task is to fulfil 

business requirements. For the latter part, a business process language called Business 

Process Execution Language (BPEL) is designed to define the interactions of business 

processes. 

Moreover, there are standards dealing with other facets where specifications are set up 

within the context of Web Services. For example, Web Services Resource Framework 

(WSRF) is proposed on the basis of the close relationship between the execution of 

services and resources. With the purpose of creating a safe environment for 

transactions, security specifications such as Web Services Security and Web Services 

Trust tend to provide a means of applying security for applications in communications 

[22]. 

1.2.3 Applications of Web Services 

Like other distributed technologies, the most important thing for deploying Web 

services is to make distributed resources accessible and usable to perform a task. 

At present, a lot of companies, such as Amazon.com, eBay, and PayPal provide open 

public Web services in terms of online transactions because of its availability of 

collecting all necessary resources to meet user requirements. Customers can use these 

services to handle transactions such as searching products and making auctions, 

opening bids and dealing with payments. For service businesses, on the other hand, 

some companies developed application server software to deploy Web services, for 

example Websphere by IBM and WebLogic by BEA Systems. 

1.3 Semantic Web 

Unlike human beings who are able to use the Web to search for something or to do 

online shopping, it is difficult for computers to do the same thing as they do not 

- 14-



understand the meanings of web pages. This is simply because the current web pages 

are designed to be human-readable rather than machine-processable. Nevertheless, 

machines can perform given tasks quite efficiently if all the web information is 

described in a standard, machine understandable manner. For the purpose of making 

web pages machine-understandable, W3C has proposed the semantic web as an 

extension to the current web written in HTML in terms of Internet standards and 

markup languages. 

The proposal of the Semantic Web is to allocate explicit meanmgs for web 

information so that machines can automatically process the information [20]. By 

using the technologies such as XML, Resource Description Framework (RDF) and 

Web Ontology Language (OWL), the Semantic Web is capable to provide semantic 

descriptions to the content of web documents. 

Trusted Semantic Web 

Proof 

Logic 

Ontology 

RDF Model+ Syntax+ RDF Schema 

XML + Namespaces + XML Schema 

Universal Resource Identifiers Unicode 

Figure 1-1: W3C Semantic Web Stack 

- 15 -



Figure 1-1 illustrates the Semantic Web Stack defined by W3C [5]. It shows that the 

Semantic Web stack mainly comprises of standards such as XML, XML Schema, RDF, 

RDF Schema and OWL. Compared to XML which only provides syntax for 

structured documents and has nothing to do with semantics, RDF defines a data model 

to describe web resources and their interrelationships. By using RDF Schema to 

describe RDF resources, semantics is generalised for classes and properties for those 

resources [13]. In order to facilitate machines' capability of processing information on 

web pages, the Semantic Web aims to asking people for more effort in providing 

comprehensible information for machines to understand, such as writing web pages in 

certain standards in order for machines to extract core information, rather than directly 

asking machines to master human languages, which has been proved difficult by 

researchers on artificial intelligence. 

1.4 Service Composition and Scheduling 

The realisation of user requirements depends on the execution of corresponding 

services. However, the variety and complexity of requirements result in the 

impossibility of fulfilling a requirement by invoking just one single service. In most 

cases, fundamental services with simple functions need to be composed together 

according to certain integration rules in order to meet complex requirements. The 

procedure of such kind of composition is not simply to select a collection of services 

from the service repository. Services have to be scheduled based on appropriate 

scheduling algorithms to be put together rationally and practically. Furthermore, 

issues like services with similar functions and occurrence of exceptions during service 

composition are also needed to be taken into consideration. Therefore, the scheduling 

on service operations which aims to managing the entire service flow becomes more 

and more important and has drawn an increasing number of attentions in recent years. 

1.5 Criteria of Success 

The research in this thesis will address the following issues: 

- 16-



1. Discussions on current service description, composition and scheduling approaches; 

2. Proposals of the modified service description structure based on the introduction of 

the concept of Atomic Service; 

3. Introduction of the service composition and scheduling issues based on Atomic 

Service; 

4. Illustration of the Atomic Service-based scheduling and composition through the 

implementation of a demonstration system; 

5. Reasoning and evaluations on service structure and approaches of service 

composition and scheduling. 

1.6 The Structure of Thesis 

Through reviewing current research work in related areas, this thesis covers 

semantic-based Web Services architecture, description, composition and scheduling, 

while the issues of service composition and service scheduling are based on the 

descriptive model ofWeb Services. 

The rest of thesis is arranged as follows: 

In Chapter 2 Literature Survey, a deep study on Web Services related fields in terms 

of service structure and description, service composition and matchmaking and 

business process, etc. is performed before drawing the conclusion of the necessity of 

making amendments to the existing architectures and proposing new methods of 

dealing with service transactions. 

In Chapter 3 Atomic Service-Based Scheduling, by putting forward the modified 

model of service architecture, the concept of atomic service and its properties is 

addressed followed by the discussion on service composition and scheduling issues. 

Chapter 4 System Design and Implementation: a demonstration system based on the 

- 17-



proposition of atomic service to illustrate the solutions to service composition and 

scheduling is introduced analyses on both functional and business end of Web 

Services. 

In Chapter 5 Reasoning and Evaluation, the discussion on the approach to better fulfil 

a service requirement based on the proposed concepts and methods with the help of 

giving an example on classes is put forward. After that, the evaluation of the atomic 

service-based scheduling method is made by means of performance comparison with 

other scheduling approaches. 

Finally, in Chapter 6 Conclusions, the conclusion of the thesis is made through the 

discussion on both the modification of service description and the proposition of 

atomic-service based service scheduling, with some open problems and future work 

being presented afterwards. 

- 18-



Chapter 2 Literature Survey 

2.1 Overview and Structure 

Web Services is an important issue in the domain of internet applications, which raises 

much attention not only from service producers, but from non-specialists as service 

users as well. Generally speaking, Web Services aims to collect all available services 

throughout the web and utilise various possible resources to meet all kinds of 

requirements. In terms of the relationship between service producers, services users 

and the directories of services, researchers have been keen to seek a way to best match 

their relationship and make certain improvement to existing web technologies. 

In recent years, there are several important issues in the scope of Web Services which 

people put more focus on. One of the most important aspects among them is how to 

match the requirements between service users and providers. This is because demands 

raised by service users are usually expressed in natural language and the majority of 

those users are probably non-specialists in the area of Web Services. Therefore, it 

could be possible that their requirements are quite vague and not that matchable to 

those existing descriptions of services. This, however, could easily lead to failure of 

finding the exact service they need. It is not difficult to think about adding semantics 

to the description of services to solve this problem. Moreover, the existing structure of 

service should somehow be modified in order to best fit the possible requirement. 

Like software reuse, it is impractical and unnecessary to start with the fundamental 

components of services or functions every time when a new requirement is raised. It 

may, to some extent, contain some existing mature functions that could be used 

directly or just with some small refinement. This process will save a lot of time and 

reduce the possibility of making errors during implementing those basic functions. 

This can be somehow described as "Software as a Service". 

- 19-



In the point view of service users, they would not only like to get their requirements to 

be implemented, but also like them to be processed correctly and on time. For this 

reason, the service scheduling mechanism should be taken in consideration during 

composition process. Different ways of integrating fundamental services result in 

complex services with various functions and a service may possibly have an 

alternative service with similar functions. All of these aspects require a certain 

configuration to monitor and manipulate the whole process of composition. 

Moreover, there are still lots of hot point problems apart from the above-mentioned 

aspects in Web Services. Therefore, this rest of this section will go over some related 

key research work in recent years and draw some corresponding problems with 

respect to the existing services structure, description, modelling, operations 

(composition and scheduling), and etc. 

2.2 Web Services Definition and Structure 

2.2.1 Formal Definitions of Web Services 

The World Wide Web Consortium (W3C) defines Web Services as the programmatic 

interfaces which make application to application communication available [48]. It can 

be inferred from this definition that Web Services focuses on transactions of 

applications, thus also known as service-oriented architecture (SOA). However, there 

are no unified definitions of Web Services up to now. 

According to Oasis, Web Services is defined as a software component described by 

WSDL. It can be accessed by standard network protocols such as SOAP over HTTP 

[8]. Meanwhile, as specified in Web Services Architecture Requirements, "A Web 

Service is a software system identified by a URI, whose public interfaces and 

bindings are defined and described using XML. Its definition can be discovered by 

other software systems. These systems may then interact with the Web Services in a 

manner prescribed by its definition, using XML based messages conveyed by Internet 
-20-



protocols." [3] Although there are no agreements on specifying what Web Services 

exactly is and its definitions have always been under hot debate within the W3C Web 

Services Architecture Working Group, it is commonly acknowledged that Web 

Services is a term to describe an entire breed of applications, referring to technologies 

which allow making connections among them. 

Generally speaking, Web Services consists of two main aspects: business service and 

functional service. The business part of a service, which deals with the producer-user 

interactions, focuses on the application of service. The functional properties of a 

service, however, are mainly concerned of the mechanism of realising a service in a 

concrete way. 

2.2.2 Service-Oriented Architecture 

After it was first described by Gartner in 1996 [ 45], the Service-Oriented Architecture 

has been widely regarded as the evolution of both object-oriented design and 

distributed systems by building up the use of services to support software user 

requirements. With the emergence of Web Services, some people take it for granted 

that SOA can be specifically referred to Web Services. However, not all SOA is based 

on Web Services and Web Services is not interpreted to SOA in every case. 

Nevertheless, the relationship between these two technologies is influential as the 

architecture ofSOAmakes the operation ofWeb Services successfully [33]. 

Although it is the fact that SOA does direct a way to apply new technologies such as 

SOAP, WSDL, and UDDI within real business scenarios, tactical and implementation 

mistakes in using SOA will inevitably produce disturbing programs. There are many 

messaging protocols which can be used for SOA in addition to SOAP over HTTP for 

services. Therefore, it is critical to use the right or a mixture of protocols for 

appropriate services. Moreover, services can never be regarded as collections of 

reusing codes. Regardless of numerous ways to reuse code and functionality, good 

- 21 -



services should also concern about resource use. 

Based on the structure of SOA, the systematic architecture and fundamental 

components of Web Services are depicted as in Figure 2-1. 

WSDL 

SOAP 

Figure 2-1: Structure ofSOA 

UDDI 

WSDL 

Service 
P·rovider 

It is illustrated from the graph that SOA mainly consists of three parts: service 

provider, service broker and service requester, each of which makes its own 

contribution to the whole architecture. 

(1) Service Provider: to publish its service and give response to any request of using 

its service; 

(2) Service Broker: to register and classify service providers which publish services 

and use Universal Description, Discovery, and Integration (UDDI) as the registry to 

enable applications look for services to determine whether to use them; 

(3) Service Requester: to search for services by means of Service Broker and make 

use of appropriate services afterwards. 

Therefore, there are three operations among these entities to guarantee any process 

-22-



over the architecture above: 

(1) Publish: the operation imposed by service provider on service broker to register 

both functionalities and accessible interfaces of services with the help of Web 

Services Description Language (WSDL); 

(2) Find: service requester uses this operation to look up appropriate services 

according to descriptions based on WSDL; 

(3) Bind: the operation which facilitates service requester to interact with service 

provider with the aid of Simple Object Access Protocol (SOAP) and use its services. 

The emergence of Web Services is more or less based on the following two 

mechanisms. First, protocols such as HTTP and TCPIIP, as well as XML standards 

and SOAP, have made communication more pervasive across the internet. 

Furthermore, structures brought forward in light of UDDI and WSDL have made 

services described, published and usable. However, with the boom of service demands 

in various scenarios, more refined description of needs to be attached as additional 

properties for services, which results in the emergence of service-bound metadata. 

According to Cabrera et al [9] and W3C [7], the architecture of Web Services at least 

contains components as follows: messaging, discovery, resources, semantics and 

security. It is depicted as Figure 2-2. 

-23-



Processes (Integration, Discovery, ooo) 

Description+ Semantics 

Messages/SOAP 

Conunooications (IITIP, FfP, 0 0 0) 

Figure 2-2: Web Services Architecture 

However, there is no standard specification to define what component Web Services 

exactly contain. But mostly admittedly, these are the core parts to constitute Web 

Services: 

Messaging: a core part which deals with data transmitting between Web Services 

agents. It is a channel to pass information through models and makes communication 

happen both inter-services and intra-services. 

Discovery: using registries to locate services and performing availability check. It 

includes matching services according to their descriptions. 

Resources: any entity which has an identifier. 

Semantics: using metadata in service description m order to make machine 

understand 

Security: a mechanism based on XML to secure safety 1ssues such as message 

integrity and confidentiality. 

2.2o3 WSDL 

Web Services Description Language (WSDL), as mentioned in Chapter 1, is the 

language based on XML to describe and locate Web Services and to specify the 

-24-



methods which are used to get access to services [10]. The main structure of WSDL 

and the major elements used to describe a service is as follows: 

<definitions> 

<types> 

definition of the data types ....... . 

</types> 

<message> 

definition of the messages .... 

</message> 

<port Type> 

definition of the operations ...... . 

</port Type> 

<binding> 

definition of the communication protocols .... 

</binding> 

</definitions> 

From the syntax involved in the WSDL document above, we are able to understand 

the four elements which are grouped together to describe a service. 

Types element: declares objects relating to a system which processes the WSDL 

document. 

Messages element: describes messages which are sent between the client and the 

-25-



server. 

Port Types element: identifies operations and messages. 

Binding element: specifies protocol details for operations and describes the content of 

messages. 

Although WSDL is widely used to describe services running on any protocols, as it 

provides all necessary information to establish the communication with a SOAP 

server against a client. However, WSDL is not enough to reflect the interaction flow 

between business parties as it lacks lots of properties [46]. It is because SOAP 

transaction, on which WSDL is erected, involves only document exchange rather than 

multiple transactions. Therefore, other approaches need to be considered to specify 

business flow arrangement. 

2.3 Markup Ontology Languages and Service Modelling 

Given a service, it is important to understand the ontology, its hierarchical structure, 

before adopting an approach to deal with it. There are several markup languages to 

represent ontology and encode knowledge. 

2.3.1 DAML+OIL 

DAML+OIL aims to describe the ontology infrastructure in semantic web to facilitate 

the web to understand the meanings of web contents and perform reasoning with the 

information, rather than just displaying them. It is also widely used to describe 

ontologies of various domains, and a major evidence of importing biology into 

DAML+OIL can be found in the way of describing gene technology [14]. 

Built on top of DAML+OIL, DAML-S is a semantic markup language to describe 

service and ontology. Unfortunately, Klein et al [25] think that current DAML-S is not 

sufficient enough to describe existing services as it does not trace the step-by-step 

service execution and thus, is unable to support stepwise service refinement. As 

-26-



discussed, it is possible to successfully reinforce the incomplete service descriptions 

by using variables. This is because that current state/message mechanism is not able 

to describe more interactive services rather than fixed ones. However, the concept of 

variables is not provided in either DAML-S or dependent standards. Therefore, a 

structure to add variables to DAML-S based service descriptions is proposed. Inferior 

to other standards, the modified service description is not able to automatically 

generate GUis. 

2.3.2 RDF 

Based on URI (Uniform Resource Identifier), Resource Description Framework is 

designed to represent information about resources, especially metadata about web 

resources [26]. A simple RDF statement is shown in Figure 2-3. 

Shape 

Spheric 

Figure 2-3: A Simple RDF Statement 

From Figure 2-3, it can be seen that the individual the earth has the shape property 

which is spheric. This statement can also be represented in RDF IXML format as 

follows: 

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns:description="http:// .. ./planet#"> 

<rdf:Information rdf:about=" http:// .. ./ planet#earth"> 

-27-



<description:shape>Spheric</description:shape> 

</rdf:lnformation> 

</rdf:RDF> 

Comparing with the code segment with the graph, we are able to find out that the 

resources, planet and earth, are both defined and the relationship between the earth 

and its property, spheric, is also specified. 

Nowadays, it is still a difficult problem to automatically generate service description, 

while it is impossible to manually produce the description. With RDF, it is feasible to 

generate metadata information automatically for discovering services [23]. The 

metadata generator can then link RDF description with a web page and the metadata 

element specified by RDF can fit in a search engine for service discovery. · 

2.3.3 OWL-S 

Built on top of OWL, OWL-S makes it possible for service discovery, execution and 

composition. For example, problems remaining in these services issues may include: 

In what way can the constraints be satisfied during searching and discovering a 

service? How to automatically invoke services which are normally performed by 

humans, such as filling forms during a purchase procedure? And how to let machines 

deal with a travel arrangement which composes and interoperates several itineraries 

by just offering some prerequisites? In order to deal with these kindsJ of questions, 

OWL-S tries to define the meaning of what Web Services can offer and what 

information is required. According to Martinet al from W3C [27], the upper ontology 

for Web Services created via OWL-S can be shown in Figure 2-4. 

- 28-



ServiceProfile 

What the 

service does 

SERVICE 

Descr· edBy 

How it works 

How to 
access it 

Figure 2-4: An Upper Ontology for Web Services Defined by OWL-S 

As illustrated in Figure 2-4, a service operates based on the provision of resource. The 

service class has three properties to support three subclasses respectively, each of 

which characterises the functionalities. 

Service Profile: presented by service to express what the service does, especially the 

requirements from users and the expectations. It also provides the information about 

service features and enables automatic discovery. 

Service Model: describes the service to show how it works, particularly shows the 

data and control flow of service processes. 

Service Grounding: supported by the service to indicate in what way the service is 

accessed and used. It provides a concrete description of binding protocols and 

messages, etc. 

One of the advantages of using OWL-S is that it is very universal and is suitable for 

describing any Web Services, as it is designed to let service definition precisely refer 

to a unified set of documents which describe the exact meaning of service. On the 

contrary, this characteristic can also be viewed as a disadvantage of it. Because it can 

be too general that when it is adopted for description, OWL-S has to be extended to 
-29-



specify more classes and add more properties in order to enable semantic descriptions, 

as mentioned in [21] for a digital preservation system. 

On the other hand, there is also a proposition to apply UML class diagrams to define 

schemas, which are part of the service ontology [38). However, ontology has a 

restriction that an object must have one of the characteristics of a class in order to be 

an instance of it. As a result, compared to OWL-S, the UML approach is not suitable 

to define ontology although it can be bound with other techniques to describe services 

issues. 

2.3.4 Service Modeling 

Current service models derived from languages such as DAML-S, RDF and OWL-S 

are not sufficient to describe various kinds of service requirements. In order to 

enhance the universality of them to cover service descriptions, a lot of researches 

make use of the expandability, such as to import supplementary properties or 

functions to model services [25, 21). Another example is illustrated by Chung et al 

[11]. Based on OWL specification, they have proposed Service-Oriented Process 

Models to build services to support collaborative design and manufacturing. The 

framework, which has distributed architecture, is able to cope with heterogeneous 

networks. Moreover, de Bruijn et al [ 12] have addressed that Web Services Modeling 

Ontology (WSMO), which specifies the ontological structure and descriptions for the 

core elements of semantic Web Services, can be used to enable business integrations 

based on formal descriptions. 

On the other hand, Web Services models which are not based on those languages have 

also been proposed to handle other related issues. Currently, there is no support for 

comparing the ratings of service standards which enable service publishing and 

discovering. Therefore, a conceptual model for service reputation has been designed 

by Maximilien and Singh [29) in order for generating a new approach for service 

-30-



location and selection. 

2.4 Service Composition and Matchmaking 

A service requirement corresponds to a task which can be realised in the point view of 

fulfilling its composite tasks. The procedure of dissecting a complex task into 

fragments follows the aim of refinement, resulting in implementable components. On 

the other hand, given a repository of executable fundamental services, the key issue is 

to seek a way to integrate appropriate ones into a compound with various 

functionalities. This involves the topic of how to better match existing services to 

given demands. 

2.4.1 Software Reusability 

Web Services, in some ways, is regarded as a reconstruction of several existing pieces 

of components which are integrated to make complex performances. In this case, the 

mechanism of service composition overlaps with the concept of software reuse, the 

issue which was put forward probably over three decades ago. 

Software reuse refers to the notion of making partial of complete computer program 

code reusable for a later project in order to reduce both software development 

timescales and costs. The purpose is to avoid repetitious work on same applications in 

the case of multi-use of identical or similar pieces of software components. Compared 

to constructing a program from those very fundamental functions or methods in lib 

files, it is much easier and efficient to search for and adopt existing software 

components to form a new application. 

Although it aims for reducing time and cost, pure software reuse has been proved to 

be unsuccessful for the past mainly because of the following two reasons [ 40]. Firstly, 

reusable components are abstract and mostly encapsulated as a whole integrity, which 

disables any amendments to be made and the desired outcome, cost and time may be 

- 31 -



affected. These all make it difficult to analyse and evaluate their quality before 

adopting them. Secondly, the skills used to support reusable components tend to 

become unconvinced, which also makes it almost impossible to trace software reuse. 

Nevertheless, people have been seeking ways to make software reuse feasible, 

especially when some of its notions can be shared with the proposal of Web Services 

composition. For example, the Case-Based Reasoning technology (CBR) is 

introduced by Gu for component recognition and retrieve [18]. According to the 

purpose of software reuse, one of the key issues is to discover appropriate software 

component and apply it to wherever required. However, with the dramatic increase in 

the number of available software components, it is far more than an easy task to locate 

proper components. Moreover, given numerous components, it is inefficient to go 

over all of them to find the target one. In this case, a knowledge-based component 

retrieve model was proposed in order to explore appropriate component while not 

imposing excessive work on service queries. Most importantly, the CBR mechanism 

offers a way to represent both general domain knowledge and component knowledge, 

reflecting general quires and component providers respectively, and uses both of them 

in component retrieval process. It can, therefore, effectively reduce the conflict 

brought by different representation of the requirements and corresponding 

components. 

2.4.2 Composition 

It has been a growing trend with the developing software architecture to combine 

multiple applications in the distributed environment. The build-up components are 

functions extracted from several different resources, maybe individual and partial 

functions, or even an entire encapsulated system. The composition issue, then, has 

drawn a lot of interest, especially for business and enterprise application integration 

[44]. 

- 32-



According to Paulo F. Pires et al [35], Web Services composition is "the ability of one 

business to provide value-added services to its customers through composition of 

basic Web Services, possibly offered by different companies." From this definition, it 

is suggested that there are at least two fundamental attributes of those "composite 

services". First, they are integrated from basic services and should thus inherit the 

properties of basic services and be compatible to those APis provided by them. 

Second, composite services are not only a simple collection of basic services. They 

should be "value-added service", which means that composite services are reckoned 

to have extra functions and these functions cannot be realised by those individual 

basic services. 

Various methods which are keen to facilitate servtce composition to be more 

comprehensible and easy-executable have been carrying out throughout these years. 

One of them is prone to being applied by using BPEL, Business Process Execution 

Language at business level, and it is called Business Process Execution Language for 

Web Services (BPEL4WS) when used within the scope of Web Services. It has 

superseded Web Services Flow Language, an XML language proposed by IBM to 

describe composition formerly. BPEL provides a language for specifying business 

processes and business interactions and defines a model to facilitate process 

integrations of business services which will be discussed later. 

In order to make elementary servtces be easily composed, Mostefaoui and 

Hirsbrunner [32] believe that it will pave the way for service composition by using the 

composition framework based on context. They bring in a conceptual framework of 

Context-Based Service Composition consisting of four layers, each of which has 

certain functions to implement within its own processing region. In the authors' point 

of view, the purpose of introducing context is to make services more discoverable, 

easy to be composed and executable. However, the proposed composition model does 

not help service composition to be executed in an automatic way, which still requires 

manual manipulation and lacks of consistency in a large scale. On the other hand, 
- 33-



Jianghai Rao et al [39] have addressed that applying linear logic into service 

composition issue can facilitate automation. Their proposal bases on the assumption 

that core services which have already been selected by users cannot completely 

accomplish their requirements. Therefore, the invocation of combinations of core 

services becomes necessary to fulfil the goal. Contrasted to using languages such as 

WSDL as external representation to describe services, it is proposed that linear logic 

can be adopted to internally depict service composition issues. In this case, the 

composition of services can be converted to the computation and reasoning supported 

by linear logic, although it is not originally considered as a proper tool to deal with 

composition issues because of its complexity. Even if it can somehow make an impact 

on guaranteeing the correctness and completeness of composite services, it cannot 

intuitionally represent the service flow upon composition and will constrain the 

freedom of selection among fundamental services. This can more or less hamper the 

service expansion to a large scale. In order to solve this problem, the notion of using 

graphs to represent service and its interactions has been proposed with the 

introduction of conceptual graph and other graph-related representations. The 

graph-based service issues will be discussed later in this thesis. 

According to Matskin and Rao [28], the infrastructure of Web Services composition is 

depicted as in Figure 2-5. The service composer plays a vital role in the whole 

composition process. First of all, it extracts key information from the description of a 

require service. The composer then starts both of its components, workflow manager 

and component integrator. The latter one directly interacts with UDDI, trying to find a 

matchable service profile. The optimal service which exactly matches the specified 

requirement, if existing, will be selected. Otherwise, the component integrated needs 

to start a composition process to synthesis available services according to their 

specifications. The workflow manager monitors the whole process and models the 

workflow by using workflow language or service flow language. The two components 

of the service composer both contribute to forming the composite service. 

-34-



Workflow 
Manager 

Service 
Composer 

Component 
Integrator 

Figure 2-5: The Infrastructure of Web Services Composition 

Web Services, on the other hand, focuses on business services which also include 

issues such as integration and composition. Similar to service composition at 

functional level, the selection of distributed services from different service providers 

is a critical problem in business processes. Taking factors such as time and cost into 

consideration, a service can only be appropriate to be selected from service pool if it 

can fulfil part of a business goal or is an indispensable component in the composite 

service flow. However, the selection of service providers is far from a simple task 

because of the amount of available services and complexities among service 

correlations, as the implementation of one service can probably make significant 

impact on the choice of related services. In order to provide an efficient way to allow 

customers to select and obtain optimal services, Roman Ginis et al [15] have proposed 

a method for modelling business processes through servtce composition. It is 

suggested that service requestors have to formally express the activities and 

relationships of business processes they are in need for, and thus automatic tools can 

help them to make selections and reservations optimally. However, regardless of the 

difficulty in deploying such automated tools, it is not feasible to expect any "formal 

- 35-



expressions" from servtce requestors. Those requirements, in normal cases, are 

described in natural languages and service requestors, if not specialists, are not 

probable to offer requirements in those formalities. Provided by those mete 

human-understandable demands, it is impossible for machines to match them with the 

existing patterns. The solution can be made through improvement on the description 

of services by adding semantics. This is to make services well described and possible 

for machines to matchmake service requests with appropriate ones in the service pool. 

2.4.3 Current Composition Approaches 

2.4.3.1 BPEL 

Since the first-generation composition language Web Services Flow Language was 

superseded because of its incompatibility, researchers have been carrying out several 

approaches for service composition, represented by BPEL mentioned above. Although 

there is no standard by W3C for composition at this stage, those proposals have 

already made contributions to composition in some ways. 

Among those composition methods, BPEL4WS is the major approach for service 

composition and is the standard by OASIS (the Organisation for the Advancement of 

Structured Information Standards). In order to get the process as the composition 

result in BPEL, activity exchanges messages and processes are able to interact with 

other participating services via WSDL [31 ). 

The approach of using BPEL to perform composition is based on a framework of two 

patterns: workflow pattern and communication pattern [50]. In the workflow pattern, 

the control-flow, based on the workflow model, monitors the composition procedure 

and the flowchart-like BPEL process specification make it practical to represent 

complex structures of composition. Moreover, because BPEL is a communication 

language, the communication pattern facilitates that all the activities within 

composition can be completed via sending and receiving messages. However, one of 

- 36-



the major deficiencies of BPEL is the lack of semantics. The unclear expression of 

semantics makes it difficult in interrelating services for composition. Therefore, 

relevant logic and reasoning need to be considered in order to be mapped into formal 

representation to create and correlate processes. 

On the other hand, since BPEL is proposed for describing business processes, it tends 

to contribute to the outcome associate within a business activity and improve the 

performance of the process. It can make business process interact with external 

entities through WSDL, thus capable of facilitating automated process integration. 

However, from the organisation perspective, BPEL does not give a proper method for 

measuring the performance of service execution. First, BPEL can only manage 

automatic activities and is not able to handle non-automatic business processes. 

Therefore, it is not capable to manage all sorts of business processes and inefficient to 

deliver any kind of business process descriptions from one to another. Moreover, the 

immaturity of BPEL leaves lots of gaps in its specification, which makes individuals 

who would like to use BPEL need to set up their own implementation ways to fill in 

those gaps. Several proposals of extending BPEL with essential properties have been 

put forward. For example, in [30], a method for extending BPEL in order to measure 

business performance is proposed. It applies Solution Management to the current Web 

Services architecture, providing three management type categories of define, log and 

analyse. This definition of service, which is different from the description offered by 

UDDI, includes business level information, especially the performance measurement 

information, while the log service provides a mechanism that the data transmission in 

the workflow can be monitored. At last, the analyse service is joint for making request 

of existing services and analysis of process performance according to the defined 

criteria. 

Besides BPEL4 WS, Semantic Web, precisely OWL-S, can also make an effort in 

service composition as provides the standard of enterprise integration and sharing data, 

thus enabling service discovery, invocation, composition and interoperation. The 
-37-



process model in OWL-S provides service descriptions in terms of input, out, 

precondition and postcondition, etc., all of which are prerequisites for service 

composition. One of the other important composition methods is based on web 

components, specifically reusable pieces of software, whose interface enables 

discovery and reuse. 

Because of its lack of semantics support, BPEL cannot let service users define some 

non-functional properties such as the quality of service, while OWL-S is able to 

manage it. However, neither of these two approaches can guarantee the correctness of 

composition while web component method succeeds in doing this with the help of 

composition logic. 

2.4.3.2 Service Composition Using Conceptual Graph 

Conceptual graph is a logic system based on the existential graph and the semantic 

network of artificial intelligence. It provides an abstract expression by using nodes to 

represent concepts and conceptual relations and arcs for liking them together [42]. 

The linear form of representation is as follows: 

[Graph: {x}] -7 (Attr) -7 [Conceptual] 

This denotes that graph has an attribute which is conceptual, which means a 

conceptual graph. The two concepts, graph and conceptual, are linked together by the 

conceptual relation of attribute. 

Because it has the advantages of both human-understandable and machine tractable, it 

is able to interpret between computer-based formalities and natural languages. 

Moreover, conceptual graph can be used to represent describe service and service 

composition. We will use the two processes, List and Pick, in the online purchase 

example above to illustrate. 

- 38-



Process: List 

Figure 2-6: The List Process in Conceptual Graph 

Figure 2-6 depicts the list process in conceptual graph. The process, which has the 

name of List, is composed of several operations. Therefore, the relationship between 

the process and operation is composition and operation is the component of the 

process List, denoted as Cpnt. There all numerous of operations available and list is 

the one that should be selected here. Thus the relationship between operation and the 

action list is also composition. It should be mentioned that the meanings of the two 

Lists are different. The first one denotes to the name of the process while the second 

list refers to the exact operation. In order to perform the list operation, both the list 

pattern and the font in display needs to be considered, which result in the two objects 

of list: pattern and font. 

Another process Pick to be expressed in conceptual graph is shown in Figure 2-7. 

Process: Pick 

Figure 2-7: The Pick Process in Conceptual Graph 

Like the list process, the pick process has component which is operation. There are 

two operations to be selected to implement this process. The first one is the action of 
-39-



get, which has the object of the ID of the target item. The other operation is the 

reproduction of the list process, which means the whole pick process needs to be 

composed with list to be implemented. 

2.4.4 Matchmaking 

As mentioned above, despite the tremendous progress towards the on-demand issues 

in Web Services, it is still far from perfection in matchmaking existing services with 

various service demands. In order to implement a proposed requirement, the most 

important thing is to search for an appropriate service in the service pool, either 

seamless matchable or at least with similar functionalities that can almost fulfil 

identical requirements. UDDI registry, in terms of the scope of Web Services, stands 

as the repository of services which shares an analogous performance as a service pool 

with search functions. The service selection issue now comes to the point of seeking 

matchable components in the registry. However, the search mechanism for traditional 

UDDI business registries is more or less based on key-words, which gradually proves 

to be inefficient and impractical. For one reason, it can be hard for service requestors 

to extract proper keywords from their requirements, especially when the requirements 

are vague as the requestors themselves are not capable of making clear expressions of 

their demands. This will lead to numerous redundant return services which bring 

additional time and cost. Like search mechanism used in lots of current search engines, 

the most important thing in order to successfully meet the expectations is to provider 

keywords as appropriate as possible to locate the search goal. However, in the service 

users' perspective, it is not a pragmatic solution to provide all precise description of 

their requirements to exactly match the description of existing services offered by the 

service registry. Therefore, it is necessary to bring in a proper method of matching 

different description from the two sides to pave the way for service search and 

discovery. 

UDDI IS a standard service registry, as well as a search engme. However, as 

-40-



mentioned above, its functionality of being a search engine is limited because it is 

only based on keyword retrieve. In order to enhance its ability to discover services, 

Kawamura et al [24] have performed an experiment on applying semantic service 

matchmaker with UDDI. By combining search with Web Services Semantic Profile, a 

semantic service description of semantic service matchmaker, it is able to level up the 

performance and functionality of the matchmaker. 

In fact, semantic service matching can not only be realised with the aid of 

UDDI-based approach, service descriptions depending on other languages can also be 

applied for semantic service. A matching engine based on DAML-S is applied in the 

architecture ofthe DAML-S/UDDI matchmaker [34]. Web based DAML ontology is 

able to supply the gap of UDDI to perform semantic search. 

It can be inferred from above that it is not sufficient to enable semantic search by 

purely using UDDI. It needs to be combined with a good-formed and semantic-based 

ontology to support description for semantic search. 

2.5 Service Scheduling 

The composition of services intends to collect all the relevant and composable 

services together and integrate them into a more complex service with greater power 

and functions. During the procedure of composition, an issue has been raised in terms 

of selecting similar services and organising the sequence of service operations, as 

composition rules only deal with integrating two or more services together without a 

bird's-eye view on the overall integration process. Therefore, scheduling mechanism 

has been proposed in order to solve the problem of service arrangements. 

2.5.1 Job Scheduling 

The concept of scheduling m Web Services refers to the mechanism of ensuring 

reliable system processing in terms of monitoring and controlling the service 

-41 -



operations. Service requestors at the user end can ask for a desired service to be put 

into the operation chain. On the other hand, the service scheduler, which keeps a 

record of the service selection and execution sequence according to the requirement 

and decomposition, manages the whole service procedure. For example, according to 

OMII-Europe, users can submit job requests to the job execution and thus a job 

scheduler is needed to coordinate the sequence of operation. Therefore, Globus 

Toolkit 4 [ 16] provides a mechanism of selecting, controlling and monitoring the 

workload of jobs to a manageable order. 

2.5.2 Scheduling Algorithms 

In order to manage the operation sequence of services, Yifei Wang et al [ 49] 

introduces several scheduling algorithms that are applicable in different circumstances. 

The target of scheduling algorithms is to make a balance among services which will 

be invoked and to avoid both starvation and over-action of a service. There are mainly 

two styles of scheduling: sequence and priority. 

Sequence scheduling, also known as First Come First Served (FCFS) or First In First 

Out (FIFO), applies to services forming in a queue and needing to be executed in a 

chronological order. The importance of services in this theory only refers to the direct 

following service rather than the service which could actually be "crucial" within the 

whole service flow. 

On the other hand, if the result of a particular service is urgently needed or plays as 

the base of all subsequential services, the priority scheduling algorithm needs to be 

applied for this service. This includes algorithms such as Earliest Deadline First 

scheduling (EDF), Shortest Job Next (SJN) and Shortest Remaining Time (SRT) etc. 

Therefore, it all relies on the different occasions that appropriate service scheduling 

algorithms need to come into operation. 

-42-



2.6 Summary 

This chapter has presented the reviewed work on related researches mainly in Web 

Services structure, description, composition and matching. Although there is no 

current standard definition of Web Services, it is general accepted to be based on SOA 

structure. There are also lots of languages for describing services and related issues so 

as to facilitate using services through operations like composition and matching. 

There are a lot of current technologies which have close relationship with Web 

Services or can be incorporated with Web Services for complex performance. For 

example, Microsoft's .NET and Sun's J2EE can both be used as the application 

frameworks for Web Services. 

-43-



Chapter 3 Atomic Service-Based Scheduling 

3.1 Introduction 

With the rapid development and wide spread of the Internet, the demands of on-line 

services are growing at a tremendous speed and the growth rate of requirements will 

by no means decrease in the long term. Those requirements, in terms of the way of 

expression, are mostly in natural languages which are commonly used in routine life. 

This is simply because most service requestors are not specialists in this particular 

area. Therefore, they do not know in what way their requirements can be fulfilled. 

These natural language-based requirements, however, are only human-readable rather 

than machine-processable. It is difficult for machines to extract useful information 

from natural languages in order to process various requirements. Therefore, service 

providers, at this stage, have to analyse these requirements and put them into 

implementation. 

Normally, those requirements proposed by service users are quite general and are not 

always expressed in a well-formed structure. It is because these requestors are not 

very clear enough with their requests and whether they will be satisfied by the results 

given. In this case, service providers usually decompose the requested service into 

several sub-services. This decomposition procedure can be repeated several times 

until the stage that services cannot be further decomposed when the decomposition 

has generated basic services that can be realised directly by invoking corresponding 

functions and methods in the lib file. Services at the bottom of the decomposition 

chain form a service pool, which contains all the fundamental services and basic 

components to be integrated. Our research works focuses on the structure and 

description of these services, which we call atomic services, and how they interact 

with other services to perform complex tasks. 

-44-



3.2 Key Definitions 

First of all, we will discuss some key concepts in the context of service description 

and service decomposition. W3C (The World Wide Web Consortium) refers to the 

programmatic interfaces made available for application to application communication 

as Web Services. Therefore, it implicates that services can be viewed as 

"semi-manufactured components" which can be put into practice only after some 

further processes. In our discussion, we propose the concept of atomic service, which 

can realise some basic function and furthermore, serves as fundamental component of 

complex services. In order to realise complex services, atomic services need to be 

composed together according to some integration rules, taking scheduling issue into 

consideration. 

Sub-service: A service which realises multi-functionalities can be decomposed to 

"small" services, each of which can realise part of the whole requirement. Although 

these services, called sub-services, are not as complex as services of high level, they 

have well-defined descriptions according to our service structure. Therefore, the 

implementation of the general service relies on the completion of its sub-services. 

Decomposition: the procedure of "dissecting" a service into its sub-services with the 

aim of being easily processed. A general requirement which is represented in natural 

language cannot be recognised and processed by machines, and it needs to be 

thoroughly analysed and separated into several hierarchical inter-related components 

to perform complex tasks. 

Atomic Service: a simple service with a lifetime of a single request. 

After decomposing a general service to a certain stage, some decomposed services can 

be somehow directly executable by calling those fundamental functions in the lib file. 

In this case, it is not necessary to decompose these services any further down to their 

sub-services (whether they have any sub-services or not) because these executable 

- 45- ' 



services already serve as basic components of a general requirement. These services, 

denoted by leaf-nodes in the service decomposition tree, are called atomic services, 

the features of which will be discussed later. 

Composite service: Services which are not atomic are composite services, which 

mean that they are not executable directly from functions or methods within the lib 

file. The topmost service, which corresponds to the general requirement, is a 

composite service which integrates all its sub-services. 

Composition: the task of putting together atomic and/or composite services to perform 

complex tasks. 

In the circumstance of the disability in realising a required functionality using existing 

services, it is a good idea to combing existing services together to fulfil the request, in 

other words, to let the composition be dynamic. This process of composition is 

essential to both business-to-business and business-to-customer applications 

especially when Web Services become more prevalent nowadays. Basic Web services 

will be possible to bear the ability of being value-added through composing with other 

services provided by different companies [35]. 

Integration: to combine a set of applications by using some architectural principles, 

especially used in enterprise application integration by joining relevant middleware 

components together 

Web Services (in terms of Atomic Service): a collection of atomic services, composite 

services or a combination of both categories. 

3.3 Service Decomposition and Composition 

Decomposition and composition can be referred to a "Divide-and-Conquer" problem 

-46-



in the domain of Web Services. For vanous kinds of service requirement, it is 

impractical and impossible to find an exact corresponding collection of service on 

every occasion. In most cases, service requirement does need to be thoroughly 

examined and decomposed and the realisation of the original service owes to 

implementation of each of its sub-services. Parameters of the requirement pass down 

to its sub-services and the result is presented after several operations being completed 

· on sub-service level. This data transmission procedure is opaque to service requestors 

as they do not need to know how their requirements are processed. However, the 

decomposition process should be transparent to service providers, as they are 

responsible for composing functional services and use the performance of compound 

services to meet the original requirement. Therefore, the whole process can be 

visualised as a combination of separating a general service into pieces and integrating 

those completed and useful components back into the original service. 

Requirements proposed by service users are mostly in natural languages and are not 

machine-processable. Service providers have to manually perform the analysis work 

upon each request. A request, in most cases, can be quite implicit, which means that it 

is not expressed in a very clear way and can contain several possible meanings. For 

example, the meaning of the request "Please buy a ticket for me" is vague because it 

omits lots of useful information. In order for machines to realise the request, service 

providers will have to convert the natural language to programming language or 

machine language during the process of decomposition. 

First of all, words which play an auxiliary part and do not contribute much to the 

meaning of the whole request should be removed, leaving notional words (words 

which have full lexical meaning in context) only. In this example, the words "buy" 

and "ticket" will remain after the elimination. However, the expression "to 'BUY' a 

'TICKET"' still does not give enough information to enable the process of the request 

as both words have some implicit meanings. In other words, both the action "BUY" 

and the object "TICKET" can be further decomposed. 
-47-



3.3.1 Top-down Convention 

Given a task, the necessary way to accomplish it is to make a full examination before 

setting out to draw solutions. A given task can only be implemented after being 

analysed, refined and thoroughly decomposed to the stage of executable functions. 

This procedure, which requires a series of decomposition, either manually or 

automatically, is called top-down convention in terms of service decomposition. 

As illustrated in Figure 3-1, if we regard a task as a topmost service, it should then 

correspond to the initial requirements from service users. Expressed in natural 

language, a task can be converted to a corresponding service which is processed with 

the final purpose of being recognised by machines. Services users, if not specialists in 

Web Services area, may not understand the way of expression of their requests after 

this step because what they concern is the result rather than the procedure of 

producing the result. The decomposition from task to its sub-tasks is based on natural 

language standard, which means each sub-task is still expressed in natural language 

and is human-understandable. In this procedure, the interaction between machines and 

service requestors is a critical part in fulfilling the whole task. More specified 

information which is not represented by service requestor can be fetched during this 

procedure. For example, it a person would like to make a phone call to BT to 

subscribe some services. The person's answer to the operator's questions is a way to 

provide more precise description of what is needed. This decomposition procedure 

has already been done by the telephone company and what service requestors need to 

do is to fill in the information according to the pattern to complete the service 

description. The decomposition on this level can be carried out automatically rather 

than manually. Voice call service is a typical representation to replace the operator. 

Service requestors need to follow the instructions and provide further more 

information by selecting corresponding buttons on the phone pad. 

-48-



Figure 3-1: Top-down Convention 

After several steps of initial decomposition, each task needs to be converted to a 

functional service whose description is then unknown by service requestors. This, 

however, is mostly done manually by providers as it is quite hard to find a device 

which can parse the natural language based description to the machine-understandable 

pattern. Decomposition below this level aims to fulfil each task by realising the 

function of each fundamental service and get the final result back to the requestor. 

3.3.2 Bottom-up Convention 

Unlike service decomposition which is discussed above, the composition of service 

goes in an opposite way. The composition issue concentrates on fundamental services 

which can be executed directly and the integration of these services to perform 

complex tasks. In the perspective of service composition, the method is usually called 

bottom-up convention. 

The mechanism of this kind of bottom-up convention is based on integration 

principles and flow regulations. Starting from bottom-level service which have single 

-49-



functions and cannot be decomposed to its sub-services, bottom-up convention 

follows the service flow which directs the completion sequence of services. 

According to the figure, fundamental services are composed together regardless of 

specific requirements. The purpose of such kind of composition is to generate general 

service modules which upper levelled requirements can adopt when necessary. 

However, this is not to say that every two or more services can be coupled. The 

composition, as mentioned above, needs to follow the regulation of principles such as 

the output of the current service should be matchable to the input of its follower. The 

collection of relevant and matchable services forms a service module and the module 

is restored in a service repository for further use. 

Figure 3-2: Bottom-up Convention 

Basic services relating to matchable integration form a composition pair: <S1. S2>. 

Several properties of the two services, such as input/output relationship and semantic 

coherence, need to be satisfied in order to constitute a pair to be composed. 

3.3.3 Composition Based on Workflow 

Workflow shows the operational procedure of how composed services are situated in 

the ontology, how they are synchronised and how data is transmitted. It traces the task 

-50-



process and monitors the execution of service components. There are three aspects for 

services to be composed to follow according to workflow theory: 

(1) The description of input; 

(2) Composition rules and algorithms; 

(3) The description of output. 

Two services can only be composed if the output of the previous service can match 

the input of the following service. The information of data and semantics is specified 

in the description of input and out. In another word, not only the quantity and type of 

data, but also the meaning of services, should be matched in order to be composed. In 

case that appropriate targeted service does not exist or is not available, composition 

rules and algorithms are applied in order to search for an alternative service. 

3.3.4 Graph-related Service Composition 

3.3.4.1 Relationship between Service and Graph 

In order to represent our service structure, we use a service graph to illustrate the 

atomic services and the relationship among them. This is shown in Figure 3-3. 

equal to 

I Service I J Graph J 
partof partof 

equal to 

I Sub-Service I _I Sub-Graph I 

part of 
has 

equal to 
has 

has 
I Inter-relationship 1 I Edge I 

equal to 

I Atomic Service I J Vertex J 

Figure 3-3: Relationship between Service and Graph 

-51 -



A graph is a set of nodes (vertices) connected with each other by some links (edges). 

If a graph is used to represent a service, a service graph will then be generated. The 

reason for doing this a service is a composite of a set of sub-services (small services 

which are decomposed from large ones and can be integrated according to some 

regulations). Similarly, a graph is made up of a set of vertices and edges, and can be 

regarded as a set of sub-graphs (small graphs of some meaning which serve as 

components ofbigger graphs). In this way, a correspondence can be defined between 

a service and a sub-graph. Each node within a sub-graph represents an atomic service, 

and the relationship between atomic services is represented by edges between vertices. 

A service which consists of several atomic services corresponds to a sub-graph, and 

both of them are subsets of a bigger service and graph respectively. 

3.3.4.2 A Flight-Booking Example on Decomposition 

In order to give a better understanding of the procedure of service decomposition, let 

us give an example of the flight booking system, which a lot of people may use in 

daily life. 

Suppose a simple booking system is composed of four parts: listing available flights, 

booking a flight, information validation and check-out. In this case, it means that the 

service of ticket-booking can be divided into four sub-services with interrelations 

linked among them. The results of listing available flights are used for booking and 

the objects of validation are the information provided by service requestors. These 

four sub-services, therefore, are operated in sequence. In terms of the decomposition 

from a sub-service to atomic services, let us take listing available flights as an 

example. It can be divided into several parts as follows: items input by service users 

(including origination and destination, departing and returning time, etc.), matching 

information in database and results listing. 

By usmg the technique of graph representation, the booking servtce and the 

-52-



relationship between its components can be expressed as in Figure 3-4: 

Partof Partof 

Figure 3-4: Top Ontology of Flight Booking System 

Meanwhile, the sub-service of listing available flights can also be decomposed into 

atomic services as illustrated in Figure 3-5: 

Listing 

· Partof Partof 
Partof 

Matched 

Info Match 

Error info 

Figure 3-5: Structure of Listing 

3.4 Atomic Service 

The definition of Atomic Service is presented as a simple and undecomposable 

service with a lifetime of a single request. 

From this definition, it is not difficult to notice at least three meanings: 

( 1) An atomic service is a service which can perform a function or realise a method, 

just like all other services; 

(2) It can meet a requirement which is uniquely corresponded to; 

(3) It is not decomposable, which means it does not contain any sub-services. 

-53-



A complex service request can only be realised after it is analysed and decomposed to 

its components and sub-services. Decomposition, however, is not regarded to be as 

thorough as possible. On the contrary, we assume that the process of decomposition 

comes up to the end when the object service that cannot be decomposed any further 

and it should be executed directly. In this way, we put forward the concept of atomic 

services, each of which acts as a fundamental component of complex services. 

According to the definition above, the concept of atomic service is proposed with the 

aim of the realisation of a single request. Normally, a service request raised by users is 

not simple enough that a basic function in a programming language can be invoked to 

fulfil it. After it is decomposed into its sub-services, and deeply to atomic services, the 

requested service can now be viewed as a composition of more than one fundamental 

modules integrated together according to integration rules. These modules can be 

applicable classes or methods in the function lib file. Therefore, these modules, also 

named atomic services, form a repository of available services which can be invoked 

by services on upper levels. 

3.4.1 Service Type 

An atomic service must be of some type. Types of a service can be either data type or 

object type. Data type refers to the forms of values in terms of input and out, because 

each atomic service, which finishes in a certain period of runtime in normal cases, has 

some inputs and outputs to interrelate with other services. Object type means different 

operations, sharing a same name, in various circumstances. For example, addition is 

the name of an operation. Here, in other words, it is a kind of atomic service which 

has certain function. Every addition has at least two operands, which act as parameters 

or data for this operation. The types of data are the types of addition. Therefore, the 

data type of the atomic service "addition" includes the type of integer, real and other 

possible types. For an addition under particular circumstances, such as the addition of 

two integers, we define its object type as addition of integer. Similarly, other object 

-54-



types under various occasions can be defined. 

3.4.2 Properties 

Atomic service, denoted to be AS, has several properties as follows: 

(A) Execution Time: t 

Each atomic service has its own execution time for completion. Execution time of 

some atomic services is stipulated in some specifications, such as CPU time. 

Execution time of other atomic services can be estimated before operation. Execution 

time of composite services, which are composed from atomic service according to 

some integration rules, is the aggregation of the execution time of its sub-services. 

(B) Input & Output 

An atomic service is defined as a service which has one or more inputs but only one 

output, which guarantees that it will definitely return a result by taking in several 

values. By representing input as I and output as 0, this rule can be formulated as 

follows: 

I (AS)= { i1, h, ... , in }, n ~ 1 

0 (AS) = On, n ~ 1 

From the formulae above, it can be seen that the input of an atomic service is a 

collection of at least one of all the inputs of the whole service, while the only output 

of an atomic service denotes to one single parameter which is generated to be either a 

temporary value or a final result. 

(C) Father Node 

Since we regard atomic service as undecomposable, it is a leaf-node in the service 

decomposition tree (a hierarchical tree illustrating decomposition). Furthermore, as an 

atomic service is the ultimate result of decomposition from complex services, it 

certainly has ancestors (services which atomic service is decomposed from) which can 

-55-



be represented as non-leaf nodes. Using f(x) to denote the father node of x, it can be 

defined as follows: 

f: f (AS) = { Si : Si are non-leaf services } 

Moreover, since every atomic service is the outcome of decomposition, it should have 

at least one ancestor. In this case, the father node set of an atomic service can never be 

empty. 

f(AS):t:0 

(D) Homo-ancestors 

Atomic service comes into being because of decomposition. Given an atomic service, 

one or more than one ancestors can be found in the service decomposition tree. Using 

AS 1 and AS2 to denote two different atomic services, with AS1 :t: AS2 , we will 

discuss the relationship between /'I (AS1) and /'f.; (AS2). Here, we use the 

symbol JL (x) to denote the operation of tracing the father node of x in terms of 

the decomposition tree repeatedly. 

(1) If these two atomic services can be obtained from a topmost service, then we have 

f L ( AS1) = fL. ( AS2 ), which means the ontology tree of both services is unique. 

(2) If not, we have JL (AS1) :t: JL. (AS2), which means that the ontology trees of 

these two services are different and they will form a forest to illustrate a task. 

(E) Service Pool: Sp 

Service pool is a repository which 1s made up of atomic services and can be 

represented as follows: 

Va e S P : a is AS 

Therefore, for every atomic service, it must be a member of the service pool set. 

-56-



(F) Integration Rules 

The process of integrating atomic services AS 1 and AS2, denoted as AS1·AS2, which 

can perform more complex functionalities. 

Integration match-up regulations: 

Amount: 0 ( AS1) = I; ( AS2 ) , which means that the output of the first service should 

be one of the input of the second 

Type: T(O(AS1))cT(I;(AS2 )), which means that the type of the output must be 

the same as or a sub-type of the input 

3.4.3 Structure 

The model in Figure 3-6 describes the architecture of an atomic service, which is the 

basic component of complex services on the upper level. From Figure 3-6 we can see 

that there are four fundamental properties of the atomic service: process, object, 

parameter and agent. The relationship between atomic service and each of these 

properties is "has" and all of these properties serve as exclusive identifiers for a 

particular service. 

partof presents 

Scheduling 

has 

Figure 3-6: Structure of Atomic Service 

-57-



Process: It is a specification indicating how this atomic service can interact with other 

services. Being a part of an operation, it illuminates the mechanism of the operation in 

details. 

Object: It serves as an instance of the operation and varies in different circumstances 

even under operations sharing identical names. Therefore, each object of an operation 

has its own type to be differentiated from others. 

Parameter: Each and every atomic service cames some parameters in the 

information which it uses to communicate with other services. Data information, in 

most cases, takes up the majority of parameters. There exist some data input to and 

output from a service and these data are of some types which are pre-defined by the 

necessity and environment of the service. The number of data should be taken into 

consideration on the integration issue of services. 

Agent: The agent plays a role of control centre which operates the scheduling issue of 

all the atomic services. Scheduling, in this respect, means the sequence of running 

services. Most services use parameters output from previous services as input, and 

meanwhile, provide results for subsequential services as input. Therefore, the 

scheduling problem is quite crucial as there will be no proper results if servic.es are 

arranged in reverse order. For each particular atomic service, the run time is a limited 

period which is specified in advance. If a service fails to complete within the time 

period given, the process of exception-handling will be called to solve this problem. 

Services which are concurrent with this one can be called at this time in order to save 

time. In this case, the whole service will not collapse because of exceptions caused by 

one of its components. All of these operations are regulated in the agent. 

Besides the description of service structure which is illustrated by Figure 3-6, there is 

also a linear expression which has the similar function to present the structure. The 

linear expression is often used in the service catalogue and will be further discussed in 
-58-



the service scheduling section later. 

Let us assume that there is a service of searching for a song on the internet and we can 

use this service to interpret the model above. The service of finding a song is a 

composite one and can be decomposed into several atomic services. The way of 

searching can mainly be based on the name of the song or the name of the singer, 

which can be regarded as different types of the object of search. The procedure of 

searching is approximately divided into three steps. First, users type in relevant 

information they would like to search for. Then, the system takes it as the input data 

and does the match-up work with its own database. Finally, the result will be output 

and displayed to service requestors. 

3.4.4 Composite service 

Composite services are the structured and semantic collection of atomic services. 

"Structured" means that the collection of atomic services needs to be based on certain 

regulations and "semantic" means that the collection should be meaning-trackable. 

Composite services can have several levels as in most cases, it is impossible that the 

general requirement can be converted to a direct one-step collection of atomic 

services. Composite services may have to combine with other composite services, or 

even atomic services, to make the composition gradually levelled up in order to reflect 

the requirement with a matchable composite service finally. 

However, it is not to say that atomic services cannot be further decomposed indeed. In 

terms of the decomposition in our research field, an assumption is made that the 

service decomposition terminates when we reach the atomic level. This is because an 

atomic service, compared to the original service request, is simple enough in both 

structure and content to be implemented. Moreover, there is no need to further 

decompose atomic services to several more simple services or functions. For instance, 

-59-



in the example above, we specify the bubble sort as an atomic service. Although 

sorting methods can be normally subdivided into actions such as comparison and 

swap, there is no need to do so at this stage. Being a basic method in the function 

library, the bubble sort itself can realise the simple service of sorting by taking input 

in and giving results, no matter whether the input is in the form of an array or not. 

According to the definition and properties of atomic service, bubble sort is a service 

which makes a single response "bubble sort", the name of the service. Therefore, it is 

regarded as an atomic service within our research domain. 

3.4.5 Case Analysis 

Here we will display an example in details to further illustrate the concept of atomic 

service and composite service. The scenario is set up as follows: 

Suppose a customer is going to buy bread via an online shop. First of all, he starts 

searching for the type of bread he wants, putting the exact name of the bread or just a 

general description in the search bar and expecting the results. The system will return 

both the exact and relevant items to the customer, who will then begin to either get the 

list into a sorted order or just pick the item he wants. He can not only get to know the 

detail of this product, but can make comparison with other products, in terms of the 

attributes of the product such as price, date of production and time period of 

reservation. After deciding which one to buy, the customer can put the item into a cart, 

the place where he can modify the quantity and his purchase history. He can then 

return to search what else he would like to buy. The customer needs to check out -

making payment in some way, which marks the end of the whole shopping procedure. 

From the description above, it is not difficult to draw all of the steps of the shopping 

procedure: 

(1). Search for bread 

(2). List of all the bread which meets the condition 

-60-



(3). Sort items in specified order 

(4). Pick up the desired type ofbread 

(5). Put the bread into the cart 

(6). Continue to search 

(7). Check out 

All of the above are components of the whole shopping process, while they 

themselves are composite service. This means each of them consists of several atomic 

or composite services and their performance relies on the realisation of those atomic 

services. Figure 3-7 illustrates the workflow as well as the components of each 

composite service. 

- 61 -



SORT 

Get input string 
Match in DB --•~~o String compare 

Pattern 
Font 

Bubble 
Selection 

JE---. Insertion 

Quick 

Get item ID 

LIST 

Get reference --~~o~•l PICK 
~----'•Price (data) ., Call comparison function 

Date (data) 

Add I delete items 
Modify quantity 
View shopping history 

1 Return for another search--~llo SEARCH 

Transaction 

Figure 3-7: Process of Online Purchase 

From Figure 3-7, we can see the components of each composite service in details. The 

components of a composite service can either be an atomic service or a composite 

service which can be further decomposed. Take the "pick" process as an example. It 

consists of two components at the first level, "get item ID" and "list". The first 

component can be regarded as an atomic service as it can be realised by sending a 

"get" signal to the server and return with the required parameter. The latter, however, 
-62-



is still a composite service as described in the second step. The realisation of "list" 

depends on both the display pattern and font, along with parameters. Therefore, it is 

such kind of composition step by step at each level that finally contributes to the 

implementation of the whole process. 

Meanwhile, it can be inferred from the whole structure that the parameters between 

processes transmit as follows: 

(1) SEARCH: [input string] ~get string~ string match: 

Case 1: true~ output item (ID) 

Case 2: false ~ search ~ output similar item 

(2) LIST: [item ID] ~ LIST ~ layout (pattern & font) 

(3) SORT: price (data) & item ID ~SORT~ LIST 

(4) PICK: item ID ~PICK~ LIST 

(5) COMPARE: [price_1, item 1] [price 2, item 2] ~COMPARE~ LIST 

3.5 Service Description and Matchup Based on Atomic Service 

3.5.1 Document-based Service Description 

Being . the description language recommended by W3C, Web Services Description 

Language (WSDL) offers description on how to communicate using Web Services. 

However, it provides no information over the process of liking up one service with 

another. As a result, an operation can be unaware of being invoked at a certain state to 

consume Web services. On the other hand, a service can only be identified by its 

description, which includes service name, parameters and operation etc. These 

information needs to be "read" by the caller in search before it is invoked. Therefore, 

we try to save all the necessary of a service in its corresponding document as a tag and 

the document can thus be checked in interactions. Figure 3-8 gives a brief 

infrastructure of a document-based service. 

-63-



parameter 

desci· edby desc1 'bedby pro 'dedby mainta 1edby desci· edby 

requestor provider 

Figure 3-8: Infrastructure of Document-Based Service 

According to this structure, each service is allocated a corresponding document. The 

document has five properties, each of which is ''partof' the document. 

(1) Decomposition: describes the descendants (sub-services) of the current service 

and the way of decomposition into them. In case of an atomic service, this property 

remains null. 

(2) Subsequence: describes the instant following service of this one. The proposition 

ofthis property aims to resolve the major deficiency ofWSDL discussed above. Ifthe 

current service is the last component of a composite service, its subsequence will then 

direct the starting component of the following composite service. 

(3) Parameter: is used to pass information, including both data and non-data type, 

among services. According to the requirement from the service consumer, the type 

and value of parameter help find appropriate services. 

(4) Exception handling: This backup process is invoked in case of any exceptions. 

(5) Execution time: Each atomic service has a certain period of time according to its 

specification. The total time of completing this service is not the simple sum of its 

sub-services' runtime because of the existence of exceptions, especially the halting 

-64-



problem. However, there is a certain period of time for each service to be completed, 

and if the overtime is much longer than expected, it is regarded as the occurrence of 

exceptions and the handling program needs to start. 

3.5.2 Matchup Regulation and Semantic Integration 

Now that dozens of atomic services are available, we come to the issue of how to 

integrate them together into a big service to meet the needs of consumers. Every 

atomic service has an interface to communicate with each other mainly by 

transmitting data. The process of integration is not just putting several pieces of 

atomic services together and adding some relationship between them in order to 

realise particular functions. The regulations of integration are restricted by the types 

of input and output. 

Each atomic service has its own pre-defined number of input and output data, as well 

as the data type. The input and output data types of each atomic service k should be an 

element of the data set of the whole service: 

Ike 1, ok eo 

This means that data types of each atomic service can not be types that are not defined 

at the beginning. 

In order to integrate several pieces of atomic services, the number of input and output 

data should exactly match. For a particular atomic service, the number of data output 

from previous services must be equal to the number of its input, assuming that all of 

the data from previous services be transmitted only to this service. And the 

post-condition of the integration is that the number of data output from this atomic 

service and its peer should match the number of data of their following services. This 

mechanism can guarantee the correctness of data flow within the whole service and 

produce final results on the input data given as initial values. 

- 65-



The data transmission through the combination of services normally follows one-way 

data exchange pattern. This is to say that the previous message which sends the data 

does not expect any response from its following service which receives the data. 

Therefore, the data transmission is not guaranteed and unreliable as the sender has no 

idea of whether the data has successfully arrived at the receiver. However, the system 

becomes less vulnerable when applying a request/response message exchange pattern 

during service scheduling. 

On the other hand, the expected result may still not be met even if two services can be 

composed together after they satisfy the number restrictions on parameters. In order to 

let the integration produce consistent result, the descriptions of those two services to 

be composed need to be taken into consideration as well. Because the decomposition 

of the service requirement has been done at the service analyse stage, the appropriate 

services will thus be invoked in the sequence according to the decomposition 

document. Each atomic service has its own description, apart from necessary 

properties, which gives the information on the function of the service. Therefore, 

when it comes to the stage of selecting services with appropriate functionalities, the 

description of the service needs to be pattern matched with the requirement, for 

example by using keyword matching. Based on this, the service invoked becomes a 

component of the composition at a higher level and the whole service module. 

3.6 Scheduling 

When a service user raises a requirement, they not only would like to get back the 

expected result, but also in many occasions, the duration between the request and the 

feedback should be taken into consideration to some extent. The accurate length of 

service execution time, however, is often hard to tell because some unforeseen errors 

may occur during the whole process. Nevertheless, in the point of view of a service 

producer, a certain time scheduling mechanism needs to be examined to manipulate 

and monitor the whole process of executing services. In this section, a service 

-66-



scheduling model and scheduling language, based on the above-mentioned service 

structure and description, will be introduced in order for selecting and arranging 

required services. 

3.6.1 Scheduling Model and WSSL 

3.6.Ll Scheduling Model based on OWL-S 

Based on the structure of service description illustrated in previous sections, we put 

forward a model which is aimed to be applied in scheduling. 

The linear structure of a service, which has the similar function as the graphical 

expression, is more efficient in terms of enumerating services which are about to be 

scheduled. It can be represented as: 

S [name, parameters, description, operations] 

The name of the service is a nominal symbol for recognising the identity of service 

while the last three characteristics all contribute to the scheduling structure. 

Parameter [input, output, type, precondition, effect] 

Description [time, subsequence, precondition, decomposition, resource] 

Operation [trigger condition, exception handling, lifetime] 

First of all, we use OWL-S to describe the service ontology. 

<!--Service--> 

<owl:Class rdf:ID="Service"> 

<rdfs: label>Service</rdfs :label> 

<rdfs :comment>General Service Structure</rdfs :comment> 

</owl:Class> 

-67-



<!--Parameter--> 

<owl:ObjectProperty rdf:ID="hasParameter"> 

<rdfs:domain rdf:resource="#Service"/> 

<rdfs:range rdf:resource="#Parameter"/> 

</owl:ObjectProperty> 

<!--Description--> 

<owl:ObjectProperty rdf:ID="hasDescription"> 

<rdfs:domain rdf:resource="#Service"/> 

<rdfs:range rdf:resource="#Description"/> 

</owl:ObjectProperty> 

<!--Operation--> 

<owl:ObjectProperty rdf:ID="hasOperation"> 

<rdfs:domain rdf:resource="#Service"/> 

<rdfs :range rdf:resource="#Operation "I> 

</owl:ObjectProperty> 

The above segment is the top ontology of service. We can further describe the each 

property of service according to OWL-S. For example, in the proper of parameter, the 

input, output and their types can be defined as follows: 

<!--Input--> 

<owl:ObjectProperty rdf:ID="hasinput"> 

<rdfs:subPropertyOf rdf:resource="#hasParameter"/> 

<rdfs :range rdf:resource="#Input"/> 

</owl:ObjectProperty> 

<!--Input Type--> 

-68-



<owl:ObjectProperty rdf:ID="haslnputtype"> 

<rdfs :subPropertyOf rdf:resource="#haslnput" /> 

<rdfs :range rdf:resource="#Inputtype "/> 

</owl:ObjectProperty> 

<!--Output--> 

<owl:ObjectProperty rdf:ID="hasOutput"> 

<rdfs:subPropertyOf rdf:resource="#hasParameter"/> 

<rdfs:range rdf:resource="#Output"/> 

</owl:ObjectProperty> 

<!--Output Type--> 

<owl:ObjectProperty rdf:ID="hasOnputtype"> 

<rdfs: subPropertyOf rdf:resource="#hasOput" /> 

<rdfs :range rdf:resource="#Outputtype "/> 

</owl:ObjectProperty> 

3.6.1.2 Web Services Scheduling Language 

Having defined all of the properties, contents and relationship, the Web Services 

Scheduling Language (WSSL) is proposed in order to describe the scheduling 

procedure. 

Based on service description language and flow language, we design the WSSL to 

specify services and the scheduling process, which are illustrated as follows: 

(1) Describe WSSL: 

-69-



<!--Definition--> 

<wssl:definitions name="Service Scheduling" namespace="URI"> 

<!--Description--> 

<wssl:description> 

<wssl:document ... I> 

<wssl:entity> 

<wssl:admin name=" Admin"> 

<wssl:service name="Service Name"> 

<wssl:timer name="Timer"> 

</wssl:entity> 

<wssl:signal> 

<wssl:start name="Start"> 

<wssl:end name="End"> 

<wssl:mutex="True"I"False"lnull> 

</wssl:signal> 

</wssl:description> 

The general description expresses the fundamental scheduling properties of each 

service, which specifies both the service manipulator (admin) and the service itself. It 

also initialises a timer and a signal which are used for the communication between 

admin and service so that the admin is able to monitor the whole scheduling process. 

(2) Define operations: 

<wssl: operation> 

<wssl:exchange name="Name" source="Source" target="Target"> 

<wssl:send name="Name" value=Value type=Type> 

<wssl:receive name="Name" value=Value type=Type> 

</wssl:operation> 

-70-



This is the standard definition of service operations. It includes the name, origin and 

destination of a service command, and specifies the format of both the input and 

output, represented by send signal and receive signal respectively. 

(3) To start invoking a service: 

<!--Start Service Invocation--> 

<wssl:exchange name="Start" source="Admin" target="Servicei"> 

<wssl:send name=start value="Start" type=signal> 

<wssl:receive name=mutex value="True" type=signal> 

<!--Start Timer--> 

<wssl:exchange name="Start" source="Admin" target="Timer"> 

<wssl:send name=start value="Start" type=signal> 

<wssl:receive name="Time" value=CurrentTime type=time> 

In order to call a service, a start signal needs to be sent to the corresponding service 

from the Admin. The variable named "mutex" is an analogue signal which uses 

logical values True or False to indicate whether the required service has been invoked 

or not. Meanwhile, the time controlling mechanism is intrigued by starting a timer to 

record the lifetime of the ongoing service. 

(4) Service Completion: 

<!--Normal Termination--> 

<wssl:exchange name="End" source="Servicei" target="Admin"> 

<wssl:send name=end value="End" type=signal> 

<wssl:receive/> 

<!--Stop Timer--> 

- 71 -



<wssl:exchange name="End" source="Admin" target="Timer"> 

<send name=end value="End" type=signal> 

<receive name="Time" value=null type=time> 

<!--Invoke Following Service--> 

<wssl:exchange name=" Start" source=" Admin" target="Servicei+I "> 

<wssl:send name=start value="Start" type=signal> 

<wssl:receive name=mutex value="True" type=signal> 

When the operation of the service is over, an end signal is sent from the service to the 

Admin. The Admin, accordingly, needs to stop the timer which is used to monitor the 

previous service on receiving the end signal. Moreover, it needs to prepare the 

consequent procedure by sending a start signal to the following service in order to 

instruct the operation. 

(5) Exception Handling 

<!--Error in End Signal--> 

<wssl:exchange name="End" source="Admin" target="Timer"> 

<send name=end value="End" type=signal> 

<receive name="Time" value=O.OO type=double> 

<wssl:exchange name="End" source="Admin" target="Servicei"> 

<wssl:send name=end value="End" type=signal> 

<wssl:receive name=mutex value="False"llnull type=signal> 

<!--Intrigue Exception Handling System (EHS) --> 

<wssl:exchange name="Start" source="Admin" target="EHS"> 

<send name=start value="Start" type=signal> 

<receive name=mutex value="True" type=signal> 

- 72-



<!--Invoke Alternative Service--> 

<wssl:exchange name="Start" source="Admin" target="Servicei"'> 

<wssl:send name=start value="Start" type=signal> 

<wssl:receive name=mutex value="True" type=signal> 

Providing each step of the whole process runs smoothly, the entire service call is able 

to complete within the expected time limit. However, if a malfunction occurs or the 

first-choice service is not available, a corresponding exception handling system needs 

to be invoked by the Admin. If no end signal of a service can be produced within its 

lifetime, the Admin reckons that an exception occurs. Therefore, it needs to invoke the 

corresponding exception handling system of this service. Meanwhile, the Admin is 

also obligate to call an alternative service according to the preference list of services 

which is generated during the service analysis period. 

The WSSL handles the execution of service scheduling mainly according to the five 

segments described above. It sets up a standard way to organise services and is able to 

monitor the whole scheduling process. 

3.6.1.3 The Significance of WSSL in Service Scheduling 

The proposed Web Services Scheduling Language aims to build up a set of rules 

specifying the communication between services which need to be invoked for 

composition and the admin. The communication is designed to be based on signal 

transmission, which carries information from both the sender and the receiver. The 

WSSL has, therefore, at least three major features as follows: 

1. Embed the linear structure of service description into service scheduling process; 

2. Indicate the dynamic procedure of service scheduling in terms of service invocation 

and monitoring; 

3. Apply the exception handling session into the scheduling language in order to 

process the composition under abnormal circumstances. 

-73-



The WSSL proposed by us sets up standard in terms of operations on the services 

which need to be scheduled and invoked. It links the dynamic part of scheduling -

service communication with static descriptions and facilitates the interoperations 

between services and admin, the issue which has yet been discussed in relevant 

researches. 

3.6.2 Fashions of Scheduling 

Each atomic service can only respond to a single request and realise one simple 

function. These fundamental services need to be integrated in order to fulfil complex 

tasks. Different ways of allocating services provide different functions and the styles 

of scheduling services play an important role in service composition and flow control. 

3.6.2.1 Sequential 

Services which operate one after another are called sequential services as illustrated in 

Figure 3-9. 

Figure 3-9: Sequential Services 

This fashion indicates the chronological order of services in terms of the time 

sequence of being operated. In this case, each service can only be "active" when its 

predecessor finishes operation. According to scheduling session, previous services 

inform the admin and the admin invokes the following service. Each and every 

service is implemented as on an assembly line. 

3.6.2.2 Parallel 

Some services, however, need to be implemented concurrently rather than 

- 74·-



sequentially in order to perform certain tasks as illustrated in Figure 3-10. 

Figure 3-10: Parallel Services 

3.6.2.3 Critical Points 

Services are scheduled together to be invoked in certain order, either sequentially or 

parallelly and possibly, two services run individually with no relation. The invocation 

of some later-scheduled service may rely on the result of previous ones. Therefore, 

this kind of service has to wait the completion of its predecessors. This dependent 

relationship between services is referred as critical point in service scheduling and is 

illustrated in Figure 3-11. 

(a) Sequential Services (b) Parallel Services 

Figure 3-11: Critical Points 

As sequential services described in figure 3-11(a), service B is the direct follower of A 

-75-



and the invocation of B totally relies on the result provided by A, thus P1 is a critical 

point to A. Service C, which does not follow A directly, depends on the completion of 

B which is the direct following service of A. Therefore, service C indirectly depends 

on A, thus P2 is also a critical point. However, the implementation of service E has 

nothing to do with A. Although E is scheduled after A, P3 is not a critical point. 

Now let us tum to parallel services which are displayed in (b). Because of different 

operation time for each service, it is possible that the finish times may vary. In the 

case that the following service needs the overall output from these concurrent services, 

the admin needs to wait until the completion of the most time-consuming service and 

invoke the following service. For example, the results from both parallel services A 

and B contribute to C. Therefore, C has to wait both of them to finish so as to be 

invoked. The waiting time is the operation of either A or B, depending on which one 

costs more time and obviously, is a P3 critical point to A, and so is Ps. Meanwhile, if a 

later-scheduled service does not need the previous output, it can be invoked ahead of 

the completion of those parallel services. For instance, although the result of service E 

will be merged with the output of C, indirectly from A, to intrigue service F, the 

invocation of E does not depend on A. Therefore, P 6 is not a critical point. 

3.7 Summary 

This chapter has made a deep research in Web Services mainly in three aspects: 

service structure and description, service composition and scheduling. We proposed 

the concept of atomic service and redefined the structure of Web Services based on 

atomic service. The purpose of the redefinition is to facilitate composition and 

scheduling. After that, we introduced the two patterns of service composition and 

illustrated the idea by giving several examples. We also set up a relationship between 

graph and service, using conceptual graph to represent service and composition. Last 

but not least, the scheduling mechanism was put forward. With the aid of scheduling 

model and language, we were able to manage each component in service scheduling. 

-76-



Chapter 4 System Design and Implementation 

Along with the solid evolution of issues such as service description, composition and 

matchmaking, more and more systems which can carry service properties and are 

capable of realising business tasks have been developed in recent years, represented 

by IBM Websphere (BPEL server implementation), OMII (a Web Services 

infrastructure relating client, server and repository) and myGrid (data-supportive 

middleware components). Similar to the two divergences of Web Services, 

service-related systems also consist of variations such as functional end and business 

end. 

4.1 Synoptic Analysis 

4.1.1 Functional End 

From the perspective of fundamental services composable to perform complex tasks, 

the outcome of realising atomic services and composite services at functional level is 

to produce fundamental service modules for business processes to invoke. For 

example, basic classes in the function library are abstract and may need to be bound 

with other classes to form a function or method to correspond to an invocation. The 

aim of composition at functional level is to make machines have the ability of 

selecting the corresponding atomic service or an appropriate one from several similar 

services, for example, selecting a better method from a list of sorting algorithms. The 

procedure of building up from these fundamental services is to integrate distributed 

functions, from abstract classes to task-indicative services. 

4.1.2 Correlations of Atomic Services 

As mentioned in Chapter 3, Atomic Service is the fundamental service unit in the 

service ontology. Its status at the bottom level of the hierarchy means that it serves as 

the basic component of any operation on services. Through the procedure of being 

-77-



composed together, the functions of those atomic services can be imposed on the 

composite service. The topmost composition from the functional end is linked with a 

business requirement at the business end. 

4.1.3 Business End 

The realisation of Web Services focuses on connecting software components or 

applications as middleware, offering search and matchup mechanism to bind 

appropriate services with requirements, and managing the workflow which structures 

and synchronises tasks. More and more companies, such as Google and Amazon, have 

presented interfaces for people to use their services. Service users are abstracted from 

implementation details through these kinds of projects. However, in order to meet 

requestors' demands, service providers have to set up a relationship of business-end 

requirements with those functional-based components to fulfil the task. 

4.1.3.1 Service Catalogue 

In most cases, service providers present an interface which involves catalogues and 

brief description of their services. Service consumers, therefore, need to pick up their 

desired services. 

category 
Detailed descriptions 

service 1 

~ service 2 

I~ 
...... 

service n 

Figure 4-1: Index of Category 

-78-



Figure 4-1 can be illustrated in two different ways. It can be viewed as a skeleton of a 

service category which is displayed to service consumers. Services are classified and 

all of them, together with its sub-services, have detailed descriptions for consumers' 

reference. Moreover, it is also regarded as a brief depiction of a service repository 

stored in business registry. The category on this level, however, is opaque to 

consumers, machine-understandable and is used for searching services. 

4.1.3.2 Business Integration 

Corresponding to business service requirements and based on functional service 

components, business integration is dedicated to integrating pieces of enterprise 

applications and software in business environment. It at least involves data 

information integration, which ensures that distributed information can be coordinated 

successfully, and process integration, which links business processes and applications 

over various platforms. 

One of the construct used in business integration is enterprise service bus which 

provides foundational services for complex architectures. However, it is based on 

standards and is not used to implement SOA, thus not Web Services-based either. 

Among those Web services products developed by vanous companies, IDM 

WebSphere is a typical representative for defining middleware software category. It 

aims to integrate business applications by using open standards such as J2EE, XML, 

and Web Services. It uses a business integrator to specialise in collaborating software 

components for implementing business processes both at the enterprise level. 

4.1.4 Interrelationship between Both Ends 

A service requirement can be met provided the fact that both the functional end and 

business end of the web service framework work coherently. A requirement at the 

business end usually comes expressed in natural language, which needs to be 

-79-



interpreted into machine-recognisable language and thus be implemented at the 

functional end through the composition of atomic services. This process, therefore, 

needs the matchup between service at the business end and the one at the functional 

end, with not only the names of the services should be corresponded, but the functions 

and other additional clauses, such as input and output, need to be satisfied. 

4.2 Dynamic Sessions 

The whole process of executing a task can be viewed as a combination of several 

sessions, during each of which several components of the whole service are dealt with. 

There are three main sessions in executing services and the architecture of the 

sessions is presented by Figure 4-2. 

Normal Session 

Atomic Special Session 

Service Admin 

Exception Handling Session 

--

Figure 4-2: Scheduling Sessions 

According to the figure above, sessions are made up between admin and services. 

Under most circumstances, the normal session is invoked, while special session and 

exception handling session play a part in case of abnormal occasions. 

4.2.1 Normal Session 

In order to monitor the whole execution of each project, there is a so-called "Admin" 

to control the process of workflow as a central agent. The Admin plays an important 

part in initiating services, keeping track of the process of services and also, managing 

exceptions that may occur within the whole procedure. The process is shown in 

- 80-



Figure 4-3. 

1. preparation 

2. ack.nowled e 

5. finish Adlnin 

Figure 4-3: Normal Session 

When a requirement arnves, it will be firstly reported to Admin. When Admin 

receives a requirement, it analyses the description of service which has been 

decomposed and is ready to be invoked. At the very beginning, Admin initiates the 

first service by sending a piece of message. When a service is invoked, first of all, 

according to its description, it needs to be examined whether this service can be 

further decomposed or the service is already a leaf node in the decomposition tree. 

These two situations should be dealt separately simply because a "leaf-node" service 

(or atomic service) can be executed by directly calling the corresponding function or 

method. If the service is not atomic, there is no existing function corresponding to it. 

In this case, the process of decomposing the service is required because it is a service 

consisting of its sub-services. 

When the expected service is ready to execute, it will send an acknowledge signal 

back to the admin to report its status. This means that the messages exchanging 

between the admin and services follows a request/response pattern where the sender 

forwards a question to the receiver and then waits for the answer to the question. 

Meanwhile, the service enters the running mode. The admin, however, after receiving 

the acknowledge signal, needs to start the timing device to keep track of the running 

service. Each atomic service is allocated a running time and is specified in some 
- 81 -



specifications. 

When the ongoing service completes operation, it sends a finish signal to the admin. 

The admin, then, check the service schedule and send the preparation signal to invoke 

the following service. 

4.2.2 Special Session 

Each atomic service runs smoothly under the control of the admin according to the 

normal session. Services are executed either one after another in sequence or at the 

same time for those parallel services. However, it is not always the case. Even a minor 

fault could spoil the process of the whole service. Under this circumstance, the special 

session is activated to deal with these issues. 

Because of the congestion or malfunction in the process of transmitting signals, it is 

possible that either the service cannot receive the preparation signal or the admin 

cannot receive the acknowledge signal. In this case, the admin needs to re-send a 

preparation signal to the service after a period of time, which is determined by 

specific regulations. This mechanism, however, will inevitably increase the load of 

transmission channel but can inspect if the service has some interior problems when 

the channel is free. The service does not need to make response to duplicate signal as 

long as it replies a preparation to the admin. 

Therefore, the service will discard the preparation signal it receives in case that it has 

already sent an acknowledge signal to the admin. Under the circumstance that the 

service is available to send acknowledge signal and the Admin can receive it, the 

normal session will apply similarly as stated above. 

However, if a service fails to make response to the original signal and the duplicated 

one through an unoccupied channel, the admin will then make the assumption that the 

- 82-



service is currently not available and prepare to invoke the alternatives of this service. 

This procedure, as illustrated in Figure 4-4, is the same as the normal session, with the 

only difference of the object service which the preparation signal is sent to. 

Atomic 
Service 

Re-send preparation signal 

Normal Session 

aration to alternative service 

Figure 4-4: Special Session 

Admin 

Let us suppose in the online purchase example bubble sort is initially selected as the 

sorting algorithm, but it catches an error during the session and can neither complete 

the calculation nor return a signal to the admin. The admin, therefore, needs to invoke 

an alternative service to replace bubble sort, for instance, selection sort. In this 

occasion, the alternative algorithm may work well as a substitute, but the performance 

may not a factor of thorough consideration, as the best case running time for selection 

sort is O(n2
), worse than bubble sort's O(n). Subjectively speaking, however, the 

priority of successfully finding an alternative service is higher than comparing the 

performance between them. Therefore, it may reduce the damage caused by 

malfunction of the originally-selected service by invoking a replacement in the special 

sess10n. 

4.2.3 Exception Handling Session 

Once the original-targeted service fails to execute correctly, the optimal way is to find 

an alternative service in the service pool as stated above. But in the occasion of no 

available replacement of the original service, it is most probable that a real exception 

occurs. In this case, exception handling session needs to come into operation. 

- 83-



A service could be regarded as a failure mainly in two ways: no response for sending 

back results or presenting unexpected value. In this section, we will focus on the first 

occasion and the second one, which associates with correctness check mechanism, 

will be discussed later. 

As mentioned above, the special session deals with re-invoking services or calling 

alternative services in case of the original ones fail to make response to any 

commands. 

It could be caused by the following reasons: 

(a) The collapse of service itself; 

(b) Loss of signal in transmission (including invoke signal and acknowledge signal); 

(c) The malfunction occurring at the admin side. 

The third reason, however, is beyond our research field as the exception at the admin 

side has little relationship service scheduling issues. Therefore, we only talk about 

sessions with the admin running regularly as the precondition. 

4.3 Visualisable Service System 

In order to demonstrate the feasibility and operability of composing from atomic 

service and illustrate the scheduling mechanism, we have implemented a display 

system based on hierarchical structure and proposed service description. Its purpose is 

to present how services are selected, composed and scheduled. Figure 4-5 gives the 

general interface of the system. 

- 84-



EJ Available Services 
8 CJ Arithmetical Calculations 

EJ CJ Addition 
S Addition - Real Type 

• Type of Integer 
• Type of Decimal Fraction 

8 CJ Addition - Imaginary Type 
• Type of Pure Imaginary 
• Type of Impure Imaginary 

(t) CJ Subtraction 
(t) Muttiplicalion 

(t) CJ Division 
13 CJ Sort Algorithms 

• Bubble Sort 
• Insertion Sort 
• QuickSort 
• Selection Sort 

13 Units Conversion 
(t) Length 
(t) · Weight 
(t) · Volumn 
(t) Currency 

13 CJ Numerical Values Conversion 
(t) CJ Binary System 

Octal System 
(t) Hexadecimal System 

Cun"'ncy List 

Conversion Result 

Decimal 

Division 

Describe Servk;e Jl Run \1\(orliflovv 

Figure 4-5: GUI of Visualisable Service System 

4.3.1 System Introduction 

After a general requirement has been decomposed further down to the atomic service 

level, appropriate services need to be selected to be composed to fulfil the task. 

Services are originally stored in the service pool, a repository which is categorised 

according to the basic functions of services. As listed on the left panel, atomic 

services can be view in a hierarchical order, which is refined to types of input for an 

atomic service. The search bar above is provided for finding desired services. Once an 

appropriate service is found, it can be selected to be added to the model, which is 

presented on the right-hand side. The description of the selected service can be 

viewed by clicking the button below. 

Both the servtces and objects are intuitively represented in graphics. The servtce 

which has been selected from the left panel appears in a rectangle, while all objects 

- 85 -



are shown in ovals. The symbols at the comer of services mark the decomposability of 

each service, as "A" standing for atomic service (for example, bubble sort in Figure 

4-5) and "N" for non-atomic service (for example, list results in Figure 4-5). 

Non-atomic services can be expanded to atomic services according to description. The 

two circles, S and E, mark the start and end for the whole process. 

The example of sorting the unit prices of some products in different currencies is 

shown above. The procedure starts with converting the currencies to the same one to 

get the unit price of each one. After that, the array of prices is input to a sort method, 

for example, bubble sort. As mentioned above, although bubble sort is an algorithm 

based on swap, but it can be view as atomic service within out research domain. With 

the sorted prices, a service currency conversion is invoked again to change the 

currency back to original. At last, the whole process terminates with by listing the 

final sorted result. 

It can be seen that arrows not only denote the direction of the process, but also 

represent in which way data information is transmitted between services. The 

completed process can be saved as a service module for further use, as it is not 

necessary to reconstruct those atomic services again to realise a same task. 

4.3.2 Features 

At this stage, the system only features the bottom-up convention of service 

composition. This is to say, atomic services can be composed with ignorance of the 

service requirement. However, this does not mean that services can be composed 

arbitrarily. The composition of services needs to follow the matchup and integration 

rules discussed in Chapter 3. For example, if the input amount of a service is not 

satisfied or the type of the output from a previous service does not match the type of 

input of its following service, the system will report a runtime error when operating 

the whole process. 

- 86-



4.3.3 Illustration of Service Composition and Scheduling 

This demonstration gadget is capable of constructing composite service by means of 

selecting appropriate atomic services in the service pool according to the service 

requirement. During the process of such composition, the system can handle different 

types of integration by applying corresponding scheduling algorithms. 

4.3.3.1 Sequence Scheduling 

Atomic services in order to be invoked and operated in a chronological order form a 

service queue. In this queue, each service, except the initial one, can only come into 

action based on result of its ancestor service. The demonstration system is able to 

illustrate the whole set of atomic services by applying queue scheduling method. 

For example, providing there is a service which manages adding a selected item to the 

shopping cart, the system will schedule the procedure presented by Figure 4-6. In 

order to implement this service, appropriate atomic services need to be selected from 

the service pool and then wait to be scheduled. After that, corresponding services can 

be integrated together according to service description and matchup rules, which have 

been discussed in the previous chapter. At last, this service requirement is represented 

as follows: get the product number of the item chosen, find this item in the shopping 

cart and increase the amount, and list the result. All the services are scheduled 

sequentially throughout the whole procedure. 

- 87-



lil · · Available Services 

8 CJ Arfthmelical Calculations 

8 Addftion 

8 Addftion - Real Type 

• Type of Integer 

• Type of Decimal Fraction 

lil • Addftion - Imaginary Type 

• Type of Pure Imaginary 

• Type of Impure Imaginary 

IB Subtraction 

IB Mu~iplication 

IB CJ Division 

El CJ Sort Algorfthms 

• BubbleSort 

• Insertion Sort 

• QuickSort 

• Selection Sort 
8 CJ Unfts Conversion 

ffi CJ Length 

ffi CJ Weight 

Volumn 

ffi Currency 

8 Numerical Values Conversion 

ffi CJ Binary System 

ffi L:J Octal System 

Hexadecimal System 

Get Product 
~--~ ~--~ 

Increue by 

1 

Number 

Get Current 

Quantity 

Ust 
1-----t 

Result 

Number 

Matchup 

Describ; ;~rvice ] [~R~un_w~o~rk"'-flo...:.yv'-' ..J 

Figure 4-6: An Example of Sequence Scheduling 

4.3.3.2 Priority Scheduling 

On the other hands, the execution of a service can be prioritised in terms of service 

flow. For example, a service aims to compare the prices oftwo items, with the price of 

item A in sterling while B in another currency. As seen in Figure 4-7, it takes fewer 

steps to get the unit price of A, as it can be obtained directly from applying the 

division service by using the item price and weight as inputs. However, the execution 

of A needs to halt at this point to wait for the unit price of item B (in foreign currency) 

being changed into sterling. It is because the unit price of B (in sterling) is also one of 

the inputs of the following service and thus becomes critical point in terms of 

scheduling fashions. The execution of the atomic service currency conversion, in the 

shaded rectangle, is prioritised ahead of other services. Therefore, the priority 

scheduling is able to guarantee the parallel services and the whole service flow. 

- 88-



S CJ Available Services 

13 Artthmetical Calculations 

13 · Addttion 

8 Addttion - Real Type 

• Type of Integer 

• Type of Decimal Fraction 

S CJ Addttion - Imaginary Type 

• Type of Pure Imaginary 

• Type of Impure Imaginary 

(fJ LJ Subtraction 

CJ Muttiplication 

CJ Oivision 

S CJ Sort Algortthms 

• Bubble Sort 

• Insertion Sort 

• Quick Sort 

• Selection Sort 

S CJ Untts Conversion 

(fJ CJ Length 

(fJ Weight 

(fJ Volumn 

Currency 

S Numerical Values Conversion 

(fJ CJ Binary System 

CJ Octal System 

(fJ CJ Hexadecimal System 

Figure 4-7: An Example of Priority Scheduling 

4.3.4 Future Improvement 

In future work, the top-down convention of composition issue needs to be added to 

the function. In another word, given a composite service as a service module, the 

system needs to decompose it automatically and recognise every decomposed atomic 

service. The service repository, therefore, needs to be expanded in scale for all time so 

as to cover as many atomic services as possible and does not reject decomposition if a 

certain decomposed atomic service does not appear in it. Moreover, the semantics of 

composition is necessary to be considered. Currently, any services which are able to 

satisfy the composition rules can be combined together without verified by semantics. 

As a result, this may generate some meaningless composite services of no use. 

Therefore, the system should have the ability of applying semantic check in the 

meantime of approving services to be physically composed. 

- 89-



4.4 Summary 

This chapter mainly focuses on the realisation of service composition and scheduling. 

It first analyses the both ends, functional and business, of Web Services and draws the 

service catalogue, which is referred for creating service pool. It then presents three 

main dynamic sessions in the service execution by discussing how services are 

correlated during composition. Based on the service pool and composition mechanism, 

a demonstration system is introduced in order to feature the composition and 

scheduling procedures. By use of scheduling algorithms, the system illustrates how 

services are composed under different circumstances. 

-90-



Chapter 5 Reasoning and Evanuation 

5.1 Theory Basns 

Subjectively speaking, the object of operations like composition and scheduling is 

service. The operations imposed on services make use of the relationship between 

them. Even the relationship between business services can be viewed as the 

integration of multiply relationship among fundamental services. Here we will make a 

deep research on functional services to find out inter-relationship between them and 

how they are collaborated. 

5.1.1 Evidence: An Example on Composing Basic Functions 

Web Services can be divided into components, each of which may have some 

relationship with others. Moreover, even those basic classes within the function 

libraries will interact with others when they are invoked. In order to make a clear 

explanation, we present an example of the public class MouseEvent, which extends 

InputEvent, to show the relationship between classes. The reason for choosing 

MouseEvent class is that several mouse event-related classes will be invoked upon a 

mouse action, which can be viewed as atomic services required in order to perform a 

complex task in the perspective of service composition and scheduling. 

( 1) Description 

Mouse events are fired by a component when the user interacts with the component 

using the mouse. For example, when the cursor enters the component bounds, a 

MOUSE_ ENTERED event, which is one of the Mouse Event Ids Constants of 

MouseEvent, is fired and when the user clicks a mouse button, a MOUSE_PRESSED 

event is fired. 

(2) Listening for Mouse Events 

- 91 -



To listen for mouse events from a component, the listener must implement the 

Mouse-Listener interface. After that, the listen must be registered with the component. 

It becomes registered by calling the component's addMouseListener 0 method, one of 

the Event Listener Methods of the public abstract class Component. 

An alternative and possibly more convenient way of receiving mouse events is to use 

a mouse adapter, with the public abstract class MouseAdapter implementing 

MouseListener. 

Unlike with most events, mouse events are delivered to a component's listeners before 

the operation takes place. This gives the listeners an opportunity to consume the event 

by using consume 0, one of the consume methods of the public abstract class 

lnputEvent. 

(3) Mouse Event Flow 

Figure 5-l shows how mouse events typically flow through the system. First, the 

event is fired by a component peer in response to the user's interacting with the mouse. 

This event is posted on the event queue, implementing by the public class 

EventQueue. When the event makes its way to the front of the queue, it is given to the 

component via its dispatchEvent 0 method, one of the event methods of the public 

abstract class Component. The main purpose of this method is to forward the event 

directly back to the component peer if the mouse event type is not enabled or if there 

are no mouse listeners. Otherwise, dispatchEvent 0 calls processEvent 0, which in 

tum calls different methods depending on the event type. Since this is a mouse event, 

processMouseEvent 0 is called. The main purpose of this method is to notify the 

mouse event listeners. Finally~ if the event has not been consumed, it is forwarded 

back to the originating component peer. 

-92-



System 
Event Queue 

java. util.EventListener 

dispatcrEvent 0 

proceskvent 0 

/process~MotionEvent () 
processMous eEvent () 

Figure 5-l: Mouse Event Flow 

Component 

java. util:EventListener 

( java. lang. Object ) 

A component can override processMouseEvent 0 to process mouse events before they 

are delivered to its listeners. The overridden method should call 

super.processMouseEvent 0 to ensure that events are dispatched to the component's 

listeners. 

From the example above, therefore, we can see that numerous of classes and functions 

need to cooperate together to respond to a mouse event. Input-output pairs and 

semantic bindings guarantee the integration and the relationship among them forms a 

"process net", where transmitting information forms a flow as well. Moreover, we can 

also see that the step-by-step composition of services, from fundamental classes and 

functions up to complex composites. 

-93-



5.1.2 General Relationship between Services 

Figure 5-2 shows the general relationship between services [7]. Service x may have 

relationship with service y and z, and y may also have relationship with z. 

Relationship can be either direct or indirect. So if service y has no direct relationship 

with z, but because both of them interact with x at some stage, there is at least indirect 

relationship between y and z. 

Service x relationshi Service y 

Service z 

Figure 5-2: Basic Interrelationship between Services 

If we use the graph theory to describe this kind of relationship between services, it can 

denoted as g(v, e), where v={Si, i=l, 2, ... , n}, e={(Si, Sj) I Si. Sj E v}, which means 

the vertex of the graph corresponds to a service and the edge representing the 

relationship between them. Because this service, composed from three atomic services 

as illustrated in Figure 5-2, is also a component of the top-most service, the composed 

graph is, thus, a subset of the complete graph, denoting as g(v, e) c G(V, E). However, 

this top-most service is only a fraction of the entire service world which has an 

amount of 2° services, the power set of one single complete service. Any service, 

therefore, is an element of it, as represented by s E 2°. The entire services can thus be 

interpreted in natural languages with the help of adding semantics to their descriptions. 

From this point of view, it is critical and feasible to start composing services 

according to a criterion, which is atomic service in our research work. 

-94-



5.2 Criteria of Atomic Service 

5.2.1 Motivation: Why Atomic? 

As defined in Chapter 3, Atomic Service is a simple and undecomposable service with 

a lifetime of a single request. The proposition of atomic service aims to provide a 

regulation base on which services can be defined and invoked coequally. 

Current composition methods, however, have no clue to select which level of services 

to start the composition process. In fact, those methods are based on the mechanism of 

"one-off requirement-matchable" fashion, which means the composition only 

concentrates on finding a suitable service for this particular session. They do not help 

re-selecting the same service in the future as there is no service module to follow. 

Moreover, they are not able to create a standard composition level as services may be 

selected at random level every time. Therefore, we suggest that services be composed 

from fundamental components, which are atomic services, thus the service modules 

produced through each composition session can be reused in future. 

5.2.2 Standard of Recognition 

Judging whether a service is atomic depends on its characteristics and the current 

environment as well. First of all, it should satisfy the definition of atomic service, 

which is not decomposable with single request. Moreover, the status of a service may 

change due to various environments. For example, relocating a desk during decoration 

can be viewed as an atomic service, as comparing to all the other tasks, it is simple 

enough to be specified as a one-shot action. However, in a cabinetmaker's point of 

view, to manufacture a desk is far more than a simple atomic service as it can be 

decomposed to many steps. 

It is to say, therefore, the status of a service needs to be classified according to the 

environment and requirement level, rather than being judged at first glance. 

- 95-



5.3 Performance and Comparison 

The demonstration system introduced in the previous chapter is based on the 

proposition of the modified service structure aided by the concept of Atomic Service, 

the composition conventions and the scheduling mechanism. Therefore, the 

contribution of the system can be view in three different aspects. 

5.3.1 Service Structure and Description 

Although the widely-used OWL-S is able to use the service profile to describe a 

service and its functionality, it lacks a practical expression in terms of how a set of 

selected fundamental services are put together and executed, in another words, being 

composed and scheduled. However, our service structure based on the introduction of 

atomic service is capable of inducing the scheduled service composition. 

One improvement is to add an agent, which specialises in dealing with the scheduling 

issue, to the structure of atomic service. It is recorded in the service description 

document under decomposition and subsequential service. This is to say, the 

execution sequence of all the fundamental services is defined at the stage of analysing 

and decomposing a topmost service requirement, and it is quite efficient that such 

document analyse only needs to be done once at the very beginning of the whole 

service procedure. Afterwards, the description will be referred as services are 

composed and scheduled. 

5.3.2 Service Composition 

Compared to current Web Services composition approaches such as BPEL and 

OWL-S, the advantages of using the composition method based on atomic service can 

be viewed in the following perspectives. 

(1) Scalability 

-96-



Existing composition methods are not capable of dealing with massive serviCe 

integration when the number of services accumulates to some extent. This is simply 

because the augmentation of XML files which BPEL and OWL-S are based on will 

hamper the composition process [31]. However, the atomic service-based composition 

approach can be illustrated in corresponding graphs and will thus convert the service 

composition into the graph integration issue. This will inevitably enhance the 

scalability of service composition. 

(2) Depth 

The realisation of a requirement relies on the allocation of various resources 

eventually. In this case, atomic service-based composition features a prompt and 

reliable way of collecting necessary resources because of the fundamental status of 

atomic service. The execution of each atomic service is provided by a class or method 

in the lib file, a certain amount of memory usage and CPU time. 

(3) Efficiency 

Unlike other composition approaches, the execution time property in the service 

description facilitates that the running time of each service is monitored. It shortens 

the waiting time of available services by setting up the response mechanism for each 

atomic service. The exception handling mechanism also makes the composition 

process more efficient by invoking alternative services in case of the occurrence of 

any exceptions. Most importantly, as mentioned above, the one-off analyse of the 

service description makes the following service composition more fluently, with the 

major time-consuming part falling on the transmission of response signals and 

execution of each service. 

5.3.3 Service Scheduling 

The performance of the scheduling system, which manages the running sequence and 

time control of services, is yet able to be measured according to any quantitative 

-97-



criterion at this stage. However it can still be evaluated according to the comparison 

between scheduled result and the expected one in certain perspective. 

For example, it can be examined whether the composite service after being scheduled 

is able to meet the original requirement. This is able to be verified by feedback from 

requestors. If it can somehow fulfil the task, the percentage of the achievement is an 

important index, as it can evaluate both the performance of scheduling system and the 

quality of services. This is called composition correctness review and can be viewed 

in Figure 5-3, which gives the comparison among three major service scheduling 

approaches: the proposed atomic service-based scheduling method, middleware-based 

scheduling like OMII and the job scheduler linked with Globus Toolkit 4. 

~ 
Service Composition 

Service Time Consistency ts 
Searching Correctness 

. Catalogue 
Ability 

Cost Check 
Review 

App 

Atomic 
Service 

Service-Based 
Pool 

Strong Average EHS ../ 
Scheduling 

Middleware-Based 
../ Medium High ../ ../ 

Scheduling 

Job Scheduler ../ Strong Low N/A ../ 

Figure 5-3: Comparison on Current Service Scheduling Approaches 

As seen in the figure, all scheduling methods need to be based on a service catalogue 

which enables service selection. Our atomic service-based scheduling uses service 

pool as the catalogue. It has a strong service searching ability as it is based on 

fundamental functional services which are name-searchable and directly executable. It 

is not the quickest scheduling method as the service description needs to be 

thoroughly analysed at the first stage before selected services can be scheduled 

together according to the description. However, the average time cost can be lower 

down with the expansion in the scale of services. Moreover, atomic service-based 

scheduling enables algorithm selection which will produce efficient scheduling under 
-98-



different circumstances. Last but not the least, compared to other approaches, the 

Exception Handling System (EHS) it uses facilitates the check-back on the 

consistency of service and will deal with any exceptions if a selected service cannot 

produce the expected result. 

5.3.4 Equipment Requirements 

This demonstration system does not have high hardware requirements such as lengthy 

CPU time or large memory usage in order to perform the procedures of service 

composition and scheduling at this stage. However, it has currently got a small size of 

base to store the service pool which is only suitable for simple service compositions. 

It needs to be expanded gradually so as to take in more complex service requirements 

and decompose them into storable service components. 

5.4 Summary 

Based on the introduction of atomic service and service scheduling method, along 

with the demonstration system illustrated in the previous chapter, this chapter starts 

with presenting the theoretical grounds for using atomic service as a core part of 

service scheduling and composition. The interrelationship among basic classes 

facilitates the composability of one atomic service with others. After that, the 

evaluation of service composition and scheduling method is presented through the 

comparisons against the current approaches. The conclusion can be drawn that atomic 

service-based composition and scheduling does have certain advantages in terms of 

service scalability and consistency. 

-99-



Chapter 6 Conclusions 

The above all chapters have presented some key issues within current Web Services 

research, particularly emphasised the importance of extending existing service 

description approaches, which serves as the base of interactions like composition and 

scheduling. 

6.1 Overview 

The evolution of Internet technologies in these years makes WWW not only a massive 

carrier of ever-increasing information, but facilitates people to make interactions 

online as well. The Internet thus becomes a medium where all of its users are able to 

share network resources and meet their requirements. On the other hand, it is ideal to 

make machine-to-machine interactions possible and the performance for using 

machines to search for desired service is highly expected. Therefore, a lot of research 

has been carried out in Web Services in order to make every effort to meet 

requirements from service requestors by using current online services, resources and 

technologies. The first chapter of this thesis introduced the background of Web 

Services and the infrastructure of Semantic Web. 

The second chapter went over some major issues within Web Services nowadays. The 

two main issues discussed are service description and composition. Service-Oriented 

Architecture (SOA) provides the three entities of Web Services and defines the 

approaches for communication between each other. Web Ontology Language (OWL), 

which is used to present the meanings of relationship between vocabulary terms, is 

based on description logic and thus disabled to express rules. In case of existence of 

unspecified constraints in making queries in the Semantic Web, the OWL-supported 

knowledge based may not tum out to have proper results. Web Services Description 

Language (WSDL) plays an important part in service publish and service binding for 

service provider and requestor respectively. The lack of semantics in describing 

- 100-



service forces users of WSDL to Improve it with added properties or other 

customisations. 

Moreover, service composition has received lots of interest because of the reusability 

of service modules. Several approaches have been put forward, including BPEL4WS, 

OWL-S and software components etc. There is yet a standardised way to perform 

service composition, leaving all current methods some disadvantages more or less. 

Although the relevant software reuse has not turned out to be a success in recent years, 

service composition is still a promising perspective and business integrations largely 

rely on it. 

Chapter 3 is the core part of this thesis where individual ideas were proposed. First of 

all, we brought forth the concept of Atomic Service, a simple service with a lifetime 

of a single request. Services all around are glued eventually by atomic services and 

can be decomposed step by step till the stage of atomic service. The purpose for 

proposing this concept to provide a criterion on the level of description and 

composition, making all issues centralised at atomic service, which is the fundamental 

component of all software pieces. Then, the architecture of describing services was 

put forward in the wake of the birth of atomic service. Since WSDL fails to indicate 

which service is to be invoked at what stage, the proposed model adds properties like 

decomposability (whether the service being processed is able to be further 

decomposed) and subsequence (indexing the following service in order to make all 

services running in a row). Meanwhile, according to the ontological interrelationship 

between service and graph, the description of services can be correspondingly 

converted to the representation of graph, especially conceptual graph. 

Given the description of atomic services and service structure, the realisation of a 

service at high level can be operated in' two directions: top-down convention and 

bottom-up convention. The first convention aims to setting out from the service 

requirement, through gradual decomposition and refinement to achieve the goal, while 

- 101 -



the second convention does in the opposite way. Starting from atomic services, it 

levels-up by integrating other atomic services to composite services in order to form a 

service module. Appropriate service modules will then be synthesised to meet the 

original requirement. 

One of the key issues remaining in the process of composition is how to combine 

relevant services and how to control the sequence. It is suggested that services can be 

integrated when their interfaces are matchable, not only the type and amount of input 

and output data should be matched, but the semantic level of composition should also 

be reached. On the other hand, a scheduling policy has been carried out with· respect 

to monitoring composition processes. The scheduling model indicates the framework 

of describing scheduling language. The process of composing services refers to the 

three sessions, each of which explains the mechanism of service operations. The Web 

Services Scheduling Language (WSSL), along with two scheduling fashions, can 

cover all possible service composition styles and are able to direct the whole process. 

After addressing the service realisation at both functional side and business level, the 

discussion on system design and the implementation of a demonstration system were 

presented in Chapter 4. It first discusses the three scheduling sessions which deal with 

the dynamic aspects of how atomic service are communicated through composition, 

and then turns the concept of atomic service into practicality, aiming to feature the 

process of service selection and composition according to its description. The 

scheduling model, discussed in Chapter 3, is represented through building up the 

whole composition procedure, along with the entire service flow. 

In order to demonstrate the feasibility of applying composition and scheduling 

methods on atomic service, Chapter 4 put up an investigation on an example from lib 

file and proved that each atomic service more or less has some relationship with other 

services during communication and interaction. It then made a deep research on the 

feasibility of proposing the concept of atomic service and criteria of judging an atomic 
- 102-



service. Finally, it made a qualitative analysis of the performance of scheduling 

system by means of comparing the atomic service-based scheduling with other 

contemporary approaches. 

6.2 Discussion 

This thesis mainly discusses about the following three issues in Web Services: 

description, composition and scheduling. Approaches of describing services have been 

proposed throughout the years by using OWL for ontology and structure, WSDL for 

language, SOAP for message exchange and BPEL4WS (formerly DAML+OIL) for 

business integration etc. However, apart from WSDL and SOAP, there are still lots of 

description methods outside the recommendation of W3C. The deficiencies of 

descriptions themselves and the non-standardisation make it difficult for services to be 

explicitly declared. Therefore, researches on enhancing the ontology and improving 

the service description have been carried out. Nevertheless, SOA is widely accepted to 

be adopted as the fundamental structure of service base, enabling both service 

providers and service requestors to interact with each other with the aid of service 

registry. But the shortage of using current WSDL to describe Web Services lies in the 

fact that no information is specified for operation invocation within the process and 

the consumption of using service is not well-timed according to the vague description. 

W3C has been, therefore, trying to add process information to indicate the above 

problem to the description language in the perspective of choreography. Accordingly, 

the description model we proposed aims to specify this part of property, making it 

clear that services are well-defined in terms of process and added properties can 

facilitate further operations such as composition on services. 

Using the notion of software reuse for reference and aiming the target of business 

integration, how to utilise the combination of existing services to make vast 

performance is under delicate research. One direct thought is to analyse the service 

requirement, extract the key information from the description, decompose it into 

- 103-



simple services and convert them into machine-processable programs. The whole 

procedure involves studying the semantic structure of the requirement as expressions 

in natural language cannot be recognised directly by machines. The decomposition 

action is mainly performed manually as currently there is no suitable decomposer 

capable of parsing the requirements and converting them to machine-understandable 

language. The proposed top-down convention focuses on a decomposition mode 

which is a further step into bringing automation to the pure manual decomposition, as 

the applied conceptual graph theory in representing service description can help 

dealing with service operations. Conceptual graph is based on semantic network and 

is, importantly, both human-readable and computation-tractable [42]. Therefore, the 

decomposability of a service can be performed by machines according to whether a 

corresponding graph can be resolved or not. 

On the contrary, composition issues commencing from fundamental services up to the 

top level have drawn a lot of interest. Several approaches of composition involve 

BPEL4 WS, OWL-S, and software components etc. BPEL is widely used in business 

integrations as companies like IBM, Microsoft, BEA and Oracle all base on it for 

orchestrating end-to-end business processes. By adopting Web Services as its external 

communication mechanism, BPEL uses WSDL for describing incoming and outgoing 

messages, which make important parts in business transactions. On the other end of 

service domain, decomposition focuses on how to weave individual functional 

services together to have complex performances. The basic consisting part is atomic 

service, which is the cornerstone of composition. Attaching operation as a property to 

atomic service makes it explicitly what kind of actions can be imposed on the service 

and the detailed description of parameters indicates that both the value and the type of 

data should be matchable in order to be integrated. After combining all relevant 

services together, the implementation is then scheduled into a workflow following the 

data transmission. The scheduling mechanism, therefore, is proposed in order to form 

a smooth flow and make services seamlessly coupled. 

- 104-



Compared to issues like service description and composition, scheduling has not 

drawn enough attention so far. However, it is credited to the scheduling mechanism to 

solve problems like service selection and arrangement. Scheduling offers canonical 

order for service operation and links up with exception handling process in case of the 

occurrence of unexpected errors. The implementation or individual services are now 

arranged in the order which coincides with the process flow. The operation imposed 

on the description of each service offers a clue of the following step and the 

scheduling system will take the corresponding action according to the description. 

6.3 Criteria for Success 

This thesis has mainly covered these following research issues: 

1. Discussions on current service description, composition and scheduling approaches, 

which have been done in the literature survey, especially in sections 2.2, 2.4 and 2.5; 

2. Proposals of the modified service description structure based on the introduction of 

the concept of Atomic Service have been drawn in section 3.4; 

3. Introduction of the service composition and scheduling issues based on Atomic 

Service which is put forward in section 3.6; 

4. Illustration of the Atomic Service-based scheduling and composition through the 

implementation of a demonstration system in Chapter 4; 

5. Reasoning and evaluations on service structure and approaches of service 

composition and scheduling in Chapter 5. 

6.4 Conclusions and Future Work 

This thesis demonstrates the service description based on the concept of atomic 

service by means of importing the atomic service into composition and scheduling. 

The structure of describing a service refers to OWL-S by specifying relationship with 

composition, indicating the decomposability of the service. Moreover, the proposed 

description highlights the mechanism of scheduling, claiming the state and 

prerequisite which the service should meet in order to be integrated. Meanwhile, it 

- 105-



involves the conditions based on composition rules, which should be followed by 

services to be seamlessly coupled. 

In terms of composition, atomic service-based pattern, which levels the scale of 

service from bottom, stands in contrast to the pattern in which a service requirement is 

decomposed from top level to foundation. Scheduling plays an important part in both 

occasions. It arranges the integration style and order in the bottom-up pattern, while in 

the top-down convention, it shows the direction of how services should be 

decomposed according to the requirement and the distribution of possible 

components. 

Despite numerous researches which have been carried out on Web Services, there are 

still some open problems yet to be discussed and resolved. In functional composition, 

the correctness check remains unsolved. Composite services derived from gluing 

atomic services should be fully matched to the original requirement. Thus, checking 

the identical degree between composite service and requirement becomes critical in 

implementation. Otherwise, in case of unavailability of completely-matchable service, 

the distance between the alternative service and the requirement needs to be 

calculated in evaluating the performance. 

On the other hand, the issue of making decomposition thoroughly automatic is still 

pending to be solved. Some automatic work can be done when applying a 

semantic-based requirement recogniser, but it is only restricted to a well-defined 

requirement which can meet the semantic structure. Any loss in representing a user 

requirement may result in loose couple composition and return unexpected results. 

The next step of our research will focus on expanding service profiles and reasoning 

service operations. The service profile should involve both static descriptions and 

dynamic operations. Some of the already-defined actions in service description like 

decomposition need to be automatically linked up with dynamic operations to be 
- 106-



triggered. Reasoning will cover the examination into the availability of existing 

services and the feasibility of replacing the original-targeted service with its 

alternative. We also hope to import the mechanism based on atomic service into 

business process to facilitate service matchup and use the scheduling language to 

manage business integration. There is still a lot of work to be done to ideally link 

functional services and business services. 

- 107-



References 

[1] Gustavo Alonso, Fabio Casati, Harurni Kuno, Vijay Machiraju, Web Services -

Concepts, Architectures and Applications, Springer-Verlag, 2004. 

[2] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes 

Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana 

Trickovic, Sanjiva Weerawarana, "Business Process Execution Language for Web . 

Services, Version 1.1 ," IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems, May 

2003. 

[3] Daniel Austin, Abbie Barbir, Christopher Ferris, Sharad Garg, "Web Services 

Architecture Requirements," W3C Working Group Note 11 February 2004. 

[ 4] Keith Ballinger, David Ehnebuske, Christopher Ferris, Martin Gudgin, Canyang 

Kevin Liu, Mark Nottingham, Prasad Yendluriet, "WS-1 Basic Profile Version 1.1 ," 

The Web Services-Interoperability Organization (WS-1), 2004. 

[5] Tim Bemers-Lee, "WWW past & future," Royal Society, W3C, 2003. 

[6] Jason Bloomberg, Ronald Schmelzer, Service Orient or Be Doomed!: How Service 

Orientation Will Change Your Business, Wiley, March 10, 2006. 

[7] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, 

Chris Ferris, David Orchard, "Web Services Architecture," W3C Working Group Note 

11 February 2004. 

[8] Jeffrey C. Broberg, "Glossary for the OASIS WebService Interactive Applications 

(WSIAIWSRP)," OASIS, 2002. 

[9] Luis Felipe Cabrera, Christopher Kurt, Don Box, "An Introduction to the Web 

Services Architecture and Its Specifications," Version 2.0, Web Services Technical 

Articles, Microsoft Corporation, October 2004. 

[10] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana, 

"Web Services Description Language (WSDL) 1.1," W3C Note 15 March 2001. 

[11] Moon Jung Chung, Woongsup Kim, Ravi Gopalan, Hong Suk Jung, Hyun Kim, 

"Service Model for Collaborating Distributed Design and Manufacturing," m 

- 108-



Proceedings of the WWW 2004 Workshop on Application Design, Development and 

Implementation Issues in the Semantic Web, New York, NY, 2004. 

[12] Jos de Bruijn, Dieter Fensel, Uwe Keller, Ruben Lara, "Using the Web Services 

Modelling Ontology to enable Semantic eBusiness," Communications of the ACM, 

Vol. 48, Issue 12, pp. 43-47, December 2005. 

[13] Stefan Decker, Sergey Melnik, Frank Van Harmelen, Dieter Fensel, Michel Klein, 

Jeen Broekstra, Michael Erdmann, Ian Horrocks, "The Semantic Web: The Roles of 

XML and RDF," IEEE Internet Computing, Vol. 4, No. 5, pp. 63-74, 

September/October 2000. 

[14] The Gene Ontology Consortium. "Gene ontolgy: Tool for the unification of 

biology," Nature Genetics, 25(1), pp. 25-29, 2000. 

[15] Roman Ginis, K. Mani Chandy, "Service Composition Issues for Distributed 

Business Processes," ICWS, 2003, pp. 27-33. 

[16] The Globus Toolkit, "GT 4.0 Execution Management Glossary," 

http:/ /www.globus.org/toolkit/docs/4.0/executionlwsgram/WS _GRAM_ Glossary.html 

[17] K. Gottschalk, S. Graham, H. Kreger, and J. Snell, "Introduction to Web Services 

Architecture," IBM Systems Journal, Vol. 41, No 2, 2002. 

[ 18] Mingyang Gu, "Conversational Case-Based Reasoning in Software Component 

Reuse," Trondheim, Norway, reported in June 2004. 

[19] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik 

Frystyk Nielsen, "SOAP Version 1.2 Part 1: Messaging Framework," W3C 

Recommendation 24 June 2003. 

[20] Jeff Heflin, Raphael Volz, Jonathan Dale, "Requirements for a Web Ontology 

Language," W3C Working Draft 07 March 2002. 

[21] Jane Hunter, Sharmin Choudhury, "Semi-Automated Digital Preservation System 

based on Semantic Web Services," in Proceedings of the 4th ACMIIEEE-CS joint 

conference on Digital libraries, 2004, pp. 269-278. 

[22] IBM, "Standards and Web Services," 

http://www-128.ibm.com/developerworks/webservices/standards/. 

[23] Charlotte Jenkins, Mike Jackson, Peter Burden, Jon Wallis, "Automatic RDF 
- 109-



Metadata Generation for Resource Discovery," Computer Networks: The 

International Journal of Computer and Telecommunications Networking archive, Vol. 

31, Issue 11-16, pp. 1305-1320, May 1999. 

[24] Takahiro Kawamura, Jacques-Albert De Blasio, Tetsuo Hasegawa, Massimo 

Paolucci, Katia Sycara, "Preliminary Report of Public Experiment of Semantic 

Service Matchmaker with UDDI Business Registry," Lecture Notes in Computer 

Science, pp. 208-224, 2003. 

[25] Michael Klein, Birgitta Konig-Ries, Philipp Obreiter, "Stepwise Refinable 

Service Descriptions: Adapting DAML-S to Staged Service Trading," in Proceedings 

of the First Inti. Conference on Service Oriented Computing, Trento, Italy, 2003, pp. 

178-193. 

[26] Frank Manola, Eric Miller, Brian McBride, "RDF Primer," W3C 

Recommendation 10 February 2004. 

[27] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, 

Sheila Mcllraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, 

Evren Sirin, Naveen Srinivasan, Katia Sycara, "OWL-S: Semantic Markup for Web 

Services," W3C Member Submission 22 November 2004. 

[28] Mkhhail Matskin, Jinghai Rao, "Value-Added Web Services Composition Using 

Automatic Program Synthesis," Lecture Notes in Computer Science, Vol. 2512, 

Revised Papers from the International Workshop on Web Services, £-Business, and 

the Semantic Web, pp. 213-224, 2002. 

[29] E. Michael Maximilien, Munindar P. Singh, "Conceptual Model of Web Services 

Reputation," ACM SIGMOD Record, Vol. 31, Issue 4, pp. 36-41, December 2002. 

[30] Carolyn .McGregor, "A Method to extend BPEL4WS to Enable Business 

Performance Measurement," ICWS, pp. 46-54, 2003. 

[31] Nikola Milanovic, Miroslaw Malek, "Current Solutions for Web Service 

Composition", IEEE Internet Computing, 1089-7801/04,2004. 

[32] Soraya Kouadri Mostefaoui and Beat Hirsbrunner, "Towards a Context-Based 

Service Composition Framework," in Proceedings of the International Conference on 

Web Services, ICWS, Las Vegas, Nevada, 23-26 June 2003 
- 110-



[33] Yefim V. Natis, "Service-Oriented Architecture Scenario," Gartner, AV-19-6751, 

16April2003. 

[34] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, Katia Sycara, 

"Semantic Matching of Web Services Capabilities," in Proceedings of International 

Semantic Web Conference (ISWC), Sardinia, Italy, 2002. 

[35] Paulo F. Pires, Mario R. F. Benevides, and Marta Mattoso, "Building Reliable 

Web Services Compositions," Lecture Notes in Computer Science, Vol. 2593, Revised 

Papers from the NODe 2002 Web and Database-Related Workshops on Web, 

Web-Services, and Database Systems, Springer-Verlag, 2002, pp. 59- 72. 

[36] Marco Pistore, F. Barbon, Piergiorgio Bertoli, D. Shaparau and Paolo Traverso, 

"Planning and Monitoring Web Services Composition," ICAPS'04 Workshop on 

Planning and Scheduling for Web and Grid Services, 2004. 

[37] Chris Preist, "A Conceptual Architecture for Semantic Web Services (Extended 

version)," shorter version HPL-2004-214, International Semantic Web Conference, 

Hiroshima, Japan, 8-11 November 2004 

[38] Will Provost, "UML for Web Services," O'Reilly xml.com, August 05, 2003, 

http://webservices.xml.com/pub/alws/2003/08/05/uml.html. 

[39] Jinhai Rao, Peep Ktingas and Mihhail Matskin, "Application of Linear Logic to 

Web Services Composition," in Proceedings of the 1st International Conference on 

Web Services, Las Vegas, USA, June 2003. 

[40] Douglas C. Schmidt, "Why Software Reuse Has Failed and How to Make It 

Work for You," C++ Report magazine, January 1999. 

[ 41] Wei Song, Ming Zhang, A First Step towards the Semantic Web, Higher 

Education Press, 2004. 

[42] John F. Sowa, Conceptual Graphs, ISO/JTCl/SC 32/WG2 N 000, April2001. 

[43] Biplav Srivastava, Jana Koehler, "Planning with Workflows - An Emerging 

Paradigm for Web Services Composition," ICAPS Workshop on Planning and 

Scheduling for Web and Grid Services, 2004. 

[44] Biplav Srivastava, Jana Koehler, "Web Services Composition- Current Solutions 

and Open Problems," ICAPS Workshop on Planning for Web Services, 2003, pp. 
- 111 -



28-35. 

[45] Michael Stevens, '"Service Oriented' Architectures, Part 1," SSA Research Note 

SPA-401-068, 12 April 1996; '"Service Oriented' Architectures, Part 2," SSA 

Research Note SPA-401-069, 12April1996. 

[ 46] Brian E. Travis, Mae Ozkan, Web Services Implementation Guide Volume 1: 

Getting Started, Architag Press, 2002, p. 276, pp. 283-284. 

[47] UDDI.org, "UDDI Executive White Paper," November 14, 2001. 

[48] W3C, "Web Services Activity," http://www.w3.org/2002/ws/. 

[ 49] Yifei Wang, Hong bing Wang, Xun Xu, "Web Services Scheduling: Binding the 

Cost with the Time," in Proceedings of the First International Conference on 

Semantics, Knowledge, and Grid (SKG 2005), IEEE, 0-7695-2534-2/05, 2006. 

[50] Petia Wohed, Wil M.P. van der Aalst, Marlon Dumas, and Arthur H.M. ter 

Hofstede, "Analysis of Web Services Composition Languages: The Case of 

BPEL4WS," in Proceedings 22nd International Conference on Conceptual Modelling 

(ER), Chicago IL, USA, 2003, pp. 200-215. 

- 112-



Appendix Thesis Glossary 

Atomic Service: a simple and undecomposable service with a lifetime of a single 

request 

Composition: the task of putting together atomic and/or composite services to 

perform complex tasks 

Critical Point: dependent relationship between services 

DAML-S: a semantic markup language to describe service and ontology built on top 

ofDAML+OIL 

Decomposition: the procedure of "dissecting" a service into its sub-services with the 

aim of being easily processed 

OWL-S: OWL-based Web Services Ontology 

RDF: Resource Description Framework, a general method of modeling knowledge 

Registry: a directory that contains information about available services 

Scheduling: the planning of services or operations 

Semantic Web: project of the W3C in which automated methods based on quality 

metadata are envisaged to replace much human searching of the web 

Service Requestor: client of a service element 

Service Provider: an entity that provides services to other entities 

SOA: a service-oriented architecture is a collection of services that communicate with 

each other 

UDDI: a XML-based protocol that provides a distributed directory that enables 

businesses to list themselves on the Internet and discover other services 

Web Services: the programmatic interfaces which make application to application 

communication available 

Workflow: order in which specific work is performed 

WSDL: the language based on XML to describe and locate Web Services and 

specifies the methods which are used to get access to services 

WSSL: a self-developed Web Services Scheduling Language 

- 113-


