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ABSTRACT 

The nuclear envelope (NE) plays a fundamental role in the cell by separating nuclear from 

cytoplasmic activities, and mutations in NE proteins have been associated with a diverse 

array o f diseases. In the present study the Xenopus cell-free system was used to investigate 

the function o f the inner nuclear membrane protein, emerin, which is associated with the 

Emery-Dreifuss muscular dystrophy ( X - E D M D ) . 

Initially, the order and dynamics of NE assembly in Xenopus egg extracts have been 

investigated. Using a panel of antibodies it was shown that NE assembly proceeds by the 

ordered recruitment of two membrane populations, Nuclear Envelope Precursor vesicles -A 

and - B (NEP-A and NEP-B), to chromatin. As shown by immunofluorescence NEP-B 

vesicles, together with nucleoporins (Nups), appear first around chromatin at about ten 

minutes after initiation o f NE assembly while NEP-A vesicles appear at a later stage, at about 

twenty minutes. To investigate the role of different emerin domains in this process, four 

human emerin peptides consisting o f amino acids (aa) 1-70, 1-176, 1-220 and 73-180 were 

added individually to Xenopus nuclear assembly reactions at different concentrations and the 

effect on nuclear vesicle recruitment and NPC formation was monitored. 

Immunofluorescence analysis showed that peptides containing the L E M domain o f emerin 

interfere with a correct NE assembly by inhibiting chromatin decondensation and recruitment 

o f membranes to chromatin. This inhibitory effect was shown to be exerted mainly on NEP-A 

membranes and on Nup62 and Nupl53 . By the use of two antibodies, raised against the L E M 

domain o f human emerin and LAP2|3, two proteins o f 30 and 36 kD. respectively, were 

identified in Xenopus. Both proteins were shown to reside in the NEP-A membrane 

population providing an explanation for the preferential inhibition of NEP-A recruitment to 

chromatin by exogenously added L E M domain containing emerin peptides. 

To further investigate whether the domain specific inhibitory effects of emerin on nuclear 

assembly correlate with specific interacting proteins, co-precipitation experiments were 

performed to identify emerin binding proteins in the Xenopus cytosol. From these 

experiments (3-tubulin was identified as a protein able to interact with emerin peptides 1-70 

and 73-180. Staining of X - E D M D cells, which lack emerin, with a p-tubulin antibody 

revealed no alterations in the organisation of the microtubule ( M T ) network. The most 

prominent effect of emerin mutations regarding MTs was the position of the Microtubule 

Organising Centre (MTOC) relative to the NE. Staining for the centrosomal protein 

pericentrin revealed a mis-localisation of the MTOC away from the NE in X - E D M D cell 

lines at distances at least double compared to control cells. 
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CHAPTER 1 

GENERAL INTRODUCTION 



1.1 The nucleus 

A l l l ife is organised in cells, which can be classified in two major groups: prokaryotic 

and eukaryotic. Eukaryotic cells are characterised by a much higher degree of 

complexity and the main feature that distinguishes them from prokaryotic cells is the 

existence o f the nucleus, an organelle that encloses almost all o f the cellular DNA. 

Although many hypotheses have been formulated as to the origin o f the eukaryotic 

nucleus (Forterre, 1995; Moreira and Lopez-Garcia, 1998; Sogin, 1991; Takemura, 

2001; Vellai et al., 1998; Zi l l ig et al., 1988) it most probably evolved through a 

symbiotic mechanism between an archaebacterium and a eubacterium (Margulis et 

al., 2000) 1.8 to 2.7 bil l ion years ago (Hedges et al., 2001). The evolution o f the 

nucleus offered very important advantages to eukaryotes by protecting their D N A 

from shear forces in the cytoplasm and by allowing for more protein variety through 

splicing by separating temporally and spatially transcription from translation. 

The nucleus is a highly compartmentalised organelle. It is surrounded by a nuclear 

envelope, which is underlined by a network o f proteins called lamins. It contains 

chromatin, which is highly arranged and forms distinct entities within the nucleus 

(Comings, 1980) and several other nuclear compartments like the nucleolus (Raska et 

al., 2004), the Cajal or coiled bodies (Matera, 2003), the Gemini of coiled bodies or 

gems (Matera, 1998), the Promyelocytic Leukaemia Oncoprotein (PML) bodies 

(Dellaire and Bazett-Jones, 2004), the Perinucleolar compartment (PNC) and Sam68 

nuclear bodies (SNB) (Huang, 2000), the clastosomes (Lafarga et al., 2002) and the 

paraspeckles (Fox et al., 2002). A l l o f these nuclear bodies together with the 
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chromatin and proteins are also highly dynamic and it is these dynamic properties of 

the nucleus that are crucial for its accurate functioning (Belmont, 2003). 

1.2 The Nuclear Envelope (NE) 

What makes the nucleus a distinct cellular compartment is the presence of the nuclear 

envelope (NE), mention of which had been made by Brown as early as 1833 (as cited 

in Franke etal., 1981). It consists of two concentric membranes, an inner and an outer 

nuclear membrane, which are separated by a lumenal space and connected at the pore 

membrane where the nuclear pore complexes (NPCs) reside. Underlying the NE is a 

meshwork of intermediate filaments called the lamina (Figure 1.1). 

nuclear 
envelope 

outer-
nuclear 
membrane 

inner 
nuclear 
membrane 

ER membrane 
E R lumen 

perinuclear 
space 

nuclear 
pore 

nuclear 
lamina 

Figure 1.1; A three-dimensional drawing of the NE surrounding the nucleus 

(reproduced from Alberts et aL. 1989). 
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By surrounding the nucleus, the NE forms the interface between the nucleoplasm and 

the cytoplasm but it also facilitates the communication between these two 

compartments via the NPCs. It is also involved in several other important processes 

like in maintaining nuclear shape, in D N A replication, protein synthesis and 

processing. 

1.2.1 The Outer Nuclear Membrane (ONM) 

The O N M is the outer part o f the NE that is in contact with the cytoplasm. It is in 

direct continuation with the rough Endoplasmic Reticulum (ER) and, like the ER, its 

surface is studded with ribosomes. Early studies showed that the O N M exhibits a high 

degree of similarity to ER membranes as far as the lipid pattern, protein and enzyme 

composition and patterns o f glycoproteins is concerned (Franke et al., 1981). 

However, although morphologically very similar, some degree o f specialisation still 

exists as shown by comparison o f the protein composition o f the O N M and rough ER 

in rat liver nuclei, where proteins uniquely contained in the O N M fraction were 

identified (Richardson and Maddy, 1980). 

Due to the presence of functional ribosomes on its surface the O N M is capable o f 

protein synthesis and processing (Puddington et al., 1985). The synthesised proteins 

can then be transferred to the lumenal space, which is in continuation with ER lumen. 

Apart from protein synthesis the O N M is also implicated in the biogenesis o f 

cytoplasmic membranes (Kessel et al., 1986; Pathak et al., 1986). 
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1.2.2 The nuclear envelope lumen 

The NE lumen or perinuclear space is a 150 A wide aqueous domain separating the 

inner from the outer nuclear membrane and is in continuity with the ER lumen 

(Wischnitzer, 1958). Apart from accommodating the lumenal domains o f integral 

membrane proteins it can mediate signal transduction events in and out o f the 

nucleus. Its ability to act as a Ca 2 +-storing compartment has implicated the lumen in 

important processes like membrane fusion and protein transport. Indeed, release o f 

lumenal Ca 2 + from mitotic NE vesicles was shown to be necessary for vesicle fusion 

during N E assembly (Sullivan et al., 1993) and depletion o f Ca 2 + stores f rom the ER 

and NE lumen was shown to inhibit protein import in the nucleus by affecting NPC 

components (Greber and Gerace, 1995). 

1.2.3 The Inner Nuclear Membrane (INM) 

The I N M is the part o f the NE that faces the nucleoplasm and, although it is 

connected with the O N M at the pore membrane where the NPCs reside, it contains a 

unique set o f proteins not found in the O N M or the ER (Chu et al., 1998; Georgatos, 

2001; VVorman and Courvalin, 2000). Most of these so called I N M proteins are type 

II integral membrane proteins with an N-terminus facing the nucleoplasm and a C-

terminus located in the NE lumen (Hartmann et al., 1989). The best characterised 

I N M proteins so far are the Lamina Associated Polypeptides (LAPs) 1 and 2, the 

lamin B receptor (LBR), emerin and M A N 1 . However, reports on several other I N M 

proteins exist. A recent study using subtractive proteomics identified 67 new potential 

NE proteins (Schimier et al., 2003). Currently known I N M proteins are shown in 
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Figure 1.2 and are discussed below with the exception of emerin which will be 

discussed at a later stage. 

Cytoplasm AKAP149 
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Figure 1.2: Diagrammatic presentation of the nuclear envelope and nuclear 

membrane proteins (reproduced after Foisner, 2001). 

The inner, outer and pore nuclear membranes with residing proteins are depicted. 

The complex interactions at the nuclear periphery including membrane proteins, 

chromatin, lamins and other proteins are also shown. 

1.2.3.1 The LAP family 

The Lamina Associated Polypeptides are type II integral membrane proteins divided 

into LAP1 and LAP2 proteins. The LAP1 family includes three isoforms, LAP1A, 

LAP IB and LAP1C, which are alternatively spliced products of the same gene and 

were identified in the INM of rat liver nuclei as proteins of 75, 68 and 55 kD, 
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respectively (Senior and Gerace, 1988). As their name implies LAPs are able to bind 

lamins. LAPs 1A and I B were shown to specifically bind lamins A, C and B l by /// 

vitro studies (Foisner and Gerace, 1993). Although a direct association o f LAP1C 

with lamins was not shown, LAP1C could still interact with lamin B as part o f 

complex that includes other proteins like LBR and p i 8 (Simos et al., 1996). In any 

case, LAP1 complexes with Iamins seem to be distinct and separate from complexes 

of LAP2 with lamins (Maison et al., 1997). LAP1 isoforms are differentially 

expressed during development. LAP1C is expressed in all cells, whereas LAP1A and 

- B are expressed in differentiated cells only (Martin et al., 1995). Their differential 

expression implies that LAP1A and - I B could be important in promoting nuclear 

stability in differentiated cells. Other proposed functions include targeting o f lamins 

and membrane vesicles to chromosomes at the end o f mitosis and attachment of 

lamins or other proteins in the nuclear envelope during interphase (Martin et al., 

1995). 

LAP2 proteins, originally called thymopoietins, were described as three polypeptides 

of 75, 51 and 39 kD, highly expressed in the thymus with important functions in T-

cell development and differentiation (Harris et al., 1994). Further investigation 

revealed that the thymopoietins were alternatively spliced products of the same gene 

and that TMPO (3 was the human homologue o f the rat LAP2 sequence (Harris et al., 

1995). To date three isoforms have been described in humans, LAP2a, (3 and y, and 

seven isoforms in mice, LAP2 a, p, (3', y, 5, s and ^. A l l of them share a common N -

terminal region consisting o f 187 amino acids, which mediates binding to chromatin 

and a variable C-tenninus, which mediates binding to lamins. A l l isoforms span the 

INM once, near their C-terminus, with the exception o f LAP2a and which lack a 
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transmembrane domain resulting in a nucleoplasmic distribution (Dechat et al., 2000). 

Several in vitro and //; vivo studies confirm the association o f LAPs2 with lamins. 

While LAP2a, the non-membrane bound isoform, is able to interact with lamin A/C 

via its unique C-tenninus (Dechat et al., 2000), LAP2[3 forms complexes with lamin 

B and is also able to bind chromosomes via its first N-terminal 85 amino acids 

(Furukawa et al., 1998). Except lamins, BAF is another LAP2 interacting protein, 

first identified in a yeast-two hybrid screen (Furukawa, 1999). Interaction with BAF 

is mediated by the LEM domain and preferably involves BAF in a complex with 

DNA rather than itself (Shumaker et al., 2001). 

Their ability to interact with both, lamins and chromatin, makes LAPs very important 

molecules in nuclear structure and function. Apart from connecting chromatin to the 

NE they have been implicated in nuclear assembly and growth at the end o f mitosis 

and cell cycle progression into S phase and apoptosis (Gant et al., 1999; Vlcek et al., 

2002; Yang et al., 1997) while their reported interactions with the retinoblastoma 

protein (Markiewicz et al., 2002) and the genn-cell-less protein (Nil i et al., 2001) 

implicates them in transcriptional gene regulation. 

1.2.3.2 L B R 

LBR was first identified as a NE protein in avian cells (Worman et al., 1988). 

Sequencing o f the mammalian homologue (Ye and Worman, 1994) revealed that 

LBR has eight transmembrane domains and unlike most I N M proteins it has both, the 

N - and C-terminus, facing the nucleoplasm. LBR was shown to interact directly with 

lamin B (Ye and Worman, 1994) and HP I , a chromatin associated protein (Ye and 
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Wonnan, 1996) although later studies suggest that the LBR-HP1 interaction actually 

occurs via histories H3/H4 (Polioudaki et al., 2001). In the NE, LBR is part o f a 

complex, which apart from lamins includes a specific LBR kinase (Simos and 

Georgatos, 1992) and p i 8 , a protein that was shown to reside in both the inner and 

outer nuclear membrane (Simos et al., 1996). By interacting with lamin B and HP1 it 

is believed that LBR functions in attaching the lamina and chromatin to the I N M . It is 

also suggested that LBR is involved in targeting mitotic vesicles to chromatin during 

NE assembly (Chaudhary and Courvalin, 1993). 

1.2.3.3 MAN1 

The ' M A N antigens' were first described as antigens recognised by autoantibodies 

present in the serum o f patients with collagenosis (Paulin-Levasseur et al., 1996). One 

of these antigens was later identified as M A N 1 , a 82.3 kD I N M protein with two 

transmembrane domains that shares the LEM domain, a conserved domain o f 

approximately 40 residues, with emerin and LAP2 (Lin et al., 2000). M A N I together 

with SANE, another L E M domain containing protein (Raju et al., 2003), are thought 

to be involved in the Bone Morphogenetic Protein (BMP) signalling by interacting 

with Smad proteins (Lin et al., 2005; Osada et al., 2003; Pan et al., 2005). 

1.2.3.4 Spectrin-repeat (SR) proteins 

SR-containing proteins are structurally characterised by an actin-binding N-tenninal 

domain, a rod domain that contains multiple spectrin repeats and a C-lenninus that 

often has a transmembrane domain. The SR containing proteins associated with the 
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nucleus that have been characterised so far are called nesprins-1 and -2. Nesprins 

(Nuclear Envelope Spectrin Repeat) were first identified in a study searching for 

differentiation markers in vascular smooth muscle cells (Zhang et al., 2001). They 

were shown to localise at the NE where they co-localised with other NE proteins like 

emerin and L A P 1 . The same proteins were identified in two other independent 

studies. A yeast two-hybrid screen with a muscle specific tyrosine kinase as bait 

identified these proteins as new components o f the postsynaptic apparatus and named 

them Syne-1 and -2 (Synaptic Nuclear Envelope protein) (Apel et al., 2000) while a 

BLAST search for proteins homologous to the spectrin repeats o f Drosophila protein 

kakapo identified the same proteins in the NE of skeletal, smooth and cardiac muscle 

cells and therefore named them Myne-1 and-2 (Myocyte Nuclear Envelope) (Mislow 

et al., 2002). However, later studies showed that the originally described nesprin-1 

and -2 are actually shorter, N-terminal truncated versions o f much bigger proteins that 

consist o f 8797 and 6884 amino acids, respectively, and are also known as enaptin 

and NUANCE (Padmakumar et al., 2004; Zhang et al., 2002; Zhen et al., 2002). 

Despite the confusion in the terminology it is clear that these gigantic proteins are 

involved in very important cellular functions. They are capable o f interacting with the 

actin cytoskeleton via their N-terminal domain while their transmembrane domain 

near the C-tenninus allows them to attach to the NE where they interact with other 

1NM proteins like emerin and lamin A (Mislow et al., 2002). By connecting these two 

compartments SR. proteins are thought to be involved in the maintenance of the 

nuclear structural integrity, in nuclear anchorage and migration, spatial orientation o f 

nuclear contents and regulation o f nuclear signalling (Hutchison, 2002). A further 

finding that nesprin-1 in addition to the NE is also localised at the Z-lines o f 
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sarcomeres o f cardiac and skeletal muscle implies an involvement in muscular 

dystrophies affecting skeletal and cardiac muscle (Zhang et al., 2002). 

1.2.3.5 SUN domain proteins 

A number o f I N M proteins containing the SUN domain have been identified so far 

and include UNC-84, Sun2 and matefin. 

UNC-84 is a C. elegans protein that has one transmembrane domain and a C-terminal 

domain that is shared with the S. pombe protein Sadl and is therefore called SUN 

domain (Sadl, UNC-84 homology) (Malone et al., 1999). It is localised at the inner 

nuclear envelope in a lamin-dependent manner (Lee et al., 2002). The SUN domain 

of UNC-84 extends into the NE lumen where it is able to interact with another NE 

protein called Syne-1. Since Syne-1 is also able to bind actin it is proposed that UNC-

84 is pail o f a protein complex that connects the nucleus to the actin cytoskeleton 

controlling processes like nuclear migration and anchorage (Starr and Han, 2003). 

UNC-84 is also able to bind, via its SUN domain, another I N M protein called UNC-

83, which also helps in transferring forces between the cytoskeleton and the nucleus 

probably by connecting the nucleus to microtubules (Starr et al., 2001). 

Sun2 is an 85 kD protein, which has a SUN domain localised in the NE lumen, one 

transmembrane domain and a nucleoplasmic domain able to stabilise the protein in 

the NE probably by interacting with the lamina (Hodzic et al., 2004). As for UNC-84, 

Sun2 could be part of a complex that relays and/or regulates the traction forces 

necessary to anchor or move the nucleus. 
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Matefin was identified in C. elegans during a screen for SUN domain containing 

proteins. It has a molecular weight of 55 kD, two transmembrane domains and is 

localised at the NE of all embryonic cells and germ cells o f late embryos, larvae and 

adults. It can bind to the C. elegans lamin, Ce-lamin, but does not require lamin for its 

NE localisation (Fridkin et al., 2004). 

1.2.3.6 Nurim 

Nurim was identified when a visual screen of a GFP-fusion library was performed in 

mammalian cells (Rolls et al., 1999). It is a 29 kD protein with multiple 

transmembrane domains and it differs structurally from other I N M proteins in that it 

lacks a long N-terminal domain, and its N - and C- termini reside both on the 

nucleoplasmic side o f the membrane. Also, unlike other I N M proteins, it is not 

extractable with detergent and high salt showing a very tight association with the NE. 

It is probably targeted to the NE by binding to another membrane protein but what it 

exactly does there is still not clear. Recent studies suggest that nurim contains a 

conserved tripartite consensus sequence also present in the enzyme family of 

isoprenylcysteine carboxymethyltransferases (ICMTs). ICMTs are involved in 

processing o f proteins containing a CaaX motif. Therefore, an enzymatic function for 

nurim as a nuclear I C M T has been proposed (Hofemeister and O'Hare, 2005). 

1.2.3.7 Olefin 

Olefin is a 45 kD protein identified in Drosophila with no apparent homology to other 

known proteins (Padan et al., 1990). It contains one transmembrane domain and a 
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large hydrophilic domain rich is serines and threonines. It is localised in the I N M 

where it was shown to interact with the Drosophila lamins Dni i , D m 2 and Dm m u 

(Goldberg et al., 1998). It is proposed that ote.fin plays an essential role in nuclear 

envelope assembly in Drosophila by facilitating the attachment of membrane vesicles 

to chromatin (Ashery-Padan et al., 1997). 

1.2.3.8 Bocksbeutel 

In an attempt to find L E M domain containing proteins in Drosophila the CG9424 or 

Bocksbeutel gene was identified, which encodes two isoforms, Bocksbeutel a and (3. 

The a isoform contains one transmembrane domain close to the C-terminus and was 

shown to be localised to the 1NM (Wagner et al., 2004). 

1.2.3.9 L U M A 

L U M A is a 45 kD protein with no sequence similarity to any other known protein 

identified by subcellular proteomics (Dreger et al., 2001). It has three to four putative 

transmembrane domains and its NE localisation was shown by immunofluorescence 

studies. 

1.3 The Nuclear Pore Complex (NPC) 

In eukaryotic cells, the NE by enclosing and protecting the genome forms a barrier to 

the nucleo-cytoplasmic trafficking o f molecules. To overcome this barrier cells 

possess elaborate structures, of about 125 MDa in size, called nuclear pore complexes 
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(NPCs), which perforate the NE at regular intervals allowing transport of molecules 

across the membrane. NPCs consist o f multiple copies of proteins, rich in 

phenylalanine-glycine (FG) repeats, called nucleoporins. Proteomic investigations 

reveal about 30 proteins as NPC components (Cronshaw et al., 2002), although the 

whole structure including associated proteins is composed o f probably more than 50 

proteins (Fontoura et al., 1999). 

Although the overall structure of NPCs was known for some time advances in 

microscopy techniques allowed a better insight in the structure o f NPCs and the 

distribution of its components (Krull et al., 2004). NPCs display an eightfold 

rotational symmetry and consist of a central spoke ring complex at the level o f the NE 

pore membrane, and filaments that extend from the rings towards the cytoplasm and 

the nucleoplasm. The central spoke ring extends into the NE lumen and contains a 

channel o f about 40 nm through which molecules are transported across the 

membrane. The complex includes several other rings like the star and the thin ring on 

the cytoplasmic side and the nucleoplasmic ring on the nucleoplasmic side. From 

each ring eight filaments protrude towards the cytoplasm and the nucleoplasm. 

Nucleoplasmic filaments form branches at their ends, which are woven together to 

form a basket-like structure (Goldberg and Allen, 1996; Goldberg et al., 1997). 

Although transport of small molecules o f up to 9 nm or less than 60 kD is allowed by 

passive diffusion, bigger molecules need to be transported by distinct steps that 

involve interactions with other proteins (Goldberg, 2004). Molecules are transported 

across the membrane by recognition o f certain sequences, the Nuclear Localisation 

Signal (NLS) for import and the Nuclear Export Signal (NES) for export, by specific 
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receptors. The directionality o f the transport is determined by a small GTPase called 

Ran, which forms a gradient with its GDP form abundant in the cytoplasm and its 

GTP form in the nucleus (Gorlich et al., 1996). 

In general, import involves the association o f the NLS with importin a, which serves 

as an adaptor for importin p, which in turn docks the complex on the NPC (Adam et 

al., 1989) by interacting specifically with FG repeat nucleoporins (Rexach and 

Blobel, 1995), Nup358 being probably one o f them (Wu et al., 1995). The next step 

involves the translocation o f the molecule through the central spoke ring via the 

transporter. Although the existence o f this structure is still controversial (Stoffler et 

al., 2003), it has been described as a structure that is localised in the central channel 

and can adopt an 'open' or 'close' conformation (Akey, 1990). As the importin-cargo 

complex finally enters the nucleoplasmic side it is retained in the basket via an 

interaction with Nupl53 and Tpr (Shah et al., 1998) allowing RanGTP to bind 

importin (3 and release it f rom the cargo. In a reverse process, export of RNAs, RNPs 

and proteins from the nucleus involves formation o f a complex with an export 

receptor called exportin and movement through the nucleoplasmic basket, the 

transporter and the cytoplasmic filaments towards the cytoplasm (Dahlberg and 

Lund, 1998). 

1.4 The Nuclear Lamina 

The lamina is a meshwork o f proteins called lamins that underline the nucleoplasmic 

side of the rNM in a discontinuous manner (Paddy et al., 1990). Although their main 

reported distribution is perinuclear the presence of lamins in the nuclear interior has 
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also been reported. Localisation of lamins in intranuclear foci could correspond to 

intermediate assembly stages o f lamins before their incorporation into the peripheral 

lamina (Bridger et al., 1993; Goldman et al., 1992; Sasseville and Raymond, 1995) 

or to lamins as stable components o f the nuclear matrix (Hozak et al., 1995; 

Muralikrishna et al., 2004; Neri et al., 1999). 

Lamins are type V intermediate filaments (IFs) (Aebi et al., 1986) that display the 

characteristic tripartite molecular organisation of all IFs with a central a-helical rod 

domain flanked by a globular, non-helical N-terminal 'head' and C-terminal ' ta i l ' 

domain (Herrmann and Aebi, 2004). Unlike cytoplasmic IFs however, lamins 

possess six heptad repeats and two phosphorylation sites on their rod domain 

(Ottaviano and Gerace, 1985) and a CaaX motif in their tail domain that allows 

farnesylation and carboxymethylation o f the C-terminal cysteine residue (Kitten and 

Nigg, 1991; Vorburger et al., 1989). 

Based on their sequence, expression pattern and biochemical properties they are 

divided in two major classes: A- and B - type lamins. In mammals, B-type lamins 

comprise lamins B | , B 2 and B3, which are encoded by two genes, L M N B 1 for B | and 

L M N B 2 for B2 and B3, and are expressed in embryonic and differentiated cells. A-

type lamins consist o f lamins A, C, AA10 and C 2 , which are alternative spliced 

products o f the same gene, L M N A , and are expressed in differentiated cells only 

(Stuurman etal., 1998). 

Although still not completely understood, a number o f functions have been assigned 

to the lamina. The organisation of I am in filaments underneath the nuclear envelope 
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allows the lamins to act as a load-bearing complex providing structural support to the 

nucleus and controlling nuclear size and shape. At the same time lamins are part o f 

complexes that include other I N M proteins like LAPs, LBR and emerin, NPC 

components (Smythe et al., 2000), D N A (Luderus et al., 1994; Stierle et al., 2003), 

chromatin (Glass et al., 1993) and transcription factors like Rb (Ozaki et al., 1994), 

SREBPs (Lloyd et al., 2002), GCL (Nil i et al., 2001) and M O K 2 (Dreuillet et al., 

2002). Due to these interactions, apart from their structural role, lamins are implicated 

in other cellular functions like anchoring of I N M proteins and NPCs at the nuclear 

envelope, D N A replication and R N A transcription (Hutchison, 2002). 

1.5 Nuclear Envelope dynamics during the cell cycle 

With the exception o f some unicellular eukaryotes, most higher eukaryotic cells 

undergo an 'open' mitosis disassembling their NE at the onset o f cell division. This 

disassembly is needed so that the mitotic spindle, which is localised in the cytoplasm, 

can gain access and attach to chromosomes facilitating their correct segregation. This 

is a highly complicated process that requires the disassembly o f all nuclear 

components, like the NPCs, the lamina and the nuclear membranes with their 

proteins. In a reverse process at the end o f mitosis the NE reforms, enclosing the 

chromatin. 

The exact mechanisms underlying these processes are still under debate. The older 

and more traditional view is that upon mitosis the NE breaks down into vesicles, 

which are targeted back to chromatin at the end o f mitosis and fuse to reform the NE 

(Wiese and Wilson, 1993), while a more recent model suggests that the NE does not 
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vesiculate but becomes indistinguishable from the ER by diffusion of its proteins 

throughout an intact ER network (Ellenberg, 2002). 

Evidence for a vesiculation o f the NE comes mainly from studies using cell-free 

extracts prepared from amphibian Rana pipiens (Lohka and Masui, 1983) or Xenopus 

laevis (Lohka and Mailer, 1985; Newport and Spann, 1987) oocytes or from Chinese 

Hamster Ovary (CHO) cells (Burke and Gerace, 1986). Fractionation o f such cell-

free systems further revealed that the NE disassembles into two types o f vesicles: one 

set o f small vesicles that has the ability to bind chromatin in an ATP-independent 

process and a second set that has the ability to fuse to chromatin-bound vesicles in a 

process that requires ATP and GTP (Newport and Dunphy, 1992; Vigers and Lohka, 

1991). The different vesicle populations were found to be enriched in NE proteins 

leading to the conclusion that they are nuclear-specific and distinct from the bulk of 

the ER (Drummond et al., 1999; Lourim and Krohne, 1993). The NE vesiculation 

could be 'domain specific' with vesicles originating and containing proteins from 

either the inner, outer or pore membrane only (Buendia and Courvalin, 1997; 

Chaudhary and Courvalin, 1993) or 'mixed ' with vesicles carrying proteins from 

more than one NE domain (Wiese et al., 1997). In both cases reassembly o f the NE at 

the end o f mitosis would require the targeting and binding o f nuclear vesicles to 

chromatin. This interaction is thought to be mediated by an integral membrane protein 

since treatment o f vesicles with trypsin abolishes their ability to bind chromatin 

(Wilson and Newport, 1988), and possible candidates include lamins, LBR and 

otefin. Following binding, vesicles fuse enclosing chromatin wi th a double-membrane 

NE and mature NPCs form allowing protein import, which leads to lamina formation 

and nuclear growth (Gant and Wilson, 1997). 
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In the second model, I N M proteins are retained at the NE during interphase by 

interacting with other nuclear components like chromatin or the lamina. At the 

beginning o f mitosis phosphorylation abolishes these interactions allowing I N M 

proteins to diffuse freely in the ER resulting in an equilibrated distribution throughout 

an intact and functionally continuous mitotic ER. In a reverse process 

dephosphorylation at the end of mitosis allows I N M proteins to establish again the 

interactions with chromatin that w i l l immobilise them, wrapping progressively 

chromatin and reforming the NE (Ellenberg, 2002). In favour of this model come 

studies on the fate o f I N M proteins during mitosis in mammalian cells, where a 

dispersal o f proteins within a continuous ER/NE membrane network is observed 

(Ellenberg et al., 1997; Yang et al., 1997). Dispersal o f I N M proteins in the ER could 

happen according to a 'random diffusion model', where proteins would diffuse 

throughout the ER or according to a 'domain model', where proteins would diffuse in 

the intact ER but gather in specific locations establishing microdomains enriched in 

nuclear proteins (Collas and Courvalin, 2000). 

Supporting the second model come also studies in which the Nuclear Envelope 

Breakdown (NEBD) is attributed to a progressive disassembly o f the NPCs or to a 

microtubule-induced tearing o f the lamina. Based on the entry kinetics o f dextrans in 

the nucleus of maturing starfish oocytes a progressive disassembly o f NPCs was 

shown to lead to an increased permeability o f the NE as a first step followed by 

expanding fenestrations leading to complete permeabilisation (Lenart et al., 2003; 

Terasaki et al., 2001). Alternatively, NEBD is caused by spindle microtubules (MTs), 

which attach to the NE by dynein pulling it towards the centrosomes. Pulling forces 

then cause indentations near the centrosomes and tension on the opposite side, which 
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are responsible for tearing the lamina and pulling away the NE from the 

chromosomes (Beaudouin et al., 2002; Salina el al., 2002). The argument of the latter 

model against vesiculation lies on the fact that vesiculation is preceded by lamina 

phosphorylation, which destabilises the NE leading to permeabilisation, but in this 

study lamin B l was found to be dispersed only after the NE breaks down, implying 

that phosphorylation is not the mechanism for NEBD (Beaudouin et al., 2002). 

However, a recent study showed that the lamin B l network can sustain much greater 

deformations than the ones the spindle MTs can cause on NE. It seems, thus, that the 

lamin network needs to be weakened first by a biochemical modification like 

phosphorylation and this would allow MTs to tear the lamina and cause NEBD 

(Panorchan et al., 2004). 

Although the two models of 'vesiculation' and 'ER dispersal' are very dissimilar they 

are not mutually exclusive. Since the data obtained supporting the first or the second 

model originate from cell-free extracts and mitotic cells, respectively, their 

differences could be attributed to the different nature o f these two systems. While, on 

one hand, the observed vesicles could simply be the result o f cell homogenisation 

during extract preparation, on the other hand, oocytes contain stockpiles of materials 

required for several and rapid cell divisions and could therefore contain nuclear 

envelope precursor vesicles which are absent from somatic cells. Furthermore, the 

substrate for NE assembly in egg extracts is sperm chromatin, which is highly 

condensed, and when decondensed, gives rise to pronuclear NE which are quite 

different from somatic nuclei (Collas and Courvalin, 2000). 

40 



1.6 The INM protein Emerin 

Emerin is encoded by the STA gene, which was identified in 1994 by positional 

candidate cloning on chromosome Xq28, as the gene responsible for the X-linked 

form of Emery Dreifuss Muscular Dystrophy (EDMD) (Bione et al., 1994). 

Sequencing o f the gene revealed that it is 2.1 kb long, has six exons and contains an 

open reading frame of 762 nucleotides that encodes emerin (Bione et al., 1995). 

Subsequent production o f emerin specific antibodies revealed a localisation for 

emerin at the I N M of normal tissues and its absence from nuclei o f E D M D patients 

(Manilal et al., 1996; Nagano et al., 1996; Yor i fu j i et al., 1997). Emerin is 

ubiquitously expressed in most tissues showing a higher expression in skeletal muscle 

and heart. 

Although mainly localised in the I N M , localisation o f emerin in other cellular 

compartments has also been reported. In COS-7 cells emerin was localised in 

intranuclear spots and fibres that could, however, correspond to NE invaginations 

(Fairley et al., 1999; Manilal et al., 1998) while a cytoplasmic localisation at the 

intercalated discs in heart and cultured cardiomyocytes has also been reported 

(Cartegni et al., 1997). Emerin was also detected in the plasmalemma and cytoplasm 

of platelets, blood cells that lack nuclei and arise from the cytoplasmic fragmentation 

of megakaryocytes (Squarzoni et al., 2000). However, both o f these studies used 

polyclonal antibodies, and it has been shown that after affini ty purification o f a 

polyclonal antibody against emerin, localisation at the intercalated discs was no 

longer detectable (Manilal et al., 1999). Also although no plasma membrane 

association o f emerin was found in COS-7 and C2C12 cells, a staining in the ER in 
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close proximity to the NE was observed (Fairley et al., 1999) leaving the issue of the 

cytoplasmic localisation ofemerin under debate. 

1.6.1 Structure 

Emerin is a type I I integral I N M protein of 254 amino acids (aa). It consists of a large 

hydrophilic N-tenninal domain in the nucleoplasm, a single transmembrane (TM) 

domain (aa 223-243) and a small C-terminal domain in the lumenal space. It is a 

serine-rich protein wi th more than 15% of its amino acids being serines mainly 

clustered in a region between residues 170-200, and it contains 22 possible 

phosphorylation sites and a bipartite NLS between amino acids 35-46 (Tews, 1999). 

Its main characteristic feature is the L E M domain (residues 1-45). Originally it was 

identified as a domain common in LAP2, Emerin and M A N 1 but it is also present in 

two C. elegans proteins (M01D7.6 and W01G7.5) and in the D. melanogaster protein 

otefin. The three-dimensional solution structure o f the L E M domain as revealed by 

Nuclear Magnetic Resonance (NMR) spectroscopy comprises a three-residue N -

terminal a helix and two large parallel a helices separated by a loop of conserved 

hydrophobic residues. L E M domains are connected to a highly divergent LEM-like 

domain, which shares only 18% identity with the L E M domain but displays a very 

similar three-dimensional structure, and they are both thought to be protein-protein 

interaction domains (Laguri et al., 2001; W o l f f et al., 2001). 
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1.6.2 Emerin dynamics during the cell cycle 

Emerin is localised at the NE during interphase. Although it contains a bipartite NLS 

at its N-terminal domain, its proper I N M localisation is not mediated by it. Unlike 

soluble proteins, which are targeted to the nucleus by a NLS through NPCs, the 

mechanism for nuclear targeting o f integral membrane proteins differs and does not 

involve NLSs (Soulham and Worman, 1995). Instead I N M proteins reach the NE by 

an ER diffusion/retention model. Newly synthesised emerin enters the ER membrane 

anchored by its T M domain and diffuses laterally t i l l it reaches the I N M through the 

pore membrane. At the I N M , emerin gets immobilised by interacting with other NE 

components, like lamins, using its nucleoplasmic domain. The regions of emerin 

responsible for its proper localisation have been specified by monitoring the 

localisation o f c-myc or GFP-emerin deletion mutants. While an emerin construct 

consisting o f the entire nucleoplasmic domain and lacking the T M domain (aa 3-228) 

was localised in the nucleus diffusely rather than concentrated at the periphery, 

another construct consisting o f the T M domain only (aa 197-254) was localised in the 

ER membranes and not in the nucleus, showing that the T M domain is necessary but 

not sufficient for a proper I N M localisation. Although emerin is anchored at the NE 

by its T M , a sequence in the nucleoplasmic domain, narrowed down to residues 117-

170, was shown to be necessary to retain emerin in the I N M (Ostlund et al., 1999; 

Tsuchiya et al., 1999). 

At the onset o f mitosis when the NE disassembles the interactions that retain I N M 

proteins at the NE are abolished and this process is regulated by phosphorylation. 

Emerin contains several phosphorylation sites and was shown to undergo a cell-cycle 

43 



dependent phosphorylation appearing hyperphosphorylated in four different forms in 

metaphase and early S-phase cells (Ellis et al., 1998). The fate o f emerin during 

mitosis has been monitored in human HEp2 (Dabauvalle et al., 1999) and HeLa cells 

(Haraguchi et al., 2000; Haraguchi et al., 2001). In prophase when chromatin starts to 

condense emerin is still localised at the NE while in metaphase when the nuclear 

membranes disassemble emerin is localised throughout the cytoplasm. In both cell 

types emerin was found to be recruited early in the nuclear assembly process, five 

minutes after the metaphase to anaphase transition, in early telophase, and was focally 

concentrated in the 'core' region o f chromosomes near the spindle poles. The 'core' 

localisation was maintained for further three to four minutes after which emerin was 

uniformly distributed around chromosomes in late telophase. The 'core' localisation 

of emerin was shown to depend on its interaction with chromatin protein BAF since 

when emerin L E M domain mutants that do not bind BAF and when BAF mutants that 

do not bind emerin were used, emerin failed to localise in the 'core' region. Further 

analysis o f HeLa cells by live cell imaging revealed that emerin co-exists in the inner 

and outer 'core' region o f anaphase chromatin, adjacent to the midspindle and spindle 

poles respectively, with LAP2a, LAP2(J and lamin C, in contrast to lamin B and LBR 

which first assembled to more peripheral regions (Dechat et al., 2004). 

1.6.3 Emerin interacting proteins 

The identification o f emerin as the first I N M protein involved in a muscular 

dystrophy, in 1994, drew intense attention in identifying its interacting proteins with 

the ultimate goal of understanding its function. Emerin has been shown so far to 
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interact with several structural and gene regulatory proteins. Its best characterised 

binding partners so far though include lamins and BAF. 

1.6.3.1 Lamins 

There are several reports that support an interaction between emerin and lamins. A 

first indication arose from an immunofluorescence study on Green Monkey Kidney 

cells (COS-7) with emerin and lamin specific antibodies that showed a co-localisation 

of emerin with lamins A/C, B l and B2 in interphase and a partial co-localisation 

during mitosis (Manilal et al., 1998). Further support for this interaction came from 

co-immunoprecipitation experiments. An antibody raised against emerin aa 114-183 

co-precipitated lamins B and A/C from C2C12 myoblast and rat hepatocyte nuclear 

extracts (Fairley et al., 1999). A later study confirmed the co-immunoprecipitation o f 

lamins A, C and B l with emerin in rabbit reticulocyte lysates and showed by 

competition experiments that although emerin can interact in vitro wi th all lamins its 

preferred interaction is with lamin C (Vaughan et al., 2001). The same study further 

showed that in cell lines where lamin A is absent, lamin C is mislocalised in the 

nucleolus and lamins B l and B2 are normal, emerin is mislocalised in the ER forming 

aggregates. When lamin A is transfected back to these cells emerin relocalises 

correctly to the NE while transfection o f lamin B l is not able to rescue emerin 

localisation. Thus, although emerin is able to interact with lamin B in vitro their 

interaction in vivo is rather doubtful. 

A direct interaction between emerin and lamin A was demonstrated by Biomolecular 

Interaction Analysis (BIA) . Application o f full-length emerin on lamin A immobilised 
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on a BIAcore biosensor chip, which measures changes in surface plasmon resonance 

angle produced by changes in total mass at the surface o f the chip, confirmed the 

interaction o f the two proteins (Clements et al., 2000). 

The emerin-lamin A interaction was shown to require aa 70-178 of emerin and aa 

384-566 of lamin A. The residues of emerin responsible for binding lamin A were 

mapped by blot overlay assays. Bacteria lysates containing full-length and mutant 

emerin forms were resolved on gels, transferred to nitrocellulose and incubated with 

3 IS-labelled lamin A. The assay showed that lamin A was able to interact wi th f u l l -

length emerin but not with emerin containing mutations in the central region o f the 

protein between aa 70-178. A l l other mutants including LEM-domain mutations were 

able to bind lamin A (Lee et al., 2001). The region o f lamin A responsible for binding 

emerin was investigated by a yeast-two-hybrid system. Full-length emerin was cloned 

into a vector containing the G A L 4 binding domain and different lamin A truncated 

genes were cloned in vectors containing the G A L 4 activating domain. Examination o f 

all combinations revealed that the first half o f the lamin A tail domain, between aa 

384-566, was responsible for binding emerin (Sakaki et al., 2001). 

1.6.3.2 B A F and MAN1 

Barrier-to-autointegration factor (BAF) is a DNA-bridging protein that can interact 

simultaneously wi th DNA and the L E M domain o f LAP2, attaching chromatin to the 

1NM (Shumaker et al.. 2001). The ability of B A F to interact with the L E M domain of 

emerin was investigated by blot overlay experiments in which emerin mutants were 

immobilised on blots and incubated with 3 D S - B A F . As for LAP2, B A F was shown to 
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interact with emerin aa 1-43, which comprise the L E M domain (Lee et al., 2001). A 

direct interaction o f BAF with emerin in living cells has also been demonstrated by 

Fluorescence Resonance Energy Transfer (FRET) analysis in which repeated 

photobleaching o f YFP-emerin resulted in increase in the fluorescence o f CFP-BAF 

confirming their direct association (Shimi et al., 2004). In the same study 

Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Loss In 

Photobleaching (FLIP) analysis o f B A F and its binding partners showed that BAF 

exists in two separate pools in the cell, a nuclear and a cytoplasmic, that do not mix 

with each other, and that BAF diffuses rapidly as opposed to emerin and LAP2, 

which are immobile at the NE. Thus, a 'touch and go' model is proposed according to 

which BAF interacts frequently but transiently with emerin in interphase. 

BAF has the ability to bind M A N 1 , another I N M protein containing a L E M domain. 

Unexpectedly, affinity chromatography, microtiter and blot overlay assays showed 

that the N-terminal domain o f M A N 1 can bind, except B A F , emerin and lamins A 

and B l as well , while the C-terminal region o f MAN1 can interact with other known 

emerin binding partners including GCL and Btf. The proposed M A N 1 binding region 

of emerin was shown to include the nucleoplasmic domain o f emerin without the 

LEM domain (Mansharamani and Wilson, 2005). These findings suggest that emerin 

and M A N 1 associate in vivo, overlapping functionally, and comes in agreement with 

RNAi experiments in C. elegans embryos where knock-down of M A N 1 alone caused 

a 15% embryonic lethality only while knock-down of emerin and M A N 1 together 

caused a 100% embryonic lethality (Liu et al., 2003). 
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1.6.3.3 Gene regulatory binding partners 

Supporting a role for emerin in affecting gene expression, several gene regulatory 

proteins have been reported to interact with emerin. Protein Genu Cell Less (GCL) 

was shown to co-immunoprecipitate with emerin in nuclear extracts prepared from 

HeLa cells. A microtiter well binding assay with full-length and mutant emerin 

fragments immobilised on wells and incubated with 3 5 S-GCL showed that GCL binds 

to emerin residues 34-83, 175-196 and 207-217. Although GCL did not bind the L E M 

domain like BAF, in competition experiments GCL and BAF did compete for emerin 

binding (Holaska et al., 2003). 

Adding to the list o f gene regulatory binding partners a yeast-two-hybrid screen o f a 

human heart cDNA library with full-length emerin as bait identified, apart from lamin 

A, a nuclear splicing associated factor called YT521-B. The interaction was 

confirmed by co-immunoprecipitation and BlAcore analysis while a microtiter well 

binding assay with emerin mutants showed that, like GCL, YT521-B bound the two 

emerin regions flanking the lamin A binding domain partially overlapping the BAF 

and lamin-A binding regions (Wilkinson et al., 2003). 

In a similar yeast-two-hybrid assay, with full-length emerin used to screen a HeLa 

c D N A library, a transcriptional repressor called B t f was identified as an emerin 

interacting protein. The interaction was confirmed with a blot overlay and microtiter 

well binding assay and was shown to require emerin residues 45-83 and 175-217. The 

same yeast-two-hybrid screen that identified Btf, however, failed to identify other 
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known emeriti binding partners like lamin A and BAF, while co-immunoprecipitation 

of emerin and Bt f from HeLa lysates also failed (Haraguchi et a!., 2004). 

The latest indication of emerin involvement in gene regulation involves P-catenin, a 

down-stream effector o f the canonical wnt-signalling pathway. Observations on X-

EDMD fibroblasts indicate that absence o f emerin leads to unusual growth 

characteristics with cells failing to enter quiescence upon serum withdrawal. This 

auto-stimulatory growth results from activation o f the canonical wnt pathway since 

X - E D M D cells in low serum display an accumulation o f de-phosphorylated P-catenin, 

which cannot be degraded, in the nucleus. It is, thus, proposed that emerin binds P-

catenin at the NE helping to target nuclear P-catenin for destruction (Markiewicz, 

personal communication). 

1.6.3.4 Structural binding partners 

In addition to lamins, emerin has been shown to interact with other proteins that 

provide structural support to the nucleus. Nesprins are proteins that are rich in 

spectrin repeats and comprise several isoforms, which connect the cytoskeleton with 

the nucleoskeleton. An interaction between emerin and nesprin l a isoform was shown 

by a blot overlay and microtiter well binding assay using the entire nucleoplasmic 

domain o f emerin (Mislow et ai, 2002). In the same study nesprin l a was shown to 

interact with lamin A also, implying that it is able to crosslink emerin and lamin A at 

the NE. More recently, a second isoform o f nesprins, nesprin 2, was also shown to 

interact with emerin by co-immunoprecipitation experiments in vascular smooth 

muscle cell lysates (Zhang et a/., 2005). 
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Although the presence o f actin in the nucleus is still under debate there are several 

reports about an association of emerin wi th nuclear actin. Actin was first shown to co-

immunoprecipitate with emerin in C2C12 myoblast extracts (Fairley et al., 1999). 

Actin also co-immunoprecipitated with emerin and lamin A/C in late stages o f 

differentiation of C2C12 myotubes and in mature muscle fibres, and this interaction 

seemed to be regulated by protein phosphorylation (Lattanzi et al., 2003). In another 

investigation on emerin binding partners in HeLa nuclear extracts, by affinity 

chromatography, P-actin was pulled-down. The interaction was further confirmed by 

co-sedimentation, co-immunoprecipitation and blot overlay assays and was shown to 

require the entire nucleoplasmic domain o f emerin (Holaska et al., 2004). In the same 

investigation al l spectrin and myosin I were also identified as potential emerin 

interacting proteins (Bengtsson and Wilson, 2004). These interactions place emerin 

as part o f a nuclear actin cortical network where emerin stabilises and promotes 

formation o f actin filaments by binding to the minus end o f F-actin. Short actin 

filaments are in turn cross-linked to a l l spectrin by protein 4.1 and the whole network 

is thought to provide structural support to the nucleus (Holaska et al., 2004). 

1.7 The nuclear envelope and disease 

Several human diseases have been associated with defects in genes encoding NE 

proteins. A large proportion of them are associated with mutations in lamins A/C and 

emerin and are also known as laminopathies or envelopathies. The best characterised 

laminopathy so far is Emery-Dreifuss muscular dystrophy, which was the first 

muscular dystrophy discovered to be caused by a defect in a nuclear envelope protein. 
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1.7.1 Emery-Dreifuss Muscular Dystrophy ( E D M D ) 

E D M D is a rare form of muscular dystrophy. It was first described in 1966 by Emery 

and Dreifuss who examined a large Virginian family affected with an X-linked 

muscular dystrophy (Emery and Dreifuss, 1966). The term 'Emery-Dreifuss 

muscular dystrophy' was not adopted, however, t i l l 1979 when suggested by Rowland 

el al. who described families with similar symptoms (Rowland et ai, 1979). E D M D 

is caused by mutations in either o f two genes, the STA gene that encodes emerin and 

the LMNA gene that encodes lamin A/C. Mutations in the STA gene give rise to the X -

linked recessive form of E D M D while mutation in the LMNA gene result an 

Autosomal-Dominant (AD) form. 

Typical E D M D can be defined by a triad o f clinical features: early contractures o f the 

Achilles tendons, elbows and post-cervical muscles, muscle wasting and weakness 

proximal in the upper arms and distal in the lower legs and cardiac conduction 

defects, which slowly progress towards complete heart block. Smooth muscle 

function is not affected and mental retardation is not a feature o f the disorder (Emery, 

2000). 

1.7.1.1 X-linked E D M D 

X - E D M D has an early onset at the age o f 3-5 years with the first symptoms being 

unstable gait, repeated falls and toe walking because o f contractures in the Achilles 

tendons. Limited flexion of the elbows and neck is also observed, which later 

progresses to the whole spine overlapping clinically with the rigid spine syndrome 

51 



(Kubo el ai, 1998). Cardiac defects appear usually in Ihe second decade of life and 

become worse with age. A study on 18 E D M D patients for a period o f 1 to 30 years 

identified a broad spectrum o f cardiac abnormalities. Arrythmias developed in all 

patients as bradyarrythmias and tachyarrythmias including atrial fibrillation/flutter, 

which led to atrial standstill and embolic stroke (Boriani et ai, 2003). Autopsy on two 

affected males and one carrier showed that the most significant abnormalities were in 

the atria with a marked loss o f the myocardium and its replacement by fibrous and 

adipose tissue (Fishbein et ai, 1993). Cardiac defects account for the most common 

cause o f death in E D M D patients, which is sudden death, making insertion o f a 

pacemaker life-saving. Since cardiac abnormalities do not correlate with muscle 

disability it has been proposed that unrecognisable cases could contribute to the 

sudden unaccountable deaths in healthy young adults (Emery, 2000). However, a 

screen o f more than 3000 individuals with heart conduction system disease and 

inserted pacemaker identified only one with an emerin mutation showing that the 

clinical relevance of X - E D M D in heart conduction disease is very low (Vytopil et al., 

2004). 

Mutations in the STA gene occur throughout the gene with no particular 'hot spots'. 

The majority o f mutation are nonsense, frameshift or splice site mutations resulting 

from base substitutions, small deletions and insertions (Yates and Wehnert, 1999). 

Although truncated emerin molecules could be produced in these cases a complete 

emerin absence is observed. This could be either due to mRNA instability or due to 

protein instability because it cannot fold properly or it cannot integrate into the 

membrane properly. It is proposed that the last option is the most probable cause o f 

emerin absence since a mutation in the T M domain of emerin was shown to result in a 
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complete absence o f the protein but normal mRNA levels were detected (Manilal et 

al., 1998). 

Although the majority o f mutations are null resulting in complete loss o f emerin, a 

few mutations have been identified that lead to reduced levels of expression. These 

include two in-frame deletions that result removal o f amino acids 95-99 (A95-99) and 

236-241 (A236-241) and four missense mutations, which are single substitutions 

(S54F, Q133H, P183H and P183T). These mutations produce modified forms of 

emerin. P183T mutation has been shown to cause a milder phenotype in affected 

individuals with a later age o f onset o f the first symptoms (Yates et al., 1999). At the 

same position a proline substitution for a histidine has also been reported. In both 

cases (P183T/H) emerin is expressed in normal amounts and size but it is displays an 

altered subcellular distribution and solubilisation properties. Unlike wild-type emerin, 

mutant emerin in no longer confined to the nuclear fraction and it can be extracted 

with 1% Triton in the absence o f salt indicating that its interactions with the nuclear 

lamina are weakened (Ellis et al., 1999). 

Families with the two in-frame deletions A95-99 and A236-241 express reduced 

amounts o f emerin but display clinical features identical wi th patients that carry null 

mutations lacking emerin completely (Manilal et al., 1998; Yates et al., 1999). The 

behaviour o f emerin mutants A95-99, A236-241, S54F, P183H and P183T was 

further studied by transfection o f GFP-mutants in C2C12 myoblasts. A l l mutants 

displayed reduced targeting and retention at the nuclear envelope in comparison to 

wild-type emerin and the targeting o f the deletion mutations was more severely 

affected than the two missense mutants. Mutant A236-241 was the most severely 
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mislocalised one since absence of the transmembrane domain did not allow its 

membrane integration (Fairley et al., 1999). 

The final known missense mutation to date is a g to t substitution at nucleotide 993. 

The mutation is responsible for a Q to H substitution o f amino acid 133 and it can 

also give rise to a number of alternatively spliced mRNAs. The mutation was shown 

to cause reduced levels o f emerin compared to controls (Mora et al., 1997). However, 

transfection o f COS-7 cells with the GFP-mutant did not show an altered localisation 

relative to wild-type emerin and BIAcore analysis showed that the mutant retained the 

ability to interact wi th lamin A. It is, thus, likely that this mutation causes 

pathogenesis either by reducing emerin levels due to altered mRNA splicing or by 

disturbing the interaction with another, yet unidentified, partner (Holt et al., 2001). 

Since the majority o f mutations are null leading to complete absence o f emerin, X-

E D M D can in most cases be diagnosed at the protein level by immunoblotting and 

immunofluorescence on skin fibroblasts and leukocytes (Manilal et al., 1997) or by 

an even less invasive method of cell scraping from the oral mucosa o f the cheek 

(Sabatelli et al., 1998). Unlike X - E D M D mutations, A D - E D M D cannot be detected at 

the protein level by immunohistochemistry. Instead diagnosis depends on mutation 

analysis. 

X - E D M D displays a high degree o f heterogeneity, both inter- and intrafamilial. The 

same emerin mutation was shown to cause different phenotypes in two German 

families and also different clinical features in two brothers o f the same family 

(Hoeltzenbein et al., 1999). Furthermore, although cardiac problems appear in the 
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second decade, one case of a very early onset has been reported in two brothers at the 

age of six and nine (Talkop et al., 2002). Contributing to the disease variability is the 

fact that cardiac involvement does not correlate with the degree o f muscle 

involvement. Severe heart failure has been observed in patients with very mild 

muscular disability (Boriani et al., 2003; Vohanka et al., 2001) and a sudden death o f 

a female carrier has also been reported (Fishbein et al., 1993). 

Management o f the disease involves limitation o f deformities through exercise and 

physiotherapy while corrective surgery for lengthening of Achilles tendon or elbow 

flexion can relieve the effects o f the contractures. Since sudden death by heart failure 

is the most common cause o f death and it can even affect female carriers, the early 

diagnosis and monitoring o f patients is very important. In most cases insertion o f a 

pacemaker can be life-saving and heart transplantations have also been reported in 

several patients (Kichuk Chrisant et al., 2004; Merchut et al., 1990). The small size o f 

the coding region o f the STA gene makes it also a good candidate for gene therapy. 

Using this approach, a direct delivery o f the gene to the conducting system of the 

heart could have an important clinical effect (Emery, 2000). 

1.7.1.2 Autosomal E D M D 

Although most cases o f EDMD are X-linked a more rare autosomal dominant ( A D -

EDMD) form also exists. A study on a French family identified the responsible gene 

on chromosome l q 2 1 . The gene, which is called LMNA, encodes lamins A and C by 

alternative splicing (Bonne et al., 1999). Three cases o f an autosomal recessive 

inherited form (AR-EDMD) have also been reported. A patient was identified 
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homozygous for a H222Y mutation while his parents, which were first cousins, were 

heterozygous for the mutation and not affected by the disease (Raffaele Di Barletta et 

al., 2000). The cases of a woman, also born from consanguineous parents, and o f five 

children affected by E D M D with an autosomal recessive inheritance have also been 

described (Takamoto et al., 1984; Taylor et al, 1998). 

A D - E D M D displays clinical features very similar to those o f X - E D M D with early 

onset o f contractures, muscle wasting and weakness but cardiomyopathy is more 

prevalent than in the X-linked form. Also, unlike X - E D M D , the majority o f mutations 

in A D - E D M D are missense mutations leading to the production o f an equimolar 

mixture o f normal and mutated lamins while emerin levels are normal (Morris, 2001). 

A domain specific phenotype has been proposed according to which mutations in 

different domain o f lamins A/C cause different phenotypes. A study on the mutations 

and phenotype o f 11 families led to the hypothesis that rod domain mutations are 

responsible for cardiac defects while mutations in the tail domain cause skeletal 

myopathy (Fatkin et al., 1999). However, several reports contradict this hypothesis. 

Two families wi th missense mutations in the central rod domain of the lamin A/C 

gene displayed the fu l l clinical spectrum of E D M D including humeropelvic weakness 

and contractures, cardiomyopathy with conduction system disease and sudden death 

(Felice et al., 2000). Another study on ten patients bearing mutations in the rod and 

tail domain showed a coexistence of EDMD and cardiac disease in the rod domain 

mutations while the severity o f cardiac defects was not related to the domain o f the 

mutations (Sanna et al., 2003). 
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1.7.2 Other laminopathies 

In the past years mutations in the L M N A gene have been shown to cause a wide 

spectrum of phenotypes and the term laminopathies has been adopted to collectively 

describe them. Laminopathies include the following disorders: Limb-girdle muscular 

dystrophy I B (LGMD-1B) , Dilated cardiomyopathy with conduction system disease 

(DCM-CD), Dunnigan-type familial partial lipodystrophy (FPLD), Autosomal 

Recessive Charcot-Marie-Tooth type 2 (AR-CMT2), Mandibuloacral Dysplasia 

( M A D ) , Werner syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS). 

1.7.2.1 Limb girdle muscular dystrophy-IB 

LGMD-1B affects mainly the proximal limb-girdle musculature and comprises 15 

different types inherited as both autosomal dominant and recessive forms. The 

LGMD-1B type is characterised by slowly progressive pelvic girdle weakness with 

late involvement of humeral muscles. Unlike E D M D lower legs are not affected. 

Contractures o f elbows and the Achilles tendons are not observed but cardiological 

abnormalities are (Van der Kooi et al., 1996). Screening o f 79 patients from three 

families diagnosed with L G M D - 1 B identified L M N A mutations in all three families 

demonstrating that LGMD-1B and A D - E D M D are allelic disorders. The three 

mutations were an in-frame deletion in exon 3 (AK208), a missense mutation in exon 

6 (R377H) and a splice donor site of intron 9 creating a truncated protein o f 571 

amino acids (Muchir et al., 2000). 
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1.7.2.2 Dilated cardiomyopathy with conduction system disease 

DCM-CD is a myocardial disorder characterised by a four-chamber dilation o f the 

heart and impaired systolic function leading to congestive heart failure and sudden 

death. It is a highly heterogenous disorder mostly with an autosomal dominant 

inheritance. The first indication o f an L M N A involvement was in 1999 when Fatkin 

et al. identified five L M N A missense mutations in patients with DMC-CD. Each 

mutation caused cardiac defects with no contractures or skeletal myopathy (Fatkin et 

al., 1999). The number of L M N A mutations causing DCM-CD, however, has risen 

and at least eight mutations are known so far (Moms, 2001). 

1.7.2.3 Dunnigan-type Familial Partial Lipodystrophy 

Dunnigan-type FPLD is a rare autosomal dominant disease characterised by marked 

loss o f subcutaneous adipose tissue from the extremities and trunk after the onset o f 

puberty and accumulation o f excess fat in the head and neck areas. A study on five 

Canadian kindreds wi th FPLD identified a missense mutation in L M N A gene 

(R482Q) (Cao and Hegele, 2000). Two more studies, one on ten (Shackleton et al., 

2000) and another on 15 families (Speckman et al., 2000) with FPLD identified five 

further mutations. A l l FPLD causing mutations are clustered in the tail region o f 

lamins between exons 8 and 11. 
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1.7.2.4 Charcot-Marie-Tooth 

Charcot-Marie-Tooth (CMT) disease constitutes a heterogenous group of hereditary 

motor and sensory neuropathies and are divided into demyelinating or type 1 (CMT1) 

and axonal or type 2 (CMT2). The first association o f the L M N A gene with 

autosomal recessive axonal CMT2 was reported in three consanguineous Algerian 

families. The main symptoms o f the patients included early onset o f muscle weakness 

and wasting predominantly in the distal lower limbs, foot deformities, walking 

difficulties associated with reduced or absent tendon reflexes and sensory impairment. 

Mutation analysis revealed a missense mutation in exon 5 causing an R298C 

substitution (De Sandre-Giovannoli et al., 2002). 

1.7.2.5 Mandibuloacral dysplasia 

Mandibuloacral dysplasia ( M A D ) is a rare autosomal recessive disorder characterised 

by postnatal growth retardation, mandibular and clavicular hypoplasia, acroosteolysis, 

delayed closure o f the cranial suture, joint contractures and types A and B patterns o f 

lipodystrophy. Analysis o f five consanguineous Italian families that included nine 

affected individuals led to linkage o f M A D to chromosome lq21 by homozygosity 

mapping. Sequencing of the L M N A gene revealed that all patients had a missense 

mutation, R527H. Immunofluorescence analysis o f skin fibroblasts from patients 

homozygous for the disease showed nuclear abnormalities that involved nuclear 

envelope lobulation and a honeycomb labelling for lamin A/C (Novelli et al., 2002). 
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1.7.2.6 Hutchinson-Gilford progeria 

Hutchinson-Gilford progeria (HGP) is a rare autosomal syndrome of accelerated 

aging with an average age o f death at 13.4 years due to coronary artery disease. 

Clinically it is characterised by postnatal growth retardation, midface hypoplasia, 

premature atherosclerosis, absence of subcutaneous fat, alopecia and generalised 

osteodysplasia with osteolysis and pathologic fractures. L M N A analysis o f HGP 

affected children, revealed two patients wi th a heterozygous C to T transition at 

nucleotide 1824 in exon 11. The mutation has no effect on the translated amino acid 

(G608G) but it activates a cryptic splice donor site predicted to remove f i f t y amino 

acids from the tail of lamin A leaving lamin C unaffected. Immunofluorescence 

analysis o f lymphocytes from patients showed a major loss o f lamin A expression, 

normal lamin C and a mislocalisation o f lamin B l in the nucleoplasm. 

Morphologically nuclei exhibited altered size and shape with nuclear envelope 

interruptions and extrusion o f chromatin in the cytoplasm (De Sandre-Giovannoli et 

al., 2003; Eriksson et al., 2003). The same point mutation leading to nuclear 

abnormalities in HGP patients was also identified by Eriksson et al. while Cao et al. 

reported further mutations R471C, R527C, G608S and C . 2 0 3 6 O T (Cao and Hegele, 

2003; Eriksson et al., 2003). 

1.7.2.7 Werner syndrome 

Werner syndrome (WS) is an autosomal recessive progeroid syndrome characterised 

by scleroderma-like skin changes, cataract, short stature, greying/thinning o f the hair, 

diabetes mellitus, soft tissue calcification and premature atherosclerosis. It is caused 
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by mutations in WRN, which belongs to a family o f DNA helicases. A study o f 129 

patients diagnosed with an atypical WS, which did not harbour a mutation at WRN, 

identified three L M N A missense mutations, R133L, L140R and A57P. The clinical 

features o f the L M N A patients included short stature, grey or sparse hair, diabetes 

mellitus, cardiovascular defects, osteoporosis, lipodystrophy and muscular atrophy. 

Immunofluorescence on patients fibroblasts revealed irregularly shaped nuclei with 

leakage o f chromatin in the cytoplasm (Chen et al., 2003). The previously reported 

mutation, R133L, was also identified by Caux et al. in a patient with clinical features 

overlapping between WS and FPLD. The patient presented generalised lipoatrophy 

wi th metabolic alterations like insulin resistance and liver steatosis, distinctive 

subcutaneous manifestations without fat accumulation in the face, neck or trunk, as in 

FPLD, and cardiac abnormalities involving both endocardium and myocardium. 

Typical WS symptoms like cataract, short stature and skeletal abnormalities were 

absent. Immunofluorescence on skin fibroblasts revealed nuclear deformations by 

herniations o f various sizes and shapes and a disorganisation of A-type lamins with a 

honeycomb staining pattern (Caux et al., 2003). 

In total, 69 mutations o f the L M N A gene have been reported so far and they are 

responsible for a wide spectrum o f diseases. Several o f these mutations, though, have 

been reported to cause phenotypes with clinical features overlapping between 

different disorders. A patient with a S143F point mutation in the rod domain o f lamin 

A has been reported combining early myopathy wi th progeria. Initially she presented 

congenital weakness in neck muscles, muscle atrophy and rigidity o f the spine with 

no elbow and Achilles tendons contractures. During subsequent years additional 

progeroid clinical features developed including growth retardation, sclerodermatous 
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skin lesions, acroosteolysis, sparse hair and loss o f subcutaneous fat (ICirschner et al., 

2005). Interestingly, a mutation at the same position leading to a serine substitution 

by a proline (S143P) is reported in a patient with dilated cardiomyopathy but no 

involvement o f skeletal muscles (Karkkainen et al., 2004). A 15-bp deletion from -3 

to +12 including the initiation translation codon resulting in a null mutation was 

identified in a German family. The affected individuals had a unique phenotype, with 

clinical features that are shared between E D M D and CMT2, suffering from both, 

neurogenic and myogenic abnormalities (Walter et al., 2005). Also, two mutations, 

one in the head domain (R28W) and one in the rod domain (R62G) were identified in 

two families, which presented a Dunnigan type-FPLD, but unlike other FPLD cases, 

also suffered from cardiomyopathy including cardiac conduction defects, atrial 

fibrillation and heart failure due to ventricular dilation (Garg et al., 2002). The 

identification o f overlapping lamin-associated disorders indicates that they might 

represent a functional continuum o f related disorders rather than separate diseases 

(Bonne and Levy, 2003). 

1.7.3 Possible disease mechanisms 

So far no human diseases have been associated with B-type lamins indicating that 

they are essential for life. Indeed, lamin B l knockout mice die a few minutes after 

birth and exhibit abnormal lung development, bone ossification, misshapen nuclei, 

impaired differentiation and premature senescence (Vergnes et al., 2004). In contrast, 

mutations in A-type lamins and emerin are associated with E D M D while a number o f 

other L M N A mutations are implicated in a wide spectrum o f disorders. Although 

emerin and lamins are ubiquitously expressed, mutations seem to affect cardiac and 
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skeletal tissues selectively and it is still not clear why that is. Several hypotheses have 

been formulated, however, to explain this tissue specificity. 

The 'structural' hypothesis proposes that lamins contribute to the structural integrity 

o f the nuclear envelope and provide mechanical support to the nucleus. Lainin 

filaments are thought to act as a tensegrity element for the nucleus forming a load-

bearing cage-like structure that underlies the nuclear envelope affecting nuclear shape 

and helping to resist deformations (Hutchison, 2002). Absence o f lamins or emerin in 

disease would destabilise the lamin association with the NE, and the lamina as a 

whole would become less effective as a load-bearing stmcture. This in turn would 

render the NE vulnerable to damage, especially in contractile tissues like the skeletal 

and cardiac muscle that are under high mechanical stress, leading to cell death and 

tissue damage (Hutchison et al., 2001). Cell death due to nuclear fragility would be 

less deleterious in skeletal muscle fibres, which are a syncitium. In contrast, loss of 

few key cells in the heart by random cell death could lead to a complete block of the 

conduction pathway (Morris, 2000). 

In support to this model come observations o f nuclear defects in cells of X - and AD-

EDMD patients. Absence o f emerin was shown to cause structural alterations at the 

nuclear periphery including focal detachment o f the peripheral heterochromatin from 

the NE (Ognibene et al., 1999) and nuclear fragility leading to focal loss o f nuclear 

membrane and chromatin extrusion into the cytoplasm (Fidzianska et al., 1998). 

Ultrastructural studies o f muscle nuclei form A D - E D M D patients showed also 

aberrant nuclear architecture with focal loss of chromatin and sarcoplasmic 

invaginations into the nucleoplasm (Fidzianska and Hausmanowa-Petrusewicz, 
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2003). Similar results were observed in lamin A/C knockout mice with irregularly 

shaped nuclei and herniations o f the NE (Sullivan et al., 1999). 

The importance o f NE proteins in maintaining nuclear structural integrity has been 

demonstrated in experiments where lamin A/C deficient mouse fibroblasts have been 

subjected to mechanical stretching (Lammerding et al., 2004) or compaction forces 

(Broers et al., 2004). Lmna -/- deficient fibroblasts showed a decreased mechanical 

stiffness and impaired viability under strain in comparison to control nuclei 

underlying the importance o f the lamina in providing structural support to the 

nucleus. The contribution o f the lamina in strength and flexibil i ty o f nuclei during 

shear and extension has also been shown in Xenopus oocytes, where it is proposed 

that the lamina forms a compressed network of interconnected rods with an elastic 

extensibility and a limited compressibility acting as a molecular shock absorber (Dahl 

etal, 2004). 

Although the 'structural' hypothesis explains nicely the cardiac and skeletal muscle 

defects, it is probably not a universal model since it cannot explain other 

laminopathies like FPLD. It is highly unlikely that adipocyte nuclei would ever be 

subjected to forces comparable to those that are encountered in muscle. An 

alternative, 'gene expression' hypothesis has been proposed according to which 

emerin and lamins are involved in tissue specific gene expression (Cohen et al., 

2001). According to this model disease may arise from the downstream effects o f 

mutations on chromatin structure or gene expression that are caused by lamina 

disorganisation, failure to provide attachment sites for transcriptional regulators or 

reduced binding affinity for other essential partners (Wilson et al., 2001). Moreover, 
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since all affected tissues in emerin-lamin diseases (muscle, fat, cartilage, bone and 

tendons) arise from the same progenitor, mesenchymal stem cells, it is proposed that 

tissue specificity is because o f effects of mutations on this particular cell lineage 

(Wilson, 2000). 

Transcriptionally inactive heterochromatin is known to be localised at the nuclear 

periphery. Lamins and I N M proteins provide attachment sites for chromatin by 

interacting either with chromatin directly or with chromatin associated proteins like 

HP1 and BAF, and in lamin A/C null cells detachment o f chromatin from the NE is 

frequently observed. Moreover, a growing number o f transcription factors, mainly 

repressors, are reported to interact with emerin and lamins. The retinoblastoma 

protein (Rb), which binds transcription factor E2F and represses transcription by 

recruiting histone deacetylase, was shown to anchor at the nucleus by an interaction 

with LAP2a-lamin A/C complexes (Markiewicz et al., 2002; Ozaki et al., 1994). 

Lamin A was also shown to bind the transcription factor domain o f sterol response 

element binding protein (SREBP1). SREBP1 is an adipocyte differentiation factor 

and reduced binding to lamin A could explain the effect o f lamin mutations in adipose 

tissues in FPLD (Lloyd et al., 2002). Emerin has also been implicated in a number o f 

interactions involving transcription factors like GCL, B t f and YT521-B (Haraguchi et 

al., 2004; Holaska et al., 2003; Wilkinson et al., 2003). 

Although very different the two models of 'mechanical stress' and 'gene expression' 

are not mutually exclusive and disease mechanisms could be explained by the 

combination o f both. 
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1.8 The Xenopus cell-free system 

Cell-free systems are widely used in studies o f cellular processes like mitosis or D N A 

replication or in analysing nuclear structures. Several cell-free systems have been 

developed over the past years arising f rom mammalian Chinese Hamster Ovary 

(CHO) cells (Burke and Gerace, 1986), sea urchin eggs (Cameron and Poccia, 1994) 

or Drosophila embryos (Berrios and Avi l ion , 1990). The most widely used system, 

however, is based on amphibian eggs. The first amphibian cell-free system described 

derived from Rana pipiens eggs (Lohka and Masui, 1983) but the most common 

source o f eggs t i l l now remains Xenopus laevis (Lohka and Mailer, 1985). 

Fully grown Xenopus oocytes are physiologically arrested in first meiotic prophase. 

Upon exposure to progesterone oocytes complete meiotic maturation, undergoing 

breakdown o f the NE, chromosome condensation and spindle formation, and arrest in 

the second meiotic metaphase. Frogs are then induced by gonadotropin to lay eggs, 

which under natural conditions are fertilised immediately. Upon fertilisation the NE 

of the sperm breaks down, chromatin decondenses and a new NE is assembled to 

form the male pronucleus using precursors stored in the egg cytoplasm. This 

procedure o f pronuclear formation can be mimicked in vitro using egg extracts in 

which egg chromosomes have been removed after centrifugation. Since Xenopus 

oocytes contain stockpiles o f nuclear components like histones, nuclear membrane 

components, nuclear pores and enzymes, derived egg extracts can support many 

rounds o f nuclear assembly around exogenously added protein-free DNA. Xenopus 

and human sperm, and lambda DNA have been successfully used as templates for the 

assembly o f intact nuclei in Xenopus egg extracts (Lohka, 1998). 
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Xenopus cell-free extracts present several advantages over other systems. They are 

easy to maintain and give rise to many eggs that can support the assembly o f many 

nuclei, around a wide variety o f exogenously added D N A . In contrast mammalian 

cells give rise to relatively little material and do not store large amount of nuclear 

components so they can support the assembly o f very limited amount o f nuclei. The 

main advantage o f mammalian extracts is that they are derived from cells whose 

nuclear proteins are well characterised as opposed to the Xenopus system where many 

proteins are still not identified (Lohka, 1998). Still , the ease by which Xenopus 

extracts can be manipulated, either through fractionation or through depletion of 

different components, makes them a powerful tool for the study and dissection of 

complicated cellular processes. 
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1.9 Aims of this thesis 

The great importance o f the nucleus as a cellular organelle is clearly unquestionable. 

The discovery of NE proteins that are involved in tissue-specific muscular 

dystrophies is a subject under investigation with still no definite answers. With the 

ultimate goal to contribute to the understanding o f the function o f emerin, the I N M 

protein involved in the X-linked form o f Emery-Dreifuss muscular dystrophy, this 

work was conducted with the fol lowing aims: 

> To investigate the role o f different domains o f emerin in chromatin 

decondensation and NE assembly in the Xenopus cell-free system. This was 

achieved by the addition o f bacterially expressed and purified emerin peptides, at 

increasing concentrations, in nuclear assembly reactions. 

> To investigate the presence of L E M domain containing proteins, including 

endogenous emerin, in the Xenopus egg system. This was important in order to 

explain the inhibitory effect o f the exogenously added emerin L E M domain, on 

membrane recruitment to chromatin during the NE assembly. 

> To identify new binding partners of emerin that could provide an explanation for 

the inhibitory effect o f the emerin L E M domain on chromatin decondensation and 

NE assembly. This was achieved by co-precipitation experiments using emerin 

peptides as the bait and the Xenopus cytosol as the source o f interacting proteins. 

> As a result o f identifying (3-tubulin as an emerin interacting protein, the final aim 

of this work was to investigate the involvement o f emerin in the organisation o f 

the microtubule network. This was achieved by investigating whether the absence 

of emerin in X-EDMD cells affects cytoskeletal microtubules. 
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CHAPTER 2 

MATERIALS AND METHODS 



2.1 Expression, extraction and purification of human emerin constructs 

Four DNA constructs encoding human emerin amino acids 1-70, 1-176, 73-180 and 

1- 220 were kindly provided by Dr Ryszard Rzepecki. The constructs were provided 

cloned into vectors pET29b, which add a His-tag to the C-terminus o f the expressed 

proteins, and were used to transform Escherichia coli Tuner (DE3) pLysS cells. The 

bacterially expressed proteins were extracted and purified under both, native and 

denaturing conditions. 

2.1.1 Preparation of competent bacteria and transformation with emerin DNA 

Competent Tuner (DE3) pLysS cells were prepared using a rubidium chloride method 

(Ano and Shoda, 1992). Bacteria were grown overnight in LB-Agar plates (10 gr/lt 

tryptone, 5 gr/lt yeast extract, 10 gr/lt NaCl, 2% agar) containing 15 ug/ml 

Kanamycin and 34 ug/ml Chloramphenicol (Sambrook et al., 1989). Next day a 

single colony was inoculated in 2.5 ni l o f L B at 37°C, overnight, shaking at 225 rpm. 

The entire overnight culture was transferred the following day to 250 ml L B 

containing 20 m M MgSOa and inoculated t i l l OD 6 0 o 0.4-0.8. Cells were collected by 

centrifugation at 4500g for 5 minutes at 4°C and pellets resuspended in 50 ml of 

buffer TFBI (30 i n M NaOAc, 10 m M CaCl 2 , 50 m M M n C l 2 , 100 m M RbCl, 15% 

glycerol, pH 5.8), incubated for 5 minutes at 4°C and collected by centrifugation at 

4500g for 5 minutes at 4°C. Pellets were resuspended in 10 ml o f buffer TFBII (10 

m M MOPS, 75 m M CaCl 2 , 10 m M RbCl, 15% glycerol, pH 6.5). Cells were 

incubated on ice for 15-60 minutes, aliquoted into 100 ul , snap frozen in liquid N 2 

and stored at -80°C. 
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Competent E. coli cells were transformed with emerin DNA encoding for amino acids 

1-70, 1-176, 73-180 and 1-220. For each transformation reaction 100 ul of competent 

cells were mixed with 1 ul o f D N A and incubated on ice for 30 minutes. Bacteria 

were heat shocked at 42°C for 1 minute and returned to ice, where 400 ul o f LB was 

added. Cells were incubated at 37°C for 1 hour and 100 ul o f each reaction mix were 

plated onto LB-Agar plates containing Kanamycin (15 ug/ml) and Chloramphenicol 

(34 ug/ml). Plates were incubated overnight at 37°C. A single colony was picked next 

day and inoculated overnight (at 37°C) into 5 ml LB including the appropriate 

antibiotics. The overnight culture was divided into 1 ml aliquots, 30% sterile glycerol 

was added and bacteria were stored at -80°C. 

2.1.2 Protein expression 

For protein expression a sterile loop was used to pick transformed bacteria f rom 

frozen glycerol stocks. Bacteria were inoculated overnight at 37°C in 5 ml LB 

medium containing 15 ug/ml Kanamycin and 34 ug/ml Chloramphenicol. The 5 ml 

overnight cultures were transferred next day to 500 ml o f L B medium containing 

Kanamycin and Chloramphenicol at the same concentrations, and grown for about 4 

hours up to OD 0.4-0.8. Bacteria were induced with 1 m M isopropyl-P-

thiogalactoside (IPTG), grown for another 4 hours and, finally, collected by 

centrifugation at 5000g for 10 minutes. Pellets were stored overnight at -22 °C. 

2.1.3 Protein extraction 

For native purification, overnight pellets were suspended in 20 ml o f Basic Buffer 

(100 mM NaH 2PO £ l/10 mM Tris pH 7.8) containing 0 .1% Tween 20 and 10 m M 

71 



Imidazole, and bacteria were sonicated three times for 30 sec, with 1 min intervals, on 

ice. The lysate was centrifuged at 10,000g for 30 minutes at 4°C, the supernatant 

(Supernatant 1) was collected and the pellet was extracted with 10 ml of Basic Buffer 

containing 1% Triton X-100. After a further centrifugation at 12,000g for 10 minutes 

at 4°C the supernatant (Supernatant 2) was removed and any insoluble material 

collected as a pellet was solubilised with 10 ml o f Basic Buffer containing 8 M Urea 

(Supernatant 3). Aliquots o f all supernatants were collected for SDS-PAGE analysis 

and the rest was stored at -80°C until use for protein purification. 

For purification under denaturing conditions, bacteria pellets were suspended in 15 ml 

of lxBasic Buffer/8 M Urea/10 m M Imidazole and incubated for 1 hour at room 

temperature for the pellet to solubilise completely. A l l solubilised proteins were 

collected as the supernatant (Supernatant 4) after a centrifugation at 10,000g for 30 

minutes at room temperature and used directly for purification. 

2.1.4 Protein purification 

Purification o f all emerin constructs was performed using the N i - N T A Superflow of 

Qiagen (Catalog number 30410). This product consists o f nickel-nitrilotriacetic acid 

(Ni -NTA) coupled to Superflow resin, which is highly cross-linked 6% agarose. The 

resin is provided as a suspension in 30% ethanol and has a binding capacity o f 5-10 

mg/ml o f any protein tagged wi th six consecutive histidines. 

As starting material for the purification o f constructs extracted under native 

conditions, Supematants 1 and 2 o f the extraction procedure were combined. A 1 ml 

bead volume, which was pre-washed with an equal volume of Basic Buffer 

containing 10 m M Imidazole was added to the protein extract. The sample was 
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incubated for 30 minutes at 4°C on a roller and then poured into an empty PD-10 

column. After the beads settled at the bottom of the column and the flowthrough was 

collected, non-specific binding was removed by washing with 50 ml o f Basic Buffer 

containing 300 m M NaCl and 20 m M Imidazole, pH 8.0. The His-tagged protein 

constructs were eluted wi th 6 ml o f Basic Buffer containing 300 m M NaCl and 250 

mM Imidazole pH 8.0. 1 ml elution fractions were collected. A small aliquot o f all 

steps was removed for SDS-PAGE analysis and for determination o f protein 

concentration by the Bradford microassay procedure. The rest was snap frozen in 

liquid nitrogen and stored at -80°C. The elution fraction o f each construct with the 

highest protein concentration was later thawed, dialysed against Modified Extraction 

Buffer (MEB) (25 m M potassium gluconate, 10 m M hemi-magnesium gluconate, 20 

mM Hepes pH 7.5, 300 u M PMSF, Protease Inhibitor Cocktail at 1:100 dilution) for 

3 hours with 3 buffer changes using the Microdialyser system by Pierce. Dialysed 

elution fractions were divided into 20 ul, snap frozen in liquid nitrogen and stored at -

80°C. 

For purification o f proteins under denaturing conditions the same procedure was used 

with the only differences being that all incubations and buffers were at room 

temperature rather than 4°C and all buffers included 8 M Urea and had no NaCl. After 

purification denatured peptides were refolded by dialysing against M E B for 3 hours 

with 3 buffer changes using a Microdialyser (Figure 2.1). 
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E X P R E S S I O N O F E M E R I N C O N S T R U C T S IN E . C O L 1 

E X T R A C T I O N 

Native conditions 

i 
B B / 1 0 m M Imidazole/ 

0.1%Tween 20 

i 
Sonication 

10,000g, 30 min, 4°C 

Supernatant 

Supernatant 2 

Pellet 
i 

BB/10 m M Imidazole/ 
1% Triton X-100 
12,000g, 10 min, 4°C 

Pellet 

BB/10 m M Imidazole/ 
8 M Urea 
12,000g, 10 min, 4°C 
(Supernatant 3) 

P U R I F I C A T I O N 

Native conditions 

Supernatants 1 and 2 
+ 

1 ml beads 
30 min, 4°C, rolling 

Wash: BB/20 m M Imidazole/ 
300 m M NaCl 

Elution: BB/300 m M NaCl/ 
250 m M Imidazole 

1 
Dialysis: against M E B 

3 hours. RT 

Denaturing conditions 

i 
BB/10 m M Imidazole/ 

8 M Urea 

i 
1 hour, RT 

10,000g, 30 min, 4°C 

Supernatant 4 Pellet 

Denaturing conditions 

Supernatant 4 
+ 

1 ml beads 
30 min, RT, rolling 

Wash: BB/20 m M Imidazole/ 
8M Urea 

1 
Elution: BB/8M Urea/ 

250 m M Imidazole 

Dialysis: against MEB 
3 hours, RT 

Figure 2.1: A summary of the extraction and purification procedure of emerin 

peptides 1-70, 1-176, 1-220 and 73-180. 
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2.1.5 Determination of the molecular weight and molarity of emerin samples 

The molecular weight o f the emerin peptides was calculated in two ways: one 

according to their electrophoretic mobility on SDS gels and another according to their 

amino acid composition. 

For the calculation o f the apparent molecular weights according to the migration on 

SDS gels the U V I Band software was used. This software allows selection o f specific 

bands and calculation o f their molecular weight in kDaltons provided that a set o f 

markers with known molecular weights is used in parallel. 

For the calculation o f the molecular weights according to the amino acid composition 

the ProtParam tool by ExPASy was used, which is found in the following website: 

http://us.expasv.org/tools/protparam.html. The ProtParam tool allows the computation 

o f various physical and chemical parameters, including the molecular weight, for a 

sequence entered by the user. 

The molarity o f all emerin samples was calculated using the fol lowing formula: 

Concentration in mg/ml 

Molecular weight in Daltons 

For the molarity calculations, the values used were the concentrations of the dialysed 

samples (by Bradford) and the molecular weights as calculated with the ProtParam 

tool. 
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2.1.6 Determination of protein concentration using the Bradford Microassay. 

Al l protein concentrations were determined using the Bio-Rad Protein Assay, which 

is based on the differential colour change o f the dye Coomassie Brilliant Blue G-250 

in response to various protein concentrations. For the Microassay procedure 800 ul of 

bovine serum albumin (BSA) standards and diluted samples were added to 200 ul of 

concentrated dye and absorbance was checked at 595 nm. For the standard curve a 

stock solution o f 5 mg/ml o f BSA was used to prepare several dilutions ranging from 

0 to 50 p.g of protein per ml . The BSA standards were prepared as following: 

Sample No 1 2 3 4 5 6 

BSA (ul) 0 1 2 4 8 10 

H 2 0 ( u l ) 800 799 798 796 792 790 

Dye 
Concentrated (ul) 

200 200 200 200 200 200 

Protein (ug) 0 5 10 20 40 50 

A l l OD595 readings o f the BSA standards were plotted against the amount o f protein 

in ug and a line-of-best-fit with the equivalent equation was applied to the chart. A l l 

samples wi th unknown protein concentrations were prepared by adding 10 u.1 o f each 

sample to 790 ul o f H2O. 200 ul o f concentrated dye was added to the mixture and 

the OD595 was measured. As blank 800 ul o f H 2 0 were used with 200 ul o f dye. The 

amount o f ug contained in the 10 ul o f each sample was then calculated using the 

equation displayed on the standard curve (y = 29.173x, where x is the OD595 and y is 

the amount o f ug in question). To find the concentration o f each sample in ug/u.1 ug 

values were divided by 10. 

76 



2.2 Cell-free Xenopus egg extracts 

2.2.1 Preparation of unfractionated Xenopus egg extract (LSS) 

For the preparation o f Xenopus egg extracts a method described by Hutchison CJ 

(1993) was used, originally adapted from Lohka M and Mailer J (1985). Female frogs 

were induced to lay eggs by injection o f two hormones: Pregnant mares'serum 

gonadotropin (PMSG, Intervet Ltd) was injected into the dorsal lymph sack, at a 

concentration o f 50 iu/frog, a week before collection o f eggs, and Human chorionic 

gonadotropin (Chorulon, Intervet Ltd), at 500 iu/frog, the day before egg collection. 

At the day o f preparation, eggs were collected in a 110 m M NaCl solution. Eggs o f 

different frogs were kept in separate beakers in order to avoid contamination o f good 

with bad quality eggs. Bad quality eggs, usually laid in strings and lacking the normal 

dark-and-white hemisphere appearance, were carefully discarded. 

As a first step, the jel ly coat o f the eggs was removed by replacing the saline tap-

water with 500 ml o f dejelly solution (110 m M NaCl, 20 m M Tris-HCl pH 8.5, 1 m M 

DTT). Eggs were left in the dejelly solution, avoiding vigorous mixing, for 5-7 

minutes. Eggs were then washed three times in large volumes (2 It) of saline tap-

water followed by three washes in ice-cold Extraction Buffer (EB) (100 mM K G , 5 

m M MgCb, 20 m M Hepes pH 7.5, 2 m M 2-mercaptoethanol). Necrotic eggs, usually 

white in appearance, were removed during the washing procedure. 

Eggs were subsequently packed in centrifuge tubes in a minimal amount of buffer and 

centrifuged at I0,000g, for 10 minutes, at 4°C in a swinging-bucket rotor. 
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Centrifugation resulted in crushing of the eggs and formation o f three layers: a yellow 

lipid cap on top, a middle ooplasmic layer and a grey pellet containing yolk, pigment 

granules and egg cortices. The middle ooplasmic layer was carefully removed by side 

puncture with an 18G needle attached to a syringe and transferred to a clean 

centrifuge tube. The extract was supplemented with Protease Inhibitor Cocktail 

(Sigma P8340, used at 1:100) containing the fol lowing inhibitors: AEBSF 104 m M , 

Aprotinin 0.08 m M , Leupeptin 2 m M , Bestatin 4 m M , Pepstatin A 1.5 m M and E-64 

1.4 m M . Cytochalasin B was also added to a final concentration of 50 ug/ml, and the 

extract was centrifuged again at 10,000g, for 10 minutes, at 4°C. After the second 

centrifugation the middle ooplasmic layer was again removed by side puncture. 

Finally, 5% glycerol was added and the egg extract was snap frozen in liquid nitrogen 

in 15 ul droplets and stored at -140°C. Since this type of unfractionated extract is 

prepared by centrifugation at 10,000g, it is also called Low Speed Supernatant (LSS). 

2.2.2 Fractionation of L S S into membrane and cytosolic components 

Fractionation o f LSS into membrane and cytosolic parts was achieved by high-speed 

ultracentrifugation as described by Lohka MJ (1998). Specifically, LSS was prepared 

as described above but after the second 10,000g centrifugation, the ooplasmic layer 

was transferred into 2 ml TLS-55 tubes and centrifuged at 200,000g, for 75 minutes 

in an Optima T L X table-top ultracentrifuge (Beckman Instruments Inc.). After the 

centrifugation the extract was fractionated into four main layers: a yellow lipid cap on 

top followed by a broad layer called S2oo> a loosely packed layer of membranes called 

NEP-A and a pellet of yolk, glycogen and pigments. The layer containing the NEP-A 

membranes was carefully removed by side puncture with an 18G needle and mixed 
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with an equal volume of Modified Extraction Buffer (MEB) containing 60% sucrose. 

The NEP-A fraction was then aliquoted into 100 ul, snap frozen in liquid nitrogen and 

stored at -140°C. The S2oo was also removed by side puncture and transferred to a 

new 2 ml TLS-55 tube and centrifuged at 200,000g for 4 hours at 4°C. This 

centrifugation step resulted in four fractions: a thin lipid cap on top, a clear 

supernatant which corresponds to the cytosol, a membrane layer called NEP-B and a 

pellet containing glycogen and ribosomes. The cytosolic and NEP-B layers were 

removed by side puncture. The cytosol was divided into 100 ul aliquots and snap 

frozen, whereas the NEP-B was first mixed with an equal volume o f Modified 

Extraction Buffer containing 60% sucrose and then aliquoted in 100 ul. A l l aliquots 

were stored at -140°C. 

2.2.3 Xenopus sperm preparation 

Demembranated Xenopus sperm heads were used as a template in all nuclear 

assembly reactions. Sperm preparation was as described in Hutchison CJ (1993). 

Testes were isolated from male frogs and put on glass petri dish where any fat and 

connective tissue was carefully removed. Testes were then transferred to another petri 

dish containing 3 ml o f Barth X buffer (88 m M NaCl, 2 m M KC1, 0.33 m M 

Ca(N0 3 ) 2 , 0.41 m M CaCI 2 and 0.82 m M M g S 0 4 ) and chopped into small pieces with 

a dissection scissors. A l l small pieces were finally homogenised gently wi th a loose-

fitting glass pestle. After removal o f any particulate material 10% DMSO and 

newborn calf serum (NCS) were added to the sperm suspension, which was then 

divided into 0.5 ml aliquots, containing approximately 5 x 106 sperms each. Each 

aliquot was subsequently diluted to 3 ml with SuNaSp buffer (0.25 M sucrose, 75 

79 



m M NaCl, 0.5 m M spermidine and 0.5 m M spermine) and the sperm was recovered 

in a pellet by centrifugation at 3000g for 15 minutes at room temperature. The pellet 

was then resuspended in 200 ul of SuNaSp and the number of sperms was determined 

using a haemocytometer. Sperm was stripped of the plasma membrane and nuclear 

envelope by addition of 40 jxl of 1 mg/ml lysolecithin (phosphatidylcholine) and 

gentle agitation at room temperature for 90 minutes. The reaction was terminated by 

the addition of 3 ml o f ice-cold SuNaSp containing 3 mg/ml BSA, and the sperm was 

recovered by centrifugation at 3000g for 15 minutes. Finally, the sperm was 

resuspended in SuNaSp to a final concentration o f 5 x 10 4/ul, aliquoted in 5 ul, snap 

frozen in liquid nitrogen and stored at -140°C. 

2.3 Nuclear assembly using the Xenopus cell-free system 

A l l nuclear assembly experiments were performed using unfractionated egg extract 

(LSS) that was rapidly defrosted at room temperature. Typical assembly reactions for 

immunofluorescence included 25 ul egg extract and demembranated sperm at a final 

3 3 

concentration of 10 /u l . For immunoblotting analysis 100 ul of egg extract and 10 /u l 

o f Xenopus sperm were used. Nuclei were ful ly assembled after 80 minutes 

incubation at room temperature (21°C). A l l reactions were supplemented with an 

energy generating system that consisted o f Adenosine Triphosphate (ATP), 

Phosphocreatin (PC) and Creatine phosphokinase (CPK). ATP was prepared as a 200 

m M solution in 10 m M Hepes (pH 7.2) containing 1 m M DTT, and used at a 1:100 

dilution. PC was prepared as a 1 M solution in 10 m M Na phosphate (pH 7.4), and 

used at a 1: 50 dilution. Finally, 0.5 mg/ml o f CPK in 50% Glycerol /10 mM Hepes 

(pH 7.5) were prepared and used at a 1:100 dilution. 
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2.3.1 Time-course study of nuclear envelope assembly 

The steps o f nuclear envelope assembly in Xenopus egg extract were studied by a 

time-course experiment. Specifically, five reactions were set up, as described above, 

and incubated at room temperature for 0, 10, 20, 40 or 80 minutes. For fixation, 175 

ul o f EGS (ethylene glycol bis-(succinic acid N-hydroxysuccinimide ester)) were 

added to each sample, which was then incubated at 37°C for 30 minutes and kept on 

ice t i l l all reactions had finished. To isolate chromatin, 100 ul o f each sample were 

loaded onto 300 m" SNIB (60 m M KC1, 15 m M Tris pH 7.5, 15 m M NaCl, 1 m M 0-

mercaptoethanol, 0.15 m M spermine, 0.5 m M spermidine) containing 30% Sucrose 

and centrifuged at 4000g for 10 minutes. Coverslips were then processed by 

immunofluorescence using antibodies specific for nucleoporins (antibody 414, 1:100 

dilution), for NEP-A vesicles (antibody CEL13A, undiluted), NEP-B vesicles 

(antibody 4G12, undiluted) or emerin (antibody aE70, undiluted). 

2.3.2 Effect of emerin constructs on nuclear envelope assembly 

To test the effect of emerin on nuclear envelope assembly, each bacterially expressed 

construct was added to a typical nuclear assembly reaction at a 0.5 u M , 4 uM or 8 u M 

concentration. Nuclei were allowed to assemble at room temperature for 80 minutes. 

100 ul o f each sample were layered over 300 ul o f SNlB/30% sucrose in cytology 

chambers and centrifuged at 4000g for 10 minutes onto coverslips, which were 

processed by indirect immunofluorescence with antibodies specific for FG-repeat 

nucleoporins (414), pre-pore nucleoporins (Nupl07) , NEP-A vesicles (CEL13A) and 

NEP-B vesicles (4G12). Chromatin was visualised by DAPI mounted in Mowiol . 
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For immunoblotting analysis, 100 ul of samples were diluted up to 1 ml with ice-cold 

Extraction Buffer and layered over 500 ul o f SNIB/30% Sucrose in eppendorf tubes. 

Nuclei were pelleted at 4000g for 10 minutes. Pellets were suspended in 10 ul l x 

SDS-sample buffer, boiled, analysed by SDS-PAGE and immunoblotted with 

antibody 414. 

2.4 Chromatin binding ability of emerin 

To check the chromatin binding ability o f emerin by immunofluorescence, the four 

protein constructs were incubated individually with either condensed or decondensed 

Xenopus sperm chromatin for 15-30 minutes at RT and fixed wi th 4% formaldehyde 

at 4 °C for 10 minutes. Samples were loaded onto cushions containing 300 ul 

SNrB/30% sucrose and centrifuged at 4000g for 10 minutes. Coverslips were 

removed from the cushions and processed by indirect immunofluorescence. The 

NCL-Emerin antibody (1:30 diluted in PBS containing 1% NCS) was applied for 1 

hour at RT. Coverslips were washed five times in l x PBS and stained with FITC-

Donkey anti- Mouse (1:50 dilution) for 1 hour, at RT. After a final wash in l x PBS, 

D N A was stained with DAPI and slides were stored at 4 °C. 

2.4.1 Sperm decondensation 

When decondensed sperm was used, decondensation was achieved by incubating 

sperm chromatin with Pfaller buffer (250 mM sucrose, 50 m M KC1, 2.5 mM M g C l 2 , 

and 10 mM Hepes/NaOH pH 7.4) containing Poly-Glutamic acid at a concentration 

of 2 (.tg/ul, for 30 minutes at RT. 
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2.5 Cell culture 

The following cell lines were used in this work: normal Human Dermal Fibroblasts 

(HDF), fibroblasts from four patients with X-linked E D M D (X-EDMD 1, 2, 3 and 4 

cells), and two cell lines derived from Xenopus laevis, X T C and X L K cells, which are 

Xenopus tadpole and Xenopus kidney cells, respectively. Xenopus cell lines were 

maintained at room temperature in L-15 medium (Sigma). Human cell lines were 

grown in Dulbecco's modified Eagle's medium ( D M E M ) supplemented with 10 

units/ml penicillin, 50 ug/ml streptomycin and 10% v/v NCS, and maintained at 37°C 

in a humidified atmosphere containing 5% CO2 until 70-80% confluence. Serial 

passage was performed in the presence of trypsin and 0.5% EDTA. 

2.6 Gel electrophoresis and Immunoblotting 

2.6.1 1-Dimensional gel electrophoresis 

Electrophoretic analysis o f proteins was performed under reducing conditions 

(Laemmli, 1970) using the Protean I I minigel system o f BioRad. Samples were mixed 

with an equal volume o f 2x SDS-sample buffer (125 m M Tris-HCl, pH 6.8, 2% SDS, 

100 m M DTT, 5% Glycerol and 0.2% of Bromophenol blue), heated at 95°C for 3 

minutes and resolved on gels at 100 Volts in Tank Buffer (25 m M Tris, 250 m M 

Glycine and 0.1 % SDS). Depending on the size o f the proteins of interest resolving 

gels o f 8% to 15% were used for higher resolution in the upper or lower part o f the 

gel, respectively. 
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2.6.2 2-Dimensional gel electrophoresis 

A l l protein samples analysed by 2-D gel electrophoresis were precipitated in 5 

volumes of ice-cold acetone overnight at -22°C. Proteins were collected by 

centrifugation at 14,000 rpm for 3 minutes and pellets were suspended in 125 ul o f 

Lysis Buffer (8 M Urea/ 2 M Thiourea/ 4% CHAPS) and incubated for 2 hours at 

room temperature for the pellet to solubilise completely. Samples were then prepared 

for electrophoresis in the following sample buffer: 

1 ul o f Bromophenol blue 

2.5 ul o f Pharmacyte ampholytes 

5 ul of 1 M D T T 

116.5 ul o f protein sample 

Total volume: 125 ul 

Samples were vortexed, centrifuged for 5 minutes at 13,000 rpm and dispensed into a 

loading tray. Isoelectric focusing gel strips o f pH 4-7 were layered over each sample, 

carefully to avoid formation o f air bubbles, overlaid with paraffin oil and left for 12-

24 hours at room temperature to re-hydrate. Next day, the gels were rinsed in d d H 2 0 , 

placed on a 2-D electrophoresis apparatus and ran in three stages for 6500 Volt hours. 

After isoelectric focusing the gels were rinsed in ddP^O and incubated in 

Equilibration Buffer (6 M Urea/ 30% Glycerol/ 50 m M Tris pH 8.8/ 10% SDS/0.01% 

Bromophenol blue) containing 64 m M DTT for 15 minutes. Gels were then incubated 

in Equilibration Buffer containing 262 m M Iodoacetamide for further 15 minutes 

with constant agitation, rinsed in lx Tank Buffer and loaded on top o f 12% 
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acrylamide gels (without the stacking gel). SDS markers absorbed on small Whatman 

papers were placed on the left side o f each gel, which was then immersed with 0.5% 

agarose and run at 100 Volts. 

2.6.3 Coomassie staining 

After electrophoresis, gels were either stained with normal Coomassie Brilliant Blue 

or Colloidal Coomassie. For the simple Coomassie staining, gels were placed directly 

in the dye consisting of 40% methanol, 10% acetic acid, 0 . 1 % Coomassie Blue G-250 

and stained at room temperature overnight with constant agitation. Gels were 

destained with 40% methanol, 10% acetic acid for up to 4 hours with several changes 

of the solution. 

For the Colloidal Coomassie staining, gels were first fixed in a solution consisting o f 

40% methanol and 10% acetic acid for 1 hour, washed twice in d d H 2 0 and incubated 

with the dye overnight wi th constant agitation. For each gel the dye was prepared by 

mixing 40 ml o f Colloidal Coomassie blue stain (0 .1% Coomassie blue G-250, 10% 

w/v ammonium sulphate, 2% v/v orthophosphoric acid) with 10 ml o f methanol. 

Destaining o f the gels required washes with d d H 2 0 up to 4 hours with several 

changes. 
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2.6.4 Silver staining 

For silver staining o f gels, a method compatible with mass spectroscopy was 

employed. Gels were fixed after electrophoresis in 40% ethanol/10% acetic acid twice 

for 15 minutes and sensitised with 0.2% Na thiosulphate/6.8% Na acetate/30% 

ethanol for 30 minutes with constant agitation. Gels were washed 3 times, for 5 

minutes each, with d d H 2 0 and incubated with 0.25% silver nitrate for 20 minutes. 

After a brief rinse wi th d d H 2 0 proteins were visualised with 2.5% Na carbonate/ 

0.04% formaldehyde for 2-5 minutes and development was stopped with 1.46% 

EDTA for 10 minutes. Gels were finally washed 3 times, for 5 minutes each, with 

d d H 2 0 . 

2.6.5 Immunoblotting 

For immunoblotting analysis after electrophoresis, polypeptides were transferred to 

nitrocellulose membrane (Protran by Schleicher & Schuell Bioscience) for 1 hour at 

room temperature or overnight at 4°C in Transfer Buffer (25 m M Tris, 200 m M 

Glycine, pH 9.2 plus 20% Methanol) at 250 mA. Nitrocellulose membranes were 

rinsed briefly with Blot Rinse Buffer (BRB) (10 m M Tris, pH 7.4, 150 m M NaCl and 

1 m M EDTA) and incubated in BLOTTO (4% milk powder (w/v) in BRB containing 

0 .1% Tween-20) for 16 hour at 4°C or for 1 hour at room temperature with constant 

shaking. Membranes were washed three times in BRB/0.1% Tween 20, for 10 

minutes each wash and incubated with primary antibodies appropriately diluted in 

BRB/0.1% Tween 20 /1% NCS for 1 hour at room temperature with constant 

agitation. Membranes were washed again three times for 10 minutes each with 
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BRB/0.1% Tween 20 and then incubated with the appropriate HRP-conjugated 

secondary antibody for 1 hour at room temperature. After a final wash o f the 

membranes in BRB/0.1% Tween 20, bands were visualised by enhanced 

chemiluminescence using ECL reagents (Amersham Life Science) mixed at a ratio of 

1:1 v/v. 

To perform immunoblotting experiments on normal HDF, X - E D M D fibroblasts, XTC 

and X L K cell lines, cells were collected at passage 7 in 2 ml ice-cold PBS and 

centrifuged at 4000 rpm in a bench top centrifuge for 3 minutes at 4°C. Cell pellets 

were resuspended in 200 ul o f CSK buffer (10 m M Pipes-KOH, pH 6.8, 10 m M KC1, 

300 m M sucrose, 3 m M M g C l 2 , 1 m M EGTA, 1.2 m M PMSF) containing 0.5% 

Triton X-100 and 10 units/ml DNase I and incubated on ice for 7 minutes. 

Subsequently, 200 ul of 2xSDS sample buffer was added and samples were boiled, 

resolved by 1-dimensional gel electrophoresis and immunoblotted as described above. 

For immunoblotting analysis o f nuclei assembled in Xenopus egg extracts, 100 ul of 

egg extract was used with 10 3/ul sperm and incubated for 80 minutes at room 

temperature. Samples were then diluted up to 1 ml with ice-cold Extraction Buffer, 

layered over 500 ul o f SNIB/30% Sucrose and centrifuged at 4000g for 10 minutes. 

The nuclei containing pellets were suspended in 10 ul lx SDS-sample buffer, boiled, 

analysed by 1-D SDS-PAGE and immunoblotted. When fractionated Xenopus egg 

extracts were used, NEP-A, NEP-B and cytosolic samples were mixed with an equal 

volume of 2x SDS sample buffer and used for 1-D gel electrophoresis and Western 

blotting. 
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2.7 Indirect Immunofluorescence 

For immunofluorescence analysis o f cells, normal HDF, Xenopus XTC and X L K 

cells were grown on 13 mm glass coverslips until 70 -80% confluence, fixed in 3.5% 

Para-formaldehyde in lxPBS for 10 minutes, permeabilised by incubation in PBS 

containing 0.5% Triton X-100 for 5 minutes at 4°C and washed twice in l x PBS for 

five minutes at room temperature. For two antibodies only, the P-tubulin and 

pericentrin antibody, normal and X - E D M D HDF were fixed with ice-cold 

methanol:acetone (1:1) for 5 minutes at 4°C, washed with l x PBS and then incubated 

with the primary antibodies. 

For immunofluorescence analysis o f nuclei assembled in Xenopus egg extracts, after 

assembly, nuclei were fixed with the cross linking agent ethylene glycol bis-(succinic 

acid N-hydroxysuccinimide ester) or EGS (50 ul EGS diluted in 5 ml o f 1/3 strength 

of Extraction Buffer) for 30 minutes at 37°C. 100 ul o f each sample were then layered 

over 300 ul o f SNIB containing 30% Sucrose in a cytology chamber at the bottom of 

which a coverslip was attached using wax. Nuclei were centrifuged onto the 

coverslips at 4000g for 10 minutes. Coverslips were removed by melting the wax on a 

hotplate, air-dried for 5 minutes and incubated with the primary antibody. 

Primary antibodies were applied for 1 hour at room temperature in a humidified 

chamber, and coverslips were washed 5 times in l x PBS. Secondary FITC- or 

TRITC-conjugated antibodies were applied 1 hour at room temperature in the dark 

and coverslips were washed five times in lx PBS. Chromatin was visualised with 
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DAPI mounted in Mowiol (12% Mowiol , Calbiochem, 30% glycerol, 120 m M Tris-

HC1, pH 8.5, 2.5% DABCO, 1 (.ig/ml DAPI). 

2.8 Antibodies 

A list of all antibodies used in this work is shown in Table 2.1. 

2.9 Microscopy 

Slides were viewed using a Zeiss Axioplan fluorescence microscope fitted wi th a 40X 

and a 100X/1.30 oil immersion Plan-NEOFLUAR lens. Images were collected using a 

12 bit CCD camera using the I P L A B Spectrum software. 

For imaging o f Microtubules in cells confocal laser scanning microscopy was 

employed. A LMS 510 M E T A (Zeiss) microscope equipped with 40X and 63X/1.10 

lens was used. Z-series were collected in Multi-track Mode averaging the background 

4 times at a scan speed o f 500 lines per minute and a resolution o f 1024 x 1024. 

A l l montages were assembled in Adobe Photoshop 6.0. 
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2.10 Identification of Xenopus emerin 

2.10.1 Purification of the LAP12 antigen 

The antigen recognised by antibody LAP 12 on the NEP-A vesicle population was 

attempted to be identified by aff ini ty chromatography purification by two main 

approaches, one based on protein G beads and another one based on anti-mouse IgG 

beads. 

For the protein G beads purification a Sepharose 4B Fast Flow (Sigma, Catalog 

number P3296) column was used prepared with recombinant streptococcal protein G 

expressed in E. coli from which the albumin-binding region has been genetically 

altered. The beads, which were provided as a suspension in 20% ethanol, were 

cyanogen bromide activated with a 1 atom spacer arm and a binding capacity o f >20 

mg human IgG per ml. 

The anti-mouse IgG beads were obtained from Calbiochem (Catalog number 121937, 

2 ml). This column consisted o f beaded agarose matrix, which had 1-2 mg of affini ty 

purified anti-mouse IgG/ml immobilised and was provided as a suspension in PBS 

containing 0.02% NaNj . 

A l l purifications were performed in eppendorf tubes where different buffers were 

added and mixed with the beads by pippeting up and down gently. After each step 

beads were collected by a slow centrifugation at 500 rpm for 5 minutes at 4°C. The 

purification involved the following steps: 
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i. LAP12 binding to the beads: For the purification, 150 | i l of beads were 

transferred in an eppendorf tube and washed four times with 500 ul of 100 m M 

Na 2 HP0 4 , pH 6.8 to remove the ethanol. After the final wash 150 ul of the LAP 12 

antibody were mixed with 150 u.1 o f 100 m M Na2HP0 4 , pH 6.8, added to the beads 

and incubated for 2 hours at room temperature on a roller. Non-specifically bound 

antibodies were washed o f f with 500 ul of 100 m M Na 2HP04, pH 6.8 containing 140 

m M NaCl. This step was repeated four times. 

ii. Incubation with NEP-A extract: 100 ul o f NEP-A vesicles where thawed and 

diluted 1:10 with l x PBS, pH 7.5 containing 1% Triton X-100 detergent to solubilise 

membrane bound proteins. In order to investigate the optimum conditions for the 

antigen-antibody interaction to take place, membranes were also extracted under 

varying pH conditions and also in presence o f detergents other than Triton-X 100. 

Specifically, NEP-A membranes were extracted with l x PBS pH 7.5 containing 0 .1% 

SDS or 0.5% Tween 20, and with l x PBS containing 1% Triton-X 100 at pH 6.5, 7.5 

or 8.5. The NEP-A extract was then added to the beads together with Protease 

Inhibitor Cocktail (1:100) and incubated overnight at 4°C or for two hours at room 

temperature on a roller. To remove any non-specifically bound material beads were 

washed three times with 500 ul o f l x PBS/0.1% Triton X-100, two times with l x 

PBS/0.1% Triton X-100/0.02% SDS and one time with Ix PBS/0.1% Triton X-100/1 

M NaCl. 

iii. Elution of antigen-antibody complexes: Antigens that were specifically bound 

to the antibody were eluted with 250 ul o f 50 m M Glycine pH 2.3. This step was 

repeated four times. 1 ml elution fractions were collected. A small aliquot o f each 

fraction was removed for SDS-PAGE analysis and the rest was snap frozen in liquid 
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nitrogen and stored at -80°C. Alternatively, elution was attempted with 6 M Urea, 

with 100 m M Orthophosphoric acid pH 12.5 and with 1.5 M KSCN. 

In order to investigate the optimal conditions for the LAP12 antigen purification 

protein G beads were also used in conjunction with the cross-linking reagent 

glutaraldehyde. For the IgG beads the cross-linking step with glutaraldehyde was 

always necessary. In these occasions, after the LAP 12 binding step, the beads were 

incubated with an equal volume of 100 m M N a 2 H P 0 4 pH 6.8/140 m M NaCl/0.02% 

glutaraldehyde for two hours at room temperature on a roller. Subsequently, an equal 

to the beads volume of l x PBS containing 200 m M ethanolamine, pH 7.5 was added. 

Beads were incubated with ethanolamine for one hour at room temperature and 

washed two times with three column volumes o f l x PBS. The rest of the procedure 

involving addition o f NEP-A, washing o f non-specific binding and elution, was as 

described above. 

2.10.2 Production and affinity purification of antibody aE70 

An antibody against the first seventy amino acids o f human emerin was raised in 

rabbit and kindly provided by Dr Rzepecki. The polyclonal serum was used for 

further purification o f the antibody by affini ty chromatography using a HiTrap NHS-

activated HP, 1 ml column (Amersham Biosciences). The column consists o f highly 

cross-linked agarose beads with six atoms spacer arms attached to the matrix by 

epichlorohydrine and activated by N-hydroxysuccinimide (NHS). It is designed for 

the covalent coupling o f ligands containing primary amino groups and it is provided 
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in 100% isopropanol to prevent deactivation o f the NHS groups. The purification o f 

the aE70 antibody involved the following steps: 

i. Setting up the column: Just before use the top-cap o f the column was removed and 

a drop o f ice-cold 1 m M HC1 was applied to avoid air bubbles. The HiTrap luer 

adaptor was connected to the top of the column and the twist-off end was removed. 

Isopropanol was washed out by applying 6 ml o f ice-cold 1 m M HC1 to the column. 

A l l buffers were applied using a 10 ml syringe connected to the luer adaptor at the top 

of the column and at a f low rate o f V% drop/second. 

ii. Binding of the antigen to the column: Human emerin peptide 1-70, purified 

previously on a Ni + 2 -bead column, was defrosted and dialysed against 2 It o f Standard 

Coupling Buffer (0.2 M NaHCCh, pH 8.3). Dialysis was performed at room 

temperature for three hours with three buffer changes, one every hour. The antigen 

was used at a concentration o f 5 mg/ml in a final volume of 1 ml and was injected in 

the column immediately after the isopropanol was washed out. The column was then 

sealed and incubated for 30 minutes at +25°C. 

iii. Washing and deactivation: A series o f washes with Buffer A (0.5 M 

ethanolamine, 0.5 M NaCl, pH 8.3) and Buffer B (0.1 M acetate, 0.5 M NaCl, pH 4) 

was used in order to deactivate any excess NHS groups that had not coupled to the 

antigen and to wash out the non-specifically bound antigens. The buffers were 

injected in the column in the following order: 6 ml Buffer A, 6 ml Buffer B and 6 ml 

Buffer A. The column was left for 30 min at room temperature at this stage and the 

washes continued wi th the injection o f 6 ml Buffer B , 6 ml Buffer A and 6 ml Buffer 

B. The pH of the column was then neutralised by washing with 10 ml o f 10 m M Tris, 

pH 7.5. 
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iv. Binding of aE70 antibody to the column: 1.5 ml of the rabbit polyclonal serum 

was diluted 1:10 in 10 m M Tris, pH 7.5 and applied to the column. The antibody was 

passed through the column three times at a very slow f low rate to ensure maximum 

binding. 

v. Washing: Non-specifically bound antibody molecules were washed out with 20 ml 

of 10 m M Tris, pH 7.5 followed by 20 ml o f 10 m M Tris, pH 7.5 containing 500 m M 

NaCl. 

vi. Elution: Antibody elution was performed under low and high pH conditions 

(Harlow and Lane, 1988). Antibodies bound by acid sensitive interactions were 

eluted with 10 ml of 100 m M Glycine pH 2.5. 1 ml fractions were collected in 

eppendorf tubes containing 100 ul o f 1 M Tris pH 8.0 in order to neutralise the pH of 

the elution fractions. The column was then washed with 10 ml o f 10 m M Tris pH 8.8. 

Antibodies bound by base sensitive interactions were eluted with 10 ml o f 100 m M 

Triethylamine pH 11.5. Again 1 ml fractions were collected in tubes containing 100 

u l o f 1 M T r i s pH 8.0. 

The absorbance of all elution fractions at 280 nm was measured using a 

spectrophotometer. A l l elution fractions were dialysed separately against l x 

PBS/0.02% N a N 3 overnight at 4°C. Next day elution fractions were further dialysed 

for 4 hours wi th two buffer changes and stored separately at 4°C. 

2.10.3 Sequence similarity between human and Xenopus emerin amino acids 1-70 

A nucleotide sequence corresponding to Xenopus emerin can be accessed from the 

National Centre for Biotechnology Information (NCBI at www.ncbi.nlm.nih.gov) 
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database (Accession Number BG407317). The sequence, which corresponds only to 

the first 507 nucleotides of emerin, was imported into BioEdit Sequence Alignment 

Editor, version 5.0.9 and translated. The first 70 amino acids of Xenopus emerin were 

subsequently inserted into BioEdit together with the first 70 amino acids o f human 

emerin and a consensus sequence was created displaying the amino acids that are 

identical between the two sequences and their position. 

2.11 Identification of new binding partners of emerin 

2.11.1 Investigation of emerin binding partners in Xenopus egg cytosol by co-

precipitation experiments. 

In order to identify new potential binding partners for emerin the four protein 

constructs consisting o f amino acids 1-70, 1-176, 1-220 and 73-180 were freshly 

expressed, extracted and purified, as described in section 1, and immediately 

incubated with cytosol derived from fractionated Xenopus egg extract in an 

Immunoprecipitation procedure. For this experiment, both, emerin peptides purified 

in their native form and peptides refolded after purification in Urea, were used. 

Specifically, for each emerin peptide, immediately after its purification, the protein 

concentration o f each elution fraction was determined using the Bradford microassay 

procedure, and a volume corresponding to 250 ug was dialysed against M E B for 3 

hours at room temperature using the Microdialyser. 
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Each emeriti construct (250 ug protein/50 ul beads) was then allowed to re-bind to 

Ni 1 " 2 - beads for 15 minutes at room temperature. The N i + 2 - beads prior to emerin 

binding were washed four times wi th 200 ul o f M E B and incubated with 200 ul o f 

M E B containing 20 m M Imidazole and 1 mg/ml BSA for 15 minutes on a roller in 

order to reduce any non-specific binding. A l l co-precipitation steps were performed in 

eppendorf tubes in a batch method. 

Once emerin was bound to the beads 100 ul of Xenopus cytosol diluted 1:4 in M E B 

containing 10 m M Imidazole was added and incubated with the beads for four hours 

at 4°C on a roller. Beads were subsequently collected and washed two times with 500 

ul o f M E B containing 100 m M NaCl and 20 m M Imidazole for 15 minutes at 4°C on 

a roller and one time with 500 ul o f MEB containing 250 m M NaCl and 20 m M 

Imidazole for 15 minutes at 4°C on a roller. Emerin constructs together with any 

bound cytosolic components were eluted with 100 ul o f MEB containing 250 m M 

NaCl and 250 m M Imidazole. Four elution fractions were collected, pooled together 

and precipitated by the addition o f 1.5 ml o f ice-cold acetone for one hour on ice. 

Samples were centrifuged at 14,000g for 10 minutes, pellets were re-suspended in 40 

ul o f l x SDS sample buffer, boiled and analysed by one dimensional SDS-PAGE 

electrophoresis on 12% and 15% gels. Alternatively, after acetone precipitation 

samples were centrifuged at 14000g for 10 minutes and pellets were resuspended in 

125 ul Lysis Buffer (3 M Urea/2 M Thiourea/4% CHAPS). Samples were incubated 

with the Lysis Buffer for 2 hours at room temperature t i l l pellets were completely 

solubilised and processed by 2-D gel electrophoresis. Gels were stained by Colloidal 

Coomassie overnight or Silver stained. 
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As a control, Ni - beads were incubated with cytosol alone diluted 1:4, in the 

absence of any emerin construct. Washing, elution and precipitation o f elution 

fractions was performed exactly as described above. 

2.11.2 Identification of emerin binding partners by M A L D I - T O F Mass 

Spectrometry 

Matrix-assisted laser desorption/ionisation time-of-flight ( M A L D I - T O F ) Mass 

spectrometry was employed for the identification o f emerin binding proteins via 

peptide mass fingerprinting. 

Specifically, 1-D and 2-D gels were carefully examined and any bands or spots that 

could correspond to emerin interacting proteins were picked from the gel and 

subjected to trypsin digestion. The trypsin digestion, mass spectrometry and database 

search for the identification o f emerin binding proteins were performed by the staff o f 

the Proteomics facility at the University o f Durham. 

Tryptic digestion was performed on a ProGest Workstation f rom Genomic solutions 

using the standard ProGest long trypsin protocol. Briefly, gel spots were washed in 25 

m M bicarbonate buffer and destained and desiccated in concentrated acetonitrile. The 

gel pieces were rehydrated in 50 m M bicarbonate buffer and the protein spot was 

reductively alkylated with D T T and iodoacetamide. After several washes in 

bicarbonate buffer, 200 ng/sample o f buffered modified trypsin was added and 

digestion performed for 8 hours at 37°C. Following digestion the peptide extracts 

were lyophilised in a vacuum concentrator, resuspended in 10 ml 0 .1% formic acid 
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and introduced into a Voyager DE-STR (Applied Biosystems) mass spectrometer. A l l 

M A L D 1 spectra acquired were internally calibrated using the trypsin autolysis peaks 

842.5 and 2211.11 m/z present in the spectra. The generated peptide masses for each 

sample (fingerprints) were then matched to theoretical tryptic digests o f proteins from 

a complete non-redundant human NCBInr database. The database search was 

performed using the MASCOT (www.matrixscience.com) software at a mass 

accuracy o f 50 parts per mill ion (ppm). During the search oxidised methionines and 

carbarmidomethyl cysteines were allowed as potential amino acid modifications. A l l 

results obtained from a MASCOT search have a MOWSE score assigned to them. 

The MOWSE score is a molecular weight search algorithm which takes into account 

the number o f peptides that match, the number o f fragment ions that match, the 

accuracy at which they match, and a weighing for large peptide matches (Pappin et 

ai, 1993). For each sample checked the protein with the highest MOWSE score is 

reported as a positive result. 

2.11.3 Investigation of the emerin-profilin interaction by the yeast two-hybrid 

system 

The interaction between emerin and profi l in was investigated by the yeast two-hybrid 

system (Fields and Song, 1989) using full-length human emerin cloned in plasmid 

pAs2 (prepared by Dr. Alvarez-Reyes M ) , which contains the Binding domain of 

GAL4, and plant profi l in 2 cloned in plasmid pAct2, which contains the GAL4 

Activating domain (kindly provided by Prof. P. Hussey). Yeast strains A H 109 and 

Y187 were used as the recipients for plasmids pAs2 and pAct2, respectively. 
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2.11.3.1 Yeast transformation 

Yeast cells AH109 and Y187 were grown on YPDA-Agar plates (20 g/L Tryptone, 10 

g/lt Yeast Extract, 20 g/lt Glucose, 1% Agar, pH 5.8, 0.003% Adenine Hemisulphate) 

at 30°C for 3 days. One to two large colonies f rom each plate were inoculated in 10 

ml of YPD medium (no agar), in 250 ml sterile flasks, overnight at 30°C with 

constant agitation at 200 rpm. Next day yeast cells were harvested in a sterile 50 ml 

Universal tube by centrifugation at lOOOg for 3 min, the supernatant was removed, 

and cells were washed in 50 ml o f sterile ddH 2 0. Cells were then collected by 

centrifugation and the pellet was resuspended in 1.5 ml o f lx LiTE buffer consisting 

o f 0.4 M Lithium Acetate in TE buffer (10 m M Tris, pH 7.5/1 m M EDTA). Cells 

were again collected and resuspended in 0.5 ml o f lx LiTE. 

Transformation reactions were set up consisting o f the following: 

100 ul o f the LiAc yeast cell suspension 

1 ug o f pi asm id D N A 

160 ug o f single-stranded salmon sperm 

10 ug DMSO 

600 ul o f l x PEG/LiTE (as 1 x L iTE but using 50% PEG 4000 as the solvent) 

The transformation mixture was incubated for 30 minutes at 30°C in a waterbath and 

cells were heat shocked by transferring them at 42°C in a water bath and incubating 

them for 30 minutes. Yeasts were collected by centrifugation and the cell pellet was 

washed with 1 ml o f sterile ddf^O. 100 |al of the transformed yeast sample was plated 

onto the appropriate SD-dropout medium (6.7 g/lt Yeast Nitrogen Base, 20 g/lt 

glucose, 1%) Agar). Transformed A H 109 cells were spread onto SD plates 
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supplemented with 0.74 g/lt -Trp and Y187 cells onto SD plates supplemented with 

0.69 g/lt -Leu . Plates were incubated at 30°C for 2-4 days until colonies appeared. 

2.11.3.2 Yeast mating and diploid selection 

For the mating o f transformed A H 109 and Y187 cells, 3 colonies from each plate 

were picked with a sterile tip and suspended separately in 30 ul o f sterile ddFhO 

(samples E l , E2 and E3 for emerin, and P I , P2 and P3 for profil in). 3 ul o f each 

emerin sample were spotted on a YPDA-A plate and left to dry for a few minutes. 3 

ul of each profi l in sample was then spotted on top o f an emerin sample in the 

following combinations: 

El - PI E 2 - P 1 E 3 - P 1 

El - P 2 E2-P2 E 3 - P 2 

El - P 3 E2 - P3 E3 - P3 

Cells were left to mate for two days at 20°C. To select for the diploids, cells from 

each combination were picked with a loop and spread separately on SD plates 

supplemented with -Leu/Trp dropout at 0.64 g/lt. Plates were incubated for 2 days at 

30°C. 

2.11.3.3 Assessment of emerin-profilin interaction 

From each SD -Leu/Trp plate, carrying yeast combinations E l - P I to E3-P3, a large 

colony was picked with a sterile tip and suspended in 30 ul o f sterile d d H 2 0 . 3 ul o f 

each combination was then spotted on 2 SD -Leu/Trp, 1 SD -Leu/Trp/His, 1 SD -

Leu/Trp/Ade and I SD -Leu/Trp/His/Ade plates in the following pattern: 



E l - P I E2 - PI E3 - PI 

E l - P 2 E2 - P2 E 3 - P 2 

E l - P 3 E2 - P 3 E3 - P3 

The above combination o f plates was necessary in order to investigate the emerin-

profil in interaction under both, medium (SD -Leu/Trp/His) and high stringency (SD -

Leu/Trp/Ade) conditions, and in order to perform a P-galactosidase assay (SD -

Leu/Trp). A l l plates were left at 30°C for 3 days for the yeast to grow. 

2.11.3.4 p-galactosidase assay 

To further investigate whether emerin and profil in interact yeast diploids that grew on 

a SD -Leu/Trp plate were used for a P-galactosidase assay. Plasmid pAs2, containing 

the DNA-binding domain o f GAL4 and emerin, had previously been tested and found 

negative for auto-activating expression o f the reporter gene (Alvarez-Reyes, 2004). 

For the P-galactosidase assay a sterile Whatman filter was placed on the surface o f the 

plate and left overnight for the yeast to adhere to the filter. Next day the filter was 

removed, submerged in liquid N 2 for 5 seconds and placed on an empty plate with the 

yeast colonies facing up. Another filter, pre-soaked in 2 ml o f Z-buffer (11.1 g/lt 

Na 2 HP0 4 -2H 2 0 , 5.5 g/lt N a H 2 P 0 4 H 2 0 , 0.75 g/lt KC1 and 0.25 g/lt M g S O y 7 H 2 0 , pH 

7.0, containing 39 m M P-mercaptoethanol and 0.33 mg/ml X-gal) was then placed on 

top. The filters were covered and kept at room temperature for the development o f 

blue colour in case o f an interaction between the proteins. 
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2.11.4 Position of Microtubule Organising Centre ( M T O C ) in normal and X -

E D M D cells 

The position o f the MTOC relative to the nucleus was observed in two normal and 

four X - E D M D fibroblast cell lines with two antibodies, one against P-tubulin and one 

against the centrosomal protein pericentrin. Cells were grown t i l l 80% confluence, 

fixed in ice-cold methanol :acetone (1:1) for 5 minutes at 4°C, washed in l x PBS and 

processed by immunofluorescence as described in section 2.7. Cells were observed 

with a Carl Zeiss live-cell imaging fluorescence microscope. 

In the P-tubulin stained cells the position o f the MTOC was visible as the brightest 

stained area from which MTs seemed to emanate towards the cell periphery. For each 

cell line, 200 cells were observed for the position o f the M T O C and scored as 'near' 

when the MTOC was attached or right next to the nucleus or as 'distant' when the 

MTOC was positioned far away from the nucleus. 

In the pericentrin stained cells centrosomes were clearly visible as circular areas in 

the cytoplasm. Parallel staining with a lamin A/C antibody (JOL2) allowed the 

measurement o f the exact distance o f the MTOC from the nuclear envelopes. For 

each cell line 200 cells were photographed in total and the closest possible distance 

from the centre of each centrosome to the nuclear envelope was measured and 

displayed in urn. The 200 measurements from each cell line were used to calculate 

the average distance o f the MTOC from the nucleus. In order to compare control and 

X - E D M D cells average distances were displayed in a graph and a paired t-test 

assuming unequal variances was performed using the excel software. Also, for each 
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cell line frequency histograms were created to show the distribution o f the data. In 

this case distances were divided in four groups: 0, 0.1-1, 1.1-3.5 and 3.5 and above 

um. For each cell line the number o f cells featuring MTOCs in the above categories 

was calculated and displayed on a graph. 
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C H A P T E R 3 

I N V E S T I G A T I O N O F E M E R I N FUNCTION 

USING T H E XENOPUS C E L L - F R E E S Y S T E M 
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3.1 I N T R O D U C T I O N 

Emerin is an inner nuclear membrane protein, which when mutated gives rise to the 

X-linked form of Emery-Dreifuss muscular dystrophy (X-EDMD) . Muscular 

dystrophies are a large and heterogenous group of disorders characterised by 

progressive loss o f muscle strength and integrity. The majority of them are caused 

either by mitochondrial defects altering the cell energy generation or by defects in the 

dystroglycan or sarcoglycan complexes leading to loss o f integrity of the muscle 

membrane (Toniolo and Minetti , 1999). 

Emerin was the first nuclear protein that was discovered to be the cause o f a muscular 

dystrophy, X - E D M D (Bione et al., 1994). Surprisingly, although expressed in most 

human tissues, absence o f emerin in E D M D patients selectively affects skeletal and 

cardiac muscle. Why a defect in a nuclear envelope protein causes muscular 

dystrophy and why the effect is seen on particular tissues only are questions with still 

no definite answers. 

The majority o f X - E D M D cases are caused by mutations which lead to a complete 

loss o f emerin. It seems, thus, that understanding the function o f einerin and its 

interactions under normal conditions is an important step in elucidating the disease 

mechanism. Recent work has identified several binding partners for emerin. The best 

characterised interactions so far include lamins A/C (Clements et al., 2000; Vaughan 

et al., 2001) and a chromatin associated protein called Barrier-to-autointegration 

factor (Lee et al., 2001; Shimi et al., 2004). Other proposed binding partners include 

transcription factors GCL (Holaska et al., 2003), Btf (Haraguchi et al., 2004) and 
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YT521-B (Wilkinson et al., 2003) and structural proteins like nesprins (Mislow et al., 

2002; Zhang et al., 2005) and actin (Holaska et al., 2004; Lattanzi et al., 2003). 

Based on these interactions, two major hypotheses have been formulated for the 

function o f emerin. One hypothesis suggests that emerin is part o f a structural 

network that connects the nucleoplasm with the cytoplasm and provides structural 

support to the nucleus. Absence o f emerin could lead to the destabilisation or 

weakening o f this complex affecting the mechanical stability of the nuclear 

membrane. This could have devastating effects on tissues that are under rigorous 

movements and mechanical stress like skeletal and cardiac muscles. Interactions of 

emerin with lamins, which form a load-bearing complex in the inner side of the 

nuclear envelope, and wi th nesprins, which are large proteins spanning the nuclear 

envelope and connecting emerin with the cytoskeleton are in support to this model. 

On the other hand, emerin is proposed to anchor chromatin at the nuclear periphery 

via its interaction with chromatin protein BAF and detachment o f chromatin in X-

E D M D cells has been observed (Fidzianska et al., 1998). This, combined with 

reported interactions wi th transcription factors like GCL, B t f and YT521-B led to a 

second hypothesis o f emerin as a regulator o f gene expression and chromosome 

organisation. 

In the present study, the Xenopus cell-free system was employed to investigate the 

function of emerin. Cell-free extracts derived form Xenopus laevis eggs (Lohka and 

Masui, 1983) faithfully reproduce nuclear assembly in vitro. Addition o f sperm 

chromatin in interphase extracts leads to sperm decondensation and formation of 

nuclei that are indistinguishable from nuclei formed in vivo. In general, the process 
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involves the recruitment and binding of nuclear envelope precursor vesicles to 

chromatin and vesicle fusion to form a double-layered nuclear envelope followed by 

NPC and lamina formation. 

Fractionation o f extracts by centrifugation at 150,000g, for 2 hours results separation 

o f soluble from membrane material and complete nuclear assembly was shown to 

require both, the cytosolic and membrane components (Lohka and Masui, 1984). 

Further fractionation including two centrifugation steps at 200,000g, one for 75 

minutes and another for 4 hours, revealed that the membrane components consist o f 

two vesicle populations. The two vesicle populations are called NEP-A and NEP-B 

for Nuclear Envelope Precursor fractions A and B, and have distinct roles in nuclear 

envelope assembly (Vigers and Lohka, 1991). NEP-B vesicles have the ability to 

bind chromatin and are involved in the initial targeting of membranes to chromatin. 

Also the density o f NPCs in nuclear envelopes is dependent on the abundance of 

NEP-B showing a role for them in the assembly of NPCs. Supporting that, an 

enrichment o f some nucleoporins in the NEP-B fraction has been shown. In contrast, 

NEP-A vesicles do not have the ability to bind chromatin but they can fuse to pre-

bound vesicles and are necessary, together with NEP-B and the cytosol, to form a 

complete nuclear envelope (Vigers and Lohka, 1991; Vigers and Lohka, 1992). 

The biochemically and functionally distinct nature o f NEP-A and NEP-B vesicles 

was further analysed by the production o f an antibody against NEP-B fraction and by 

an antibody against LBR (Drummond et ai, 1999). While the LBR antibody reacted 

with a protein contained in NEP-A vesicles only, called LBRx, the NEP-B antibody 

reacted with a 78 kD protein contained in the NEP-B fraction, which was named 
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NEP-B78. Nuclear assembly was shown to require both vesicle populations with 

NEP-B vesicles containing the chromatin binding ability and NEP-A vesicles the 

fusogenic ability. The vesicle-specific antibodies were also used in nuclear assembly 

reactions in Xenopus egg extracts and in kidney cells (XLK-2) . In both cases they 

showed an ordered recruitment o f vesicles around chromatin wi th NEP-B vesicles 

appearing earlier than NEP-A vesicles, further confirming the distinct nature o f the 

two populations. 

The Xenopus cell-free system was considered as an appropriate tool to investigate the 

function o f emerin because it mediates nuclear assembly by distinct steps that have 

already been characterised (Drummond et al., 1999) and it has been used successfully 

in the past to study the function o f other I N M proteins (Gant et al., 1999). In the 

present study the ordered recruitment around chromatin and distinct nature of nuclear 

envelope precursor vesicles described by Drummond et al., was confirmed by the use 

o f different antibodies. To investigate the role o f different emerin domains in this 

process, four human emerin peptides consisting o f amino acids 1-70, 1-176, 1-220 

and 73-180 were expressed in bacteria and purified. Each peptide was added to 

Xenopus nuclear assembly reactions at different concentrations and the effect on 

nuclear vesicle recruitment and NPC formation was monitored. Finally, the chromatin 

binding ability o f each peptide was tested using condensed Xenopus sperm and 

artificially decondensed Xenopus sperm by poly-glutamic acid. 
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3.2 R E S U L T S 

3.2.1 Time-course study of nuclear envelope assembly in Xenopus 

Pronuclei formation in Xenopus egg extracts was monitored in a time-course manner 

by immunofluorescence with antibodies that recognise nuclear envelope precursor 

vesicles and nucleoporins. Nuclei were allowed to assemble for 0, 10, 20, 40 and 80 

minutes at room temperature, fixed with EGS for 30 minutes at 37°C, layered over 

SNIB/30% Sucrose and centrifuged at 4000g for 10 minutes onto coverslips. During 

nuclear formation, chromatin decondensation was visualised by DAPI and 

recruitment o f FG-nucleoporins by antibody 414 (Figure 3.1). Binding of NEP-B and 

NEP-A vesicles to chromatin was monitored by antibodies 4G12 and CEL13A, 

respectively (Figures 3.2 and 3.3). 

As shown by the DAPI staining (Figures 3.1, 3.2 and 3.3), in all three cases 

pronuclear formation proceeded normally, with chromatin undergoing progressive 

decondensation with time. At 0 minutes Xenopus sperm chromatin was found in its 

characteristic thin and elongated form (panels a), which progressively decondensed 

(10 and 20 minutes, panels b and c) t i l l it acquired a round shape at 40 minutes 

(panels d). Longer incubation caused enlargement o f the nuclei (80 minutes, panels 

e). 

FG-nucleoporins, as detected by antibody 414, were recruited around chromatin at an 

early stage o f the NE assembly process, at 10 minutes (Figure 3.1 b). The first 

vesicles that appeared around chromatin belonged to the NEP-B population. Like FG-
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nucleoporins, NEP-B vesicles also bound to chromatin, at 10 minutes (Figure 3.2 b), 

whereas NEP-A vesicles appeared later, at 20 minutes (Figure 3.3 c). At 40 and 80 

minutes complete nuclear envelopes could be observed (Figures 3.1, 3.2, 3.3, d and 

e). The above results confirm, by the use o f a different set o f antibodies, the sequence 

reported by Drummond et al. according to which NEP-B vesicles appear early around 

chromatin and are followed by NEP-A vesicles. 
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Figure 3.1: N P C formation during nuclear assembly in Xenopus egg extracts. 

Nuclei were assembled at room temperature and stained at several time points, 

ranging from 0 to 80 minutes, with antibody 414 (FITC). The first nucleoporins 

around chromatin were observed at 10 minutes (b). At 20 minutes (c) recruitment of 

nucleoporins had increased and at 40 and 80 minutes (d and e) a rim staining was 

observed. Chromatin decondensation was visualised by DAPI. Bar is 10 pirn. 
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Figure 3.2: Recruitment of NEP-B vesicles to chromatin during nuclear 

assembly in Xenopus egg extracts. 

Nuclei were allowed to assemble for 0, 10, 20, 40 and 80 minutes and stained with 

antibody 4G12 (FITC), which recognises protein NEP-B78. The NEP-B population 

showed a recruitment pattern similar to that of nucleoporins. The first vesicles 

appeared around chromatin at 10 minutes (b), an increased staining was observed at 

20 and 40 minutes (c and d) and a complete rim staining at 80 minutes (e). Chromatin 

was visualised by DAPI. Bar is 10 jum. 
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Figure 3.3: Recruitment of NEP-A vesicles to chromatin during nuclear 

assembly in Xenopus egg extracts. 

Nuclei were allowed to assemble for 0, 10, 20, 40 and 80 minutes and stained with 

antibody CEL13A (FITC). As for NPCs and NEP-B vesicles an increased staining 

with time was observed. However, the first NEP-A vesicles appeared around 

chromatin at a later stage, after 20 minutes of initiation of nuclear assembly (b). At 

40 and 80 minutes a rim staining was observed (d and e). Chromatin was visualised 

by DAPI. Bar is 10 urn. 
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3.2.2 Purification of emerin deletion mutants 

3.2.2.1 Expression 

Human emerin constructs consisting of amino acids 1-70, 1-176, 1-220 and 73-180 

contained in pET29b vectors were expressed in bacteria cells for 4 hours after 

induction with 1 mM IPTG and collected by centrifugation. Bacteria pellets were 

snap frozen in liquid N 2 and stored at -80°C. A schematic representation of the four 

peptides is shown in Figure 3.4. 

3.2.2.2 Extraction 

Bacteria pellets were suspended in Basic Buffer containing 0.1% Tween 20, sonicated 

and collected again by centrifugation. Pellets were subjected to sequential extractions 

with Basic Buffer containing 1% Triton X-100 and Basic Buffer containing 8 M 

Urea. Aliquots of the supernatants after sonication and supernatants after Triton and 

Urea extractions were analysed by SDS-PAGE (Figure 3.5). 

As the figure shows the majority of peptide 1-70 was released in the Sonicate (Figure 

3.5 a, lanes 2 and 5) and only a small fraction was released after the Triton and the 

Urea extraction (Figure 3.5 a, lanes 3-4 and 6-7). For the rest of the peptides, 

although a considerable amount was released in the Sonicate and the Triton 

supernatant, the majority was solubilised with Urea (Figure 3.5 b, c and d, lanes 4 and 

7). 
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Figure 3.4; A schematic presentation of the four emerin deletion mutants 

used in this study. 

The four emerin peptides consisting of amino acids 1-70, 1-176, 1-220 and 73-

180 are shown compared to full-length emerin which is shown at the top. 

Regions corresponding to the BAF and lamin A binding domains are indicated 

with bars. Important domains like the LEM domain (aa 1-40), the serine-rich 

region (aa 170-200) and the transmembrane domain (TM) (aa 223-243) of 

emerin are also shown. 
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Figure 3.5: Extraction of human cmerin peptides 1-70, 73-180, 1-176 and 1-220. 

Bacterially expressed emerin peptides were extracted in sequential steps with Basic 

Buffer in presence of0.1% Tween 20 (lanes 2 and 5), 1% Triton X-100 (lanes 3 and 

6) and 8 M Urea (lanes 4 and 7). Aliquots were analysed by SDS-PAGE and gels 

were stained with Coomassie (lanes 1-4) or transferred to nitrocellulose and analysed 

by Immunoblotting with NCL-Emerin antibody (lanes 5-6). Pre-stained markers and 

their corresponding molecular weights in kD are shown in lanes 1. 
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3.2.2.3 Purification 

Purification of the peptides was performed under native conditions by Immobilised 

Metal Affinity Chromatography (IMAC), using Ni+2-beads that specifically recognise 

the histidine-tag. For each peptide supernatants after sonication and Triton extraction 

were pooled together and incubated with the beads. The flowthrough was collected in 

order to check whether sufficient binding of all peptides to the column had occurred. 

Beads were then washed to remove any unbound and non-specifically bound material 

and peptides were eluted with 6 ml elution buffer. 1 ml elution fractions were 

collected. Two aliquots of each elution fraction were removed: one for SDS-PAGE 

analysis and one for determination of protein concentration by the Bradford 

Microassay procedure. 

SDS-PAGE analysis of the elution fractions showed that all peptides were 

successfully eluted at their expected molecular weight (Figure 3.6) and were mainly 

concentrated in elution fractions 2 and 3 (lanes 11 and 12). A doublet of proteins of 

about 70 kD co-purified with all emerin peptides. Mass spectrometric analysis (as 

described in Chapter 5) identified one as a member of the E. coli Heat Shock Protein 

family (HSP70) (Figure 3.6, lanes 3-8). 

For each protein construct the elution fraction with the highest protein concentration 

was dialysed against Pfaller buffer using the microdialyser system, aliquoted in 20 ul, 

snap frozen in liquid nitrogen and stored at -80°C till further use. 
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Figure 3.6; Purification of emerin peptides 1-70, 1-176, 1-220 and 73-180. 

All emerin peptides were purified in their native conformation by affinity 

chromatography. 6 elution fractions were collected and aliquots analysed by SDS-

PAGE. Gels were stained with Coomassie (lanes 1-8) or Immunoblotted with 

antibody NCL-Emerin (lanes 9-15). Lanes 3-8 and 10-15 correspond to elution 

fractions 1-6. The collected flowthrough for each peptide is shown in lanes 2and 9. 

Markers and the molecular weights corresponding to them are shown in lanes 1. 
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3.2.2.4 Determination of the molecular weight of the emerin peptides 

To calculate the molecular weight of the emerin peptides according to their 

electrophoretic mobility, all peptides were resolved on a 15% SDS gel and 

detected by Immunoblotting with an emerin specific antibody (NCL-Emerin by 

Novocastra). The U V I band software was then used to divide the blot in five 

lanes: Lane 1 for the markers and lanes 2, 3, 4 and 5 for emerin 1-70, 73-180, 1-

176 and 1-220, respectively (Figure 3.7). The bands corresponding to the 

markers and emerin peptides were selected. After a molecular weight value in 

kD was assigned to each marker band, the software calculated and displayed a 

value for each emerin peptide (in kD). The relative molecular weights (Mr), as 

calculated by the software, for emerin 1-70, 73-180, 1-176 and 1-220 were 8.773 

kD, 13.090 kD, 29.478 kD and 30.104 kD, respectively. 

The molecular weights of the emerin peptides were also calculated based on 

their amino acid composition. The four sequences were entered in the ProtParam 

website of ExPASy (http://iis.expasy.org/tools/protparam.html) which returned 

the following values for the peptides: 

Emerin 1-70: 8018.8 Daltons 

Emerin 73-180: 12446.3 Daltons 

Emerin 1-176: 20204.8 Daltons 

Emerin 1-220: 24898.9 Daltons 

The above results are in agreement with full-length emerin whose Mr (34 kD) is 

always higher than the predicted one from its amino acid composition (29kD). 
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Figure 3.7: Calculation of the apparent molecular weights of emerin peptides 

using the UVI band software. 

Aliquots of all emerin peptides were immunoblotted with NCL-Emerin antibody and 

the blot was used with the UVI band software, which assigned a molecular weight to 

each peptide relatively to markers with known molecular weights (lane 1). Lanes 2, 3, 

4 and 5 correspond to emerin peptides 1-70, 73-180, 1-176 and 1-220, respectively. 
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3.2.2.5 Bradford Microassay on emerin elution fractions 

The concentration of all elution fractions was determined by the Bradford Microassay 

procedure. A standard curve was firstly prepared with dilutions of BSA ranging from 

0 to 50 ug. The absorbance at 595 nm was plotted against the ug of the samples and a 

line-of-best-fit with the equivalent equation was applied (Figure 3.8). 

10 ul of each elution fraction were appropriately diluted (in 790 ul of H 2 0 and 200 ul 

of concentrated dye) and the absorbance at 595 nm was measured. The amount in ug 

contained in the 10 ul of each sample was calculated using the equation displayed on 

the standard curve. The concentration of each sample was found by multiplying the 

ug values by 10. 

The protein concentration was then used to calculate the molarity of each elution 

fraction by dividing the mg/ml value by the molecular weight of each construct. The 

results of the Bradford Microassay procedure for each elution fraction and the 

molarity values are shown in Table 3.1. 
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a. 

BSA (ug) ODS95 (nm) 

0 0 

5 0.307 

10 0.524 

20 0.964 

40 1.341 

50 1.465 

b. 

60 
y=29.173x 

50 

2 40 

.S2 30 

S 20 
CD 

10 

1 1.5 
OD 595 

Figure 3.8: Bradford standard curve used for calculation of protein 

concentrations. 

a: for the standard curve 5 dilutions of BSA were prepared and the absorbance of 

each at 595 nm was calculated using a spectrophotometer. 

b: the standard curve was produced by plotting the amount of BSA (jug) against the 

OD595. 
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3.2.3 Effect of emerin mutants on nuclear envelope assembly 

The effect of each emerin deletion mutant on nuclear envelope assembly was 

investigated in typical nuclear assembly reactions consisting of unfractionated 

Xenopus egg extract (LSS), Xenopus sperm and energy. The emerin mutants were 

included in the reactions at three different concentrations: a low concentration of 0.5 

uM, an intermediate concentration of 4 uM and a high concentration of 8 uM. This 

way, competition experiments were established in which the exogenously added 

emerin would compete with the endogenous emerin for binding partners during the 

nuclear assembly process. 

Pronuclei were allowed to assemble for 80 minutes at 21°C, fixed with EGS for 30 

minutes at 37°C, layered over SNIB/30% Sucrose and centrifuged at 4,000g for 10 

minutes onto coverslips. As a control assembly reactions consisting of LSS, sperm 

and energy, in absence of any emerin mutant, were used. 

The assembly of the nuclear envelope was investigated with two antibodies that 

specifically recognise proteins contained in nuclear envelope precursor vesicles A and 

B (NEP-A and NEP-B). The effect of emerin constructs consisting of amino acids 1-

70, 1-176, 1-220 and 73-170 are shown in Figures 3.9, 3.10, 3.11 and 3.12, 

respectively. 

As shown in the figures, when emerin peptides were added at a concentration of 0.5 

uM chromatin decondensation occurred normally (compare Figures 3.9 - 3.12, a and 
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b versus control). Similarly, there was no effect on vesicle binding to chromatin as 

shown by antibodies 4G12 and CEL13A (Figures 3.9 - 3.12, a and b). 

However, at higher concentrations (4 uM and 8 uM) mutants 1-70 and 1-176 showed 

a strong inhibitory effect on nuclear envelope precursor vesicle recruitment to 

chromatin and chromatin decondensation. Both mutants preferentially inhibited NEP-

A binding, since at 4 uM NEP-A was almost absent from the surface of chromatin, 

whereas NEP-B was largely unaffected (Figures 3.9 and 3.10, c and d). At 8 uM 

NEP-B was depleted from the surface of chromatin but still to a lesser extend than 

NEP-A (Figures 3.9 and 3.10, e and f). 

In contrast, emerin mutants 1-220 and 73-180 had little or no effect on nuclear 

assembly (Figures 3.11 and 3.12, c and d). 
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Figure 3.9: Effect of emerin 1-70 on nuclear assembly in Xenopus egg extracts. 

Human emerin 1-70 was added to assembling nuclei at three concentrations: 0.5 /xM 

(a and b), at 4 (c and d) and at 8 fiM (e and f ) . Monitoring of NE vesicle 

recruitment to chromatin was achieved with two antibodies: 4G12 for NEP-B vesicles 

(a, c, e and g) and CEL13A for NEP-A vesicles (b, d, f and h). Chromatin was stained 

with DAPI. Bar is 10 pm. 
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Figure 3.10: Effect of emerin 1-176 on nuclear assembly in Xenopus egg extracts. 

Human emerin 1-176 was added to assembling nuclei at three concentrations: 0.5 /uM 

(a and b), at 4 pM (c and d) and at 8 /JM (e and f ) . Monitoring of NE vesicle 

recruitment to chromatin was achieved with two antibodies: 4G12 for NEP-B vesicles 

(a, c, e and g) and CEL13A for NEP-A vesicles (b, d, f and h). Chromatin was stained 

with DAPI. Bar is 10 jum. 
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Figure 3.11: Effect of emerin 1-220 on nuclear assembly in Xenopus egg extracts. 

Human emerin 1-220 was added to assembling nuclei at two concentrations: 0.5 /uM 

(a and b) and 8 juM (c and d). Monitoring of NE vesicle recruitment to chromatin was 

achieved with two antibodies: 4G12 for NEP-B vesicles (a, c, and e) and CELI3A for 

NEP-A vesicles (b, d and f ) . Chromatin was stained with DAPI. Bar is 10 /um. 
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Figure 3.12: Effect of emerin 73-180 on nuclear assembly in Xenoyus egg 

extracts. 

Human emerin 73-180 was added to assembling nuclei at two concentrations: 0.5 /xM 

(a and b) and 8 fiM (c and d). Monitoring of NE vesicle recruitment to chromatin was 

achieved with two antibodies: 4G12 for NEP-B vesicles (a, c, and e) and CEL13A for 

NEP-A vesicles (b, d and f ) . Chromatin was stained with DAPI. Bar is 10 pirn. 
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3.2.4 Effect of emerin mutants on Nuclear Pore Complex assembly. 

The effect of the four emerin mutants on nucleoporins recruitment to chromatin was 

assessed using two antibodies: 414, which recognises four FG-repeat nucleoporins 

(p62, Nupl53, Nup214 and Nup358), and Nupl07, which recognises nucleoporins 

present in the very early stages o f NPC assembly. 

As for NEP-vesicle recruitment, nuclei were allowed to assemble for 80 minutes at 

21°C, in the presence of 0.5 u M , 4 \JLM and 8 u M of emerin mutant peptides, fixed 

with EGS, layered over SNIB/30% Sucrose and centrifuged at 4000g for 10 minutes 

onto coverslips. 

Staining with antibody 414 revealed that in control nuclei FG-nucleoporins displayed 

a nuclear r im staining (Figure 3.13, k). At 0.5 u M none of the emerin mutants 

inhibited the accumulation o f FG-nucleoporins at the NE (Figure 3.13 a, d, g and i ) . 

Chromatin decondensation was inhibited with higher concentrations o f mutants 1-70 

and 1-176. However, 414 staining was only reduced at the highest concentration o f 8 

\iM (Figure 3.13, c and f)- Thus, the effects o f 1-70 and 1-176 on NPC assembly (as 

detected by antibody 414) were very similar to the effects on NEP-B vesicles. In 

contrast to peptides 1-70 and 1-176, peptides 1-220 and 73-180 did not inhibit 

chromatin decondensation or NPC formation even when added at 8 u M (Figure 3.13 

h and j ) . 
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Figure 3.13; Effect of emerin peptides 1-70. 1-176. 73-180 and 1-220 on N P C 

assembly in Xenopus egg extracts. 

Emerin peptides 1-70 (a-c), 1-176 (d-j), 73-180 (g-h) and 1-220 (i-j) were added to 

assembling nuclei at 0.5 y.M (a, d, g and i), at 4 juM (b and e) and at 8 juM (c, f h and 

j). To monitor recruitment of nucleoporins around chromatin all nuclei were stained 

with antibody 414 (FITC). Control reactions contained nuclei assembled in absence 

of any exogenous emerin (k). Chromatin was visualised with DAP1. Bar is 10 pm. 
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Nuclei with the condensed chromatin phenotype were further characterised for the 

specific type of nucleoporins that were recruited to them (Figure 3.14 a). Nuclei were 

allowed to assemble for 80 minutes at room temperature in presence o f 8 uM of 

emerin 1-70 and 1-176 (Figure 3.14 a, lanes 3 and 4, respectively), centrifuged 

through SNIB/30% Sucrose and the pelleted nuclei were analysed by immunoblotting 

with antibody 414 which recognises four nucleoporins: Nup358, Nup214, Nupl53 

and p62. 

Two control reactions were run in parallel. In lane 1, chromatin was incubated in 

Xenopus egg extract in absence of any emerin peptide. In lane 2, egg extract was 

analysed in absence of emerin and sperm to see whether any nucleoporins could 

pellet without being associated with chromatin. 

As the figure shows at 8 uM the main inhibitory action o f the emerin mutants was, 

firstly, on Nupl53 and, secondary, on p62. Nucleoporins 214 and 358 were not 

affected. Densitometric analysis of the bands was performed for the quantification o f 

the above results. U V I band software was used to calculate the intensity o f all bands. 

The software assigned to each band a volume number, which corresponds to the sum 

of intensities o f the pixels o f the band. The intensities o f the control bands (Figure 

3.14 a, lane 1) were then set as the maximum (100%) intensities. The intensity of the 

bands in presence o f 8 u M emerin 1-70 and 1-176 was calculated as a percentage 

relatively to the control intensities. Quantification shows that more than 95% of 

nucleoporins 358 and 214 were detected around chromatin in inhibited nuclei 

compared to the controls. Nupl53 was the most severely affected since only 18-
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23.7% o f the protein was recruited in inhibited nuclei. p62 was also significantly 

affected since the amount detected in inhibited nuclei was only 55.6-61.4% of the 

normal levels in the control reaction (Figure 3.14 a). 

To test whether early stages o f NPC assembly were affected in inhibited nuclei, 

immunofluorescence analysis using the Nupl07 antibody was performed on nuclei 

assembled in presence of 8 u M of emerin 1-70 and 1-176 (Figure 3.14 b). In both 

cases although chromatin had a condensed phenotype as expected, recruitment o f the 

Nupl07 complex nucleoporins was not inhibited. 
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Figure 3.14: Analysis of N P C assembly on emerin inhibited nuclei. 

Nuclei assembled in presence of 8 /aM of emeriti 1-70 and 1-176 were analysed by 

Iinmunoblotting with antibody 414 (a) and by Immunofluorescence with antibody 

Nupl07 (b). 

(a) : Immunoblotting analysis with antibody 414 showed reduced amounts of Nupl53 

and p62 in presence of emerin 1-70 and 1-176 (a, lanes 3 and 4, respectively). No 

effect was observed on Nup358 and Nup214 compared to controls (a, lanes 1 and 2). 

Densitometric analysis of the bands is shown in the table underneath the blot. Volume 

numbers correspond to the sum of the intensities of the pixels of each band as given 

by the UVI band software. The intensities of the control bands (lane 1) are set as 

100%. The intensities of the bands in the inhibited nuclei are calculated as a 

percentage relatively to the control bands. For p62 final intensity volumes were 

calculated by subtracting the intensity of the band in the negative control (lane 2) 

from the bands in lanes 1, 3 and 4. The extremely reduced levels ofNupl53 and p62 

compared to control reactions are highlighted in bold. LI, L2, L3 and L4 correspond 

to Lane 7, Lane 2, Lane 3 and Lane 4, respectively. 

(b) : Recruitment of pre-pore nucleoporins was not inhibited as shown by 

Immunofluorescence with Nupl07 antibody (FITC). Chromatin was stained with 

DAPI. Bar is 10 fim. 
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— — Nup 214 

™ Nup 153 

Lane 1 2 3 4 

Control ( L I ) 1-70, 8uM (L3) 1-176, 8 uM (L4) 

volume % volume % volume % 

Nup358 8355 100 7976 95.5 8231 98.5 

Nup214 20044 100 19563 97.6 19924 99.4 

Nupl53 152698 100 27478 18 36120 23.7 

p62 
250273 ( L I ) 

- 107433 (L2) 
142840 100 

153643 (L3) 
- 107433 (L2) 

46210 32.4 

139118 (L4) 
- 107433 (L2) 

31685 22.2 

b. D A P I FITC merged 

> 

1 > 
1-70 

1-176 

Control 

Figure 3.14: Analysis of N P C assembly on emerin inhibited nuclei. 
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3.2.5 Investigation on the chromatin binding ability of emerin 

In order to test the ability o f emerin to interact with chromatin each emerin peptide 

was incubated with condensed, and poly-glutamic acid induced decondensed Xenopus 

sperm chromatin for 15-30 minutes at room temperature. Samples were then fixed 

with 4% formaldehyde and centrifuged through SNIB/30% Sucrose onto coverslips. 

The presence o f emerin on the chromatin was checked by immunofluorescence with 

NCL-Emerin antibody, which is specific for human emerin while sperm chromatin 

was visualised with D A P I (Figure 3.15). 

As shown by the DAPI staining treatment o f sperm with poly-glutamic acid caused 

extensive decondensation o f the chromatin (Figure 3.15 b, d, f and h) compared to 

untreated sperms which have a condensed morphology (Figure 3.15 a, c, e and g). 

When decondensed chromatin was incubated with emerin peptides all o f them were 

able to bind to decondensed chromatin (Figure 3.15 b, d, f and h). When condensed 

chromatin was used instead, peptides 1-70, 1-176 and 73-180 were not able to bind to 

chromatin (Figure 3.15 a, c and e). Peptide 1-220, however, showed a unique 

characteristic o f being able to bind to condensed chromatin as well (Figure 3.15 g). 

A summary o f the results obtained for each emerin peptide is shown in Table 3.2. 
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Figure 3.15: Investigation of chromatin binding ability of emerin. 

Emerin peptides 1-70, 1-176, 1-220 and 73-180 were incubated with condensed (a, c, 

e and g) and decondensed (b, d, f and h) Xenopus sperm chromatin, and their ability 

to interact with chromatin was investigated by immunofluorescence with NCL-Emerin 

antibody (FITC). Chromatin was visualised with DAPI (blue). Bar is 10 jum. 
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3.3 D I S C U S S I O N 

In this chapter the function of emerin was investigated using the Xenopus cell-free 

system. As a first step, the order and dynamics o f nuclear assembly in Xenopus egg 

extracts was investigated. Previous work has shown that nuclear assembly requires 

two vesicle populations, NEP-B and NEP-A. The first population displays chromatin 

binding properties and the latter fusogenic properties (Vigers and Lohka, 1991). 

Immunofluorescence studies using a NEP-B-specific antibody and an antibody 

against human LBR showed an ordered recruitment o f vesicles around chromatin 

with NEP-B appearing first and followed by NEP-A (Drummond et al., 1999). 

In this chapter the ordered process o f nuclear envelope assembly around chromatin 

and the existence o f two distinct vesicles populations shown by Drummond et al. was 

reconfirmed by a set o f experiments that included antibodies not used before. Nuclear 

envelope assembly around demembranated sperm chromatin was monitored in a time-

course maimer over a period o f 80 minutes. Antibodies 4G12 and CEL13A were used 

to detect nuclear membranes and antibody 414 to detect FG-nucleoporins. 4G12 

antibody was used as a marker for NEP-B vesicles. The antibody was produced by 

Drummond S. by immunising mice with the NEP-B fraction of Xenopus egg extracts 

(Drummond et al., 1999). The antibody was shown to recognise a 78 kD protein 

present in the MP2 (or NEP-B) membrane fraction. The second antibody, CEL13A, 

was produced by Lyon C. using isolated pronuclei formed in unfractionated Xenopus 

egg extracts to immunise BALB/c mice (Lyon, 1995). The antibody was shown to 

recognise an integral membrane protein o f 40 kD present in the whole membrane 

fraction. Whether the antibody was contained in a particular membrane fraction, 
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NEP-A or NEP-B, was not tested in that study. Functional characterisation of the 

antigen showed that it is probably involved in maintaining chromatin structure since 

depletion of extracts from the CEL13A antigen resulted nuclei with decondensed but 

unstructured and stringy-looking chromatin, which were not enclosed by a nuclear 

envelope (Lyon, 1995). The use o f these antibodies reconfirmed the existence of two 

distinct vesicle populations. NEP-B vesicles, as detected by antibody 4G12, were 

involved in the earliest stages o f nuclear assembly appearing around chromatin at 10 

minutes after initiation o f assembly. In contrast, CEL13A antibody showed a different 

staining pattern with the first signal around chromatin appearing at 20 minutes. 

CEL13A is a membrane-specific antibody that does not recognise any soluble 

proteins present in the cytosol o f Xenopus egg extracts (Lyon, 1995). The timing o f 

recruitment of the CEL13A-detected vesicles is comparable with the LBR containing 

vesicles described in Drummond et al., which appeared around chromatin at 15-30 

minutes after nuclear assembly initiation. 

The formation o f NPCs on pronuclei assembled in this system was monitored by 

antibody 414, which recognises four FG-nucleoporins: p62, nup358, nup214 and 

nupl53. 414 antibody displayed a similar staining pattern with the NEP-B specific 

antibody 4G12, detecting the first nucleoporins around chromatin at 10 minutes. A 

correlation between NEP-B vesicles and NPCs has already been reported by Vigers 

and Lohka. NEP-B vesicles seem to be able to recruit nucleoporins since the number 

o f NPCs formed in nascent nuclear envelopes depends on the availability of NEP-B 

vesicles (Vigers and Lohka, 1991). The NEP-B fraction was also shown to be 

enriched in some nucleoporins including p62, which is one o f the nucleoporins 

recognised by antibody 414 (Vigers and Lohka, 1992). The formation o f some NPCs 
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at an early stage o f nuclear assembly in Xenopus egg extracts has also been described 

before in FEISEM studies, in which mature NPCs were observed on patches of 

flattened membranes at 8-10 minutes after initiation of assembly (Wiese et a!., 1997). 

To investigate the role o f emerin in this highly coordinated process of nuclear 

envelope assembly, four human emerin constructs were provided by Dr Rzepecki. 

The constructs encode for emerin amino acids (aa) 1-70, 1-176, 1-220 and 73-180 and 

were chosen because they represent regions o f emerin known to interact with other 

proteins or regions of unknown so far function. A l l peptides except 73-180 contain 

the L E M domain (aa 1-45), which mediates binding to chromatin protein B A F . 

Peptides 1-176, 1-220 and 73-180 contain the lamin A binding domain (aa 70-178). 

Peptide 1-220 contains, except the BAF and lamin A binding domains, a third serine-

rich region consisting o f aa 180-220 of unknown function. 

The provided emerin constructs were expressed in bacteria cells and subjected to 

sequential extractions under native and denaturing conditions. The behaviour o f each 

peptide was examined by SDS-PAGE on Coomassie stained gels and by 

Immunoblotting with an emerin-specific antibody. Although a considerable amount 

of all peptides was extracted under native conditions, maximum extraction of peptides 

1-176 and 1-220 was achieved under denaturing conditions in presence o f urea. 

Formation of inclusion bodies that consist o f insoluble protein aggregates and require 

denaturing reagents to be solubilised are often observed when overexpressing foreign 

proteins in E. coli. This could be due to differences in size with small peptides easier 

obtained in their soluble form and bigger peptides forming inclusion bodies. Inclusion 

bodies could arise by the inappropriate aggregation of partially folded or malfolded 
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peptides, and bigger peptides could be at higher risk of inappropriate folding than 

smaller ones. Since retention o f the biological activity was important for subsequent 

experiments only fractions obtained by native extraction were used for purification. 

Peptides were tagged with six consecutive histidines allowing purification by 

Immobilised Af f in i ty Chromatography ( IMAC) . I M A C employs the ability of 

polyhistidine tracts to bind tightly to metal ions like N i 2 + , Z n 2 + or Cu 2 + , immobilised 

on a resin. Elution o f the protein is achieved by a competing chelator like imidazole. 

Although the level o f contaminants when using this method is relatively low, a couple 

of contaminant proteins were observed copurifying with all emerin peptides. The 

contaminants were seen as a doublet o f bands at about 70 k D one o f which was later 

(Chapter 5) identified as chaperone HSP70. Chaperones are proteins whose main role 

is the binding of unfolded or partially folded forms of other proteins (Hendrick and 

Hartl, 1995) and are commonly observed bound to purified peptides. 

The molecular weight o f each peptide was calculated according to their 

electrophoretic mobility on SDS-gels. Peptides 1-70, 1-176, 1-220 and 73-180 

migrated as proteins o f 8.8, 29.5, 30.1 and 13.1 kD, respectively. The observed 

molecular weights were higher than the molecular weights calculated according to 

their amino acid composition. This a general property o f emerin. Full-length emerin 

migrates on SDS-PAGE slower, as a 34 kD protein, compared to its predicted size o f 

29 kD probably due to post-translational modifications (Manilal et al., 1996). 

After purification each emerin peptide was added to nuclear assembly reactions at 

various concentrations ranging from a very low one of 0.5 u M to a high one o f 8 u M . 

The effect on recruitment o f vesicles and nucleoporins was observed with antibodies 
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4G12, CEL13A and 414. The peptides fell into two categories: one, including 

peptides 1-220 and 73-180, did not have an effect on nuclear assembly compared to 

control reactions at any concentration added while in the other category peptides 1-70 

and 1-176 showed a strong inhibitory effect on nuclear assembly when added at a 

high concentration. The inhibitory effect was dose-dependent. The higher the amount 

of the peptide added the stronger the inhibitory effect. In any case inhibition o f NEP-

A vesicles was always stronger than NEP-B vesicles and nucleoporins. This was 

more obvious when a middle concentration o f peptides was used (4 u M ) at which 

NEP-A vesicles were selectively inhibited over NEP-B. Inhibited nuclei were small-

sized with condensed chromatin showing an impairment in chromatin 

decondensation. 

The fact that emerin peptides 1-70 and 1-176 inhibited nuclear assembly, whereas 

peptide 73-180, which lacks the L E M domain was unable to cause the same effect, 

indicates that the L E M domain is responsible for the inhibition. A similar role for the 

LEM domain o f another I N M protein, LAP2, has also been shown (Shumaker et cd., 

2001). When the N-terminal region o f LAP2, which contains the L E M domain, was 

added to Xenopus nuclear assembly reactions at 10 u M , an arrest in nuclear envelope 

assembly and condensed chromatin were observed. Addition o f LAP2 peptides with 

mutations in the L E M domain failed to cause the same inhibition. 

The inhibitory effect o f emerin peptides 1-70 and 1-176 at 8 u M could be explained 

by their ability to out compete endogenous emerin (or endogenous L E M domain 

proteins in total) for binding partners, due to their higher concentration. The 

preferential inhibition o f NEP-A vesicles suggests that exogenous emerin competes 
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with components residing in NEP-A vesicles. One possible explanation for the 

inhibitory effect is that exogenously added emerin occupies sites on chromatin not 

allowing nuclear precursor vesicles to attach to chromatin and form a complete 

nuclear envelope. This could be mediated by an interaction with BAF, a chromatin 

protein that is known to interact with L E M domain proteins. A function for BAF in 

binding L E M domain proteins during nuclear assembly and mediating thereby 

attachment o f chromatin to the inner nuclear membrane has already been reported. 

When BAF mutants that cannot bind emerin were included in Xenopus nuclear 

assembly reactions at high concentrations, they produced nuclei with condensed 

chromatin devoid o f nuclear membranes (Segura-Totten et al., 2002). Thus, D N A -

bound BAF must interact with L E M domain proteins to recruit membranes and 

promote chromatin decondensation and nuclear growth. 

The effect o f emerin peptides on NPC formation was investigated by 

immunofluorescence and immunoblotting with the 414 antibody. Again, only 

peptides 1-70 and 1-176 had an inhibitory effect on recruitment o f nucleoporins to 

chromatin. This effect was much milder though compared to the inhibition o f NEP 

vesicles. The main inhibitory effect as revealed by immunoblotting was on Nupl53 

and p62. Nup358 and 214 were not affected. Densitometric analysis showed that 

Nupl53 was most severely affected. Only 1/5 (~ 20%) of the nucleoporin was 

recruited around chromatin in inhibited nuclei compared to control reactions. 

Immunofluorescence analysis o f mitotic NRK cells has shown before an early 

recruitment o f Nupl53 to chromatin during NE reassembly, which could be 

independent of membrane recruitment to chromatin (Bodoor et al., 1999). In 

Xenopus, however, time-course studies using egg extracts revealed a late recruitment 
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of Nupl 53 that requires the prior formation of the lamina (Smythe et al., 2000). The 

results presented in this chapter support a recruitment of Nupl 53 that is dependent on 

nuclear membrane recruitment to chromatin since inhibition o f NE formation in 

presence of exogenous emerin greatly reduced the amount o f Nupl53 around 

chromatin. 

p62 levels around chromatin were also reduced in presence of exogenous emerin but 

to a lesser extent than Nupl 53. Approximately 55% of the protein was detected in 

inhibited nuclei compared to controls by densitometry. In the Xenopus system, p62 is 

recruited to chromatin earlier than Nupl53, at 20 minutes after initiation o f nuclear 

assembly (Smythe et al., 2000). This timing is consistent with the early recruitment o f 

NEP-B vesicles around chromatin presented by Drummond et al. (1999) and in the 

present study. Thus, the milder inhibition o f p62 by exogenous emerin could be due 

to the milder inhibition of the emerin peptides on NEP-B vesicles. A previously 

reported co-fractionation of p62 with NEP-B vesicles (Vigers and Lohka, 1992) 

further supports the above explanation. 

In contrast to N u p l 53 and p62, nucleoporins 358 and 214 were not affected by the 

presence of exogenous emerin since nearly equal amounts were detected in control 

and inhibited by emerin nuclei. Nups 358 and 214 are localised in the cytoplasmic 

side o f the NPC unlike Nupl53, which is positioned in the nucleoplasmic side and 

p62, which is symmetrically located on the NPC. The fact that cytoplasmic 

components o f the NPC were not affected by exogenous emerin could be explained 

by the milder inhibition of NEP-B vesicles. NEP-B vesicles are enriched in ER/ONM 

proteins (Drummond et al., 1999), which could interact or recruit the cytoplasmic 
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facing nucleoporins 214 and 358 to chromatin. Although no direct proof exists, an 

association o f ER/ONM components of NEP-B with Nups 214 and 358 provides a 

possible explanation for the selective inhibition o f nucleoplasmic nucleoporins. 

One o f the earliest stages o f NPC formation involves the binding of nucleoporins o f 

the Nupl07 complex to chromatin. The complex consists o f Nupl07, Nupl33, 

Nup96, Nupl60 and Sec 13 and is thought to form pre-pores, which serve as 

attachment sites for subsequent recruitment o f other nucleoporins (Belgareh et al., 

2001). Pre-pores were first observed by Sheehan et al. (1988) as short-lived transient 

structures at very early time points during assembly, which mediate formation o f 

mature NPCs. Depletion o f Nupl07 by R N A i in HeLa cells was shown to cause the 

co-depletion o f several other nucleoporins among which were the 414 antigens 

Nup214, Nup358, Nupl53 and p62 (Boehmer et al., 2003; Walther et al., 2003). 

Depletion o f Nupl07 from Xenopus egg extracts also led to absence of staining with 

antibody 414 as observed by immunofluorescence on assembled nuclei (Walther et 

al., 2003). In the same study, however, 414 nucleoporins associated only weakly with 

chromatin in the absence of membranes even when the Nupl07 complex was present. 

Thus, in Xenopus the stable binding o f 414 nucleoporins to chromatin requires the 

presence o f both, the Nupl07 complex and nuclear membranes. Nuclei assembled in 

presence o f high concentrations o f emerin peptides 1-70 and 1-176 although had a 

reduced staining for 414 nucleoporins were not inhibited regarding binding o f 

Nupl07 to chromatin. Thus, the reduced staining observed for antibody 414 was 

probably a result of the impaired vesicle recruitment on chromatin caused by the 

emerin mutants. 
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A rather surprising result was observed for peptide 1-220, which failed to inhibit 

nuclear assembly although it contains the LEM domain. There are two possible 

explanations for this. One explanation is that the region specific to this peptide, 

between residues 176 and 220, mediates an interaction with a yet unidentified partner 

This interaction could confer a unique ability to this peptide, compared to the others, 

to promote chromatin decondensation. Alternatively, the inability o f this peptide to 

inhibit assembly could be due to the simple fact that it is inactive. Indeed, during the 

purification of all peptides, 1-220 was the most diff icul t one to obtain in a soluble 

form and to keep it soluble over long periods. This peptide was always more sensitive 

in freezing/thawing cycles and had a tendency to precipitate much easier than any 

other peptide probably due to its bigger size. Thus, although the non-inhibitory effect 

o f 1-220 could be functionally significant concerns should be noted about its correct 

folding and functionality during the assay. 

To test whether peptide 1-220 has the unique ability to promote chromatin 

decondensation due to an interaction with a chromatin protein, the chromatin binding 

ability o f all peptides was investigated. Condensed and decondensed Xenopus sperm 

chromatin was used for this purpose. A l l o f the peptides had the ability to interact 

with decondensed chromatin. When condensed chromatin was used no signal was 

detected for peptides 1-70, 1-176 and 73-180. This is can be easily explained 

considering the extremely compact nature of condensed chromatin, which would 

make any emerin binding sites inaccessible. Remodelling chromatin artificially, by 

poly-glutamic acid, would expose binding sites allowing peptides to attach to 

decondensed chromatin. In contrast to the other peptides, emerin 1-220, was observed 

attached to condensed chromatin as well. The ability o f peptide 1-220 to interact with 
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condensed chromatin, probably via a chromatin-associated protein, would suggest a 

role in chromatin remodelling. However, the possibility that what is observed on 

condensed chromatin is aggregates o f the peptide, rather than a real interaction, 

cannot be ruled out. The unstable nature of the peptide does not allow a clear 

interpretation of the above result. 
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C H A P T E R 4 

I N V E S T I G A T I O N OF N O V E L L E M - L I K E 

DOMAIN PROTEINS IN T H E XENOPUS S Y S T E M 
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4.1 I N T R O D U C T I O N 

In ihe previous chapter, the inhibitory effects on NE assembly of peptides including 

the LEM domain of emerin were investigated using the Xenopus cell-free system. 

LEM domain containing human emerin peptides were shown to inhibit certain aspects 

of nuclear assembly highlighting a potentially important role o f either emerin or other 

LEM domain proteins in nuclear assembly. The inhibitory effect was thought to be 

mediated by the competition of exogenously added peptides with endogenous 

proteins for binding partners. Therefore, as a next step it was important to investigate 

the presence of endogenous emerin in the experimental system used. 

Emerin is a conserved protein during evolution. It has been detected by 

immunoblotting in various vertebrate cell lines that include human, rat, mouse, 

marsupial, hamster and Xenopus cells (Dabauvalle et al., 1999). Human emerin 

consists o f 254 amino acids, has a predicted molecular weight (Mr) o f 29 kD but runs 

on SDS-PAGE gels as a 34 kD protein. In rat, emerin was identified as a 260 residue 

protein that exhibits 74% identity to human emerin. It has a Mr o f 29,675 but runs on 

SDS-PAGE gels as two bands of 36 and 38 kD (Ellis et al., 1998). In mouse, cloning 

of the emerin gene revealed a cDNA that encodes a 259 residue protein which is 73% 

identical and 79% similar to human emerin and 93% identical and 95% similar to rat 

emerin. The mouse emerin has a predicted molecular weight o f 29.4 kD (Small et al., 

1997). Emerin has also been detected by immunoblotting as a 34 kD protein in rabbit 

cells (Manilale/o/ . , 1996). 

151 



The emerin sequence of several species including human, mouse, rat, chimpanzee, 

dog, C.elegans and Xenopus, has been published and is available online. The size and 

accession numbers of the available emerin sequences so far are presented below. 

Species Amino acids 
N C B I 

Accession number 

Homo sapiens 254 S50834 

Mas musculus 259 NP031953 

Rattus norvegicus 260 NP037080 

Pan troglodytes 247 XP521335 

Cams familiaris 170 XP549369 

Caenorhabtitis elegans 166 NP490907 

Xenopus laevis 180 
AAR37361 (Xemerinl) 
AAX09328 (Xemerin2) 

At the time of this study, the complete amino acid sequence of Xenopus emerin was 

not available online. Recently, two emerin isoforms have been described in Xenopus. 

Both consist of 180 amino acids and differ by 24 amino acids scattered throughout the 

sequence (Gareiss et al., 2005). 

In the present chapter, two antibodies were used in order to attempt to identify L E M 

domain proteins, including emerin, in Xenopus: an antibody against the LEM domain 

of LAP2 (LAP12 antibody) and an antibody against the LEM domain of human 

emerin (aE70 antibody). Characterisation o f the LAP 12 antigen was unsuccessful. 

Therefore, only antibody aE70 was used in subsequent experiments. The specificity 

of the antibody for human emerin was initially confirmed using normal HDF and 

HDF from patients with X - E D M D , which lack emerin. Attempts to identify Xenopus 
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emerin using the aE70 antibody were based on the high similarity of the sequence the 

antibody was raised against (human emerin amino acids 1-70) with the Xenopus 

emerin amino acids 1-70 (49% identical, 66% similar). Immunoblotting and 

immunofluorescence experiments were performed on Xenopus somatic cells and 

fractionated egg extracts. The timing of incorporation of the aE70 antigen into 

reforming nuclear envelopes was also investigated using unfractionated egg extracts. 
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4.2 R E S U L T S 

4.2.1 Attempted purification of the LAP12 antigen 

Western Blotting analysis of fractionated Xenopus egg extracts with the LAPI2 

antibody, which recognises the LEM domain of human LAP2(3, revealed a major 36 

kD band recognised by the antibody, localised in the NEP-A fraction (Figure 4.1). In 

order to identify this protein by mass spectroscopy pull-down experiments of the 

antigen were attempted. The antibody was immobilised either on protein G beads or 

anti-mouse IgG beads and incubated with solubilised fractions o f NEP-A. 
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Figure 4.1: Immunoblotting analysis of NEP-A, N E P - B and cytosolic fractions of 

Xenopus egg extracts with the LAP12 antibody. 

Aliquots of Xenopus cytosol (lane 1), NEP-A (lane 2) and NEP-B (lane 3) fractions 

were resolved on a 12% gel and immunoblotted with antibody LAP12 (1:100). As 

shown the main protein recognised by the antibody resides in the NEP-A fraction and 

has a molecular weight of about 36 kD. The markers (in kD) are shown on the left. 
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4.2.1.1 Protein G beads 

LAP 12 antibody was immobilised on protein G beads and incubated with NEP-A 

membranes extracted with lx PBS, pH 7.5 containing 1% Triton X-100. After 

removal o f non-specifically bound material, antibody-antigen complexes were eluted 

with 50 m M Glycine pH 2.3. Samples of all fractions were analysed by Western 

Blotting with the LAP 12 antibody (Figure 4.2 a). The Western blot revealed that none 

of the elution fractions contained the 36 kD band. Instead the antigen was contained 

in the flowthrough fraction (Figure 4.2 a, lane 2) indicating either that the antigen was 

not able to bind to the antibody or that the antigen was not eluted under these 

conditions. 

To distinguish between these two possibilities the experiment was repeated in the 

same way with the difference that before elution the beads were divided into three 

equal volumes, which were eluted under different conditions. Specifically, the first 

bead sample was subjected to elution with 1.5 M K.SCN (Figure 4.2 b, lanes 9-12), 

the second with 100 mM Orthophosphoric acid pH 12.5 (Figure 4.2 b, lanes 13-16) 

and the third with 6 M Urea (Figure 4.2 b, lanes 17-20). Aliquots o f the remaining 

beads after elution were also analysed (Figure 4.2 b, lanes 21-23). Western blot 

analysis showed that none o f the elution fractions contained the antigen, which again 

was exclusively contained in the flowthrough fraction (Figure 4.2 b, lane 2). Also the 

antigen did not remain on the beads after elution. When aliquots o f the beads were 

analysed only the light and heavy IgG chain of the antibody were delected and none 

of the antigen (lanes 21-23). 
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Figure 4.2: Immunoprecipitation experiment of the LAP12 antigen using protein 

G beads. 

Xenopus NEP-A fractions were extracted with PBS containing P'/o Triton X-100, pH 

7.5 (starting material) and incubated with LAP!2 antibody immobilised on protein G 

beads. The flowthrough was collected and beads washed and elided under different 

conditions. Aliquots of all samples were analysed by SDS-PAGE and immunoblotted 

with antibody LAP 12. Asterisks indicate the position of the LAP 12 antigen 

a: Lane 1: starting material, Lane 2: flowthrough, Lanes 3-5: washes with PBS/0.1% 

Triton X-100, Lanes 6-7: washes with PBS/0.1% Triton X-100/0.02%> SDS, Lane 8: 

wash with PBS/0. J % Triton X-100/1M NaCl, Lanes 9-12: elution with 50 mM Glycine 

pH2.3. 

b: Lane 1: starting material, Lane 2: flowthrough, Lanes 3-5: washes with PBS/0.1%) 

Triton X-100, Lanes 6-7: washes with PBS/0.1% Triton X-100/0.02%, SDS, Lane 8: 

wash with PBS/0.1% Triton X-100/1M NaCl, Lanes 9-12: elution with 1.5 M KSCN, 

Lanes 13-16: elution with 100 mM Orthophosphoric acid pH 12.5, Lanes 17-20: 

elution with 6 M Urea, Lanes 21-23: beads after elution with KSCN, 

Orthophosphoric acid and Urea, respectively. 

157 



a. kD 

208 
24 

-
101 f 55.4 

35.7 
29 

20 9 

7 8 9 10 11 12 Lane 1 
Glycine 

b. kD 

208 _ 
124 
101 = 

20.9 — 

55.4 

35.7 _ 

29 _ * 

Lane 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
KSCN Orthoph.acid Urea 

Figure 4.2: Immunoprecipitation experiment of the LAP12 antigen using protein 

G beads. 
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4.2.1.2 anti-mouse IgG beads 

Since no antibody-antigen interaction was detected using the protein G beads a 

different approach was used, which involved immobilising the antibody on anti-

mouse lgG beads. An extra step o f cross-linking the antibody to the beads with 0.02% 

glutaraldehyde was required in this case. The Immunoprecipitation experiment was 

repeated as described above. A NEP-A aliquot was extracted with PBS/1% Triton X-

100, pH 7.5 and incubated with the antibody. The beads were then washed, eluted 

with 50 mM Glycine pH 2.3 and samples o f all fractions were analysed by Western 

blotting (Figure 4.3 a). As the figure shows again no antigen was detected in the 

elution fractions. Instead all the protein was contained in the flowthrough (Figure 4.3 

a, lane 2). 

The significance o f different detergents and pH values in the antibody-antigen 

binding step was also assessed. Different NEP-A samples were extracted in the 

presence of a strong denaturing detergent like 0 .1% SDS (Figure 4.3 b) or a mild 

detergent like 0.5% Tween 20 (Figure 4.3 c), and in presence o f 1% Triton-X 100 at 

pH 6.5 (Figure 4.3 d) and pH 8.5 (Figure 4.3 e). NEP-A extracts were incubated with 

the beads, which were subsequently washed, suspended in SDS sample buffer and 

analysed by Western blotting. As the figure shows none of these conditions proved 

sufficient for an antigen-antibody interaction to take place. Furthermore, when Tween 

20 was used (Figure 4.3 c) the protein was not extracted from the membrane at all. 
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Figure 4.3: Immunoprecipitation experiment of the LAP12 antigen using IgG 

beads. 

Xenopus NEP-A fractions were incubated with LAP 12 antibody immobilised on IgG 

beads. To investigate optimum binding conditions aliquots were extracted with PBS/ 

1% Triton X-100, pH 7.5 (a), with PBS/0.1 % SDS (b), with PBS/0.5% Tween 20 (c), 

with PBS/1% Triton X-100 pH 6.5 (d) and with PBS/1% Triton X-100 pH 8.5 (e). 

The position of the LAP 12 antigen is shown by asterisks. 

a: Lane 1: starting material, Lane 2: flowthrough, Lanes 3-5: washes with PBS/0. J % 

Triton X-100, Lanes 6-7: washes with PBS/0.1% Triton X-100/0.02% SDS, Lane 8: 

wash with PBS/0.1% Triton X-100/1M NaCl, Lanes 9-12: elution with 50 mM Glycine 

pH 2.3. 

b - e: Lane I: starting material, Lane 2: flowth rough. Lanes 3-5: washes with PBS, 

Lane 6: beads after washes. 

In all cases the extracted protein was contained in the flowthrough fraction (lanes 2) 

except in case (c) where the protein was not extracted with Tween 20. A small amount 

of protein detected on the beads in (e), lane 6 was not reproducible. 
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Figure 4.3: Immunoprecipitation experiment of the LAP12 antigen using IgG 

beads. 
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To ensure that the antibody binding site on the antigen was not masked by an 

interaction with any other protein o f the membrane, NEP-A fractions were stripped of 

peripheral and lumenal proteins by washes with MEB containing 500 mM NaCI and 

100 mM Na2CO.t, respectively. The remaining integral membrane proteins were 

extracted with 1% Triton-X 100, pH 7.5. Extracts were incubated with LAP12-beads, 

which were washed and eluted with 50 m M Glycine, pH 2.3. Analysis o f the samples 

showed that all of the antigen was again contained in the flowthrough fraction (Figure 

4.4). 
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Figure 4.4: Immunoprecipitation of the L A P 1 2 antigen after clean up of N E P - A 

membranes from non-integral proteins. 

NEP-A membranes were incubated with 500 mM NaCl and 100 mM Na2COs for 

removal of peripheral and lumenal proteins, respectively, extracted with PBS/1% 

Triton X-100 (lane 1) and incubated with LAP12 antibody on protein G beads. After 

collection of the flowthrough (lane 2) beads were washed with PBS (lanes 3-5) and 

eluted with 50 mM Glycine pH 2.3 (lanes 6-9). Beads after elution are shown in lane 

10. The majority of the protein was contained in the flowthrough. 

163 



4.2.2 Purification of antibody aE70 

As an alternative approach, an antibody against amino acids 1-70 of human emerin, 

raised in rabbit, was kindly provided by Dr. R. Rzepecki. The polyclonal serum was 

then used to further purify the antibody by affinity chromatography on an antigen 

column. The purification procedure included binding of the antigen (bacterially 

expressed and purified human emerin peptide consisting o f amino acids 1-70) on 

NHS-activated agarose beads, incubation with the rabbit polyclonal serum diluted 

1:10, removing of non-specific binding and antibody elution. 

To elute antibodies that are bound by acid- and base-sensitive interactions to the 

column, elution was performed under conditions o f low and high pH, respectively. 

Thus, 10 ml of 100 mM Glycine pH 2.5 were used to collect ten 1 ml elution fractions 

and 10 ml o f 100 mM Triethylamine pH 11.5 were used to collect another set o f ten I 

ml elution fractions. The pH of all elution fractions was neutralised with 1 M Tris pH 

8.0. Since it was important to obtain the antibody as concentrated as possible all 

elution fractions were kept separately and their absorbance at 280 nm was measured 

in order to find which fraction contained the majority o f the antibody. Subsequently, 

all elution fractions were separately dialysed against PBS/0.02% NaN3, aliquoled and 

stored at -20°C. 

Measurement o f the absorbance at 280 nm (Table 4.1) showed that the majority o f the 

antibody eluted in fraction 2, under both low and high pH conditions. 
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Elution Fractions-
low pH O D 2 8 0 

Elution Fractions-
high pH 

OD 2 8 „ 

1 -.022 1 -.023 

2 0.140 2 0.170 

3 -.013 3 -.038 

4 0.005 4 -.046 

5 0.016 5 0.001 

6 -.035 6 -.003 

7 0.017 7 -.050 

8 0.023 8 -.035 

9 0.017 9 -.050 

10 0.011 10 0.003 

Table 4.1: Measurement of absorbance at 280 nm of elution fractions of purified 

antibody aE70. 

Antibody aE70 was eluted with 100 inM Glycine pH 2.5 (low pH) and 100 mM 

Triethylamine pH 11.5 (high pH) and the OD2S0 wis measured for all elution 

fractions. The antibody eluted almost exclusively in one fraction (fraction 2) and it 

eluted almost equally in low and high pH conditions. 
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4.2.3 Characterisation of the aE70 antigen in human cells 

To confirm the successful purification of the antibody, aliquots of elution fractions 2, 

from both low and high pH elution, were used to detect the antigen in Western 

blotting experiments. Thus, human emerin peptide 1-70 was resolved on a 15% gel 

and blotted with elution fractions 2, diluted 1:1000 in BRB/Tween 20/1% NCS 

(Figure 4.5 a, lanes 1 and 2). In both cases the antigen was correctly recognised as a 

band o f - 8 kD. 

To further confirm that the protein recognised by the antibody is emerin, normal 

Human Dermal Fibroblasts (HDF) and fibroblasts from a patient with X - E D M D were 

analysed by immunoblotting with aE70. Jn the case o f normal HDF the antibody 

recognised a band of 34 kD (Figure 4.5 a, lane 3), corresponding to human emerin. 

The band was absent from cells from the X - E D M D patient, which lack emerin 

(Figure 4.5 a, lane 4). Normal HDF were also grown on coverslips t i l l 80% 

confluence, fixed with methanol: acetone 1:1 and analysed by immunofluorescence 

with aE70 (Figure 4.5 b). The antibody gave a rim staining as expected for emerin, an 

INM protein. Taken together these data show that the antibody is specific for human 

emerin. 
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Figure 4.5: Characterisation of the aE70 antigen by immunoblotting and 

immunofluorescence. 

Polyclonal serum of antibody aE70, raised in rabbit against human emerin aa 1-70, 

was purified on an antigen column. The antibody was elided with 100 mM Glycine 

pH 2.5 and 100 mM Triethylamine pH 11.5 and was mainly contained in one elution 

fraction. Aliquots of each elution fraction, after low and high pH elution, were 

analysed by Immunoblotting (a, lanes 1 and 2, respectively). In both cases the 

antigen, emerin peptide 1-70, was recognised confirming the successful purification 

of the antibody. 

Normal HDF (a, lane 3) and X-EDMD fibroblasts (a, lane 4) were also analysed by 

Immunoblotting with purified aE70. In normal HDF the antibody recognised a 

protein of 34 kD, which corresponds to emerin. The identity of this protein as emerin 

is further reconfirmed by the absence of the band in X-EDMD fibroblasts. 

Normal HDF were also analysed by immunofluorescence with aE70 (FITC), which 

gave a rim staining as expected for an INM antibody (b). Chromatin was stained with 

DAPI. Scale bar is 10 jum. 
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Figure 4.5: Characterisation of the aE70 antigen by immunoblotting and 

immunofluorescence. 
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4.2.4 Characterisation of the aE70 antigen in Xenopus. 

4.2.4.1 Sequence similarity between human and Xenopus emerin amino acids 1-

70. 

Since the aE70 antibody was raised against the first 70 amino acids o f human emerin, 

before attempting to identify an emerin homologue in Xenopus, the sequence 

similarity of human and Xenopus emerin was compared. The complete sequence of 

Xenopus emerin was not available at the time of this study. Instead, a nucleotide 

sequence consisting o f 507 bp that corresponds to Xenopus emerin could be freely 

accessed via the NCBI webpage (NCBI at www.ncbi.nlm.nih.aov, Accession number 

BG407317). The nucleotide sequence, starting from the first ATG, was imported into 

the BioEdit Sequence Alignment Editor and translated to obtain the corresponding 

amino acid sequence (Figure 4.6). 
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1 ATG GAA 
1 M E 

4 6 CTG CAG 
16 L Q 

91 CGG ACT 
31 R T 

136 ACT AGG 
46 T R 

181 TAC AGA 
61 Y R 

226 TAC GAA 
76 Y E 

271 CGA CCA 
91 R P 

316 AAA GAA 
106 K E 

3 61 GCA ACA 
121 A T 

4 06 AAT GAA 

136 N E 

AAT TAT AAA CAC 
N Y K H 

AAA TGC AAC ATC 
K C N I 

T T A TAT GAG AAG 
L Y E K 

AAT CCG TAT CCT 
N P Y P 

AAC AGA GCG AAT 
N R A N 

GAG AAA ACA GTT 
E K T V 

CGA ACC ACC T T T 
R T T F 

AAC ACG TAC CAG 
N T Y Q 

CAG AGG GTA GAG 
Q R V E 

GAG AAA C C C TGT 

E K P C 

ATG ACT GAC 
M T D 

ACA CAT GGT 
T H G 

AAA C T T TAT 
K L Y 

CTA GGT T C C 
L G S 

GAA GAG GAC 
E E D 

ACC AGA ACC 
T R T 

GAT CGG C T T 
D R L 

C C C ATA T C C 
P I S 

C C T CGC AGG 
P R R 

AAG 4 26 

K 142 

GAT GAA C T T ATT 
D E L I 

C C T ATT GTC GGT 
P I V G 

GAA TAT GAA CGC 
E Y E R 

TAC GAG AGC AAA 
Y E S K 

T T G GCG GAT GAG 
L A D E 

TAC CAG TAT C C C 
Y Q Y P 

GAA CGA GAA CCA 
E R E P 

CAG ATG CGC CAT 
Q M R H 

CCA ATC CGT GTG 
P I R V 

nucleotides 
amino acids 

GAA ACC 4 5 
E T 15 

ACT ACT 90 
T T 30 

AGC AAG 13 5 
S K 45 

ACA CAC 18 0 
T H 60 

AAT TAT 22 5 
N Y 75 

CAA GCA 270 
Q A 90 

C T C TAT 315 
L Y 105 

CTG GGG 3 60 
L G 120 

AAG CAA 4 05 
K Q 135 

Figure 4.6: Translation of Xenopus nucleotide sequence using the BioEdit 

Sequence Alignment Editor. 

A Xenopus emerin sequence consisting of 142 amino acids was obtained by 

translating the corresponding nucleotide sequence (NCBI, Accession number 

BG407317) using the BioEdit software. 
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The first 70 amino acids of Xenopus emerin were then compared with the first 70 

amino acids o f human emerin (Figure 4.7 a). As the figure shows, the sequences share 

28 identical amino acids, which are highlighted in red and I 1 conservative 

substitutions. Conserved hydrophobic residues (L, M , V, I , L) are shown in grey, 

conserved acidic residues (D, E) in yellow, conserved basic residues (R, K) in green, 

and conserved uncharged polar residues (S, T, Q, Y, N) in blue. 

The percentage o f identity and similarity between human and Xenopus emerin was 

calculated by performing a BLAST search using the Xenopus sequence as a query 

(Figure 4.7 b). The search displayed human emerin as the result with the highest 

matching score confirming that this sequence is a Xenopus homoiogue o f human 

emerin and revealed a 49% sequence identity (matching of identical residues) and a 

66% sequence similarity (matching o f identical and conserved residues or positives). 

Noticeably, out o f the 28 identical amino acids between the two sequences, 24 are 

contained within the L E M domain (57% identity, 78% similarity), which consists of 

amino acids 1-45. Therefore, it is probable that apart from emerin, aE70 antibody wi l l 

recognise and react with other Xenopus proteins containing the L E M domain as well . 
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a. 

35 

Human | D | A D X | T | T T I J R | Y | P ^ ^ B H R I ' Y E 

Xenopus ^ E j K m^DDELIET^OlCKflTHGPIVGTTRTLYE 
I Y N I P H G P W C 

ME NY KHM T T E T I O I 

s E L TTlJ 

36 70 
Xenopus |KLYEYERSKTi^PY|LG|YE|KiHYRNRA|EEDL 
Human KKIFEYETQRRKLSP|SS|AA|S|SFSDLN|TRGD 

^' >gi|30583641|gb|AAP36065.1| H eroerin (Emery-Dreifuss muscular 
dystrophy) [Homo sapiens] 

Score » 60.8 b i t s (146), Expect - 9e-09 
I d e n t i t i e s = 28/57 (49%), P o s i t i v e s = 38/57 (66%) 

Query:1 HENYKHHTDDELIETLQKCNITHGPIVGTTRTLYEKKLYEYERSKTRNPYPLGSYES 57 
H-WY ++D EL L++ NI HGP+VG+TR LYEKK++EYE + R P 3 3 

S b j C t : l HDNYADLSDTELTTLLRRYNIPHGPWGSTRRLYEKKIFEYETQRRRLSPPSSSAAS 57 

Figure 4.7: Comparison of sequence similarity between Xenopus and human 

emerin amino acids 1-70. 

a: The sequences starting from the first methionine were aligned and compared for 

identical and conserved amino acids. The comparison revealed that the two 

sequences have 28 identical amino acids (red), one conserved acidic substitution 

(yellow), two conserved basic substitutions (green), three conserved hydrophobic 

substitutions (grey) andfive conserved polar uncharged substitutions (blue), 

b: A BLAST search was performed using the Xenopus amino acids 1-70. The search 

showed a 49% sequence identity and a 66% similarity (positives) with human emerin. 

In the result a consensus sequence with all the identical amino acids between 

Xenopus (query) and human emerin (sbjct) is also displayed. Conserved residues are 

designated with the + symbol. 
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4.2.4.2 Identification of the aE70 antigen in X T C , X L K cells and fractionated 

Xenopus egg extract. 

In order to identify proteins recognised by aE70 antibody in Xenopus, XTC and X L K 

cells were analysed by immunofluorescence (Figure 4.8 a) and immunoblotting 

(Figure 4.8 b, lanes 4 and 5). Immunofluorescence experiments showed that the 

antibody stained the rim of the nuclei recognising, thus, a protein localised in the NE 

(Figure 4.8 a, FITC). Immunoblotting analysis showed that in both cell types the 

antibody recognises mainly a protein o f 85 kD, which could correspond to another 

Xenopus LEM domain protein like M A N 1 (See also discussion) (Figure 4.8 b, lanes 4 

and 5). 

To further characterise the aE70 antigen in fractionated egg extracts aliquots o f N E P -

A and NEP-B vesicles and the cytosol were analysed by immunoblotting. NEP-A and 

- B membranes were extracted with EB containing 1% Triton X-100, mixed with an 

equal volume of SDS-sample buffer and immunoblotted with aE70. A cytosolic 

aliquot was also mixed with SDS-sample buffer and analysed by western blotting. 

(Figure 4.8 b, lanes 1, 2 and 3). Between the two vesicle populations the main protein 

recognised by the antibody resided in NEP-A vesicles and had a Mr o f 30 kD (Figure 

4.8 b, lane 1). The size o f this protein and the high degree of similarity between the 

human and Xenopus LEM domain could suggest that the 30 kD protein corresponds 

to Xenopus emerin. Flowever, no direct proof for that is provided. The antibody also 

reacted with a soluble cytosolic protein o f 37.5 kD (Figure 4.8, lane 3). 
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Figure 4.8: Characterisation of the aE70 antigen in Xenopus. 

Xenopus XLK and XTC cells were grown till 80% confluence, fixed with 

methanol:acetone and processed by immunofluorescence (a) or immunoblotting (b, 

lanes 4 and 5) with purified antibody aE70. Aliquots of NEP-A and -B vesicles and 

the cytosol were also analysed by immunoblotting (b, lanes I, 2 and 3, respectively). 

Immunofluorescence experiments in both cell types revealed a clear rim staining, 

which is characteristic for NE proteins (a, FITC). DAPI was used to stain chromatin. 

When the antibody was used in immunoblotting experiments on XTC (b, lane 4) and 

XLK (b, lane 5) it recognised a band of about 85 kD. The antibody also reacted with a 

protein of about 30 kD on NEP-A vesicles (lane I), no protein on NEP-B vesicles (lane 

2) and a protein of about 37 kD in the cytosol (lane 3). Scale bars are 10 jum. 
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4.2.5 Time-course study of the aE70 antigen assembly into the nuclear envelope 

Since the aE70 antigen was found to be contained within the NEP-A vesicles, a time-

course experiment was set up to investigate its incorporation into the reforming 

nuclear envelope in Xenopus egg extracts. Nuclei were assembled at room 

temperature for 0, 10, 20, 40 and 80 minutes, fixed with EGS, centrifuged onto 

coverslips and processed by immunofluorescence with aE70 (Figure 4.9). 

The first signal appeared around chromatin at 20 minutes after initiation of nuclear 

assembly and gradually increased (40 minutes) t i l l a uniform staining around the 

nuclei was observed at 80 minutes. This staining pattern is in agreement with the 

staining o f NEP-A vesicles with antibody CELI3 A (compare Figure 4.9 with Figure 

3.3) where the first signal was also observed at 20 minutes, in contrast to NEP-B 

vesicles which appeared around chromatin at 10 minutes (Figure 3.2). 
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Figure 4.9: Incorporation of the aE70 antigen into the N E during nuclear 

assembly in Xenopus egg extracts. 

Nuclei were assembled in Xenopus egg extracts for 0, 10, 20, 40 and 80 minutes and 

analysed by immunofluorescence with antibody aE70 (FITC). Chromatin 

decondensation was observed with DAPI. As shown the first appearance of the 

antigen around chromatin occurred at 20 minutes, which coincides with the 

appearance of NEP-A vesicles around chromatin. More protein was observed around 

chromatin at 40 minutes, and at 80 minutes a rim staining was observed. Bar is 10 

pm. 

176 



4.3 D I S C U S S I O N 

Xenopus cell-free extracts are widely used as an experimental system for the 

functional analysis of nuclear envelope proteins. However, so far little is known about 

the presence and distribution o f several known INTvl proteins in fractionated egg 

extracts. Two different antibodies were used in this study to identify emerin in 

Xenopus: a mouse monoclonal antibody called LAP 12, and a polyclonal antibody 

purified on an antigen column called aE70. 

LAP12 is a mouse monoclonal antibody that recognises the L E M domain o f human 

LAP2(3. The use of this antibody to detect Xenopus emerin was justified by the fact 

that the LEM domain is shared between LAP2 and emerin and it displays a high 

degree o f similarity between the proteins and the species it is found in. 

lmmunoblotting analysis on fractionated egg extract revealed a major band of - 34 

kD contained in the NEP-A fraction. The LAP12 antigen had the correct size o f 34 

kD for it to be emerin. Also its identity as any other known L E M domain protein was 

excluded since the Xenopus LAP2 protein (XLAP2) was shown to be absent from egg 

extracts and oocytes (Lang el al, 1999) and Xenopus M A N 1 ( X M A N 1 ) has a much 

bigger size with a Mr o f 88.5 kD (Osada et al., 2003). 

Unfortunately, attempts to obtain the antigen by immunoprecipitation and 

subsequently identify it were unsuccessful. Although the antigen was recognised on a 

western blot, no antigen-antibody interaction could take place when the antibody was 

immobilised on a column. Different approaches were used by immobilising the 

antibody on protein G or IgG beads with no success in both cases. Also extraction, 
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binding and edition conditions were varied. Extraction of NEP-A fractions with three 

detergents ranging from very mild to strong was performed: Tween 20. a very mild 

detergent that keeps proteins in their native form; Triton X-100, a stronger, non-ionic, 

weakly denaturing detergent, and Sodium dodecyl sulphate (SDS), an anionic, 

excellent solubilising but highly denaturing agent were used. pH conditions ranging 

form 6.5 to 8.5 were also varied to see whether they affect the binding o f the antigen 

to the antibody. Also different elution methods were used. Elution was attempted 

under both, low and high pH conditions (glycine, pH 2.3 and orthophosphoric acid, 

pH 12.5, respectively). Harsher elution methods with a dissociating agent like urea 

and chaotropic ions like SCN ions were also employed. None o f the above 

conditions proved efficient for obtaining the LAP 12 antigen. Finally, the possibility 

that the epitope recognised by the antibody is masked by an interaction with another 

membrane protein was also investigated. NEP-A fractions were treated prior to 

incubation with the antibody, with a high ionic strength solution (0.5 M NaCl), which 

results in solubilisation o f peripheral membrane proteins, and with Na2CC>3. which 

results in removal of lumenal proteins. Again no antigen-antibody interaction was 

detected. It is not clear why the antigen was recognised by the antibody only in its 

denatured form on a western blot and not on a column. As investigating the right 

conditions and possible reasons proved to be very time consuming an alternative 

approach using a different antibody was employed. 

Antibody aE70 was raised against the first 70 amino acids o f human emerin and was 

used in immunoblotting and immunofluorescence experiments in Xenopus adult cells 

and egg extracts. The rabbit polyclonal antibody was first purified on an antigen 

column to improve its quality. The successful purification of the antibody was 
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confirmed by immunoblotting experiments in which the antibody was able to 

recognise its antigen, emerin peptide 1-70. Its specificity for human emerin was 

con finned in western blots of normal Human Dennal Fibroblasts (HDF) in which a 

34 kD band conesponding to emerin was recognised. The major recognised band was 

absent from blots o f emerin-null X - E D M D fibroblasts further confinning the identity 

of the protein as emerin. In immunofluorescence microscopy o f nonnal HDF purified 

aE70 reacted with the nuclear periphery and displayed a rim staining characteristic of 

I N M proteins. 

After the specificity o f aE70 for human emerin was confirmed the antibody was used 

in Xenopus adult cells and egg extracts. While the present investigation was in 

progress the full-length sequence of Xenopus emerin was not known. However, a 

partial sequence that included the LEM domain was available online, and this 

sequence was used to compare the Xenopus L E M domain with the human. The 

comparison revealed that the two sequences share a significant degree of identity 

(57%) and similarity (78%). Based on this, aE70 was used in an attempt to identify 

Xenopus emerin. 

Only very recently, after the completion of the present investigation, the complete 

sequence of Xenopus emerin has been published (Gareiss et al., 2005). According to 

Gareiss et al. there are two emerin homologues in Xenopus, Xemerinl and Xemerin2. 

Both are 24 kD in size and differ by 24 amino acids scattered throughout the 

sequence, which implies that they are products o f separate genes. When the 

expression pattern o f emerin during embryogenesis was investigated emerin was not 
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delected in oocytes and eggs. Instead emerin expression was shown to start from 

stage 43 onwards. 

Immunofluorescence microscopy with the aE70 antibody on somatic X L K and XTC 

cells and in nuclei assembled in unfractionated egg extracts revealed a rim staining 

indicating the recognition o f NE proteins. In immunoblotting experiments o f adult 

XTC and X L K cells the antibody recognised a protein o f ~ 85 kD. The size of this 

protein is too high for it to be emerin, which is 24 kD. Although no protein of that 

size was detected in somatic cells it is rather unlikely that emerin is not present in 

adult cells. The inability to detect a protein that could correspond to emerin could be 

due to the low levels of emerin relative to the 85 kD protein or due to the antibody 

used. Also tadpoles correspond to stage 40 embryos and emerin was shown to be 

expressed from stage 43 onwards (Gareiss et al., 2005). Although the identity o f the 

85 kD protein is not known it could correspond to another Xenopus L E M domain 

protein considering that it is a highly conserved domain. In addition to emerin, two 

other L E M domain proteins are known in Xenopus, XLAP2 and X M A N 1 . 

Studies on Xenopus LAP2 revealed that out o f the three mammalian LAP2 isoforms 

(LAP2a, (3 and y) only LAP2(3 is represented in Xenopus and its expression is 

regulated during development. The Xenopus homologue of LAP2|3, XLAP2, which 

has a size of 68 kD, is present only in somatic and adult cells and is absent from 

oocytes and unfertilised eggs. In these early stages o f development a second LAP2 

related polypeptide with an Mr of 84 kD was detected while another protein of 35 kD, 

probably unrelated to LAP2, was also detected. Although the expression o f the 84 kD 

protein did decrease during development and was no longer detectable in swimming 



tadpoles the possibility that the 84 kD protein is expressed in the adult organism was 

not ruled out (Lang el al., 1999). In this study a protein o f very similar Mr was 

detected in adult cells. The other known LEM domain protein in Xenopus, X M A N 1 , 

has an Mr of 88.5 kD and is expressed throughout development with levels that are 

constant during embryogenesis (Osada et al., 2003). It is not clear whether the 84 kD 

protein recognised by aE70 corresponds to the Xenopus LAP2 or MAN1 protein since 

the two proteins are 4 1 % identical and 7 1 % similar to each other. 

In fractionated Xenopus egg extracts, aE70 antibody recognised a protein of - 30 kD 

contained exclusively in NEP-A membranes as revealed by immunoblotting 

experiments. The size o f this protein suggests that it could correspond to Xenopus 

emerin, however, no definite evidence for that is provided. To further characterise the 

aE70 antigen nuclei were allowed to assemble in unfractionated egg extracts for times 

ranging from 0 to 80 minutes and processed by immunofluorescence. The aE70 

antigen appeared around chromatin at a late stage o f nuclear formation displaying a 

chromatin association pattern similar to that o f NEP-A vesicles rather than NEP-B, as 

described in Chapter 3. This is in agreement with the exclusive localisation o f the 

aE70 antigen in NEP-A membranes as shown by immunoblotting. Even though the 

exact identity o f the aE70 antigen cannot be concluded form the above results, the 

antibody was shown to recognise in egg extracts a LEM domain protein o f ~ 30 kD 

present in NEP-A membranes and with a similar chromatin association pattern to 

NEP-A during nuclear assembly. 

In addition to aE70, LAP 12 antibody raised against the LEM domain o f human 

LAP2|3, recognised a protein of 36 kD also localised in the NEP-A membrane 
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fraction. Thus, in total, two antibodies (aE70 and LAP 12) raised against LEM 

domains recognise two different proteins (30 and 36 kD, respectively), both residing 

in NEP-A membranes. This provides an explanation for the preferential inhibition of 

NEP-A recruitment to chromatin by exogenously added LEM domain containing 

human emerin peptides as described in Chapter 3. 
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CHAPTER 5 

INVESTIGATION OF EMERIN BINDING 

PARTNERS IN THE XENOPUS CYTOSOL 
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5.1 I N T R O D U C T I O N 

The importance o f emerin at the nuclear envelope and the implications o f its absence 

in disease led to an intense interest in its function. One approach to elucidate the 

function o f a protein is to identify the proteins interacting with it. So far well 

characterised emerin binding proteins include lamin A, the chromatin protein BAF 

and transcription factor GCL (Clements et al., 2000; Holaska et al., 2003). 

Evidence supporting the above interactions derives mainly f rom immunofluorescence 

and immunoprecipitation experiments in mammalian cells. Emerin antibodies were 

shown to immunoprecipitate lamins A/C and B from C2C12 myoblast and rat 

hepatocyte nuclear extracts (Fairley et al., 1999) or from rabbit reticulocyte lysates 

(Vaughan et al., 2001). A direct interaction between emerin and lamin A has been 

shown using the BIAcore assay (Clements et al., 2000). Blot overlay and microtiter 

well binding assays were also employed in confirming emerin interactions. In these 

experiments recombinant emerin was immobilised on nitrocellulose or on microtiter 

wells, respectively, and incubated with 3 3S-labelled proteins. Binding o f emerin to 

lamin A (Lee et al., 2001), B A F (Lee et al., 2001; Segura-Totten et al., 2002), GCL 

(Holaska et al., 2003) and actin (Holaska et al., 2004) was reported this way. 

Additional attempts to identify emerin binding partners included yeast-two-hybrid 

screens o f a human heart cDNA library and o f a HeLa cell cDNA library leading to 

the identification o f YT-521B and Btf, respectively (Haraguchi et al., 2004; 

Wilkinson e /A/ . , 2003). 
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In this study the four emerin peptides consisting of residues 1-70, 1-176, 1-220 and 

73-180 were immobilised via their His-tag on Ni-beads and used to fish for emerin 

interacting proteins from the cytosolic fraction of Xenopus egg extracts. Following 

washing, emerin peptides and interacting proteins were eluted from the beads and 

analysed by 1-D and 2-D gel electrophoresis. Two similar experiments in which 

emerin affini ty columns were created and used to identify interacting proteins have 

been performed in the past. These experiments, however, used nuclear extracts from 

rat skeletal muscle and liver (Sakaki et al., 2001) and HeLa nuclear extracts 

(Bengtsson and Wilson, 2004; Holaska et al., 2004). In the present study the Xenopus 

egg cytosol was used for the first time as a source to identify emerin interacting 

proteins. 

For the identification o f the emerin interacting candidates Matrix-assisted laser 

desorption and ionisation time-of-flight mass spectrometry (MALDI-TOF) and 

peptide mass fingerprinting (PMF) were employed. Two different sets o f experiments 

identified P-tubulin as an emerin interacting protein. Subsequent immunofluorescence 

analysis o f X - E D M D cells, which lack emerin, with a P-tubulin antibody revealed no 

alterations in the organisation o f the M T network. The most prominent phenotype was 

a mis-localisation o f the Microtubule Organising Centre (MTOC) far from the 

nucleus in cells which lack emerin. This observation was also confirmed with a 

centrosome-specific antibody. 
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5.2 R E S U L T S 

5.2.1 Investigation of emerin binding partners in Xenopus cytosol by affinity 

chromatography 

In an attempt to identify new binding partners for emerin, peptides consisting o f 

amino acids 1-70, 1-176, 1-220 and 73-180 were used to co-precipitate interacting 

proteins from Xenopus cytosol. The constructs were expressed in bacteria and 

purified under both, native and denaturing conditions, immobilised on Ni+ 2-beads and 

incubated with the cytosol (diluted 1:4) for 4 hours at 4°C. Non-specifically bound 

proteins were removed with washes in 250 m M NaCl and elution was achieved with 

high urea concentration (250 mM). Elution fractions were precipitated with ice-cold 

acetone and analysed by 1-D or 2-D gel electrophoresis. Potential targets were 

subsequently cut form the gels and identified by mass spectroscopy. 

5.2.1.1 1-D gel analysis and mass spectroscopic identification of targets 

As a first step, all emerin peptides were purified in their native conformation and 

incubated with the cytosol. Eluates were resolved on 12% and 15% 1-D gels. 

Purification of the emerin peptides rarely resulted in 100% pure samples. To avoid 

picking as positive results proteins that were already present in the emerin samples, as 

contaminants, during their purification in bacteria, aliquots o f the emerin peptides 

only (not incubated with Xenopus cytosol) were resolved on the gels in parallel. As a 

second control Xenopus cytosol was incubated with Ni + 2-beads in absence of any 
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emerin peptide to ensure that none of the positive results with emerin were non 

specific. 

After electrophoresis gels were stained with Coomassie and examined carefully for 

potential emerin interacting proteins. 12% gels o f all samples are shown in Figure 5.1 

and 15% gels are shown in Figure 5.2. In both cases, bands that were unique in the 

emerin-cytosol lanes (Figures 5.1 and 5.2, lanes 4, 6, 8 and 10) were identified as 

potential targets. Bands that were common between the emerin-cytosol (lanes 4, 6, 8 

and 10) and the emerin alone (lanes 3, 5, 7 and 9) and cytosol alone (lanes 2) samples 

were ignored. Several o f the selected targets did not co-precipitate preferentially with 

one emerin peptide only but with all o f them. In that case the band cut out o f the gel 

was randomly selected from lanes 4, 6, 8 or 10. 

In total 13 bands were picked from the gels, which are marked with red arrowheads in 

Figures 5.1 and 5.2. The bands were digested with trypsin and identified by peptide 

mass fingerprinting. The results o f the mass spectroscopy are shown in Table 5.1. For 

each sample the peptide that was used as bait and the protein with the highest 

matching score are displayed. A l l scores were statistically significant except the ones 

marked with an asterisk. Information on the species and the mass o f the identified 

proteins is also provided. 

As the table shows, although care was taken to avoid false positives by using two 

types of control (emerin only and cytosol only), four o f the targets (samples 1, 4, 9 

and 12) were identified as E. coli proteins. This clearly shows that the resolution o f 1-

D gels is not sufficient to eliminate false positive results. Although two of the E. coli 

proteins (samples 4 and 9) did not appear as statistically significant results, one 
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protein, sample 1, was identified as D N A K with a very high score. The presence of 

D N A K , which is the bacterial homologue o f HSP70, was probably required during 

the purification o f the emerin peptides for correct folding. The second E. coli protein, 

sample 12, is a common contaminant when N i '2-beads are being used. 

Furthermore, incubation o f the beads with BSA prior to addition o f the cytosol in an 

attempt to reduce non specific binding o f proteins to the beads, ironically resulted in 

albumin as one o f the identified targets (sample 6). Also, samples 7 and 11 were 

identified as human emerin and could correspond to degradation products o f the 

purified peptides and samples 5 and 13 could not be identified. Sample 8 was 

identified as a Xenopus protein MGC83078. A B L A S T search using the 

corresponding amino acid sequence was performed and the protein with the highest 

matching score proved to be the E. coli protein peroxiredoxin. Considering that 

peroxiredoxin is one of the ten most abundant proteins in E. coli it is rather unlikely 

that this is a functionally significant result (Wood et al., 2003). 

Thus, out o f the 13 samples, only 3 Xenopus proteins were considered as potentially 

significant, samples 2, 3 and 10, which correspond to calcineurin or protein 

phosphatase 2B, tubulin P2 and profilin 1. As a first step, the interaction of one of 

them, profi l in , with emerin was further investigated. 
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Figure 5.1: Co-precipitation of emerin interacting proteins from Xenopus cytosol 

and analysis by 1-D S D S - P A G E on a 12% gei. 

Emerin peptides 1-70, 73-180, 1-176 and 1-220 were incubated with Xenopus cytosol 

in order to identify new binding partners and resolved on a 12% gel. The gel was 

loaded as following: Lane 1: Markers (kD), Lane 2: Control (Beads + Xenopus 

cytosol only), Lane 3: 1-70 only, Lane 4: 1-70 + Cytosol, Lane 5: 73-180 only, Lane 

6: 73-180 + Cytosol, Lane 7: 1-176 only, Lane 8: 1-176 + Cytosol, Lane 9: 1-220 

only, Lane 10: 1-220 + Cytosol. 

Seven bands that were unique to the emerin-cytosol lanes, marked with red 

arrowheads, were cut from the gel and sent for mass spectroscopic analysis. 
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Figure 5.2: Co-precipitation of emerin interacting proteins from Xenopus cytosol 

and analysis by 1-D S D S - P A G E on a 15% gel. 

Emerin peptides J-70, 73-180, 1-176 and 1-220 that were incubated with Xenopus 

cytosol were also resolved on a 15% gel. The gel was loaded as following: Lane 1: 

Markers (kD), Lane 2: Control (Beads + Xenopus cytosol only), Lane 3: 1-70 only, 

Lane 4: 1-70 + Cytosol, Lane 5: 73-180 only, Lane 6: 73-180 + Cytosol, Lane 7: 1-

176 only, Lane 8: 1-176 + Cytosol, Lane 9: 1-220 only, Lane 10: 1-220 + Cytosol. 

Six bands (No 8-13), marked with red arrowheads, were cut from the gel and sent for 

mass spectroscopic analysis. 
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Sample Bait Highest match Species Mass Score 

1 1-70 D N A K E. coli 69.165 234 

2 
1-70 Calcineurin catalytic 

subunit 
X. laevis 58.059 56 

3 1-70 Tubulin (32 X. laevis 50.072 76 

4 1-70 Cap-Dna recognition E. coli 23.683 56 * 

5 73-180 No hit — — — 

6 1-176 Albumin B. taurus 71.244 56 

7 1-220 Emerin H. sapiens 29.033 76 

8 1-176 MGC83078 X. laevis 22.653 71 

9 1-176 Ecsl486 E. coli 21.441 73 * 

10 1-176 Profilin 1 X. laevis 16.925 90 

11 1-220 Emerin H. sapiens 29.056 212 

12 
1-220 Ni + 2-responsive 

regulatory protein 
E. coli 15.199 79 

13 1-220 No hit — — — 

Table 5.1: Mass spectroscopic identification of proteins co-precipitating with 

emerin as shown on 1-D gels. 

Bands 1-13 that were selected from 12% and 15% gels (shown in Figures 5.1 and 

5.2) were identified by peptide mass fingerprinting. The table summarises the results 

showing for each sample which emerin peptide was used as the bait, the highest 

corresponding match, the species it belongs to, its molecular weight (in kD) and its 

score. Scores marked with an asterisk, although the highest for the corresponding 

samples, were statistically insignificant. All other scores were statistically significant. 
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5.2.1.2 Investigation of the emerin-profilin interaction by the yeast-two-hybrid 

assay 

To examine whether profilin is able to interact with emerin, the yeast-two-hybrid 

system was employed. Emerin, cloned in a vector that contains the Binding domain o f 

GAL4, and profil in, cloned in a vector that contains the Activating domain, were 

transformed into yeast, which were then mated and selected for diploids. The 

occurrence o f an interaction was assessed by plating the diploids on plates with four 

media combinations: SD -Leu/Trp, SD -Leu/Trp/His, SD -Leu/Trp/Ade and SD -

Leu/Trp/His/Ade. Af ter a 3-day incubation at 30°C yeast growth was observed only in 

medium stringency conditions, namely in the SD -Leu/Trp and SD -Leu/Trp/His 

plates (Figure 5.3). No growth developed in the SD -Leu/Trp/Ade and SD -

Leu/Trp/His/Ade plates. 

Diploids grown on a SD -Leu/Trp plates were also used for the P-galactosidase assay. 

After addition of the substrate o f the enzyme (X-gal) and incubation at room 

temperature no development o f blue colour was observed. Since diploid growth was 

observed only in medium stringency conditions and the P-galactosidase assay was 

negative it can be concluded that an emerin-profilin interaction did not occur in this 

assay. 
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SD -TVp/Leu SD -Trp/Leu/His 

Figure 5.3: Investigation of the emerin-profilin interaction using the yeast-two-

hybrid system. 

The picture shows the growth of yeast cells transformed with emerin and profilin on 

plates containing SD Leu/Trp, SD Leu/Trp/His. 
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5.2.1.3 2-D gel analysis and mass spectroscopic identification of targets 

The resolution provided by 1-D gel electrophoresis did not prove to be sufficient to 

eliminate false positive results in the emerin co-precipitation experiments since many 

of the selected targets turned out to be E. coli proteins (Table 5.1). 

Thus, the analysis o f the samples by 2-D gel electrophoresis was considered to be 

more appropriate. Pull-down experiments were performed exactly as described earlier 

(Section 5.2.1) and precipitated elution fractions were loaded on pH 4-7 gel strips for 

the first dimension, and on 12% SDS gels for the second dimension. As a control, 

both emerin peptides alone and Xenopus cytosol incubated with beads in absence of 

emerin, were used in parallel. 

Also one target protein identified by 1-D gel electrophoresis was the E. coli HSP70 

probably bound to human emerin peptides during their purification (Young el al., 

2004). HSP70 being a chaperone would have the ability to bind other proteins o f the 

Xenopus cytosol during the co-precipitation procedure. So even i f proteins were 

selected that are unique in the emerin-cytosol samples and absent from both control 

types there is still a possibility that they are bound to HSP70 rather than emerin. 

Indeed, for all of the already identified proteins like calcineurin and tubulin, several 

reports exist about their ability to interact with HSP70 (Marchesi and Ngo, 1993; 

Sanchez et al., 1994; Someren et al., 1999). 

For this reason emerin peptides were purified in presence o f urea in an attempt to 

destroy the emerin-HSP70 interaction removing this way the chaperone as a 
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contaminant. After purification, peptides were refolded by dialysing for 3 hours at 

room temperature against MEB and subsequently used for the co-precipitation 

experiments. Only emeriti peptides 1-70 and 73-180 were analysed this way since 

their small size allowed successful refolding. For comparison peptides purified in 

their native form were also analysed by 2-D gel electrophoresis. 

Results for peptide 1-70, used after purifying it in its native conformation, are shown 

in Figure 5.4. Careful examination o f the gels revealed three proteins that specifically 

co-precipitated with emerin, shown with a red, green and blue arrowhead in Figure 

5.4 b. A fourth spot marked with a black arrowhead was chosen to confirm its identity 

as HSP70. The four protein spots were cut out o f the gel and sent for mass 

spectroscopic analysis. The proteins were identified as HSP70 (black) and tubulin-(32 

(red). Proteins marked wi th a green and blue arrowhead could not be identified. 

To ensure that the presence o f tubulin is because o f an interaction with emerin and not 

HSP70 the same experiment was performed but this time using emerin purified in 

urea and refolded. The results are shown in Figure 5.5. Although examination o f the 

gels revealed as before very few protein spots unique in the emerin-cytosol gel (gel b) 

in comparison to controls, the spot corresponding to tubulin was still present (gel b, 

red arrowhead). Furthermore, purification o f emerin in presence of urea successfully 

removed HSP70 as a contaminant showing that co-precipitation of tubulin is due to an 

interaction with emerin. The absence of HSP70 is shown with the black arrowhead in 

gel b (compare black arrowhead in Figure 5.5 b with black arrowhead in Figure 5.4 

b). 
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Figure 5.4: Co-precipitation of Xenopus cytosolic proteins with emeriti peptide 1-

70 purified under native conditions. 

a: emerin 1-70 only, b: enter in 1-70 -Xenopus cytosol, c: Xenopus cytosol only 

Coloured arrowheads indicate spots that were sent for mass spectroscopic analysis. 
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Figure 5.5: Co-precipitation of Xenopus cytosolic proteins with emcrin peptide 1-

70 purified under denaturing conditions. 

a: enter in 1-70 only, b: emerin 1-70 - Xenopus cytosol, c: Xenopus cytosol only 

The red arrowhead indicates a protein spot that was sent for mass spectroscopic 

analysis. The absence of HSP70 is shown by the black arrowhead. 
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In a similar way emerin 73-180 was used to co-precipitate Xenopus cytosolic proteins. 

The results are shown in Figures 5.6 and 5.7. When emerin was purified in its native 

conformation except from HSP70 (Figure 5.6 b, black arrowhead), tubulin-(32 was 

also detected (Figure 5.6 b, red arrowhead). As for emerin 1-70, the interaction with 

tubulin (Figure 5.7 b, red arrowhead) was still present in the absence o f HSP70 

(Figure 5.7 b, black arrowhead). The identity of two more protein spots (Figure 5.7 b, 

grey and turquoise arrowheads) could not be found. 

A summary o f all mass spectrometric data obtained from 2-D gels (Figures 5.4-5.7) is 

presented in Table 5.2. Although four o f the selected targets could not be identified 

(samples 1-4) tubulin-p2 was identified as an interacting protein with emerin amino 

acids 1-70 and 73-180. The interaction seemed to be emerin specific since it occurred 

even in the absence of HSP70, when urea purified and refolded emerin peptides were 

used. The acquired MS spectrum o f the peptide identified as [3-tubulin is shown in 

Figure 5.8. 
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Figure 5.6: Co-precipitation of Xenopus cvtosolic proteins with emerin peptide 

73-180 purified under native conditions. 

a: emerin 73-180 only, b: emerin 73-180 - Xenopus cytosol, c: Xenopus cytosol only 

Black and red arrowheads indicate protein spots that were sent for mass 

spectroscopic analysis. 
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Figure 5.7: Co-precipitation of Xenopus cytosolic proteins with emerin peptide 

73-180 purified under denaturing conditions. 

a: emerin 73-180 only, b: emerin 73-180 - Xenopus cytosol, c: Xenopus cytosol only 

Grey and turquoise arrowheads indicate protein spots that were sent for mass 

spectroscopic analysis. The absence of HSP70 is shown by the black arrowhead. 
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Sample Bait Highest match Species Mass Score 

> 1 1-70 No hit — — — 

> 2 1-70 No hit — — — 

> 3 73-180 No hit — — — 

> 4 73-180 No hit — — — 

> 5 1-70 & 73-180 Tubulin-p2 X. laevis 50.233 166 

> 6 1-70 & 73-180 HSP70 E. coli 69.130 305 

Table 5.2: Mass spectroscopic identification of proteins co-precipitating with 

emerin as shown on 2-D gels. 

Samples 1-6, as shown in Figures 5.4-5.7 with coloured arrowheads, were digested 

with trypsin and identified by peptide mass fingerprinting. Tubulin- f$2 was identified 

as a protein interacting with emerin J-70 and 73-180. The masses of the identified 

proteins (in kD) and their matching scores are also shown. 
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Figure 5.8: 3-tubulin MS spectrum. 

The acquired MS spectrum for the peptide identified as tubulin by peptide mass 

fingerprinting is shown. The number of peptides generated after trypsin digestion and 

their corresponding mass/charge ratio as identified by the mass spectrometer can be 

seen. Tubulin was identified with a statistically significant score of 166. 
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5.2.2 Immunostaining of normal HDF and X-EDMD fibroblasts with a p-tubulin 

antibody 

In order to investigate the functional significance o f the emerin-tubulin interaction the 

organisation o f the microtubule network in normal and X - E D M D fibroblasts, which 

lack emerin, was studied. Four different X - E D M D cell lines derived from male 

patients were used. To keep the anonymity o f the donors the cell lines are called X-

E D M D 1, 2, 3 and 4. As a control, two normal HDF cell lines were used. 

Initially, the level of emerin expression in all cells was checked by immunoblotting 

with an emerin-specific antibody. Equal loading was standardised according to actin 

expression. As expected emerin expression was observed in the normal HDF. Three 

X - E D M D cell lines (2, 3 and 4) were found null for emerin expression. One band of 

34 kD corresponding to emerin was detected in X - E D M D cell line 1 (Figure 5.9). 
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Figure 5.9: Emerin expression in cell lines used in this study. 

Four HDF cell lines derived from X-EDMD male patients and two HDF cell 

lines derived from healthy individuals were used in this study. All cell lines were 

checked for emerin expression by immunoblotting. Lanes 1 and 2 correspond to 

HDF obtained from healthy individuals. Lanes 3, 4, 5 and 6 correspond to X-

EDMD cell lines 1, 2, 3 and 4, respectively. As expected emerin was detected as 

a 34 kD band in normal HDF. X-EDMD cell lines 2, 3 and 4 had no detectable 

emerin. Surprisingly emerin expression was observed in X-EDMD cell line I. 
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A l l cell lines were subsequently grown t i l l 80% confluence, fixed with ice-cold 

methanol:acetone (1:1) and processed by immunofluorescence with an antibody 

against (3-tubulin. Cells were observed by confocal microscopy. 

When normal HDF were stained with anti- (3-tubulin (Figures 5.10 and 5.11), the 

characteristic appearance o f microtubules (MTs) starting from the Microtubule 

Organising Centre (MTOC) and orientated towards the cell periphery was observed. 

The MTOC was clearly visible as the area with the higher intensity labelling. In most 

cells the MTOC was positioned in the cell centre, as expected for interphase cells, 

next to the nuclear envelope. 

When X - E D M D cells were examined, as shown in Figures 5.12-5.15, MTs seemed to 

radiate out o f the MTOC into the cell periphery like in control cells. Also, no 

alterations in the organisation o f the M T network were observed between all X-

E D M D cell lines and control cells in which MTs were seen as fine lacelike threads. 

The depicted 'fragmented' and more punctuate staining o f MTs in X - E D M D cell 

lines I (Figure 5.12) and 3 (Figure 5.14) does not represent a general feature o f these 

cell lines as it was not a repeatable result. 
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Figure 5.10: Organisation of microtubules in Normal 1 ceil line. 

Normal fibroblasts were stained with a Cy3 conjugated antibody against fi-tubulin and 

observed by confocal microscopy. The upper panel shows the MTs stained by Cy3 and 

the lower panel shows the merged image in which chromatin is shown in blue (DAPI) 

and tubulin in red. The white arrowhead indicates the position of the MTOC in close 

association with the nucleus. Scale bar is 10 /jm. 

206 



Figure 5.11: Organisation of microtubules in Normal 2 cell line 

Normal fibroblasts were stained with a Cy3 conjugated antibody against /3-tubulin and 

observed by confocal microscopy. The upper panel shows the MTs stained by Cy3 and 

the lower panel shows the merged image in which chromatin is shown in blue (DAPI) 

and tubulin in red. The white arrowhead indicates the position of the MTOC in close 

association with the nucleus. Scale bar is 10 fim. 
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Figure 5.12: Organisation of microtubules in X-EDMD 1 cell line 

EDMD fibroblasts were stained with a Cy3 conjugated antibody against ^-tubulin and 

observed by confocal microscopy. The upper panel shows the MTs stained by Cy3 and 

the lower panel shows the merged image in which chromatin is shown in blue (DAPI) 

and tubulin in red. The white arrowhead indicates the position of the MTOC positioned 

in the cell periphery and not associated with the nucleus. Scale bar is 10 /xm. 
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Figure 5.13: Organisation of microtubules in X - E D M D 2 cell line 

EDMD fibroblasts were stained with a Cy3 conjugated antibody against fi-tubulin and 

observed by confocal microscopy. The upper panel shows the MTs stained by Cy3 and 

the lower panel shows the merged image in which chromatin is shown in blue (DAPI) 

and tubulin in red. The white arrowhead indicates the position of the MTOC positioned 

in the cell periphery and not associated with the nucleus. Scale bar is 10 pirn. 
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Figure 5.14: Organisation of microtubules in X - E D M D 3 cell line 

EDMD fibroblasts were stained with a Cy3 conjugated antibody against ^-tubulin and 

observed by confocal microscopy. The upper panel shows the MTs stained by Cy3 and 

the lower panel shows the merged image in which chromatin is shown in blue (DAPI) 

and tubulin in red. The white arrowhead indicates the position of the MTOC positioned 

in the cell periphery and not associated with the nucleus. Scale bar is 10 pm. 
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Figure 5.15: Organisation of microtubules in X - E D M D 4 cell line 

EDMD fibroblasts were stained with a Cy3 conjugated antibody against ^-tubulin and 

observed by confocal microscopy. The upper panel shows the MTs stained by Cy3 and 

the lower panel shows the merged image in which chromatin is shown in blue (DAPI) 

and tubulin in red. The white arrowhead indicates the position of the MTOC positioned 

in the cell periphery and not associated with the nucleus. Scale bar is 10 jum. 
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The most prominent difference observed between normal and X - E D M D cells was 

related to the position of the MTOC relative to the nuclei. In X - E D M D cells a 

significant proportion o f the cells exhibited a mis-localisation o f the MTOC towards 

the cell periphery and not in contact with the nucleus. To ensure that there was a 

significant difference, 200 cells o f each cell line were observed for the MTOC 

position (Figure 5.16). MTOCs were scored as 'near' or 'distant' depending on 

whether they were attached or detached from the nuclei, respectively. As the figure 

shows in the two normal cell lines the majority o f the cells (86.5% and 81.6%) had a 

M T O C closely associated with the nucleus, while only 13.5-18.4% had a MTOC 

positioned at the cell periphery and not associated with the nucleus. The picture was 

completely different in X - E D M D cells, where a large percentage o f cells (between 

30.9 and 40%) displayed an abnormally localised MTOC distant f rom the nucleus 

(Figure 5.16 a). The percentage o f normal and X - E D M D cells scored with an MTOC 

positioned near or distant from the nucleus is shown in a chart in Figure 5.16 b, in 

which MTOCs near the nucleus are shown in blue and MTOCs distant the nucleus are 

shown in red. 
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Figure 5.16: Position of the M T O C in normal and X - E D M D fibroblasts as seen 

with the B-tubulin antibody 

Normal HDF and HDF derived from patients with X-EDMD were stained with an 

anti-fi-tubulin antibody and observed under a confocal microscope. The position of 

the MTOC relatively to the nucleus was counted in 200 cells and was also calculated 

as a percentage. 

a: In the two control HDF cell lines tested, 86.5% and 81.5% of MTOC were found 

associated with the nuclei and only 13.5%) and 18.4%) were localised distant to the 

nucleus. In contrast in X-EDMD fibroblasts derived from four different patients (X-

EDMD 1-4) 60-69.1% of cells displayed a normal MTOC position and 30.9-40% of 

cells had the MTOC abnormally localised far away from the nucleus, 

b: Plots showing the percentage of cells displaying a normal (near) and abnormal 

(distant) position of the MTOC in the two normal and four X-EDMD HDF tested. 
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a. 

H D F 
M T O C near the N E M T O C distant from the N E 

H D F 
number o f cells % number o f cells % 

Normal-1 173 86.5 27 13.5 

Nonnal-2 164 81.6 37 18.4 

X - E D M D - 1 137 67.5 66 32.5 

X - E D M D - 2 141 69.1 63 30.9 

X - E D M D - 3 136 66.3 69 33.7 

X - E D M D - 4 120 60 94 40 

Total - 2 0 0 - 2 0 0 
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Figure 5.16: Position of M T O C in normal and X - E D M D fibroblasts as seen with 

the B-tubulin antibody. 
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5.2.3 Immunostaining of normal and X - E D M D fibroblasts with a centrosome-

specific antibody 

To confirm the observed detachment o f the MTOC from the NE described above 

normal and X - E D M D fibroblasts were double-stained with a centrosome-specific 

antibody that recognises the protein pericentrin and with a NE-antibody that 

recognises lamin A/C. The same two normal and four E D M D cell lines were used as 

in the P-tubulin staining and cells were observed with a Carl Zeiss live-cell imaging 

microscope. 

In all cell types the lamin A/C antibody gave a rim staining as expected. The 

pericentrin antibody stained very brightly the centrosomes as circular structures in the 

cytoplasm while some punctuate staining around the centrosomes was also observed 

in most cells (Figure 5.17). 
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Figure 5.17: Centrosome staining in normal and X-EDIV1D cells. 

Two normal and four X-EDMD cell lines were double-stained with antibody JOL2, 

which recognises lamin A/C (FITC) and with the pericentral antibody, which stains 

centrosomes (TRITC). Chromatin was stained with DAPI (blue), a and b: normal 

HDF. c, d, e and f: X-EDMD cell lines 1, 2, 3 and 4, respectively. 

All cells are positive for lamin A/C expression (green). Centrosomes are clearly 

visible as circular structures in the cytoplasm (red) and are marked with white 

arrowheads. Noticeably, in control cells (a and b) centrosomes are closely associated 

with the NEs while in X-EDMD cells (c, d, e and J) centrosomes are frequently 

positioned away from the NE. 
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Figure 5.17: Centrosome staining in normal and X - E D M D cells. 
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Since the pericentrin antibody does not stain MTs, the position o f the centrosome in 

each cell was much more clearly visible than as seen with the P-tubulin antibody. 

This allowed the measurement o f the exact distance o f the MTOC from the NE. For 

each cell line approximately 200 cells were randomly chosen and photographed. The 

distance from the centre o f each centrosome to the NE was then measured and 

displayed in urn. Examples o f images from each cell line with the calculated 

distances o f the centrosomes from the nuclei are shown in Figure 5.18. 

The 200 measurements were then used to calculate the average distance o f the 

centrosome from the nucleus in each cell line. In control cells, the average distance 

was calculated as 1.535 urn (± 0.109) and 1.557 urn (± 0.109) in cell lines Normal 1 

and 2, respectively. A twofold increase was observed in X - E D M D cells with distance 

values o f 2.949 urn (± 0.209), 3.623 urn (± 0.257), 3.503 urn (± 0.248) and 3.775 urn 

(± 0.266) in X - E D M D cell lines 1, 2, 3 and 4, respectively (Figure 5.19 a). A 

graphical representation o f the above results featuring the error bars clearly shows 

that there is a statistically significant difference in the distance o f the centrosome 

from the nucleus between normal and X - E D M D cells (Figure 5.19 b). Also 

measurements from X - E D M D and normal cells were compared by performing two-

tailed Student's t-tests assuming unequal variances. The obtained t-values between 

samples Normal 1 and X - E D M D 1, 2, 3 and 4 were 3.65, 5.58, 5.59 and 6.82, 

respectively. Similarly, t-values for samples Normal 2 and X - E D M D 1, 2, 3 and 4 

were 3.79, 5.83, 5.89 and 7.29, respectively. For degrees of freedom a>, the critical 

value for P=0.001 is 3.29. Since all t values are larger than 3.29 it can be concluded 

that there is a statistically significant difference between normal and all X - E D M D cell 

lines at 0 .1% level o f significance. 
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Figure 5.18: Measurements of the distance of the centrosomes from the nuclei in 

control and X - E D M D cell lines. 

For each cell line used images of approximately 200 cells were taken and the 

distance of the centre of each centrosome from the NE was measured and is displayed 

in jxm. NEs were visualised with the JOL2 antibody, which recognises lamin A/C and 

are shown in green. Centrosomes were visualised with the pericentrin antibody (red) 

and chromatin was stained with DAPI (blue). Examples of images featuring the 

calculated distances are shown, a: normal cell line 1, b: normal cell line 2, c: X-

EDMD cell line 1, d: X-EDMD cell line 2, e: X-EDMD cell line 3 and f: X-EDMD 

cell line 4. Note the bigger distances of centrosomes from nuclei in EDMD cell lines 

compared to control cells. 
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Figure 5.18: Measurements of the distance of the centrosomes from the nuclei in 

control and X - E D M D cell lines. 
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Cell line 
Mean distance 

(um) 
Total number 

of cells 
S T D V S E M 

Normal 1 1.535 198 2.78 ± 0 . 1 9 7 

Normal 2 1.557 201 2.19 ± 0 . 1 5 4 

X - E D M D 1 2.949 199 4.75 ± 0 . 3 3 6 

X - E D M D 2 3.623 198 4.50 ± 0.320 

X - E D M D 3 3.503 199 3.63 ± 0.257 

X - E D M D 4 3.775 201 3.76 ± 0.265 

• Normal 1 
• Normal 2 
• X-EDMD 1 
• XEDMD2 
• XEDMD3 
• XEDMD4 

cell line 

Figure 5-19: Mean distance of centrosomes from nuclei in normal and X - E D M D 

cell lines. 

The distance of the centrosome from the nucleus was measured in approximately 200 

cells, in two normal and four X-EDMD cell lines, a: the measurements were used to 

calculate the average distance for each cell line, the standard deviation (STDV) and 

the Standard Error of the Mean (SEM) b: a graphical representation of the average 

centrosome distance from the nucleus in all six cell lines used A statistically 

significant twofold increase in the centrosome distance in X-EDMD cells compared 

to normal cells is clearly shown. Asterisks indicate that the means of normal and X-

EDMD cells are different at a 0.0 J % level of significance (d.f ao). 
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Noticeably, when standard deviations were calculated the nearly 200 measurements 

were found to deviate much more from the average in X - E D M D cells than in control 

cells. Thus, for a more complete comparison o f normal and X - E D M D cell lines it was 

considered necessary to include the distribution of the data. For this purpose nuclei 

were grouped in four categories: nuclei in which the centrosomes co-localised with 

the NEs (0 urn), nuclei in which the centrosomes were attached to the NEs (0.1-1 

urn), nuclei in which the centrosomes were detached and at small distance from the 

NEs (1.1-3.5 urn), and nuclei in which the centrosomes were detached from the NEs 

and separated by distances greater than 3.5 um. For each cell line the number o f cells 

falling in each category was calculated and frequency histograms were created 

(Figure 5.20). Remarkably, more than half o f the control cells had their centrosomes 

either co-localising with (Oum) or directly attached (0.1-1 um) to the NEs. In 

contrast, X - E D M D cells were only poorly represented in these two categories. The 

picture seemed to reverse when moving away from the nucleus. Approximately one 

fourth o f normal cells had centrosomes localised at distances between 0.1 and 1 um 

while X - E D M D were better represented with more than one third o f cells scoring in 

this category. The difference between normal and X - E D M D cells was even bigger at 

distances greater than 3.5 jam. While the minority o f normal cells was observed in 

this category more than one fourth o f X - E D M D cells displayed centrosomes 

abnormally localised at such a big distance from the nucleus. It should be noted that 

X - E D M D cell line 1, wi th its cells almost equally distributed between the four 

categories, displayed a distribution pattern in-between the normal and the other X-

EDMD cell lines. 
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Figure 5.20: Frequency histograms of the distances of centrosomes from nuclei 

in normal and E D M D cell lines. 

Photographs of nearly 200 cells from two normal and four X-EDMD cell lines 

stained with the pericentrin antibody were obtained. Cells were divided into four 

categories regarding the distance of their centrosome from the NE: 0 /urn. 0.1-1 /.an, 

1.1-3.5 /um and > 3.5 /.an. The number of cells falling in each category was then 

calculated and frequency histograms were created. The different cell lines are 

represented with different colours: blue for Normal 1, grey for Normal 2, orange for 

X-EDMD 1, green for X-EDMD 2, yellow for X-EDMD 3 and red for X-EDMD 4. 

The total number of cells scored was: 198 for Normal 1, 201 for Normal 2, 199 for X-

EDMD 1, J98 for X-EDMD 2, 199 for X-EDMD 3 and 201 for X-EDMD 4. Numbers 

inside the bars of the histograms correspond to the number of cells that fell into each 

category. Immunofluorescence images of representative nuclei for each category are 

shown in the right side of the histograms. 
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Figure 5.20: Frequency histograms of the distances of centrosomes from 

nuclei in normal and X - E D M D cell lines. 
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5.3 D I S C U S S I O N 

So far, functional differences o f emerin peptides with and without the L E M domain 

and a L E M domain mediated inhibition o f nuclear assembly in Xenopus have been 

demonstrated (Chapter 3). These differences have been attributed to the ability o f the 

L E M domain to compete with endogenous Xenopus L E M domain proteins residing in 

the NEP-A membrane fraction, for chromatin binding (Chapter 4). In the present 

chapter the possibility that the different behaviour o f emerin peptides in nuclear 

assembly correlated with differences in binding partners was explored. Emerin 

peptides were immobilised on beads and incubated with Xenopus cytosol. Interacting 

proteins were identified by a combination o f gel electrophoresis, mass spectrometry 

and peptide mass fingerprinting. 

Initially samples were analysed by 1-D gel electrophoresis. To avoid false positive 

results two controls were used: aliquots o f purified emerin peptides alone and aliquots 

of Xenopus cytosol incubated with beads in the absence o f emerin. Thirteen bands 

that were uniquely present in the emerin-cytosol lanes were selected and analysed by 

mass spectrometry (Table 5.1). Unfortunately, most of the bands were identified as 

contaminating proteins while two could not be identified (possible reasons for that 

wi l l be discussed later). Among the contaminating bands, four corresponded to E. coli 

proteins D N A K , Ni + 2-responsive regulatory protein, Cap-Dna recognition and 

Ecsl486, the latter two with a statistically insignificant matching score. 

D N A K is the bacterial homologue of the mammalian chaperone HSP70. HSP70s are 

a family o f constitutively expressed proteins o f about 70 kD found in almost all 
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organisms that participate in a diverse array o f functions. The presence of D N A K in 

the samples of the purified emerin peptides can be explained by considering their role 

in protein folding. Chaperones bind to nascent polypeptides on ribosomes or proteins 

in transit across intracellular membranes and prevent premature misfolding o f the 

peptides. In bacteria this process includes the progressive binding o f polypeptides to 

different chaperones like DNAJ, D N A K and GrpE (Hendrick and Hartl, 1995). 

Alternatively, it has been shown using a predicting algorithm for D N A K binding 

motifs within protein sequences, that linker peptide regions (or spacers) that connect 

proteins to short sequence tags can bind D N A K . A comparison o f several pET and 

pGEX vectors revealed that the connector peptide region o f pET29 displays a very 

high affinity D N A K binding site (Rial and Ceccarelli, 2002). In contrast to D N A K , 

the presence of the other E. coli contaminant, the Ni + 2-responsive regulatory protein 

most probably resulted from a direct interaction o f the protein with the N i + 2 -beads. 

Several histidine-rich E. coli proteins that are able to bind tightly to N i + 2 have been 

reported as contaminants in purifications o f His-tagged proteins 

(ftp://ftp.ncifcrf.gov/pub/methods/TIBS/iul95.txt). 

Two more o f the identified proteins from the 1-D gels can be characterised as 

contaminating: albumin, which was introduced in the experiment when incubating the 

beads with BSA, and protein MGC83078, which is the Xenopus homologue o f the E. 

coli protein peroxiredoxin, one o f the 10 most abundant proteins in E. coli. The two 

proteins that were identified as human emerin probably correspond to degradation 

products or modified forms of the purified peptides. Thus, at the level o f 1-D gel 

electrophoresis, out o f the thirteen selected bands only three can be considered as 
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possible emerin interacting partners: calcineurin, a Ca 2 +/calmodulin dependent 

Ser/Thr phosphatase, and the two cytoskeletal proteins pMubulin and profil in. 

Since, as described above, most o f the obtained results were identified as 

contaminating proteins despite the use o f two types o f control, a method with 

increased resolution power was considered more appropriate for the analysis o f the 

results. 1-D gel electrophoresis although is simple to perform and reproducible it 

separates proteins on the basis o f their molecular masses only and has a limited 

resolving power. For this reason 2-D gel electrophoresis was employed. 2-D 

electrophoresis resolves proteins according to their net charge in the first dimension 

and according to their molecular mass in the second dimension. It is capable o f 

resolving thousands of proteins and peptides from a single complex mixture in a 

single experiment and produces a resolution far exceeding that obtained in 1-D gels 

(Fey and Larsen, 2001). 

Furthermore, as several connections exist between one of the contaminants, D N A K , 

and other obtained results like tubulin and calcineurin, caution was taken to remove 

D N A K from the pull-down experiments. Substrate binding and release from D N A K 

are coupled to its ATPase activity: in the ATP-bound state D N A K shows a low 

affinity and fast exchange rate for substrates, whereas in the ADP-bound state it has a 

high affinity and slow exchange rates for substrates (Palleros ei ai, 1993a). 

Therefore, preincubation o f protein solutions wi th Mg-ATP prior to purification has 

been suggested as a way to dissociate protein-DNAK complexes. It is thought that 

Mg-ATP results in exchange of ADP with ATP, which then causes a conformational 

change that triggers substrate release from the complex (Palleros el al., 1993b). 
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However, in more recent reports addition o f ATP to complex mixtures like bacterial 

lysates does not reduce D N A K contamination but usually increases it. This is 

probably because the ATP treatment releases D N A K that is bound to unfolded 

bacterial proteins allowing binding to other proteins including the recombinant 

protein to be purified. Indeed when the Mg-ATP method was used in this study not 

only it did not remove D N A K but it resulted in extensive fragmentation of the emerin 

peptides as detected by western blotting (data not shown). This is consistent with 

other reports o f Mg-ATP making nascent polypeptides more sensitive to proteases 

(Eggers et al, 1997). As an alternative approach to remove D N A K contamination 

denatured E. coli proteins, which serve as substrates for D N A K , were included to a 

Mg-ATP buffer before eluting the recombinant protein (Rial and Ceccarelli, 2002). 

In the present work extraction and purification of the peptides under denaturing 

conditions (8M Urea), in absence of Mg-ATP, proved sufficient to remove D N A K . 

To ensure successful refolding, only the smallest emerin peptides (1-70 and 73-180) 

were used. Samples were analysed by 2-D gel electrophoresis. For comparison 

peptides purified under native conditions were also analysed by 2-D electrophoresis. 

As in 1-D SDS PAGE, 2-D gels were compared to identify spots that were unique in 

the emerin-cytosol sample and absent f rom the two controls. Careful examination 

revealed only few protein spots, which were then cut out o f the gels and analysed by 

mass spectroscopy (Table 5.2). Consistent wi th the results from 1-D gels, (3-tubulin 

was identified as a protein co-precipitating with emerin. The majority o f the analysed 

protein spots, however, could not be identified. There are several reasons that could 

explain why some selected targets could not be identified by mass spectrometry. 
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Also, known emerin binding partners like lamins and BAF were not detected in these 

pull-down experiments. Possible reasons are discussed below. 

MALD1-TOF in combination with 2-D gel electrophoresis and the fast growth o f 

protein databases is a powerful tool that allows rapid protein identification. However, 

this approach suffers from several methodological limitations. 2-D gel electrophoresis 

although is the highest resolution protein separation method available is still limited 

by the number and type o f proteins that can be resolved. Very large proteins o f more 

than 100 kD may not enter the gel in the first dimension and very acidic or basic 

proteins, with a pi below 3 or above 10, are usually not well represented. Also when 

highly concentrated samples are used the most abundant proteins can dominate the 

gel making detection of low-copy proteins diff icult . This problem cannot be 

overcome by loading more protein on the gel since the resolution decreases as the 

amount o f the applied protein increases (Fey and Larsen, 2001). The Xenopus cytosol 

used in these pull-down experiments is a highly concentrated fraction (~ 50 mg 

protein/ml) and had to be diluted 1:4 in order not to overload the beads and to obtain 

samples that can be resolved on a gel. This could make the detection o f proteins that 

are not abundant diff icul t . Out the two best characterised emerin binding partners, 

lamin A and BAF, lamin A is not represented in Xenopus egg extracts and hence 

could not be detected. BAF on the other hand, is represented in the Xenopus cytosol 

and at 25 u M it is an abundant protein (Segura-Totten et al., 2002). In this case it is 

worth considering that the only reported emerin-BAF interaction by co-

immunoprecipitation employed j 3S-labelled emerin and BAF that were produced in 

rabbit reticulocytes (Lee et al., 2001). Unlike eukaryotic systems, however, 

modifications like phosphorylation, acetylation, glycosylation or disulfide formation 
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do not occur in prokaryotes. So when searching for binding partners of emerin 

expressed in E. coli interactions that require such modifications w i l l not be detected. 

Peptide mass fingerprinting (PMF) has also its limitations. Its ability to identify a 

protein depends on the presence o f the protein in a database. PMF is a very effective 

method in the analysis o f proteins from organisms whose genome is small, 

completely sequenced and well annotated. The fact that the Xenopus sequence is not 

complete yet could explain why some of the selected targets could not be identified. 

A study on the origins o f uninterpretable masses in PMF revealed a number o f other 

reasons that lead to the non identification o f a protein (Karty et al., 2002). Among 

these are errors in the published genome like incorrectly assigned protein start codons 

and protein modifications like deamidation and guanidination that give rise to masses 

that cannot be correctly matched. 

Based on the evidence provided so far, (3-tubulin was identified as an emerin 

interacting protein in two different sets o f experiments analysed by both 1-D and 2-D 

gel electrophoresis. Calcineurin and profi l in were identified as emerin interacting 

proteins based on their co-precipitation with emerin 1-70 and 1-176, respectively. The 

band corresponding to profil in, however, did also co-precipitate wi th emerin 1-220 

and 73-180 but not with 1-70. Unfortunately both, calcineurin and profi l in , were not 

detected in subsequent experiments in which samples were analysed by 2-D SDS-

PAGE. Also investigation o f the emerin-profilin interaction by the yeast-two-hybrid 

system did not yield a positive result leaving (3-tubulin as the most convincing result 

based on the assays used in this work. 
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To investigate the functional significance o f an emerin-tubulin interaction fibroblasts 

derived from four different X - E D M D patients were stained with a P-tubulin antibody. 

As a control, two HDF cell lines obtained from two unaffected individuals were used. 

Careful examination o f normal and X - E D M D cells under a confocal microscope 

revealed no major differences regarding M T organisation in the cytoplasm. Ln both 

cases MTs seemed to radiate out from the MTOC towards the cell periphery. 

The most striking difference between normal and X - E D M D cells was the position of 

the MTOC relative to the nucleus. While in normal cells the MTOC was observed on 

one side o f the nucleus in X - E D M D cells the MTOC was frequently found located far 

away from the nucleus. This observation was confirmed in four different X - E D M D 

cell lines and with two different antibodies, one against P-tubulin and one against the 

centrosomal protein pericentrin. In both cases, nearly 40% o f cells had the MTOC 

detached from the nucleus while the equivalent in normal cells was on average less 

than 15%. Possible explanations and implications of the above result w i l l be 

discussed in the General Discussion (Chapter 6). 
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CHAPTER 6 

GENERAL DISCUSSION 

232 



6.1 Overview 

The Xenopus cell-free system has been extensively used in the past to study the process 

of nuclear envelope formation and the function o f nuclear proteins. In this study, it was 

used to investigate the function and binding partners o f the I N M protein emerin. The 

results presented in this work lead to the following main conclusions: 

(a) In Xenopus, nuclear envelope assembly proceeds by the ordered recruitment of 

distinct vesicle populations to chromatin and requires the interaction o f L E M domain 

containing, membrane associated proteins with chromatin. 

(b) .Emerin is able to interact, either directly or indirectly, with the cytoskeletal protein 

(3-tubulin and is involved in maintaining the correct position o f the Microtubule 

Organising Centre (MTOC) near the NE. 

6.2 Nuclear envelope assembly in Xenopus 

To date, the exact mechanism o f NEBD and reassembly after mitosis is still under 

debate. One o f the existing models includes NE vesiculation and reassembly from 

discrete vesicles (Wiese and Wilson, 1993). This involves the initial binding o f nuclear 

envelope precursor (NEP) vesicles to chromatin, fusion o f vesicles into an ER-like 

network, enclosure o f the chromatin, and NE expansion (Mattaj, 2004). Alternatively, 

dispersal of proteins into the ER upon NEBD, and retention at chromatin during 

reassembly has been suggested. This is thought to occur by modified binding 
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characteristics o f 1NM proteins to chromatin, which is regulated by 

phosphorylation/dephosphorylation cycles (Ellenberg, 2002). 

The present study has provided clear evidence to support the existence o f distinct 

membrane populations in Xenopas (NEP-A and - B ) that are recruited to chromatin in 

an ordered manner during NE assembly. Successful nuclear assembly was shown to 

require both membrane populations, and the interaction o f membrane components with 

chromatin. Consistent with the evidence provided in this study, four more integral 

membrane proteins, contained either in the NEP-A or NEP-B fraction, have been shown 

to differ in their timing o f incorporation into /'/; vitro assembled pronuclei. Furthermore, 

the growth o f oocyte germinal vesicles as an in vivo model for NE assembly provided 

additional evidence for the existence o f distinct NEP populations. FESEM and thin 

section TEM o f whole isolated Xenopas oocyte germinal vesicle NEs during growth 

phases identified large, ribosome studded vesicles, fused to the O N M , and smaller, 

smooth vesicles that were close to, docked with or fused to the ONTvl. In view of the 

above results it can be hypothesised that nuclear assembly in Xenopus egg extracts 

proceeds by the binding of NE-specific NEP-B vesicles to chromatin at approximately 

the same time as binding o f pre-pore complexes. Binding of NEP-B vesicles promotes 

chromatin decondensation and further recruitment o f FG-repeat nucleoporins, and is 

followed by the binding and fusion o f ER-like NEP-A membranes. This streaming and 

fusion leads to enclosure o f the chromatin and formation of mature NPCs (Salpingidou 

el al., 2005; submitted for publication). 

The existence o f distinct NE vesicle populations presented here reflects the 

fundamental difference between somatic and embryonic systems. In contrast to somatic 
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cells, egg systems contain stockpiles of materials to support the generation o f many 

cells, and in any one cell division only a fraction o f this material is used. Therefore, 

storing of proteins separately from each other might function in order to limit the 

formation o f inappropriate structures, and could explain the observed segregation o f 

different NE proteins into discrete NEP populations in eggs. 

The role o f the LEM domain in nuclear assembly was highlighted in this study by the 

fact that emerin peptides containing the L E M domain were able to inhibit nuclear 

decondensation, binding o f NEP vesicles to chromatin and correct NPC assembly. The 

ability o f the emerin L E M domain to interfere with nuclear assembly, as opposed to 

emerin peptides lacking the L E M domain, raised important questions on the functional 

differences between the emerin domains. To address this question affini ty 

chromatography was employed to investigate the binding partners o f emerin in the 

Xenopus system. 

6.3 Emerin interacting proteins 

In this study an emerin affinity column was created to screen the Xenopus cytosol for 

interacting proteins. Mass spectrometric analysis identified three potential emerin 

binding proteins: calcineurin. profil in and (3-tubulin. Since P-tubulin was the only 

repeatable result in this work emphasis was given in investigating the emerin-tubulin 

relationship. However, the significance o f the other two identified proteins should not 

be dismissed and, therefore, a brief description of them wi l l be given below. Further 

work in the future involving other protein-protein interaction methods could clarify 

whether an interaction of calcineurin or profil in with emerin occurs. 
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6.3.1 Calcineurin 

Calcineurin is a Ca 27Calmodulin dependent Ser/Thr phosphatase widely distributed 

throughout eukaryotic cells. It consists o f a catalytic subunit, which binds calmodulin 

and a regulatory subunit, which binds Ca 2 + (Ito et al., 1989). Although it is generally 

believed that 50% of calcineurin is cytosolic and 50% is bound to the plasma membrane 

(Yakel, 1997) several reports of calcineurin in the nucleus exist (Momayezi et al., 2000; 

Nakazawa et al., 2001; Usuda et al., 1996). 

Calcineurin is a critical transducer o f calcium signals that influence development, 

adaptation and disease o f cardiac and skeletal muscle. Involvement o f a calcineurin-

dependent pathway in cardiac hypertrophy has already been shown. Transgenic mice 

that express an activated form o f calcineurin in the heart develop dramatic cardiac 

enlargement that progresses to dilated cardiomyopathy, heart failure and sudden death 

(Molkentin et al., 1998). In skeletal muscle, calcineurin is involved in the signalling o f 

muscle-fibre type conversion. Activated calcineurin is able to transform myofibres into 

slow oxidative muscle fibres, resulting in muscle responding and adapting to 

environmental needs (Olson and Williams, 2000). Calcineurin is also implicated in 

skeletal muscle differentiation by activating MEF2 and MyoD transcription factors 

(Friday et al., 2003), and in muscle regeneration via NFATcl and GATA2 dependent 

pathways (Sakuma et al., 2003). In further support of an involvement o f calcineurin in 

muscle regeneration is the fact that cyclosporine A, an inhibitor o f calcineurin, prevents 

muscle regeneration in response to damage (Abbott et al., 1998). This could also 

explain why patients treated with cyclosporine A show severe skeletal muscle weakness 

(Goy et al., 1989). Considering that absence o f emerin leads to defects in cardiac and 
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skeletal muscle, an interaction between emerin and calcineurin could explain at least 

partly the tissue specificity o f X - E D M D . Interestingly, an association between muscle 

A-kinase anchoring protein (mAKAP) and nesprin-la has been reported recently. 

mAICAP is part o f a signalling complex that is involved in transducing cAMP and Ca + 2 

at the NE of heart muscle cells. This signalling complex is involved in the selective 

activation of NFATc transcription factor by the P-adrenergic receptor and the calcium-

dependent phosphatase calcineurin (Pare et al., 2005). Apart from m A K A P , nesprin-la 

is also known to interact with emerin. Further work that could provide more solid 

evidence on the emerin-calcineurin interaction would be o f great importance. It would 

implicate emerin and calcium ion signalling in the development o f muscular dystrophy 

and cardiomyopathy in X - E D M D . 

6.3.2 Profilin 

Profilin is part o f the large number o f the actin binding proteins. By interacting with the 

barbed ends of actin filaments, profil in is one o f the major components that control 

actin polymerisation. A nuclear localisation for profil in has also been reported and 

based on its co-localisation with speckles and Cajal bodies a role for nuclear 

profilimactin complexes in pre-mRNA splicing has also been proposed (Skare el al., 

2003). Although the existence o f nuclear actin is still controversial, interactions 

between emerin and actin in the nucleus have already been reported (Fairley et al., 

1999; Holaska et al., 2004; Lattanzi et al., 2003). It is proposed that emerin binds the 

pointed end of F-actin and stimulates actin polymerisation by stabilising the actin 

filaments. In this way, emerin is part o f a nuclear aclin cortical network that provides 

structural support to the nucleus (Holaska et al., 2004). 
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6.3.3 |J-tubulin 

Clearly, the most convincing result as an emerin interacting protein from the 

experiments presented in this work is P-tubulin, as it was repeatable in different sets o f 

experiments, analysed by both, 1-D and 2-D gel electrophoresis. However, tubulin is 

the major constituent protein o f cytoplasmic microtubules (MTs) while emerin is an 

[NM protein, separated from the cytoplasm by the ONM and NE lumen. Hence, the 

important question arises as how these two proteins could interact. 

One possible way that emerin could interact with tubulin is i f the latter would be 

localised in the nucleus. Although tubulin has generally been thought as a protein 

exclusively localised in the cytoplasm several reports exist about a nuclear localisation 

of tubulin. Early studies on tissue culture cells report on tubulin distributed throughout 

the nucleus and in association with chromatin (Menko and Tan, 1980). A more recent 

study identified the Pn isotype o f tubulin in the nuclei o f cultured rat kidney mesangial 

cells (Walss et al., 1999). However, unlike most other normal cell lines mesangial cells 

have the ability to proliferate rapidly in culture by self-producing growth factors and 

undergoing autocrine-mediated proliferation. Further studies on several cancer cell lines 

confirmed a nuclear localisation for Pn-tubulin and proposed a function in accelerating 

DNA and RNA synthesis (Walss-Bass et al., 2002). As. however, localisation o f P-

tubulin in the nucleus is restricted to cells that are characterised by rapid proliferation it 

seems unlikely that an interaction o f emerin with tubulin in the nucleus could be a 

general phenomenon in normal cells. 
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A more plausible scenario would be i f emerin and tubulin interact during mitosis when 

the boundary that separates them in interphase, the nuclear envelope, no longer exists. 

Several aspects o f mitosis, including NEBD and assembly of emerin into the reforming 

NE at the end o f mitosis, seem connected with MTs. 

MTs have been implicated in the process of NEBD. In prophase, the NE has been 

shown to form two indentations at antidiametrical sites o f the nucleus, which contain 

the centrosomes that w i l l later form the spindle pole, and MTs. Also, using a marker for 

the plus-ends o f MTs it has been shown that in late prophase, when the NE breaks 

down, MTs grow towards the nucleus and plus-ends concentrate near the nucleus in a 

ring o f - 2-3 uin in width (Piehl and Cassimeris, 2003). Initially, it was suggested that 

the MTs that are contained in the NE indentations, elongate as mitosis progresses 

pushing and eventually penetrating the nucleus leading to NEBD (Georgatos et al., 

1997). Subsequent studies, however, found no evidence o f MTs piercing the nuclear 

membranes. Instead it is proposed that dynein, a M T minus-end-directed motor protein, 

associates with the NE before NEBD, stabilising MTs and favouring their growth in 

close association with the NE. It then pulls NE components towards the centrosomes 

leading to the formation o f the observed NE invaginations. The tension created distal 

from the centrosomes, leads to detachment of nuclear membranes from chromatin 

(Beaudouin et til., 2002; Piehl and Cassimeris, 2003; Salina et al., 2002). Once the NE 

is broken, tubulin can gain access to NE proteins. A role for tubulin in binding NE 

components at this stage o f the cell cycle has already been reported. Binding o f M 3 I , 

the mouse homologue of human HP1 protein, to NEs was shown to be inhibited by a 

cytosolic factor, which was identified as [32- a2/6-tubulin. Experiments showed that the 

inhibitory effect was mediated by tubulin blocking the M3 I-binding sites at the NE. 



Non-polymeric tubulin was shown to interact with intact NEs with a high affinity. M31 

is known to mediate the recruitment o f NE precursors to chromatin during NE 

reassembly at the end o f mitosis. It was, therefore, hypothesised that during NEBD 

soluble tubulin binds to NE membranes preventing premature interactions between 

fragments o f the NE and M31 . In a reverse process, dissociation o f tubulin from NE-

derived membranes could occur at subsequent stages o f mitosis, when the spindle fully 

develops, and the concentration o f soluble tubulin drops (Kourmouli et al., 2001). In a 

similar scenario it could be hypothesised that when the NE breaks down, tubulin binds 

to emerin thereby preventing its premature association with its chromatin associated 

partner BAF. 

At this point, it is also worth considering that interactions between NE fragments and 

other elements o f the cytoskeleton have been reported suggesting a role for the 

cytoskeleton in membrane partitioning during cell division. In prometaphase-arrested 

cells, vimentin filaments were observed extending towards the cell periphery closely 

associated with vesicles ranging in diameter from 100 to 400 nm. The vesicles were 

morphologically different from flat membrane cisternae and tubular elements 

representing the ER and Golgi apparatus. Immunoelectron microscopy revealed that the 

vimentin associated vesicles carry lamin B and p58 (or LBR) on their surface while 

they are depleted of ER and Golgi markers. An interaction between vimentin and lamin 

B was also shown by co-immunoprecipilation. Based on the above, it was proposed that 

vimentin filaments act as transient docking sites for NE-derived vesicles during mitosis 

sorting these vesicles away from ER and Golgi membranes. Alternatively, the 

interaction of NE vesicles with IFs could serve to prevent premature association o f the 

vesicles with the surface o f chromosomes (Maison et al., 1995). 
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Interestingly, several lines o f evidence support a close association between emerin 

and MTs at the end o f mitosis when the NE reassembles. Observations on the fate of 

emerin during mitosis in human Hep2 cells by con focal microscopy have shown some 

overlapping staining of emerin with P-tubulin at the spindle poles in metaphase 

indicating that some emerin containing vesicles are associated with the mitotic 

spindle poles. In anaphase and early telophase, emerin was found on the chromosome 

surfaces but initially focally concentrated in the areas o f the spindle poles 

(Dabauvalle et al., 1999). Observations o f GFP-emerin in living HeLa cells and 

endogenous emerin by immunofluorescence further confirmed the enrichment o f 

emerin in the central core region o f chromosomes behind the spindle pole (Haraguchi 

et al., 2000). At the core region, emerin was shown to co-exist with A-type lamins 

and LAP2a while other nuclear membrane proteins like lamin B, LBR and LAP2(3 

were localised in more peripheral chromosome areas (Dechat et al., 2004). Although 

in close proximity to MTs, the core region localisation o f emerin near the spindle 

poles does not seem to depend on MTs but on BAF since, when MTs were 

depolyinerised, emerin still localised at the core region (Haraguchi el al., 2001). 

However, this does not rule out the possibility that once near the spindle poles emerin 

could gain M T binding activity. 

Finally, it is also possible that emerin and tubulin do interact in interphase via an 

indirect mechanism and that other components that mediate the interaction were not 

detected in the experiments performed. Taking into account the observed detachment 

of the MTOC from nuclei in X - E D M D cells, which lack emerin, an indirect link 

between emerin and MTs in interphase seems not improbable. The recently 
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discovered giant spectrin-repeat containing proteins that localise at the NE and 

connect the nucleus with the cytoskeleton would be ideal candidates for this scenario. 

6.4 Emerin and the Microtubule Organising Centre ( M T O C ) 

With the aim of investigating the functional significance o f the emerin-tubulin 

interaction X - E D M D cell lines, which lack emerin, were stained with a (3-tubulin 

antibody. The most striking abnormality observed in all X - E D M D cell lines, was the 

detachment o f the MTOC from the nucleus, which was localised at distances at least 

double than in control cells. 

In cells, minus-ends o f MTs emanate from and are organised by the MTOC, an 

organelle that is also known as the centrosome in vertebrate cells or the spindle pole 

body in yeast. Centrosomes play a fundamental role in the organisation o f cells. They 

regulate the number, distribution and dynamics o f MTs within the cell and orchestrate 

the generation and orientation of the bipolar mitotic spindle. Centrosomes are actively 

maintained at the cell centre by several kinds of forces. In mammalian cells it is thought 

that the cell centre position is maintained by pulling forces applied to the MTs by 

dynein at the cell cortex. Pushing forces on the centrosome MTs exerted by the 

actomyosin complex also contribute to the centrosome positioning (Burakov et al., 

2003). 

In interphase, centrosomes are associated with the nucleus. In some organisms like 5. 

cerevisiae the MTOC, most commonly known as spindle pole body is embedded in the 

NE. Unlike the spindle pole body, however, the centrosome is not embedded at the NE, 
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and the link between centrosomes and nuclei has been mysterious (Raff, 1999). MTs 

and dynein have been implicated in playing an important role in the attachment of the 

centrosome to the nucleus while recent studies in C.elegans and Drosophila have 

identified more proteins involved in this process. 

Cytoplasmic dynein is a minus-end-directed microtubule motor that is involved in 

several cellular processes like centrosome migration, spindle morphogenesis, 

cytokinesis or acting as a kinetochore motor. In addition to the above, studies in 

Drosophila have revealed a role for dynein in the attachment o f centrosomes to nuclei. 

In dynein mutant embryos a detachment o f centrosomes from the NE was observed. 

The detachment was either permanent or in some cases centrosomes detached briefly 

and then moved back to the nucleus and reattached. The role o f dynein in the nuclear 

attachment o f the centrosome could be explained by a localisation o f dynein at the NE 

where it could act as a minus-end motor to draw in centrosomal MTs. Alternatively, 

dynein could be localised at the centrosome where it could act to stabilise the 

attachment o f nucleated MTs that are themselves required for nuclear attachment 

(Robinson et ai, 1999). 

In C.elegans, protein ZYG-12 has been identified as essential for the centrosome-

nucleus attachment. The zyg-I2 gene encodes three isoforms, ZYG-12 A, B and C. A l l 

isoforms belong to the Hook family o f proteins, which are thought to act as linker 

proteins between membrane compartments and the M T cytoskeleton. Unlike the 

Drosophila and human Hook proteins, ZYG-12 B and C isoforms encode a 

transmembrane domain at their C-terminus and show a centrosomal and NE 

localisation. In C.elegans zyg-12 mutant embryos, centrosomes fail to associate with 
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nuclei throughout interphase. This leads to formation o f aberrant spindles, chromosome 

segregation defects and ultimately embryonic lethality. ZYG-12 can interact with 

components of the dynein complex and its localisation at the NE requires SUN-1, a 

SUN-domain containing NE protein. Based on this, a two-step model has been 

proposed for the attachment o f centrosomes to nuclei in C.elegans. Initially, dynein is 

recruited to the nucleus via an interaction o f ZYG-12 at the NE with the dynein light 

intermediate chain. Dynein then translocates towards the minus-ends o f MTs organised 

by the centrosome, bringing the centrosome in close proximity to the nucleus. In the 

second dynein-independent step, ZYG-12, which is localised in the NE in a SUN-1-

dependent manner and at the centrosome, mediates a direct attachment of the two 

organelles by homodimerisation (Malone et al., 2003). 

Further studies on nuclear migrations that occur during the embryonic development o f 

C.elegans, identified protein UNC-84 as the missing link between the centrosome and 

the nucleus. UNC-84 comprises two isoforms, A and B, which contain a 

transmembrane region and are associated with the NE although it is not clear yet 

whether they are localised at the inner or outer nuclear membrane. Both contain a C-

terminal SUN-domain, which is highly similar to the C-terminus o f Sad 1, a NE protein 

that is thought to anchor the spindle pole body to the NE. In unc-84 mutants 

mispositioned and unanchored nuclei that were able to move around within the 

cytoplasm were observed. The mutations that affected the function o f UNC-84 required 

for nuclear anchoring were localised in the SUN domain. Since nuclear anchoring in a 

cell could be achieved by forces transmitted to the nucleus through the centrosome it 

was initially proposed that UNC-84 could function to couple the nucleus and the 

centrosome (Malone et al., 1999). Subsequent studies, however, challenged the above 
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hypothesis. When centrosomes were localised in C.elegans unc-84 null cells 

cenlrosome localisation was indistinguishable from wild-type embryos suggesting that 

UNC-84 is not involved in the nuclear anchorage o f the centrosome. Instead based on 

the dependence o f its NE localisation on lam in expression, it is proposed that UNC-84 

and its partner UNC-83 form a structural bridge that connects the spectrin-repeat 

containing protein A N C - 1 , which is localised at the O N M to the lamina in the I N M . 

This connection would then function to transfer forces between the structural elements 

of the nucleus and molecular motors o f the cytoskeleton (Lee et ah, 2002). 

Studies in Drosophila have also shed some more light in the nature o f the centrosome-

nucleus association. Recently, Klarsicht, a large protein that contains a KASH 

(Klarsicht, Anc-1, Syne-1 Homology) domain, was shown to localise to the NE where it 

can interact with lamins. Based on the fact that in Klarsicht and lamin Drosophila 

mutants the MTOC is detached from the nucleus it is hypothesised that these proteins 

form a bridge that connects the MTOC with the nucleus. In this complex, Klarsicht is 

localised at the O N M via its K A S H domain and is linked by one or more proteins to the 

lamins in the TNM. At the same time the N-terminal portion o f Klarsicht is linked to 

MTs by dynein tethering this way the MTOC to the NE (Patterson et al, 2004). 

The implication of the KASH domain containing protein Klarsichl in maintaining the 

MTOC-nucleus association seems very interesting considering that nesprins I and 2 

also contain a K A S H domain at their C-terminus and are known to interact with lamins 

and emerin. Although the nesprin ortholog in Drosophila is the giant protein MSP300 

and Klarsicht shares no other similarity with nesprins than the KASH domain, it is 
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possible that Klarsicht performs the NE and cytoplasmic functions o f nesprins while 

MSP300 has a more muscle specific role in Drosophila (Zhang et al., 2005). 

Nesprins 1 and 2, also known as Enaptin and N U A N C E are gigantic proteins that 

belong to the a-actinin family o f actin binding proteins. Structurally they comprise 

three main domains: an N-terminal actin binding domain, a large helical rod domain 

that contains multiple spectrin-repeats (SRs) and a C-tenninal T M domain. At the C-

terminus, and including the T M domain, is the K A S H domain, a 62 residue region that 

is shared between the Drosophila Klarsicht, Anc-1 and Syne-1 proteins. Except 

nesprin-1 and -2 giant, the nesprin family comprises many other N-terminally truncated 

isofonns (Zhang et al., 2001). The different nesprin i so forms are localised at the NE, 

cytoplasm and nuclear interior while immunoelectron microscopy revealed that even 

the large isoforms like Nesprin-2 giant/NUANCE are able to localise at both sides o f 

the NE. Interactions between the last SRs at the C-terminal regions o f both, nesprin la 

and nesprin 2 with emerin have already been reported (Libotte et al., 2005; Mislow et 

al., 2002; Zhang et al., 2005). 

Considering that nesprins localise at both the inner and outer nuclear membrane, and 

that they can interact with emerin it is not unlikely that they are part o f complex that 

connects emerin with the MTOC. It has already been suggested for nesprin-2/NUANCE 

that it could serve as a platform for anchoring the dynein-dynactin complex. 

Interestingly, when cells were treated with Latrunculin A, a drug that depolymerises 

actin filaments, nuclei acquired an irregular shape with wrinkled invaginations, in 

which cytoplasmic nesprin-2/NUANCE and actin aggregates accumulated. These NE 

invaginations greatly resembled the MT containing finger-like projections observed in 
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cells just before NEBD. Based on this observation, which implies a link between 

nesprin-2/NUANCE and the pericentrosomal astral complex, the authors suggested a 

role for nesprin-2/NUANCE in the spatial organisation o f a MT-dependent machinery 

linking it to the NE (Zhen et ai, 2002). 

6.5 Emerin in disease 

Since the discovery that mutations in the emerin gene cause Emery-Dreifuss muscular 

dystrophy several hypotheses have been formulated to explain how a NE protein can 

lead to the disease phenotype. The two most appealing explanations so far include the 

'structural' model and the 'gene expression' model, in which mutations lead to an 

increased nuclear fragility or to gene expression defects, respectively. 

There is increasing evidence that strengthens the idea that the nucleus is not an isolated 

organelle but is linked to cytoskeletal elements. The discovery o f nesprins, the giant 

proteins that localise to both sides o f the NE, connecting NE proteins with the 

cytoskeleton, is one o f them. Additionally, lam in mutations cause the autosomal 

dominant form of E D M D and in lamin null-cells a disorganisation of the actin, tubulin 

and vimentin cytoskeleton and their detachment from the nucleus has been reported 

(Broers et al., 2004). The present work provides further evidence for the close 

association o f the nucleus with the cytoskeleton supporting the 'structural' hypothesis 

model. The direct or indirect association o f emerin with tubulin and the disturbed 

appearance o f MTs in X - E D M D cells points to the interdependence o f the nucleus and 

the cytoskeleton. Future work on whether other cytoskeletal elements are disturbed in 

X-EDMD cells would be interesting. 
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The observed detachment o f the MTOC from the nucleus in X - E D M D cells further 

supports the relationship ofemerin with MTs. The immediate question that arises from 

this observation, however, is what the detachment of the MTOC means in relation to 

emerin and X - E D M D . Attachment o f the centrosome to the nucleus serves several 

purposes. It maintains the proximity o f the centrosomes to chromosomes at the onset o f 

mitosis. Abnormal centrosome positioning could lead to a failure o f astral MTs to 

capture chromosomes upon NEBD producing defects in chromosome segregation. One 

of the main clinical features o f X - E D M D is muscle waste, which implies defective 

muscle regeneration. The regeneration process requires that satellite cells, which are in 

a quiescent state, re-enter the cell cycle, proliferate and differentiate into myofibres. As 

the centrosome attachment to the nucleus is o f great importance for a smooth cell cycle 

any abnormalities arising from the detachment o f the centrosomes from the nuclei could 

interfere with the regeneration process. 

Additionally, centrosome attachment to the nucleus is required for positioning the 

nucleus at the cell centre and to transmit forces to move nuclei during nuclear 

migrations. This would imply an involvement o f emerin in nuclear migrations. Nuclear 

migrations play an essential role in various processes like the movement o f pronuclei 

during fertilisation, the separation o f daughter nuclei during mitosis and the positioning 

of nuclei in interphase cells. In muscle, nuclear migrations are an important step during 

differentiation. Skeletal muscles fibres are syncytial. Each fibre contains several 

hundred myonuclei. Most nuclei are well separated from each other. In developing 

myotubes nuclei move at high speeds through the cytoplasm and migrate from the 

centre to the cell periphery. This repositioning o f nuclei from the centre to the periphery 

defines the myotubes to myofibre transition. Interestingly, mispositioned nuclei that fail 
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to migrate have been observed in X - E D M D muscle tissues (Toniolo et al., 1999). As, 

however, this has been observed in muscle tissues o f patients with other muscular 

dystrophies as well, more work is needed to support a correlation o f emerin with 

nuclear migrations defects in muscle. 

To date several functions have been attributed to emerin. These include the mechanical 

stability o f the nuclear membrane, the regulation o f gene expression, the regeneration of 

muscle fibres and the regulation of calcium levels at the nuclear envelope and 

nucleoplasm. The present thesis has provided evidence on the association o f emerin 

with tubulin and the MTOC. Clearly more work is needed as to elucidate the nature o f 

this interaction and its functional significance. Understanding the function o f nuclear 

envelope proteins seems of great importance considering the devastating effects of their 

absence. 
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