
Durham E-Theses

An assessment of the use of airborne LiDAR for
estimating growth of Sitka spruce (Picea sitchensis)

plantation forestry at Kielder Forest, UK

Woodget, Amy Sara

How to cite:

Woodget, Amy Sara (2007) An assessment of the use of airborne LiDAR for estimating growth of Sitka
spruce (Picea sitchensis) plantation forestry at Kielder Forest, UK, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2309/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2309/
 http://etheses.dur.ac.uk/2309/ 
htt://etheses.dur.ac.uk/policies/


Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk


An Assessment of the Use of Airborne LiDAR for 
Estimating Growth ofSitka Spruce (Picea sitchensis) 

Plantation Forestry at Kielder Forest, UK 

The copyright. of this thesis rests with the 
author or the university to which it was 
submitted. No quotation from it, or 
information derived from it may be 
published without the prior written 
consent of the author or university, and 
any information derived from it should' be 
acknowledged. 

By 

Amy Sara Woodget 

A thesis presented for the degree of Master of Science 

University of Durham 

Department of Geography 

2007 

- 5 JUN 2008 



ACKNOWLEDGEMENTS 

The academic advice, guidance and encouragement of my supervisors, Dr. Danny 

Donoghue and Dr. Patrice Carbonneau, throughout this proj~t has been invaluable. The 

hours devoted to discussion and constructive criticism have been hugely beneficial and this 

thesis could not have been completed without such support. Patrice's presentation 

counselling was fantastic and much appreciated. 

The financial support and guidance ofDavid Woodhouse is also gratefully acknowledged. I 

have hugely enjoyed the opportunity to work at Kielder and I hope that I have provided 

David and the Forestry Commission with some valuable food for thought, if nothing else! 

I would like to say a big thank you to Matt Brown, Sarah Petchey, Jenni Lodwick, Rob 

Dunford and others from Durham University who assisted with the collection of field data. 

Thanks also to Shaun O'Callaghan and Mark English for endless amounts of technical 

guidance. Lastly, the huge amounts of support from my family, my housemates and in 

particular from Matt and Sarah have made the difficult times bearable, so thank you. · 

11 



ABSTRACT 

A growing need exists for the collection of accurate and up-to-date infonnation on forest growth 

rates for management purposes. Recent studies indicate that airbome laser scanning (ALS) offers a 

quicker and more cost-effective approach than the traditional methods of forest inventorying and 

may have the potential riot only to revolutionise forest management but also provide key data 

concerning world car:bon stocks. 

This study aims to assess the potential of ALS to estimate forest ~owth rates of the temperate Sitka 

spruce plantation forests using canopy height distribution models at Kielder Forest, 

Northumberland. ALS data from 2003 and 2006 provides an excellent, unique opportunity to 

contribute to existing work which has so far been limited in focus, looking primarily at individual 

tree growth in the less densely stocked, slow-growing, cold climate forests of Scandinavia. 

ALS point cloud data from first and last pulse retums are filtered and classified. Ground returns are 

used to create digital elevation models (DEM), and first returns used to create digital canopy height 

models (D~. Key ALS variables are then extracted and summarised. Processed ALS data from 

both years are compared to, estimate forest growth. The results are compared with ground truth data. 

Height correlations are strong and positive. Growth is detected at all plot locations but correlations 

with ground truth data are weak and mostly negative. Potential explanations for the lack of 

correlation are presented and discussed, including; data misalignment, inherent error within the 

ground truth data and the set-up of the LiDAR systems. Further study is necessary to quantify and 

eliminate systematic and random error within both the LiDAR and ground truth data before ALS 

may be used routinely for forest management purposes. 
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1 INTRODUCTION 

1.1 GENERAL INTRODUCTION 

Airborne laser scanning (ALS) or LiDAR provides significant advantages over more 

traditional techniques such as photogrammetry, aerial photography and optical imagery for 

surface profiling. There is a larger time window for data capture as LiDAR systems are not 

hampered by sun angle, time of day, weather conditions or seasonality. Data are 

automatically georeferenced from the moment of acquisition so that lengthy 

geocorrectional processes are not necessary. LiDAR systems can also be used successfully 

on steep or shadowed slopes (Holhtus et al., 2006). Indeed, LiDAR offers unique potential 

for terrain and forest monitoring within inhospitable and inaccessible regions. If this 

technique can be tested and honed in less extreme environments then ALS may be able to 

provide the essential tools necessary for management and planning in remote areas. 

Furthermore, numerous studies have reported that airborne laser scanning provides a 

cheaper, quicker alternative to more established methods of data collection (Nelson et al., 

1988; Hyyppa et al., 2000; Nresset 2002; N~sset and 0kland 2002; Popescu et al., 2002; 

Suarez et al~, 2005; Watt 2005; Watt and Donoghue 2005). Penetration of low level 

vegetation and the opportunity for non-monoscopic three-dimensional analysis are some of 

the benefits offered. Indeed, Watt (2005) argues that the accuracy and value ofLiDAR data 

is undisputable. 

To date, the majority ofLiDAR data obtained for forestry has been used to estimate canopy 

heights and other variables such as biomass and volume. Few studies have attempted to 

quantify forest growth and the work of Yu et al., (2004; 2006) suggests this is a 
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. . . . 
. . . : . 

co~plicated task with the potential for large error. Very few studies detail their exact 

methodology and it seems there is a need to hone and develop the algorithms used for 

LiDAR processing in order to obtain a greater level of maturity (Dubayah et al., 2000). 

'Fhe majority of current growth studies have looked solely at the slow-growing, cold 

climate forests of Scandinavia. However, the 2003 and 2(i)(i)6 LiDAR datasets available for 

the Kielder region ptov:ide an excellent opportunity for extending the study of growth to the 

. temperate, faster growing forests· of north ·east England. Indee<-4 the high tree densities, 

simple ·silvicultural regimes and short . forest rotations make Bntish for~sts particulariy · 

suitable for the study ofgrowth over short time periods. 

' The few studies of forest growth using ~LS that have :been published to date have· found 

errors associated with growth estimation to be large (Yu et al., 2004'). As a result it is 

highly necessary .that the collection of groitnd truth data within this project, and further 

afield~ is .as .accurate and' precise as possible. :It is evident that much· effort. has been 

channel'led into accurately locating the ground truth data for precise spatial comparison 

with the LiDAR. transects (Means et at 1999; Popescu et al., 2002; Nresset 2(i)(i)2; Nresset 

and 0kland 20(i)2; Donoghue et al., 2004; Watt 2005; Watt and Donoghue 2005; Yu et al., 

. 2006). Whilstthis is important and worthwhi;le,.little ·attention has been paid to the accuracy 

and precision of the instruments arid equipment used to collect other forest variable data, 

such as height, which is key fm: growth estimation. The Vertex hypsometer, Suunto 

clinometer and height poles have been used' extensively for·height·measurements, yet an 
. . 

exhaustive assessment and comparison of these techniques remains long overdue. 

Consequently, it is a specific aim of this project to perform an evaluation of various height-

measuring instruments as well as to assess the level of error introduced to height 
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measurements by the user. This will permit a better estimation of forest growth and thereby 

allow more reliable conclusions to be drawn. 

To date, the widespread use of remote sensing in forestry has been hindered somewhat by 

mistrust and misunderstanding amongst foresters (Suarez et al., 2005; Watt 2005). Indeed, 

it seems that there remains a gap between research and forestry which needs to be bridged 

by proving the value of remote sensing. Limited experience of most forms of remote 

sensing, with the exception of aerial photogmphy, compounds an inertia amongst foresters 

to acquire new and valuable skills. Yet ALS has the potential to provide accurate and 

repeatable measurements of solid wood quantities and for predicting the commercial value 

of standing timber stocks {Nwsset 2002; Nresset and 0kland 2002; Su~rez et al., 2005). 

Thus, this project aims to build on earlier work undertaken as part of the ForestSAFE 

project, with a view to emphasise the value of remote sensing, and particularly ALS, for 

forest growth monitoring whilst working alongside the Forestry Commission at Kielder 

Forest. As of yet, no study has looked solely at airbome LiDAR data for Kielder for 

. establishing forest growth rates and it is here that this project endeavours to contribute. 

The wider contributions of this research also need consideration. Indeed, LiDAR data can 

provide essential information for improving our understanding of the role of forests in the 

carbon and nutrients cycles (Henning and Radtke 2006). The need for such an 

understanding is becoming ever more acute in an age of severe climate change. LiDAR 

data may be used as a non-invasive technique to better our estimations of carbon stocks and 

thereby help facilitate the international decision making process concerning carbon policy 

and global climate change (Drake et al., 2002; Gobakken and Nresset 2004; Watt 2005; Yu 
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et al., 2006). Furthermore, for the first time ALS provides the ability to monitor and model 

ten-ain beneath forestry, thereby enabling advanced hydrographic surveillance in tropical 

regions prone to landsliding and volcanic activity. Thus, LiDAR may also have a wider role 

to play in disaster management and mitigation (Blair et al., 1999). 
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1.2 BACKGROUND 

1.2.1 LiDAR 

1.2.1.1 The Theory of Airborne Laser Scanning 

LiDAR is an active form of remote sensing capable of providing information in three 

dimensions at high spatia] resolutions and vertical accuracies. The term 'LiDAR' is 

synonymous with 'laser altimetry' and 'airborne laser scanning' (ALS). All terms refer to a 

light detection and ranging system which determines distance using time and the speed of 

· light (Lim et al. 2003). A pulse of energy is emitted from the sensor, usually of a green or 

near-infrared wavelength, and the time it takes to return is used to quantify the distance to 

the reflecting object or surface (Dubayah and Drake 2000). As the scanning system is flown 

over an area, a 3D representation of the surface below is assimilated into a laser point 

cloud. Onboard GPS and inertial navigation systems (INS) (Fig.l.l) allow the exact 

location and orientation of the aircraft to be known so that each point within the cloud can 

be accurately positioned (Goodwin et al., 2006; Kraus 2002). The sampling pattern of these 

points is largely predetermined by the design of the specific laser scanner and is highly 

dependent on platform altitude, scan angle and pulse repetition rate (Ackermann 1999). 
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LASER • SCANNING 

Figure 1.1 LiDAR system including onboard dGPS and ground base station, and inertial navigation system. 
(Source: www.gis.gov.ae accessed 15.0 I .07) 

Currently two types of airborne laser scanner are available, differing in the way they record 

the reflected energy pulse (Fig.1.2). Discrete return systems record a set number of laser 

returns per pulse. Usually only the first and last returns are recorded; however some sensors 

are capable of collecting as many as five returns per pulse (Popescu et al. 2002). Such 

systems are currently more common than the alternative full waveform sensors (Lim et al. 

2003). The latter are able to monitor the entire return signal of the emitted pulse so that a 

full waveform profile may be observed. This is often useful for measuring forest structural 

attributes. However, full waveform sensors are presently more expensive and less widely 

available and therefore are used less frequently. 
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Figure 1.2. Schematic representation of discrete and waveform LiDAR systems. · 

(Source: www.negl.com accessed 15.0 1.07) 

Discrete return systems have been most extensively used within forestry to date, and their 

use for the purposes of this project is appropriate. They work on the principle that the 

reflectance of the laser pulse is Lambertian in character (Goodwin et al., 2006; Friess pers 

comm. 2007; Kobler et al. , 2007). Therefore, depending on the nature of the surface only a 

portion ofthe emitted pulse is expected to return to the sensor. Then, only if the intensity of 

this reflected pulse exceeds a certain threshold is the elapsed time recorded and distance 

calculated. Below this predetermined threshold, reflected energy is impossible to 

differentiate from random noise. Consequently, any reduction in reflection intensity may 

lead to the recording of fewer returns. This may result from rough targets which produce 

complex scattering patterns, the reflection from each small surface then being naturally 

lower in intensity. Larger distances between the sensor and reflecting surface also cause 

intensity reduction, as dictated by Newton's Inverse Distance Law1
• Thus, greater platform 

1 Newton's Inverse Distance Law can be applied to light and all wavelengths of electromagnetic radiation. It 
states that the intensity of light radiating from a given source (in this case, the LiDAR sensor) will be 

7 



altitudes often incur lower density returns (Goodwin et al., 2006). Furthermore, the range 

of scan angles of the LiDAR system also determines the nature of the interaction between 

emitted pulse and reflecting surface. Again given Lambertian type reflectance, the intensity 

of the returned pulse is directly proportional to the cosine of the incident angle as stated by 

Lambert's Cosine Law. Thus, when the incident angle of emitted radiation is normal to the 

reflecting surface the maximum intensity of reflectance is observed. In relating this to 

airborne laser scanning, we find that greater scan angles give returns of lower intensity. 

Therefore, at the very edges of scan lines where incident angles are greatest there is also 

greatest likelihood that very low intensities of reflectance fall below the preset energy 

threshold and thus are unrecorded. Furthermore, greater scan angles induce heavier 

shadowing leading to gaps in the resulting dataset (Yu et al., 2004). As a consequence, 

recommended scan angles for discrete return systems should be below ± 10° and certainly 

should not exceed ±20° (Ackermann 1999; Yu et al., 2004). 

1.2.1.2 The Developme11t of LiDAR 

Laser scannmg is stili a fairly new and emerging active remote sensing technology. 

However, it has experienced significant development since its early beginnings m the 

1970's and 80's in North America (Table 1.1 ), where initial research was led by NASA 

(Ackermann 1999). In Europe, it was first used in oceanographic applications for 

bathymetry mapping and depth sounding, often by defence research agencies (Nilsson 

1996; Yu et al., 2004). Initial problems with georeferencing and aircraft movement 

distortion hindered the early development of laser scanning systems. However, the advent 

inversely proportional to the square of the distance between the source and target surface or object. Hence the 
reduction in intensity with distance. 
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of differential GPS and aircraft inertial navigation systems (INS) has now largely solved 

such serious positioning problems. Indeed, the investigations of researchers at the 

University of Stuttgart in the early 1990's demonstrated the potential of laser scanning 

systems for high geometric accuracy, especially in the generation of digital elevation 

models (DEMs) (Ackermann 1999). Today LiDAR data is used frequently to create DEMs 

of terrain surfaces with high levels of spatial resolution ( 10 hits per m2
) and vertical 

accuracy (15cm) (Lim et al., 2003; Yu et al., 2004). Such DEMs have been used widely 

and in a variety of applications ranging from road planning to archaeology (Perreira and 

Jansen 1999). Indeed, since its early development LiDAR has migrated into many other 

fields, satisfying the needs of both scientific and commercial communities. Today, the 

airborne laser scanner is an easily obtainable and highly reliable instrument for commercial 

surveying (Kraus and Pfeifer 1998). 

Characteristics 
Laser Pulse Frequency 
Max Height A.G.L 
Nature of Returns 

1993 
2kHz 
1000m 
First or last 
4-5 m 

2007 
170kHz 
4500m 
Multiple returns to full waveform 
<1 m 

Table 1.1 The development oflaser scanner instrument technical specifications. 

(Source: Friess 2007 pers. comm.) 

1.2.1.3 The Potential ofLiDARfor Forestry 

Despite not being initially developed for forest applications, the potential of LiDAR in this 

field has become increasingly evident. Indeed, the unique ability of ALS to penetrate 

through gaps in foliage to the underlying terrain makes it a breakthrough technology for 

estimating forest canopy parameters and generating DEMs in forested regions (Ackermann 
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1999; Rieger et al., 1999; Dubayah et al., 2000; Hollaus et al., 2006). This is especially 

useful for steep and otherwise difficult to access areas, and offers an alternative to 

traditional forest inventorying practices. In mountainous areas there is a growing trend for 

planting mixed aged stands due to the inherent dangers of clear cutting large areas of same 

age forest. The characteristics of mixed age stands are difficult to estimate using traditional 

methods so this is where UDAR offers an advantage (Rieger et al., 1999). In less extreme 

environments too, ALS can supply coverage of large areas much more quickly and cost 

effectively than the labour intensive field data collection methods, providing estimates of 

canopy height, volume, basal area, stem diameter and biomass (Drake et al., 2002; Lim et 

al., 2003). 

There remains, however, a lack of expeFience in the use of LiDAR amongst forest 

practitioners. Thus, its great potentia:! goes somewhat overlooked and unexploited 

(Dubayah et al., 2000). Furthermore, there is a lack of maturity in the algorithms used to 

process laser data (although some recent work has aided progression: Sithole and 

Vosselman 2004; Zaksek and Pfeifer 2006; Kobler et aL, 2007). This emphasises the need 

to demonstrate the potential of ALS for forestry through active experimentation and the 

integration of field data with analysis (Dubayah et al., 2000). The following sections 

explore how ALS has been used for forest applications to date and then introduce the 

specific aims and objectives of the use of ALS for forestry within this project. 
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1.2.2 LiDAR for Forestry 

1.2.2.1 Initial Findings 

Early work by Schreier et al. (1984) looked at terrain profiling in Canada using airborne 

laser scanning. They noted that dense vegetation cover introduced an element of noise into 

profiles which led them to suggest the use of laser profiling for assessing vegetation 

canopies. In the same year, Nelson et al. (1984) used laser altimetry to demonstrate the 

detection of changing canopy density conditions. They showed that LiDAR data could be 

used to estimate mean tree height to within 60cm of that predicted by photogrammetric 

methods. Aldted and Bonner (1985) also demonstrated the use of LiDAR for measuring 

stand heights but estimated a lower accuracy of laser-derived heights within 4.1m of 

photogrammetric measures at the 95% confidence level. They also found that laser heights 

constantly underestimated those taken by ground-truthing. Further work by Schreier et al. 

(1985) reported that the use of laser beams of near-infrared wavelength was advantageous 

for accurate tree height measurement. 

Following these initial experiments, the work of Nelson et al. (1988) began a series of 

studies using small-footprint LiDAR to assess various forest canopy characteristics. Nelson 

et al. (1988) collected data concerning canopy heights over a pine forest in southwest 

Georgia, USA. Using this data they were able to predict total tree volume and mean 

biomass to within 2.6% and 2.0% of ground-truth values respectively. Like Aldred and 

Bonner (1985) however, they too found laser height measurements consistently 

underestimated true heights. It was suggested that this was due to the majority of laser 

pulses falling on the 'shoulders' of the dominant trees rather than their peaks. This has 
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since been reported by a number of studies (Nilsson 1996; Nresset 1997; Dubayah et al., 

2000; Nresset 2002; Popescu et al., 2002; Suarez et al., 2005; Yu et al., 2004). 

At this early stage in the history of the use of LiDAR for forestry applications, problems 

with georeferencing were a major source of error. Nelson et al. (1988) used balloons and 

tarpaulins as navigational aids for the pilots and determined the LiDAR transect positions 

using clearly identifiable ground features. In his study of forests in Alo, Sweden, Nilsson 

(1996) placed large white plastic squares on the terrain as ground control points for locating 

the LiDAR transects. In addition, up until the year 2000 GPS measurements of these 

locations were hampered by selective availability (SAi, meaning that the totallocational 

error was greater than 35m. This lead Nilsson (1996) to conclude that: 

"if airborne laser data could be given both height and planimetric co-ordinates 

with high accuracy, single trees or groups of trees could be identified and detailed 

terrain models could be generated. This would be of great importance in many 

different situations, for example, choosing a forest regeneration method, planning 

and constructing forest roads etc." (Nilsson 1996 p.6) 

Over the following few years the development of differential GPS (dGPS) and the 

switching off of SA means that it is now possible to locate specific points or trees with sub-

meter accuracy (5-15cm). 

2 Selective Availability (SA) was the term used for the intentional error introduced by the United States 
Department of Defence. Noise was introduced to the signal and satellites given erroneous orbital data in order 
to prevent the GPS system being used against the USA by enemy forces. This caused significant reducti011 in 
accuracy of measurements until it was switched off in the year 2000 (Hum 1993). 
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Within the last decade, the work of Nresset in southeast Norway has been central in testing 

the ability of small footprint laser scanning for determining tree heights and other canopy 

characteristics. Nresset and Bjerknes (2001) derived mean heights for young stands (<6m 

tall) in Vater and found that regression analyses accounted for 83% of the variability 

between laser- and ground-measured values. Similarly, work with 0kland in 2002 over a 

boreal nature reserve in 0stmarka showed how regressions accounted for 75% of the 

variation in mean height values from LiDAR and ground-truthing. Indeed, the correlation 

between these variables is high with an R2 of 0.91 (Nresset and 0kland 2002). They note 

that LiDAR height estimates are of equal if not better accuracy than more typical methods 

of forest inventorying. Many other papers have found similarly good correlations between. 

small footprint, discrete return LiDAR data and field derived height metrics (Rieger et al., 

1999; St-Onge 1999; Means et a/,, 2000; Nresset 2002; Popescu et al., 2002; Donoghue and 

Watt 2006). Yet many also note that mean errors frequently fall within the range of l-2m 

(Rieger et al., 1999; St-Onge 1999; Nresset 2002). As a result, Nresset and 0kland suggest 

that in order to make best use of such data, the ground truth sampling must be accurate, 

precise and extensive, as must the post-processing oflaser data. Indeed, there is much focus 

today on developing superior processing techniques and improving processing software 

(Sithole and Vosselman 2004; Zaksek and Pfeifer 2006; Kobler et al., 2007). This has been 

driven, in part, by a shift from technology-driven to applications-driven development. Yet it 

is also due to a growing trend of multi-temporal surveying aimed at quantifying change 

rather than just measuring static forest characteristics. Herein lies the study of forest 

growth, and the theme for this project. 
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1.1.1.1 LiDARfor Forest Growth 

It was Yu et al. (2004) who first studied the use of multi-temporal, small footprint, high 

density LiDAR ( lO points/m2
) surveys for change detection in the forests of K.alkkinen, 

Finland, between 1998 and 2000. Tree-to-tree matching algorithms were used in an object­

orientated approach to estimate growth and detect individual harvested trees. A method 

based on the algorithm of Ruppert et al., (2000) was used to create a DEM with an 

expected accuracy of about 14cm (Ahokas et al., 2002). A digital surface model (DSM) 

was generated from the highest laser values falling within each 0.5m pixel. The difference 

between this DSM and the DEM was then taken as the canopy height model (CHM). 

Change detection was next performed using difference imaging, where e.ach pixel value in 

the 2000 CHM was subtracted from the equivalent pixel in the 1998 CHM. Areas of high 

positive differences were highlighted using a certain threshold value and then subjected to a 

segmentation procedure to enable the identification of individual harvested trees. Of a total 

of 83 harvested trees identified in the field, 61 were successfully detected and these were 

mostly the more mature trees at the time of the first laser survey acquisition. For growth 

estimation, trees present at the time of both laser acquisitions were delineated for each 

CHM using a segmentation procedure as defined in Hyyppa et al., (2001a). Local maxima 

filters followed by a watershed based procedure then allowed single tree crowns to be 

identified. Growth estimation then required matching of individual trees in both CHMs, 

which is where a threshold distance of 0.5m was introduced in Yu et al., 's (2004) tree-to­

tree matching algorithm. 
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Verification of height and growth estimates was carried out by comparison with field­

measured values. Like many before them, Yu et al. (2004) noted that individual tree height, 

and as a result growth, was systematically underestimated, in this case by as much as 67cm. 

This corresponds to about 2-3 years growth in the Norway spruce and Scots pine trees 

present in the region of Kalkkinen, and means that errors associated with growth estimation 

are actually larger than the estimated growth itself. Yu et al., (2004) found that 

discrepancies between the two DEMs were largely responsible for this underestimation. 

Following DEM compensation to remove such errors agreement with field data was much 

improved- the precision of growth estimates was approximated to Scm at stand level and 

1 0-15cm at plot level. This led to the suggestion that the lack oflaser pulses hitting the tree 

tops was an unlikely explanation of LiDAR height underestimation and instead that it may 

be caused in part by errors in the DEM. This highlights a serious issue and substantiates the 

need for further study of forest growth using airborne laser scanning. 

In 2006, Yu et al., produced a follow up paper, again attempting to quantify forest growth 

in the Kalkkinen region, using high density LiDAR data from 1998 and 2003. They 

introduced a new algorithm for individual tree matching, based on the concept of the 

Hausdorff distance technique, which produced growth values of a more acceptable 

accuracy. The best correlation between laser- and ground truth-derived growth values was 

reported at R2 
= 0.68 for maximum pixel heights. However, correlation for growth variables 

remain below those reported elsewhere for height, which are consistently above 0.8 (Rieger 

et al., 1999; St-Onge 1999; Nresset and Bjerknes 2001; Nresset 2002; Nresset and 0kland 

2002; Popescu et a:l., 2002; Oonoghue and Watt 2006). Yu et al., (2006) anticipate that this 

is largely due to errors incurred by the difficulty of measuring mature trees in the field, yet 
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it may also result from wind displacement of treetops and the different viewing geometries 

of the two surveys. Thus they give two key recommendations; firstly, the same flight plan 

should be used for all multi-temporal surveys to eliminate problems associated with 

different points of view and; secondly, a priori information concerning expected growth 

patterns should be observed when measuring mature trees. Ultimately, the work of Yu et 

al., has demonstrated that it is possible to measure individual tree growth using multiple 

ALS surveys (Yu et al., 2004; Yu et at., 2005; Yu et al., 2006). This said, it is also 

important to remain aware of the limitations of these current methods. 

Recent papers ofNresset and Gobakken have taken a slightly different approach to make an 

important contribution to studies of forest growth using ALS. Using laser data collected in 

1999 and 2001 over the Valer region of southeast Norway they took a statistical approach 

to test whether forest growth could be detected (Gobakken and Nresset 2004; Nresset and 

Gobakken 2005). Pulse densities were much lower than those obtained by Yu et al., (2004; 

2005; 2006) and thus an object oriented method was unfeasible. It was argued that a lower 

density, larger area approach is more viable in terms of economic cost and processing 

demands. A DEM was created for each dataset using last pulse returns only generated into a 

TIN3
. A height. accuracy of 25cm was expected for the TIN model. First returns were 

spatially aligned with the TIN and the height of each point calculated as a difference from 

the terrain surface. Various height metrics were next computed for each field plot based on 

the heights of all laser points falling within their boundaries. It was found that all metrics 

differed significantly between the two years thus confirming the ability of ALS to detect 

forest growth. However, on comparison with field derived data it was found that the 

3 TIN stands for triangulated irregular network and is discussed in more detail in Chapter 4- Methodology. 
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accuracy and precision of laser growth metrics was low. Nresset and Gobakken (2005) 

suggest that this may be due to inherent errors within the ground truth data and the well­

known problems associated with the eo-registration of multi-temporal same area datasets. 

Little attention is paid to the accuracy of ground truth measurements in the wider literature 

concerning ALS for forestry and perhaps represents an area for further study. In order that 

eo-registration is as accurate as possible, Nresset and Gobakk.en recommend that multi­

temporal data acquisition routines are as robust and as similar as possible. The work of 

Wulder et al., (2007) endorses the combination of optical imagery with LiOAR surveys in 

order to ameliorate inevitable positioning discrepancies. It also seems that the choice of an 

appropriate ground reference level is key for growth estimation. As found by Yu et al., 

(2004) discrepancies in the DEMs account for large amounts of error. Indeed, St-Onge and 

Vepakomma (2004) suggest that use of exactly the same terrain surface for each year is 

imperative if height and growth estimates are to be relied upon. There is also some 

discussion that a two year period is not sufficient to detect growth given the noise incurred 

by error. Normal forest inventorying practices would not expect to analyse growth over 

much less than a five year period (Gobakken and Nresset 2004). Yu et al., (2005) found 

correlations between laser and field variables improved significantly for a five year 

timescale (R2 = 0.66) as compared to two years (R2 = 0.29). Thus, it is concluded that 

further study is necessary to determine how short timescales can be used to provide more 

reliable growth estimations. 

Having examined much of the existing work concerning the use of ALS for forest height 

and growth studies, it is evident that a number of key issues recur frequently and deserve 

further note here; 
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• Only the dominant tree layer is detected by ALS (St-Ooge 1999; Nresset and Bjerknes 

2001; Popescu et al., 2002; Maltamo et al., 2004). 

• The tops of trees are often missed with the majority of laser pulses falling on the 

shoulders of dominant trees. This frequently leads to underestimation of 'true' height by 

the LiDAR system (Nilsson 1996; Nresset 1997; Dubayah et al., 2000; Nresset 2002; 

Popescu et al., 2002; Suarez et al., 2005; Yu et al., 2004). 

• ALS offers a real alternative to expensive and time-consuming traditional forest 

inventorying practices carried out in the field (Hyyppa et al., 2000; Nresset 2002; 

Nresset and 0kland 2002; Popescu et al., 2002; Watt 2005; Watt and Donoghue 2005). 

• Inaccurate and imprecise LiDAR growth estimates may result, in part, from inaccuracies 

within the reference (ground truth) data (St-Ooge 1999; Nresset and Gobakken 2005). 

• Areas for future development include: improving the accuracy of DEM, multi-temporal 

dataset eo-registration and spatial data fusion (Pereira and Janssen 1999; St-Ooge 1999; 

Lim et al., 2003; Romano et al., 2004; Yu et al., 2004; Nresset and Gobakken 2005; 

Donoghue and Watt 2006; Yu et al., 2006; Wulder et al., 2007). 
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1.3 AIMS AND OBJECTIVES 

The aim of this research is to investigate the potential of multi-temporal, small footprint, 

discrete return LiDAR surveys for estimating growth at plot level, over a three year period, 

of coniferous plantation forestry in Northern England. 

Key research questions: 

1. Can multi-temporal ALS detect forest growth over a three year period? 

2. If so, how accurately is this growth predicted? 

3. Can this tell us anything about: 

a. the robustness of our LiD AR processing and; 

b. the accuracy, precision and reliability of our methods used to test the LiDAR 

data? 

In answering these questions, this project will attempt to: 

1. Quantify the heights and amount of growth exhibited by Sitka spruce plantations of 

different ages between 2003 and 2006 using airborne LiDAR data from Kielder 

Forest; 

2. Verify these height and growth estimations made by ALS data using ground based 

observations and; 

3. Assess the accuracy of ground truth equipment and data. 
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In order to address the research questions the project has the following objectives: 

1. Develop a method of summarising and extracting ~iDAR height variables from the 

laser point cloud data with a view to estimate growth. 

2. Design and execute a suitable method of ground truth data collection. 

3. Design and execute a trial-based assessment of the error associated with ground 

truth data collection. 

4. Compare LiDAR and ground-truth derived metrics at a specified scale, considering 

associated errors, to estimate tree growth at Kielder. 

5. Identify and investigate potential sources of error in height and growth estimation. 
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2 METHODOLOGY 

2.1 STUDY SITE 

The 6km2 research area studied here is located within the wider district of Kielder Forest, 

located in Northumberland, England (Fig.2.1). It is owned and managed' by the UK 

Forestry Commission and is the largest forest in the UK covering approximately 62,000 

hectares. Kielder is a plantation forest comprised primarily of Sitka spruce trees (Picea 

sitchensis (Bong.) Carr.). It lies at a mean altitude of 270m and has a mean slope angle of 

6°. It was established in 1926 by the Commission principally for timber production. Today 

the forest plays an important role in the tourism industry of Northern England and 

continues to produce a commercial crop of up to 1300 tonnes of timber daily 

(www.kielder.ota accessed 18.1 0.06). Animal British timber production is set to rise from 

11 to 15 million m3/ha by the year 2020 (Watt 2005) and as a consequence, efficient forest 

management is paramount. Precise, accurate, up-to-date information concerning forest 

resources is a growing necessity, particularly considering the short forest rotations and fast 

growth rates of trees at Kielder. This is where remote sensing, and more specifically 

LiDAR, may be of value for both local and national forest management. 
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Figure 2.1 Location map for Kielder Forest. 

(Source: www.multimap.co.uk accessed 15.01.07) 

There is a growing literature highlighting the value of new remote sensing technologies for 

forest applications. At the local level at Kielder, the remote sensing work carried out during 

the EU ForestSAFE project has been fundamental. Watt (2005) evaluated the potential of 

LiDAR, as well as IKONOS and Landsat ETM+ for providing data concerning forest 

structure. A key aim here was to evaluate the usefulness of techniques other than aerial 

photography for assessing forest characteristics. Watt and Donoghue (2005) published a 

study investigating the use of terrestrial laser scanning systems at Kielder. Their results 

suggest that forest canopy structural characteristics can be accurately quantified using this 

method and that it offers significant advantages over traditional field survey methods. 

Further work in 2006 reinforces the mounting evidence from elsewhere in the scientific 

literature, highlighting the potential of high resolution airborne LiDAR data for accurate 

and thorough forest resource estimation (Donoghue and Watt 2006). 
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Figure 2.2 The study area (IKONOS panchromatic imagery underlies GIS data). 
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2.2 LiDARDATAANDSENSORS 

The multi-temporal laser data was collected during the summers of 2003 and 2006. In 2003 

an Optech 2033 laser scanner was flown by the Environment Agency on behalf of the 

Forestry Commission. In 2006 an Optech 3033 laser scanner was flown by the NERC 

Airborne Research and Survey Facility (ARSF) in conjunction with Cambridge Unit for 

Landscape Mode ling on board their Dornier 228-101 aircraft. 

These are both small footprint, discrete return systems which recorded first and last pulses 

and intensity. Both systems operated in the near-infrared region of the electromagnetic 

spectrum to collect swaths of data, covering the 6km2 test area (Fig 2.4). The 2003 dataset 

is the same as that used by Watt (2005) in his study of Kielder Forest. 

Figure 2.3 The Optech AL TM 3033 laser scanner and associated data collection equipment. 
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Sensor 

Date of Survey 
Scan Angle 

Pulse Density 
Fl · n Altitude 

Optech 
ALTM2033 

26.03.03 
100 

2/m2 

950m 

Optech 
ALTM3033 

05.05.06 
16.5° 
4/m2 

1750m 

Table 2.1 Technical Specifications of LiDAR Systems. 

Figure 2.4 Coverage of the LiDAR datasets. 
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2.3 LIDAR PROCESSING 

2.3.1 Raw laser points 

Both sets of LiDAR point cloud data were provided in ASCII format, having been corrected 

for geometric distortions by the data providers. The 2003 data was delivered in two files 

which had been separated into first and last returns, each containing four columns of data: 

easting (x}, northing (y), elevation (z) and intensity (i). Each file was then halved so that it 

contained around 7,000,000 points, to improve the manageability of the data. The 2006 data 

was provided in separate time-of-flight order swaths. Each swath was represented by one 

file containing all data from both returns in eight distinct columns. These swaths each 

contained appro.x:imately 9,000,000 points but were small enough to process individually so 

that further file splitting was unnecessary. In order to estimate canopy heights and growth 

rates it is first necessary to create a Digital Elevation Model (DEM) of the ground surface 

and a Digital Surface Model (DSM) of the vegetation canopy. 

2.3.2 Filtering 

For each dataset, all points were loaded into the LiDAR processing package TerraScan 

(wvrw.temasolid.fi). This is a dedicated software program for filtering and classification of 

laser points, as well as digital surface generation. The process functions embedded within 

TerraScan are highly automated yet also allow the user to .define point classes, to modify 

classification parameters and to delete erroneous returns. It also provides a good platform 

for point cloud interpolation and consequent digital surface visualisation. 
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Filtering of the returns is the first step in the creation of a DEM or DSM. The main aim of 

filtering is to remove erroneous returns which do not represent the true ground or canopy 

surface. Viewing the point clouds in TerraScan from individual flight strips and smaller 

files allowed obviously erroneous returns to be identified and removed. Such points fall 

above or below the main cloud and thus are easily isolated. These errors may be caused by 

recording inaccuracies in the Time Measurement Unit (TMU) or due to possible multiple 

paths followed by some of the return pulses. This occurs when the laser pulse is reflected 

between a number of surfaces before it is returned to the sensor. This causes a time delay, 

which then means an inaccurate range distance is calculated (Hum 1993; Watt 2005), Thus 

it is highly important that such returns are removed from the dataset before further 

processing is implemented. 

2.3.3 Classification of LPs 

Following the filtering, it is next necessary to classify points into the categories of 'ground' 

or 'canopy' to then create the DEMs and DSMs. Ground classification was undertaken first 

using local neighbourhood filters based on a predetermined set of discontinuity thresholds 

to create the DEMs. Last returns only were used in this process. There has been some 

suggestion that a combination of first and last returns is helpful for DEM creation (Zaksek 

and Pfeifer 2006), however this has been found in areas of very dense canopy and steep 

tetrnin, where the FPs help to identify a terrain gradient and thus aid in terrain modelling. 

This approach assumes that the gradient of vegetation cover and the underlying ground are 

parallel which of course may not always be true. Furthermore, such an approach is most 

helpful when employing a slope based filtering technique. Given that a TIN densification 
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algorithm is used here and that the study area is relatively flat, the decision was made to use 

l~st returns only. This also helps to reduce processing speeds. 

Certain software packages are already equipped with algorithms for filtering and are able to 

perform DEM generations almost instantaneously. Here, the progressive Tllt densification 

algorithm developed by Axelssort (2000) and embedded within the TerraScan software was 

employed. This is an iterative algorithm which combines filtering and thresholding. It 

works by passing a moving window of user defined size (defaulted at 60m x 60m) over the 

data to select neighbourhood minima. A number of explicit assumptions are made at this 

stage in the processing. Firstly, it is assumed that the lowest returns within the dataset do in 

fact represent the ground surface and secondly; that there is at least one laser return per 

window. 

Figure 2.5 Creation of a TIN: A= iteration angle, B =distance. 

Following the selection of local minima, further points are added to the TIN with each 

iteration of the algorithm, provided that they conform to predetermined iteration angle and 

distance thresholds (Fig.2.5). These thresholds set the largest acceptable angle between 

4 A 'Triangulated Irregular Network' or TIN is a network of triangles formed between the data points. 
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points and the TIN facet (A) and the smallest allowable distance to each triangle node (B), 

respectively. The higher the value of A and B then the higher the elevations of points added 

to the TIN. When no points remain below the defined boundary the iterative process 

finishes and selected points are interpolated to form the DEM. 

Watt (2005), in his study of Kielder Forest, found that the initial default settings of a 

window size of 60m x 60m and iteration distance of 1.4m did not produce a satisfactory 

DEM. Consequently, window size was changed to lOOm x lOOm and the threshold distance 

was reduced from 1.4m to 0.5m. This helped to reduce errors within the DEM and better 

defined the ground surface. 

Figure 2.6 3D representation of the progressive TfN densification technique. Local neighbourhood minima 
are located (green circles) and triangulated. New points (black circle) are considered for joining to the 

TfN based on predetermined threshold iteration angle and distance. (Source: Pfeifer 2007). 

In this study, the ground classification parameters were experimented with to test their 

suitability for creating a DEM. Initially, the window size was set at 60m x 60m. As found 

by Watt (2005) however, the resultant DEM was not acceptable. It appeared to feature a 

number of holes where interpolation seemed not to have occurred. On closer interrogation it 

emerged that these holes corresponded with areas of very dense canopy. In fact, such was 
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the density of the canopy in these areas that no ground hits were found within the 60m x 

60m window. If the ground height cannot be determined then there is no reference point 

from which to estimate tree height and growth, which also gives errors in the canopy 

model. Figure 2. 7 demonstrates this problem. Scenario 1 represents the use of a smaller 

window size. Here, sufficient ground returns in window A in box (i) allows creation of the 

DEM successfully, as displayed in box (ii). However, the lack of ground hits in window B 

(box i) causes a hole in the resultant DEM in box (ii). 

As a result, the window size was adjusted to 200m x 200m in an attempt to help the 

algorithm interpolate over these problem areas. This is represented by the increased 

window size in scenario 2 of Figure 2.7. This allows the DEM from window A to be 

successfully generated again. Furthermore, the wider window now covers ground hits at the 

edges of window B. As a result, the DEM can also be created for this area. In this respect, 

the change was successful and the gaps were eliminated. However, the extended width of 

the search window also allowed points to be falsely classified as 'ground'. This is evident 

in Figure 4.2c in Chapter 4 where the structure and location of the stands has become 

evident on the DEM. This results from LPs which actually fall on low vegetation or in the 

canopy being classified as 'ground'. This may also introduce problems elsewhere in the 

DEM leading to an overestimation of the terrain surface. This highlights a well known 

problem of producing high accuracy DEMs in heavily wooded areas where the amount of 

penetration to the ground is low (Kraus and Pfeifer 1998; Zaksek and Pfeifer 2006; HyYppa 

et al., 2005; llollaus et aL, 2006). Indeed, a number of studies have fourid percentages of 

last returns that reach the ground to be as low as 25% (Flood and Gutelius 1997; Kraus and 

Pfeifer 1998; Popescu et al., 2002). 
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As a consequence of such problems, Watt's (2005) recommended window size of lOOm x 

1 OOm was tested. This helped to reduce the DEM gap problem somewhat yet also did not 

compromise the quality of the rest of the DEM. Thus it was carried forward and used with 

an iteration angle of 8° and an iteration distance of 0.5m. Such parameters consider the 

compromise of window size and make allowances for the mean slope angle of 6° in this 

region. Some DEM gaps did remain however. Others have used Delaunay triangulation and 

linear interpolation to remove such problem areas (Yu et al., 2006), yet interpolation to 

cover missing pixels was not performed here. Such gaps help identify areas of very dense 

canopy where the ALS systems run into difficulties. This highlights the current limits of 

ALS and helps to define a problem which deserves further research. Furthermore, it was 

found that none of the key ground truth validation plots fell within these problem areas, 

therefore leaving the gaps caused no further problems for assessing the relationship 

between LiDAR and ground truth der.ived variables. 
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Figure 2.7 The effects of varying window size on DEM creation. 

The indication from elsewhere in the literature suggests that the accuracy of DEMs created 

in this manner lies in the region of 20-25cm (Nresset 1997; Nresset and Bjerknes 2001; 

Nresset and 0kland 2002; Yu et al., 2006). However, no direct check on the accuracy of the 

DEMs was carried out by this study. Instead, the accuracy is inferred indirectly by the 

estimation of tree heights and growth values for reference data plots. Furthermore, a 

comparison of the DEMs from the different survey datasets provides a secondary insight 

into the quality of the terrain model. This was achieved by exporting all points classified as 

'ground' out ofTerraScan at this point. Sections 2.3.6 to 2.3.8 describe in greater detail the 

processes which followed to compare the multi-temporal DEMs. 
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2.3.4 Classification of FPs and remaining LPs 

Following the filtering of erroneous points and classification of the ground surface, the next 

step is to classify points as 'canopy'. This was achieved by selecting all remaining hits, 

whether first or last returns, which fell between 2m and 45m above the ground surface. 

These are then assumed to represent the tree canopy layer. Those hits with a height of less 

than 2m above the ground were excluded to eliminate the effects of small shrubs and other 

low lying matecial. This is a commonly used approach, used to help improve the quality of 

canopy height metric estimations (Nresset 1997; Nresset and Bjerknes 2001; Nresset and 

0kland 2002; Yu et al., 2004). The upper limit of 45m was set using a priori information 

concerning maximum tree heights reached within this geographical area. The classified 

laser point clouds were re-checked visually after canopy classification to ensure that no 

misclassifications had occurred. 

2.3.5 Creation of digital canopy height model 

At this stage in the processing, the canopy points still hold an elevation value above the 

OSGB 1936 Newlyn Datum. Consequently, the next necessary step for height and growth 

estimation is to give these points a height above the ground surface. This was achieved in 

TerraScan by setting the ground surface model to act as a geoid to which canopy points 

could then be adjusted. This has exactly the same effect as subtracting the heights of 

canopy points from the DEM. Thus canopy points were given a height above the ground, 

and the points within the DEM were set atOm. 
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2.3.6 Extraction of height metrics to a Sm x Sm grid 

The following step involved exporting all ground and canopy points out of TerraScan in 

ASCII format. Each point exported was characterised by x (easting), y (northing), z (height 

above ground), i (intensity) and c (class) values. At this stage, the point data remained 

separated into smaller files (2003 data) and time-of-flight swaths (2006 data). Each of these 

files was then imported into the statistical software package ST AT A and processed 

separately. 

The choice of an appropriate grid resolution was key at this stage in the processing. The 

resolution of the laser data determines the lower limit of grid size which can sensibly be 

used. For example, for a pulse density of 1 hit per m2 a grid size of more than lm x lm is 

necessary so as to prevent bias in the output. Furthermore, if the grid size becomes too large 

then spatial subtleties within the data are lost. A compromise was reached with a 5m X: 5m 

grid resolution. This allowed height and growth to be assessed fairly at both the plot and 

stand level. 

It is possible to process canopy height and ground data in TerraScan, however this software 

only allows the output of a single height measure at one time. Conversely, the use of a 

specially developed routine in STA TA permitted a much wider variety of height metrics to 

be computed. These included mean, maximum, a number of height percentiles, standard 

deviation, covariance and number of hits per square. Each one of these metrics was 

computed for all laser hits falling within every Sm x Sm square of the entire area of 

coverage (Fig.2.8). The output data was then exported as an ASCII file. 
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Figure 2.8 Schematic representation of the purpose of the ST AT A processing routine. 

The output ASCII file for each metric of each separate file was next loaded into ArcGIS and 

processed into raster format. The 2006 time-of-flight order swaths featured some 

overlapping areas for all metrics and for the DEMs. Difference imaging was performed for 

the areas of overlap of the DEMs to check for consistency between the files. Some large 

discrepancies were revealed which are presented and discussed in Chapters 4 and 5. The 

separate smaller (2003) and time-of-flight (2006) files were next merged together using the 

mosaicking tool. In areas of overlap the mean value of overlying pixels was taken. The now 

whole 2003 and 2006 datasets were next clipped to the extent of roughly 6km2 area of 

interest. This allowed comparison both within (in terms of different statistics) and between 

the multi-temporal datasets. 

2.3. 7 eo-registration of datasets 

The use of any multi-temporal data requires special consideration in terms of geo-

registration. If the datasets do not overlay accurately then the accuracy of any subsequent 

analyses will be jeopardised. Theoretically, the integrated GPS within the airborne laser 

scanning system means that all data are accurately and automatically georeferenced from 
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the moment of acquisition. However, investigations with the Kielder datasets found the 

2006 data to be offset by about Sm in a northerly direction. This was determined by 

highlighting clearly identifiable features on both images and measuring the shift in their 

location. Careful assessment indicated that the same, seemingly systematic shift was true 

for all different metric files. When difference imaging was performed, the offset incurred 

edge effects. Given the simple linear nature of the shift between datasets, the process of 

correction was fairly straightforward. All 2006 files were exported into the image 

processing software package 'ERDAS Imagine'. This program enabled the 2006 datasets to 

be moved south by Sm, so that on re-importation into ArcMap they were aligned properly 

with the 2003 data and the edge effects were removed (Fig.4.12b). The reason fot this shift 

remains unclear and time constraints prevented reprocessing the initial raw point clouds by 

the data providers. 

2.3.8 Difference Imaging 

Having computed a variety of height metrics and adjusted files for geo-registration issues, 

the next step for extraction of growth values is to perform difference imaging. This simply 

involves the spatial subtraction of 2006 data from 2003 data in ArcMap, for any given 

metric. Taking the resulting image as a whole allows visual assessment of growth for the 

entire study area. For example, Figure 4.12b shows the spatial subtraction for mean height 

following geospatial adjustments. 
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2.3.9 Extraction .of LiDAR Plot Data 

The ground truth validation plots and the trees within them were next added on top of the 

height and difference imagery in ArcMap (Fig.2.9). The exact location and dimensions of 

each plot and each tree were recorded using a Leica series 300 differential GPS which 

resulted in accurate positioning over the LiDAR datasets. This allowed a spatial extraction 

tool to be used to determine the LiDAR pixel height or growth value at the location of 

every tree in every plot. This data was exported into the statistics package STA TA for 

comparison with ground truth data. 

Figure 2.9 {a) Example of overlaying plot and tree locations on mean height growth LiDAR data. (b) 
Highlighted pixels I and 2 demonstrate high and low numbers of trees- important in terms of 

generating weighted LiDAR plot values. 

Furthermore, two averaging methods were also deployed for extraction of LiDAR values at 

the plot level, ready for comparison with ground truth reference data. The first of these 

weighted all pixel values falling within the boundaries of each plot by the number of trees 

falling within that pixel. For example, Figure 2.9b highlights two different pixels. Pixel 1 

contains many more trees that pixel 2 and therefore the LiDAR value for that pixel will be 

weighted much more heavily that that of pixel 2 when computing an average value per plot. 
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It was anticipated that this may provide an average plot value which better represented the 

distribution of trees within the plot and thus would correlate better when regressed against 

height and growth measures obtained in the field. This method is summarised by· Equation 

1 where t represents the number of trees within the plot and p the pixel value. 

h =""' I;P; 
w L..J; ""' t . L..J; I 

Equation 1 

The second averaging method took the unweighted mean of all pix,els falling within the plot 

area. Pixel values were considered in the calculation of mean plot height or growth 

regardless of whether the entire pixel fell within the plot boundary or not. In this case, the 

LiDAR values ofpixels 1 and 2 in Figure 2.9 would be considered with equal weight. Plot 

averages obtained by both these approaches were also inputted into ST AT A for comparison 

with ground truth data. 

A summary of the LiDAR processing methodology is displayed in Figure 2.1 0. 
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I Raw laser points I 
I 

I Filtering of erroneously high and low points 

I 
Last returns classified as ground by preset ground classification 

parameters using the embedded TIN densification algorithm 
(Axelsson 2000) 

I 

Remaining last and first returns lying more than 2m above the 
ground are classified as canopy hits 

l 
Ground surface (DEM) is subtracted from canopy surface (DSM) 

to give canopy hits a height above ground level (DCHM) 

I 

Various height metrics extracted from point clouds to a 5m grid I 
I 

I eo-registration of multi-temporal datasets 

I 

I Difference imaging to obtain growth data 

I 
Extraction of plot and tree-wise LiDAR data: weighted and 

unweighted variables computed at plot level 

l 
LiDAR height and growth variables regressed against ground 

truth data 

Figure 2.10 Summary of the LiDAR processing chain. 
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2.4 GROUND TRUTIDNG 

The collection of ground truth data is an imperative part of any LiDAR based investigation. 

When forest mensuration data can be collected and matched accurately to the exact location 

of each individual tree it can provide a check on the quality of the laser data. Within the 

literature, many different approaches have been taken to collecting biophysical validation 

data. Within them all lies a common thread; the strive for accuracy and precision. 

A sub-compartment database, supplied by the Forestry Commission, provided data 

concerning stand ages, species types and yield classes5
• These data were used in 

combination with prev:iously acquired forest survey data at known plot and tree locations in 

Kielder Forest (Watt 2005). Such reference plots are used routinely to sample of trees 

believed to be representative of the forest structure in any one given forest stand. 

The Forestry Commission recommends that in order to be truly representative of forest 

structure, plot sizes should not be less than O.Olha. For safety reasons slope angles should 

not be too great and plots should be easily accessible from forest roads. Furthermore, plots 

should be spread over a range of different sub-compartments in order that they fully sample 

the range of age classes and site conditions within the forest 

The ForestSAFE project established and recorded biophysical data for a total of 60 ground 

reference plots within the 6km2 study area at Kielder in 2003. These data were used to 

validate the 2003 LiDAR dataset and set the standard recording procedure for collection of 

5 The yield class for any given stand provides a measure of the expected productivity of that stand, given 
consistent age and species type. Yield classes are derived from empirical models and range from 6 (lowest 
expected productivity) to 14 (higher expected productivity) for the plots at Kielder assessed here. 
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ground truth data in 2006. Of the 60 plots measured by the ForestSAFE team in 2003, 22 

were re-visited in 2006 (Fig.2.11 ), of which 11 were again re-surveyed in early 2007 

(before the next growing season began). The 22 plots then provided sufficient data from 

which to quantify growth over the 3 year period. The ll plots surveyed again in 2007 

formed part of this study which will look into ground truth measurement error and is 

discussed further in Chapter 3. 

- NewRoad 

18888 Trial Area 

• Ground Truth Plots 

- Forest Roads 

- Japa.nese Larch 
- Lodgepole Pine 

- Mixed Broadleaves 

- Norway Spruce 
- Omorlka Spruce 

Figure 2.11 The location of the 22 ground validation plots. 
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The majority of the 22 ground validation plots were 0.02ha in size and followed the 

conventional circular layout (Fig 2.12a). The plot centre was located with a wooden stake 

and its location surveyed using a Leica 300 series dGPS. The plot boundary was then 

determined as 7.98m from this central stake using a Vertex hypsometer as a digital distance 

measuring device. A couple of plots were set out not as circles but as squares covering 

O.Olha (Fig 2.12b). Here each plot corner was marked with a wooden stake and surveyed 

using the Leica 300 series dGPS. These plots were previously established by Watt (2005) 

as part of larger 0.16ha squares intended for comparison with the coarser spatial resolution 

of Landsat data (Watt 2005). Obviously such large plot sizes were not needed here given 

the finer resolution of LiDAR data. However, ·given the existence of ground reference data· 

for these square plots from 2003 and 2006 it seemed appropriate to exploit these plots for 

their height and growth measurements. 

All trees which fell within plot boundaries were numbered and marked using plastic clips 

(for younger trees) or by spraying the trunk with orange paint. The position of each tree 

was also determined using dGPS. When view of the sky was too heavily obstructed by 

dense canopies to enable a signal to be obtained, the principles of trigonometry and 

Pythagoras's theorem were employed using a compass and bearing to locate the tree in 

relation to the centre of the plot. The positional accuracy of plot centres is expected to be ± 

0.05m given a clear view of the sky. However, for trees located using trigonometric 

measures, a locational accuracy of ::t; 0.70m is anticipated. 
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Figure 2.12 Plot layouts: (a) the conventional circular 0;02ha plot and (b) the square 0.01 ha plot. 

For each plot, a set of biophysical measurements were made and recorded in 2003 (by the 

ForestSAFE project), 2006 (by a team from Durham University) and in 2007 (by this 

study). This included the height, diameter, basal area and level of dominance of every tree 

within the plot boundary. 

Under standard forest inventorying procedures only a sample of the entire plot is measured 

for height however here it was considered necessary that each tree should be surveyed and 

positioned for comparison with the LiDAR data. All trees taller than 1.3 7m were measured 

using a Vertex Ill hwsometer (Haglof, Sweden) and those smaller than 1.3 7m with a tape 

measure. For those measurements taken under this study special attention was paid to 

locating the top of very tall trees in dense canopies. 

Diameter at breast height6 (dbh) was also recorded for each tree, using a diameter tape. 

Measurements were rounded to the nearest half centimetre. Standard practise in measuring 

dbh dictates that where the ground is sloping, the 1.3 7m should be measured from the up-

6 Diameter at breast height or dbh is the girth of the tree at 1.3 7m above the ground. 
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slope side of the tree. Similarly, when the tree itself is leaning, the measurement should be 

made from the underside ofthe tree (Fig.2.13). 

a b 

Figure 2.13 Rules of dbh measurement: a) where the tree lies on sloping ground, dbh is measured on the 
upslope side of the tree; b) where the tree is leaning, dbh is measured on the underside of tree. 

Dbh measures were then used as detailed in Equation 2 to calculate tree basal area (m2
). 

G = tr(dbh) 2 

200 
Equation 2 

Basal area (G) can then be used to compute Lorey' s Mean Height (LMH). This is a plot 

height average which weights each tree by basal area. The calculation of LMH is displayed 

in Equation 3, where g is basal area (m2
) and h is tree height (m). It has previously been 

shown as a useful plot averaging technique for comparison with LiDAR plot averages and 

thus was calculated for the each of the 22 plots in this study (Nresset 2002; Nresset and 

Gobakk:en 2005). 
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Equation 3 

Tree dominance was also recorded for each tree during ground truthing. This uses a 

classification scheme developed to categorise trees based on their proximity to the 

surrounding trees, their crown size and crown light exposure (Bechtold 2003). In this case, 

five key classes were used as detailed below (Watt 2005). These classes have been 

represented as a cartoon in Figure 2.14. 

A. Dominant: Tree crown sits above height of other tree crowns so that it is exposed to 

light from above and from the side. 

B. eo-Dominant: Tree crown sits at the level of the main canopy, recetvmg the 

majority of light from above 

C. Sub-Dominant: Tree crown extends into the main canopy, but tree is shorter than 

dominant and eo-dominant trees, receiving very little light from above. 

D. Suwressed:. Tree crown sits well below height of main canopy therefore receiving 

no direct light from above or the side. 

E. Dead: Tree crown is not live. 

Finally, the position of each tree and all its associated data were coded in GIS format. This 

was necessary for the extraction of LiDAR data at the location of each tree. 
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Figure 2.14 Schematic representation of the five levels of tree dominance. 

2.5 SUMMARY 

This chapter has introduced the study area and LiDAR datasets. The LiDAR processing 

chain and ground truth data collection were also detailed. The assessment of ground truth 

error is presented in the following chapter, the results are presented in Chapter 4, analysed 

in the Chapter 5 and drawn together in the discussion presented in Chapter 6. 
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3 ASSESSMENT OF GROUND TRUTH ERROR 

3.1 AIMS 

To date, the reported errors associated with estimating forest growth from LiDAR data have 

been large (Yu et al., 2004; Yu et al., 2006). Yet the source of this error (LiDAR or ground 

truth) cannot be determined with any certainty. As a result, much effort has been channelled 

into developing superior processing techniques and into eo-registering the LiDAR and 

ground truth data as accurately as possible (Means et al., 1999; Pfeifer et al., 1999; Popescu 

et at 2002; Naesset 2002; Naesset and 0kland 2002; Donoghue et al., 2004; Sithole and 

Vossehnan 2004; Zaksek and Pfeifer 2006; Hyyppa et al., 2005; Watt 2005; Watt and 

Donoghue 2005; Hollaus et al., 2006; Yu et al., 2006; Kobler et al., 2007; Pfeifer 2007 

pers. comm. ). Very few studies have attempted to quantify precision or bias in ground­

based observation. A study by Barron (2001) compared a number of tree height measuring 

instruments and found the Vertex Ill to produce precise and unbiased results. However, this 

study is one of very few and so further assessment remains long overdue. Indeed, St-Onge 

(1999) acknowledges that in many studies of ALS for tree height estimation, the 'true' 

height of the trees remains unknown and that "the accuracy of the laser-predicted heights 

is evaluated from error ridden ground truth data " (p.5). 

This chapter details the design, implementation and results of an evaluation of a range of 

height measuring devices undertaken within this project. It is anticipated that this 

assessment will allow an estimation of the errors associated with ground truthing thereby 

enabling better estimates of forest growth to be obtained. 
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3.2 ASSESSMENT DESIGN 

The location of the test site for this study was chosen following consultation with the 

Forestry Commission due to its easy accessibility and because the trees were already 

scheduled for felling (Woodhouse, pers. comm.). Indeed, it was important that the trees 

could be felled to determine their true height without causing problems for areas of high 

commercial or environmental value. The study area runs alongside a new forest road as 

seen in Fig.3.1, sits within the area of ground truth plots and is covered by both LiDAR 

surveys. The stand has a yield class of 10 and was planted in 1956 with a tree spacing of 

1.7m. 

Figure 3.1 Close up of the new road and trial area. 

A total of fifteen trees were selected to cover a range of different heights and levels of 

dominance. As a result, the trees were not located in a cluster like they might be in a normal 

plot layout but were scattered over an area of approximately 250m2
• Each tree was 

numbered and marked with orange spray paint. The height at which dbh is measured 

(1.37m) was also marked in orange as a ring around the trunk (Fig 3.2). This was to enable 

faster and more consistent measurements of dbh. Each tree was then measured for height 

48 



and dbh by nine different people, with varying levels of experience, using three different 

height measuring instruments and from two different angles 

Figure 3.2 Photograph of the forest and new road, the test site for assessment of ground truth error. The trees 
surveyed are situated to the left of the road (Photo: A.Woodget 05.06.07). 

Figure 3.3 The trial area showing how the tree number and dbh was marked in orange. Field assistant using a 
tape measure as part of the technique of measuring tree height with a Suunto clinometer (Photo: A. 

Woodget 05.06.07). 
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3.2.1 Instrument Effect 

In order to assess the effect of error associated with ground truth height measurements 

devices, three different instruments were compared. These were the Vertex Ill hypsometer, 

a Suunto clinometer and tape measure and the LaserAce hypsometer (Fig 3.4). The 

technical specifications of all these instruments are presented in Table 3 .1. 

a b c 

Figure 3.4 The three height measuring devices: (a) Vertex III Hypsometer, (b) LaserAce Hypsometer and (c) 
Suunto Clinometer. 

The Vertex Ill (Fig 3.4a), manufactured by the Swedish company Haglof, is widely used 

for forest mensuration applications. The handset works using ultrasonic communication 

with an associated T3 transponder unit. The transponder unit is placed at a height of 1.37m 

on the tree trunk. The user then stands in a position where they can see both transponder 

and tree top. The vertex is next used to measure the distance between user and transponder 

with ultrasound (distanced on Fig.3.5). The angles of inclination to the tip of the tree and 

the transponder are then measured by the embedded digital inclinometer (angle b on Fig 

3 .5). The height of the tree to the nearest 0.1 m is then calculated internally (Equation 4) and 

the result shown on the handset's digital display. 
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Vertex Tree Height (m) Equation 4 
Hv = 1.3 7 + h 1 + h2 

Where h1 = d(tan a) 

h2 = d(tan b) 

It should also be stressed that it is vital to calibrate the vertex before survey work 

commences. Humidity, air pressure and temperature have a distorting effect on the range 

and extension of the ultrasound signal. If calibration using the incorporated temperature 

sensor is performed regularly then problems incurred by changing atmospheric conditions 

are minimised. The measurement inaccuracy resulting from a lack of calibration is 

estimated at 2cm per °C (www.haglofsweden.com). 

H 

1.37m 

Figure 3.5 The tree height measurement principles of the Vertex Ill hypsometer. The yellow and black 
circular device represents the transponder. 

The LaserAce hypsometer device (Fig 3.4b) is manufactured by MDL Laser Systems 

(www.laserace.com) and has been less commonly used than the Vertex Ill. It uses a laser 

rangefinder and an inbuilt accelerometer inclinometer to determine distance and angle from 
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the user's position to both the base and tip of the tree (Fig 3.6). The unit then calculates tree 

height to the nearest O.Olm and displays the result on the LCD screen. In order to work 

properly the rangefinder must have a clear line of sight to the tree base and top. If not, the 

laser will rebound from a closer object (such as branches and stems), causing an incorrect 

range to be recorded and thus an inaccurate height to be calculated. The LaserAce can 

measure ranges and calculate tree heights from a distance of up to 150m without using 

reflective targets. It can also be used to calculate tree diameter and lean angle, however the 

height measuring function was the only one employed within this study. 

Figure 3.6 The use of the LaserAce Hypsometer. Distances I and 2 are determined in order to measure the 
height or length (L) of the tree (Source: www.laserace.com). 

The clinometer (Fig.3.4c) is a widely used instrument, manufactured by the Finnish 

. company Suunto. It can be used not only for measuring the height of distant objects, but 

also angles and slopes. Unlike the Vertex Ill and Laser Ace, the Suunto clinometer does not 

feature a rangefinder device and therefore must be used with a tape measure to determine 

range to the tree. The instrument is first held horizontally. It is then tilted down to the base 

of the tree at which point the angle of inclination is recorded by the user. It is then tilted 

upwards to the top of the tree, and the inclination angle also recorded (Fig.3.7). Once these 
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two angles and the range to the tree is known, tree height may then be calculated in a 

similar fashion to that employed by the Vertex Ill (Equation 5). 

Vertex Ill Laser Ace 
Suunto Clinometer 

H someter H so meter 
Operating temperature -15 to +45 °C -10 to +45 °C Unknown 

Heigbt resolution O. lm O.Olm 1/40 ofthe range 

Angle range -60° to +94° -70° to +70° -90° to +90° 

Angle resolution 0.1° 0.1° 10 

Table 3.1 Technical specifications of height measuring instruments. 

Suunto Clinometer Tree Height (m) 
Hs = ht + h2 

Where h1 = d(Tan a) 

Figure 3. 7 The use of the Suunto clinometer for measuring tree height. 

Equation 5 
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3.2.2 Instrument User Effect 

The second part of this study aimed to assess what variability can be expected within 

ground truth measurements due to different users. To achieve this, each person from a total 

of nine, was asked to survey the height of each of the 15 trees using each of the height 

measuring devices. The users had varying levels of experience with the devices and of 

working in forest conditions. They ranged from the totally inexperienced to regular users. 

3.2.3 Viewing Angle Effect 

The final part of the trial aimed to assess whether an increased amount of error in ground 

truth measurements could be observed due to viewing angle. The set-up of the study site 

was well suited to investigate this. Each user was asked to make two height measurements 

of each tree; one from the new road and one from within the forest itself (Fig. 3.8). The line 

of sight to the top of the tree was much clearer from the road edge thus allowing a straight 

forward assessment of instrument and user error. However, those measurements taken ,from 

within the forest better simulated normal ground truth plot conditions. ~s a result, this 

allowed an assessment of error incurred under normal, operational constraints. 
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Figure 3.8 Cartoon demonstrating the difference between viewing tree tops from the road (clear line of sight) 
and from within the forest (sight obstructed by forest foliage). 

3.2.4 Plot 3 

Further to this trial study, data was also collected from Plot 3 for the purposes of assessing 

the errors of ground truth validation (See Figure 2.11 for location). This is a pure Sitka 

spruce plot, planted in 1975 with a yield class of 14 and an average spacing of 2.0m. It is 

located on a steep slope with an average slope angle of 13.9°. Dominant trees make up 

44.8% of the total tree count. 

This plot was surveyed during both LiDAR flights and ground data was collected in 2003 

and 2006. The stand in which the plot is located was scheduled for felling in spring 2007. 

Consequently the plot was resurveyed using ground truthing methods in 2007, a week 

before the felling took place. Once felled, all trees were measured using a tape measure. 

These datasets provide a unique opportunity to compare LiDAR and ground truth height 

measures with the felled tree heights. The data from this part of the study is presented in 

section 3.3. 
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3.2.5 The 2007 Revisits 

Of the 22 plots visited for ground validation purposes in 2003 and 2006, 11 were revisited 

in 2007. The ground truth data from 2003 and 2006 was taken into the field in 2007. All 

trees were resurveyed for height using the Vertex and diameter using the diameter tape. The 

purpose of these revisits was to investigate any tree growth values which seemed dubious 

from the previous datasets as a means of assessing the accuracy and precision of the ground 

truth data. 

Trees exhibiting anomalous growth were carefully assessed during re-measurement, any 

peculiarities noted and a dataset of adjusted measurements was created. Peculiarities 

included broken off stems, tree tops that were very hard to see, species other than Sitka and 

double and multiple leaders. For example, a tree was recorded as being 14m in 2003, then 

llm in 2006 and then 14.2m in 2007. In this scenario it seems obvious that an error was 

made in the 2006 measurement and thus the new dataset is corrected to display 14.2m for 

2006. Despite the fact that a 2007 measurement has been used for 2006 and thus the value 

is not entirely accurate, it provides a better estimate of the true tree height than the previous 

measure. In another scenario, when reassessed in 2007 the tree recorded at 14m in 2003 and 

then llm in 2006 is·found to have a broken stem and is thus again recorded at llm. In this 

case, what first seemed a strange negative growth value is logically explained by the tree's 

condition. Therefore the 2006 value is left at llm in the new dataset. In a third scenario, a 

different tree is found to be 17m in 2003 and 21m in 2006. A 4m growth in three years is 

highly unlikely and thus the tree is resurveyed in 2007 and is found to be 19m. This too 

seems unusually high so again the tree is surveyed. This time the height is recorded as 22m. 

The conclusion of this scenario is that the top of the tree is very difficult to identify and 
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thus measure accurately. This detail is noted and the 2006 measure is left at 21m in the new 

database. 

So for the 11 plots revisited in 2007, two ground truth height datasets are available; first, 

those values recorded in 2003 and 2006 and second, an adjusted set of values reflecting the 

findings of the 2007 revisits. Only the first of these datasets is used extensively in 

comparison with the LiDAR data in' the following chapters as it provides full coverage of 

the 22 ground validation plots. The results of the second dataset are presented in Chapter 

3.3 in order make some conclusions concerning the accuracy and precision of ground 

validation data collected routinely for forest inventorying purposes. 
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3.3 RESULTS 

This subsection presents the results from the investigations into the accuracy and precision 

of ground truth data collection. Firstly it looks at data collected during the instrument trial 

near the new forest road. Then it presents the results from felled plot number 3 and finally it 

looks at the outcome of the revisits to the 11 plots during spring 2007. 

3.3.1 Instrument Assessment 

This section presents the data collected during the trial study near the new road section at 

Kielder Forest. For comparing the different instruments, an average tree height was 

calculated from the 9 different user measurements for each viewing angle. The average 

values taken from the road are displayed in Table 3.2 and compared graphically in Figure 

3.9. The average values taken from the forest are displayed in Table 3.3 and compared 

graphically in Figure 3.10. From this point onwards, the term 'height error' or h6 will be 

used to describe the mean difference between the measured'tree height and the felled tree 

height. 
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Tree Felled Vertex Clinometer Laser Ace Number Hei ht 
I 22.80 21.2 21.6 22.1 

2 11.13 12.1 12.6 9.6 

3 21.02 19.6 21.2 15.7 

4 21.48 21.4 20.6 17.6 

5 21.78 21.6 21.4 16.2 

6 17.43 17.4 16.9 16.6 

7 20.70 20.4 20.3 19.4 

8 19.45 19.3 19.0 16.2 

9 17.70 17.4 16.7 15.8 

10 17.58 17.1 17.3 16.8 

11 18.52 18.5 18.3 16.0 

12 14.15 13.6 15.4 11.2 

13 15.43 15.1 15.4 12.2 

14 17.66 17.5 17.8 16.2 

15 17.50 16.7 16.6 16.8 

Table 3.2 Heights recorded by different instruments as viewed from the road, and felled height. 

It can be seen in Figure 3.9 (road viewing angle) that the Vertex and Clinometer 

measurements sit closer to the x = y line than the LaserAce does, indicating a better 

measure of felled height. The height errors for the Vertex and Clinometer are as great as 

about 1.5m, however most of the data points sit within ±lm of the x = y line. In contrast to 

this, the Laser Ace consistently underestimates the true height of the trees, with height error 

in the range of -0.7 to -5.5m. There appears to be a trend amongst all the instruments to 

underestimate true height. Indeed, only a small number of data point sit above the x = y 

line. These observations are reflected i~ the statistics presented in Table 3.4. 
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Figure 3.9 Comparison of Average Instrument Tree Heights from the Road. 

Tree Felled 
Vertex Clinometer Laser Ace 

Number Hei ht 
22.8 20.9 22.0 11.6 

2 11.1 11.4 11.0 9.3 

3 21.0 21.4 21.2 12.3 

4 2 1.5 21.0 21.6 11.5 

5 21.8 21.8 19.5 13 .7 

6 17.4 16.7 17. 1 10.3 

7 20.7 20.4 21.2 10.6 

8 19.5 19.1 18.4 10.6 

9 17.7 18.1 19.0 10.1 

10 17.6 17.9 17.0 9.2 

11 18.5 18.1 18.5 8.4 

12 14.2 14.5 14.9 7. 1 

13 15.4 15.6 15.5 8.4 

14 17.7 17.8 19.0 8.7 

15 17.5 17.3 18.5 10.0 

Table 3.3 Heights recorded by different instruments as viewed from the forest, and felled height. 

In comparison to this, Figure 3.10 gives the felled height versus predicted heights from the 

three instruments from the forest viewing angle. It initially seems that data points are more 

widely spread from the x = y line than for the road viewing angle, especially for the 

LaserAce. This time, the height error is as great as 1.9m for the Vertex, 2.3m for the 
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Clinometer and 11.2m for the LaserAce. Thus, it is also evident that the patterns observed 

from the road viewing angle remain. The Vertex and Clinometer measurements sit much 

closer to the felled height than the LaserAce, as indicated by the mean difference figures in 

Table 3.4. The LaserAce continues to underestimate true tree height, but to a much greater 

extent than from the road viewing angle. The best height estimates from the LaserAce are 

still almost 2m from the true height. Table 3.4 indicates that the strongest association with 

felled height data is with the Vertex measurements. The clinometer appears to show least 

systematic height error (indicated by the mean differences) but the Vertex consistently 

shows the least random error (indicated by the standard deviations) of the three instruments . 
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Figure 3.10 Comparison of Average lnstrument Tree Heights from the Forest. 
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Viewing Angle Instrument If Equation 
Mean Standard 

dijJ'erence Deviation 
Vertex 0.971 y = 0.89x + 1.70 -0.4 1.0 

Road Laser Ace 0.745 y = 0.85x + 0.32 -2.4 1.3 

Clinometer 0.959 y = 0.82x + 3.00 -0.2 1.2 

Vertex 0.967 y = 0.90x + 1.72 -0.2 1.4 

Forest Laser Ace 0.551 y = 0.40x + 2.72 -8.2 2.0 

Clinometer 0.906 y = 0.90x + 1.99 0.0 1.7 

Table 3.4 Statistics for the regression between felled height and Vertex, Laser Ace and Clinometer measured 
heights of trees studied by the trial. 

Figure 3.11 takes the Vertex measurements from the road viewing angle and compares the 

results from the nine different users. The users were separated into three categories 

depending on their level of experience with the equipment. All experienced users were able 

to measure tree heights using the Vertex to within 2m of the true height, with most results 

falling within 1 m of the true height This is indicated by the red triangles which sit close to 

the x = y line. Users with some experience, shown by the blue squares in Figure 3.11, also 

mostly managed to measure tree height to within 2m of the true height, with one anomaly. 

The scatter of points for inexperienced users is greater, with differences from the true tree 

heights being as great as -5.1m. However, the majority of all measurements fell within 

1.5m of true height, regardless of level of experience. 
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Figure 3.11 Vertex measurements by tree taken from the road view. Users colour coded by level of 
experience. 

Figure 3.12 takes Vertex measurements to compare results from the different users from the 

forest viewing angle. All experienced users, again indicated by the red triangles, measured 

all of the trees to within 2m of true height which results in the data points sitting closer to 

the x = y line than the those for the other users. The measurements taken by users with 

some experience (blue squares) ranged up to 3.5m from the true height, yet most points fell 

within 2m. Most measurements by inexperienced users were within 4m of the x = y line but 

some ranged as much as 6.8m from the felled tree height. Comparing Figure 3.12 with 

Figure 3.11 it is evident that the measurements taken from forest viewing angle have a 

greater spread from the x = y line than those taken from the road viewing angle. This visual 

assessment is consolidated by an average standard deviation figure. This was calculated by 

computing the standard deviation of the difference from true height measurements for each 

tree, and then averaging these values. This resulted in a mean standard deviation of 1.0m 

for the road viewing angle and 1.4m for the forest. The same is also true for the clinometer 
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and LaserAce, for which the standard deviation values for the road are 1.2m and l.3m, and 

for the forest are 1.7m and 2.0m respectively (Table 3.4). This also serves to show that the 

precision of the Vertex instrument is greater than the clinometer, which is also greater than 

the LaserAce. 
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Figure 3.12 Vertex measurements by tree taken from the forest view. Users colour coded by level of 
experience. 

3.3.2 Plot 3 Data 

This section presents the 2007 ground truth, 2006 LiDAR and 2007 felled height data 

collected at plot 3. Figure 3.13 shows the LiDAR and ground truth measures plotted against 

the measured 2007 felled height. The blue crosses of the 2007 ground truth data better 

mirror the x = y line than the red points of the 2006 LiDAR data. This indicates that the 

ground truth data is better able to predict the felled height of the trees within this plot. This 

is reflected by a co-efficient of determination of R2 = 0.87 for the regression between 
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ground truth and felled height data. A number of red LiDAR points do fall near the x = y 

line, however most fall well below it. This is shown by the mean values displayed in Table 

3.5. The R2 value of 0.001 for the regression between LiDAR and felled height data also 

demonstrates the lack of a relationship here. The spread of LiDAR points is greater, with 

the height error (difference from the felled height) ranging from -6.lm to 5.5m. In contrast 

the height error of ground truth points ranges only from -2.55 to 1.3m. This is also reflected 

in the standard deviations for the two datasets, as displayed in Table 3.5. 

Height Error (m) 

Ground Truth LIDAR 

Max. 1.3 5.5 

Min. -2.55 1.3 

Mean ·0.4 -2.5 

St. Dev. 0.9 2.5 

Table 3.5 Statistics for ground truth and LiDAR differences from felled heights for plot 3. 
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Figure 3. 13 Plot 3: 2006 LiDAR and 2007 ground validation data plotted against felled height 2007. 

Both the ground truth and LiDAR datasets show an increasing underestimation of felled 

height as felled height increases (Fig.3.13). For the ground truth data this demonstrates the 
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difficulty of measuring taller trees in the field, reflecting the findings of the trial study. For 

the LiDAR data, this may be a result of the nature of summarising the data into 5m by 5m 

pixels. Two horizontal lines of data can be cleady observed, reflecting the values of the 

pixels that fall within the plot boundary. This suggests that this approach may not be a very 

fair way of comparing the LiDAR with the ground truth and felled height data. The latter 

two datasets are available at the scale of the individual tree yet the LiDAR data has been 

summarised into coarser scale pixels. The data might be better compared if the LiDAR data 

was processed to the single tree level or if data from more plots were available so that plot 

averages could then be computed and compared. It was not within the scope of this project 

to delineate single trees and the constraints of working within an operational forest 

environment meant that felled height data could not be obtained for other plots. 

3.3.3 The 2007 Revisits 

This section presents the data from the 2007 revisits, where 11 of the 22 ground validation 

plots were resurveyed and checked for errors. The 11 plots contained a total of 536 trees, of 

which the heights of only 44 trees were considered to need adjustment for the new dataset. 

Ofthese 44 trees, 10 adjustments were made due to obscured tree top effects and 15 due the 

inaccuracies caused by the presence of double or multiple leaders. The remaining trees 

were adjusted simply due to recording or measuring inaccuracies in the previous datasets (it 

is impossible to distinguish which). 

Figure 3.14 displays the data organised by type of recording inaccuracy and planting year. 

The bars represent the percentage of trees planted in a given year which were adjusted due 
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to some kind of inaccuracy. Note that if one tree height needed adjustment for both an 

obscured top and double/multiple leader status it was counted twice, as it is not possible to 

say for certain which was the cause of the recorded inaccuracy. 

~ ~----------------------------------------, 

1181 

Figure 3.14 A stacked column chart showing the percentage of adjustments made to tree height measurements 
by type for each planting year (DL and ML refer to double and multiple leaders). 

Planting 
Total No. of %of No. of %of No. of %of No. of % of 

Year 
Plots No. of Adjusted Adjusted Obscured Obscured DLor DLor Other Other 

Trees Trees Trees Tops Tops MLs MLs Errors Errors 

1944 
62, 63 , 

198 19 9.60 7 3.54 4 2.02 10 5.05 
64 

1956 52, 53 79 7 8.86 2 2.53 2 2.53 3 3.80 

1975 3, 4 61 2 3.28 0 0.00 0 0.00 2 3.28 

1982 2 49 8 16.33 I 2.04 5 10.20 3 6.12 

1983 54 48 5 10.42 0 0.00 4 8.33 I 2.08 

1987 10 43 2 4.65 0 0.00 0 0.00 2 4.65 

1995 29 58 0 0.00 0 0.00 0 0.00 0 0.00 

Table 3.6 Numbers and percentages of trees adjusted under the 2007 revisits, by planting year. 
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The greatest number of adjustments were made to those trees planted in 1944 (Table 3.6-

fourth column from left) and the least of those planted in 1995. However, when looked at as 

percentages of the total tree count, the greatest percentage of adjustments were made to 

trees planted in 1982 and the least to those planted in 1995. There does not appear to be a 

trend of percent of adjustments made with planting year. Although, the percentage of trees 

adjusted due to obscured tops does seem to decrease with planting year. However there is 

no trend observed for adjustments made due to double or multiple leaders or other 

inaccuracies. 

Many of the trees revisited in 2007 had obscured tops or were double or multiple leaders 

and yet their heights did not need adjusting. Given this, as well as the fairly low 

percentages displayed in Figure 3.14 it is concluded that the 2007 revisits indicate few 

problems with the ground truth data, or at least that any measuring issues are consistent. 

3.4 SUMMARY 

This chapter has detailed the approach to the assessment of ground truth error and has 

presented the resulting data. This included data from plot 3 and the 2007 revisits. These 

results are analysed and discussed further in Chapters 5 and 6. 
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4 RESULTS 

This chapter presents results from the LiDAR processing and ground truthing. 

Interpretation and analysis of the results are presented in Chapter 5 and drawn together in 

the discussion presented in Chapter 6. 

4.1 LiDAR 

Within this subsection results are presented from the LiDAR processing. This includes the 

DEMs and associated issues, height and growth maps and the LiDAR data extracted at the 

ground validation plot locations. 

4.1.1 Digital Elevation Models 

4.1.1.1 The DEM Gaps 

The ground classification procedure used to create the DEMs from the laser point cloud 

initially tested a window size of 60m x 60m and an iteration distance of 1.4m. The resultant 

DEM from these parameters is shown in Figure 4.lc. Figure 4.la is a panchromatic 

IKON OS image to give context to this small subset of the data. Figure 4.1 b presents the 

count of ground returns for the same area. The black areas on the DEM (Fig.4.lc) indicate 

areas of no data and occur as a result of a lack of ground returns. This then also causes a 

gap in the canopy height map for this area, as displayed in Figure 4.2a and 4.2b. 
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Figure 4.1 The DEM hole issue displayed using 2006 LiDAR data. Image a is a panchromatic IKON OS 
image. Image b shows the ground return count. Image c shows the resultant DEM. 

In order to address this, a window size of 200m x 200m was tested which. resulted in the 

DEM shown in Figure 4.2c and the canopy height map shown in 4.2d. It is evident that this 

larger window size allowed the holes to be interpolated over, as described in Chapter 2.3.3. 

However, this also leads to some points being falsely classified as ground. This is evident 

in Figure 4.2c where elements of the canopy structure appear visible in the DEM. 
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Key for (a) & (c) 
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Figure 4.2 The effects of changing window size on a subsection of the 2006 data. Images A (DEM 2006) and 
8 (CHM 2006) have been created with a 60m x 60m window size. Images C (DEM 2006) and D 

(CHM 2006) have been created using a 200m x 200m window size. 

A final window size of 60m x 60m and an iteration distance of 0.5m produced the DEM 

and canopy height map very close to those shown in Figure 4.2a and 4.2b. Using these 

ground classification parameters some gaps do remain. However, this is necessary in order 

to make the DEM as accurate as possible. It also helps highlight the problem of creating 

DEMs in areas of very dense canopies. 
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4.1.1.2 2003 and 2006 DEMs 

The DEMs displayed in Figure 4.3 have been created by outputting all 'ground' classified 

points from TerraScan into ArcMap as XY points. These were then used to create a TIN 

which was next converted into a raster image. This acts to interpolate over the DEM holes 

observed in Figure 4.2a and 4.2b and allows easier comparison of the dual time series 

datasets. The holes remain in the data used to create the canopy height models however and 

can be seen in Figure 4.11. The scale on the DEMs in Figure 4.3 ranges from the lowest 

areas in black to the highest in white. However, note that the block-like white patches 

represent areas of no data due to gaps between the data strips. 

Figure 4.3 DEMs for a) 2003 and b) 2006 (Units are meters). The white areas represent gaps in the data. Each 
image is roughly 2km across by 3km high. 
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4.1.1.3 Comparison of DEMs 

A subtle difference in tone is visible between the two DEMs in Figure 4.3. Spatial 

subtraction of the 2003 DEM from the 2006 DEM allowed further assessment of their 

similarity, as shown by Figure 4.4. The separate 2003 horizontal and 2006 vertical flight 

lines have become evident on this image. The differences between the two DEMs range 

from l.l4m to 16.00m. It would be expected that the two DEMs should be very similar, 

however, this range of difference values suggests otherwise. The histogram for this image 

(Fig.4.5) gives a mean difference of 7 .17m. Given that the standard deviation for this mean 

difference is only 0.6m it is ·suggested that this mean difference represents a systematic 

offset of 7 .17m. Consequently 7 .l7m was subtracted from all 2006 DEM values to shift the 

histogram to a mean difference of O.OOm. 

This 7.17m offset is also evident in Figure 4.7 where the differences between the DEMs 

have been plotted against 2003 DEM values. Furthermore, the differences between the 

DEMs seem to have a greater spread at lower 2003 DEM elevations (Fig 4.6). Figure 4.7 

shows the before and after adjustment scatter graphs for 2006 DEM values plotted against 

2003 DEM values. 
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High: 16.00m 

Low: 1.14m 

Figure 4.4 OEM difference image (2006 DEM minus 2003 DEM). The image covers an area roughly 2km 
across by 3km high. 
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Figure 4.5 Histogram of DEM differences before 2006 DEM adjustment. 
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Figure 4.6 Scatter graph showing difference between 2006 and 2003 DEM values plotted against 2003 DEM 
values. 
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Figure 4. 7 Scatter .graph showing 2006 DEM values plotted against 2003 DEM values before and after 
adjustment of the 2006 DEM. 

4.1.1.4 Flight line Comparisons (2006 data) 

The DEMs for ALS flight lines acquired in 2006 were also compared in areas of overlap. 

The results are displayed in Figure 4o8. Height differences between the flight lines range 

from Om to 6.75m. Some areas of high difference appear to be situated in areas of steep 

terrain, such a river channels. This is also evident in Figure 4.9 where the 2006 DEM is 

shown in 3D. 
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Figure 4.8 Difference betweens 2006 DEM flight lines overlain on the 2006 DEM. (Note: the values between 
-0.5 and 0.5 for the differences between the DEM flight lines has been set to transparent). 
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Figure 4.9 3D representation of the 2006 DEM (height exaggerated by a factor of 5) overlain with differences 
between ihdividual flight lines. See Figure 4.8 for legend. White patches represent areas of no data. 

4.1.2 Height Maps 

Figures 4.10 and 4.11 display the 2003 and 2006 mean LiDAR height data which has been 

gridded into 5m by 5m pixels. The very dark blue areas represent bare earth. The gradient 

of colour from blue through green and up to orange indicates different canopy heights. The 

2003 canopy heights are as great as 33.55m, whereas the 2006 heights reach as great as 

34.00m. On both images, there are sometimes differences in canopy height within single 

stands. Furthermore, rides and forest planting compartments can also be picked out. Areas 

which have been clear-felled within the three year period are present on the 2003 image, 

but not on the 2006. Such areas are easily identifiable on the growth maps presented in the 

following section. Height maps were also available for all other height metrics,. though they 

are not displayed here. 
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Figure 4.10 Mean Height 2003 derived from LiDAR data, gridded into 5m x 5m pixels. 
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Figure 4.11 Mean Height 2006 derived from LiDAR data, gridded into 5m x 5m pixe1s. 
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4.1.3 Growth Maps 

Difference imaging allowed the creation of growth maps from the canopy height data. 

Before correction of the position of the 2006 imagery, the offset between the datasets 

caused edge effects on the resulting growth map (Fig.4.12a). These were removed by 

realigning the datasets to give the growth map displayed in Figure 4.12b. The white patches 

on this image indicate those problem areas from the 2006 DEMs which were left in to 

illustrate the problems caused by areas of dense canopy. The dark areas have exhibited 

negative growth over the three year period and correspond to areas of clear-fell and 

windblow. 

Figure 4.13 shows the 2003 canopy heights data plotted against 2006 canopy height data 

(each point represents one pixel). It is evident that most points have experienced positive 

change. However, a significant number of points fall below the red line, indicating negative 

change. When investigated where these pixels fell on the image they included those areas 

which have been clear-felled, subject to windblow and some along forest planting 

boundaries. Whilst negative change is to be expected in areas of felling and windblow, it is 

not so expected along stand boundaries. This suggests that some minor edge effects remain 

and that the offset has not quite been completely corrected. 
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Figure 4.12 Before (a) and after (b) correction of the offset, difference images for mean height. Large white 
patches indicate problem zones due to DEM gaps. Darker areas exhibiting negative growth are areas of 

clearfell and windblow. The grayscale bar is the same for both images. Each image is roughly 2km 
across by 3km high. 
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Figure 4.13 Mean LiDAR height 2003 (x axis) plotted against mean LiDAR height 2006 (y axis). The red line 
represents x = y. 

4.1.4 Height and Growth at Plot Locations 

A key part of this study is to compare LiDAR with ground truth data collected at specific 

locations. Thus, this section presents the LiDAR results at the locations of the ground truth 

plots. Table 4.1 details the average weighted and unweighted LiDAR results for each of the 

22 ground validation plots. Growth is evident for all plots, using both the weighted and 

unweighted LiDAR plot height averages 7• However, the weighted measure appears to make 

7 The weighted average is a LiDAR plot average where pixels have been weighted by the number of trees 
which fall within them. See section 2.3 .9 for details. 
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little difference when compared to the unweighted measure of average LiDAR height at 

plot locations. 

Weighted LiDAR Heights (m) Unweighted LiDAR Heights (m) 

Plot ID 
Tree 

2003 2006 Growth 2003 2006 Growth 
Count 

2 49 9.33 12.55 3.22 9.29 12.50 3.22 

3 29 12.97 15.52 2.55 12.97 15.52 2.55 

4 32 12.66 15.05 2.39 12.66 15.05 2.40 

5 69 19.86 21.88 2.02 19.44 21.88 2.44 

10 41 5.74 7.84 2.10 5.16 7.84 2.67 

12 31 2.00 2.82 0.82 2.00 2.83 0.83 

13 34 2.00 2.83 0.83 2.00 2.83 0.83 

15. 34 2.00 2.83 0.83 2.00 2.83 0.83 

16 24 2.00 2.92 0.92 2.00 2.91 0.91 

28 244 1.13 2.22 1.09 1.13 2.23 /./0 

29 58 0.93 2.60 /.67 0.93 2.60 1.67 

30 45 0.87 2.56 1.69 0.89 2.57 /.68 

52 34 13.91 16.50 2.59 13.94 16.60 2.66 

53 45 13.20 15.68 2.48 13.22 15.70 2.48 

54 48 4.73 8.48 3.75 4.73 6.61 1.89 

55 37 4.62 6.44 1.82 4.62 6.44 1.82 

59 75 2.49 2.93 0.44 1.89 2.93 /.04 

60 48 2.66 3.36 0.70 2.00 3.36 1.36 

61 49 2.24 2.67 0.43 1.88 2.67 0.78 

62 61 12.38 14.14 1.76 12.39 14.15 /.75 

63 72 14.89 16.87 /.98 14.86 16.87 2.0/ 

64 65 13.87 15.55 1.68 13.88 15.58 1.70 

Table 4.1 LiDAR plot averages. 

The data contained in Table 4.2, subdivided according to age class, show the means and 

standard deviations of some key LiDAR height growth metrics. The following age classes 

were used: 

• Mature: planted in or before 1970. 

• Middle-Aged: planted between 1971 and 1989. 
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• Young: planted in 1990 or after. 

Unweighted averages were first calculated for each metric of every plot. Then the age-class 

average was computed for each metric using the average plot values for all plots falling 

within that age class. Similarly, the standard deviation of all values for each metric per plot 

was calculated and then an age-class average computed for each metric. 

Mature Middle-Aged Young 
Growth Metric Mean St. Dev. Mean St. Dev. Mean St. Dev. 

mean 2.10 0.65 2.33 0.48 0.94 0.54 

max 0.86 0.91 1.28 0.65 1.21 0.77 

piO 1.91 0.95 2.53 0.86 0.38 0.54 

p50 1.90 0.58 2.20 0.58 0.73 0.59 

p90 1.54 0.79 2.50 0.70 1.49 0.73 

Table 4.2 Mean and standard deviations of growth metrics ordered by plot age class. The mean is, an average 
of all plot means for any given height metric within a single age class. The standard deviation is an 

average of all mean plot standard deviations for any given height metric within a single age class. The 
unit for all figures is metres (m). 

It is evident that middle-aged plots always exhibit the greatest amount of growth in all the 

metrics considered here. This growth is as great as 2.53m for the lOth height percentile and 

as small as 1.28m for maximum height growth. The young plots always show the least 

amount of growth, except for the maximum height metric for which the mature plots have 

experienced least growth. For the young plots this growth ranges from as little as 0.38m for 

the lOth percentile to 1.21m for the maximum height metric. For the mature plots, growth 

ranges from 0.86m for maximum height growth to 2.1 Om for mean height growth. 

The mature plots always exhibit the greatest standard deviation of these growth measures, 

with the exception of the 50th height growth percentile for which the standard deviation for 
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the young plots is greater by O.Olm. The lowest standard deviations are mostly observed for 

the middle-aged plots, however it is lowest for young plots for the 1oth percentile and joint 

lowest between middle-aged and mature for the 50th height growth percentile. The precision 

and accuracy of these results are discussed in Chapters 5 and 6, alongside the ground truth 

data which is presented in the next section of this Chapter. 
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----------------- ~--

4.2 GROUND TRUTH DATA 

This section presents the plot based ground validation data in Tables 4.3 and 4.4 and 

Figures 4.14 to 4.17. This data is compared with the plot based results from the LiDAR 

processing in Chapter 5. 
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Plot 
ID 

2 
3 

4 

5 
10 

12 

13 

15 

16 

28 

29 

30 

52 

53 

54 

55 
59 

60 

61 

62 

63 

64 

Tree 
Count 

49 

29 

32 

71 

43 

33 

36 

36 

26 

246 

58 

45 

34 

45 

48 

37 

77 

50 

51 

61 

72 

65 

Stems 
per 

hectare 

2450 

1450 

1600 

3550 

2150 

1650 

1800 

1800 

1300 

12300 

2900 

2250 

1700 

2250 

2400 

1850 

3850 

2500 

2550 

3050 

3600 

3250 

Planting 
Year 

1982 

1975 

1975 

1955 

1987 

1994 

1994 

1994 

1994. 

1994 

1995 

1995 

1956 

1956 

1983 

1983 

1992 

1992 

1992 

1944 

1944 

1944 

Lorey's Mean Height (m) Unweighted Mean Height Maximum Height 

2003 

14.03 

16.43 

16.17 

20.59 

9.41 

3.34 

3.23 

3.41 

3.44 

0.00 

0.00 

0.00 

18.66 

15.64 

7.60 

8.03 

0.00 

0.00 

0.00 

15.23 

16.41 

16.01 

2006 

13.77 

17.92 

17.33 

20.12 

10.31 

5.19 

4.71 

4.78 

5.61 

3.19 

4.58 

4.81 

18.35 

15.89 

7.98 

8.31 

5.31 

6.79 

5.48 

15.11 

16.29 

15.73 

Growth 

-0.26 

1.49 

1.16 
-0.47 

0.91 

1.85 

1.48 

1.37 

2.17 

3.19 

4.58 

4.81 

•0.31 

0.25 

0.38 

0.28 

5.31 

6.79 

5.48 

-0.12 

-0.12 

-0.27 

2003 

13.10 

15.40 

14.70 

16.04 

7.70 

2.91 

2.86 

2.82 

3.16 

1.81 

2.80 

2.70 

14.88 

13.07 

5.40 

7.10 

3.51 

4.16 

3.25 

12.20 

13.30 

14.50 

2006 

12.80 

16.60 

15.60 

15.63 

8.54 

4.57 

4.31 

4.16 

5.13 

2.19 

4.00 

4.30 

14.53 

13.21 

5.80 

7.30 

4.18 

5.35 

4.22 

12.10 

13.00 

14.20 

Growth 

-0.30 

1.20 

0.90 

-0.41 

0.84 

1.65 

1.45 

1.35 

1.97 

0.39 

1.20 

1.60 

-0.35 
. 0.14 

o.40 

0.20 

0.67 
)..18 

0.97 

-0.10 

-0.30 

-0.30 

2003 

16.50 

18.50 

17.90 

25.90 

13.70 

4.10 

4.20 

4.50 

4.00 

4.60 

5.00 

4.00 

23.80 

19.80 

9.20 

10.70 

6.00 

6.60 

5.90 

19.40 

20.70 

19.30 

Table 4.3 Ground validation data from 22 plots. 

2006 

16.00 

19.80 

19.90 

26.40 

11.6 

7.40 

6.00 

6.50 

7.30 

5.50 

6.30 

6.20 

25.60 

20.60 

9.80 

12.30 

7.70 

9.20 

6.90 

20.70 

20.60 

19.60 

Note: Lorey's Mean Height and Unweighted Mean Height are plot averages. 

Growth 

-0.50 

1.30 

2.00 

0.50 

-2.10 

3.30 

1.80 

2.00 

3.30 

0.90 

1'.30 

2.20 

1.80 

0.80 

0.60 

1.60 
1.70 

2.60 

1.00 

1.30 

-0.10 

0.30 

2003 

7.80 

5.90 

5.70 

4.00 

2.70 

0.70 

0.90 

0.50 

1.50 

0.40 

0.60 

1.00 

5.20 

3.50 

0.50 

0.90 

0.80 

0.35 

0.50 

2.70 

3.00 

6.30 

Minimum Height 

2006 

7.60 

5.10 

6.10 

4.10 

3.00 

1.30 

1.80 

1.40 

2.60 

0.50 

1.40 

2.00 

3.80 

3.40 

0.50 

0.60 

0.33 

0.50 

0.40 

0.70 

2.30 

6.10 

Growth 

-0.20 

-0;80 

0.40 

0.10 

0.30 

0.60 

0.90 

0.90 

1.10 

0.10 

0.80 

1.00 

-1.40 

-0.10 

0.00 

-0.30 

-0.47 

0.15 

-0.10 

-2.00 

-0.70 

-0.20 
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Yield Model Expected 
Values 

Percent 
PI t ID I Planting of Tree Yield 

0 Year Dominant Spacing Class 2003 2006 Growth 

Trees 
2 1982 67.3 2.0 12 7.8 9.5 1.7 
3 1975 44.8 2.0 14 13.0 14.7 1.7 
4 1975 62.5 2.0 14 13.0 14.7 1.7 
5 1955 29.6 1.7 14 22.5 23.6 L1 
10 1987 62.8 2.0 12 5.0 7.3 2.3 
12 1994 78.1 2.0 14 3.0 4.0 1.0 
13 1994 83.3 2.0 14 3.0 4.0 1.0 
15 1994 * 2.0 14 3.0 4.0 1.0 
16 1994 * 2.0 14 3.0 4.0 1.0 
28 1994 28.5 2.0 14 3.0 4.0 1.0 
29 1995 70.7 2.0 12 2.0 3.0 1.0 
30 1995 82.2 2.0 12 2.0 3.0 1.0 
52 1956 44.1 1.7 10 17.8 18.8 1.0 
53 1956 28.9 1.7 10 17.8 18.8 1.0 
54 1983 58.3 2.0 12 7.3 8.9 1.6 
55 1983 75.7 2.0 12 7.3 8.9 1.6 
59 1992 27.0 2.0 12 3.0 4.5 1.5 
60 1992 64.0 2.0 12 3.0 4.5 1.5 
61 1992 60.8 * * * * * 
62 1944 37.7 1.7 6 15.6 16.5 0.9 
63 1944 29.2 1.7 6 15.6 16.5 0.9 
64 1944 40.0 1.7 6 15.6 16.5 0.9 

Table 4.4 Further ground validation plot data. including information concerning yield classes and yield modelled growth. • = No data available. 
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Figure 4.14 a) Lorey's Mean Height data and b) Mean Height data per plot from 2003 and 2006 (non-adjusted 
data) plotted against Maximum Height data from 2003. 

• The graphs presented within this chapter are intended as a means of exploring the ground 

truth data, before it is analysed in comparison with the LiDAR data in the following 

chapter. 

90 



Figures 4.14a and b use the data displayed in Table 4.3 to investigate the relationship of 

maximum plot heights from 2003 with Lorey's Mean Heights and Mean Heights from the 

two years. In Figure 4.14a the majority of LMH 2006 data points fall above the equivalent 

values for 2003, thereby indicating average plot growth. The only exceptions are a few 

plots which lie in the area of 17-20m of maximum height 2003. The magnitude of the 

difference between equivalent 2003 and 2006 values gives a measure of growth per plot. 

Sometimes this is large, as shown by the plot sitting at approximately 7m maximum height 

for 2003 (Fig 4.14a). Conversely, some plots show little difference between ·2003 and 2006 

LMH, as shown by those plots sitting around the 20m maximum height 2003 mark. Both 

the 2003 and 2006 LMH data are strongly correlated with maximum heights from 2003, 

producing co-efficients of0.94 and 0.96 respectively. 

The 2003 and 2006 mean heights, as displayed in Figure 4.14b show a similar pattern to 

LMHs. They too show a strong correlation to maximum height 2003 with co-efficients of 

0.95 for 2003 and 0.91 for 2006. Again, the majority of 2006 data points fall above those 

for 2003 indicating average plot growth. The few exceptions, like for LMH, occur only for 

those plots which had a maximum height greater than 20m in 2003. The differences 

between the 2003 and 2006 data points are more consistent for mean height than they are 

more LMH. This is due to the cluster of 2003 data points sitting at less than 8m maximum 

height (2003) for which the mean height average is significantly greater than the equivalent 

LMH measures for the same plots. This is clearly shown in Figure 4.16 where the mean 

height data points all sit below 2m, whereas the LMH data points stretch up to and above 

6m. 
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Figure 4.15 indicates how maximum height varies with plot age. It is possible to apply a 

linear fit to this data with a resulting correlation co-efficient of 0.8. However, it is also 

possibly to identify more of a curve. The data seems to show a decline in maximum height 

between those stands planted in the mid-1950s and the mid ... 1940s, however it is likely that 

this is a function of fewer sampling of older plots and/or the lower yield class of the older 

plots. 
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Figure 4.15 Maximu~ Height 2003 per plot, plotted against Planting Year. 
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Figure 4. 16 Change in height between 2003 and 2006 for plot LMH and MH values, by planting year. 

Figure 4.16 uses the differences between 2003 and 2006 plot averages (LMH and MH) and 

compares them with plot planting year. Given the strong correlations between LMH and 

MH and maximum height 2003, and between maximum height 2003 and planting year, we 

might expect a similarly strong relationship here. However, they are not so strong. The 

correlation between LMH height change 2003-2006 and planting year is weak at R2 
= 0.45. 

The relationship is stronger between MH difference between 2003 and 2006 with an R2 of 

0.61. It is evident from Figure 4.16 that the height change values for LMH and MH are very 

similar for those plots planted before 1990. However, large differences seem to occur for 

younger plots planted in the 1990s where the values for LMH change are much greater. A 

number of negative growth points exist for both LMH and MH change. The majority of 

these points are for plots planted earlier than 1960, however negativeaverage plot growth is 

recorded for one plot planted in 1982. 
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Figure 4.17 displays the same LMH and MH height change values as Figure 4.16, however 

this time they have been plotted against maximum plot heights from 2006. Here, the large 

differences between LMH and MH change are again observed for the younger plots which 

sit at less than 9m on the max height 2006 scale. All other data points show very little or no 

difference between LMH and MH change. Again the relationship between MH change with 

max height 2006 is stronger at R2 = 0.54 than for LMH change which is R2 = 0.46. Note that 

the relationship between MH change with max height 2006 is weaker than that with 

planting year, however it is slightly higher for LMH. The negative growth points can again 

be seen for both LMH and MH change. However, here the 1982 anomaly is not so obvious. 

Instead it can be seen that such negative change only occurs for plots with a maximum 

height of greater than 15m in 2006. 
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Figure 4.17 Height change between 2003 and 2006 for LMH and MH, plotted against Maximum Plot Height 
(not adjusted) from 2006. 
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Having explored the nature of the ground truth data collected in 2003 and 2006, this data 

will be analysed in line with the aims and research questions of this study in Chapter 5: 

Data Analysis. 

4.3 SUMMARY 

This section has presented results in the form of data tables, graphs and images. Firstly, 

from the LiDAR processing, including the presentation and comparison of DEMs, height 

maps and growth maps. Secondly, from the ground validation including data collected in 

2003 and 2006 and plot based averages. The data from this section will next be subject to 

analysis in Chapter 5 and further interpretation and discussion in Chapter 6. 

95 



5 DATAANALYSIS 

This chapter aims to provide a bridge between the results and discussion chapters. In doing 

so, the data presented in Chapters 3 and 4 will be analysed and interpreted in four key 

sections. Firstly, the detection of growth using LiDAR will be looked into. Secondly, the 

LiDAR height and growth estimates will be compared with that obtained by ground 

truthing at both the plot and individual tree level. Following this, the ground truth error 

assessment data will be studied with a view to anticipating its effects on the relationship 

between LiDAR and ground truth growth. Lastly, a number of interactions between the 

LiDAR system and the field will be addressed with a specific aim to assess the impact these 

interactions may have on the relationship between LiDAR and ground truth data at different 

spatial scales. Chapter 6 will then bring together these elements to discuss the estimation of 

forest growth at Kielder using airborne LiDAR. 

5.1 DETECTING FOREST GROWTH USING LiDAR 

The first research question of this project asked whether forest growth could be detected at 

Kielder using airborne laser data collected three years apart. The results presented in 

Chapter 4.1 and in Figure 5.1 suggest that growth has been detected at the locations of all 

22 validation plots. Furthermore, the growth map (FigA.12b) demonstrates how areas of 

positive stand level growth and of negative growth in the form of clear-felling and 

windblow can be detected. 
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Figure 5.1 Unweighted LiDAR growth plotted against planting year, by plot and age class. 

When subdivided into age classes it becomes evident that middle-aged plots exhibit the 

greatest amount of growth, in terms of both an unweighted average (Fig.5 .1) and across a 

range of height growth metrics; mean, max, p 10, p50 and p90. This growth is greatest for 

the lowest height growth percentile at 2.53m, and lowest for the maximum height metric at 

1.28m. Growth· is lowest for those plots categorised as young and in between for those 

classified as mature. This trend, as shown by the black line added onto Figure 5.1 matches 

that anticipated by the pattern of volume increment for an even-aged stand (Fig.5.2). Here it 

is evident that younger plots must be a decade or so old before they are featured on this 

graph. From 10-20 years old, they gain volume rapidly. Many of the plots within the young 

age class were planted in the early to mid 1990's and so, by this model, between 2003 and 

2006 were just beginning to gain volume. However, those in the middle-age category lie 

well within the region of rapid volume increase and therefore too seem to show the most 

rapid growth. The volume increment for the mature plots levels off and then declines 

97 



thereby supporting a lesser growth rate than middle-aged·plots, yet greater than the young 

plots. 

Figure 5.2 Patterns of volume increment in an even-aged stand. CAI = Current annual increment and MAl = 
Mean annual increment. 

It is also observed that the mature class of plots exhibit the greatest standard deviations of 

growth measures; the greatest of these being for the 1Oth height percentile and the least for 

the 50th height percentile. This may result from the wide range of yield classes within this 

category. The lowest standard deviations were observed for the middle aged plots. Thus it 

may be inferred that the precision of LiDAR growth estimates in this case is better for 

middle-aged plots than it is for young and for mature plots. It is likely that this results from 

the specific conditions present within plots of this age. They are sufficiently old as to have 

reduced understorey vegetation, yet sufficiently young as to not have such dense canopies 

which act to reduce the penetration rate of laser pulses. Furthermore, unlike more mature 

plots they do not feature so many dead trees with broken stems which appear to be 

experiencing negative growth, thereby increasing the measure of standard deviation and 
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reducing precision. They also feature a tighter range of yield classes than the mature plots 

(Table 4.4). Younger plots are affected by understorey vegetation and an open canopy, both 

of which can act to increase error within height (and therefore growth) measurements. 

Uneven presence of understorey vegetation makes the terrain surface seem higher than it 

actually is in certain places. The very top of trees are more often missed by the laser pulse 

in an open canopy, thus causing an uneven and unpredictable underestimation of tree height 

by the LiDAR within the plot. The range of yield classes remains the same as for the 

middle-aged plots however (Table 4.4). Overall, the inequitable distribution of such effects 

causes an increase in the standard deviation of growth metrics and reduction of precision 

for younger plots (this is discussed further in section 5.4). 

In summary, it is evident that the multitemporal LiDAR data is capable of detecting growth 

over a variety of Sitka spruce plantation plots within a 3 year period. Furthermore, the age 

specific nature of this growth reflects that anticipated by volume models. 
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5.2 COMPARING LiDAR AND GROUND TRUTH 

Having established that growth can be observed in the multitemporal LiDAR datasets and 

that some inferences can be made about the precision of such measurements, it is next 

necessary to assess their accuracy. Traditionally this is done by validating the LiDAR 

height and growth estimates to those obtained by ground truthing, making the assumption 

that the ground truth data represents what is 'true'. However, this project also aims to 

assess the error associated with ground validation measurements and as a consequence will 

not assume the ground truth to be true. Instead, it will assess the similarity and agreement 

between ground truth and LiDAR height and growth data. 

5.2.1 Comparing Height Estimates 

5.2.1.1 Plot Level 

Table 5.1 details the co-efficients of determination for the correlations between ground 

truth and LiDAR derived height variables. All ground truth and LiDAR derived metrics 

used here represent plot averages. The majority of the co-efficients lie above 0.9 thereby 

indicating that relationships between a variety of ground truth and LiDAR height variables 

are strong and positive. The only cases where the correlation co-efficient is significantly 

less strong is where minimum height is used as the ground truth variable. Here, the R! 

values range from 0.422 when minimum height 2006 is paired with maximum LiDAR 

height 2006, to 0.616 when minimum height 2003 is paired with maximum LiDAR height 

2003. 
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LiDAR Derived Height Measures 

w. w. UnW. UnW. Max Max p90 p90 pSO pSO plO plO Mean Mean Mean Mean 
03 06 03 06 03 06 03 06 03 06 03 06 

~ LMH 
0.933 0.942 0.965 0.947 0.937 0.882 a;; 

l:'l 03 
i LMH 

0.970 0.977 0.984 0.984 0.975 0.968 ~ 06 
""' MH -11: 

0.939 0.941 0.959 0.951 0.942 0.894 .!1.0 03 
~ MH 

0.925 0.935 0.942 0.944 0.933 0.929 -s 06 
~ Max 0.961 0.958 0.978 0.970 0.957 0.909 
~ 03 
11: Max l:'l 0.959 0.968 0.973 0.971 0.966 0.957 e 06 

\:1 M in 
03 0.597 0.604 0.616 0.606 0.609 0.560 

M in 0.426 0.439 0.422 0.435 0.435 0.453 
06 

Table 5.1 Co-efficients of determination for height correlations between ground truth and LiDAR derived 
variables from 2003 and 2006. (LMH = Lorey's Mean Height, MH =Mean Height, W. =Weighted, 

Un W. = Unweighted, p90 = 90th height percentile, p50 = 50th height percentile, plO = 1Oth height 
percentile). 

The strongest correlation for height data collected in 2003 is that between maximum 

ground truth height and maximum LiDAR height (Fig.5.3a). Indeed, across the board the 

maximum ground truth heights are best correlated with the LiDAR metrics. Given that 

airborne LiDAR systems primarily survey those most dominant trees which form the main 

canopy it seems logical that maximum ground truth heights should be best correlated with 

aH LiDAR height metrics. 
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Figure 5.3 Scatter graphs showing the regressions between maximum ground truth heights.and maximum 
LiDAR heights for a) 2003 and b) 2006. 

The trend is different however for the data collected in 2006. Here, Lorey's Mean Height 

(LMH) is the ground truth measure which is best correlated with all LiDAR metrics. 
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However, ground truth maximum heights remain strongly correlated with all LiDAR 

variables (especially with maximum LiDAR heights as shown in Figure 5.3b) but not quite 

as strongly as for LMHs. It is possible that the reason for this lies in the definition of these 

ground truth height variables. Basal area weighting is applied to all tree heights in the 

calculation of LMH. In 2003, the diameters of large numbers of trees from the youngest 

plots were recorded as zero. This caused the average plot LMH to also be recorded as zero. 

Of course this was not actually the case and as a consequence the 2003 values of LMH are 

biased and therefore less well correlated with LiDAR height variables. By 2006, the trees of 

the younger plots had grown sufficiently for their diameters to be measured and for less 

biased values of LMH to be calculated. Furthermore, LMH gives more weight to those trees 

with larger basal areas. Such trees also tend to be taller and thus LMH measures from 2006 

are better correlated with the 2006 LiDAR height metrics. 

Overall it seems that those ground truth measures best able to represent the tallest or largest 

trees of the plot are best correlated with LiDAR height variables. Indeed it is likely that for 

these same reasons the minimum ground truth measures are least well correlated with 

LiDAR variables. 

Despite such strong correlations for the majority of the data presented in Table 5.1 and that 

displayed in Figure 5.3, it is also necessary to quantify the differences between the 

variables as well as the spread of these differences. For this purpose, mean differences and 

standard deviations were calculated for those variables best correlated. The mean difference 

between 2003 variables (Fig.5.3a) was calculated at -2.92m. The standard deviation of 

these differences is l.13m. That is, the LiDAR heights are on average 2.92m lower than the 
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equivalent ground truth heights. Furthermore, this indicates that the LiDAR height 

measures are consistently lower. LiDAR height underestimation is well documented in 

studies such as this and is widely accepted to be due to laser pulses over sampling the 

shoulders rather than the peaks of dominant trees (Aldfed and Bonner 1985; Nelson 1988; 

Nilsson 1996; Nresset 1997; Nresset 2002; Popescu et al., 2002; Yu et al., 2004). This is 

discussed further in Chapter 5.4.1. 

The mean difference between 2006 variables, maximum ground truth and maximum 

LiDAR height, was calculated at -3.04m. The standard deviation of these differences is 

1.21 m. This shows that both the systematic error and the random error are greater for the 

2006 data, than for the 2003. Again, this indicates that the LiDAR data is on average 3.04m 

lower than the ground truth data. This further suggests that LiDAR heights underestimate 

those obtained by ground truthing. However, whether this also means that LiDAR is 

underestimating true tree heights is unclear at this stage. This will be discussed further in 

Chapter 5.4. 

5.1.1.1 Individual Tree Level 

A comparison of ground truth and LiDAR derived heights was also carried out at the 

individual tree level, the results of which are presented in Table 5.2. Here it is evident that 

of all the LiDAR variables it is the maximum heights which are best correlated with the 

ground truth heights for 2003, 2006 and 2006 adjusted (see Chapter 3 for details on 

adjusted measurements). This reflects the findings from the plot-wise study and reinforces 

the idea that the LiDAR system is best able to estimate the heights of the tallest trees. The 
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strongest relationship is for 2003 ground truth and maximum LiDAR heights with an k of 

0.7492 (Fig.5.4). The mean difference between these two variables is 0.99m and the 

standard deviation is 3.82m. This indicates that the maximum LiDAR heights are greater 

than the ground truth heights by an average of nearly lm. This does not mirror previous 

findings that the LiDAR underestimates ground truth heights. Perhaps, however, it results 

from the nature of the ALS system only detecting and recording the tallest trees and 

because the maximum height variable is being used here. Indeed this is evident in Figure 

5.4. The different age classes are fairly easily separable using LiDAR maximum height (x 

axis), particularly the definition between young and middle aged plots. However, they are 

not so easily separable using the ground truth height data (y axis). For example, between 

3m and 7m on the y axis there are large number of data points from all three age classes 

which would be indistinguishable if it were not for the maximum LiDAR height scale or 

the colour coding. This is due to smaH trees being present in all plots regardless of age. In 

the middle-aged and mature plots these are likely to be suppressed or dead trees which are 

not easily detected by the ALS system or perhaps just not representing the maximum plot 

heights. Consequently a similar trend is not observed for maximum LiDAR heights and it 

appears to overestimate in comparison with the ground truth data. 

It can also be noted in Table 5.2 that there is a marginally better correlation between 2003 

ground truth heights and all ,the equivalent LiDAR height variables than for the 2006 data. 

With the exception of the LMH data ~discussed previously) this too reflects the findings 

from the plot-wise study. 
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LiDAR derived hei ht variables 

.;:~ 
Mean Max p90 pSO ptO 

~~ 
2003 2006 2003 2006 2003 2006 2003 2006 2003 2006 

Eoo.l ;:: 2003 0.7362 0.7492 0.7430 0.7362 0.7004 

~~ 2006 (not r:: .... 0.7006 0.7055 0.7050 0.6976 0.6894 
::S.;: adjusted) 
~ .~ 
~~ 2006 

0.4677 0.4659 0.4760 0.4613 0.4658 (adjusted) 

Table 5.2 Co-efficients of determination for height correlations between ground truth and LiDAR derived 
variables from 2003 and 2006, at the individual tree level. 
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Figure 5.4 Scatter graph showing the relationship between 2003 ground truth height and maximum LiDAR 
height, colour coded according to age class. 

It can also be seen that those correlations which make use of the adjusted 2006 ground truth 

height data are less strong than the equivalent unadjusted measures. This initially seems 

strange given that the adjusted measurements are supposedly more accurate, having been 

carefully assessed during the 2007 revisits (see Chapter 3). However, it should also be 

noted that the number of observations for the adjusted data is 536, significantly lower than 

the 1236 observations used in the non-adjusted 2006 data correlations. It is possible that 

this is causing a drop in the strength of the correlation. It should also be noted that only 44 

of these 536 trees were adjusted for inaccuracies. Therefore the somewhat improved 

106 



accuracy8 of the adjusted measurements is unlikely to outweigh the significantly reduced 

number of observations and thus a reduced correlation co-efficient is observed. 

Overall, compared to the plot level co~efficients presented in Table 5.1 the correlations 

presented here, at the individual tree level, are less strong. The non-adjusted data ranges 

between 0.69 and 0.75, yet does not begin to approach the R2 values of0.9 as calculated for 

the data at plot level. This suggests that despite the fact that exactly the same data is being 

used in both regressions, there is something in the rounding or organising of the data into 

plot groupings which helps to improve the strength of the relationship. This indicates that 

the spatial resolution or scale at which the LiDAR data is analysed effects the relationship 

with the ground validation data. As a consequence, if the ground truth is assumed to be 

'true' this also affects our perception of how accurate and precise the LiDAR height 

estimates are. This issue was highlighted in the plot 3 data presented in Chapter 3 and is 

further discussed in section 6.1.4. 

5.2.2 Comparing Growth Estimates 

5.2.2.1 Plot Level 

Table 5.3 details the correlation co-efficients for the relationships between ground truth and 

LiDAR growth variables at the plotlevel. It is immediately evident that these co-efficients 

of determination are significantly lower than those calculated for height variables. The 

majority of values fall below 0.4 indicating a very weak correlation. The LiOAR variable 

8 Note: An improved accuracy of the adjusted data is an assumption. It cannot definitely be known if accuracy 
has been improved until feUed.tree height data is available for comparison. 
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best correlated with ground truth variables is growth in the 1Oth percentile. The LiDAR 

growth variable least well correlated with ground truth growth variables is the 90th 

percentile, with correlation co-efficients no greater than 0.21. Maximum LiDAR growth is 

also not at all well correlated with ground truth growth variables with co-efficients in range 

0.0144 to 0.2369. 

LiDAR Growth Variables 
Weighted Unwelgbted 

Max p90 p50 plO Ground Mean Mean 

Truth LMH 0.3992 0.3044 0.2369 0.0108 0.4066 0.4122 

Growth MH 0.2625 0.3441 0.0284 0.0065 0.3539 0.3942 

Variables Max 0.2313 0.3456 0.0849 0.2073 0.4052 0.5029 

Min 0.1036 0.1638 0.0144 0;0081 0.1794 0.1694 

Table 5.3 Co-efficients of detennination for growth correlations between ground truth and LiDAR derived 
variables, at plot level. (LMH = Lorey's Mean Height, MH =Mean Height, W. =Weighted, UnW. = 
Unweighted, p90 = 90th height percentile, p50 = 50th height percentile, pI 0 = I Oth height percentile). 

The strongest correlation between LiDAR and ground truth growth variables exists between 

the l'Oth percentile variable and maximum growth (Fig.5.5). The scatter graph and equation 

for the linear fit line indicates that this relationship is negative. It shows that ground truth 

maximum growth is recorded as decreasing with increasing growth in the lOth percentile of 

the LiDAR data. The mean difference between the two variables is 0.13. That is, the 

LiDAR 1 01
h percentile growth data is on average, 0.13m less than the ground truth 

maximum growth data. The standard deviation of this difference is 2.15m indicating the 

spread of the data. 
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Figure 5.5 Scatter graph showing the regression between maximum ground truth growth and the I Oth 
percentile growth from the LiDAR data. 

It was also noticed that an age function existed within this relationship. This is evident in 

Figure 5.6 where data points have been colour-coded according to their age class. Here it is 

evident that the young plots are exhibiting the lowest levels of LiDAR 1 01
h percentile 

growth, yet the highest amounts of maximum height growth as recorded during ground 

truthing. The middle-aged and mature plots are largely indiscernible, showing similar 

patterns of maximum ground truth growth as the young plots but higher levels of LiDAR 

1 01
h percentile growth. However, two of the middle-aged plots do show much higher 

LiDAR 101
h percentile growth than the main cluster of mature and middle-aged plots. It is 

unclear at this stage why this trend exists and how it is related to plot age, however this 

pattern and other age-related trends are also present in Figure 5.7. 

109 



•• 

• •• 
• 

E ..... • 
·~ 

• 
• • 

• 

• Young 
• IWddle-Aged 

• • Mat .. e 
• • • 

• , 
~ o +---------------------~------------------:5 

• .. 
2 .- ..... 
U' 

5 
eN 
C)• 

0 

• 

• 
1 2 3 4 

UDAR 1Oth Percentile GI'ONth (m) 

Figure 5.6 Scatter graph showing the regression between maximum ground truth growth and the I Oth 
percentile growth from the LiDAR data, colour coded according to plot age. 

Figure 5.7 displays a variety of plot based LiDAR derived growth variables ordered by plot 

age. The oldest plots are represented by the lowest values on the x axis and the youngest 

plots by the highest values. The 1 01
h percentile growth values are represented by the blue 

circles and display the trend observed in Figure 5.6- lowest for younger plots, higher for 

mature and middle-aged plots and highest for two middle-aged plots. There is not such a 

clear overall trend with plot age for the other variables, the 901
h percentile and maximum 

growth. Similar growth values are obtained for mature, middle-aged and young plots. 

However, a pattern does become evident when these growth values are studied in relation 

to the p 10 growth values. For the older plots, the p90 and maximum growth values 

generally record smaller amounts of growth than for the p10 values. The younger plots 

however exhibit the complete opposite. Here the p90 and maximum growth values show 

consistently higher levels of growth than the p 10 growth values. This might suggest that 

younger plots are experiencing greater growth at the treetops, however as observed in 

section 5.1 and in Figure 5.7 it is the middle-aged plots which show the greatest levels of 
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growth overall. It is only in relation to the p 10 growth values that the p90 and maximum 

growth values of the younger plots are high . 
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Figure 5.7 Scatter graph showing LiDAR growth variables pi 0, p90 and max plotted in order of plot age. The 
smallest values on the x axis represent the oldest plots and the highest, the youngest. 

Observations such as this are of interest, and suggest that plot age plays a significant role in 

the relationship between ground truth and LiDAR estimates of forest growth. This will be 

discussed further in section 5.4.2. Despite such observations however, overall there remains 

a weak and negative relationship between all ground truth and LiDAR growth variables, as 

seen in Table 5.3. This seems curious given the strong and positive relationships observed 

in the regression of ground truth and LiDAR height variables. A tree by tree (rather than 

plot by plot) assessment of growth correlations is next performed before the potential 

reasons for such weak and negative relationships are discussed in Chapter 6. 
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5.2.2.2 Individual Tree Level 

Table 5.4 details the co-efficients of determination for the growth correlations between 

ground truth and LiDAR derived variables at the individual tree level for all of the 22 

validation plots. Here the ground measured height and diameter of each tree has been used 

in the correlation with the equivalent LiDAR derived variable extracted from the exact 

location of each tree. It is clear that the relationships between all variables are very weak. 

Furthermore, with the exception of the two co-efficients for maximum LiDAR derived 

growth, all relationships are also negative. In general, the correlation of LiDAR variables is 

· stronger with ground truth measured diameter growth rather than height growth. The 1Oth 

percentile variable is best correlated with height growth, however this remains an extremely 

weak relationship as observed in Figure 4.8. Here it is evident that there is no discernable 

relationship. Data points were colour coded in an attempt to highlight any age-related 

trends, however very little is revealed. Much negative growth is recorded in the ground 

truthing for mature plots in particular, with some also recorded for the middle-aged plots. 

Some negative growth of young trees is displayed in the LiDAR lOth percentile data. 

LiDAR derived owth variables 
Ground Mean Max p90 pSO ptO 
Truth Height 0:0549 0.0035 0.0003 0:0576 0.0688 

Growth 
Variables Diameter 0.1128 0.0298 0.0001 0.1074 0.1245 

Table 5.4 The correlation co-efficients for the regression relationships between ground truth and LiDAR 
growth variables using data from each individual tree. 
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Figure 5.8 Ground truth height growth plotted against growth in the lOth percentile LiDAR data. Data points 
are colour coded according to the age-class of the tree. 

In summary, it is obvious that there is a lack of relationship between ground truth. and 

LiDAR derived growth variables despite the high levels of correlation for height variables. 

At both the plot and individual tree level correlation co-efficients for growth are low and 

usually negative. Relationships are stronger when data is analysed at the plot level. 

However the strongest relationship reaches an R2 of only 0.5, is negative and seems a 

strange alliance between maximum ground truth growth and 1 01
h percentile LiDAR derived 

growth. It also appears to be conditioned somewhat by plot age. If the assumption were to 

be made that the ground truth data is an accurate reflection of the true tree heights then it 

might be concluded at this stage that although capable of detecting forest growth, the 

accuracy and precision of LiDAR growth estimates are poor. However that assumption is 

not being made here and thus the investigation into the estimation of growth at Kielder 

Forest using ALS continues. 
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5.3 GROUND TRUTH DATA ERROR 

A specific aim of this project was to assess the accuracy and precision of ground truth 

equipment and data with a view to gauging the reliability of this as a method for checking 

LiDAR height and growth estimates. 'Fo this end, this section discusses results presented 

from the assessment of ground truth error and the 2007 revisits in Chapter 3. 

Results from Chapter 3 indicat~ that from both the road and forest viewing angles, the 

Vertex instrument produces height measures closer to the felled tree heights than those 

produced by the clinometer and LaserAce. This is· further demonstrated by the box plots 

displayed in Figure 5.9 where average values sit much closer to the zero line and where 

ranges and interquartile ranges are smaller for the Vertex. This serves to support the use of 

the Vertex for ground truth measurements within this project, for similar studies and for 

forest inventorying in general. However, it is the magnitude of the error associated with the 

Vertex measurements which have a bearing on the use of ground truth data as a check on 

the LiDAR. As a consequence, it is the Vertex measurements which shall be the focus of 

the remainder of this section. Furthermore, only those results obtained from the forest 

viewing angle will be studied, given that they better simulate real plot working conditions. 
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Figure 5.9 Box plots by instrument showing difference from true height for each tree in height order. The 
middle line of the box represents the mean, the top and bottom of the box the interquartile range and 

the top and bottom of the extended lines the minimum and maximum values. The points represent 
outliers. 

Considering users of all levels of experience, the mean difference (height error) between 

measured vertex height and felled height is -0.1 Om. That is, vertex measured heights are on 

average 0.1 Om less than the true tree heights. This seems highly encouraging, however, the 

standard deviation of this measure is high at 1.68m, with values ranging between + 3. 7m 

and -6.8m. This suggests high accuracy but low precision. Perhaps somewhat surprisingly, 

height error worsens to 0.29m if only experienced users are considered- a drop in the level 

of accuracy. However, the standard deviation is improved to 0. 73m and thus an increase in 
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precision is observed. The range of values is also improved for experienced users and runs 

from -l.lm to +2.0m. As would be expected, height error and standard deviation values 

worsen with decreasing levels of experience as displayed in Table 5.5. This indicates a drop 

in both accuracy and precision. 

Experience 
Mean St. Dev. Max M in 

Level 
All -0.10 1.68 3.70 .6.80 

Experienced 0.29 0.73 2.00 -1.10 

Some 
0.33 1.23 3.10 -3.50 

Experience 

Inexperienced -0.61 2.12 3.70 -6.80 

Data 
0.31 1.05 3.10 -3.50 

Collectors 

Table 5.5 Average difference from true tree height (height error) with associated standard deviation and range 
values, by level of experience using the Vertex Ill hypsometer, l!he unit for all figures is metres. 

The ground truth data used in this study was collected by users who fit into the 

'Experienced' and 'Some Experience' categories. Therefore a new row for 'Data 

Col1lectors' was added to Table 5.5 and mean, standard deviation and range values 

computed. It seems appropriate then to use the ground truth statistics for data collectors for 

assessment of the ground truth and LiDAR correlations. Despite reduced levels of accuracy 

and precision compared to the experienced users alone, the data collector category is likely 

to give a truer representation of the accuracy (or bias) and precision of ground truth tree 

height measurements undertaken by this project. 

For data collectors, the height error is 0.31m with a standard deviation of 1.05m. This 

suggests that the ground truth data collected as part of this project is on average, 0.31m 
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greater than the true heights of the trees. The following paragraphs will explore what this 

means for the assessment of LiDAR data accuracy. 

Plot level height correlations between ground truth and LiDAR data were strong and 

positive for both 2003 and 2006. However, despite strong levels of association, mean 

differences between the best correlated variables was high at -2.92m for 2003 data with a 

standard deviation of 1.13m. Bias was higher for the 2006 correlation at -3.04m as was 

precision with a standard deviation of 1.2lm (Fig.5.3). If the bias of ground truth measures 

is then taken into consideration and figures altered to reflect a 0.3lm bias, standard 

deviation and the strength of the associations remains unchanged but the mean difference 

between variables for 2003 is increased to -3.23m and for 2006 increased to -3.35m. 

Furthermore, the mean difference between growth variables (LMH growth and maximum 

LiDAR growth) is increased to -0.99m. This suggests that error within the ground truth data 

is not responsible for poor growth correlations. However, this approach only takes into 

account the mean difference between ground truth and felled data obtained during the trial. 

It takes no account of the variation in this mean difference as a function of tree height 

(Fig.5 .lO). 
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Figure 5.10 Scatter graph showing the relationship between the difference from felled height observed by all 
users using the Vertex during the trial, and felled or true height. Linear fit line added and correlation 

co-efficient and equation of the line shown. 

Figure 5.10 shows a clear trend of increasing under prediction of heights with increasing 

true tree height. Greater amounts of scatter are also observed at greater felled heights, as 

demonstrated in Table 5.6 by the standard deviation measures. If the effects of the ground 

truth error observed during the trial are to be tested on the ground truth-LiDAR 

correlations, then the error must be subdivided according to tree height. Table 5.6 

demonstrates the three height classes that the data was divided into and the associated 

errors of each height category. 

Tree Mean difference Standard Maximum Minimum 
Height 

Category 
from true height (m) Deviation (m) Difference (m) Difference (m) 

>20m -0.44 1.96 2.00 -6.80 

~17.5 and 0.04 1.68 3.73 -6.50 
90m 

<17.Sm 0.12 1.19 3.10 -2.60 

Table 5.6 Tree height categories with associated ground truth accuracy, precision and range measurements 
(the 'Data Collector' category errors only). 
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Ground truth plot and individual tree level data were then adjusted to reflect these mean 

differences from felled height. For example, an average plot height of 21 m was increased to 

21.44m to compensate for the height under prediction within this height category; a tree 

height of 17m was reduced to 16.88m to compensate for the height over prediction in this 

height category and so on. Given that the true heights used during the trial fell between the 

values of 11.13m and 22.80m, it was anticipated that the error associated with ground truth 

measurements under lOm could not accurately be predicted by the <17.5m category. As a 

consequence, it was initially decided that all those plots average heights and individual tree 

heights which fell below lOm would be excluded from the new correlations (which are 

taking into account ground truth error). However, given that many of the validation plots 

used within this study are young, excluding all those plots and trees below 1 Om left too few 

observations for the correlations to be meaningful. Therefore all observations were used in 

the new correlations, all values less than lOm remained in the <17.5m category and were 

treated accordingly. The before and after results are displayed in Table 5.7. 

Ground'Truth Variable 

LIDAR Variable 
az 

Line Equation 

Mean•difference (m) 

Standard Deviadon<(m) 

Plot Level 

Before After 

Lorey'sMean Height· Growth 

LiDAR Maximum Growth 

0.2369 

y = 2.15x- 0.64 

-0.680 

2.02 

0.2370 

y=2.10x-0.61 

-0.640 

1.98 

Tree Level 

Before After 

Non-Adjusted Tree Growth
9 

LiDAR Maximum Growth 

0.0035 

y = 0.06x + 0.43 

0.616 

1.47 

0.0035 

y = 0:06x + 0.43 

0.617 

1.49 

Table 5.7 Growth correlations at plot and tree level both before and after trial adjustments. 

9 'Non-adjusted' refers to the fact that the 2006 tree height data used in this regression was not adjusted under 
the 2007 revisits. 
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It is evident from the values presented in Table 5.7 that the tree height adjustments made 

based on the trial data have had very little effect and there is certainly no significant 

improvement in the strength of the correlation. The mean difference between growth 

variables is slightly lower at the plot level fol1lowing trial adjustments, but is higher at the 

tree level. The standard deviation is also slightly lower at the plot level fol1lowing 

adjustments, indicating a higher level of precision, but again the OppoSite is true at tree 

level. The co-efficient of determination for plot level growth is very slightly greater 

following tree height adjustments, but not enough to make any reliable conclusion that 

ground truth error is responsible for poor growth correlations. The possible explanations for 

this are discussed further in Chapter 6. 
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5.4 INTERACTION BETWEEN LiDAR AND THE FIELD 

This section deals with those inaccuracies and biases which may have been incurred due to 

the nature of the interaction between the laser pulse and the forest. Errors of this kind may 

be summarised by the scale of their effects. For instance, some consistently affect the entire 

study area and thus have been classified as 'global'. Others affect specific areas or plots and 

have been classified as 'regional' effects. Finally, some only influence estimates at the 

subplot level and thus have been categorised as 'local' effects. Each of these shall be 

examined in turn which respect" to their likely impact on height and growth correlations. For 

these purposes the ground truth shall be assumed to represent 'true' tree height. 

5.4.1 Global Effects 

This section considers the nature of the interaction between the LiDAR system and the 

forest which may affect height and growth correlations at the global scale. This will focus 

on two areas; firstly, how the LiDAR system predominantly samples the tallest or dominant 

trees; and secondly, the common issue of LiDAR height underestimation resulting from the 

majority of laser pulses falling on the shoulders of the tree rather than the crown. 

Airborne laser scanning is only able to measure the heights of those trees which are 

detectable from the air. As a consequence, dominant trees which sit within or above the 

main canopy stand a greater chance of being measured than smaller trees which lower in 

the canopy or well below it. Thus it was considered that in height and growth correlations 

we may not be comparing like with like. That is, whilst the ground truthing measures the 

heights of all trees within the plot regardless of dominance level, the LiDAR is measuring 
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only the tallest trees. Indeed, this could be the reason why the strongest positi:ve height and 

growth correlations are observed for maximum ground truth variables or, in the case of the 

2006 data, Lorey's Mean Height which also weights larger (and therefore probably taller) 

trees more heavily. Furthermore the relationships at the individual tree level indicate that 

the LiDAR is over predicting tree height, contrary to the well documented under estimation 

which is observed at the plot level. In order to test this further, regressions between ground 

truth and LiDAR heights and correlations were re-run to consider only those trees classified 

as 'dominant'. The before and after results for correlations at the individual tree level are 

presented in Table 5.8. 

Individual Tree Level Co"elation Line Mean Standard 
Co-efficient Equation Difference (m) Deviation (m) 

Height All trees 0.7942 y = 0.70x + 1.52 0.99 3.82 

2003 Dominant trees only 0.9602 y = 0.92x + 1.70 -1.08 1.43 

Height All trees 0.7055 y = 0.65x + 1.72 1.62 4.22 

2006 Dominant trees only 0.9483 y = 0.85x + 1.80 -0.51 1.72 

Growth 
All trees 0.0035 y = 0.06x + 0.43 0.62 1.47 

Dominant trees only 0.0086 y = 0.09x + 0.53 0.57 1.45 

Table 5.8 Correlation co-efficients and associated mean difference and standard deviation values for tree level 
height and growth regressions, considering all trees and only those classified as 'dominant'. 2003 

variables: ground truth height and maximum LiDAR height. 2006 variables: ground truth height and 
maximum LiDAR height. Growth variables: ground truth height growth and maximum LiDAR 

growth. 

The results show that correlation co-efficients are all stronger when only 'dominant' trees 

are considered. This is particularly true for the height correlations. The growth co-efficient 

is not much greater and certainly has not become a significant relationship. For both height 

correlations, the mean difference between variables has been lowered by just over 2m so 

that the LiDAR now appears to underestimating 'true' (ground truth) heights. This indicates 

that once the overestimating effects of LiDAR on the smaller, less dominant trees (due to 
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greater sampling of taller, dominant trees) has been eliminated, the well documented 

pattern of underestimation becomes apparent. This underestimation· is discussed further on 

in this section. The mean differences between growth variables has also been reduced, but 

not to the same extent as for the height correlations. It still sits above zero thereby still 

indicating an overestimation of growth by LiDAR in comparison with the ground truth. 

Standard deviation measures are lower in aH cases, though are reduced more substantially 

for the height correlations. This indicates that greater precision is achieved by considering 

'dominant' trees only. 

These results only give the effects of considering dominant trees for tree level correlations, 

However, it is likely that similar effects would be observed at the plot level. In conclusion 

here, it is evident that the growth correlation has not been improved significantly by 

considering dominant trees only .. This suggests that it is not the bias of LiDAR height 

measuring towards taller (more dominant) trees which is responsible for the poor growth 

correlations. 

The second effect to note which has a global effect is that of LiDAR underestimation of 

ground truth tree heights. As discussed in the Introduction, it is widely acknowledged that 

this results from an over sampling of the shoulders of dominant trees, rather than their tips 

(Nilss<m 1996; Nresset 1997; St-Onge 1999; Dubayah et al., 2000; Nresset 2002; Popescu et 

al., 2002; Sqar~z et al., ZOOS; Yu et al., 2004). That is, the very top of the tree does not 

constitute a good interceptor of the laser pulse compared to the denser shoulder area (St­

Onge 1999). Thus it is more likely that the first return is reflected from the tree shoulders 

leading to an underestimation of the height obtained by ground truthing. 
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This underestimation is not noted at the tree level until only dominant trees are considered, 

as shown in Table 5.8. However, it is observed at the plot level. For 2003, the maximum 

LiDAR heights underestimate maximum ground truth height by 2.92m. This is a significant 

underestimation, but mirrors that found elsewhere (St-Ohge 1999). For 2006, the 

maximum LiDAR heights too show underestimation of maximum ground truth heights, by 

3.04m. Overall, it is evident that this study provides further evidence of LiDAR tree height 

underestimation at the global scale. 

5.4.2 Regional Effects 

This section discusses two issues which seem to affect LiDAR height and growth 

estimation at a more regional scale. That is, these issues tend to be more location specific 

than those discussed previously. The first issue is that of very dense canopies and the 

second of plot age. 

It has already been seen that areas of very dense canopy cause problems for accurate DBM 

generation. However, it was suggested by Nelson et al., (1988) that fewer returns from the 

ground produce better correlations between ground truth and LiDAR derived height 

measures. Their reasoning for this is that a lower count of returns from the ground indicates 

a denser canopy. This, in turn, results in fewer pulses hitting the shoulders of the trees and. 

more hitting the very tops, giving a more accurate measure of tree height. Indeed, this may 

well be so, yet Nelson et al., 's theory takes no account of the fact that a lower count of 

ground returns .results in a lower level of confidence in the DEM and therefore also in the 
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height estimation. As a consequence, it could also be argued that fewer returns from the 

ground may result in weaker correlations between LiDAR and ground truth height and 

therefore also growth estimates. In order to investigate these two lines of argument, height 

and growth correlations were studied in relation to ground count. The re~ults are shown in 

Table 5.9. 

Variables 

Ground truth height 
2003 and Mean 

LIDAR height 2003 

Ground truth helgbt 
2006 and Mean 

LIDAR height 2006 

Ground truth height 
growth and 

Maximum LIDAR 
Growth 

Ground Count 
Conditions Imposed 

(hits per pixel) 
None 

<12 

>12 

>6 and <15 

<1 

None 

<8 

>8 

>3 and·<7 

<2 

None 

count 2006 <2 

count 2003 >6·and <15 

Both of the above 

Co"elation Co-efficient 

0.7362 

0.7111 

0.5256 

0.7727 

0.6754 

0.7006 

0.7090 

0.3840 

0.7401 

0.7743 

0.0035 

0.0032 

0.0004 

0.0155 

Table 5.9 The effects of changing ground count on correlation co-efficients for 2003 and 2006 heights and 
growth. The range of ground hits per pixel was 0-24 for 2004 and 0-15 for 2006. 

The table shows mixed results with no clear answer to the investigation. The 2003 height 

correlation co-efficient was most improved when the number of ground hits per pixel was 

limited to between greater than 6 and less than 15. It was not significantly improved when 

assessing only low or high numbers of ground hits. Perhaps this represents a middle-ground 

or balance between DEM accuracy ~high number of ground hits) and true representation of 

the canopy surface (low number of ground hits). However, the same is not true for the 2006 

data. The greatest improvement in correlation co-efficient is achieved when only LiDAR 

pixels with a ground hit ofless than 2 are considered. This seems to support Nelson et al.,'s 
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theory. Yet it remains unclear why there is no consistency between datasets. In terms of the 

growth correlation though, it is unsurprisingly the combination of the 2003 and 2006 

ground count conditions which have the greatest improvement on the strength of the 

correlation. However the correlation co-efficient remains very weak. This suggests that 

regional issues of ground count are not responsible for the poor growth correlation. 

The second regional issue is that of plot age. It has become evident throughout this study 

that plot (or tree) age plays a significant part in how accurately the average plot (or tree) 

height may be estimated. This has already been studied in relation to ground truthing, 

however this section aims to investigate the effects of plot age on LiDAR height estimation. 

It might be argued that this is a global issue, yet because different forest stands are of 

different ages and therefore are affected differently, it is being discussed as a regional issue. 

The issue of plot age links into many of the themes already discussed in this paper, 

including DEM accuracy, CHM accuracy and dominance levels. Here the three previously 

defined plot age classes will be examined separately (for definitions see section 4.1.4). 

Here, the ground truth values must be assumed to be true. The results of the individual tree 

level investigation are presented in Table 5.10. 
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Tree Level Co"elation Mean Standard 
Variables 

Condition Co- Line Equation Difference 
Deviation (m) 

efficient (m) 

Ground All ages 0.7492 y = 0.70x + 1.52 0:99 3.82 

truth height Young 0.1187 y = 0.37x + 1.96 -0.74 1.39 
03 andMax Middle-Aged 0.6542 y = 0.99x- 0.70 0.83 2.73 
LiDAROJ Mature 0.0464 y = 0.36x + 7.31 4.37 5.09 

Ground All ages 0.7055 y = 0.65x + 1.72 1.62 4.21 

truth height Young 0.2247 y = 0.70x + 1.42 -0.56 1.48 
06andMax Middle-Aged 0.6701 y = 0.98x- 1.44 1.66 2.78 
LiDAR06 Mature 0.0395 y = 0.32x + 7.63 5.60 5.41 

Ground All ages 0.0035 y = 0.06x + 0.43 0;62 1.47 
truth Young 0.0002 y = O.Oix + 0.90 0.19 1.40 

growth and Middle-Aged 0.0003 y = 0.02x +0.44 0.83 1.31 
MaxLiDAR 

growth Mature 0.0001 y = 0.02x - 0.30 1.18 1.54 

Table 5.10 Correlation co-efficients and related information derived from the regression of height and growth 
variables, subdivided according to tree age. 

It can be seen from the results, that young trees are being under predicted by the LiDAR 

both in 2003 and 2006. It is likely that this results from one or both of the following. Firstly 

that the open canopy of younger plots means that more laser hits fall on the shoulders of the 

trees rather than their peaks, leading to underestimation by the canopy height model. 

Secondly, the open canopy allows larger proportions of understorey vegetation to grow, 

thereby leading to an overestimation of the DEM. The combination of these, results in an 

underestimation of height by the LiDAR, as observed in Table 5.10. 

Conversely, it is evident that mature trees are grossly over predicted by the LiDAR, for 

example, by an average of 5.6m in 2006. As discussed previously, the closed canopies of 

mature plots have mixed effects on the strength of the correlation between ground truth and 

LiDAR height values. However it is likely that it is the inability of LiDAR to penetrate the 

canopy sufficiently to measure less dominant trees that is responsible for such an over 

prediction of heights, and a large corresponding drop in the strength of the correlation. The 

127 



mature category also features the greatest standard deviation value thereby indicating the 

poorest level of precision. 

The middle-aged plots seem to represent a half way point between these two extremes, 

where the LiDAR and ground truth heights and growth are best correlated when compared 

to the other age classes. Middle-aged plots have· a sufficiently closed canopy for more 

accurate height estimation and reduced understorey vegetation, yet the canopy is not so 

dense as to prevent detection of lower trees within the plot. 

In summary, it is evident that tree or plot age appears to have a significant effect on the 

relationship between LiDAR and ground truth height data, with increasing amounts of 

systematic bias and random error observed for older plots. Consequently it might be 

assumed that this is responsible for the poor growth correlations. However, Table 5.10 also 

indicates that not only the strength of the growth correlation, but also the systematic bias 

and random error are not significantly altered by plot age. Therefore it is concluded that the 

regional effects of both plot age and dense canopies, are not alone responsible for the 

observed lack of correlation between LiDAR and ground truth growth variables. 

5.4.3 Local Effects 

This section discusses the nature of the interaction between LiDAR and the field at the 

local level. This includes investigating the effects of negative values and dead trees on the 

LiDAR-ground truth growth correlation. 
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Negative growth values within the ground truth data result partially from recording errors 

and partly from dead trees where the top of the stem is prog£essively breaking off. It is less 

clear why negative growth values are observed within the LiDAR data, unless of course 

obvious clear-felling or windblow has occurred. They may result from data misalignment 

which has already been identi:fied as an issue here. In order to investigate the effects of 

negative values on growth estimates, the correlation was rerun to exclude all negative 

ground truth and LiDAR values. The results are presented in Table 5.11. 

Condition Co"elation Line Equation 
Mean Standard 

Co-effreient Difference (m) Deviation (m) 

None 0.0035 y = 0.06x + 0.43 0.62 1.47 

Negative values excluded 0.0201 y = -0.13x + l.l8 0.58 l.l5 

All dead trees excluded 0.0025 y = 0.05x + 0.53 0.54 1.47 

Table 5.11 Effects on the correlation between ground truth growth and maximum LiDAR growth caused by 
exclusion of negative values and exclusion of dead trees. 

It is evident from the resulting correlation co-efficient that excluding all negative values 

does slightly improve the strength of the association between ground truth growth and 

maximum LiDAR growth. It also reduces the mean difference between the variables and 

the random error (standard' deviation). However, it is important to note that this 

improvement is very slight. As a consequence, the occurrence of negative growth is not 

sufficient to explain the poor growth correlation. 

The correlation was also rerun to exclude all dead trees. If dead trees with breaking stems 

were the main cause of negative growth it would be expected that the correlation for 

excluded dead trees would closely match that achieved by excluding negative values. 
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However, this is not the case. This suggests that dead trees are not the main cause of the 

observed negative growth values. It is possible that the level of uncertainty associated with 

ground truth measurements (Chapter 5.3) leads to false negative growth measurements. 

Furthermore, LiDAR data misalignment could also be responsible. This supports the 

requirement for further study of ground truth error and accurate LiDAR positioning. 
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S.S SUMMARY 

This section has explored the results in greater depth. It has been shown that the multi­

temporal surveys were capable of detecting growth over the 3 year time period at K.ielder 

Forest. When compared to ground truth data, the LiDAR height data cor-relates very 

strongly, although underestimation of ground truth values is high at roughly 3m. 

Conversely, growth cor-relations between LiDAR and ground truth data are weak and 

mostly negative. Consideration of ground truth error and a variety of interactions between 

LiDAR and the field did little to improve the strength of the growth correlations, although 

height correlations were further improved by considering only dominant trees. The 

following chapter discusses further why such a poor growth correlation is being observed 

and makes some recommendations for future work. 
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6 DISCUSSION 

This research was initiated with the following key research questions: 

1. Can multi-temporal ALS detect forest growth over a three year period? 

2. If so, how accurately is this growth predicted? 

3. Can this tell us anything about: 

a. the robustness of our LiDAR processing and; 

b. the accuracy, precision and reliability of our methods used to test the 

LiDARdata? 

It was shown in Chapter 5 that the multitemporal LiDAR datasets acquired over Kielder 

Forest are indeed capable of detecting growth over the three year study period. However, 

despite strong correlations between LiDAR and ground truth height estimates no such 

agreement was found for growth data. This might suggest that multi-temporal LiDAR 

surveys are unable to accurately estimate forest growth. However it is first necessary to 

explore the. potential reasons for this lack of association between LiDAR and ground truth 

growth estimates. This is the focus of this discussion chapter. 

In answering research question No.3 a vaFiety of factors are considered, including 

positioning error, ground truth error, the set-up of the LiDAR systems and the effects of 

scale and resolution. The chapter is concluded with a discussion of the implications of these 

findings for the forest management community and other interested parties. 
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6.1 POTENTIAL SOURCES OF ERROR 

This section aims to investigate why such poor levels of correlation are observed between 

ground truth and LiDAR derived growth variables. This investigation will assess the 

robustness of the LiDAR processing chain as well as the accuracy, precision and reliability 

of the ground validation data; firstly, with a view to exploring the ~ 7m DEM offset in z, 

the 5m offset in x between the LiDAR datasets; and secondly with a view to gauging the 

accuracy of the LiDAR growth estimates. In doing so a number of key themes are 

discussed, including the effects of; spatial positioning and potential data misalignment; the 

accuracy and precision of ground truth data and its method of collection; the setup ·of the 

ALS system; and lastly some consideration will be given to scale and resolution. 

6.1.1 Positioning Accuracy 

The misalignment of LiDAR datasets with each other and in relation to the location specific 

ground truth data has huge implications for the estimation of forest growth. Furthermore, if 

the ground truth data is assumed to be 'true' then the misalignment also effects our 

assessment of the accuracy and precision of such growth estimates. This study found the 

LiDAR datasets to be offset in· a northerly direction by 5m and in the z axis by 7m. Given 

the systematic nature of this offset the spatial coiTection process was fairly straightforward, 

however it is worrying that the offset only became evident because multiple LiDAR 

datasets were being used. Other studies too have found positional offsets between LiDAR 

. and field data to be the single most important source of error (Nresset and 0kland 2002). 

This section discusses a range of possible causes of data misalignment and considers how 

positional errors might be minimised. 
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6.1.1.1 GPS Error 

ALS data is advertised to be accurately georeferenced from the moment of its acquisition 

and thus is frequently assumed to be an accurate frame of reference for spatial positioning. 

However, errors in the recorded GPS measurements are possible and translate themselves 

into laser point error. In this study, errors in the GPS for either or both LiDAR datasets 

and/or the ground truth tree and plot locations may be causing positioning errors and 

subsequent data misalignment. If so, it is likely that they result from one or both of two 

main issues. 

The first of these issues is that of poor geometry from the GPS satellite constellation. This 

occurs when satellites are spread across the sky in such a way as to result in low levels of 

locational precision. PDOP or 'Position Dilution of Precision' is the name given to this 

measure of geometric strength which is determined by the number of satellites being 

tracked and their location in the sky. A PDOP mask may be applied during data collection 

to define the limits of acceptable accuracy. A PDOP of less than 4 gives the most accurate 

results resulting in a confidence of positioning ofless than 1'm. A PDOP ofbetween 4 and 8 

is generally regarded to be acceptable and above 8 gives very poor positional accuracy 

(Brown 2007, pers. comm.; University of Montana website accessed 25..1 0.07). 

Correspondence with the Environment Agency confirmed that the 2003 LiDAR dataset 

used here was collected with a PDOP of less than 4. Furthermore, correspondence with the 

Unit for Landscape Modelling (ULM) confimied that the 2006 LiDAR was collected with a 

PDOP of between 2.60 and 1.41. Thus it is likely that this is not the cause of any 

significant error within the data. 
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The second issue concerns the length of the baseline during collection of GPS data. Longer 

baselines mean greater positioning errors. The distance between the base station and rover, 

whether during LiDAR acquisition or ground truthing, affects the positioning error at a rate 

of roughly one in one million. This equates to an increase in error of lmm for every lkm 

further from the base station the rover is. It is possible that error introduced by a long 

baseline may result in positioning errors and subsequent data misalignment. Again, the 

Environment Agency were able to confirm a baseline length of less than 20km for the 2003 

LiDAR data acquisition, resulting in a GPS error of 2cm. ULM were also able to confirm 

an average baseline length of 10.35km, with a range between 1.52km and 27.78km. This 

results in a GPS error of between O.lcm and 2.7cm. This amount of error seems somewhat 

insignificant when dealing with data which has been summarised into 5m by 5m pixels and 

does not afford an explanation of a 5m or 7m offset in any dimension. Furthermore, the 

Environment Agency checked the 2003 LiDAR against 1: 10,000 Ordnance Survey maps 

and Nextmap Synthetic Aperture Radar data for Kielder and found no notable offset. This 

suggests that the data misalignment is not due to GPS errors of the 2003 or 2006 LiDAR 

data. 

In terms of the GPS error associated with the ground truth plot and tree locations, a 

positional accuracy of0.5m is anticipated given a clear view of the sky, decreasing to 0.7m 

if trigonometric principals had to be employed. This suggests some misalignment between 

ground truth and LiDAR data is to be expected. However, even a maximum offset of 0. 7m 

is' unlikely to cause significant problems given the 5m by 5m spatial resolution of the 

LiDAR data used for comparison with the ground truth data. Furthermore, such an offset 

would affect height as well as growth correlations. This has not been observed and thus it 
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seems unlikely that GPS ground truth error is the principle cause of poor growth 

correlations. 

In summary it seems that there are four possible data misalignment scenarios which would 

result from GPS error, each with varying effects on height and growth correlations. 

Scenario one involves significant GPS error in one of the LiDAR datasets but not in the 

other or the ground truth. This would result in reduced height correlations for that particular 

dataset and low levels of correlation for the growth regression. Scenario two involves 

significant GPS error in both LiDAR datasets but not in the ground truth data. This would 

precipitate lower height correlation co-efficients for both LiDAR datasets and lower growth 

correlations. Scenario three involves significant GPS error in the ground truth data and not 

either of the LiDAR datasets. This would cause problems for both height and growth 

correlations. The final scenario involves significant error in all three GPS sources which 

would result in poor correlations for both height and growth. The confirmation of both the 

2003 and 2006 LiDAR data accuracy from the Environment Agency and ULM respectively 

rules out scenarios one, two and four. The fact that only growth correlations are poor seems 

also to rule out scenario three. This then perhaps leads to the conclusion that it is possible 

that the poor growth correlations and data misalignments do not result from GPS error at 

all. Thus it is the purpose of the remainder of this chapter to investigate other potential 

sources of error. 
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6.1.1.2 Post-Processing E"or 

Some initial processing was performed on the LiDAR datasets by the data providers before 

the methodology detailed within this study was performed. Any errors introduced at this 

stage would, like GPS errors, be translated into laser point errors. It could not be 

established from the data providers exactly what post processing was carried out on either 

LiDAR dataset. As a consequence this remains somewhat of a black box issue. Yet despite 

the fact that error here cannot be quantified, nor can it be ruled out. Thus it remains 

important to recognise this step as a potential source of error, a potential cause of data 

misalignment and an influencing factor in poor growth correlations. Future work would 

benefit from a closer study of the post-processing routine. 

6.1.1.3 DEM Error 

It is important that errors in the DEM are recognised as being different from laser point 

errors. Indeed, even if the laser point cloud data were error free the creation of a DEM is 

still likely to introduce some error, or to at least misrepresent the original surface to a 

certain extent. Indeed the very definition of a DEM as a smoothed representation of a 

surface means that this is inevitable. The challenge is to keep the error, or the 

misrepresentation of the surface, to a minimum. In doing so, the errors associated with tree 

height and growth estimation may also be kept to a minimum. To this end, much research is 

currently ongoing into the improvement and development of many different ground 

classification algorithms. 
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Given its availability and proven ability the progressive TIN densification algorithm 

embedded in TerraScan (Axelsson 2000) was used for creation ofboth the 2003 and 2006 

DEMs within this study. DEM difference imagery and data indicates a systematic offset 

between the two DEMs of roughly 7m. This seems very strange and is a positional error 

which cannot be explained by the OEM" generation sequence alone (other potential 

explanations for this offset are the study of this chapter in general). The same DEM 

generation routine was employed for both LiDAR datasets. As a consequence, it may be 

expected that equivalent magnitudes of error would be incorporated into both DEMs. 

Whilst this may impede an accurate assessment of tree height in both datasets, the two 

datasets should remain largely comparable thereby having a lesser effect on growth 

estimates and certainly not incurring an offset of~ 7m in z. Fortunately, this offset is easily 

corrected and tree height and growth estimates not affected by it10
• 

Further study of the DEMs indicates the presence of less systematic errors too though. 

Indeed, differences between the DEMs following correction of the offset stil'l stretch as 

great as 8.83m, although the standard deviation value of 0.6m is more encouraging. In 

terms of the effect these differences may have on the ground truth-LiDAR height and 

growth correlations, only the DEM differences at plot locations need consideration. At the 

22 ground truth plot locations the DEM differences are no greater than 0.95m, with 64% of 

plots falling in an area where DEM differences are smaller than ±0.25m, and 91% where 

differences are smaller than ±O.Sm. Some difference between DEMs is to be expected and 

may result from genuine changes in the terrain surface or differences in the system setup of 

the two LiDAR acquisitions. This is discussed further in section 5.1.3. No improvement in 

10 The -7m offset in z exists for all laser points within the 2006 LiDAR dataset, not solely those points 
classified as 'ground'. Therefore the difference between DEM and CHM (tree height) remains comparable 
between d&tasets regardless of the offset. 
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growth correlations was achieved by including only those trees in areas of smaller than 

±0.25m DEM difference. In the future, investigations into the effects of using a single 

DEM for growth studies may be beneficial. 

Besides a comparison of the two DEMs no independent check was performed on the 

accuracy of the DEMs. However, given the problems experienced in areas of very dense 

canopy it is likely that some parts of the DEMs were more accurate than others. Indeed, the 

problems of generating high accuracy DEMs in heavily vegetated terrain is well 

documented (Zaksek and Pfeifer 2006; Hyyppa et al., 2005; Hollaus et al., 2006; Kobler et 

al., 2007) and recent literature details a great number of alternative ground classification 

algorithms to the TerraScan routine. These include block minimum filters, slope based 

filtering, iterative robust interpolation as well as the more recent segmentation and 

classification based filtering algorithms (Pfeifer et al., 1999; Sithole and Vosselman 2004; 

Zaksek and Pfeifer 2006; Kobler et al., 2007; Pfeifer 2007 pers. comm.). Indeed, there is 

much research currently being channelled into developing an algorithm which can provide 

an accurate and precise representation of the ground surface, especially in areas of heavily 

vegetated and steep terrain (Hyyppa et al., 2005; Hollaus et at 2006; Zaksek and Pfeifer 

2006; ~obler et al., 2007). It seems that experimentation with a variety of interpolation and 

point selection techniques is necessary to find the method capable of creating the most 

accurate DEM possible for a given study area. Indeed, as LiDAR remote sensing of forestry 

is still very much in the developmental phase, a single approach for accurate processing of 

laser data is yet to be properly established within the academic literature. However, it is 

likely that algorithms specially developed to cope with dense forests conditions would 
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produce a more accurate representation of the ground surface at Kielder. As a consequence 

such algorithms may also help to improve height and growth estimates. 

It is concluded that the ~ 7m DEM offset cannot be explained by the DEM generation 

routine, yet in any case it does not affect height and growth estimates. Variation remains 

between the two DEMs following offset correction however and yet such variation does not 

appear to affect growth correlations significantly. It is likely that DEM creation could be 

improved with the use of an algorithm able to cope with dense canopies. However a reliable 

assessment of the x, y and z error associated with DEM generation requires investigation of 

a more quantitative nature. This is not within the scope of this paper. Future work however, 

would b<;nefit from this. 

6.1.1.4 CHM Error 

In the creation of the canopy height model there exists the opportunity to introduce error or 

to misrepresent the 'true' canopy surface, as with DEM generation. Such surface smoothing 

is necessary for estimation of tree heights and growth, yet it remains important to be aware 

of CHM creation as a potential source of error. Figure 6.1 gives a schematic representation 

of how misrepresentation of the canopy surface may occur. Sketch (a) illustrates how the 

canopy height model may look given the positions of the laser hits, but sketch (b) shows the 

true canopy surface. This diagram is also applicable for demonstrating DEM errors. Again 

the challenge is to develop techniques and processes which keep this error or 

misrepresentation to a minimum. 
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a • 

Figure 6.1 A schematic representation of how error may be introduced during creation of a canopy height 
model. The points represent laserhits, (a) the CHM surface and (b) the true surface. 

A quantitative assessment of the accuracy ofthe CHM created for the Kielder datasets may 

help to ultimately improve height and growth estimates, however is not within the scope of 

this project. It has been noted though, that some decisions made concerning canopy 

classification, prior to CHM generation, may affect the accuracy of the final outcomes. It 

was decided that all returns falling with 2m of the ground surface would be excluded from 

canopy height models. Whilst the intention was to remove hits from low lying vegetation 

and natural debris it was noted during fieldwork that within the youngest plots many trees 

sit below this height. Whilst height correlations between LiDAR and ground truth data do 

not seem to have been affected, future studies may benefit from an assessment of the effect 

on growth correlations. 

6.1.1.5 Horizontal Displacement of Tree Crowns 

This final section concerning the three dimensional data misalignment concerns the 

horizontal displacement of tree tops due to strong winds and leaning caused by competition 

for light and/or damaged stem structure. If a tree is leaning significantly then the ground 

truth recorded location of the tree base will not be the same as the position at which the 

141 



crown is observed by the ALS system (Fig.6.2). This can also occur during strong winds 

and is an issue which has been previously documented (Popescu et al., 2002; Yu et al., 

2005; Yu et al., 2006). If the tree continues to growth in the direction of the initial lean, 

problems of LiDAR and ground truth misalignment are likely to worsen with age. 

However, it is likely that the magnitude of the locational error introduced by leaning trees 

would certainly not exceed a few metres. This links into the consideration of spatial 

resolution and the scale at which height, growth and error are studied (this is discussed 

further in section 6.1.4 ). For ground truth height and growth estimations at the 0.02ha plot 

level and LiDAR height and growth estimates from 5m by 5m pixels, leaning trees are 

unlikely to have a significant effect. Some problems may be caused for both height and 

growth correlations analysed between LiDAR and ground truth data at the individual tree 

level. However, because both height and growth correlations would be affected, the issue of 

horizontal displacement of tree crowns cannot be used to explain low R2 values for growth 

regressions alone. 

Figure 6.2 The horizontal displacement of the treetop on a leaning tree. Point (a) represents the trees location 
as recorded by the ground truthing and point (b) represents its location as record~ by the ALS system. 
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6.1.1.6 Summary 

.Five potential sources of data error·or misalignment have been discussed here. It is possible 

that the post-processing of the LiDAR data could be responsible for the offsets and poor 

growth correlations as this currently remains somewhat of a black box issue. LiDAR height 

and growth estimates, and correlations with ground truth data may benefit from improved 

DEM and CHM generation routines but neither can confidently be assumed to be 

responsible for the data misalignment. Further study into the effects of the horizontal 

displacement of tree crowns may benefit single tree delineation studies, however at the 

scale of this investigation it is not deemed to be a significant problem. Other possible 

explanations of the offsets and poor growth correlations are discussed in the following 

sections of this chapter. 

6.1.2 Ground Truth Error 

This section aims to discuss the effects of ground, truth error on the LiDAR-ground truth 

relationships. It was found in the previous chapter {Table 5. 7) that the tree height 

adjustments made based on the trial data had very little effect in improving the strength of 

the LiDAR and ground truth growth correlation. There was also a lack of consistency 

between plot and tree level results. The co:.efficient of determination for plot level growth 

was very slightly greater following adjustments, but not enough to make any reliable 

conclusion that ground truth error is responsible for the observed poor growth correlations. 

This may be as a result of a number of things; 
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1. The trial study was not extensive enough, meaning that only a limited range of trees 

were studied in terms of height. Given that many ground truth plots were much 

smaller than those studied by the trial their heights could not accurately be adjusted 

to reflect the likely errors associated with measuring smaller trees with the Vertex. 

Further studies would benefit from a more extensive assessment of ground truth 

error. 

2. The tree height categories were not representative enough. Adjusted tree heights 

only affected the new correlation if the tree had moved into a different height 

category between 2003 and 2006. Given the wide ranges of the categories 

(particularly the lower category) which were due to lack of representative trial data, 

and the distribution of the tree heights, trees rarely moved height category. As a 

consequence little change was observed in the correlation co-efficients, mean 

differences or standard deviations. Further studies should consider carefully the 

height categories used, and perhaps investigate the possibility of estimating ground 

truth measurement error as a percentage of tree height. 

3. The representation of the error associated with Vertex measurements requires a less 

crude approach. That is, perhaps a better representation of the variation or spread of 

the error (rather than just an average value) is needed. For example, the trial 

indicates that the ground truth is on average, over predicting the true tree heights by 

0.31m. This figure is based on a range of 'difference from felled height' values 

taken by experienced and partially experienced users. The mode and median of this 

range of values both lie at 0.30m. This is very close to the mean value, thus 
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indicating a fairly normal distribution. Knowing this allows the assumption to be 

made that 68% of the data lies within one standard deviation of the mean, or in this 

case between -0. 74m and l.36m difference from true height 111
• If it is assumed that 

this is a fair range of uncertainty for our average error measurement it can now be 

applied to the LiDAR growth. The average amount of maximum growth recorded 

by the LiDAR is only 1.14m. Therefore, when an uncertainty of ±1.05m is assumed 

for each ground truth height measurement it is easy to see how an agreement 

between LiDAR and ground truth growth may go undetected or· at least, not 

accurately estimated. The magnitude of the uncertainty associated with the ground 

truth measurement results in any association or agreement between ground truth and 

LiDAR growth to be effectively 'lost'. It is unlikely that this magnitude of 

uncertainty is static, indeed, Table 5.6 in the previous chapter suggests an .increase 

of uncertainty with increasing tree height. Thus, a fuller assessment of ground truth 

uncertainty in relation to tree height is necessary. Furthermore, the study of growth 

over a longer timescale may allow the average amount growth measured by the 

LiDAR to further exceed the ground truth measurement uncertainty, thereby 

allowing it to be detected. Further work here would greatly benefit LiDAR growth 

studies, 

4. Error associated with ground truth measurements may not be responsible for the 

observed poor growth correlations at all. Given the results presented here, a problem 

of systematic bias seems unlikely. However, it is likely that it is the uncertainty or 

random error associated with ground truth measurements which causes poor growth 

11 This also tells us that 95% of the data lies within 2 standard deviations of the mean and that 99.7% of the 
data lies within 3 standard deviations of the mean. 
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correlations. Further inquiry would lead to a better understanding of ground truth 

error and measurement uncertainty and how that affects the validation of LiDAR 

data by ground truthing. 

Further to the trial study, the 2007 revisits suggest that careful re-measurement of trees 

seems to produce fairly similar results as previous ground truthing sessions. Of 536 trees 

assessed, only 44 needed adjusting. Furthermore, there appear to be a greater number of 

mistakes made for older plots. This supports the findings of the trial as presented in Table 

5.6. Whilst this does not help define the level of uncertainty within the measurement, it 

does suggest that there may be a consistency of uncertainty as a function of tree height or 

age. However, to reiterate the point from before, the relationship between plot and tree 

height (or age) and the magnitude of uncertainty deserves further study. 

6.1.3 System Set-up 

Another potential source of error is the set-up of the LiDAR systems. As detailed in section 

2.2, the specifications of the laser scanners used within this study were very different from 

each other. Other studies have found differences in scan angle, flying altitude and pulse 

density and distribution to have significant effects on DEM accuracy and therefore tree 

height estimation. Each of these shall bediscussed in turn in relation to this study. 
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6.1.3.1 Scan Angle 

The effects of the size of the scan angle were discussed briefly in section 1.2.1. Many 

studies have found errors associated with both DEM generation and canopy height 

estimation to increase with increasing scan angle (Nilsson 1996; Ahokas et al., 2003; 

Holmgren et al., 2003; Lovell et al., 2005; Goodwin et al., 2006; Friess 2007 pers. comm.). 

It is anticipated that this results from a lower intensity of reflectance at greater scan angles, 

as dictated by Lambert's Cosine Law. 

In his study of forestry in Sweden, Nilsson found that errors caused by the effects ofscan 

angle were responsible for between 2.0m and 2.5m positional error in x and y (Nilsson 

1996). Holmgren et al., (2003) found that greater scan angles affected the lower height 

percentile measures more strongly than it did higher percentiles. They suggest that this 

results from greater obscuration which acts to increase the underestimation of lower height 

percentiles. Further to this, Lovell et al., (2005) also found increased errors at scan edges. 

They attributed the larger errors to a sparser distribution of laser hits which then reduces the 

accuracy of the DEM. 

The 2003 data used within this study was collected with a scan angle of 10°, and the 2006 

with a scan angle of 16.5°. Given its wider reach, it might be expected then that the 2006 

data would feature greater errors at the edges of its scan lines. Indeed, this may be 

responsible for the 2006 LiDAR and ground truth correlation co-efficients which are 

consistently lower than the equivalent results for the 2003 data12 (Table 5.1). Furthermore, 

12 With the exception of Lorey's Mean Height- for reasons discussed in section 4.2.1.1. 
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it is possible that the errors introduced by the larger scan angle are what is being observed 

in the discrepancies between the separate 2006 flight lines as shown in Figures 4.8 and 4.9 

in the Results Chapter. Here, the areas where the flight-lines overlap are at their very edges 

where scan angle errors are likely to be greatest. Therefore perhaps it is not surprising that 

such discrepancies between the DEM lines are observed. This might be analysed further if 

the flight-line overlap was greater. The recommended amount of overlap is 70% of the scan 

line width. However, the 2006 data was collected with much smaller amounts of overlap 

and in some cases with no overlap. This results in a number of 'holes' in the data. Future 

studies would benefit from ensuring that this does not occur and that flight-line overlap is at 

the recommended level. The 2003 data was not available in flight-line format and therefore 

overlaps were not analysed. 

It is possible that the increased errors for lower height percentiles, observed by Holmgren et 

al., (2003) are also being seen here. Lower co-efficients of correlation are observed for 

virtually all plO metrics when compared to other height metrics (Table 5.1). However, this 

is not conclusive proof and may result from a number of factors. Further study is necessary. 

The fact that the scan angles are different between the datasets means that different 

amounts of error will have been introduced into each dataset. Whilst this does not seem to 

have adversely affected the regressions between ground truth and LiDAR derived heights, 

it may have made the 2003 and 2006 datasets less comparable thereby affecting the growth 

correlation. Analysis of a more quantitative nature is needed to establish the precise impact 

of the different scan angles and to determine whether it is scan angle error alone which is 

responsible for the observed lack of associated between ground truth and LiDAR growth 

variables. 
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6.1.3.2 Flying Altitude 

A number of studies have found that greater platform altitudes seem to incur lower d~nsity 

returns (Goodwin et al., 2006; Takahashi et al., 2007). It is thought that the larger distance 

between sensor and target causes a reduction in the intensity of the return pulse in 

accordance with Newton's Inverse Distance Law. If this intensity falls below a certain 

threshold, the pulse becomes indistinguishable from random noise and therefore is not 

recorded. This is much more likely to happen at greater flying altitudes. 

The work of Goodwin et al., (2006) found greater platform altitudes to reduce the 

proportion of first and last returns. That is that a greater number of last returns were 

reflected from the same point as the first returns. This indicates a lower canopy penetration 

rate. Despite this however, Goodwin et al., (2006) concluded that raising the platform from 

1 OOOm to 3000m had very little effect on the accuracy of the resulting canopy height 

model. 

Other studies have produced different results though. The work of Takahashi et al:, (2007) 

in Japan found an increase in the percentage of first-return only returns associated with 

increased platform altitude, which reduced the quality of the DEM. This translated into an 

increase in both systematic and random errors of mean tree height estimates with increasing 

altitude. As a consequence, they recommend a flying height of less than 1 OOOm for tree 

height studies. Furthermore, studies by Ahokas et al., (2003) and Hyyppa et al., (2005) 

indicate increasing random error with flight altitude. Indeed, Hyyppa et al., (2005) found 

that increasing the tlying height from 400m to 1500m increased the random error within the 
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DEM by 50% (from 12cm to 118cm). They also found that random errors were greatest in 

areas of steep terrain. 

In light of these studies, it seems possible that the 2006 LiDAR survey flying height of 

1750m is incurring a greater amount of random error into the DEM and tree height 

estimates than the 2003 survey, which was :flown at 950m. It may be this which is causing 

the differences between the 2003 and 2006 DEMs (Fig.4.5) and the slightly lower 

correlation co-efficients for the 2006 data. Furthermore, the greater altitude is probably 

resulting in a lower rate of canopy penetration. This would cause most problems in areas of 

very dense canopy. Indeed, it is quite possible that this is what is being observed in the 

white data gaps on the 2006 height map in Figure 4.1:2. The same gaps due to lack of 

penetration do not occur on the equivalent 2003 height map. This could be simply due to 

significant growth between 2003 and 2006 resulting in a much denser canopy. However, 

the difference between the two flying altitudes is so great that it may be unwise to assume 

no effect on the DEM, CHM and height estimates. In fact, the comparison of 2003 and 

2006 regression data (Table 6,1) does show an increase in both random (standard deviation) 

and systematic (mean difference) errors. Whilst the jump in flight altitude may not be the 

only cause of this error increase and perhaps resulting poor growth correlation, it is 

certainly an area which deserves further study for the benefit of forest management. 

150 



Year 2003 2006 
Flying Altitude (m) 950 1750 

Ground Truth Variable Maximum Height Maximum Height 

LiDAR Variable Maximum Height Maximum Height 

R:z 0.978 0.973 

Equation y= l.Olx+2.84 y = 0.95x + 3.54 

Mean difference (m) -2.92 ,3.04 

Standard Deviation (m) 1.13 1.21 

Table 6.1 A comparison of regression results, by year (and flying altitude). 

6.1.3.3 Pulse Density and Distribution 

Further to differences in flying altitude, there was also a difference in pulse density 

between the 2003 (2 hits per m2
) and 2006 (4 hits per m2

) datasets. It might be expected 

that the higher resolution 2006 data would produce better quality height estimates. 

However, Table 6.1 indicates that this is not so. This may be due to an outweighing effect 

of flying altitude. That is, greater levels of error have been introduced into the 2006 data by 

the higher flying altitude than can be masked by a higher point density. Specifically tailored 

studies are necessary to establish the exact quantitative effects of differences in point 

density. 

Further to the issue of point density, the distribution of points may also influence DEMs, 

CHMs and therefore height and growth estimates. N~s$et (20Q2) commented that uneven 

pulse distributions will seriously affect small sample plots in particular, introducing greater 

levels of both systematic and random error. This is likely to be a larger problem for 

coniferous forests where the average tree crown area is much narrower than that of a 

deciduous tree (Yu et al., 2006). And yet, the nature of airbome laser scanning means that 

pulse distributions will never be perfectly regular, and certainly never repeatable. As a 
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result the problem of data correspondence remains an issue for all multi-temporal LiDAR 

studies. In light of this, Nresset (2002) recommends that sample ground truth plots should 

not be too small. This links into the idea of scale and spatial resolution which seems to be a 

key consideration for studies of this kind and is discussed further is section 6.1.4. 

6.1.4 Scale 

Issues of scale and resolution run through most of the potential error sources described 

within this chapter. Other studies have found the scale at which height and growth are 

analysed to have a significant impact on results (Woodcock and Strahler 1987). Nresset 

(2002) recommends the use of coarser spatial resolutions for tree height studies. His 

reasoning lies in the fact that smaller sample plots experience greater levels of inherent 

variation of canopy height measures. Gobakken and Nresset (2004) in their study of forest 

growth also found results improved when looking at larger areas rather than single trees. 

Indeed, the 'averaging-out' effect of larger plots reduces standard deviations of mean plot 

values, thereby increasing the precision of height estimates. Given that random error or the 

precision of ground truth measurements was found to be highly problematic within this 

project, perhaps a study at coarser spatial resolutions would be helpful. Indeed, analysing 

height and growth at a larger scale may help to gloss over a multitude of small errors 

potentially being introduced by the GPS, post processing routine, DEM and CHM 

generation routines and the horizontal displacement of tree crowns. 

Fqr future studies, it may also be advantageous to consider the spatial resolution which 

results from the LiDAR system setup. Greater pulse densities and lower flying altitudes 
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will enable greater levels of canopy penetration thereby producing a finer spatial resolution. 

This would lead to greater levels of accuracy within the DEM and CHM which could then 

be averaged over a larger area to achieve higher levels of precision. 

Finally there is the issue of temporal scale. Currently, within this study the random errors 

associated with growth estimation are larger than the estimated growth itself, thereby 

causing the growth to effectively be 'lost'. Studying growth over a longer timescale may 

allow estimated growth to exceed the random error meaning it could then be successfully 

detected. 

It is evident that the scale at which height and growth is studied using ALS has significant 

implications for the accuracy, precision and reliabHity of the results. Future growth studies 

would benefit enormously from further investigation into the quantitative effects of 

different spatial and temporal resolutions. However, it is important to keep in mind that 

there is a balance to be struck between resolution modification and cost. This helps to 

reiterate the main purpose of this work which was to investigate whether ALS can provide 

a cost-effective tool for forest management. 
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6.2 IMPLICATIONS OF TIDS STUDY 

It is evident that further study is required in a number of areas in order to investigate and 

minimise the errors associated with LiDAR growth estimation. Despite this though, the 

multitemporal ALS data has been shown to detect forest growth across a range of different 

aged plots which matches that predicted by Forestry Commission volume models. Thus, it 

is anticipated that with some honing, this is a technique which could be reliably employed 

for production forecasting within fm:estry. 

Furthermore, the results of this study may be valuable to a wider range of users within both 

science and commerce. For example, the potential exists to use airborne LiDAR for 

estimating the carbon stocks locked up within forests. In an age where climate change and 

its effects are becoming so pertinent, LiDAR may offer a valuable tool. In fact, as a 

signatory nation to the Kyoto Protocol, the New Zealand government are already 

investigating the potential of airborne laser scanning for this purpose (Donoghue 2007 pers 

comm.; Stephens et al., 2007). LiDAR may also prove to be a useful tool for compliance 

checking of grant funded planting schemes, which is both time consuming and costly when 

carried out on the ground. 

It is becoming standard procedure to fly other instruments concurrently with airborne laser 

scanne.:s. Such practice is advocated by a number of studies (Nelson et al~. 1988; Baltsavias 

1999; Hudak et a/;, 2002; Suarez et a/;, 2005). Indeed, the integration of LiDAR data with 

other fonns of remote sensing may help in the classification and filtering of laser points or 

to help identify particular areas of interest. This concept of data fusion may prove useful for 

future studies at Kielder Forest. Furthermore, the recent availability of laser scanners with 
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'multiple pulse in the air' (MPiA) capability may also benefit future work concerning forest 

growth monitoring (Rohrbach 2007 pers. comm. ). The Optech AL TM Gemini is the first of 

this kind to become commercially available and is publicised to provide higher density, 

more c0st effective datasets ( ~ .opte<.(h~ca accessed 15 .11.07). 

It seems evident that there are still many avenues to explore in terms of furthering the study 

of forest growth using airborne laser scanning. A summary of the results and interpretations 

of this work are presented in the concluding chapter and recommendations for future 

studies concerning the use of UDAR for estimating forest growth are also suggested. 
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7 CONCLUSIONS AND FUTURE RECOMMENDATIONS 

7.1 INITIAL AIMS 

Airborne laser scanning is an active remote sensing technique which has been developed 

rapidly in recent years. It is capable of providing accurate estimates of tree heights and 

other biophysical variables. This research has investigated the extension of this technology 

from single time-series tree height estimations to a multi-temporal study of forest growth 

within a temperate environment. This work aimed to explore whether growth could be 

detected over three years and across a range of different aged plots. Growth was then 

compared to estimates obtained by traditional forest inventorying techniques. Lastly the 

data and methods were examined for potential sources of error with a view to highlighting 

how this technology may be enhanced in the future. 

7.2 RESULTS 

Initial results showed the LiDAR data to be capable of detecting growth over a variety of 

Sitka spruce plantation plots within the three year period. Furthermore, the age related 

nature of growth reflected that shown in Forestry Commission volume models. As found by 

many other studies, LiDAR height estimates at the plot and tree level from both years were 

found to be strongly correlated with height measures obtained by ground truthing. 

However, despite a change in height (growth) being detected by the LiDAR, little 

correlation was observed between this LiDAR growth estimate and the growth estimate 

obtained by ground truthing. Indeed, the correlations obtained on the comparison of LiDAR 

and ground truth growth measures were weak and mostly negative. The reason(s) for this 
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must be concerned with either some kind of error within the LiDAR data itself or secondly, 

some kind of error within the ground truth data to which the LiDAR is being compared (or 

both). 

7.3 POTENTIAL ERROR SOURCES 

The study of multi-temporal datasets to estimate forest growth relies on the assumption that 

the two (or more) datasets in question are directly comparable. This means it is important to 

use the same processing chain on both LiDAR datasets (as done here). However, it also 

means it is highly important to ensure the specifications and use of the LiDAR systems are 

as similar as possible. In this study, scan angle, flying altitude and point density were very 

different between the two LiDAR datasets. Whilst a quantitative assessment of the error 

sources was not within the scope of this work, it is likely that the use of such different 

systems introduced different magnitudes of error thereby reducing the comparability of the 

datasets and the strength of the LiDAR-ground truth growth correlation. Despite the 

operational constraints of doing so, it is highly recommended that the set up and use of 

LiDAR systems for multi-temporal studies be as similar as possible. 

A study of ground truth error was also undertaken by this research. It was found that the 

magnitude of uncertainty (random error) associated with ground truth height measurements 

was so large that any association between LiDAR and ground truth growth estimates was 

effectively being lost. In other words, the errors associated with ground truth growth 

estimation were larger than the estimated growth itself thereby allowing it to go undetected. 

This might be ameliorated in a number of ways. Firstly, by studying growth over a longer 
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timescale. This might allow the amount of growth to exceed the errors of growth 

estimation, therefore allowing it to be detected. The work of Yu et q/., (20QS) has already 

found this to be beneficial for forest growth studies and under normal forest management 

practices in the UK, forest growth is only analysed at the five year timescale anyway 

(Woodhouse 2007 pers. comin.). Secondly, further study into the magnitude of ground truth 

measurement uncertainty would be valuable, particularly in relation to tree height and/or 

age. Thirdly, it may be that growth is better analysed at a coarser spatial scale. The 

'averaging-out' effects of summarising data over larger spatial areas may help to i".crease 

precision and reduce random error. 

A number of other factors at a variety of spatial scales were also considered. as the cause of 

the poor growth correlation. However, none of these factors were found to be significantly 

influential. The inclusion of only those trees classified as 'dominant' did significantly 

improve height correlations at the individual tree level, but no such improvement was 

observed for the relationship between LiDAR and ground truth growth. Different strength 

correlations were observed when the data was subdivided according to age, indicating that 

height and growth of middle-aged plots seem to be most accurately predicted by the 

LiDAR. Thus, it is anticipated that future research would benefit from further study into the 

age specific accuracy and precision of LiDAR height and growth estimates. 

7.4 RECOMMENDATIONS AND FUTURE WORK 

In light of this study, a number of recommendations can be made for future research 

concerning stand level forest growth. Firstly, the LiDAR datasets must be directly 
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comparable. This means the same system setup; in terms of scan angle, flying altitude and 

pulse density; similar flying conditions in terms of season and time of day; and the same 

LiDAR processing routine. Secondly, it is suggested that the timescale studied should be 

longer than three years to allow the amount of growth to exceed any potential error. Lastly, 

growth studies may benefit from further study into the magnitude and variability of ground 

truth errors. 

It would also be of interest to extend future LiDAR research into other areas. This might 

include the study of species other than Sitka spruce or non-monoculture plantations and 

natural forests and a closer investigation into the effects of yield class on growth. Within 

this study, LiDAR has also demonstrated the potential for identifying areas of canopy 

damage. Thus it may be possible to extend the technique for making assessments of stand 

quality. This might be aided further by the concept of spatial data fusion, by linking LiDAR 

data with other forms of remote sensing. The monitoring of forest carbon stocks may also 

benefit from multi-temporal LiDAR surveying. Furthermore, it will be interesting to 

observe the changes in data quality or cost efficiency introduced by MPiA capability. 

Lastly, it is suggested that a comparison of LiDAR predicted forest growth at different 

spatial scales would be valuable for furthering our understanding of this technique. 

7.5 FINAL CONCLUSIONS 

It is concluded that airborne LiDAR surveys have a great deal to offer the forest 

management community. LiDAR height estimates are strongly correlated with ground truth 

data and whilst the technique of using multi-temporal LiDAR surveys for forest growth 

studies needs some improvement, it is anticipated to be highly valuable in the future. 
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LiDAR datasets must be directly comparable and the systematic and random errors 

associated with ground truthing need to be quantified. Once this is achieved, multi-temporal 

·airborne LiDAR surveys have the potential to revolutionise forest management by 

providing a rapid, cost-effective, non-invasive, repeatable technique of timber production 

forecasting. Furthermore, multitemporal surveys are capable of providing information 

concerning carbon stocks and thereby may help facilitate the international decision making 

process concerning carbon policy and global climate change. Studies of this nature are thus 

of benefit to foresters, climatologists, researchers and non-academics alike and therefore 

should not only continue but be enhanced in the future. 
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