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Semantic Segmentation of Astronomical Radio
Images: A Computer Vision Approach

Abstract

The new generation of radio telescopes, such as the MeerKAT, ASKAP (Australian
Square Kilometre Array Pathfinder) and the future Square Kilometre Array (SKA),
are expected to produce vast amounts of data and images in the petabyte region.
Therefore, the amount of incoming data at a specific point in time will overwhelm any
current traditional data analysis method being deployed. Deep learning architectures
have been applied in many fields, such as, in computer vision, machine vision, natural
language processing, social network filtering, speech recognition, machine translation,
bioinformatics, medical image analysis, and board game programs. They have produced
results which are comparable to human expert performance. Hence, it is appealing to
apply it to radio astronomy data. Image segmentation is one such area where deep
learning techniques are prominent. The images from the new generation of telescopes
have a high density of radio sources, making it difficult to classify the sources in the
image. Identifying and segmenting sources from radio images is a pre-processing step
that occurs before sources are put into different classes. There is thus a need for auto-
matic segmentation of the sources from the images before they can be classified. This
work uses the Unet architecture (originally developed for biomedical image segmenta-
tion) to segment radio sources from radio astronomical images with 99.8% accuracy.
After segmenting the sources we use OpenCV tools to detect the sources on the mask
images, then the detection is translated to the original image where borders are drawn
around each detected source. This process automates and simplifies the pre-processing
of images for classification tools and any other post-processing tool that requires a
specific source as an input.
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Chapter 1

Introduction

1.1 Context to the study
The Square Kilometre Array (SKA) is a scientific project that aims to build the world’s
largest and most sensitive radio telescope. Under development by an international con-
sortium, it is designed to answer questions about the nature of the Universe, the nature
of gravity, the cosmic magnetic field, search for extraterrestrial intelligence, and reveal
new mysteries about the Universe [Dewdney et al. (2009)]. The SKA is characterised by
high sensitivity, high survey speed, high spectral and time resolutions, and a wide field
of view. These characteristics ensure it can observe the many different objects in space
to detect dim objects. The future SKA, its precursors MeerKAT [Jonas (2009)] and
the Australian Square Kilometre Array Pathfinder (ASKAP) [Johnston et al. (2008)]
are expected to produce vast amounts of data in the petabyte region [Sabater et al.
(2017)]. MeerKAT is a South African radio telescope. It consists of 64 antennas with
a minimum baseline of 28 m and a maximum baseline of 8 km. The antennas have
a Gregorian configuration that provides optical performance and sensitivity. The fre-
quency range of the L-band receiver is 856 MHz - 1712 MHz, and its angular resolution
using the central frequency of 1284 MHz is 0.734 arcsec. ASKAP, on the other hand,
is an Australian telescope with a maximum baseline of 6 km, a frequency range of
700 MHz - 1800 MHz and a field-of-view of 30 sq. degs. ASKAP aims to survey the
visible sky to the root mean square (RMS) sensitivity of 10 µJy/beam. It is expected
to produce a catalogue of about 70 million galaxies at 1100 MHz. Traditional data
handling methods of transmitting, computing, analysing and archiving this data will
not be adequate due to the advancement of the observation technology. Deployment
of automatic techniques such as deep learning [LeCun, Bengio, and Hinton (2015)] is
imperative for data analysis.

Deep learning is a subfield of machine learning based on ANNs with a significant
trade-off of manual feature engineering. The standard format of deep learning consists
of an input layer, one or more hidden layers, and an output layer, collectively referred
to as a neural network. The first layers extract features in the data, and a decision is
made in the two last layers. The layers that learn features are not directly designed
by human engineers but are formed under the guidance of general-purpose learning
procedures. This characteristic gives deep learning the advantage over classical model
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2 Introduction

fitting. Radio telescopes produce visibility data, which are then rendered as images.
Images from these telescopes contain significantly more sources and diffuse emissions
than radio images from previous radio telescopes; as a result, it is challenging to use
traditional methods to analyse them. This research, therefore, focuses on automating
the process of source segmentation in such images through the use of deep learning
techniques.

There are several types of architectures used for deep learning, e.g. (1) Artificial
neural network (ANN) [Zupan (1994)], which consists of a group of neurons in each
layer and is used to solve problems related to tabular, text, and image data. (2) Re-
current neural network (RNN) [Medsker and Jain (1999)] which is made up of a group
of multiple neural networks with recurring connections in the hidden layers typically
used for time-series, text, and audio data. (3) Convolutional neural networks (CNN)
[O’Shea and Nash (2015)], which are primarily used to solve intricate image-driven
pattern recognition tasks. Segmentation is a technique that gives us a far more granu-
lar understanding of the objects in the image. The objects in radio images are sources;
this technique will help us understand the sources within the image and detect their
precise location in the image.

1.2 Problem statement

Since the SKA will be the largest telescope of its kind in history, it will make serendip-
itous discoveries and contribute to making the most prominent data archive in the
world [An (2019)]. Therefore, enormous challenges are expected with processing the
SKA data. In recent years, CNN techniques have been applied in radio astronomy and
have proved useful, e.g. (1) to detect system health for modern radio telescopes [Mesar-
cik et al. (2020)], (2) to detect radio frequency interference (RFI) [Mosiane et al. (2017)]
and (3) Classification of Radio Sources [Aniyan and Thorat (2017)]. Aniyan and Tho-
rat (2017), in the latter application, did a study on the classification of radio galaxies
with AlexNet CNN based on galaxy morphology. This study looked at three classes of
morphology, the Fanaroff-Riley (FR) classes I, II and bent-tailed galaxies. Their model
performed acceptably well with an accuracy score greater than 80%. However, like the
current frameworks in use, a user must perform the segmentation process manually as
a pre-processing step before a classification framework step is conducted. This process
is inefficient for images such as those expected from the future SKA telescope. The
images have a much higher spatial density of sources, and far more complicated mor-
phologies are revealed by sensitive observations. Moreover, it is time-consuming and
can significantly affect the classification accuracy. It is evident that pre-processing the
images is imperative in this field, and the work presented in this thesis addresses this
problem. The techniques we are developing are expected to be particularly useful in
this new era of radio telescope surveys, as the images show high concentrations of ra-
dio objects. A high precision, automatic source detection system is required to segment
these radio sources from the clustered images.
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1.3 Objective

In this research, we aim to automate the segmentation of sources from images using a
Unet architecture [Ronneberger, Fischer, and Brox (2015)]. We use segmented images
to detect the sources and draw borders around them. The Unet architecture is a uni-
versal function approximator with arbitrary accuracy which efficiently handles noisy
inputs [Chen et al. (2016)]. It was initially developed for biomedical image segmenta-
tion, where it won a segmentation challenge by a large margin. Unet could be helpful,
particularly for radio images, as it also deals with complex structures. Therefore, the
study’s objective is to investigate this data analysis method to solve the problem of
analysing the vast amount of incoming data, and dealing with complexity in images,
while minimising or avoiding time-consuming manual processes.

1.4 Contribution

Upon completion, the software produced by this study should assist astronomers in
analysing and understanding radio images produced by telescopes. It should automat-
ically segment the radio sources from the images with high precision. The output of
this process is expected to be individual radio sources arranged in a catalogue. This
tool will be invaluable to astronomers as it will avoid having to segment sources from
images by hand before scientific investigations of the radio sources can occur.

1.5 Manuscript layout

This thesis is organised as follows:

Chapter 2 investigates basic interferometric radio imaging and source finding meth-
ods currently used in radio astronomy. We gain an understanding of how visibility data
is imaged so that we can obtain the images to be used as input data for our study.

Chapter 3 investigates deep learning methods: what they are and where they are
derived from in the greater scheme of machine learning. We take a look at the hyper-
parameters that are adjusted to optimise our work.

Chapter 4 investigates different segmentation techniques and their advantages and
disadvantages. After carefully considering all the factors discussed in this chapter, Unet
emerges as the most viable architecture that fits our purpose. It was initially designed
for medical images; however, we will investigate its performance on astronomical im-
ages, and the findings will be detailed in the next chapter.

In Chapter 5, the Unet segmentation architecture is applied to radio images, and
the ground truth images produced by pyBDSF and Unet are compared. Unet performs
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above average when applied to radio data with an accuracy of 99.8%.

Chapter 6 concludes and discusses future work.



Chapter 2

Interferometric radio imaging and
source finding

2.1 Basics of radio interferometry
Karl Guthe Jansky (1932) was an engineer at Bell Laboratories who was tasked to
perform an investigation to identify sources of static in overseas radio communications.
He observed emission of unknown origin at 20.5 MHz (a wavelength of about 14.5 m).
He eventually showed that this emission originates from the direction of Sagittarius,
behind which lies the centre of our galaxy [Jansky (1933)]. However, the field of radio
astronomy was truly born in 1940 when Grote Reber mapped the Milky Way galaxy at
160 MHz using a parabolic antenna [Reber (1940)]. Radio astronomy is limited to the
frequency range of 15 MHz - 1.5 THz [Rohlfs and Wilson (2000)]. A wealth of scientific
information can be recorded and studied at radio wavelengths. Radio telescopes are
instruments which enable us to carry out observations of celestial objects at radio fre-
quencies. Radio telescopes are constructed in different shapes and sizes from the specific
type of radio waves they are designed to detect. Generally, every radio telescope has an
antenna on top of a base and receiver equipment to capture and record the signals. An
antenna is a device used to convert electromagnetic radiation into electrical currents. A
radio telescope is one such example of a receiving antenna. The properties that follow
are observed for a receiving antenna.

The radiation pattern (or primary beam pattern) of a receiving antenna defines the
directional sensitivity of the antenna. It is not equally sensitive in all directions, as
shown in Figure 2.1. This primary beam is composed of a main or major lobe. The size
of the beam is quantified by the half-power beam width (HPBW) of the major lobe.
The HPBW measures the angular extent of the beam between the points at which the
major lobe falls to half its maximum value.

5



6 Interferometric radio imaging and source finding

Figure 2.1: A radiation pattern of an antenna indicates the strength of the radio waves from
sources. The main lobe represents radiation in the desired direction which HPBW measures,
while the other lobes represent radiation in other direction [Abd Alaziz (2011).

For a telescope with a dish of diameter D, the attainable resolution R is:

R ∝ λ

D
, (2.1)

where λ is the observing wavelength. To attain a high resolution image implies that the
value of R should be very small. Since R and D are inversely proportional (as shown
in Equation 2.1), increasing one parameter decreases the other parameter. To calculate
the minimum angular separation between two light sources that may be resolved into
distinct objects, we use λ1.22×R, referred to as the Rayleigh criterion. The dish should
be designed according to the desired resolution for a fixed observation wavelength. For
example, the design can result in an impractically large dish size if we wish to archive
a resolution similar to optical observations. Interferometry and aperture synthesis be-
comes imperative. Radio interferometry is a technique whereby several radio antennas
are combined to simulate a single "aperture" (synthesised telescope) whose diameter
corresponds to the largest distance between the antenna elements. Pairs of antennas
form a baseline and the signal that each pair of antennas measures is recorded as a
voltage. The voltage is synchronised through a correlator. The maximum resolution of
the array is given by:

Rmax ∼
λ

|u|
, (2.2)

where u is the maximum baseline vector and |.| is the Euclidean norm. An illus-
tration of the possible maximum resolutions achievable by several dishes at a given
frequency is shown in Table 2.1.

Maximum resolution (Rmax in arcsec)
λ / |u| 28 m 100 m 8000 m 1000000 m
100 MHz 22099.8 6188 77.36 0.6187
1000 MHz 2209.98 618.8 7.736 0.06187
10000 MHz 220.9 61.88 0.7736 0.006187
100000 MHz 22.099 6.188 0.07736 0.0006187
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Table 2.1: Different combinations of frequency and baselines achieve different resolutions (in
arcsec). This table illustrates the possible achievable maximum resolution.

2.1.1 Two-element radio interferometer

Figure 2.2: A two-element radio interferometer depicting two antennas receiving signals from
the direction of the source. The signals are received by the antennas and then sent to the
correlator.

Figure 2.2 illustrates a two-element radio interferometer. Suppose that p and q are
two telescope antennas on the Earth’s surface. For illustration, let us assume that the
Earth is not rotating and that the source we are trying to measure is not directly
above the antennas. An apparent baseline is seen by the source in such a case due to
the projection of the baseline in the direction of the source. The wavefronts does not
arrive at p and q simultaneously as indicated in Figure 2.2. This lag introduces a time
delay that has to be incorporated to measure the signal from the same wavefront.
In reality, when we make allowance for the Earth’s rotation, the time delays and
antenna direction need to be adjusted continuously. The plane’s position relative to
the Earth continuously changes as the Earth rotates and needs to be incorporated.
This process is an illustration of how radio telescopes view the sky and the effects that
are considered when viewing the sky.

2.1.2 Visibilities and imaging

Coherence is calculated by a visibility function [Rohlfs and Wilson (2000)]. This
visibility function can be considered as a non-normalised measure of the electric field
at pairs of points in a plane, adjusted according to the interferometer’s characteristics.
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We introduce the coordinate system for a practical application of a visibility function,
such as imaging. The baseline vector u is described by component (u, v, w), which are
measured in wavelength at the central frequency of the radio frequency signal band.
The w-axis is the reference direction, usually chosen to contain the target radio source,
oriented towards the phase centre of the observed field. The u- and v- axes point East
and North in the (u, v) plane normal to the w-axis. The visibility function as described
by Thompson, Moran, and Swenson (1991):

V (u, v, w) =

∫ ∞

−∞

∫ ∞

−∞
I(l,m)e−2πi[ul+vm+w(

√
1−l2−m2−1)] dldm√

1− l2 −m2
, (2.3)

where I(l,m) is the apparent sky in the direction of (l,m). That is the sky brightness
distribution I(l,m). The term ul + vm + w(

√
1− l2 −m2 − 1) describes the effect of

the antenna locations on the earth, the rotation of the baseline while tracking at the
source position (l,m). The term

√
1− l2 −m2− 1 comes from the compensating delay

introduced by the correlator to ensure that ul + vm + w(
√
1− l2 −m2 − 1) is zero at

the phase centre of the observation. Equation 2.3 is a not a Fourier transform, F . In
order to restrict it to a 2-dimensional Fourier transform, its either we must assume
that the interferometer is tracking a small field in the sky (i.e.

√
1− l2 −m2 ≈ 1) or,

assuming a coplanar interferometer (w = 0):

V (u, v) =

∫ ∞

−∞

∫ ∞

−∞
I(l,m)e−2πi(ul+vm)dldm

= F{I(l,m)}.
(2.4)

The continuous visibility in Equation 2.4 is sampled at each baseline. This equation is
what an interferometer measures:

Vmeas(u, v) = S(u, v)V(u, v), (2.5)

where S(u, v) is the sampling function. Inverting Equation 2.5 we obtain the dirty
image:

ID = F−1{Vmeas(u, v)}
= F−1{S(u, v)V(u, v)}
= F−1{S(u, v)}⊛ F−1{V(u, v)}
= PSF ⊛ I(l,m),

(2.6)

where PSF = F−1{S(u, v)} is the point spread function of the instrument, that is the
response of the instrument to a point source. The dirty image from an interferometer
is then expressed as the PSF’s convolution and the sky’s brightness. To get the
sky brightness I(l,m), we need to remove the PSF from the dirty image ID using
deconvolution, as shown in Figure 2.3. Deconvolution involves taking visibilities,
removing the PSF and producing an undistorted image of the sky. There are different
algorithms that can be used to deconvolve the dirty image, such as (1) Högbom’s clean
algorithm [Högbom (1974)], (2) maximum entropy (MEM) algorithm [Cornwell and
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Evans (1985)], and (3) MS-clean [Cornwell (2008)]. Using these algorithms to clean
the dirty image, we can approximate the observed visibilities to an image of the sky
brightness. The image of the sky brightness is composed of radio sources and noise. In
the next section, we shall learn more about our objects of interest: the radio sources
within the images.

Figure 2.3: The right panel shows the dirty image, and the left plane shows the. deconvoluted
image after 100 iterations of CLEANing [Zhao, An, and Lao (2019)].

2.2 Radio sources

2.2.1 What are continuum radio sources?

Objects in outer space that emit relatively large amounts of radio waves are called
astronomical radio sources. Most astronomical objects emit radio frequency radiation,
and radio galaxies, pulsars, quasars, and certain nebulas are among the objects that
emit the strongest emission. The radio emission can either be a continuum or a line
emission. Continuum emission is emitted by a source in a broad range of frequen-
cies/wavelengths, while line emission is limited to a particular set of frequencies. This
study will focus on continuum radiation. Extragalactic radio continuum surveys are
a crucial tool for understanding the evolution of galaxies over cosmic time [Norris
(2017)]. These surveys map large areas of the sky with high sensitivity in a uniform
manner and are expected to detect objects over a wide range of distances. There are
two dominant populations of radio continuum sources; namely, active galactic nuclei
(AGNs) and star-forming galaxies (SFGs).



10 Interferometric radio imaging and source finding

2.2.2 Active galactic nuclei (AGN)

A radio galaxy consists of dark matter, dust, gas, and stars with more light at radio
than at visible wavelengths. There are compact radio galaxies and extended radio
galaxies. Compact radio galaxies emit radio lobes not much larger than the galactic nu-
cleus, while extended radio galaxies have lobes of radio emission extending millions of
light-years from their nuclei. AGNs are powered by accretion onto supermassive black
holes (SMBH) sitting in the nuclei of the galaxies and present unique observational
signatures that cover a frequency range of more than twenty orders in magnitude on
the full electromagnetic spectrum [Padovani et al. (2017)]. The properties of AGNs are:

1. They have very high luminosities of up to Lbol ≈ 1048 erg · s−1. This makes them
the most powerful non-explosive sources in the Universe. Hence they are visible
up to very high redshifts which is currently z= 7.1 [Mortlock et al. (2011)].

2. In most bands, they have small emitting regions, of the order of a milliparsec, as
deduced from their rapid variability [Ulrich, Maraschi, and Urry (1997)], giving
them to have high energy densities.

3. Their luminosity functions have strong evolutions [Merloni and Heinz (2008)].

4. Their emission can be detected in all spectral bands.

There are two classes of AGNs:

1. Radio-quiet AGN
These sources have radio emission that is too faint to be detected and associated
with spiral hosts [Wilson and Colbert (1995)]. These are (1) Seyfert galaxies, (2)
Radio-quiet quasars, and (3) low ionisation nuclear emission-line region galaxies
(LINERs).

2. Radio-loud AGN
These sources have radio lobes and jets with kinetic power, contributing a hefty
portion of the total luminosity. Elliptical galaxies generally host them. These are
(1) radio galaxies, (2) radio-loud quasars, and (3) blazars.

For the scope of this study, we shall focus on radio galaxies. Fanaroff and Riley
(1974) classified radio galaxies into two morphological classes, namely Fanaroff and
Riley class I (FRI), and class II (FRII). FRI sources have their brightest regions near
the centre of the source, with darker edges as depicted in Figure 2.4. On the other
hand, FRIIs are sources with the brightest regions close to the furthest extent of the
emission, making the edges brighter as depicted in Figure 2.5. There is also a strong
correlation between the morphological classes FRI and FRII and luminosity, with
FRII sources being the most luminous.
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Figure 2.4: Messier 84 (M84) is an elliptical galaxy in the Virgo Cluster. This galaxy lies at an
approximate distance of 60 million light years from our planet (Earth) and has an apparent
magnitude of 10.1 V [M84 (2006)].

Figure 2.5: Cygnus A is one of the strongest radio sources in the sky. This galaxy lies ap-
proximately 600 million light-years from Earth and has an apparent magnitude of 16.22 V [
Cygnus A (1984)].
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2.2.3 Star-forming galaxies

Forming new stars is one of the important processes of a galaxy’s life cycle. Chomiuk
and Povich (2011) discovered that our own galaxy, the Milky Way, has a star-forming
rate of only a few new solar masses per year. Firstly, the star-forming process involves
the accumulation of molecular gas in large clouds, followed by a collapse under the
influence of gravity. The collapse then births a new population of stars of various
masses. These stars will range from dwarfs to highest-mass stars. They are largely
responsible for the UV to optical emission observed in star-forming galaxies. As they
age, these highest-mass stars emit fast outflows but eventually, they die in powerful
supernova explosions. The preceding processes can significantly impact the galaxy’s
interstellar medium (ISM) by enriching, heating, and expelling the gas that could
potentially form new stars. The evolution of stars being born and interacting with the
galaxy’s ISM is closely related to the evolution of the galaxy. A star-forming galaxy is
shown in Figure 2.6.

Figure 2.6: NGC 6946 is a star-forming galaxy with a small bright nucleus. This galaxy lies
at an approximate distance of 22.5 million light years from our planet and has an apparent
magnitude of 9.6 V [Source: Beswick et al. (2015)].

2.3 Source finders in radio images
Several tools are implemented for source finding in astronomical images. We classify
them into two categories: the traditional approaches and the deep learning approaches.
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2.3.1 Traditional source finders

ProFound is a source finding and image analysis package [Robotham et al. (2018)]. This
algorithm detects sources in noisy images, generates segmentation maps, and measures
the source statistics, such as flux, size, and ellipticity. Profound uses photometry to
create the segmentation maps. The photometry technique measures the flux of light
radiated by sources. It uses consecutive dilation and flux measurement operations. It
is robust in its design but not super fast. Profound starts by making a segmentation
map, followed by consecutive dilations and flux measurements on the segmentation
map. Thereafter it calculates the convergent flux segment for each source. These
combined make a final segmentation map. ProFound guarantees good flux convergence
by preserving the sources’ geometric features. ProFound’s performance is satisfactory
on real and simulated data. It uses the R data analysis platform1, which is open-source
and available on GitHub 2. By default, it outputs a segmentation map, a sky map and
a sky RMS. However, it has memory limitations for large images, which means that
large surveys will be challenging to process. Its ability to assign flux to blended sources
is rudimentary in comparison to other photometry packages. This source extractor has
been successfully used at radio wavelengths [Hale et al. (2019)].

Python blob detector and source finder (pyBDSF) [Mohan and Rafferty (2015)]
is another state-of-the-art package that extracts sources from radio interferometry
images and makes the properties of the sources available. PyBDSF can be used in
CASA3 but can also be used in Python scripts, and it is open-source. This algorithm
pre-processes an image by calculating its basic statistics, such as RMS and the mean
of the image. After that, sets a threshold value (which could be fixed or calculated
using a False Detection Rate formula) that will be used to separate sources from the
background. The threshold is used to find the islands of source emission. Depending
on the number of degrees of freedom, it will fit multiple Gaussians to the islands. The
islands are then decomposed into shapelets. The shapelets and Gaussians are used to
create residual images. Gaussians within a specific island are grouped into discrete
sources. Then we subtract the residual image from the fitted Gaussians and generate
images at various scales. Traditional source extraction software fits multiple Gaussians
to source pixels which are adequate for point sources. The limitation of this algorithm
is that it struggles to perform on extended sources [Mohan and Rafferty (2015)]. This
source finder is available on GitHub 4.

Aegean [Hancock et al. (2012)] is a compact source extractor for radio images. Given
a certain threshold, it seeks out islands of pixels above the threshold. It then uses
the curvature within the image to determine how many Gaussian components would
describe the island. Aegean works well for compact radio sources in images that do
not have diffuse background emission. Hence pre-processing the image is required to
remove diffuse emission. Aegean produces acceptable results for a range of applications

1https://cran.r-project.org/web/packages/R.oo/index.html
2https://github.com/asgr/ProFound
3https://casaguides.nrao.edu/index.php?title=Getting_Started_in_CASA
4https://github.com/lofar-astron/PyBDSF
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but it is of limited use as it was designed for compact sources and does not cater for
extended sources. This source finder is available on GitHub 5. However, it struggles to
segment single sources with multiple disconnected components, such as a giant radio
galaxy whose lobes are completely separated accurately.

2.3.2 Deep learning source finders

ConvoSource [Lukic, De Gasperin, and Brüggen (2019)] is a novel deep learning model
that identifies parts of the image that belongs to a source and that which belongs
to the background. To check the performance of this model, the model is tested on
artificial data that was created for the SKA challenge [Gupta (2021)]. Three classes
were on an investigation: SFGs and two types of AGNs. The data has two frequencies
(560 and 1400 MHz), three total integration times of 8 h, 100 h and 1000 h and
three SNRs. The findings are pivoted on the SNR characteristic. At lower SNRs,
Gaussian-fitting methods outperform ConvoSource in recovering AGN-type sources.
However, ConvoSources outperformed them at recovering SFGs. At a higher SNR,
ConvoSource outperforms the Gaussian-fitting method at the recovering AGN-type
sources, whereas the Gaussian-fitting method outperforms Convosource in recovering
the SFGs-type sources.

COSMODEEP is another extended extragalactic radio source finder that was de-
veloped by Gheller et al. [Gheller, Vazza, and Bonafede (2018)] using CNNs, for
upcoming survey data. They have proven to be accurate in detecting very faint sources
on simulated images. ClaRAN which means classifying radio sources automatically
with neural networks [Wu et al. (2019)]) is a localization and recognition source finder
trained on radio galaxy zoo data [Banfield et al. (2015)]. It produces accuracy that
are greater than 90%. Deep Source [Sadr et al. (2019)] is another dynamic CNN point
source finder on simulated images. This model requires tuning hyperparameters. These
hyperparameters are the number and type of layers and the batch size, etc. This is
in combination with the deep learning components such as the cost function and the
gradient descent method.

2.3.3 Limitations of source finding

Due to correlated noise, radio astronomy images are difficult to segment because
noise can mimic a real source (i.e. pixel to pixel noise is not a random, independent
quantity). Using "standard" algorithms, one can pick up fake sources, especially
near-the-noise thresholds, which is why radio astronomy segmentation generally uses
Gaussian fitting and high thresholds. The other limitation is encountering a single
source with multiple disconnected components, such as a giant radio galaxy whose
lobes are entirely separated, which can be challenging to segment accurately. Classical
segmentation approaches find it unfeasible to segment such radio sources.

5https://github.com/PaulHancock/Aegean
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This chapter discussed the basics of radio interferometry and how radio telescopes
collect radiation from sources as well as convert them into visibilities. We also look at
how the visibilities are transformed mathematically to become images. This chapter
helps us understand the astronomy behind the data we will use. In Chapter 3, we shall
discuss a specific method of machine learning (deep learning) that this research makes
use of to automate the segmentation of sources from radio images (both compact and
extended) for the upcoming large surveys.



Chapter 3

Fundamentals of deep learning

A famous computer pioneer, Joseph Carl Robnett Licklider [Gupta (2021)] imagined
a human-computer symbiosis where man and machine could interact closely. To set
up the interaction process, a set of defined rules (or instructions) is defined and for
which each actor (machine or human) is required to perform a task based on these
set of rules. The latter was the birth of machine learning, which today has shown
its potential to solve complex real-world problems in several application areas. This
chapter discusses machine learning and several sub-fields of machine learning such as
deep neural networks, convolutional neural networks.

3.1 Introduction

There is a limit to the speed and precision humans can attain when performing tasks
beyond which external assistance is required. Machines can enhance human efforts, as-
sisting them by performing tasks that require some intelligence, e.g. decision-making.
The field of research to enable machines to act and think like humans is called artifi-
cial intelligence [Saleh (2019)]. A sub-field of artificial intelligence is machine learning.
Guided by algorithms, machines learn to perform tasks independently without explic-
itly being programmed [Ławrynowicz and Tresp (2014)]. There are two main categories
of machine learning: shallow learning algorithms, which require pre-processing to ex-
tract features, and deep learning algorithms, which do not require the assistance of
feature extraction. In the big data regime, deep learning algorithms have outperformed
shallow learning in terms of accuracy, as they enable automatic learning through the ab-
sorption of vast amounts of unstructured data such as text, images, or video [Mathew,
Arul, and Sivakumari (2021)]. Novel developments in hardware and optimisation ap-
proaches have boosted the performance of training such large and robust networks.
They provide a platform to learn data representations with multiple levels of abstrac-
tion using models made up of multiple processing layers. These methods have shown
promising results in many fields such as object detection, speech recognition and bio-
medicine. However, the downside of deep learning is that it requires large amounts of
data to perform better than other techniques. It is also computationally expensive to
train due to the depth and complexity of the models. There is also no standard theory
to guide on selection of tools within the deep learning model.

16
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3.2 Learning methods

Machine learning is a tool used to give insight and turn it into knowledge. Learning
is done by programming a computer to think like a human. The amount of data
accumulated in the past 50 years is vast, and it is also helpful to explore the data
and find any hidden patterns in the data. Machines are therefore programmed to
automatically find value in the data that would be tedious for humans to perform.
The findings in these data can then be used for predictive analysis and decision-making.

There are four types of machine learning methods: supervised, unsupervised, semi-
supervised and reinforcement learning. Supervised learning algorithms learn from
labelled data to predict outcomes of unseen data [Liu and Wu (2012)]. The labelling
of the data entails tagging the correct class to it. It is similar to learning in the
presence of a teacher or supervisor. The aim is to understand the mapping between
inputs and outputs. For instance, we can try to understand the mapping between
the weather forecast and visitors to the beach. Classification and regression are two
techniques of supervised learning. Classification is used to classify similar data points
into different classes and then find the rules to explain how to separate the different
data points. Regression is another technique, and, differently from classification,
regression outputs a value rather than a class. When we need to predict numerical
values like stock market prices and the probability of an event happening, we use
regression. Unsupervised learning algorithms allow the model to discover patterns
and information on its own that were not previously discovered [Wani et al. (2020)].
It processes and learns from data that is not labelled. The aim is to discover hidden
patterns in the data without any labels. Only the input data is given with no label,
and we learn the hidden patterns. For instance, sorting out different colour coins into
different colour groups. Clustering is a common technique that is used in this learning
to create groups with differing characteristics without supervision. Dimensionality
reduction is another technique that aims to discover the essential features such that
the original features can be reduced. The reduced set will be smaller and more efficient
but still contain important data. The other common technique is association. In this
approach, rules are unpacked that are capable of describing the data.

Semi-supervised learning is a combination of both supervised and unsupervised learn-
ing. The learning process is not completely supervised, nor do we let the technique
do its own thing. It is the middle ground. A common technique here is generative
adversarial networks (GANs). GANs make use of two neural networks, a generator and
a discriminator. The first generates output, and the latter critiques it. By competing
and battling against each other, they both become skilled. Reinforcement learning
algorithms solve a task through trial and error [Heidrich-Meisner et al. (2007)].
Essentially, an agent (one who takes decisions that will result in either a reward or
punishment) is created to observe and analyse the environment in which it is put;
therefore, it can take actions and interact with the environment. Intelligent machines
are those that learn and make decisions like humans. The aim here is to use rewards
to learn instead of labels. This algorithm is popular in robotics and in creating games.
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Two types of neural networks used in deep learning are described in the following
sections. These architectures have been applied in many fields, such as in computer
vision [Cireşan, Meier, and Schmidhuber (2012)], machine vision, natural language
processing, audio recognition, social network filtering, speech recognition, machine
translation, bioinformatics, drug design, medical image analysis, material inspection
and board game programs. They have produced results which are comparable to
human expert performance [ Schmidhuber (2015)].

3.3 Artificial neural network

The brain controls the entire human body. The smallest building block of the brain is
a cell called a neuron. The interconnected neurons make up a "neural network" of the
brain. Herculano-Houzel (2012) says there are approximately 100 billion neurons in
the human brain which can learn as well as adapt to a new and changing environment
[Walczak and Cerpa (2003)]. The human brain can analyse complex information and
make decisions based on its analysis. The theory of artificial neural networks (ANN)
is inspired by the basic neurological structure of the human brain. ANN’s simplest
form mimics the human brain, similarly connecting artificial neurons to biological
neurons. Rosenblatt (1958), McCulloch and Pitts (1943) mathematically modelled
the brain’s neural activity. Hebb (1949) further explained learning in the brain
using reinforcement-based mechanisms. After that, Rosenblatt (1958) developed a
computational model of brain processing elements; this is where ANNs research started.

3.3.1 The biological neuron

A biological neuron [Vrahatis et al. (2000)] constitutes of a soma (i.e. cell body), an
axon and a dendrite as shown in Figure 3.1. The soma constitutes a nucleus and other
chemical structures necessary to supply the cell. The axon is responsible for trans-
porting electrochemical signals from one neuron to another. In contrast, the dendrite
receives signals from a neuron and transports them to the cell body. A synapse is a
connection between two neurons or neuron dendrites to muscle cells. A neuron trig-
gers its signal to be transferred to the subsequent neurons once the signal’s strength
reaches a particular threshold. Sending signals to the neurons to get triggered co-occurs
on multiple neurons. An axon hillock located at the end of the cell body controls the
neuron’s firing. Many branches of axon terminals form at the end of the axon.

3.3.2 An artificial neuron

An artificial neuron imitates the functional structure of a biological neuron. Adapting
a biological neuron to develop an artificial neuron is not exact. In a biological neuron,
communication is done via the diffusion of positive and negative ions, while artificial
neurons are mathematical constructs mimicking this operation. Figure 3.2 shows
the building blocks of an artificial neuron. Figure 3.2 warrants detailed explanation:
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Figure 3.1: An image of a biological neuron which takes in input information through the
dendrites, processes it and outputs the processed information through the axon terminal
[Biological neuron (2010)].

assuming information or data in the artificial neuron, each data point xj is scaled by
a corresponding weight wij. The overall product is then summed and passed through
an activation function that can help model the data’s non-linearity. A bias can be
added to the inputs to allow a shift in the activation function. A neuron is expressed
mathematically as follows:

yi = f(
n∑

j=0

wijxj + bj), (3.1)

where f is the activation function, bj is the bias and i, j ∈ [0, n]

For instance, assume we have five neurons with no added bias in the neuron. Again,
assume wi1 = wi4 = 1, wi2 = wi3 = -1 and wi5 = 0 then Equation 3.1 becomes,

yi = f(x1 − x2 − x3 + x4). (3.2)

Suppose now that the activation function selects the maximum between 0 and the
strength of the signal then,

yi = max(0, x1 − x2 − x3 + x4). (3.3)

If we take two input examples such that x = (2, 4, 5,−1) and x = (3,−2, 4, 3) then
y1 = max(0,−8) = 0 and y2 = max(0, 4) = 4. The value of the inputs towards
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Figure 3.2: The structure of an artificial neuron that takes input information, processes it and
outputs the processed information through the next layer.

the signal depends on the weight value put upon it. Weights can either be positive,
negative or zero. Positive weights imply the signal is amplified; negative weights imply
that the signal is reduced, while a weight of zero suggests there is no connection
between two neurons. The weights can be adjusted to obtain the required output in a
learning or training process discussed in Section 3.3.3.

An activation function is the weighted sum of the input that is transformed into an
output. There is no rule on which activation function to choose on the various layers;
however, they play a very impactful role in the performance and capability of the net-
work [Guarascio, Manco, and Ritacco (2019)]. A hidden layer receives input from a
previous layer and provides output to the following layer. These are the standard acti-
vation functions used, but they are not the exhaustive list. Rectified Linear Activation
(ReLU) is easy to implement and effectively overcome vanishing gradients. A limita-
tion that prevents training deep models, although It has a limitation of dead units.
The Logistic (Sigmoid) function takes any real value as input and outputs values from
0 to 1. Larger input values tend to have output closer to 1, whereas the smaller input
values tend to have output values closer to 0. Hyperbolic Tangent (Tanh) is similar to
a sigmoid function even in shape. It takes any real value as input and outputs from -1
to 1. Larger input values tend to have output values closer to 1, whereas the smaller
input values tend to have output values closer to -1. The output layer directly outputs
a prediction of the input layer. All feed-forward neural network models must have an
output layer. These are the standard activation functions used in the output layers. The
linear activation function does not change the weighted sum of the input but returns
the value as it is. Logistic (Sigmoid) as described above and softmax since it inputs
a vector of real values and the output is a vector of the same length; moreover, the
values sum up to 1 as in probabilities.
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3.3.3 Learning

The learning process is done in two phases, the forward pass and the back pass. A
forward pass structure is abstractly described as follows:

Figure 3.3: The structure of a forward pass of a neural network. It combines the components
of an ANN to achieve a prediction y[L]. The input information contained in x is passed to the
consecutive box, where it gets processed until it reaches the output stage.

The input layer x = (x1, x1, ..., xn) is data that goes through the first layer denoted
in the first block of Figure 3.3. It collects the weights associated with this layer w[1]

(which are the initialised weights) and bias b[1] (which is the initialised bias) and uses
these to calculate

∑n
j=0wijxj + bj which we then call Z[1]. To move to the next layer,

an activation function f [1] is applied to Z[1], which becomes y[1], the input vector to
the next layer. In a similar process w[2] and b[2] are used to calculate Z[2] to get the
signal y[2] for the next layers, and so on. Simultaneously, records of the weights and
biases for all the layers up to the final layer L are kept. The output of layer L is y[L],
which is the prediction of x. Since the main parameters of the process weights and
bias were randomly initialised, this might not be the most efficient approach to predict
x as accurately as possible.

In the forward pass [Liu et al. (2015)], we made assumptions about the main parameters
of the process and initialised the weights and biases to random numbers. We managed
to get a prediction, but it is not necessarily the best prediction for the data. In this
section, we review the weights and the biases to adjust them to better reflect the
expected outcome from the data. Figure 3.4 shows the process of going back to make
the adjustments through the back pass.
The output of layer L y[L] (which was obtained from the forward pass) is the probability
of binary events occurring. Let the corresponding target be t. We want to measure the
discrepancy between y[L] and t, to determine how well the network has predicted y[L]

as close as possible to t. The objective function is given as:

Ly = Ep

[
l(x, t,m)

]
, (3.4)

where m is the model and Ep[.] is the expectation of an unknown distribution p,
y[L] = m(x). For a regression problem, Ly can be measured as quadratic:

Ly =
1

n

∑
i

(m(x)− ti)
2 (3.5)
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Figure 3.4: The structure of a back pass of a neural network. The border area shows how an
error is propagated back through the layers to get the optimal weight and bias initialisation.

and for a classification problem from a cross-entropy perspective:

Ly = −
∑
i

ti log(m(x)). (3.6)

If predictions deviate from the ground truth, the loss will be very high; otherwise,
it will be very low. We use this function to adjust the network’s weights and then
continue performing iterations until the objective function is acceptably low [Ward
and Joe (1963)]. Thus the objective function guides us to adjust the weights to be
optimised. The forward pass is an activation flow, while the back pass is an error flow
[Liu et al. (2015). We propagate from the loss function to the initial weights until we
reach the optimal weights. This process is done by calculating derivatives to return
to the initial weights. This process is elementary as the inputs are multiplied by the
initial weight and operated on by a single activation function. Backward pass involves
computing derivatives for each layer in the composite function and then passing them
through the optimisation algorithms. Optimisation algorithms can be used to alter the
attributes of the neural network to reduce the objective function by propagating back
and adjusting the weights. A classical method to update the weights is the gradient
descent optimisation flow as shown in Equation 3.7:

(w i)new ← (w i)old − (α)
(∂Ly)

(∂w i)old.
(3.7)

The learning rate is denoted as α in Equation 3.7, whereas the second term is the
partial derivative of the loss function with respect to the weights. Each epoch produces
the average loss of the training set, which is the difference between the predicted item
and the ground truth item. To update a weight, we measure the rate of increase of Ly

with respect to the change in wi. That is the derivative of the loss function (slope).
An illustration of how the weights are updated is shown in Figure 3.5. At the start of
the forward pass model, we initialised random weights and biases. This initialisation
is similar to randomly placing a point on the curve, as shown in red. If the slope
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is positive, the error will increase if we increase the current weights. Therefore we
should decrease the current weights. The error will decrease if the slope is negative
as we increase the current weights. Therefore we should increase the current weights.
Otherwise, if the slope is 0, do nothing, as this is the desired slope. This process will
be repeated until convergence or when we find optimal weights that reduce error to
an acceptable level. Moreover, the convergence depends on several factors, such as the
quality of the training set, the initial parameters are chosen, the meta-parameters of
the network, the optimisers and the learning rate.
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Figure 3.5: A quadratic function is used to optimise the weight initialisation starting from the
point in red.

This section introduced ANNs and their relation to the biological neuron. The key at-
tributes of an ANN, such as weights and bias initialisations, activation functions, and
forward and back passes, are explained. We also look at the neural network’s learn-
ing process and how we can optimise it. An ANN is computationally expensive since
the different neurons of the model do not share weights. Therefore, it becomes dense,
unlike convolutional neural networks, which share weights of neurons with sparse rep-
resentations. Previously, the structure of ANN would be two layers deep as it was
computationally extensive to build more than this. With computational advancements
feasible, it has become common to build neural networks with ten or even 100 layers.
Having these many layers assists the computer in seeing and learning complex situa-
tions. In the next section, we shall examine the convolutional neural network structure
in detail.

3.4 Convolutional neural networks
Deep learning is commonly used in image processing and computer vision [LeCun,
Bengio, and Hinton (2015)] applications. Convolutional neural networks (CNN) are
often used to perform image processes such as recognition [Simonyan and Zisserman
(2015)], classification [Krizhevsky, Sutskever, and Hinton (2012)], and segmentation
[Kayalibay, Jensen, and Smagt (2017)]. More traditional algorithms that were used
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in the past to perform image recognition included object detection and semantic
segmentation are linear classifiers [Skurichina and Duin (2002)], Bayesian classifiers
[Cheeseman et al. (1988)], support vector machines [Suykens and Vandewalle (1999)
] and decision trees [Apolloni, Zamponi, and Zanaboni (1998)]. These algorithms
still outperform deep learning algorithms on small-scale data. However, with the
advent of Big data, deep learning algorithms outperform traditional algorithms in
terms of accuracy. A CNN uses a type of deep learning algorithm in the forward
pass network to extract features from data automatically, unlike an ANN. CNN’s
have a sparse representation and are computationally cheaper for a given number of
layers and neurons with fewer demands on memory when compared to an ANN. A
CNN comprises two essential parts; the first is where knowledge is extracted from
the data (feature extraction), and the second is classification. Features are extracted
using a well-known process borrowed from signal processing; a convolution operation,
followed by pooling, is applied to downsample the result of the convolution to reduce
the representation. The output of the convolution and pooling is pasted into an
activation function to form the feature map. The convolutional operation, the pooling
and the activation function are organised into layers. The classification part occurs
at the end of the feature extraction process when the data is clean and ready to
be used by an ANN to make a decision. This decision-making step is also known
as a fully connected layer. The local receptive field is responsible for identifying
elementary visual features such as any contrasts in images, corners of objects, edges,
and endpoints. These features are combined later to detect high-order features such as
identifying objects or shapes. The weights are shared across the entire image: weights
useful to identify the elementary visual features in one image segment have a high
probability of being useful in the other parts of the image and are thus applied. It
is also called a sparse model for this reason. These shared weights are distributed in
planes to form a feature map. Each of these planes is constrained to perform the same
operation on different parts of the image. A typical CNN model takes an input image
and passes it through a series of convolution layers with filters, a pooling layer and
a softmax function to class the object with probabilistic values between 0 and 1. We
shall discuss the basic mathematical operations that make a CNN, how to operate
on images, the basic building blocks of CNN, convolutional layers, padding, strid-
ing, and the pooling operation performed to merge information across adjacent regions.

3.5 Convolution

Convolutions are operations that are used to extract features from arrays. Mathemat-
ically, a convolution between two functions, say h and g, is defined as:

[h ⊛ g](x) =
∫

h(l)g(x-l)dl. (3.8)

This equation implies that we are measuring the overlap of functions h and g when
they are shifted across the area of h. For discrete objects, a 2 dimensional convolution
is given by:
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G(m,n) =
∑
σ,k

g(σ, k)h(m-j,n-k), (3.9)

where m and n are the indices of rows and columns of the convolved image respectively.

Usually, the size of the input image h is larger than the filter size of g since the filter
will convolve the input image. Equation 3.9 implies an overlay of the filter array g on
the input array h, and a convolution of the corresponding values from both arrays.
We slide the convolution filter from the array’s left to its right side, sliding at a
specified number of pixels per step. At each step, the result is written to an output
array. Each filter is a matrix of numbers representing a pattern the filter looks for in
the image. Different filters assist the CNN in learning different features of the image
during convolution, as shown in Figure 3.6. The learned features are then stacked up
to form a feature map that acts as input to the next layer. For example, we have a
neural network with one hidden layer and select a set of 8 filters for the input layer,
with a set of 32 filters in the next (hidden) layer. The first convolutional layer will
use the set of 8 filters to convolve the input image and stack the resulting values into
a feature map consisting of 8 arrays. The feature map becomes the input to the first
hidden layer. Since this layer has 32 filters, these 32 filters will be used to convolve
each array in the feature map resulting in another feature map of size 32 × 8. An
illustration of a single 2 dimensional (2D) convolution is shown in Figure 3.7. Other
kinds of convolutions can be applied, such as dilated convolution, which creates spaces
between pixels in the filter to increase the receptive field but at the same time does
not add to the computational cost. However, it is prone to spatial loss error because
we use a one-pixel value to represent an area of pixels.
A single pixel after convolution in an image in a CNN is expressed mathematically as
follows:

yi =
n∑

j=0

wjxj+1 + b, (3.10)

where b is some bias and n is the filter size. Equation 3.10 is depicted in Figure 3.8
with many neurons.

Figure 3.6: Different convolution filters can be used in a CNN to achieve preferred results.
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Figure 3.7: The convolutional filter cross-correlates the input array to produce the output
array. This filter continues to convolve the whole input array until it is finished.

Figure 3.8: CNN neurons and how they share weights.

3.6 Padding
The dimensions of the input and output arrays in Figure 3.7 are not the same.
The convolution operation has reduced the dimensions of the output array. The
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reduction may be a disadvantage when performing a process requiring the input
and output arrays to be the same size. This problem is solved by padding or
adding zeros to the edge of the input array so that the output array maintains
the original input size after convolutions. Figure 3.7 illustrates that applying many
filters to an image chop off a certain percentage of the original image. This op-
eration causes a loss of useful information on the boundary of the image in some
instances. Padding deals with the problem of border effects as illustrated in Figure 3.9 .

Figure 3.9: Padding an input image with zeros increases the input size, allowing for the output
size to be equal to the original input size.

3.7 Striding

A filter’s pixel distance from one convolution to the other is called a stride. The
default value of a stride is 1, and from Figure 3.7 a stride involves sliding the filter
one unit to the right. This operation reduces redundancy but down-samples the input
image. It is used when the aim is to compress the feature map. The stride of 1 reduces
the output dimension by one pixel. Moreover, a stride of more than one may be used
to reduce the size of the output further, as illustrated in Figure 3.10 .

3.8 Pooling

A more robust way to achieve sub-sampling is by aggregating the sub-region of
the input array. This aggregation is a solution to the sensitivity that feature maps
have to record the precise location of the features. Pooling layers provide a way to
downsample the feature map using average or maximum pixel pooling. It improves
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Figure 3.10: A filter is used to convolve an input image using a stride of two to obtain an
output half the size of the input image. The cells in red illustrate how the convolution slides
from yellow to red, skipping two cells.

computational efficiency as it reduces the size of each feature map. There are two
types of pooling, average and maximum pooling. Average pooling calculates the
average value in each patch of the feature map as shown in Figure 3.11, and maximum
pooling takes the maximum value in each patch of the feature map as shown in Figure
3.12. Average pooling is useful when the image’s background is darker than the pixels
we are interested in. Maximum pooling adds translation invariance, which is helpful
for cases where we care more about what is in the image than where in the image it lies.

Figure 3.11: An average pooling operation which takes the average of the patch with values
(2,3,4,4) and calculates its average to be 3.25.

Figure 3.12: A maximum pooling operation which takes the maximum of the patch with values
(2,3,4,4) and calculates its maximum to be 4.

In this chapter, we have learned about deep learning algorithms. We have looked
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at two types of deep learning algorithms that mimic the human brain. These two
algorithms are ANNs and CNNs. We examined the basics of ANNs, their origin and
how to construct such a network. After that, we investigated how the algorithm learns
and how to optimise it to obtain the desired results more efficiently. ANNs have useful
properties, although they also have some drawbacks. We then investigated CNNs and
discovered that it compensates for the drawbacks of ANNs. The focus then shifted to
CNNs, and we highlighted their advantages over ANNs, looking at the properties that
make them exceptional. We looked at two deep learning algorithms and found one
specialising in recognising, classifying and segmenting images. In Chapter 4, we shall
focus on CNNs and segmentation.



Chapter 4

Segmentation using Unet

In this chapter, the Unet image segmentation algorithm is described in detail. Unet is
an algorithm that was previously used in biomedical images. We explore how we can
use it to automate the extraction of sources from dense radio images.

4.1 Introduction
Image segmentation is a process that partitions a digital image into multiple sets of
pixels that share similar characteristics [Tan (2016)]. The aim is to simplify image
analysis by subdividing it into meaningful areas. Image segmentation effectively
assigns a label to every pixel in an image so that the pixels with the same label
have a shared attribute. Typically, it can be used to detect objects and boundaries
in images. The output of an image segmentation process consists of segments of at
least two different classes that cover the whole image. The pixels in a region have
one or more similar characteristics, such as (1) colour, (2) intensity, or (3) texture.
Pixels in adjacent regions have different characteristics. There are two types of image
segmentation methods. Instance segmentation labels every pixel in an image; the
method identifies the "belonging instance" of the object. It identifies each distinct
object of interest in an image. For example, each person in an image is segmented as
an individual object, as shown in Figure 4.1 (left panel). Semantic segmentation is
the second method, whereby each pixel in an image is classified according to a simple
decision criterion. An example is when all the people in an image are segmented as
one object and the background as another, as shown in Figure 4.1 (right panel). Let
us explore applications of semantic segmentation on images.

4.2 The application of semantic segmentation
Semantic segmentation is applied in the automotive industry for autonomous vehicles
[Anderson et al. (2014)]. Autonomous driving is a complex robotics task that needs
perception, planning and execution. Safety is important in autonomous vehicles; thus,
these tasks must be performed with the best possible precision. Semantic segmentation

30
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Figure 4.1: The image on the left panel is an instance segmentation method where all the
persons are identified distinctly, and on the right panel is an image of a semantic segmentation
method where the separation is either a person or background [ The binary notes (2022)].

helps identify free spaces, lane markings and traffic signs [Anderson et al. (2014)].
Another application is in the medical sector for biomedical image diagnosis. Machines
can be programmed to segment medical images like radiologists analyse an image. This
process reduces the time required to run diagnostic tests [Novikov et al. (2018)]. Also,
in the medical sector, machines can be programmed to segment neuronal structures
in electron microscopic stacks [Ronneberger, Fischer, and Brox (2015)] - most of the
work in this study is derived from this application. Geo-sensing is another sector
where semantic segmentation is applied in monitoring areas of deforestation and
urbanisation to classify land cover information. In aerial and satellite photographs, it
is used to identify urban areas, agricultural areas, water, etc.. This can be seen as a
multi-class semantic segmentation task [Kussul et al. (2017)]. In precision agriculture,
semantic segmentation is used to help farmers to trigger weeding actions in real-time.
The number of herbicides that are used on the crops is reduced as a result of precision
farming [Kussul et al. (2017)].

Semantic segmentation has been helpful in improving and developing the lives of
people around the world. Today, we enjoy the best healthcare due to more precise
test results. Moreover, people feel safe driving in autonomous cars since the cars can
detect and identify road signs and navigate themselves from one place to another with
high precision. There are many new possibilities for semantic segmentation. Hence, we
would like to develop semantic segmentation for astronomy.

4.3 Segmentation architectures

The applications mentioned above use different architectures to achieve their results.
In this section, we shall examine different architectures in semantic segmentation. One
popular architecture for performing semantic segmentation is a fully convolutional
network (FCN), as shown in Figure 4.2. A series of convolutions and maximum
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pooling layers are used to compress an image to a smaller size and then predict each
pixel’s class at that granularity level. After that, it uses sampling and deconvolution
layers to take the image to its original size. This basic structure is effective to segment
objects from images [Zhang et al. (2017)]. The aim of downsampling the image to the
level of granularity is to capture contextual information at that level, while the aim
of upsampling the image to its original size is to recover its spatial information. The
image size does not matter, and the final image will always be the same size as the
original. A skip connection which bypasses one or more layers is used to recover spatial
information lost in downsampling. Features from other resolution levels are added up
to combine contextual with spatial information. The drawback of FCN is the uneven
overlapping of the output of the deconvolution operation since it is not symmetrical
and has poor resolution at boundaries, with a loss of information during downsampling.

Figure 4.2: A FCN which takes in an input, passes it through a series of convolutions and max
pooling layers before it predicts the pixel class to create a segmentation map [ FCN (2015)].

Several variations on this basic architecture have been proposed. Unet is one of the
architectures that build on FCN. It was developed mainly for medical purposes to
help detect tumours in lungs and brains [Ronneberger, Fischer, and Brox (2015)].
The architecture of this neural network takes a ’U’ shape, as shown in Figure 4.3,
hence its name. The left side of the ’U’ is a contracting path, while the right side
is the expansive path. The contracting path is also known as the encoder, which is
responsible for capturing the context of the image. It does this through a stack of
convolutional and maximum pooling layers.

The expansive path is symmetric to the contracting path and is known as a decoder.
This path is a unique part of the Unet architecture. It enables precise localisation and
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performs this through a stack of transpose convolutions. This architecture can also
be seen as an end-to-end FCN because it contains convolutional layers but does not
have dense layers; thus, it can accept an input image of any size. The most useful
contribution of Unet comes from the shortcut connections, which recover or compen-
sate for the loss of information we had with FCN. Unet suggests that to improve
the loss of information problem, one can add information from every downsampling
layer to the corresponding upsampling layer. This downsampling helps it to capture
the finest details. We apply two consecutive convolutional layers in the contracting
path using an input image file of 572 × 572. The first convolutional layer generates
a 570 × 570 pixel image with 64 channels. The second convolutional layer generates
a 568 × 568 image with 64 channels. The convolution process increases the image’s
depth, hence the 64 channels, while padding decreases the size of the image resulting
in the decreased size of 570 × 570 and 568 × 568. In Figure 4.2, the small red arrows
pointing down are the maximum pooling operators, which halve the image’s size each
time. This process is designed to capture the context of the image through different
channels. The process is repeated three more times. When it reaches the bottom-most
layer, two more consecutive convolutional layers are still applied, but this time with
no maximum pooling. The image at this point has reduced to 28× 28× 1024.

The expansive path aims to upsize the reduced image to its original size while
localising the images’ objects. A transpose convolution is applied in this path to
expand the size of the images. The small green arrows pointing upwards are the
transpose convolutions (up-convolutions). The first transpose convolution upsizes the
image from 28 × 28 × 1024 to 56 × 56 × 512. This image is then concatenated with
the corresponding image from the contracting path to make the size 56 × 56 × 1024.
These two images are mainly concatenated to get a more precise prediction. Two
successive convolutions are applied. This process, just like before, is repeated three
more times. When the uppermost level of the architecture is reached, the last step is
to reshape the image to satisfy the prediction requirements. The reshaping is done
by adding a convolutional layer of size 1 × 1, yielding the segmentation map as the
output. The input image would be a radio image of size m×m, and the output would
be a segmentation map of size m×m. The main drawback of this architecture is that
it is computationally expensive.

Mask R-CNN is another segmentation architecture that combines two networks, faster
R-CNN and FCN, as shown in Figure 4.4. Faster R-CNN is an architecture that is
used to perform object detection. It has two stages, the first stage being where it forms
object-bounding boxes. This process is also known as the region proposal network
(RPN). In the second stage, it extracts features for each candidate box using region
of Interest pooling (RoIPool) and uses them to classify and perform bounding-box
regression. The output of mask R-CNN is the class label, the bounding box offset and
the object mask. The mask is obtained by adding the second network, FCN. The total
loss is calculated from the three outputs. The advantage is that it has three output
products; however, the loss may increase as it accounts for the three products and
inherits the drawbacks of FCN.
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Figure 4.3: A Unet segmentation map showing the contracting and expansive paths that give
it its symmetric shape. We show details of how the input image goes through a series of (1)
convolutional layers, (2) maximum pooling layers, and (3) deconvolutional layers to get to
the output. The dimensions of the arrays and the number of filters applied at each layer are
indicated [Ronneberger, Fischer, and Brox (2015)].

4.4 Preferred segmentation architecture
Radio astronomical images contain information about celestial bodies that are not
directly accessible; hence, they are important to astronomers. The quality of radio as-
tronomical images is usually low relative to regular real-world images. The quality is
mainly due to the way these images are acquired. These images have a low signal-to-
noise ratio, making it tricky to use standard segmentation methods normally used on
regular real-world images. Radio astronomy structures are seen at different resolutions.
Traditional source finders may find it difficult to detect diffuse emission at a particular
resolution, or rather they might find it difficult to associate it with the same source.
Radio astronomical images are sensitive to different scales depending on the observa-
tional data. Therefore structures of a single source can be seen at best at a different
resolution. For example, sharp features can be seen clearly at high resolutions, whereas
extended features can be picked up better at low resolutions. We evaluate different
models, looking at the complexity of the data, the output we want to obtain, and the
accuracy of the models. Unet was the architecture chosen for further study due to
its ability to (1) handle noisy data, (2) decrease the dimension of an image and then
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Figure 4.4: The mask R-CNN combines two architectures, faster R-CNN and FCN. These two
architectures work together to produce three output products. The class, the bounding-box
offset and the segmentation map [ Zhang et al. (2020)].

increase it back (this is particularly favourable as astronomical images can have high
resolution) and (3) it retains the image’s original size at the end of the architecture. (4)
Unet can effectively segment images with limited datasets as a starting point. Since we
do not have much-labelled data, we can still segment our images due to this advantage.
(5) It is more successful than conventional models in pixel-based image segmentation.
The latter is particularly important as we want to automate the segmentation process
with the best possible precision and accuracy. (6) Unet is also easy to implement, as
it has ready-made libraries in Python, making it convenient. On the other hand, Unet
has a major drawback because the architecture contains a several layers to downsample
and to upsample which scale up the compuatational requirements to train the model.
However, this thesis mainly focuses on the study of deep learning methods for radio
source segmentation. We are not looking to search for the best deep learning methods
in the literature to solve the radio segmentation problem, but rather as a first attempt
providing baselines and testing if a deep learning method could even be used to solve
the problem.
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4.5 Evaluation techniques for segmentation architec-
ture

Different evaluation techniques can be used to evaluate how well a segmentation
architecture performs on unseen data. The Dice coefficient technique is often used in
cases with a class imbalance. This method calculates the overlap between a predicted
class and the target class as follows:

Dice co-efficient(D) =
2 · (target ∩ prediction)

target + prediction
. (4.1)

The objective is to maximise the dice co-efficient D ; hence we minimise (1-D) where
0 < D < 1. The second technique that can be used is the pixel-wise softmax with
cross-entropy, as shown in Equation 3.6. In this architecture, the labels are represented
in a one-hot encoded form. This technique is useful as it can be used to represent the
target and evaluate cross-entropy. When the pixels are evaluated, they can belong to
one of our target classes. Softmax pixel-wise is applied before applying cross-entropy.
A third method is a focal loss, usually used in extreme class imbalance cases. Focal
loss is a modification of the standard cross-entropy. Unlike cross-entropy, a focal loss
does not penalise the model excessively when the class balance is known beforehand.
The fourth technique we consider is "intersection over union" (IoU), which evaluates
segmentation architecture performance as follows:

IoU =
target ∩ prediction
target ∪ prediction

. (4.2)

The dice coefficient and the "intersection over union" coefficient give a quantitative
measure of the overlap illustrated in Figure 4.5. Dice calculates the proportion of the
total number of pixels in both images occupied by the area of overlap (multiplied by
two because there are two images), whereas "Intersection over Union" calculates what
proportion of the union of pixels in both images is occupied by their intersection.

4.6 Source Detection using OpenCV
In an effort to enrich the body of knowledge and simplify the process of programming
computers, the Intel 1 team in 1999 bundled programming functions into an open source
code in the Internet. This was the original goal of the team when they launched the
open source computer vision library (OpenCV 2). Programmers all over the world have
used this library for academic and commercial purposes. Not only did they use the
library, but they also helped optimize the library’s algorithms. The major changes in
the contribution took place in 2009.

1www.intel.com
2http://opencv.willowgarage.com/wiki/
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Figure 4.5: DICE vs "Interception over Union" evaluation techniques

4.6.1 Main algorithms and methods

There are common image processing techniques that are used in OpenCV. In Image
analysis, there is a concept of image histograms that shows the number of pixels in
an image having some given value in a table form. We perform a linear stretch to the
range of intensities to enhance the image contrast. The caveat is that there is usually
an imbalance in the intensities, where some are used more than others. Operating
on the logic that a good image uses all the available intensities, we use a function
that equalises the use of all intensities in the image. The distribution of an intensity
gives a probability that some pixel has a specific value. This characteristic can detect
specific image content by replacing pixel values with probabilities. This process, in
turn, produces a probability map that can be used to detect an object through a mean
shift algorithm [Comaniciu and Meer (2002)].

The operation of comparing pixel values in the input image with its neighbours
and attaching a label on each pixel in the corresponding output image is called
morphological operations. We can differentiate between dilated and eroded images.
Erosion is when the output pixel value is given the minimum value of all the pixels
in the input pixel’s neighbourhood. Dilation, on the other hand, is when the output
pixel value is given the maximum value of all the pixels in the neighbourhood of the
input pixel. This filter is usually applied to binary images where we assume the object
is white and the background is black. This operation is also sensitive to particular
shapes in the input image. An erosion filter reduces the object size, and a dilatation
increases the object size. These filters can also be used to detect lines and corners
[Soille, Beucher, and Rivest (1993)].

We can also study the spatial frequencies of intensities. In this domain, intensities are
grouped from lowest occurrence to highest frequency. This process is done by Fourier
transform. Here, a filter either amplifies or removes certain bands of frequencies. A blur
function calculates the average value in a rectangle neighbourhood to smoothen the
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image. This rectangle in the form of a mask is called a kernel which then can compute
convolutions as described in section 3.5. The shape of the kernel can take other forms,
such as a Gaussian. An image can be too small to represent high frequencies. Therefore
we need to filter the high frequencies out. This process down samples the image;
unfortunately, even if we upsample it, it will not restore the original image. However,
we have created image pyramids which are structures that can be used for specific
image analyses. For instance, we can perform object detection on the down-sampled
image, followed by object detection on the up-sampled image and then use a median
blur function to remove outliers. This filter replaces pixel values by the median of
all considered pixels in the neighbourhood. This operation preserves the sharpness of
edges, but at the same time, it distorts texture in uniform regions. In the above case,
we have attenuated the high frequencies, but sometimes we want to amplify them. We
will thus use directional or high pass linear filters where the image intensity gradient
is calculated. These would be first or second-order derivatives. Laplacian filters can
detect the change of sign in two neighbourhood pixels, then threshold the gradient of
around zero, thus obtaining the edge map image. Another edge detector filter that
uses two thresholds is Canny [Canny (1986)]. One threshold is low, and the other is
high, yielding a low and high threshold edge map. We can then combine these two
edge maps and yield good quality contours. The Hough filter is good for detecting
lines [Galambos, Kittler, and Matas (2001)]. The input image is an edge pixel map
usually applied after a Canny filter. An image structure is parameterised into two
parameters. A 2-dimensional accumulator is constructed where each entry is a line. We
search for all lines that pass through this point, incriminating the accumulator. If the
line passes many points, the accumulator will be high, and thus this is detected as a line.

Feature point detectors help identify points of interest. A common point of interest
is a corner. A corner detector [Harris and Stephens (1988)] identifies a corner as a
junction of two edges as a 2-dimensional feature. Harris detector uses a corner detector
definition to check the rate of intensity change around some point. It computes the
intensity change for some direction; if the average change is high, we have a corner.
FAST (Features from Accelerated Segment Test) algorithm [Rosten and Drummond
(2006)] is a faster corner detector. It evaluates pixels in a circular form surrounding a
point of interest. If all the surrounding pixels have a significantly different intensity
than the point of interest, then we declare it a corner. SURF (Speeded Up Robust
Features) algorithm is a key point detector [Bay et al. (2008)]. At different resolutions
of the image, this filter calculates the derivatives. At some image resolution, the filter
response will reach its maximum for some image points. Comparing this maximum
with the minimum input value, if the maximum is at least higher, a key point is
declared.

In this chapter, different segmentation architectures were discussed. Unet seemed
to have the most suitable features for radio astronomical images; therefore, we
concentrate on this architecture for further study.



Chapter 5

Astronomical radio image
segmentation and object detection
using Unet

In this chapter, we apply the Unet segmentation technique to radio astronomical
images. As explained in Chapter 1, the aim is to find an automated process to segment
sources from radio images as accurately as possible. This chapter describes all the
processes to perform segmentation on radio images.

5.1 Data
The input data we will present to Unet consists of radio astronomical images. We make
use of two datasets from different observatories. The first dataset of images was made
using two mosaic radio images from the Australia Telescope Low-brightness Survey
(ATLBS), observed with the Australian Telescope Compact Array (ATCA) [Thorat et
al. (2013)]. These two high-resolution mosaics cover approximately 8 squared degrees of
The Southern sky, and their radio source counts are in the flux density range estimate
of 0.4 − 8.7 mJy. Figures 5.1 and 5.2 depict the two mosaics. The second dataset is
sourced from the MeerKAT telescope, which will be described in greater detail later.
The reasoning behind using two datasets is that the ATCA data are hand-labelled and
ready to use, while the second dataset was intended as the objective of this study.

5.2 Data pre-processing
Modern interferometric radio telescopes have high sensitivity and a large field of view;
thus, images produced by them contain many sources. Individual sources may appear
larger or smaller depending on their size and distance from us. This work aims to
segment the individual sources using Unet. The two ATLBS mosaics have a catalogue of
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Figure 5.1: A grayscale rendering of a mosaic created by ATCA representing a region of the
sky. [Thorat et al. (2013)].

Figure 5.2: A grayscale rendering of a mosaic created by ATCA representing a region of the
sky. [Thorat et al. (2013)].
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Figure 5.3: A cutout image (left panel) and its corresponding mask image (right panel) from
ATBLS survey

known sources with corresponding ascension and declination values. To test the concept
of Unet on radio images, we first test the model on this catalogue. The mosaics cover a
large area of the sky, therefore capturing many astronomical objects in one image. For
a granular analysis of these images, we create smaller images by cutting out images
of size 256× 256. These images were created by isolating the individual sources using
their ascension and declination values and then adding background noise to them to
make the images to be of size 256× 256. We derived 119 images of size 256× 256 using
the known extended sources from the catalogue. The cut-out images that were created
from Figures 5.1 and 5.2 make up the image dataset of 119. Figure 5.3 is an example
of one of the cutout images (left panel) and its corresponding mask image (right panel)
made from pyBDSF.

5.2.1 Creating a corresponding labelled dataset

In object detection, to train a model to predict objects, we need to have a dataset
of the images together with a corresponding labelled dataset. To create a labelled
dataset, we use pyBDSF to produce the corresponding images that mask the sources
and background. In pyBDSF, to create the labelled dataset, we set the parameter, pixel
threshold, to be 3 and the island threshold parameter to be 6 RMS noise. Pixel values
on the image below these thresholds will be classed as belonging to the background
class, and those above the thresholds belonging to the foreground or, instead, the source
class. pyBDSF produces corresponding n mask images that will be used as the labelled
dataset. We convert the images and mask images from FITS format to png format.

5.2.2 Training and Testing split

We aim to train the model and later test how it has learned from unseen data. We do
not want to over-learn the model and encounter problems when the model is deployed
in production. So we need to test how well it generalizes on unseen data. Train-Test
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split is a technique that is used to evaluate the performance of a machine learning
model. This process requires splitting the dataset into two subsets. The first subset
is the training dataset, a set of data that will be used to learn features of the data
and fit a model. The second subset is used to create an unbiased evaluation of the
model fitted to the training dataset. There are different splitting ratios that one can
use. The common ones are 70:30 and 80:20 ratios of training and testing, respectively.
We, therefore, split the n images and their corresponding masks into a training and
testing set. We opt for a ratio of 70 : 30.

5.2.3 Augmentation

One of the caveats of deep learning techniques, as mentioned in Section 3.1, is that
they require more data to perform compared to traditional methods. However, in
this work, we did not have enough labeled data to train and test the model. To
augment the labeld data, the augmentation generator from Keras 1 is used. Keras
is a software library that provides a Python interface for ANNs. This generator
multiplies data by geometric manipulation of images. The different manipulation
used are: (1) the rotation of a single image using four different angles; 50, 150, 90
degrees clockwise and 90 degrees counterclockwise, (2) translation of the image across
the X− axis and/or Y− axis with an offset of 5, 20, and 40 percent of the image
size respectively. (3) flipping of the images horizontally, adding different geometric
manipulations contributes to the accuracy of the model up to a certain point. Data was
increased by n frames and mask frames at n×2 in each dataset. Figure 5.4 shows some
of the augmented images with their corresponding mask images using the ATBLS data.

The images on the left of Figure 5.5 were produced by MeerKAT. The image covers
approximately 10.5 degrees squared of The Southern sky with an RMS sensitivity of
11.04× 10−9 µJy/beam. To create the second dataset, we performed steps to create a
corresponding mask image depicted on the right panel of Figure 5.5. The image size
is greater than the FoV of the MeerKAT telescope to include bright sources in the
sidelobes of the primary beam response of the antenna. The sidelobes have a lesser
density of sources than the primary beam’s main (central) lobe, and the sources in
the sidelobes are often affected by artefacts. Therefore, we concentrate on the primary
beam’s main lobe, which corresponds to the central portion of the image. Our focus is
on the parts of the image that contain astronomical objects. We made a cutout from
the centre of the image of 4000 × 4000 pixels, covering approximately 1.96 degrees
squared of the sky. Figure 5.6 illustrates the 4000×4000 pixels image and Figure 5.7 is
the corresponding mask. These two images have been cutout to create smaller images.
Figure 5.8 shows the cutout images and their corresponding mask image. The cutouts
were augmented using the steps in the earlier section.

1https://keras.io/
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Figure 5.4: Cutout image (left panel) and its corresponding mask (right panel) from the
dataset that has been augmented.

5.3 Segmentation using Unet

Unet, as explained in Chapter 4, labels images pixel by pixel to investigate objects in
the image more satisfactorily. We have prepared radio images and want to investigate
the radio sources in the images. The radio images are read as an array of pixel
values of 256 × 256 (any other preferred size could be used). The pixel values range
in brightness or grey scale from 0 to 255. The mask is consequently read similarly;
however, the mask’s pixel values are either 0’s or 1’s. A pixel of 0 is associated with
the background label, and 1 is associated with a source label. This process constitutes
a binary classification of pixels. The purpose of Unet is to take the image array of
varying pixel values and produce a corresponding mask array of 0’s and 1’s. This
process applies a series of mathematical operations to the image array to derive the
desired mask array. These operations have been explained in detail in Chapter 3.
The operations are readily available on Keras. We construct a Unet neural network
consisting of a series of layers. Unet is a symmetric model, so deciding to reduce
the image shape from 256 × 256 to 16 × 16 implies that we require 23 convolutional
layers, 4 maximum pooling, 4 upsampling layers, 4 concatenating layers and 2 dropout
layers. The hyperparameters used with these layers are detailed in Table 5.1. Table
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Figure 5.5: A 9000 × 9000 pixel image produced by MeerKAT and its corresponding mask
made by pyBDSF with a subset image of 4000× 4000 pixels and its corresponding mask.

5.2 illustrates how the layers have been put together to create a suitable Unet model
for radio images. The training set was used to teach the constructed network how to
create mask images. Different sets of layers and hyperparameters were tested. The
layers we selected, combined with the hyperparameters from Table 5.1, yielded the
best training accuracy of 99.8%.

5.4 Results and evaluation
We used the Unet model to train MeerKAT images, and it performed well, yielding a
training accuracy of 99.8%. To test how well the model performs, we use data that
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Figure 5.6: The image of size 4000 × 4000 which has been used to produce smaller cut-out
images of size 256× 256.
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Figure 5.7: The mask image of size 4000 × 4000 which has been used to produce smaller
cut-out of size 256× 256.
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Hyperparameters Value
Epochs 5
Steps per epoch 1000
Filter size 64
Kernel 3
Activation function relu (Sigmoid)
Padding Same
Optimiser Adam
Learning rate 1e-4
Loss Binary cross-entropy
Metrics Accuracy
Kernel Initialiser He normal

Table 5.1: The hyperparameters that produced the desired results.

it has not seen before. Before the training, we reserved data that will be used for
testing how well the model will perform. Figure 5.9 shows examples of images from
the testing set, how the model performs in segmenting the images, and an image
of ground-truth predictions from pyBDSF. Visually, there seems to be a significant
similarity between the prediction mask images and the ground-truth mask images.
However, the prediction mask seems to detect fainter emissions as part of the source
when the ground-truth image indicates it as noise. To evaluate and quantify how
Unet has performed on the unseen radio images, we compare the overlap of the
ground-truth masks on the masks produced by Unet. A perfectly predicted mask
would overlap the ground truth without residuals. Figure 5.10 illustrates an overlay
of the predicted images with the ground-truth visually, and Table 5.3 shows the
quantitative performance of the model. The images in Figure 5.10 indicate that the
two images are not perfectly overlapping, but there is spillover.

5.4.1 Source detection using OpenCV

OpenCV is used to detect all sources in the image, and a border is drawn around each
detected source. OpenCV’s inputs are the images and their corresponding masks. With
a given threshold, the algorithm finds edges by defining join lines on all points along
the image boundary that have the same intensity. When the source is found given the
threshold, a bounding box function is then used to create an approximate rectangle of
drops around the source, and the process repeats in another area of the image. Figure
5.11 shows the output of the results of the OpenCV algorithm which clearly shows that
all sources segmented in the mask are detected in the image.
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Figure 5.8: Cutout image (left plane) and its corresponding mask (right plane) from MeerKAT
dataset.
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Table 5.2: Unet neural network
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Figure 5.9: Example of actual images, how Unet has predicted the actual images versus how
the ground-truth masks the image. The last column illustrates the residual when subtracting
the prediction mask from the ground-truth masks.
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Figure 5.10: Overlap between ground-truth (White) and predicted mask images (grey).
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Metric Accuracy
DICE 0.998264
IoU 0.99826026

Table 5.3: An evaluation table showing the accuracy rates from the two evaluation techniques.

Figure 5.11: Image vs Predicted mask image using Unet vs The detected blobs using openCV
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5.5 Aggregation of cutouts to create a big image
The 256× 256 pixel cutout images were created so that we can train the Unet model
and analyze the image in its granularity. We have achieved that goal by mapping out
and segmenting the sources in the images using Unet. Ultimately we put the cutouts
together and recreated the big image. Figure 5.12 illustrates 16 256× 256 pixel cutout
images that have been concatenated together to form a big image of size 1024× 1024
pixel image. Figure 5.13 is the corresponding 16 256 × 256 pixel cutout mask image
produced by Unet that has been concatenated together to form a big image of size
1024 × 1024 pixel image. Figure 5.14 is the concatenated image run through the
OpenCV source detection algorithm. It shows all the detected blobs and has drawn a
border around them.

5.6 Unet vs pyBDSF

5.6.1 Comparing parameters

The parameters of pyBDSF to process the images are given in Table 5.4: The frequency
used is the central frequency, and the extent of the island used for fitting is three
sigmas above the mean. Six sigma above the mean was used as the threshold to get
the island peak. Table 5.1 shows the hyperparameters of Unet. Since these algorithms
use different approaches, it is quite difficult to compare the hyperparameters of the
two models; therefore, we give a summary of the parameters for each. We had to
experiment with different values to obtain the optimal pixel and island thresholds for
pyBDSF. We selected a pixel threshold of 3 and an island threshold of 6.

Parameter Value
Frequency(Hz) 1.28E+09,
Threshold island 3
Threshold pixel 6

Table 5.4: The different parameters that were applied to process images in pyBDSF.

5.6.2 Performance accuracy

In testing out if we can use Unet, we first tried it on the ATBLS images and obtained an
accuracy of 93%. This process means that on the testing dataset, the model managed
to get 93% of the segmentation correctly compared to the ground truth. This accuracy
level was adequate for us to go further and test it on images with sharp features
produced by MeerKAT. We directly transferred it to the MeerKAT dataset on the
Unet model, and it did not perform as expected. The initial performance was that
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the model could segment only 30% of the test data. So more tweaking was needed to
adjust the performance. The hyperparameters shown in Table 5.1 have obtained the
optimal accuracy of 99.8%. This accuracy means that the model can segment 99.8% of
the images in the test set. The network is limited as it was trained on pyBDSF labels.

5.6.3 Runtime

We performed a time comparison between Unet and pyBDSF under similar conditions,
as shown in Figure 5.15. Beforehand, we had prepared ten datasets consisting of 100
, 200 ,..,1000 radio images of size 256 x 256 pixels. We passed the images into the
two models to produce mask images. We recorded the runtime for both models. The
runtime of pyBDSF for the 100 images dataset is approximately 3.5 minutes to produce
mask images. Much faster than pyBDSF, Unet takes a run time of approximately
16.5 seconds to produce mask images. The second dataset consists of 200 images; the
third dataset consists of 300 images, and the number of images increases until the
tenth dataset, which consists of 1000 images. As expected, the total time needed to
produce the mask images in every dataset till the tenth dataset keeps increasing for
both models. The rate of increase for pyBDSF is higher than the rate of increase for
Unet. PyBDSF, on average, has a rate of increase of approximately 9 minutes runtime
for every 100 images added, while Unet, on the other hand, has a rate of increase of
approximately 45 seconds run time. It takes Unet 55 seconds less to run through a
dataset of 1000 images than it takes pyBDSF to run through a dataset of 100 images.

The basis for learning is the pyBDSF; this limits the model to its baseline perfor-
mance in terms of accuracy. Unet surpasses pyBDSF time-wise. Once trained, it is
tremendously fast. There is no need to retrain the model all over again. We save and
load the trained network parameters, and runtime is reduced. In this case study of
1000 images, it took approximately 145 seconds running time as opposed to 1 hour 22
minutes it took pyBDSF. The faster runtime is the unique selling point of this work.
Unet is extremely quick to produce mask images. This, therefore, provides a solution
to the previously mentioned problem of processing images with millions of sources.
The point of this work is to demonstrate that Unet is potentially helpful as a source
segmentation model in radio astronomy.

In this chapter, Unet segmentation architectures were discussed in detail. Unet has
been applied to radio images, and the results were compared with the target images
produced by pyBDSF. Unet has been successfully applied to radio astronomical
data and has performed with a testing accuracy of 99.8% using both Dice and the
"Intersection over Union" coefficient. The overlap between the target images produced
by pyBDSF and those that Unet has produced shows that Unet maps out more
emissions than pyBDSF. In Chapter 6, we shall have a conclusive discussion on how
and why Unet produced more accurate results than pyBDSF when it learned to create
masks using pyBDSF. We will also discuss future work that needs to be done to make
Unet the standard tool to detect sources from images preserving the morphological
structure of the objects.



5.6 Unet vs pyBDSF 55

Figure 5.12: An aggregated image of 16 images of size 256×256 pixels produced by MeerKAT
to make a big image of 1024× 1024 pixels.
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Figure 5.13: An aggregated image of 16 mask images of size 256 × 256 pixels produced by
Unet to make a big image of 1024× 1024 pixels.
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Figure 5.14: An aggregated image of 16 images of size 256× 256 pixels that have run through
the OpenCV detection algorithm to make a big image of 1024× 1024 pixels.
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Figure 5.15: The above plot comparing the runtime for pyBDSF and Unet to produce mask
images shows that that for the same number of pixels in the image, Unet is faster by a factor
of 35 than pyBDSF.



Chapter 6

Conclusion

This study aims to create a tool that will automate source segmentation in radio
images and detect the sources within them. The new generation of radio telescopes
are designed to have a high resolution; consequently, the images they produce will
have a high resolution and contain a high density of radio sources. It is tedious and
time-consuming to separate the individual sources manually, and traditional machine
learning methods fall short. They are unable to process large inputs of data efficiently
and require human assistance to select variables. Therefore the tool has to be capable
of dealing with the complexity of these radio images. The expected amounts of
raw data from these upcoming radio telescope surveys are vast, estimated to be in
the petabyte region. This data will consequently affect the imaging space, creating
an apparent need for automation and the ability to handle large amounts of noisy data.

In the earlier chapters we touched on interferometry, the method that is used to
produce the vast amount of raw data we expect. We learn that a diameter of a
telescope is directly proportional to its resolution. Interferometry integrates an array
of individual telescopes with the idea of having a combined collecting area which will
be larger than any individual telescope in the array. The baselines of these individual
telescopes creates a property (larger collecting area) that gives an interferometer a
higher resolution than a single dish telescope. When electro-magnetic waves from
distant sources transverse to earth, they land on the collecting area before they
bounce off to a sub-reflector. They are then passed through a receiver where they are
amplified and converted into voltage. Thereafter, they are digitized from analogue
and then transported to a correlator. In the correlator, the data from individual
telescopes will be correlated and different forms of delays on individual telescopes
will be accounted for. Thereafter, the raw data is eventually processed into different
data products. The different data products could be RDB files, Measurement sets,
FITS files et cetera. This study is interested in the FITS files. The FITS files contain
radio sources infused with noise. These radio sources can be continuum, AGN or
star-forming galaxies. This study is interested mainly in radio galaxy morphology.
Currently, there are source finders that are used in the field. We examine the details
of these source finders, ConvoSource, ProFound, pyBDSF, COSMODEEP, ClaRAN,
Deep source, and Aegean. We consider their advantages as well as their shortcomings.
Unfortunately, most of the source finder’s shortcomings are such that they cannot
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cope with the complexity of the images we are expecting, so; we need to find alternate
ways of source finding in radio images that will deal with finding sources in noisy data
as accurately and as efficiently as possible.

There is a certain level of speed and precision that humans can reach when performing
tasks beyond which external assistance is required. Machine learning techniques can
enhance human efforts by performing tasks in an automated way. Traditional shallow
machine learning algorithms require the assistance of humans to extract features, while
deep learning does not. Deep learning is fully exploited in other fields and has shown
promising results compared to shallow machine learning models that tend to fail when
dealing with vast amounts of data. Deep learning produces intelligent machines that
can learn and make decisions like humans. A neural network, which is inspired by the
neural connectivity of the human brain, provides the answer. We investigate two types
of neural network architectures: ANN and CNN. Both these architectures consist of
an input layer where data is presented, a hidden layer that processes the inputs and
an output layer that produces the results. These layers consist of groups of multiple
neurons with weighted connections. The difference between them is that an ANN
is computationally expensive since the different neurons of the model do not share
weights. Therefore, it becomes dense, unlike CNN, which shares weights of neurons
yielding sparse representations. CNN is commonly used for computer vision and image
segmentation.

To study the radio images, we partitioned the images to a granular state to perform
pixel by pixel labelling. The intention is to separate all the sources from the back-
ground noise. The method of pixel by pixel labeling is called semantic segmentation.
We investigated three popular architectures that perform semantic segmentation. (1)
FCN, (2) Unet, and (3) mask R-CNN. FCN is the basic architecture for the other
two architectures. So Unet and mask R-CNN are improvements of FCN. From these
two improvements, Unet was chosen as the preferred architecture that will be applied
to radio data. The choice was based on its ability to handle noisy, complex inputs
and be more successful than conventional models in pixel-based image segmentation.
Unet was applied to radio images. Firstly, it was applied to ATLBS data that has
less resolution than the MeerKAT data that will ultimately be used for the study.
The data was preprocessed for the Unet model. We explored different strategies to
prepare the dataset. Eventually, after many trials, we managed to create a dataset of
256 x 256 pixel images using the ATLBS data. After that, we created a Unet network
that consists of an encoder and a decoder phase with a series of convolutional layers,
maximum pooling layers and dropout layers. We fed this model with the ATLBS
dataset and their corresponding mask images that were created by pyBDSF. Initially,
we obtained an accuracy performance that was less than a guess. The assumption
we made about this poor performance was that the dataset of 119 images was not
adequate. Therefore we augmented the data as a way of increasing the dataset.
Different combinations of hyperparameters were tried out with the augmented data.
The most optimal model we obtained achieved an accuracy of 93%. We decided
to infer this model to higher resolution data produced by MeerKAT. However, as
with the first dataset, we had to pre-process the data to get it to the desired shape



Acknowledgements 61

and format. Feeding the dataset into the Unet model, we achieved a performance
accuracy of 30%, which was poor. Alterations were made to the pre-processing steps.
We produced a mask image before making cut-outs, and this significantly improved
the optimized accuracy, where we obtained a performance accuracy of 99.8%. This
model assisted us to separate radio sources from background noise. The output of this
model is a segmentation map that shows sources in one colour and the background in
another colour. The segmentation map becomes visually convenient for astronomers
to see where in the image the sources are and where the background noise is.

A better visual tool for astronomers would involve detecting the individual sources
and placing a border around them. We performed this process using open computer
vision tools. The model expects an input image of any size. The image that we fed the
model at first is the 256×256 image created by MeerKAT. The model creates contours
around blobs inside the image; after that, it adds a few pixels to draw a box around
the blob. The model can also extract the individual sources from the main image
and put them in individual images in approximately 1.3 seconds. PyBDSF is used as
its basis for learning, However; Unet managed to surpass the baseline performance.
Unet, once trained, is tremendously fast. There is no need to retrain the model all
over again. We save weights from the training process and load the trained network
parameters and run-time is reduced when testing on unseen data. In this particular
case study of 100 images, it took approximately 9 seconds. This is the unique selling
point of this work. Not only does it replace pyBDSF with something as good but
extremely quick. This thus provides a solution to the problem mentioned previously
of processing images with millions of sources. Unet is useful as a source finder but due
to it being trained only on pyBDSF labels, it will not outperform it. This work shows
that Unet can be used for radio source segmentation and shows a lot of promise if
given simulations on hand-labelled training data. Ultimately, We combine 16 256 x
256 pixel images to form a bigger image that shows mask images on a bigger image as
well as detected blocks on larger images.

The ground-truth images are made with pyBDSF, contributing to what and how the
model learns in order to create accurate masks. For future optimizations, handcrafting
the ground-truth images (although tedious) would be helpful and more accurate
predictions would be produced. The other drawback is that the model is using one
specific image size to train and test the network. For future purposes, a modification
allowing any preferred size would be an improvement and does not have to be an
image that is divisible by 256 pixels. The final improvement that could be made is
to create a catalogue of the individual radio sources and create information about
the RA/DEC of the sources. This would be helpful in further studies, such as the
classification of radio sources into morphological classes [Aniyan and Thorat (2017)].
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