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Abstract 

This thesis involves the study of strong and weak gravity phenomenology wi th in 

the braneworld paradigm. We begin wi th a general overview of the hypothesised 

concept of extra spatial dimensions and explain why they are so interesting. Turning 

next to the topic of classical four-dimensional black holes, we discuss their formation 

via gravitational collapse and indicate some of the strong observational evidence of 

their existence. We then merge the two independent theories of extra dimensions and 

black holes together to form braneworld black holes. Focusing our attention on two 

distinct braneworld scenarios, we examine the effects produced f rom either strong or 

weak gravity. The prospect of obtaining experimental verification of the existence of 

additional spacelike dimensions in the upcoming ground-based accelerators, makes 

the theoretical research of braneworld gravity wi th in this thesis even more enticing. 

We start w i t h a non-perturbative approach to look for exact, spherically symmet­

ric star or black hole solutions on a Randall-Sundrum brane f rom the perspective 

of the five-dimensional spacetime. By f ixing the background, we explore the per­

missible braneworld trajectories wi th in i t that correspond to a braneworld observer, 

the solutions of the brane Tolmann-Oppenheimer-Volkoff equations. A variety of 

static gravitating matter sources on the brane are obtained in a range of different 

backgrounds. Our final aim is a consistent brane embedding in a Schwarzschild-

A n t i de Sitter spacetime as these solutions are potential candidates for brane stars 

or black holes. The weak and dominant energy conditions determine the physically 

sensible solutions which have the interpretation of braneworld stars. We then study 

time-dependent trajectories as a possible description of time-dependent braneworld 
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black holes. This work is then generalised by relaxing the simplifying assumption of 

Z 2-symmetry, previously imposed around the brane. Non-^2 symmetric spacetimes 

are applicable in processes which concern only one side of the brane, for example 

black hole recoil or the emission of Hawking radiation. We determine that a subset 

of the allowed brane trajectories in an asymmetric background are exactly the same 

as the /^-symmetric case. 

Next, we explore perturbative gravity in the Hofava-Wit ten model of heterotic 

M-theory. The study of scalar and gravitational fluctuations determines that the 

radion mode is coupled to the bulk scalar field, indicating only one single degree of 

freedom. Our analysis also determines the instability of a black string. We then com­

pute the complete mass spectrum of the graviton mode. Using the five-dimensional 

gravitational physics, we determine what the gravitational interaction an observer 

on the braneworld would perceive. This analysis involves the computation of the 

Newtonian potential between two test masses on the visible brane, together w i t h 

the four-dimensional tensor structure of the massless graviton propagator. Finally, 

as an application to the earlier work, we comment on work which is in progress: the 

study of possible brane black hole solutions in low energy heterotic M-theory. 
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Chapter 1 

Introduction 

1.1 Extra dimensions 

Gunnar Nordstrom (1914) first proposed the idea that extra spatial dimensions could 

exist in nature [3]. I n his classical theory of gravitation, he discovered that a five-

dimensional spacetime could be split into four-dimensional theories which describe 

gravity and electromagnetism. Unfortunately, Nordstrom's ideas were not taken 

seriously at the time and were therefore disregarded for the next several years. 

During the early twentieth century, w i th in a decade of Einstein having published 

his theory of gravity, Theodor Kaluza had formed a gravitational model which ex­

tended the general theory of relativity to five dimensions [4], A few years later, Oskar 

Klein proposed that this extra spatial dimension, which cannot be detected by cur­

rent experiments, is curled up in a very small circle of finite size [5]. These classes 

of theories, which feature an extra spatial dimension and uni fy the two fundamen­

tal forces of gravitation and electromagnetism, are referred to as the Kaluza-Klein 

theories. 

Unfortunately, the four th spatial dimension in Kaluza-Klein theories is extremely 

small, therefore cannot be seen in nature except in very extreme circumstances. 

This can be understood in a simple example provided by the hosepipe analogy [6]. 

I f we view a three-dimensional object such as a pipe f rom afar, i t w i l l appear as 

a two-dimensional line. However, when viewed f rom close proximity, a point on 

the line corresponds to a point on the surface area of the pipe which is a circle. 

1 
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This circle corresponds to the circumference of the pipe and represents the th i rd 

dimension of space. This comparison can be extended one dimension further to 

describe the dimensions which make up our universe. What we naturally perceive 

as a point on a three-dimensional object may actually correspond to a small circle 

going round a four th hidden spacelike dimension (when viewed f rom extremely close 

distances, i.e. Planck distances Ipi ~ 1 0 _ 3 3 c m ) . These ideas can also be applied to 

spacetim.es consisting of more than one additional dimension. In this case, the extra 

dimensions are compactified on non-trivial topologies as opposed to a circle. This 

leaves us to explore the possibility that we may be l iving in a universe w i t h extra 

hidden dimensions. 

Klein revisited his hypothesis and was able to validate i t by explicitly calculating 

the circumference of the curled up dimension [6]. He determined the size of the extra 

dimension by comparing the gravitational field strengths between particles, w i t h 

the unit of electric charge carried by electrons and other particles. His calculation 

required the size of the extra dimension to be unobservably small, i.e. of order of 

the Planck scale. I t is therefore not surprising that these results are consistent w i th 

the fact that we haven't been able to see the four th dimension of space. 

Ground based accelerators which accelerate particles close to the speed of light 

may give an insight into extra dimensions. The energies required to probe the 

additional dimensions in Kaluza-Klein theories are exceedingly high. I f we set the 

size of the compactification radius of the extra dimension to be a finite value [7], say 

R < 1 0 - 1 7 c m , then the energy or mass scale corresponding to the massive Kaluza-

Klein modes in the higher-dimensional spacetime is given by the relation E ~ Rr1. 

Since the compact space is microscopic, the resulting energy or mass value w i l l be of 

order of the Planck mass Mpi ~ 10 1 9 GeV. The unlikely prospect of attaining these 

extreme energy scales, required to directly probe these compact extra dimensions, 

makes them impossible to detect 1. 

A t present, colliders can only reach energies that are less than . f t - 1 . A t distances 

greater than the compactification radius i.e. A > R, the resulting energy scale 

'We have used different units for the compactification scale of the extra dimension R and the 

corresponding energy scale E ~ R~] (i.e. cm and GeV scales respectively). 

http://spacetim.es
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E\ ~ A - 1 < R~l is w i th in the scale which colliders can reach. However, at distances 

less than the compactification radius i.e. A < R, the energy scale E\ ~ A - 1 > R~x 

corresponds to very high energies which are beyond the reach of any current or 

foreseeable accelerators. These enormous energy values ensure that the low energy 

physics relating to our universe is effectively four-dimensional. This means that 

we can only produce massless particles in the collider experiments [7]. I t therefore 

remains unlikely that progress in detecting additional dimensions in Kaluza-Klein 

models w i l l be made. 

Over the subsequent f i f t y years, interest in the Kaluza-Klein theories diminished. 

Instead, physicists became interested in the study of the weak and strong forces [6]. 

In order to construct a successful unified theory, i t was realised that the strong and 

weak interactions must also be combined wi th the gravitational and electromagnetic 

forces. Physicists became very ambitious in these unification theories. I t was hoped 

that all four forces of nature {i.e. the weak, strong, electromagnetic and gravita­

tional forces) could be amalgamated into one simple underlying theory. This field 

of research sti l l remains active today. 

By the 1950's, electromagnetism was the only well understood force [6, 8] and 

one which belonged to a theory known as quantum electrodynamics (QED). The 

two other independent theories were: Einstein's classical theory of general relativity 

which applies to massive objects at very large distances {e.g. stars, planets), and 

quantum mechanics which applies to t iny objects on extremely small length scales 

{i.e. the atomic scale) [9]. In the mid-1960's, theoretical physicists became interested 

in combining these two distinct theories in order to f ind a unique theory which would 

explain how gravity would work at the Planck scale. Unfortunately, any attempts to 

uni fy quantum mechanics wi th general relativity at Planck distances had ultimately 

failed. To f ix the problem, an entire new theory was introduced; string theory, a 

quantum theory of gravity. 

In 1968, early string theorists modified the particle physics description of a fun­

damental particle. I t was believed that the smallest constituent of matter is not a 

point-like particle, but in fact a one-dimensional string. These strings are analogous 

to instrumental strings such as those on a violin which can produce different sets of 
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harmonics. Similarly, the different modes of vibrations of a string in string theory 

yield a different set of particle excitations at various energies. These then contribute 

to the different types of string theories. 

The bosonic string was the first string theory to be constructed in 1968, consisting 

of twenty-six dimensions. I t was ini t ial ly developed to describe the strong force in 

quantum chromodynamics (QCD) which held hadrons together [6]. The hadrons 

are made up of smaller entities called quarks. Since quarks exist in pairs, i t was 

believed that a string-like object was responsible for holding the pair of quarks 

together. Unfortunately, during the 1970's, this string theory description failed 

to describe the strong force. Further calculations showed other problems associated 

wi th the bosonic string. The presence of a tachyon (a negative mass squared particle) 

rendered the theory unstable. Also, the prediction of a spin-2 particle in the theory 

raised some questions as i t has not previously been observed in any experiments. 

Although the bosonic string was unsuccessful in describing the strong force, i t did 

however provide a useful framework in which to develop the later string theories. 

Due to its 'failure' , there was a sudden loss of interest in string theory for the next 

few years. 

During the same decade (1970's), progress had been made in unification of the 

strong, electromagnetic and weak forces. The combination of the electrodynamics 

force of QED w i t h the weak interaction led to electroweak theory. The subsequent 

union of the electroweak force w i t h the strong interaction of QCD gave rise to the 

Standard Model of particle physics. This then left gravity as the sole force existing 

on its own. Af te r the success of the Standard Model, physicists became fascinated 

again in string theory in the hope of finding a fundamental theory which would now 

combine the Standard Model forces wi th gravity. 

Fortunately, the problems encountered in the bosonic string were resolved by 

introducing supersymmetry (symmetry between integer and half integer spin par­

ticles, namely bosons and fermions, respectively) into the theory. This led to the 

1980's formulation of superstring theory; a theory which accommodates all Standard 

Model particles, in particular the spin half fermions which were not present in the 

bosonic string. Adding supersymmetry (and hence fermions) to the original bosonic 
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string removed the unwanted tachyon, giving a stable string configuration [6]. Also, 

the spin-2 particle predicted in earlier calculations revealed itself to have the same 

behaviour as the graviton (an elementary particle of spin-2 which mediates the force 

of gravity). Therefore the spin-2 particle wasn't a problem after all. In fact i t 

served as evidence that string theory could be a possible theory in which to quantise 

gravity. 

Superstring theory had superseded the bosonic string. The restriction on super-

strings was its dimensionality; i t is consistent in only ten dimensions [6]. Calcu­

lations in this particular number of dimensions allowed all the unwanted modes of 

vibrat ion to drop out [9]. The miraculous cancellations of all unwanted anomalies 

(symmetry violation in a quantum mechanical process which are absent in the cor­

responding classical theory) provided a second confirmation that superstrings are 

only consistent in ten spacetime dimensions. During the mid 1970's, i t was realised 

that supersymmetry could also be incorporated into gravity. This resulted in a 

supergravity theory which was found to be consistent in eleven dimensions. 

The superstring theories became extremely popular and remain renowned today. 

These theories which are consistent in ten-dimensions allow the possibility of hav­

ing six additional dimensions of space. These six extra microscopic dimensions are 

compactified on non-trivial manifolds, enabling us to obtain the relevant effective 

four-dimensional physics for the study of our universe. Therefore, superstring theo­

ries are higher-dimensional extensions of the five-dimensional Kaluza-Klein theories. 

In the late 1990's, there was a revival of interest in a new type of extra-dimensional 

model known as braneworlds [10,11]. (For earlier proposals of braneworlds, see [12]-

[17]). These models consist of infinite slices of spacetime (a brane) which exist in a 

higher-dimensional space (bulk). Braneworlds are interesting toy models in which to 

study the possibility that our universe can be described as a four-dimensional sub-

space (three-brane), l iving in a fundamentally multi-dimensional spacetime. The 

properties of braneworlds constrain all ordinary particles and forces (i.e. the Stan­

dard Model) to live on the three-brane. However, gravity and other exotic particles 

(which are weak and do not interact strongly w i t h matter) are allowed to leak out 

of the hypersurface and travel into the dimension which extends beyond the brane. 
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The extra dimensions proposed in braneworlds can either be large [10] or in­

finite [11], unlike the Kaluza-Klein theories where the additional dimensions are 

unobservably small. Therefore, i f the braneworld paradigm offers a construction of 

a model which can be realised in nature, then the theoretical prospect of detecting 

these large extra dimensions at reasonable energy scales makes the study of them 

highly exciting. 

I n general, when zero mode particles on the brane interact at high energies, they 

get excited. The large compact extra dimensions open up to become a continuum of 

Kaluza-Klein modes [7]. The particles are then able to escape the brane to large (or 

infinite) distances of the higher-dimensional world. Therefore, extra dimensions are 

experienced by particles which are able to leave the brane. To our knowledge, the 

particles which are allowed to enter into the additional dimensions in braneworld 

models correspond to the messenger particles of gravity and are more commonly re­

ferred to as Kaluza-Klein gravitons. Thus, the detection of a Kaluza-Klein graviton 

is evidence for the existence of extra spatial dimensions. 

One possible process of producing these spin-2 gravitons is given in a high energy 

process, such as the collision of an electron w i t h its antiparticle i.e. the positron. 

The collision causes the particle and antiparticle to annihilate to form a graviton 

and a vir tual particle i.e. the gamma ray photon. The graviton produced in the high 

energy collision is likely to miss the detector (due to the weakness of the coupling) 

and escape into the higher dimensions. We therefore observe the experimental sig­

natures as evidence of gravitons leaving our visible universe. This confirmation is 

provided by the continuum spectrum produced by gravitons, which can be detected 

indirectly by the missing energy signals [7] of the high energy collisions. 

So far, there has been no direct or indirect evidence of large extra dimensions. 

We cannot perceive them directly simply because we don't live in these additional di­

mensions. However, the possibility of detecting the large extra dimensions indirectly 

in future colliders is what makes the topic highly exciting. 
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1.2 Stars and black holes 

The vast amount of stars in our universe (e.g. each galaxy contains around 10 1 0 

stars [18]) are formed from clouds of dense gas called Nebulae, which are drawn 

together by the force of gravity. The accretion of Nebulae into a body with ample 

mass allows for high central temperatures to be attained. Thermonuclear reactions 

(namely fusion) are now able to take place leading to the formation of a star. Since 

hydrogen is the most abundant element in the universe, it provides the preliminary 

source of energy production in stars. One possible process that can occur at the core 

of the star involves the fusion of four hydrogen nuclei to produce a helium nucleus. 

Since the mass of helium is smaller than the total mass of the four constituent 

hydrogen nuclei, then some of the mass is converted to energy (according to the 

equivalence relation E = mc2). This difference in mass is a measure of the binding 

energy which holds the nucleons of the atoms together. The greater the binding 

energy, the harder it is to free the electrons from their atomic orbits. The fusion 

reactions taking place within the core of the star occur constantly and are sustained 

for a long time. The energy produced here during the formation of the helium 

nucleus is released at the surface as heat and light, leading to the creation of a 

burning star. 

A stars' lifetime lasts over a billion years, however they do not live forever. 

Eventually all the hydrogen and helium at the core of the star is exhausted, allowing 

no further energy to be produced (this process is applicable to less massive stars). 

The insufficient temperature at the center of the star leads to a carbon-oxygen inert 

core; a point at which nuclear reactions cease to occur. Stars which have greater 

masses allow for a more complicated chain of nuclear reactions beyond the helium 

stage [18]. This is because higher central pressures are now attainable for stars with a 

large mass, giving rise to greater temperatures at the core of the star which were not 

previously possible for lower mass stars. In this way, the synthesis of heavier nuclei 

(carbon, neon, oxygen, silicon etc.) proceeds with temperatures rising as elements 

of increasing atomic number are produced. This process continues until the most 

stable nuclei is formed, namely iron. Once the stars' core is converted entirely to 

iron, the nuclear reactions stop regardless of the extreme temperatures inside the 
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core. This is because iron has the largest binding energy per nucleon of all nuclei, 

making it very difficult to ionise. Thus, the inert iron-rich core of a star marks the 

end of the chain of fusion reactions; the star is near the end of its life cycle. 

At the end of the stars' life cycle, it typically cools down and reduces in size. 

In time, the star stops emitting light and becomes unstable against the influence 

of its own gravity, eventually leading to its collapse. Depending on the size of the 

original star, two different processes can occur. Stars which are less massive and 

have size comparable to the sun, first expand to form a red giant, then subsequently 

cool and collapse to form a white dwarf star. However, larger mass stars (at least 

four times greater than the sun) show a more spectacular behaviour. They expand 

enormously to form a red supergiant, then rapidly cool and collapse and finally 

explode. This violent explosion releases a vast amount of energy in the form of 

light. The brightness produced is a hundred times the intensity of the original star. 

This prominent glow in the sky lasts for weeks, outshining the entire galaxy of which 

it is in. This explosion is known as a supernova [19], the remnants of which lead 

to the formation of a neutron star. There are strong upper limits that restrict the 

amount of pressure that can be resisted by a white dwarf or neutron star; if the 

mass of the star exceeds the maximum mass that can be supported by a compact 

star, then it will continue to collapse to form a stellar black hole (BH). 

In the 1920's, an Indian astrophysicist, Subrahmanyan Chandrasekhar calculated 

that if the mass of a star was less than 1.4 solar masses (where a solar mass is defined 

as MQ = 2 x 10 3 3g), then it would form a white dwarf. This upper limit on the mass 

of a star is known as the Chandrasekhar limit [20]. The formation of a white dwarf 

involves electrons being torn away from the nuclei, which get compressed inside the 

star. The electrons become extremely crowded within a dense region, resulting in 

very high pressures. Any further contraction of the star would violate the Pauli 

Exclusion Principle amongst electrons; two electrons cannot occupy the same place. 

Therefore, this degenerate electron pressure halts the stars collapse to form a white 

dwarf [19], the size of which is comparable to the earth. 

Lev Davidovich Landau, a Russian scientist, later suggested another possible 

final state of a star [19]. If the mass of the star exceeds the Chandrasekhar limit, 
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then the force of gravity takes over and overcomes the degenerate electron pressure. 

The electrons are squashed and are now combined with the protons in the nucleus, 

forming additional neutrons. Eventually, all the protons get converted into neutrons. 

Neutrons also obey an analogous principle as the electrons; this time, two neutrons 

cannot occupy the same place (Pauli Exclusion Principle amongst neutrons). The 

degenerate neutron pressure stops the stars collapse, resulting in the formation of a 

neutron star (typical radius of a neutron star is 10km). 

Before we discuss the ultimate collapse of a star, we state the general formulae 

that characterise its internal structure [20]. A star is a spherically symmetric com­

pact object, with distinct exterior and interior gravitational fields. The field outside 

a star consists of empty space and is described by the Schwarzschild geometry (by 

Birkhoff's theorem). Thus, the vacuum Einstein equations are valid only outside 

the region of a star. However, the interior of the star is composed of matter. Thus, 

in order to describe a matter source within a star, we introduce an additional term 

in the empty-space field equations. The non-vacuum Einstein equation, describing 

a static spherically symmetric gravitating object, is given by 

where is the Einstein tensor, g^ the metric tensor, R^ the Ricci tensor and R 

the Ricci scalar. We assume that the star is made up of a perfect fluid, with matter 

distribution given by the non-zero energy-momentum tensor 

where p(r) and P(r) represent the energy density and isotropic pressure of the fluid, 

respectively. Furthermore, the vector — (\J—gtt, 0, 0, 0) represents the fluids 4-

velocity, with gu corresponding to the time-component of the general, spherically 

symmetric metric 

1 8nGT, R Rg au au (1.1) 

= W ) + P{r)Wu„ + P{r)9l (1.2) 

ds2 = git{r)dt2 + grr{r)dr2 + r2{d92 + sin 2 0d<f>2). (1.3) 

Solving the non-vacuum Einstein equations determines the explicit form for the 

metric coefficients: gu and grr. This enables us to deduce two relativistic equations 
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governing the structure of stars: 

dm(r) 
4irr p(r) (1.4) 

dr 

and 
dP(r) 

dr 
[p(r) + P(r)] [Gm{r) + 4nGr3P(r)} 

r(r - 2Gm) 
(1.5) 

where m(r) denotes the mass function. The last equation is known as the Tolman-

Oppenheimer-Volkoff equation which gives an upper limit to the pressure that can 

be supported by a neutron star. 

Neutron stars are smaller and dimmer than the white dwarf stars [19]. They also 

have a theoretical upper bound on their mass that is analogous to the Chandrasekhar 

limit for white dwarf stars. The degenerate neutron pressure is unable to support 

masses greater than 2.5 M©. However, our galaxy contains stars with masses much 

bigger than this. Therefore, the neutron stars that exceed the upper limit that can 

be supported have sufficient matter to overcome the internal pressure, and continue 

to collapse entirely under the influence of their own gravity. Al l the light rays bend 

toward the star via the strong gravitational fields near the stars' surface. The star 

ultimately collapses to a single point, forming a very dense object where all the mass 

is highly concentrated. This gravitational collapse leads to the fabrication of a void 

in the cosmos. 

John Michell, a British natural philosopher (1783) had first claimed the idea 

that 'dark stars' (a possible final state of a star) could exist in our galaxy [22]. As 

the name suggests, we will never be able to see them even with the most powerful 

telescopes because they don't emit any light. In 1916, the Schwarzschild solution 

had been obtained from Einstein's equations [21]. I t was not until the mid 1960's 

that physicists had gained a better understanding of the Schwarzschild solution. 

The theory suggested the existence of dark stars. These dark objects are better 

known as stellar BHs. 

BHs are massive objects with extremely strong gravitational fields around them. 

We will never be able to see a BH since they are the 'prisons of light' [22]. All forms 

of matter and electromagnetic radiation which pass beyond the event horizon (an 

imaginary surface which nothing can escape) is immediately drawn toward the exact 
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center of the BH. This central region is known as the singularity; a point at which 

the density, pressure and the curvature of spacetime are infinite. Unfortunately, the 

laws of general relativity fail to work at this highly dense region. Only a quantum 

theory of gravity will be able to explain what is happening at the BH singularity. 

There has been no direct experimental or observational evidence for the existence 

of BHs. In fact there will never be direct evidence since light cannot escape out of 

a BH. The best way to search for the existence of a BH is indirectly, for example, 

by observing the gravitational deflection of light around the spacetime of a BH [19]. 

Since gravity is extremely strong near the region of the BH, the paths of light rays 

are expected to warp significantly near its vicinity. This warping will be much more 

significant compared to the warping produced when light rays pass close to the sun. 

This is because the spacetime around a sun is only slightly curved in contrast to 

that of a BH. Therefore, the strong deflection of light suggests the presence of a 

massive gravitational object. 

The binary star system [19,23] indirectly provides observational evidence of either 

a compact star or a stellar BH. In the double star system, two stars appear as one 

star when viewed from a telescope. One of the stars is an ordinary star, whereas 

the second companion star (which cannot be viewed by a telescope) corresponds to 

a compact star or a stellar BH. The ordinary and companion star rotate in stable 

orbits relative to their common center of mass points. By studying the binary orbits 

of the two stars, it is possible to determine the mass of the companion star. If the 

mass of the companion star is well above the upper bound that can be supported 

by a neutron star, then it is a good indication that the companion star could be a 

stellar BH. 

Cygnus X - l is a strong candidate of a double star system which contains an 

ordinary star (HDE 226868 of mass 2 0 M o ) and a stellar BH [19,27,29]. The intense 

gravitational field of the BH causes the transfer of matter from the ordinary visible 

star to the stellar BH. This subsequently forms an accretion disc around the BH. 

The temperature of the matter increases considerably. As a result, energy is released 

from the accretion disc toward the visible star in the form of high energy compact 

X-ray sources. The X-rays produced on the ordinary star can be detected by satel-
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lite observatories and are exceptionally bright (much brighter and distinguishable 

from the X-rays produced by binary stars consisting of either a white dwarf or a 

neutron star). Analysis of these bright and powerful X-rays reveals that Cygnus 

X - l must be very compact, i.e. less than 300km in diameter. Furthermore, the in­

visible companion star of HDE 226868 is calculated to have mass 10M©. Therefore, 

calculations reveal that an object of 10M© condensed in a volume of 300km can be 

nothing other than a stellar BH. Compact binary systems are therefore strong BH 

candidates. 

There has also been strong observational evidence for the existence of BHs which 

weigh a million or a billion times more than the sun. These gigantic objects are 

known as supermassive black holes (SBHs) and are known to exist at the center of 

most galaxies [24,25]. Advances in technology have provided powerful and robust 

evidence of these vastly large objects in several nearby galaxies including our own: 

the Milky Way [26]. Detailed observations (e.g. in the galaxy M87) measuring the 

brightness across the galaxy via astronomical telescopes revealed the presence of 

a prominent bright source [19]. Astronomers suggested that this luminous source 

corresponds to a high concentration of stars which are congested together within a 

small radius. The crowd of stars arise due to the existence of a SBH at the galactic 

center. Calculations showed that the strong compact source of gravity must weigh 

5 billion M Q , and therefore must be a SBH. Astronomers also used spectroscopic 

observations to analyse the spectral lines across the galaxy. The lines were found 

to be broader toward the center of the galactic nuclei. This suggested that the 

stars closer to the galaxy move at much greater speeds, enabling them to survive. 

Calculations again revealed that the gravitational source must be around 5 billion 

MQ. Thus, the evidence of the existence of SBHs at the galactic core of M87 provides 

us with compelling evidence of solar system sized BHs. 

Classically, we know that nothing, not even light can escape out of a BH (once 

it has gone past the event horizon). In 1971, two Soviet scientists Ya B. Zel'dovich 

and I . D. Novikov [19] (prior to Hawking 1974 [28]) discovered that tiny static BHs 

which are produced in the early universe can emit radiation. Stephen Hawking later 

calculated this by applying quantum mechanics to the electromagnetic fields near 
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the region of a BH. The results showed that BHs radiate continuously. Quantum 

field theory calculations show that the radiation that is emitted takes the form of 

a blackbody energy spectrum, with temperature inversely proportional to the BH 

mass. Thus, solar mass BHs produce negligible or small amounts of radiation com­

pared to small sized BHs. The emission of radiation by BHs is only possible quantum 

mechanically through the Heisenberg uncertainty principle. The principle states that 

it is impossible to precisely know a particle's exact position and momentum at the 

same time. If a particle is at location x with uncertainty A x and has momentum 

p with uncertainty Ap, then both the uncertainty in position and momentum are 

not independent and are related by the formula AxAp « h. Furthermore, there is 

also an uncertainty relation in the particles energy and time AEAt ~ h, suggesting 

that a particle-antiparticle pair can appear and disappear unexpectedly in a short 

time, 10~2 1 seconds. The many pairs of virtual particles that exist around a BH 

are continually being created and destroyed. If the pair annihilate in time less than 

At ~ h/AE, then no laws have been violated2. 

In the above process, the strong gravitational field around a BH provides the 

energy to create the particle-antiparticle pairs. After the particles have exchanged 

energy, the negative energy (virtual) particle falls below the event horizon and into 

the BH singularity and the positive energy particle manages to escape away (as 

Hawking radiation) from the event horizon to large distances (to infinity) [20]. The 

escaped particle becomes a real positive energy particle. This continuous process 

ultimately decreases the size and energy of the BH since particles are constantly 

being emitted and energy is continually being lost. The negative energy of the 

antiparticle is responsible for decreasing the mass of the BH. Eventually, at the end 

of its life, the BH will evaporate entirely and release a burst of radiation in the form 

of gamma rays. Unfortunately, this type of phenomena has not yet been observed. 

This process in which BHs radiate particles is known as the Hawking effect and is a 

consequence of the Heisenberg uncertainty principle. 

There are also other types of BHs we have not discussed; they were created a few 

2 T h e Planck constant is h = 6.65 x l O - 3 4 Js and h = h/2ir 
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seconds after the big bang and do not originate from the gravitational collapse of an 

ordinary star. They were created by the ideal conditions at the start of the universe; 

the enormous temperatures, pressures and densities allow clouds of dense gas to 

be compressed to tiny BHs, also known as primordial black holes (PBHs). They 

are extremely dense objects (have masses of mountains [19]) and are of subatomic 

size. Small PBHs (mass less than 4 billion tonnes) have higher temperatures, hence 

higher emission rates. They evaporate very quickly and therefore do not survive. 

The PBHs that have survived have masses greater than 4 billion tonnes and they 

are larger and have lower temperatures. They therefore radiate at a slower rate and 

a small proportion are still present in the universe today. These microscopic PBHs 

(of masses greater than 4 billion tonnes) are possible to detect through Hawking 

radiation. Eventually the emission of radiation will decrease the size of the PBH, 

resulting in an explosion of gamma rays which can be detected by the flashes of light 

in the night sky. Detection of surplus gamma ray bursts in the night sky will suggest 

the presence of a strongly evaporating PBH in our universe. PBHs are possible dark 

matter candidates as they are still yet to be observed. 

We therefore have very strong observational evidence of the existence of astro-

physical BHs [29]; from stellar sized BHs in binary systems to the larger scale of 

SBHs which exist in the center of most galaxies. As the observational techniques 

continue to develop, we will acquire a better understanding of these mysterious and 

fascinating objects that exist in nature. The possibility of detecting mini BHs via 

Hawking radiation in the upcoming accelerators makes the study of them even more 

challenging. 
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1.3 Braneworld gravity 

So far, we have discussed four-dimensional astrophysical BHs. We extend the anal­

ysis further to consider these massive gravitational objects in higher-dimensional 

theories, involving extra spatial dimensions. The properties and physics of BHs in 

theories consisting of more than four dimensions are expected to be significantly dif­

ferent compared to the known physics of the four-dimensional world [31]. Thus, by 

taking into account the extra-dimensional effects, i.e. the new physics correspond­

ing to the higher-dimensional world, we can modify the description of the classical 

four-dimensional BHs. 

This thesis deals with two types of extra-dimensional models which are widely 

used in model building: the Randall-Sundrum (RS) model (of which there are two 

types, RSI [10] and RSII [11]) and the Hofava-Witten model of heterotic M-theory 

[32]. The latter model derived by Lukas, Ovrut, Stelle and Waldram is based on 

the eleven-dimensional Hofava-Witten construction [34] and will be identified as 

the LOSW model (named after the initials of the above authors) in this thesis. A 

detailed description of the two independent braneworld scenarios is given in the 

following chapter. 

The RSI scenario consists of two four-dimensional manifolds bounded at the 

end of a five-dimensional Anti-de Sitter spacetime. Al l Standard Model particles 

are constrained to live on the hypersurface. However, the characteristic nature of 

gravity allows it to permeate into the direction orthogonal to the brane (i.e. the extra 

dimension). The Hofava-Witten construction features two ten-dimensional branes, 

bounding the ends of an eleven-dimensional spacetime. Each hyperplane contains a 

different set of particles and forces which are equivalent to the forces of the heterotic 

string [9]. In contrast to the RSI model, the ten-dimensional branes of the Hofava-

Witten setup includes the full Grand Unification Theories [9] as well as the Standard 

Model. Moreover, the Hofava-Witten construction is supersymmetric [30], unlike 

the RSI model [9]. For the Hofava-Witten theory to be realistic and correspond 

to our visible universe, six of the spatial dimensions are wrapped up on a tiny 

manifold giving rise to the LOSW model; a possible representation of our domain 

wall universe. Hence, the pictorial setup of the LOSW and RSI models are analogous. 
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A finite interval of the fifth dimension is separated by two three-branes. Although the 

setup between the two distinct braneworlds is similar, the physics is quite different. 

The fifth spatial dimension between the heterotic branes now contains a bulk scalar 

particle (which is a consequence of the compactification). Thus the presence of the 

additional bulk matter field makes the model distinct to its descendant (i.e. the 

RSI braneworld). Since the properties of the braneworlds are distinct, we expect 

the physics in each braneworld model to be different. 

The detection of the hidden extra spatial dimension in the braneworld is achieved 

through studying the behaviour of gravity. Thus, the best physical objects to study 

within the braneworld are objects with enormous gravitational fields such as black 

holes or their higher-dimensional analogues, black strings. 

Black holes are objects that possess massive gravitational fields. The study of 

these enormous objects within the braneworld allows us to explore the two indepen­

dent theories in one single framework. We are particularly interested in investigating 

the impact of BHs within the context of the RSII model (featuring a single three-

brane embedded in a fifth dimension). So far, there has been no successful attempts 

in describing strong gravity phenomenology (i.e. braneworld black holes) within 

the RS models. To this end, we continue to explore this fascinating topic using a 

non-perturbative approach in the hope of finding a four-dimensional metric which 

corresponds to a braneworld black hole. We then focus our attention on another 

higher-dimensional object known as the black string. We explore these gravitating 

objects in the LOSW model. Using perturbation theory this time, we investigate 

weak gravity in this model and determine the instability of a Schwarzschild black 

string [37]. 

Whether the above braneworlds are realistic or not depends on whether we can 

theoretically reproduce the correct known four-dimensional gravitational physics 

corresponding to our universe. Collider experiments may soon be able to determine 

whether the braneworlds are a true representation of our universe. Unfortunately, 

the Hofava-Witten model is hard to test experimentally as the six additional space­

like dimensions are extremely small [9]. This would require colliders to probe to 

extremely high energies, comparable to the string scale. Only after reaching such 
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high energies, we would be able to detect these extremely small additional dimen­

sions, and then perceive the world in eleven dimensions [30]. I t is therefore virtually 

impossible to test the Hofava-Witten construction, since any current and future ac­

celerators cannot attain these gigantic energy scales. However, the theoretical study 

involving the Hofava-Witten model still remains exciting. 

Fortunately, the RS model can be tested since the energies are attainable in 

the upcoming accelerators. The extra dimensions will reveal themselves through 

Kaluza-Klein particles, which are detected in the four-dimensional world [9]. They 

will provide revolutionary information regarding the physics corresponding to the 

unseen five-dimensional universe. The study of black holes within the RS braneworld 

is particularly exciting as it may soon provide experimental signatures for the ex­

istence of an extra hidden spacelike dimension. If experimental data produced in 

the upcoming ground-based accelerators is in strong agreement with the predicted 

results of the tested RS braneworld model, then we certainly have a toy model which 

provides a true description of our four-dimensional universe. 

The BHs in the RS braneworld involves a highly curved background geometry. 

However, the properties of BHs are remarkably different if we consider them on 

small scale theories featuring large and flat extra dimensions [31]. High energy par­

ticle collisions can produce four-dimensional astrophysical and higher-dimensional 

BHs. In general, when matter trapped on a visible four-dimensional brane under­

goes gravitational collapse, it forms a BH which extends into the extra dimension 

forming a higher dimensional object. The radius of the horizon of the massive object 

determines whether or not the BH corresponds to a higher-dimensional object. If 

the size of the BH horizon exceeds the size of the extra dimension, then we essen­

tially recover an effective four-dimensional massive object. However, if the BH has 

a radius less than the size of the extra dimension, then a small BH is formed which 

appears to be a higher-dimensional gravitating object. These higher-dimensional 

objects correspond to mini BHs. 

Attainable energies allow the possibility of probing these mini BHs via high 

energy particle collisions. Although the small BHs evaporate quickly, they can 

still be identified in accelerators. Their presence is detected by the emission of 
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thermal black body radiation. This process releases elementary particles onto the 

brane and also into the extra dimensions. As the BH emits radiation, it loses 

energy and simultaneously decays. The energy released will form a spectrum of 

thermal radiation also known as visible Hawking radiation [31]. The particles that 

are emitted onto the brane correspond to the brane-bound particles (i.e. the Higgs 

particle, gauge bosons and fermions). These particles can easily be detected in 

accelerators. 

Small BHs also emit radiation into the bulk. In this case, the radiation is invis­

ible and corresponds to particles that propagate into the extra dimension such as 

gravitons and scalar fields. These particles cannot be detected as they propagate 

in the higher-dimensional space. However, their presence can be determined by the 

missing energy signals produced in the collision process. The amount of missing 

energy will also tell us how much energy remains on the brane [31]. 

So far, there has been no evidence of Hawking radiation emitted by large four-

dimensional astrophysical BHs. This is because the wavelengths emitted are large 

and undetectable. The only four-dimensional BHs that emit Hawking radiation at a 

reasonable wavelength and can be detected correspond to PBHs [19]. Unfortunately, 

to date, there is no evidence linking Hawking radiation from PBHs; they are dark 

matter candidates. However, the possible detection of Hawking radiation arising 

from small evaporated BHs (in theories involving large, flat additional dimensions) 

looks promising. The upcoming accelerators may provide ground-breaking signa­

tures regarding our hypothesised extra-dimensional world. 

The two distinct braneworld models which are the subject of this thesis can be 

recovered from the general action 

\ [ dbx^-g \R-\(d<t>)2-V(A ± [ J x y / ^ ^ U t t ) 

by taking the following two limiting cases: 

S * = 2 

0 ^ 0 : V{4>) = VQ = ARS , U(<t)) = UQ=l Randall-Sundrum model. 

V -» \a2e-2* , U -> e"*: a = V2a LOSW model. 



Chapter 2 

Gravity in the Braneworld 

In this chapter we give a compelling alternative to the old traditional method of 

Kaluza-Klein compactification where the radius of the extra dimension is taken to be 

the order of the Planck scale. We concentrate on braneworld scenarios which feature 

additional dimensions that are now large and compact. There are two distinct types 

of braneworld models which are of interest to us. First, we consider the Randall-

Sundrum (RS) models of which there are two types: RSI and RSII. They correspond 

to one of the simplest types of phenomenological braneworld models involving either 

a large or infinite sized extra dimension. The motivation behind the RSI scenario 

is to construct a framework in which the Hierarchy problem of the Standard Model 

is resolved in the most elegant way (the Hierarchy problem being the difference 

of sixteen orders of magnitude between the scales of particle physics and that of 

gravity, i.e. the electroweak TUEW ~ 103GeV and Planck scales mpi ~ 101 9GeV 

respectively). The RSII model is appealing from the perspective of the different 

nature of gravity. Even with an infinite sized extra dimension the model reproduces 

brane-localised gravity. We then focus our attention on a second type of braneworld 

scenario which are ancestors of the RSI model. This type of model corresponds to 

the Hofava-Witten model of heterotic M-theory and are initially constructed from 

string theory duality. 

19 
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2.1 The Randall-Sundrum scenarios 

Two basic models of braneworld gravity [10, 11] were proposed by Randall and 

Sundrum. Both models depict our universe as a four-dimensional manifold living 

on the edge of a five-dimensional Anti-de Sitter (AdSs) spacetime. Since there are 

conflicts with observational data, Standard Model particles are forbidden to travel to 

large distances in the extra dimension and are therefore trapped on the hypersurface, 

consisting of the usual three macroscopic spatial dimensions. However, this solution 

does not work for gravity since it is the only force that is directly linked to the 

structure of spacetime. Therefore, gravity has the freedom to enter into the higher 

dimension. 

2.1.1 Randall-Sundrum I model 

The RSI model [10] consists of two parallel three-branes bounding an AdS 5 space-

time. The branes are located at orbifold fixed points of the fifth dimension: y = 0 

and y = yc. The extra dimension lies in the direction orthogonal to each boundary 

brane. The RSI scenario can also be represented on the S1/Z2 orbifold. This partic­

ular setup involves the compactification of the additional dimension on a circle, with 

opposite ends of the circle being identified in a Zi-identification (x^, yc) <-» (.xM, — yc) 

where x M represents the coordinates of the four-dimensional spacetime. Thus, by 

taking periodicity in the extra dimension and making the above identification, we 

are ensuring that the spacetime on each side of the hypersurface is indistinguish­

able. The brane-bound particles of our visible universe are assumed to reside on the 

negative energy brane. 

We begin by solving the five-dimensional Einstein equations. Our starting point 

is the five-dimensional classical action; a sum of the Einstein-Hilbert action and the 

actions of each brane, respectively, 

where Mpi denotes the five-dimensional Planck mass, R is the five-dimensional scalar 

+v 
J d 4 x j C d y y f ^ ) { 2M3

PIR - A 5 ) 

/ dAXsJ 
Jy=0 

I d4xV 9hid Ohid vis VIS 

y=yc 

(2.1) 
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curvature, A 5 is the bulk cosmological constant, g^ is the determinant of the bulk 

metric, gvis (gkid) and avis (ohid) represent the determinant of the four-dimensional 

induced metric and the brane cosmological constant on the visible (hidden) brane, 

respectively. Hence, the setup corresponds to five-dimensional gravity with a nega­

tive bulk cosmological constant, coupled to the brane cosmological constants. 

The five-dimensional Einstein equation derived from the above action is given 

by 

l 
Gab — Asa* + W ( v -Vc)-^= + $ d W ( v ) - ^ = 

V 9yy V 9yy. 

(2.2) 

where Gab is the five-dimensional Einstein tensor. The Greek indices run in the 

direction parallel to the brane n,v = 0,1, 2, 3 whereas the Latin indices run over all 

five dimensions a, b = 0,1, 2, 3,4. 

The following five-dimensional metric ansatz 

ds2 = a2{y)r]liudx^dxu + r2dy2 , a(y) = e~kT^ (2.3) 

is a solution to Einstein equations (2.2). The symbols rc and k correspondingly 

represent the compactification radius of the extra dimension and a constant yet to 

be determined. We will take the signature of the flat four-dimensional Minkowski 

metric to be rj^ = diag( —, + , + , + ) . The metric is evidently non-factorisable since 

the exponential function, also known as the warp factor, is a rapidly decaying and 

implicit function of the fifth dimension. 

Setting w(y) = krc\y\ and inserting (2.3) into (2.2) gives two sets of differential 

equations 

w > 2 = (2.4) 

T 
w " = 12M 3 ^ h i d 5 ^ + a™s(y ~ (2-5) 

where prime denotes differentiation with respect to y. The first order differential 

equation (2.4) can be solved easily to give 

^ ) = r c M \ / 2 l ^ ( 2 ' 6 ) 
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where we have taken into account the orbifold symmetry y «-* —y. The constant A; 

can be identified as 

/̂S (27) 

which suggests that the bulk cosmological constant must be negative A 5 < 0, indi­

cating that we must have an AdSs spacetime in between the two branes. Thus, k 

corresponds to the inverse Anti-de Sitter radius. 

Furthermore, if we double differentiate (2.6) and use (2.7), we obtain 

w"(y) = 2krc[5(y)-6(y-yc)] (2.8) 

where the delta function arises from the double differentiation of \y\. To ensure 

that (2.8) is consistent with the Einstein equations, we equate it with the second 

order differential equation (2.5). This shows that a fine tuning is required between 

the brane cosmological constants (often called the brane tensions) and the bulk 

cosmological constant: 

°hid = -avis = 24MPlk, A 5 = -24MPlk2. (2.9) 

Thus, the brane tensions have been carefully attuned so that they are equal but op­

posite in sign and depend on the single scale factor k. Hence, the visible and hidden 

branes have negative and positive tensions, respectively. The careful adjustment 

of the tensions of each brane with the negative bulk cosmological constant ensures 

that we have zero effective four-dimensional cosmological constant on each brane. 

In other words, the intrinsic geometry that is consequently induced on both branes 

takes the form of a four-dimensional flat Minkowski spacetime. The branes in this 

configuration are also referred to as critical Randall-Sundrum branes. 

Relation between the four and five-dimensional Planck masses and grav­

itational constants 

We can compute a relation between the fundamental five-dimensional mass scale 

Mpi and the four-dimensional mass scale rnPi using the gravitational part of the 

action (2.1): 
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S g r a v = 2MPl I d4x r dy y/^jjW R. (2.10) 
J J-yc 

Substituting the metric (2.3) into the last equation and integrating over the extra 

dimension yields the corresponding expression for the effective length scale on the 

visible brane 

dy a2{y) = 2MPlrc / dy e ~ 2 k r M 

•yc Jo 

= Mk [1 _ e -2 f cr c y c ] ( 2 n ) 

k 

where we have taken into account the orbifold symmetry in the extra dimension. 

The formula tells us that the four-dimensional Planck mass depends weakly on yc 

in the l imi t of large kyc. This suppression has been provided by the negative bulk 

curvature. 

The following definitions 

" " - i s k - M " = d c i ( 2 1 2 ) 

can be substituted into (2.11) to yield an analogous relation between the four and 

five-dimensional gravitational constants 

G4 = G5k [1 - e - 2 ^ ] - 1 . (2.13) 

This expression shows that the gravitational interactions are weaker for the negative 

tension brane at large yc compared to the positive tension brane at y = 0. Thus, in 

the large yc l imi t , relations (2.11) and (2.13) approximate to 

m% = r ' M ^ , , GA = Gbk. (2.14) 

2.1.2 Randall-Sundrum I I model 

The RSI model which features two parallel three-branes is now modified by alter­

nating the roles of the branes. We now assume that the Standard Model lives on the 

positive tension brane at y = 0. Thus, the problem associated wi th the RSI model 

(i.e. l iving on a negative tension brane wi th matter made up of negative energy 

density, making gravity repulsive [38]) is now removed. Our visible universe now 
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lives on a brane w i t h matter composed of positive energy density making gravity 

attractive. Moreover, the hidden brane of negative tension at y = yc is sent to 

inf ini ty rc —» oo and is therefore removed entirely f rom the setup. As a result, the 

circle parameterising the f i f t h dimension becomes non-compact, suggesting that i t 

is possible to live in 4 + n dimensions (where n is the number of extra spatial dimen­

sions). We now have a single, positive tension three-brane embedded in an AdS$ 

bulk of infinite dimension. This setup gives an 'alternative to compactification' and 

is known as the RSII model [11]. 

Localisation of gravity 

We discuss the different nature of gravity in the RSII braneworld using a perturbative 

approach. There are two distinct calculations that determine that five-dimensional 

braneworld gravity is in fact consistent wi th four-dimensional general relativity. The 

two computations we perform next wi l l show: 

• The Newtonian gravitational potential is the property of both the four and five-

dimensional gravity. 

• The tensor structure of the four-dimensional massless graviton propagator can be 

reproduced f rom the five-dimensional massless graviton propagator. 

Gravitational fluctuations 

The study of gravitational fluctuations in the RSII scenario enables us to inves­

tigate the behaviour of gravity around a point mass source on the RSII brane. 

Our starting point is the derivation of the graviton wavefunction, corresponding to 

Kaluza-Klein excitations which are generated on the brane by the massive modes 

of the five-dimensional background. These four-dimensional Kaluza-Klein modes 

are merely imprints of the higher-dimensional gravitons and may provide v i ta l in­

formation regarding the extra dimensions [9]. Once we have obtained the graviton 

wavefunction, we can compute the effective potential induced on the brane and then 

comment on the localisation of gravity. Our results determine that the massive 

Kaluza-Klein modes contribute to Newton's inverse square law of the static gravi-
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tational potential between two Standard Model particles on the visible brane in the 

form of a power law potential. However, at large distances away f rom the brane 

(i.e. distances much greater than the AdS radius r ^> k~l), we essentially recover 

the results of four-dimensional Einstein gravity. 

For calculational purposes, the negative tension brane is reintroduced at a finite 

distance y = yc f rom the physical, positive tension brane at y = 0. Therefore, the 

negative energy brane merely acts as a 'regulator brane' and is only present for 

calculational purposes; i t enables us to obtain a correct integration over the mass 

and a correct normalisation for the graviton wavefunction [39]. A t the end of the 

calculation, we take the l imi t yc —> oo which removes the regulator brane f rom the 

setup. 

For simplicity, we wi l l set the compactification radius to unity rc = 1 in the 

analysis which follows. Taking into account the orbifold symmetry, the flat metric 

of (2.3) now takes the form 

ds2 = e - ^ S ^ d x " + dy2, - y c < y < y c (2.15) 

w i t h the branes at their respective orbifold fixed points. We assume that the warp 

factor is normalised at the position of the visible brane such that i t is equal to 

unity: a(0) = 1. To study the spectrum of linearised gravity fluctuations around 

the background metric (2.15), we consider the following metric perturbation 

9tiu —• 9nv + (2.16) 

where the original metric is defined as = e~2k^rj^u and the tensor h^x^^y) 

corresponds to the small variations of the metric tensor. The perturbed line element 

then reads 

ds2 = [e-2hMr)^ + y)] dx^dx" + dy2 . (2.17) 

Gravity can be described by the transverse and traceless components of the 

metric perturbation hfil/(x,1,y) [39]. We therefore fix the gauge such that the metric 

perturbation is transverse-tracefree in the bulk 

(2.18) 
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In addition to the above gauge choice, we can also impose the Gaussian Normal 

coordinate system: 

0yy = l . 9n = 0 (219) 

which immediately implies that the y-components of the metric perturbation are 

zero: hyy = 0 and h w = 0. The combination of the transverse-tracefree gauge 

together w i th the Gaussian Normal coordinate system is known as the Randal l -

Sundrum gauge and is consistent only in vacuum. Condition (2.19) ensures that the 

branes remain fixed at their original positions. Later, we wi l l see that the inclusion 

of a matter source on the brane renders the Randall-Sundrum gauge inconsistent. 

In this situation, i t is necessary to define a new coordinate system in which the 

branes are once again Gaussian Normal. However, for the analysis which follows, 

we wi l l use the Randall-Sundrum gauge. 

We can rewrite the five-dimensional Einstein equations (2.2) entirely in terms of 

the Ricci tensor 

A 
Rab — l9ab + ^9ab[S] ~ -^p9^SMS\ 

6 M 3 * a u 3 M 3 ' 
(2.20) 

where [S] = [S(y) — 5(y — yc)] represents the boundary of the spacetime. We use the 

definition for the perturbation of the Ricci tensor, also known as the Lichnerowicz 

operator 

A L / i a b = -25Rab = D ( 5 ) / i a 6 + 2Ra

c

b

dhcd - 2 V ( a V | c | ^ } - 2Rc[ahb)

c (2.21) 

to compute the non-zero gauge quantities 1 

• ( 5 ) V = a " 2 D ( 4 ) V + h% - 2 V [ a - V + 2 ( ( T V ) 2 

= a - 2 D ( 4 ) V + h% - 6 f c 2 V (2.22) 

(2.23) 

(2.24) 

1 The components of the Lichnerowicz operator are given in terms of the warp factor in Appendix 

B.2. 
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The operator = g a / 3 V Q V ' p denotes the five-dimensional covariant Laplacian 

operator for curved spacetime. Its corresponding four-dimensional analogue is given 

by the operator = rf^d^d^. We note that the Randall-Sundrum gauge has 

simplified the gauge quantities significantly. Furthermore, once we take the regulator 

brane to infinity, there is no vector or scalar components of the linearised field 

equations. I f we look at the tensor perturbation of the field equations 

• ( 4 ) V + k ( a - 2 V ) 1 ' = 0 (2.25) 

this can be solved using the boundary condition imposed by the three-brane. Equa­

tion (2.25) and its corresponding boundary condition at the location of the visible 

brane can be expressed as 

[d2

y + a - 2 D ( 4 ) - 4A;2] V = 0 ( 2-26) 

{dv + 2k)h^ = 0 . (2.27) 
y=0 

The following separation of variables ansatz 

V ( ^ > Z / ) = ^ m ( z / ) e i p ^ (2.28) 

determines the solution of (2.26) in terms of four-dimensional plane waves. Here, we 

note that the higher-dimensional particle carries extra-dimensional momentum and 

projects i t onto the four-dimensional brane [9]. Thus, the effective four-dimensional 

momentum p^ of the higher-dimensional graviton is related to the effective mass m 

of the higher-dimensional gravitational field by the relation p ^ = —m2. Equation 

(2.28) enables us to rewrite (2.26) and (2.27) as 

9 
777. V + ^r-^ - \k2i> = 0 (2.29) 

a2{y) 

(•i// + 2fo/>) = 0 (2.30) 
y=0 

where ijj = ipm (we have dropped the subscripts) represents the physical graviton of 

the four-dimensional effective theory. 

Since we have obtained the tensor equation of motion and its corresponding bound­

ary condition, we now proceed to determine the f u l l mass spectrum of the gravitons. 
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We show that there are two types of solutions which can be extracted from the above 

set of equations [40]: 

• The zero mode solution is given by m — 0. This mode (T/>0) describes the massless 

graviton which is highly likely to be concentrated in the region near the brane. This 

solution reproduces the behaviour of four-dimensional Einstein gravity. 

• The massive modes have solutions given by m > 0. These modes (ipm) represent 

the Kaluza-Klein excitations and are weakly coupled to the brane. These solutions 

lead to the modification of standard four-dimensional gravity. 

The zero mode eigenstate 

We proceed to solve equations (2.29) and (2.30) for the massless graviton mode. 

Setting m = 0 in (2.29) and applying the boundary condition (2.30) yields the zero 

mode solution 

M v ) = A/"oe- 2 f c M (2.31) 

where A/o is the normalisation constant. The wavefunction of the Kaluza-Klein 

gravitons is normalised according to the integral 

llA)MAv=2l«^)]MHv=l (2 32) 

which determines the normalisation constant 

N% = k(l - e-2*"')-1. (2.33) 

The massless eigenstate is therefore 

v ^ e - 2 f c | y l 

and is clearly normalisable w i th a sharp peak at y = 0. The warping behaviour 

indicates that the coupling of gravity to the particles on the negative tension brane 

at large distances is weaker than at the positive tension brane. We have therefore 

obtained a massless bound graviton state which is localised on the brane, corre­

sponding to four-dimensional gravity. 
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The massive eigenstates 

I n addition to the massless four-dimensional graviton mode (2.34), there also exists 

massive graviton modes which are sensed on the brane. They correspond to the five-

dimensional gravitons which have escaped f rom the four-dimensional hypersurface 

and into the extra dimension. In order to determine the massive eigenfunction, we 

solve equations (2.29) and (2.30) for the case where m > 0. 

I t is convenient to change from the physical coordinate to the conformal coordi­

nate y —> z(y) by the following change of variables 

z = yekM . (2.35) 
k 

Hence, the line element (2.15) can be re-expressed as 

ds2 = a{z)2 [r]VLVdxildxv + dz2) (2.36) 

and equations (2.29) and (2.30) become 

L V = 0 (2.37) z 
2 4 

m - — 
z2 

2 
4> + -i> 

z 

= 0 (2.38) 

where the overdot denotes differentiation w i t h respect to the conformal variable z. 

Thus, the above change of variables makes the linearised tensor field equation and 

its corresponding boundary condition much easier to implement. Equation (2.37) is 

a Bessel differential equation of order two, w i th solution given by 

rl>(z) = AmMmz) + BmN2{mz) (2.39) 

where Am and Bm are arbitrary constants (independent of z) and J2(mz) and 

N2{mz) represent second order Bessel functions of the first and second kind, re­

spectively. Here, m denotes the mass of the excitation. We can determine the 

constant Am f rom the boundary condition (2.38) at z = k~Y together w i t h the 

following recurrence relation for Bessel functions [41] 

d x J n ( x ) + - J n ( x ) = Jn-i(x). (2.40) 
X 

This yields the linear combination 
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• M T ) 
J 2 (m2) + N2(mz) (2.41) 

where Bm represents a normalisation constant. Thus, for m > 0, we have a continu­

ous mass spectrum on the brane. To determine the normalisation constant, we use 

the following integral for the normalisation of the massive graviton wavefunction: 

f Z C dz = 2 r dz = 6{a - 0). (2.42) 
J-zc a{z) Jo a{z) 

We also make use of the continuum integral (Bessel funct ion orthonormality relation) 

xJ(ax)J(Px) dx = —5(a — (5). 
a 

The last two integrals vanish for a ^ 0. However, for a 

normalisation constant 

= -
m 2k 

(2.43) 

0 we determine the 

(2.44) 

which can be inserted back into the eigenstate (2.41) to produce the normalised 

Kaluza-Klein graviton wavefunction in the physical coordinate system 

iPm(y) = 
^ r [ J i ( f ) A / 2 ( f e ^ l ) - i V 1 ( f ) J 2 ( f e ^ l ) ] 

(2.45) 
2 k ^ K f ) + J K f ) 

Asymptotics of the Bessel function 

We now study the asymptotics of Bessel functions in order to determine the be­

haviour of the eigenstate (2.45) for large and small arguments. Generally, for large 

values of parameter x say, the Bessel functions behave according to [41,43]: 

M') ~ V^cos (x - I - f ) , JV,(x) ~ (« - I - f ) . (2.46) 

I f we apply this rule to the Bessel functions of (2.45) for large values of y, we obtain 

the following approximations 
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m k v 57r 
cos I —e v M j 2 ( ™ M 

V2 /c 2 U J J^Ty 

™LN, (™M „ 1 s i n ( _ $1) . ( 2 . 4 7 ) 
2k V k J J^M> V * 4 / 

Substituting (2.47) into (2.45) yields a wavefunction wi th a sinusoidal effect: 

M y ) = [Ji ( f ) « n (fe*y - fe) - M ( f ) cos ( * e * v - * ) ] ( 2 4 g ) 

Conversely, for small values of y such as j / = 0, the wavefunctions become suppressed 

at the brane: 

where in the last line we have used the following identity [39,41,44] in the numerator: 

Jn(x)Nn+i{x) - Nn{x)Jn+1{x) = -— (2.50) 
TVX 

and the following first order approximations for Bessel functions [41] in the denom­

inator: 

J " M ~ s ( ! ) " ' w » < * > ~ - ^ ( ! ) " " • <2-5i> 
To sum up, we have obtained a f u l l mass spectrum of graviton states; the massless 

graviton zero mode ( m = 0) together w i t h the tower of massive Kaluza-Klein modes 

(m > 0). The approximate value of the massive eigenstate at the region of the brane 

(2.49) wi l l be used next to compute the Newtonian potential on the brane and the 

four-dimensional graviton propagator. 

2.1.3 The Newtonian potential on the brane 

The graviton wavefunction enables us to compute the static gravitational potential 

between two uni t point masses which are placed a distance r apart on the visible 

brane. Physically, when the two particles on the brane interact, they communicate 
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by the emission of a v i r tual graviton in a scattering process [39]. Consequently, a 

gravitational potential is generated. The tota l potential is then given by the sum of 

the potentials of the massless zero mode and the massive Kaluza-Klein modes 

V(r) = V N ( r ) + V K K ( r ) (2.52) 

where the gravitational potential for a massless graviton is simply 

VN{T) = -— (2.53) 
T 

and G4 is the four-dimensional Newton constant. In order to deduce the overall 

potential (2.52), we need to compute the contribution to the gravitational potential 

Vi<K(R) generated by the massive modes. Calculations f rom field theory reveal that 

the scattering process between two particles actually corresponds to a Yukawa-type 

interaction [7,46]. Thus, the general form of the potential corresponding to a Yukawa 

interaction is given by 

/•oo p—mr 
V K K ( r ) = -G5 dm \^m(y = 0)\2. (2-54) 

Jo r 

Using the standard definite integral 

/ xne~axdx =—- for n = 0 , 1 , 2 . . . and a>0 (2.55) 
Jo a n + 1 

where x = m , n = 1 and a — r in our case, and inserting (2.49) into (2.54) gives 

where we have used (2.14) to set G4 — G^k. Inserting the last line into (2.52) yields 

the total gravitational potential 

™~-T( 1 + dp)- ( 2 5 7 ) 

The first term of the above expression represents the dominant four-dimensional 

gravity term and corresponds to the massless graviton, which is highly likely to 

be found in the region of the visible brane. The second term takes the form of a 

power law potential and gives the modifications to the Newtonian potential, arising 
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f rom the massive modes due to the f i f t h dimension. The probability of the mas­

sive Kaluza-Klein modes being found on the brane is highly suppressed because 

at distances much greater than the AdSs radius: r 3> k"1, the corrections of the 

Newtonian potential become negligible. This implies that gravity experienced by 

matter on the positive tension brane is effectively four-dimensional. The model is 

therefore theoretically consistent w i th experimental tests of Newton's inverse square 

law at large distances. Thus, the RSII braneworld has succeeded in exhibiting 

brane-localised gravity and is a viable model to represent our universe. 

2.1.4 The brane graviton propagator 

A second confirmation to show that the RSII model does reproduce the results 

of four-dimensional Einstein gravity is provided by the computation of the brane 

graviton propagator. Generally, the tensor structure for an n-dimensional massless 

propagator is given by 

f dnp e'P-^-z) / \ l \ 
Gn{x - x\vpa = J (2n)np2 -(u + ie)2 \ 2 ^ p 9 , / a + 9 ^ 9 v p ) ~ ^ 2 9 i i v 9 p a ) ' 

(2.58) 

Since we are interested in the five and four-dimensional spacetimes, we wi l l set n = 5 

and n = 4 in the above equation. This determines the explicit form of the massless 

bulk and brane propagators [47]: 

G5{X - X)^ = J ( 2 7 r ) 5 p 2 _ ^j + i€)2 ( 2^p9uo + 9»a9vp) ~ ^ Q p a J (2-59) 

f d4p e*p-(x-*) f \ l \ 
G4{x - x ) ^ = J j ^ y p 2 _ (u + i e y ^ + Mvp) - 2^9PaJ(2.60) 

The last term of each of the above expressions contains a different numerical factor, 

implying that the tensor structure in five and four dimensions is clearly distinct. 

This discrepancy originates f rom the three additional polarisation states which are 

present in the five-dimensional theory [48,49]. Thus, when we compute the brane 

propagator, we must remove these unwanted states. The explicit calculation of the 

brane graviton propagator in the RSII braneworld has been given in the original 

papers by Garriga and Tanaka [50] and by Giddings, Katz and Randall [51]. 
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Calculation of the Graviton propagator 

We concentrate on the derivation of the graviton propagator. As we wi l l shortly see, 

it is useful to introduce an additional matter source on the brane as this wi l l elucidate 

the cancellation of the unwanted polarisation states. We employ the methods of [50]. 

In the original coordinate system the unperturbed brane without matter is 

located at the coordinate origin y = 0. However, the inclusion of an arbitrary 

matter source on the brane causes the brane to bend, altering the brane position to 

y = —£y. Thus, in order to explore the effects of the brane ' f lut ter ' , i t is convenient 

to introduce a new coordinate system (x^,y) in which the brane wi l l once again 

lie at the coordinate origin y = 0. In this new system, the brane respects the 

Gaussian Normal condition: gyy = 1, g^y — 0 and is once again flat. We wi l l use 

the overbar notation to denote quantities in the new coordinate system. The two 

distinct systems are related by the following parameterisation 

y -» y + e&^y) (2.61) 

x» -> x» + e{x»,y) (2.62) 

where £ y and £ M correspond to infinitesimal fluctuations in the coordinates ( x M , y ) . 

These arbitrary functions parameterise the brane by encoding both the brane-

bending effect and the transformation between the two distinct coordinate sys­

tems [42]. Moreover, (2.61) and (2.62) ensure that the new coordinate system also 

satisfies the metric (2.17). Using the gauge invariance property 

hob -» Kb + V f l & + V 6 £ a (2.63) 

we can readily obtain the two gauge parameters 

e = / ( * " ) , e = - J ^UrTdy + rr*uW (2-64) 

where f { x t l ) is interpreted as the brane bending term. In the subsequent analysis, 

we w i l l drop the e„(x M ) term which arises f rom an integration constant. 2 The metric 

2 The full details of the gauge transformations are covered in Appendix B.6. 
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perturbation relating the two distinct coordinate systems (i.e. the Randall-Sundrum 

gauge and the Gaussian Normal gauge) 

J - ^ f ^ d y + 2aa'ri^f (2.65) 

takes account of the brane fluctuation parameter. Here, physically corresponds 

to the transverse-tracefree four-dimensional tensor (i.e. in the Randall-Sundrum 

gauge) and h^u corresponds to the metric tensor in the Gaussian Normal gauge. 

The last equation can be expressed more explicitly as 

V = V - \U» - 2 /c /7^e- 2 f c W . (2.66) 

To solve the (non-vacuum) equations of motion, we need to take into account of the 

brane by imposing the Israel junct ion conditions at the boundary of the spacetime at 

which the brane is located. The junct ion conditions correspond to five-dimensional 

generalisations of the usual four-dimensional boundary conditions. I f we exclude the 

brane tension, then the j u m p in extrinsic curvature A K ^ „ across the two sides of 

the wall is related to the brane energy-momentum tensor TM„ via 

A K ^ = K^(y = 0 + ) - K ^ y = ( T ) = -Kh(T^ - ^Tr,^) (2.67) 

where the trace of the energy-momentum is denoted as = T and ft5 = 87rG 5 . 

Since we are assuming the simplifying assumption of Z2-symmetry across the wall, 

then the j ump in extrinsic curvature is double the value of the extrinsic curvature on 

one side of the brane. The linearised tensor field equation (2.25) and the boundary 

condition (2.27) are now modified and take the form: 

a - 2 D ( 4 ) V + a-2 [a4 (a-2V)']' = -2K56{y)(T^ - ^Tr,^) (2.68) 

h' + 2khu = -^(T^-ITT,^). (2.69) 
y=0+ O 

The latter equations therefore account for a general matter perturbation due to the 

presence of an arbitrary matter source on the brane. Equation (2.69) represents the 

boundary condition in the Gaussian Normal gauge. The corresponding boundary 
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condition in terms of the variables of the original coordinate system (i.e. in the RS 

gauge) is obtained by substituting /iM„ f rom (2.66) into (2.69). This gives 

h'^ + 2kh 
y=o+ 

— ~'K'5{Tlil/ — —Tr)^) — 2 / ^ (2.70) 

where we notice the extra ' f lut ter ' term appearing in the last term of the above 

equation. The bulk equation of motion without a matter source (2.26) can now be 

conveniently combined w i t h the modified bulk boundary condition (2.70) to give 

K 5 ( T M „ - ^Trj^) + 2 f i l i v (2.71) 

where the discontinuity at the wall has been considered through the delta function. 

We note that the additional factor of 2 arises f rom the Z2-symmetry. As in Ref. [50], 

the five-dimensional retarded Green's function is defined as 

[ e 2 % l Q ( 4 ) + Q2 _ 4K2 + 4 F C 5 ( Y ) ] Y . ^ RY) = 6(4) { X _ I ) 6 { Y _ Y ) ( 2 ? 2 ) 

with the formal solution of (2.71) given by 

hn„{x,y) = -2K5 J d4x GR(x,y\x,0) (T^ - ^ T ^ „ + ^f,n^j (^) • ( 2-73) 

Thus, in order to evaluate the metric induced on the brane, we need to first determine 

the brane bending parameter. Since the metric perturbation in the RS gauge is 

traceless /i£ = 0, this implies that the RHS of (2.73) must also be traceless. This 

gives us an important implici t expression for the displacement of the brane 

• < 4 ) / = 
K 5 T 

(2.74) 

which shows the coupling between the brane bending parameter and the trace of 

the perturbation of the brane energy-momentum. Since we are interested in the 

perturbation on the brane, we return back to Gaussian Normal coordinates. A t 

position y = 0, equation (2.66) becomes 

h^ = h$)+h$ + ± f ^ + 2kfril (2.75) 
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where we have decomposed into a matter field perturbation and a brane bending 

perturbation, respectively: 

V = rf? + h$ (2.76) 

where 

h™ = -2K5 J' dAxGR{x,y-xMT^-\Tv»»){x) (2.77) 

W = - 4 j d 4 x G R ( x , y ; x , 0 ) f ^ ( x ) . (2.78) 

I f we gauge away some of the terms appropriately in (2.75) and set y = 0 in (2.77), 

we can obtain a simple expression for the metric perturbation on the brane 

htlu(x,0) = h i f f + 2 k f V l u / . (2.79) 

In order to compute the induced metric on the brane / ^ ( r r , 0), we first need to 

define the Green's funct ion and give the explicit solution of (2.74) for the brane 

fluctuation parameter. 

The Green's function and the brane displacement 

The Green's func t ion 3 which is required to solve for the metric perturbation in the 

RSI I setup [11] is defined by 

~ ~N f d4p i p / ^ i j ka2{y)a2{y) " 
GR(x,y\x,y) = - / - p r ^ e t p { x x ) ) y j vy( + / dm-

J (2TT)4 [ p 2 -{U + it)2 J0 p <2 + m2 — (u> + ie)2 

(2.80) 

where the first and second terms correspond to the bound state of the five-dimensional 

graviton (i.e. the zero mode) and the continuum tower of massive Kaluza-Klein 

states, respectively. The massive wavefunction ipm(y) has been identified previously 

in (2.45). The above expression can be wri t ten in a more compact form 

GR{x,y;x,y) = k a2(y)a2{y) DQ(x - x) + / dm Dm(x - x)ipm(y)Tpm(y) (2.81) 
Jo 

3 A detailed derivation of the Green's function is given in [52]. 
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where the massless and massive graviton propagators (in the standard flat four 

dimensions) are given respectively as: 

f d4v eip-i*-*) 
D 0 ( x - x ) = - 4 [ 2 . (2.82) 

7 (27r) 4 [ p 2 - (w + it)1] 

D m ( x - x ) = - / ^ 2 (2.83) 
y (27r) 4 [ p 2 4- m 2 — (a; + ze)2J 

Since we are interested in the interaction of two point masses on the four-dimensional 

hypersurface, we restrict the perturbation exclusively to the brane y = y = 0 (or 

2 = 2 = fc-1). Then, the Green's function is simply 

roo 
CR{X,0-X,0) = k D 0 ( x - x ) + dm Dm(x - x)\i)m(0)\2. (2.84) 

Jo 

Here, we also give the formal solution of (2.74) in terms of the massless propagator 

f ( x ) = nb j d4x D0(x - x ) ^ - . (2.85) 

The zero mode contribution 

For the massless mode, we are only interested in the physics on the brane. We 

can therefore safely ignore the contributions which arise f rom the massive graviton 

modes in the bulk. Then, the behaviour of the induced metric at long distances 

would be dominated by the zero mode. The substitution of the first term of (2.84) 

G ^ m ( a ; , 0 ; i , 0 ) = fc D0(x - x) (2.86) 

together w i t h the brane fluctuation parameter (2.85) into (2.79) gives 

h™ = -2Kbk J d4x D0(x - x) ( T ^ - ^ T r } ^ + 2 K ^ v k J d4x D0(x - x ) ^ 

= -2*5k J d4x D0(x - x) (T^ - ^ T V ^ - \ T ^ ) j • (2.87) 

I f the last term was absent we would have obtained five-dimensional gravity, however 

this is not the case. Using the definition (2.14) of the four-dimensional Newton 

constant G4 = Gbk, we f ind 

h™ = -167rG 4 j d4x DQ(x - x) (T^ - \ T v ^ (2-88) 
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which is precisely the metric corresponding to four-dimensional perturbative Ein­

stein gravity. Thus, the desired cancellation of the factor ^ —> \ in the metric 

perturbation has been obtained, giving us a second confirmation that the RSII 

braneworld does relate to our observable universe. Hence, all classical predictions 

of general relativity (e.g. the bending of light around the sun, the precession rate of 

orbit around the planet Mercury [47]) in the RSII model are consistently reproduced. 

Corrections to Einstein gravity 

We now determine the contribution arising from the massive continuum modes which 

we had previously ignored. Inserting the second term of (2.84) 

G £ m ( x , 0 ; x , 0 ) = / dm Dm{x - x) | ^ (0) | 2 (2.89) 
Jo 

into (2.77) yields the contribution to (2.79) for the massive eigenstates. The metric 

perturbation for the massive modes is then given by 

~K™ = -2*5 J d4x j ™ dm ^ Dm(x - x) ( T ^ - ^Trj^ (2.90) 

where we have used equation (2.49) in the last line. The total metric perturbation 

is obtained by adding (2.88) and (2.90): 

V = + ~K? ( 2 - 9 1 ) 

which gives the following expression 

= - 2 k 5 / c J d A x DQ(x - x){T^ - ^Trj^) 

/

f°° m 1 
dAx J dm — Dm(x - ^(T^ - -Trj^). 

(2.92) 

For the stationary (static) case, the Green's function GR(X, y\ x, y) for the Laplacian 

operator [50] is related to the previous Green's function Gft(x,y;x,y) by 

/

oo 
di GR(x,y;x,y) (2.93) 

•oo 
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where x denotes the spatial coordinates on the brane. More explicitly, the last 

equation is given by [45] 

1 I" f°° 
G f t (x,?/;x,y) = - — ka2(y)a2(y) + J dm ipm(y)ipm(y) e" (2.94) 

where ipm(y) is the mode function given in (2.45) and r = |x — x|. On the brane, 

the Green's function (for the Laplace operator) takes the form 

k 
Gr(x,0;x,0) = - Aixr 

k 
47rr 

1 + 

1 + 
1 

2fcV 

(2.95) 

(2.96) 

where, in the last two lines, we have used the definition of the mode function (2.49) 

evaluated at y = 0. We have also used the standard integral given in (2.55) together 

with the following relations 

1 
d x DQ{X — x) 8{x) = 

4nr 
d x Dm(x — x) 5{x) — (2.97) 

Inserting (2.97) into (2.92) yields the metric perturbation outside a spherical source 

V ( M ) = — / d6x J d?x [2 (T»V - L-Tntl)j + (T^ - ITT,^ (2.98) 

In order to deduce the correction to Einstein gravity explicitly, we consider the effect 

of a point mass source [46] defined by 

Tab~m5yb5(v)6(y), T ~ mS(r) (2.99) 

Inserting (2.99) into (2.98) yields the desired expression for the metric perturbation 

on the brane 

2GAm 
d i a g ( l , l , l , l ) + ^ d i a g ( 2 , 1 , 1 , 1 ) (2.100) 

with the corresponding linearised metric components 

T 2G4m ( 2 
htl = — — I 1 + 

3k2r2 3k2r2 J l ] 
(2.101) 
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We can then deduce the Newtonian potential describing the attraction between two 

particles a distance r apart on the brane: 

« r ) s i - h l l = ^ ( : + _ | _ ) . , , 1 0 2 ) 

Again, the first term of the Newtonian potential corresponds to the massless gravi-

ton mode whereas the second term denotes the contribution arising from the massive 

Kaluza-Klein modes. Clearly the corrections are suppressed at large distances away 

from the brane and the effects of standard non-brane gravity are restored for dis­

tances much greater than the Anti-de Sitter radius r > fc"1. 

We note that the corrections in (2.102) differ by a factor of 4/3 from the cor­

rections computed earlier for the Yukawa-type interaction (2.57). The modification 

in the tensor structure arises as matter sources were not included earlier when the 

Yukawa potential was formulated. Thus, the relative 4/3 factor originates from the 

massive modes and is a net result of the brane-bending effect [39]. However, the 

overall form of the Newtonian potential 4 in both cases stays the same: 

y ( r ) ^ _ ^ i ( 1 + A r ) , A ( r ) ~ ~ . (2.103) 

We note that the Garriga-Tanaka computation of the Newtonian potential (2.102) 

is the correct (and accurate) calculation. 

Summary 

In this section we have given two detailed derivations that confirm the RSII model is 

a candidate model to represent our universe, i.e. both derivations show that gravity 

is localised on the brane. First, we computed the Newtonian potential on the brane. 

We found that the corrections to the potential are suppressed at large distances from 

the brane, indicating an effective four-dimensional Newtonian potential. A second 

confirmation of brane-localised gravity was provided through the computation of 

4See the following references for the computation of the Newtonian potential: In [39,44] the 

authors determine the Newtonian potential without using the brane-bending effect whereas in [53] 

the brane-bending effect is used. 
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the brane graviton propagator. The consideration of an addition matter source on 

the brane caused the brane to 'flutter'. This led to a brane fluctuation parameter 

which turned out to be a crucial ingredient in the analysis; it exactly compensates 

for the unwanted states which are present in the five-dimensional theory. Thus, 

the cancellation of the additional states in the bulk theory yields a formula for 

the brane graviton propagator with correct tensor structure corresponding to four-

dimensional linearised gravity. Hence, both computations show that even with an 

extra dimension of infinite size, the bulk curvature provides an effective compactifi-

cation, yielding the behaviour of four-dimensional Einstein gravity. Thus, the RSII 

braneworld is a theoretically viable model describing our universe. 

2.2 Hofava—Witten model of heterotic M-theory 

The Hofava-Witten model of heterotic M-theory [32] (also referred to as the LOSW 

model) is a predecessor of the RSI braneworld. Pictorially, the models are very 

similar as they both contain two four-dimensional domain walls, bounding the ends 

of a finite interval. However, the similarity is only notional. The physics of each 

model is remarkably different; exotic matter fields are contained in the bulk of low 

energy heterotic M-theory. We therefore expect a different gravitational spectrum 

of five-dimensional general relativity in the LOSW model in contrast to the RSI 

braneworld. 

2.2.1 Heterotic M-theory 

The eleven-dimensional Hofava-Witten construction [33,34] is motivated from string 

theory duality. The strong coupling limit of the E8 x Eg heterotic string yields a 

theory which consists of an eleven-dimensional bulk spacetime, bounded by two 

ten-dimensional orbifold fixed planes. Each orbifold fixed plane represents two dis­

tinct universes; one representing the physical world in which we live in and the 

second brane representing the hidden universe. In order for a consistent theory to 

be constructed from this setup, a set of Eg gauge fields (equivalent to the forces of 

the heterotic string [9]) are required to reside on each of the ten-dimensional hy-
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perplanes. This forms a relation between the ten-dimensional Yang-Mills and the 

eleven-dimensional gravitational coupling constants, the details of which are given 

in [35]. The corresponding metric of the eleven-dimensional supergravity theory is 

given by 

ds2

n = V-2/3ga0dxadxp + V1/3QABdxAdxB (2.104) 

where gap denotes the metric of the five-dimensional spacetime, SIAB (also known as 

the Calabi-Yau space) represents the metric of the six additional spacelike dimen­

sions and V (the modulus) measures the deformation of the internal Calabi-Yau 

space. 

If the Hofava-Witten construction is to represent our universe, then six of the 

spatial dimensions must be hidden in order to yield an effective five-dimensional the­

ory analogous to the RSI braneworld. The explicit calculation of the reduction from 

eleven dimensions down to five dimensions was performed in [32]. The derivation in­

volves the compactification of the M-theory limit (eleven-dimensional supergravity) 

on six additional spacelike dimensions known as a Calabi-Yau three-fold [35]. This 

compactification is achieved through a generalised Kaluza-Klein reduction and it is 

due to this compactification that a five-dimensional effective scalar field (dilaton) 

arises in the bulk which is responsible for driving the deformation of the Calabi-

Yau space. This yields the effective five-dimensional E& x Eg Heterotic M-theory 

which describes the low energy physics of the strongly coupled heterotic string. The 

resulting five-dimensional effective metric is then given by 

ds\ = a(y)\udx»dxl/ + b{y)2dy2 (2.105) 

where a(y) and b(y) represent metric functions dependent on the extra dimension. 

A subsequent reduction of the five-dimensional effective theory down to four di­

mensions is achieved by compactifying the f i f th dimension on a line element, corre­

sponding to the 5 1 jZi orbifold. This yields two TV = 1 supersymmetric three-branes 

embedded in a five-dimensional spacetime [35], providing us with the appropriate 

background for the setup of our early universe. Moreover, if we match the theoretical 

values for the gravitational and grand-unified couplings, it suggests that the size of 
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the orbifold is one order of magnitude greater than the size of the Calabi-Yau man­

ifold. This suggests an intermediate regime in which the early universe may have 

appeared effectively five-dimensional [35,36]. It is therefore important to study the 

five-dimensional effective Hofava-Witten theory. 

To solve the background equations of low energy heterotic M-theory, we begin 

with the dimensionally reduced five-dimensional effective action [32] which consists 

of terms which describe gravity, the bulk scalar field and two boundary branes, 

respectively: 

R + \v-2daVdaV + \v~2a2 

2«5 J Ms 

I d 4 x J ^ r V - 1 - [ d4xJ^g~+V~l 
y/2a 

« 5 

(2.106) 

where (j) = In V represents the bulk scalar field, R is the five-dimensional Ricci scalar, 

K5 = 87rG5 is the five-dimensional Newton constant, g^u is the induced metric on 

each brane and a is an arbitrary coupling constant which parameterises the number 

of units of 4-form flux which threads the Calabi-Yau [105]. The boundary branes 

have equal and opposite tensions and are positioned parallel to each other at y = ±yo 

where y represents the direction perpendicular to the brane. Here, we note that the 

exponential term V{<j)) = \V~2a2 in the above action plays a similar role to the 

bulk cosmological constant in the RS model. 

The resulting five-dimensional equations of motion derived from the above action 

are given by 

G £ } = \v„ V,bV~2 - \gabV,c V,e V-2 - \gab a2V~2 

+ V2a[S(y + yQ) - 8{y - y 0 ) ] 6 f f i 9 l u , V ' 
(2.107) 

9yy 

•<5V = -\c?V~2 + 2V2a[6(y + y0) - 6(y - yQ))^-L (2.108) 
05 y/9yy 

where and = rj^d^dv + dy

2 represent the five-dimensional Einstein tensor 

and curved space d'Alembertian operator, respectively. Again, the Greek indices 
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run over the four dimensions fi, v = 0,1, 2, 3 whereas the Latin indices run over all 

five dimensions a, b = 0,1, 2, 3,4. 

The metric ansatz (2.105) is a solution to Einstein equations (2.107). The cor­

responding solutions for the static 3-brane in the background of heterotic M-theory 

are given by the following set of formulae 

ds\ = alHiy^dx^dx" + b2

0H4(y)dy2 

V(y) = b0H3(y) (2.109) 

H{y) = —a\y±yQ\+c0 

where the symbols do, b0 and CQ represent arbitrary constants and H(y) denotes a 

linear harmonic function. Finally, imposing an additional Z2-symmetry at y = +yo 

enables us to produce a second domain wall. 

Summary 

In this section we have obtained the background solutions of low energy heterotic 

M-theory. The subject of perturbations around these solutions is the content of 

chapter 5. 



Chapter 3 

Braneworld Stars and Black Holes 

In this chapter we study the possibility of describing strong gravitational phe­

nomenology within the context of the Randall-Sundrum I I model. The main objec­

tive is to consistently embed a three-brane in a five-dimensional, spherically sym­

metric spacetime. We fix the background and assume that the three-brane contains 

matter content in terms of a non-zero energy-momentum tensor. We analyse three 

types of background: Anti-de Sitter, Schwarzschild and Schwarzschild-Anti de Sit­

ter. Concentrating our study on static braneworld slicing of the given spacetimes, we 

are able to derive expressions describing the shape of the brane. We also compute the 

energy density and pressure induced on the brane. In particular, we are interested 

in branes that are embedded in a Schwarzschild-Anti de Sitter background as these 

solutions will potentially correspond to either brane stars or black holes. Finally, 

we extend our analysis to include time dependence in the model. In particular, we 

explore time-dependent trajectories in a Schwarzschild-Anti de Sitter background as 

these solutions are possible descriptions of time-dependent braneworld black holes. 

We then give a qualitative discussion of the effects induced on the brane energy-

momentum when matter is present on the brane. This involves an analysis of the 

energy and pressure profiles. The weak and dominant energy conditions then deter­

mines the physically sensible solutions. 

46 
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3.1 Introduction 

Black holes are a fascinating topic of research for the theoretical physics community. 

These massive objects are vital in our understanding of the gravitational force, the 

least understood force of nature. Over the past two decades, braneworlds have 

offered a revolutionary approach to the study of black holes. These paradigms 

allow extra dimensions to be concealed in the most elegant way. They also offer a 

resolution to the Hierarchy problem; explaining why the power of gravity is so much 

more diluted in contrast to the other forces of nature. The ability of the braneworld 

construction to hide the additional spacelike dimensions and to solve the Hierarchy 

problem provides us with a possible toy model for our universe and one in which 

to explore the effects of strong gravity phenomenology. Thus, the subject of this 

chapter is braneworld black holes. (See Ref. [54] for a review on braneworld black 

holes). 

The nature of black holes within the framework of the Randall-Sundrum (RS) 

scenario has not been fully understood. There have been many different attempts in 

trying to comprehend the subject, but the unsolved problem in braneworlds remain; 

no one has yet been able to pin down an exact solution for a four-dimensional metric 

corresponding to a static localised brane black hole. Some (of the many) analytical 

attempts at resolving the problem are discussed next (although numerical techniques 

have also been explored in [55-57]). 

The first attempts to find a static black hole solution on the RS brane was made 

by Chamblin, Hawking and Reall (CHR) [37]. Using the warped metric ansatz of 

the RS scenario 

the authors replaced the flat Minkowski metric with a Schwarzschild spacetime: 

Vnu —* g^h- The above metric is then modified to: 

ds2 = e-2ky[-dt2 + dx2}+dy2 (3-1) 

( 
2 M 

) 
2 M 

+ 1 
- l 

ds2 = e~2k» 1 - dt2 dr2 + r2dQ2

u +dy2. (3.2) 
r 

From the brane perspective, this substitution forms a Schwarzschild black hole solu-
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tion on the brane. Extending this solution off the brane and into the fifth dimension 

by the addition of an extra flat spatial dimension yields an unstable singularity. 

The solution now appears to be a higher dimensional object in five-dimensional 

Anti-de Sitter space (AdS 5), i.e. the Schwarzschild black string Sch4 x R. Clearly, 

from the five-dimensional perspective, this solution fails to describe a localised 

four-dimensional brane black hole. If our world is indeed part of an exotic multi­

dimensional universe, then for a truly localised brane black hole, we would expect 

gravitational collapse of matter on the brane to form a black hole on (or close to) 

the brane. This is certainly not the case for the CHR black string; the horizon of 

the black hole stretches all the way out to the AdS horizon and becomes singular 

at the end. Although the CHR black string suffers from the above problems (the 

extended bulk singularity and the classical instability [58]), it is to date, the clos­

est (but unsuccessful) exact solution that looks like a black hole, at least from the 

four-dimensional perspective. 

Chamblin et al later acknowledged that a true description of a static black hole 

would correspond to a five-dimensional slice of an accelerating black hole. This is 

because the RS brane trajectory does not follow a geodesic of the AdS bulk; in fact 

it experiences a constant acceleration [61]. Thus, a black hole residing on the wall 

must accelerate simultaneously with the wall in order to keep up with the motion 

of the domain wall. In four-dimensions, the metric describing an accelerating black 

hole is referred to as the C-metric, the basic properties of which are well known and 

were first considered by Kinnersley and Walker [62]. Unfortunately, a generalisation 

of the C-metric in five dimensions has not yet been found and remains a project 

worthwhile to explore. 

Emparan, Horowitz and Myers explored black holes in a lower-dimensional setup 

of the RS scenario [63,64]. By 'subtracting' one dimension from the RS model, they 

were able to explore the possibility of intersecting a three-dimensional black hole 

using a two-brane. In the analysis, the authors realised that the black holes on the 

brane are in fact accelerating. Taking this into account by using the aforementioned 

C-metric, a class of exact solutions in four dimensions were discovered. Thus, the 

success of this lower dimensional model may provide a useful insight into generalising 
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this model to dimensions beyond the familiar four. Unfortunately, to date, there 

have been no extensions of this lower dimensional model to five dimensions or more. 

More recently, Emparan, Fabbri and Kaloper [65] applied the AdS/CFT conjec­

ture [66] to try and solve the problem. They state that a localised black hole solution 

on the brane can be obtained by solving the classical bulk equations of the AdS 5 

space. The projection of the classical bulk solution would form a four-dimensional 

quantum corrected (not classical) black hole on the brane. Since there has been no 

success yet in quantising gravity, it is not surprising that nobody has yet resolved 

the mystery of the missing four-dimensional brane black hole. 

Shiromizu, Maeda and Sasaki used a brane-based formalism to derive the ef­

fective four-dimensional Einstein equations on a three-brane world [67]. Using the 

Israel [70] and Gauss-Codazzi equations (a differential geometry approach to finding 

gravitational solutions which involves an n-dimensional infinitesimally thin mem­

brane embedded in an (n + l)-dimensional spacetime [71-73]), they were able to 

project the five-dimensional gravitational equations onto the four-dimensional hy-

persurface, confining all the analysis exclusively to the brane. Unfortunately, this 

method involves an unspecified Weyl tensor term. This is an unknown quantity 

which encodes all the information regarding the geometry of the bulk. This is where 

the heart of the problem lies; we do not have a closed system of equations on the 

brane. 

Seahra [68] and Galfard, Germani and Ishibashi [69] (the latter authors used an 

AdS/CFT inspired conjecture in their analysis) explored the subject using an en­

tirely new approach. They used a bulk-based method which took into account both 

the four and five-dimensional spacetimes. The advantage of this method in com­

parison to the brane-based analysis of Shiromizu et al is that we have no undefined 

variables in the system, allowing us to obtain a full bulk plus brane solution. Using 

the perception that our visible world exists as a slice of a higher dimensional uni­

verse, planar slicing of five-dimensional metrics were taken. The aim was to obtain 

a spacetime slice that intersects exactly through a bulk black hole. In particular, 

non-vacuum branes were considered because it is not possible to obtain solutions 

using vacuum domain walls [37]. Unfortunately, the slicing produced in both papers 
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exhibited curvature singularities; these are not acceptable solutions for candidate 

black holes. 

In this chapter, we employ the same methodology as the previous authors in 

a further attempt to obtain a brane slicing which cuts through a black hole. Our 

methods have the same restriction as that of the previous work; the branes must 

be non-vacuum. By deriving a full system of bulk and brane equations, using the 

Israel formalism, we explore the possible brane trajectories that are allowed. The 

layout of the chapter is as follows. We will restrict our analysis to the case of a 

fixed, five-dimensional spherically symmetric bulk. Since it is impossible to inter­

sect a black hole with a vacuum domain wall, we study branes characterised by 

a non-vanishing energy-momentum tensor. A solution to the brane equations of 

motion can then be found. Assuming that the brane contains a general isotropic 

fluid source living on it, we derive the general formulae which are equivalent to the 

Tolman-Oppenheimer-Volkoff (TOV) equations; the characteristics equations of a 

gravitating star. Focusing on the general static system, we show that the static 

brane is completely integrable. We then explore the trajectories of the branes when 

they are embedded in a variety of backgrounds, exploring all possible black hole 

or stellar solutions. Our final goal is a consistent embedding of a three-brane in a 

Schwarzschild-Anti de Sitter bulk; a possible candidate solution for a brane black 

hole. Finally, we take a look at the time-dependent solutions, after which we con­

clude. 

3.2 The general brane equations 

We begin by adopting a spherically symmetric coordinate system. We write the 

5-dimensional line-element in the form: 

ds2 = -U{r) dr2+ j ^ d r 2 + r2(dX

2 +sin2 xdfll) (3.3) 

where U(r) is a general function of the global radial coordinate. The function x(i~, r) 

denotes the location of the brane in the five-dimensional spacetime. The explicit 

form of the line-element on a unit 2-sphere is given by d?L2

u = d62 + sin 2 6d(f)2. We are 
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considering configurations within the Randall-Sundrum I I model, with a reflection 

symmetric spacetime around a single positive tension brane. 

The position of the brane in the bulk is given by the following 5-vector x M = 

(r, r, x(t, T), &, <f>)- We can form a new basis in terms of the (unnormalised) tangent 

vectors and the (normalised) unit normal: 

T" = (1,0.x, 0,0) 

B? = (0 , l ,x\0,0) 

6" = (0,0,0,1,0) 

= (0,0,0,0,1) 

n» = n ( - x , - x ' , 1.0,0). 

(3.4) 

In the above, overdot and prime denote partial differentiation with respect to r and 

r, respectively. The unit normal above has been deduced by using the orthogonality 

relations between the normal and tangent vectors: T^n^ = 0 and R^n^ = 0. We use 

the spacelike property of the normal vector n^n^ = 1 to determine the normalisation 

constant 

= - 7 7 + UX + n2 V U r2 
(3.5) 

The tensor = gfiu — n M n„ projects vectors onto the wall whereas its tangential 

components define the induced metric on the brane. In the aforementioned basis, 

the induced metric can be simply evaluated as 

/ _ U + r*x 
2 • / 

r XX 

2 • / 
rzXX 

v + r V 2 

9 • 2 

r sin x 
r 2 sin 2 x sin 2 9 

\ 0 

The Israel junction conditions [70], triggered by the presence of the brane with 

a non-vanishing distributional energy-momentum tensor TM„, take the form 

(3.6) 
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where = h^h^V pna is the extrinsic curvature of the brane and K5 — 87r(?5 de­

notes the five-dimensional gravitational constant. We use the simplifying assumption 

of Z2-reflection symmetry around the wall: i f M „ ( 0 + ) = — K^u(0~) to obtain 

[K^t = ^ ( 0 + ) - K^(0-) = 2Kfil/(0+) • (3-7) 

The Israel conditions (3.6) then simplify to 

^ = y ( 3 ^ - V ^ ) - (3-8) 

We deviate from the simplified ansatz of CHR [37] in which the brane was char­

acterised only by a constant self-energy. In this work we assume that the matter 

distribution on the brane, given in terms of the energy-momentum tensor, may take 

the general form of a perfect isotropic fluid source 

Tiw = [p(T>T) + P(T> r ) l h^hup uaup + p(r, r) . (3.9) 

In the above ansatz, p(r, r ) and p{j,r) represent the fluid's energy density and 

pressure, respectively. The vector is the fluid's 4-velocity which satisfies the 

normalisation condition u^u^h^ = — 1. It can be easily shown that working in the 

rest frame of the fluid on the brane 

^ = -^4= (1,0,0,0,0) (3.10) 

in the basis (T, R, 6 , n), is equivalent to taking the fluid's 4-velocity i t M to be 

parallel to the time-like tangent vector in the original basis (r, r, x,#,0)- The 

ansatz (3.10) allows us to rewrite the brane energy-momentum tensor as: 

Tlw = -(p + p ) ^ ^ + p h I U f . (3.11) 

Furthermore, the trace of the energy-momentum tensor yields the relation T = 

T^h?" = 3P — p. For convenience, we will write the energy density and pres­

sure of the perfect fluid on the brane in terms of an "equation of state" p(r, r) = 

W(T,T)p(T,T) and define for later convenience the quantity 

v{r,r) = 2 + 3 i u ( T , r ) . (3.12) 
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By using the form of the energy-momentum tensor given in (3.11) together with 

(3.12), we can rewrite the Israel conditions for a brane containing a perfect fluid in 

the form 

V> _ (! + v ) h TT 
(3.13) 

The Israel equations (3.13) are given explicitly as: 

KTT = ~ N X + Urx'x2 - \ UU'x' 
K5 

pv (-U + r2x2) (3.14) 

K R R = -n „ 2X' ^ U'X' M T J l 3 « 5 a , (l+v)r4

X

2x'2 

1- r V + 
U U - r 2 x 2 

(3.15) 

K T R = -n ., , X , T j ,2. U'x 
x + - + UrX x - w 

^5 2 • / 
-—pvr XX 

o 
(3.16) 

^ee = -n[Urx' sin 2 x - sin x cos x] = y P7'2 s i n 2 X (3.17) 

where we have excluded = KQQ sin 2 9 as it is not an independent equation. 

The r and r derivatives of the inverse of the normalisation constant n are given 

respectively: 

d 
dr 

(n - 1 ) = n ux'x' - ^ (3.18) 

dr 
(n" 1 ) = n 

XX 1 1 , l 2 v , _ J_ 
U 2U2 2 X X X r 3 

(3.19) 

We differentiate (3.17) with respect to r and r separately and use (3.18)—(3.19) 

together with (3.14)—(3.16) to eliminate any double derivatives. This yields two 

additional, but not independent equations for the conservation of energy-momentum: 

X 1 + \u'r - U + ^ ( 1 + v)r2cot X 2 6n Qn 
(3.20) 

X 1 + -U r - U + —— (1 + v)—- T—i; 
2 6n -U + r2x 

*5P r2 
6n 

(3.21) 
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We may summarise the above results by saying that a four-dimensional brane 

containing a perfect fluid, described by its energy density p(r, r) and equation of 

state p(r, r) = w(r,r)p(T,r), can be successfully embedded in a five-dimensional 

spherically symmetric background defined by a single function U(r) as long as we 

can find a consistent set of functions p(r,r), w(r,r) and x ( r > r ) ~ satisfying (3.14)-

(3.17) and (3.20)-(3.21). 

The following definition a = r cos x enables us to rewrite the Israel and conser­

vation equations (3.14)-(3.17) and (3.20)-(3.21) as: 

2 •• 

rza 
IT 

— (a'r — a) 
2 

+ a + 

( 1 + * ) 
U 

[U(a'r - a ) + a] -U + 
r2 — a2 

= 0 (3.22) 

Ur a" + (a'r — a) 
U'r 

- U - a + 

(1 + v) 
[U(a'r - a) + a] Ur2a2(a'r - af 

(r2 — a 2 ) [r2a2 — U(r2 — a2)] 
= 0 (3.23) 

.. 1 U'r . . . r r r . . . ,a(a'r - a) 
ra' - -—a + (1 + v)\U{a'r - a) + a}-±-„ ~- = 0 

2 U (r J — az) 
(3.24) 

U (a'r — a) + a = ^-pr 
6 

r2a2 

~U~ 
+ U(a'r - a)2 + r2 - a2 (3.25) 

pr 
= ra 

l + \U'r-U . . a 
2 +(l+v) 

U (a'r — a) + a r 2 — a2 
(3.26) 

p'r 
= (a'r — a) 

l + \U'r-U (1+v) rza a 
U(a'r — a) + a (r2 — a2) [r2a2 — U(r2 — a2)] 

(3.27) 

where we have also used (3.17) in the above equations to eliminate the quantity 

«5P = cotx _ Ux'2 

6n r2 r 
(3.28) 
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In Appendix A.3, we have checked consistency of (3.22)-(3.27) for a brane evolving 

with time: v = — 1. This gives the following two consistency relations: 

X 
W_U 1 
2 r r 

= 0, 
W_U 1 
2 r r 

= 0 (3.29) 

with the trivial solution corresponding to an Anti-de Sitter bulk U(r) = 1 + k2r2. 

Thus, a positive tension brane v — —1 {i.e. a cosmological constant brane) with 

energy density p = 6/c//t5 and brane equation kr cos x = + k2r2 cos fcr — 1 

consistently satisfies the Israel and conservation equations. In fact, this solution 

corresponds to the Randall-Sundrum model. 

Equations (3.22)-(3.27) may lead to either static or time-dependent brane con­

figurations, depending on whether time-dependence is permitted in the brane tra­

jectory x ( r ) r ) - By eliminating the time dependence x ( r ) i w e a r e a r j l e to study the 

permissible static brane embeddings in a chosen background. We then attempt to 

solve the more complicated case of time-dependent trajectories. 

3.2.1 The static brane: an exact solution 

If we assume that the brane trajectory is time-independent, then considerable simpli­

fications occur. Since x = ® = 0, then p = 0 from (3.26). The remaining equations 

(apart from (3.24) which is trivially satisfied) become: 

v = —(a'r — a) 
\U'r 

U(a'r — a) + a 

Ur2a" + {a'r-a) U'r-U a = 0 

U{a'r-a) + a = ^-pr [U{otr - a)2 + r2 - a2] 

pr = {a'r — a) 
1 + \U'r - U 

U{a'r — a) + a 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

Integrating (3.33) gives the energy density as 

p{r) = — [U{a'r - a) + a] (3.34) 
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where po is an integration constant. Substituting for p(r) in (3.32) yields 

36 
U(a'r - a)2 - a2 + 1 - 2 2 

r2 = 0. (3.35) 

In fact, equations (3.31) and (3.35) for a(r) can be completely integrated out. If 

we define a new variable a(r) = rcosx(^) = ?"C(r) a n d substitute it into (3.35), we 

obtain the modified radial variable: 

- f — = f J ry/U J 
(3.36) 

The integral can be evaluated to give 

f = log 
36 \ 1/2 

K5P0J 

where 

and 

cos x = o,er + be r 

4ab= 1 
36 

(3.37) 

(3.38) 

(3.39) 

Alternatively, (3.31) can be integrated out to yield the general solution (3.38). The 

energy density and pressure can then be straightforwardly obtained from (3.34) 

together with (3.30) and (3.12): 

p(r) = 

K5r\/l — Aab • 

2 U' 

3 P ( r ) ~ K5y/U(l-4ab) 

VU (aef - be~f) + aef + be' 

(aef - be'') 

(3.40) 

(3.41) 

Finally, the induced metric on the brane is 

, 2 T J A 2 (1 - 4ab) r2dr2 

ds2 = -UdT1 + K ' + (r2-a2)dQ2 (3.42) 
U{r2 - a2) 

Note that the constants a and b encode the same information as the integration 

constant po a n d the arbitrary constant corresponding to the zero point of f from the 

integration in (3.36). 
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3.3 Static braneworld "stars" 

In the previous section, we showed that the static brane equations admitted an 

implicit exact solution in terms of the radial variable f , which depended on an 

integral of the bulk Newtonian potential U(r). Although this is an exact solution, 

the actual properties of the brane depend on the specifics of the relation between 

f and r. We therefore need to specify U(r) explicitly for various backgrounds in 

order to determine the corresponding brane equations. Once this is determined, 

we have a solution describing a static, spherically symmetric distribution of an 

isotropic perfect fluid on the brane, i.e. a solution to the brane TOV system. Not 

all the trajectories we will find will have the interpretation of a braneworld star. 

Thus, a careful examination of the energy density and pressure profiles will be 

required to confirm the extent to which the solutions are physically sensible and 

hence correspond to braneworld stars. 

3.3.1 A five-dimensional vacuum bulk 

Let us first consider the simplest possible bulk—the vacuum: U = 1. In this case, 

the modified radial variable is simply f = ln r and the brane trajectory which is a 

solution to equations (3.31) and (3.35) is given by a(r) = ar2 + b. We introduce the 

polar coordinates 

x* = rcosx , 2/* = r s inX) (3.43) 

in order to write the brane trajectories in the form 

( * ' - i ) 2 + " - 2 = i - ; < 3 - « > 

with x* = b in the particular case a = 0. These solutions are of limited physical 

importance as they have constant energy and pressure: p — 2ap0, p — —2p/3. They 

correspond to an Einstein static universe 

ds2 = -dr2 + R2dn2

lu (3.45) 

where RQ = (1 — 4ab)/4a2 and dCl2

u = dR2 + sin 2 R dfl2^ is the explicit form of the 

line-element on a unit 3-sphere. 
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3.3.2 A general family of bulk spacetimes 

Now let us consider a more general family of bulk spacetimes. If we make the choice 

U(r) = 1 + Crn for the bulk metric function, where C and n are arbitrary constants, 

then the radial coordinate 

r du_ 
J n(U - 1 ( u - i ) V u 

(3.46) 

can be integrated straightforwardly to give an analytic solution 

f = — In 
n 

VU - 1 
(3.47) 

This allows us to write the solution of (3.31) in the general form: 

a(r) = r w VU-l + B 

= Aai + Ba2 (3.48) 

where A and B are convenient redefinitions of the integration constants a and b 

appearing in the general solution (3.38). By using (3.35), we determine 

Po = 
«5 AABC^ 

(3.49) 

which can be substituted back into (3.34) to yield the energy density 

6[(l+Crn)(a'r-a) + a] 

Kbr2\^ \ - AABC^ 
(3.50) 

For the matter density on the brane to be real, we require 

1 - 4ABCW > 0 (3.51) 

Equations (3.30) and (3.12) determines the pressure on the brane 

2 1 nCrn(a'r — a) 
(1 + Crn){a'r + a) + a 

(3.52) 
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The following formula 

rdX = ~ J \ (Aa, - Ba2) (3.53) 
M y/Ursmx 

enables us to compute the general form of the metric induced on the brane 

+ ( r 2 - a2) dQ2

rI. (3.54) 

These solutions (3.48), in conjunction with the choice for the bulk metric function 

U(r) = 1 + Crn, describe different brane configurations in a variety of spherically 

symmetric bulk backgrounds. Two five-dimensional backgrounds of immediate phys­

ical significance are: 

• The pure AdS spacetime: n = 2 and C = k2. 

• The pure Schwarzschild solution: n = — 2 and C = 

3.3.3 A five-dimensional Anti-de Sitter bulk 

In the case of a five-dimensional bulk filled with a negative cosmological constant, 

the bulk metric function may be written as U(r) = 1 + k2r2, where k is the inverse 

AdS radius. The shape of the brane, a(r) , is then given by the expression: 

a{r) = r cos x(r) = A (VU - l ) + B [Vu + l ) (3.55) 

where, in terms of (3.38), we have set f = 0 at infinity and A = a/k, and B = b/k. 

Using the polar coordinates (3.43), the above trajectory may be written as 

where P = k2(A + B)2. These brane trajectories can be seen to be conic sections 

classified by the parameter /?: 

• For P = 1, the brane is a paraboloid with a critical tension. 

• For P > 1, the brane is an ellipsoid with super-critical tension. 

ds2 = -U{r)dr2 + 
r2dr2 1 - 4 / I B C H 

a' 
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Figure 3.1: A selection of branes of varying coefficient A, for the case B = 0, A; = 1 

in a five-dimensional Anti-de Sitter bulk. 

• For (3 < 1 the brane is a hyperboloid with sub-critical tension. 

For the special case where (3 — 0, the brane corresponds to a straight line. In figure 

3.1, we display the resulting brane configurations for some indicative values of the 

integration parameters A and B. For simplicity, we have set k = 1 and 5 = 0. 

Then, as A varies, the shape of the brane changes gradually covering all three cases 

outlined above. 

The physical significance of (3 becomes apparent from the computation of the 

energy density from (3.34): 

, 2 , „ ™ 6fc k(A-B) . ^ 
p = k2p0(A - B) = — V = L _ . 3.57 

*5 y/1- (3 + k2(A - B)2 

where 
6 

p0 = . (3.58) 
/csv7! - 4ABk2 K ' 

This reveals that the energy density is constant throughout the brane and, for 

A > B, it remains positive. Then, for the critical value (3=1, the energy density has 

precisely the Randall-Sundrum critical value pRS = 6 fc /K 5 , while for (3 less (greater) 

than unity we have a sub- (super-) critical brane. 
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Turning to the equation of state on the brane by using equations (3.30) and 

(3.12), we find that 

(A + B)k2p0 2(A + B)k2 

P(r) = -P+ —f= = ~P+ / (3-59) 

I t is worth noting that we cannot get a static trajectory for a critical or super-critical 

brane with a pure tension energy-momentum (w = —1): such a solution follows only 

for A + B = 0, that corresponds to P = 0 and thus to a sub-critical ( P < 1), or 

Karch-Randall brane [74]. For P ^ 0, we have a varying tension on our brane, 

equivalent to a surplus pressure in the braneworld. 

Finally, using (3.54), we can evaluate the induced metric on the brane: 

i t = -U(r) dr> + ( ^ ^ ) £ g + (r> - o»(r)) ««?, • (3-60) 

Using the substitution f 2 = r 2 — a 2 , we are able to rewrite the last line as 

+ ( T - ^ i ^ ^ ) ^ + r ^ l (3.61) 

where the Newtonian potential in the new variable f is given by the complex ex­

pression 

v m ) - ^ ^ . ( 3 , 2 ) 

The radial part of the metric can be simplified by making use of (3.57) and (3.58). 

This gives 
d f 2 

ds2 = -U (r(r)) dr2 + + f2dQ2 (3.63) 
1 — 11 

where 

| A = - * » + q (3.64) 

defines the effective cosmological constant on the brane. Clearly, the spatial part of 

the metric takes the form of a constant curvature space. Depending on the value of 

A, the metric can be flat, Anti-de Sitter or de Sitter depending on whether the brane 

is critical (A = 0), sub-critical (A < 0) or super-critical (A > 0), respectively. Notice 
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that the critical brane yields precisely the energy density of the Randall-Sundrum 
model p = 6k/K5. Furthermore, the subcritical branes correspond to Karch-Randall 
branes; AdS branes embedded in AdS bulk spacetime [74]. 

Since the relation between r and r is in general convoluted, the brane has a 

nontrivial Newtonian potential (3.62). This is because unless A = —B, there is a 

nonvanishing excess pressure on the brane (3.59) which acts as a source, resulting 

in a non-asymptotically flat (or (A)dS) spacetime. This can be seen explicitly by 

considering the critical brane where we set ft = k2(A + B)2 = 1. Thus, the critical 

metric on the brane is 

ds2

c = - [

 { A - B ) 2 ^ + ^ + ^ < • ( 3 6 5 ) 

Computation of the components of the energy-momentum tensor 

7 j _ 0 , ^ = T ^ ( M 2 +

4

2 i j 2 + , 2 ) (3.66) 

shows that the spacetime is clearly not asymptotically flat, and corresponds to a 

source. In fact, the source relates to the actual pressure discrepancy on the brane: 

p + 6 / C / K 5 . These results correspond to the critical branes, similar results also hold 

for sub- or super-critical branes, in which case TQ = A ^ 0. 

To sum up, we have seen that these particular trajectories for the AdS back­

ground have excess pressure on the brane. This results in metrics which do not 

asymptote exact Randall-Sundrum or Karch-Randall branes. However, if the values 

of \kA\ and \kB\ are sufficiently large, then the metric can be flat (or asymptotically 

(A)dS) over many orders of magnitude before the effect of the pressure kicks in. 

3.3.4 A five-dimensional Schwarzschild bulk 

We now assume that the five-dimensional bulk contains a mass that creates a sphe­

rically symmetric Schwarzschild background with U(r) = l—p,/r2, where p, is related 

to the actual mass of the black hole by M = 2>-np/%G^. In this case, n = — 2 and 

C = —p. The equation (3.48) which describes the shape of the brane takes the 

following form 
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a{r) = r2 A (VU - l j + B + l ) (3.67) 

where now A = —bjy/Ji, B = a/^//Z and f = 0 at the horizon. 

Following the same analysis as before, the brane energy density and pressure are 

now given by 

p(r) = po \B{VU + l ) 2 - A(VU - if (3.68) 

p(r) = -p(r) + \B{VU + 1)2{2VU - 1) - A{VU - l) 2(2v /C/ + 1)1 (3.69) 

where 

=

 K 5 V l + 4 ^ ' ( 3 ' ? 0 ) 

Clearly, the energy density is not constant for these branes, in contrast to the AdS 

background. We must therefore explore the energy and pressure profiles in order 

to determine which of our solutions are in fact physically sensible. For our solution 

to correspond to a braneworld star or black hole, we require the energy density p 

to be positive and to increase towards the center of the matter distribution on the 

brane. The latter condition gives a solution which has the interpretation of energy 

sources on the brane. The analysis is not quite as straightforward as expected; we 

cannot have p being a decreasing function of r. This is because the brane radial 

coordinate is actually r sinx- Taking this point into account, we can carefully study 

each trajectory in turn. 

To examine the shape of the brane, we square equation (3.67) 

\AB r2 + 2(B - A)r cos x ~ cos x2 = n{A + B)2 (3.71) 

and use (3.43) to convert to planar coordinates 

4AB(x*2 + y*2) + 2(5 - A)x* - , 2 = fx(A + B)2 . (3.72) 
x ~r y 

The parametric solutions of (3.71) can be written in terms of polar coordinates: 

r = ^//icosh^ (3.73) 

cosx = ^ ( B e x - Ac~x). (3.74) 
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In fact, these solutions correspond to hyperbolae in the (cosx, r ) - p l a n e ' Clearly 

there are constraints on the range of the parameter A , since we require 

| c o s x | < l , P>0. (3.75) 

With these two constraints in mind, we can see qualitatively the different families 

of trajectories that are allowed. Combining the two restrictions yields an inequality 

for which the brane can touch the event horizon 

0 < B - A < ^— . (3.76) 
v V 

The following derivative 

dx -{Bex + Ae~x) 
dr sinhAv/1 - n(Bex - Ae~x)2 

(3.77) 

shows that unless B = —A, & —> oo at the horizon, meaning that the brane touches 

the horizon at a tangent. As we will shortly see, for the special case B = —A, the 

brane passes through the horizon, eventually hitting the central singularity. 

The general shape of the brane trajectories are determined from equation (3.72). 

Using different values for the quantity AB, we analyse the general brane shapes 

that are allowed. Whether the brane touches the horizon depends on the inequality 

(3.76). Setting the mass parameter equal to p = 0.03, we can write the critical value 

of the inequality as ~ 5.77. Furthermore, the radius of the event horizon is 

fh = y/V> ~ 0.17 and is shown by the dashed circle in the following figures. In order 

to study the trajectories, we take a look at a range of values of the quantity B — A. 

If the value of B — A lies within the range of the above inequality, then the brane 

will definitely touch the event horizon. Conversely, if the value of B — A lies outside 

this range, the brane will not touch the horizon at all. 

Analysis of figure 3.2 for the case AB > 0 

• The branes can completely enclose the event horizon. This is shown in by the red 

circle for the values A = 20 and B = 1. Clearly, B — A = —19 lies outside the range 

of the inequality and violates positivity of p. This corresponds to a trajectory that 

misses the horizon. 
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v 

- 0 . 4 

A=0 .4 , B=l 

I C . P 

A=0 .4 , B=1.6 

Figure 3.2: A selection of branes (solid lines) for the case AB > 0, in a five-

dimensional Schwarzschild bulk of fixed mass parameter n — 0.03. The dashed line 

denotes the corresponding horizon radius. 

• For B > A, the brane touches the event horizon and terminates there. The purple 

(A = 0.4, B = 1) and blue (A = 0.4, B — 1.6) trajectories highlight these two 

possible trajectories. 

• Since B > A > 0, equation (3.68) shows that the energy density will always remain 

positive throughout the brane. However, (3.69) implies that the pressure acquires 

an infinite value at any point where the brane touches the event horizon. 

Analysis of figure 3.3 for the case AB < 0 

• Positivity of energy (B > A) requires A to be negative. In this case, the branes 

can be a single arc touching the horizon. This is shown by the blue lines (A = —0.9, 

B = 0.6 or A = —0.6, B = 0.9). Again, the pressure will diverge for these branes as 

they terminate on the event horizon. 

• The branes can also form a closed loop (A = —6, B — 1) as shown by the red 

'kidney bean' shape. 

• For the special case where A = —B, the brane equation (3.67) is given by 



3.3. Static braneworld "stars" 66 

A = - 0 . 9 , B=0.6 

Figure 3.3: A selection of branes for the case AB < 0, in a five-dimensional 

Schwarzschild bulk of fixed mass parameter [i = 0.03. The dashed line denotes 

again the corresponding horizon radius. 

(3.78) 

which corresponds to a circle translated to the right of the origin. This trajectory is 

shown by the purple line (A = — 1, B = 1). The brane in this case extends beyond 

the event horizon and passes through the origin, i.e. the brane hits the central 

singularity. 

Analysis of figure 3.4 for the case AB = 0 

• For the case A = 0, the brane will touch the horizon if 

0 < B < —— . 

The brane equation (3.67) for A = 0 becomes 

„*2 
2x*B - -4—2 = » B ' 2 

x*2 + y*2 

(3.79) 

(3.80) 

and corresponds to a brane exterior to the horizon if | cosxl — rB{\ + \/U) < 1. 

These trajectories start tangent to the event horizon, curve out into the bulk, then 
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return to the event horizon. They are shown by the incomplete blue circle (A = 0, 

B = 1). Again, the pressure diverges when the brane touches the horizon. 

• For the case B = 0, the brane will touch the horizon if 

0<-A<-^-. (3.81) 

The brane equation (3.67) in this case is 

x*2 

-2x*A = =• = fxA2. (3.82) 
x*2 + y*2 

If we use x* = rcosx and r 2 = x*2 + y*2 in the latter equation, we determine that 

the second term vanishes for large 7'. These trajectories asymptote according to 

ixA 
rcosX = - t Y - (3.83) 

The branes remain roughly straight at large r, until they approach near the vicinity 

of the horizon, at which point they bend away. These B = 0 trajectories are shown 

by the blue, purple and red 'vertical' lines corresponding to A = —1, A = —10 and 

A = —30, respectively. 

Before we discuss the energy and pressure for the B = 0 trajectories, let us state 

which trajectories are the most physically useful. We are using the definition of the 

extrinsic curvature of the brane such that the normal, defined in (3.4), is pointing 

out of the spacetime being kept in this ^-symmetric identification. This means 

that, typically, for a trajectory which escapes to infinity, it is the right hand side 

of the bulk spacetime which is retained. For closed branes, it is the interior of the 

bubble that is kept. In other words, for the brane trajectories with B = 0, the 

spacetime without the black hole corresponds to the bulk appropriate to the brane 

trajectory. Similarly, with the small red bubble ('kidney bean' shape) in figure 3.3, 

it is the interior of the bubble which is kept, which has no segment of the event 

horizon in it. 

• The energy density (3.68) and pressure (3.69) for the asymptotically flat (B = 0) 

trajectories have a particularly simple form: 
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A = - l A=-10 

2 0 . 3 0.4 

Figure 3.4: A selection of branes for the case AB = 0, in a five-dimensional 

Schwarzschild bulk of fixed mass parameter p, = 0.03. The case A — 0, B = 1 

is shown together with a set of branes with B — 0 and variable A. The dashed line 

denotes again the event horizon. 

-6A 
1^5 

P 
P(VU-I) 
3 VU (3.84) 

For A < 0, these branes have p positive and uniformly decreasing as r increases, i.e. 

the energy density is greatest at the center of the matter distribution on the brane. I f 

\A\ < 1/y/Ji, the brane touches the horizon at a tangent and the pressure is divergent 

there. However, if \A\ > l / y / p , the brane never touches the horizon and avoids it all 

together by bending away. In this case, the pressure remains finite everywhere. Let 

us Taylor expand the energy density and pressure expressions above. Substituting 

the following expansions 

( v ^ - D 2 = ^ ^ ( i ) , (v^7 - l ) 3

 = _ltL + o ( -
Vu 8 r e 

(3.85) 

into (3.84) gives the energy density and pressure on the brane 

P -
3A/i 2 

4/c 5r 6 
(3.86) 
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Figure 3.5: The energy (dark line) and pressure (grey line) of brane stars with a 

pure Schwarzschild bulk as a function of the brane radial coordinate f . The black 

hole mass is fixed at // = 1, and the distance of closest approach to the horizon 

increases across the plots. 

Equation (3.86) shows that the energy and pressure behave like 1/r 4 and 1/r 6, re­

spectively. The energy density is peaked around f = r s i n x = 0, as is the pressure; 

these branes correspond to asymptotically empty branes with positive mass sources. 

The energy and pressure profiles clearly shows that this solution does indeed corre­

spond to a localised matter source, with the peak energy density dependent on the 

minimal radius from the horizon. These solution therefore correspond to a TOV 

star. 

Setting x* = rcosx = —T for the minimum value (using cosx = —1), together 

with the substitution r 2 = x*2 + y*2, we can compute the minimal radius, of the 

B = 0 brane trajectory: 

Tm = — ; h (3.87) 
2 ' 2|y4|' 

The central energy and pressure at this minimal radius is readily calculated to be 

2A\A\ 

K 5 (1 + M 2 ) 2 ' « 5 ( M 2 - i ) ( i + M 2 ) 2 ' 
(3.88) 

which shows that the central pressure diverges as nA2 —> 1. However, for \A\ = 

1 / y f f i the trajectory just touches the event horizon of the black hole, which is the 

source of this divergent pressure. This is analogous to the divergence of central 

pressure in the four-dimensional TOV system, which is indicative of the existence 

of a Chandrasekhar limit for the mass of the star. 

Some examples of the solutions to the brane TOV equations are given in figure 
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3.5. Notice that as the brane trajectory is moved away from the horizon, the pressure 

of the matter on the brane decreases; in fact, in the final plot, the pressure is hardly 

distinguishable from the axis. Also note that as fxA2 increases, the spread of the 

matter on the brane increases. In these spacetimes, there is no actual black hole in 

the bulk, since it is the bulk to the right of the brane that is retained. In fact, it is 

the combination of the bulk Weyl curvature and the brane bending which produces 

the fully coupled gravitational solution. 

To sum up: the pure Schwarzschild spacetime has a rich set of brane trajectories, 

most of which are closed. However, there is a class of asymptotically flat branes 

(B = 0) which have a localised source satisfying (mostly) the dominant energy 

condition (DEC) (i.e. energy is greater than the pressure: p > \P\). Thus, the 

B = 0 trajectories have precisely the energy-pressure profile one would expect for 

an isolated gravitating star. 

3.4 Braneworld stars: A Schwarzschild—AdS bulk 

Having independently studied static branes embedded in either an Anti-de Sitter 

or Schwarzschild background, we can now extend the analysis one step further to 

explore a static brane embedded in a five-dimensional Schwarzschild-Anti de Sitter 

(Sch-AdS) spacetime. Since the RS model is a brane in AdS spacetime, we expect 

that any consistent brane trajectories in a Sch-AdS bulk will potentially correspond 

to either brane stars or black holes. We emphasise that these solutions will not just 

be brane solutions, but full brane and bulk solutions, since the full Israel equations 

for a brane embedded in a chosen bulk background have been solved. 

When computing the energy and pressure for a spherically symmetric brane, we 

need to take into account the background brane tension. This is because the empty 

brane in the RS scenario contains a non-zero energy-momentum. Using (3.40), we 

can deduce the background brane tension 

Pb = 
6k{a - b) 

(3.89) 
/c5 >/! — 4a6 

We can guess the geometry of the trajectories by considering the following two 
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l imi t ing cases: 

• For large values of r , we expect the background geometry to be dominated by the 

cosmological constant. Therefore, the pure AdS solutions are a good approximation 

to the trajectories at large enough r. 

• I f (j,k2 >C 1, i.e. i f the black hole is much smaller than the AdS scale, we expect near 

the vicinity of the horizon the pure Schwarzschild solutions to be good approximation 

for the brane trajectories. 

So, for small mass black holes, we might expect the Sch-AdS brane trajectories to 

be well approximated by some combination of the pure Schwarzschild and pure AdS 

branes trajectories. For convenience and easy comparison w i t h the pure AdS l imi t , 

we set f = 0 at r = oo. This means that the range of f in Sch-AdS is finite and 

decreases sharply wi th increasing / i . This suggests that trajectories in large mass 

Sch-AdS black hole spacetimes are more finely tuned, and possibly more restricted 

than in small mass black hole spacetimes. 

The metric function U(r) for the Sch-AdS bulk is given by 

U(r) = 1 + k2r2 - ^ (3.90) 

and is not covered by the general metric ansatz studied in the previous section. 

Setting U(r) = 0 yields the following expressions 

2 - i + yiT4fcV - l - yiT4fcV 
r + ~ 2k2 ' 2k2 

w i t h r+ corresponding to the black hole horizon. Using (3.36), we can compute an 

exact analytic expression for the modified radial variable 

f ( r ) = ^ / d y (1" ifsin2 y) 2 - y = sin"1 (T:) • (3 92) 

In fact, the last expression is an elliptic integral 1 and is usually wri t ten as 

'We use the following Mathematica definition of an elliptic integral of the first kind Elliptic F = 
c<t> do 

• J 0 ^/l+fcsin 2 e' 
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^ ( r ) = 7 — E l l i p t i c F 
2 

_ i / r \ rL 

sin , , , „ 
r_ / r + 

(3.93) 

Although this is an exact solution, the expression is of l imited use because of the 

imaginary value of r_ and the presence of the Ell ipt ic function. However, i t can be 

used to give numerical solutions for the brane. Before we numerically solve for the 

brane equations, let us deduce some general properties of the brane trajectories. 

We are clearly interested in branes which have matter that can be interpreted as 

a gravitating source, i.e. we would like to have an energy excess at the center of the 

brane. This surplus energy w i l l correspond to candidate solutions for brane stars or 

black holes. We can see therefore that, unless we have a closed bubble, this wi l l in 

general correspond to p being a decreasing function of r. Using (3.33) and (3.34), 

we compute 

P ' = 2 j ^ ^ s X ) ' (3.94) 

hence, p is a decreasing function of r ( if cosx is also decreasing). However, f rom 

(3.40), we determine that p is asymptotically dominated by 

p = (*Vu{aef - be-f) oc (cos X ) ' • (3.95) 
r 

Thus, any positive energy brane trajectory p > 0 wi l l have (cosx) ' > 0 n e a r infinity, 

and hence, p w i l l be increasing near inf ini ty (but at a very slow rate), corresponding 

to an energy deficit at large 7'. However, this underdensity wi l l prove to be extremely 

marginal, and many trajectories have, as their main feature, energies significantly 

in excess of their background value. 

Like the AdS spacetime, we can classify the Sch-AdS trajectories according to 

whether they asymptote the AdS boundary at \ 0> at X = 0 (i.e. are open branes), 

or do not reach the boundary at all (i.e. are closed bubbles). These respective class 

of brane trajectories are highlighted as: 

• a + b < 1 corresponds to a subcritical brane. 

• a + b = 1 corresponds to a critical brane. 

• a + b > 1 corresponds to a supercritical brane. 
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3.4.1 Supercritical branes: a + b > 1 

A l l closed trajectories are supercritical. The characteristic features of supercritical 

trajectories are qualitatively similar to the pure Schwarzschild case; the branes w i l l 

either fo rm closed loops or arcs which terminate on the horizon. I f the following 

inequality 

| cosxl ^ \aef+ + be~f+\ < 1 (3.96) 

is satisfied, then these solutions wi l l correspond to arcs terminating on the horizon 

(see the pink trajectory of figure 3.6). For these solutions, the energy density remains 

positive and increases towards the center of the brane. Analogous to the pure 

Schwarzschild branes, the pressure becomes singular at the horizon. On the other 

hand, if the inequality is not satisfied, then these trajectories wi l l correspond to 

closed bubbles on the RHS of the horizon. Again, this type of behaviour has been 

found previously for the pure Schwarzschild background. For closed loops forming on 

the RHS of the horizon, the energy density decreases near the vicinity of the horizon 

but increases towards the most distant point of the brane (see the green and blue 

trajectories of figure 3.6). A uniformly increasing behaviour for the energy density 

is found also in the case of brane trajectories that enclose the black hole horizon 

(see the red trajectory of figure 3.6): p reaches its maximum positive value at the 

point of the brane located farthest away f rom the black hole, although care must be 

taken over the choice of a and b to ensure that p remains positive throughout the 

trajectory. A sample of supercritical branes for fixed background parameters k — 1 

and p — 0.03, and various values of the parameters a and b of the general solution 

(3.38) is shown in figure 3.6. 

3.4.2 Crit ical branes: a + b = 1 

The trajectories for critical branes asymptote the AdS boundary at exactly x = 0. 

The trajectories are thus open, and may or may not touch the black hole horizon 

depending on the exact values of the parameters a and b. In order to demonstrate 

when this happens, we consider the constraint 

a — b < | t a n h f + / 2 | (3.97) 
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Figure 3.6: A sample of supercritical brane trajectories w i t h a + b > 1 in a five-

dimensional Schwarzschild-Anti de Sitter background of fixed parameters k = 1 and 

// = 0.03. The dashed line denotes again the horizon. 

which corresponds to a trajectory which remains on the RHS of the horizon. When 

the branes reach a point of close proximity to the horizon, i t bends away, avoiding the 

horizon and eventually escaping to infinity. Conversely, i f a — b equals or exceeds the 

above bound, then the brane w i l l terminate on the horizon (see the pink trajectory 

of figure 3.7). A sample of critical trajectories in a Sch-AdS background is shown in 

figure 3.7(a). I n figure 3.7(b) we show the energy and pressure profiles for a sequence 

of crit ical branes in a Sch-AdS background, displaced an increasing distance f rom 

the horizon. Notice that as the value of the a — b parameter decreases, the brane 

shifts towards the right. 

The behaviour of the energy density and pressure strongly depends on the lo­

cation of the brane relative to the black hole. For branes that avoid the horizon 

the energy density is again positive, peaking at the center, and dropping rapidly to 

the background value, undershooting i t very slightly to form an underdense region 

at large r. The pressure also reaches its maximum value at the center, but is uni­

formly decreasing w i t h r, at a much slower rate, consistent w i t h the pressure excess 
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observed for the pure AdS branes. Apart f rom this pressure excess, the other main 

difference w i t h pure Schwarzschild trajectories, is whether branes satisfy the DEC 

(p > P) at their center. This depends crucially on the choice of a — b. I n pure 

Schwarzschild, the DEC is satisfied except for branes which skirt extremely close 

to the horizon (see the first graph of figure 3.5), where the local Weyl curvature 

causes the pressure diverges. This phenomenon is also observed for the Sch-AdS 

branes skimming close to the horizon (graph 1 of figure 3.7(b)). However, as we 

decrease a — b (or increase b), the central energy dominates the pressure for only 

a finite range of b (graph 2 of figure 3.7(b)) before once again dropping below the 

pressure (graph 3 of figure 3.7(b)). Thus, the DEC is not universally satisfied. This 

is because the further we move away f rom the horizon the AdS curvature becomes 

more dominant, and as we have already seen for pure AdS branes, the effect of the 

AdS curvature is to induce a non-vanishing pressure excess. Therefore, the energy 

density and pressure observed at the center of the branes for critical trajectories, 

corresponds to a distr ibution of a positive mass source. Furthermore, the DEC can 

be satisfied at the center of the matter distr ibution. 

3.4.3 Subcritical branes: a + b < 1 

The family of subcritical branes are largely similar to critical branes. They corre­

spond to open trajectories that asymptote the AdS boundary, although at x 0 

this time. The same bound as the critical case | cosxl — \aer+ + be~r+\ < 1 applies 

and determines whether the brane terminates on the event horizon or remains on the 

RHS of i t . As the brane trajectories in this case look very similar (apart f rom the 

angle of approach f rom the AdS boundary) to the ones presented in figure 3.7(a), we 

w i l l not present another graph here. Also, the energy density and pressure profiles 

tu rn out to be analogous to the graphs presented in 3.7(b). Therefore, for a large 

family of parameters a and 6, we obtain solutions w i t h a positive energy excess at 

the center of the brane. 
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Figure 3.7: (a) A sample of critical brane trajectories w i t h a + b = 1 i n a five-

dimensional Schwarzschild-Anti de Sitter background of fixed parameters k = 1 

and fi = 0.03. The dashed line denotes again the horizon, (b) A set of plots of the 

brane energy (black line) and pressure (grey line) for a sequence of crit ical branes 

moving away f rom the horizon. 
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K a r c h - R a n d a l l trajectory: a + b = 0 

One special subcritical trajectory found in the pure AdS case was the Karch-Randall 

trajectory (A + B = 0). Extending this to Sch-AdS case gives 

Differentiating the last equation wi th respect to r shows that (cosx) ' > 0 for a 

positive energy trajectory a > 0. Having already shown that p oc (cosx) ' , this 

implies that the energy density always increases wi th r. Thus, whether or not these 

trajectories terminate on the horizon, they wi l l always correspond to energy deficits 

on the brane, and hence negative mass sources f rom the point of view of a brane 

observer. 

T h e special Schwarzschi ld tra jec tory 

Finally, one other special trajectory that emerged in the previous section was the 

pure Schwarzschild trajectory which was nonsingular on the horizon, intersecting 

it perpendicularly and extending to the origin. This corresponds to aer+ = be~r+ 

(note that in the condition A = — B for the pure Schwarzschild case, we had set 

f — 0 at the horizon r+ = y/Ji). Extending this concept to Sch-AdS gives 

These trajectories can be super- sub- or precisely crit ical, depending on the magni­

tude of a, however, for all of these trajectories (cos x ) ' > 0, hence they correspond 

to energy deficits on the brane. 

S u m m a r y 

In this section we have shown that the Sch-AdS bulk gave rise to supercritical, c r i t i ­

cal and subcritical brane trajectories. These brane trajectories which are depicted in 

figures 3.6 and 3.7 have obvious similarities w i th the ones presented in the previous 

section. As expected, the brane trajectories in a bulk containing both a mass and a 

negative cosmological constant exhibit a combination of characteristic features that 

appeared either in the case of an pure AdS or a pure Schwarzschild background. 

cosx = a { e T ~ e r ) = 2 a s i n h f . (3.98) 

cosx = 2ae r + cosh(f — 7~ +). (3.99) 
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Figure 3.8: A mixture of brane trajectories in a five-dimensional Schwarzschild-Anti 

de Sitter background of fixed parameters k = 1 and \i = 0.03. 

In figure 3.8, we present a mixture of supercritical, critical and subcritical branes. 

We have chosen the parameters a and b in this particular case such that the branes 

remain on the RHS of the horizon. Apar t f rom the brane bending away to avoid the 

horizon, these trajectories resemble similar characteristics w i t h the ones presented 

in figure 3.1. 

We comment that the study of Sch-AdS backgrounds w i t h larger mass parameter 

fi has led to similar families of trajectories. As mentioned previously, as // increases, 

the range of the r-coordinate decreases, and an increased accuracy is necessary in our 

numerical analysis in order to produce the corresponding trajectories. Apar t f rom 

being numerically more sensitive, the study of large mass Sch-AdS backgrounds 

yields the same characteristics for the allowed brane trajectories. 

Finally, we state that for the Sch-AdS background, some of the static solutions 

corresponding to the T O V equations showed characteristic features of brane stars. 

However, for our solutions to have a t ru ly realistic interpretation of a brane star, 

we require the energy conditions to be satisfied universally. Unfortunately, our re-

b- u . : 6 

a - 1 . 9 5 

b D . IS 

a.» 
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suits were not 100% satisfying since the pressure component did not go to zero; i t 

reached a constant asymptotic value at large radii f rom the center of the matter dis­

t r ibut ion on the brane, resulting in a surplus pressure. This unphysical asymptotic 

behaviour can be resolved by perturbing the trajectory or making it time-dependent; 

we consider the latter case next. 

3.5 The time-dependent brane 

Having analysed the static brane trajectories in a spherically symmetric background, 

finding brane black hole and stellar solutions, we now comment on the time-dependent 

case. Although the non-static brane trajectories are more complex to study, i t may 

give some insight into highly time-dependent and complicated processes such as 

a black hole leaving the brane or the emission of thermal radiation f rom a four-

dimensional brane black hole [79-81]. The above time-dependent processes are most 

likely to correspond to some perturbed version of a time-dependent brane trajectory 

in five-dimensional Sch-AdS spacetime. For a brane that cuts through the black 

hole horizon, this would appear to describe black hole formation via the transport 

of a bulk black hole to the brane. The subsequent departure of the brane black hole 

into the bulk would correspond to its decay. The first work in this area involved 

probe branes [80,90-92]. I t is to date, the only available study describing black 

holes departing the brane and has relevance for L H C (Large Hadron Collider) black 

holes. Al though the fu l l problem of solving the non-static brane equations is be­

yond the scope of this section, we w i l l explore the various issues involved in finding 

a time-dependent brane black hole trajectory, such as might be appropriate to the 

above processes; black hole recoil and evaporation (both phenomena are discussed 

in detail in the following chapter). 

3.5.1 The Randall—Sundrum brane trajectory 

In addition to the work on probe branes, the issue of time dependence has also 

been considered in [75-77]. In Ref. [75,76] i t was argued that the spacetime sur­

rounding a collapsing brane star would be time-dependent even though the exte-
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rior spacetime was vacuum. Moreover, the conjecture put forward by Emparan, 
Fabbri and Kaloper [65] (where quantum black holes appear as holograms in AdS 
braneworlds) led Tanaka [77] to argue that the braneworld black hole metric must 
be time-dependent. In fact, the RS brane trajectory turns out to be time-dependent 
when wri t ten in global AdS coordinates. To see this explicitly, (i.e. to show that the 
RS brane trajectory is not a static slicing in global AdS coordinates), we consider a 
transformation 2 between the planar and globally spherically symmetric spacetimes. 
In planar coordinates, the RS metric takes the form 

ds2 = [-dt2 + du2 + dx2} (3.100) 

w i t h the brane positioned at ku = e f c l|a;=o = 1. The transformation between the RS 

planar and global spherically symmetric coordinates is given by: 

ku = y/\ + k2r2 cos kr — kr cos x (3.101) 

kt = (ku)Vl + k2r2 sin kr (3.102) 

k\x\ = (ku)kr s inx • (3.103) 

After the transformation, the planar metric changes to 

dr2 

ds2 = -U(r)dr2 + r 2 ( d X

2 + s in 2

 X d n j j ) (3.104) 

which corresponds to the five-dimensional spherically symmetric spacetime. This 

transformation is valid for the metric funct ion U = 1 + A; 2 r 2 , corresponding to an 

AdSs spacetime. As a result of the transformation, the shape of the brane x ( r > r ) 

changes. We determine the form of the trajectory a(r,r) directly and explicitly in 

terms of the variable a = r c o s x . The pure tension brane trajectory has an exact 

solution 

a(r,r) = yVl + k2r2 cos kr — \ (3.105) 
k k 

which is naturally time-dependent w i th energy density 

Qk 
P = PRS = — (3.106) 

^5 

2 The details of the transformation are given in Appendix A.4. 
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as expected. Therefore, the RS brane trajectory is time-dependent in global AdS 

coordinates. In fact, the trajectory in global coordinates is oscillatory; i t starts off 

at the AdS boundary, moving in to the origin when i t closes off the whole AdS 

boundary, then moving back again [78]. 

3.5.2 Exact branes 

We review the argument that there is no time-dependent trajectory which corre­

sponds to a pure vacuum brane embedded in a black-hole bulk background. Setting 

v = — 1 in the brane equations (3.22)-(3.27) results in considerable simplifications. 

Once again, the energy density 

p= ^ [U(a'r-a) + a] (3.107) 

(which in principle can be a (r,r)-dependent quantity) solves (3.26) and (3.27). In 

addition, (3.24) can be rewritten as 

, 1 U'ra 
r a ~ 2 — = ° 

~ ( U - ^ a ) = 0 (3.108) 

which is integrable. The last equation determines the form of the time-dependent 

brane trajectory 

oc(r,r) = f{r)JU(r)+g{r) (3.109) 

where / ( r ) and g(r) are, at the moment, arbitrary functions. I f we substitute the 

above form of a(r, r) into (3.23), we f ind 

Vu I f/V _ u'r + u _ i / ( r ) + Ur2g" + (g'r - g) 
2 

- S = 0. (3.110) 

The only way for this equation to be satisfied, for all r , w i th f ( r ) ^ 0, is for the 

factor preceding / ( r ) to be equal to zero: 

\u"r2 -U'r + U - 1 = 0 (3.111) 

which has as a solution 
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U(r) = 1 + Cr + Dr2 (3.112) 

for constants C and D. Thus a brane wi th equation of state w = — 1 can only be 

embedded in a bulk wi th the above solution for the metric function. 

General case 

Clearly, i f the trajectory is time-dependent, then the energy density w i l l also be 

time-dependent. Since we know the general form of the brane trajectory (3.109) 

and the corresponding solution of the bulk metric funct ion (3.112), we can compute 

the general equation for the time-dependent energy density. First, we determine the 

arbitrary constants / ( r ) and g(r). The combination of equations (3.22) and (3.23) 

yields a simple expression 

a + U2a" = 0. (3.113) 

Substituting (3.109) and (3.112) into the last equation gives 

f ( r ) + f ( r ) 
UU" (£/') /\2 

AU 
+ UVUg"{r) = 0 . (3.114) 

For a time-dependent solution ( / ( t ) ^ 0), the above equation is satisfied for g" — 0. 

Setting —A 2 as a proportionality constant in the assumption 

f ( r ) = - \ 2 f ( r ) (3.115) 

yields the constraint 

Inserting equations (3.111) and g" = 0 into (3.110) gives 

( s f r - g ) ( j £ - U ) - g = 0 (3.117) 

which can be easily solved for the general metric funct ion given in (3.112) and for 

9(r) = 9\r + %• This determines the constant 
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and hence the solution 

9(r) = 9 o { ^ + l ) • (3-119) 

Next we Taylor expand the second term of equation (3.116): 

4U 

= ( ^ + +CDr + D2r2^{l-Cr-Dr2...) 

C2 

= — + CDr + D2r2 + 0(C2,D2,CD) (3.120) 

where we have neglected orders of constants greater than 2. Substituting (3.120) 

into (3.116) gives 

\ 2 = D - ^ - . (3.121) 
4 

We equate (3.25) and (3.107) to eliminate the quantity p: 

Uja'r - a)2 - a2

 | 1 d 2 _ 36 

Inserting the expressions for a(r) and g[r) into the first term of the last equation 

gives 

" f f J ' ~ " ~* = A2(9o2 - f ) (3-123) 
Uja'r - a)2 - a2 

which can be substituted back into (3.122) to give 

- ^ - 2 = l - f 2 + X 2 ( g 2 - f 2 ) . (3.124) 

K5P0 

The constant p0 can be determined by substituting the general solution of the dif­

ferential equation (3.115): 

f { r ) = Ei cos(Ar) + E2 s in(Ar) (3.125) 

into (3.124), where E\ and E2 are integration constants. This yields 

p0 = — —= 1 (3.126) 
«5 N/1 + V(92o - E \ - E2) 

Equations (3.109) and (3.112) enables us to compute the expression 
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U{a'r - a ) + a = -g0 + Dr2^j - ^ry/UfC (3.127) 

which can be substituted into (3.107) to give a formula for the time-dependent 

energy density (as long as C ^ 0) 

p(T, r) = — 1

 0 (C \f(T)VU + g0] + 2g0Dr) . (3.128) 
V ; W y/l + A2(<?2 - E2 - E2) \ l J K ' y J y ) V 

Furthermore, the substitution of / ( r ) and g(r) into (3.109) yields the corresponding 

time-dependent brane trajectory 

a ( r , r ) = cos(Ar) + E2 sin(Ar)] VlJ + g0 + l j . (3.129) 

We have therefore obtained general time-dependent expressions for both the energy 

density and brane trajectory. Next we consider the specific case where C = 0 and 

D remains an arbitrary constant. 

Isotropic case 

Setting C = 0 yields a constant energy density 

P{r) = , 6 9 ° D , 9 (3.130) 
n ^ \ + D { g 2 - E 2 - E 2 ) 

wi th the corresponding brane trajectory 

a{r,r) = [Ex cos(Ar) + E2 sin(Ar)] y/U(r) + (3.131) 

where we have used (3.121) to set A 2 = D. The energy density corresponds to 

an isotropic background, hence a constant curvature spacetime w i t h D = —A/6. 

Clearly, AdS spacetime satisfies this w i t h D = k2. By setting Ei — E2 = 0, 

D = k2 and g0 = —k~l in equations (3.130) and (3.131), we obtain the Randal l -

Sundrum crit ical energy density (3.106) and the pure tension brane trajectory in 

global AdS coordinates (3.105). 
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3.5.3 Branes with matter 

I n this section we explore the behaviour of time-dependent brane trajectories when 

matter is present on the brane. The setup is different to the static branes as we 

now introduce a black hole in the background spacetime which is responsible for 

producing a spherically symmetric matter source on the brane. Moreover, the pres­

ence of the black hole effects the brane energy-momentum. Thus, the aim of this 

subsection is to explore how the black hole acts on the time-dependent brane. In 

this analysis, we are looking for brane trajectories which have physically realistic 

energy-momentum profiles. These solutions may have the interpretation of the two 

types of quantum phenomena mentioned earlier: black hole recoil or evaporation. 

I n order to determine whether the trajectories have a sensible brane matter source, 

we study whether the matter obeys the weak energy condition (WEC: p > 0) and 

the dominant energy condition (DEC: p > |P | ) . We investigate two factors which 

may contribute to the changing profiles of the brane energy-momentum: 

• Alter ing the distance between the brane and the black hole. 

• Modi fy ing the brane trajectory by bending i t . 

By varying the above factors, we can qualitatively determine whether the W E C and 

the DEC are both satisfied. This w i l l then determine whether the matter localised 

on the brane is physically realistic. I n particular, we expect the energy density to 

increase towards the center of the matter distr ibution on the brane. We w i l l consider 

each of the above effects separately as i t allows us to gain insight into the nature 

of the brane black hole. However, we note that the complete picture would contain 

some combination of the above effects. Unlike the static case, we wi l l keep the 

matter general (i.e. we wi l l not assume that the energy-momentum takes the form 

of perfect isotropic fluid). 

Dis tance between the brane and black hole 

Previously, for the static brane trajectories embedded in the AdS-Schwarzschild 

background, we saw various brane shapes at different locations in the bulk spacetime-

see figure 3.7(a). The energy profiles differ depending on the location of the brane-
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see figure 3.7(b). As the brane is moved closer to the black hole horizon (i.e. brane 

and black hole separation distance decreases) the brane shape changes. We would 

like to determine whether the time-dependent trajectory behaves in a similar way 

like the static case. Moreover, we would like to determine whether the energy-

momentum profiles are analogous to the static case. 

We make the following ansatz: we change the form of the exact trajectory of the 

AdS spacetime to allow for the presence of a bulk black hole. I f we push the RS 

brane (originally located at z = 0 where ku = 1) to the AdS boundary ku = e, then 

the modified time-dependent trajectory (3.101) takes the form: 

1 1 Vl + k2r2 cos kr — kr cosx = T~ = - • (3.132) 
ku t 

Thus, by controlling e, we can control the distance of closest approach of the bulk 

black hole to the brane. Recall that the energy-momentum of a surface slicing the 

Sch-AdS spacetime is given by the Israel junct ion conditions (3.8). Taking the trace 

of (3.8) gives T = — ™. Substituting this back into (3.8) and rearranging gives the 

following expression: 

2 6k 
T„„ = — ( K n V - Khnv) = hnU + Stnl, (3.133) 

«5 «5 

where 
6k 

= V (3134) 
K 5 

represents the critical RS brane tension and 5t^ corresponds to a small perturbation 

in the energy-momentum (the latter term arises as there is no brane trajectory 

w i t h pure brane energy-momentum). We can now compute the energy-momentum 

(3.133) using the Israel equations (3.14)—(3.17). Since we want to compare this 

energy-momentum to the pure critical RS brane, we plot the following ratio 

e»„= = (3.135) 

which is equivalent to 

<V = 3 - | ^ (3.136) 
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Figure 3.9: The effects of brane shift on the energy-momentum of an RS brane w i t h 

a black hole in the bulk as a function of the brane radial coordinate r s i n x - The 

energy is given by the black line, and the pressure is given by the grey and dotted 

lines. 

where, in the last line we have inserted (3.133) into (3.135). We have also set k = 1 

and « 5 = 1 for simplicity. I n the last equation, the first term corresponds to the 

crit ical tension T^„lt = 3 whereas the second term corresponds to the deviation of the 

energy-momentum f rom the critical value. Since the trajectory is time-dependent, 

we expect the ratio to also be time-dependent. In order to study the energy-

momentum profiles, we must freeze the time. In particular, we choose the t = 0 

braneworld slice as this slice is expected to have the greatest effect on the bulk black 

hole (its the point of closest proximity of the brane and black hole). Moreover, 

the expressions for the extrinsic curvature (3.14)-(3.17) simplify considerably since 

Figure (3.9) shows the effect of a bulk black hole on the brane energy-momentum. 

We have chosen the mass of the black hole to be small n — 0.1 and the position of the 

RS brane to be at ku = 0.3. The plot shows that moving closer to the center of the 

matter distr ibution on the brane (i.e. moving towards the origin) decreases the brane 

energy (black line) f rom its critical value T^u

lt = 3. However, the pressures (grey 

and dotted lines) both increase. Thus, the overall effects on the energy-momentum 

increases when moving closer to the center of the brane. Unfortunately, both W E C 

X = 0. 
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and DEC are violated. Hence, the effect induced on the brane in presence of the 

black hole results in energy-momentum that is not physically sensible. 

T h e bending of the brane 

Since brane and black hole separation did not give the desired results, we wi l l now 

consider the effects induced on the energy-momentum from the brane bending effect. 

In Ref. [50], Garriga and Tanaka showed that the brane responds to the black hole 

by bending. Since the analysis in [50] is restricted to the static case (and we cannot 

read off the corresponding time-dependent results), we wi l l use an entirely different 

approach to study the effects of brane bending. We use a perturbative analysis to 

explore the effects induced on the brane energy-momentum from brane bending. I f 

we consider a shift in the position of the brane ku —» 1 + kSu, then the perturbation 

can be given by a power law behaviour 

where q represents the brane bending factor, p denotes the brane bending power 

and r is the brane radial coordinate. The modified shape of the brane for k — 1 is 

given by 

We can control the brane shape by varying the constants q and p. Moreover, we 

can determine the energy and pressure profiles for a range of values of p and q. The 

• For q < 0, the energy values are unrealistic; the energy falls below the pressure 

and therefore violates both energy conditions. This worsens the energy deficit on 

the brane and does not help w i t h the DEC. A l l values for which q < 0 corresponds 

to the brane bending towards the black hole. No figures are shown for this case 

since the results do not give the desired features we are looking for. 

• Figure 3.10 shows three examples of energy-momentum profiles for the case where 

k5u = — (3.137) 

1 1 
cosx('7", T) V C O S T (3.138) 

value of ^ determines whether the brane wi l l bend towards or away f rom the black 

hole. 
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Figure 3.10: A selection of plots of brane energy-momentum w i t h brane bending 

included for a range of amplitudes and powers of r. 

q > 0 and p < 1. I n this case the brane bends in the opposite direction, i.e. away 

f rom the black hole. From the origin to the intersection point, the energy deficit 

is removed, i.e. the DEC is restored at the central region of the brane (as in the 

static case). Moving beyond the intersection point and away f rom the origin leads 

to the violation of the DEC. Therefore, we obtain a physically realistic energy-

momentum profile, but only close to the center of the brane. A physically realistic 

brane trajectory w i l l therefore respond to a black hole by bending away f rom i t . 

Thus, bending the brane away f rom the black hole gives physically sensible results 

than brane bending towards the black hole. (No graphs are shown for p > 1 since 

this induces an energy deficit on the brane). 

As a remark, we point out that unlike the static trajectories, in these time-

dependent cases, the black hole is actually in the bulk spacetime, hence these are 

candidate branes for black holes having recoiled into the bulk. We also state that 

i f we increase the black hole mass, then the effects on the brane energy-momentum 

changes the picture surprisingly l i t t le . 

To sum up: we have explored time-dependent brane trajectories in a Sch-AdS 

spacetime. We showed that the RS brane trajectory is time-dependent in global AdS 

coordinates. We also obtained expressions for the time-dependent energy density 

and brane equation. We then qualitatively explored the energy-momentum profiles 

when matter is present on the brane. We found that bending the brane away f rom 

the black hole gave better results than altering the distance between the brane and 

black hole. 
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3.6 Summary 

In this chapter we have explored the permissible brane trajectories i n a spherically 

symmetric bulk spacetime. W i t h the aim of f inding consistent brane black hole solu­

tions, we took braneworld slices of a specific background. W i t h the static braneworld 

we found solutions that were completely integrable and given in terms of an implici t 

function of the bulk radial variable. We found all possible complete brane and bulk 

solutions for a brane containing a matter distr ibution given in terms of a perfect 

isotropic f lu id . These equations correspond to the brane T O V solutions which have 

the interpretation of braneworld stars. In fact, these solutions correspond to static 

slicing of a Sch-AdS bulk spacetime, w i t h the bulk solution corresponding to the 

part of the Sch-AdS spacetime not containing the horizon of the black hole. Our 

solutions are therefore non-singular. Furthermore, we obtained solutions in which 

the black hole horizon appears on the brane. Unfortunately, these solutions produce 

a divergent pressure on the brane and are reminiscent of the singularity that appears 

in the T O V system when we are solving for a compact or a very large star. 

Analysis of the energy density and pressure profiles revealed that all of the so­

lutions had excess pressure at large radii which is a key feature of the pure AdS 

bulk slicing. This relates to the fact that the RS brane which is pure Minkowski, 

is not a static slicing of AdS in global coordinates; i t is time-dependent. The way 

to resolve the problem of surplus pressure is by detuning the tension of the branes, 

i.e. to sub-critical Karch-Randall branes. Unfortunately, these branes cannot be 

extended to positive mass sources. Although we have been unable to f ind solutions 

wi th the desired features of a braneworld star, some progress in finding exact and 

complete solutions to the brane T O V problem has been made. 

Time dependence seems to be a key feature in finding consistent solutions w i t h 

the desired features of a braneworld star. Due to the complexity of the equations 

involved in non-static case, we only explored the qualitative effects induced on the 

brane energy-momentum. In this method, we froze the time and had taken the 

t = 0 slice. This particular slicing gives the smallest possible separation and i t is 

the point at which the effect of the black hole on the brane is the greatest. This 

setup differs f rom the static case as the bulk now contains the black hole. We showed 
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that bending the brane away from the black hole gave better results than changing 

the distance between the brane and black hole. However, exact consistent solutions 

for time-dependent trajectories st i l l remains to be explored. 

Finally, i t is important to note that in the work so far, we have made the sim­

pl i fy ing assumption of Z 2 -symmetry around the brane. However, i t is important to 

check if any of our conclusions change significantly if we drop this restriction. In 

particular, for processes such as black hole recoil, we would expect the black hole 

to recoil on one side of the brane only, hence breaking the Z 2 -symmetry. Maybe, 

the restrictions found in our solutions can be removed i f we break the ^ - s y m m e t r y ; 

this is the topic of the next chapter. 



Chapter 4 

Asymmetric Braneworld Black 

Holes 

In this chapter we generalise the previous work by relaxing the simplifying assump­

tion of ^ - re f l ec t ion symmetry. We explore the possible brane trajectories that are 

allowed in an asymmetric (non-Z 2 symmetric) background. This setup ensures that 

the spacetime is distinct on each side of the brane. We consider two types of back­

grounds: the A n t i de S i t t e r -Ant i de Sitter bulk and the Schwarzschild-Schwarzschild 

spacetime. Again, the main objective is to consistently embed a three-brane in these 

non-Z 2 symmetric backgrounds and determine whether the results change signif­

icantly f rom the previous work on the Z2-symmetric case. Focusing on the static 

brane equations, we discover that the results for the brane shape, energy density and 

pressure are analogous to the ^ - symmet r i c case. Unfortunately, the calculations 

for the Schwarzschild-Anti-de Sitter background are not presented as they do not 

give any simple analytic solutions. 

4.1 Introduction 

Asymmetric braneworld models are applicable in processes which occur only on 

one side of the brane, e.g. the emission of Hawking radiation and black hole recoil 

[79-81]. These quantum phenomena may be observed indirectly in high energy 

particle collisions. The sufficient energies now available (TeV-scale quantum gravity) 

92 
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at the Large Hadron Collider (a ground-based particle accelerator [82-84]) or the 

Auger Observatory (which detects high energy cosmic rays produced in the Earth's 

atmosphere [85-87]) opens up the possibility for the production of mini black holes. 

(For a complete list of references on black hole production, involving TeV gravity, 

see [31,88]). The accelerator generated black holes wi l l decay by the emission of 

thermal black body radiation. As the process proceeds, the black hole wi l l lose 

energy by ejecting various particles along the brane and into the bulk [79]. The 

visible energy released on the brane corresponds to the brane-bound particles and 

can be detected in the accelerators. However, the invisible energy projected into the 

bulk corresponds to particles that enter into the extra dimension and is detected by 

the missing energy signals. The decay of the black hole via the expulsion of thermal 

radiation is known as the Hawking effect. Eventually this process w i l l terminate 

when the black hole departs the brane and enters into the realms of the higher 

dimensions. The latter process is known as black hole recoil and marks the end of 

Hawking radiation. The time scale for the black hole to escape off the brane and 

enter into the bulk depends on the in i t ia l mass of the generated black hole. Hence, 

the black hole recoil effect can occur either before or after the black hole evaporation 

process is completed [80]. 

The mechanism of black hole recoil is an important indicator for the Hawking 

evaporation process. The discrete Z 2 -symmetry in the Randall-Sundrum scenarios 

rigidly fixes the small black hole on the brane, preventing i t f rom escaping into the 

bulk (irrespective of whether a bulk particle is radiated by Hawking emission) [81]. 

Therefore, at a first glance i t seems unlikely that black hole recoil can occur in the 

Randall-Sundrum braneworld. Also, black hole recoil seems unlikely due to a simple 

entropy argument [81]. The recoil of a small Randall-Sundrum brane black hole can 

be identified as a black hole (of mass M and entropy 1 M3^2) being split into two 

equal and symmetric smaller black holes (each w i t h mass AA/2 and tota l entropy 

2(_A/f/2) 3 / 2 = (M)3/2/V2)- However, this process is forbidden in higher dimensions 

as i t violates the conservation of energy and the non-decreasing property of entropy. 

'A five-dimensional black hole of mass M has entropy proportional to M3^2 [60]. 
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Fortunately, this entropy argument is not precise since two crucial factors have not 

been taken into account: a portion of the brane is excised by the black hole when it 

interacts w i t h the brane, thus increasing the black hole mass (This feature is seen in 

probe brane calculations of [89-91]). Moreover, the brane tends to respond to the 

black hole by bending away from i t . This means that more than half of the black 

hole horizon is sticking out of the bulk. Thus, the consideration of brane capture 

by the black hole together w i th the brane bending effect lead to a more precise 

estimate for the mass and entropy of the black hole. The recoiled black holes now 

have a greater entropy than the ini t ia l brane black hole, making the recoil process 

entropically permissible. Since the black hole recoil mechanism does not necessarily 

require a /^-symmetric setup, we can generalise the work of the previous chapter by 

breaking the Z 2 -symmetry to explore the subject of asymmetric braneworld black 

holes. (For a cosmological analysis of black holes being radiated into a non-Z 2 

symmetric spacetime together w i th graviton emission f rom a braneworld into an 

asymmetric bulk, see Ref. [93,94]). 

4.2 The general brane equations 

In this section we derive the general brane equations for the asymmetric model. We 

need to be careful and treat each side of the brane separately. The quantities on 

each side of the bulk are made distinct by using the following sign convention: the 

variables on the left side of the brane are labeled w i t h a ' + ' sign. Conversely, the 

variables to the right of the brane are labeled wi th a ' —' sign. 

Our starting point is the five-dimensional spherically symmetric coordinate sys­

tem as before, w i t h the line-element given by 

Hr2 

ds2 = -U{r)dt2 + 777-7 + r 2 ( d X

2 + s in 2 (4.1) 
U(r) 

where U(r) denotes a general function of the global radial coordinate and dQ?u is the 

line-element on a unit 2-sphere. We consider configurations wi th in the asymmetric 

Randall-Sundrum I I model wi th a single brane of positive tension. 
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The position of the brane in the five-dimensional spacetime is given by the fol­

lowing 5-vector 

X» = (t(T),r(p),x(P),6,<f>) (4.2) 

w i t h t(r) = A T where A denotes a general scale factor. The symbol r represents the 

braneworld coordinate time w i t h respect to a co-moving observer on the brane and 

t denotes the time coordinate in the bulk spacetime. This equation suggests that 

although the background maybe the same, the t ime coordinates on each side of the 

spacetime do not necessarily have to be the same and may therefore differ. 

We can form a new basis in terms of the (unnormalised) tangent vectors and the 

(normalised) unit normal vector: 

T" = (1,0,0,0,0) 

W = (0 , r ' , X ' ,0 ,0) 

6 " = (0,0,0,1,0) (4.3) 

= (0,0,0,0,1) 

np = - ( 0 , - x ' , r ' , 0 , 0 ) 

where n represents some normalisation constant. The over dot and prime respectively 

denote part ial differentiation wi th respect to the proper time r and proper distance 

p. The last equation for the unit normal is obtained by using the property that the 

tangent vectors are orthogonal to the unit normal: R^n^ = 0 and T^n^ = 0. Since 

W1 and n M are both spacelike: R^R^ — 1 and n M n M = 1, we are able to compute the 

following two constraints: 

l2 

+ r ' V Z = 1 (4-4) 
U 

,2 

7i x'2U + r- = n> (4.5) 
rz 

which can be combined together to yield the normalisation constant 



4.2. T h e general brane equations 96 

The non-Z 2 symmetric Israel junct ion conditions [70], triggered by the presence of 

the brane w i t h a non-vanishing distributional energy-momentum tensor T^, take 

the form 

= ff+ - K~v = ^ ( 3 T ^ - h l w T ) (4.7) 

where K$ = 8irGs is the five-dimensional gravitational constant. As before, the 

tensor h^u = — n^riu projects vectors onto the wall, whereas its tangential com­

ponents give the induced metric on the wall. We notice that by breaking the Z 2 -

symmetry, the j ump in extrinsic curvature for the asymmetric model (4.7) is modified 

f rom the Z 2 -symmetric case (3.8) by an overall factor of 2. The definition of the 

extrinsic curvature on each side of the brane is given explicitly by 

= - W V ( , n + (4.8) 

K-v = h ^ h l V ^ (4.9) 

where the ' + ' and ' —' signs distinguish the left and right sides of the bulk, respec­

tively. In the definition of the extrinsic curvature for the left side of the brane 

(4.8), we have taken into account an overall relative negative sign. This ensures 

that the brane produced after patching together the left and right sides of the bulk 

spacetimes satisfies the Israel junct ion conditions (4.7). 

Again we deviate f rom the simplified ansatz of Chamblin, Hawking and Reall [37] 

in which the brane was characterised by a constant self-energy. We assume that the 

matter distr ibution on the brane, given in terms of the energy-momentum tensor, 

takes the form of a perfect isotropic fluid 

V = \p{p) + P(p)] htuJhvpuaup + P{p)h^ (4.10) 

wi th the energy density and pressure given by p(p) and P{p) respectively. The 

4-velocity vector i t M is parallel to the timelike tangent vector T M and satisfies the 

normalisation condition u'1ul/h,tl/ = — 1. 
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Cont inui ty 

I n the asymmetric model, we demand that the induced metric must be continuous 

across the brane. This constrains the four-dimensional brane coordinates on either 

side of the spacetime, hence giving the following restrictions 

r + s i n x + = r _ s i n x - (4-H) 

U+ = XU-. (4.12) 

Here, A represents some general scale factor, allowing for the fact that time on each 

side may run at a different rate. 

T i m e parameterisat ion 

The time coordinate can be parameterised differently according to the following 

prescription 

dt 
dt = —dr = tdr (4.13) 

a r 

where the metric function gtt = —U is now modified to gTT = —Ui2. The previous 

line-element (4.1) becomes 

dr2 

ds2 = -U{r) i2dr2 + -— + r 2 ( d X

2 + s in 2

 X d f t 2 , ) (4.14) 
U(r) 

and the continuity restriction (4.12) is transformed to 

U+il = UJ2_. (4.15) 

4.2.1 The general Israel and conservation equations 

Using the form of the energy-momentum tensor given in (4.10), we can compute the 

Israel equations for a brane containing a perfect f l u i d : 2 

2 The details of the computation of the extrinsic curvatures are given in Appendix A.2. 
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AKTT = 
x'U'Ui2 

2nr' 
(4.16) 

&Kog = 
1 
n [—x'Ur sin2 x + f' sin x cos x] t = T?7"2 s ' n 2 X (4.17) 

A K P P = 
1 
n 

P 
3 

(4.18) 

where we have used the time parameterisation (4.15) in the time-component of the 

Israel equation (4.16) and the following non-zero components of the four-dimensional 

metric tensor: hTT = gTT = — Ut2, hgg = r 2 s i n 2 x and hpp = 1. For simplicity, we 

have set K$ — 1. 

Differentiating (4.17) w i t h respect to p gives an additional but not independent 

equation f rom conservation of energy-momentum: 

P_ 
3 nr2 \ 2 r' 

(4.19) 

Inserting the definit ion of the normalisation constant (4.6) into equations (4.16)-

(4.19) and wr i t ing each side of the bulk explicitly yields the Israel and conservation 

equations: 

2 
-3P + P 

X'+U'+T+ + x'-ULr-

2r'+y/lU 2r'_sJUZ 
(4.20) 

p r'+COtX+ , rrr- f'_ COt X -

3 = i / u ^ - ^ ^ + ^ m - - * -
(4.21) 

P 
"3 

4 + 2xV 
/ 1̂  

L ' + 
r + J r_ r_ 

2X'- (4.22) 

P_ 
3 r+VU~+ 

2 r l + t/_ 
l £ / V _ 

(4.23) 

where all the primes denote partial differentiation wi th respect to p. 

We can therefore successfully embed a four-dimensional brane containing a per­

fect f luid in a five-dimensional asymmetric background defined by a single funct ion 
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U(r) as long as we can obtain a consistent set of functions: p(p), P{p) and x{p) ~ 

wi th the latter denoting the position of the brane in the five-dimensional spacetime 

- satisfying (4.20)-(4.23). 

4.2.2 A general metric function 

To solve the general brane equations (4.20)-(4.23) for a general metric function, we 

begin wi th the following three equations: (4.4), (4.11) and (4.12). They are given 

respectively as: 

^ +rlxl = 1 (4.24) 

r + s i n x + = r _ s i n x - (4-25) 

U+ = XU-. (4.26) 

We w i l l assume that the negative constraint of (4.24) holds: 

^ - + r - X _ = l . (4-27) 

In order to ensure consistency in the setup, we would like to show that the positive 

constraint of (4.24) 

^ + rlx'l = 1 (4-28) 

which can be rewrit ten as 

( £ ) 2 + C + X ? - ^ = 0 (4.29) 

also holds. In order to produce a consistent set of equations, we would like to 

compute the following quantities: r + , r'+ and x>+> expressing them entirely in terms 

of the negative variables r_ and x~- Substituting these derived quantities back into 

equation (4.29) w i l l give the desired consistency relations. We can then solve the 

general brane equations (4.20)-(4.23). 
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We start the analysis by working wi th a general metric funct ion corresponding 

to an Schwarzschild-Anti de Sitter spacetime. The bulk metric function on each 

side of the brane is described by 

U+(r) = I + K2

+r2

+ ^ , f/_(r) = l + fcV-^ (4.30) 

where the constants K+ and M + (&_ and m _ ) denote the inverse Anti-de Sitter 

radius and Schwarzschild mass parameter for the left (right) side of the bulk space-

time. The explicit substitution of U+ into the continuity relation (4.26) yields the 

expression 

' 1 (4.31) 
+ 2K\ 

(XU- - 1) ± - XU.)2 + 4K2M+ 

w i t h the valid solution corresponding to the positive sign. Differentiating (4.26) 

wi th respect to p yields a further relation 

1-U-+ 2k2_r2_ 
1 - XU- + 2K2

+r% 
(4.32) 

We have therefore computed r+ and ^ explicitly in terms of minus variables (wi th 

the exception of the constant terms K+ and M+ since these are p-independent). We 

need to derive one further quantity: x'+- This term is obtained by denning 

cot x+ 
r+ cos x+ 

r+ sin x+ r - s i n X-
sin x+ (4.33) 

and replacing for sinx+ using (4.25). This gives 

9 • 2 
rz. sin x-

cot x+ 
r_ sin X-

which can be subsequently rearranged and differentiated wi th respect to p 

— (cot x+r- sin x - ) = ^ (r+ - r2_ s in 2 X-) ~2 

(4.34) 

(4.35) 
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to yield 

X+ = [ ( r + ~~ r - s m 2 X - ) 2 ( r + r ' + — r - r - s m 2 X - - r - s m X - C 0 S X - X - ) 

cot x+r- c o s X - X - — c ° t X + r - s m X - ] 
- 1 

r_ s i n x - ( l + c o t 2 x + ) . 

(4.36) 

We have now obtained expressions for r + , r'+ and x'+ entirely in terms of its negative 

counterparts. These terms can now be substituted into the positive constraint (4.29) 

to yield the consistency relations. 

Since the brane equations for an asymmetric Schwarzschild-Anti de Sitter space-

time are diff icul t to solve analytically, we study two simpler backgrounds. First, we 

study three possible cases which involves a distinct Anti-de Sitter bulk spacetime 

on either side of the brane: 

• C a s e 1: K+ = k- = 1 and A general. 

• C a s e 2: K+,k_ and A all general. 

• C a s e 3: K+,k- general and A = 1. 

We then study the case of a brane embedded between two distinct Schwarzschild 

backgrounds: 

• C a s e 4: M + , m _ general and A = 1. 

4.3 A five-dimensional Anti-de Sitter bulk 

C a s e 1: K+ = fc_ = 1 and A general 

In this section we solve the brane equations of motion for a brane embedded in 

an asymmetric, five-dimensional Anti-de Sitter (AdS) bulk spacetime. We set the 

inverse AdS radii to equal unity: K+ = fc_ = 1 and set the mass parameters to zero: 

M+ = m _ = 0. We leave the scale factor A to be general. Continuity of the bulk 

metric funct ion (4.26) yields the expression 

1 (4.37) 
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which can be differentiated wi th respect to p to give 

r'+ = , X T ~ r - • (4.38) 

Substituting the above expressions for r+ and r'+ into (4.34) and (4.36) enables us 

to compute the terms c o t x + and hence x'+ m terms of r_ and X - - This then allows 

us to write the positive constraint (4.29) entirely in terms of negative variables: 

2 ( A - 1) r , 2 c o s 2 x + s i n 2 x [ l + r 4 - r 2 ( - 2 + r ' 2 ) ] - r ' s i n 2 x ( l + r 2 ) ^ / l - ^ 
= 0. 

(1 + r 2 ) ( - l + A + A r 2 ) [2(A - 1) + ( - 1 + 2A + cos2x) r 2 ] 
(4.39) 

For convenience, we have dropped the minus subscripts in the latter equation since 

all quantities are negative. The consistency relations are determined by wr i t ing the 

expression in the large square brackets in the numerator of (4.39) as a perfect square. 

Equation (4.39) then simplifies to 

-(A — 1) r ' c o s x — s i n x ( l + ?" 2) 2(1 + r 2 — r / 2 ) z 

(1 + r 2 ) ( - l + A + A r 2 ) [(A - 1)(1 + r 2 ) + r 2 cos2

 X ] 
(4.40) 

and can be solved by setting the numerator to zero. For the case A ^ 1, the 

consistency relations are: 

r'_ = ( ^ + r - ) s i n * - (4.41) 
yjl+rl s in 2 x-

x,_ = cosx-
f - y j l + r2_ s in 2 X-

where the last line has been obtained by resubstituting r'_ back into the negative 

constraint (4.27). Inserting the derived quantities: r+, r'+, cot X+> X + i r - a n d X -

into the general brane equations (4.20)-(4.23) yields the Israel and conservation 

equations: 
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o y/\r_ cosx- + \ A ( 1 + r2_) — (1 + r2_ sin 2 x~) 
P + | p = V , — (4.43) 

3 y/\{l+r2_)^l + rl s i n 2

X -

p- = 0 (4.44) 

f = 0 (4.45) 

where equations (4.21) and (4.22) are identical and are given by (4.44). The above 

results clearly imply zero energy density on the brane. This suggests that a brane 

trajectory does not exist. We therefore do not derive any further equations here and 

instead, study a more general case. 

Case 2: K+,k- and A all general 

We generalise the above results by studying the case where K+,k_ and A are all 

general. After a lengthy calculation we arrive at the following expression obtained 

from the positive constraint (4.29): 

-2K2J\- 1) \r' cos X ~ s inx ( l + fcV)3(l + k2r2 - r'2)^ 
(4.46) 

+ 2r2(K2

+ - k2) [K2

+ sin 2

 X ( l + k2r2) + A k2r'2] = 0 . 

Again, we have dropped the minus subscripts on all negative quantities, with the 

exception of the p-independent term K+. Now, it is not trivial to solve for r'_ since 

we would obtain a quadratic equation in r'2, giving us quite complicated consistency 

relations, hence rather lengthy expressions for the brane equations. This makes the 

system of equations more complicated to solve. Instead, we study a solvable class 

of solutions for the AdS background. In this case, we set the general scale factor to 

unity (A = 1) and keep the inverse of the AdS radii (K+ and /c_) general. 

4.3.1 A solvable class of solutions 

We compute the brane equations for an asymmetric model involving an AdS bulk 

on either side of the brane. We assume that the background on each side of the four-
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dimensional hypersurface is distinct and is characterised by a differing cosmological 

constant. We find complete analytic solutions for the shape of the brane, the energy 

density and pressure. We show that these results are analogous to the Z2-symmetric 

AdS case. 

Case 3: K+, /c_ general and A = 1 

The bulk metric functions for each side of the brane are given by 

U+ = l + K2

+r2

+, U- = l+ k2_r2_ (4.47) 

where K+ and fc_ correspond to the inverse AdS radii on the left and right sides 

of the wall, respectively. Assuming that the scale factor in (4.26) is equal to unity 

A = 1, then continuity of the bulk metric function yields 

, U- - 1 k2 r2 , 

^ - -sr" "sf (4'48) 

which can be differentiated with respect to p to give 

r' r' 
- ± = — . (4.49) 
r+ r_ 

The substitution of (4.48) into (4.34) forms the relevant expression for cotx+ in the 

background geometry of AdS spacetime: 

\ A - - K I 
sin 2 x -

cot X + = r r — . (4.50) 
K+ sin x-

Furthermore, equations (4.48) and (4.49) can be inserted into the positive constraint 

(4.29) to give 

x'+ = ^ - c o s X - . (4.51) 

Once again, if we assume that the negative constraint (4.27) holds, then the consis­

tency relations required for the positive constraint (4.29) to also be valid are given 

by two first order, coupled differential equations: 
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r'_ = J \ + A;2 r 2 sin x-

X- = t s m X-

(4.52) 

(4.53) 

Equations (4.48)-(4.53) are then used to substitute the derived functions: r+, r'+, 

X+ (and hence x+)> c°tX+> r - a n d X- the general brane equations of motion 

(4.20)-(4.23). This yields the following set of Israel and conservation equations for 

the AdS background: 

;P + P = 

P 
3 

y/1 + k2_r2_ 
9(X-) 

A;_r. 
1 - y/l + klrl 9(X-) 

= 0 

(4.54) 

(4.55) 

(4.56) 

where the common term is given by the function 

<?(*-) = K+ cos x - + \Jk2_ - K\ sin 2 X- (4.57) 

We note that equations (4.21) and (4.22) are identical and are given by equation 

(4.55). Equations (4.54)-(4.56) can be solved straightforwardly to give complete an­

alytic expressions for the brane shape, energy density and pressure. The integration 

of (4.56) shows that the energy density is constant throughout the brane p = po, 

where po represents an integration constant. 

The equation that governs the shape of the brane is derived by rewriting (4.55) 

in terms of the bulk metric function 3 

. 3 (1 - VU) 
— K+ cosx- = k K\ sin 2 x- (4.58) 

3 For convenience, we have dropped the subscript notation on the bulk metric function U since 
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where U = 1 + k-r2,. Expanding and simplifying the last equation yields the shape 

of the brane 

r_ cos x- = A(VU- 1) + B{VU+1) (4.59) 

with the constants A and B given by: 

B - - e £ r - <4'61> 

We notice that the brane equation (4.59) is identical to the Z2-symmetric AdS case 

(3.55) even though we have differing constants: (4.60) and (4.61). This implies that 

the brane trajectories for the asymmetric AdS background are exactly the same as 

the ^-symmetric AdS background and are given in the previous chapter in figure 

3.1. 

Next we compute an expression for the energy density on the brane. Equations 

(4.60) and (4.61) can be rearranged as 

3 (k2 - K2) 

* - * - - ^ * - B - r ^ i c r ( 4 ' 6 2 ) 

In order to eliminate the positive constant K+ in the above expression, we write 

K+ = . k~ (4.63) 
y/1 - 4ABk2_ V ' 

and re-substitute it back into (4.62). This gives a formula for the energy density 

P = 1= 4 - 6 4 

which is constant throughout the brane. Furthermore, the energy density remains 

positive for B < 0. Expression (4.64) is very similar to the /^-symmetric AdS case 

(3.57), except now the energy density only depends on a single constant B. (In the 

^-symmetric case, the energy density depended on both constants A and B). 

Finally, the equation of state can be obtained by rewriting (4.54) as 
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2 fc_r_ 
P = -~Po + - 9 

3 A /1 + P r 2 

Po 

(l-v/TTFZ) 
(4.65) 

Re-expressing the last equation in terms of the bulk metric function and using (4.55) 

determines the pressure on the brane 

P = -Po 1 + 
1 

3 ^ . 
(4.66) 

which is always negative. The expression for the pressure is also similar to the 

Z2-symmetric AdS case (3.59). 

To sum up, we have computed expressions for the brane shape, energy density 

and pressure for a three-brane embedded in an asymmetric AdS background (for 

K+, fc_ general and A = 1). We have found that all three expressions are analogous 

to the results obtained in the Z2-symmetric AdS case. 

4.4 A five-dimensional Schwarzschild bulk 

We follow the same procedure used for the non-Z 2 symmetric AdS background to 

compute the brane equations corresponding to an asymmetric Schwarzschild bulk 

spacetime. We assume that the spacetime on either side of the four-dimensional hy-

persurface is now characterised by a differing mass term. We find complete analytic 

solutions for the shape of the brane, the energy density and pressure. We determine 

that these results are analogous to the Z2-symmetric case. 

Case 4: M + , m _ general and A = 1. 

We write the bulk metric functions on either side of the brane as 

U+ = l - ^ ± , = (4-67) 

where the constants M+ and m_ are mass parameters which are responsible for 

creating a Schwarzschild background on the left and right sides of the brane, re­

spectively. The mass parameters on each side of the hypersurface are related to the 
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actual mass of the bulk black hole fj, by the relations = 3g™~ or p,+ = 3 g ^ + , 

where G 5 denotes the five-dimensional Newton constant. Continuity of the bulk 

metric function (4.26) for the case A = 1, implies 

1 — [/_ m_ 

which can be differentiated with respect to p to give 

r ' r' 
-± = — . (4.69) 
r_ r_ 

Inserting equation (4.68) into (4.34) yields the relevant expressions for cotx+ cor­

responding to the Schwarzschild bulk geometry: 

cot X + = — ~ • (4-70) 
sin x-

Moreover, the expressions for r+ and r'+ can be substituted into the positive con­

straint (4.29) to give 

*+=vl̂ cos*-- (4'71) 

Again, if we suppose that the negative constraint (4.27) holds, we can construct 

consistency relations in order for the positive constraint (4.29) to also hold: 

This gives us two first order coupled differential equations which are functions of 

r_ and x~- Equations (4.68)-(4.73) are then used to replace the derived quantities: 

r + , r ' + , x ' + (and hence Y/+)J cotx+, T'_ and x'- into the original brane equations 

(4.20)-(4.23). This enables us to express the Israel and conservation equations for 

the Schwarzschild background as: 
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2 
3 P + F 

P 
3 

--fix-) 

1 
/ ( X - ) 

2m_ / m 
M+ sin x - f ( x - ) 

(4.74) 

(4.75) 

(4.76) 

where the common term appearing in the above system of equations is given explic­

itly by 

f i x - ) = 
m_ 
M+ cosx- + A / l sin x- (4.77) 

Note that equations (4.21) and (4.22) are equivalent and equal to equation (4.75). 

Next, we solve equations (4.74)-(4.76) for the brane shape, energy density and 

pressure. The presence of the common factor (4.77) in the Israel and conservation 

equations allows for considerable simplification. 

First, we compute the expression for the energy density on the brane. Dividing 

(4.76) by (4.75) gives 

-2m-J%-smx-

P r 2 
(4.78) 

Inserting equation (4.72) into the last equation eliminates the p-dependence, giving 

dp 

P 

-2m-dr. 
r_ — y/r"L — m_ yjr2_ — 

(4.79) 

A simple substitution 

sin v = 

enables us to rewrite (4.79) as 

/

dp „ f s'mv 
- f = 2 / dv. 
p J 1 - COS V 

(4.80) 

(4.81) 
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The last equation can be easily integrated to give an expression for the energy 

density 

p = Po(l-VU)2 (4.82) 

where po represents an integration constant. In order to determine po explicitly, we 

rewrite (4.75) in terms of the bulk metric function 4 

Po 
3 cos x- = 1 ~ M + S i n X ~ 

(4.83) 

where U = 1 — . Expanding and simplifying the last equation yields the following 

formula for the shape of the brane 

r_ cos X- — r - A{VU- 1) + B{VU+1) (4.84) 

where the constants A and B are defined by: 

_ po M+ 
A ~ ~ 6 ~ \ f c 

(4.85) 

B 
3 1 ' M. + 
2 pom. M. + 

(4.86) 

Again, the brane equation (4.84) is exactly the same as the Z2-symmetric Schwarzschild 

background (3.67) with the exception of the differing constants A and B. The brane 

trajectories for the asymmetric Schwarzschild background are therefore equivalent 

to the ones presented in the previous chapter in figures 3.2-3.4. 

The energy density is formulated by rearranging the above constants: (4.85) and 

(4.86). This gives 

Po -6A 
M 4 

M + 2Sm_ W m_ [M+ 

m_ - 1 (4.87) 

'As in the AdS case, we have dropped the subscript notation on the bulk metric function since 

U+ = U-. 



4.4. A five-dimensional Schwarzschild bulk 111 

In order to eliminate the square root terms in the above expression, we write 

] f W = jAABm. + 1 ( 4 - 8 8 ) 

and re-substitute it back into (4.87) to give 

_g A 
Po = , • (4.89) 

Inserting (4.89) into (4.82) gives a formula for the brane energy density 

-6.4 
y/l + 4ABm_ 

(1 - VU)2 (4.90) 

which is positive for A < 0. Notice that p is not constant for these branes (unlike 

the AdS case). Again, we find that the relation for the energy density depends only 

on a single constant A (unlike the ^-symmetric case (3.68) which involved both 

constants A and B). 

Finally, the equation of state can be obtained by rewriting (4.74) as 

2 - m-
P= - o P + 

3(1 - VU) 
(4.91) 

Re-expressing the last equation entirely in terms of the bulk metric function yields 

the following expression for the pressure induced on the brane 

P = -P + J j = ( l - ( l + 2\/t7) . (4.92) 

Again, the pressure is similar to the ^-symmetric Schwarzschild case (3.69). 

To sum up: we have computed expressions for the brane shape, energy density 

and pressure for a three-brane embedded in an asymmetric Schwarzschild back­

ground (for M+, m_ general and A = 1). We have found that all three expressions 

are similar to the results obtained in the ^-symmetric Schwarzschild case. 
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4.5 Summary 

In this chapter, we have found consistent brane embeddings for the asymmetric AdS-

AdS background (K+ , /c_ general) and Schwarzschild-Schwarzschild background 

( M + , m_ general) for the particular case where A = 1. In the analysis, we have 

obtained expressions for the brane shape, the energy density and pressure, all of 

which are analogous to the Z2-symmetric case. The complete details regarding the 

brane trajectories have been covered previously in chapter 3. Unfortunately, the 

calculations for brane trajectories in an asymmetric Schwarzschild-AdS background 

has proven to be difficult; the complexity of the equations makes it hard to find 

simple analytic solutions. These problems may be overcome if we use numerical 

methods; this is work for future research. 



Chapter 5 

Black String Instability in 

Heterotic M-theory 

In this chapter we compute scalar and gravitational fluctuations around a flat back­

ground in low energy heterotic M-theory. A general coordinate transformation shows 

that the interbrane distance (i.e. the radion) is coupled to the bulk scalar field. In 

order to determine the gravitational interaction on the brane, we use the formalism 

presented in chapter 2 to find complete solutions describing the massive gravitons. 

This enables us to compute the corrections to the Newtonian potential together 

with the brane graviton propagator. We show that the power law corrections to the 

Newtonian potential and the form of the four-dimensional propagator are modified 

from the Randall-Sundrum scenario. Our analysis also determines the instability of 

a black string. As an application to the work presented in the previous chapters, we 

comment on work which is currently in progress; the exploration of possible brane 

black hole solutions in low energy heterotic M-theory. 

5.1 Introduction 

In general relativity, four-dimensional black holes are known to be classically stable. 

However, their higher dimensional analogues (i.e. black strings) are unstable. Black 

strings instabilities (or Gregory-Laflamme instabilities) were initially discovered in 

vacuum [59,60]. These instabilities can be understood in different ways. If we 

113 
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assume that the five-dimensional (un)charged black string has a cylindrical event 

horizon, then the black string instability comes into play when its length reaches a 

critical value. At this critical length, the black string becomes unstable to classical 

linear perturbations and fragments. This phenomena can be understood in a simple 

example provided by the soap bubble analogy. Once a soap bubble reaches a certain 

length, it too becomes unstable and 'pops.' Entropy arguments can also be used to 

provide an explanation to the black string instability phenomena. In this case, one 

can associate an entropy to the event horizon (proportional to its area) of the black 

string. Calculations show that for a cylindrical event horizon, there exists a critical 

length of the black string (say £ ) above which the entropy of a five-dimensional 

compact black hole [95] (of radius r) is greater than the entropy of the black string 

(of equivalent mass). At this point, the critical length of the black string exceeds 

the black hole radius i.e. C > r and the solution ceases to be stable. It is now 

entropically favorable for the mass to localise into spherical black holes [95]. 

The corresponding metric of the vacuum black string is given explicitly by adding 

an extra flat y direction (which is parallel to the string) to the four-dimensional 

Schwarzschild line element: 

D S 2 = _ ^ _ Vpj d t

2 +(i-^pj 1

 d r

2 + r

2dVt2

n + dy2 . (5.1) 

This metric is referred to as the Kaluza-Klein black string metric. Since the back­

ground space is vacuum, the TTF gauge for hab (i.e. = h^.a = 0) can be used 

to solve the perturbation equations. Studying the evolution of small perturbations 

hab — &9ab around a black string determines that the metric perturbation satisfies 

the Lichnerowicz equation1 

A L / i a b = Sa%dOhcd + 2Ra

c

b

dhcd = 0 . (5.2) 

The last equation can be decomposed into scalar, vector and tensor components. For 

any unstable mode, the vector and scalar modes were shown to be zero, reducing 

Using the Lichnerowicz operator given previously in chapter 2 of equation (2.21). 
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the system of linearised equations to a single tensor perturbation 

( + m2)hlw = 0 . (5.3) 

This expression corresponds to the effective four-dimensional massive Lichnerowicz 

equation. The mass term arises from the y-dependence on the perturbation and 

represents the four-dimensional Lichnerowicz operator. The solution to (5.3) 

was shown to exhibit an instability in the s-wave mode. Pictorially, the effect of 

the instability is to cause the event horizon of the black string to collapse in some 

regions of the extra dimension and expand in others. In other words, the instability 

causes the horizon to ripple. Ultimately, the cylindrical event horizon of the black 

string fragments quantum mechanically into a periodic array of higher dimensional 

black holes. 

The black string instability was then extended to non-vacuum spacetimes, in 

particular, the Anti-de Sitter (AdS) background [58]. In a previous chapter we had 

discussed the Chamblin, Hawking and Reall black string [37] in which the authors 

obtained the black string metric by adding an additional warp factor in front of the 

four-dimensional line-element of the vacuum metric (5.1). If we now account for 

Z2-symmetry in the background AdS spacetime, we obtain 

ds2 = e ± 2 f cW - 1 
2 M 

dt2 + 1 
2 M - l 

dr2 + r2dQ2

u + dy* (5.4) 

This metric is known as the Randall-Sundrum (RS) black string metric. Since 

this line-element contains a bulk cosmological constant (present in the warp factor 

a(y) = e ± f c ' y ' ) , we expect the instability argument for the RS black string to be 

different from the Kaluza-Klein black string. Thus, by studying the evolution of 

perturbations around the RS black string, we determine that the linearised field 

equations reduces to 

= 0 (5.5) 

where i ? ^ „ p and denote the four-dimensional Schwarzschild Riemann tensor 

and the wave operator, respectively. If we set 
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(5.6) 

where the ^-dependent function is given by 

U; •m (») = [AJ, (n>) - BN2 (5.7) 

then the arbitrary constants A and B can be chosen so that the perturbation satisfies 

the boundary conditions. Thus, for the RS black string, the tensor perturbation 

becomes 

Therefore, the form of the four-dimensional instability for the RS black string is the 

same as the Kaluza-Klein black string (as equations (5.3) and (5.9) are similar). 

However, for the RS black string, we obtain an additional y-dependent part (5.7) 

relevant for the RS background. Hence, the evolution of black string is different to 

the Kaluza-Klein black string; we now get an accumulation of "mini" black holes 

with the frequency of ripples increasing as the AdS horizon is approached: y —» ±oo. 

So far, we have discussed black string instabilities in vacuum and AdS spacetimes. 

In this chapter we extend the analysis further to explore the instability of a black 

string in the background of low energy heterotic M-theory. 

5.2 Perturbation equations 

In this section we describe the static LOSW model and give the background solution 

using a modified metric ansatz from the one presented in section 2.2. By considering 

bulk perturbations, we are able to derive the five-dimensional, linearised scalar and 

gravitational field equations. 

a4 (a 2/iM„) m h (5.8) 

and Xpv satisfies the following equation of motion 

( A ^ + m 2 ) X „ = 0. (5.9) 
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5.2.1 Heterotic M-theory 

We consider the dimensionally reduced five-dimensional effective action derived by 

Lukas et al [32]. The action consists of terms which describe gravity, the bulk scalar 

field and two boundary branes, respectively, 

5(5) = 7?~ [dbx, 
2K 5 J 

-a e 

+ 
V2a 

K 5 

j tfxj^re-* - I d4x^g~+ •g+e-* 

(5.10) 

where R is the five-dimensional Ricci scalar, g^u is the induced metric on each brane, 

«5 = %ixG^ is the five-dimensional gravitational constant2 and a is an arbitrary cou­

pling constant which parameterises the number of units of 4-form flux which threads 

the Calabi-Yau [105]. The symbol 0 represents the bulk scalar field3 supporting each 

of the boundary branes. The branes have equal and opposite tensions and are posi­

tioned parallel to each other at y = ±y0 (where y is the transverse direction to the 

brane). We will impose a Z2-symmetry at the position of each of the branes (i.e. we 

identify the points y <-> —y)'. This setup therefore corresponds to five-dimensional 

gravity with a bulk scalar field, coupled to each brane. 

The resulting five-dimensional equations of motion following from the action 

(5.10) are 

P (5.11) 

Gab = ^ > a (fr^-^gabfi,0 4>,c-c9abOt"e 
2 4 0 

+ y/2a[5(y + y 0 ) - 5(y - y0)]g^a5v

b 

•<8V = - « a V * + 2V2a[S(y + y0) - 5(y - y0)\^— 
^ y9yy 

(5.12) 

where and = rj^d^d^ + dy

2 represent the five-dimensional Einstein tensor 

and curved space d'Alembertian operator, respectively. We note that the Greek 

2 For simplicity, we will set the five-dimensional gravitational constant to unity K$=\. 
3 I n Ref. [32] and chapter 2, the scalar field <j> is related to the field V by the relation V = e*. 
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indices run over the four dimensions /i, u = 0,1, 2, 3 whereas the Latin indices run 

over all five dimensions a, b = 0,1, 2,3, 4. 

In order to find a three-brane solution in the background of heterotic M-theory, 

we start with the metric ansatz4 

ds2 = a\y)r}fiVdx'ldxv + dy2 (5.13) 

where the brane scale factor a(y) is a function of the fifth dimension. The general 

solution for this ansatz which satisfies the equations of motion is given by 

a(y) = H l / 6 (5.14) 

4>(y) = In H (5.15) 

H{y) = V2a\y\ + c0 , -y0 < y < y0 (5.16) 

where CQ is an arbitrary constant and H represents the harmonic linear function 

which is fixed by the boundary source terms. The metric (5.13) therefore solves the 

background equations of heterotic M-theory (5.11)—(5.12) with the solutions given 

by (5.14)-(5.16). 

5.2.2 Scalar and gravitational perturbations 

We now derive the five-dimensional scalar and gravitational perturbations with re­

spect to the background metric. In order to deal with the ^-symmetry as well 

as the junction conditions at the branes, we make the following gauge choice that 

preserves the Gaussian Normal coordinate system: gyy = 1, g^y — 0. This specific 

gauge choice allows us to perturb the brane system such that the brane stays at the 

coordinate origin y = 0. 

Consider the following linearised metric and scalar field perturbations around a 

background solution 

9ab^9ab + Kb (5-17) 

(j)^4> + 54> (5.18) 

The metric ansatz of chapter 2, equation (2.105) is modified by setting b(y) = 1. 
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where hab and 5(f) are small variations of the metric tensor and scalar field, respec­

tively. We seek solutions of the form 0 = 0(y) and 5(f) = 5(f){x^,y) where the 

perturbation of the scalar field is now a function of both x ' 1 and y. 

Rewriting the Einstein equation (5.11) entirely in terms of the Ricci tensor 

1 * 2 - 2 4 4 V ^ 
Rab = -^<P>a <f>,b + g « gabe v a[D]e-*9ab + V2a[D]e-%„6ffi (5.19) 

and using the definition of the Lichnerowicz operator 5 previously stated in equation 

(2.21), enables us to compute the linearised Einstein field equation 

A L / i a 6 = - 2(/», (a {54>),b) ~gOc2e ^{hab - 2gab5(j)) 

+ ^ a [ V } e - ^ h a b - gab5(f>) - 2 v

/ 2 a [ D ] e - * ( - g^5<f>Wa5u

b 

(5.20) 

The linearised scalar field equation is 

-hcdVcVd(f) + a{5)5(f> - Vc(f>Vdhcd = - a 2 e _ 2 * < t y - 2v /2a[X>]e_*<ty (5.21) 
o 

where we have set [V] = [5(y + yo) — 5(y — yo)} to represent the boundary of space-

time. 

The bulk gravitational equations (5.20) can be decomposed into scalar, vector 

and tensor components. These three equations together w i t h the dilaton equation 

(5.21) are given respectively: 

2 1 

a' 

h 
= - 1 2 - ( 5 < / > ) ' + 8 ( - ) 5$ - 16-[D}5(f> (5.22) 

a V a I a 

= 6 - ( S 4 > \ , (5.23) 

+ 
a' 

4 / hyi/ 
+ aa 

h 

= 8(a')2rj^5(f) - 4[D}aa'r]^5(f) 

(5.24) 

5 I n Appendix B.2, we have given the components of the Lichnerowicz operator explicitly in 

terms of the five-dimensional gauge quantities. 
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3 * 
a 

h 
.9** - (50)" - 4 - ( 5 4 , ) ' + 24 f - V 5<t> - \2-[V]8<t> 

a 
(5.25) 

where we have used a 2 e - 2 * = 18 ( ^ ) 2 and 0' = 6^- for the background values of 

the coupling constant a and the dilaton </>. In the above, the primes denote differ­

entiation w i t h respect to y. The terms Dh^ = /I M ^,A A and = <50,AA represent 

the four-dimensional flat space d'Alembertian operator acting on the metric and 

scalar field perturbations respectively. We note that the linearised Einstein equa­

tions (5.22)-(5.24) in the transverse-traceless gauge (in which 8(f) = 0) are equivalent 

to the Randall-Sundrum I I case in the absence of brane matter sources. 

5.2.3 Lorentz decomposition of the metric perturbation 

To solve the vector and tensor perturbation equations (5.23) and (5.24), we take 

the general metric perturbation and decompose i t in terms of irreducible rep­

resentations of the diffeomorphism group (i .e. irreducible components of the four-

dimensional Lorentz group), previously discussed in Ref. [96] 

(5.26) 

The transverse trace-free mode satisfies h1^ " = h11^ = 0 and the Lorentz-gauge 

vector is divergence-free A^ = 0. The two scalar fields are represented by ip 

and h = h^. We w i l l ignore A^ in the work as i t is irrelevant for the instability 

analysis. 

Af te r applying the above decomposition, (5.23) and (5.24) become 

= 6-(64>), 
a 

(5.27) 

• / # , ( D 0 - h)tlu, 1_ 

2a 2 

4 I "'HI/ ~ 'r\iiy 

• ( • V > - h) 1 
4a 2 4a 2 

f U j } - h \ 

\ a 2 
+ aa' 

h (5.28) 

= 8(a')\J<f) - Aaa'p^M 
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where the quantities and tp satisfy the four-dimensional Klein-Gordon equation 

~ 171,2 h^v a n d Oip = m2tp, respectively. 

5.3 Solutions to the perturbation equations 

In this section we solve the bulk perturbation equations for the massless and massive 

modes. First, we impose the transverse-tracefree ( T T F ) gauge to obtain the T T F 

component of the metric perturbation. This yields two eigenvalue solutions which 

correspond to the massless graviton zero mode and the massive Kaluza-Klein tower. 

The former solution is used in a later section to identify the graviton wavefunction. 

We then discard our assumption of the T T F gauge and solve the perturbation equa­

tions in general, using the Lorentz decomposition introduced in the previous section. 

We determine that there exists only one eigenstate for the scalar mode corresponding 

to the massless scalar mode. 

5.3.1 Transverse-tracefree perturbations 

T h e massive T T F eigenfunction 

The T T F components of the metric perturbation: / i " A

 A = 0 and ha = h u \ x = 0 

describes the graviton modes [39]. In order for the linearised equations (5.22)-(5.25) 

to be consistent we need to set 5<f> = 0. The system of perturbation equations reduces 

to one single tensor equation 

and is equivalent to equation (2.25) obtained in the RSI I scenario 6. In order to solve 

this equation, i t is convenient to make the following change of variables 

u h 
2LU + mrh 0 a 

a 
(5.29) 

dy 
dz 

a 
(5.30) 

Setting k = allows us to rewrite (5.14) as 

6We note that the warp factors are different in the LOSW and RSII models. 
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a{z) = {kz)1/5 (5.31) 

A short calculation yields the expression 

25z2 
+ rrr (5.32) 

where the overdot denotes differentiation w i t h respect to the new variable z. Equa­

tion (5.32) can now be solved analytically. The massive solutions are given by the 

eigenfunction 

K„ = 2 3 / 5 [V^Jwimz) + Q,„Nl/5(mz)} (5.33) 

where Jn(mz) and Nn(mz) correspondingly represent (order n) Bessel functions of 

the first and second kind. Here, m denotes the mass of the excitation. The symbols 

V^v and are functions of the four-dimensional coordinates x M (independent of 

z). The ratio of the constant V^/Q^ is determined by the boundary condition at 

the position of the visible brane z = z+. A t this position, we normalise a(z) such 

that i t equals unity a(z+) — 1. This wi l l eliminate one of the constants in (5.33). 

The remaining constant is determined by normalisation. 

Let us now tu rn our attention to the boundary condition applied at the discon­

t inui ty of the orbifold fixed planes 

v-v hz ^ 
= 0. (5.34) 

2 + 

Inserting equation (5.33) into (5.34) enables us to evaluate the boundary condition 

at the position of the visible brane where z+ = Using the identity for Bessel 

functions given previously in equation (2.40) enables us to obtain the expression 

fii> 
N (—) 

- j ( * ; j ^ ( r n z ) + Nl/5(mz) (5.35) 

where Q^„ is a normalisation constant. We can determine Q M „ by rewrit ing the 

T T F Bessel equation (5.29) in Sturm-Liouville f o r m 7 [43] 

7See Appendix B.5 for the definition of the Sturm-Liouville equation and its corresponding 

orthonormality relation. 
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d r , d //cm = _ m 2 a 3 ^ j ( 5 3 6 ) 

dz V a 2 a 2 

where we identify the eigenvalue to be m 2 , the eigenfunction a 2h"u and the weight 

function a 3. The orthonormality condition is therefore given by 

J a{z) = 5 { m ~ U ) • ( 5 ' 3 7 ) 

Substituting (5.35) into the above integral and using the continuum integral rela­

tion for Bessel functions quoted previously in equation (2.43), yields the properly 

normalised mass eigenvalue 

... , , , ["-WE) W - •/-«.(?)"•/.(»»)] (5.3,) 

T h e massless T T F eigenfunction 

We now take a look at the massless case of the graviton mode. I f we set m = 0 in 

(5.32), we obtain Euler's equidimensional differential equation of second order 

^ - hh"» + 2 5 ^ - = ° ( 5 - 3 9 ) 

which has the solution 

= [X»»z2/5 + U * 4 / B ] (5-40) 

where a n c ^ a r e functions depending on the four-dimensional coordinates x M . 

Substituting equation (5.40) into the boundary condition (5.34) implies = 0 and 

our (unnormalised) zero mode T T F solution is simply 

> & o = • ( 5 - 4 1 ) 

This solution corresponds to the graviton zero mode which describes standard four-

dimensional gravity. 

In this subsection we have obtained two distinct eigenvalues corresponding to the 

massless and massive T T F modes. These solutions respectively describe the graviton 

zero mode and the Kaluza-Klein tower. Next we solve the linearised equations by 

discarding the T T F gauge choice. 



5.3. Solutions to the perturbat ion equations 124 

5.3.2 The massless scalar perturbations 

The massless scalar modes have been previously discussed in [97,98]. In Ref. [97], 

the authors studied the setup of a five-dimensional two brane system of Randall and 

Sundrum. I t was discovered that the motion of the branes corresponds to a massless 

four-dimensional scalar field called the radion. We note that this result was then 

generalised in Ref. [98] to include a scalar field in the bulk (the dilaton). I t was 

shown that once the BPS conditions 8 (derived f rom supergravity) are imposed on the 

system, then the dilaton can be wri t ten in terms of the brane fluctuation parameter 

(the radion); the dilaton did not give rise to an additional degree of freedom. (See 

Ref. [99] for a further analysis on the massless modes involving BPS branes. This 

setup also includes two BPS branes embedded in an A d S 5 bulk containing a bulk 

scalar field). 

In this subsection we investigate the relative motion of the heterotic branes 

in the LOSW model using similar techniques as [97,98]. By considering gauge 

transformations for the massless scalar modes, we determine that the radion and the 

dilaton are both coupled together in our system, thus giving only one independent 

scalar degree of freedom. Moreover, we are able to identify the graviton and radion 

zero modes. 

We use the scalar equations (5.22) and (5.25) to obtain a th i rd order differential 

equation 

OZ 

2 57 
m 252 2 

6m2 24 
+ 

52 252 3 
5(p = 0 (5.42) 

where the overdot denotes differentiation w i t h respect to z. In the last equation 

we have used the fact that the scalar perturbation satisfies the four-dimensional 

Klein-Gordon equation: \35<f> = m284). 

Since we are interested in the zero mode solution, we set m = 0 in equation 

(5.42). This gives us Euler's equidimensional differential equation of th i rd order 

5 0 ( 3 ) + ^ ( 2 ) _ _ ^ ( ^ ) + _ | _ ^ = o ( 5 . 4 3 ) 

8 B P S condition: The superpotential that generates the bulk scalar potential is equivalent to 

the brane potential. 
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w i t h consistent 9 analytic solutions given by 

W = %i (5-44) 

h - (5-45) 

The expression for h in the last line has been obtained by substituting 8(f) of equation 

(5.44) into either of the scalar equations: (5.22) or (5.25). Inserting 8(p and h 

(given in (5.44)-(5.45)) into the n o n - ^ part of equation (5.28) yields the following 

transverse-traceless component of the metric perturbation 

_ ^ C l z 6 / 5 , 5 T*jxv_ 4/5 , 2/5 

j 2 2 A; 3/ 5 
(5.46) 

where 7rMi/ and a r e functions of the four-dimensional coordinates and cor­

respond to the radion and graviton respectively. 1 0 We note that the graviton zero 

mode solution was obtained previously for the massless mode in T T F gauge (5.41). 

We also note that in the massless sector the T T F terms: + are coupled 

together (however, this is not the case for the massive modes). 

Now that we have all the components of the decomposition, we can return to 

equation (5.26) to write our fu l l metric perturbation for the zero mode in the bulk 

gauge 

2/5 25 6/5 5 "Kfxv 4/5 2/5 1 C i 
(5.47) 

In order to obtain the metric perturbation on the brane, we need to change 

coordinates. The metric and scalar field perturbations (5.17) and (5.18) allows the 

brane to f lut ter f rom the coordinate origin y = 0 to the position y = F(x^). By 

performing a gauge t ransformation 1 1 as shown in Ref. [96], we can allow the brane 

to return back to its original position i.e. the origin. The solutions for the perturbed 

metric and scalar field in the brane-based coordinate system are given by 

9 The consistent solutions were found by using the decomposed vector and tensor equations 

given in (5.27) and (5.28) respectively. 
1 0 The graviton [10,11,51] has the behaviour ~ a 2 whereas the radion [97] has the behaviour 

~ a 2 / a - 4 . 
1 1 The gauge transformations are given in Appendix B.6. 
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— k ^ 

and 

12 

+ k^b 

6(j) = 

2 P / 5 

5 2 F 

2 ^ Z ~ 1 ^ T , , 1 V 

,4/5 
(5.48) 

C l 

2 6 / 5 5/ .I /5 z 6 / 5 
(5.49) 

respectively. Inserting the brane-based expressions for and 50 into the boundary 

condition of the tensor perturbation 

9z hni/ _ huv 
oz 

2/c2/5 

5 2 3 / 5 
(5.50) 

yields the following constraint 

F - k1/5 
0 1 IX ^ 

g C l , ^ - 2 f c 3 / 5 2 2 / 5 (5.51) 

The first term in the above constraint implies that C\ is proportional to F and can 

therefore be gauged away on the brane. Furthermore, equation (5.49) immediately 

tells us that the perturbed bulk scalar field 54> can be wr i t ten as a function of the 

brane fluctuation parameter F. This coupling suggests that the bulk scalar field 

and the radion correspond to only one independent scalar degree of freedom. We 

note that this result agrees w i t h [98]. Equations (5.48), (5.49) and (5.51) reduce to 

= k2'* 
5 7T 
2 T 3 / 5 

+ k ^ 
5 6 / 5 2 F 
2 ~ 1^1^ 

F 
5 jfcVs^e/s 

F = — 
1 7T 
2 k 2 / 5 z 2 / 5 ' 

(5.52) 

(5.53) 

(5.54) 

Contracting the last equation wi th r f v confirms that the radion is massless OF = 0. 

Inserting the expression for h and 5(j) into the boundary condition for the scalar 

perturbation 

dzh - ~~h 
oz 2+ 

8 k 2 / 5 ~ 

2+ 
(5.55) 
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provides a second verification that the radion is indeed a massless scalar field. F i -

shows that the dilaton boundary condition is also consistent. Consistency of all three 

boundary conditions (i.e. tensor, scalar, dilaton) implies that we have a complete 

set of consistent solutions for the metric and scalar perturbations. 

5.3.3 Including the second brane 

In this section we follow the methods of [98] to compute the f u l l metric perturbation 

including both the background and the perturbation. So far, our analysis has been 

restricted to the existence of a single brane. We therefore introduce the second brane 

into the setup to complete our analysis. Each brane has its own metric tensor. We 

define h+„ as the metric tensor in the region of the positive tension brane positioned 

at z = z+ . Conversely, h~v corresponds to the metric tensor in the region of the 

negative tension brane located at z = z_. Al though the metric tensor is single-

valued for each brane in each patch, we would like to construct a metric tensor that 

is single-valued throughout the bulk. We therefore need to consider two coordinate 

patches. The first coordinate patch includes the brane located at y = +y0 and the 

second includes the brane located at y = — yo. Each coordinate patch is Gaussian 

Normal wi th respect to the brane i t includes (but i t does not have to be Gaussian 

Normal w i th respect to the other brane). 

Our solutions in each patch w i l l depend on the appropriate value of the brane 

fluctuation parameter F. Normalising the value of the scale factor a(z) so that i t 

equals unity a ( z + ) = 1 on the positive tension brane gives 

nally, the substitution of h and 8<j) into the dilaton boundary condition 

dz5(p = ——5<p (5.56) 

1 - c 0 

V2a 

1 
(5.57) y+ = +y0 = or 2+ k 

cp - J 

y/2a 

1 1 
(2c 0 - 1) (5.58) y_ = - y 0 = or 

A; 

Substituting these values of z into (5.54) gives the following values of the brane 
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f luctuation parameter of each brane 

F% = ~ (5-59) 

^-v^w (560> 
The metric tensor (5.52) which is a solution of the gravitational equations can be 

rewritten in terms of the brane scale factor 

V = a V + ^ (̂  f % ) + 2 ^ (a2 J % ) ~ 2 * V a 2 (5.61) 

where we have previously identified the graviton zero mode wi th the x^ term and 

the radion zero mode wi th the TT^ term. Equation (5.54) enables us to rewrite the 

expression for in terms of the scale factor 

7rM1/ = - 2 F M „ a 2 (5.62) 

where a 0 comes f rom evaluating at the boundary of the brane concerned. Inserting 

(5.62) into (5.61) yields the following expression 

V = * V - 2 o g F ^ ( a 2 J + 2 F,v ( a 2 J - 2 F ^ a 2 ( ^ j (5.63) 

which is exactly the same as [98] where F = —/ = — £y. 

In order to construct a metric tensor that is single-valued throughout the bulk, 

we require the brane fluctuation to be single-valued. This is accomplished by using 

the second term of the latter expression and requiring 

a\F+ = a2_F~ = F (5.64) 

where a± denotes the value of the scale factor at each brane and F is the four-

dimensional massless field which relates the fluctuations of one brane to the f luctu­

ations of the second brane. The metric tensor in the patch surrounding the positive 

tension brane at y+ = +yo reads 

K = « V - 2F„ (.» / f ) + 2 F „ (J / * ) - 2 ^ J g) F (5.65) 
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and for the second patch in the vicinity of the negative tension brane at y- = —yo, 

the metric tensor reads 

K - *V - 2 F „ / f ) + 2 F „ g / | ) - 2 ^ (=f ) F (5.66) 

Since the two patches are different, the metric tensor cannot be patched up. To 

resolve this problem, we perform the following gauge transformation that preserves 

the Gaussian Normal coordinate system and which translates the second brane: 

1 1 
y + y 

a a + 
(5.67) 

This transforms the induced metric on the second brane h~„ into the induced metric 

on the first brane h^, giving a single coordinate chart which includes both branes. 

Moreover, the coordinate transformation (5.67) alters the location of the negative 

tension brane to position 

r w = ^ + ( z - £ K (5-68) 

This expression shows that the position of the second brane depends on the brane 

fluctuation parameter. In fact, T(x) represents the physical distance between the 

branes (i.e. measures the size of the extra dimension) and is referred to as the radion. 

In fact, the radion measures the brane bending of the negative tension brane. 

To complete this analysis, we would like to f ind a metric tensor in a form such 

that the size of the interval does not fluctuate i.e. the walls remain in a fixed 

coordinate position. We therefore perform an additional transformation defined by 

y ^ y - ( h - s d F ( 5 6 9 ) 

which subsequently rescales the size of the bulk. This ensures that both walls are 

fixed and flat in the coordinates wi th the second brane rigidly fixed at y = y_. 

I f we impose that there is no vector component in the metric tensor, then one 

can transform according to the infinitesimal transformation 

x" -» a" + f " (5.70) 
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where 

a5 
dy (5.71) 

The metric tensor then becomes 

a1 a2 

a af; 
(5.72) 

This enables us to write an expression for the complete metric including both the 

background and the perturbation: 

ds2 = a2 

y - l - O - } Y ) F 
cr a. 

+ 

+ 

1 1 

•q^dx^dx1" 

2 

2 a' a2 

a a + 

dy2 

dx^dx". 

I f we set 

S(x,y) = y - ^= , g^ = rj^ + , 

then the above metric (5.73) simplifies (to linear order) considerably to 

(5.73) 

(5.74) 

ds2 = a2 [S{x, y)} g^dx^dx" + ( d y S f d y 2 J „ , 2 (5.75) 

which is a generalisation of the metric derived in [97]. 

Finally, we apply the same analysis to construct a single-valued scalar field per­

turbat ion throughout the bulk. Rewriting (5.53) in terms of the brane scale factor 

using the quantities defined in (5.14)—(5.16) gives 

5$ = 4>'F (5.76) 

where 0' = 6a'a l . The scalar perturbation in the vicinity of the positive and 

negative tension patches are given respectively as 

at 
64>- = ^ F . 

at 
(5.77) 
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Using the change of coordinates (5.67) in the second patch allows 5<p~ to transform 

into 8(j)+ throughout the bulk, leading to a single-valued coordinate chart for the 

scalar field fluctuation 

Thus, the inclusion of the second brane into the configuration has enabled us to 

construct a metric tensor and a scalar field perturbation which are single-valued 

throughout the bulk. Out results are analogous to [98]. This is expected since the 

perturbation equations in the latter paper are exactly the same as the ones presented 

in this chapter, even though both setups are in fact distinct (their setup involves 

eleven-dimensional supergravity w i t h BPS conditions imposed on the system). 

Finally, we make a remark that there is only one scalar eigenvalue corresponding 

to the massless scalar mode. In other words, there is no massive tower in the scalar 

sector. 

5.4 Branes with matter 

In this section we introduce an additional matter source on the brane which leads 

to a modification of the original perturbation equations (5.22)-(5.25). The extra 

matter present on the brane causes the brane to respond by bending. By changing 

to a coordinate system in which the branes are once again Gaussian Normal, we 

show that the brane fluctuation parameter and the perturbation of the trace of 

the energy-momentum are coupled together. We then employ the same methods 

as presented in chapter 2 to derive the Newtonian potential on the brane and the 

tensor structure of the massless four-dimensional graviton propagator. We show 

that the corrections to the Newtonian potential and the form of the brane graviton 

propagator in the LOSW model are modified f rom the RSII scenario. 

8<t> 
a 

(5.78) 

5.4.1 The modified linearised field equations 

Previously, we had solved the perturbation equations in vacuum A^hat, = —25Rab = 

0. We now solve the non-vacuum linearised equations i.e. w i th the presence of matter 
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on the branes. The bulk equations of motion now obey the following relation 

A L / i a 6 = -25Rab ^ 0 . (5.79) 

The Ricci tensor (5.19) and the linearised Einstein field equation (5.20) are both 

modified to 

1 
Rab -» Rab + ^[D) Tuvba&b ~ ir^Tgab 

A / A b —> A L / I Q 6 - 2K5[D] 
3a2 

ST9l ab 

(5.80) 

(5.81) 

where we have allowed for a general matter perturbation on the brane. The symbol 

T = T£ denotes the trace of the energy-momentum tensor T^. Equation (5.81) 

enables us to compute the modified scalar (5.22) and tensor (5.24) perturbations 

equations respectively: 

h 
= - 1 2 - ( < 5 0 ) ' + 8 ( - } <50- 16-[V]5cj)+ ^\V)5T (5.82) 

a \ a I a 2>al 

Oh^y + h^v — 2hX(^u)X i_ 
o 1^ n 

4 / kill/ 
+ aa 

h 

8(a')\M - 4 [2?]aa '^50 - 2K5[V] 

(5.83) 

The vector equation (5.23) and dilaton equation (5.25) remain unchanged. The 

corresponding tensor and scalar boundary conditions (5.50) and (5.55) evaluated at 

z = z+ w i l l change accordingly: 

2k2'b 

' 5z 3 / 5 
77^(50 - K5(kz)l/5 (5.84) 

(5.85) 

The latter two boundary conditions yields the following constraint 

7T 

6 C l ' M " 2 P / ^ 2 / 5 

« 5 

2 
5T, His (5.86) 



5.4. B r a n e s w i th matter 133 

As before, C\ is proportional to F and can therefore be gauged away on the brane. 

Equation (5.54) is now modified to 

F — 1 n ^ _ ^ 5 
2 f c 2 / 5 ^ 2 / 5 2 

(5.87) 

Contracting the latter constraint wi th r f v yields an expression for the coupling 

between the brane fluctuation and the trace of the energy-momentum perturbation 

on the brane: 

OF = ^ST* . (5.88) 
6 F 

This expression wi l l be used shortly in the computation of the brane graviton prop­

agator. 

5.4.2 The Newtonian potential on the brane 

First we compute the Newtonian potential on the brane to study the localisation of 

gravity. Our starting point is the definition of the Bessel function 

w - t z T ^ i f r <«"> n=0 

which is valid for all values of p. The following approximation J-P(x) ~ Np(x) for 

Bessel functions of fractional order (i.e. non-integer values of p) enables us to rewrite 

the massive wavefunction (5.38) as 

^ { z ) = z3/5Vmk^ [ j 4 / 5 ( f )Jl/5(mz) - J _ 4 / 5 ( f )J-l/5(mz)} 

where we have set /i"„ = ijjm. The first term of (5.89) which corresponds to n = 0 is 

given by 

J > w ~ r>TT) (f)' <5'91> 
and is valid for small values of x (i.e. as x —» 0). Setting p = ± 1 / 5 determines the 

following expressions 

Jv*(mz) = T(S)VT) ' J " 1 / 5 ( m 2 ) = f ( l j VI") • ( 5 9 2 ) 
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The last two terms wi l l be used to calculate the static gravitational potential between 

two uni t masses which are a distant r apart on the positive tension brane. As in 

chapter 2, the interaction of the two particles on the brane corresponds to a Yukawa-

type interaction. We therefore use the expression for the potential denned previously 

in equation (2.54). Inserting (5.92) into (5.90) and evaluating for m <^ k enables us 

to deduce the dominant term of the eigenfunction 

W 2 ) > ^ f ) + ^ f ) ) ^ ( ^ < 5 ' 9 3 ) 

where a_ = (kz-)1/5. Substituting this back into the Yukawa potential (2.54) (where 

y = 0 is equivalent to z — 1/k) and integrating using the standard integral defined 

previously in (2.55), yields an expression for the corrections to the Newtonian po­

tential 

VKKW = - ^ W * ( 5 - 9 4 ) 

where we have set 

P = ' V 5 ™ M / ~ • ( 5 - 9 5 ) 

r (§ ) 2 2/ 5o 6_ 

I f we set G<\ = G$k, then the total potential is given by 

W ( r ) ~ - ^ ( l + ^ ) (5.96) 

where the first term corresponds to the massless graviton zero mode and the sec­

ond term denotes the contribution arising f rom the massive gravitons. Clearly, the 

corrections are a slight modification to the RSII scenario (2.57). A t large distances 

away f rom the brane 7' 3> standard four-dimensional gravity is reproduced in 

the LOSW model. Therefore, the LOSW model has succeeded in exhibiting brane-

localised gravity. 

5.4.3 The brane graviton propagator 

Next we compute the tensor structure of the four-dimensional massless graviton 

propagator. Our starting point is the definition of the Green's function in the 
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LOSW model 

GR(x, Z\x,z) = -t a2(z)a2{z)D0(x - x) + dm ipm{z)ipm(z)Dm(x - x) (5.97) 
a+ Jo 

where a = k/5, D0(x — x) and Dm(x — x) represent the massless and massive 

Green's functions in four dimensions (defined explicitly in equations (2.82)-(2.83)). 

The eigenfunction i})m{z) has been defined previously in (5.38). The above expression 

is different from the RSII model by a normalisation constant. (Also, the definition 

of the warp factors in the RS and LOSW models are distinct). Restricting the 

perturbation exclusively to the brane: y = y = 0 (or z = z — A: - 1 ) reduces the 

Green's function to a simple expression 

/•oo 
C?fl(i,0;x,0) = 4a DQ(x - x) + / dm \ipm{0)\2 Dm{x - x). (5.98) 

Jo 

The metric perturbation relating the Randall-Sundrum and Gaussian Normal coor­

dinate systems12 is given by 

h^(x,y) = hfU, + 2a2(y)Flu, J ^ - 2a(y)a'{y)r]^F (5.99) 

h^(x,z) = V + ^ F , ^ - 2 ^ F ^ y . (5.100) 

On the brane, (5.100) becomes 

V = h$ + h(JJ - ^ + ^uFa. (5.101) 

Some of the terms in the latter expression can be gauged away appropriately, giving 

a simple expression 

h^(x,0) = h^ + 2aFrjtll/ (5.102) 

where 

h{^(x,0) = -l^Gb J dAxGR{x,Q-xMT»»-\Tr)»»){x) (5.103) 

F(x) = 8nG5 J d4x DQ{x - x ) ' ^ - . (5.104) 

12 See Appendix B.6 for the transformation between the bulk gauge and the brane-based gauge. 
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Zero mode approximation 

The first term of the Green's function (5.98): 

Gz£l{x,0;x,0) = 4aD0{x-x) (5.105) 

corresponds to the massless graviton mode. The corresponding metric perturba­

tion is found by inserting (5.105) into (5.103) and using (5.104). The zero mode 

contribution to equation (5.102) is then given by 

h™ = -16TTG 5 J d4x (4a) D0{x - x){T^ - ^ T V f l u ) + 167rG 5 a^ J d4x D0{x - x ) | 

= -16TTG 5 J d4x DQ(x - z)(4a)(T M „ - ^Trj^). (5.106) 

Clearly, the tensor structure of the induced metric does not correspond to four-

dimensional Einstein gravity. 

The corrections to Einstein gravity 

The second term of the Green's function (5.98): 

poo 
G%m{x,0\x,Q) = dm\i>m(0)\2Dm{x-x) (5.107) 

Jo 

arises from the massive graviton modes. The corresponding metric perturbation is 

found by substituting (5.107) into (5.103). Equation (5.102) for the massive modes 

becomes 

-hCtm mW2*<*ai.„ 1. f f°° m6/b 2//bab 1 
-16TT(?5 J d4x Dm(x - x) ^ dm — - ^ ( 7 ^ - - T ^ ) . (5.108) 

The total metric perturbation is then obtained by adding equations (5.106) and 

(5.108): hftu = hz™ + hcJ™. This gives the following expression 

V = -16TTG 5 J d4x D0{x - x)(4a){T^ - ^TV^) 

m 
1 3 / 5 r 2 ( | ) - 16TTG5 J d4x Dm(x - x) dm p T T V ~ ^Trln») 

(5.109) 
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If we use the Green's function for the Laplacian operator (2.93) for the LOSW model, 

then the last equation reduces to 

4 G 4 / 4 / 3 \ f°° 1 2 2 / 5 a 6 / 1 
- A ^ - ^TVj + jf dm m^e-™ ^ ^ ( T ^ - - T V 

(5.110) 
8" 

The standard integral (2.55) is used in the last line to determine the metric pertur­

bation outside a spherically symmetric source 

M * > 0 ) = — / d3x + 
r8/5^.8/5 (5.111) 

where /? has been defined previously in (5.95). In order to determine the corrections 

explicitly, we substitute into the last equation, the expression for a point mass source 

on the brane, previously quoted in equation (2.99). The desired expression for the 

induced metric on the brane is 

2GAm 
d i a g ( ^ ( 5 , 3 , 3 , 3 ) ) + ^ ^ d i a g ( 2 , l , l , l ) (5.112) 

with the corresponding linearised metric components 

-h 2G4m ( 4(3 
hu = ( 1 + 

3 / c 8 / 5 r 8 / 5 / ' ^ r V 5 3fc 8 / 5 r 8 / 5 J 13 

The time-component of the induced metric then determines the Newtonian potential, 

describing the attraction between two particles which are separated a distant r apart 

on the heterotic brane: 

1- G4m { 40 
(5.114) 

Thus, the corrections are negligible for large distances from the brane r 3> /c - 1 and 

we reproduce the results of standard four-dimensional gravity. We note that the 

corrections to the Newtonian potential are enhanced by a factor of 4/3 from the 

potential derived previously using the Yukawa-type of interaction (5.96). This is 

because matter sources were not taken into account when computing the Yukawa 
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potential. The difference in the numerical coefficient is therefore a net result of the 

brane-bending effect 1 3. The same ambiguity in the numerical coefficient has been 

observed in chapter 2 when computing the Newtonian potential for the RSII case. 

So far, our analysis of gravity localisation has been limited exclusively to the 

existence of a single brane. A final step would require the presence of the second 

brane. This will enable us to obtain the relative strengths of the radion couplings 

to the matter source present on each of the branes and hence determine whether 

our results are in agreement with the analysis of Garriga and Tanaka [50]. In other 

words, we would like to determine whether the LOSW model recovers linearised 

Brans-Dicke gravity on both heterotic branes. This is work currently in progress 

and will be presented in the upcoming paper [2]. 

5.5 Discussion 

In this chapter we have studied scalar and gravitational perturbations in the static 

LOSW model. By explicitly changing to a brane-based coordinate system, we have 

been able to identify the graviton and radion zero modes. The general gauge trans­

formations have also shown that the dilaton can be written as a function of the 

radion, therefore giving only one independent scalar degree of freedom. Moreover, 

we found complete solutions describing the massive gravitons. The wavefunction of 

the gravitons enabled us to determine the form of the Newtonian potential on the 

brane and the tensor structure of the brane graviton propagator. Our results show 

that the corrections to the Newtonian potential in the LOSW model are slightly 

modified in contrast to the corrections computed in the RSII scenario. 

It is natural to ask what happens in the case of a black string [37]. In this 

situation, we use equation (5.13) to modify the flat metric on the brane to the 

Schwarzschild spacetime rj^ —> <^£h. This metric also solves the background equa­

tions of heterotic M-theory with the solutions given by equations (5.14)-(5.16). For 

the Schwarzschild background, we obtain extra Christoffel symbols T^J^ = T^K^ 

which were previously zero for the flat case. This gives additional terms in the lin-

1 3 The correct result for the Newtonian potential is (5.114), not (5.96). 
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earised perturbation equations. To be more specific, the extra terms are contained 

in the d'Alembertian operator only. This does not affect the transverse-tracefree 

eigenvalues, implying that the set of perturbation equations for the black string 

case are essentially the same as for the flat background. Our previous analysis then 

proves the instability of a black string. 

It is important to note that we have only looked at the static LOSW model. 

Since we live in an expanding universe, a more realistic model would involve in­

corporating some time dependence into the theory [100]. We would therefore like 

to solve the perturbations around a black string consisting of two separating or 

colliding heterotic branes [101]- [106]. As we slowly stretch or squash the black 

string in this expanding cosmological background, we would expect the onset of the 

Gregory-Laflamme instability [59]. Our methods can also be generalised to the case 

of a magnetically charged black string [60]. In this case, we would like to determine 

whether the instability is generic i.e. does it still exist in the presence of a charged 

black string or brane. We can also follow the work of [107] to obtain cosmolog­

ical solutions of the LOSW model. Further extensions could include inflationary 

braneworld models where matter is localised on the two branes [108] or the more 

challenging case of a rotating black string [109]. 

Finally, as an application to the work presented in chapters 3 and 4, we are 

currently exploring black holes in the background of heterotic M-theory. As before, 

we study the permissible braneworld trajectories in this background by considering 

a perfect isotropic fluid source on the heterotic brane. These solutions will be 

equivalent to the brane Tolman-Oppenheimer-Volkoff equations. Any physically 

realistic energy and pressure profiles will determine that these solutions have the 

interpretation of braneworld stars. This is work currently in progress. 



Chapter 6 

Conclusions 

In this thesis we have explored the behaviour of strong and weak gravity in two dis­

tinct higher-dimensional models (i.e. the Randall-Sundrum I I model and the LOSW 

model). First, we reviewed preliminary results based on the Randall-Sundrum I I 

scenario featuring a single, positive tension three-brane embedded in an AdSs space-

time. In particular, we calculated the gravitational fluctuations in this background 

to determine the nature of gravity. After computing the full mass spectrum of the 

graviton modes, we determined that the power law corrections to the Newtonian 

potential are suppressed far away from the four-dimensional hypersurface implying 

that gravity is effectively localised on the brane. A further confirmation of gravity 

localisation was provided through the computation of the four-dimensional graviton 

propagator. Results revealed that the tensor structure of the brane graviton prop­

agator corresponds to four-dimensional Einstein gravity. Thus, a braneworld ob­

server experiences standard, four-dimensional, non-brane gravity in the TeV range; 

a regime which current accelerators can probe. 

Next, we introduced the eleven-dimensional Hofava-Witten construction. For 

the theory to be realistic, six of the extra spatial dimensions are wrapped up on a 

compact manifold giving rise to an effective five-dimensional theory known as the 

LOSW model. As a result of the compactification, a scalar field is generated in 

the bulk making the model distinct to its descendant (i.e. Randall-Sundrum I). 

Unfortunately, the extra dimensions in the LOSW model are virtually impossible to 

probe as exceedingly high energy scales are required. 
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After establishing the Randall-Sundrum I I and LOSW braneworlds, we explored 

the impact of strong gravitating objects within these two higher-dimensional models. 

First, we investigated the possibility of obtaining a solution relating to a black hole 

on the Randall-Sundrum brane. We then explored the possibility of describing a 

black string in the background of low energy heterotic M-theory. In each model, we 

employed two different approaches to study the behaviour of gravity. We applied a 

non-perturbative method in the Randall-Sundrum I I model to study the effects of 

strong gravity. Conversely, a perturbative analysis was used in the LOSW to explore 

the effects of weak gravity. 

While failing to solve the longstanding problem of finding a metric which corre­

sponds to a black hole on the Randall-Sundrum brane, we instead made progress in 

obtaining solutions relating to braneworld stars. However, our solutions exhibited 

an asymptotic pressure excess at increasing radii from the braneworld. For a truly 

localised source, we expect the matter distribution to be peaked at the central re­

gion of the brane and suppressed far from it . One way to overcome the obstruction 

of surplus pressure is though the introduction of time dependence. Unfortunately, 

complexity arises when time dependence is permitted into the system of brane equa­

tions. Moreover, generalisation of this work to asymmetric spacetimes in the hope 

of finding a wider class of solutions has also proven to be quite difficult. Since 

our analysis has been limited exclusively to analytical solutions, future directions 

may involve numerical simulations. This may overcome the above problems and 

hence produce a more extensive range of solutions with the desired qualities of a 

braneworld star. 

Despite not being able to experimentally test the LOSW model, theoretical 

progress however has been made through the study of scalar and gravitational fluc­

tuations. Our results show that the radion and dilaton are both connected, giving 

one solitary degree of freedom. Our analysis also extends to prove the instability of 

a black string. We then studied the nature of gravity in this model by computing the 

full mass spectrum of the massive gravitons. Our results determine that the power 

law corrections to the Newtonian potential and the form of the brane propagator 

in the LOSW model are modified from the Randall-Sundrum I I scenario. More-
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over, the corrections to the potential at large distances away from the brane become 

damped implying that the LOSW model also reproduces the results of standard 

four-dimensional gravity. We note that the analysis of gravity localisation has been 

limited exclusively to the existence of a single brane. The introduction of a second 

brane will enable us to obtain the relative strengths of the radion couplings to the 

matter source present on each brane and hence determine whether the model recov­

ers linearised Brans-Dicke gravity on both heterotic branes. This field of research is 

currently underway. Finally, another active field of research involves the exploration 

of possible black hole solutions in the background of low energy heterotic M-theory. 

This work is also currently in progress. The final results will be presented in the 

upcoming paper [2]. 

We conclude this thesis by saying that the five-dimensional Randall-Sundrum 

braneworld can certainly be put to the test in the forthcoming Large Hadron Col­

lider. The possibility of probing the extra dimension in this braneworld is highly 

exciting. The most robust probes of higher-dimensional physics will correspond to 

the Kaluza-Klein gravitons which may determine whether the tested braneworld is 

a true representation of nature. We therefore wait for any possible experimental 

signatures which may provide vital information regarding our hypothesised extra-

dimensional world. 



Appendix A 

Detailed calculations—Braneworld 

stars 

A . l The five-dimensional Christoffel symbols 

If we take the bulk metric to have signature ( — , + , + , + , + ) , then the five-dimensional 

spherically symmetric metric takes the following form: 

ds* = _£/(*, r ) d T * + _ * L + r 2 ( d X

2 + s i n 2

X < l ) . 

where U(t,r) denotes a general time-dependent bulk metric function. We state the 

following definition of the Christoffel symbol 

^bc = 2#° e i.9be,c + 9ce,b ~ 9bc,e) 

and gab denotes the metric tensor with its corresponding inverse given by gab. 

The non-zero Christoffel symbols are then given by: 

r ' = r ' = - A r = 
" 2U ' r r 2U3 ' t r 2U ' 

r< = ^ r = ^ r = - c / r r = 

r09 = -Ur sin2 x, r J r = J . r w = _ sin x cos x , 

r5»0 = - ^ r s i n 2 x s i n 2 ^ , = - sin x cos x sin 2 9. 
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where the prime and overdot denote partial differentiation with respect to r and t, 

respectively. 

A.2 Extrinsic curvature 

We use a geodesic equation approach to determine the components of the extrinsic 

curvatures. Let us consider the time-component of the extrinsic curvature: 

KTT = m V K L W = T , l T V V l l n v = -{TTLVllTv)nv 

= -{VTTu)nu 

In the last line we have used the orthogonality property between the tangent and 

normal vectors: T^n^ — 0. We set = dX^jdr to represent the tangent vector to 

the curve X^(T) where r is an affine parameter. Then, 

d2X» ^ dX»dX° 
dr2 ^ dr dr 

and the time-component of the extrinsic curvature is given by 

K T T = -nv 

d 2 X u ^ dX»dXa 

dr2 ^ dr dr 

The remaining components of the extrinsic curvature are obtained in an analogous 

way. 

A.3 Consistency check for a time-dependent met­

ric function 

Having included time-dependence in the bulk metric function U = U(t,r), we now 

check for consistency using the Israel equations. We find that the set of equations 

are only valid when the metric function is static: U = U(r). 
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The position of the brane in the bulk is given by the 5-vector = (r, r, X(T, r), 9, </>). 

This determines the form of the tangent vectors and the unit normal: 

= (1, 0, x, 0, 0) , R* = (0,1, x', 0, 0) , n„ = n(x, X , - 1 , 0,0). 

The normalisation constant is given by 

1 ( X2 -o l 
rr 

For simplicity, we set A = ^ f p and consider a cosmological constant brane with 

v — — 1. Then, the Israel equations are explicitly given by: 

K-TT = n 

KRR = n 

K T R = n 

X + Urx'x2 - \ UU'x' - ^ A (U - r 2 x 2 ) 

x" + — + ^ + Urx" + r 2U 2U3 - A ( ^ + r V 2 

• / . x . T j ,2. u'x , Ux' 
X + 7 + UrX X ~ W + W 

= - A r 2 x x ' 

KQQ = n [C/rx'sin 2 x — sin xcosx] = — Ar 2 sin 2 x 

In order to check the Israel equations for consistency, we respectively take the r and 

r derivatives of the inverse of the normalisation constant n: 

9 ( - i \ = n ux'x' -
XX 
u 

9 I -1\ = n 
XX' 
U + 2 U2 

1 x2U' 1 
+ ^U'X'2 + Ux'x" 

We can eliminate the double derivatives by using the expressions for KTT, KRR and 

KTR- For further simplification, we make use of the KQQ equation, re-expressed as 

n (x'Ur — cot x) = — Ar 2 
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This determines the consistency equations 

X 
W_U 1 
2 r r 

W_U 1 
2 r r 

UX 
2U3 

UX' 

= 0 

- 0 

which can be solved simultaneously to give 

x'2 + — * U2 
0. 

Since x ' 2 + $r > 0, then U = 0 and hence U = U(r). Thus, the bulk metric function 

is time-independent U ^ U(t,r). 

For a static bulk metric function U(r), the consistency equations are given by 

= 0, 
'U' U 1" 

= 0, 
~U' U 1" 

— — 1 = 0, X — + -
2 r r 

X 
2 r r 

The only trivial solution satisfying both of the equations above corresponds to the 

Anti-de Sitter (AdS) bulk U(r) = 1 + k2r2. 

A.4 Transformation between brane and spherical 

polar coordinates 

Consider a setup involving a positive tension four-dimensional hypersurface embed­

ded in a five-dimensional background with negative cosmological constant. The 

solution to the five-dimensional Einstein equations is then given by the conformally 

flat background metric 

d s 2 = e-2kz [ _ r f t 2 + d u 2 + d x 2 j = 1 y _ d t 2 + d u 2 + ^ 2 ] 

rC Zt 

which is precisely the RS metric 

d s 2 = e-2k\z\ [ _ d t 2 + d x 2 ] + d z 2 

with the new coordinate u satisfying 
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At z — 0, the position of the wall is simply u = 1/k. 

The following re-parameterisation 

t* = — 

x = 

w — u = 

w* + u* = 

t 
ku 
X 
ku 

1 
k2u 

x 2 - t 2 

u + u 

converts the RS metric to a five-dimensional hyperboloid 

dsl = -dt*2 - dw*z + du*z + dx *2 , J„.*2 ,*2 

with the constraint 

-t*2-w*2 + u*2 + x*2 = 
k2 

Next we transform to spherical polar coordinates using 

x = rsinx- n 

u = r cos x 

t* — \\/\ + k2r2 sin kr 
k 

w* = — V l + k2r2 cos kr 
k 

where n is a unit normal vector in the spherical polar coordinate system. This yields 

the AdSs metric in spherical polars 

dr2 

ds2 = - ( 1 + k2r2)dr2 + + r\dx2+ smzxdn2u). (1 + k2r2) 

Thus, the overall transformation between the planar —> spherical coordinates [78] is 

given by: 

kr 

tan kr 

tan x = 

1 
( f c 2 C 2 - l ) " + 4fc2x2 

2ku 
2kt 

1/2 

k2C + 1 

2ifc|x| 
k2C - 1 
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where C2 = u2 + x 2 - t2. 

The transformation can also be obtained in the opposite direction. The trans­

formation from globally spherically symmetric —> planar is given by 

- l 
ku = Vl + k2r2 cos kr — kr cos x 

kt = ku. sin krVl + k2r2 

fc|x| = ku.krsinx-

Since we now have the transformation rules between the planar and global spher­

ical coordinates, we can analyse the images of the brane trajectories at different 

positions in the brane gauge. The image of the wall at r = 0 in the RS planar gauge 

implies x* = u* = 0 and hence 

x 2 - t2 1 x 
ku u + 

u k2u 
= 0. 

At x = 0, the equation simplifies to 

u2 - t2 = 
1 

fc2 

which is a hyperbola in planar spacetime. At t = 0, the hyperbola touches the wall 

at u = 1/k. The image of the wall at u = l/k yields the AdS wall trajectory 

-Vl + k2r2 cos kr — r cos Y = — . 
k k 

Furthermore, if we set r = 0, the wall corresponds to a paraboloid 

r (kr sin 2 x — 2 cos x) = 0 . 

Thus, the branes are actually evolving in the non-planar spacetime. The walls start 

off planar (i.e. fiat), then become parabolic, then planar again. They continue to 

oscillate in this manner indefinitely [78]. In accordance with the work in chapter 3, 

we replace a = r cos x in the above equation to obtain the brane trajectory 

a(r, r) = yVl + k2r2 cos kr — — . 
k k 

The transformation shows that the Randall-Sundrum brane trajectory is time-

dependent in global AdS coordinates. 
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Detailed calculations—Braneworld 

black string 

B . l Definitions and notations 

We take the five-dimensional metric to have signature ( — , + , + , + , + ) . The Riemann 

curvature tensor is defined in terms of the Christoffel symbols 

p a pa p a • p a pe p a pe 
-rt bed — A 6d,c — 1 6c,d L ecL bd ~ 1 edL be 

where 

Ffcc = i9be,c + 9ce,b ~ 9bc,e) 

and gab denotes the induced metric, with its inverse given by gab. The Ricci tensor 

and Ricci scalar are given by the following contractions 

Rbd = g^Rabcd i R = 9** Rbc • 

The Einstein tensor is written in terms of the Ricci tensor and Ricci scalar 

Gab — Rab — ^9abR • 

We will define the form of the perturbation as 

hab = g a c g b d S g c d 

and the variation of the Christoffel symbol as 

wab = \ [K,a + hiib - hab,c) . 

149 



B.2. The flat background 150 

B.2 The flat background 

Consider the flat metric: 

ds2 = a2(y)r]tll/dx'J'dxl/ + dy2 . 

Using prime to denote differentiation with respect to y, we compute the following 

quantities: 

The non-zero Christoffel symbols: 

r * K = -aa%K , = ^ . 

The elements of the Riemann curvature tensors: 

A 12 H i a" 

R fi\u = Q Vfiu i fj.yu = Vfiis i R^ yvy 

The Ricci tensors: 
Rfiv = -(3a ' 2 + aa")r)^ , Ryy = - 4 : 

The Ricci scalar: 

a1 a 

The Einstein tensors: 

a'2 

= 3(a'2 + aa")r]^ , G w = 6 

.a" 

a2 ' 

The components of the Lichnerowicz operator: 

/ i - h ' p \ ' 
a~2 

A L V = 1 (•« V + - ^ - V£) + t - 2 ( - + ^ ) V 
CI \ CL Cb J 

+ ( - / * ' - 2 ^ - 2-a2e-2*h»„ + ^h^a[V}e-* . 
\ (X (X J \j o 
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The five-dimensional d'Alembertian operator and the trace-reversed metric pertur­

bation are defined by 

• = V Q V a = gabVaVb 

Kb = Kb - ^(b)e

e9ab-

The trace of the four and five dimensional quantities are related by 

/,(4)A 

B.3 Changing to a conformal variable 

We use the following definition a(y) = H1^6(y) = (CQ — by)1/6 to compute the 

derivatives of the warp factor: 

b „ bb2

 ( 3 ) 5563 

n ----- n = m ' — 
6a 5 ' 36a 1 1 ' 216a 1 7 ' 

The change of variables dy = adz enables us to compute 

d 1 d 
dy a dz 

d 2 1 d 2 a' d 
dy2 a2 dz2 a2 dz 

d? 1 d 3 a' d2 

3 dy3 a 3 dz3 a 3 dz2 

i\2 
+ 

a _d 
dz 

which can be simplified further to 

d 1 d 
dy a dz 

d2 

dy2 

1 d 2 

a2 dz2 

b d 
6a7 dz 

d3 

dy3 

1 d 3 

a3 dz3 

b d2 

+ 2a 8 dz2 

lb2 

+ 36a 1 3 

d 
dz 

The warp factor in the z-variable is given by a(z) = (kz)1^ w i th k = — ^ and 

b= V2a. 
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B .4 Perturbation equations in the z-variable 

The perturbation equations (5.22)-(5.25) can rewritten in the z-variable as: 

5z 25z 2 

lh_JLh = ^ /5 2 2 /5 
5z 25z 2 

h m + ~ h - ^ h = fc2'V5 

5z 2oz2 

32 
25z 2 m + 25z 

64 12m 2 . r ^ 
bz 

where the overdot denotes differentiation w i t h respect to the conformal variable z. 

The first two equations denote the scalar and dilaton equations respectively. The 

last equation is a combination of the tensor and vector equations [ t r ( ^ ) + 

(Note that t r ( / i i / ) corresponds to the trace of the tensor equation). 

B.5 Sturm-Liouville form 

The Sturm-Liouville equation has the form: 

d_ 
dz 

= — \w(z)4>(z) 

where A is the eigenvalue, <fi(z) is the eigenfunction and w(z) is the weight function. 

The normalised eigenfunctions form an orthonormal basis 

/ 4>m(z)<t>n(z)w(z)dz = 5(m — n) 

B.6 Gauge transformations 

Having solved the perturbation equations in the bulk, we would now like to f ind the 

perturbation on the brane. To do this, we need to change f rom a coordinate system 

where the brane is located at y = F, into a new coordinate system where the brane 

lies at the coordinate origin y = 0. The gauge transformations required to do this 
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must preserve the Gaussian normal coordinate system of equation (2.19). Let us 

consider the transformation properties under the following diffeomorphisms 

y->y = y + £y(xtl,y) 

X" -> x" = a ^ + f f x " . ^ 

where £ M denotes a general vector field. Using the explicit infinitesimal transforma­

t ion rules given by the gauge invariance property 

Kb —• Kb + V a ^b + V 6 £ a 

5$-> 8(f) + e ° V a 0 , 

we are able to compute the components of the metric perturbation together w i th 

the scalar field perturbation. The metric perturbation transforms according to 

= + + du^ + 2aa'r)fiu£y 

— ^ny ^y^n ^ £^ 
(X 

llyy = hyy + 23y^y 

F = F + ^<v=0) 

wi th the brane located at y = F(xtl). The perturbation of the scalar field transforms 

as 

5(j> = 8<f> + iydy4> • 

I f we now apply the Gaussian normal gauge (in which any orthogonal component of 

the metric perturbation vanishes), we find that the vector field £ a satisfies 

where we can set eu = 0 in the last line. We are then left w i th the following set of 

transformations 

Ku = h,j.u - 2 a 2 { ^ j ^jCj + 2aa'7?^/ 
F = F + / 

<50 = 5<p + f<t>'. 
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By setting / = — F, we can bring the brane back to the origin of the coordinate 

system. This is reflected in our gauge transformation, which is now simply 

where 5(f) corresponds to the scalar field fluctuation as measured when the brane 

resides at y = £y. We have therefore explicitly chosen coordinates which are brane-

based and the bulk metric perturbation equation now contains explicit residual 

F- term pieces describing the brane fluctuation. Therefore, in the brane-based coor­

dinate system, the metric decomposition (5.26) is modified to 

2aa 'r)uvF V + 2a'F, 

F 0 

8(f) 8<p-§-F 
a 

2aa'r]tlvF 

which can be expressed in the z-variable as 

The scalar field perturbation in the brane-based approach reads 

54> = 54>-
_ 6 F_ 
5 f c l / 5 z6/5 • 

The F terms in the latter two equations, i.e. the residual terms, ensure that the 

brane is Gaussian normal at the origin of the coordinate system. 
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