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ABSTRACT

A growing need exists for the collection of accurate and up-to-date information on forest growth
rates for management purposes. Recent studies indicate that airborne laser scanning (ALS) offers a
quicker and more cost-effective approach than the traditional methods of forest inventorying and
may have the potential not only to revolutionise forest management but also provide key data
concerning world carbon stocks.

This study aims to assess the potential of ALS to estimate forest growth rates of the temperate Sitka
spruce plantation forests | using canopy height distribution models at Kielder Forest,
Northumberland. ALS data from 2003 and 2006 provides an excellent, unique opportunity to
. contribute to existing work which has so far been limited in focus, looking primarily at individual
tree growth in the less densély stocked, slow-growing, cold climate forests of Scandinavia.

ALS point cloud data from first and last pulse returns are filtered and classified. Ground returns are
used to create digital elevation models (DEM), and first returns used to create digital canopy height
models (DCHM). Key ALS variables are then extracted and summarised. Processed ALS data from
both years are compared to estimate forest growth. The results are compared with ground truth data.
Height correlations are strong and positive. Growth is detected at all plot locations but correlations
with ground truth data are weak and mostly negative. Potential explanations for the lack of
correlation are presented and discussed, including; data misalignment, inherent error within the
ground truth data and the set-up of the LiDAR systems. Further study is necessary to quantify and
‘eliminate systematic and random error within both the LiDAR and ground truth data »before ALS

may be used rbutinely for forest management purposes.
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iii



CONTENTS
UNIVERSITY OF DURHAM

|

1 INTRODUCTION

1

1.1 GENERAL INTRODUCTION ......ccccevtiirrenrereererriesaesessesssssssesnesssssssessseesssnssnans 1
1.2 BACKGROUND .....ccoiciiiietrennesisaeerenassneesesesesssossessessassssessassessanssssssnsossossenses 5
1.2.1 LIDAR ..ottt s smsssssassesssssnssssssesssssssssssssens 5
1.2.2 LiDAR fOr FOTESIIY ....c.couiiirinininiintnnenteenessnrenssesessssssssanssssssssssssssssssess
1.3 AIMS AND OBJECTIVES........ccmieeciinrenrnrenarerisersssesessesassessesessesansessssssessness
2 METHODOLOGY

2.1 STUDY SITE ...cooveererrrerernrereesesssesresssesesssssnens etereresaearssessnastesas e eesaesasnaraens

22  LIDARDATA AND SENSORS .....oomioiriririeeirreresieenenessnsessnsnesesessssasssessesesaes

23  LIDARPROCESSING ....ccceovrurrremeermrnrintesesinseenessssssessessasessssssssssssassessasasassassesaes
23.1 RaW JaSET POINLS ......ccveriiriiiriisiniceirnreseesaesressnsesissass s snsssessnsessnssesssensssases
232 FIETING c.vevirerneerernctitiisi ittt sresetsstssesneesnssbesasassnsssnssnensans

233 Classification 0f LPs .........ccccecvvvercvrerreerennen eseesteraseste e e etetsn et nssnnesassrananisnes
234 Classification of FPs and remaining LPs ...........ccccecvceruieeineienernnennenesseennnes
235 Creation of digital canopy height model............ccccevecininiecinieneeceecnernsrenne
23.6 Extraction of height metrics to a Sm x Sm grid .........c.c.c...c.. ereraeesnestrannens
23.7 Co-registration of datasets..........ccceciieriniericnnnneniennnenicinnessesenseesesssssnenans
2338 Difference IMaging .........c.coceeeeeerererencsercrenessrsnnsensesisesssssssssesssesnscsasesssses
239 Extraction of LIDAR Plot Data...........ccceceeeeneninnencnccincensosenseesensesssaens

24 GROUND TRUTHING .......cocvvmriririnennrsnsisiscrensesisesssensines sttt st s n s resesens

2.5 SUMMARY ...ucririncninensinnseassssssesstosssassessessessotsisssssssesssnesssssessansasssesennes

3 ASSESSMENT OF GROUND TRUTH ERROR.

3.1 AIMSicceestes sttt et et s s bbb a s A b st et bneae

3.2 ASSESSMENT DESIGN......cccocisimirmmrricennesrereeeenssassisssesesseesesssssssessssssssonessaseanes
3.2.1 Instrument Effect.......c.ccoeviimnnninccciiiic it
322 Instrument User Effect ........oviciiiiiiiciciiinccnintccenieeecscsnens
323 Viewing Angle Effect .......ccvvvenerenininieninneeinininieeneeseesnsnesesseesesseseesenes
324 PIOt 3 ettt s et e sr e sts b s e sa s s snesrs s ssssenanens
3.2.5  The 2007 REVISItS.....cocviererererrereereresresesesesessssesesessssessessssessssssssasesesssnssesesses

3.3 RESULTS ... ececenntsettecsessnneeestessssssestesesssesssssasssssssnssnssesssssssesassssassassasans
3.3.1 Instrument ASSESSIMENL .......c.cieviverrenrisiereniisriesnisineesnnessssssnssensessrsasansessasssans
33.2 Plot 3 Data......cccociieiniiiiiiineneeteecsieeetsneesse st et esessassassnsanees
333 The 2007 ReEVISItS.....ccrereeririerrnerneesecresinietnneresnesesssssssssassesssesessesessassasssssns

34 SUMMARY ......ciieititninnicssisressessssstesessassssssssssessssssessassssssesssssesssssnsssessane

4 RESULTS .

4.1 LIDAR .. etccercccesseseeriesestssestesssas s e assesasesesasesessssastsesessessasssanssseersesensane
4.1.1 Digital Elevation MOdELS ...........cceverervrereverneresessesessessesssssssssesssesessessesessesees
4.12 HEIGHt MAPS ..ottt eesseeeersssscsssssanessssessesesnssassssssssossosens
4.1.3 GrOWth Maps........cioineinceeterceesre e s sestst st s se b rene
4.14  Height and Growth at Plot LOCAtIONS............cceereereerreereesssesseesesnsenesesesonne

42  GROUND TRUTHDATAL......cceeieierrinerentrnresssresessssssssesassssssessans

iv



4.3 SUMMARY ....uooviriiviiriininiintineinesesscesissisnsesesssssssesssssessessessssssssnsassssssasasssesassesss IO

5 DATA ANALYSIS 96
5.1  DETECTING FOREST GROWTH USING LIDAR ......ccocecvrvriuereereseureesenessensenne 96
52  COMPARING LIDAR AND GROUND TRUTH ......cccceconurerrerersrcsecnersassose 100
5.2.1 Comparing Height ESHMALES ........cccocvicmmreeceenrncntiniiinennnessnisssiescssnssnsnans 100
522 Comparing Growth EStImates.........c.ccceeveeneenenvenseerinicsinnneneesasssssseeesessiners 107

53  GROUND TRUTH DATA ERROR ......cccocicerrrerireerrienrecrnrasnensesesssessesesseseneons 114
54  INTERACTION BETWEEN LIDAR AND THE FIELD........... rensrsersnrseenesssnees 121
5.4.1 Global Effects.........c.cecremerinininnenirncsininennresnessssscssssonensesssessesssssssasaassesse 121
54.2 Regional Effects..........ceccevrueunnene retreretsesesssase e te et e et tsnasrae e bsra s e s assanes 124
543 LOCal EfECtS ....occeiriereeneeririienuieensessseesenneensantosssesesonsesaessesssssssssesssessanes 128

5.5  SUMMARY ....ooiiirnriniernierieneieeesiescerensesssssssassssssssssssasseessassssstssesesessasssesens 131

6 DISCUSSION 132
6.1 POTENTIAL SOURCES OF ERROR....................... et s aaseaenes 133
6.1.1 POSitiONINgG ACCUTACY ...cccccevtrernrrmrsscssssssssssnesnrssessessessstasesssessnsessssissssssasesaess 133
6.1.2 Ground Truth EImor.......cccocciivmmeneeniinniiernnersessssissesnsnes temreressssisisineesioes 143
6.1.3 System Set-up ......cccceveeevicrnienereneciincsseenseriennees eseessesestssanreanisssisinrenstsssas 146
6.14 SCALE ...ciuiiiiicrcrerre ettt et s s sa et e s s s ns 152

6.2  IMPLICATIONS OF THIS STUDY .....ooeeceeeinirreerirrereseesressesssessesessssaseeisseseenns 154

7 CONCLUSIONS AND FUTURE RECOMMENDATIONS............ 156
7.1 INITIAL AIMS ......ooreirircnertnieseesiesecnsessssesessensanesssssssesinsansanassessessessssessasens 156
7.2 RESULTS ..cooreieteeeeetiresessesessentenssscsesseesesssssssessstessssssasaiossssnsasensssssssanssssssse 156
7.3 POTENTIAL ERROR SOURCES........cccooeceetrireenieivnemrereerensssessessesassasssssssonss 157
74  RECOMMENDATIONS AND FUTURE WORK ...................... rerereseesnennenenn 158
7.5  FINAL CONCLUSIONS ......cccoortnreniecrsteressssssesasassessssssnsisissensirsnsasssssssssssnans 159

8 REFERENCES 4 161



FIGURES

Figure 1.1 LiDAR system including onboard dGPS and ground base station, and inertial

navigation system. (Source: www.gis.gov.ae accessed 15.01.07).....cccccvveerererrnvennice 6
Figure 1.2. Schematic representation of discrete and waveform LiDAR systems................. 7
Figure 2.1 Location map for Kielder FOTest. ...........cccvmvmrimvernrnirnirervcnseniisseeseesesesscsnsaeans 22
Figure 2.2 The study area (IKONOS panchromatic imagery underlies GIS data). ............. 23
Figure 2.3 The Optech ALTM 3033 laser scanner and associated data collection equipmelzlz.
Figure 2.4 Coverage of the LIDAR datasets. ...........ccceveeiveneevuiesersinssesiunssansseesseerases PR 25
Figure 2.5 Creation of a TIN: A = iteration angle, B = distance. ...........ccoceeeveeveereerenrcrennnes 28

Figure 2.6 3D representation of the progressive TIN densification technique. Local
neighbourhood minima are located (green circles) and triangulated. New points
(black circle) are considered for joining to the TIN based on predetermined threshold
iteration angle and distance. (Source: Pfeifer 2007)........cccccveurrurnrereecrenrenenreseosanssennss 29

Figure 2.7 The effects of varying window size on DEM creation. ...........ccoeceeueerervrserenssnenns 32
Figure 2.8 Schematic representation of the purpose of the STATA processing routine...... 35

Figure 2.9 (a) Example of overlaying plot and tree locations on mean height growth LIDAR
data. (b) Highlighted pixels 1 and 2 demonstrate high and low numbers of trees-

important in terms of generating weighted LiDAR plot values. .........ccvvvvrerencnnneee 37
Figure 2.10 Summary of the LiDAR processing chain............c.cccecerueruriencrnsenenecsconensnees 39
Figure 2.11 The location of the 22 ground validation plots.........cccceocevvireriercreneenrecrenesseenanee 4]

Figure 2.12 Plot layouts: (a) the conventional circular 0.02ha plot and (b) the square 0.01ha
22 (0 2RO DT 43

Figure 2.13 Rules of dbh measurement: a) where the tree lies on sloping ground, dbh is
measured on the upslope side of the tree; b) where the tree is leaning, dbh is measured

on the underside Of tree........c.occiviiiirriinineniniierrrre st ssssesssassnnessessnssessanes G4
Figure 2.14 Schematic representation of the five levels of tree dominance. ............cc.evne.e. 46
Figure 3.1 Close up of the new road and trial area. ...........cecceeeeevciniicnniccrsnsinnsnsenensenesiees 48

Figure 3.2 Photograph of the forest and new road, the test site for assessment of ground
truth error. The trees surveyed are situated to the left of the road (Photo: A.Woodget
05.06.07). c.cetemereeeiriniiereeinsestesessssscesestessssessensosesassssssssessstostossasssestossessssessinsrsiasssasss 49

vi



Figure 3.3 The trial area showing how the tree number and dbh was marked in orange.
Field assistant using a tape measure as part of the technique of measuring tree height
with a Suunto clinometer (Photo: A. Woodget 05.06.07). .......ccccoeerrcereneereneeerecnneenas 49

Figure 3.4 The three height measuring devices: (a) Vertex Il Hypsometer, (b) LaserAce
Hypsometer and (¢) Suunto CHNOMELET. ........coccvviiriirieiininenieiniinesnncsesseesssseisens 50

Figure 3.5 The tree height measurement principles of the Vertex IH hypsometer. The
yellow and black circular device represents the transponder. .............coccevereerrerveennne 51

Figure 3.6 The use of the LaserAce Hypsometer. Distances 1 and 2 are determined in order
to measure the height or length (L) of the tree (Source: www.laserace.com). ........... 52

Figure 3.7 The use of the Suunto clinometer for measuring tree height............ccccccereeurnn. 53

Figure 3.8 Cartoon demonstrating the difference between viewing tree tops from the road
(clear line of sight) and from within the forest (sight obstructed by forest foliage)... 55

Figure 3.9 Comparison of Average Instrument Tree Heights from the Road...................... 60
Figure 3.10 Comparison of Average Instrument Tree Heights from the Forest. ................. 61

Figure 3.11 Vertex measurements by tree taken from the road view. Users colour coded by
1eVEl OF EXPETIENCE. ....c.ccinrreneeereerercrasrneretasesstosstsneesnssiasesssessassesssessnsssesssessnsstasssnsssans 63

Figure 3.12 Vertex measurements by tree taken from the forest view. Users colour coded by
level of experience...................... retisatesrenn it esesatass st antesitistsrnessasstssontebtsastesssirstirinne 64

Figure 3.13 Plot 3: 2006 LiDAR and 2007 ground- validation data plotted against felled
REIGHE 2007, .....eiiiiiieieierirrreessereneeseessnessessessaresessrasssissinsssesssasssessasnssintssacssnssasasssnsans 65

Figure 3.14 A stacked column chart showing the percentage of adjustments made to tree
height measurements by type for each planting year (DL and ML refer to double and
MUItiple 16adETS). ....ooouiuriririeeeeciiecnnnncnnsesteseestestenessesee st sessnssassessasseeseases crveeeeones 67

Figure 4.1 The DEM hole issue displayed using 2006 LiDAR data. Image a is a
panchromatic IKONOS image. Image b shows the ground return count. Image c
shows the resultant DEM........coccovvieiniicsinninniiiinsniscncenacseissivssnessnsesssesssnse 70

Figure 4.2 The effects of changing window size on a subsection of the 2006 data. Images A
(DEM 2006) and B (CHM 2006) have been created with a 60m x 60m window size.
Images C (DEM 2006) and D (CHM 2006) have been created using a 200m x 200m
WINAOW SIZE. ....eeiriirininrinieriiireerniseessinseissessssesssssnisesssessaasessessnsssnsesesssesssssssoressassssessass 71

Figure 4.3 DEMs for a) 2003 and b) 2006 (Units are meters). The white areas represent
gaps in the data. Each image is roughly 2km across by 3km high. ............ecceenee.. 72

Figure 4.4 DEM difference image (2006 DEM minus 2003 DEM). The image covers an
area roughly 2km across by 3km high. .......c.ccceeeviinininnicnicieninnnncen e 74

vii



Figure 4.5 Histogram of DEM differences before 2006 DEM adjustment.................cco.u.... 75

Figure 4.6 Scatter graph showing difference between 2006 and 2003 DEM values plotted -
against 2003 DEM ValUes. ...c..c.covviveniviuniniesnnneneniensniasnsessseersossesssssensssessessassnssasssns 75

Figure 4.7 Scatter graph showing 2006 DEM values plotted against 2003 DEM values
before and after adjustment of the 2006 DEM. ...........ccoceoccereccrnireenenesnesesessenssesesens 76

Figure 4.8 Difference betweens 2006 DEM flight lines overlain on the 2006 DEM. (Note:
the values between -0.5 and 0.5 for the differences between the DEM flight lines has
been Set tO trANSPATENL). .....c.ccceveereeerreerercrsereressrierasesssarsssssesessesessssassssseressnsesassasesses 77

Figure 4.9 3D representation of the 2006 DEM (height exaggerated by a factor of 5)
overlain with differences between individual flight lines. See Figure 4.8 for legend.
White patches represent areas of no data..........cccccevveveccrereeseneinenninnesesnsenseessenieranes 78

Figure 4.10 Mean Height 2003 derived from LiDAR data, gridded into Sm x 5m pixels... 79
Figure 4.11 Mean Height 2006 derived from LiDAR data, gridded into 5m x 5m pixels... 80

Figure 4.12 Before (a) and after (b) correction of the offset, difference images for mean
height. Large white patches indicate problem zones due to DEM gaps. Darker areas
exhibiting negative growth are areas of clearfell and windblow. The grayscale bar is
the same for both images. Each image is roughly 2km across by 3km high.............. 82

Figure 4.13 Mean LiDAR height 2003 (x axis) plotted against mean LiDAR height 2006 (y
axis). The red 1in€ repreSents X = Y...oceceriireicrceeseneinniosenessesesserscessesscensessesssassesses 83

Figure 4.14 a) Lorey’s Mean Height data and b) Mean Height data per plot from 2003 and
2006 (non-adjusted data) plotted against Maximum Height data from 2003............. 90

Figure 4.15 Maximum Height 2003 per plot, plotted against Planting Year....................... 92

Figure 4.16 Change in height between 2003 and 2006 for plot LMH and MH values, by
PlantiNg YEAL. ....cocviiiiiceiiintinnniscoriiineesiesisstissesnesaessesssnsessestestsssoresssessesssseressessansasanes 93

Figure 4.17 Height change between 2003 and 2006 for LMH and MH, plotted against
Maximum Plot Height (not adjusted) from 2006. ............ ressseesiessesniassesesnsasronnizanennt 94

- Figure 5.1 Unweighted LiDAR growth plotted against planting year, by plot and age class.
feeeebesEibete bt s et s et et st e e ea s s ae e s b e Se e e et e at e ae pa sn e as e RteReas RS e s et e e ae e e aaraesbanitanes 97

Figure 5.2 Patterns of volume increment in an even-aged stand. CAI = Current annual
increment and MAI = Mean annual inCrement..............ccvicininimnninincnensinscssnseesesinsnees 98

Figure 5.3 Scatter graphs showing the regressions between maximum ground truth heights
and maximum LiDAR heights for a) 2003 and b) 2006..........cccceuvvvvreverversenurserunaas 102

Figure 5.4 Scatter graph showing the relationship between 2003 ground truth height and
maximum LiDAR height, colour coded according to age class. ...........cccceevreviueneees 106

viii



Figure 5.5 Scatter graph showing the regression between maximum ground truth growth
and the 10" percentile growth from the LIDAR data. .......c.ccoocvvvnriinnsivinncsornncnnis 109

Figure 5.6 Scatter graph showing the regression between maximum ground truth growth
and the 10th percentile growth from the LiDAR data, colour coded according to plot
AL ccutierrirrerisiesitisne e ettt st e be s b r e s b e e R san e s s bt st s e sededaseeesbt s anearesesiesnserbtesnens 110

Figure 5.7 Scatter graph showing LiDAR growth variables p10, p90 and max plotted in
order of plot age. The smallest values on the x axis represent the oldest plots and the
highest, the YOUNest. ........ccccervrrceecirreinsinninresnnessisssssuesasaiosne teeeserensaeeereeeeesesanae 111

Figure 5.8 Ground truth height growth plotted against growth in the 10™ percentile LIDAR
data. Data points are colour coded according to the age-class of the tree. ............... 113

Figure 5.9 Box plots by instrument showing difference from true height for each tree in
height order. The middle line of the box represents the mean, the top and bottom of
the box the interquartile range and the top and bottom of the extended lines the
minimum and maximum values. The points represent outliers.............cccccervreenennene. 115

Figure 5.10 Scatter graph showing the relationship between the difference from felled
height observed by all users using the Vertex during the trial, and felled or true
height. Linear fit line added and correlation co-efficient and equation of the line
SROWIL c.ovveeeeeieececciiiiiiieeerrececssstaeeseeaserssnesiaisesssssstusassseenssessssasnebsssssessssasssneasesssssassnanas 118

Figure 6.1 A schematic representation of how error may be introduced during creation of a
canopy height model. The points represent laser hits, (a) the CHM surface and (b) the
ETUE SUITACE. ... viiirreerneriinernistnesinicsntessessasiesseanonssesessensessssessanssnaerarsrnressasssasssassssneranes 141

Figure 6.2 The horizontal displacement of the treetop on a leaning tree. Point (a) represents
the trees location as recorded by the ground truthing and point (b) represents its

location as recorded by the ALS SyStem........cccocevuervercctiirnnscrenenersnsecsnsssessissenns 142
"TABLES
Table 1.1 The development of laser scanner instrument technical specifications. ................ 9
Table 2.1 Technical Specifications of LIDAR Systems.........ccvccecncecerrunininiorencscessessseenenes 25
Table 3.1 Technical specifications of height measuring instruments. ..........ccccceeerveireencrenne 53

Table 3.2 Heights recorded by different instruments as viewed from the road, and felled
REIGRL. ..ottt renes st e e e s saessesiasesessssssnassasesnsnnessnsnnnssessssarsasasssaesaesanes 59

Table 3.3 Heights recorded by different instruments as viewed from the forest, and felled
REIGNL. ..cveerericiirrcsrrcris s sscesei e sinia e astessesessrssanssnsssesessesasssnasnesstssasssassbessessnnss 60

Table 3.4 Statistics for the regression between felled height and Vertex, LaserAce and
Clinometer measured heights of trees studied by the trial........c.cccovevvvneninnnnccncnne 62

iX



Table 3.5 Statistics for ground truth and LiDAR differences from felled heights for plot 3.:

.................................................................................................................................... 65
Table 3.6 Numbers and percentages of trees adjusted under the 2007 revisits, by planting
VEAL. cececveriinirutrererinnsessoraresnnsssassssessatossansessessaesestassssssnsensaserssosassssessssnasssssssissnsensansasasss 67
Table 4.1 LIDAR POt GVETAZES. ......ccovrurrrrerrernrerisrnsssmsssissssssssssessssssssssssassessassssessesassssssns 84

Table 4.2 Mean and standard deviations of growth metrics ordered by plot age class. The
mean is an average of all plot means for any given height metric within a single age
class. The standard deviation is an average of all mean plot standard deviations for
any given height metric within a single age class. The unit for all figures is metres

Table 4.3 Ground validation data from 22 PIOtS. .......cceeecrireneeercerrncserennseresseresssesssensissnseens 88

Table 4.4 Further ground validation plot data, including information concerning yield
classes and yield modelled growth. * = No data available......... eeteetsete e snssnaenasanes 89

Table 5.1 Co-efficients of determination for height correlations between ground truth and
LiDAR derived variables from 2003 and 2006. (LMH = Lorey s Mean Height, MH =
Mean Height, W. = Weighted, UnW = Unweighted, p90 = 90" height percentile, p50
= 5()t height percentile, p10 = 10™ height percentile). .........coo.cevvvrrueersemcerersecsonees 101

Table 5.2 Co-efficients of determination for height correlations between ground truth and
LiDAR derived variables from 2003 and 2006, at the individual tree level............. 106

Table 5.3 Co-efficients of determination for growth correlations between ground truth and
LiDAR derived variables, at plot level. (LMH = Lorey s Mean Height, MH = Mean
Height, W. = Weighted, UnW. = Unweighted, p90 = 9™ height percentile, p50 = 50™
height percentile, p10 = 10™ height PErcentile). ...........o..vevueeueernereseenrssssessssncees 108

Table 5.4 The correlation co-efficients for the regression relationships between ground truth
and LiDAR growth variables using data from each individual tree. ........................ 112

Table 5.5 Average difference from true tree height (height error) with associated standard
deviation and range values, by level of experience using the Vertex III hypsometer.
The unit for all figures is MELIES. .......ccccceevcerierirncrnerinnienirieresnsesessinsensssssesasssarssnsenes 116

Table 5.6 Tree height categories with associated ground truth accuracy, precision and range
measurements (the ‘Data Collector’ category errors only)........coccevvcirnecrecinncnecenenns 118

Table 5.7 Growth correlations at plot and tree level both before and after trial adjustments.
femeeeeResgassasesasentseeNtatshreesihe sy bAoA AR RO SRR SR AR A R e AR AR S0 SRR a0 e S sessnseissitasaans 119

Table 5.8 Correlation co-efficients and associated mean difference and standard deviation
values for tree level height and growth regressions, considering all trees and only
those classified as ‘dominant’. 2003 variables: ground truth height and maximum
LiDAR height. 2006 variables: ground truth height and maximum LiDAR height.
Growth variables: ground truth height growth and maximum LiDAR growth........ 122

X



Table 5.9 The effects of changing ground count on correlation co-efficients for 2003 and
2006 heights and growth. The range of ground hits per pixel was 0-24 for 2004 and 0-

15 for 2006........ sresessestathonsaternere s asatpenesee b b iR SN s b e S gt EbE s R st OS SRS e b e e h R SRS bR RO S 125
Table 5.10 Correlation co-efficients and related information derived from the regression of
height and growth variables, subdivided according to tree age............c.coceeceevnernnnes 127
Table 5.11 Effects on the correlation between ground truth growth and maximum LiDAR
growth caused by exclusion of negative values and exclusion of dead trees. .......... 129
Table 6.1 A comparison of regression results, by year (and flying altitude). .................... 151

xi



1 INTRODUCTION

1.1 GENERAL INTRODUCTION

Airborne laser scanning (ALS) or LiDAR provides significant advantages over more
traditional techniques such as photogrammetry, aerial photography and optical imagery for
surface profiling. There is a larger time window for data capture as LiDAR systems are not
hampered by sun angle, time of day, weather conditions or seasonality. Data are
automatically georeferenced from the moment of acquisition so that lengthy
.geocorrectiona] processes are not necessary. LiDAR systems can also be used sqccessfully
on steep or shadowed slopes (Hollaus et al., 2006). Indeed, LiDAR offers unique potential
for terrain and forest monitoring within inhospitable and inaccessible regions. If this
technique can be tested and honed in less extreme environments then ALS may be able to
provide the essential tools necessary for management and plahn.ing in remote areas.
Furthermore, numerous studies have reported that airborne laser scanning provides a
cheaper, quicker alternative to more established methods of data collection (Nelson et al.,
1988; Hyypp%i et al., 2000; Nasset 2002; Nasset and Qkland 2002; -Popeécu et al., 2002;
Suarez et al., 2005; Watt 2005; Watt and Donoghue 2005). Penetration of low level
vegetation and the opportunity for non-monoscopic three-dimensional analysis are some of
the benefits offered. Indeed, Watt (2005) argues that the accuracy and value of LiDAR data

is undisputable.

To date, the majority of LIDAR data obtained for forestry has been used to estimate canopy
heights and other variables such as biomass and volume. Few studies have attempted to

quantify forest growth and the work of Yu et al, (2004; 2006) suggests this is a




corhplicated taék with tﬁe potential for large éiror. Very f;:w sf_ﬁdies detail their exact
methodéldgy ap_d it seems there is a need to hone and -develop the algorithms used for
LiDAR proc_:essing_ in order to -obtain -5 greater level of maturity (Dubayah et al., 2000).
The maj"ority of current growth studies have looked solely at the siow—growing,' cold
climate forests of S¢andinavia. However, the 2003 and 2006 LiDAR dataééts-availablé for
the Kielder regioﬁ provide an excellent épportunity for extendiﬁgth’e s_tu&y of growth to the
, temberate, faster growiﬁg fores.ts'of' north east ’Englaﬁd. 'Iﬂdeed; the high tree densities,
simple 'silvi’cultura‘i regimes and short forest rotations mai(é British forests particulafl‘y'

suitable for the study of growth over short time p_eriods;

The few studies of forest growfh using ALS jth.at have been pl‘lbl?ished. to date have found

errors associatéd With growth estimation to be large (Yu et al., 2004;). As a result it is.

-highly necgssary that the collection of ground truth data within this project, and further
afield, is as (accuféte a_nd’ pregi‘sen as -pos_siblé..;l.t' is é?idént that much effort has been

channelled ;nto acéurately locating the gréund truth data for precise spatial comparison
| with the LiDAR tfansects; ;(Meéns etal., 1'999; Popescu et al., 20@2; Nesset 2002; Nasset

and Gkland 2002; Donoghue et al., 2004; Watt 2005; Wat and Dpnoghﬁe 2005; Y’ubelt al,
. 2006). Whilstthis is:important and wonhwflile%,'linle attention has been paid to the accuracy
‘an‘d' prec,ision>o_f ‘the: linstruments, and equipment used to collect other forest variable data,
such as height, which is key for growth estimaﬁoni. The Veﬁex hypsometef, Suunto
‘clinomet:ér and heighf poles have bgen used exténsively for:height"measurefnents,_ yet an
exhaustive assessment and comparison of these techniques remains long overdue.
Consequently, it is a specific aim of ﬁis project to perform an evaluation of various height-

measuring instruments as well as to assess the level of error introduced to height



measurements by the user. This will permit a better estimation of forest growth and thereby

allow more reliable conclusions to be drawn.

To date, the widespread use of remote sensing in forestry has been hindered somewhat by
mistrust and misunderstanding amongst foresters (Suarez et al., 2005; Watt 2005). Indeed,
it seems that there remains a gap between research and forestry which needs to be bridged
by proving the value of remote sensing. Limited experience of most forms of remote
sensing, with the exception of aerial photography, compounds an inertia émongst foresters
to acquire new and valuable skills. Yet ALS has the potential to provide accurate and
'repeatable measurements ;)f solid wood quantities an& for predicting' the commércial value
of standing timber stocks (Nasset 2002; Neesset and Okland 2002; Suarez et al., 2005).
Thus, this project aims to build on earlier work undertaken as part of the ForestSAFE
project, with a view to emphasise the value of remote sensing, and particularly ALS, for
forest growth monitoring whilst working alonéside the Forestry Commission at Kielder
Forest. As of yet, no study has looked solely at airborne LiDAR data for Kielder for

_ establishing forest growth rates and it is here that this project endeavours to contribute.

The wider contributions of this research also need consideration. Indeed, LiDAR data can
provide essential information for improving our understanding of the role of forests in the
carbon and nutrients cycles (Henning and Radtke 2006). The need for such an
understanding is becoming ever more acute in an age of severe climate change. LIDAR
data may be used as a non-invasive technique to better our estimations of carbon stocks and
thereby help facilitate the international decision making process concerning carbon policy

and global climate change (Drake et al., 2002; Gobakken and Nasset 2004; Watt 2005; Yu



et al., 2006). Furthermore, for the first time ALS provides the ability to monitor and model
terrain beneath forestry, thereby enabling advanced hydrographic surveillance in tropical
regions prone to landsliding and volcanic activity. Thus, LIDAR may also have a wider role

to play in disaster management and mitigation (Blair et al., 1999).



1.2 BACKGROUND

1.2.1 LiDAR
1.2.1.1 The Theory of Airborne Laser Scanning

LiDAR is an active form of remote sensing capable of providing information in three
dimensions at high spatial resolutions and vertical accuracies. The term ‘LiDAR’ is
synonymous with ‘laser altimetry’ and “airborne laser scanning’ (ALS). All terms refer to a
light detection and ranging system which determines distance using time and the speed of
-~ light (Lim et al. 2003). A pulse of energy is emitted from the sensor, usually of a gregﬁ or
ncar—infrared wavelength, and the time it takes to return is used to quantify the distance to
the reflecting object or surface (Dubayah and Drake 2000). As the scanning system is flown
over an area, a 3D representation of the surface below is assimilated into a laser point
cloud. Onboard GPS and inertial navigation systems (INS) (Fig.1.1) allow the exact
location and orientation of the aircraft to be known so that each point within the cloud can
be accurately positioned (Goodwin et al., 2006; Kraus 2002). The sampling patiem of these
points is largely predetermined by the design of the specific iaser scanner and is highly

dependent on platform altitude, scan angle and pulse repetition rate (Ackermann 1999).









altitudes often incur lower density returns (Goodwin et al., 2006). Furthermore, the range
of scan angles of the LiDAR system also determines the nature of the interaction between
emitted pulse and reﬂectingn surface. Again given Lambertian type reflectance, the intensity
of the returned pulse is directly proportional to the cosine of the incident angle as stated by
Lambert’s Cosine Law. Thus, when the incident angle of emitted radiation is normal to the
reflecting surface the maximum intensity of reflectance is observed. In relating this to
airborne laser scanning, we find that greater scan angles give returns of lower intensity.
Therefore, at the very edges of scan lines where incident angles are greatest there is also
greatest likelihood that very low intensities of reﬂect;mce fall below the preset energy
threshold aﬁd thus are unrecorded. 4Furthermore, greater .scaﬁ angles induce heavier
shadowing leading to gaps in the resulting dataset (Yu et al., 2004). 'As a consequence,
recommended scan angles for discrete return systems should be beldw +10° and certainly

should not exceed +20° (Ackermann 1999; Yu et al., 2004).

1.2.1.2 The Development of LiDAR

Laser scanning is still a fairly'new and emerging active remote sensing technology.
However, it has experienced significant development since its early begiﬁnings in the
1970’5 and 80’s in North America (Table 1.1), where initial research was led by NASA
(Ackermann 1999). In Europe, it was first used in oceanographic applications for
bathymetry mapping and depth sounding, often by defence research agencies (Nilsson
1996, Yu et al, 2004). Initial problems with georeferencing and aircraft movement

distortion hindered the early development of laser scanning systems. However, the advent

inversely proportional to the square of the distance between the source and target surface or object. Hence the
reduction in intensity with distance.



of differential GPS and aircraft inertial navigation systems (INS) has now largely solved
such serious positioning problems. Indeed, the investigations of researchers at the
University of Stuttgart in the early 1990’s demonstrated the potential of laser scanning
systems for high geometric accuracy, especially in the generation of digi;al elevation
models (DEMs) (Ackermann 1999). Today LiDAR data is used frequently to create DEMs
of terrain surfaces with high levels of spatial resolution (10 hits per m”) and vertical
accuracy (15cm) (Lim et al., 2003; Yu et al., 2004). Such DEMs have been used widely
and in a variety of applications ranging from road planning to archaeology (Perreira and
Jansen 1999). Indeed, since its early development LiDAR has migrated into many other
fields, satisfying the neéds of both scientific and. commercial communities; Today, the
airborne laser scanner is an easily obtainable and highly reliable instrument for commercial

surveying (Kraus and Pfeifer 1998).

Characteristics 1993 2007

Laser Pulse Frequency 2 kHz 170 kHz

Max Height A.G.L 1000 m 4500 m

Nature of Returns First or last Multiple returns to full waveform
Point Spacing 4-5m <lm

Table 1.1 The development of laser scanner instrument technical specifications.

(Source: Friess 2007 pers. comm.)

1.2.1.3 The Potential of LiDAR for Forestry

Despite not being initially developed for forest applications, the potential of LIDAR in this
field has become increasingly evident. Indeed, the unique ability of ALS to penetrate
through gaps in foliage to the underlying terrain makes it a breakthrough technology for

estimating forest canopy parameters and generating DEMs in forested regions (Ackermann



1999; Rieger et al., 1999; Dubayah et al., 2000; Hollaué et al., 2006). This is especially
useful for steep and otherwise difficult to access areas, and offers an alternative to
traditional forest inventorying practices. In mountainous areas there is a growing trend for
planting mixed aged stands due to the inherent dangers of clear cutting large areas of same
age forest. The characteristics of mixed age stands are difficult to estimate using traditional
methods so this is where LiDAR offers an advantage (Rieger ef al., 1999). In less extreme
environments too, ALS can supply coverage of large areas much more quickly and cost
effectively than the labour intensive field data collection methods, providing estimates of
canopy height, volume, basal area, stem diameter and biomass (Drake et al., 2002; Lim et

al., 2003).

There remains, however, a lack of experience in the use of LiDAR amongst forest
practitioners. Thus, its great potential goes somewhat overlooked and unexploited
(Dubayah et al., 2000). Furthermore, there is a lack of maturity in the algorithms used to
process laser data (although some recent work has aided progression: Sithole and
Vosselman 2004; Zaksek and Pfeifer 2006; Kobler et al., 2007). This emphasises the need
to demonstrate the potential of ALS for forestry through active experimentation and the
integration of field data with analysis (Dubayah er al, 2000). The following sections
explore how ALS has been used for forest applications to date and then introduce the

specific aims and objectives of the use of ALS for forestry within this project.
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1.2.2 LiDAR for Forestry

1.2.2.1 Initial Findings

Early work by Schreier et al. (1984) looked at terrain profiling in Canada using airborne
laser scanning. They noted that dense vegetation cover introduped an element of noise into
profiles which led them to suggest the use of laser profiling for assessing vegetation
canopies. In the same year, Nelson et al. (1984) used laser altimetry to demonstrate the
detection of changing canopy density conditions. They showed that LiDAR data could be
used to estimate mean tree height to within 60cm of that predicted l;y photogrammetric
| methods. Aldred and Bémer (1985) also démonsﬁated the use of LiDAR fdr measuring
stand heights but estimated a lower accuracy of laser-derived heights within 4.1m of
photogrammetric measures at the 95% confidence level. They also found that laser heights
constantly underestimated those taken by ground-truthing. Further work by Schreier et al.
(1985) reported that the use of laser beams of near-infrared wavelength was advantageous

for accurate tree height measurement.

Following these initial experiments, the work of Nelson ef al. (1988) began a series of
studies using small-footprint LiDAR to assess various forest canopy characteristics. Nelson
et al. (1988) collected data concerning canopy heights over a pine forest in southwest
Georgia, USA. Using this data they were able to predict total tree volume and mean
biomass to within 2.6% and 2.0% of ground-truth values respectively. Like Aldred and
Bonner (1985) however, they too found laser height measurements consistently
underestimated true heights. It was suggested that this was due to the majority of laser

pulses falling on the ‘shoulders’ of the dominant trees rather than their peaks. This has
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since been reported by a number of studies (Nilsson 1996; Nasset 1997; Dubayah et al.,

2000; Neesset 2002; Popescu et al., 2002; Suarez et al., 2005; Yu et al., 2004).

At this early stage in the history of the use of LiDAR for forestry applications, problems
with georeferencing were a major source of error. Nelson et al. (1988) used balloons and
tarpaulins ‘as navigational aids for the pilots and determined the LiDAR transect positions
using clearly identifiable ground features. In his study of forests in Als, Sweden, Nilsson
(1996) placed large white plastic squares on the terrain as ground control points for locating
the LiDAR transects. In addition, up uhtil the year 2000 GPS measurements of these
‘locations v‘vere hampered by selectivé‘ availability (SA)?, meaniﬁg that the total location,al.

error was greater than 35m. This lead Nilsson (1996) to conclude that:

“if airborne laser data could be given both height and planimetric co-ordinates
with high accuracy, single trees or groups of trees could be identified and detailed
terrain models could be generated. This would be of great importance in many
different situations, for example, choosing a forest regeneration method, planning

and constructing forest roads etc.” (Nilsson 1996 p.6)

Over the following few years the development of differential GPS (dGPS) and the
switching off of SA means that it is now possible to locate specific points or trees with sub-

meter accuracy (5-15cm).

? Selective Availability (SA) was the term used for the intentional error introduced by the United States
Department of Defence. Noise was introduced to the signal and satellites given erroneous orbital data in order
to prevent the GPS system being used against the USA by enemy forces. This caused significant reduction in
accuracy of measurements until it was switched off in the year 2000 (Hurn 1993).
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Within the last décade, the work of Nasset in southeast Norway has beén central in testing
~ the ability of small footprint laser scanning for determining tree heights and other canopy
characteristics. Nasset and Bjerknes (2001) derived mean heights for young stands (<6m
tall) in Valer and found that regression analyses accounted for 83% of the variability
between laser- and ground-measured values. Similarly, work with @kland in 2002 over a
boreal nature reserve in @stmarka showed how regressions accounted for 75% of the
variation in mean height values from LiDAR and ground-truthing. Indeed, the correlation
between these variables is high with an R’ of 0.91 (Nesset and @kland 2002). They note
that LiDAR height estimates are of equal if not better accuracy than more typical methods
of forest inventorying,. Many other papers have foﬁnd similarly good correlations between.
small footprint, discrete return LiDAR data and field derived height metrics (Rieger et al.,
1999; St-Onge 1;999; Means et al., 2000; Nasset 2002; Popescu et al., 2002; Donoghue and
Watt 2006). Yet many also note that mean errors frequently fall within the range of 1-2m
(Rieger et al., 1999; St-Onge 1999; Nesset 2002). As a result, Nesset and @kland suggest
that in order to make best use of such data, the ground truth sampling must be accurate,
precise and extensive, as must the post-processing of laser data. Indeed, there is much focus
today on developing superior processing techniques and improving processing software
(Sithole and Vosselman 2004; Zaksek and Pfeifer 2006; Kobler et al., 2007). This has been
driven, in part, by a shift from technology-driven to applications-driven development. Yet it
is also due to a growing trend of multi-temporal surveying aimed at quantifying change
rather than just measuring static forest characteristics. Herein lies the study of forest

growth, and the theme for this project.
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1.2.2.2 LiDAR for Forest Growth

It was Yu et al. (2004) who first studied the use of multi-temporal, small footprint, high
density LIDAR (10 points/m’) surveys for change detection in the forests of Kalkkinen,
Finland, between 1998 and 2000. Tree-to-tree matching algorithms were used in an object-
orientated approach to estimate growth and detect individual harvested trees. A method
based on the algorithm of Ruppert et al., (2000) was used to create a DEM with an
expected accuracy of about 14cm (Ahokas et al.,, 2002). A digital surface model (DSM)
was generated from the highest laser values falling within each 0.5m pixel. The difference

between this DSM and the DEM was then taken as the canopy height model (CHM).

Change detection was next performed using difference imaging, where each pixel value in
the 2000 CHM was subtracted from the equivalent pixel in the 1998 CHM. Areas of high
positive differences were highlighted using a certain threshold value and then subjected to a
segmentation procedure to enable the identification of individual harvested trees. Of a total
of 83 harvested trees identified in ihe field, 61 were successfully detected and these were
mostly the more mature trees at the time of the first laser survey acquisition. For growth
estimation, trees present at the time of both laser acquisitions were delineated for each
CHM using a segmentation procedure as defined in Hyyppé et al., (2001a). Local maxima
filters followed by a watershed based procedure then allowed single tree crowns to be
identified. Growth estimation then required matching of individual trees in both CHMs,
which is where a threshold distance of 0.5m was introduced in Yu ef al.,’s (2004) tree-to-

tree matching algorithm.
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Verification of height and growth estimates was carried out by comparison with field-
measured values. Like many before them, Yu et al. (2004) noted that individual tree height,
and as a result growth, was systematically underestimated, in this case by as much as 67cm. -
This corresponds to about 2-3 years growth in the Norway spruce and Scots pine trees
present in the region of Kalkkinen, and means that errors associated with growth estimation
are actually larger than the estimated growth itself. Yu et al, (2004) found that
discrepancies between the two DEMs were largely responsible for this underestimation.
Following DEM compensation to remove such errors agreement with field data was much
improved- the precision of growth estimates was approximated to Scm at stand level and
10-15cm at plot level. This led to the suggestion th‘at the lack of laser pulses ﬁitting the tree -
tops was an unlikely explanation of LiDAR height underestimation and instead that it may
be caused in part by errors in the DEM. This highlights a serious issue and substantiates the

need for further study of forest growth using airborne laser scanning.

In 2006, Yu et al., produced a follow up paper, again attempting to quantify forest growth
in the Kalkkinen region, using high density LiDAR data from 1998 and 2003. They
introduced a new algorithm for individual tree matching, based on the concept of the
Hausdorff distance technique, which produced growth values of a more acceptable
accuracy. The best correlation between laser- and ground truth-derived growth values was
reported at R = 0.68 for maximum pixel heights. However, correlation for growth variables
remain below those reported elsewhere for height, which are consistently above 0.8 (Rieger
et al., 1999; St-Onge 1999; Naesset and Bjerkhes 2001; Nasset 2002; Neesset and @kland
2002; Popescu et al., 2002; Donoghue and Watt 2006). Yu et al., (2006) anticipate that this

is largely due to errors incurred by the difficulty of measuring mature trees in the field, yet
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it may also result from wind displacement of treetops and the different viewing geometries
of the two surveys. Thus they give two key recommendations; firstly, the same flight plan
should be used for all multi-temporal surveys to eliminate problems associated with
different points of view and; secondly, a priori information concerning expected growth
patterns should be observed when measuring mature trees. Ultimately, the work of Yu et
al., has demonstrated that it is possible to measure individual tree growth using multiple
ALS surveys (Yu et al, 2004; Yu et al., 2005; Yu et al,, 2006). This said, it is also

important to remain aware of the limitations of these current methods.

" Recent pai)ers of Na&sset and Gobakken have taken a slightly different approach to make aﬁ
important contribution to studies of forest growth using ALS. Using laser data collected in
1999 and 2001 over the Véler region of southeast Norway they took a statistical approach
to test whether forest growth could be detected (Gobakken and Nasset 2004; Nesset and
Gobakken 2005). Pulse densities were much lower than those obtained by Yu et al., (2004;
2005; 2006) and thus an object oriented method was unfeasible. It was argued that a lower
density, larger area approach is more viable in terms of economic cdst and processing
demands. A DEM was created for each dataset using last pulse returns only generated into a
TIN®. A height accuracy of 25cm was expected for the TIN model. First retufns were
spatially aligned with the TIN and the height of each point calculated as a difference from
the terrain surface. Various height metrics were next computed for each field plot based on
the heights of all laser points falling within their boundaries. It was found that all metrics
differed significantly between the two years thus confirming the ability of ALS to detect

forest growth. However, on comparison with field derived data it was found that the

* TIN stands for triangulated irregular network and is discussed in more detail in Chapter 4 — Methodology.
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accuracy and precision of laser growth metrics was low. Neesset and Gobakken (2005)
suggest that this may be due to inherent errors within the ground truth data and the well-
known problems associated with the co-registration of multi-temporal same area datasets.
Little attention is paid to the accuracy of ground truth measurements in the wider literature
concerning ALS for forestry and perhaps represents an area for further study. In order that
co-registration is as accurate as possible, Nesset and Gobakken recommend that multi-
temporal data acquisition routines are as robust and as similar as possible. The work of
Waulder et al., (2007) endorses the combination of optical imagery with LiDAR surveys in
order to ameliorate inevitable positioning discrepancies. It also seems that the choice of an
appropriate ground reférence level is key for ,gr§wth estimation. As foundAby Yu et al,
(2004) discrepancies in the DEMs account for large amounts of error. Indeed, St-Onge and
Vepakomma (2004) suggest that use of exactly the samé terrain surface for each year is
imperative if height and growth estimates are to be relied upon. There is also some
discussion that a two year period is not sufficient to detect growth given the noise incurred
by error. Normal forest inventorying practices would not expect to analyse growth over
much less than a five year period (Gobakken and Nasset 2004). Yu et al., (2005) found
correlations between laser and field variables improved significantly for a five year
timescale (R’ = 0.66) as compared to two years (R’ = 0.29). Thus, it is concluded that
further study is necessary to determine how short timescales can be used to provide more

reliable growth estimations.

Having examined much of the existing work concerning the use of ALS for forest height
and growth studies, it is evident that a number of key issues recur frequently and deserve

further note here;
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Only the dominant tree layer is detected by ALS (St—Onge 1999; Nesset and Bjerknes
2001; Popescu et al., 2002; Maltamo et al.,, 2004).

The tops of trees are often missed with the majority of laser pulses falling on the
shoulders of dominant trees. This frequently leads to underestimation of ‘true’ height by
the LiDAR system (Nilsson 1996; Nesset 1997; Dubayah et al., 2000; Neaesset 2002;
Popescu et al., 2002; Suarez et al., 2005; Yu et dl., 2004).

ALS offer-s a real alternative to expensive and time-consuming traditional forest
iﬁventorying practices carried out in the field (Hyyppéd et al, 2000; Nasset 2002;
Neasset and Gkland 2002; Popescu et al., 2002; Watt 2005; Watt and Donoghue 2005).

Inaccu?ate and inipreci'se LiDAR érowth estimates may resulAt, in part, from inaccuracieé
within the reference (ground truth) data (St-Onge 1999; Nasset and Gobakken 2005).

Areés for future development include: improving the accuracy of DEM, multi-temporal
dataéet co-registration and spatial data fusion (Pereira and Janssen 1999; St-Onge .1999;
ALim e\t al., 2003; Romano et al., 2004; Yu et al.,, 2004; Nasset and Gobakken 2005;

Donoghue and Watt 2006; Yu et al., 2006, Wulder et al., 2007).
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1.3 AIMS AND OBJECTIVES

The aim of this research is to investigate the potential of multi-temporal, small footprint,
discrete return LiDAR surveys for estimating growth at plot level, over a three year period,

of coniferous plantation forestry in Northern England.

Key research questions:
1. Can multi-temporal ALS detect forest growth over a three year period?
2. If so, how accurately is this growth predicted?
3. Can this tell us anything about:v
a. the robustness of our LiDAR processing and;
b. the accuracy, precision and reliability of our methods used to test the LIDAR

data?

In answering these questions, this project will attempt to: :

1. Quantify the heights and amount of growth exhibited by Sitka spruce plantations of
different ages between 2003 and 2006 using airborne LiDAR data from Kielder
Forest;

2. Verify these height and growth estimations made by ALS daté using ground based
observations and;

3. Assess the accuracy of ground truth equipment and data.
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In order to address the research questions the project has the following objectives:

1.

Develop a method of summarising and extracting LiDAR height variables from the
laser point cloud data with a view to estimate growth.

Design and execute a suitable method of ground truth data collection.

Design and execute a trial-based assessment of the error associated with ground
truth data collection.

Compare LiDAR and ground-truth derived metrics at a specified scale, considering
associated errors, to estimate tree growth at Kielder.

Identify and investigate potential sources of error in height and growth estimation.

20



2 METHODOLOGY

2.1 STUDY SITE

The 6km” research area studied here is located within the wider district of Kielder Forest,
located in Northumberland, England (Fig.2.1). It is owned and managed by the UK
Forestry Commission and is the largest forest in the UK covering approximately 62,000
hectares. Kielder is a plantation forest comprised primarily of Sitka spruce trees .(Picea
sitchensis (Bong;) Carr.). It lies at a mean altitude of 270m and has a mean slope angle of
6°. It was established in 1926 by the Commission principally for timber production. Today
the forest plays an important role m the tourism industry of Northern England andr

continues to produce a commercial crop of up to 1300 tonnes of timber daily

iclder.org accessed 18.10.06). Annual British timber production is set to rise from
11 to 15 million m*/ha by the year 2020 (Watt 2005) and as a consequence, efficient forest
management is paramount. Precise, accurate, up-to-date information concerning forest
resources is a growing necessity, particularly considering the short forest rotations and fast
growth rates of trees at Kielder. This is where remote sensing, and more specifically

LiDAR, may be of value for both local and national forest management.
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2.3 LIDAR PROCESSING

2.3.1 Raw laser points

Both sets of LIDAR point cloud data were provided in ASCII format, having been corrected
for geometric distortions by the data providers. The 2003 data was delivered in two files
- which had been separated into first and last returns, each containing four columns of data:
easting (x), northing (y), elevation (z) and inteﬁsity (i). Each file was then halved so that it
contained around 7,000,000 points, to improve the manageability of the data. The 2006 data
was provided in separate time-of-flight order swaths. Each swath was represented by one
file conﬁining all data from botﬂ returns in eight distinct ;:olumns. These swaths ea.ch
contained approximately 9,000,000 points but were small enough to process individually so
that further file splitting was unnecessary. In order to estimate canopy heights and growth
rates it is first necessary to create a Digital Elevation Model (DEM) of the ground surface

and a Digital Surface Model (DSM) of the vegetation canopy.

2.3.2 Filtering

For each dataset, all points were loaded into the LiDAR processing package TerraScan
(www terrasolid.fi). This is a dedicated software program for filtering and classification of |
laser points, as well as digital surface generation. The process functions embedded within
TerraScan are highly automated yet also allow the user to define point classes, to modify
classification parameters and to delete erroneous returns. It also provides a good platform

for point cloud interpolation and consequent digital surface visualisation.
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Filtering of the returns is the first step in the creation of a DEM or DSM. The main aim of
filtering is to remove erroneous returns which do not represent the true ground or canopy
surface. Viewing the point clouds in TerraScan from individual flight strips and smaller
files allowed obviously erroneous returns to be identified and removed. Such points fall
above or below the main cloud and thus are easily isolated. These errors may be caused by
recording inaccuracies in the Time Measurement Unit (TMU) or due to pessible multiple
paths followed by some of the return pulses. This occurs when the laser pulse is reflected
between a number of surfaces before it is returned to the sensor. This causes a time delay,
which then means an inaccurate range dis@ce is calculated (Hurn 1993; Watt 2005). Thus
it is highly importaﬁt that such returns are 1-'emoved from the datasef before further

processing is implemented.

2.3.3 Classification of LPs

Following the filtering, it is next necessary to classify points into the categories of ‘ground’
or ‘canopy’ to then create the DEMs and DSMs. Ground classification was undertaken first
using local neighbourhood filters based on a predetermined set of discontinuity thresholds
to create the DEMs. Last returns only were used in this process. Thefe has been some
suggestion that a combination of first and last returns is helpful for DEM creation (Zaksek
and Pfeifer 2006), however this has been foﬁnd in areas of very dense canopy and steep |
terrain, where the FPs help to identify a terrain gradient and thus aid in terrain modeiling.
This approach assumes that the gradient of vegetation cover and the underlying ground are
parallel which of course may not always be true. Furthermore, such an approach is most

helpful when employing a slope based filtering technique. Given that a TIN densification

27



algorithm is used here and that the study area is relatively flat, the decision was made to use

last returns only. This also helps to reduce processing speeds.

Certain software packages are already equipped with algorithms for filtering and are able to
perform DEM generations almost instantaneously. Here, the progressive TIN® densification
algorithm developed by Axelsson (2000) and embedded within the TerraScan software was
employed. This is an iterative algorithm which éombines filtering and thresholding. It
works by passing a moving window of user defined size (defaulted at 60m x 60m) over the
data to select neighbourﬁood minima. A number of explicit assumptions are made at this
stage in»the processing. Firstly, it ié assumed that the lowest rétums within the dataset do‘in
fact represent the ground surface and secondly; that there is at least one laser return per

window.

Figure 2.5 Creation of a TIN: A = iteration angle, B = distance.

Following the selection of local minima, further points are added to the TIN with each
iteration of the algorithm, provided that they conform to predetermined iteration angle and

distance thresholds (Fig.2.5). These thresholds set the largest racceptable angle between

* A ‘Triangulated Irregular Network’ or TIN is a network of triangles formed between the data points,
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the density of the canopy in these areas that no ground hits were found within the 60m x
60m window. If the ground height cannot be determined then there is no reference point
from which to estimate tree height and growth, which also gives errors in the canopy
mbdel. Figure 2.7 demonstrates this problem. Scenario 1 represents the use of a smaller
window size. Here, sufficient ground returns in window A in box (i) allows creation of the
DEM successfully, as displayed in box (ii). However, the lack of ground hits in window B

(box 1) causes a hole in the resultant DEM in box (ii).

As a result, the window size was adjusted to 200m x 200m in an attempt to help the
algoritlﬁn interpolate over these. problem areas. This is l;epresented by the increaéed
window size in scenario 2 of Figure 2.7. This allows the DEM from window A to be
successfully generated again. Furthermore, the wider window now covers ground hits at the
edges of window B. As a result, the DEM can also be created for this area. In this respect,
the change was successful and the gaps were eliminated. However, the extended width of
the search window also allowed points to be falsely classified as ‘ground’. This is evident
in Figure 4.2¢ in Chapter 4 where the structure and location of the stands has become
evident on the DEM. This results from LPs which actually fall on low vegetaﬁon or in the
canopy being classified as ‘ground’. This may also introduce problems elsewhere in the
DEM leading to an overestimation of the terrain surface. This highlights a well known
problem of producing high accuracy DEMs in heﬁvil»y wooded areas where the amount of
penetration to the ground is low (Kraus and Pfeifer 1998; Zaksek and Pfeifer 2006; Hyyppé
et al., 2005; Hollaus et al., 2006). Indeed, a number of studies have found percentages of
last returns that reach the ground to be as low as 25% (Flood and Gutelius 1997§ Kraus and

‘Pfeifer 1998; Popescu et al., 2002).
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As a consequence of such problems, Watt’s (2005) recommended window size of 100m x
100m was tested. This helped to reduce the DEM gap problem somewhat yet also did not
compromise the quality of the rest of the DEM. Thus it was carried forward and used with
an iteration angle of 8° and an iteration distance of 0.5m. Such parameters consider the
compromise of window size and make allowances for the mean slope angle of 6° in this
region. Some DEM gaps did remain however. Others have used Delaunay triangulation and
linear interpolation to remove such problem areas (Yu et al., 2006), yet interpolation to
cover missing pixels was not performed here. Such gaps help identify areas of very dense
canopy where the ALS systems run into difﬁc;llties. This highlights the ;:urrent limits of
ALS and helps to define a problem which deserves further research. Furthermore, it was
found that none of the key ground truth validation plots fell within these problem areas,
therefore leaving the gaps caused no further problems for assessing the relationship

between LiDAR and ground truth derived variables.
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2.3.4 Classification of FPs and remaining LPs

Following the filtering of erroneous points and classification of the ground surface, the next
step is to classify points as ‘canopy’. This was achieved by selecting all remaining hits,
whether first or last returns, which fell between 2m and 45m above the ground surface.
These are then assumed to represent the tree canopy layer. Those hits with a height of less
than 2m above the ground were excluded to eliminate the effects of small shrubs and other
low lying material. This is a commonly used approach, used to help improve the quality of
canopy height metric estimations (Nasset 1997; Neesset and Bjerknes 2001; Neesset and
@kland 2002; Yu et .al., 2004). The upper limit of 45m was set using a priori information
concerning maximum tree heights feached within this geogréphical area. The classified
laser point clouds were re-checked visually after canopy classification to ensure that no

misclassifications had occurred.

2.3.5 Creation of digital canopy height model

At this stage in the processing, the canopy points still hold an elevation value above the
OSGB 1936 Newlyn Datum. Consequently, the next necessary step for height and growth
estimation is to give these points a height above the ground surface. This was achieved in
TerraScan by setting the ground surface model to act as a geoid to which canopy points
could then Be adjusted. This has exactly the same effect as subtracting the heights of
canopy points from the DEM. Thus canopy points were given a height above the ground,

and the points within the DEM were set at Om.
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2.3.6 Extraction of height metrics to a Sm x Sm grid

The following step involved exporting all ground and canopy points out of TerraScan in
ASCII format. Each point exported was characterised by x (easting), y (northing), z (height
above ground), i (intensity) and c (class) values. At this stage, the point data remained
separated into smaller files (2003 data) and time-of-flight swaths (2006 data). Each of these
files was then imported into the statistical software package STATA and processed

separately.

The choice of an appropriate grid resolution was key at this stage in the processing. The
resolution of the laser data determines the lowef limit of grid size which éan sensibly be
used. For example, for a pulse density of 1 hit per m” a grid size of more than Im x 1m is
necessary so as to prevent bias in the output. Furthermore, if the grid size becomes too large
then spatial subtleties within the data are lost. A compromise was reached with a Sm X Sm
grid resolution. This allowed height and growth to'be assessed fairly at both the plot and

stand level.

It is possible to process canopy height and ground data in TerraScan, however this software
only allows the output of a single height measure at one time. Conversely, the use of a
specially developed routine in STATA permitted a much wider variety of height metrics to
be computed. These included mean, maximum, a number of height percentiles,'standard
deviation, covariance and number of hits per square. Each one of these metrics was
computed for all laser hits falling within every 5Sm x 5m square of the entire area of

coverage (Fig.2.8). The output data was then exported as an ASCII file.
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the moment of acquisition. However, investigations with the Kielder datasets found the
2006 data to be offset by about Sm in a northerly direction. This was determined by
highlighting clearly identifiable features on both images and measuring the shift in their
location. Careful assessment indicated that the same, seemingly systematic shift was true
for all different metric files. When difference imaging was performed, the offset incurfed
edge effects. Given the simple linear nature of the shift between datasets, the process of
correction was fairly straightforward. All 2006 files were exported into the image
processing software package ‘ERDAS Imagine’. This program enabled the 2006 datasets to
be moved south by 5m, so that on re-importation into ArcMap they were aligned properly
with tﬁe 2003 data and the edge éffects were removed (Fig.4.-l 2b). The reason for this éhift
remains unclear and time constraints prevented reprocessing the initial raw point clouds by

the data providers.

2.3.8 Difference Imaging

Having computed a variety of height metrics and adjusted files for geo-registration issues,
the next step for extraction of growth values is to perform difference imaging. This simply
involves the spatial subtraction of 2006 data from 2003 data in ArcMap, for any given
metric. Taking the resulting image as a whole allows visual assessment of growth for the
entire study area. For example, Figure 4.12b shows the spatial subtraction for mean height

following geospatial adjustments.
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It was anticipated that this may provide an average plot value which better represented the
distribution of trees within the plot and thus would correlate better when regressed against
height and growth measures obtained in the field. This method is summarised by Equation

1 where t represents the number of trees within the plot and p the pixel value.
h, = Z,%‘ ' Equation 1

The second averaging method took the unweighted mean of all pixels falling within the plot
area. Pixel values were considéred in the calculation of mean plot height or grdwth
regardless of whether the entire pixel fell within the plot boundary or not. In this case, the
LiDAR values of pixels 1 and 2 in Figure 2.9 would be considered with equal weight. Plot
averages obtained by both these approaches were also inputted into STATA for comparison

with groeund truth data.

A summary of the LiDAR processing methodology is displayed in Figure 2.10.
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Raw laser points

Filtering of erroneously high and low points

Last returns classified as ground by preset ground classification
parameters using the embedded TIN densification algorithm
(Axelsson 2000)

_ |

Remaining last and first returns lying more than 2m above the
ground are classified as canopy hits

Ground surface (DEM) is subtracted from canopy surface (DSM)
to give canopy hits a height above ground level (DCHM)

— .

Various height metrics extracted from point clouds to a Sm grid

Co-registration of multi-temporal datasets

|
Difference imaging to obtain growth data

Extraction of plot and tree-wise LiDAR data: weighted and
unweighted variables computed at plot level

LiDAR height and growth variables regressed against ground
truth data

Figure 2.10 Summary of the LiDAR processing chain.
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24 GROUND TRUTHING

The collection of ground truth data is an imperative part of any LiDAR based investigation.
When forest mensuration data can be collected and matched accurately to the exact location
of each individual tree it can provide a check on the quality of the laser data. Within the
literature, many different approaches have been taken to collecting biophysical validation

data. Within them all lies a common thread; the strive for accuracy and precision.

A sub-compartment database, supplied by the Forestry Commission, provided data
concerning stand ages, species types and yield classes’. These data were used in
combination with previously acquired forest survey data at known plot and tree locations in
Kielder Forest (Watt 2005). Such reference plots are used routinely to sample of trees

believed to be representative of the forest structure in any one given forest stand.

The Forestry Commission recommends that in order to be truly representative of forest
structure, plot sizes should not be less than 0.01lha. For safety reasons slobe angles should
not be too great and plots should be easily acceSsible from forest roads. Furthermore, plots
should be spread over a range of different sub-compartments in order that they fully sample

the range of age classes and site conditions within the forest.

The ForestSAFE project established and recorded biophysical data for a total of 60 ground
reference plots within the 6km’ study area at Kielder in 2003. These data were used to

validate the 2003 LiDAR dataset and set the standard recording procedure for collection of

* The yield class for any given stand provides a measure of the expected productivity of that stand, given
consistent age and species type. Yield classes are derived from empirical models and range from 6 (lowest
expected productivity) to 14 (higher expected productivity) for the plots at Kielder-assessed here.
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The thajority of the 22 ground validation plots were 0.02ha in size and followed the
conventional circular layout (Fig 2.12a). The plot centre was located with a wooden stake
and its location surveyed using a Leicab 300 series dGPS. The plot boundary was then
determined as 7.98m from this qentral stake using a Vertex hypsometer as a digital distance
measuring device. A couple of plots were set oﬁt not as circles but as squares covering
0.01ha (Fig 2.12b). Here each plot corner was marked with a wooden stake and surveyed
using the Leica 300 series dGPS. These plots were Apreviously established by Watt (2005)
as part of larger 0.16ha équares intended for comparison with the coarser spatial resolution
of Landsat data (Watt 2005). Obviously such large plot sizes were not needed here given
the finer resolution of LiDAR data. However, given the existence of ground reference data
for these square plots from 2003 and 2006 it seemed appropriate to exploit these plots for

their height and growth measurements.

All trees which fell within plet boundaries were numbered and marked using plastic clips
(for younger trees) or by spraying the trunk with orange paint. The position of each tree |
was also determined using dGPS. When view of the sky was too heavily obstructed by
dense canopies to enable a signal to be obtained, the principles of trigonometry and -
Pythagoras’s theorem were employed using a compass and bearing to locate the tree in
relation to the centre of the plot. The positional accuracy of plot centres is expected to be +
0.05m given a clear view of the sky. However, for trees loca-ted using trigonometric

measures, a locational accuracy of £+ 0.70m is anticipated.
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Figure 2.12 Plot layouts: (2) the conventional circular 0:02ha plot and.(b) the square 0.01ha plot.

For each plot, a set of biophysical measurements were made and recorded in 2003 (by the
ForestSAFE projeét), 2006 (by a team from Durham University)’ and in 2007 (by this
study). This included the height, diameter, basal area and level of dominance of every tree

within the plot boundary.

Under standard forest invenforying procedures only a sample‘of the entire plot is measured
for height however here it was considered necessary that each tree should be surveyed and
positioned for comparison with the LiDAR data. All trees tailer than _1 .37m were measured
using a Vertex III hypsometer (Haglof, Sweden) and those smaller than 1.37m with a tape
measure. For those measurements taken under this study special attention was paid to

locating the top of very tall trees in dense canopies.

Diameter at breast height® (dbh) was also recorded for each tree, using a diameter tape.
Measurements were rounded to the nearest half centimetre. Standard practise in measuring

dbh dictates that where the ground is sloping, the 1.37m should be measured from the up-

¢ Diameter at breast height or dbh is-the girth of the tree at 1.37m above the ground.
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Tree dominance was also recorded for each tree during ground truthing. This uses a
classification scheme developed to categorise trees based on their proximity to the
surrounding trees, their crown size and crown light exposure (Bechtold 2003). In this case,
five key classes were used as detailed below (Watt 2005). These classes have been

represented as a cartoon in Figure 2.14.

A. Dominant: Tree crown sits above height of other tree crowns so that it is exposed to
light from above and from the side. |

B. Co-Dominant: Tree crown sits at the level of thé main canopy, receiving the
majority of light from above

C. Sub-Dominant: Tree crown extends into the main canopy, but tree is shorter than
dominant and co-dominant trees, receiving very little light from above.

D. Suppressed: Tree crown sits well below height of main canopy therefore‘receiving
no direct light from above or the side.

E. Dead: Tree crown is not live.

Finally, the position of each tree and all its associated data were coded in GIS format. This

was necessary for the extraction of LiDAR data at the location of each tree.
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3 ASSESSMENT OF GROUND TRUTH ERROR

31 AIMS

To date, the reported errors associated with estimating forest growth from LiDAR data have
been large (Yu et al., 2004; Yu et al., 2006). Yet the source of this error (LiDAR or ground
truth) cannot be determined with any certainty. As a result, much effort has been channelled
into developing superior processing techniques and into co-registering the LiDAR and
ground truth data as accurately as possible (Means et al., 1999; Pfeifer et al., 1999; Popescu
et al., 2002; Naesset 2002; Naesset and legnd 2002; Donoghue et al.f 2004; Sithole and
Vosselman 2004; Zaksek and Pfeifer 2006; Hyyppi et. al., 2005; Watt 2005; Watt and
Donoghue 2005; Hollaus et al., 2006; Yu et a_l., 2006; Kobler et al., 2007; Pfeifer 2007
pers. comm.). Very few studies have attempted to quantify precision or bias in ground-
based observation. A study by Barron (2001) compared a number of tree height measuring
instruments and. found the Vertex III to produce precise and unbiased results. However, this
study is one of very few and so further assessment remains long overdue. Indeed, St-Onge
(1999) acknowledges that in many studies of ALS for tree height estimation, the ‘true’
height of the trees remains unknown and that “the accuracy of the laser-predicted heights

is evaluated from error ridden ground truth data” (p.5).

This chapter details the design, implementation and results of an evaluation of a range of
height measuring devices undertaken within this project. It is anticipated that this
assessment will allow an estimation of the errors associated with ground truthing thereby

enabling better estimates of forest growth to be obtained.
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3.2.2 Instrument User Effect

The second part of this study aimed to assess what variability can be expected within
ground truth measurements due to different users. To achieve this, each person from a total
of nine, was asked to survey the height of each of the 15 trees using each of the height
measuring devices. The users had varying levels of experience with the devices and of

working in forest conditions. They ranged from the totally inexperienced to regular users.

3.2.3 Viewing Angle Effect

The final part of the trial aimed to assess whéther an increased afnount 6f error in ground
truth measurements could be observed due to viewing angle. The set-up of the study site
was well suited to investigate this. Each user was asked to make two height measurements
of each tree; one from the new road and one from within the forest itself (Fig. 3.8). The lihe
of sight to the top of the tree was much clearer from the road edge thus allowing a straight
forward assessment of instrument and user error. However, those measurements taken from
within the forest better simulated n,ormal‘ ground truth plot conditions. As a result, this

allowed an assessment of error incurred under normal, operational constraints.
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3.2.5 The 2007 Revisits

Of the 22 plots visited for ground validation purposes in 2003 and 2006, 11 were revisited
in 2007. The ground truth data from 2003 and 2006 was taken into the field in 2007. All
trees were resurveyed for height using the Vertex and diaméter using the diameter tape. The
purpose of these revisits was to investigate any tree growth values which seemed dubious
from the previous datasets as a means of assessing the accuracy and precision of the ground

truth data.

Trees exhibiting anomalous growth were carefully assessed duﬁng re-measurement, any
peculiérities noted and a dataset éf adjusted measurements was created. Peculiaritieé
included broken off stems, tree tops that were very hard to see, species other than Sitka and
double and multiple leaders. For example, a tree was recorded as being 14m in 2003, then
11m in 2006 and then 14.2m in 2007. In this scenario it seems obvious that an error was
made in the 2006 measurement and thus the new dataset is corrected to display 14.2m for
2006. Despite the fact that a 2007 measurement has been used for 2006 and thus the value
is not entirely accurate, it provides a better estimate of the true tree height than the previous
measure. In another scenario, when reassessed in 2007 the tree recorded at 14m in 2003 and
then 11m in 2006 is‘f;)und to have a broken stem and is thus again recorded at 11m. In this
case, what first seemed a strange negative growth value is logically explained by the tree’s
condition. Therefore the 2006 value is left at 11m in the new dataset. In a third scenario, a
different tree is found to be 17m in 2003 and 21m in 2006. A 4m growth in three years is
highly unlikely and thus the tree is resurveyed in 2007 and is found to be 19m. This too
seems unusually high so again the tree is surveyed. This time the height is recorded és 22m.

The conclusion of this scenario is that the top of the tree is very difficult to identify and
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thus measure accurately. This detail is noted and the 2006 measure is left at 21m in the new

database.

So for the 11 plots revisited in 2007, two ground truth height datasets are available; first,
those values recorded in 2003 and 2006 and second, an adjusted set of values reflecting the
findings of the 2007 revisits. Only the first of these datasets is used extensively in
comparison with the LiDAR data inr the fo‘liowing chapters as it provides full coverage of
the 22 ground validation plots. The results of the secénd dataset are presented in Chapter
3.3 in order make some conclusions concerning the accuracy and pfecision of ground

validation data collected routinely for forest inventorying purposes.
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33 RESULTS

This subsection presents the results from the investigations into the accufacy and precision
of ground truth data collection. Firstly it looks at data collected during the instrument trial
near the new forest road. Then it presents the results from felled plot number 3 and finally it

looks at the outcome of the revisits to the 11 plots during spring 2007.

3.3.1 Instrument Assessment

This section presents the data collected during the trial study near the new road section at
‘Kielder Forest. For' comparing the different | instruments, an average -tree height was
calculated from the 9 different user measurements for each viewing angle. The average
values taken from the road are displayed in Table 3.2 and compared graphically in Figure
3.9. The average values taken from the forest are displayed in Table 3.3 and compared
graphically in Figure 3.10. From this point onwards, the term ‘height error’ or h, will be

used to describe the mean difference between the measured tree height and the felled tree

height.
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Tree Fel.led Vertex Clinometer LaserAce
Number Height
1 22.80 212 21.6 22.1
2 11.13 12.1 12.6 9.6
3 21.02 19.6 21.2 15.7
4 2148 214 20.6 17.6
5 21.78 21.6 214 16.2
6 17.43 174 16.9 16.6
7 20.70 204 20.3 194
8 19.45 19.3 19.0 16.2
9 17.70 17.4 16.7 158
10 17.58 17.1 17.3 16.8
11 18.52 18.5 18.3 16.0
12 14.15 13.6 : 154 11.2
13 1543 15.1 154 12.2
14 17.66 17.5 17.8 16.2
15 17.50 16.7 16.6 16.8

Table 3.2 Heights recorded by different instruments as viewed from the road, and felled height.

It can be seen in Figure 3.9 (road viewing angle) that the Vertex and Clinometer
measurements sit closer to the x = y line than the LaserAce does, indicating a better
measure of felled height. The height errors for the Vertex and Clinometer are as great as
about 1.5m, however moét of the data points sit within +1m of the x = y line. In contrast to
this, the LaserAce consistently underestimates the true height of the trees, with heiéht error
in the range of -0.7 to -5.5m. There appears to be a trend amongst all the instruments to
underestimate true height. Indeed, only a small number of data point sit above the x =y

line. These observations are reflected in the statistics presented in Table 3.4.
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. Mean Standard
Viewing Angle | Instrument R’ Equation difference Deviation
Vertex 0.971 y=0.89x + 1.70 ) 04 1.0
Road LaserAce 0.745 y=0.85x +0.32 24 1.3
Clinometer 0.959 y = 0.82x + 3.00 -0.2 1.2
Vertex 0.967 y=0.90x + 1.72 0.2 14
Forest LaserAce 0.551 y = 0.40x +2.72 82 2.0
Clinometer 0.906 y=090x+1.99 0.0 1.7

Table 3.4 Statistics for the regression between felled height and Vertex, LaserAce and Clinometer measured
heights of trees studied by the trial.

Figure 3.11 takes the Vertex measurements from the road viewing angle and compares the

reSults from the nine different users. The users were separated into three categories

depending on their level of experience with the equipment. All experienced users were able

to measure tree heights using the Vertex to within 2m of the true height, with most results

falling within 1m of the true height. This is indicated by the red triangles which sit close to

the x = y line. Users with some experience, shown by the blue squares in Figure 3.11, also

mostly managed to measure tree height to within 2m of the true height, with one anomaly.

The scatter of points for inexperienced users is greater, with differences from the true tree

heights being as great as -5.1m. However, the majority of all measurements fell within

1.5m of true height, regardless of level of experience.
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difficulty of measuring taller trees in the field, reflecting the findings of the trial study. For
the LiIDAR data, this may be a result of the nature of summarising the data into Sm by 5m
pixels. Two horizontal lines of data can be clearly observed, reflecting the values of the
pixels that fall within the plot boundary. This suggesfs that this approach may not be a very
fair way of comparing the LiDAR with the ground truth and felled height data. The latter
two datasets are available at the scale of the individual tree yet the LibAR data has been
summarised into coarser scale pixels. The data might be better compared if the LiDAR data
was processed to the single tree level or if data from more plots were available so that plbt
averages could then b¢ computed and compared. It was not within the scope of this project
to delineate singie trees and the constmiﬁts of working within aﬁ operational forest

environment meant that felled height data could not be obtained for other plots.

3.3.3 The 2007 Revisits

This section presents the data from the 2007 revisits, where 11 of the 22 ground validation
plots were resurveyed and checked for errors. The 11 plots contained a total of 536 trees, of
which the heights of only 44 trees were considered to need adjustment for the new dataset.
Of these 44 trees, 10 adjustments were made due to obscured tree top effects and 15 due the
inaccuracies caused by the presence of double or multiple leaders. The remaining trees
were adjusted simply due to recording or measuring inaccuracies in the previous datasets (it

is impossible to distinguish which).

Figure 3.14 displays the data organised by type of recording inaccuracy and planting year.

The bars represent the percentage of trees planted in a given year which were adjusted due
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The greatest number of adjustments were made to those trees planted in 1944 (Table »3.6-
fourth column from left) and the least of those planted in 1995. However, when looked at as
percentages of the total tree count, the greatest percentage of adjustments were made to
trees planted in 1982 and the least to those planted in 1995. There does not appear to be a
trend of percent of adjustments made with planting year. Although, the percentage of trees
adjusted due to obscured tops does seem to decrease with planting year. However there is
no trend obsérved for adjustments made due to double or multiple leaders or other

inaccuracies.

Many of the trees revisited in 2007 had obscured tops or were double or multiple leaders
and yet their heights did not need adjusting. Given this, as well as the fairly low
percentages displayed in Figure 3.14 it is concluded that the 2007 revisits indicate few

problems with the ground truth data, or at least that any measuring issues are consistent.

34 SUMMARY

This chapter has detailed the approach to the assessment of ground truth error and has
presented the resulting data. This included data from plot 3 and the 2007 revisits. These

results are analysed and discussed further in Chapters 5 and 6.
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4 RESULTS

This chapter presents results from the LiDAR processing and ground truthing.
Interpretation and analysis of the results are presented in Chapter 5 and drawn together in

the discussion presented in Chapter 6.

4.1 LiDAR

Within this subsection results are presented from the LiDAR processing. This includes the
DEMs and associated issues, height and growth maps and the LiDAR data extracted at the

ground validation plot locations.

4.1.1 Digital Elevation Models

4.1.1.1 The DEM Gaps

The ground classification procedure used to create the DEMs from the laser point cloud
initially tested a window size of 60m x 60m and an iteration distance of 1.4m. The resultant
DEM from these parameters is shown in Figure 4.1c. Figure 4.1a is a panchromatic
IKONOS image to give context to this small subset of the data. Figure 4.1b presents the
count of ground returns for the same area. The black areas on the DEM (Fig.4.1c) indicate
areas of no data and occur as a result of a lack of ground returns. This then also causes a

gap in the canopy height map for this area, as displayed in Figure 4.2a and 4.2b.
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4.1.1.3 Comparison of DEMs

A subtle difference in tone is visible between the two DEMs in Figure 4.3. Spatial
subtraction of the 2003 DEM from the 2006 DEM allowed further assessment of their
similarity, as shown by Figure 4.4. The separate 2003 horizontal and 2006 vertical flight
lines have become evident on this image. The differences between the two DEMs range
from 1.14m to 16.00m. It would be expected that the two DEMs should be very similar,
however, this range of difference values suggests otherwise. The histogram for this image
(Fig.4.5) gives a mean difference of 7.17m. Given that the standard deviation for this mean
difference is only 0.6m it is suggested that this mean difference represents a systematic
offset of 7.17m. Consequently 7.17m was subtracted from all 2006 DEM values to shift the

histogram to a mean difference of 0.00m.

This 7.17m offset is also evident in Figure 4.7 where the differences between the DEMs
have been plotted against 2003 DEM values. Furthermore, the differences between the
DEMs seem to have a greater spread at lower 2003 DEM elevations (Fig 4.6). Figure 4.7
shows the before and after adjustment scatter graphs for 2006 DEM values plotted against

2003 DEM values.
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- 413 Growth Maps

Difference imaging allowed the creation of growth maps from the canopy height data.
Before correction of the position of the 2006 imagery, the offset between the datasets
caused edge effects on the resulting growth map (Fig.4.12a). These were removed by
realigning the datasets to give the growth map displayed in Figure 4.12b. The white patches
on this image indicate those problem areas from the 2006 DEMs which were left in to
illustrate the problems caused by areas of dense canopy. The dark areas have exhibited
negative growth over the three year period and correspond to areas of clear-fell and

windblow.

Figure 4.13 shows the 2003 canopy heights data plotted against 2006 canopy height data
(each point represents one pixel). It is evident that most points rhave experienced positive
change. However, a significant number of points fall below the red line, indicating negative
change. When investigated where these pixels fell on the image they included those areas
which have been clear-felled, subject to windblow and some along forest planting
boundaries. Whilst negative change is to be expected in areas of felling and windblow, it is
not so expected along stand boundaries. This suggests that some minor edge effects remain

and that the offset has not quite been completely corrected.
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little difference when compared to the unweighted measure of average LiDAR height at

plot locations.

Weighted LiDAR Heights (m)

Unweighted LiDAR Heights (m)

Plot ID g::t
2 49
3 29
4 32
5 69
10 41
12 31
13 34
15. 34
16 24
28 244
29 58
30 45
52 34
53 45
54 48
55 37
59 75
60 48
61 49
62 61
63 72
64 65

2003

9.33
12.97
12.66
19.86
5.74
2.00
2.00
2.00
2.00
113
0.93
0.87
13.91
13.20
4.73
4.62
2.49
2.66
224
12.38
14.89
13.87

2006

12.55
15.52
15.05
21.88
7.84
2.82
2.83
2.83
292
222
2.60
2.56
16.50
15.68
8.48
6.44
293
3.36
2.67
14.14
16.87
15.55

Growth

3.22
2.55
2.39
2.02
2.10
0.82
083
0.83
0.92
1.09
1.67
1.69
2.59
248
375
1.82
0.44
0.70
0.43
1.76
1.98
1.68

2003

9.29
12.97
12.66
19.44
5.16
2.00
2.00
2.00
2.00
1.13
0.93
0.89
13.94
13.22
4.73
4.62
1.89
2.00
1.88
12.39
14.86
13.88

2006

12.50
15.52
15.05
21.88
7.84
2.83
2.83
283
291
2.23
2.60
2.57
16.60
15.70
6.61
6.44
2.93
3.36
2,67
14.15
16.87
15.58

Growth

3.22
2.55
2.40
2.44
2.67
0.83
0.83
0.83
0.91
1.10
1.67
1.68
2.66
2.48
1.89
1.82
1.04
1.36
0.78
1.75
2.01
1.70

Table 4.1 LiDAR plot averages.

The data contained in Table 4.2, subdivided according to age class, show the means and

standard deviations of some key LiDAR height growth metrics. The following age classes

were used:

e Mature: planted in or before 1970.

e Middle-Aged: planted between 1971 and 1989.
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¢ Young: planted in 1990 or after.

Unweighted averages were first calculated for each metric of every plot. Then the age-class
average was computed for each metric using the average plot values for all plots falling
within that age class. Similarly, the standard deviation of all values for each metric per plot

was calculated and then an age-class average computed for each metric.

Mature Middle-Aged Young
Growth Metric Mean St. Dev. Mean St. Dev. Mean St. Dev.
mean’ 2.10 . 0.65 23 0.48 094 - 0.54
max 0.86 091 1.28 0.65 1.21 0.77
plo 1.91 0.95 2.53 0.86 0.38 0.54
p50 1.90 0.58 2.20 0.58 0.73 0.59
p90 1.54 0.79 2.50 0.70 1.49 0.73

Table 4.2 Mean and standard deviations of growth metrics ordered by plot age class. The mean is.an average
of all plot means for any given height metric within a single age class. The standard deviation is an
average of all mean plot standard deviations for any given height metric within a single age class. The
unit for all figures is metres.(m).

It is evident that middle-aged plots always exhibit the greatest amount of growth fn all the
metrics considered here. This growth is as great as 2.53m for the 10" height percentile and
as small as 1.28m for maximum height growth. The young plots always show the least
amount of growth, except for the maximum height metric for which the mature plots have
experienced least growth. For the young plots this growth ranges from as little as 0.38m for
the 10™ percentile to 1.21m for the maximum height metric. For the mature plots, growth

ranges from 0.86m for maximum height growth to 2.10m for mean height growth.

The mature plots always exhibit the greatest standard deviation of these growth measures,

with the exception of the 50™ height growth percentile for which the standard deviation for
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the young plots is greater by 0.01m. The lowest standard deviations are mostly observed for
the middle-aged plots, however it is lowest for young plots for the 10™ percentile and joint
lowest between middle-aged and mature for the 50" height growth percentile. The precision
and accuracy of these results are discussed in Chapters 5 and 6, alongside the ground truth

data which is presented in the next section of this Chapter.
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42 GROUND TRUTH DATA

This section presents the plot based ground validation data in Tables 4.3 and 4.4 and
Figures 4.14 to 4.17. This data is compared with the plot based results from the LIDAR

processing in Chapter 5.

87



Lorey's Mean Height (m) Unweighted Mean Height Maximum Height Minimum Height
Stems .
POt | e per Plaotine 2003 2006 Growth 2003 2006 Growth 2003 2006 Growth 2003 2006 Growth
ectare
2 49 2450 1982 14.03  13.77 -0.26 13.10  12.80 -0.30 16.50  16.00 -0.50  7.80 7.60 -0.20
3 29 1450 1975 1643 1792 1.49 1540 16.60 1.20 18.50  19.80 1.30 5.90 5.10 -0.80
4 32 1600 1975 16.17 17.33 1.16 14.70 15.60 0.90 17.90 19.90 2.00 5.70 6.10 0.40
5 71 3550 1955 20.59 20.12 -0.47 16.04 15.63 041 25.90 26.40 0.50 4.00 4.10 0.10
10 43 2150 1987 941 10.31 0.91 7.70 8.54 0.84 13.70 11.6 -2.10 2.70 3.00 0.30
12 33 1650 1994 3.34 5.19 1.85 291 4.57 1.65 4.10 740 3.30 0.70 1.30 0.60
13 36 1800 1994 3.23 4.71 1.48 2.86 4.31 145 4.20 6.00 1.80 0.90 1.80 0.90
15 36 1800 1994 341 4,78 1.37 2.82. 4.16 1.35 4.50 6.50 2.00 0.50 1.40 0.90
16 26 1300 1994, 344 5.61 2.17 3.16 5.13 1.97 4.00 7.30 3.30 1.50 2.60 1.10
28 4246 12300 1994 0.00 3.19 3.19 1.81 2.19 0.39 4.60 5.50 0.90 0.40 0.50 0.10
29 58 2900 1995 - 0.00 4.58 4.58 2.80 4.00 1.20 5.00 6.30 1.30 0.60 1.40 0.80
30 45 2250 1995 0.00 4.81 4.81 2.70 4.30 1.60 4.00 6.20 2.20 1.00 2.00 1.00
52 34 1700 1956 18.66 1835 -0.31 1488  14.53 -0.35 23.80  25.60 1.80 5.20 3.80 -1.40
53 45 2250 1956 1564  15.89 0.25 13.07 1321 " 0.14 19.80  20.60 0.80 3.50 3.40 -0.10
54 48 2400 1983 760" 7.98 0.38 5.40 5.80 0.40 9.20 9.80 0.60 0.50 0.50 0.00
55 37 1850 1983 8.03 8.31 0.28 7.10 7.30 0.20 10.70 12.30 1.60 0.90 0.60 -0.30
59 77 3850 1992 0.00 5.31 5.31 3.51 4.18 0.67 6.00 7.70 1.70 0.80 0.33 -0.47
60 50 2500 1992 0.00 6.79 6.79 4.16 5.35 1.18 6.60 9.20 2.60 0.35 0.50 0.15
61 51 2550 1992 0.00 548 548 3.25 422 0.97 5.90 6.90 1.00 0.50 0.40 -0.10
62 61 3050 1944 1523  15.11 -0.12 1220 12.10 -0.10 1940 20.70 1.30 2.70 0.70 -2.00
63 72 3600 1944 16.41 16.29 -0.12 1330 13.00 -0.30 20.70  20.60 -0.10 3.00 2.30 -0.70
64 65 3250 1944 16.01 15.73 -0.27 14.50 14.20 -0.30 19.30 0.30 6.30 6.10 -0.20

19.60

Note: Lorey’s Mean Height and Unweighted Mean Height are plot averages.

Table 4.3 Ground validation data from 22 plots.
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Yield Model Expected
Values
Percent
Plantin of Tree  Yield '
Plot ID Yearg Dominant Spacing Class £ 2003 2006 Growth
Trees

2 1982 67.3 2.0 12 7.8 9.5 1.7
3 1975 44.8 2.0 14 13.0 14.7 1.7
4 1975 62.5 2.0 14 130 147 1.7
5 1955 29.6 1.7 14 22.5 23.6 1.1
10 1987 62.8 20 12 5.0 7.3 23
12 1994 78.1 2.0 14 3.0 4.0 1.0
13 1994 83.3 2.0 14 3.0 4.0 1.0
15 1994 * 2.0 14 30 . 40 1.0
16 1994 * 2.0 14 3.0 4.0 1.0
28 1994 285 20 - 14 3.0 4.0 1.0
29 1995 70.7 2.0 12 2.0 3.0 1.0
30 1995 822 2.0 12 2.0 3.0 1.0
52 1956 44.1 1.7 10 17.8 18.8 1.0
53 1956 28.9 1.7 10 17.8 18.8 1.0
54 1983 583 2.0 12 73 8.9 1.6
55 1983 75.7 2.0 12 7.3 8.9 1.6
59 1992 27.0 2.0 12 - 3.0 4.5 1.5
60 1992 64.0 20 12 3.0 4.5 1.5
61 1992 60.8 * * * * *
62 1944 37.7 1.7 6 15.6 16.5 0.9
63 1944 29.2 1.7 6 15.6 16.5 0.9
64 1944 40.0 1.7 6 15.6 16.5 0.9

Table 4.4 Further ground validation plot data, including information conceming yield classes and yield modelled growth. * = No data available.






Figures 4.14a and b use the data dispiayed in Table 4.3 to investigate the relationship of
maximum plot heights from 2003 with Lorey’s Mean Heights and Mean Heights from the
two years. In Figure 4.14a the majority of LMH 2006 data points fall above the equivalent
values for 2003, thereby indicating average plot growth. The only exceptions are a few
plots which lie in the area of 17-20m of maximum height 2003. The magnitude of the
difference between equivalent 2003 and 2006 values gives a measure of growth per plot.
Sometimes this is large, as shown by the plot sitting at approximately 7m maximum height
for 2003 (Fig 4.14a). Conversely, some plots show little difference between 2003 and 2006
LMH, as shown by those plots sitting around the 20m maximum height 2003 mark. Both
the 2003 and i006 LMH data are strongiy correlated with maximuﬁ heights from 2003,

producing co-efficients of 0.94 and 0.96 respectively.

The 2003 and 2006 mean heights, as displayed in Figure 4.14b show a similar pattern to
LMHs. They too show a strong correlation to maximum height 2003 with co-efficients of
0.95 for 2003 and 0.91 for 2006. Again, the majority of 2006 data points fall above those
for 2003 indicating average plot growth. The few exceptions, like for LMH, occur only for
those plots which had a maximum height greater than 20m in 2003. The differences
between the 2003 and 2006 data points are more consistent for mean height than they are
more LMH. This is due to the cluster of 2003 data points sitting at less than 81;1 maximum
height (2003) for which the mean height avefage is significantly greater than the equivalent
LMH measures for the same plots. This is clearly shown in Figure 4.16 where the mean
height data points all sit below 2m, whereas the LMH data points stretch up to and above

6m.
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Figure 4.15 indicates hqw maximum height varies with plot age. It is possible to apply a
linear fit to this data with a resulting correlation co-efficient of 0.8. However, it is also
possibly to identify more of a curve. The data seems to show a decline in maximum height
between those stands planted in the mid-1950s and the mid-1940s, however it is likely that
this is a function of fewer sampling of older plots and/or the lower yield class of the older.

plots.
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Figure 4.15 Maximum Height 2003 per plot, plotted against Planting Year.
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Having explored the nature of the ground truth data collected in 2003 -and 2006, this data
will be analySed in line with the aims and research questions of this study in Chapter 5:

Data Analysis.

43 SUMMARY

This section has presented results in the form of data tables, graphs and images. Firstly,
from the -LiDAR processing, including the presentation and comparison of DEMs, height
maps and growth maps. Secondly, from the ground validation including data collected in
2003 and 2006 and plot based averages. ’fhe data from this section .will next be subject to

analysis in Chapter 5 and further interpretation and discussion in Chapter 6.
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5 DATA ANALYSIS

This chapter aims to provide a bridge between the results and discussion chapters. In doing
so, the data presented in Chapters 3 and 4 will be analysed and interpreted in four key
sections. Firstly, the detection of growth using LIDAR will be looked into. Secondly, the
LiDAR height and growth estimates will be compared with that obtained by ground
truthing at both the plot and individual tree level. Following this, the ground truth error
assessment data will be studied with a view to anticipating its effects on the relationship
between LiDAR and ground t,l;lIth growth. Lastly, a number of interactions between the
LiDAR system and the field will be addressed with a specific aim to assess the impact these
interactions may have on the relationship betwéen LiDAR and ground truth data at different
spatial scales. Chapter 6 will then bring together these elements to discuss the estimation of

forest growth at Kielder using airborne LiDAR.

5.1 DETECTING FOREST GROWTH USING LiDAR

The first research question of this project asked whether forest growth could be detected at
Kielder using airborne laser data collected three years apart. The results presented in
Chapter 4.1 and in Figure 5.1 suggest that growth has been detected at the locations of all
22 validation plots. Furthermore, the growth map (Fig:4.12b) demonstrates how areas of
positive stand level growth and of negative growth in the form of clear-felling and

windblow can be detected.
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reducing precision. They also feature a tighter range of yield classes than the mature plots
(Table 4.4). Younger plots are affected by understorey vegetation and an open canopy, both
of which can act to increase error within height (and therefore growth) measuremeﬁts.
‘Uneven presence of understorey vegetation makes the terrain surface seem higher than it
actually is in certain places. The very top of trees are more often missed by the laser pulse
in an open canopy, thus causing an uneven and unpredictable underestimation of tree height
by the LiDAR within the plot. The range of yield classes remains the same as for thé
middle-aged plots however (Table 4».4). Overall, the inequitable distribution of such effects
causes an increase in the standa;'d deviation of growth metrics and reduction of precision

for younger plots (this is discussed further in section 5.4).
In summary, it is evident that the multitemporal LiDAR data is capable of detecting growth

over a variety of Sitka spruce plantation plots within a 3 year period. Furthermoré, the age

specific nature of this growth reflects that anticipated by volume models.

99



5.2 COMPARING LiDAR AND GROUND TRUTH

Having established that growth can be observed in the multitemporal LiDAR datasets and
that éome inferences can be made about the precision of such measurements, it is next
necessary to assess their accuracy. Traditionally this is done by validating the LiDAR
height and growth estimates to those obtained by ground truthing, making the assumption
that the ground truth data represents what is ‘true’. However, this project also aims to
assess the error associated with ground validation measurements and as a consequence will
not assume the ground truth to be true. Instead, it will assess the similarity and agreement

between ground truth and LiDAR height and growth data.

5.2.1 Comparing Height Estimates

5.2.1.1 Plot Level

Table 5.1 details the co-efficients of determination for the correlations between ground
truth and LiDAR derived height variables. All ground truth and LiDAR derived metrics
used here represent plot averages. The majority of the co-efficients lie above 0.9 thereby
indicating that relationships between a variety of ground truth and LiDAR height variables
are strong and positive. The only cases where the correlation co-efficient is significantly
less strong is where minimum height is used as the ground truth variable. Here, the R’
values range from 0.422 when minimum height 2006 is paired with maximum LiDAR
height 2006, to 0.616 when minimum height 2003 is paired with maximum LiDAR height

2003.
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LiDAR Derived Height Measures

LMH
03
LMH
06
MH
03
MH
06
Max
03
Max
06
Min
03
Min
06

Ground Truth Height Measures

Mean

0.933

0.939

0.961

0.597

0.970

0.925

0.959

0.426

UnW.

Mean
03

0.942

0.941

0.958

0.604

UnW.,
Mean
06

0.977

0.935

0.968

0.439

Max
03

0.965

0.959

0.978

0.616

Max
06

0.984

0.942

0.973

0.422

poo
03

0.947

0.951

0.970

0.606

p90
06

0.984

0.944

0.971

0.435

psSo
03

0.937

0.942

0.957

0.609

pS0
06

0.975

0.933

0.966

0.435

pl0
03

0.882

0.894

0.909

0.560

pl0
06

0.968

0.929

0.957

0.453

Table 5.1 Co-efficients of determination for height correlations between ground truth and LiDAR derived
variables from 2003 and 2006. (LMH = Lorey’s Mean Height, MH = Mean Height, W. = Weighted,

UnW. = Unweighted, p90 = 90" height percentile, p50 = S0™ height percentile, p10 = 10™ height
percentile).

The strongest correlation for height data collected in 2003 is that between maximum

ground truth height and maximum LiDAR height (Fig.5.3a). Indeed, across the board the

maximum ground truth heights are best correlated with the LiDAR metrics. Given that

airborne LiDAR systems primarily survey those most dominant trees which form the main

canopy it seems logical that maximum ground truth heights should be best correlated with

all LIDAR height metrics.
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Maximum Ground Truth Height 2003 (m)
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Figure 5.3 Scatter graphs showing the regressions between maximum ground truth heights and maximum

LiDAR heights for a) 2003 and b) 2006.

‘The trend is different however for the data collected in 2006. Here, Lorey’s Mean Height

(LMH) is the ground truth measure which is best correlated with all LIDAR metrics.
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However, ground truth maximum heights remain strongly correlated with all LiDAR
variables (especially with maximum LiDAR heights as shown in Figure 5.3b) but not quite
as strongly as for LMHs. It is possible that the reason for this lies in the definition of these
ground truth height variables. Basal area weighting is applied to all tree heights in the
calculation of LMH. In 2003, the diameters of large numbers of trees from the youngest
plots were recorded as zero. This caused the average plot LMH to also be recorded as zero.
Of course this was not actually the case and as a consequence the 2003 values of LMH are
biased and therefore less well correlated with LIDAR height variables. By 2006, the trees of
‘the younger plots had grown sufficiently for their diameters to be measured and for less
biased values' of LMH to be calculated. Furthermore, LMH gives m;)re weight to those trees
with larger basal areas. Such trees also tend to be taller and thus LMH measures from 2006

are better correlated with the 2006 LiDAR height metrics.

Overall it seems that those ground truth measures best able to represent the tallest or largest
trees of the plot are best correlated with LiDAR height variables. Indeed it is likely that for
these same reasons the minimum ground truth measures are least well correlated with

LiDAR variables.

Despite such strong correlations for the majority of the data presented in Table 5.1 and that
displayed in Figure 5.3, it is also necessary to quantify the differences between the
variables as well as the spread of these differences. For this purpose, mean differences and
standard deviations were calculated for those variables best correlated. The mean difference
between 2003 variables (Fig.5.3a) was calculated at -2.92m. The standard deviation of

these differences is 1.13m. That is, the LIDAR heights are on average 2.92m lower than the
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equivalent ground truth heights. Furthermore, this indicates that the LiDAR height
measures are consistently lower. LIDAR height underestimation is well documented in
studies such as this and is widely accepted to be due to laser pulses over sampling the
shoulders rather than the peaks of dominant trees (Aldred and Bonner 1985; Nelson 1988;
Nilsson 1996; Neesset 1997; Naesset 2002; Popescu et al., 2002; Yu et al.,, 2004). This is

discussed further in Chapter 5.4.1.

The mean difference between 2006 variables, maximum ground truth and maximum
LiDAR height, was calculated at -3.04m. The standard deviation of these differences is
.1.21m. This shows that bdth the systematic error ana the random error are greéter for the
2006 data, than for the 2003. Again, this indicates that the LiDAR data is on average 3.04m
lower than the ground truth data. This further suggests that LiDAR heights underestimate
those obtained by ground truthing. However, whether this also means that LiDAR is
underestimating true tree heights is unclear at this stage. This will be discussed further in

Chapter 5.4.

5.2.1.2 Individual Tree Level

A comparison of ground truth and LiDAR derived heights was also carried out at the
individual tree level, the results of which are presented in Table 5.2. Here it is evident that
of all the LiDAR variables it is the maximum heights which are best correlated with the
ground truth heights for 2003, 2006 and 2006 adjusted (see Chapter 3 for details on
adjusted measurements). This reflects the findings from the plot-wise study and reinforces

the idea that the LiDAR system is best able to estimate the heights of the tallest trees. The
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strongest relationship is for 2003 ground truth and maximum LiDAR heights with an R’ of
0.7492 (Fig.5.4). The mean difference between these two variables is 0.99m and the
standard deviation is 3.82m. This indicates that the maximum LiDAR heights are greater
than the ground truth heights by an average of nearly 1m. This does not mirror previous
findings that the LiDAR underestimates ground truth heights. Perhaps, however, it results
from the nature of the ALS system only detecting and recording the tallest trees and
because the maximum height variable is being used here. Indeed this is evident in Figure
5.4. The different age classes are fairly easily separable using LIDAR maximum height (x
axis), particularly the definition between young and middle aged plots. However, they are
not so easily-separable using the groun(i truth height data (y axisi. For example, between
3m and 7m on the y axis there are large number of data points from all three age classes
which would be indistinguishable if it were not for the maximum LiDAR height scale or
the colour coding. This is due te small trees being present in all plots regardless of age. In
the middle-aged and mature plots these are likely to be suppressed or dead trees which are
not easily detected by the ALS system or perhaps just not _represent-ing the maximum plot
heights. Consequently a similar trend is not observed for maximum LiDAR heights and it

appears to overestimate in comparison with the ground truth data.

It can also be noted in Table 5.2 that there is a marginally better correlation between 2003
ground truth heights and all the equivalent LiDAR height variables than for the 2006 data.
With the exception of the LMH data (discussed previously) this too reflects the findings

from the plot-wise study.
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accuracy® of the adjusted measurements is unlikely to outweigh the significantly reduced

number of observations and thus a reduced correlation co-efficient is observed.

Overall, compared to the plot level co-efficients presented in Table 5.1 ihe correlations
presented here, at the individual tree level, are less strong. The non-adjusted data ranges
between 0.69 and 0.75, yet does net begin to approach the R’ values of 0.9 as calculated for
the data at plot level. This suggests that despite the fact that exactly the same data is being
used in both regressions, there is something in the rounding or organising of the data into
plot groupings which helps to improve the strength of the relationship. This indicates that
the spatial relsolution or scale at which ihe LiDAR data is analyse(i effects the relationship
with the ground validation data. As a consequence, if the ground truth is assumed to be
‘true’ this also affects our perception of how accurate and precise the LiDAR height
estimates are. This issue was highlighted in the plot 3 data presented in Chapter 3 and is

further discussed in section 6.1.4.

5.2.2 Comparing Growth Estimates

5.2.2.1 Plot Level

Table 5.3 details the correlation co-efficients for the relationships between ground truth and
LiDAR growth variables at the plot level. It is immediatély evident that these co-efficients
of determination are significantly lower than those calculated for height variables. The

majority of values fall below 0.4 indicating a very weak correlation. The LiDAR variable

® Note: An improved accuracy of the adjusted data is-an assumption. It cannot definitely be known if accuracy
has been improved until felled tree height data is available for comparison.
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best correlated with ground truth variables is growth in the 10™ percentile. The LiDAR
growth variable least well correlated with ground truth growth variables is the 90™
percentile, with correlation co-efficients no greater than 0.21. Maximum LiDAR growth is

also not at all well correlated with ground truth growth variables with co-efficients in range

0.0144 to 0.2369.
, LiDAR Growth Variables
Weighted Unweighted
Ground Mlian M:ﬁn Max po0 ps0 p10
Truth LMH 03992 1 0.3044 0.2369 0.0108 0.4066 04122
Growth MH 0.2625 0.3441 0.0284 0.0065 0.3539 0.3942
Variables Max 02313 0.3456 0.0849 0:2073 0.4052 0.5029
B Min  0.1036 0.1638 0.0144 0.0081  0.1794 . 0.1694

Table 5.3 Co-efficients of determination for growth correlations between ground truth and LiDAR derived
variables, at plot level. (LMH = Lorey’s Mean Height, MH = Mean Height, W. = Weighted, UnW. =
Unweighted, p90 =90™ height percentile, p50 = 50™ height percentile, p10 = 10™ height percentile).

The strongest correlation between LiDAR and ground truth growth variables exists between
the 10™ percentile variable and maximum growth (Fig.5.5). The scatter graph and equation
for the linear fit line indicates that this relationship is negative. it shows that ground truth
maximum growth is recorded as decreasing with increasing growth in the o™ percentile of
the LiDAR data. The mean difference between the two variables is 0.13. That is, the
LiDAR 10" percentile growth data is on average, 0.13m less than the ground truth
maximum growth data. The standard deviation of this difference is 2.15m indicating the

spread of the data.
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5.2.2.2 Individual Tree Level

Table 5.4 details the co-efficients of determination for the growth correlations between
ground truth and LiDAR derived variables at the individual tree level for all of the 22
validation plots. Here the ground measured height and diameter of each tree has been used
in the correlation with the equivalent LiDAR derived variable extracted from the exact
location of each tree. It is clear that the relationships between all variables are very weak.
Furthermore, with the exception of thé two co-efficients for maximum LiDAR derived
growth, all relationships are also negative. In general, the correlation of LiDAR variables is
- stronger with ground truth measured diameter growth rather than height growth. The 0™
percentile variable is best correlated with height growth, however this remains an extremely
weak relationship as observed in Figure 4.8. Here it is evident that there is no discernable
relationship. Data points were colour coded in an attempt to highlight any age-related
trends, however very little is revealed. Much negative growth is recorded in the ground
truthing for mature plots in particular, with some also recorded for the middle-aged plots.

Some negative growth of young trees is displayed in the LiDAR 10" percentile data.

LiDAR derived growth variables
Ground Mean Max p90 pS0 pio
Truth Height 00549  0.0035 00003 00576  0.0688

Growth :
Variables | Diameter 01128 00298 00001  0.1074  0.1245

Table 5.4 The correlation co-efficients for the regression relationships between ground truth and LiDAR
growth variables using data from each individual tree.
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53 GROUND TRUTH DATA ERROR

A specific aim of this project was to assess the accuracy and precision of ground truth
equipment and data with a view to gauging the reliability of this as a method for checking
LiDAR height and growth estimates. To this end, this section discusses results presented

from the assessment of ground truth error and the 2007 revisits in Chapter 3.

Results from Chapter 3 indicate that from both the road and forest viewing angles, the
Vertex instrument produces height measures closer to the felled tree heights than those
~ produced by the clinometer and LaserAce. This is further demonstrated by the box plots
displayed in Figure 5.9 where average values sit much closer to the zero line and where
ranges and interquartile ranges are smaller for the Vertex. This serves to support the use of
the Vertex for ground truth measurements within this project, for similar studies and for
forest inventorying in general. However, it is the magnitude of the error associated with the
Vertex measurements which have a bearing on the use of ground truth data as a check on
the LiDAR. As a consequence, it is the Vertex measurements which shall be the focus of
the remainder of this section. Furthermore, only those results obtained from the forest

viewing angle will be studied, given that they better simulate real plot working conditions.
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precision is observed. The range of values is also improved for experienced users and runs
from -1.1m to +2.0m. As would be expected, height error and standard deviation values
worsen with decreasing levels of experience as displayed in Table 5.5. This indicates a drop

in both accuracy and precision.

E. j .
xperience Mean St Dev. Max Min
Level
All -0.10 1.68 3.70 -6.80
Experienced 0.29 0.73 2.00 -1.10
Some 0.33 1.23 310 -3.50
Experience
Inexperienced | -0.61 - 2.12 3.70 -6.80
Data
0.31 1.05 3.10 -3.50
Collectors

Table 5.5 Average difference from true tree height (height error) with associated standard deviation and range
values, by level of experience using the Vertex III hypsometer. The unit for all figures is metres.

The ground truth data used in this study was collected by users who fit into the
‘Experienced’ and ‘Some Experience’ categories. Therefore a new row for ‘Data
Collectors’ was added to Table 5.5 and mean, standard deviation and range values
computed. It seems appropriate then to use the ground truth statistics for data collectors for
assessment of the ground truth and LiDAR correlations. Despite reduced levels of accuracy
and precision compared to the experienced users alone, the data collector category is likely
to give a truer representation of the accuracy (or bias) \and precision of ground truth tree

height measurements undertaken by this project.

For data collectors, the height error is 0.31m with a standard deviation of 1.05m. This

suggests that the ground truth data collected as part of this project is on average, 0.31m
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greater than the true heights of the trees. The following paragraphs will explore what this

means for the assessment of LiDAR data accuracy.

Plot level héight correlations between groﬁnd truth and LiDAR data were strong and
positive for both 2003 and 2006. However, despite strong levels of association, mean
differences between the best correlated variables was high at -2.92m for 2003 data with a
standard deviation of 1.13m. Bias was higher for the 2006 correlation at -3.04m as was
precision with a standard deviation of 1.21m (Fig.5.3). If the bias of ground truth measures
is then taken into consideration and figures altered to reflect a 0.31m bias, standard
de\'/iation and the strength of fhe associations remains uﬁchanged but the mean difference
between variables for 2003 is increased to -3.23m and for 2006 increased to -3.35m.
Furthermore, the ﬁean difference between growth variables (LMH growth and maximum
LiDAR growth) is increased to -0.99m. This suggests that error within thé ground truth data
is not responsible for poor growth correlations. However, this approach only takes into
account the mean difference between ground truth and felled data obtained during the trial.
It takes no account of the variation in this mean difference as a function of tree height

(Fig.5.10).
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Ground truth plot and individual tree level data were then adjusted to reflect these mean
differences from felled height. For example, an average plot height of 21m was increased to
21.44m to compensate for the height under prediction within this height category; a tree
height of 17m was reduced to 16.88m to compensate for the height over prediction in this
height category and so on. Given that the true heights used during the trial fell between the
values of 11.13m and 22.80m, it was anticipated that tﬁe error associated with ground truth
measurements under 10m could not accurately be predicted by the <17.5m category. As a
consequence, it was initially decided that all those plots average heights and individual tree
heights which fell ﬁelow 10m would be exclﬁded from the new correl#tions (which are
taking into account gi'ound truth error). However, given that manyvof the validation plots
used within this study are young, éxcluding all those plots and trees below 10m left too few
observations for the correlations to be meaningful. Therefore all observations were used in
the new correlations, all values less than 10m remained in the <17.5m category and were

treated accordingly. The before and after results are displayed in Table 5.7.

Plot Level Tree Level
Growth Correlations
7 ) 7 Before After Before After
Ground Truth Variable Lorey's:Mean Height:Growth Non-Adjusted Tree Growth®
LiDAR Variable LiDAR Maximum Growth LiDAR Maximum Growth
R? 0.2369 0:2370 0.0035 0.0035
Line Equation y=2.15x - 0.64 y =2.10x -0:61 y =0.06x + 0.43 y = 0.06x + 0.43
Mean:difference (m) -0.680 -0.640 - 0.616 0.617
Standard Deviation (m) 2,02 1.98 147 1.49

Table 5.7 Growth correlations at plot and tree level both before and after trial adjustments.

® *Non-adjusted’ refers to the fact that the 2006 tree height data used in this regression was not adjusted under
the 2007 revisits.
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It is evident from the values presented in Table 5.7 that the tree height adjustments made
based on the trial data have had very little effect and there is certainly no significant
impi'ovement in the strength of the correlation. The mean difference between growth
variables is slightly lower at the plot level following trial adjustments, but is higher at_the
tree level. The standard deviation is also slightly lower at the plot level following
~ adjustments, indicating a higher level of precision, but again the opposite is true at tree
level. The co-efficient of determination for plot level growth is very slightly greater
- following tree height adjustments, but not enough to make any reliable conclusion that
ground truth error is responsible for poor growth correlations. The possible explanations for

this are discussed further in Chapter 6.
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54 INTERACTION BETWEEN LiDAR AND THE FIELD

This section deals with those inaccuracieé and biases which may have been incurred due to

the nature of thg interaction between the laser pulse and the forest. Errors of this kind may |
be summarised by the scale of their effects. For instance, some consistently affect the entire
study area and thus have been classified as ‘global’. Others affect specific areas or plots and
have been classified as ‘regional’ effects. Finally, some only influence estimates at the
subplot level and thus have been categorised as ‘local’ effects. Each of these shall be
examined in turn which respect to their likely impact on height and growth correlations. For

these purposes the ground truth shall be assumed to represent ‘true’ tree height.

5.4.1 Global Effects

This section considers the nature of the interaction between the LiDAR system and the
forest which may affect height and growth correlations at the global scale. This will focus
on two areas; firstly, how the LIDAR system predominantly samples the tallest or dominant
trees; and secondly, the common issue of LIDAR height underestimation resulting from the

majority of laser pulses falling on the shoulders of the tree rather than the crown.

Airborne laser scanning is only able to measure the heights of those trees which are
detectable from the air. As a consequence, dominant trees which sit within or above the
main canopy stand a greater chance of being measured than smaller trees which lower in
the canopy or well below it. Thus it was considered that in height and growth correlations
we may not be comparing like with like. That is, whilst the ground truthing measures the

heights of all trees within the plot regardless of dominance level, the LiDAR is measuring
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only the talles;t trees. Indeed, this could be the reason why the strongest positive height and
growth correlations are observed for maximum ground truth variables or, in the case of the
2006 data, Lorey’s Mean Height which also weights larger (and therefore probably taller)
trees more heavily. Furthermore the relationships at the individual tree level indicate that
the LiDAR is over predicting tree height, contrary to the well documented under estimation
which is observed at the plot level. In order to test this further, regressions between ground
truth and LiDAR heights and correlations were re-run to consider only those trees classified
as ‘dominant’. The before and after results for correlations at the individual tree level are

presented in Table 5.8.

Individual Tree Level Correlation ~ Line Mean Standard
Co-efficient Egquation Difference (m) Deviation (m)

Height All trees 0.7942 y=0.70x + 1.52 0.99 3.82

2003 Dominanttreesonly | 09602  y=092x+170 -108 143
Height All trees 0.7055 y=0.65x +1.72 1.62 4.22
2006 Dominant trees only 0.9483 y=0.85x + 1.80 -0.51 1.72
’ All trees 0.0035 =0.06x + 0.43 0.62 1.47

Growth | . y *

) Dominant trees only 0.0086 y =0.09x + 0.53 0.57 1.45

Table 5.8 Correlation co-efficients and associated mean difference and standard deviation values for tree level
height and growth regressions, considering all trees.and only those classified as ‘dominant’. 2003
variables: ground truth height and maximum LiDAR height. 2006 variables: ground truth height and
maximum LiDAR height. Growth variables: ground truth height growth and maximum LiDAR
growth.

The results show that correlation co-efficients are all stronger when only ‘dominant’ trees
are considered. This is particularly true for the height correlations. The growth co-efficient
is not much greater and certainly has not become a significant relationship. For both height
correlations, the mean difference between variables has been lowered by just over 2m so
that the LiDAR now appears to underestimating ‘true’ (ground truth) heights. This indicates

that once the overestimating effects of LIDAR on the smaller, less dominant trees (due to
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greater sampling of taller, dominant trees) has been eliminated, the well documented
pattern of underestimation becomes apparent. This underestimation is discussed further on
in this section. The mean differences between growth variables has also been reduced, but
not to the same extent as for the height correlations. It still sits above zero thereby still
indicating an overestimation of growth by LiDAR in comparison with the ground truth.
Standard deviation measures are lower in all cases, though are reduced more substantially
for the height correlations. This indicates that greater precision is achieved by considering

‘dominant’ trees only.

These results onlsl give the effects of considéring dominant trees for tre.e level correlations.
However, it is likely that similar effects would be observed at the plot level. In conclusion
here, it is evident that the growth cqrr'elation haé not been improved significantly by
considering dominant trees only. This suggests that it is not the bias of LiDAR height
measuring towards taller (more dominant) trees which is responsible for the poor growth

correlations.

The second effect to note which has a global effect is that of LiDAR underestimation of
ground truth tree heights. As discussed in the Introduction, it is widely acknowledged that
this results from an over sampling of the shoulders of dominant trees, rather than their tips
(Nilsson 1996; Neesset 1997; St-Onge 1999; Dubayah et al., 2000; Nasset 2002; Popescu et
al., 2002; Suarez et al., 2005; Yu et al., 2004). That is, the very top of the tree does not
constitute a good interceptor of the laser pulse compared' to the denser shoulder area (St-
Onge 1999). Thus it is more likely that the first return is reflected from the tree shoulders

leading to an underestimation of the height obtained by ground truthing.
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This underestimation is not noted at the tree level until only dominant trees are considered,
as shown in Table 5.8. However, it is observed at the plot level. For 2003, the maximum
LiDAR heights underestimate maximum ground truth height by 2.92m. This is a significant
underestimation, but mirrors that found elsewhere (St-Onge 1999). For 2006, the
maximum LiDAR heights too show underestimation of maximum ground tfuth heights, by
3.04m. Overall, it is evident that this study provides further evidence of LiDAR tree height

underestimation at the global scale.

5.4.2 Regional Effects

This section discusses two issues which seem to affect LiDAR height and growth
estimation at a more regional scale. That is, these issues tend to be more location specific
than those discussed previously. The first issue is that of very dense canopies and the

second of plot age.

It has already been seen that areas of very dense canopy cause problems for accurate DEM
generation. However, it was suggested by Nelson ef al., (1988) that fewer returns from the
ground produce better correlations between ground truth and LiDAR derived height
measures. Their reasoning for this is that a lower count of returns from the ground indicates
a denser canopy. This, in turn, results in fewer pulses hitting the shoulders of the trees and
more hitting the very tops, giving a more accurate measure of tree height. Indeed, this may
well be so, yet Nelson et al.,’s theory takes no account of the fact that a lower count of

ground returns results in a lower level of confidence in the DEM and therefore also in the
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height estimation. As a consequence, it could also be argued that fewer returns from the
ground may result in weaker correlations between LiDAR and ground truth height and
therefore also growth estimates. In order to investigate these two lines of argument, height
and growth cotrelations were studied in relation to ground count. The results are shown in

Table 5.9.

Ground Count
Variables Conditions Imposed Correlation Co-efficient

_ (hits per pixel)
None 0.7362
Ground truth height <12 0.7111
2003 and Mean . >12 . 0.5256
LiDAR height 2003 >6and<15 0.7727
<1 0.6754
None 0.7006
Ground truth height <8 0.7090
2006 and Mean ‘ - >8 0.3840
LiDAR height 2006 >3 and <7 0.7401
<2 0.7743
Ground truth height None 0.0035
growth and count 2006 <2 0.0032
Maximum LiDAR count 2003 >6-and <15 0.0004
Growth Both of the-above 0.0155

Table 5.9 The effects of changing grouhd count on correlation co-efficients for 2003 and 2006 heights and
growth. The range of ground hits.per pixel was 0-24 for 2004 and 0-15 for 2006.

The table shows mixed results with no clear answer to the investigation. The 2003 height
correlation co-efficient was most improved when the number of ground hits per pixel was
limited to between greater than 6 and less than 15. It was not significantly improved when
assessing only low or high numbers of ground hits. Perhaps this represents a middle-ground
or balance between DEM accuracy (high number of ground hits) and true representation of
the canopy surface (low number of ground hits). However, the same is not true for the 2006
data. The greatest improvement in correlation co-efficient is achieved wﬁen only LiDAR
pixels with a ground hit of less than 2 are considered. This seems to support Nelson et al.,’s
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theory. Yet it remains unclear why there is no consistency between datasets. In terms of the
growth correlation though, it is unsurprisingly the combination of the 2003 and 2006
ground count conditions which have the greatest improvement on the strength of the
correlation. However the correlation co-efficient remains very weak. This suggests that

regional issues of ground count are not responsible for the poor growth correlation.

The second regional issue is that of plot age. It has become evident throughout this study
that plot (or tree) age plays a significant part in how accurately the average plot (or tree)
height may be estimated. This has already been studied in relation to ground truthing,
however this section .aims to investigate the effe;:ts of plot age on LiDAR héight estimation.
It might be argued that this is a global issue, yet because different forest stands are of |

different ages and therefore are affected differently, it is being discussed as a regional issue.

The issue of plot age links into many of the themes already discussed in this paper,
including DEM accuracy, CHM accuracy and dominance levels. Here the three previously
defined plot age classes will be examined separately (for definitions see section 4.1.4).
Here, the ground truth values must be assumed to be true. The results of the individual tree

level investigation are presented in Table 5.10.
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Correlation Mean
Tree Level , , . , Standard
. Condition Co- Line Equation Difference . .
Variables . Deviation (m)
efficient . (m)
Ground All ages 0.7492 y=0.70x + 1.52 0.99 3.82
truth height Young 0.1187 y=0.37x+1.96 0.74 1.39
03 and Max | Middle-Aged 0.6542 y=0.99x-0.70 0.83 2.73
LiDAR 03 Mature 0.0464 y=0.36x +7.31 437 5.09
Ground All ages 0.7055 y=0.65x+1.72 1.62 N 421
truth height Young 0.2247 y=0.70x + 1.42 -0.56 1.48
06 and Max Middle-Aged 0.6701 y=0.98x - 1.44 1.66 2.78
LiDAR 06 Mature 00395  y=0.32x+7.63 5.60 5.41
Ground " All ages 00035 y = 0.06x +0.43 0.62 1.47
truth Young 0.0002 y=0.01x +0:90 0.19 1.40
growthand | \qijdie-Aged 0.0003 y =0.02x +0.44 0.83 1.31
Max LiDAR
growth Mature 0.0001 y=0.02x - 0.30 1.18 1.54

Table 5.10 Correlation co-efficients and related information derived from the regression of height and growth
variables, subdivided according to tree age.

It can be seen from the results, that young trees are being under predicted by the LiDAR
both in 2003 and 2006. It is likely that this results from one or both of the following. Firstly
that the open canopy of younger plots means that more laser hits fall on the shoulders of the
trees rather than their peaks, leading to underesti1;1ation by the canopy height model.
Secondly, the open canopy allows larger proportions of understorey vegetation to grow,
thereby leading to an overestimation of the DEM. The combination of these, resuits in an
underestimation of height by the LIDAR, as observed in Table 5.10.

Conversely, it is evident that mature trees are grossly over predicted by the LiDAR, for
example, by an average of 5.6m in 2006. As discussed previously, the closed canopies of
mature plots have mixed effects on the strength of the correlation between ground truth and
LiDAR height values. However it is likely that it is the inability of LIDAR to penetrate the

canopy sufficiently to measure less dominant trees that is responsible for such an over

prediction of heights, and a large corresponding drop in the strength of the correlation. The
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mature category also features the greatest standard deviation value thereby indicating the

poorest level of precision.

The middle-aged plots seem to represent a half way point between these two extremes,
where the LiDAR and ground truth heights and growth are best correlated when compared
to the other age classes. Middle-aged plots have: a sufficiently closed canopy for more
accurate height estimation and reduced understorey vegetation, yet the canopy is not so

dense as to prevent detection of lower trees within the plot.

In summary, it is eﬁdent that tree or plot age‘ appears to have a signiﬁc-ant effect on the
relationship between LiDAR and ground truth height data, with increasing amounts of
Systemétic bias and random error observed for older plots. Consequently it might be
assumed that this is responsible for the poor growth correlations. However, Table 5.10 also
indicates that not only the strength of the growth correlation, but also the systematic bias
and random error are not significantly altered by plot age. Therefore it is concluded that the
regional effects of both plot age and dense canopies, are not alone responsible for the

observed lack of correlation between LiDAR and ground truth growth variables.
5.4.3 Local Effects

This section discusses the nature of the interaction between LiDAR and the field at the
local level. This includes investigating the effects of negative values and dead trees on the

LiDAR-ground truth growth correlation.
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Negative growth values within the ground truth data result partially from recording errors
and partly from dead trees where the top of the stem is progressiv;ly breaking off. It is less
clear why negative growth values are observed within the LiDAR data, unless of course
obvious clear-felling or windblow has occurred. They may result from data misalignment
which has already been identified as an issue here. In order to investigate the effects of
negative values on growth estimates, the correlation was rerun to exclude all negative

ground truth and LiDAR values. The results are presented in Table 5.11.

Condition Correlation Line Eaquation " Mean . Standard
Co-efficient 1 Difference (m)  Deviation (m)
None 0.0035 y =0.06x + 0.43 0.62 1.47
Negative values excluded 0.0201 y=-0.13x +1.18 0.58 1.15
All dead trees excluded 0.0025 y =0.05x + 0.53 0.54 1.47

Table 5.11 Effects on the correlation between ground truth growth and maximum LiDAR growth caused by
exclusion of negative values and exclusion of dead trees.

It is evident from the resulting correlation co-efficient that excluding all negative values
does slightly improve the strength of the association between ground truth growth and
maximum LiDAR growth. It also reduces the mean difference between the variables and
the random error (standard deviation). However, it is important to note that this
improvement is very slight. As a consequence, the occurrence of negative growth is not

sufficient to explain the poor growth correlation.

The correlation was also rerun to exclude all dead trees. If dead trees with breaking stems
were the main cause of negative growth it would be expected that the correlation for

excluded dead trees would closely match that achieved by excluding negative values.
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However, this is not the case. This suggests that dead trees are not the main cause of the
obsérved negative growth values. It is possible that the level of uncertainty associated with -
ground truth measurements (Chapter 5.3) leads to false negative growth measurements.
Furthe'rmoré, LiDAR data misalignment could also be responsible. This supports the

requirement for further study of ground truth error and accurate LiDAR positioning.
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55 SUMMARY

This section has explored the results in greater depth. It has been shown that the multi-
temporal surveys were capable of detecting growth over the 3 year time period at Kielder
Forest. When compared to ground truth data, the LiDAR height daté correlates very
strongly, although underestimation of ground truth values is high at roughly 3m.
Conversely, growth correlations between LiDAR and ground truth data are weak and
mostly negative. Consideration of ground truth error and a variety of interactions between
LiDAR and the field did little to improve the strength of the growth correlations, although
height correlations were further improved by considering only dominant trees. The
following chapter discusses further why such a poor growth correlation is being observed

and makes some recommendations for future work.
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6 DISCUSSION

This research was initiated with the following key research questions:
1. Can multi-temporal ALS detect forest growth over a three year period?
2. If so, how accurately is this growth predicted?
3. Can this tell us anything about:
a. the robustness of our LIDAR processing and;
b. the accuracy, precision and reliability of our methods used to test the

LiDAR data?

It was shown in Chapter 5 that the multitemporal LiDAR datasets acquired over Kielder
Forest are indeed capable of detecting growth over the three year study period. However,
deépite strong correlations between LiDAR and ground truth height estimates no such
agreement was found for growth data. This might suggest that multi-temporal LiDAR
surveys are unable to accurately estimate forest growth. However it is first necessary to
explore the potential reasons for this lack of association between LiDAR and ground truth

growth estimates. This is the focus of this discussion chapter.

In answering research question No.3 a variety of factors are considered, including
positioning error, ground truth error, the set-up of the LiDAR systems and the effects of
scale and resolution. The chapter is concluded with a discussion of the implications of these

findings for the forest management community and other interested parties.
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6.1 POTENTIAL SOURCES OF ERROR

This section aims to investigate why such poor levels of correlation are observed between
ground truth and LiDAR derived growth variables. This investigation will assess the
robustness of the LiDAR processing chain as well as the accuracy, precision and reliability
of the ground validation data; firstly, with a view to exploring the ~7m DEM offset in- z,
the 5m offset in x between the LiDAR datasets; and secondly with a view to gauging the
accuracy of the LIDAR growth estimates. In doing so a number of key themes are
discussed, including the effects of} spatial positioning and potential data misalignment; the
accuracy and precision of ground truth data and its method of collection; the setup of the

ALS system; and lastly some consideration will be given to scale and resolution,

6.1.1 Positioning Accuracy

The misalignment of LiDAR datasets with each other and in relation to the location specific
ground truth data has huge implications for the estimation of forest growth. Furthermore, if
the ground truth data is assumed to be ‘true’ then the misalignment also effects our
assessment of the accuracy and precision of such growth estimates. This study found the
LiDAR datasets to be offset in' a northerly direction by 5m and in the z axis by 7m. Given
the systematic nature of this offset the spatial correction process was fairly straightforward,
however it is worrying that the offset only became evident because multiple LiDAR
datasets were being used. ther studies too have found positional offsets between LiDAR
-and field data to be the single most important source of error (Ne&esset and Qkland 2002).
This section discusses a range of possible causes of data misalignment and considers how

positional errors might be minimised.
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6.1.1.1 GPS Error

ALS data is advertised to be accurately georeferenced from the moment of its acquisition
and thus is frequently assumed to be an accurate frame of reference for spatial positioning.
However, errors in the recorded GPS measurements are possible and translate thémselves
into laser point error. In this study, errors in the GPS for either or both LiDAR datasets
and/or the ground truth tree and plot locations may be causing positioning errors and
subsequent data misalignment. If so, it is likely that they result from one or both of two

main issues.

The ﬁrst of these issues is that of poor geometry from the GPS satellite constellation. ﬁis
occurs when sétellites are spread across the sky in such a way as to result in low levels of
locational precision. PDOP or ‘Position Dilution of Precision’ is the name given to this
measure of geometric strength which is determined by the number of satellites being
tracked and their location in the sky. A PDOP mask may be applied during data collection
to déﬁne the limits of acceptable accuracy. A PDOP of less than 4 gives the most accurate
results resulting in a confidence of positioning of less than I'm. A PDOP of between 4 and 8
is generally regarded to be acceptable and above 8 gives very poor positional accuracy
(Brown 2007, pers. comm.; University of Montana website accessed 25.10.07).
Correspondence with the Environment Agency confirmed that the 2003 LiDAR dataset
used here was collected with a PDOP of less than 4. Furthermore, correspondence with the
Unit for Landscape Modelling (ULM) confirmed that the 2006 LiDAR was collected with a
PDOP of between 2.60 and 1.41. Thus it is likely that this is not the cause of any

significant error within the data.
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The second issue concerns the length of the baseline during collection of GPS data. Longer
baselines mean greater positioning errors. The distance between the base station and rover,
whether during LiDAR acquisition or ground truthing, affects the positioning error at a rate
of roughly one in one million. This equates to an increase in error of 1mm for»every lkm
further from the base station the rover is. It is possible that error introduced by a long
baseline may result in positioning errors and subsequent data misalignment. Again, the
Environment Agency were able to confirm a baseline length of less than 20km for the 2003
LiDAR data acquisition, resulting in a GPS error of 2cm. ULM were also able to confirm
an average baseline length of 10.35km, with a range between 1.52km and 27.78km. This
resﬁlts in a GPS error of betwéen 0.1cm and 2.7cm. This-amount of error seems sorﬁewhat
insignificant when dealing with data which has been summarised into 5Sm by Sm pixels and
does not afford an explanatioﬁ of a Sm or 7m offset in any dimension. Furthermore, the
Environment Agency checked the 2003 LiDAR against 1:10,000 Ordnance Survey maps
and Nextmap Synthetic Aperture Radar data for Kielder and found no notable offset. This
suggests that the data misalignment is not due to GPS errors of the 2003 or 2006 LiDAR

data.

In terms of the GPS error associated with the ground truth plot and tree locations, a
pbsitional accuracy of 0.5m is anticipa'ted given a clear view of the sky, decreasing to 0.7m
if trigonometric principals had to be employed. This suggests some misalignment between
ground truth and LiDAR data is to be expected. However, even a maximum offset of 0.7m
is unlikely to cause significant problems given the 5Sm by 5m spatial resolution of the
LiDAR data used for comparison with the ground truth data. Furthermore, such an offset

would affect height as well as growth correlations. This has not been observed and thus it
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seems unlikely that GPS ground truth error is the principle cause of poor growth

correlations.

In summary it seems that there are four possible data misalignment scenarios which would
result from GPS error, each with varying effects on height and growth correlations.
Scenario one involves significant GPS error in one of the LIDAR datasets but not in the
other or the ground truth. This wéuld result in reduced height correlations for that particular
dataset and low levels of correlation for the growth regression. Scenario two involves
significant GPS error in both LiDAR datasets but not in the ground truth data. This would
precipitate lowef height correlation co-efﬁcients for both LiDAR dataséts and lower growth
correlations. Scenario three involves significant GPS error in the ground truth data and not
either of the LiDAR datasets. This would cause problems for both height and growfh
correlations. The final scenario involves significant error in all three GPS sources which
would result in poor correlations for both height and growth. The confirmation of both the
2003 and 2006 LiDAR data accuracy from the Environment Agency and ULM respectively
rules out scenarios one, two and four. The fact that only growth correlations are poor seems
also to rule out scenario three. This then perhaps leads to the conclusion that it is possible
that the poor growth correlations and data misalignments do not result from GPS error at
all. Thus it is the purpose of the remainder of this chapter to investigate other potential

sources of error.
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6.1.1.2 Post-Processing Error

Some initial processing was performed on the LiDAR datasets by the data providers before
the methodology detailed within this study was performed. Any errors introduced at this
stage would, like GPS errors, be translated into laser point errors. It could not be
established from the data providers exactly what post processing was carried out on either
LiDAR dataset. As a consequence this remains somewhat of a black box issue. Yet despite
the fact that error here cannot be quantified, nor can it be ruled out. Thus it remains
important to recognise this step as a potential source of error, a potential cause of data
misalignment and an influencing factor in poor growth correlations. Future work would

benefit from a closer study of the post-processing routine.

6.1.1.3 DEM Error

It is important that errors in the DEM are recognised as being different from laser point
errors. Indeed, even if the laser point cloud data were error free the creation of a DEM is
still likely to introduce some error, or to at least misrepresent the original surface to a
certain extent. Indeed the very definition of a DEM as a smoothed representation of a
surface means that this is inevitable. The challenge is to keep the error, or the
misrepresentation gf the surface, to a minimum. In doing so, the errors associated with tree
height and growth estimation may also be kept to a minimum. To this end, much research is
currently oﬁgoing into the improvement and development of many different ground

classification algorithms.
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Given its availability and proven ability the progressive TIN densification algorithm
embedded in TerraScan (Axelsson 2000) was used for creation of both the 2003 and 2006
DEMs within this study. DEM difference imagery and data indicates a systematic offset
between the two DEMs of roughly 7m. This seems very strange gnd is a positional error
which cannot be explained by the DEM  generation sequence alone (other potential
explanations for this offset are the study of this chapter in general). The same DEM
generation routine was employed for both LiDAR datasets. As a consequence, it may ibe
expected that equivalent magnitudes of error would be incorporated into both DEMs.
Whilst this may impede an accurate assessment of tree height in both datasets, the two
datasets should remain largely comparable thereby having a lesser effect on growth
estimates and certainly not incurring an offset of ~7m in z. Fortunately, this offset is easily

corrected and tree height and growth estimates not affected by it'’.

Further study of the DEMs indicates the presence of less systematic errors too though.
Indeed, differences between the DEMs following correction of the offset still stretch as
great as 8.83m, although the standard deviation value of 0.6m is more enéouraging. In
terms of the effect these differences may have on the ground truth-LiDAR height and
growth correlations, only the DEM differences at plot locations need consideration. At the
22 ground truth plot locations the DEM differences are no greater than 0.95m, with 64% of
plots falling in an area where DEM differences are smaller than +0.25m, and 91% where
differences are smaller than £0.5m. Some difference between DEMs is to be expected and
may result from genuine changes in the terrain surfacé or differences in the system setup of

the two LiDAR acquisitions. This is discussed further in section 5.1.3. No improvement in

' The ~7m offset in z exists for all laser points within the 2006 LiDAR dataset, not solely those points
classified as ‘ground’. Therefore the difference between DEM and CHM (tree helght) remains comparable
between datasets regardless of the offset.
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gfowth correlations was achieved by including only those trees in areas of smaller than
+0.25m DEM difference. In the future, investigations into the effects of using a single

DEM for growth studies may be beneficial.

Besides a comparison of the two DEMs no independent check was performed on the
accuracy of the DEMs. However, given the problems experienced in areas of very dense
canopy it is likely that some parts of the DEMs were more accurate than others. Indeed, the
problems of generating high accuracy DEMs in heavily vegetated terrain is well
documented (Zaksek and Pfeifer 2006; Hyyppé et al., 2005; Hollaus et al., 2006; Kobler et
al.; 2007) and recent 1iteratufe details a great number ef altemative ground classivﬁcation
algorithms to the TerraScan routine. These include block minimum filters, slope based
filtering, iterative robust interpolation as well as the more recent segmentation and
classification based filtering algorithms (Pfeifer et al, 1999; Sithole and Vosselman 2004;
Zaksek and Pfeifer 2006; Kobler et al., 2007; Pfeifer 2007 pers. comm.). Indeed, there is
much research currently being channelled into developing an algorithm which can provide
an accurate and precise representation of the ground surface, especially in areas of heavily
vegetated and steep terrain (Hyyppé et al., 2005; Hollaus et al; 2006; Zaksek and Pfeifer
2006; K‘“oi)le‘r et al., 2007). It seems that experimentation with a variety of interpolation and
point selection techniques is necessary to find the method capable of creating the most
accurate DEM possible for a given study area. Indeed, as LiDAR remote sensing of forestry
is still very much in the developmental phase, a single approach for accurate processing of
laser data is yet to be properly established within the academic literature. However, it is

likely that algorithms specially developed to cope with dense forests conditions would
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produce a more accurate representation of the ground surface at Kielder. As a consequence

such algorithms may also help to improve height and growth estimates.

It is concluded that the ~7m DEM offset cannot be explained by the DEM generation
routine, yet in any case it does not affect height and growth estimates. Variation remains
between the two DEMs following offset correction however and yet such variation does not
appear to affect growth correlations significantly. It is likely that DEM creation could be
improved with the use of an algorithm able to cope with dense canopies. However a reliable
assessment of the x, y and z error associated with DEM generation requires investigation of
a more quantitative nature. This is not within the scope of this paper. Future work however,

would benefit from this.

6.1.1.4 CHM Error

In the creation of the canopy height model there exists the opportunity to introduce error or
to misrepresent the ‘true’ canopy surface, as with DEM generation. Such surface smoothing
is necessary for estimation of tree heights anci growth, yet it remains important to be aware
of CHM cfeation as a potential source of error. Figure 6.1 gives a schematic representation
of how misrepresentation of the canopy surface may occur. Sketch (a) illustrates how the
canopy height model may look given the positions of the laser hits, but sketch (b) shows the
true canopy surface. This diagram is also applicable for demonstrating DEM errors. Again

the chall'enge is to develop techniques and processes which keep this error or

misrepresentation to a minimum.
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Figure 6.1 A schematic representation of how error may be introduced during creation of a canopy height
model. The points represent laser hits, (a) the CHM surface and (b) the true surface.

A ‘quantitative assessment of fhe accuracy of the CHM cfeated for the Kielder dataéets may
help to ultimately improve height and growth estimates, however is not within the scope of
this project. It has been noted though, that some decisions made concerning canopy
classification, prior fo CHM generation, may affect the accﬁacy of the final outcomes. It
was decided that all returns falling with 2m of the ground surface would be excluded from
canopy height models. Whilst the intention was to remove hits from low lying vegetation
and natural debris it was noted during fieldwork that within the youngest plots many trees
sit below this height. Whilst height correlations between LiDAR and ground truth data do
not seem to have been affected, future studies may benefit from an assessment of the effect

on growth correlations.
6.1.1.5 Horizontal Displacement of Tree Crowns

This final section concerning the three dimensional data misalignment concerns the
horizontal displacement of tree tops due to strong winds and leaning caused by competition
for light and/or damaged stem structure. If a tree is leaning significantly then the ground

truth recorded location of the tree base will not be the same as the position at which the
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6.1.1.6 Summary

Five potential sources of data error-or misalignment have been discussed here. It is possible
that fhe post-processing of the LiDAR data could be responsible for the offsets and poor
growth correlations as this currently remains somewhat of a black box issue. LIDAR height
and growth estimates, and correlations with ground truth data may benefit from improved
DEM and CHM generation routines but neither can confidently be assumed to be
responsible for the data misalignment. Further study into the effects of the horizontal
displacement of tree crowns may benefit single tree delineation studies, however at the
scale of this investigation it is not deemed to be a significant problem. Other -possible
explanations of the offsets and poor growth correlations are discussed in the following

sections of this chapter.

6.1.2 Ground Truth Error

This section aims to discuss the effects of ground truth error on the LiDAR-ground truth
relationships. It was found in the previous chapter (Table 5.7) that the tree height
adjustments made based on the trial data had very littlé effect in improving the strength of
the LiDAR and ground truth growth correlation. There was also a lack of consistency
between plot and tree level results. The co-efficient of determination for plot level growth
was very slightly greater following adjustments, but not enough to make any reliable
conclusion that ground truth error is responsible for the observed poor growth correlations.

This may be as a result of a number of things;
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1.

The trial study was not extensive enough, meaning that only a limited range of trees
were studied in terms of height. Given that many ground truth plots were much
smaller than those studied by the trial their heights could not accurately be adjusted
to reflect the likely errors associated with measuring smaller trees with the Vertex.
Further studies would benefit from a more extensive assessment of ground truth

€rTor.

The tree height categories were not representative enough. Adjusted tree heights
only affected the new correlation if the tree had moved into a different height
category between 2003. and 2006. Given the v?ide ranges of the categéries
(particularly the lower category) which were due to lack of representative trial data,
and the distribution of the tree heights, trees rarely moved height category. As a
consequence little change was observed in the correlation co-efficients, mean
differences or standard deviations. Further studies should consider carefully the
height categories used, and perhaps investigate the possibility of estimating ground

truth measurement error as a percentage of tree height.

. The representation of the error associated with Vertex measurements requires a less

crude approach. That is, perhaps a better representation of the variation or spread of
the error (rather than just an average value) is needed. For example, the trial

indicates that the ground truth is on average, over predicting the true tree heights by

0.31m. This figure is based on a range of ‘difference from felled height’ values

taken by experienced and partially experienced users. The mode and median of this

range of values both lie at 0.30m. This is very close to the mean value, thus
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indicating a fairly normal distribution. Knowing this allows the assumption to be
made that 68% of the data lies within one standard deviation of the mean, or in this
case between -0.74m and 1.36m difference from true height". If it is assumed that
this is a fair range of uncertainty for our average error measurement it can now be
applied to the LIDAR growth. The average amount of maximum growth recorded
by the LiDAR is only 1.14m. Therefore, when an uncertainty of +1.05m is assumed
for each ground truth height measurement it is easy to see how an agreement
between LiDAR and ground truth growth may go undetected or-at least, not
accurately estimated. The magnitude of the uncertainty associated with the ground
truth measﬁrement results in any association or agreement betweeﬁ ground truth and
LiDAR growth to be effectively ‘lost’. It is unlikely that this magnitude of
uncertainty is static, indeed, Table 5.6 in the previous chapter suggests an.increase
of uncertainty with increasing tree height. Thus, a fuller assessment of ground truth
uncertainty in relation to tree height is necessary. Furthermore, the study of growth
over a longer timescale may allow the average amount growth measured by the
LiDAR to further exceed the ground truth measurement uncertainty, thereby
allowing it to be detected. Further work here would greatly benefit LIDAR growth

studies,

4. Error associated with ground truth measurements may not be responsible for the
observed poor growth correlations at all. Given the results presented here, a problem
of systematic bias seems unlikely. However, it is likely that it is the uncertainty or

random error associated with ground truth measurements which causes poor growth

' This also tells us that 95% of the data lies within 2 standard deviations of the mean and that 99.7% of the
data lies within 3 standard deviations of the mean.
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correlations. Further inquiry would lead to a better understanding of ground truth
error and measurement uncertainty and how that affects the validation of LiDAR

data by ground truthing.

Further to the trial study, the 2007 revisits suggest that careful re-measurement of trees
seems to produce fairly similar results as previous ground truthing sessions. Of 536 trees
assessed, only 44 needed adjusting. Furthermore, there appear to be a greater number of
mistakes made for older plots. This supports the findings of the trial as presented in Table
5.6. Whilst this does not help define the level of uncertainty withl;n the measurement, it
does 'suggest that there may be ;1 consistency of uncertainfy as a function of tree height or
age. However, to reiterate the point from before, the relationship between plot and tree

height (or age) and the magnitude of uncertainty deserves further study.

6.1.3 System Set-up

Another potential source of ‘error is the set-up of the LiDAR systems. As detailed in section
2.2, the specifications of the laser scanners used within this study were very different from
each other. Other studies have found differences in scan angle, flying altitude and pulse
density and distribution to have significant effects on DEM accuracy and therefore tree

height estimation. Each of these shall be discussed in turn in relation to this study.
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6.1.3.1 Scan Angle

The effects of the size of the scan angle were discussed brieﬂyv in section 1.2.1. Many
studies have found errors associated with both DEM generation and canopy height
estimation to increase with increasing scan angle (Nilsson 1996; Ahokas et al, 2003;
Holmgren et al., .2003; Lovell et al., 2005; Goodwin et al., 2006; Friess 2007 pers. comm.).
It is anticipated that this results from a lower intensity of reflectance at greater scan aﬁgles,

as dictated by Lambert’s Cosine Law.

In his study of férestry in Sweden, Nilsson-found that errors caused bS/ the effects of scan
angle were responsible for between 2.0m and 2.5m positional error in x and y (Nilsson
1996). Holmgren et al., (2003) found that greater scan angles affected the lower height
percentile measures more strongly than it did higher percentiles. They suggest that this
results from greater obscuration which acts to increase the underestimation of lower height
percentiles. Further to this, Lovell et al., (2005) also found increased errors at scan edges.
They attributed the larger errors to a sparser distribution of laser hits which then reduces the

accuracy of the DEM.

The 2003 data used within this study was collected with a scan angle of 10°, and the 2006
with a scan angle of 16.5°. Given its wider reach, it might be expected then that the 2006
data would feature greater errors at the edges of its scan lines. Indeed, this may be
responsible for the 2006 LiDAR and ground truth correlation co-efficients which are

consistently lower than the equivalent results for the 2003 data'? (Table 5.1). Furthermore,

2 With the exception of Lorey’s Mean Height- for reasons discussed in section.4.2.1.1.
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it is possible that the errors introduced by the larger scan angle are what is being observed
in the discrepancies between the separate 2006 flight lines as shown in Figures 4.8 and 4.9
in the Results Chapter. Here, the areas where the ﬂight-liﬁes overlap are at their very edges
where scan angle errors are likely to be greatest. Therefore perhaps it is not surprising that
such discrepancies between the DEM lines are observed. This might be analysed further if
the flight-line overlap was greater. The recommended amount of overlap is 70% of the scan
line width. However, the 2006 data was collected with much smaller amounts of overlap
and in some cases with no overlap. This results in a number of ‘holes’ in the data. Future
studies would benefit from ensuring that this does not occur and that flight-line overlap is at
the.recommended level. The 2603 data was not available .in flight-line format and thérefore
overlaps were not analysed.

It is possible that the increased errors for lower height percentiles, observed by Holmgren et
al., (2003) are also being seen here. Lower cq—efﬁcients of correlation are observed for
virtually all p10 metrics when compared to other height metrics (Table 5.1). However, this

is not conclusive proof and may result from a number of factors. Further study is necessary.

The fact that the scan angles are different between the datasets means that different
amounts of error will have been introduced into each dataset. Whilst this does not seem to
have adversely affected the regressions between ground truth and LiDAR derived heights,
it may have made the 2003 and 2006 datasets less comparable thereby affecting the growth
correlation. Analysis of a more quantitative nature is needed to establish the precise impact
of the different scan angles and to determine whether it is scan angle error alone which is
responsible for the observed lack of associated between ground truth and LiDAR growth

variables.
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6.1.3.2 Flying Altitude

A number of studies have found that greater platform altitudes seem to incur lower density
returns (Goodwin et al., 2006; Takahashi et al., 2007). It is thought that the lal;ger distance
between sensor and target causes a reduction in the intensity of the return pulse in
accordance with' Newton’s Inverse Distance Law. If this intensity falls below a certain
threshold, the pulse becomes indistinguishable from random noise and therefore is not

recorded. This is much more likely to happen at greater flying altitudes.

The work of Goodwin et al, (2006) found greater platform altitudes to reduce the
proportion of first and last returns. That is that a greater number of last returns were
reflected from the same point as the first returns. This indicates a lower canopy penetration
rate. Despite this however, Goodwin et al.; (2006) concluded that raising the platform from
1000m to 3000m had very little effect on the accuracy of the resulting canopy height

model.

Other studies have produced different results theugh. The work of Takahashi et al., (2007)
in Japan found an increase in the percentage of first-return only returns associated with
increased platform altitude, which reduced the qﬁality of the DEM. This translated into an
increase in both systematic and random errors of mean tree height estimates with increasing
altitude. As a consequence, they recommend a flying height of less than 1000m for tree
height studies. Furthermore, studies by Ahokas et al, (2003) and Hyyppé et al., (2005)
indicate increasing random error with flight altitude. Indeed, Hyyppi et al., (2005) found

that increasing the flying height from 400m to 1500m increased the random error within the
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DEM by 50% (from 12cm to 18cm). They also found that random errors were greatest in

areas of steep terrain.

In light of these studies, it seems possible that the 2006 LiDAR survey flying height of
1750m is incurring a greater amount of random error into the DEM and tree height
estimates than the 2003 survey, which was flown at 950m. It may be this which is causing
the differences between the 2003 and 2006 DEMs (Fig.4.5) and the slightly lower
correlation co-efficients for the 2006 data. Furthermore, the greater altitude is probably
resulting in a lower rate of canopy penetration. This would cause most problems in areas of
vel;y dense canopy. Indeed, it' is quite possible that thié is what is being obserVeci in the
white data gaps on the 2006 height map in Figure 4.12. The same gaps due to lack of
penetration do not occur on the equivalent 2003 height map. This could be simply due to
significant growth between 2003 and 2006 resulting in a much denser canopy. However,
the difference between the two flying altitudes is so great that it may be unwise to assume
no effect on the DEM, CHM and height estimates. In fact, the comparison of 2003 and
2006 regression data (Table 6.1) does show an increase in both random (standard deviation)
and systematic (mean difference) errors. Whilst the jump in flight altitude may not be the
only cause of this error increase and perhaps resulting poor growth correlation, it is

certainly an area which deserves further study for the benefit of forest management.
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Year

2003

_ 2006
Flying Altitude (m) 950 1750
Ground Truth Variable | Maximum Height Maximum Height
LiDAR Variable | Maximum Height Maximum Height
, R? 0978 0973
Equation | y=101x+2384 y=095x +3.54
Mean difference (m) -2.92 -3.04
Standard Deviation (m) | 113 1.21

Table 6.1 A comparison of regression results, by year (and flying altitude).

6.1.3.3 Pulse Density and Distribution

Further to differencés in flying altitude, there was also a difference in pulse density
between the 2003 (2 hits per m?) and 2006 (4 hits per m?) datasets. It might be expected
that the higher resolution 2006 data would produce better quality height estimates.
However, Table 6.1 indicates that this is not so. This may be due to an outweighing effect
of flying altitude. That is, greater levels of error have been introduced into the 2006 data by
the higher flying altitude than can be masked by a higher point density. Specifically tailored
studies are necessary to establish the exact quantitative effects of differences in point

density.

Further to the issue of point density, the distribution of points may also influence DEMs;
CHM s and therefore height and growth estimates. Neesset (2002) commented that uneven
pulse distributions will seriously affect small sample plbts in particular, introducing greater
levels of both systematic and random error. This is likely to be a larger problem for
coniferous forests where the average tree crown area is much narrower Athan that of a
deciduous tree (Yu ef al., 2006). And yet, the nature of airborne laser scanning means that

pulse distributions will never be perfectly regular, and certainly never repeatable. As a
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result the problem of data correspondence remains an issue for all multi-temporal LiDAR
studies. In light of this, Neesset (2002) recommends that sample ground truth plots should
not be too small. This links into the idea of scale and spatial resolution which seems to be a

key consideration for studies of this kind and is discussed further is section 6.1.4.

6.1.4 Scale

Issues of scale and resolution run through most of the potential error sources described
within this chapter. Other studies have found the scale at which height and growth are
anéllysed to have a signiﬁcaﬁt impact on results (Woodcock and Strahler ‘1987).}Naassct
(2002) recommends the use of coarser spatial resolutions for tfee height studies. His
reasoning lies in the fact that smaller sample plots experience greater levels of inherent
variation of canopy height measures. Gobakken and Nasset (2004) in their study of forest
growth also found results improved when looking at larger areas rather than single trees.
Indeed, the ‘averaging-out’ effect of larger plots reduces standard deviations of mean plot
values, thereby increasing the precision of height estimates. Given that random efror or the
precision of ground truth measurements was found to be highly problematic within this
project, perhaps a étudy at coarser spatial resolutions would be helpful. Indeed, analysing
height and growth at a larger scale may help to gloss over a multitude of small errors
potentially being introduced by the GPS, post processing routine, DEM and CHM

generation routines and the horizontal displacement of tree crowns.

For future studies, it may also be advantageous to consider the spatial resolution which

results from the LiDAR system setup. Greater pulse densities and lower flying altitudes
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will enable greater levels of canopy penetration thereby producing a finer spatial resolution.
This would lead to greater levels of accuracy within the DEM and CHM which could then

be averaged over a larger area to achieve higher levels of precision.

Finally there is the issue of temporal scale. Currently, within this study the random errors
associated with growth estimation are larger than the estimated growth itself, thereby
causing the growth to effectively be ‘lost’. Studying growth over a longer timescale may
allow estimated growth to exceed the random error meaning it could then be successfully

detected.

It is evident that the scale at which height and growth is studied using ALS has significant
implications for the accuracy, precision and reliability of the results. Future growth studies
would benefit enormously from further investigation into the quantitative effects of
different spatial and temporal resolutions. However, it is important to keep in mind that
there is a balance to be struck between resolution modification and cost. This helps to
reiterate the main purpose of this work which was to investigate whether ALS can provide

a cost-effective tool for forest management.
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6.2 IMPLICATIONS OF THIS STUDY

It is evident that further study is required in a number of areas in order to investigate and
minimise the errors associated with LiDAR growth estimation. Despite this though, the
multitemporal ALS data has been shown to detect forest growth across a range of different
aged plots which matches that predicted by Forestry Commission volume models. Thus, it
is anticipated that with some honing, this is a technique which could be reliably employed

for production forecasting within forestry.

Furthermore, the results of this study may be‘ valuable to a wider range Qf users within both
science and commerce. For example, the potential exists to use airborne LiDAR for
estimating the carbon stocks locked up within forests. In an age where climate change and
its effects are becoming so pertinent, LIDAR may offer. a valuable tool. In fact, as a
signatory nation to the Kyoto Protoc-ol, the New Zealand government are already
~ investigating the potential of airborne laser scanning for this purpose (Donoghue 2007 pers
comm.; Stepher_ls et al, 2067‘),. LiDAR may also prove to be a useful tool for compliance
checking of grant funded planting schemes, which is both time consuming and costly when

carried out on the ground.

‘It is becoming standard procedure to fly other instruments concurrently with airborne laser
scanners. Such practice is advocated by a number of studies (Nelson et al., 1988; Baltsavias
1999; Hudak et al., 2002; Suarez et al., 2005), Indeed, the integration of LiDAR data with
other forms of remote sensing may help in the classification and filtering of laser points or
to help identify particular areas of interest. This concept of data fusion may prove useful for
future studies at Kielder Forest. Furthermore, the recent availability of laser scanners with
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‘multiple pulse in the air’ (MPiA) capability may also benefit future work concerning forest
growth monitoring (Rohrbach 2007 pers. comm.). The Optech ALTM Gemini is the first of
this kind to become commercially Vavailable and is publicised to provide higher density,

more cost effective datasets (www.optech.ca accessed 15.11.07).

It seems evident that there are still many avenues to explore in terms of furthering the study
of forest growth using airborne laser scanning. A summary of the results and interpretations
of this work are presented in the concluding chapter and recommendations for future

studies concerning the use of LIDAR for estimating forest growth are also suggested.
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7 CONCLUSIONS AND FUTURE RECOMMENDATIONS

7.1 INITIAL AIMS

Airborne laser scanning is an active remote sensing technique which has been developed
rapidly in recent years. It is capable of providing accurate estimates of tree heights and
other biophysical variables. This research has investigated the extension of this technology
from single time-series tree height estimations to a multi-temporal study of forest growth
within a temperate environment. This Work aimed to explore whether growth could be-
detected over three years and across a range of different aged plots. Growth was then
compared to estimates obtained by traditional forést inventorying tecihniques. Lastly the
data and methods were examined for potential sources of error with a view to highlighting

how this technology may be enhanced in the future.

7.2 RESULTS

Initial results showed the LiDAR data to be capable of detecting growth over a variety of
Sitka spruce plantation plots within the three year period. Furthermore, the age related
nature of growth reflected that shown in Forestry Commission volume models. As found by
many other studies, LIDAR height estimates at the plot and tree level from both years were
found to be strongly correlated with height measures obtained by ground truthing.
However, despite a change in height (growth) being detected by the LiDAR, little
correlation was observed between this LiDAR growth estimate and the growth estimate
obtained by ground truthing. Indeed, the correlations obtained on the comparison of LIDAR

and ground truth growth measures were weak and mostly negative. The reason(s) for this
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must be concerned with either some kind of error within the LiDAR data itself or secondly,
some kind of error within the ground truth data to which the LiDAR is being compared (or

both).

7.3 POTENTIAL ERROR SOURCES

~The study of multi-temporal datasets to estimate forest growth relies on the assumption that
the two (or more) datasets in question are directly comparable. This means it is important to
use the same processing chain on both LiDAR datasets (as done here). However, it also
means it is higﬁly important to ensure the.Speciﬁcations and use of tﬁe LiDAR systems are
as similar as possible. In this study, scan angle, flying altitude and point density were very
different between the two LiDAR datasets. Whilst a quantitative assessment of the error
sources was not within the scope of this work, it is likely that the use of such different
systems introduced different magnitudes of error thereby reducing the comparability of the
datasets and the strength of the LiDAR-ground truth growth correlation. Despite the
operational constraints of doing so, it is highly recommended that the set up and use of

LiDAR systems for multi-temporal studies be as similar as possible.

A study of ground truth error was also undertaken by this research. It was found that the
magnitude of uncertainty (random error) associated with ground truth height measurements
was so large that any association between LiDAR and ground truth growth estimates was
effectively being lost. In other words, the errors associated with ground truth growth
estimation were larger than the estimated growth itself thereby allowing it to go undetected.

This might be ameliorated in a number of ways. Firstly, by studying growth over a longer
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timescale. This might allow the amount of growth to exceed the errors of growth
qsti‘mati'on, therefore allowing it to be detected. The work of Yu et al., (2005) has already
found this to be beneficial for forest growth studies and under normal forest management
practices in the UK, forest growth is only analysed at the five year timescale anyway
(Woodhouse 2007 pers. comm.). Secondly, further study into the magnitude of ground truth
measurement uncertainty would be valuable, particularly in relation to tree height and/or
age. Thirdly, it may be that growth is better analysed at a coarser sp,atial- scale. The
‘averaging-out’ effects of summarising data over larger spatial areas may help to increase

precision and reduce random error.

A number of other factors at a variety of spatial scales were also considered as the cause of
the poor growth correlation. However, none of these factors were found to be significantly
influential. The inclusion of only those trees classified as ‘dominant’ did significantly
improve height correlations at the individual tree level, but no such improvement was
observed for the relationship between LiDAR and ground truth growth. Different strength
correlations were observed when the data was subdivided according to agé, indicating that
height and growth of middle-aged plots seem to be most accurately predicted by the
LiDAR. Thus, it is anticipated that future research would benefit from further study into the

age specific accuracy and precision of LIDAR height and growth estimates.

74 RECOMMENDATIONS AND FUTURE WORK

In light of this study, a number of recommendations can be made for future research

concerning stand level forest growth. Firstly, the LIDAR datasets must be directly
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comparable. This means the same system setup; in terms 6f scan angle, flying altitude and
pulse density; similar flying conditions in terms of season and time of day; and the same
LiDAR processing routine. Secondly, it is suggested that the timescale studied should be
longer than three years to allow the amount of growth to exceed any potential error. Lastly,
growth studies may benefit from further study into the magnitude and variability of ground

truth errors.

It woﬁld also be of interest to extend future LiDAR research into other areas. This might
include the study of species other than Sitka spruce or non-monoculture plantations and
naturél forests and a closer inve;stigation into the effects o'f yield class on growth. Within
this study, LIDAR has also demonstrated the potential for identifying areas of canopy
damage. Thus it may be possible to extend the technique for making assessments of stand
quality. This might be aided further by the conéept of spatial data fusion, by linking LiDAR
data with other forms of remote sensing. The monitoring of forest carbon stocks may also
benefit from multi-temporal LiDAR surveying. Furthermore, it will be interesting to
observe the changes in data quality or cost efficiency introduced by MPiA capability.
Lastly, it is suggested that a comparison of LiDAR predicted forest growth at different

spatial scales would be valuable for furthering our understanding of this technique.

7.5 FINAL CONCLUSIONS

It is concluded that airborne LiDAR surveys have a great deal to offer the forest
management community. LIDAR height estimates are strongly correlated with ground truth
data and whilst the technique of using multi-temporal LiDAR surveys for forest growth

studies needs some improvement, it is anticipated to be highly valuable in the future.
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LiDAR datasets must be directly comparable and the systematic and random errors
associated with ground truthing need to be quantified. Once this is achieved, multi-temporal
airborne LiDAR surveys have the potential to revolutionise forest management by
providing a rapid, cost-effective, non-invasive, repeatable technique of timber production
forecasting. Furthermore, multitemporal surveys are capable of providing information
concerning carbon stocks and thereby may help facilitate the international decision making
process concerning carbon policy and global climate change. Studies of this nature are thus
of benefit fo foresters, climatologists, researchers and non-academics alike and therefore

should not only continue but be enhanced in the future.
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