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Abstract—This paper describes the of extension implemented
to the NKM Internet simulation system, which allows for the
improved of injection of packet traffic at arbitrary nodes, and the
replay of previously recorded streams. The latter function allows
for the relatively easy implementation of Internet Background
Radiation (IBR) within the simulated portion of the Internet.
This feature thereby enhances the degree of realism of the
simulation, and allows for certain pre-determined traffic, such as
scanning activity, to be injected and observed by client systems
connected to the simulator.

I. INTRODUCTION

With the prominence of the Internet in modern times, the
world has come to rely on the proliferation of the many
networks and protocols which together form what is known
today as the the Internet. The burgeoning demand for both
new and existing Internet and network services has led to
many organisations investing in these technologies; be it
for the development of new technologies; or technologies
in support of existing organisational functions [1]. For this
reason, understanding these technologies forms a critical role
within any such organisation, and often requires a substantial
investment of capital and/or time.

Simulating these networks and their protocols allows for
mitigating some of the costs associated with the development
of new services, or software that makes use of these services.
It allows for a better understanding of what is currently hap-
pening as well as what is likely to happen going forward. This
is both applicable in Educational institutions where hands-on,
practical experience is tantamount to an effective education;
as well as in business contexts where the ramifications of
going live without sufficient prior testing can be costly.

The need to purchase expensive hardware can, in some
cases, often be omitted through instead utilising a software
component which provides a practical means for testing and
training. However, readily available software which meets
these requirements at scale is in short supply. In lieu of this
necessity, [2] presents NKM (Network Kernel Module) —
a large-scale network routing simulator. Whilst NKM has
proven effective in its ability to simulate vast and intricate
network topologies, it still requires the presence of physical
systems to provide meaningful interaction.

In this regard, NKM can be enhanced, so as to not only
facilitate the process of simulating large networks, but to
also cater to the simulation of the hosts which reside therein.
This addition, coupled with its ability to provide a level of
interaction previously unavailable within the system itself,

may further assist in alleviating financial costs. Moreover,
through representing these hosts virtually, the need to setup
and assign dedicated hardware to this purpose diminishes. Not
only does this assist in freeing up physical workspace, it too
allows for representing these hosts in a manner which is easily
modifiable and reproducible by other researchers.

While the addition of the lightweight virtualisation may
assist in representing the nodes present in a network, it does
allow for a realistic representation of the traffic charactarisitics
on thee network itself. As the nature of the Internet is not
one that is at all times passive and orderly, the fidelity of
the system can be further be improved if a nore natural,
live, representation of behavior is considered. This behavior
can be simulated at an increased fidelity level through the
injecting traffic which consists of datagrams, representative
of the traits and desired characteristics once exhibited by a
network at some point in time. Not only does this feature
then add to the realism of the system, but it introduces new
functionality, whereby this traffic, and the impact thereof, can
be analysed and understood in a self-contained and isolated
environment. Replay features also greatly improve the repeat-
ability of experimental work.

This research aims to investigate the viability of these
supporting a traffic injection and replay feature so as to create
a well-rounded, realistic, feasible, large scale network routing
simulator in support of both academic and business functions.

Section II introduces Internet Background Radiation. This
is followed by Section III details the approach to meeting the
requirement for injecting packets into the simulated network;
the decision to make use of input in the form of a packet
capture is discussed, with results of testing of the developed
system occurring in Section IV. The paper concludes with
Section V.

II. BACKGROUND

Internet Background Radiation (IBR) [3] is essentially
network traffic which is fundamentally non-productive in
nature; that is, it can only be characterised as network traffic
which has reached a destination not purposed to receive it.
IBR is a common occurrence across networks which form
part of the Internet’s address space, and is the result of either:
misconfiguration; or network traffic which has been generated
with malicious intent. Whilst misconfigurations account for
some IBR, overall its contribution is only marginal .
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Misconfiguration encompasses erroneous entries in the con-
figuration of destination addresses for services, applications,
routing, and so on; as well as errors which might arise at a
hardware level — such as the memory corruption of one or
more bits — which may be attributed to environmental factors
such as heat.

A far larger contributor to IBR is that of malicious traffic;
scanning, worms, and backscatter meet this criterion [3].
Scanning is the act sending network probes to an address,
or range of addresses, in order to solicit host information;
a subset of which is operating system fingerprinting. This
information may be of value in carrying out an attack; if
it is revealed that a host, or a service running on a host, is
susceptible to a known exploit, an attacker could then proceed
to follow up with a malicious payload [4]. The act of scanning
is often highly automated and while it is always a constant
factor in IBR, it is seen more frequently when new exploits,
which have yet to be patched, emerge.

Worms, to some degree, exhibit much the same behaviour
as scans do; but only insofar as generating scanning traffic.
Worms are self-propagating, and once having infected a
host, will scan for other hosts which suffer from the same
vulnerability. Depending on how wide-spread the vulnerability
being used for infection is, worms can infect a network at
an exponential rate until such a time as the vulnerability is
patched [5]. The total contribution a worm might make to IBR
will be sizably more so, at the time of an outbreak.

Whereas denial of service (DOS), and distributed denial
of service (DDOS) attacks are not directly classified as IBR,
they indirectly make a sizable contribution to its composition.
This is attributed to these attacks originating from spoofed
Internet addresses. This traffic has been termed as backscatter,
and it refers to not the traffic generated by the attack itself,
but rather to the traffic which is generated by the victim, in
response to an attack [6]. Imagine the effect of one or more
hosts spamming another with TCP SYN packets; an attack
which has been termed a SYN-flood. Imagine still, that these
packets had been manipulated so as to hide the true identities
of the hosts involved in performing the attack; this would
entail modifying the relevant IP and TCP source headers so
as to reflect an address not belonging to the attacker. The
victim would in turn respond to each SYN packet with a SYN-
ACK, in an attempt to complete the three-way handshaking
procedure previously described. This SYN-ACK traffic would
then be routed across the Internet, directed not to the attacker,
but to the address which has been falsified.

Historically, IBR has been seen to consist primarily of
TCP traffic; of which the vast majority comprised of TCP
SYN packets; followed by TCP RST packets. ICMP traffic
was seen to make a notable impact only at times when a
worm outbreak was on-going; this traffic could be attributed
to ICMP echo requests which are used in scans. Similarly
UDP traffic was seen to spike at times when there was a
worm outbreak with an affinity towards this protocol [3]. In
more recent years, this makeup has remained similar, though
the amount to which IBR accounts for the total composition of
network traffic has since increased dramatically; in fact twice

as much as productive traffic in the 6 years which separate
the two studies. The emergence and growth of botnets, new
services, and the growth of the Internet are all contributing
factors [7].

The variation in the composition of IBR originally dis-
cussed by [3], and corroborated by [7] are indicative of its
highly volatile nature; its makeup is sensitive to the state
of the Internet, and as a result, described by the seemingly
random, complex, and often malicious, set of events which
occur within it over time. The ubiquity of IBR adds an
additional level of complexity in analysing Internet traffic, as
it can act as a facade to otherwise interesting traffic. Whilst
filtering can to some extent lesson the presence of IBR on a
network, its variety in composition makes this a difficult task
to accomplish [8].

III. PACKET INJECTION

The ability to transmit targeted traffic within a simulation
allows for creating a more realistic environment from which
many applications could benefit. As an example, should
this traffic be such that it can be likened to IBR, locating
interesting traffic becomes a task that is no longer trivial; and
as a result, an exercise which merits some skill. Moreover,
the addition of the feature advocates the modules’ usage
for tasks which may be more focused on investigating the
behavioral characteristics pertaining to a given capture. In this
application, the module only facilitates the process through
targeted delivery; any investigation into the traffic, or traffic
generated in response to the traffic, would need to occur
outside of the simulation.

A. Input Format

In an effort to not limit the applications the addition might
serve, only a packet capture .pcap needs to be provided; the
purpose for which, is then inherent in the capture itself. This
omits the need for supporting configuration files; as one can
tailor a capture to their needs prior to calling upon the modules
replay feature.

Due to the wide support of the chosen packet capture
format, a myriad of tools exist purposed towards captur-
ing and storing network traffic; perhaps most notably so,
Wireshark1 and Tcpdump2. Tcpdump offers far more than
just packet capture, is perhaps better suited to those more
inclined towards the command-line. Wireshark on other hand
provides a graphical interface for both viewing captured and
live traffic; and is supported on both Windows and Unix
platforms. Software such as bittwist3 and tcpreplay4 allow one
to modify the contents of a packet capture, through providing
the tools bittwiste, and tcprewrite respectively.

1https://www.wireshark.org/
2http://www.tcpdump.org/
3http://bittwist.sourceforge.net/
4http://tcpreplay.synfin.net/
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B. Packet Injection Design

Whilst the tcpreplay package provides the ability to modify
network traffic, its primary use is in replaying a given packet
capture on a specific network interface. When coupled with
netfilters ability to intercept network traffic, the two services
working in tandem offer an attractive alternative to parsing a
packet capture with a procfs callback.

However, tcpreplay makes use of the Linux packet5 library
which permits software operating in user-space to receive,
construct and transmit traffic at the device driver level — layer
2 of the network stack. As a result of this, netfilter (Which
operates at layer 3 of the network stack), is unable to intercept
the traffic.

In order to address the issue, whilst at the same time still
make use of the method in place, libdnet6 was ultimately
used. The Python library provides, among other things, raw
IP packet (Layer 3) transmission. This results in the generated
traffic being discoverable to netfilter.

Subsections III-C and III-D, provide more details pertaining
to the feature implementations. These subsections are distin-
guished from one another as a result of the different logical
function each provides.

C. PCAP Parsing and Transmission

In selecting Python for the task of PCAP parsing, and the
transmission of the contents contained therein thereafter, the
feature is well-positioned for integration with the Python web
service which acts as the user interface for the Simulator. A
library which greatly simplifies this task is dpkt7.

Parsing PCAPs is managed with the use of
dpkt.pcap.Reader(), which takes as an argument a
PCAP file. The method implements an iterator, which returns
upon each iteration, a tuple containing the time stamp, and
packet buffer associated with each packet within the PCAP.
Thereafter the libraries dpkt.ethernet.Ethernet() function
can be passed the previously obtained packet buffer in order
to produce a frame object.

Conveniently, in order to obtain the IP datagram contained
within the frame, one needs only to address the objects data
attribute. Thereafter, the dnet library can be used in computing
the datagram’s checksum, thereafter the returned buffer can be
transmitted. A code snippet which provides a simple example
of the aforementioned process is provided in Listing 1.

By default, a capture will be played back at the same rate
the packet capture was recorded. This is managed through
differencing the time stamp obtained with each packet in
the capture; and then calling upon time.sleep(). In order to
mitigate foreseen problems in the function’s responsiveness
for even relatively small packet captures, packet replay takes
place in a thread. Should another capture be loaded, the cur-
rent running thread is stopped, and a new thread, containing
the new capture, is started.

5http://man7.org/linux/man-pages/man7/packet.7.html
6https://pypi.python.org/pypi/dnet/1.12
7https://pypi.python.org/pypi/dpkt

Listing 1. Code Sample
s o c k e t = d n e t . i p ( )
pcap = f i l e ( ’ sample . pcap ’ , ” rb ” )

f o r t s , p k t i n dpk t . pcap . Reader ( pcap ) :
f rame = dpk t . e t h e r n e t . E t h e r n e t ( p k t )
i p h = frame . d a t a
# IP h e a d e r can be m o d i f i e d by
# a s s i g n i n g a v a l u e t o i p h . ” f i e l d name”
b u f f = d n e t . ip checksum ( s t r ( i p h ) )
s o c k e t . send ( b u f f )

For the purpose of enhancing the feature, two additional
options were added; the first of which is looping capture
playback. If this option is set, playback will continue indefi-
nitely, or until another capture is loaded. The second option
is fast playback; if this option is set, time.sleep() is not called
between successive iterations.

D. Netfilter Hook for Traffic Replay

In order to communicate to the Kernel, that the parsed
capture traffic is destined for the simulation, each packet
has the TTL value within its IP datagram set to 0 prior
to being transmitted. Through utilising a netfilter hook, all
outbound traffic first has the value of its TTL checked,
prior to any additional lookups being performed. This novel
method mitigates the need to perform a lookup on the source
address, of each and every packet being transmitted, which
may otherwise prove resource intensive.

If this value is 0, the packet will subsequently have its
source address looked up in the radix tree which stores the
simulations nodes; otherwise the packet continues its traversal
up the network stack. Should a matching node be found,
where the match has similarly been marked as virtual, a pkt
will be created which will have as its current node field, a
pointer to the node which reflects the packets point of entry
into the simulation.

As each virtual node has its own initial TTL value asso-
ciated with it, the pkts value is updated so as to no longer
contain 0. Much like inbound packet interception, the created
pkt has its other relevant information set prior to being
scheduled for routing. Details pertaining to the routing process
are covered in detail in [2] and are not addressed in this work.

IV. PACKET INJECTION APPLICATIONS AND TESTING

Packet injection was introduced in Section III, in which
its application in facilitating realistic training simulations was
discussed. Another application, in which it may be found
to be well-suited, is in malware analysis. As a result of
the simulator’s ability to isolate its traffic from legitimate
network traffic — which may be being transported over the
same network medium — malware can be executed, and its
behaviour analysed dynamically. An example in which this
capability may prove particularly useful is in simulating a
worm outbreak. A worm’s behaviour, targets, and and rate of
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infection, can be examined in a manner which both practical
and reproducible, whilst at the same time contained.

For the purpose of testing the simulator’s ability to inject
targeted traffic, a far more benign traffic sample was used.
This sample was obtained using Wireshark, and contains noth-
ing other than the results of having pinged www.google.co.za
from a network host with the local IP address 10.0.0.60. This
information is presented graphically in Figure 1. In order
to appropriate this information to the example configuration,
each packet had its source and destination addresses mod-
ified so as to target a physical host bound to the virtual
address 10.0.0.1 from the virtual address 146.231.128.43; an
address which in previous examples was representative of
www.ru.ac.za.

This was accomplished through using bittwiste, a tool
mentioned previously in Section III-A. Listing 2 presents the
command used in meeting this purpose. The ’-s’ and ’-d’
options, when used in conjunction with the ’-T ip’ argument,
permit the source and destination fields present each datagram
to be modified. In the case of Listing 2, each occurrence of
the IP address 10.0.0.60 will be replaced with 146.231.128.43,
and 216.58.223.35 (www.google.co.za) with 10.0.0.1.

The modified packet capture — sim ping.pcap — was then
uploaded through the simulators web interface, and Wireshark
started on the target itself. The results of which are provided
in Figure 2. As can be seen, the capture which corresponds
to Figure 1, having been replayed, correctly contains the
four ICMP ECHO REQUESTs with which it was targeted.
Each destination address reflects not the virtual address of
the target, but the physical address ( 10.42.0.21 ) to which
it has been bound. This is a result of the simulator having
modified each IP header so as to reach its destination over
the physical network.

Notably, the four ICMP ECHO RESPONSEs (observable
within within Figure 2 as packet numbers 6, 8, 10, and 12)
are a result of the target having responded to the ECHO -
REQUESTs it has been targeted with, and not as a result
of these responses themselves having been injected into the
simulation. This result is important as it would not make
sense, when assessing the response behaviour of a target if
this behaviour is not in fact representative of the target itself.

In addition, Figure 2 provides more information from
which some general observations can be made. These obser-
vations are listed below:

1) Whilst the virtual host 146.231.128.43 was configured
to have an initial TTL of 64, there are three gateways
which reside on the route. With each gateway traversed
by these packets, their TTL has been appropriately
decremented. A reported TTL of 61 is therefore correct.
This result proves useful due to the manner in which
packets are marked when being injected, as detailed in
Section III-D.

2) Whilst it is only the first packet that has all of its
information presented in detail, each injected packet has
had its checksum correctly recomputed. Confirmation
is provided by the uniform colouring of each of the
packets presented in Figure 2.

TABLE I
RELATIVE TIMING DIFFERENCES

REQUEST OrigTimestamp Avg Injected Timestamp Difference

1 0.000000 0.000000 0.000000
2 0.998204 0.999485 0.001281
3 2.003169 2.005797 0.002628
4 3.003156 3.007157 0.004001

3) Each injected packet has maintained its relevant infor-
mation. Whilst the sequence number in this case is not
particularly useful, it in addition to the type, and code,
fields, provides verification that the characteristics held
by each packet have been left unmolested.

Another result of import is the timing information associ-
ated with the injected traffic. It was a desired feature within
this implementation that injected traffic reflect the same delay
in transmission as that present in the packet capture being
replayed. In order to test whether or not this holds true,
this same packet capture was replayed 100 times. This was
accomplished using the features loop option. Each of the four
ICMP ECHO REQUESTs then had the difference between
their timestamp and the first timestamp in the set calculated.
Each respective packet then had an average timestamp calcu-
lated. This information, as well as the original values of the
capture, are presented in Table I for comparison.

As can be seen in Table I, there is little variance between
each injected packets average timestamp, and that of the
original values. However, as can also be seen, each successive
packet produces a difference which is slightly larger than
it was previously. Whilst these differences remain in the
region of only a few milliseconds, this deviation would be
seen to increase were the capture to be carried out over a
longer period of time. This delay can be attributed to the
processing time required in preparing each captured packet
for transmission. This delay is then compounded for each
successive packet transmitted by the system.

The amount by which this processing delay skews the
captures delivery time appears to be fairly consistent; with
each additional packet transmitted, this value is seen to
increase by some x. This value can be approximated as the
first difference obtained in Table I. A better approximation can
be made if all of the differences are taken into consideration.
A simple method for doing this, is by taking all of the
differences, with the exception of the first, and dividing the
result by 6. This allows for creating a weighted average, in
which higher differences carry more weight; thereby lessening
the effects of other factors such as transmission delay. This
calculation is provided in Equation 1.

x ≈ 1× 1

6
× (1× 0.001281

1
+ 2× 0.002628

2
+ 3× 0.004001

3
)

≈ (0.001281 + 0.002628 + 0.004001)

6
≈ 0.001318 seconds

(1)

A perhaps more reliable indication of the degree to which
this delay affects packet delivery time would be in computing
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Fig. 1. Wireshark ping capture

Fig. 2. Wireshark ping capture replay

the number packets, n, it would take to delay transmission by
t seconds. In the case of the above, n is representative of the
number ICMP ECHO REQUESTs for which their exists the
relationship t ≈ n×0.001318. This relationship is depicted in
Figure 3 in which t is plotted against n× x. For the purpose
of providing a more definitive approximation, Equation 2
reveals that 45524 ICMP ECHO REQUESTs would need to
be transmitted to delay transmission by one minute. This point
has been marked on Figure 3.

n× x ≈ 60 seconds

n ≈ 60

0.001318
≈ 45523.520

≈ 45524 packets

(2)

Section IV tested the systems packet injection feature. A
scenario was presented in which sample capture was obtained,
replayed, and recorded. This process was presented in detail
so as to allow for the possibility of its recreation. This
information was then used to assess the degree to which the
feature performed accurately. It was found that each payload
had correctly been modified, thereby providing a mechanism
for targeted behavioral analysis, as was intended. However,
it was also established that a processing delay had been
introduced. Whilst this delay was admissible for small packet
captures, its nature being compounded lead to increasingly
larger values with each additional packet transmitted. This
relationship was approximated and presented in Figure 3.
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Listing 2. Packet Capture Rewrite
˜# b i t t w i s t e −I p ing . pcap \
> −O sim ping . pcap \
> −T i p \
> −s 1 0 . 0 . 0 . 6 0 , 1 4 6 . 2 3 1 . 1 2 8 . 4 3 \
> −d 2 1 6 . 5 8 . 2 2 3 . 3 5 , 1 0 . 0 . 0 . 1

i n p u t f i l e : p ing . pcap
o u t p u t f i l e : s im ping . pcap

2 p a c k e t s (196 b y t e s ) w r i t t e n

0 2 4 6 8

·104

0

20

40

60

80

100

(45524, 60)

Packets Received (n)

D
el

ay
(t

)

t = n× 0.001318

Fig. 3. Processing Delay Skew

V. CONCLUSION

The systems ability to inject targeted traffic was verified in
Section IV where it demonstrated a high degree of veracity
where content was concerned. Though timing accuracy was
somewhat skewed, the amount by which this was seen to be
true was fairly consistent, and thus calculable. Therefore, for
applications more demanding in this regard, this delay can be
taken into consideration.

A. Future Work

Currently the NKM system only supports IPv4 datagrams,
and the TCP, UDP and ICMP protocols. This is expected to
be extended to support IPv6 in the near future. The packet
injection module described herein can also be extended to
provide this support, and extend its own protocol support.
Additional work can also be explored in allowing the injection
of specific Layer 2 frames for direct delivery to client systems.
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