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Abstract 
Manganese oxide tailings material, a waste product generated during Mn ore extraction 

processes in South Africa, has been assessed in terms of its potential to oxidatively 

breakdown organic contaminants. Azo dyes and polycyclic aromatic hydrocarbons 

(anthracene) show oxidative interactions with the tailings, resulting in the formation of 

products which are more environmentally favourable than the parent compound. 

Tailings samples from five mines were characterised to establish the redox reactivity of the 

material. Based on chemical and mineralogical data the tailings were grouped into the 

carbonate-rich Mamatwan type (MT) tailings (Mamatwan and Gloria mines), the Mn oxide-

enriched Wessels type (WT) tailings (Wessels and Nchwaning mines) and the Mn oxide 

enriched Hotazel type (HT) tailings (Hotazel mine). The tailings are net-alkaline and non acid 

generating with a point of zero charge below pH 4. The average Mn oxidation state of the 

three tailings types ranges from 1.2 to 1.5 in the order HT>WT>MT. Despite a low surface 

area (1.5 to 6.4 m2.g"') the tailings show a substantial (0.5 to 3.0%) 'easily' reducible, 

reactive Mn phase as well as a large pool of more recalcitrant dithionite-extractable Mn. Thus 

the tailings material displays both 'quick and slow release' oxidative capacity. 

The oxidative decolorisation of acid azo dyes acid orange 7 (AO 7) and acid yellow 36 (AY 

36) by the Mn tailings is highly pH dependent, with increased oxidation occurring at lower 

pH. The reaction mechanism for the oxidation of AO 7 by the tailings has many similarities 

to enzymatic degradation of the dye observed with white rot fungi. The reaction, initiated on 

the phenolic group, occurs via successive one electron transfers from the dye molecule to the 

Mn oxide. A series of radical reactions occur resulting in the asymmetrical cleavage of the 

azo bond and the generation of terminal reaction products 1,2 naphthoquinone and 4-

hydroxybenzenesulfonate. Attenuated total reflectance Fourier transform infrared 

spectroscopy (ATR-FTIR) demonstrated that initial sorption of AO 7 is pH dependent and 

outer-sphere. A pronounced lag phase exists between the initial sorption of the dye to a Mn 

oxide surface and the initiation of oxidation. This lag phase can indicate that either the 

transfer of the initial electron is rate limiting or that correct orientation followed by inner-

sphere complexation is necessary before oxidation can take place. 
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The reaction mechanism proposed for the oxidation of AY 36 is initiated at the amino 
moiety and proceeds via successive, one electron transfers from the dye to the Mn tailings. 
The reaction pathway involves the formation of a number of colourless intermediate 
products, some of which hydrolyse in a Mn oxide-independent step. The terminal oxidation 
products were observed to be p-benzoquinone and 3-hydroxybenzenesulfonate. 

Light, both UV and ambient, and auxiliary compounds such as acetate buffer and salts did not 

reduce the decolorisation capacity of the tailings. Increased buffer strength enhanced 

decolorisation and addition of Na2S04 in the presence of buffer increased the initial oxidation 

of AO 7. The decolorisation capacity of the Mn tailings showed durability with 90% colour 

removal observed 60 days after daily dye replenishment. 

Drying anthracene-spiked Mn tailings, synthetic Mn oxide and calcite water slurries resulted 

in anthracene oxidation to anthraquinone (6-30% oxidation). Small but significant (4%) 

anthracene oxidation was also observed when anthracene spiked water was evaporated from 

quartz and a clean glass surface. No anthracene oxidation was apparent without the 

evaporation of water at pH > 5. The HT tailings oxidised up to 30% anthracene when dried, 

the most substantial oxidation took place below 5% gravimetric water content. Evaporation 

of anthracene-spiked cyclohexane slurries resulted in the same observed oxidation from both 

Mn tailings and calcite. It could not be established whether electron transfer was occurring 

between the Mn oxide phase of the tailings and the anthracene or whether the transformation 

was solely a surface mediated phenomenon with oxygen being used as the electron acceptor. 

Under fully hydrated conditions the Mn oxide tailings oxidised 75% of anthracene to 

anthraquinone at pH values less than 4.5. This would suggest that the Mn tailings can oxidise 

anthracene and sufficient mineral-contaminant contact can be achieved despite the low water 

solubility of the compound. 
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1. Introduction 
1.1. Overview 

The Kalahari Manganese Fields (KMF), situated in the Northern Cape Province of South 

Africa represent one of the largest Mn ore deposits in the world, holding up to 80% of the 

world's Mn reserves. The KMF is host to extensive Mn mining operations, involving both 

open pit and underground excavations. During the ore extraction process large volumes of 

fine, Mn oxide-containing tailings are produced. These fines are transported to large tailings 

dams where they are stored. Under the current South African waste classification system, Mn 

containing wastes are classified as 'Highly Hazardous' requiring stringent and expensive 

waste storage and disposal measures. A review conducted on the South African and various 

international waste classification systems is given in Appendix A. This review highlighted 

that South Africa's waste classification system is conservative in its approach to Mn 

containing wastes, with Mn rarely featuring as an element of concern in the E U , Canadian, 

Australian or US waste classification systems. Due to the local regulation of Mn-containing 

wastes the large stockpiles of Mn tailings are problematic for the mining companies, 

however, the oxidising capacity of these Mn oxide containing tailings may provide a valuable 

resource for the remediation of organically polluted soils and waters. Recycling and re-use of 

waste is considered a prime objective in waste minimisation practices. Thus finding a use for 

the stockpiled Mn tailings would form part of integrated waste management encouraged by 

the South African government's National Waste Management Strategy. 

The oxidative breakdown of organic pollutants by Mn oxides is an area of growing interest 

due to the abundance of Mn oxides in the natural environment. The capacity for Mn oxides 

to sequester heavy metals in soils has been well established (Murray and Dillard, 1979; 

Manceau et al., 1987; Manceau et al., 1992; Manceau et al., 2003). For these reasons, Mn 

oxides have the potential to provide an all round remediation option for sites/waters showing 

both organic and metal contamination issues. 

Manganese oxides are ubiquitous in soils and waters and thus viewed as a natural mediator of 

soil contamination (Sparks, 2003). Manganese oxides are rarely considered as a water 

treatment option, as sources of cheap Mn oxides have not previously been accessible. The 
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South African Mn mining waste consists of clean Mn oxide containing mine tailings which 
are net-alkaline, non-acid generating and low in trace elements, suggesting they would be 
suitable for sustainable cost-effective soil and water remediation. This project was initiated 
to establish the potential of the Mn oxide-containing tailings to act as soil and water 
remediation agents. 

There are numerous types of organic contaminants. For this study acid azo dyes and 

polycyclic aromatic hydrocarbons (PAHs) were chosen as target contaminants. Azo dyes 

represent a highly soluble group of organic contaminants, which are problematic in water 

treatment and PAHs, represent a group of insoluble contaminants problematic in soils. Thus 

both hydrophilic, water-based and hydrophobic, soil-based contaminants are represented 

1.2. Objectives 

The overall aim of this project was to establish the capacity of the Mn oxide containing 

tailings (hereafter referred to as the Mn tailings) to oxidatively breakdown organic pollutants 

in soils and waters, focusing on acid azo dyes and PAHs. This was achieved by fulfilling the 

following research objectives: 

i) Characterisation of the tailings in terms of their mineralogical, physical and 

chemical properties, with the aim of assessing their oxidative capacity 

ii) Investigating the capacity of the Mn tailings to oxidatively decolorise acid azo 

dyes and elucidating the underlying reaction mechanisms 

iii) Assessing reaction rates associated with Mn oxide mediated azo dye oxidation 

reactions 

iv) Observing real time in situ oxidation of an azo dye by Mn oxides using ATR-

FTIR. 

v) Assessing the effect of auxiliary chemicals on dye decolorisation to determine if 

the Mn tailings provide a viable treatment option for the decolorisation of textile 

effluent. 



vi) Investigating the capacity of the Mn tailings to oxidise anthracene, under 

hydrated and dehydrated conditions and establishing the effect of pH on 

anthracene oxidation. 

vii) In addition to the research undertaken, the industrial partners required the 

generation of a comprehensive review on the regulation of Mn containing wastes. 

Thus an additional objective was to assess the characterisation of Mn containing 

wastes in the South African and various international waste management systems. 

1.3. Mn oxide mining waste 

1.3.1. Kalahari Mn fields 

The K M F is situated 60 km northwest of Kuruman in the Northern Cape Province of South 

Africa (Figure 1-1). The Mn ores are hosted in rocks belonging to the Griqualand West 

Sequence (part of the Transvaal Supergroup) that occur along the western margin of the 

ancient Kaapvaal Craton (Viljoen and Reimold, 1999). The primary Kalahari Mn deposit is 

of sedimentary origin and interbedded with the iron formation from the Hotazel formation. 

Three Mn beds are present in the Hotazel formation, but only the lower one is extensively 

mined (Gutzmer and Beukes, 1996). 

There are two main Mn ore types present in the K M F (Figure 1-1), the low-grade (30 to 39% 

wt Mn), diagenetic, carbonate-rich Mamatwan-type ore to the south east and the high-grade 

(>42% wt Mn), hydrothermally altered oxide-rich Wessels-type ore to the north west (Evans 

et al., 2001). The Hotazel outlier (Figure 1-1) represents a smaller third ore type and outcrops 

to the east of the K M F ; it contains very high grade ore with a low carbonate content. 

Mamatwan and Gloria mines fall within the Mamatwan-type ore and Wessels and Nchwaning 

mines within the Wessels-type ore. Hotazel mine, situated on the Hotazel outlier is no longer 

operational. 



4 
3U N N B O T S W A N A 

ransvaal 
Kanve ><7s 
H ; i ' ,11 •25 IS' 

NAMIBIA 

K M F Vryburg 
Rise o Griqualand 

Wesl Basin u r b a n 

S O U T H A F R I C A I T 
H i l J olazel i i ; i:yt ; i Cape kin 

Town 

3L 
2ri5'& 5 i 

I . I . I . i 
• Key: 
• : 

r - 1 

r~i l ixlenl of Ohfanlshoek Supergroup 

1 Extent of Mooidraai Formation 

1'auli 

Thrust fault 
i t 10 

i Lxjcalities of tlnll-corcs containing aeginnc I k i n 
Mamatwan Manganese mine 

Boundary between high ( N W ) & low ( S E ) Mn-grade areas 
23°00'E 

i 

Figure 1-1 Map of South Africa showing geological formations relating to Kalahari Mn fields (KMF) and 

sampling locations at Mamatwan, Gloria, Wessels, Nchwaning and Hotazel mines taken from Tsikos and 

Moore (2005) 

The tailings, produced during the ore extraction process, are o f limited commercial use to the 

mining companies, due to their small particle size and slightly lower Mn content, and thus are 

regarded as a waste product o f the mining operation. The fine tailings (<200 urn) are 

transported to tailings dams either in a water slurry (Wessels) or on a conveyor (Mamatwan). 

There are approximately 1.6 and 1.5 million tons of tailings stored in the Mamatwan and 

Wessels tailings dams, respectively. Hotazel mine is no longer in operation and the tailings 

are stockpiled in one of four dumps. 

1.4. Regulation ofMn in waste in SA and internationally 

A detailed review of Mn in waste and the environment can be found in Appendix A. This 

section provides only a short comparative summary of the South African, US and EU waste 

classification schemes. 
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1.4.1. Toxicological effects of Mn 

Manganese is an essential element for physiological plant and human health with adverse 

health effects observed with Mn deficiencies as well as toxicities. The most common route of 

human exposure to Mn is through food ingestion. The United States Environmental 

protection agency (U.S.EPA) suggests an appropriate Reference Dose (RfD) of lOmg Mn/day 

(U.S.EPA, 1996). Other channels of exposure to Mn are through drinking Mn rich water, 

inhalation of Mn dust and ingestion of soil containing Mn compounds. 

It is thought that inhalation of excessive amounts of Mn dust has the most serious adverse 

health effect, and at comparable doses it has been shown that more Mn reaches the brain 

following inhalation than following ingestion (Gianutsos and Murray, 1982; Dorman et al., 

2002). Chronic inhalation of Mn containing particulate has been associated with nervous 

system disorders in a Parkinson-like disease known as manganism (Couper, 1837). In 

comparison Mn ingested orally has low toxicity and reports of adverse effects by this 

exposure route are rare (U.S.EPA, 2003). 

1.4.2. Ecotoxicological effects of Mn 

Ecotoxicological thresholds for Mn in water are lower than that those deemed safe for human 

consumption. An overall guidance value for the protection of 95% of marine species with 

50% confidence was derived at 0.3 mg.L"'. The guidance value for freshwater species in soft 

waters is 0.2 mg.L"1 (Concise International Chemical Assessment Document, 2004). It is 

often the more conservative ecological thresholds that are used in the compilation of waste 

classification guidelines in South Africa. 

There has been a recent announcement by the United Kingdoms' (UK) Environment Agency 

that there will be no Environmental Quality Standard for Mn for protected freshwaters 

because the ecotoxicological data is contradictory to what is seen in the natural environment 

- i.e. in certain streams elevated background Mn concentrations have shown no adverse 

effects on the ecosystem. Thus dissolved Mn is not a statutory driver in the UK Water 

Framework Directive. 



1.4.3. Comparison of waste regulation schemes 

The classification of Mn containing wastes differs significantly in the various international 

waste classification strategies. The 'Minimum requirements for the handling, classification 

and disposal of hazardous wastes' of South Africa are by far the most conservative with 

relation to Mn. The South African guidelines stipulate that the maximum amount of Mn that 

can be disposed of in a general purpose leachate-controlled landfill is 454.5 g/ha/month. Any 

waste stream that will exceed this dose will require disposal at a highly hazardous waste site. 

According to the U.S.EPA, wastes are not classified as hazardous on the basis of their Mn 

content. Unlike the South African guidelines, the E U waste classification system recognises 

the importance of speciation when determining the classification of Mn for example MnSC<4 

(soluble) is more conservatively classified than Mn oxide (insoluble). According to the risk 

phrase of MnS04 it is acutely toxic to aquatic organisms with long term toxicological effects. 

This corresponds to the LC 5 o of Mn falling between 1 and 10 mg.L"1 (acutely toxic) and the 

fact that M n 2 + is soluble (long lived). With this classification it is recommended that the 

maximum amount of Mn as MnSC>4 allowed in a waste before it is termed hazardous is 9105 

mg.kg"1. Manganese dioxide has the risk phrases R20 and R22; Harmful: if inhaled or 

swallowed. According to the threshold for harmful materials, a waste would need to contain 

25% Mn02 for it to be classified as hazardous. The E U risk-based system recognises no 

ecotoxicological risk associated with Mn02. 

The Basel Convention (1992) is an international treaty designed to regulate the transport of 

hazardous waste between countries. Manganese is not included as a hazardous metal in the 

Basel Convention. The Convention has only established interim guidelines for assessing the 

generation of hazardous leachate from waste and does not include Mn in their list of 

hazardous leachate constituents. 

In the light of international waste regulation schemes reviewed, the South African approach 

towards Mn appears conservative, despite it being based on universal ecotoxicological data. 

Since this ecotoxicological data has recently been called into question by the UK, there is a 

need for a review of South African waste legislation. At the time this study was conducted 

the South African waste guidelines were under review. The South African government has 



expressed a need to incorporate a more globally harmonised approach to waste 

management, whilst keeping local conditions in consideration. This may result in relaxing the 

stringent regulation of Mn containing wastes. Manganese is a contentious element for many 

regulatory bodies due to its varying speciation, which dictates its ecotoxicological risk, and 

its natural abundance and varying background levels. A waste classification system 

resembling that of the EU, which considers element speciation, may provide a more rigorous 

and pragmatic approach to waste characterisation. 

1.5. Persistent organic pollutants 

Persistent organic pollutants (POPs) is a generic name for a group of organic compounds that 

are not easily degraded in the environment due to low solubility, low volatility and/or 

resistance to degradation (Andrews et al., 2004). Thus POPs encompass a wide range of 

organic compounds which can persist in soils, surface waters, ground waters, the atmosphere 

and the oceans. For the purposes of this investigation, which is the first to assess the 

oxidative capacity of the Mn tailings for remediation purposes, one highly-soluble, 

predominantly water-based contaminant group and one poorly-soluble, predominantly soil-

based contaminant group have been targeted. Acid azo dyes were chosen as suitable water-

soluble contaminants and PAHs have been targeted as insoluble organic contaminants. 

Textile industries produce large volumes of wastewater polluted with dyes. It is estimated 

that between 10 and 15% of manufactured dyes are lost in wastewater streams (Zhao et al., 

2005). Within the compounds manufactured as dyestuffs, azo dyes represent the largest class 

of dyes. The release of azo dyes into the environment is undesirable not only for obvious 

aesthetic reasons, but also because of the toxic and mutagenic properties of many dyes (Riu et 

al., 1997). 

The removal of azo compounds from textile waste streams is a pertinent issue in water 

treatment. Many biotreatment technologies achieve the reductive cleavage of the azo bond, 

which generates a range of aromatic amines which are colourless but significantly more 

carcinogenic than the parent azo compound (Sweeney et al., 1994; Ge and Qu, 2003). 

Advanced oxidative techniques have been successfully employed to remove colour from 

waste effluents, however, these techniques are often expensive, thus the development of a 
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sustainable water treatment technique utilising the oxidising capacity of the Mn tailings 
waste is appealing. To the author's knowledge few researchers have studied the use of Mn 
oxides in the treatment of textile waste. 

Polycyclic aromatic hydrocarbons have been highlighted as a health concern due to their 

chronic health effects (e.g. carcinogenicy); microbial recalcitrance; high bioaccumulation 

potential and low removal efficiency in traditional waste treatment processes (Herbes and 

Schwall, 1978; Bamforth and Singleton, 2005). Contamination of soils with PAHs is a major 

and widespread environmental problem. There are no simple remediation solutions for PAH 

breakdown. In this study the oxidation of anthracene, a three-ringed PAH, by the Mn tailings 

has been investigated. Anthracene is one of the priority contaminants listed by the U.S.EPA. 

It has been selected as a model PAH for this study, due to its low water solubility and the fact 

that it has the same arrangement of fused aromatic rings as the more complex carcinogenic 

PAHs (Alcalde et al., 2002). Oxidation of PAHs by Mn oxides has not been, to the author's 

knowledge, widely reported. 

1.6. Structure of thesis 

This thesis presents research conducted to assess the capacity of Mn oxide containing tailings 

to oxidatively breakdown organic contaminants. In presenting this work the thesis has been 

structured as follows: 

• This Chapter presents an overview to the work in briefly describing; the geological 

setting of the KMF, the mining procedures which generate the tailings, a comparative 

summary of waste regulation with respect to Mn in the South African, US and EU 

waste characterisation systems and the rationale for choosing the two contaminant 

groups, acid azo dyes and PAHs 

• Chapter 2 provides a review on Mn geochemistry focusing on Mn oxide mediated 

organic oxidation 

• Chapter 3 reviews the chemistry of persistent organic pollutants in the environment. 

Azo dyes and PAHs are reviewed in terms of current treatment technologies and 

sorption and oxidation characteristics. 
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• Chapter 4 reviews experimental and analytical procedures used in previous studies 

on acid azo dyes and PAHs. It outlines the materials and methods used during the 

characterisation of the tailings and in the experimental design of the azo dye and PAH 

research. 

• Chapters 5, 6 and 7 present the results and discussion of the tailings characterisation, 

the azo dye and PAH work, respectively 

• Chapter 8 concludes the research and suggests further work. 
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2. Manganese geochemistry 
Manganese is the twelfth most abundant element in the lithosphere comprising about 0.1% of 

the earth's crust (Dixon and White, 2002; Concise International Chemical Assessment 

Document (CICADS), 2004) and is second only to Fe as the most abundant heavy metal 

(Post, 1999). The Mn concentration in crustal rocks ranges from 350 to 2000 ppm (Kabata-

Pendias and Pendias, 2001) and is generally highest in mafic rocks (Gilkes and McKenzie, 

1988) and certain sedimentary rocks, such as dolomite. Manganese is present in minerals as 

Mn 2 + , M n 3 + and M n 4 + ions. In primary minerals the dominant species is Mn 2 + . Weathering 

and oxidation of primary minerals predominantly results in the formation of M n 4 + and M n 3 + 

oxide minerals. Manganese oxides are the most common Mn bearing minerals in surface 

environments. 

Manganese oxides are one of the strongest natural oxidants in terrestrial geochemical 

systems. They are involved in redox cycles in soils and waters, which are essential to nutrient 

cycling, humification, metal sorption and contaminant fate and mobility. Chemical 

transformations caused by Mn oxides have become of increasing interest in fields of 

environmental geochemistry due to their control of biogeochemical cycles of many important 

contaminants such as Pb, Cr and many organic pollutants. Despite the low levels of Mn in 

natural soils (0.1%) they are highly reactive components forming an essential part of the 

soils' natural defence against contamination. This section describes some of the chemical, 

physical and mineralogical properties of natural Mn oxides pertaining to their reactivity in 

soils and waters. 

2.1. Mn mineralogy of the KMF 

Investigations into the mineralogy of the KMF have revealed up to 135 different minerals, 8 

of which represent new mineral species and 59 of which are Mn bearing (Gutzmer and 

Beukes, 1996). Of these 59 Mn bearing minerals, the oxides (bixbyite, braunite, hausmannite, 

jacobsite, and manganite) and the carbonates (kutnahorite and rhodochrosite) dominate 

(Maynard, 2004). Supergene alteration of the deposits resulted in the formation of a number 

of MnC>2 phases, such as todorokite, lithiophorite, birnessite, hollandite and pyrolusite 
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(DeVilliers, 1965). Manganese oxides are assumed to be the reactive phase in terms of 
oxidative capacity and thus greater emphasis is given to the oxides. 

2.1.1. Mn crystal chemistry 

Manganese in surface environments is found in three valence states; Mn 2 + , M n 3 + and Mn 4 + . 

These ions are usually found in octahedral coordination with O2", OH" or H 2 0, although M n 2 + 

and M n 3 + may exist in tetrahedral and other coordination configurations. All five d-orbitals 

of M n 2 + are occupied in the high spin state so there is no crystal field stabilization energy 

(CFSE). The electron configuration for M n 3 + allows some CFSE, but probably more 

influential is the degenerate energy state of the t2g(3), eg(l) configuration that creates a Jahn-

Teller distortion resulting in a difference in bond length between the equatorial and axial 

coordinated ligands. The M n 4 + ion has only one spin state in octahedral coordination and a 

large octahedral site preference energy, explaining why although its size is suitable for 

tetrahedral coordination, M n 4 + is solely found in an octahedral coordination state. The Mn 

oxides can accommodate Mn in all three of these oxidation states. Even the unstable Mn(III) 

ion seems to be stabilized in the structure of minerals. 

2.7.2. Common Mn oxides 

Manganese oxides contain Mn in the 2+, 3+ and 4+ oxidation state. Manganese oxides 

containing mainly the 4+ species are common in soil environments. The Mn octahedra in 

these Mn oxides can either be arranged in a tunnel or sheet structure. Some common MnCh 

minerals, that have previously been identified in the KMF are discussed below. Most of the 

MnCh minerals listed below are considered to be of supergene origin (DeVilliers, 1965; 

Gutzmer and Beukes, 1996) 

Pyrolusite [(MnCh)] has a tunnel structure with square cross sections that are one octahedron 

by one octahedron. The tunnels in pyrolusite are too small to accommodate cations thus the 

chemical composition deviates only slightly from pure MnC>2. Pyrolusite has been identified 

to be the primary product of surficial weathering of Mn minerals in the KMF (Gutzmer and 

Beukes, 1996). 
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Birnessite [(^a,Mg,Ca,Mn2+)Mri70i4] has a layer structure composed of sheets of edge-
sharing Mn06 octahedra alternating with planes of cations (mainly Ca, Mg, Na and Mn 2 + ) . 
There are vacancies in one in every six Mn06 octahedra within the sheet, with M n 2 + and 
Mn 3 + ions situated between the sheets above and below these vacancies. 

Lithiophorite [(Al,Li)Mn02(OH)2] has a layer structure like that of birnessite except that the 

interlayers between the Mn06 octahedra consist of Al-hydroxy sheets containing Li in the 

octahedral vacancies. The cation sites in the Mn octahedral layer are fully occupied with two 

thirds of the sites occupied with Mn 4 + ions and the remaining third occupied with M n 3 + ions. 

Todorokite [(Na,Ca,K,Ba,Mn2+)2Mn50i2.3H20] has a tunnel structure formed from triple 

chains of edge-sharing Mn06 octahedra linked to form 3x3 tunnels which house Na, Ca, K, 

Ba, Sr and water molecules (Post and Bish, 1988). Todorokite has been identified to be one 

of the major alteration product of the hydrothermal Smartt event (Gutzmer and Beukes, 

1996). Supergene origins have also been suggested for todorokite (DeVilliers, 1965). 

Hollandite (Ba2MngOi6) and romanechite [(Ba,K,Mn,Ca)2Mn5Oio) have similar structures 

and often occur together as intergrowths. They have a tunnel structure consisting of a 

framework of double and triple chains of Mn06 octahedra that enclose the tunnel. They are 

characterized by the presence of large cations (most commonly Ba) which occupy the tunnels 

(Dixon, 1988). 

The lower oxides of Mn contain Mn primarily in the 2+ and 3+ oxidation states. The 

structures of these oxides will be discussed below 

The MnOOH group consists of three polymorphs of which manganite (y-MnOOH) is the 

most stable and most abundant in surface environments (Post, 1999). The remaining two 

polymorphs are feitknechtite and groutite. Manganite is isostructural with the tunnel forming 

pyrolusite, with the octaherdra containing M n 3 + ions and half the O atoms replaced by 

hydroxyl anions. Manganite is one of the dominant alteration products within the 

metamorphic zone of the KMF (Maynard, 2004). 

Hausmannite [Mn 2 + (Mn 3 + ) 2 0 4 ] has a spinel structure with M n 2 + occupying tetrahedral sites 

and M n 3 + occupying octahedral sites. Hausmannite forms a major component of the Hotazel 
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type ore, which underwent the largest degree of hydrothermal alteration (Gutzmer and 
Beukes, 1996). 

2.1.3. Mn silicates and carbonates 

Rhodochrosite [M11CO3] is probably the most common Mn carbonate mineral found in 

surface environments. It is present in the Hotazel ore within vugs and as part of the carbonate 

rocks in the Mamatwan type ore (DeVilliers, 1965). 

Kutnahorite [CaMn(C03)] is a Mn carbonate mineral which was originally proposed to be the 

Mn analog to dolomite (Frondel and Bauer, 1955), however, the composition of the natural 

phase is best described as a solid solution between CaC03, MnCO^ and MgCCh (Bamforth et 

al., 2006). Kutnahorite is a major component of the Mamatwan type ore (Gutzmer and 

Beukes, 1996). 

Braunite has been identified in two forms in the KMF. The ideal formula for braunite is 

[Mn 2 + (Mn 3 +)6SiO| 2] which amounts to an SiC>2 content of 9.98 weight percent. A iron-rich 

braunite species, known as braunite I I , has been identified in the KMF. Braunite I I has the 

formula [Ca(Mn 3 + Fe3+)i4Si024] (Gutzmer and Beukes, 1996) and contains around 4.4 weight 

percent Si02 (DeVilliers, 1965). The cell dimension of M^Os is not affected by Fe203 thus 

the two species cannot be distinguished by XRD analysis alone (DeVilliers, 1965). It is 

proposed that braunite I I replaced type I braunite during the hydrothermal alterations 

(Kleyenstuber, 1984). 

2.2. Redox properties 

Manganese oxides are one of the most redox reactive constituents in soils and waters. The 

small particle size and large surface area of the oxides allows them to impart a greater 

influence on soil and water chemistry than would be expected by their relative abundance 

(Bartlett, 1988). Manganese oxides have been implicated in the removal of harmful free 

radicals in soils (Bartlett, 1999) and in non-microbial oxidation of N H / and NOV to nitrate 

(Bartlett, 1981). Manganese oxides have been shown to act as catalysts for the breakdown 

and humification of organic matter (Shindo and Huang, 1984) and play an important role in 

the formation of topsoils (Bartlett and James, 1994) through their redox activity. Manganese 
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oxides have the capacity to oxidize inorganic ions such as U 4 + , Se4+, Cr 3 +, As 3 + and Co 2 + 

and organic molecules such as phenols and aromatic amines. These interactions can be 
favourable, as in the case of many organics, As and Co, and unfavourable as in the case of Cr 
and U, which are rendered more mobile through oxidation. Table 2-1 gives a number of half-
reactions important in the redox range of natural soils and waters. These are standard-state 
reactions and therefore not relevant to pH ranges and ion activities experienced in natural 
systems, however, it does illustrate the position of Mn oxides in a list of natural oxidants. The 
debate over whether Mn(lll) or Mn(lV) oxides are the most redox active in soils has not been 
clearly resolved. Thermodynamically Mn(III) oxides would appear to be the strongest 
oxidants (Table 2-1), however, certain studies have shown a lower redox activity of 
manganite (y-MnOOH) compared to birnessite (5-MnG*2) (Zhang and Huang, 2003), while 
others have illustrated the increased oxidative capacity of manganite compared to birnessite 
(Xyla et al., 1992). The role of Mn(lll) and Mn(IV) as the primary oxidant within a single 
mineral phase is also unclear, with some workers claiming a higher Mn(IV)/(Ill) ratio is more 
conducive to oxidation (Kim et al., 2002; Negra et al., 2005) and others suggest Mn(III) 
functions as the primary oxidant in Mn(lII)/(IV) oxides (Nico and Zasoski, 2000; Nico and 
Zasoski, 2001). Due to the diverse nature of Mn oxides in terms of chemical composition, 
surface area and surface chemistry, drawing correlations between redox reactivity and Mn 
oxidation state probably cannot be achieved. 
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Tabic 2-1 Standard-state reduction potentials of some half reactions important in soil and aqueous 
chemistry taken from McBride (1994) 

Reaction E°(volts) 

Mn3"'+e" O Mn 2 + 1.51 

MnOOH(s) + 3H + + e" OMn 2 + + 2H 20 1.45 

1/5 N03" + 6/5 H + + e O l/10N2(g) + 3/5 H 2 0 1.245 

Vi Mn02(s) + 2 H + + e" O '/2 Mn 2 + + H 2 0 1.23 

1/4 02(g) + H + + e" O Vi H 2 0 1.229 

Fe(OH)3(s) + 3H+ + e" O Fe 2 + + 3H 20 1.057 

1/8 S 0 4

2- + 5/4 H + + e" O 1/8H2S + 3/5 H zO 0.303 

1/8 C 0 2 (g) + H + +e" O 1/8 CH4(g) + 1/4H20 0.169 

As can be seen from Table 2-1 hydrogen ions are involved in the transfer of electrons. The 

role pH plays in redox reactions is more meaningfully displayed in graphical form showing 

the relationship between pH and Eh for a certain element. 
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Figure 2-1 Eb-pH diagram showing soluble and solid forms of Mn under a range of pH and Eh 
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Figure 2-1 shows an Eh-pH diagram for Mn. This diagram can be used to predict the 
stability of Mn oxides under varying conditions of Eh and pH. Interpreted simply it shows 
the redox potentials of all Mn oxide phases increases with decreasing pH, thus Mn oxides are 
stronger oxidants under acidic conditions. 

2.3. Mn mobility in soils and waters 

Of the three valence forms of Mn in natural systems (Mn 2 + , Mn 3* Mn 4 + ) it is only M n 2 + that 

is found in measurable concentrations in solution. Thus solubility of Mn is largely controlled 

by redox processes. As seen from Table 2-1 when Mn (III)/Mn(IV) oxides are reduced 

soluble M n 2 + ions are produced. Water soluble Mn is an essential trace element in plants and 

soils but it can easily reach toxic quantities depending on the geochemical conditions. From 
2+ 

Figure 2-1 it is apparent that soluble Mn will occur under conditions of low pH and low Eh. 

Low Eh conditions arise in natural soils and waters when the amount of microbial substrates, 

primarily organic matter, exceeds the concentration of electron acceptors. Manganese oxides 

can also be abiotically reduced by organic compounds (Shindo and Huang, 1984). In soils Mn 

is generally mobilised from topsoils, where organic matter and microbial activity is most 

prolific, and redistributed down the rest of the profile. Manganese precipitation is often 

observed in saprolitic horizions where both Eh (low organic matter) and higher pH conditions 

favour oxidation. In lake sediments soluble Mn is present in the anoxic layers and precipitates 

out at the anoxic/oxic interface (Bartlett, 1999). 

Mobilisation of Mn from Mn oxides does not always have to involve reduction. Under acid 

conditions the structure and chemistry of Mn oxides may be expected to undergo a change 

due to the acid lability of the mineral lattice (Murray, 1974). Banerjee and Nesbitt (2001) 

found that the release of Mn(ll) from birnessite with decreasing pH, was not due to the 

reduction of Mn(IV) and Mn(III), but rather to the proton promoted release of Mn(Il) that 

forms part of the birnessite structure. The mechanism involved being that suggested by 

Zinder et al. (1986) in which a proton attaches to an oxygen that bridges two metal ions and 

causes weakening and break up of the M-O-M bond. Manganese carbonate minerals such as 

rhodochrosite and kutnahorite contain Mn in its divalent state. Figure 2-1 shows MnC0 3 
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becomes unstable below pH 8, thus Mn carbonates can also be a substantial source of 
soluble Mn i f the system that contains them begins to acidify. 

An additional, but less recognised, factor which can influence the solubility of Mn in natural 

soils and waters is complexation of Mn ions by organic molecules. It has been shown that 

citrate can complex Mn (III) from P-MnOOH (Klewicki and Morgan, 1999) thus rendering 

soluble Mn complexes. Recent studies have shown the capacity of siderphores to complex, 

and solubilise Mn(III) ions from trivalent Mn minerals (Duckworth and Sposito, 2005; 

Duckworth and Sposito, 2007; Pena et al., 2007). Thus the role of Mn complexation by 

organic ligands needs to be considered in the solubilisation of Mn. 

2.4. Surface properties 

Manganese oxides display a pH-dependent surface charge. The pH for points of zero charge 

on common soil Mn oxides ranges from 1.5 for birnessite to 4.5 for hollandite (Healy et al., 

1966), thus in all but acidic conditions these oxides will display a negatively charged surface. 

Manganite has had a point of zero charge (PZC) reported as 8.2 (Ramstedt et al., 2004), 6.2 

(Xyla et al., 1992) and 1.5-4.5 (Murray, 1974), thus it would appear that in some Mn minerals 

the PZC is elusive. Measurement of PZC can be difficult when the PZC falls below the 

acid/redox stability of the mineral. This is the case in many Mn oxides and may account for 

reported failings of potentiometric tritrations for Mn oxide PZC determination (Murray, 

1974). 

2.5. Mn oxide mediated organic oxidation reactions 

Activated (high surface area) Mn oxide is a well known selective oxidant used in organic 

synthesis reactions (Fatiadi, 1986). It was first used for the quantitative conversion of vitamin 

A to retinal (Ball et al., 1948) and since then its application as a selective oxidant has been 

extensive. In neutral media it is a mild oxidant capable of selectively oxidising saturated and 

unsaturated alcohols, phenols, polyhydroxy compounds, amines, hydrazines, hydrocarbons, 

heterocyclic compounds and various natural products (Fatiadi, 1986). The reaction 

mechanism usually involves electron transfer and the generation of free radicals (Bhatnagar 

and George, 1968; Fatiadi, 1986; Stone, 1987b; Ulrich and Stone, 1989; Laha and Luthy, 
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1990; Field et al., 1992), which can either be further oxidised to quinone species or take 
part in polymerisation reactions (Stone, 1987b). Free radicals can be generated either by the 
transfer of one electron to a metal centre or the abstraction of a hydrogen atom from the 
organic compound. An electron-rich compound, like toluene is likely to be oxidised by 
electron transfer while H-atom abstraction occurs in compounds that have weak C-H or O-H 
bonds (Bryant et al., 2002). 

Stone and Morgan (1984a and b) undertook pivotal investigations into the oxidation of many 

naturally occurring organic compounds by Mn oxides. The steps they proposed for the 

oxidation of organic substrates are: 

i) diffusion of organic substrate to the oxide surface, 

ii) formation of a surface complex between sorbate and oxide, 

iii) charge transfer within the surface complex, 

iv) desorption of dissolved organic substrate, 

v) movement of M n 2 + from crystal lattice to the adsorbed layer, 

vi) desorption of Mn 2 + , 

vii) diffusion of products away from the surface. 

From their survey of Mn reduction by a variety of organics they concluded that saturated 

alcohols, aldehydes, ketones and carboxylic acids, except pyruvic and oxalic acids, showed 

no reactivity while catechols, hydroquinones, methoxyphenols and resorcinols reduced and 

dissolved Mn oxides. It was further established that reaction rates are not always proportional 

to redox potential with factors affecting surface complexation and electron transfer at the 

surface often being rate limiting. 

Although sorption is considered a vital process in Mn oxide mediated oxidation reactions, no 

direct measurements have been reported due to the rapid reaction between the reductant and 

the oxidant (Xyla et al., 1992). Inner-sphere sorption has been postulated to occur before 
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oxidation occurs (Stone and Morgan, 1984a; Stone and Morgan, 1984b), although only one 
study has shown direct evidence for inner-sphere precursor complex formation (Gordon and 
Taube, 1962) . These workers provided evidence that during the oxidation of U(IV) by Mn 
oxides, the oxygen atoms in the U02 2 + complex were derived from MnC>2. 

The oxidation of phenols by Mn oxides has been well documented (Stone and Morgan, 

1984b; Stone, 1987b; Ulrich and Stone, 1989; Petrie et al., 2002). The reaction is initiated by 

a one-electron transfer from the phenol to the metal centre to form a phenoxy radical (Waters, 

1971). The radical species can then enter into a number of competitive pathways depending 

on pH and reductant concentration. The coupling of two radical species will result in dimer 

formation. Dimers are more susceptible to oxidation than monomers so polymerisation is 

often observed to be self-perpetuating (Stone, 1987b). Low reductant concentration and low 

pH favour further oxidation of the phenoxy radicals to phenoxenium ions, which in turn are 

subject to nucleophilic attack by water to form benzoquinone species (Waters, 1971). 

Oxidative coupling of phenolic compounds may be considered more beneficial than further 

oxidation to quinone species. The coupling of semiquinones results in the formation of stable 

humic acids, which is essentially a composting process (Huang, 2000). Coupling reactions 

require lower activation energy compared to electron transfer reactions (Chang and Allan, 

1971), thus should be more kinetically favourable. 

Functional group type and position on phenolic compounds influence the rate of oxidation by 

Mn oxides (Stone and Morgan, 1984a; Ulrich and Stone, 1989). Phenols with electron 

donating groups are stronger reducing agents than those with electron withdrawing groups 

and ortha and para substituted phenols are more reactive than their meta equivalents. This is 

thought to be a consequence of the 7t-electron donating capacity of para and ortho isomers, 

which facilitates resonance stabilisation of the phenoxy radical. In addition ortha and para 

isomers promote the formation of precursor inner-sphere mineral-organic complexes, which 

is a function of nucleophilicity of the phenolate ion (Ulrich and Stone, 1989). 

Stone (1987) tried to quantify these observations in terms of the measurable chemical 

parameters; Hammett constants and half-wave potentials. In general the following 

observations were made: phenols with positive Hammett constants have electron withdrawing 
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substituents and high half-wave potentials and these phenols are the least reactive with Mn 
oxides; while substituted phenols with electron donating substituents have negative Hammett 
constants, low half-wave potentials and are the most reactive with Mn oxides. These 
correlations were relatively successful for meta and para substituted phenols, but ortha 
substituted phenols were less predictable, possibly due to steric hindrances. 

Analogous studies with aromatic amines showed similar trends with respect to Hammett 

constants and half-wave potentials (Laha and Luthy, 1990; Klausen et al., 1997). Initial 

reaction rates for the oxidation of substituted aniline compounds correlates well with half-

wave potentials and accordingly with Hammett constants. The strong correlation between 

half-wave potentials and initial reaction rates indicate that the transfer of the first electron 

from the aniline to the mineral controls the overall reaction rate (Klausen et al., 1997). The 

major reaction products of aniline oxidation were determined to be corresponding 

azobenzenes and aminodiphenylamines species of the various substituted aromatic amines, 

suggesting a head to head and/or head to tail coupling of two cation radicals. 

Manganese oxide mediated oxidations are affected by pH, with oxidation of many polar 

organic compounds increasing with decreasing pH (Stone, 1987b; Ulrich and Stone, 1989; 

Laha and Luthy, 1990; Zhang and Huang, 2003; Zhang and Huang, 2005). In the oxidation of 

phenolic compounds the effect of pH on reaction rate showed a curved response with pH 

dependence being greater above pH 6 and constant below 4. Triclosan and chlorophene show 

increased oxidation at low pH (Zhang and Huang, 2003) as does aniline and its related 

compounds (Laha and Luthy, 1990). The increased oxidation of organic compounds at low pH 

has been attributed to: 

i) charging of the amide groups (eg. anilinium cation) resulting in electrostatic 

attraction to the oxide surface (Laha and Luthy, 1990); 

ii) increased sorption of neutral phenolic groups; 

iii) the decrease of the negative charge on Mn0 2 ; 

iv) the increased redox potential of the Mn0 2 /Mn 2 + couple (Zhang and Huang, 2005); 

and 
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v) enhanced removal of Mn 2 + from the oxide surface, exposing new reactive sites 
(Klausen etal., 1997). 

The influence of co-solutes (organic ligands, Ca 2 + and M n 2 + ions) on the initial and quasi-

steady-state kinetics for the oxidation of substituted anilines by Mn oxides was investigated 

by Klausen et al. (1997). This study indicated that quasi-steady-state kinetics, as measured in 

an anaerobic mixed flow-through reactor, is significantly lower than initial reaction rates 

under identical conditions. This is attributed to the build up of M n 2 + ions, which block 

reactive sites and retard aniline oxidation. Autooxidation of Mn 2 + by MnCh (Ross and 

Bartlett, 1981) may prevent this in aerobic conditions. Humic acids have been shown to 

retard oxidation suggesting that humic acids were reducing the oxide and generating M n 2 + 

ions (Klausen et al., 1997). Inhibition of phenol oxidation by phosphate ions (Stone and 

Morgan, 1984a) suggests that competition of ligand exchange sites may also be a contributing 

factor. 

The effect of evaporation of moisture from mineral surfaces is note worthy. Drying is known 

to cause significant changes to the organic fractions of soils (Raveh and Avnimelech, 1978; 

Bartlett and James, 1980; Ross et al., 2001a). Drying soils results in an increase in the 

dissolved organic matter fraction and a concomitant increase in exchangeable Mn (Bartlett 

and James, 1980; Ross et al., 2001a). It has been suggested that drying results in oxidation of 

the organic matter by Mn oxides thus explaining the increase in soluble Mn and dissolved 

organic matter (Bartlett and James, 1979; Bartlett and James, 1980). This is based on the 

premise that drying results in a dramatic decrease of pH on the mineral surface, due to 

increased hydrolysis of surface cations (Mortland and Raman, 1968), which increases the 

reducibility of the organics. This increased acidity may allow reactions to occur which are not 

thought to be thermodynamically favourable within the environmental pH range (pH 4-9). 

The increased sorption of PAHs on dry mineral surfaces together with this drying 

phenomenon suggests that oxidation of PAHs during wetting and drying cycles could be an 

interesting avenue of research. 
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2.6. Mn biogeochemistry 

Manganese biogeochemistry is an extensive field of research and largely lies beyond the 

scope of this review. Biogenic Mn oxides are claimed to be the most abundant and reactive 

Mn oxides in the environment (Tebo et al., 2004). Manganese oxidizing bacteria oxidize 

Mn(II) via a Mn(llI)-complex intermediate to Mn(lV) oxides. The dominant Mn oxide that is 

formed is amorphous 5-Mn02. Manganese oxidisers are usually found in environments where 

reduced Mn is available (Tebo et al., 2004). Thus the Mn tailings dams, which are highly 

oxidative in nature (high pH, high pe) are not likely to provide favourable conditions for Mn 

oxidizing bacteria. However, certain areas of the tailings dams contain ponded water and 

sparse vegetation, thus biogenic minerals and biological activity may be important to the 

geochemistry of these ponds. Elucidation of any biogeochemical interactions falls beyond the 

scope of this study. 

One aspect of Mn biogeochemistry that has relevance to the current study is the oxidative 

properties of white rot fungi, which use a Mn(lII) based oxidant to oxidise a host of 

xenobiotic compounds. Manganese plays a central role in the biological break down of lignin 

in woody material by white rot fungi (Gold et al., 1989; Wariishi et al., 1991; Hammel et al., 

1993). The fungi produce an extracellular heme-iron enzyme called Mn peroxidase which 

preferentially oxidises Mn(II) to Mn(lII). This highly reactive Mn(lll) ion is stabilised by 

simple organic acid chelators, especially oxalate (Wariishi et al., 1988). The chelated Mn(IIl) 

acts as a diffusible low molecular weight oxidant capable of oxidising alkyl aromatic and 

phenolic substrates with weak C-H and O-H bonds, including lignin-type compounds (Valli 

and Gold, 1991; Reddy et al., 1998). 

One of the characteristics of Mn peroxidases that generates continued interest is the fact that 

the Mn peroxidases are non-specific in the substrate they oxidise (Hammel et al., 1986; Field 

et al., 1992) enabling white rot fungi to oxidise a range xenobiotic organic compounds 

including chlorinated phenols, chloroanalines, pesticides, such as DDT, azo dyes and PAHs 

(Bumpus et al., 1985; Bumpus, 1989). Phenolic and amino-aromatic groups are the usual 

targets for oxidation by Mn(III)-chelates but certain non-phenolic aromatic substances like 

anthracene are subject to one-electron abstraction giving rise to aryl cation radicals. 
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The non-specific oxidative capacity o f these white rot fungi have alerted researchers to 
their bioremediation potential of hazardous wastes (Hofrichter, 2002). For this to be a viable 
technology the enzyme would need to be produced in large volumes and be stable in the 
chemical conditions o f the waste. Biotransformation of xenobiotic compounds by white rot 
fungi is generally a cometabolic process and therefore requires a primary substrate to sustain 
the organisms. It is often encountered that in wastewaters, such as textile effluents, fungi are 
unable to grow due to the lack o f primary substrate (Vanhulle et al., 2008). Adding a primary 
substrate like molasses, increases the biological oxygen demand and can lead to unwanted 
biological activity, for example the microbial reduction of azo dyes to highly carcinogenic 
aromatic amines. I f it were to be established that the Mn oxide phase of the tailings could 
achieve similar oxidative remediation goals, there would be a definite advantage to using an 
abiotic solid, as reactions would not be confined to environments which support fungus 
growth or enzyme stability. Since the tailings used in this study, contain a significant Mn(II I ) 
oxide phase they may provide an abiotic alternative white rot fungi. 
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3. Persistent organic pollutants 
Organic pollutants persist in the environment i f they are o f low solubility, low volatility 

and/or resistant to degradation (Andrews et al., 2004). The processes that control the fate of 

organic pollutants in soils and waters can be divided into two general categories: processes 

that leave the structure o f the molecule in tact (such as sorption) and those which transform 

the parent molecule into one or several compounds having a different chemical and physical 

behaviour (such as oxidation). Although transformation reactions are the focus of this study, 

obtaining mineral-organic contact is an essential pre-requisite to oxidation and thus organic 

sorption and oxidation reactions w i l l both be reviewed in this section. 

3.1. Sorption of organic compounds 

Sorption o f the organic molecule to the mineral surface is often a rate limiting factor in 

oxidation reactions. Compounds with hydrophilic functional groups wi l l tend to be attracted 

or repelled from mineral surfaces depending mainly on the pH of the system and the type o f 

charge on the mineral i.e. permanent or variable. Sorption of hydrophobic molecules usually 

occurs via partitioning and is less dependent on pH. Hydrophobic compounds tend to sorb 

preferentially to organic matter rather than charged mineral surfaces. This section briefly 

reviews sorption mechanisms of organic compounds with both hydrophilic and hydrophobic 

functional groups. 

3.1.1. Polar organic molecules 

Polar organic molecules are, in general, basic or acidic molecules which develop a charge 

through protonation and deprotonation, respectively. Bases become positively charged when 

they accept a proton to form a conjugate acid and w i l l sorb readily onto permanently charged 

clay minerals. The uncharged conjugate acid wi l l sorb weakly by physical sorption 

(interactions where bonding is not very energenic). The pKa of the base and the pH of the 

solution are therefore paramount in determining the degree that a basic molecule w i l l sorb 

(McBride, 1994). 
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Acid molecules become negatively charged when they lose a proton. Generally this occurs 
at a higher pH for phenolic groups than for carboxylic acid groups. For all acidic molecules 
sorption onto permanently charged minerals is positively correlated with pK a . Negative 
charge generation results in electrostatic repulsion by negatively charged clay minerals and 
organic matter resulting in dissociated acid molecules being highly mobile at high pH. At pH 
values below the pK a o f the acid, only physical sorption of acid molecules is possible 
therefore sorption is inversely proportional to pH (Schwarzenbach, 1993). 

Sorption of organic acids on variable charge minerals is more complicated. Generation of 

positively charged sites on the oxide, suitable for ligand exchange, and the generation of 

negatively charged organic ligands are oppositely correlated to pH. The pH equal to the pKa 

of the organic acid is often found to be most favourable for adsorption (McBride, 1994). 

Due to resonance stabilisation, position and type o f functional groups on benzoic acids play 

an important role in charge generation and thus sorption behaviour. In the normal pH range 

of soils, pH 4-9, the carboxylic acid functional group is likely to be dissociated thus bonding 

constant becomes the discriminating factor in benzoic acid inner-sphere sorption. Any 

functional group which donates electrons to the benzoic acid, such as methyl groups, w i l l 

create a stronger Lewis base than a benzoic acid with electron withdrawing groups like NO2. 

Inner-sphere sorption of phenolic compounds is more complicated. Phenolic compounds 

usually have a p K a that is higher than the pH of the soil. This means charge generation w i l l be 

greatest for more acidic phenols, but stronger bases w i l l be better Lewis bases and thus have 

a stronger bonding constant. As strong phenolic acids are seldom strong Lewis bases there 

has to be a trade off. Sorption data shows that dissociation o f the phenolic acid is more 

important than the Lewis basicity o f the phenolate (McBride, 1994). 

Some weakly polar molecules like alcohols and amines can form weak hydrogen bonds or ion 

dipole attraction with waters o f hydration surrounding cations on exchange sites o f clays. 

However, these molecules compete weakly with the more abundant and stronger hydrogen 

bonds o f water and are easily displaced and mobilised. 
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Sorption or partitioning of hydrophobic organic compounds (HOCs) to surfaces occurs as a 

result of weak solute-solvent interactions rather than specific sorbate-sorbent interactions 

(Means, 1995). Hydrophobic compounds cause a local ordering of water molecules, which 

decreases the entropy of the system and force molecules out of solution and onto weakly 

hydrating or uncharged surfaces. This is known as the 'iceberg' effect (Frank and Evans, 

1945). Larger molecules wi l l tend to disturb more water molecules and therefore w i l l be more 

prone to being forced out o f solution than smaller molecules. Thus water solubility is 

inversely proportional to molecular size and accordingly inversely proportional to sorption of 

nonpolar compounds to soils. The hydrophobicity o f a compound is commonly measured by 

the octonal/water partitioning coefficient (KoW) which is defined as the concentration of an 

organic compound in octanol to its concentration in water after equilibrating with the two 

solvents. 

The partitioning coefficient ( K p ) is defined as the concentration of sorbed species on the solid 

phase (C s) to concentration in the aqueous phase (C a q ) as given by: 

In natural soils and waters sorption of HOCs is usually proportional to the organic matter 

content (Chiou et al., 1983) thus it is common to normalize the K p to a function o f the total 

organic carbon content ( f o c ) . This normalised organic carbon coefficient (Koc) is calculated as: 

J Of 

For HOCs the KoW is often found to correlate with the o f a particular soil or sediment 

(Chiou et al., 1983) although complicating factors such as organic matter composition (i.e. 

aromatic vs. aliphatic) and dissolved organic carbon make correlations more difficult and 

often inaccurate (Krauss and Wilcke, 2001). 
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Sorption of HOCs onto mineral surfaces can be influenced by organic or biogenic coatings. 
The sorption of HOCs onto kaolinite and hematite surfaces has been shown to be proportional 
to the amount and aromatic nature of the humic coatings (Murphy et al., 1990). Sorption of 
HOCs to biofilms, which are often intimately associated with mineral surfaces, has only 
received limited attention. The emulsifying properties o f extracellular polymeric substances, 
which are produced to bind biofilms, have been implicated in the decrease in K p of certain 
soils contaminated with PAHs (Dohse and Lion, 1994). Although the Mn tailings are 
considered to be an inorganic material, cognisance must be made of organic and biological 
coatings which may influence HOC sorption behaviour however, a detailed investigation of 
biogenic material falls outside the scope of this study. 

Sorption is a necessary precursor step for oxidation (Stone and Morgan, 1984a) and both 

inner-sphere and outer-sphere sorption can precede an oxidation step (Stone, 1986). Inner-

sphere sorption can only be possible for organics which have polar functional groups. 

Compounds without Lewis base functional groups (like PAHs) cannot directly coordinate 

with a metal centre. Once an organic molecule has sorbed onto a mineral surface 

thermodynamic and kinetic parameters w i l l then determine whether electron transfer w i l l 

occur between the mineral and the organic molecule. 

3.2. Thermodynamic predictions of organic oxidation reactions 

Thermodynamic data allows a first approximation as to whether an organic compound can be 

spontaneously oxidised by an oxidant, however, due to kinetic constraints and sorption 

limitations some thermodynamically spontaneous reactions may not occur at a significant 

rate. Thermodynamics is important, however, in establishing which reactions are theoretically 

possible. 

The Gibbs free energy of a redox reaction, A G 0 , can be calculated from: 

AG" =-nF(E°ox-E°red) (3.1) 

Where n is the number o f electrons transferred, F is Faraday's constant and E°ox and E°red are 

the standard-state redox potentials of the oxidant and reductant, respectively. I f E°„x - E°red 
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(AE°) is positive, that is i f the redox potential of the oxidant is more positive than the 
reductant, the reaction is spontaneous. The following reactions show the reduction of 
manganese (II1/1V) oxides together with their standard redox potential (E°) as given by Stone 
(1987): 

y-MnOOH(s) + 3 H + + e- <-> Mn 2 + (aq) + 2 H 2 0 E° = 1.50 V (3.2) 

•/2Mn02(s) + 2 H + +e" <->• ' / 2Mn 2 +(aq) + H 2 0 E° = 1.23 V (3.3) 

Theoretically any organic molecule with an E° less that 1.5 V should be oxidized by 

manganite (y-MnOOH) and any organic with an E° lower that 1.23 V should be oxidized by 

M n 0 2 . Equation 3.1 uses standard-state redox potentials which are calculated at pH 0 using a 

concentration of 1M for reactants and products. Such conditions are not realistic for 

environmental conditions where oxidant and reductant concentrations are significantly lower 

and the pH range is between 4 and 9. The Nernst equation can be used to translate the E° 

potential of a half reaction into a redox potential (Eh) relevant to environmental conditions. 

The Nernst Equation is given by: 

£ A = r + M 5 2 2 | o g ( O A Q (3.4) 
n (RM) 

where RM and OM are the activity products of reduced and oxidized molecules, respectively. 

For this equation to be valid the electrons must appear on the left hand side o f the equation. 

These derived E h values can then be substituted into Equation 3.1 to calculate the Gibbs free 

energy in the environmental system. 

Sequential removal o f electrons from organic compounds often results in each electron 

transfer step having its own E h (Neta, 1981). It is often observed that the formation o f an 

organic radical has a higher Eh than the subsequent oxidation to a species with an even 

number of electrons (Scharzenbach et al., 1993). For example, the E h for the oxidation of 

hydroquinone to the free radical species, semiquinone, is 0.46 V compared to 0.01 V for the 

oxidation o f semiquinone to benzoquinone. Consequently the first step o f a two electron 

transfer is often rate-limiting (Scharzenbach et al, 1993). This is of great importance for many 

oxidation reactions, for example the oxidation of azo dyes by white rot fungi peroxidases is 
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known to occur via a series of one electron transfers (Goszczynski et al., 1994; Spadaro 
and Renganathan, 1994; Chivukula et al., 1995; Lopez et al., 2004; Zille et al., 2005). 

3.3. Azo dyes 

Industries which use and manufacture azo dyes are highly polluting. Azo dyes released into 

the environment without proper treatment represents 15% of global dye production, that is 

150 tonnes per day (Bandara et al., 1999a). A variety of effluent treatment options are 

available, but many are expensive and only partially effective, thus colour removal from 

effluents emanating from textile, photographic, paper and food industries remains a pertinent 

issue in waste water treatment. 

Major classes o f synthetic dyes include anthraquinoid, triarylmethane and azo dyes. The latter 

category is the most common group of synthetic dyes. Azo dyes have great structural 

variations and the highly conjugated molecular structure allow n-n* transitions within the 

UV-visible region (Zille et al., 2005) resulting in their characteristic array o f colours. 

Acid dyes are a group of azo dyes which are used in the dying o f wool, nylon and silk. Acid 

dyes contain one or more sulfonic acid group, which have a low pKa (± 1). These dyes are 

applied in an organic buffer, usually acetate, with a pH between 4 and 5. Within this pH 

range the amino group of the fabric is protonated, and is electrostatically attracted to the 

negative sulfonate group of the azo dye molecule which is still negative at this pH. Uptake of 

the dye onto the fibre is controlled by the addition o f leveling agents, usually NaCl and 

Na2S04 (Muthukumar and Selvakumar, 2004). Thus in addition to dyes, textile effluents also 

contain a number of auxiliary compounds, like salts and organic acids, which add to the 

contaminant load. Due to their high solubility, and potential to contaminate ground and 

drinking water supplies, acid dyes are of high environmental concern (Riu et al., 1997). They 

are recalcitrant by design, having to resist light, chemical bleaching, water, sweat and 

microbial attack, making treatment of textile effluent a problematic issue in waste water 

treatment. Currently there is no single, economically attractive treatment that can effectively 

decolorise dyes (dos Santos et al., 2007). 
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3.3.1. Dye treatment techniques 

A range of physio-chemical processes such as flocculation-coagulation, adsorption, 

oxidation-ozonation and biological reduction are commonly used as treatment methods for 

dye-containing effluent (Pekkuz et al., 2008). Coagulation and flocculation are effective at 

removal of certain azo dyes, however, this method is only effective over a limited pH range. 

Coagulants and flocculants add to the total dissolved solids in the effluent and sludge 

generation causes problematic disposal issues (Banat et al., 1996). Adsorption is made 

difficult by the high solubility o f many azo dyes, and concentrates rather than eradicates the 

contaminants. Anaerobic treatment causes rapid decolorisation but generally generates 

breakdown products which are more carcinogenic than the parent molecules (dos Santos et 

al., 2007). Advanced oxidation processes such as ozonation (Muthukumar and Selvakumar, 

2004), Fentons reagents (Gutowska et al., 2007) and photo-catalysis using UV radiation 

(Bandara et al., 1999b; Muruganandham and Swaminathan, 2006; Sleiman et al., 2007) have 

shown-the capacity to oxidatively decolorise dye solutions. The major drawbacks of AOP are 

the high input and running costs in addition to their limitation to low-concentration waste 

waters (Andreozzi et al., 1999). Dye loading becomes a particular problem in any treatment 

technology making use of UV radiation, as many dye containing waste waters are dark in 

colour (Bandara et al., 1999b). 

Dye-containing effluents are only slightly decolorised by conventional biological waste water 

treatments (Shaul et al., 1991) with the important exception of white rot fungi (Wesenberg et 

al., 2003). Numerous studies have shown the capacity o f lignin and Mn peroxidases to 

oxidatively decolorise a number o f dye compounds (Pasti-Grigsby et al., 1992; Goszczynski 

et al., 1994; Spadaro and Renganathan, 1994; Chivukula et al., 1995; Lopez et al., 2004; 

Pizzigallo et al., 2004; Zille et al., 2005; Lu and Hardin, 2006). As discussed in Section 2.6, 

M n ( l l l ) complexes are one of the non-specific oxidants responsible for the capacity of white 

rot fungi to oxidatively decolorise azo dyes. 

3.3.2. The use of Mn oxides in azo dye treatment. 

Research into the potential of using Mn oxides to oxidatively decolorise azo dyes is still in its 

infancy. Only two studies could be identified that investigated the decolorisation of azo dyes 
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(acid red B and direct light red F3B) using Mn oxides (Liu and Tang, 2000; Ge and Qu, 
2003) and two additional studies have probed the use o f Mn oxides to catalyse 
electrochemical decolorisation processes (Liu and Qu, 2002; Wang et al., 2006). The reaction 
between dye compounds and M n oxides is enhanced at low pH, which has been attributed to 
the generation o f positive charge on the oxide surface, as well as the increased oxidative 
capacity of the Mn oxide itself at lower pH (Liu and Tang, 2000; Ge and Qu, 2003). 
Increased dye decolorisation was observed after the addition o f NaNCh to the M n oxide 
containing reaction solution and was attributed to the compaction o f the diffuse double layer, 
which would improve dye-mineral contact (Liu and Tang, 2000). Conversely, Ge and Qu 
(2003) observed a decrease of decolorisation with the addition of N0 3 " , CI" and SO42", which 
was ascribed to competition o f these anions with the dye molecule for sorption sites on the 
oxide surface. Sonication has been shown to greatly enhance the decolorisation reaction, 
through increasing the surface area of the Mn oxide and generating H2O2 which regenerates 
fresh Mn oxide surfaces (Ge and Qu, 2003). 

These two studies have focused on the decoloristion o f selected dyes, but little is known in 

terms of the sorption reactions, reaction kinetics, reactive pathways and reaction 

intermediates and products in the interactions between azo dyes and Mn oxides. Oxidation 

has been considered an attractive technology for treating dye waste water (Zhao et al., 2007) 

and affordable technologies are necessary for water treatment in developing countries, thus 

investigating the use o f natural Mn oxides, occurring as mining waste, for dye water 

treatment is appealing. 

3.3.3. Oxidative reaction mechanisms 

The two aforementioned studies (Liu and Tang, 2000; Ge and Qu, 2003) gave no details 

about the reaction mechanisms involved in Mn oxide mediated dye decoloration. However, 

there is the likelihood that Mn oxide decolorisation reactions may follow a chemical pathway 

similar to that of lignin or Mn peroxidase mediated dye oxidation. Thus these reaction 

mechanisms have been reviewed. 

Manganese or lignin peroxidase initiated oxidative reaction mechanisms have been proposed 

for a number o f sulfonated azo dyes. Despite different dyes being used in the various 



32 

investigations, similar reaction pathways have been suggested for all of the oxidation 
reactions (Goszczynski et al., 1994; Spadaro and Renganathan, 1994; Chivukula et al., 1995; 
Lopez et al., 2004). The azo bond has been reported to undergo either symmetrical 
(Goszczynski et al., 1994; Lopez et al., 2004) or asymmetrical (Goszczynski et al., 1994; 
Spadaro and Renganathan, 1994; Chivukula et al., 1995; Lopez et al., 2004) cleavage. Both 
mechanisms involve successive one-electron transfers initiated on either a phenolic or amino 
moiety. Symmetric cleavage results via the formation o f an imiunium ion on one o f the azo N 
atoms followed by nucleophilic attack, by a water molecule and consequent cleavage of the 
azo bond (Goszczynski et al., 1994). Asymmetrical cleavage, which seems to be the most 
frequently observed mechanism, occurs when the carbocation is situated on the C atom 
bearing the azo bond. Nucleophilic attack, by a water molecule, results in the formation o f an 
unstable tetrahedral complex which breaks down to yield quinone and phenyldiazene type 
compounds (Spadaro and Renganathan, 1994; Chivukula et al., 1995). Goszczynski et al. 
(1994) proposed symmetric cleavage of the azo bond would result in nitro or quinone 
monoimine compounds. These workers also established that symmetric cleavage could result 
in the same products as asymmetric cleavage i f reduction of the nitro group occurred. 

3.3.4. Sorption of azo dyes 

Manganese oxide mediated oxidation reactions are preceded by a sorption step (Stone and 

Morgan, 1984a). Thus the mechanism of dye sorption to the oxide surface w i l l be an 

important precursor reaction. Sorption o f azo dyes to oxide surfaces have been studied mainly 

in investigations involving photo-catalysts like titanium and iron oxides (Bauer et al., 1999; 

Bandara et al., 1999a; Bourikas et al., 2005). Sorption o f the dye onto an oxide surface can be 

understood in electrostatic terms taking into account surface species on oxide and the pH-

dependent charge characteristics o f the azo dye. Acid azo dyes have a number o f functional 

groups which can undergo pH-dependent charging. The sulfonate group has a pKai of 

approximately 1 (Bandara et al., 1999a) and thus is essentially always deprotonated under 

experimental conditions. Other functional groups on azo dyes undergo protonation above this 

pH. Acid yellow 36, for example, has a secondary amine group which has a pKa2 o f 2.3 

(Sleiman et al., 2007) and methyl orange has a tertiary amine group with a pKa2 of 3.4 

(Oakes and Gratton, 1998). Acid orange 7 has a phenolic group on the naphthalene ring, 
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which has a pKa 2 of 11 (Bandara et al., 1999a) so this dye is essentially negatively charged 
under all but extremely acid conditions. Thus the charge characteristics o f every dye are 
different, except for the fact that they all contain a negatively charged sulfonate group. 

The sorption of AO 7 on the T i oxide surfaces has been found, without exception, to increase 

with decreasing pH (Bandara et al., 1999a; Konstantinou and Albanis, 2004; Bourikas et al., 

2005) with a notable increase o f sorption occurring below pH 7 due to the formation of 

T i O H 2

+ species (Bandara et al., 1999a; Bourikas et al., 2005). Similar pH-dependent effects 

have been found for sorption o f dyes on other metal oxides, with a rapid onset of sorption 

occurring as the pH drops below the PZC of the oxide (Bandara et al., 1999a; Wu et al., 

2005). Similarly, positive charge generation of the oxide surface has been proposed to be a 

influencing factor contributing to increased oxidation of azo dyes by Mn oxides observed at 

low pH (Liu and Tang, 2000; Ge and Qu, 2003). 

From the various FT-IR investigations into the sorption o f AO 7 onto Ti oxide surfaces, it has 

been proposed that inner-sphere sorption occurs between the sulfonate group of the dye and 

the metal centre (Bauer et al., 1999; Bandara et al., 1999a; Bourikas et al., 2005). The 

observations in these studies o f electrostatic attraction may also support outer-sphere 

interactions rather than chemical bonding (Eggleston et al., 1998). 

Sorption was not investigated in the two aforementioned Mn oxide dye decolorisation studies 

(Liu and Tang, 2000; Ge and Qu, 2003), however, Ge and Qu (2003), observed decreased 

decolorisation potential in the presence of SO42" ions which led these authors to propose 

sorption occurred via the sulfonate group of the dye. 

3.3.5. Reaction kinetics 

Reactions occurring at the water-mineral interface, are usually preceded by a sorption step 

resulting in reaction kinetics that are more complex than solution based reactions. The 

Langmuir-Hinshelwood kinetics model accounts for sorption and includes parameters such as 

equilibrium concentration and partitioning coefficient in the kinetic equation. This kinetic 

model has been used with mixed success to describe the kinetics o f a number o f photo-

catalytic studies involving Ti oxides (Bandara et al., 1999a; Konstantinou and Albanis, 2004; 
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Muruganandham and Swaminathan, 2006; Sleiman et al., 2007). When investigating 
photo-catalysed reactions it is possible to gather sorption information before the light-
dependent reaction is initiated (Bandara et al., 1999b; Muruganandham and Swaminathan, 
2006; Sleiman et al., 2007). In the case of M n oxides, sorption studies are difficult to 
characterise due to the rapid reaction o f the reductant on the oxide surface (Xyla et al., 1992; 
Matocha et al., 2001). For this reason many kinetic studies involving Mn oxides have based 
kinetic calculations on the generation o f M n 2 + and not solely on the disappearance o f the 
reductant (Stone and Morgan, 1984a; Stone and Morgan, 1984b; Stone, 1987a; Stone, 1987b; 
Laha and Luthy, 1990; Xyla et al., 1992; Klausen et al., 1997; Matocha et al., 2001). It has to 
be taken into consideration however, that kinetic measurements, based solely on M n 2 + 

release, have limitations in that M n 2 + once released through reduction can be re-adsorbed 
onto the mineral surface. 

3.3.6. Background information on acid orange 7 

Acid orange 7 (AO 7), also commonly known as Orange I I , has been used as a model acid 

azo dye by a number o f workers (Bauer et al., 1999; Bandara et al., 1999b; Lopez et al., 2004; 

Bourikas et al., 2005; Lu and Hardin, 2006). It displays the 'core-structure' of a number of 

commercial dyes and thus has similar physiochemical properties of the more complex dye 

compounds (Coen et al., 2001). The numerous investigations on A O 7 have resulted in 

extensive chemical and structural information being available for the dye, which provides a 

good platform to gather an understanding o f reactions between the tailings materials and azo 

dye compounds. 

Acid orange 7 is subjected to intramolecular hydrogen bonding tautomeric interactions 

between the oxygen of the naphthyl group and the (3-hydrogen of the corresponding azo 

linkage (Stylidi et al., 2003) as shown in Figure 3-1. Thus AO 7 can exist in either the azo or 

the hydroazo form. In aqueous solutions the hydroazone form is the most favourable (Stylidi 

et al., 2003). 
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Figure 3-1 Tautomeric forms of AO 7 in solution 

The oxidative breakdown of A O 7 has been investigated in numerous studies (Chivukula et 

al., 1995; Lopez et al., 2004; Zille et al., 2005; Lu and Hardin, 2006). Apart from Lopez et al. 

(2004) where both cleavage mechanisms were reported, asymmetric cleavage is most 

frequently observed. Asymmetrical cleavage of the azo bond results in the formation o f 1,2-

naphthaquinone and (4-sulfophenyl)diazene (Chivukula et al., 1995). The latter product is 

unstable and can undergo oxidation by oxygen to generate an unstable phenyldiazene radical 

which in turn forms a sulfophenyl radical through the loss o f N 2 . The fate of this sulfophenyl 

radical differs depending on the chemical environment (Chivukula et al., 1995). Phenyl 

radicals can only abstract a hydrogen radical from the medium and cannot react with oxygen 

(Russell and Bridger, 1963), however, when a sulfonate substituent is present the reactivity of 

the radical towards oxygen can change and sulfophenyl hydroperoxides can be generated 

(Chivukula et al., 1995). These phenyl radicals can also undergo coupling reactions with 

other breakdown products (Zille et al., 2005) or undergo hydrolysis to generate 

hydroxybenzenesulfonate (Lopez et al., 2004). The symmetrical cleavage of AO 7 has been 

reported to generate 4-aminobenzenesulfonate and 1-amino-2-naphthol (Lopez et al., 2004). 

A range of oxidation products have been identified for other azo dyes (Goszczynski et al., 
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1994; Spadaro and Renganathan, 1994; Chivukula et al., 1995) but all products can be 
rationalised by either symmetrical or asymmetrical cleavage pathways. 

Further enzyme catalysed coupling reactions between unreacted dye and the breakdown 

products can result in polymerisation, which can again generate coloured solutions (Zille et 

al., 2005). Prolonged contact between the enzymes and reaction products can be problematic 

for water cleanup purposes. Surface-mediated oxidations would therefore have the distinct 

advantage over enzymatic systems in this instance as rapid removal of breakdown products 

from the reactive surface may be achievable. 

3.3.7. Background information on acid yellow 36 

H 

03S 

Figure 3-2 Structure of acid yellow 36 (AY 36) 

Acid yellow 36 (AY 36), also known as metanil yellow, is an acid azo dye that has found 

wide use in a number of industries including tannery, paper, cosmetic, textile, soap and polish 

manufacturing. It is also used as a pH indicator and in the determination o f trace amounts o f 

Mo(IV) . Despite A Y 36 being a non-permitted food colorant it is still widely used in sweet 

meat, ice creams, soft drinks and a coating for tumeric (Mittal et al., 2008). Due to its wide 

use it is a common contaminant in waste waters emanating from such industries. Acid yellow 

36 is an amine containing dye (Figure 3-2). Amine containing dyes are known to be 

carcinogenic, due to their oxidative metabolism in the gut, even without cleavage of the azo 

bond (Brown and Devito, 1993). Ingestion of the dye has been shown to cause a number of 

human disorders and has been implicated in tumor producing effects (Mittal et al., 2008). 

Despite this, there are a limited number of studies investigating degradation of A Y 36 and 

only two could be found that demonstrate oxidative breakdown (Shigwedha et al., 2006; 

Sleiman et al., 2007). Decolorisation in these aforementioned studies was achieved via photo-

catalytic oxidation using Ti oxides and only the latter study suggests a tentative reaction 
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mechanism. There is no information on the oxidation of AY 36 either enzymatically or by 
Mn oxides. 

3.4. Polycyclic aromatic hydrocarbons 

Polycyclic aromatic hydrocarbons are a ubiquitous product o f hydrocarbon combustion under 

reducing conditions, thus there are both natural and anthropogenic sources of PAHs. Major 

anthropogenic sources include fossil fuel combustion, metallurgical processes and the 

manufacture of creosote and bitumen. They are of high concern in the environment as many 

of them are toxic, mutagenic and/or carcinogenic to micro-organisms as well as to higher 

systems, including humans. Their low water solubility and strong partitioning into soil 

organic matter (SOM) hinders bioremediation techniques which are more effective when the 

contaminant is soluble and therefore bioavailable (Zhang et al., 1995). 

There is a wealth of research focusing on the removal of PAHs from soils using various 

physical, chemical and biological techniques. Physical techniques include incineration (Long, 

1993) and thermal desorption (Kopinke and Remmler, 1995). These techniques have their 

limitations due to their high capital costs and large associated carbon footprints. Chemical 

treatment of PAHs using advanced oxidative processes is another treatment option but 

requires the use o f expensive oxidising agents such as peroxide and permanganate (Brown et 

al., 2003). These oxidising techniques are also frequently unsuccessful in soil treatment due 

to the hydroxyl radicals being scavenged by natural organic matter before the target 

compound can be oxidised. 

Bioremediation in the form of microbial degradation o f PAHs has been well documented 

(Mihelcic and Luthy, 1988; Gray et al., 1994; Willumsen et al., 1997; McNally et al., 1998) 

but as mentioned above most bacteria require a soluble substrate (Zhang et al., 1995) which 

makes this form of bioremediation difficult . Oxidative breakdown of PAHs has been 

achieved by white rot fungi via Mn(IIl)-organic complexes which serve as easily diffusible, 

non-specific oxidants (Field et al., 1992; Wariishi et al., 1992), however, PAH solubility is 

still a problem and maximum oxidation is achieved only when water miscible solvents are 

used in reactions (Eibes et al., 2005). 
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There are very few reports o f abiotic interactions between PAHs and soil minerals. Pyrene 
degradation has been observed when bimessite was gently ground with PAH contaminated 
soil (Napola et al., 2006). Other reports of abiotic interactions between Mn oxides and PAHs 
have not shown any positive reaction (Daly, 1907; McNally et al., 1998). 

3.4.1. Sorption of PAHs onto mineral surfaces 

Polycyclic aromatic hydrocarbons are HOCs and PAH-mineral sorption is governed by 

factors discussed in section 3.1.2, thus only a brief mention is given to PAH-mineral 

interactions in this section. 

Whilst PAH-mineral interactions are considered to be subordinate to PAH-SOM interactions 

in controlling the mobility of PAHs, under low organic soil conditions sorption onto the 

mineral phase is competitive. In hydrated mineral systems it is the hydrophobicity of the 

PAH which is considered to be the most important factor driving the partitioning o f the PAH 

onto mineral surfaces, although solution chemistry, like pH and ionic strength can have a 

limited influence (Schlautman and Morgan, 1994). Ionic strength can influence organic-

mineral interactions in a number of ways. Increasing the ionic strength o f a solution can have 

an effect on HOCs known as 'salting out' whereby the solubility of HOCs decreases and 

accordingly their partitioning into the solid phase increases (Means, 1995; Tremblay et al., 

2005). Ionic strength and pH influence charge generation on mineral surfaces, which also 

influences PAH sorption (Schlautman and Morgan, 1994). 

Murphy et al. (1990) compared sorption of anthracene on hematite and kaolinite in hydrated 

systems with and without humic coatings. Sorption to both mineral phases was very low 

compared to the humic coated minerals but between the two uncoated minerals kaolinite 

showed the highest partitioning coefficient, which was interpreted as being a function of the 

larger area of basal siloxane and gibbsite sheets, which are more hydrophobic than the 

ionizable hydroxyl groups of hematite. Despite this it has been established that mineral 

surface area is the most important mineral characteristic when it comes to PAH sorption 

(Schlautman and Morgan, 1994). 
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Sorption of PAHs onto mineral surfaces has been shown to be inversely proportional to the 
moisture content of soils (Chiou and Shoup, 1985). Karimi-Lotfabad et al. (1996) reported 
sorption of PAHs to the mineral phase of dried soils and a pure montmorillonite clay. 
Rewetting reduced mineral sorption and increased partitioning into organic matter. This was 
interpreted as increased competition by water molecules for sorption sites on the mineral 
surface. Similar observations have been made during investigations of volatile and semi-
volatile organic compound sorption onto clay mineral and quartz surfaces (Goss, 1992; Goss, 
1993). These studies by Goss established that at humidity levels equating to less than 
monolayer water coverage of the mineral surface, sorption coefficients were high and 
decreased exponentially as the exposed mineral surfaces were progressively hydrated. The 
enhanced sorption of hydrophobic organic compounds on dried mineral surfaces, suggests 
that moisture content should be considered during investigations of mineral-PAH 
interactions. 

3.4.2. Oxidation of PAHs 

Removal of an electron from an aromatic molecule, involves transfer of a 7r-electron from the 

position of highest charge density to the metal centre. Ionization potential (IP) quantifies the 

ease with which this 7i-electron is removed. For PAHs, IP is an important indicator of bio-

and carcinogenic activity as ionisation is necessary prior to binding to cellular 

macromolecules (Cremonesi et al., 1992). Ionization potential has been determined for a 

number of PAHs, but standard redox potentials are difficult to obtain due to the irreversible 

redox behaviour of many PAHs. Formal E° can be determined empirically for certain 

condensed PAHs, like anthracene, which display reversible behaviour i f radical stabilising 

electrolytes are utilised. Using this technique, Cremonesi et al. (1992) determined the E° of 

anthracene to be 1.26 V and the ionization potential to be 7.43 eV. The heterogenous 

composition of natural Mn oxide minerals and mixed oxidation states make thermodynamic 

calculations difficult, however, according to Equations 3.2 and 3.3 it would appear that 

oxidation of anthracene by MnOOH is spontaneous whilst the reaction with MnC«2 is not. 

Using free energies of formation, McFarland and Sims (1991) calculated a negative AG for 

the reaction of anthracene and MnCh thus there appears to be some disparity in 
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thermodynamic data, which is not unexpected considering the variable composition of Mn 
oxides. 

Microbial mineralisation of organic contaminants can only occur sustainably i f the microbe's 

metabolic needs are catered for by exothermic reactions which need to yield enough energy 

to support growth as well as fulfi l microbial cell maintenance requirements. A 

thermodynamic framework was established by McFarland and Sims (1991), in which energy 

yields were calculated for heterotrophic PAH metabolism using a variety of terminal electron 

acceptors. According to their study complexed M n 4 + ions showed the highest energy yield 

followed by 0 2 , N0 3", Fe3 + ions , Mn0 2 , FeOOH, S0 4

2" and C0 2 . Manganese (111) hydroxides 

or complexed M n 3 + ions, arguably more prevalent in natural systems than M n 4 + ions (Dion 

and Mann, 1946), were not considered in this study. From the energy yield calculations of 

McFarland and Sims (1991) it would appear that oxidation of anthracene is 

thermodynamically favourable using Mn oxides as a terminal acceptor, but would not be a 

competitive substrate in the presence of aliphatic or alcoholic substrates. In reality 

biodegradation of PAHs is often hindered by their poor aqueous solubility and strong 

partitioning into the organic phase (Manilal and Alexander, 1991; Volkering et al., 1992; 

Weissenfels et al., 1992). 

It has been demonstrated that, with a few exceptions, PAHs with an IP <7.55 eV can be 

oxidised by lignin and Mn peroxidases (Hammel et al., 1986). Up to 100% anthracene 

removal by Mn peroxidases has been reported when water miscible solvents are used to 

increase anthracene solubility (Eibes et al., 2005). One oxidation pathway of anthracene has 

been shown to proceed via anthraquinone to phthalic acid (Hammel, 1995). Other studies 

have suggested that anthraquinone is the dead-end product of anthracene oxidation by certain 

peroxidases (Field et al., 1992; Bezalel et al., 1996). The hydroxylation of anthracene is 

thought to occur via radical formation followed by nucleophilic attack by water molecules 

(Hammel et al., 1986). The alternative polymerisation and humification pathway, has also 

been observed (Bogan et al., 1999). Generation of anthraquinone or further breakdown 

products is considered beneficial as these metabolites are more bioavailable and can be 

further degraded by bacteria (Mueller et al., 1989). Polymerisation and humification reduces 

the mobility of the PAH and these humified products have a reduced genotoxicity compared 
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to the parent compounds (Bogan et al., 1999) thus both oxidation pathways can be 
considered beneficial. 

Oxidation of PAHs on the surface of clay minerals has been reported (Karimi-Lotfabad et al., 

1996). The decreased recovery of added anthracene from both soils and pure montmorillinite 

clay was accompanied by the appearance of certain higher molecular weight compounds. 

Loss of anthracene was greatest for dry samples, and increasing the moisture content 

significantly increased anthracene recovery. It was suggested that this oxidation of anthracene 

occurred through one electron transfer to transition metals on the exchange sites of clays. 

Their study is one of a few studies which reports abiotic oxidation of PAHs. 
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4. Material and methods 
4.1. Review of experimental and analytical techniques: Azo dyes 

4.1.1. Infrared spectroscopy 

Infrared spectroscopy has frequently been used to probe sorption and oxidation reactions of 

dyes on Ti, Al and Fe oxide surfaces (Vinodgopal et al., 1996; Bauer et al., 1999; Bandara et 

al., 1999a; Bandara et al., 1999b; Lucarelli et al., 2000; Stylidi et al., 2003; Bourikas et al., 

2005). The majority of these studies have used diffuse reflectance infrared Fourier transform 

(DRIFT) spectroscopy. This allows a 'snap shot' view before and after the reaction has taken 

place, but cannot provide kinetic or dynamic information. Another limitation of the DRIFT 

technique arises from the need for samples to be dried after the reaction has taken place. 

Drying has been shown to change co-ordination of sorbed compounds (Hug, 1997; Eggleston 

et al., 1998; Dowding, 2004), as well as surface acidity (Mortland and Raman, 1968; 

Dowding et al., 2005). Thus artefacts may arise in data interpretation (Eggleston et al., 1998). 

Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) has the 

benefit of allowing real time surface analysis in a fully hydrated system and thus is a 

powerful in-situ technique. It has found applications in probing oxidation (Parikh et al., 2008) 

and sorption (Hug, 1997; Eggleston et al., 1998) reactions at the mineral-water interface. It 

has been shown to be particularly well suited in discerning between inner- and outer-sphere 

sorption of compounds on mineral surfaces (Hug, 1997; Eggleston et al., 1998; Johnson et al., 

2005), through the splitting, shifting and formation of new IR peaks. 

There are also many limitations with ATR-FTIR. The spectral range is limited to 

wavenumbers above 850 cm'1 for Ge crystals and 750 cm'1 for ZnSe crystals. Zinc selenide 

crystals are the most frequently used due to their low cost and high penetration depth but their 

operational pH is limited to between 7 and 9. Germanium crystals have a wider operational 

pH (1 to 12), but a lower penetration depth (0.2 urn) which reduces the sensitivity. Achieving 

in-situ data requires coating the crystal with a thin clay layer following the technique of Hug 

(1997). Controlling clay film thickness can be very difficult and therefore the technique is not 
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well suited to quantitative assessment. Despite these shortcomings the qualitative 
information can provide valuable insight into reaction kinetics and mechanisms. 

4.1.2. Analytical techniques 

Due to their chromaphoric properties, Ultraviolet-visible (UV-vis) spectroscopy, is a useful 

tool for analysing azo dyes. Percentage decolorisation is a commonly used parameter in dye 

removal studies and is calculated using the following equation: 

% decolorisation = (1-AA/AB) x 100 

Where AA is the absorbance after and AB is the absorbance before the reaction, measured at 

the at the visible region X m a x of the dye (Lu and Hardin, 2006). 

High Pressure Liquid Chromatography (HPLC) combines chromographic separation with 

UV-vis analysis and is a common tool for the qualitative and quantitative analysis of azo dyes 

and their breakdown products. The draw back of this technique is product identification is 

very difficult unless standards of compounds are run, which requires certain knowledge of 

reaction products. This makes identification of unknown compounds difficult. 

Liquid-chromatography mass spectrometry (LC-MS) combines chromagraphic separation 

followed by MS analysis. It has been identified as the technique of choice for environmental 

monitoring of dyes because of its high sensitivity and ability to obtain structural information 

on unknown compounds (Rafols and Barcelo, 1997). Sulfonated azo dyes are non-volatile 

thus MS with conventional electron ionisation cannot be used (Holcapek et al., 1999). 

Electrospray ionisation is a soft ionisation technique which is well suited for ionic dyes with 

high molecular weight. The sulfonic group is strongly acidic and is completely dissociated in 

aqueous solution thus negative ion mode is much more sensitive than positive ion mode for 

the analysis of azo dyes (Rafols and Barcelo, 1997). In tandem with soft ionisation 

techniques, in-source collision induced dissociation or multiple MS (MS)" using an ion trap 

analyser aids in the structural identification of dyes (Holcapek et al., 2001) and unknown 

reaction products. For this reason LC-MS has been the central technique used in the analysis 

of oxidative breakdown products of dyes (Goszczynski et al., 1994; Lopez et al., 2004; Zille 

et al., 2005; Lu and Hardin, 2006). 
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4.2. Review of experimental and analytical techniques: PAHs 

4.2.1. Spiking techniques 

One of the biggest hurdles in reacting PAHs with mineral phases is achieving contact 

between the hydrophobic organic molecule and the mineral surface. Difficulties in achieving 

homogenous distribution of PAHs in soil for use in sorption/desorption studies has resulted in 

a number of investigations into soil spiking procedures (Murdoch et al., 1997; Reid et al., 

1998; Brinch et al., 2002; Doick et al., 2003). One approach is to add aqueous solutions of 

PAHs at or below the PAH water solubility limit (Murphy et al., 1990; McNally et al., 1998). 

Due to the very low solubility of PAHs (e.g. anthracene solubility = 0.07mg.L"') this results 

in low loading and low solid/liquid ratios being used to reach the required concentrations. 

Using water as the carrier medium has distinct advantages however, as it is likely to be most 

representative of environmental conditions, will favour hydrophobic partitioning onto the 

mineral surface and will be the medium in which Mn oxides will react with the PAH. Other 

workers have employed organic solvents like dichloromethane, acetone, ethanol, methanol 

and toluene (Karimi-Lotfabad et al., 1996; Fisher et al., 1997; Reid et al., 1998; Northcott and 

Jones, 2001; Brinch et al., 2002) as carrier mediums to apply PAHs to soils. These solvents 

greatly increase the solubility of the PAH and thus may achieve greater surface contact and 

distribution of the PAH on the solid phase, however, biofilms, microbial populations (Brinch 

et al., 2002; Doick et al., 2003) and hydrophobic partitioning maybe affected by solvents. It is 

also questionable how applicable such HOC delivery is to environmental conditions. An 

investigation into a number of spiking procedures was undertaken by Reid et al. (1998). It 

was established that the spiking protocol which gave the most homogeneous distribution of 

the PAH involved a single spiking/rehydration operation conducted on a dried soil. This 

involves spiking a volume of water (sufficient to rehydrate a dried soil to the required 

moisture content), and then blending with the dried soil. 

Mechanochemical techniques have recently been employed to overcome poor 

contaminant/mineral contact (Pizzigallo et al., 2004; Napola et al., 2006). Grinding of solid 

phenanthrene with soil resulted in better contact and breakdown than grinding soil with 

phenanthrene dissolved in acetone (Napola et al., 2006). 
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4.2.2. Extraction techniques 

Extraction of HOCs from polluted soils is generally considered to be more difficult than 

extracting HOCs from a clean soil which has been recently spiked, due to the shorter 

exposure time of contaminant and solid in spiked samples (Lopez-Avila et al., 1995). In 

addition extraction from mineral phases, like the tailings, should be easier than from soils, 

which usually have significant organic matter content. 

Soxhlet extraction (U.S.EPA Method 3540) is a rigorous and effective extraction technique. 

It involves continuous extraction of a sample with aliquots of clean solvent. Disadvantages of 

this technique are the large volumes of solvent used, long extraction periods and the use of 

specialised soxhlet glassware which limits the number of simultaneous extractions. 

Extraction by ultra sonication (U.S.EPA Method 3550b) involves sonicating a sample in a 

chosen extraction solvent. It is a less rigorous extraction technique, but is rapid and requires 

no specialised glassware so multiple samples can be extracted simultaneously. Microwave 

assisted extraction is an attractive alternative to soxhlet extraction as it gives the same 

efficiency but is significantly faster (Lopez-Avila et al., 1995; Flotron et al., 2003). 

Greater extraction efficiency of pesticides has been achieved for polar organic solvents 

compared to non-polar solvents (Chiou and Shoup, 1985), which is thought to result from 

polar molecules displacing HOCs from mineral surfaces (Chiou and Shoup, 1985). 

4.2.3. Analytical techniques 

Analysis of extracts can be achieved by means of HPLC (U.S.EPA Method 8310) equipped 

with a fluorescence or UV detector or GC/MS (U.S.EPA Method 8270c). A distinct 

disadvantage of using GC/MS is that high molecular weight polymers can not be detected. 

Karimi-Lotfabad et al. (1996) detected anthracene polymeric oxidation products qualitatively 

using thin layered chromatography. 

Due to the photo-active nature of many PAHs, fluorescence and UV-visible spectroscopy 

provide quick, easy and sensitive analytical tools. Fluorescence and UV absorption 

spectroscopy can be used to quantify PAH concentrations in waters due to the extinction 
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coefficient and quantum yields being the same in ethanol and water. This allows ethanol 
based calibration standard curves to be used to determine the concentration of aqueous 
anthracene solutions. Using this technique detection limits of 0.03 ug.L"1 have been achieved 
for anthracene (Schwarz and Wasik, 1976). 

4.3. Collection of tailings materials 

Tailings samples were collected from Wessels, Nchwaning, Mamatwan, Gloria and Hotazel 

mines. Wessels and Nchwaning mines are found to the north of the KMF, Gloria mine is 

situated to the north east and Mamatwan mine lies on the south east tip of the KMF (Figure 

1-1). The Hotazel mine lies on the Hotazel outlier to the east of the KMF (Figure 1-1). 

Mining operations have ceased on the Hotazel mine but the other 4 mines are all fully 

operational. The waste material, generated during the ore extraction process is graded into 

different size fractions and the fine material is transported to tailings dams where it is stored. 

Samples were collected from the fine tailings (<200 urn) stockpiled on the tailings dams of 

Wessels and Mamatwan mines. At the time of sampling water was ponded in both tailings 

dams with reeds, grasses and trees surrounding the ponded area (Figure 4-1 a and c). An 

iridescent, oily looking scum, which shattered when disturbed, was present on the surface of 

the ponded water of the Wessels tailings dam. Composite samples of the Wessels and 

Mamatwan tailings were collected from the dry areas of the tailings dams. The Hotazel 

tailings are stockpiled in four dumps. Grass has established an intermittent covering of the 

largely dry dumps (Figure 4-1 d). Composite samples of the four dumps were collected from 

boreholes drilled at an earlier date by the BHP Billiton mine staff. Similarly composite 

samples were collected from cores drilled into the Nchwaning and Gloria tailings dams by the 

ASSMANG mine staff. 

Samples were sealed in polyethylene sample bags and couriered to the Durham University. 

On arrival samples were well mixed and sieved through a 2 mm sieve. This material was then 

used for further analysis. 
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c) d) 

Figure 4-1 Photographs of a) ponded area of Wessels tailings dam, b) Nchwaning tailings dam, c) 

Mamatwan tailings dam and d) one of four dumps at Hotazel 

Tailings from the Wessels and Nchwaning mines originate from the same ore body, known as 

Wessels type (WT) ore and tailings from Gloria and Mamatwan mines originate from the 

Mamatwan type (MT) ore. The Hotazel tailings originate from yet another ore type, Hotazel 

(HT) ore. The tailings of all five mines were characterised to establish any similarities 

between the tailings produced from the same ore type. 

4.4. Synthetic Mn oxides and control minerals 

Manganite was synthesized following the method of McArdell et al (1998). A 2 L solution of 

60 mM MnS0 4 was heated to 60°C. To this, 41 mL of 8.8 M H 2 0 2 was added followed by 

the slow addition of 600 mL of 0.2 M NH 4OH. This solution was stirred at 95 °C for 6 hours 

and then allowed to cool overnight. The clear supernatant was siphoned off and the remaining 
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slurry centrifuged to concentrate the mineral phase. The mineral phase was washed and 
sonicated 10 times to remove excess salts. The mineral phase was then freeze dried. X-ray 
diffraction, ESEM and 1R were used to confirm the formation of manganite. 

Quartz (QTZ) and calcite (CC) (Derbyshire limestone; TRUCAL 6) powders (<63 urn) were 

obtained from Tarmac. The purity of these minerals was verified in an earlier study 

(Bamforth et al., 2006). Manganese (111) oxide (Mn 203) was purchased from Sigma-Aldrich 

and is referred to as purchased Mn oxide throughout the thesis. 

4.5. General laboratory equipment and chemicals used 

Unless specified the following laboratory equipment was used: an AND analytical balance 

(120 x 0.0001 g resolution) (A & D weighing, Japan), a Yellow line OS 10 Basic reciprocal 

shaker (IKA, Germany), a Decon F5200b sonic bath, (Decon Laboratories, UK) a MSE 

Harrier 15/80 centrifuge (MSE, UK) and a Metrohm 785 titrino, (Metrohm, Switzerland) for 

pH measurement (2 decimal places). 

All chemicals, unless specified, were reagent grade. Potassium chloride, analysis grade 

ammonium acetate, sodium hexametaphosphate (calgon solution), sodium dithionite, and 

sodium citrate were purchased from Fisher Scientific. Analysis grade hydroxylamine 

hydrogenchloride (HAHC) and hydroquinone (HQ) were purchased from Acros organics. 

Deionised (DI) water was obtained from a Purite Select water deioniser (Resistance 14 Q). 

Acid yellow 36 (AY 36), acid orange 7 (AO 7), acid yellow 9 (AY 9), acid red 88 (AR 88) 

and acid red 151 (AR 151) were obtained from Sigma and used without further purification. 

1,2 Naphthaquinone, 4-hydroxybenzenesulfonic acid, benzenesulfonate and /?-benzoquinone 

were purchased from Arcos organics. Glacial acetic acid was purchased from Fisher 

Scientific and sodium acetate was purchased from Sigma -Aldrich. 

Anthracene (98%) and anthraquinone (96%) were obtained from Arcos organics and used 

without prior purification. Cyclohexane (HPLC grade) and acetonitrile (HPLC grade) were 

obtained from Fisher scientific. 
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4.6. Wet chemistry methods 

4.6.1. Clay extraction 

Clay extraction for XRD analysis was achieved as follows: 10 g tailings were weighed out 

into a 500 mL centrifuge vessels, 50 mL DI was added followed by 1 mL 1% calgon solution. 

The samples were shaken for 40 minutes on a reciprocal shaker. The slurry was then passed 

through a 53 um sieve prior to centrifugation at 1000 rpm for 5 minutes. The supernatant was 

decanted and a few drops of 0.5 M MgCb added. The suspension was allowed to settle 

overnight. The clear supernatant was siphoned off and the remaining concentrate was used 

for analysis. A few drops from each of the clay concentrates were added to ceramic tiles and 

the excess moisture removed through suction. The clay coated tiles were then allowed to dry 

overnight before XRD analysis. 

The clay fraction of HT tailings was collected for PZC determinations by clay dispersion. A 

15 g HT sample was weighed into a 500 mL measuring flask and 500 mL DI water added. 

The pH of the slurry was adjusted to pH 11 by adding a few drops of 5 M NaOH. The 

measuring cylinder was shaken and placed in a sonic bath for 1 hour. This process was 

repeated four times after which the sample was left to settle overnight. The suspended clay 

particles were siphoned off into a beaker. The clay suspension was titrated to pH 4 using 0.1 

M HC1 and centrifuged at 3000 rpm for 5 minutes. The clear supernatants were decanted and 

the remaining mineral phase washed several times with DI until the clay phase began to 

disperse. This dispersed clay was used in the electrokinetic mobility, potentiometric and 

flocculation determinations. 

4.6.2. pH and electrical conductivity (EC) 

Samples were prepared for pH analysis in DI, using a solidrliquid (S:L) ratio of 1:2.5. The pH 

was measured using a Satorius Professional Meter PP-50. The EC of the tailings was 

measured in DI using a Mettler Delta 350 conductivity meter. Samples were prepared for EC 

analysis in DI using a S:L of 1:10. These same samples were used for the analysis of soluble 

cations and anions. 
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4.6.3. Mn oxidation state 

The average oxidation state of the material was determined iodometrically (Murray et al., 

1984). Briefly, 30 mL of DI water was added to 10 mg of sample. To this 1 mL of iodide 

solution (4 M Nal + 5 M NaOH) and 1 mL 8 M H2SO4 was added to the slurry and allowed 

to react for 10 minutes. The iodine was titrated with standardised 0.01 M Na2S2Ch using 

starch as an indicator. Manganese and Fe concentrations were determined in the solution 

using atomic absorption spectroscopy (AAS) and the O/Mn as MnO x ratio was then 

calculated using the following formula: 

Ox - Fe," 

Where Ox is total oxidising equivalents, Fe, is total Fe equivalents and Mn t is total moles of 

Mn. 

4.6.4. Sequential extraction 

Water soluble and exchangeable Mn were determined following the methods of Gambrell 

(1996). Water soluble Mn was determined by reacting the tailings with DI using a 1:10 

solid:liquid (S:L) ratio. The DI was equilibrated with the tailings for 30 minutes by shaking 

on a reciprocal shaker set at 250 rpm. The supernatants were filtered through 0.2 um syringe 

filters prior to analysis using AAS. Exchangeable Mn content was determined in the same 

manner replacing DI with either 1 M KC1, or pH 7 1M N H 4 O A C The reducible fraction was 

determined by sequential extractions using a series of reducing agents as shown and 

referenced in Table 4-1. Two washings were performed per extractant, with the final S:L ratio 

being 1:250. For these extractions the tailings were used without prior grinding (i.e. the < 2 

mm fraction). The total reducible Mn content was determined by reacting finely ground 

material (< 63 um) with sodium dithionite in a sodium citrate buffer. Metal concentrations 

were determined using AAS. 

J C = 1 + -
2 
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Table 4-1 Sequential extraction methods 

Method Reference 

0.2% hydroquinone in 1M pH7 NH40Ac Gambrell and Patrick (1982) 

Acidified (0.01M HN03) hydroxylamine Chao (1972) 
hydrogenchloride 

0.3 M Sodium citrate; 2g Sodium dithionite Holmgren (1967) 

Samples were submitted to Analytical and Environmental Services (Howden, UK) for aqua 

regia extraction. Al l acid extractable metals were digested by an oxidising mixture of 

concentrated nitric acid and hydrochloric acid and refluxed for 3 hours. The digests were then 

clarified by filtration and the concentration of the metals determined by inductively coupled 

plasma spectroscopy. 

4.6.5. Point of zero charge 

An attempt was made to measure the PZC of the tailings materials using a potentiometric 

approach (Hunter, 1981). Sodium chloride was used as the indifferent electrolyte at 

concentrations of 0.01, 0.1 and 1.0 M. Tailings material (5 g) were placed into polyethylene 

bottles and 50 mL of NaCl solution added. Each of the slurries, were treated with either 0.1 

M NaOH or HC1 and allowed to equilibrate on a reciprocal shaker overnight. A settling 

period of 30 min was allowed before pH was measured. 

Potentiometric titrations using the untreated tailings were unsuccessful, due to their 

considerable carbonate content. Large quantities of acid were necessary to achieve low pH 

values, which resulted in unacceptable increases in ionic strength and volume. Thus 

potentiometric titrations were attempted using only the clay fraction of the HT tailings. 

Potentiomentric titrations were conducted using the same electrolyte concentrations given 

above. A 2 mL aliquot of clay slurry was added to 10 mL of electrolyte solution, and the pH 

adjusted between 1 and 10 using standardised 0.1 M NaOH and HC1 and the volume made up 

to 15 mL with DI water. Equilibration and pH measurement were conducted as described 

above. Electrokinetic mobility was determined using a ZetaPlus Zeta potential analyser 

(Brookhaven Instruments Corporation, USA). Samples were prepared for electrokinetic 

mobility determination by pipetting a 0.02 mL aliquot of clay suspension into 40 mL of 0.1 
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M KC1. The pH of the dilute suspensions were adjusted (pH 1-9) using 0.01M HC1 or 
NaOH and the final volume made up to 50 mL by adding 0.01 M KC1 solution. The 
flocculation procedure involved suspending 2 mL of the clay slurry in 12 mL 0.01 M K G 
and adjusting the pH of each sample to a pH between 9 and 1 using 0.1 M NaOH or HC1. The 
volume in all samples was made up to 15 mL. The suspensions were shaken and allowed to 
settle overnight. Visual observations of flocculation were made and the final pH of the 
suspensions measured. 

4.6.6. Biological activity screening 

Gram stains were conducted on the surface scum from the ponded area of the the Wessels 

tailings dumps. A microscope slide was washed in ethanol and a drop of sterile water added. 

A small scraping of the surface scum was added to the sterile water. The Gram positive and 

Gram negative stains were then added and the slide heated. A few drops of crystal violet were 

added, and the slide washed. This was repeated with iodine and sophronine. The latter was 

only exposed to the slide for 5 seconds. The slide was then allowed to dry and observed under 

a microscope using an oil immersion lense (1000 x magnification). 

4.7. Analytical techniques 

4.7.1. XRD and ESEM 

X-ray diffraction analysis was performed on a XPERT-PRO diffractometer system using 

CoKa radiation generated at 40 kV and 35 mA from 3.5 to 60° 29 using a 0.017 step size. 

Environmental Scanning Electron Microscope (ESEM) images were taken using a FEI XL30 

ESEM field emission gun. Unground powder samples were placed in the sample chamber and 

examined at various magnifications. Elemental analysis was achieved by Electron Dispersive 

X-ray (EDX) Spectroscopy. 
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4.7.2. Particle size and surface area 

Particle size was measured using a Beckman Coulter LS 13320 Laser Diffraction Particle 

Size Analyser. Samples were prepared by dispersing 0.4 g of sample in 20 mL DI water and 

adding 0.5 mL of calgon solution. 

Surface area of the tailings was determined by means of BET-N2 analysis using a 

Micromeritics Tristar porosity analyser. The samples were not ground prior to analysis. 

4.7.3. Solution analysis 

Anions and cations were analysed by ion chromatography using a DIONEX DX-500 unit. 

Samples were prepared by filtering solutions through 0.45 um membrane filters into 5 mL 

vials. Any dilutions were performed using 18.2 mQ deionised water. The instrument was 

calibrated using an eight multi-element calibration standard (made from 1000 ppm 

AccuSPEC stock solutions, SCP science) every 20 samples. 

Anions were run using an IonPAC AS17A (2 mm) column at 30°C, using a KOH eluent 

(5mM grading to 35 mN over 20 minutes) with a flow rate of 0.5 mL.min"1. Cations were run 

using an IonPac CS16 (3 mm) column at 35°C using 30 mN H2SO4 (isocratic for 25 minutes). 

An ED40 ECD detector was used for both anion and cation analysis. 

Metals were analysed by atomic absorption spectroscopy using a Varian SpectrAA 220FS 

atomic absorption spectrometer. Manganese was determined at 403.1 nm using a 0.2 nm slit 

width calibration range: 0.5 -60 ppm. Samples were filtered through 0.2 um membrane filters 

prior to analysis. 

4.7.4. UV-visible spectroscopy 

UV-visible spectra of samples were obtained using a Varian Cary 50 UV-spectrometer, fitted 

with a fibre optic probe. For azo dye analysis the wavelength range was set between 200 to 

600 nm. Dye concentrations were determined by measuring the absorbance at in the 

visible region for each dye for a set of standard solutions and plotting a calibration curve (1.3 

x 10"6Mto 1.7 x l(r*M). 
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Percentage decolorisation is a commonly reported parameter in this study and is calculated 
as: 

% decolorisation= (1-AB/AA) x 100 

where AB is absorbance at the before reaction and AA is the absorbance at the same 

wavelength after the reaction. 

4.7.5. High pressure liquid chromatography 

High pressure liquid chromatography was conducted using a Perkin Elmer Series 200 fitted 

with a Genesis, C-18 column (4.6 mm x 250 mm) containing 4 um packed particles (Alltech, 

Deerfield, Germany). Acetonitrile and a 0.03 M, pH 7.7 ammonium carbonate buffer were 

used as eluents. The pump program was set as follows, isocratic 20% acetonitrile: 80% buffer 

held for 2 min; grading to 100% acetonitrile over 10 min and held at 100% for 7 minutes. The 

wavelengths on the detector were set at 254 nm and the X̂ ax for each dye. Dye concentrations 

were determined from peak area-concentration curves, plotted for a series of concentration 

standards (1.3 x I0" 6 M to 1.1 x lO^M). 

For the analysis of anthracene and anthraquinone the same HPLC system was used. The 

pump programme was as follows: 50% water and 50% acetonitrile held for 2 minutes grading 

to 100% acetonitrile over 10 minutes and held isocratic for 2 minutes, returning to starting 

conditions over 3 minutes. The injection volume was 190 uL and the flow rate was 1 mL.min" 

'. The wavelengths on the detector channels were set at 254 nm and 272 nm. Concentrations 

were determined by running a series of anthracene and anthraquinone standards which were 

used to plot peak area-concentration calibration curves (2.8 xlO"6 to 2.8 x 10 s M). 

4.7.6. Liquid chromatography-mass spectrometry 

For liquid chromatography mass spectroscopy (LC-MS) analysis of breakdown products, 

0.14 and 0.28 mM dye solutions were reacted at pH 4 for an hour in the same manner 

described in Section 4.8.3. Two dye concentrations were used in the LC-MS analysis, for 

sensitivity reasons as well as for the observation of any potential coupling products (Zille et 
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al., 2005). LC-MS was conducted on two different systems depending on instrument 
availability. 

In the first system reversed-phase H P L C was accomplished using a Surveyor HPLC system 

(ThermoFinnigan, Hemel Hempstead, UK) fitted with a Genesis, C-18 column (4.6 mm x 

250 mm) containing 4 um packed particles (Alltech, Deerfield, Germany). Separation was 

achieved at ambient temperature with a flow-rate of 1 mL min"1 and the following gradient 

profile: 80% water and 20% acetonitrile (0 min, hold for 2 min); 100% acetonitrile (at 12 

min), then isocratic to 16 min, returning to the starting conditions in 1 min and stabilising for 

8 min. 

LC-MS" was performed using a Finnigan LCQ ion trap mass spectrometer equipped with an 

electrospray ionization interface (ESI) source operated in positive or negative ion mode. L C -

MS settings were as follows: capillary 250°C, spray voltage 4.5 kV, sheath gas flow 80 and 

auxiliary gas 20 (arbitrary units). In positive ion mode the capillary voltage 3V and Tube lens 

offset 50V, in negative ion mode Capillary voltage -19 V and Tube lens offset -60 V. L C Q 

instrument parameters were selected using an automated tune facility on a direct infusion of 

1000 ppm A Y 36 stock solution on the protonated molecular ion, m/z 354 ([M+H]+) or 

deprotonated molecule, m/z 352 ([M-H]") . 

LC-MS" analysis was carried out in data-dependent mode with two scan events: SCAN 1 -

full mass spectrum, m/z 100-800; SCAN 2: data-dependent M S 2 spectrum of the most intense 

ion from SCAN 1. Detection was achieved at an isolation width of m/z 4.0 and fragmentation 

with normalised collisional dissociation energy of 50% and an activation Q value (parameter 

determining the m/z range of the observed fragment ions) of 0.25. 

On-line UV-vis absorbance spectra (200-600 nm) were recorded using a Surveyor photodiode 

array (PDA). Three additional channels were recorded at specific wavelengths: Channel A 

254 nm, Channel B 434 nm, Channel C 484 nm. 

In the second system reversed-phase HPLC was accomplished using a Surveyor HPLC 

system (ThermoFinnigan, Hemel Hempstead, UK) fitted with a Phenomenex, C-18 column 

(2.00 mm x 150 mm) containing 3 um packed particles. Separation was achieved at ambient 
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temperature with a flow-rate of 1 mL.min"1 and the following gradient profile 95% water 
and 5% acetonitrile (0 min, hold for 5 min) grading to 95% acetonitrile and 5% water over 
30 min), returning to the starting conditions in 1 min and stabilising for 8 min. 

LC-MS was performed using a ThermoFinnigan LTQ ion trap mass spectrometer equipped 

with an electrospray ionization interface (ESI) source operated in positive or negative ion 

mode. LC-MS settings were as follows: capillary 275°C, spray voltage 4.0 kV, sheath gas 

flow 10 and auxiliary gas 2 (arbitrary units). In positive ion mode the capillary voltage 25 V 

and Tube lens offset 100 V, in negative ion mode Capillary voltage -9 V and Tube lens offset 

-100 V. 

The major difference in the two systems described above, is the first system allowed 

secondary fragmentation patterns to be obtained of the most intense ion detected in the initial 

MS, while in the second system only one initial MS could be obtained. 

4.7.7. Attenuated total reflectance Fourier transform infrared 

spectroscopy (ATR-FTIR) 

Attenuated total reflectance Fourier transform infrared spectroscopy was performed using a 

Thermo Electron Nexus FTIR fitted with a l iquid-^ cooled MCT detector and a Horizontal 

A T R flow-through assembly (PIKE Technology) containing a germanium (Ge) internal 

reflectance element (IRE). The Ge I R E was chosen over the more common Zinc Selenide 

I R E due to wider operating pH range (1-12). Omnic 32 software was used for all spectral 

processing. 

4.8. Experimental design: Azo dyes 

Throughout this study the term control relates to samples prepared in precisely the same 

manner as the treatments but omitting the tailings material. A blank sample refers to a sample 

prepared in precisely the same manner as the treatments, omitting the dye solution. In certain, 

specified, cases calcite or quartz controls have been included, i.e. calcite or quartz substituted 

for tailings material. When no acidification is involved calcite has been chosen as a control 
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due to the large calcite fraction present in the tailings. When acidification is involved 
quartz has been used as a control. Unless specified all samples were prepared in triplicate. 

Due to the similarities of the Wessels and Nchwaning tailings and the Gloria and Mamatawn 

tailings, azo dye decolorisation experiments were not carried out on all five tailings but rather 

a representative of each ore type i.e. Wessels type (WT), Mamatwan type (MT) and Hotazel 

type (HT). Due to the large carbonate phase of the MT tailings and the surface scum present 

on the WT tailings, HT tailings were used in the bulk of the dye experiments. 

4.8.1. Screening of five acid azo dyes 

Five azo dyes, acid yellow 9 ( A Y 9), acid red 88 (AR 88), acid red 151 (AR 151), acid 

yellow 36 ( A Y 36) and acid Orange 7 (AO 7) were reacted with the HT tailings in a pH 4 

acetate buffer using a batch procedure. Reactions with A Y 36 and AO 7 were repeated for the 

WT and MT tailings. Dye stock solutions at a concentration of 0.14 mM were prepared in a 

0.2 M, pH 4 acetate buffer. A 40 mL volume of stock solution was added to 2 g of tailings 

material, weighed out into 50 mL centrifuge tubes. These suspensions were agitated on a 

reciprocal shaker set at 250 rpm. At various time intervals, specified in the corresponding 

figures, samples were removed and centrifuged at 3000 rpm for 5 minutes. The supernatants 

were analysed using UV-visible spectrometry. 

4.8.2. Abiotic vs biotic interactions? 

Batch experiments were carried out using autoclaved HT tailings material. The tailings were 

autoclaved for 1 hour at 121°C in a 2100 Classic, Clinical Autoclave, Prestige Medical and 

kept in sterilized containers. Samples were manipulated with sterilised implements to avoid 

contamination. Batch experiments were conducted as described above but stock solutions 

were made up in DI. The batch experiments were repeated using both synthetic manganite 

and purchased Mn oxide. Calcite and dye solutions containing no solid phase were included 

as controls. The purpose of the calcite control was to indicate any sorption onto the calcite 

surface, raise the pH of the in accordance with the tailings and to establish any coagulation 

tendency of the dyes. Samples were placed on a reciprocal shaker set at 250 rpm and reacted 
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for 45 days. At various time intervals, specified in the corresponding figures, the samples 
were centrifuged and the supernatant analysed using UV-visible spectroscopy. 

4.8.3. pH treatments 

The effect of pH was established by reacting the tailings with AO 7 and A Y 36 at pH 9; 7; 5; 

4 and 3. Samples were prepared by weighing 2 g tailings material into 50 mL centrifuge tubes 

and adding 20 mL DI. The pH of this slurry was adjusted and held constant by addition of 0.1 

M HC1 using an autotitrator. Once the desired pH was reached 2 mL of 1000 ppm dye stock 

solution (prepared in DI water) was added to the suspension and allowed to react with the 

tailings for 1 hr. All volumes were adjusted using DI to a final S:L ratio of 1:20. Samples 

were shaken for 10 seconds, centrifuged and the supernatants filtered before analysis with, 

UV-visible spectroscopy, HPLC and AAS. 

4.8.4. Investigation of further reactions involving azo dye breakdown 

products 

AO 7 and A Y 36 breakdown products; 1,2 naphthoquinone (NQ), 4-

hydroxybenzenesulfonate (4HBS) and /?-benzoquinone were reacted with the tailings in a pH 

4 acetate buffer following the batch method described in Section 4.8.1. 

To observe the hydrolysis reaction of the 366 isomers in real time, the tailings were reacted 

with A Y 36 at pH 3 for 20 minutes and then filtered through a 0.2 urn filter in order to 

remove all Mn oxide material. The absence of Mn(IIl) complexes was verified by a negative 

tetramethylbenzidine test (Bartlett, 1999). The filtrate was immediately placed in a cuvette 

and a UV-vis spectrum collected every 10 min for 130 minutes and thereafter every 60 mins 

for 17 hrs. After 17 hrs the filtrate was added to 2 g tailings and reacted for 24 hrs at pH 3 

after which the suspension was filtered and the filtrate analysed by UV-vis spectroscopy. 

4.8.5. Initial reaction rates and orders 

Reaction rates and orders were determined by continuous stirring reactions using the initial 

rate method described by Lasaga (1981). The general experimental design was as follows: 

AO 7 and A Y 36 stock solutions were prepared in 0.2 M acetate buffers adjusted to pH 4, 5 
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and 6. A volume of 250 mL dye stock or blank (acetate buffer alone) solution was added 
to a 500 mL flask and stirred at 50 rpm using a magnetic stirrer. The reaction was initiated by 
adding the tailings to the stirred solution. Aliquots of 5 mL were extracted at increasing time 
intervals and filtered through syringe membrane filters (0.2 urn). The shortest practical 
sampling time interval was 30 seconds, which includes the residence time in the syringe. The 
filtrates were analysed by AAS, UV-vis spectroscopy and HPLC to determine concentrations 
of soluble Mn, dye and breakdown products. Soluble Mn concentrations in the blanks and 
treatments were used to calculate [Mn]diSS which is an operational function, as employed by 
Stone and Morgan (1984a) and Laha and Luthy (1990), and is the amount of Mn not retained 
on the filter and represents the Mn concentration beyond that measured in the blank solutions. 
Reactions conducted at pH 4 were repeated in the dark and under UV radiation (100 mW, 
365 nm). The reaction progression of A Y 36 oxidation was followed using data from the pH 
4 batch experiment. 

The order of the initial reaction rate was determined with respect to the tailings surface area 

concentration [SA], dye concentration and pH. The order with respect to available tailings 

surface area was determined by varying the [SA] between 4.8 and 48 m .L" while the pH and 

dye concentration were held constant at pH 4 and 0.14 mM, respectively. Similarly, the order 

with respect to dye concentration was determined by varying the dye concentration between 

0.07 and 0.70 mM while the pH was maintained at pH 4 and the [SA] held constant at 48 

m2.L"'. The initial rate was calculated over the first few time intervals when reaction 

concentrations would be close to initial conditions. 

4.8.6. ATR-FTIR experiments 

The A T R experiments were conducted following the procedure outlined by Hug (1997) 

whereby the I R E is coated with a clay film. Reflectance techniques have inherently low 

sensitivity, thus it is important to use a clay with as higher surface area as possible. For this 

purpose synthetic manganite (prepared as described in Section 4.4) was used in all ATR-

FTIR experiments. The final concentration of the dye in contact with the manganite film 

needed to be below the infrared detection limit for aqueous species on the I R E used 

(Duckworth and Martin, 2001; Borda et al., 2003) permitting any dye detected to be 
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considered surface-bound. This means valuable information can be obtained about dye 
sorption. 

A 1 g/L suspension of manganite was prepared in a 30:70 water:ethanol solution. This 

suspension was used to create a thin clay film on the Ge I R E by pipetting a 2 mL aliquot onto 

the crystal and allowing to dry. The final surface area of manganite on the crystal was 

approximately 0.028 m 2. 

The dry clay film was re-hydrated in the flow cell with 0.5 mL Dl water adjusted to pH 4 and 

a background scan was collected of the fully hydrated clay. All subsequent scans were ratioed 

against the hydrated-clay background, allowing peak intensity due the sorbed compound to 

be observed. A 0.28 mM AO 7 solution was prepared in DI water and the pH adjusted to 2.3, 

2.7, 3.0, 3.5, 4.0 and 6.0 by the addition of 0.01M HC1. At the start of the reaction 0.5 mL of 

the dye solution was injected into the flow cell, thus the final concentration of dye in contact 

with the clay was 0.14 mM. This concentration was confirmed to be below the infrared 

detection limit for aqueous species on the I R E used in the present A T R - F T I R system. This 

permitted any dye solution detected to be considered surface-bound. A set of control spectra 

(as above but without the clay film) and blanks (pH adjusted DI water injected onto the clay 

film with no dye) were collected. Scans were displayed within 10 seconds of the dye being 

injected into the cell. During the reaction period spectra were collected every minute using 64 

co-added scans at 4 cm"1 resolution. Standard spectra of pH adjusted (2.3 to 6.0) 25 mM 

solutions of AO 7 were collected on a clean Ge crystal. 

4.8.7. Effects of acetate buffer concentration 

Batch experiments were carried out using pH 4 acetate buffers of varying strengths. Acetate 

buffers having concentrations of 100, 200 and 500 mM were prepared using glacial acetic 

acid and sodium acetate. Dye stock solutions were added to the buffer solutions to give a 

final dye concentration of 0.14 mM. The dye solutions were added to 2 g of tailings materials 

to a final S:L ratio of 1:20. Purchased Mn(lII) oxide, was included in the experiment due to 

significant pH drift observed with the tailings material. The centrifuge tubes were sealed and 

placed on a reciprocal shaker set at 250 rpm. After two hours reaction time the samples were 
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centrifuged and the supernatants analysed using UV-vis spectroscopy. The pH of the 
samples were measured before being replaced on the shaker. Samples were analysed daily for 
a week. 

4.8.8. Effect of salt type and concentration 

The influence of salt type and concentration was determined with and without acetate buffer. 

Batch experiments similar to those described in Section 4.8.7 were employed except that 

solutions of NaCl and Na 2S04 at three concentrations 30, 100 and 500 mM (in either DI or a 

0.2 M, pH 4 acetate buffer) were used to make up 0.14 mM stock solutions of A Y 36 and AO 

7. 

4.8.9. Quasi-continuous flow batch experiments 

Quasi 'continuous flow' reactions were conducted by sequentially reacting fresh dye solution 

with a single measure of tailings over 60 days. Acetate buffer solutions (100 mM, pH 4) 

containing 0.14 mM AO 7 and A Y 36 were prepared. The tailings were weighed out into 15 

mL centrifuge tubes and the mass of the tube plus dry tailings recorded. The dye solution was 

added to the centrifuge tubes to obtain a S:L ratio of 1:10. These tubes were placed on a 

reciprocal shaker for 24 hrs. The samples were then centrifuged at 2500 rpm and the 

supernatant carefully decanted and filtered through 0.45 um filters. Care was taken not to 

disturb the tailings during decanting. Fresh dye solution was then added to the remaining 

slurry. Separate experiments, where the solution was added gravimetrically, showed that the 

amount of dilution of fresh dye by the entrained solution was negligible, so pipetting fresh 

solution was considered appropriate. These samples were then replaced on the shaker. The 

continual replenishment procedure was repeated for 60 days. The filtrates were analysed for 

dye concentration using UV-vis spectrometry and for Mn concentration using AAS. 

4.9. Experimental design: PAHs 

Throughout this study the following definition of control is used: A control is treated in the 

same manner as the treatments omitting any mineral phase. Originally quartz and calcite were 

intended to serve as mineral controls but it was observed that these mineral phases were 
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reactive during drying reactions and thus could not be used as controls but have been 
included in the results. 

Unless specified all samples and controls were prepared in triplicate. 

4.9.1. Drying experiments 

Quartz, calcite, purchased Mn oxide, WT, MT and HT tailings were used in the drying 

experiments. Samples were spiked with anthracene using the minimal solvent, single step 

rehydration/spiking procedure as described by (Reid et al., 1998). Briefly, 0.4 mL DI was 

added to acid washed amber vials. A 7 uL aliquot of anthracene stock solution (4g.L _ 1 made 

up in acetone) was added to the water, and 1 g of mineral sample immediately stirred in with 

a glass spatula to make a moist crumbly paste. The control consisted of adding the spike to 

water but omitting any mineral phase. Half the samples were sealed using Teflon lined caps 

and half the samples were lightly covered in foil to omit light while allowing slow air-drying. 

These samples were then left for 7 days. On a separate set of HT samples this procedure was 

repeated but at various time intervals the drying samples were weighed and sealed to prevent 

further moisture loss. 

The above procedure was repeated on oven-dried (104° C overnight) calcite and HT samples, 

except that the 0.4 mL of water was replaced by 10 mL cyclohexane. In half the samples the 

cyclohexane was allowed to evaporate while an identical set were sealed to prevent 

evaporation. Mixing of the latter samples was achieved by placing them on a reciprocal 

shaker, set at 250 rpm for the 7 day period. 

4.9.2. pH experiments 

The pH experiments were conducted in a series of 0.2 M acetate buffers prepared at pH 3, 4, 

5 and 6. The HT tailings and quartz (1 g) were weighed into acid washed amber bottles and 

20 mL of the acetate buffer solutions added. These suspensions were shaken for 30 min 

before the pH of the supernatants were measured. The pH values in the quartz samples were 

within 0.05 units of the original pH while pH in the tailings treatment showed a slight drift, 

especially in the pH 6 buffer, which is on the margin of the acetate buffering range. Although 
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the use of acetate to buffer reactions at pH 6 may be questionable, it was decided that it 
would be better to treat all samples with the same organic buffer to avoid differences in 
anthracene solubility. The data was plotted according to the final pH of the suspension. 
Samples were spiked with a 10 uL aliquot of anthracene stock, sealed with Teflon caps and 
shaken on a reciprocal shaker (250 rpm) for 5 days. The process was repeated spiking, the 
samples with an anthraquinone spike. 

A separate pH experiment was conducted in DI. A 1 g tailings sample was added to an amber 

glass bottle followed by 10 mL DI. A 10 uL anthracene spike was added. The slurry was 

titrated to and maintained at pH 4 using an autotitrator dispensing 0.1 M HC1. 

4.9.3. Anthracene/anthraquinone extraction procedures 

Extraction of anthracene and the oxidation product, anthraquinone, was achieved using a 

simple sonication method. The anthracene extraction efficiency using this technique was 

>89% for hydrated samples thus it was deemed sufficient for the current investigation. 

Due to reports that extraction of hydrophobic compounds from dried soils using non-polar 

extractants is inefficient (Chiou and Shoup, 1985) a range of extraction solvents 

(cyclohexane, cyclohexane plus water, methanol and acetonitrile) were trialed for anthracene 

and anthraquinone recovery from dried tailings and calcite samples. Anthracene recovery did 

not differ with the type of solvent used, however, anthraquinone recovery was very 

dependent on solvent type. Reduced recovery of anthraquinone was observed when extracted 

directly with cyclohexane (80%), while efficient recovery (100%) was observed when water 

was added to the dry tailings prior to extraction with cyclohexane (Figure 4-2). Equally 

efficient recoveries were obtained in the polar solvents, methanol and acetonitrile. Separation 

of the mineral phases from methanol and actetonitrile through filtration proved difficult, thus 

the mixed cyclohexane and water extraction procedure, described below, was used for all the 

experiments. 
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Figure 4-2 Percentage recovery of anthraquinone in cyclohexane with (wet extraction) and without (dry 

extraction) the addition of water prior to extraction in cyclohexane. 

Both dry and moist samples were extracted in the same manner. A volume of 10 mL water 

was added to the spiked samples followed by 10 mL cyclohexane. The samples were sealed 

with Teflon line caps and placed in a sonic bath for 2 hrs. The samples were then shaken on a 

reciprocal shaker set at 250 rpm for 24 hours. Cyclohexane was separated from the water and 

solid phases using Fisherbrand phase separation paper. Filtered extracts were collected in 

amber vials for UV and HPLC analysis. 

Samples reacted in cyclohexane were sonicated and shaken. No water was added to these 

samples. 

Extraction o f anthracene and anthraquinone from acetate suspensions was achieved by the 

addition of 10 mL cyclohexane, followed by the sonication and shaking routine described 

above. 
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4.10. Statistical analysis 

Significance testing (t-test) was perfomed using Microsoft Excel (1 tailied; unequal variance). 

Evaluation of slope significance in the kinetic analysis was conducted using equations 

provided in Appendix D. 
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5. Results and Discussion: Characterisation of the 
tailings materials 
5.1. Physical and Mineralogical properties 

5.1.1. Mineralogy 

The mineralogy of the K M F has been well characterized (DeVilliers, 1965; Kleyenstuber, 

1984; Gutzmer and Beukes, 1996), thus an extensive investigation into the mineralogy of the 

tailings was not necessary. The clay phase of the tailings is likely to be the most reactive in 

geochemical reactions, thus a brief mineralogical survey was conducted of the clay fraction 

extracted from tailings. X-ray diffraction patterns of the sedimented clay fraction of all five 

tailings are given in Appendix B. 

The X R D patterns shown in Appendix B show broad, poorly defined peaks, despite the 

analysis being performed on the clay fraction of the tailings. This problem is commonly 

encountered during X R D surveys of Mn minerals (Taylor et al., 1964). Calcite (3.00; 2.10; 

2.29 A) was present in all tailings as was braunite (Mn 2 + Mn 3 +

6 SiOi 2 ) (2.72; 2.14; 2.35 A). 

Bixbyite [(Mn 3 +,Fe 3 +)203] has similar d-spacings as braunite (2.72 and 2.14 A) thus it was 

difficult to discern between these two minerals. Both have been identified in the KJV1F 

(Gutzmer and Beukes, 1996). Manganese (IV) oxides, birnessite (7.27; 3.57; 2.44 A) and 

todorokite (9.57; 2.40; 2.39 A) are present in all the tailings. A d-spacing of 3.10 A was 

observed in the traces of the Wessels and Hotazel type tailings, which may correspond to the 

major peak of hollandite [Ba(Mn 4 +, Mn 2 + ) 8 0 i 6 ] . It is possible that the HT tailings may also 

contain lithiophorite [(Al, Li )Mn 4 + 0 2 (OH) 2 ] (4.71; 9.43; 2.37 A) another Mn(IV) oxide. 

Hausmannite (Mn 3 0 4 ) was identified in all tailings samples (2.49; 2.77 A) Manganite (3.40; 

2.62 A) was observed in the WT and HT tailings but could not be identified in the MT 

tailings. Kutnahorite [CaMn(C0 3 ) 2 ] (2.92; 1.81; 1.84 A) was only identified in the MT 

tailings. The most intense rhodochrosite d-spacing of 2.84 A was also identified in the MT 

tailings. Jacobsite is known to occur in the MT tailings (Gutzmer and Beukes, 1996) but its 

major peak at 2.56 A was not observed in this study. 
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The results in this study reiterate the findings of previous analyses on the mineral 
composition of the ore bodies. The Wessels and Nchwaning tailings are essentially the same 
in mineralogical makeup as are the Gloria and Mamatwan samples. Qualitatively the HT 
tailings do not differ substantially from the WT tailings, however relative proportions of the 
minerals may be different. The HT and WT tailings show a mineralogy comprising mainly of 
braunite and a mixture of Mn(III/IV) oxides, while the MT tailings contain braunite, 
Mn(III/lV) oxides and kutnahorite. It expected that the WT and HT tailings would be more 
powerful oxidising agents than the MT tailings due to the enrichment of Mn oxides in these 
ore types. 

The E S E M images of the WT and MT tailings are shown in Figure 5-1. The two images of 

the MT tailings are taken at two different locations. In the first image (Figure 5-la) the large 

crystal in the centre shows the typical calcite cleavage pattern. The more amorphous material 

surrounding the calcite crystal has a chemical composition of Si, Ca and Mn which may 

relate to a braunite mineral phase. The MT tailings appear to have a finer mineral structure 

than that of the WT tailings sample with needle-like minerals visible in the former (Figure 

5-lb). These minerals may represent kutnahorite crystals, as E D X gives an elemental 

composition of Ca, Mn, O and C (Figure 5-lb). The large particles shown in the WT sample 

(Figure 5-lc) have an elemental composition indicative of Mn oxides (Ca Mn O). The finer 

material viewed in the same image shared this chemical composition (data not shown). The 

highly crystalline structures identified in the E S E M images correlate largely with carbonate 

minerals, while the Mn oxide phase appears slightly less crystalline. Another observation that 

can be made from these images is the apparent low surface area of the materials, which 

correlates to the B E T - N 2 surface area discussed in Section 5.1.2. 



68 

- i I 
m\ ultmnikmmMkmk i i mm • 

: • 

i I 
I 

0 

<_s<\<lu. 

Figure 5-1 E S E M images and E D X plots of Mamarwan (A and B) and Wessels tailings (C) 
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5.1.2. Particle size and surface area 

Table 5-1 Particle size and surface areas for the Wcssels, Nchwaning, Gloria, Mamatwan and Hotazel 

tailings 

Wessels 

-WT 

Nchwaning Gloria 

—MT 

Mamatwan 

— H T — 

Hotazel 

Particle size (mm) Unit 

Sand (2-0.063) 36.7 28.6 39.1 15.7 83.3 

Silt (0.063-0.0039) % 45.9 56.1 42.1 61.7 11.2 

Clay (<0.0039) 17.4 15.3 18.8 22.6 5.5 

Surface Area m .g 1.2 2.0 4.0 6.4 2.4 

Particle size and surface area data are given in Table 5-1. Apart from HT tailings, which 

show a coarser texture, the particle size of tailings material is dominated by the silt size 

fraction (39-63um). The WT (Wessels and Nchwaning) tailings have clay fractions of 

between 15 and 17% and the MT (Gloria and Mamatwan) tailings have clay fractions of 

between 19 to 23%. Hotazel type tailings have a very low clay fraction (6%). The tailings are 

the product of milling and crushing processes, which differ from mine to mine thus 

correlations between tailings type and particle size may not be relevant, however, the finer 

texture of the MT tailings may be a result of the softer mineral (carbonate-rich) composition 

of the ore. The HT tailings are visibly coarser than the other tailings and were produced 

during earlier mining operations, thus the crushing technique that generated these tailings 

may have been different to the more recently produced WT and MT tailings. 

The BET-N2 surface areas (Table 5-1) of all the tailings are very low (1.2 to 6.4 m2.g"'). The 

MT tailings have the highest surface areas (4 to 6.4 m2.g_ 1). The WT tailings have 

disproportionately low surface areas (1.2 to 2.0 m2.g"'), relative to that of the HT tailings (2.4 

m .g" ) considering their substantially higher clay fractions. Again it is hard to draw any 

conclusions about the differences in surface areas of the tailings due to the different ore 

crushing processes utilized in the different mining operations. 
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5.2. Chemical properties 

The pH, electrical conductivity, anion and cation data for all five tailings are given in Table 

5-2. The pH of the tailings (8.5 to 9.7) falls in the alkaline to highly alkaline range. A pH 

above 8.5 falls outside the range of CaCCh equilibria (McBride, 1994) and may indicate the 

presence of sodium carbonate minerals. The Wessels tailings have the highest soluble cation 

and anion concentrations, and accordingly the highest E C (284 mS/m). The soluble cations 

and anions in the HT and WT tailings are low and they show low conductivities (42 to 120 

mS/m). The tailings are transported to the dams via process water, thus the chemical 

composition of a water extract may not reflect the chemistry of the actual tailings. Salt 

precipitates were observed in isolated patches of the Wessels and Nchwaning tailings dams. 

BHP Billition mine staff suggested that these were salt precipitates that formed as a result of 

transporting the tailings in the hard process water. Unfortunately a sample of this water was 

not collected. 
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Table 5-2 pH (S:L 1:2.5) , electrical conductivity (EC) soluble anions and cations (S:L 1:10) for 

Wessels, Nchwaning, Gloria, Mamatwan and Hotazel tailings (BD = below detection limit) 

Units Wessels 

- W T 

Nchwaning Gloria 

- M l 

Mamatwan 

— H I — 

Hotazel 

pH (H20) 9.43 8.8 8.78 8.33 8.63 
EC mS/m 284 44 42 120 60 
Cations mg.L - 1 

Li + BD BD BD BD BD 
Na+ 72.5 12.6 11 21.2 5.48 
NH 4

+ 16.6 17.1 BD 0.1 BD 
K + 4.98 1.56 0.38 0.99 0.12 
Mg2+ 35.3 4.91 4.05 13.3 5.39 
Ca 2 + 39.8 13.9 11.3 27.4 29.8 
Anions mg.L"1 

F 0.52 0.5 0.28 0.69 0.36 
cr 91.9 6.29 11.3 37.8 8.38 
N0 2 BD BD 0.01 0.01 0.01 
Bf BD 0.01 0.07 0.16 0.15 
S04

2" 195.5 43 21.8 51.5 47.3 
N03 145.7 58.5 3.9 54.7 35.4 
P O 4

3 _ 0.18 0.09 0.03 0.31 0.03 

5.2.1. Tailings Reactivity 

Table 5-3 shows the oxidative properties, total Mn and reactive Mn phases of all five tailings. 

The O/Mn ratio indicates the net oxidation state of the material. These ratios range from 1.2 

to 1.5 which suggests that the Mn oxidation state within the tailings is between 2+ and 3+. A 

mixture of Mn(Il) and Mn(IV) minerals may also give a similar oxidation state. The higher 

the oxidation state the more oxidising power the material is expected to have. The HT tailings 

have the highest oxidation state (O/Mn =1.5) which is expected from the high Mn oxide 

content of the ore. The MT type tailings have the lowest oxidation states (O/Mn = 1.2 to 1.3), 

indicative of the higher proportion of Mn carbonates in this ore type. 
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Table 5-3 Oxidation state, total extraction and sequential extraction data for the Wessels, Nchwaning, 
Mamatwan, Gloria and Hotazel tailings. 

- W T M T - - H T - -

Units Wessels Nchwaning Mamatwan Gloria Hotazel 

O/Mn ratio 1.36 1.29 1.26 1.21 1.46 
Total extraction 

DC Mn % 42.57 33.70 20.29 27.84 33.31 
DC Fe % 5.51 6.57 1.84 2.28 6.58 
Sequential extraction 

Water soluble mg.kg1 0.10 0.40 0.05 BD BD 
Exchangeable Mn 
(KC1) 

mg.kg"' 
1.90 1.40 4.25 3.45 1.95 

NH,OAc (pH 7) mg.kg"' 66.00 145.50 1317.50 1976.00 39.50 
Hydroqinone % 1.81 0.54 2.02 1.24 2.96 
HAHC % 4.23 2.67 3.73 4.04 4.76 
DC % 8.14 8.20 8.49 6.04 5.75 
Total % 14.18 11.41 14.24 11.32 13.47 

The sequential extraction results (Table 5-3) show Mn release after treatment with 

increasingly aggressive extractants. In order of increasing reactivity with Mn oxides the 

extractants used were: DI water; 1M KC1; pH 7, 1M ammonium acetate (NUtOAc); 0.2% 

hydroquinone (HQ); hydroxylamine hydrogenchloride (HAHC) and dithionite-citrate (DC). 

The last three extractants are reducing agents. Reaction with hydroquinone, a mild reducing 

agent, gives an indication of the easily reducible and reactive Mn phase (Bartlett and James, 

1979; Gambrell and Patrick, 1982). Hydroxylamine hydrogenchloride is a stronger reducing 

agent which is expected to reduce Mn oxides selectively over iron oxides (Chao, 1972; 

Tokashiki et al., 1986; Tokashiki et al., 2003; Neaman et al., 2004). Dithionite-citrate is an 

extremely strong reductant and is used to estimate total Mn and Fe oxide concentrations in a 

material (Holmgren, 1967). 

Water soluble Mn is low in all samples which is expected in such alkaline conditions. 

Extraction with 1 M KC1 traditionally gives an indication of exchangeable metals. The Mn 

concentration in the KC1 extract is substantially higher than the water extract. While this may 

be interpreted as representing the proportion of exchangeable Mn, the higher ionic strength of 
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the KC1 solution could alter ion activities sufficiently to cause dissolution from Mn 
carbonate minerals. Extraction in pH 7 ammonium acetate (NH4OAC) is used as another 
measure of exchangeable Mn (Gambrell and Patrick, 1982). The Mn release in this extractant 
is surprisingly high, especially in the MT-tailings (1317 and 1976 mg.kg"1). The HT and WT 
tailings also release large concentrations of Mn, from an extractant supposedly specific for 
exchangeable cations. The reason for this inflated Mn release in the neutral acetate is not 
known. One possibility could be the formation of Mn-acetate complexes in the strong (1 M) 
acetate solution. 

The hydroquinone (HQ) extractable Mn content of the tailings (Table 5-3) is high (0.5 to 

3.0%). The reactive hydroquinone extractable Mn phase has been shown to represent the 

most favourable electron acceptors for microbes (Guest et al., 2002). Hydroxylamine 

hydrogenchloride is supposed to remove Mn oxides selectively from Fe oxides. As can be 

seen from the data in Table 5-3 not all Mn was removed with this extractant, which may be a 

result of the slow dissolution rate of highly crystalline particles. Large concentrations of Mn 

were released in the DC extract which is an aggressive reducing agent and should remove all 

remaining Mn oxides. The cumulative Mn concentrations of the sequential extraction fell 

well short of the total Mn extraction in DC. The total extraction was performed on finely 

ground (<63 urn) tailings whereas the sequential extraction was performed on the unaltered 

tailings (< 2 mm). The difference in particle size may account for the large disparity between 

the total and sequential extractions. The total DC extracts should represent the total reducible 

Mn phase present in the tailings. The extraction process does not involve acidification (pH 

approximately 7) (Holmgren, 1967), thus Mn carbonate minerals should not be dissolved. 

The Wessels tailings has the highest DC extractable Mn content (42.6%) followed by 

Nchwaning (33.7%) and Hotazel (33.3%) tailings. The MT tailings show a lower reducible 

Mn content of 20 to 28%. The high HQ and DC extractable contents of the tailings suggest 

that the material will have 'quick' and 'slow' release oxidising capacity. 

The redox properties of braunite are not well documented. Tephroite (MnSi04), another Mn 

silicate has shown the capacity to polymerise hydroquinone (Shindo and Huang, 1985). Thus 

braunite may exhibit similar redox properties and it is possible that some of the reducible Mn 

originates from the braunite phase. 
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Correlation between the chemical reactivity of Mn oxides and any single parameter is 
hampered through the compositional, crystallinity, chemical and structural variations of 
natural Mn oxide minerals. For example, Bartlett and James (1979) found a direct correlation 
between HQ extractable Mn and net Cr oxidising capacity of soils, whilst Negra et al. (2005) 
found a better correlation between Cr oxidising capacity and HAHC extractable Mn. The 
role of oxidation state in redox reactivity has also not been clarified, with some authors 
suggesting Mn(III) functions as the primary oxidant (Xyla et al., 1992; Nico and Zasoski, 
2000; Nico and Zasoski, 2001) whilst other authors suggest greater redox activity is observed 
at higher Mn(IV)/Mn(III) ratios (Kim et al., 2002; Negra et al., 2005). From these contrasting 
studies it would appear that each system needs to be studied individually to determine the 
parameters correlating best to reactivity. 

5.2.2. Total elemental composition 

Results of the total elemental analysis as determined in an aqua regia extract are provided in 

Table 5-4. If these tailings are to be applied as a treatment to soils and waters it is important 

to know their trace element composition. Considering, the metal-scavenging capacities of 

many Mn oxides (McKenzie, 1980), the levels of trace elements in the tailings are relatively 

low in comparison to a range of world wide means for soils (McBride, 1994). One exception 

is Pb, which is present in the HT and WT tailings at 110 and 140 mg.kg"1; respectively. These 

Pb levels are higher than the worldwide mean for soils (10-84 mg.kg"1), but well below the 

U.S.EPA soil screening guideline for Pb (270 mg.kg"1). The South African government has 

drawn up a set of guidelines used to determine the threshold levels of certain metals 

permitted in sewage sludge that will be applied to agricultural land (Water Research 

commission report TT262/06). The trace elements in the tailings all fall well below these 

threshold values (Table 5-4). Thus applications of the tailings to a soil would not add 

unacceptable levels of trace elements, provided of course that the target soil is not acidic 

(pH<5) which would reduce the stability of the Mn phases. 

The major element analysis (Table 5-4) shows Mn contents of 42% for the WT tailings, 30-

32% for the MT tailings and 38% for the HT tailings. Again the similarities between the 

Gloria and Mamatwan tailings and the Nchwaning and Wessels tailings are apparent in their 
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elemental compositions. The different values obtained for aqua regia extractable Mn and 
DC extractable (reducible) Mn (Table 5-3) is probably accounted for by carbonate bound Mn. 

Table 5-4 Total element analysis of the Ave tailings samples as determined in an aqua regia extract 

presented together with the range of world wide soil means of certain elements as taken from McBride 

(1994) and the guidelines for permissible metal concentrations for sewage sludge applied to agricultural 

land in South Africa (taken from Water Research commission report TT262/06) 

W T M T - - H T - - Range of 
SA Sewage worldwide 
sludge means for 

Unit Wessels Nchwaning Mamatwan Gloria Hotazel guidelines* soils 

Major elements 

Mn % 42.0 42.0 32.0 30.0 38.0 
Fe % 11.0 10.0 4.3 3.8 14.0 
Al % 0.17 0.22 0.22 0.22 0.29 

Ca % 4.6 3.7 12.0 9.3 3.6 

Trace elements 

Hg mg.kg"1 0.16 <0.06 0.20 0.10 0.10 15 0.02-0.41 
As mg.kg"1 22.0 32.0 7.7 7.8 20.0 40 2.2-25 
Be mg.kg"1 <0.1 1.0 0.3 0.3 0.9 - 1.2-2.1 
Cd mg.kg"1 0.4 0.4 <0.2 <0.2 0.6 40 0.06-1.1 
Cr mg.kg"1 7.0 11.0 20.0 5.0 42.0 1200 7-221 
Cu mg.kg"1 89.0 40.0 10.0 3.0 41.0 1500 6-80 
Pb mg.kg"1 140.0 140.0 3.0 11.0 110.0 300 10-84 
Mo mg.kg"1 5.3 5.4 5.4 5.5 5.9 - 39450 
Se mg.kg"1 <0.2 <0.2 <0.2 <0.2 <0.2 - 0.05-1.27 

Ag mg.kg"1 <0.8 <0.8 <0.8 <0.8 <0.8 - 0.03-8 
Th mg.kg"1 <1.0 <1.0 <1.0 <1.0 <1.0 - 0.02-2.8 
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5.2.3. Mn stability in an acetate buffer 

Much of the experimental work conducted in this study involved the use of acetate buffers to 

control pH. Manganese release from the tailings would be expected when exposed to an 

acetate buffer solution for several reasons: 

i) Mn carbonate minerals dissolve under acid conditions releasing soluble Mn; 

ii) Mn 2 +, housed in the mineral lattice of Mn oxides, may be released through proton 

promoted dissolution; 

iii) the redox stability of Mn oxides decreases at low pH (<5) and 

iv) there may be limited complexation and dissolution of solid phase Mn by acetate 

ligands. 

The stability of the Mn tailings was assessed in a pH 4, 0.2 M acetate buffer. The results are 

shown in Figure 5-2. Large concentrations of Mn are released in all the tailings, however, the 

MT tailings released more than twice as much Mn as the WT and HT tailings. The larger 

release of Mn from the MT tailings can be accounted for by the high MnC03 fraction of this 

ore type. The extremely high Mn release from the MT tailings would make it problematic in 

the treatment of any acidic (pH< 5) soils and waters. 
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E 3000 

Wessels Hotazel Mamatwan 

Figure 5-2 Manganese release from Wessels type, Hotazel type and Mamatwan type tailings in a 0.2 M 

actetate buffer. 

5.2.4. Point of zero charge 

Attempts to determine the surface charge of the tailings materials potentiometricaly were 

unsuccessful both on the whole tailings (< 2mm) and the clay fraction. The PZC is often 

below pH 3 for many Mn oxide minerals (Murray, 1974). A large amount of acid was 

necessary to adjust the pH of the tailings to low pH values, due to the large alkali buffering 

capacity of the tailings, and this resulted in alterations of ionic strength. Electrokinetic 

mobility determinations on the clay phase also failed to yield a discrete value for PZC. This 

may result from the differences in particle size and charge properties of the individual 

mineral types. 

Due to the failure of these two methods, a flocculation technique was employed and visual 

observation made to determine the pH at which the clay phase began to flocculate (Figure 

5-3). Amiphoteric oxides have been shown to aggregate near the pH of their PZC (Wiese and 

Healy, 1975; Tombacz et al., 2001) where the electrostatic repulsion between the particles is 

negligible. This may be expected to be a discrete point for a single mineral phase, but for a 

mineral compilation like the tailings flocculation might be expected to occur over a range of 

pH. This may explain why the aggregation of the Hotazel clay phase occurs in the pH range < 
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4. From this evidence we can infer that the PZC of the HT tailings is close to pH 3.5, but 
may not be represented by a discrete pH, but rather a pH range. The alkali dispersion needed 
to separate the clay fraction could not be achieved in the WT and MT tailings, thus 
determination of the PZC for these tailings could not be achieved, however, a similar PZC 
can be assumed based of the similarities of the Mn oxides present in the tailings. 

m 

12 

6.0 8.0 

Figure 5-3 Series of pH adjusted clay solutions extracted from the Hotazel tailings allowed to settle 

overnight 

5.3. Biological activity 

During the collection of samples it was observed that parts of the Wessels and Mamatwan 

tailings dams had ponded water, which supported reeds, grasses and a number of other 

vegetation types (see Figure 4-1). The Hotazel dumps are dry but at the time of sampling 

(December 2005) were sparsely populated with grass tufts (Figure 4-Id). Thus it is probable 

that bacterial communities may be associated with the tailings. There was a visible surface 

scum on the ponded water of the Wessels tailings dam at the time of sampling and on 

wetting, the Wessels tailings forms an iridescent layer on the surface of added water, which is 

commonly associated with biofilms (K. Johnson pers. comm.). A scraping of this iridescent 

layer was placed on a glass slide and a Gram stain performed. Although some bacteria sized 

particles retained the pink stain, they had irregular shapes, which would be uncharacteristic 

for bacteria. Further biological investigations fell outside the scope of the current study, but 

in a separate investigation on the tailings material, polymerise chain reaction assays showed 
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the presence of bacterial populations (Goncalves et al., 2007). This latter study also 
established that there was more microbial diversity in the Wessels tailings than the 
Mamatwan tailings. 

5.4. Characterisation of synthetic manganite 

X-ray diffraction, infrared spectroscopy and scanning electron microscopy were used to 

characterise the synthetic manganite. The XRD pattern is shown in Appendix C (Figure C-l). 

The d-distances agree well with those reported for manganite (3.40; 2.64; 1.78; 2.42; 1.67 A) 

(Dixon and White, 2002). The ESEM image of the freeze dried manganite (Appendix C, 

Figure C-2) show the typical needle morphology associated with manganite (Xyla et al., 

1992). Surface area of the manganite, from the BET analysis, was determined to be 28 m2.g"' 

which correlates well with the synthetic manganite in other studies (Xyla et al., 1992). The 

PZC as determined by electrophoretic mobility was pH 4. 
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6. Results and discussion: Oxidative decolorisation of 
acid azo dyes 
6.1. Screening of five acid azo dyes 

Five azo dyes, acid yellow 9 (AY 9), acid red 88 (AR 88), acid red 151 (AR 151), acid 

yellow 36 (AY 36) and Acid Orange 7 (AO 7) were screened for decolorisation reactivity 

with the HT tailings in a pH 4 acetate buffer. The structures of these azo dyes are given in 

Figure 6-1. 

3-(4-Anilinophenylazo) benzenesulfonate 4-[(2-hydroxy-1 -naphthyl)azo]benzenesulfonate 

OH 
H 

- o 0-N=N-Q-Kl-Q N=N so 

Acid yellow 36 Acid orange 7 

OH 

O - SO N=N 
SO 

Acid red 88 
4-(2-Hydroxy-1 -naphthylazo)-1 -
naphthalenesulfonate 

Acid yellow 9 
4-Amino-1,1 '-azobenzene-3,4'-disulfonate 

HO 

Acid Red 151 

o 3s N=N N=N 

4-(4-(2-hydroxynaphthalenylazo)phenylazo)benzenesulphonate 

Figure 6-1 Structures of acid dyes acid yellow 36, acid orange 7, acid red 88, acid yellow 9 and acid red 

151. 
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Figure 6-2 shows the percentage decolorisation and corresponding UV-visible spectra 
collected at various intervals during the reaction period. All UV-Vis spectra, including blanks 
(acetate buffer) and controls showed saturated absorbance below 230 nm. This was assumed 
to represent absorption from the acetate buffer. There is no colour removal of AY 9 when 
reacted with the HZ tailings (Figure 6-2a). Acid yellow 9 is one of the most recalcitrant of the 
azo dyes and shows limited biodegradability (Pasti-Grigsby et al., 1992). The resistance of 
this dye to degradation is assumed to be a result of the arrangement of substituents within the 
azo dye (Pasti-Grigsby et al., 1992). The reaction of AR 88 with the Mn tailings is rapid with 
93% decolorisation achieved within 2 hours (Figure 6-2b). Acid red 88 contains 2 
naphthalene rings. Azo dyes with naphthalene rings are reported to be more susceptible to 
oxidation than their benzene equivalents due to the electron donating properties of the second 
ring (Mokrini et al., 1997) which may explain the rapid colour removal of AR 88 in the 
current investigation. After 2 hours of reaction time the UV-vis spectrum of AR 88 shows a 
loss of absorbance in the visible region and an increase of absorbance in the UV region. This 
would suggest that the molecular structure of AR 88 has changed after reaction with the HT 
Tailings. Acid red 151 showed 93% decolorisation after reacting with the tailings for 2 hours. 
However, the control solution for AR 151, in which the tailings were omitted, showed 75% 
decolorisation after 2 hours and a red precipitate was observed in the reaction vessel. Thus 
AR 151 was precipitating and/or flocculating in the 0.2 M acetate buffer solution. Evaluation 
of the UV spectra collected during the reaction of AR 151 with the tailings (Figure 6-2c) 
would suggest that colour removal in the tailings treatment is not solely due to precipitation, 
because despite there being a nearly complete removal of absorbance in the visible region, a 
peak still remains in the UV region after 2 hours. With continual reaction the A™,* of this peak 
shifts to a lower wavelength and is still present after 28 days of reaction. Acid Yellow 36 and 
AO 7 both lose absorbance in the visible region and form new peaks in the UV region after 
treatment with the tailings (Figure 6-2d and e, respectively). These new peaks in the UV 
region suggest transformation reactions are occurring with these dyes. 
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Figure 6-2 Percentage decolourisation of a) AY 9; b) AR 88, c) AR 151, d) AY 36 and e) AO 7 and 

associated UV-visible spectra collected at intervals (2 hours and 28 days (D28)) during the reaction with 

HT tailings. (Note: scales are not all the same) 
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Figure 6.2. Continued. 

These results suggest that 4 of the 5 azo dyes screened are decolorised when reacted with the 

Mn oxides. To obtain detailed information on all dyes would fall outside the scope of this 

study, thus AO 7 and AY 36 were selected for the reasons stated in Sections 3.3.6 and 3.3.7. 

6.2. Dye decolorisation potential of all ore types 

Acid orange 7 and AY 36 were reacted with MT, WT and HT tailings, in a pH 4 acetate 

buffer, to compare the decolorisation potential of the three tailings types. The results, shown 

in Figure 6-3, suggest all three tailings types remove colour from both dye solutions, but the 

MT tailings are less efficient than the WT and HT tailings. The pH values of the supernatants 

after 1 hour reaction was 5.4, 4.4 and 4.3 for the MT, WT and HT tailings, respectively. As 
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will be shown in Sections 6.4.1 and 6.6.1 the decolorisation reaction is strongly dependent 
on pH, which may explain the poorer decolorisation capacity observed for the MT tailings. 
No difference could be observed in the decolorisation capacity of the WT and HT tailings for 
AY 36 with 89% colour removal achieved in the first 2 hours. The WT tailings displayed 
better initial color removal efficiency for AO 7 compared to the HT tailings, however, no 
difference could be observed between the WT and HT tailings after 9 hours reaction time 
(90% AO 7 decolorisation). 

a) b) 

100 too 
90 90 

80 80 

70 70 c 
& 60 f iO 

o 50 o 50 

Hotazel 40 Hotazel 40 
Wessels Wessels 30 30 Mamatwan Mamatwan 

20 20 
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0 20 40 60 o 20 40 60 
Time (hours) Time (hours) 

Figure 6-3 Percentage decolorisation of a) AY 36 and b) AO 7 after reaction of Hotazel, Wessels and 

Mamatwan-type tailings with the dyes in a pH 4 acetate buffer. 

Despite the WT tailings showing the highest initial colour removal capacity, handling of the 

tailings in the laboratory was difficult due to the formation of a surface scum whenever the 

tailings were hydrated. The HT tailings were used for further analysis of the dye interactions. 

6.3. Abiotic vs biotic interactions? 

The HT tailings are stored in large dumps that are sparsely vegetated, thus there is the 

likelihood of biological life associated with the tailings. The involvement of bacteria in redox 

reactions is well known, so it was necessary to establish whether the reaction between the dye 

and the tailings was an abiotic or biotic interaction. To achieve this the HT tailings were 
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autoclaved prior to reaction with the dyes. Although the autoclaved material was assumed 
to be free of living organisms, biotic material, such as dead cells, may still have been present. 
The reaction was carried out at the ambient pH of the tailings without addition of buffer. Due 
to the high carbonate fraction in the tailings calcite was used as a control to establish any 
reaction carbonate may have with the dyes. The calcite was not autoclaved. The results are 
shown in Figure 6-4. 
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Time (days) Time (days) 

Figure 6-4. Percentage decolorisation of a) AO 7 and b) AY 36 reacted with autoclaved tailings and calcite 

as a function of time. 

Colour removal was observed in the calcite control (up to 30% for both dyes) which may be a 

result of sorption as it was observed that the white colour of the calcite turned coloured over 

the reaction period. The decolorisation is far more pronounced in the tailings treatments with 

80%) decolorisation achieved over the 45 day period for both dyes. 

In separate experiments the two dyes were reacted with synthetic manganite and a purchased 

Mn(III) oxide, both of these Mn oxides decolorised AY 36 and AO 7 (data not shown). Thus 

decolorisation is observed in autoclaved tailings materials and synthetic Mn oxides (expected 

to be devoid of any bacteria). This is by no means exhaustive evidence that the interactions 

between the dyes and the Mn tailings are abiotic, but with the limited data available it would 

appear that it is mainly a chemical reaction that is taking place. To elucidate the chemical 

interactions between the acid dyes and the Mn tailings the decolorisation mechanisms were 

investigated for AO 7 and AY 36. 
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Removal of colour from solution can either be as a result of sorption reactions or 

transformation of the parent molecule to colourless breakdown products. The aim of this 

section was to establish the processes involved in colour removal of AO 7 when reacted with 

the tailings. 

6.4.1. pH treatments 

The pH range in this investigation spanned from pH 3 to pH 9. This pH range was chosen 

because the pH of the tailings is close to pH 9 and acid dyes are applied in organic acid 

buffers thus textile effluents are often acidic. A set of controls (pH adjusted AO 7 solutions) 

were assessed by UV-vis spectroscopy to establish any pH-related colour changes or 

flocculation of the original dye over this pH range. No pH-dependent wavelength shifts or 

concentration differences were observed in the UV-vis spectra of the controls (Figure 6-5a). 

a) u 0.16 
1.6 

0.14 
1.4 

Blank £ 0.12 
AO 7 

8 0.1 

I 1 

E 0.08 
i E 0.8 HT Tailings 

Control O 0.06 0.6 

< 0.04 

0.02 0.2 

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 
pH pH 

Figure 6-5 Concentration (mM) of a) AO 7 and b) soluble Mn after reacting the HT tailings with the dye 

at pH 3,4,5, 7 and 9 presented with Mn release from pH adjusted blank samples. 

A plot of AO 7 concentration against time for samples reacted with the Mn tailings for 1 hour 

at pH 3, 4, 5, 7 and 9 is given in Figure 6-5a. The concentration of AO 7 in solution decreases 

as a function of pH when reacted with the tailings. The removal of the dye is most 

pronounced below pH 5, and increases linearly with further pH decrease and almost complete 
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removal of colour is achieved at pH 3 (95% decolorisation) after the 1 hour reaction 
period. Soluble Mn concentrations were measured in the decolorised dye solutions as well as 
in a series of pH adjusted blank solutions containing no dye (Figure 6-5b). In both the blank 
and treatment solutions soluble Mn concentrations were below detection limit above pH 7, 
but at lower pH soluble Mn increases exponentially. This pH-dependent Mn release from the 
blank samples is expected and can originate through a number of factors including, 
dissolution of Mn carbonate minerals, reductive dissolution of Mn oxides as the redox 
stability of the oxides decreases and/or release of Mn(II) ions housed in the mineral lattice via 
proton promoted dissolution (Zinder et al., 1986). There is large variation in the Mn release 
both in the blank and the dye treatment. Even at pH 3 the Mn released in the dye treatment 
was not significantly greater than the blank (P = 0.059). The reason for this large variation 
most likely stems from the heterogenous nature of the tailings as it was noted that different 
acid volumes and reaction times were needed to obtain the starting pH conditions. 

The UV-vis spectra measured at each pH are given in Figure 6-6. A successive decrease in 

the Aroax of the visible region (484 nm) is observed as the pH is lowered, and a new peak at 

250 nm is evident in the lower pH treatments, which suggests that colour removal may 

involve alteration rather sorption alone. 
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Figure 6-6 UV-visible spectra measured after reaction of A O 7 with the H T tailings at p H 3, 4, 5, 7 and 9 

for 1 hr, presented with controls adjusted to p H 3 and pH 9 

Further analysis with HPLC was conducted to establish whether oxidative or sorptive 

reactions were responsible for the progressive increase in decolorisation in increasingly 

acidic solutions. Chromatograms are shown in Figure 6-7. 

During the HPLC study two peaks (3.6 min and 13.8 min) were identified in all 

chromatograms, including blanks, controls and de-ionised water. The peak at 3.6 min was 

identified as being a solvent peak while the peak at 13.8 min was identified as being a 

plastisizer, thus these peaks will be ignored in the subsequent discussion. 
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Figure 6-7 Chromatograms of A O 7 solutions after reaction with the tailings at pH 9, 7, 5, 4 and 3 for 1 

hour. UV-Vis spectra corresponding to peaks at the various retention times shown in the insets. (Note not 

all scales are the same) 
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Chromatograms of the pH 9 and 7 samples contain only one peak at 10.2 min which has a 
UV-vis spectrum corresponding to that of the parent dye. In the pH 5 treatment another peak 
at 8.9 min, is evident and in the pH 4 treatment two additional peaks at 2.3 and 3.3 min occur 
together with the 8.9 min and parent dye peak. At pH 3 there is no evidence of the parent dye 
molecule. Despite a shorter retention time the peak at 8.3 min has the same UV spectrum as 
the 8.9 min peaks of the higher pH treatments. A peak at 4.3 min, has a UV-vis spectrum 
showing a broad absorption band in both the visible and UV region. This may represent one 
of the coupling products identified in the LC-MS study described below. All the new peaks 
observed in the chromatograms correspond to compounds absorbing in UV region. 

1,2 Napthoquinone (NQ), 4-hydroxybezenesulfonate (4HBS) and benzenesulfonic acid (BS) 

have been identified as breakdown products in the oxidation of AO 7 by the enzyme laccase 

(Lopez et al., 2004; Lu and Hardin, 2006). Standard solutions of NQ, 4HBS and BS were 

analysed for comparison with the observed UV spectra. When the NQ standard was analysed 

with HPLC immediately after preparation, two peaks (Rt 8.9 and 11 min) were evident on the 

chromatogram. After the sample stood for 24 hours, only one peak at 8.9 min was observed. 

Lopez et al. (2004) observed similar peaks in their NQ standards and assigned it to a quinone-

hydroquinone equilibrium. As the samples in Figure 6-7 were run 24 hours after filtration the 

NQ standards were treated in the same manner. 

The UV spectra of the NQ, 4HBS and BS standards are given in Figure 6-8 along with UV 

spectra observed in the chromatogram from the pH 3 treatment. The UV spectra and retention 

times of the NQ and 4HBS standards compare well with the 8.3 (8.9 in the higher pH 

treatments) and 3.3 minute peaks, respectively, suggesting that these compounds are 

breakdown products of AO 7 oxidation by the Mn tailings. The BS standard, although having 

a comparable retention time did not have a UV spectrum fitting that of the 2.3 min peak and 

thus its formation as a product cannot be confirmed by HPLC analysis. 
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Figure 6-8 U V spectra corresponding to retention times 2.3,3.3 and 8.3 minutes observed in the pH 3, A O 

7 treatment compared to 1,2 naphthoquinone (NQ), 4-hydroxybenzenesulfonate (HBS) and 

benzenesulfonate (BS) standards. Retention times of the standards are given in parenthesis. 

From the above data is it clear that the dye is reacting with the Mn tailings to produce 

breakdown products and the reaction is enhanced as the pH is lowered. The influence of pH 

in the reaction between organic molecules and Mn oxides has been well established, with a 

decrease in pH facilitating oxidation of various organic compounds (Stone, 1987a; Ulrich and 

Stone, 1989; Laha and Luthy, 1990; Zhang and Huang, 2003; Zhang and Huang, 2005). 

These workers have attributed the increased oxidation of organic compounds by Mn oxides at 

lower pH to: 

i) the decrease of the negative charge on the Mn oxide surface; 

ii) positive charging of the organic molecule resulting in electrostatic attraction to 

the oxide surface; 
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iii) the increased redox potential of the Mn02/Mn 2 + couple; and 

iv) enhanced removal of M n 2 + from the oxide surface, exposing new reactive sites 

(Klausenetal., 1997). 

It is likely one or more of these pH-dependent influences are playing a role in the reaction 

between AO 7 and the Mn tailings. As established in Section 5.2.4 the Mn tailings have a 

PZC below 4. As the pH is lowered the charge on tailings will become less negative. Thus the 

repulsion between the negatively charged azo dye and the negatively charged Mn oxide 

surface will diminish as the pH drops. The measured PZC indicates the point where the 

overall charge, comprising of individual contributions from the different mineral phases, is 

equal to zero. Although the net charge is zero only below pH 4, individual mineral phases 

may have a positive charge at a substantially higher pH. Thus the negative azo dye molecules 

may preferentially sorb to mineral phases within the tailings that are positively charged. 

Decreasing the pH will increase the proportion of positively charged phases and thus more 

reactive sites become available for the adsorption of the dye thereby increasing dye-mineral 

contact and accordingly, oxidation. 

Ionic speciation of AO 7 across the pH range was described by (Bandara et al., 1999a). Acid 

orange 7 has a pKa2 of 11.4, corresponding to the deprotonation of the napthanol group, and 

there is little contribution of this deprotonated species below pH 8. The pKai, corresponding 

to protonation of the sulfonate group is 1, therefore in the pH range of this study (3 to 9) the 

molecule will be negatively charged. This implies that any electrostatic attraction between 

the dye and the Mn oxide surface will be dependent on charge generation on the oxide 

surface. Sorption of AO 7 on other oxides (Ti, Fe and Al oxides) has been shown to 

commence once the pH is lowered sufficiently to generate M-OH2 + groups on the oxide 

surface and increases linearly below the PZC of the oxide (Bandara et al., 1999a). 

The pH-dye concentration curve for AO 7 after reaction with the tailings is linear between 5 

and 3 and no plateau is reached within this pH range (Figure 6-5a). For samples reacted 

without pH adjustment (i.e. pH = 9.0), 60% decolorisation was achieved in 1 week and 80% 

decoloristion was achieved after 45 days (Figure 6-4a). At this pH electrostatic repulsion 

between the dye and the negatively charged Mn oxide surface may hinder dye-mineral 
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interactions. The fact that decolorisation of the dye occurs at pH 9, albeit slowly, implies 
that the pH dependence may have kinetic as well as thermodynamic influences. 

6.4.2. Reaction and polymerisation products determined by LC-MS 

Identification of reaction products was attempted using LC with tandem MS(MS)n. The mass 

spectral data is summarised in Table 6-1. Compound (V), measured in negative ion mode, 

represents the parent dye molecule (m/z: 327). Figure 6-9 shows the fragmentation pattern of 

the parent dye molecule, which is in good agreement with the fragmentation observed by 

Lopez et al. (2004) for AO 7. 

Four AO 7 degradation products were identified using LC-MS analysis. In addition to 4HBS 

and NQ (compounds I and IV, respectively) observed in the HPLC investigation, two 

additional products (compounds I I and III) were identified. Compound I I has been interpreted 

as being the coupling product of BS and NQ. Similarly the next eluting compound 

(compound III) has been identified as the polymerisation product of 4HBS and NQ. 

Comparable polymerisation products have been identified during enzymatic oxidation of AO 

7 (Zille et al., 2005). 



94 

Tabic 6-1. Mass spectra data of A O 7 degradation products 

Compound 
No. 

Retention 
time (min) 

Mode MS m/z 

(% relative intensity) 

M S 2 

(% relative intensity) 

I* E S - 173(100); 198(80); 
196(70); 137(36) 

NA 

II 3.73 E S - 313(100); 314(22); 
315(10); 329(5) 

285(100); 249(17); 
257(5); 233(7) 

III 3.94 E S - 329(100); 173(90); 
411(40); 287(34); 

301(100); 285(52); 
302(30); 273(7) 

I V * ES+ 159(100); 191(45); 
181(31) 

NA 

V 7.65 E S - 327(100); 500(10); 
329(5) 

171(100); 247(12); 
156(10) 

* Compounds I and IV were identified using the second L C - M S system described in the methods section thus 

retention times have not been not reported. 
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Figure 6-9 Ion products as identified in the M S 2 of the 327 m/z peak, representing the fragmentation 

pattern of A O 7. 
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The proposed reaction mechanism of AO 7 oxidation by the Mn tailings is given in 
Scheme 1. The mechanism appears to be essentially the same as that proposed for peroxidase 
degradation mechanisms (Chivukula et al., 1995; Lopez et al., 2004; Zille et al., 2005; Lu and 
Hardin, 2006). Electron transfer from the phenolic group to the Mn oxide generates a 
phenoxy radical which undergoes resonance rearrangement and additional electron transfer to 
generate a carbocation on the C-l carbon of the naphthol ring. Nucleophilic attack by water 
generates an unstable tetrahedral complex resulting in the cleavage of the C-N bond yielding 
1,2-naphthoquinone (Compound IV) and (4-sulfophenyl)diazene. Although the latter 
compound was not detected in the current study, possibly due to its instability, it has been 
identified by Lopez et al. (2004). Unstable diazene derivatives readily oxidise in the presence 
of oxygen or metal ions to generate unstable phenyldiazene radicals (Huang and Kosower, 
1968). These phenyldiazene radicals in turn lose the azo linkage as N2 to yield a phenyl 
radical (Kosower et al., 1969) or undergo hydrolysis to form 4-hydroxybenzenesulfonate 
(Compound I) (Lopez et al., 2004). The phenyl radical can abstract a hydrogen radical from 
its surroundings to generate a stable phenyl compound (Spadaro and Renganathan, 1994) or 
take part in coupling reactions with other oxidation products (Zille et al., 2005). 
Benzenesulfonate was not detected in the mass spectra or HPLC study, however, a coupling 
product of benzenesulfonate and NQ was detected (Compound II), suggesting the latter 
process occurs. An alternate or additional pathway for the phenyl radical involves further 
oxidation followed by nucleophilic attack of water generating 4-hydroxybenzenesulfonate 
(Compound I). 

This reaction mechanism suggests the asymmetric cleavage of the azo bond. While the same 

reaction products can be generated through symmetric cleavage of the azo bond, the reaction 

pathway involves reduction steps (Goszczynski et al., 1994), which are not likely to occur in 

the oxidative environment provided by the Mn oxides. 

According to the above mechanism three successive electron transfers are involved. In 

section 5.2.1 it was established that the net oxidation state of the HT tailings was 3+, and the 

mineralogy showed a predominance of Mn(lll) oxides. I f this were the case the reaction 

would have a dye: Mn(III) reaction stiochiometry of 1:3 and 3 moles of M n 2 + would be 

expected to be generated from the breakdown of 1 mole of AO 7. 
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Scheme 1 Proposed mechanism for the oxidation of A O 7 by the Mn tailings 
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To assess the correlation between dye decolorisation and Mn release, AO 7 was reacted 
with the tailings for 18 hrs in a pH 4 acetate buffer. Aliquots were collected periodically and 
analysed for dye and Mn content. The relationship between percentage decolorisation and 
[Mn]diss (Mn release additional to that of the blank), is given in Figure 6-10a. There is an 
initial increase in dye decolourisation without concomitant Mn release, but after this, further 
decolorisation is proportional to [Mn]diS S- The initial colour decrease, without simultaneous 
Mn release suggests the dye is adsorbing to the tailings prior to the oxidation reaction. It is 
also interesting to correlate the concentration of AO 7 as a function of [Mn]di S S after the first 
sampling interval (i.e. not including the initial rapid dye removal) (Figure 6-10b). A linear 
correlation exists (R 2= 0.99) with a gradient of -0.32 giving an AO 7: Mn(III) reaction 
stoichiometry of 1:3 as suggested by the reaction mechanism above. 
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y = -0.32x + 0.11 
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~ 0.09 
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0.4 0.1 0.2 0.3 
[Mnldh, (mM) 

0.4 

Figure 6-10 a) Percentage decolorisation of A O 7 plotted against (Mn] d i s , for a 0.14 mM A O 7 solution 

reacted with the H T tailings (S:L 1:50) in a p H 4 acetate buffer over 18 hours and b) A O 7 concentration 

as a function of [Mn] d i 9 , excluding the first sampling interval (after 0.5 min) 

To establish whether 4HBS and NQ are the terminal products in the reaction, these 2 

compounds were reacted with the tailings in a pH 4 buffer. The concentration of 4HBS 

reacted with the tailings was not significantly lower (P = 0.39) than the control after 28 days 

reaction time (Figure 6-1 la), suggesting sorption and transformation of this compound is 

minimal in the presence of the tailings. This is in contrast to enzymatic treatment of 4HBS 

which showed a 70% removal of this compound (Lopez et al., 2004). The concentration of 

NQ decreases with time in both the control and the tailings treatment. A brown precipitate 
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was observed in the NQ control which may suggest that coupling reactions were occurring 
in the pH 4 acetate medium. When NQ was reacted with the tailings the concentration-time 
curve displayed the same shape as the control but the concentrations were consistently lower 
(Figure 6-1 lb). Analysis of the filtrates by UV and HPLC showed no evidence that 
transformation of NQ had occurred after 28 days of reaction, thus the difference between the 
concentration in the control and the tailings treatment may relate to sorption. It is thus 
assumed that these two compounds and their coupling products are the final products of AO 7 
oxidation and complete mineralization of the dye is not possible using the Mn tailings under 
the current experimental conditions. 1,2 Naphthoquinone is a coloured product which 
explains why total colour removal was never achieved. 
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Figure 6-11 Concentration of a) 4 hydroxybenzenesulfonic acid (4HBS) and b) 1,2 naphthoquinone (NQ) 

as a function of time in the absence (control) and presence of the H T tailings. Certain error bars may be 

smaller than data points. 

6.4.3. Reaction rates and orders 

As shown above, the mechanism for the oxidative breakdown of AO 7 by the Mn tailings 

follows a multi-step reaction, involving a few short-lived reaction intermediates. An attempt 

was made to determine the rate and order of the reaction. Most kinetic studies use simple 

model systems involving only one mineral phase. Due to the complex nature and 

heterogeneity of the tailings the rates and orders here must be taken as tentative. To 
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determine the rate of the reaction both dye removal and reductive dissolution of the Mn 
tailings were considered. As mentioned above [Mn]di S S represents Mn release additional to 
Mn dissolution observed in the blank solution. Raw data can be found in Appendix D. 

Reactions were carried out at pH 4, 5 and 6. At pH 5 and 6 the Mn released in the dye 

treatments did not differ substantially from the Mn released in the blank solutions over the 4 

hours reaction period (data not shown). Due to time constraints these reactions could not be 

repeated over longer time periods. Figure 6-12 shows the change in AO 7 concentration and 

[Mn]<jjss over time for the pH 4 treatment. There is an initial sharp decrease in AO 7 

concentration in the first 30 seconds of the reaction, after which dye removal slows down. 

This initial dye decrease is not reciprocated by a similar sharp increase in [Mn]di S S (Figure 

6-12b), which could suggest that sorption is responsible for the initial removal of dye from 

solution, or that Mn release from the solid phase is delayed. 
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Figure 6-12 Plots of a) A O 7 concentration and b) [Mn] d i s , as a function of time. Insets display enlarged 

scale over the initial sampling interval. Initial dye concentration = 0.14 mM, [SA| = 48 m J .L"', pH 4. 

Ideally in kinetic studies one would like to investigate both Mn release and AO 7 

disappearance. However, assessing AO 7 removal would involve incorporating sorption 

considerations into the kinetics equations as in the Langmuir-Hinshelwood equation. This 

has been achieved for dye decolorisation reactions involving photo-catalysts where sorption 

parameters such as equilibrium concentrations and distribution coefficients can be obtained 

before the light-dependent reaction is initiated (Bandara et al., 1999b; Muruganandham and 
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Swaminathan, 2006; Sleiman et al., 2007). In the case of Mn oxides, sorption studies are 
difficult due to the rapid reaction of the reductant on the oxide surface (Xyla et al., 1992). For 
this reason, rate calculations have been confined to [Mn]di s s as done for a number of Mn 
oxide mediated organic oxidation reactions (Stone and Morgan, 1984a; Stone and Morgan, 
1984b; Laha and Luthy, 1990; Xyla et al., 1992; Matocha et al., 2001). 

Using [Mnjd i s s , the initial rate, calculated for the reaction between the tailings and a 0.14 mM 

AO 7 solution at pH 4, normalised for surface area is 3.8 x 10"6 mol.s' .m 2 . A plot of NQ 

concentration as a function of time is given in Figure 6-13. The initial rate of NQ generation 

was determined as 2.5 x 10'6 mol.s '.m"2. Thus the rates of M n 2 + generation and NQ 

formation are of the same magnitude suggesting that once initiated, the complete oxidation to 

NQ occurs rapidly. This is further demonstrated in the ATR study discussed later. 
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Figure 6-13 Concentration of NQ generated over time after reacting the tailings with a 0.14 m M A O 7 

solution at pH 4. 

The reaction order was determined using the initial rate method of Lasaga (1981). Figure 

6-14a shows [Mn]diSS as a function of time for three surface area concentrations at a constant 

dye concentration and pH. The In (initial rate) vs. ln[SA] plot given in Figure 6-14b is linear 

(R2>0.95) with a slope of 1.19 ± 0.08 (not significantly different to 1 at a 5% confidence level 

(t = 3.4; f = 2)), indicating a pseudo-first-order dependence on [SA]. This result is expected 
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for surface-dependent reactions. Calculation of the experimental rate constant (£ e x p) is 
usually achieved using the following equation: 

ln([MnO x] 0-[Mn 2 +] d i s s)-ln([MnO x]o) = - W 

Where [MnO x]Q is the starting Mn oxide concentration and t is time. To calculate the k e X p by 

this method the concentration of MnO x needs to be known. This is not possible for a 

heterogeneous material like the Mn tailings, thus only pseudo rate constants (k') were 

calculated. The pseudo-first order rate coefficient with respect to surface area, shown by the 

y-intercept of the In (initial rate)-ln[SA] (Appelo and Postma, 2005) is 1.8 x 10'6 s"1. 
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Figure 6-14 Plots of a) [Mnl d t a , as a function of time for three surface area concentrations ([SA]) with inset 

showing initial rate plots for the three curves and b) ln(initial rate) vs ln[SA] 

Figure 6-15a shows [Mn] d i s s as a function of time for three AO 7 concentrations reacted at 

constant [SA] and pH. A 10-fold increase in dye concentration only results in a 4-fold 

increase in reaction rate. This would suggest that dissolution rate is dependent on surface 

coverage and the availability of surface sites limits the rate at higher dye concentrations. 
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Figure 6-15 Plots of a) [Mn ] d i „ as a function of time for three A O 7 concentrations ( [AO 7]) with inset 

showing initial rate plots for dye concentrations and b) ln(initial rate) vs ln[AO 7] 

The plot of In (initial rate) vs In [AO 7] (Figure 6-15b) gives a straight line (R2=0.99) with a 

slope of 0.6 ± 0.07 (significantly different to 1 at a confidence level of 5% (t = 8.3; f = 2)). 

This fractional rate order would suggest that there are some rate limiting factors involving 

residence time on the Mn tailings surface i.e. either precursor complex formation, electron 

transfer or removal of the reaction products from the surface are the rate limiting factors. In 

certain Mn oxide mediated organic oxidations the transfer of the first electron has been 

observed to be the rate limiting step (Klausen et al., 1997; Khan et al., 2004; Kumar and 

Khan, 2005). In such cases fractional rate orders with respect to the reductant have been 

reported (Khan et al., 2004; Kumar and Khan, 2005). As will be shown in the results from the 

ATR study (Section 6.5), a lag phase occurs between initial sorption of the dye to the surface 

and the initiation of oxidation. This would explain the fractional order with respect to dye 

concentration observed here. 

6.5. Sorption and oxidation of AO 7 measured using ATR-FTIR. 

Interactions between AO 7 and Mn oxides were probed with ATR-FTIR in order to obtain 

real time in-situ information. As discussed in Section 6.4.3 information pertaining to sorption 

of the reductant onto the oxidant surface can be difficult to obtain due to the rapid reaction 

between the two. The ability to scan the sample rapidly makes ATR suitable for this purpose. 

One of the limitations of ATR is poor sensitivity, thus a high surface area sorbent is 
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necessary to allow sufficient sorbate to be detected. The low surface area and complex 
nature of the tailings made A T R experiments difficult. Manganite (y-MnOOH) is present in 
the WT and HT tailings. Synthetic manganite was therefore thought a suitable Mn oxide to 
use in the A T R experiments. Details of the synthesis and characterisation of the manganite 
can be found in Sections 4.4 and 5.4, respectively. The IR spectrum of the synthetic 
manganite is shown in Figure 6-16. The observed bands correlate well with those reported for 
manganite (2083; 1151; 1116 and 1086 cm 1 ) (Kohler et al., 1997). 
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Figure 6-16 IR spectrum of manganite 

6.5.1. Sorption of AO 7 to the manganite surface 

The IR spectrum of a 25 mM AO 7 standard is shown in Figure 6-17. Interpretation of IR 

spectra can often be difficult and inconsistent absorption band assignments have been made 

for azo dyes by previous workers. The azo-hydrazone tautomerism of AO 7 often leads to 

conflicting interpretation of 1R spectra due to the fact that the analytical useful group 

vibrations are intermixed with those of aromatic rings (Bauer et al., 1999). 
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Due to reasons related to symmetry the intensity of the azo bond vibrations in the 1R 
region are low, however, substitutents para to the azo group significantly enhance the 
vibrational intensity (Vinodgopal et al., 1996). Assignments of the azo bond have been made 
at 1429 and 1454 cm"1 (Li et al., 2006). Vinodgopal et al. (1996) assigned the peak at 1500 
cm"1 to the azo bond or an aromatic C=C vibration which is sensitive to the azo bond. This 
band has also been assigned to the N-H bend of the hydrazone form of AO 7 (Bauer et al., 
1999; Zhang et al., 2005; L i et al., 2006). Bandara et al (1999a) has proposed that the peak 
intensity of the 1500 cm"1 peak is too high to be assigned to the N=N group, and proposes a 
weak band at 1452 cm"1 to represent the azo bond, while Bauer et al. (1999) assigns this band 
to one of the phenyl ring vibrations. Absorption bands at 1620, 1529, 1568, 1555 and 1454 
cm"1 have been attributed to aromatic skeletal vibrations (Vinodgopal et al., 1996). The small 
band at 1420 cm'1 has been assigned to the OH bending vibration and the band at 1255 cm"1 

to the C-O-H stretching vibration (Vinodgopal et al., 1996; Lucarelli et al., 2000). In their 
study Bauer et al. (1999) assigned the band at 1124 cm"1 to the symmetric stretching (us) of 
the SO3 group and the band at 1180 cm'1 to the asymmetrical (Uas) stretching of the SO3 
group. Bourikas et al. (2005) assigned symmetric and asymmetric stretching of the SO3 group 
at 1198 and 1304 cm"1, respectively while Sperline et al. (1994) assigned bands at 1209 and 
1177 cm"1 to asymmetric stretching of the SO3 group. Stylidi et al. (2003) observed a peak at 
1572 cm"1 in a powdered sample of AO 7, this was reported to represent the C=0 group of 
the hydrazone form. Disappearance of this peak on sorption was interpreted as inner-sphere 
coordination of this group with a titanium oxide. From Figure 6-17 it is clear that no 1572 
cm"1 peak exists in the aqueous AO 7 species. Considering the numerous conflicting band 
assignments in the literature interpretation of the IR spectrum of AO 7 can only be tentative. 
The current work differs from all the previous IR studies involving AO 7, which were limited 
to dry powdered samples, in that IR spectra presented here represent aqueous solutions. For 
this reason IR bands may be shifted in relation to published values. 

In the sorption experiments AO 7 was added to a clay fdm in concentrations that were below 

the detection limit for aqueous species on the ATR unit. This was validated by adding a 0.14 

mM AO 7 solution to the clean Ge crystal and collecting a series of spectra. No peaks were 

evident (data not shown) thus it can be accepted that any peaks observed, at this 

concentration, will represent AO 7 sorbed to the mineral surface. 
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Figure 6-17 Infrared spectrum of a 25 mM AO 7 solution on a clean Gc I R E 

0.014 

0.013 

in 
0.012 

8 C4 0.011 

3 to in to CM 0.010 CM 

0.009 
8 
S 0.008 

in 
5 0.007 

0.006 

0.005 

A tn 0.004 

2 0.003 A / V in 

>7 o> « 0.002 to <*» to 
co 

J 0.001 
1600 1500 1400 1300 1200 1000 1100 

Wavenumbers (cm-1) 

Figure 6-18 IR Spectra of a 25 mM AO 7 standard solution (grey) and 0.14 mM AO 7 sorbed onto the 

manganite surface (black). Spectra not to scale. 
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Figure 6-18 shows an IR spectrum of a 0.14 mM, pH 2.5 AO 7 solution sorbed onto the 
manganite surface, measured 60 seconds after dye addition, along with a spectrum of a 25 
mM standard adjusted to the same pH. The large negative peaks observed in the sorbed 
sample relate to rapid dissolution of manganite (manganite peaks shown in Figure 6-16) after 
the addition of acidic AO 7 solution. The IR spectrum of adsorbed AO 7 shows slight peak 
shifts for certain absorption bands but largely a close resemblance to the standard aqueous 
solution can be observed. The shift observed in the 1507 cm"1 peak was inconsistent in repeat 
experiments. 

Changes in the sulfonate group bands have been used to provide important clues about the 

sorption of AO 7 to a number of mineral surfaces (Stylidi et al., 2003). In the current study, 

interpretation of these bands is difficult due to the negative absorbance of the manganite 

peaks. To remedy this, an IR spectrum was collected of a manganite film to which 0.01M 

HC1 had been added. This spectrum, which only shows manganite dissolution was subtracted 

from the AO 7 spectrum in Figure 6-18. The subtraction result is shown in Figure 6-19. The 

IR spectrum of the sorbed AO 7 species show slight band shifts compared to that of the 

aqueous sample. The peak at 1185 cm"1 shifts to 1177 cm"1 and the 1213 cm"' peak shifts to 

1211 cm"1 and shows a slight decrease in intensity. These two bands are proposed to represent 

the asymmetric stretching mode of the SO3 group (Sperline et al., 1994). In work using 

diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy to probe sorption of AO 

7 on Fe and Ti oxides, major changes have been observed in the symmetric and asymmetric 

stretching bands of the sulfonate group (Bauer et al., 1999; Bandara et al., 1999a; Bourikas et 

al., 2005). In these investigations it was observed that the 1185 cm"1 band disappeared after 

the dye had been sorbed onto the mineral surface. Based on this, these workers proposed that 

the sulfonate group forms an inner-sphere complex with the Ti and Fe metal ions. All the 

above mentioned studies used DRIFT spectroscopy, a technique which requires reacted 

samples to be dried prior to analysis. Drying can cause significant changes in the ligand 

coordination (Hug, 1997; Eggleston et al., 1998; Dowding, 2004) and surface pH (Mortland 

and Raman, 1968; Dowding et al., 2005), thus it is valuable to obtain sorption data from an 

aqueous medium, where no drying related artefacts should be present. The IR spectrum of 

AO 7 sorbed to manganite does not show a relative decrease in intensity of the 1185 cm"1 just 

a shift in peak position (Figure 6-19). Inner-sphere complexation significantly alters the 
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symmetry of molecules resulting in substantial changes in their IR bands, whereas 
electrostatic or physio-sorbed species do not show large spectral changes relative to that of 
the aqueous species (Hug, 1997). The symmetry of the sulfonate group is lowered when the 
O groups coordinate directly with a metal centre, and it is anticipated that the doubly 
degenerate vibrations will be split into two (Nakamoto, 1997). Despite shifts observed in 
some of the bands of sorbed AO 7 in the present study, inner-sphere sorption would be 
expected to have a more substantial affect on the IR spectrum. Bauer et al. (1999) 
investigated sorption of AO 7 onto Ti and Zn oxides. These workers observed that the 
Das(S03)/u s(S03) peak ratio changed from 0.2 in the IR spectrum of the isolated AO 7 sample 
to 0.87 in the IR spectrum of the inner-sphere species. For Zn oxide, the difference between 
the sorbed and isolated IR spectra and the Uas(S03)/u s(S03) ratio was much smaller (0.03), 
leading them to conclude AO 7 was weakly associated with the Zn oxide surface. Applying 
this ratio to the current data gives 0.5 for the aqueous species compared with 0.4 for the 
sorbed AO 7 species (Figure 6-19), which suggests there isn't a great change in relative peak 
height intensities. From the evidence obtained here it is proposed that the sulfonate group of 
AO 7 initially sorbs to the manganite surface via a predominantly outer-sphere, electrostatic 
association rather than through a direct inner-sphere complex as suggested for other oxides in 
earlier studies. 
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Figure 6-19 IR spectrum of sorbed AO 7 (black) after removing negative manganite dissolutions peaks 

through subtraction of a manganite blank presented with a 25 mM standard AO 7 solution (grey). 

Bauer et al. (1999) proposed that the C=0 group of the AO 7 hydrazone tautomer forms an 

inner-sphere complex with the Ti metal during sorption o f AO 7. Evidence for this was given 

as disappearance o f the 1570 cm"1 peak, observed in the IR spectrum of the isoloated 

compound (powdered AO 7), once the dye had sorbed to the surface. The IR spectrum of the 

aqueous AO 7 species (Figure 6-18), shows no peak at 1570 cm' 1 thus this peak may only be 

present in the dehydrated A O 7 powder sample. No conclusive evidence o f initial inner-

sphere sorption between the C=0 group and the manganite surface can be found, although 

this is the group through which oxidation of the dye is initiated. 

The experimental design used in this study is such that only molecules that are sorbed onto 

the clay surface can be observed, thus it is expected that peak intensity would indicate the 

degree of dye sorption on the mineral surface. To establish the effect of pH on AO 7 sorption, 

dye solutions adjusted to pH 2.3, 2.7, 3.0, 3.5, 4.0 and 6.0 were added to manganite clay films 
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and IR spectra collected. Sorption was observed by comparing the intensity of the peak at 
1036 cm"1 for the pH adjusted solutions. This peak was chosen because it fell outside the 
range of the manganite dissolution bands, thus no subtraction was necessary, and the band 
has been assigned to benzene mode 1 and Das (SO3), neither of which are redox reactive or pH 
sensitive in the chosen range. Figure 6-20 shows the IR spectra collected 1 minute after 
addition of pH adjusted AO 7 dye solutions to the clay film. Each spectrum represents the 
average of 64 co-added scans. During data collection it was evident that sorption is rapid as 
peaks were observed in the initial scans i.e. 10 seconds after dye addition. 

Sorption clearly increases as the pH of the added AO 7 solutions decreases (Figure 6-20). 

Lowering the pH below 4 results in the most dramatic increase in sorption. It has been 

established, in the pH investigation (Section 6.4.1) and by other workers (Bauer et al., 1999; 

Bandara et al., 1999a; Bourikas et al., 2005), that the interaction between AO 7 and the Mn 

oxide surface is largely electrostatic, thus pH dependent sorption is rational. Acid orange 7 is 

negatively charged in the pH ranged investigated (pKa =1). Decreasing the pH will increase 

the proportion of positively charged sites (PZC =pH 4) on the manganite, thereby increasing 

the number of AO 7 molecules attracted to the oxide surface and increasing the intensity of 

the 1R peaks. The use of manganite in this study, means precisely the same pH-sorption 

relationship may not apply to the more complex tailings. The additional mineral phases 

present in the tailings may result in increased sorption at higher pH due to the non-discrete 

charge properties of the material. As mentioned earlier this data can only give qualitative 

information but it provides insight into sorption behaviour between an oxidant and a 

reductant which is inherently difficult to observe and to the author's knowledge this is one of 

the first observations of its kind. 
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Figure 6-20 IR spectra of pH adjusted AO 7 solutions collected 1 min after injection onto a manganite 

coated Ge crystal. 

6.5.2. Oxidation reactions 

To probe the oxidation reaction between AO 7 and the manganite in real time, IR spectra 

were continually collected over the reaction period. As discussed above the lower pH 

treatments showed the most intense IR peaks, thus for sensitivity reasons oxidation reactions 

were conducted at pH 2.7. Figure 6-21 shows a series of spectra collected every minute 

throughout the duration of the experiment. The peak at 1507 cm"1 has either been associated 

directly with the azo bond (Vinodgopal et al., 1996), a bond sensitive to changes in the azo 

bond (Vinodgopal et al., 1996), or the bending mode of N-H bond of the hydazone form 

(Bauer et al., 1999; Zhang et al., 2005; L i et al., 2006), so oxidation would be expected to 

cause substantial changes to this peak. Thus this region of the IR spectrum w i l l be considered 

in detail as it is also not subject to the negative manganite dissolution bands. 
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As established above, sorption of the dye onto the oxide surface occurs rapidly giving rise 
to the IR spectrum labelled 1 minute (Figure 6-21). Little change occurs in the spectra for the 
first 7 minutes, apart from a very slight increase in the 1507 cm"1 peak intensity. At 8 minutes 
the peak starts to decrease in intensity and over the following four minutes there is a dramatic 
decrease in the 1507 cm"1 peak and a concomitant increase in a new peak at 1468 cm"1 After 
13 minutes the peak at 1468 cm"1 reaches a maximum intensity and no further change in 
spectra was observed during the following 5 hours. The peak at 1213 cm' 1 shows a similar 
kinetic trend with a definite lag period between sorption and the initiation of spectral 
changes. A l l peaks assigned to AO 7 show a progressive loss in intensity after 8 minutes. 
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Figure 6-21 Sequence of IR spectra collected during the oxidation of AO 7 by the manganite 

In Section 6.4.2 it was shown that NQ and 4HBS are the oxidation products of the Mn 

tailings mediated oxidation o f AO 7. To identify any IR bands associated with these 

compounds in the 13 minute spectrum (Figure 6-21), standard solutions of NQ and 4HBS 

were added to a manganite clay film and IR spectra collected. Figure 6-22 shows the 13 
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minute IR spectrum together with the standard NQ and 4HBS spectra. The new peaks at 
1467, 1398, 1366, 1318 and 1285 cm"1 coincide directly with that o f the NQ standard. The 
peak at 1503 cm"1 coincides with the 4HBS peak, thus it would appear that both these 
products are present on the manganite surface after 13 minutes. 
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Figure 6-22 IR spectra of AO 7 after 13 min reaction with the manganite (green), presented with IR 

spectra of naphthoquinone (purple) and 4-hydroxybenzenesulfonate (red) sorbed onto the manganite 

surface. 

The sudden decrease in intensity of the 1507 cm" peak was accompanied by increased 

manganite dissolution over the same period (Figure 6-23). Dissolution starts as soon as the 

acidic solution is added to the manganite f i lm but dissolution would appear to accelerate 

during the period of substantial change in the AO 7 peaks, as observed in the 1036 cm"1 peak 

(Figure 6-23). To establish i f loss of intensity of the AO 7 peaks was purely a result o f 

decreased Mn oxide surface a reacted sample of manganite was rinsed with water before the 

addition of fresh dye solution. Addition of fresh dye produced exactly the same peaks, at the 
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same intensity as those observed in the first reaction thus decrease in peak intensity was 
not a result o f diminishing oxide surface. Therefore it was assumed that the removal of AO 7 
from the surface was due to a chemical interaction. 
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Figure 6-23 IR absorption bands showing manganite dissolution collected during the oxidation of AO 7 

by manganite (data collected over 1 hour). 

The data from the ATR study provides valuable insight in to the oxidation of AO 7 by Mn 

oxides. Sorption has been shown to be pH-dependent with enhanced sorption occurring at 

lower pH. Sorption occurs extremely rapidly at low pH and thus is not likely to be a rate 

limiting step in the oxidation reaction under acid conditions (pH < 4). The IR data would 

suggest that sorption of AO 7 onto the manganite surface is outer-sphere, as the IR spectrum 

of the sorbed species has a strong resemblance to the aqueous species. There is the chance 

that an inner-sphere complex may occur between the C=0 group of the hydrazone tautomer 

and the Mn oxide but no conclusive evidence for this could be obtained from this data. Two 

scenarios are presented to explain the time lag observed before the apparent onset of 
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oxidation of AO 7. One possibility relates to the transfer of the first electron being the 
rate limiting factor. If this is the case subsequent electron transfer to form 1,2 naphthoquinone 
is rapid (the formation of the 1468 cm"1 peak appeared concomitant with decrease in the 1507 
cm"1 peak). A concerted two-electron transfer has also been proposed for Mn02 mediated 
organic oxidations (Perez-Benito et al., 1996), however, this is not likely to be the case for 
MnOOH. The second scenario involves rapid electrostatic sorption of the dye to the oxide 
surface followed by a time lag for the orientation and inner-sphere coordination between the 
C-OH group and the Mn oxide, after which electron transfer is rapid. Both scenarios would 
explain the rapid structure breakdown observed in the IR spectra after the 7 minute time lag. 
The rate limiting factor in the oxidative decolorisation of direct light red F3B dye by Mn 
oxides was shown to be interface reactions (Liu and Tang, 2000). The A T R evidence 
presented here supports this observation. 

There was no evidence that NQ was removed and replaced by fresh AO 7 on the mineral 

surface. Analysis of the supernatant after the IR experiment showed only a slight decrease in 

AO 7 concentration suggesting there was sufficient AO 7 concentration remaining to still 

react with the Mn oxide. It should be noted that the solution was not stirred and thus all 

processes were diffusion controlled. Removal of reaction products from the oxide surface 

could be another rate limiting factor. Electron transfer and removal of breakdown products 

has been observed to be the rate limiting factors of Mn oxide mediated oxidation of 1,2 

naphthodiol (Whelan and Sims, 1995). These workers, however, assumed that inner-sphere 

electron transfer occurred. 

A number of valuable insights have come from this A T R investigation. Firstly, it has been 

shown that initial sorption of the dye to the Mn oxide is rapid, outer-sphere and pH 

dependent. Secondly a time lag has been observed from the time when the dye initially sorps 

onto the surface until the onset of oxidation. This suggests that either some kind of activation 

energy barrier needs to be overcome or there is a time consuming inner-sphere sorption step 

prior to electron transfer. Thirdly once initiated, complete oxidation to NQ and 4HBS is 

virtually instantaneous. Finally it has been shown that removal of products from the surface 

does not occur readily. All of the above observations support the finding of a fractional rate 
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order with respect to AO 7 dye concentration. To the author's knowledge this is the first 
direct observation of surface mediated dye oxidation. 

6.6. Mechanistic study of acid yellow 36 oxidation 

Acid yellow 36 is an amine containing dye and unlike AO 7 there is little information 

pertaining to the oxidative decolourisation of the dye. This section addresses the mechanism 

involved in the decolorisation reaction shown in Section 6.2. 

6.6.1. pH treatments 

As with AO 7, A Y 36 decolorisation reactions were investigated within the pH range 3 to 9. 

To establish pH-dependent colour and flocculation stability of A Y 36 a set of pH adjusted 

controls were prepared. Figure 6-24 shows UV-visible spectra collected from a series of pH 

adjusted (pH 3-9) solutions of A Y 36. No changes were observed between pH 4 and 9, 

however, the pH 3 solution showed a slight darkening in colour evident by a slight 

bathochromic shift in the visible spectrum (Figure 6-24) as well as a slightly lower 

absorbance at 434 nm (the Xmax in the visible region for A Y 36). This colour change is related 

to protonation of the amino group (pKa = 2.3 (Sleiman et al., 2007)). The pH 3 A Y 36 

solution did not show any evidence of flocculation. Due to the slight change in A^ax in the pH 

3 solution all treatments were compared to control solutions adjusted to the same pH. 

The concentration of A Y 36 after reaction with the tailings is plotted as a function of reaction 

pH (Figure 6-25a). As the pH is lowered there is a substantial decrease in A Y 36 

concentration, with the most notable change occurring between pH 7 and 5. Below pH 5, A Y 

36 removal showed a lower response to pH decrease. Release of Mn into solution was 

measured for a series of pH adjusted blank solutions (no dye added) as well as the reacted 

dye solutions (Figure 6-25 a). Below pH 7 soluble Mn concentrations in the dye treatments 

are significantly higher (P = 0.016 at pH 5; PO.01 at pH<5) than the blank solutions. This 

would imply that, below pH 7, Mn dissolution is enhanced by the presence of the dye. It is 

assumed that the difference in Mn concentration between the blank and the reacted sample 

represents dye-related Mn release. This Mn concentration is 4-times higher than the original 

dye concentration, which implies a Mn:Dye reaction-stoichiometry greater than one. 
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Figure 6-24 UV-visible spectra of 0.14 mM, pH adjusted AY 36 solutions 
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Figure 6-25 Concentration (mM) of a) AY 36 and b) soluble Mn after reacting the HT tailings with 

dye at pH 3, 4, 5, 7 and 9 presented with Mn release from pH adjusted blank samples. 
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The UV-vis spectra measured at each reaction pH are shown in Figure 6-26. For 
comparison controls at pH 3 and 9 have been included. At pH 9 and 7 a progressive decrease 
in intensity is observed in the treatments compared to the pH 9 control. At pH 5 and 4 the 
spectra show a substantial loss in absorbance in the visible region, accompanied by the 
formation of new peaks at 335, 395 and 245 nm. At pH 3 the peaks at 335 and 395 nm 
disappear while the peak at 245 nm increases in intensity. The appearance of new peaks 
concomitant with the decrease in the 434 nm peak would suggest that the dye is reacting with 
the M n tailings rather than solely being adsorbed. The disappearance of the 335 and 395 nm 
peaks at pH 3 would suggest that the compounds having these peaks are further degraded. 

pH 3 
pH 4 
pH 5 
pH 7 
pH 9 
Control pH 3 
Control pH 9 

tfl 

1.5 

1 

200 300 400 500 600 
Wavenumber (nm) 

Figure 6-26 UV-visible spectra measured after reaction of the dye with the tailings at pH 3, 4, 5, 7 and 9 

for 1 hour presented together with control AY 36 solutions adjusted to pH 3 and pH 9. 

The filtered pH-treated samples were analysed with HPLC to obtain a better understanding of 

intermediate and product formation during the decolorisation reaction. The chromatograms of 

the samples are shown in Figure 6-27. A l l chromatograms, including the blank (not shown) 

show a solvent peak at 3.6 min and a peak at 13 min that corresponds to a phthalate 
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plasticizer. The peak at 11 min, representing the parent dye compound (Xmax : 434 nm) , 
shows a progressive decrease in intensity down the pH series and is absent from the pH 3 
chromatogram. In the pH 9 and 7 treatments a peak at 10 min is evident which has a A™ax at 
335 nm. The retention times of this peak and the parent dye peak are slightly shorter in the 
pH 5 sample (9.5 and 10.6 min, respectively) and three additional peaks are present at 9.7, 7.7 
and 7.2 min having ^max at 340, 395 and 246 nm, respectively. In the pH 4 treatment the 
relative intensity of the 9.8 min peak (9.5 min in the pH 5 chromatogram) has decreased, 
while that of 7.4 min peak (7.2 min in the pH 5 chromatogram) has increased. Finally in the 
pH 3 sample all peak intensities have decreased while the 7.1 min peak (7.2 min in the pH 5 
chromatogram) has increased in intensity. The reaction mechanism for oxidation of this dye 
is largely unknown so product identification was not possible from the UV spectra. 
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Figure 6-27 Chromatograms of AY 36 solutions after reaction with the tailings at pH 9, 7, 5, 4 and 3 for 1 

hour. UV-Vis spectra corresponding to peaks at the various retention times shown in the insets. (Note not 

all scales are the same) 
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From this data it would appear that the reaction pH has a pronounced influence on the AY 
36 decolorisation reaction and product formation. The role of pH in intermediate product 
formation will be discussed in the following section, however, from this data it can be 
established that removal of the parent dye increases with decreasing pH and thus it would 
appear that decreasing the pH increases oxidation of the dye by the tailings materials. As 
discussed in Section 6.4.1, lowering the reaction pH has been shown to enhance organic 
oxidations by Mn oxides, through increased electrostatic attraction, increased redox potential 
and enhanced removal of Mn 2 + . Charge behaviour of AY 36 differs to that of AO 7 in that 
protonation of the N-groups occurs below pH 3 (pK a 2.3), thus at pH 3 a proportion of the N 
groups would be protonated, accounting for the darkening of the colour of the pH 3 control 
(Figure 6-24). However, the most significant pH response in AY 36 oxidation was observed 
to occur below pH 7 and the response to pH lessened below pH 5, thus it would appear that 
increasing the positive charge on the dye molecule is not the primary cause of pH-dependent 
AY 36 oxidation. As discussed for AO 7, the positive charging of the oxide surface may play 
a role in increasing the dye-mineral contact and therefore oxidation. It is interesting to 
observe the difference in pH-dependence between the two dyes. Oxidation of AY 36 shows 
the largest response to pH between pH 7 and 5 (Figure 6-25a) while with AO 7 oxidation 
responses to pH only occur below pH 5 (Figure 6-5a) and this response is linear with further 
decreases in pH. I f sorption was the only factor influencing oxidation it would be expected 
that the two dyes would show a similar pH-dependence considering that both dyes are 
predominantly negatively charged in the experimental range. The increased oxidation of AY 
36 below pH 7, which is well above the PZC of the tailings (PZC < 4), may indicate that the 
pH-dependence of the reaction is not solely related to sorption. It also indicates the oxidation 
of AY 36 is less dependent on H + concentration than AO 7. 

6.6.2. Identification of reaction products and proposed reaction 

mechanism 

Identification of reaction products and intermediates formed during the reaction of AY 36 

with the tailings was attempted using LC-MS. The molecular ions and ion products are 

summarized in Table 6-2. The retention times reported for the LC-MS analysis are different 

for those reported in the HPLC analysis as the samples were run without a buffer, due to 
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excessive salt crusting on the ion transfer tube. Retention times in the first LC-MS system 
were not consistent for repeat runs, the reason for this may be related to the fact that the 
buffer solution had to be omitted. Other workers conducting chromatographic studies of azo 
dyes have also experienced retention time shifts (Lopez et al., 2004). 

Table 6-2 Mass spectra data of AY 36 and degradation products 

Compound 
No. 

Retention 
time (min) 

Mode MS m/z (% relative 
intensity) 

MS2 m/z (% relative intensity) 

I 2.25 ES- 173(100); 113(21); 
174(10); 275(10); 369(10) N/A 

11 3.59 ES- 276(100); 286(44); 171(20) 156(100); 215(10); 158(7) 

I I* - ES+ 278(100); 198(35); 
239(17); 149(140) N/A 

IV** 4.82 ES- 366(100); 367(20); 
540(20); 173(6) 302(100); 156(30); 274(7); 

I I I** 5.76 ES- 366(100); 367(18); 
540(10); 708 (7) 156(100); 338(50) 274(45); 

V 7.57 ES- 458(100); 459(50); 
460(20); 171(15); 173(10) 

402(100); 156(60); 338(30); 
430(10) 

VI 8.01 ES- 352(100) 156(100); 260(15); 324(18) 
VII 9.35 ES+ 352(100) 275(75), 203(100) 

*This compound was identified using the second LC-MS system described in the methods section thus the 

retention time has not reported 

** These samples do not follow in numerical order due to conflicting eluting orders found in the HPLC data 

(run with buffer) and LC-MS data (run without buffer) 

The fragmentation pattern of the parent molecule (compound VI), detected in negative ion 

mode is shown in Figure 6-28. Fragmentation of AY 36 (m/z = 352) occurs via 

rearrangement loss of N2 from the azo group (M" - 28) which is typical of a number of azo 

dyes (Holcapek et al., 2007). Further fragmentation involves loss of either the SO2 (M -28-

64) or diphenylamine (M" - 28-168) group. 
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Figure 6-28 Ion products as identified in the MS 2 of the E S - 352 peak, representing the fragmentation 

pattern of AY 36 

A total of six compounds were observed in the negative MS scan mode (Table 6-2) and two 

in the positive scan mode. In ion negative mode only 2 compounds (I and II) were identified 

which had m/z values less than the parent compound. Compound I (m/z: 173) was detected in 

both LC-MS systems, however, the signal was very weak in the first system so no MS 2 could 

be obtained. Compound I I was detected in negative (m/z: 276) and positive ion (m/z: 278) 

mode. Compounds (III ; IV and V) all had m/z ratios higher than the parent compound, which 

would suggest that alteration, but not necessarily breakdown of the parent compound was 

occurring. Photo-oxidation of methyl orange has also been shown to generate products with 

higher molecular weights than the parent dye (Baiocchi et al., 2002). The earlier elution of 

compounds I I I , IV and V, compared to the parent molecule, would suggest an increase in the 

polarity of the altered compounds (Table 6-2). Compounds II I and IV appear to be isomers 

having the same m/z value of 366, but having different retention times, fragmentation 

patterns and slightly different (Figure 6-29). These isomers eluted in different orders in 

the HPLC and LC-MS studies, this could be a consequence of buffer omission in the LC-MS 
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study as mentioned above. The proposed structures for these isomers, as well as the other 

identified compounds, are given in Scheme 2. It is not possible to state with certainty which 

isomer corresponds with which UV spectrum (Figure 6-29), but for reasons to be discussed 

later, compounds I I I and IV have been assigned the structures in Scheme 2. Compound VII , 

identified in positive ion mode, has a m/z of 352, and could not be assigned a structure. 
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Figure 6-29 MS 2 and UV-vis spectra of m/z 366 isomers (Compounds IV and III) observed in the treated 

AY 36 solutions 
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Structures were assigned to the compounds identified in the LC-MS study and a reaction 

mechanism for the oxidation of AY 36 by the Mn tailings has been proposed in Scheme 2. A 

one electron transfer is initiated on the amine nitrogen, which is expected to have a higher 

electron density than the azo N atoms (Oakes and Gratton, 1998). Resonance rearrangement 

and additional one electron transfer results in carbocations forming at either the ortha or para 

positions of the aromatic ring. These carbocations undergo rapid nucleophilic attack by water 

molecules to generate hydroxyl groups. Due to the electron withdrawing effect of the 

sulfonate group, the carbocation and subsequent hydroxylation is expected to occur on the 

phenyl group attached to the amine group (Sleiman et al., 2007) via pathway a or b (Scheme 

2). The phenolic group is further oxidized to generate a quinone moiety in either the ortha or 

para positions giving rise to the 366 m/z isomers (Compounds I I I and IV). This reaction 

pathway is similar to that described for the oxidation of diphenylamine to N-phenyl-p-

benzoquinoneimine (Balon et al., 1993). 
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Hydrolysis of N-phenyl-/?-benzoquinoneimine to form amine and p-benzoquinone has 
been shown to occur below pH 4 (Balon et al., 1993). Thus it is proposed that compound III 
undergoes hydrolysis to form compound I I (3-('4-anilinoazo)-benzenosulfonic acid) and p-
benzoquinone when the pH is lowered. Similar hydrolysis of compound IV would generate 
compound I I and o-benzoquinone. Neither of these benzoquinone isomers could be identified 
in the LC-MS investigation but the UV spectrum and retention time of a p-benzoquinone 
standard matched the UV spectrum of the 7.2 min peak of the pH 3 treatment (Figure 6-30). 
Unfortunately a standard of o-benzonquinone could not be obtained, but the X^ax for o-
benzoquinone is reported at 390 nm (Mentasti et al., 1975), thus the 7.2 min product is likely 
to represent p-benzoquinone. Identification of p-benzoquinone presents evidence for the 
proposed reaction mechanism and suggests that pathway a is the most favourable. 
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Figure 6-30 UV spectrum of A Y 36 degradation product eluting at 7.2 min and a p-benzoquinone 

standard (BQ) 

Compound I I has a UV spectrum which corresponds to that of the 8.1 peak in the pH 4 

chromatogram (Figure 6-27). Compound II is expected to undergo further oxidation, via 

pathway c (Scheme 2) which will eventually cleave the molecule at the azo group to form 



127 

compound I and p-benzoquinone. A peak was never observed for compound 1 in the 
HPLC data and the highly soluble compound possibly eluted with the solvent peak as 
observed in the LC-MS analysis. 

The formation of p-benzoquinone, which itself has a light brown colour, as a final product 

would explain why 100% decolorisation was not achieved even at pH 3.p-Benzoquinone was 

reacted with the Mn tailings to observe i f further breakdown was possible. No decrease in p-

benzoquinone concentration was observed after reaction with the tailings for 8 days 

(Appendix E; Figure E-l), thus in terms of water treatment with the tailings /j-benzoquinone 

and 3-hydroxybenzenesulfonate can be regarded as the terminal oxidation products. 

Compound VI , was identified as a polymerisation product of the parent compound and p-

benzoquinone (Scheme 2). This product was more abundant in the 0.28 mM treatment, which 

would be expected due to the higher concentration of parent molecule. Similar 

polymerisation products have been identified to form during enzymetic oxidation of AO 7 

and methyl orange (Zille et al., 2005). It is proposed that the parent molecule in these 

coupling products will eventually undergo oxidation by the tailings. The formation of 

coupling products may be avoided i f contact time between the tailings and dye solution is 

optimised to reduce the chance of coupling reactions between radicals and unreacted dye 

molecules. 

The mechanism proposed by Sleiman et al. (2007) for the titanium oxide-induced photo-

oxidation of AY 36 is different to that described here and involves direct hydroxyl attack on 

the phenyl group, rather than oxidation of the amine group. According to their study it was 

proposed that hydroxyl attack on the phenyl group attached to the amine group results in 

cleavage of the azo bond generating diphenylamine and benzenesulfonate. Hydroquinone was 

identified and proposed to oxidize to p-benzoquinone. Total mineralisation of the azo dye 

was reported for photo-oxidation. Complete mineralisation was not observed in the current 

investigation within the pH range investigated. 

According to the above mechanism the hydrolysis of the isomers should be independent of 

the Mn tailings. To verify this a filtered sample of AY 36, reacted with the tailings in a pH 4 

acetate buffer for 1 hour, was analysed immediately (within 1 hr) and 24 hours after filtration. 



128 

The absence of any Mn(III)-complexes or colloidal Mn oxide in the filtrate was 
confirmed by a negative tetramethylbenzidine test (Bartlett, 1999). The two chromatograms 
are presented in Figure 6-31. 
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Figure 6-31 Chromatograms of a filtered solution of AY 36, reacted with the tailings for 60 min in a pH 4 

buffer, analysed 1 and 24 hrs after the reaction. Compound numbers correspond to products in Table 6-2 

(BQ = p-benzoquinone) 

The chemical composition of the filtrate changes with time, with the /?-benzoquinone peak 

increasing while the peaks labeled III and IV, representing the 366 isomers, change in their 

absolute and relative proportions. From Figure 6-31 it is evident that the earlier eluting 

isomer (compound III) is initially present in higher proportion than the later eluting isomer 

(compound IV). The earlier eluting isomer is nearly completely removed after 24 hrs, 

suggesting that this isomer is the most unstable. Both the position and stability of the 

carbocation will play a role in determining the most favourable isomer. The carbocation ion 

is likely to be more stable in the ortha position, but steric hindrances may make the para 

isomer the most kinetically favourable. A tentative suggestion is made then that the para 

isomer (compound III) is the most abundant and most reactive isomer. This is supported by 

the findings that oxidation of diphenylamine has been shown to produce N-phenyl-p-

benzoquinoneimine (Balon et al., 1993), and the fact that only /j-benzoquinone was detected 

as a reaction product. It is assumed that compound IV will undergo the same hydrolysis 

reaction but concentrations of o-benzoquinone may have been below the detection limit. The 

chromatograms in Figure 6-31 show that the composition of the filtrate changes substantially 
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over 24 hours in the absence of the Mn tailings which supports the proposal that 
hydrolysis of the N-phenyl-/?-benzoquinoneimine group is independent of Mn oxide. 
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Figure 6-32 UV-vis spectra of a filtered solution of AY 36 after reaction with the Mn tailings for 20 min at 

pH 3 showing the hydrolysis of the first eluting isomer. 

To observe the hydrolysis reaction in real time UV spectra were collected every 10 minutes 

of a filtered AY 36 solution reacted with the tailings for 20 minutes i.e. just after the 366 

isomers had formed (Figure 6-32). The peak at 335 nm represents the first eluting isomer 

(compound 111). This peak shows a progressive decrease and bathochromic shift to 375 nm 

(Compound II) while the peak at 245 nm (p-benzoquinone) progressively increases. The UV-

vis spectrum of the filtrate collected 17 hrs later shows only a marginal increase in the 375 

nm peak (Figure 6-32), which suggests that the hydrolysis reaction effectively happens within 

the first 2 hours after the reaction. At this stage the filtered solution was added to fresh Mn 

tailings and reacted at pH 3 for 24 hours after which it was filtered and a UV-vis spectrum 

collected (Figure 6-33). The peak at 375 nm decreases after the reaction with the tailings 
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while the p-benzoquinone peak increases. This provides evidence for reaction pathway c 
and cleavage of the azo bond. 
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Figure 6-33 UV-vis spectra of hydrolysis products (shown in Figure 6-32) in the supernatant before 

(Filtered extract) and after reaction with HT tailings (Filtered extract + HT) 

6.6.3. Reaction progression 

In Section 6.6.2 a reaction mechanism is proposed which involves a series of intermediate 

products; thus it is important to understand the progression of this reaction in relation to the 

decolorisation of AY 36. For this purpose sub-samples were abstracted at various time 

intervals from a reaction vessel in which AY 36 was reacting with the tailings in a pH 4 

acetate buffer. Chromatograms of these sub-samples are shown in Figure 6-34 while Figure 

6-35 gives percentage decolorisation measured over time. After 0.5 minute of reaction time 

the AY 36 peak has halved in intensity compared to the control but only a trace amount of 

compound III can be identified; this correlates with the 45% decolorisation observed (Figure 

6-35). 
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Figure 6-34 Sequence of chromatograms showing chemical composition changes during the reaction of 

AY 36 with the HT tailings in a pH 4 acetate buffer (Note scales are different). 
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Figure 6-35 Percentage decolorisation of AY 36 as a function of time for samples analysed by H P L C in 

Figure 6-34 

The substantial decrease in dye concentration and decolorisation without an equivalent 

increase in product peaks would suggest that sorption of the dye onto the tailings surface is 

responsible for this initial concentration and colour decrease; however, it is also possible that 

the disparity between AY 36 removal and product formation could relate to the retention of 

products on the tailing surface. After l minute, compound III increases in intensity and after 

2 minutes peaks representing compounds I I I , IV and V can be observed. p-Benzoquinone and 

compound I I start appearing after 5 mins. These products increase as the reaction time 

proceeds while the AY 36 peak concomitantly decreases and decolorisation increases, 

reaching 86% at 120 min. From this data it is evident that nearly complete decolorisation of 

the solution coincides with the formation of the 366 isomers even though these compounds 

still contain an intact azo bond. It would appear that oxidation of the amine group shifts the 

visible absorbance of the molecule to lower wavelengths. A similar finding was observed for 

the oxidation of methyl orange where oxidation of the tertiary amine resulted in loss of 

absorbance in the visible range despite the azo bond staying intact (Oakes and Gratton, 1998). 
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After 60 hours, most of the intermediate products have disappeared and />-benzoquinone 
dominates the chromatogram (Figure 6-34) (compound I could not be identified from the 
HPLC study, for reasons discussed in Section 6.6.2) suggesting that the reaction has followed 
pathway c. Despite complete cleavage of the azo bond, only 91% decolorisation was obtained 
at 60 hours. This relates to the fact that /p-benzoquinone itself is light brown in colour. 

Dye-related Mn dissolution ([Mn] d i s s ) was measured throughout the reaction period and is 

plotted as a function of percentage AY 36 decolorisation (Figure 6-36). The initial increase in 

AY 36 decolorisation is not matched by a proportional increase in [Mn]diS S, which again 

suggests that this initial colour removal is a result of sorption of the dye onto the tailings 

surface. After the initial decolorisation increment further colour removal is proportional to 

increases in [Mn]di s s, until decolorisation stabilises at 80%. After this the decolorisation 

gradually increases to 90% while [Mn]diS S increases disproportionately. The generation of p-

benzoquinone probably accounts for the more gradual colour loss after 80% decolorisation. 

The inset in Figure 6-36 shows AY 36 disappears at the point that the decolorisation curve 

starts to flatten (0.1 mM [Mn]diS S)- The continual Mn release after the flattening of the curves 

representing decolorisation and removal of AY 36 may indicate that some colorless 

intermediates are reacting with Mn tailings. This would add further support to reaction 

pathway c as it has been shown that the hydrolysis of compounds II I and IV (via reaction 

pathways a and b) is independent of the Mn tailings. 
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Figure 6-36 Percentage decolorisation of AY 36 plotted against [Mn| d i s s (Mn released after subtraction 

from blank) for a AY 36 solution reacted with the tailings (S:L 1:50) in a pH 4 acetate buffer. Inset shows 

AY 36 concentration vs [Mn]d j M. 

6.6.4. Reaction rates and order 

As established in the previous section the reaction between the Mn tailings and AY 36 

involves a multi-stage pathway involving successive electron transfers and reactive 

intermediates. The hydrolysis of the N-phenyl-/?-benzoquinoneimine moiety is independent 

of oxidation thus overall reaction kinetics are likely to be complex. Further complications 

such as the heterogeneity of the tailings and carbonate buffering make kinetic approximations 

difficult. Thus the initial rates and orders calculated here are tentative and relate to the initial 

decolorisation reaction i.e. the oxidation of the amine group. 

Batch experiments were used to monitor Mn dissolution ([Mn]di s s) and dye concentration over 

time (Mn release data provided in Appendix D ) . Figure 6-37 presents [Mn]di s s and AY 36 

concentration as a function of time during the reaction of AY 36 with the tailings at pH 4. 

Nearly 50% dye removal is observed after 30 seconds of reaction time, after which the dye 

concentration decreases more gradually (Figure 6-37a). The dissolution of Mn, on the other 
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hand, shows a more linear increase over the initial 5 minutes (Figure 6-37b). As 
mentioned in section 6.6.3 the disparity between the decrease in dye concentration and 
[Mn] d i s s would suggest that sorption may be responsible for the initial sharp decrease in dye 
concentration. As mentioned in section 6.4.3 sorption data is not easily obtainable for Mn 
oxide mediated oxidation reactions, thus only [Mn]diSS was considered for rate calculations. 
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Figure 6-37 Plots of a) AY 36 concentration and b) |Mn] d l l , as a function of time. Initial dye concentration 

• 0.14 mM, |SA] = 48 m2.L~', pH 4. Insets display enlarged scale over the initial sampling interval. 

Rate order was determined using the initial rate method (Lasaga, 1981). The rate order with 

respect to pH was determined at pH 4, 5 and 6 while keeping other reaction conditions ([AY 

36] and [SA]) constant. This pH range was chosen as textile effluents containing acid dyes 

are usually discharged in an organic acid medium, buffered around this pH range. The pH of 

the reaction appears to have a large influence on reaction rate with the initial rate (normalized 

to surface area) at pH 4 determined to be 2.5 x 10"5 mol.s'.m"2 while at pH 6 the rate is an 

order of magnitude lower at 1.0 x 10"6 mol. s"\m . The order with respect to pH is 0.7 ± 

0.003 (significantly different to 1 at a confidence level of 5% (t = 156; f = 2)) and appears not 

to change within the experimental range (Figure 6-38). Similar fractional rate orders for pH 

have been reported for the oxidation of aromatic amines (Laha and Luthy, 1990) and other 

organic compounds oxidised by Mn oxides (Zhang and Huang, 2003). The strong dependence 

of the reaction rate on pH can be a result of increased sorption of the dye to the mineral 

surface (via electrostatic attraction), or enhanced electron transfer. Protons are required for 
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the reduction of Mn oxides and the release of M n 2 + ions from the mineral lattice. All of 
these factors are likely to influence the reaction rate. 
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Figure 6-38 Plots of a) [Mn)d j S 8 (M) as a function of time at pH 4, 5 and 6 with inset showing initial rate 

plots for the three curves and b) log(initial rate) vs pH for the oxidation of AY 36 

Figure 6-39a shows [Mn]djSS as a function of time and the initial rate for three surface area 

concentrations at constant dye concentration and pH. The In (initial rate) vs ln[SA] plot given 

in Figure 6-39b is linear (R2>0.95) with a slope of 0.8 ±0.17 (not significantly different to 1; 

at a 5% confidence level (t = 1.63; f=2)). The y-intercept, converted to seconds (3.7 x 10"4 s"1) 

gives the pseudo-rate constant k' with respect to surface area concentration. This would 

indicate a pseudo-first-order rate dependence of [SA]. This is in agreement with the AO 7 

observations (Section 6.4.3) and other Mn oxide mediated organic oxidation investigations 

(Zhang and Huang, 2003; Khan et al., 2004; Kumar and Khan, 2005), and it seems sensible 

that increasing the surface area will increase the number of reactive sites available for 

reaction with the organic reductant, therefore increasing the reaction rate. The pseudo first 

order rate constant with respect to surface area for the reaction of AY 36 is (1.7 x 10"4 s"1) 

substantially higher than that of AO 7 under the same reaction conditions (1.8 x 10'V 1) 

suggesting the initial oxidation of AY 36 is inherently faster than AO 7. 
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Figure 6-39 Plots of a) [Mn] d i M (M) as a function of time for three surface area concentrations ([SA]) with 

inset showing initial rate plots for the three curves and b) ln(initial rate) vs ln[SA] for AY 36 oxidation 
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Figure 6-40 Plots of a) [Mn| d l u (M) as a function of time for three AY 36 concentrations ([AY 36]) with 

inset showing initial rate plots for the three curves and b) ln(initial rate) vs ln[AY 36] for AY 36 

oxidation 

Figure 6-40a shows [Mn]diSs as a function of time and the initial rate for three dye 

concentrations reacted at constant [SA] and pH. The linear (R2>0.95) In (initial rate) vs In 

[AY 36] plot, with a slope of 0.9 ±0.15 (not significantly different to 1 at a confidence level 

of 5% (t = 1.2; f = 4)) (Figure 6-40b), suggests that the reaction, unlike AO 7, has a pseudo-

first-order dependence on dye concentration. This infers that surface chemical reactions are 

not as rate limiting for AY 36 as for AO 7. 
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6.7. Factors influencing oxidative decolorisation of AY 36 and AO 7 

Since textile effluents are usually complex mixtures of dyes, organic acids and fixing agents 

(European Commission, 2003) the effect of these auxiliary chemicals as well as other 

environmental parameters, such as light, on the oxidative breakdown of dyes was established. 

6.7.1. The effect of light on decolorisation reactions 

As many redox reactions are affected by light the influence of natural laboratory light 

(fluorescent tubes) on the dye oxidation reactions was established. The decolorisation 

reactions were carried out in the presence and absence of light (laboratory) for both AY 36 

and AO 7. The data is shown in Figure 6-41. There was no significant difference observed for 

AY 36 and AO 7 decolorisation reactions conducted under laboratory light and dark 

conditions. The experiment was repeated under UV radiation, again no difference in 

decolorisation for either dye was observed (Appendix E: Figure E-2). Liu and Tang (2000) 

observed enhanced oxidation of 'direct light red' by a natural Mn(IV) oxide when the 

reaction was conducted under illuminated conditions. These authors suggested this could be a 

consequence of increasing the rate of electrons excited to the valence band, thereby 

increasing the reactivity of the oxide. Oxidation of the dyes by the tailings was unaffected by 

light, which may be a result of the domination of Mn(III) oxides which are not expected to 

experience such valence band excitations. Additionally the mixed slurry is dark due to the 

presence of the oxide thus light penetration is limited. 
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Figure 6-41 Percentage decolorisation at pH 4 as a function of time under light and dark reaction 

conditions for a) AO 7 and b) AY 36. 

6.7.2. The effect of acetate buffer strength 

Organic buffers, such as acetate, are commonly present in industrial dye effluent and may 

interfere with the reaction between the acid dye and the Mn oxide surface by changing the 

solution pH, blocking reactive surface sites and forming Mn-complexes. To establish the 

effect of acetate buffer concentration on the decoloristion of AO 7 and AY 36, the dyes were 

reacted with the tailings in pH 4 acetate buffers of varying strengths. The strong alkali 

buffering of the tailings resulted in pH drift in the lower buffer concentrations. The final pH 

was 4.5, 4.3 and 4.0 for the 100, 200 and 500 mM buffer solutions, respectively. To establish 

the effect of buffer concentration without the complications of pH drift, purchased Mn203 

was also included in the reactions. The pH of the acetate buffers varied no more than ±0.04 

units after addition of the synthetic Mn203. For comparison the dyes were reacted with the 

HT tailings and purchased Ivh^Oi in DI, the pH of these samples in DI was 9.0 and 5.0, 

respectively. The results are given in Figure 6-42. 

b 
100 100 

90 90 

80 80 

70 70 

n 60 ra 60 

o 50 ° 50 

ai 40 oi 40 Mn203 0 HT 0 

-: 30 30 HT 100 Mn203 100 

Ml 20 HT200 Mn203 200 

10 Mn20 3 500 HT 500 I 0 * — r 1 . — — i 1 1 0 * 1 1 1 1 . 1 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Time (days) Time (days) 

Figure 6-42 Percentage decolouration of a) AO 7 and b) AY 36 reacted with the HT tailings and 

purchased Mn 2 0 3 (dashed lines) using a range (0, 100, 200 and 500 mM) of pH 4 acetate buffer 

concentrations (S:L 1:20). 

The reaction of AO 7 with the tailings is notably affected by the acetate buffer concentration, 

with decolorisation being lowest for the unbuffered treatment and increasing with increasing 
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buffer strength (Figure 6-42a) over the measured time period. Even after 45 days the 
unbuffered AO 7 solution had only achieved 74% decolourisation (data not shown). The AO 
7 decolorisation by the purchased Mn203 would appear less affected by acetate concentration 
with 89% decoloristion obtained within 2 hours of reaction for all acetate concentrations. In 
the unbuffered solutions (i.e. in DI) the Mn203 sample obtained a higher degree of colour 
removal than the unbuffered tailings sample, however, this is likely to be due to the differing 
reaction pH in these two samples (pH 5.0 and 9.0, respectively). 

Decolourisation of AY 36 is lowest in the unbuffered solution and increases substantially in 

the buffered solutions (Figure 6-42b). There was little difference between the buffer 

concentrations with 90% AY 36 colour removal observed within 2 hours for all acetate 

concentrations in both the tailings and the Mn203 samples. As with AO 7 the unbuffered 

Mn203 sample showed higher colour removal efficiency than the unbuffered tailings sample, 

which is likely to result from the difference in reaction pH. This data suggests that the buffer 

strength indirectly influences the decolorisation reactions by regulating the pH. As shown in 

section 6.4.1, AO 7 oxidation is more sensitive to pH changes below pH 5 than AY 36, which 

would explain the correlation between buffer strength and decolorisation of AO 7. The 

presence of any Mn(III)-acetate complexes was discounted on the basis of a negative 

tetramethylbenzidine test (Bartlett, 1999). 

From this data it would appear that buffer concentration has little direct effect on oxidation 

capacity of Mn203 or the tailings but pH drift in the lower concentration buffers, slightly 

reduces the decolourisation rate of AO 7 reacted with the tailings. Continual addition of fresh 

buffer, as would occur in a reactor, would reduce the pH as the carbonate fraction of the 

tailings is gradually exhausted. This issue is discussed later in this section. 

6.7.3. The effect of salt type and concentration 

The effect of salt type and concentration, on the oxidative dye decolorisation, was 

investigated with and without an acetate buffer. In the absence of the acetate buffer no pH 

adjustments were made. Figure 6-43 shows the decolorisation of a series of 0.14 mM AO 7 

and AY 36 solutions containing 0, 30 and 100 mM Na2S04, that were reacted with the 

tailings materials (HT) and quartz powder. Quartz treatments were included to observe any 
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salt induced changes on an 'inert' surface. Control dye solutions containing the same 
concentration of salt used in the experiment were prepared to establish i f any salt-induced 
flocculation occurred. These solutions remained stable for the duration of the reaction period. 
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Figure 6-43 Percentage decolorisation of a) AO 7 and b) AY 36 reacted with the HT tailings (HT) in 0, 30 

and 100 mM Na 2 S0 4 solutions. Quartz (QTZ) samples where run as a controls. 

In the absence of an acetate buffer N a 2 S 0 4 had little effect on the oxidative decolorisation 

reactions between the tailings and the two dyes (Figure 6-43). The quartz samples showed a 

slight increase in decolorisation over time and the quartz powder attained the yellow and 

orange colours of the two dyes over the reaction period. This would suggest that a certain 

amount of dye was adsorbing to the quartz surface, but the decolorisation in the tailings 

treatments was substantially higher. 

To establish salt effects in the presence of an acetate buffer 100 mM NaCl and N a 2 S C > 4 were 

added to acetate buffered dye solutions. 
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Figure 6-44 Percentage dccolorisation of AO 7 reacted with the HT tailings (HT) and quartz (QTZ) in a 

0.2 M, pH 4 acetate buffer containing no salt (0) and 100 mM (100) a) Na 2 S0 4 and b) NaCl. Certain error 

bars maybe smaller than symbols. 

Figure 6-44 shows the percentage decolorisation of AO 7 as a function of time in the 

presence and absence of Na 2S0 4 and NaCl. Addition of Na 2S0 4 significantly (P = 0.0002) 

increases the initial (< 4 hours) decolorisation of AO 7, however, after 24 hours of reaction 

there was no difference in decolorisation between the samples with and without Na 2S0 4. 

Increasing the concentration of NaCl had no significant influence on the initial or final 

decolorisation compared to the reaction in deionised water (Figure 6-44b). Both quartz 

controls showed a small amount of decolorisation over time, which again is likely to be a 

result of sorption. 

The same experiment was repeated for AY 36, however, the clay phase of the Mn tailings 

became highly dispersed in the Na2S04 treatment and even with filtration a clear supernatant 

could not be obtained. The turbidity persisted right through the 48 hour reaction period 

making decolorisation difficult to measure. Addition of NaCl did not have the same effect on 

the turbidity and no difference could be observed in AY 36 decolorisation between the salt 

treatment and the acetate buffer containing no salt (Appendix E; Figure E-3). 
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The initial decolorisation of AO 7 (after 2 hours reaction time) was established as a 
function of Na 2S0 4 and NaCl concentration (Figure 6-45). Due to the dispersion of AY 36 
only AO 7 was considered. Increasing the Na2S04 concentration above 50 mM had a positive 
effect on the initial decolorisation of AO 7, while no correlation could be observed in the 
NaCl treatments . 
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Figure 6-45 Percentage decolorisation of AO 7 as a function of salt concentration after 2 hrs reaction with 

the tailings 

From this data it would appear that in the absence of a buffer (pH 9) Na2S04 has little effect 

on dye decolorisation, but in the presence of a buffer (pH 4) the salt has a positive effect on 

decolorisation. Sodium chloride on the other hand had no significant influence in either 

scenario. Interestingly decolorisation via ozonation is also influenced by salt type, with the 

addition of both NaCl and Na2S04 increasing decolorisation time, but conversely the effect is 

more pronounced for NaCl (Muthukumar and Selvakumar, 2004). 

The effect of electrolyte on dye sorption and oxidation has been studied by a number of 

workers (Bandara et al., 1999a; Liu and Qu, 2002; Ge and Qu, 2003). Bandara et al. (1999a) 

observed suppression of AO 7 sorption on goethite surfaces in the presence of sulphate ions 
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and suggested that this was due to competition of sulphate ions for sorption sites on the 
oxide surface. The same conclusion was drawn for the observed suppressed sorption of acid 
red B on a MnO-Fe203 oxide (Wu et al., 2005). These workers used this observation to add 
evidence to their proposal of an inner-sphere sorption of the sulfonate group to the metal 
centre. Anions such as CI", NO3" and SO4 " suppressed acid dye decolorisation by Mn oxides 
(Ge and Qu, 2003), even at very low concentrations. This was also attributed to competition 
of these anions for sorption sites on the oxide surface. Liu et al. (2000) observed an increase 
in the oxidation of 'direct light red' by Mn oxides in the presence of NaNC^. This enhanced 
oxidation was proposed to result from the compacting of the double diffuse layer (DDL) in 
the presence of NaNC^. Compressing the DDL has the effect of allowing the dye molecule to 
get into closer contact with the oxide surface and therefore enhancing oxidation. The 
conflicting affect of counter ions, may relate to differences between inner-sphere and outer-
sphere adsorption. The presence of anions like sulfate, which are known to form inner-sphere 
complexes with oxide surfaces (Hug, 1997; Eggleston et al., 1998) may compete with the 
sulfonate group for sorption sites, thus hindering mineral-dye contact. However, i f the 
oxidation reaction proceeds via an outer-sphere complex, addition of electrolyte would 
compact the DDL bringing the dye and oxide surface closer together. The increased 
decolorisation of AO 7 in the presence of sulphate would therefore support the observation 
made in the ATR study (section 6.5.2) that the sulfonate group of AO 7 forms a 
predominantly outer-sphere complex with the Mn tailings. The difference between NaCl and 
Na2S04 in the above decolorisation reactions, cannot be rationalised on the basis of a simple 
DDL effect as concentration-dependent increase in oxidation with both salts would be 
expected. Another issue which may limit the interpretation of the results in terms of the DDL 
theory is the fact that Na2S04 had no influence on oxidation at pH 9, where the charge on the 
oxide surface will be predominantly negative. 

The dispersion of the clay fraction when AY 36 was reacted with Na2S04 containing acetate 

buffer is difficult to explain. The dispersed solution could not be flocculated with CaCh 

which would be expected to flocculate and negative colloids. Dispersion of negative colloids 

would also be expected at higher pH not at lower pH. I f the dispersion of positive colloids 

was responsible for the turbidity, then SO42" ions should assist in flocculation. The dispersion 

was only observed for AY 36 which may suggest that it could be a surface interaction with 
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the AY 36 oxidation intermediates that results in this clay phase dispersion. It was 
interesting to note that after a prolonged settling time (64 hours) the colloidal phase had 
settled, providing more evidence that it is the interaction between the intermediates and the 
clay fraction which causes the dispersion. 

6.7.4. Continuous batch reactions 

To establish how long the Mn tailings (HT) can sustain colour removal, a batch experiment 

was conducted in which the dye solution was replenished daily. The UV absorption, pH and 

Mn concentration were measured throughout the 60 day reaction period. After 2 days of AY 

36 replenishment the tailings became highly dispersed and separating the solid and liquid 

phase became difficult so the experiment was only continued with AO 7. The decolorisation 

of AO 7 and AY 36 as a function of time is shown in Figure 6-46 a and b, respectively. 
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Figure 6-46 Percentage dccolorisation of a) AO 7 and b) AY 36 over time after sequential reactions with 

fresh dye solution. 

Due to the alkali buffering of the tailings the pH in the acetate buffer solutions had drifted 

upward (from pH 4.0 to pH 4.7) during the first 24 hour reaction period. The pH of the 

supernatants decreased daily as the replenished buffered solutions gradually depleted the 

buffer capacity of the tailings and the pH eventually stabilised at the pH of the buffer (pH 4) 

after day 3. 
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Maximum decolorisation of AY 36 was achieved on day 1 (Figure 6-46b), after this the 
sample became increasingly turbid and thus decolorisation became more difficult to measure. 
No dispersion was observed in the blank solutions or the AO 7 treatments. Thus it would 
appear that colloid dispersion is related to AY 36 or its breakdown products. 

Decolorisation of AO 7 increases from 78% on day 1 to 96% on day 3 at which it stabilises 

(Figure 6-46a). The increase in colour removal coincides with the lowering of the pH in 

successive dye/acetate washings, as mentioned above. After 60 days of continual 

replenishment 95% decolorisation was still being achieved within the 24 hr reaction period, 

illustrating the longevity of the oxidative capacity of the tailings. 

Manganese release was monitored over the course of the experiment (Figure 6-47). There is a 

daily incremental increase in the Mn release from both dye treatments and the blank until day 

3, after which Mn release drops and stabilises at an average of 65 mg.L"1 for the blank and 85 

mg.L"1 for the AO 7 treatment. Manganese release from the blank solution follows a similar 

pattern as the dye treatments, but is consistently lower. Reasons for the Mn release in the 

acetate buffer have been discussed earlier. The initial spike in Mn release, coincides with the 

progressive drop in pH. This could represent an easily reducible or labile Mn phase which is 

sensitive to change in pH. It would appear that this labile phase is quickly exhausted as the 

Mn release drops and stabilises after 4 days. 
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Figure 6-47 Manganese release measured in the supernatants of reacted blank and dye solutions as a 

function of time. 

It is assumed that the difference in Mn concentration between the blank and the reacted 

sample represents dye-related Mn release. The average difference between the Mn released in 

the blank and the AO 7 treatment was calculated and gives a reaction stiochiometry of 1:3. 

This supports the reaction mechanism proposed in section 6.4.2 in which three one-electron 

transfers are involved in the oxidation of AO 7, assuming Mn(III) oxides predominate the 

tailings (Chapter 5). 

Accumulation of M n 2 + on reactive sites has been shown to slow down reactions between Mn 

oxides and organic molecules (Klausen et al., 1997), however, data from this investigation 

shows that prolonged reaction and Mn release did not reduce the efficiency of the reaction. 

The reaction conditions used in this study i.e. agitation followed by complete removal of the 

supernatant, are very favourable for mixing and the data may represent an inflated 

decolorisation potential, but it provides a benchmark for what decolorisation can be achieved 

using a single measure of tailings. 

The dispersion of the clay fraction after reaction with AY 36 may be a hindrance to treatment 

of such a dye. As noted above after a long enough reaction period the flocculation of the 

material occurred. Thus longer residence time of the dye in a reactor may be necessary to 

achieve efficient flocculation. 

6.8. The use ofMn tailings as a possible dye decolorisation technology. 

The results in this chapter have shown that the Mn tailings have the capacity to oxidise and 

decolorise two dye solutions. This oxidative breakdown is unaffected by the chemical 

environment present in most dye effluents (salts, organic acids) and the reaction is long lived. 

Thus the tailings appear to be an appealing treatment technology. The decolorisation capacity 

of the MT tailings was lower than the HT and WT tailings, and the former released more Mn 

in the acetate buffer solution. This would suggest that the HT and WT may be better suited 

for dye treatment. 
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The reaction mechanisms proposed in this study for the Mn tailings appear to be very 
similar to those of white rot fungi and other peroxidase catalysed reactions. The benefits of 
the Mn tailings over white rot fungi include the capacity of the tailings to withstand harsh 
chemical conditions, avoiding the need for 'initiating' conditions i.e. organic ligands, M n 2 + 

and primary substrates, and finally the contact time between the oxidant and the dye can be 
controlled via filtration which may prevent undesired coupling compounds forming as 
observed with enzyme mediated oxidations (Zille et al., 2005). 

There are some important drawbacks to using the tailings as there would be in any treatment 

system. The major breakdown products are quinone-type compounds and 

hydroxybenzenesulfonate species. Quinone type compounds are light yellow to brown in 

colour and this would explain why 100% colour removal was never achieved. To attain 100% 

colour removal the quinone-type compounds would need to be removed. Quinone formation 

is one of two pathways followed during the oxidation of phenolic groups. The alternative 

pathway involves the coupling of two phenoxy radicals to form humic acid polymers in what 

is essentially a composting reaction (Huang, 2000). This latter pathway has many benefits 

compared to quinone formation as potentially ecotoxic quinone species are converted to non

toxic stable macromolecules. Despite the coupling reaction having a lower activation energy 

than electron transfer (Chang and Allan, 1971), it would appear in the chemical environment 

present in the dye decolorisation reactions, quinone formation prevails. The oxidation of 

phenols is known to be complex and usually results in a mixture of products. Early studies 

into phenol oxidation established that pH plays a key role in determining which pathway 

phenol oxidation would follow, with a low to neutral pH favouring the formation of quinones 

and alkaline conditions favoring coupling reactions (Waters, 1971). It is thus likely that in the 

acidic acetate solutions, used in this study, quinone formation is the dominant phenol 

oxidation pathway. I f the reaction pH could be manipulated such that polymerisation 

reactions occurred, 100% decolorisation may be achieved making the tailings a highly 

feasibly decolorisation technology. 

Lopez et al. (2004) assessed the toxicity of effluent generated after enzymatic oxidation of 

AO 7. This effluent contained the two major breakdown products identified in the current 

study i.e. 4-hydroxybenzensulfonate and 1,2 naphthoquinone. Although the effluent from the 
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enzymatic degradation showed no toxic effects, isolated assessment of 1,2 
naphthoquinone showed that this compound is toxic towards aquatic organisms. This 
reiterates the need to remove quinone type compounds after treatment. Treatment of real 
textile effluent with white rot fungi reduced cytotoxicity by 70% compared to a 10% obtained 
for ozonation (Vanhulle et al., 2008). These workers found the most efficient reduction in 
cyototoxicity (90%) when ozonation was used in conjunction with white rot fungi treatment. 
Considering the similarities between the oxidation mechanisms of white rot fungi and the 
tailings, equivalent detoxification after reaction with tailings would be expected. 

Manganese release is an important issue that needs to be resolved before this technology can 

be implemented. There are many studies addressing the issue of Mn removal from waters 

(McBride, 1979; Junta and Hochella, 1994; Phillips et al., 1995; Johnson et al., 2005). One 

successful method of removing Mn from water is adsorbing and reoxidising M n 2 + ions on Mn 

oxides, in a process which is known as autooxidation (Ross and Bartlett, 1981). The Mn 

tailings with their high pH, and abundant carbonate component would offer three 
2+ 

mechanisms of Mn removal i) precipitation of Mn carbonate minerals, ii) provision of a 

high pH surface which would facilitate the oxidation and precipitation of M n 2 + ions and 

finally iii) autooxidation of M n 2 + on the Mn oxide phase of the tailings. Thus the tailings 

themselves may provide a suitable substrate for soluble Mn removal from treatment waters. 

These aspects are being investigated in a current parallel study. Another option would be to 

harness the soluble M n 2 + on an ion exchange resin. This harnessed M n 2 + may have an 

industrial application, such as Mn metal plating. 
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7. Results and discussion: Polycyclic aromatic 
hydrocarbons 

Anthracene was chosen to represent the PAH contaminant group for reasons mentioned in 

Section 1.5. It has been highlighted in Chapter 3 that contact between the hydrophobic 

organic compounds and mineral surfaces depends on surface hydration. The effects of 

mineral surface hydration and pH on the oxidation of anthracene by the tailings are presented 

in this chapter. 

7.1. Anthracene-mineral interactions under moist and dried conditions 

Tailings (HT, WT and MT), quartz (QTZ), calcite (CC) and purchased Mn 203 (MO) were 

reacted with anthracene under moist and dried (evaporative) conditions. As a control, 

anthracene-spiked water was evaporated from a clean glass surface. The pH of the mineral 

slurries were unadjusted. The concentration of anthracene (calculated as a % of the original 

anthracene spike i.e. % recovery) extracted from these samples after 7 days is given in Figure 

7.1. 

Anthracene recovery from the moist controls and samples was good for all treatments (>89%) 

(Figure 7-1 a), some of the lost of recovery may have been attributed to volatilisation, but 

certain samples showed 100% recovery thus volatilisation was considered minimal. Drying 

resulted in decreased anthracene recovery from the control and all samples (Figure 7-lb). 

Volatilisation may have contributed to the loss of recovery but it was difficult to measure due 

to the reaction of the control (see later). The dried QTZ sample showed a similar recovery to 

that of the dried control (78%). The lowest and most variable recovery was observed in the 

dried HT (30%) and MT (40%) tailings, followed by dried CC. The large variation in 

anthracene recovery cannot be explained, repeat experiments gave consistently variable 

results. Chromatograms of the moist and dried HT and CC treatments are shown in Figure 

7-2 and Figure 7-3, respectively. 
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Figure 7-1 Percentage recovery (mole based) of anthracene (AC) and anthraquinone (AQ) in extracts 

from a) moist and b) air-dried controls, quartz (QTZ), calcite (CC), Hotazel type (HT), Mamatwan type 

(MT), Wessels type (WT) tailings and purchased Mn 2 0 3 (MO) samples spiked with anthracene. No 

adjustment to pH was made. 
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Figure 7-2 Chromatograms of cyclohexane extracts from moist and dried Hotazel tailings spiked with 

anthracene, showing peaks representing anthracene (AC), anthraquinone (AQ) and an unknown 

compound B. 
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Figure 7-3 Chromatograms of cyclohexane extracts from moist and dried calcite samples spiked with 

anthracene, showing peaks representing anthracene (AC) and anthraquinone (AQ). 
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The peak at 13.4 minutes represents anthracene. The additional peak observed at 10.4 
minutes in the dried CC and HT treatments suggests the formation of a new compound. This 
peak was identified as anthraquinone and was identified in the dried control and all dried 
mineral treatments. A third peak (peak B) is evident in the dried HT chromatogram at 12.5 
min. Peak B was present in all the dried tailings treatments (Appendix E; Figure E-4 and E-
5), but not in the control, QTZ, CC or MO. This peak could not be identified, but it suggests 
that there may be differences in the reactions occurring on the tailings and the other mineral 
phases. 

The concentration of anthraquinone extracted from the moist and dried samples is presented 

in Figure 7-lb. Anthraquinone was detected in the dried control and all the dried mineral 

treatments. Oxidation of anthracene in the dried control would suggest that a limited amount 

of anthracene oxidation occurs as water is evaporated from a clean glass surface. Similar 

concentrations (4.5%) of anthraquinone were detected in the dried quartz treatment. The dried 

HT and MT tailings showed the highest anthraquinone concentrations (30 and 21%, 

respectively) followed by dried MO (17%). The CC treatment also showed substantial 

anthraquinone concentration (14%). Trace concentrations of anthraquinone were detected in 

the moist HT, MT, WT and QTZ treatments. It was observed in these samples that a small 

degree of mineral drying had occurred around the edges of the vial. 

To assess the total recovery of organic compounds the residual (100-[anthraquinone+ 

anthtacene]) was plotted (Figure 7-1). Drying increases the residual in the control and all 

dried treatments. The dried HT chromatogram in Figure 7-2, and chromatograms from the 

dried WT and MT tailings (not shown), show peak B, suggesting there is an additional 

product to anthracene forming. This additional, unidentified compound, which was more 

prevalent in the dried HT and MT treatments may account for the reduced total recovery 

observed in these dried tailings samples. 

The results from the drying experiments have given some anomalous results. It would appear 

that simple air-drying causes a limited amount of oxidation in the control and the quartz 

treatments. Calcite which was originally included as a control, oxidised an appreciable 

proportion of added anthracene with drying. This oxidation by a non-redox active mineral is 
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difficult to justify. There are large differences in the oxidation of anthracene by the 
tailings, with the HT and MT tailing oxidising the most anthracene and the WT tailings 
oxidising less (6%) than calcite. The purchased Mn oxide oxidised substantial amounts (17%) 
of anthracene. These results suggest that it may be the actual process of drying on a mineral 
surface, rather than electron transfer to the Mn oxides, which results in anthracene oxidation. 
It has been shown that short-range silica can catalyse the oxidation of polyphenols 
(Ziechmann, 1959). Ground quartz has been shown to have a disturbed layer which is short-
range in nature (Her, 1979) and thus it has been proposed that quartz may have similar 
polymerising capacity (Huang, 2000). Borosilicate glass has also shown the capacity to 
catalyse organic transformation reactions (Stanton, 1987), thus the reactions in the 'controls' 
may be explained by surface phenomena and the extreme environment of drying mineral 
surfaces. 

7.1.1. The importance of the drying process 
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Figure 7-4 Anthracene recovery from hydratcd, spiked HT and control samples allowed to dry to 

different degrees 
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In order to establish the dependence of anthracene oxidation on moisture content, a series 
of moist, spiked HT samples were dried to different degrees before extraction in cyclohexane. 
Figure 7-4 shows anthracene concentration as a function of gravimetric moisture content for 
HT tailings and control samples. Anthracene concentration in the control decreases slightly as 
water is evaporated but anthracene loss is substantially larger in the HT tailings treatment, 
especially as the water content drops below 5%. This would imply that the oxidation occurs 
on a drying but not necessarily dry surface. 

The amount of anthracene initially added to the tailings was 0.028 mg, which would largely 

be insoluble in the small volume of hydrating water (0.4 mL). The substantial removal of 

added anthracene by the dried minerals suggests that more anthracene has been oxidised than 

is water soluble (0.07 mg.L"1). This would imply that significant contact between the tailings 

and anthracene is achieved in the drying system. Sorption of HOC vapours on mineral 

surfaces is highly dependent on surface moisture content (Chiou and Shoup, 1985; Goss, 

1992), which is considered to be largely a result of the displacement of sorbed organic 

compounds by water molecules. Sorption of organic molecules is most significantly affected 

when the moisture content is below one monolayer of water coverage, but there is still an 

exponential decrease in sorption up until 10 water monolayers (Chiou and Shoup, 1985; 

Goss, 1992; Goss, 1993; Goss and Eisenreich, 1996; Goss and Schwarzenbach, 2002). This 

would suggest that mineral surfaces may still impart an influence even while significantly 

hydrated. 

Evaporation of water from a mineral surface has been shown to be an acidifying process 

(Mortland and Raman, 1968; Dowding et al., 2005), thus increased surface acidity of the 

mineral may play a role in the anthracene oxidation reaction. This drying-induced 

acidification is known to occur due to the hydrolysis of the last remaining water molecules 

surrounding exchangeable cations on the mineral surface (Mortland and Raman, 1968). As 

the clay surface becomes drier the Bransted acidity increases and protons are concentrated in 

a smaller volume of water resulting in extreme surface acidity. I f this was the cause of the 

anthracene oxidation, it would be expected that evaporation of spiked cyclohexane, instead of 

spiked water would not result in the same oxidisation. Thus the drying experiments were 

repeated with the HT and CC treatments, replacing the water with cyclohexane (i.e. 
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evaporation of a spiked cyclohexane-mineral slurry). To ensure that all the moisture was 
removed before the evaporation of cyclohexane, the samples were oven-dried (104°C) prior 
to the reaction. The results are given in Figure 7-5. Anthraquinone was detected in both the 
CC and HT treatments evaporated from cyclohexane (Figure 7-5). Interestingly no 
anthraquinone was observed in the control (spiked cyclohexane evaporated from the glass 
vial). The oxidation of anthracene on the mineral phases would imply that the hydrolysis of 
water molecules may not be responsible for the observed oxidation. The stability of 
anthracene at pH 1 was demonstrated by addition of anthracene to 0.1 M HC1. No conversion 
to anthraquinone was observed (data not shown), although its has been reported that acidities 
on drying mineral surfaces can reach an acidity equivalent to 6 M HC1 in solution (McBride, 
1994). 

As mentioned above the samples were oven-dried prior to evaporation of the spiked organic 

solvent. This drying may have created surface acidity, which was not altered by the addition 

of cyclohexane and therefore still available for anthracene oxidation. I f this were the case 

then similar oxidation would be observed in samples reacted in cyclohexane without 

evaporation of the organic solvent. 
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Figure 7-5 Recovery (%) of anthracene (AC) and anthraquinone (AQ) in extracts from spiked calcite 

(CC) and Hotazel type (HT) tailings after evaporating cyclohexane. 
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To assess this, oven-dried calcite and HT tailings were reacted with anthracene in 
cyclohexane, without any evaporation. The anthracene concentrations after reaction with the 
CC and HT tailings in cyclohexane are shown in Figure 7-6. Anthracene conversion to 
anthraquinone appears to be limited in the presence of an organic solvent, with only trace 
amounts of anthraquinone detected in the HT and CC treatments. Anthracene has been shown 
to oxidise on the surface of dried montmorillonite when an anthracene spike was added to the 
dry clay in dichloromethane (Karimi-Lotfabad et al., 1996). These authors suggested that 
exchangeable transition metals on the exchange sites were responsible for the oxidation of 
anthracene via a one electron transfer mechanism and the formation of a radical species. It is 
not possible to directly compare the current study to that of Karimi-Lotfabad et al. (1996), but 
enhancing the solubility of anthracene may be expected to facilitate any Mn oxide mediated 
anthracene oxidation, especially i f surface acidity had been generated on the mineral surface 
during oven-drying. It is acknowledged that caution needs to be taken when interpreting these 
results but the limited reaction observed in an organic solvent and the oxidation observed 
during evaporation of a non-polar solvent would suggest that neither mineral-organic contact 
nor the generation of drying-induced acidity are the sole driving forces behind anthracene 
oxidation on the dried mineral surfaces. An important factor that needs to be taken into 
consideration when interpreting these data, is that in the moist samples, the reaction pH was 
that of the calcite or the tailings i.e. pH 8.3 and 9.0, respectively. It will be demonstrated later 
that the oxidation of anthracene by the Mn tailings is affected by pH. 
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Figure 7-6 Percentage anthracene (AC) and anthraquinone (AQ) recovery after reacting anthracene with 

HT tailings and C C in cyclohexane solvent, calculated on a molar basis. 

The above data would suggest that the oxidation of anthracene occurs as spiked polar and 

non-polar solvents are evaporated from the mineral surface. One of the changes that would 

occur during solvent evaporation is enhanced availability of oxygen on the mineral surface. 

Adsorbed O2 molecules are seen to be partially responsible for hydroquinone oxidation by 

clay minerals (Thompson and Moll, 1973). To establish the effect of oxygen, the drying 

reactions were conducted under a nitrogen purge (Figure 7-7). Unfortunately work could not 

be conducted in an anaerobic chamber as the facilities were not available so these data are not 

conclusive. Anthracene oxidation was apparent in both CC and HT treatments, dried under 

N2. The large variation in these samples makes the effect of O2 on oxidation difficult to 

speculate. 
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Figure 7-7 Anthracene (AC) and anthraquinone (AQ) concentrations of spiked C C and HT samples 

allowed to dry under nitrogen. 

The data from the drying experiments does not provide any clear mechanism for the drying-

induced oxidation of anthracene on the mineral surfaces. From the data presented in Figure 

7-1 it would appear that anthracene is oxidised to a limited extent just through evaporation of 

water from an inert surface (glass or quartz) but this oxidation is substantially enhanced on 

calcite, the tailings and synthetic Mn oxide surfaces. At the ambient, pH (>5) of the calcite, 

tailings and purchased Mn oxide, limited oxidation was observed without evaporation of the 

water. Exchanging the evaporating solvent from water to cyclohexane makes little difference 

to the oxidation reaction on the calcite or the tailings surfaces, however, only limited 

oxidation is observed when anthracene is reacted with previously dried calcite and tailings 

samples in cyclohexane without evaporation. Thus it would appear that evaporation of both 

polar and non-polar solvents result in the anthracene oxidation on the tailings and calcite 

surfaces. 
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7.2.The influence of pH on anthracene oxidation in fully hydrated 
conditions 

The effect of pH on oxidation of organic molecules by Mn oxides is well established (Stone 

and Morgan, 1984a; Laha and Luthy, 1990; Klausen et al., 1997; Matocha et al., 2001; Ge 

and Qu, 2003; Zhang and Huang, 2005). I f electron transfer were to take place between the 

Mn tailings and anthracene it would be most likely to occur at low pH. Thus anthracene was 

reacted with the tailings in a series of pH adjusted acetate buffers under fully hydrated 

conditions. The results for the HT tailings are shown in Figure 7-8. 
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Figure 7-8 Anthracene (AC) and anthraquinone (AQ) concentrations after reacting anthracene with the 

HT tailings in a series of pH adjusted acetate buffers. Grey and black closed circles represent samples 

reacted at pH 4 in DI using 0.1 M HCI to control pH. 

The cyclohexane extracts from the lower pH treatments (4.5 and 4.0) show a decrease in 

anthracene concentration and a corresponding increase in AQ concentration. Anthracene 

concentration in the quartz control showed no apparent decreases even below pH 4. The pH 
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treatments were repeated for the WT and MT tailings, the same pH dependent oxidation 
was observed (Appendix E: Figure A-6). 

It has been shown that Mn(III)-acetate complexes can oxidise PAHs (Cremonesi et al., 1986). 

Tetramethylbenzidine was used to test for the presence of any Mn(lII)-acetate complexes 

(Bartlett, 1999). At the buffer concentration used in this experiment (0.2 M) no Mn(III)-

complexes were observed, thus it would suggest that oxidation was occurring between the 

solid phase and anthracene. 

The amount of anthracene initially added (2 mg.L"1) to the pH treatments far exceeds the 

aqueous anthracene solubility limit (0.07 mg.L"') yet substantial transformation (75%) to 

anthraquinone was observed in the pH 4 treatment (Figure 7-8). This would suggest that 

sufficient anthracene mineral contact was obtained in the acetate buffer. Acetate may be 

expected to slightly increase the solubility of anthracene as is observed with DOC (Raber et 

al., 1998). To establish i f similar oxidation would occur in the absence of an organic buffer, 

the reaction with the HT tailings was repeated in DI using 0.1 M HC1 to maintain the pH at 4. 

The results, shown in Figure 7-8, illustrate a substantial (50%) amount of anthracene has been 

oxidised in the HC1 treated solution. Thus it would appear that appreciable tailings-

anthracene contact is also achieved in the inorganic reaction medium. Considering the poor 

aqueous solubility of anthracene, the complete conversion of anthracene in solution is 

unanticipated. The 'hydrophobic effect' describes the partitioning out of hydrophobic organic 

compounds onto surfaces (Schwarzenbach, 1993). It has been that established that 

hydrophobicity and surface area are the most important aspects that govern partitioning of 

organic molecules onto the mineral surfaces. For a given system, however, sorption increases 

slightly with decreasing pH (Schlautman and Morgan, 1994) but this cannot account for the 

degree of mineral-anthracene contact necessary to oxidise the quantity of anthracene 

observed here. 

It has been shown that the sorption of a range of PAHs onto the surfaces of alumina, kaolin 

and silica is complete within about 10 hours and that isotherms are linear up until the 

solubility limit of the organic compound is reached (Backhus, 1990). This suggests that of the 

anthracene added only a limited amount can be involved in the sorption and thus oxidation 
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reactions at a given time. It may be possible that the continual oxidation of anthracene on 
the mineral surface, keeps the activity of anthracene in solution below its aqueous solubility 
limit which would allow for progressive depletion of the non-soluble phase until almost total 
anthracene conversion has taken place. The reaction solutions were continually stirred over 
the 5 day period which would aid in removal of the formed anthraquinone, replenishing 
reactive surface for further anthracene sorption. 

To establish i f anthraquinone is broken down further by the tailings, anthraquinone was 

reacted with the tailings in a pH 3.7 acetate buffer. The percentage anthraquinone recovered 

after the reaction is shown in Figure 7-9. No significant change was observed in the 

anthraquinone concentration in the tailings or quartz treatments after 5 days reaction time. 

Thus it would appear that anthraquinone is the terminal product of anthracene oxidation by 

the tailings. Anthraquinone was determined to be the dead-end product of anthracene 

oxidation by white rot fungi (Field et al., 1992; Bezalel et al., 1996) thus further oxidation by 

the tailings would not be expected. 
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Figure 7-9 Percentage recovery of anthraquinone after reaction with the HT tailings and quartz (QTZ) in 

a pH 3.7 acetate buffer, presented with a control reacted in acetate buffer alone. 
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7.3. Possible mechanisms for anthracene oxidation at mineral surfaces 

The mechanism of anthracene oxidation to anthraquinone has been established for peroxidase 

mediated reactions. The hydroxylation of anthracene is thought to occur by radical formation 

followed by nucleophilic attack of water molecules. The hydroxyl groups are then further 

oxidised to quinone moieties (Hammel et al., 1986). All of these steps involve one-electron 

transfers from the organic molecule to the metal centre. Other products identified in 

peroxidase oxidation include 9,10-dihydroxyanthracene and 1,2-dihydroxyanthracene 

(Hammel, 1995). It is possible that one of these compounds could account for the additional 

peak (peak B) observed in the chromatograms of the dried tailings treatments, but this was 

never verified. 

The catalytic activity of mineral surfaces has been implicated in the polymerisation of PAHs 

during low temperature thermal treatment of contaminated sediment samples (Kopinke and 

Remmler, 1995; Remmler and Kopinke, 1995). These polymerisation reactions are assumed 

to proceed via radical pathways. It was proposed that the thermal treatment of the sediment 

resulted in the oxidation of Mn and Fe oxides which catalysed the radical formations of the 

PAHs (Remmler and Kopinke, 1995). In pure mineral studies, Remmler and Kopinke (1995) 

established that acid activated clays had the highest conversion rates of PAHs and that acid 

activation plays a more important role in the polymerising capacity of a surface than high 

surface area. Minerals such as calcite, kaolinite and pyrite are catalysts in the isomerisation, 

aromatization and cracking reactions of hydrocarbons under high temperatures (Regtop et al., 

1985; Regtop et al., 1986). It is possible that drying the mineral surfaces of the tailings and 

calcite can activate the surface in such a manner that radical abstraction can take place from 

the sorbed organic molecule. 

The transformation of anthracene to anthraquinone on the non-redox active calcite surface, 

implies that electron transfer from anthracene to the Mn centre of the tailings, as the only 

oxidation mechanism, is debatable. The only evidence that the reaction on the surface of the 

tailings may be different to that on the calcite surface is the additional peak present in the 

chromatograms of the dried tailings, which is not present in the dried calcite treatment. 
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However, this peak was not evident in the purchased Mn oxide sample so the data is 
inconclusive. 

7.4. Applications of the tailings to treat PAHs 

Anthraquinone has been identified as the terminal reaction product in the reaction of 

anthracene with the tailings. Anthraquinone is more bioavailable than anthracene and is 

therefore easier to biodegrade (Mueller et al., 1989). Hence oxidation of anthracene is 

considered a beneficial step in PAH degradation. 

The results from this study appear to raise more questions surrounding PAH degradation by 

the tailings than answers. A very important issue is raised and that is; what is the effect of soil 

drying on the fate and behaviour of organic contaminants? Drying experiments were repeated 

on AI2O3 and kaolinite, with similar results to those observed with calcite. While this avenue 

of research is potentially very important it fell outside the focus of this study and thus was not 

further pursued. 

The surface properties of the tailings showed the capacity to oxidise anthracene after drying. 

The HT and MT tailings show good anthracene conversion while the WT tailings appear less 

reactive. I f cracking-type reactions are occurring on the surface of these tailings under the 

mild conditions used in this study, then these tailings may provide suitable cracking catalysts 

in more extreme conditions. This is an avenue which warrants further research. 

The substantial conversion of anthracene, added in quantities exceeding its water solubility, 

to anthraquinone in an acidic (pH < 4.5) fully hydrated system is an encouraging result 

because water solubility is considered one of the properties responsible for the recalcitrance 

of PAHs and a limitation to biodegradation (Zhang et al., 1995; Eibes et al., 2005). Thus for 

PAH contaminated water, the tailings may provide a viable treatment option, provided the 

reaction pH is low enough. As discussed in Chapter 6, provision would need to be made to 

ensure the retention of any Mn released into solution. 
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8. Conclusions and further work 
The overall aim of this project was to establish the capacity of the South African Mn oxide 

containing mine tailings to oxidatively breakdown organic pollutants found in soils and 

water. This is the first study to assess the remedial potential of the Mn tailings for treating 

organic contaminants and for this reason the study encompassed both hydrophobic (PAHs) 

and hydrophilic (azo dyes) contaminants. The main research focus centered on azo dyes. 

The scope of the work ranges from mechanistic studies detailing reaction mechanisms, 

sorption phenomena and kinetics to more applied issues which deal with how treatment 

systems may work in the real world. 

8.1. Conclusions 

1. It was established that there is a similarity between the Mamatwan and Gloria tailings, 

collectively known as the Mamatwan type tailings; and the Nchwaning and Wessels 

tailings, collectively known as the Wessels type tailings. Hotazel type tailings are best 

characterised as a separate tailings group. These distinctions were based mainly on 

mineral and chemical composition. The Mamatwan type tailings are more carbonate-

rich, while the Wessels and Hotazel type tailings are more Mn oxide-enriched. The 

net Mn oxidation state of the tailings follows the order Hotazel type > Wessels type 

>Mamatwan type. The total reducible Mn was highest for the Wessels type tailings 

(34 to 42%) followed by the Hotazel type tailings (33%) and then the Mamawatan 

type tailings (20 to 28%). The reactive 'easily reducible' Mn phase was highest in the 

Hotazel type tailings (3%). The Mamatwan type tailings release 2.5 times more Mn 

than the Wessels and Hotazel type tailings in acid solutions (pH 4) making the last 

two tailing types more suitable for dye waste water treatment. The concentrations of 

trace elements in the tailings are low, most being below the Worldwide mean for soils 

and U.S.EPA soil screening guidelines. All trace metal concentrations in the tailings 

were below those stipulated for sewage sludge applications to agricultural soils in 

South Africa. This means that additions of the waste to soils would be viable, 

provided that the target soils were not acidic (>pH 5) to prevent large scale Mn 

dissolution. 
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2. Decolorisation of azo dyes using the Mn tailings showed promising results. Only 
the most recalcitrant azo dye, acid yellow 9, was not decolorised by the tailings. This 
particular dye has also shown resistance to many bioremediation techniques. The dye 
decolorisation potential of the tailings is a result of the Mn oxide content, with 
synthetic Mn oxides showing similar decolorisation capacities. Dye decolorisation by 
the tailings was shown to be inversely proportional to pH, which probably relates to 
increased sorption and thermodynamic favorability of the reactions under acid 
conditions. 

3. The reaction mechanism proposed for the oxidation of acid orange 7, by the Mn 

tailings is essentially the same as that proposed in numerous white rot fungi 

degradation studies. Successive one electron transfers, initiated on the phenolic group, 

results in a carbocation forming on the C housing the azo bond. Nucleophilic attack 

by water molecules, results in the formation of an unstable tetrahedral complex which 

leads to asymmetric cleavage of the azo bond. The terminal oxidation products were 

identified as 1,2 naphthoquinone and 4-hydroxybenzensulfonate. 

4. Attenuated total reflectance Fourier transform infrared studies revealed that sorption 

of acid orange 7 onto a manganite (a common Mn mineral found in the tailings) 

surface is pH dependent and initial sorption is outer-sphere. A pronounced lag phase 

was observed between the initial sorption of the dye to the oxide surface and the 

initiation of oxidation. This lag phase can indicate that either the transfer of the initial 

electron is rate limiting or that correct and time consuming orientation of the molecule 

prior to inner-sphere complexation is necessary before oxidation can take place. 

5. The reaction mechanism proposed for the oxidation of acid yellow 36 is initiated by 

successive one electron transfers from the amino moiety of the dye to the Mn oxide. 

The reaction pathway involves the formation of a number of intermediate products, 

some of which hydrolyse in a Mn oxide-independent step. The terminal oxidation 

products were observed to be p-benzoquinone and 3-hydroxybenzene sulfonate. 

6. Tentative reaction rates and orders were determined for both dye oxidations. At pH 4 

the initial oxidation of acid orange 7 is substantially slower (3.8 x 10"6 mol.s '.m"2) 



167 

than the initial oxidation of acid yellow 36 (2.5 x 10"5 mol.s"'.m"2). Both dye 
oxidations were shown to be pseudo-first order with respect to Mn tailings surface 
area concentration. The initial oxidation of acid yellow 36 was shown to be pseudo 
first order with respect to dye concentration while acid orange 7 showed a fractional 
order with respect to dye concentration. This fractional rate order supports the ATR-
FTIR observations of a rate-limiting surface reaction between the Mn oxide surface 
and AO 7. 

7. The effects o f auxiliary compounds, usually present in textile effluents, on dye 

oxidation were investigated. The consequence of salt addition and increased buffer 

strength enhanced acid orange 7 decolorisation, however, addition of salt affected the 

colloid stability of the Mn tailings in the acid yellow 36 reaction. The continual 

reaction between fresh acid orange 7 and a single measure of tailings showed 

longevity with 90% decolorisation still being achieved after 60 days o f dye 

replenishment. Colloid stability problems were encountered during similar continual 

dye replenishment reactions with acid yellow 36. The reason for the colloid dispersion 

was never established, but it is thought to pertain to an interaction between one of the 

intermediates and the clay phase. This dispersion problem may be overcome by 

adjusting the residence time of the dye solution in contact with the tailings (see further 

work point vi i ) . 

8. The reaction mechanisms and the terminal products, which form during reactions o f 

azo dyes with the Mn tailings, largely parallel that o f enzymatic dye breakdown 

observed with white rot fungi peroxidases. There is a wealth of research that has been 

conducted on xenobiotic oxidations involving white rot fungi. Results from this study 

have shown there is a lot of overlap between oxidation capacity of the extracellular 

enzymes and the Mn tailings. Textile effluents treated with peroxidases have shown a 

substantial decrease in cytotoxicity. As with white rot fungi, the tailings only achieved 

approximately 90% decolorisation of the dye solutions. This was largely due to the 

formation of coloured quinone type compounds. The use of white rot fungi for the 

treatment o f textile effluent has been identified as an attractive remediation 

technology. The current research has shown that the Mn tailings have decolorisation 



168 

capacities similar to white rot fungi, without the chemical constraints associated 
with peroxidase production and stability. 

9. Oxidation of anthracene to anthraquinone was observed during the evaporation of 

anthracene spiked water from the surface o f the tailings (up to 30% oxidation), a 

synthetic Mn oxide (17%), calcite (14%), quartz (5%) and a clean glass surface (3%). 

Limited oxidation was observed without evaporation of the water. Various attempts 

were made to elucidate the transformation reactions on the mineral surfaces, but no 

conclusive mechanism was obtained. It could not be established whether electron 

transfer was occurring between the M n oxide phase of the tailings and the anthracene 

or whether the transformation was solely a surface meditated phenomenon. 

Anthraquinone was identified as the major transformation product in the drying 

reaction. Conversion o f anthracene to anthraquinone on drying mineral surfaces has 

positive ramifications for soil remediation, as anthraquinone is more biodegradable 

than anthracene due to its higher water solubility. The substantial conversion o f 

anthracene on the Hotazel type and Mamatwan type tailings under mild drying 

conditions, may indicate that these materials have good cracking capacity under more 

extreme temperatures (see further work point i ) . 

10. The effect o f pH on anthracene oxidation was investigated in ful ly hydrated systems. 

The tailings oxidised 75% of added anthracene to anthraquinone at pH 4, despite the 

amount added substantially exceeding the aqueous solubility of anthracene. It is 

proposed that the continual oxidation of anthracene maintains the concentration below 

its solubility limit thereby depleting and oxidising the majority of added anthracene. 

This has important implications in the treatment of PAHs as one of the main factors 

which contribute to their recalcitrance is their poor aqueous solubility. Anthracene 

was observed to be stable in acid solutions in the absence of the tailings. 

Anthraquinone did not react further with the tailings and thus is considered the 

terminal oxidation product. 

11. The overall conclusion that propagates from the current study is that there are 

promising avenues for utilising the South African Mn oxide containing tailings for 
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organic contaminant remediation purposes, especially in the treatment of textile 
effluents. However, certain problems need to be addressed, probably the most 
important being the sequestration of released, soluble Mn. 

8.2. Further work 

These conclusions and other work conducted in this study have highlighted a number of 

possibilities for further work. These are listed below. 

i) Assessing the cracking catalyst capacities o f the M n tailings. Mechanochemical 

reactions might also warrant some investigation, as dry surfaces are involved in 

organic contaminant breakdown by such techniques. It would also be interesting to 

assess the oxidative breakdown of hydrophobic compounds under mild heating 

conditions (40-50°C). 

i i ) Drying reactions, performed in an anaerobic chamber would establish the role O2 

plays in the drying induced oxidation of anthracene on the mineral surfaces. 

i i i ) The role of mineral dehydration in organic contaminant breakdown needs to be 

established. The mechanism of the oxidation reactions also needs to be elucidated. 

iv) Further research needs to be conducted to characterize any biological activity 

associated with the tailings. The unique chemical environment of the tailings may 

have resulted in some interesting and potentially useful biotic-abiotic interactions 

v) Treatment of a real dye-house effluent needs to be tested on the tailings in a 

continuous flow stirred reaction vessel to optimise tailings-dye reaction times and 

solid-liquid ratios. 

vi) The influence of sonication, electrochemistry, heating and addition of hydrogen 

peroxide on the tailings mediated decolorisation reactions should be established. 

These inputs may result in more effective dye breakdown. 

vii) One of the observed problems with the oxidized dye solutions was the presence of 

coloured quinone-type compounds. Manipulation of reaction times and intercepting 
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the reaction at appropriate intervals may result in preferential formation o f 
phenolic coupling products, which may improve decolorisation of treated dye 
solutions. Unwanted coupling products, formed between unreacted dye and 
breakdown products, may also be avoided by manipulating reaction times. 

I f the tailings are to be used in water treatment processes it is essential that soluble 

Mn, released in the reactions, be sequestered. Manganese oxides are commonly 

referred to as catalysts due to their capacity to regenerate Mn oxide surfaces through a 

process know as autooxidation. It is possible that by placing two reactors, containing 

M n tailings, in series the soluble Mn generated during the oxidation o f the organic 

could be precipitated out in the second reactor, thus completing the catalytic cycle. 

The functioning o f such a system would need further investigation. 

It was observed during this study that when the tailings were washed with 

pyrophosphate, citric, oxalic, malonic and tartaric acid, Mn(III)-complexes formed 

and remained stable for hours to days, depending on the complexing ligand used. 

Manganese (Ill)-complexes are central to the oxidative behaviour o f certain white rot 

fungi, but generating them involves harvesting sufficient enzyme. The formation of 

the Mn(II I ) complexes after washing the tailings with organic ligands may provide a 

way to bypass the fungi and all the complications that occur with enzyme generation 

and stability. This is an avenue of research which should definitely warrant further 

investigation. 
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Appendix A.Manganese in waste and the environment 

A.l . Manganese in the environment 

A. 1.1. Rocks and soils 

Manganese is the twelfth most abundant element in the lithosphere comprising about 

0 .1% of the earths crust (Dixon and White, 2002; Concise International Chemical 

Assessment Document (CICADS), 2004). The Mn concentration in crustal rocks ranges 

from 350 to 2000 ppm (Kabata-Pendias and Pendias, 2001) and is generally highest in 

mafic rocks (Gilkes and McKenzie, 1988) and certain sedimentary rocks like dolomite. 

Manganese is present in minerals as M n 2 + , M n 3 + and M n 4 + ions. In primary minerals the 

dominant species is M n 2 + . Weathering and oxidation o f primary minerals often result in 

the formation of M n 4 + and M n 3 + oxide minerals. Manganese oxides are the most common 

M n bearing minerals in soils. 

The Mn content o f soils is quoted as ranging from <1 to 4000 mg/kg with mean values 

between 300-600 mg/kg (CICADS, 2004). The geochemistry of Mn in soils is similar to 

that o f iron with M n mobility being largely dependent on the pH and redox potential. 

Thus M n is likely to be removed from acidic, organic rich soils and horizons and 

accumulate in alkaline, organic poor soils and horizons. Manganese concentration 

gradients commonly occur down soil profiles with the Mn from the topsoil being 

mobilized and redistributed to the lower part o f the profile. 

Manganese oxides are one o f the most redox reactive constituents in soils. Their small 

particle size and large surface area allow them to impart a larger influence on soil 

chemistry than would be expected by their relative abundance (Bartlett, 1988). 

Manganese oxides have been implicated in the removal o f harmful free radicals in soils 

(Bartlett, 1999) and in non-microbial oxidation o f N H 4

+ to nitrate (Bartlett, 1981). 

Manganese oxides have been shown to act as catalysts for the breakdown and 

humification of organic matter (Shindo and Haung, 1984) and play an important role in 
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the formation o f topsoils (Bartlett and James, 1994). The affinity for many trace 
elements is another important attribute o f M n oxides. Trace elements such as Ba, Cu, Co, 
Pb, Zn and Ni have been shown to be sequestered by M n oxides (Mckenzie, 1980). This 
can have positive implications for contaminated soils and negative consequences for 
plant nutrition where important trace metals become unavailable. Manganese oxides have 
the capacity to oxidize inorganic ions such as Se, U , Cr, As and Co and organic 
molecules such as phenols and aromatic amines to quinone-type or polymeric products. 
These interactions can be favourable, as in the case o f many organics and As, and 
unfavorable as in the case of Cr and U, which are rendered more mobile through 
oxidation. 

There is little information on the concentration ranges of Mn in South African soils. An 

investigation into trace element compositions of a variety of soils from the Mpumalanga 

province showed M n ranges o f between 311 and 711 mg/kg (Steyn and Herselman, 

2006). Soils derived from Chunniespoort dolomite are arguably some of the most M n 

enriched soils in the world having M n contents of up to 16% (Dowding, 2004). This 

manganiferous dolomite forms part of the Transvaal supergroup occurring along parts of 

the eastern escarpment and stretching from north of Zeerust to the western 

Witwatersrand. Although not all of the soils along this dolomite band have been 

investigated, studies on western Witwatersrand (Beukes et al., 1999) show that these soils 

are significantly enriched in Mn . 

A. 1.2. Plants 

Manganese is an essential element in plant nutrition and can be present in soils at both 

deficient and phytotoxic concentrations. Manganese plays a pivotal role in photosynthesis 

and has been described by Bartlett (1999) as being the 'key to l i fe ' due to its involvement 

in the oxidation of H2O and the generation o f oxygen in the chloroplast. 

For Mn to be available to plants it needs to be present in its soluble, divalent form. Plants 

vary greatly in their sensitivity to Mn concentration in solution with a sensitive species 

such as oat grass showing toxicity symptoms at 5 mg/L while marsh bent grass remains 

unaffected at 200 mg/L (Kabata-Pendias and Pendias, 2001). The uptake of M n from the 



soil also differs greatly amongst species; Loneragan (1996) showed that for the same 

soil the dry weight (DW) average o f Mn ranged from 30 ppm for Medicago trunculata to 

500 ppm (DW) in Lupinus albus. Worldwide background concentrations of Mn range 

from 17 to 334 ppm (DW) for grasses and from 25-119 ppm in clovers (Kabata-Pendias 

and Pendias, 2001). Plant foodstuffs contain variable amounts of Mn being the highest in 

beetroots (36 to 113 ppm). Cereal grains have a worldwide range of averages between 15 

and 85 ppm (Kabata Pendias and Pendias, 2001). Members o f the Ericaceae family, 

which includes blueberries, are regarded as Mn accumulators. There are numerous 

reports of foliar Mn levels in excess of 2000-4000 ppm, particularly for Vaccinium 

angustifolium and V. vitis-idaea (Korcak, 1988). 

A 7.3. Water 

Manganese is only readily soluble in its divalent state thus the M n 2 + ion is likely to be the 

dominant species found in surface and groundwaters. Factors that influence the solubility 

of Mn in water are the same that govern its solubility in soils. Surface freshwater data 

suggest that higher Mn concentrations occur during periods o f higher stream flow, such 

as spring runoff, and lower concentrations tend to occur downstream of lakes that act as 

settling areas for sediment (CICAD, 2004). Acid mine waters often have high 

concentrations o f soluble M n while hard, carbonate rich waters are likely to have low Mn 

concentrations. The concentration of Mn in natural waters ranges between 0.01 to 10 

mg/L but rarely exceeds 0.2 mg/L (CICADS 2004). 

There is little data available on natural Mn concentrations in SA waters. Sanders et al. 

(1998) showed the level of Mn in the Potchefstroom dam, which is considered to be 

uncontaminated, to range between < 0.002 and 0.02 mg/L. The Germiston lake, which 

has a history of metal pollution, was shown to have an annual Mn range o f <0.002 to 

0.065 mg/L. The annual range of M n in the Witbank dam is between 0.050 and 0.250 

mg/L (Nussey et al., 2000). The higher concentrations in the Witbank dam are likely to 

be due to the impacts of surrounding industry. 
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Manganese is an essential element for physiological health with adverse health effects 

observed with M n deficiencies as well as toxicities. The most common route of human 

exposure to M n is through food ingestion. The United States Environmental Protection 

Agency (U.S.EPA) suggests an appropriate Reference Dose (RfD) of lOmg Mn/day 

(U.S.EPA, 1996). Other channels o f exposure to M n are through drinking M n rich water, 

inhalation of Mn dust and ingestion of soil containing M n compounds. 

It is thought that inhalation of excessive amounts of M n dust has the most serious 

adverse health effect, and at comparable doses it has been shown that more M n reaches 

the brain following inhalation than following ingestion (Gianutsos et al., 1992; Dorman et 

al., 2002). Chronic inhalation o f M n containing particulate has been associated with 

nervous system disorders in a Parkinson-like disease known as manganism (Couper, 

1837). In comparison Mn ingested orally has low toxicity and reports o f adverse effects 

by this route are rare (U.S.EPA, 2003b). There is limited data available on the effects o f 

orally ingested Mn . One study in Greece (Kondakis et al., 1989) suggested that some 

neurological symptoms and Mn retention were apparent for people over 50 years old who 

had consumed water with 2 mg/L Mn over a lifetime. However, other exposure routes 

were not investigated in this study. In Germany a long-term drinking water study found 

no neurological effects in people over 50 who had ingested water with M n concentrations 

of 0.3 to 2 mg/L for 10 years (Vieregge et al., 1995). In an extreme case a small Japanese 

community was exposed to drinking water with M n concentrations as high as 29 mg/L 

for three months. Symptoms included lethargy, increased muscle tonus, tremor, mental 

disturbances and even death. The elderly were most severely affected, while 6 children 

(age 1-10) were not intoxicated (Kawamura et al., 1941). 

Recently it has been suggested that inhalation of Mn containing water through the 

olfactory system during showering may be an important route for Mn to reach the central 

nervous system (Eisner and Spangler, 2005). These speculations are based on the 

extrapolation o f data from the investigation of Brenneman et al. (2000) where rats were 

exposed to aerosolised water containing 277 mg/L MnCh.HaO (107 M n mg/L). Using 



A-5 

this data Eisner and Spangler (2005) calculated that a daily 10 minute shower in 
water with a concentration o f 0.5 mg/L Mn may lead to excessive Mn concentration 
entering the brain tissue. While the review of Eisner and Spangler (2005) raises some 
very important questions, an investigation using more relevant M n concentrations would 
be needed to validate these extrapolations. 

There is no information available on the carcinogenic effects o f M n and the U.S.EPA 

classifies M n as a non-carcinogenic (2003b). 

A.3. Ecotoxicology 

Most ecotoxicological data is based on the aqueous M n 2 + ion. There is little published 

information on colloidal or complexed Mn but it is assumed that toxicity o f the soluble 

species wi l l be greater in most cases (C1CAD, 2004). 

The EC/LC 5 0 for some of the most sensitive organisms according to the CICAD for M n 

(CICAD, 2004) are listed in Table A - l . It is often observed that ecotoxicity is the greatest 

in soft waters, additions of lime or organic complexes can significantly reduce the 

ecotoxicity o f Mn (CICAD, 2004). For this reason a range of EC/LC 5 0 are given for 

certain organisms. From this data it would appear that the most sensitive organism is 

Daphnia magna (water flea) which has an EC50 range of between 0.8 mg/L to 76.3 mg/L 

depending on the water hardness (Riemer, 1999). Embryos o f the yellow crab also 

appear to be sensitive to Mn concentration. Concentrations of between 0.01 and 10 mg/L 

resulted in 27 to 45% embryo mortality, however, the response was not concentration-

dependent (Macdonald et al., 1988). 

Ecotoxicity to plants in the terrestrial environment is highly variable, with critical dry 

plant tissue values ranging from 100 to 5000 mg/kg, and greatly influenced by the 

background concentration o f Mn (CICAD, 2004). 
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Table A-1 Toxicity of Mn to aquatic species (taken from CICADS 2004) 

Organism Habitat End-point Mn 
concentration 

(mg/L) 

Reference 

Diatom {Ditylum Marine 5-day EC50 (Growth 1.5 Canterford & 
brightwelli) inhibition) Canterford 

(1980) 
Alga {Scenedesmus Freshwater 12-day E C 5 0 (Growth 5 Fargasova et al. 

quadricaudd) inhibition) (1999) 
Sea Urchin Marine 72-h E C 5 0 (abnormal 5.2 Doyle et al. 

(Heliocidaris larvae) (2003) 
tuberculata) 

Daphnid (Daphnis Freshwater 48-h L C 5 0 0.8-76.3° Reimer(1999) 
magna) 

Coho salmon Freshwater 96-h L C 5 0 2.4-17.4" Reimer(1999) 
{Oncorhynchus 

kisutch) 

Setting a single guidance value for Mn in the various environments is recognized as 

having limited value due to the variety of parameters that have to be taken into account in 

association with M n concentration in order to ascertain its toxicity (CICAD, 2004). 

Overall guidance values have been created using a problematic approach. An overall 

guidance value for the protection of 95% of marine species with 50% confidence was 

derived at 0.3 mg/L. The guidance value for freshwater species in soft waters is 0.2 mg/L. 

No guidance value is given for the terrestrial environment as it is recognized that 

background concentrations need to be taken into account. 

A.4. Threshold levels of Mn in assessing contaminated land 

and waters 

A.4.1.Land 

Currently in South Africa there are no guidelines for the assessment o f contaminated 

land. For this reason contaminated land studies are usually conducted using the various 

international guidelines as a reference. Sometimes the Acceptable Environmental Risk 

(AER) levels for compounds, as given in the Department o f Water and Forestry's 

Minimum Requirements for the Handling, Classification and Disposal o f Hazardous 

Waste (1998), are used to give guidance when assessing contaminated land. The AER 
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level for Mn is 0.3 mg/L in a leachate but this is non-enforceable as it is not a soil 
specific guideline. 

In the USA the U.S.EPA's soil screening levels (SSLs) provide guidelines designed for 

making decisions on which sites need further attention and which sites do not. They have 

been conservatively compiled, with the vision of residential land use. There are two 

approaches to applying the SSL levels to soils: The more stringent generic SSLs can be 

used to assess a site making some conservative, default assumptions. Alternatively a 

more site specific approach can be employed whereby SSLs can be generated for each 

site using a specific risk based approach. Currently there is no generic SSL for Mn. 

A set of eco-soil screening levels have been drawn up by the U.S.EPA (2003) with the 

aim of protecting terrestrial organisms, that are in contact with the soil, against exposure 

to certain contaminants. Manganese appears as one of the 17 metals being considered for 

inclusion; however, at present the specific guidelines surrounding M n are pending. 

In the United Kingdom risk to humans from contaminated land is characterised using the 

Contaminated Land Exposure Assessment (CLEA). The CLE A model uses a number o f 

Soil Guideline Values (SGVs) which are given for priority contaminants. In compiling 

the list of contaminants it is stated that while it is recognized that any substance can be 

toxic given adequate quantities, only contaminants which are likely to pose a risk in 

relation to toxicity and abundance are listed. Manganese is not present in the current list 

of 10 metals which includes Ba, Be, Cd, Cr, Cu, Pb, Hg, N i , V and Zn. The rationale for 

the omission o f M n from the list is stated as 'Soil M n contamination may present a risk to 

the water environment because it may have deleterious effect on water supply due to 

colour and precipitation. It is not included because its moderate toxicity to human health 

in a contaminated land context would not often represent a significant hazard'. 

No target or intervention level is given for Mn within the Dutch soil guidelines. 

Manganese is not listed within the Danish guidelines for contaminants and the French 

guidelines offer no numerical value for Mn. The Australian soil guidelines give a health 

investigation level of 1500 mg/kg for soils proposed for standard residential use and an 

interim ecotoxicological level o f 500 mg/kg. 



A-8 

A.4.2. Water 

The presence of Mn in waters can be problematic because o f its tendency to precipitate 

and stain. This has often resulted in the guideline value for Mn being lower than that 

which wi l l result in adverse health affects. 

The target threshold levels for Mn given in the South African Water Quality guidelines 

are shown in Table A-2. The target levels for both domestic and industrial water use are 

set at the level for maintaining aesthetic water quality (Department o f Water Affairs and 

Forestry, 1996 a and b), while the threshold for irrigation water is based on the 

accumulation o f Mn to phytotoxic levels in the top 15 cm of the soil (Department of 

Water Affairs and Forestry, 1996c). 

Table A-2 South African Water Quality Guideline Mn target threshold values for different water 

uses 

Water use Aquatic 
Environment 

Aquaculture Domesti 
c 

Industry Livestoc 
k 

Irrigation 

Target threshold 
values (mg.L1) 

0.18 0.1 0.05 0.05 10 0.02 

Manganese levels in the various international drinking water quality guidelines are given 

in Table A-3. Manganese is listed on the U.S.EPA secondary drinking water standards. 

The secondary drinking water standards unlike the primary standards are non-enforceable 

guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth 

discoloration) or aesthetic effects (such as taste, odour, or colour) in drinking water. The 

secondary drinking water standard for Mn is 0.05mg/L, while the health reference level is 

0.3 mg/L (U.S.EPA 2003b). 
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Table A-3 International drinking water quality guidelines 

Standard Concentration mg.L 
World Health Organization 

European Union 
U.S.EPA secondary drinking water 

standard 
U.S.EPA Health based level 

Australia 

0.5 
0.05 
0.05 

0.3 
0.1 

A.5. Waste characterisation and management 

A. 5.1. Sampling and mobility testing 

Sampling and mobility testing of wastes is an important part of the waste characterization 

process. Artifacts can arise within the sampling and testing process that can result in 

misleading results. This is particularly important when analyzing samples for Mn. 

Manganese oxides are known to react to changes in their environment. When soils are air 

dried from their field moist state the amount of exchangeable Mn has been shown to 

increase significantly (Fujimoto and Sherman, 1945; Bartlett and James, 1979; Bartlett 

and James, 1980; Goldberg and Smith, 1984; Berndt, 1988; Haynes and Swift, 1991; 

Ross et al., 1994; Bunzl et al., 1999; Makino et al., 2000; Ross et al., 2001). Figure A - l 

shows the increase in exchangeable Mn as a function of time and moisture content in 

soils left on the lab bench to dry for 7 days. This figure shows the significant influence 

soil moisture content has on the release o f exchangeable Mn. 
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Figure A-1 Increase in exchangeable Mn, measured in 0.5 M CaCI 2 , in air-dried soils as a function of 

time and gravimetric moisture content (taken from Dowding, 2004)) 

Sample crushing is also known to increase the concentration of exchangeable Mn in soils 

(Bartlett, 1980). While this phenomenon is well documented, many standard laboratory 

procedures require that soils be air dried, crushed and sieved prior to analysis. These 

procedures are also used by laboratories performing standard leaching procedures such as 

the TCLP (U.S.EPA 1311) and acid rain leach (Minimum Requirements for Handling, 

Classification and Disposal of Hazardous Waste, 1998). This drying phenomenon could 

result in erroneous, elevated concentrations of Mn in leachate studies. Ln ionic solutions 

such as a TCLP solution much of this drying induced exchangeable Mn may be released, 

which could possibly explain why the TCLP is often observed to be particularly 

aggressive towards Mn. 

A.5.2. Overview of the South African Waste Management 

strategy 

The South African Environmental Conservation Act requires that all wastes must be 

classified and disposed of according to the procedures outlined in the Department of 

Water Affairs and Forestry's "Minimum Requirements for the Handling, Classification 

and Disposal of Hazardous Waste". This document outlines the guidelines for 

determining i f a waste classifies as 'general' or 'hazardous'. The 1998 guidelines have 
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recently been updated to a third edition, however, only a draft of the third edition 
(Minimum Requirements for the Handling, Classification and Disposal of Hazardous 
Wastes Draft (2005)) was available at the time of this review. This document will 
hereafter be referred to as Minimum Requirements. 

A.5.2.1. Minimum Requirements for the Handling, Classification 

and disposal of Hazardous Wastes Draft (2005) 

Within the minimum requirements the first approach to waste classification is to identify 

potentially hazardous wastes, from the generating process or industry. Potentially 

hazardous wastes are defined as: 

• Products used in service industries that are classified as hazardous substances, 

e.g., solvents, grease and oil. 

• Putrescible organic wastes, e.g., waste arising from production of edible oils, 

skins and other animal based products. 

• Poisonous or toxic chemicals utilised in agriculture, forestry and related 

industries. 

• Packaging materials contaminated with hazardous substances. 

• Waste arising from hospitals, medical clinics, veterinary services and similar 

services. 

• Pharmaceutical wastes. 

• Residues such as ash, slags and leachate. 

• Waste designated as Hazardous by the authorities. 

A potentially hazardous waste then needs to be characterised and tested to determine i f it 

has hazardous properties. The waste must be classified according to the nine hazard 

characteristics of the South African Bureau of Standards (SABS) Code 0228 "The 

Identification and Classification of Dangerous Substances and Goods". The hazard rating 

of the waste can then be determined based on the toxicity of the material. The hazard 

rating determines the type of landfill to which a waste can be disposed. 
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The SABS Code 0228 is a system for classifying hazardous substances for transport 
purposes. In the Code hazardous substances are given an identification number and 
divided into nine classes: 

Class 1, Explosives 

Class 2, Gases 

Class 3, Flammable Liquids 

Class 4, Flammable Solids 

Class 5, Oxidising Substances and Organic Peroxides 

Class 6, Toxic and Infectious Substances 

Class 7, Radioactive Substances 

Class 8, Corrosive Substances and 

Class 9, Miscellaneous Dangerous Substances 

In an environmental context Class 6: Toxic and Infectious substances must include acute 

mammalian toxicity (LD50) as well as acute ecotoxicity (LC50) data. The hazard rating of 

a waste is determined by its classification within Class 6. In the published guidelines 

(Minimum Requirements for the Handling, Classification and Disposal of Hazardous 

Waste, 1998) it was assumed that aquatic organisms are likely to be the most sensitive to 

contaminants therefore the hazard rating was determined by LC50 ranges. The short 

coming of this was certain compounds, like arsenic, were regulated at doses (0.4 mg/L) 

toxic to humans. In contrast, the Draft edition identifies that both humans and the 

environment need to be treated as end receptors. The values for the LD50 are generated 

from a Reference Dose (RfD) or a Tolerance Daily Intake (TDI). The subclasses of Class 

6 together with the LC 5 0 and L D 5 0 are given in Table A-4. 
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Table A-4 Toxcity criteria used in determining the hazard rating of wastes according to the 
Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste (2005 
draft) 

Class 6 hazard status Hazard 
Rating 

Mammalian 
toxicity mg/kg 

Ecotoxicity ranges for 
fish (96hr) in mg/L 

Extreme Hazardous HR1 5>LD50 1>LC50 

High Hazardous HR2 5<LD50<50 1<LC50<10 
Moderate Hazardous HR3 50<LD5O<500 10<LC5o<100 

Low Hazard HR4 500<LD50<5000 100<LC50<1000 

The hazard rating, determined from the above table, is used to determine the type of 

landfill needed for disposal of the waste. Hazard ratings 1 and 2 can only be disposed of 

in H:H landfills while wastes with hazard ratings of 3 and 4 can be disposed of in either 

H:H or h:H landfills. The design and pollution control measures of H:H landfills are more 

stringent than that of h:H landfills. 

The Acceptable Environmental Risk level of the 1998 guidelines is likely superseded by 

the Acceptable Exposure to the aquatic environment and Acceptable Exposure to human 

health (proposed in the draft guidelines). The Acceptable Exposure to the aquatic 

environment is calculated as being one tenth of the LC50 whilst the Acceptable Exposure 

to human health is calculated on the basis of the RfD or TDI using the formula: 

Acceptable Exposure to human health = TDI or RfD x~y^ 

For Mn the LC50 is 3 mg/L and the RfD is 0.14 mg/kg thus the hazard rating (based on 

both the LC50 and LD5o) for Mn is HR 2. The acceptable exposure to the aquatic 

environment and to human health is 0.3 and 4.9 mg/L, respectively. The most 

conservative exposure concentration becomes the threshold therefore the acceptable 

exposure level for Mn is 0.3 mg/L. This threshold level is the same as the published value 

in the 1998 guidelines. 

The estimated environmental concentration (EEC) represents the exposure by a 

hazardous substance should it leach into an underlying water body. The EEC of all 

compounds in a waste stream need to be determined and compared with Acceptable 

Exposure values to determine whether or not a waste exceeds a threshold concentration. 
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The EEC can be calculated in one of two ways: The first is to apply a generic 
equation based on a fixed, so called 'worst case', scenario where it is assumed that all 
hazardous substances in a waste will be leached into a water body 15 cm below the 
surface. It works on the assumption that ecosystems can handle a certain maximum load 
applied at a certain rate. Thus the equation for the EEC in ug/L is: 

EEC(ppb) = dose(g/ha/month) 
Weight of underground body of water 

This simplifies to the formula: 

EEC(ppb) = dose(g I ha I month) x 0.66 

where the dose represents the total amount in grams of a substance in the waste that can 

be disposed of on one hectare of the disposal site per month. 

A site specific EEC can also be generated whereby site specific attenuation factors, such 

as waste treatment, mode of site operation, climatic conditions and engineering attributes 

in the form of covers, liners and leachate interception are taken into consideration. 

I f the EEC is calculated to be less than the lowest Acceptable Exposure level (AEL), 300 

ppb for Mn, the waste can be delisted to a lower hazard rating. I f the EEC exceeds the 

lowest AEL the waste remains in its hazard group and needs to be disposed of 

accordingly. The total amount of a constituent that can be disposed of per month can be 

calculated from the lowest AEL/0.66. For Mn this is 455 g/ha/month. The EEC is 

calculated using the total concentration of the constituent in the waste. Leaching tests 

such as the Toxicity Characteristic Leaching Procedure (TCLP) of the U.S.EPA and the 

Acid Rain test can be used i f a particular waste is proved to be insoluble. The 

concentration of the constituent in the leachate is then used to calculate the EEC. The 

TCLP leach is used when the waste is proposed to be co-disposed with domestic waste, in 

which organic acids may be generated. The Acid Rain test is used when inorganic wastes 

are disposed of in a dedicated site and the likelihood of organic acids is low. 
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In an outline of the Draft 2005 guidelines it was made note of that the current 
mobility tests were being reviewed due to the apparent selectivity of the TCLP test for 
Mn. However, no mention of this was made in the Draft 2005 edition. 

A.5.3. Overview of international waste management 

strategies 

A.5.3.1. United States Environmental Protection Agency 

The first federal law to address hazardous wastes in the USA was the Resource 

Conservation and Recovery Act (RCRA). The U.S. Environmental Protection Agency 

(U.S.EPA) developed a regulatory program to implement the RCRA. This resulted in 

U.S.EPA regulating waste generators, transporters, treatment, storage, and disposal 

facilities by implementing a three tiered approach to waste disposal. The Landfill 

Disposal Restrictions (LDR) regulations ensures that hazardous waste cannot be placed 

on the land until the waste meets specific treatment standards to reduce the mobility or 

toxicity of the hazardous constituents. The U.S.EPA expresses treatment standards either 

as required treatment technologies that must be applied to the waste or contaminant 

concentration levels that must be met. The Landfill Disposal Unit (LDU) regulations and 

Groundwater monitoring are the final two tiers of the regulatory programme. Only the 

LDR will be considered in this review. 

To be considered as a hazardous waste a substance needs to fall within the definition of a 

solid waste which is defined as: 

"Any garbage, refuse, sludge from a wastewater treatment plant, or air pollution control 

facility, and other discarded material, including solid, liquid, semisolid, or contained 

gaseous material, resulting from industrial, commercial, mining, and agricultural 

operations and from community activities." 

A solid waste is considered hazardous i f the following two conditions are met: first, solid 

wastes are hazardous wastes i f they are listed by U.S.EPA as hazardous wastes in 40 CFR 

Part 261 Subpart D. Second, solid wastes are also hazardous wastes i f they exhibit any of 

the following characteristics: ignitable, corrosive, reactive or toxic (based on the toxicity 
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leaching procedure). A waste that has been identified as hazardous must comply 
with the LDR regulations before being land filled. Since the physical and chemical 
composition of a waste significantly impacts the effectiveness of a given treatment 
technology, U.S.EPA divides the treatment standard for each waste code into two 
categories: wastewaters and non-wastewaters. The Agency defines these two categories 
based on the percentages of total organic carbon (TOC) and total suspended solids (TSS) 
present in a waste, since these factors commonly impact the effectiveness of treatment 
methods. Wastewaters contain less than one percent TOC by weight and less than one 
percent TSS by weight. Non-wastewaters include wastes that do not meet the definition 
of wastewater. 

For metal containing wastes the toxicity characteristic is most relevant. There are only 

twelve metals which are listed on the Toxicity Characteristic list of contaminants. 

Manganese is not present in this list and therefore wastes will not be characterized as 

hazardous based on their Mn content. 

In 2000, the U.S.EPA proposed listing a titanium dioxide non-wastewater stream in the 

inorganic chemicals industry, with Mn as one of the constituents for which it would be 

listed (65 FR55684-55782, September 14, 2000). Furthermore the U.S.EPA proposed 

that Mn be listed as a hazardous constituent and thus be added to the Treatment Standard 

for hazardous wastes and the Universal Treatment Standard (UTS) at concentrations of 

17.1 mg/L for wastewaters and 3.6 mg/L (TCLP) for non-wastewaters. However, when 

the proposed rule was opened for public comment there was strong objection against the 

listing of Mn as a hazardous constituent. The various stakeholders opposed the proposal 

on the following grounds amongst others: 

• The ubiquitous nature of Mn in the environment. With background levels of 40 to 

900 mg/kg and an approximate mean of 300 mg/kg the U.S.EPA would be 

proposing a treatment standard that is well below concentration that Mn occurs in 

many natural soils. 

• In contrast to inhaled Mn, ingested Mn has rarely been associated with toxicity. 

When ingested, Mn is considered to be among the least toxic of the trace elements 

and the proposed UTS for non-wastewaters of 3.6 mg/L TCLP is well below the 
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established safe threshold for human exposure represented by the RfD of 
0.14 mg/kg-day (or 10 mg/day for the average 70 kg adult). 

• Manganese does not appear to be a major chemical of concern for Superfund 

cleanups. The U.S.EPA's "Generic Soil Screening Levels (SSLs)" do not include 

a SSL for Mn. There are SSLs for 14 other metals, including antimony, arsenic, 

barium, beryllium, cadmium, chromium (total, III and VI), cyanide, lead, nickel, 

selenium, silver, thallium, vanadium and zinc, which demonstrates the low 

toxicity and lack of historical concern for Mn by the Agency at Superfund sites. 

• There are no recommended values or ranges of dissolved Mn in the U.S.EPA's 

water quality standards. 

• The proposed regulatory actions relevant to Mn would have far-reaching 

economic impacts not addressed in U.S.EPA's economic impact analysis. 

The strong objections raised against the listing of Mn as a hazardous constituent resulted 

in the U.S.EPA deferring all decisions regarding Mn (Federal Register Vol 66 No 244, 20 

November 2001). No further proposals to list Mn as a hazardous constituent have been 

made by the U.S.EPA. 

A.5.3.2. European Union 

The Hazardous Waste Directive (HWD, Council Directive 91/689/EC) was drawn up by 

the European Union to establish a European-wide definition of hazardous waste. The 

starting point of the HWD is to establish whether a waste is classified as hazardous or 

non-hazardous. The HWD defines hazardous waste as wastes featuring on a list drawn up 

by the European Commission, because they possess one or more of the 14 hazardous 

properties set out in the HWD. These properties are listed in Table A-5. 
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Table A-S Fourteen hazardous waste properties of the European Hazardous Waste Directory 

Hazard Property 
HI Explosive 
H2 Oxidising 

H3A Highly flammable 
H3B Flammable 
H4 Irritant 
H5 Harmful 
H6 Toxic 
H7 Carcinogenic 
H8 Corrosive 
H9 Infectious 
H10 Toxic for reproduction 
H l l Mutagenic 
H12 Release toxic or very toxic gasses 
H13 Substances and preparations capable by any means after disposal of yielding another 

substance e.g. Leachate, which possess any of the characteristics listed above 
H14 Ecotoxic 

To aid in decision making a comprehensive list of wastes was compiled which is known 

as the European Waste Catalogue (EWC). The latest revisions to the EWC were made in 

2002 (EWC 2002). The EWC 2002 is intended to be a catalogue of all wastes, grouped 

according to generic industry, process or waste type. A number of wastes covered by 

hazardous entries on the EWC 2002 are deemed to be hazardous regardless of their 

composition or the concentration of any "dangerous substance" within the waste. Such 

entries have been termed "absolute entries". Wastes that have the potential to be either 

hazardous or non-hazardous depending on their actual composition and the 

concentrations of "dangerous substances" within the waste are known as "mirror entries": 

A "mirror entry" waste can be classified as hazardous i f the threshold limit for a 

particular risk phrase is exceeded. Risk phrases are a classification given in the Approved 

Supply List (ASL), which prescribes hazard information and classification for many 

common chemicals. 

Hazard rating for Mn 

The most pertinent hazardous properties for Mn containing wastes are Hazards 5, 6, 13 

and 14. The process of assigning a hazard class in these hazardous property groups needs 

to be understood to establish the hazard status of Mn containing wastes. 
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Hazards 5 and 6 are determined together and wastes can fall under the categories: 
Acutely toxic; Toxic; and Harmful. The characterization is based on toxicological data 
and each category has different risk phrases and threshold levels as summarized in Table 
A-6. 

Table A-6 Limits for assigning hazards to Harmful and Toxic categories taken from the 

Environment Agency Technical Guidance WM2 (2005) Appendix C 

Classification Risk phrase Thresholds for Limits for assigning 
classification hazard 
as hazardous H5: H6: Toxic 

Harmful 
R26, R27, R28 and combined 

Very toxic risk phrases with or without >0.1% 
R39 

R23, R24, R25 and combined 
Toxic risk phrases with or without >3% 

R39 or R48 
R20, R21, R22, R65, Xn R68 

Harmful and combined risk phrases >25% 
with or without R48 

n/a not 
applicable 

For certain substances and preparations the limiting concentrations for hazard HI3, may 

be calculated from the expected reaction and the likely concentration or production rate 

of new substance, like leachate, that will be produced. This can then be assessed against 

the available limits for hazards HI to HI2. Hazard 13 does not cover reactions that yield 

materials which are ecotoxic (HI4). 

Hazard 14 falls into four categories: Very toxic to aquatic organisms; Toxic to aquatic 

organisms; Harmful to aquatic organisms; and May cause long-term effects in the aquatic 

environment. The risk phrases and ecotoxicological data are summarized in Table A-7. 

0.1% < total _ 0 / 

cone. < 7% 

3% < total 
cone. < 7% 

>25% n/a 
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Table A-7 Classification for the aquatic environment as described in Environment Agency 

Technical Guidance WM2 (2005) Appendix C 

Classification Risk phrase Ecotoxicological data 

Very toxic to 
aquatic 
organisms 

R50 96 hr LC50 (for fish): <1 mg/L; 
or 

48 hr EC50 (for daphnia): <1 mg/L; 
or 

72 hr IC50 (for algae): <1 mg/L 

96 hr LC50 (for fish): <1 mg/L; 
or 

48 hr EC50 (for daphnia): <1 mg/L; 
or 

72 hr IC50 (for algae): <1 mg/L 

Toxic to aquatic 
organism 

R51 96 hr LC50 (for fish): 1 mg/L < LC 5 0 < 10 mg/L; 
or 

48 hr EC50 (for daphnia): 1 mg/L < EC50 < 10 
mg/L; 

or 
72 hr IC50 (for algae): 1 mg/L < IC 5 0 < 10 mg/L 

Harmful to 
aquatic 
organisms 

R52 96 hr LC50 (for fish): 10 mg/L < LC50 <100 
mg/L; 

or 
48 hr EC50 (for daphnia): 10 mg/L < EC50 < 100 

mg/L; or 
72 hr IC50 (for algae): 10 mg/L < IC50 < 100 

mg/L 

May cause long-
term effects in 
the aquatic 
environment 

R53 The substance is not readily degradable; or 
the log Pow > 3.0 (unless the experimentally 
determined BCF < 100) 

Some of the risk phrases associated with aquatic toxicity are additive i.e. the 

concentrations of substances with the same and/or different risk phrases need to be added 

together to determine the correct classification for a preparation and subsequently the 

threshold concentration for determining whether the waste is hazardous by ecotoxicity. 

For example a substance with a risk phrase N: R50-R53 would be very toxic to aquatic 

organisms and may cause long term effects in the aquatic environment. Thus thresholds 

of additive risks must be complied. These are given in Table A-8. 
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Table A-8 Classification Criteria for classifying a waste as ecotoxic on the basis of aquatic 

toxicity taken from Environment Agency Technical Guidance WM2 (2005) Appendix C 

Classification Hazardous waste classification thresholds 

Acute aquatic toxicity and ZN.R50-R53 I / V :/?51 - 53 ZR52-R53 
long-term adverse effects Q 25 + 2 5 + 25 
Acute toxicity L /V : i?50 - i?53 + I /V : /?50 > 25 
Long-term adverse effects £ N : R50 - R53 +1 /V : #51 - R53 + 2 R52 - R53 +1R53 > 25 
Aquatic toxicity £ #52 > 25 

According to the ASL, Mn dioxide has the risk phrase R20/R22, Harmful: i f inhaled or 

swallowed. According to Table A-6 a waste would need to contain 25% MnCh for it to be 

classified as hazardous. The system recognises no ecotoxicological risk associated with 

Mn0 2 

In contrast Mn sulfate has two risk phrases: R48/R20/R22, Harmful: danger of severe 

damage to health by prolonged exposure through inhalation and i f swallowed and 

R51/53: Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic 

environment. According to Table A-6 a waste would only be considered as harmfully 

hazardous i f the waste contained 25% Mn sulfate. The ecotoxic risk phrase for MnSCU 

falls within the toxic category with a LC50 of between 1 and 10 mg/L, it is also 

considered a persistent substance and so is allocated the risk phrase for long-term adverse 

effects. From Table A-8 it can be seen that Mn sulfate containing wastes can qualify as 

hazardous due to acute toxicity or through long-term adverse effects. For it to qualify for 

acute toxicity a waste needs to have a concentration of 2.5% MnSC<4 and to classify as 

hazardous with regard to long-term effects it needs to have a concentration of 25%; 

therefore the threshold for Mn sulfate concentration is 2.5% i.e. 25000 mg/kg (9105 mg 

Mn.kg"1). 

A.5.3.3. Basel Convention 

The Basel Convention on the control of trans-boundary movements of hazardous wastes 

and their disposal was adopted in 1989 in response to concerns about toxic waste from 

industrialized countries being dumped in developing countries and countries with 
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economies in transition. In recent years the convention has focused on providing 
guidance for the management of hazardous wastes. 

Wastes are generally classified on the basis of three waste lists given in Annex I I I , VII I 

and IX of the Basel Convention. Wastes contained in Annex VIII are characterized as 

hazardous, wastes under Annex IX are characterized as non-hazardous and Annex II I is a 

list of hazardous characteristics which need to be considered even i f a waste classifies as 

an Annex VII I or IX waste. 

Manganese is not one of the nine listed metals in Annex VII that constitute to a waste 

being hazardous and none of the wastes streams in Annex VII are listed due to the 

presence of Mn. Metallic Mn scrap and spent Mn catalysts are amongst the waste listed in 

Annex IX which classify as non-hazardous. This means that the hazard status of Mn 

containing wastes will be determined by one or more of the 14 hazard characteristics 

listed in Appendix I I I . 

The fourteen hazard characteristics in Annex II I are essentially the same as those listed 

under the HWD of the European Union (Table A-5): H I - Explosive; H3- Flammable 

liquids; H4.1- Flammable solids; H4.2-substances prone to spontaneous combustion; 

H4.3 Substances, which in contact with water emit flammable gases; H5.1 Oxidising; 

H5.2 organic peroxides; H6.1 Poisonous (Acute); H6.2 Infections substances; H8 

corrosive; H10 Substances which liberate toxic gasses in contact with water; HI 1 Toxic; 

H12 Ecotoxic and H13 Capable, by any means, after disposal, of yielding another 

material, e.g. leachate, which possess any of the characteristics listed above. 

The most relevant to Mn containing materials are Hazard Characteristics HI 1- Toxic; 

H12:-Ecotoxic and H13-Capable of generating substances that display one or more of the 

13 Hazardous Characteristics. 

For hazards H I 1 and H12 a similar approach to the European Hazardous Waste Directive 

is taken using the same risk phrase and risk phrase thresholds. Thus Mn oxide will be 

classified as R20/R22/R48 and Mn sulfate as R20/R22/R48 and R51/R53. Under the 
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Basel Convention Mn sulfate will classify under HI2 (ecotoxic) as chronic category 
2, with the concentration threshold of 2.5% w/w. 

The classification of a metal as persistent (R53) and therefore as chronically ecotoxic is 

based on the bioavailability of the metal in the aqueous environment (OECD, 2001). A 

metal that is rapidly removed from solution though sorption, precipitation etc will be less 

bioavailable than a metal that does not undergo rapid partitioning between the solid and 

aqueous phase. Divalent Mn is very soluble which is likely to account for its 

classification as persistent (R53) and therefore as chronically ecotoxic. Manganese oxide 

does not have a risk phrase for ecotoxicology. 

The hazard group HI 3 is a relatively new addition to the hazard characteristics of Annex 

I I I . The capacity of a waste to generate hazardous leachate is one such scenario that 

would result in a waste being classified as hazardous under HI3 category. There is no 

harmonized protocol laid out by the Basel Convention on how to analyse for hazardous 

leachates or threshold concentrations for constituents in the leachate. The approaches 

and leachate threshold concentrations of various countries are given in the interim 

guidelines on hazard characteristic HI3 (Interim guidelines on hazard characteristic HI3 

of Annex I I I to the Basel Convention, 2005). The threshold leachate contaminant 

concentrations in guidelines from Canada, Thailand, Austria, Australia and Costa Rica 

are given as interim guidance. None of these countries list Mn as a contaminant. Both the 

Canadian and Australian approach is to apply a dilution attenuation factor (DAF) to 

drinking water guidelines to give concentration threshold values for TCLP leachate 

contaminants. In most cases the DAF is 100 so the maximum concentration of the toxic 

constituent in the waste can be one hundred times the drinking water standard or less 

without posing a hazard to human health due to the dilution that takes place before the 

water is consumed. It has been suggested that using the World Health Organization 

(WHO) drinking water standards may be appropriate to base an approach for 

harmonizing the threshold levels of contaminants in leachate. Applying a 100 DAF to 

these guideline values would result in the cut-off threshold concentration for Mn in a 

leachate being 50 mg/L. 
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A.6. Comparative approaches to Mn waste classification 

The classification of Mn containing wastes differs significantly in the various 

international waste classification strategies. The Minimum Requirements of South Africa 

are by far the most conservative with relation to Mn. According to the U.S.EPA, wastes 

are not classified as hazardous on the basis of their Mn content. When Mn was being 

considered as a possible hazardous constituent the proposed threshold level for non-

wastewaters was 3.6 mg/L in a TCLP test, which is 12 times higher than the Minimum 

Requirements Acceptable Exposure for the aquatic environment of 0.3 mg/L. The strong 

opposition against the listing of Mn resulted in the U.S.EPA deferring their decision on 

Mn and no further proposals have been made by the U.S.EPA. 

The EU Directive classifies wastes based on their specific risk phrase. Unlike the 

U.S.EPA and the Minimum Requirement guidelines the EU directive recognizes the 

importance of speciation when determining the classification of Mn with MnSCu being 

more conservatively classified than Mn oxide. According to the risk phrase of MnSC>4 it 

is acutely toxic to aquatic organisms with long term effects. This corresponds to the LC50 

of Mn falling between 1 and 10 mg/L and the fact that M n 2 + is fairly soluble. With this 

classification it is recommended that the maximum amount of Mn as MnSC>4 allowed in a 

waste before it is termed hazardous is 9105 mg/kg. Direct comparison of this value with 

the Minimum Requirements specification of 0.3 mg/L cannot be made easily because of 

the different units; however, supposing that the 0.3 mg/L is applied to a leachate 

concentration, using a 1:20 soil solution ratio, a value of 455 mg/L can be calculated 

from the European threshold for the same ratio assuming all the Mn was rendered 

soluble. While direct comparison of the two threshold concentrations should be made 

with some caution, it would appear that the EU Directive is significantly more lenient 

with respect to Mn. 

Manganese is not one of the nine metals listed in Annex III of the Basel Convention or 

the EWC that render a waste hazardous. The Basel convention has only established 

interim guidelines for assessing the generation of hazardous leachate from waste. These 

guidelines are based on the approach of Austria, Australia, Canada, Thailand and Costa 
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Rica. None of these countries include Mn in their list of hazardous leachate 
constituents and i f the WHO drinking water value for Mn were to be applied together 
with a DAF of 100 the allowable concentration of Mn in a leachate would be 50 mg/L. 
This again is significantly more lenient than the 0.3 mg/L given by Minimum 
Requirements. 

A. 7. Discussion and conclusions 

Manganese is ubiquitous and can be present at both deficient and toxic concentrations in 

the environment. It is a difficult element to regulate because acceptable concentration 

thresholds are often exceeded in nature. 

The harmful effects of inhaled Mn are well recognized but the effects of Mn ingestion are 

less understood. The possibility of Mn being inhaled through Mn laden shower water is 

an aspect of Mn toxicity that needs to be confirmed. The aquatic organisms appear to be 

the most sensitive to dissolved Mn but this sensitivity is highly dependent on factors such 

as total organic carbon and water hardness, which makes a single guideline value difficult 

to generate unless the worst case scenario is always assumed. 

In the light of international guidelines, the South African approach towards Mn appears 

conservative, despite using universal ecotoxicological data. Minimum Requirements 

guidelines do not apply a dilution attenuation factor in devising threshold concentrations. 

Current Minimum Requirements guidelines would protect sensitive aquatic species i f 

they were to be exposed to undiluted TCLP or acid rain leachate. According to the 

Acceptable Exposure Value of 300 ppb for Mn the maximum amount of Mn that can be 

disposed of in a leachate-controlled landfill is 454.5 g/ha/month. I f the mean Mn 

concentration in natural soils is taken to be 300 mg/kg (CICAD, 2004) this maximum 

limit would only allow 1.5 tons of soil to be disposed of in a leachate-controlled landfill 

per month; a higher load would need to be disposed of in a H:H waste dump. While it is 

understood that when dealing with potential contaminants it is sensible to stand on the 

side of caution, the fate of Mn in the vadose zone and groundwater should be modeled to 

establish whether it is reasonable to accept 0.3 mg/L in a leachate as the limit to which an 

organism will be exposed. 
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Appendix B.X-ray diffraction patterns 
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Figure B-l X-ray diffraction patterns of the clay fraction from the Wessels type (Wessels and 

Nchwaning), Mamatwan type (Mamatwan and Gloria) and Hotazel type tailings. 
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Appendix C.Manganite characterization 
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Figure C-1 X-ray diffraction pattern of synthetic manganite, peaks labelled with d-distances (A) 

Figure C-2 Environmental scanning electron image of freeze dried synthetic manganite 
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Appendix D.Kinetic data 
Table D-1 Average Mn concentrations (of three replicates) measured after reaction of HT tailings 
with pH 4, 0.14 mM AO 7 and pH 4 acetate blanks using surface area concentrations [SA] of 4.8,12 
and 48 m 2.L'. [Mn|dl„ calculated as difference between Mn released in dye treatments and Mn 
released in blank samples (s = standard deviation) 

Time (min) Dye (mM) s Blank (mM) s [Mn]diss (M) s 

[SA] = 48 
0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.5 9.45E-03 5.14E-05 8.01 E-03 1.26E-03 1.44E-06 1.26E-06 
1.0 1.50E-02 2.19E-04 1.10E-02 1.40E-03 3.91 E-06 1.42E-06 
1.8 1.91E-02 2.57E-04 1.34E-02 1.12E-03 5.70E-06 1.15E-06 

15.0 5.68E-02 3.99E-04 3.50E-02 1.52E-03 4.79E-05 1.57E-06 
30.0 8.29E-02 4.47E-03 5.25E-02 3.95E-03 8.29E-05 5.97E-06 
60.0 1.35E-01 1.94E-03 7.97E-02 5.82E-03 1.40E-04 6.13E-06 
120.0 2.20E-01 6.31 E-03 1.42E-01 1.18E-02 2.08E-04 1.34E-05 

[SA] = 12 
0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 O.00E+00 0.00E+00 
0.5 3.13E-03 5.55E-04 2.47E-03 5.18E-04 6.55E-07 7.59E-07 
1.0 4.72E-03 1.09E-03 3.99E-03 2.83E-04 7.33E-07 1.12E-06 
1.8 5.80E-03 1.03E-03 5.16E-03 3.82E-04 6.36E-07 1.09E-06 

30.0 3.41 E-02 1.84E-03 1.87E-02 1.02E-03 1.54E-05 2.11 E-06 
60.0 5.56E-02 3.11 E-03 2.83E-02 9.30E-04 2.73E-05 3.24E-06 
120.0 8.94E-02 3.16E-03 3.47E-02 8.49E-03 5.48E-05 9.06E-06 

[SA] = 4.8 
0.0 O.OOE+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.5 1.42E-03 1.82E-04 1.11 E-03 0.00E+00 3.09E-07 1.82E-07 
5.0 4.55E-03 7.19E-04 4.00E-03 5.09E-04 5.52E-07 8.81 E-07 
15.0 9.39E-03 8.47E-04 6.33E-03 9.28E-04 3.05E-06 1.26E-06 
30.0 1.37E-02 9.56E-04 8.76E-03 1.15E-03 4.93E-06 1.49E-06 
60.0 2.51 E-02 4.82E-03 1.41 E-02 1.94E-03 1.10E-05 5.19E-06 
120.0 4.49E-02 2.81 E-03 2.22E-02 2.76E-03 2.26E-05 3.94E-06 
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Table D-2 Average Mn concentrations (of three replicates) measured after reaction of HT 
tailings with pH 4, 0.14 mM AY 36 and pH 4 acetate blanks using surface area concentrations [SA| 
of 4.8, 12 and 48 m2.L"'. [Mn|dlBS calculated as difference between Mn released in dye treatments and 
Mn released in blank samples (s = standard deviation) 

Time [Mn]d i s s 

(min) Dye (mM) s Blank (mM) s (M) s 
[SA] = 48 

0.0 O.OOE+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.5 1.85E-02 1.10E-03 8.01 E-03 1.26E-03 1.05E-05 1.67E-06 
1.0 3.03E-02 8.63E-04 1.10E-02 1.40E-03 1.92E-05 1.65E-06 
1.8 4.07E-02 1.75E-03 1.34E-02 1.12E-03 2.73E-05 2.08E-06 
2.5 5.13E-02 3.72E-03 1.58E-02 1.60E-03 3.55E-05 4.04E-06 
5.0 7.86E-02 6.50E-03 2.07E-02 8.66E-04 5.79E-05 6.56E-06 
15.0 1.39E-01 8.99E-03 3.50E-02 1.52E-03 1.04E-04 9.12E-06 
30.0 1.97E-01 1.31E-02 5.25E-02 3.95E-03 1.45E-04 1.37E-05 
60.0 2.73E-01 1.85E-02 7.97E-02 5.82E-03 1.94E-04 1.94E-05 
120.0 3.53E-01 1.64E-02 1.42E-01 1.18E-02 2.11 E-04 2.02E-05 

[SA] = 12 
0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.5 6.96E-03 8.65E-04 2.47E-03 5.18E-04 4.49E-06 1.01E-06 
1.0 1.40E-02 5.72E-04 3.99E-03 2.83E-04 1.00E-05 6.39E-07 
1.8 2.05E-02 6.32E-04 5.16E-03 3.82E-04 1.54E-05 7.39E-07 
15.0 6.99E-02 1.62E-03 1.02E-02 7.93E-04 5.97E-05 1.80E-06 
30.0 1.17E-01 2.74E-03 1.87E-02 1.02E-03 9.84E-05 2.92E-06 
60.0 1.78E-01 2.37E-03 2.83E-02 9.30E-04 1.50E-04 2.55E-06 
120 2.66E-01 1.75E-02 3.47E-02 8.49E-03 2.31 E-04 1.94E-05 

[SA] = 4.8 
0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

0.5 3.05E-03 0.00E+00 1.11 E-03 0.00E+00 1.95E-06 0.00E+00 
1 5.28E-03 3.40E-04 1.79E-03 4.31 E-04 3.48E-06 5.49E-07 

1.8 7.13E-03 5.83E-04 2.16E-03 4.11E-04 4.96E-06 7.13E-07 
5 1.77E-02 6.88E-04 4.00E-03 5.09E-04 1.37E-05 8.56E-07 
15 3.03E-02 1.83E-03 6.33E-03 9.28E-04 2.40E-05 2.05E-06 
30 4.55E-02 4.92E-03 8.76E-03 1.15E-03 3.68E-05 5.05E-06 
60 8.24E-02 1.02E-03 1.41E-02 1.94E-03 6.84E-05 2.19E-06 
120 1.40E-01 2.32E-02 2.22E-02 2.76E-03 1.18E-04 2.34E-05 
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Table D-3 Average Mn concentrations (of three replicates) measured after reaction of HT 
tailings with pH 4, 0.07, 0.28 and 0.7 mM AO 7 and pH 4 acetate blanks; |SA] = 48 m2.L"'. [Mn]dlss 

calculated as difference between Mn released in dye treatments and Mn released in blank samples (s 
= standard deviation) 

Time (min) Dye (M) s 
Blank 
(M) s 

[Mn]d i s s 

(M) s 
0.07 mM 

0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.5 1.31E-05 8.28E-07 9.78E-06 6.56E-08 3.36E-06 8.30E-07 
1.0 1.77E-05 5.01 E-07 1.39E-05 1.03E-07 3.82E-06 5.11 E-07 
1.8 2.15E-05 8.92E-07 1.73E-05 7.32E-07 4.28E-06 1.15E-06 
2.5 2.49E-05 1.18E-06 2.05E-05 0.00E+00 4.37E-06 1.18E-06 
5.0 3.44E-05 8.88E-07 2.48E-05 1.27E-06 9.62E-06 1.55E-06 
10.0 4.75E-05 1.67E-06 3.34E-05 1.50E-06 1.41 E-05 2.25E-06 
15.0 5.82E-05 1.82E-06 4.09E-05 1.65E-06 1.73E-05 2.46E-06 
30.0 8.74E-05 2.32E-06 5.92E-05 1.74E-06 2.82E-05 2.90E-06 
60.0 1.60E-04 5.10E-05 9.15E-05 2.74E-06 6.80E-05 5.10E-05 
120.0 2.24E-04 2.79E-05 1.36E-04 7.31 E-06 8.83E-05 2.88E-05 
240.0 3.35E-04 5.10E-05 2.19E-04 1.18E-05 1.16E-04 5.23E-05 
1080.0 9.46E-04 2.19E-05 7.04E-04 1.16E-05 2.42E-04 2.48E-05 

0.28 (mM) 
0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.5 1.17E-05 7.67E-07 9.78E-06 6.56E-08 1.88E-06 7.70E-07 
1.0 1.69E-05 7.20E-07 1.39E-05 1.03E-07 3.02E-06 7.27E-07 
1.8 2.15E-05 5.18E-07 1.73E-05 7.32E-07 4.27E-06 8.97E-07 
2.5 2.51 E-05 1.10E-06 2.05E-05 0.00E+00 4.55E-06 1.10E-06 
5.0 3.83E-05 3.49E-06 2.48E-05 1.27E-06 1.35E-05 3.72E-06 
15.0 6.82E-05 1.06E-05 4.09E-05 1.65E-06 2.73E-05 1.07E-05 
30.0 1.07E-04 2.10E-05 5.92E-05 1.74E-06 4.76E-05 2.10E-05 
60.0 1.81E-04 3.00E-05 9.15E-05 2.74E-06 8.96E-05 3.02E-05 
120.0 2.64E-04 4.70E-05 1.36E-04 7.31 E-06 1.28E-04 4.76E-05 
240.0 4.41 E-04 1.17E-04 2.19E-04 1.18E-05 2.22E-04 1.18E-04 
360.0 5.89E-04 1.49E-04 3.15E-04 2.51 E-05 2.74E-04 1.51 E-04 
1080.0 1.47E-03 3.28E-04 7.04E-04 1.16E-05 7.69E-04 3.28E-04 

0.7 (mM) 
0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.5 1.33E-05 7.71 E-08 9.78E-06 6.56E-08 3.56E-06 1.01 E-07 
1.0 2.08E-05 2.01 E-06 1.39E-05 1.03E-07 6.89E-06 2.01 E-06 
1.8 2.78E-05 4.06E-06 1 73E-05 7.32E-07 1.05E-05 4.13E-06 
2.5 3.40E-05 5.63E-06 2.05E-05 0.00E+00 1.35E-05 5.63E-06 
5.0 5.21 E-05 8.28E-06 2.48E-05 1.27E-06 2.73E-05 8.38E-06 
15.0 1.03E-04 1.27E-05 4.09E-05 1.65E-06 6.17E-05 1.28E-05 
30.0 1.65E-04 1.53E-05 5.92E-05 1.74E-06 1.06E-04 1.54E-05 
60.0 2.40E-04 2.01 E-06 9.15E-05 2.74E-06 1.48E-04 3.39E-06 
120.0 4.30E-04 0.00E+00 1.36E-04 7.31 E-06 2.93E-04 7.31 E-06 
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Table D-4 Average Mn concentrations (of three rcplicates)measured after reaction of HT tailings 
with pH 4, 0.07,0.28 and 0.7 mM AO 7 and pH 4 acetate blanks; [SA] = 48 m 2 .L [Mn| d l s , calculated 
as difference between Mn released in dye treatments and Mn released in blank samples (s = standard 
deviation) 

Time (min) Dye (M) s Blank (M) s [Mn]diss (M) s 
0.07(mM) 

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.5 1.66E-05 2.22E-06 9.78E-06 6.56E-08 6.87E-06 2.22E-06 
1 2.78E-05 2.22E-06 1.57E-05 1.03E-07 1.21E-05 2.22E-06 

1.8 3.63E-05 1.85E-06 1.73E-05 7.32E-07 1.91E-05 1.99E-06 
2.5 4.54E-05 4.22E-06 1.96E-05 0.00E+00 2.58E-05 4.22E-06 
5 7.20E-05 6.70E-06 2.48E-05 1.27E-06 4.72E-05 6.82E-06 
10 1.07E-04 6.54E-06 3.34E-05 1.50E-06 7.31 E-05 6.71 E-06 
15 1.30E-04 5.49E-06 4.09E-05 1.65E-06 8.92E-05 5.74E-06 
30 1.85E-04 4.03E-06 5.92E-05 1.74E-06 1.26E-04 4.39E-06 
60 2.50E-04 4.05E-06 9.15E-05 2.74E-06 1.59E-04 4.89E-06 
120 3.35E-04 1.17E-05 1.36E-04 7.31 E-06 1.99E-04 1.38E-05 

0.14 (mM) 
0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

0.5 1.85E-05 1.10E-06 8.01 E-06 1.26E-06 1.05E-05 1.67E-06 
1 3.03E-05 8.63E-07 1.10E-05 1.40E-06 1.92E-05 1.65E-06 

1.8 4.07E-05 1.75E-06 1.34E-05 1.12E-06 2.73E-05 2.08E-06 
2.5 5.13E-05 3.72E-06 1.58E-05 1.60E-06 3.55E-05 4.04E-06 
5 7.86E-05 6.50E-06 2.07E-05 8.66E-07 5.79E-05 6.56E-06 
15 1.39E-04 8.99E-06 3.50E-05 1.52E-06 1.04E-04 9.12E-06 
30 1.97E-04 1.31E-05 5.25E-05 3.95E-06 1.45E-04 1.37E-05 
60 2.73E-04 1.85E-05 7.97E-05 5.82E-06 1.94E-04 1.94E-05 
120 3.53E-04 1.64E-05 1.42E-04 1.18E-05 2.11E-04 2.02E-05 



Tabic 4-D continued 

D-5 

Time (min) Dye (M) sd Blank (M) sd (MnldiSB (M) sd 
0.7 mM 

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 O.OOE+00 
0.5 5.18E-05 6.90E-06 9.78E-06 6.56E-08 4.20E-05 6.90E-06 
1 7.97E-05 5.93E-06 1.57E-05 1.03E-07 6.40E-05 5.94E-06 

1.8 1.03E-04 1.03E-05 1.73E-05 7.32E-07 8.54E-05 1.03E-05 
2.5 1.23E-04 1.29E-05 1.96E-05 0.00E+00 1.04E-04 1.29E-05 
5 1.71E-04 1.80E-05 2.48E-05 1.27E-06 1.46E-04 1.81 E-05 
10 2.38E-04 2.71 E-05 3.34E-05 1.50E-06 2.04E-04 2.71 E-05 
15 2.77E-04 3.38E-05 4.09E-05 1.65E-06 2.36E-04 3.38E-05 
30 4.03E-04 5.08E-05 5.92E-05 1.74E-06 3.44E-04 5.08E-05 
60 6.20E-04 5.87E-05 9.15E-05 2.74E-06 5.29E-04 5.87E-05 
120 8.49E-04 1.43E-04 1.36E-04 7.31 E-06 7.13E-04 1.44E-04 

0.28 (mM) 
0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

0.5 3.36E-05 5.10E-06 9.78E-06 6.56E-08 2.38E-05 5.10E-06 
1 6.19E-05 6.39E-06 1.57E-05 1.03E-07 4.62E-05 6.39E-06 

1.8 9.52E-05 1.92E-05 1.73E-05 7.32E-07 7.79E-05 1.92E-05 
2.5 1.18E-04 2.99E-05 1.96E-05 0.00E+00 9.85E-05 2.99E-05 
15 2.84E-04 3.32E-05 4.09E-05 1.27E-06 2.43E-04 3.32E-05 
30 4.14E-04 4.81 E-05 5.92E-05 1.50E-06 3.55E-04 4.81 E-05 
60 5.39E-04 6.10E-05 9.15E-05 1.65E-06 4.48E-04 6.10E-05 
120 6.96E-04 6.02E-05 1.36E-04 1.74E-06 5.60E-04 6.02E-05 
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Table D-S Average Mn concentrations (of three replicates) measured after reaction of HT 
tailings with pH 4, pH 5 and pH 6, 0.14 mM AY 36 solutions and the corresponding acetate blanks; 
[SA] = 48 m 2.L'. [Mn]d l u calculated as difference between Mn released in dye treatments and Mn 
released in blank samples (s = standard deviation) 

Blank 
Time (min) Dye (M) s (M) s [Mn]d i s s(M) s 

pH 4 
0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.5 1.85E-05 1.10E-06 5.00E-04 8.01 E-06 1.26E-06 1.05E-08 
1.0 3.03E-05 8.63E-07 1.00E-03 1.10E-05 1.40E-06 1.92E-08 
1.8 4.07E-05 1.75E-06 1.80E-03 1.34E-05 1.12E-06 2.73E-08 
2.5 5.13E-05 3.72E-06 2.50E-03 1.58E-05 1.60E-06 3.55E-08 
5.0 7.86E-05 6.50E-06 5.00E-03 2.07E-05 8.66E-07 5.79E-08 
15.0 1.39E-04 8.99E-06 1.50E-02 3.50E-05 1.52E-06 1.04E-07 
30.0 1.97E-04 1.31 E-05 3.00E-02 5.25E-05 3.95E-06 1.45E-07 
60.0 2.73E-04 1.85E-05 6.00E-02 7.97E-05 5.82E-06 1.94E-07 
120.0 3.53E-04 1.64E-05 1.20E-01 1.42E-04 1.18E-05 2.11 E-07 
pH 5 
0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.5 5.74E-06 1.89E-06 4.60E-06 4.23E-07 1.14E-06 1.89E-06 
1.0 1.18E-05 4.62E-07 6.78E-06 4.60E-07 5.07E-06 4.62E-07 
2.0 1.50E-05 3.74E-07 8.04E-06 7.98E-07 7.01 E-06 3.74E-07 
2.5 2.15E-05 2.72E-07 9.70E-06 1.27E-06 1.18E-05 2.72E-07 
5.0 2.88E-05 8.22E-07 1.14E-05 1.31 E-06 1.74E-05 8.22E-07 
10.0 4.24E-05 2.89E-06 1.40E-05 2.19E-06 2.84E-05 2.89E-06 
15.0 5.52E-05 2.51 E-06 1.76E-05 3.51 E-06 3.76E-05 2.51 E-06 
30.0 8.47E-05 7.28E-06 2.76E-05 3.92E-06 5.71 E-05 7.28E-06 
60.0 1.21 E-04 1.42E-05 4.11 E-05 8.39E-06 7.95E-05 1.42E-05 
120.0 1.64E-04 2.35E-05 6.69E-05 2.08E-05 9.66E-05 2.35E-05 
pH6 
0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.5 2.21 E-06 6.39E-08 2.21 E-06 1.00E-07 6.06E-09 6.39E-08 
1.0 4.20E-06 2.38E-07 3.08E-06 7.57E-08 1.12E-06 2.38E-07 
2.0 5.29E-06 2.82E-07 3.59E-06 1.38E-07 1.70E-06 2.82E-07 
2.5 5.65E-06 2.18E-07 3.85E-06 1.39E-07 1.81 E-06 2.18E-07 
10.0 8.95E-06 1.20E-06 5.70E-06 3.38E-07 3.25E-06 1.20E-06 
15.0 1.16E-05 8.76E-07 5.98E-06 6.67E-07 5.58E-06 8.76E-07 
30.0 1.53E-05 8.71 E-07 7.33E-06 5.37E-07 7.94E-06 8.71 E-07 
60.0 2.11E-05 1.14E-06 9.02E-06 9.62E-07 1.21 E-05 1.14E-06 
120.0 3.01 E-05 1.97E-06 1.27E-05 1.61 E-06 1.74E-05 1.97E-06 
360.0 4.69E-05 1.72E-06 2.10E-05 8.20E-07 2.59E-05 1.72E-06 
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Table D-6 Statistical data for testing the significance of the slope (rate order) for AO 7 reactions 

_rsA]_ 

(Xi -Xa _y±y_ (yi-y)A2 sy/x sb V'b 
t-value 
(f=2) 

1.569 1.151 
2.485 0.025 
3.871 1.512 

<av =2.642 

-15.425 -15.488 0.063 0.004 
-14.509 -14.402 -0.107 0.011 
-12.717 -12.759 0.042 0.002 
7(Xj-x 3 v) A2 = 2.689 

0.131 0.080 0.003 3.367 

7(yi-y)A2 =0.017 

[AO 7] 

(Xi-Xav ) A 2 y-y (yi-y)A2 sy/x sb Vb 
t-value 
(f=2) 

-7.696 1.512 
-5.394 1.151 
-6.310 0.025 
x a v =-6.467 

-13.816 -13.852 0.037 0.001 
-12.429 -12.485 0.056 0.003 
-13.122 -13.029 0.093 0.009 

7(x rx a v) A2 = 2.689 

0.115 0.070 0.002 8.286 

X(yi-y)A2 =0.0132 

Table D-7 Statistical data for testing the significance of the slope (rate order) for AY 36 reactions 

[SA] 
t-value 

x (XrXav) A2 y y yi-y (yi-y)A2 sy/x sb V'b (1=2) 
1.569 1.151 -12.717 -12.581 -0.136 0.018 0.279 0.170 0.014 1.631 
2.485 0.025 -11.618 -11.844 0.226 0.051 
3.871 1.512 -10.820 -10.730 0.090 0.008 

X m = 2.641 7(Xi-xm)A2 = 2.687 5"(yi-y)A2 =0.077 

[AY36] 
t-value 

x (Xi-xm) A2 y y yi-y (yi-y)A2 sy/x sb V'b (f=4) 
-7.696 1.200 -11.513 -11.409 -0.104 0.011 0.252 0.148 0.011 1.206 
-7.003 0.162 -10.820 -10.803 0.017 0.000 
-6.310 0.085 -9.903 -10.197 0.293 0.086 
-5.394 1.457 -9.567 -9.396 0.171 0.029 

Xn, =-6.6007 7 (XrX m ) A 2 = 2.904 7(yi-Y)A2 =0.127 

PH 
t-value 

X ( x r X m ) A 2 y y yi-y (yi-y)A2 sy/x sb V'b (f=2) 
4.000 1.000 -4.699 -4.700 0.001 0.000 0.004 0.003 0.004 155.687 
5.000 0.000 -5.398 -5.400 0.002 0.000 
6.000 1.000 -6.097 -6.100 0.003 0.000 

X™ = 5.00 7 (XrX m ) A 2 = 2.000 I(yi-y)A2 =0.127 
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Equations 

Standard deviation of the slope (sb) 

s*>y = 
\Ay,-y)2

 s _ 
n-2 " ^ { x . - x j 

Where y\ = the actual y- value; y = the y-value calculated from the regression equation, 

Xj = the individual x-values and x m = the arithmetic mean of the x-values 

Testing slope significance 

Were the V'b is the average variance and b| is slope 1 and hi is slope 2; f = 2x n-4 

degrees of freedom 
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Appendix E.Supporting data 
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Figure E-1 Relative absorbance measured at 251 nm for control benzoquinone samples and those 

reacted with HT tailings for 8 days 
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Figure E-2 Relative absorbance at a) 434 nm (AY 36) and b) 484 nm (AO 7) for samples reacted with 

the dye solution with under UV -light and in the dark (control) 
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Figure E-3 Percentage decolourisation of AY 36 reacted with the Mn tailings (MnT) and a quartz 

control (QTZ) in a 0.2 M, pH 4 acetate buffer containing no salt (0) and 100 mM (100) NaCl. Error 

bars maybe smaller than symbols 
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Figure E-4 Chromatograms of cyclohexane extracts from moist and dried MT tailings spiked 

with anthracene, showing peaks representing anthracene (AC) and anthraquinone (AQ). 
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Figure E-5 Chromatograms of cyclohexane extracts from moist and dried WT tailings spiked with 

anthracene, showing peaks representing anthracene (AC) and anthraquinone (AQ). 
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Figure E-6 a) Anthracene (AC) and b) anthraquinone (AQ) concentrations after reacting anthracene 

with the Mamatwan and Wesscls type tailings in a series of pH adjusted acetate buffers. 


