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Abstract 
We address the problem of virtual-videoconferencing. The proposed solution is effected in terms of a generic 
framework based on an in-house Virtual Reality system. The framework is composed of a number of distinct 
components: model acquisition, head tracking, expression analysis, network transmission and avatar 
reconstruction. The framework promises to provide a unique, cheap, and fast system for avatar construction, 
transmission and animation. This approach affords a conversion from the traditional video stream approach 
to the management of an avatar remotely and consequently makes minimal demands on network resources. 

Categories: I.3.7 [Three Dimensional Graphics and Realism], I.4.5 [Reconstruction], I.4.8 [Scene Analysis: Tracking, 
Shape, Time-Varying Imagery], H.1.1 [Videoconferencing], H.4.3 [Coding and Information Theory]. 
 
1 Introduction and Motivation 
To be able to transmit video streams successfully over a 
network depends on one of two things: either high-
bandwidth network connectivity or compression of the 
video stream to achieve acceptable frame-rates. The 
promise of being able to somehow “encode” a video 
stream in some very compact form is an exciting one. One 
suggestion that has attracted attention recently is based on 
the idea of “virtual videoconfererencing” . Rather than 
transmitting and displaying the scenes in their original 
form, the images seen from the viewer are constructed 
from virtual participants (avatars1) whose facial 
characteristics are enhanced and manipulated so as to 
closely to resemble the real persons who are involved in 
the conference. Only pose information for the avatars need 
be transmitted.   
   This paper discusses a framework for such a system and 
sample implementation of the required components.  

                                                           
1 The term “avatar” refers to a 3D representation of a 
subject in a virtual environment. 

   We adopt an encoding/decoding approach to solving the 
problem of virtual videoconferencing. Our encoder is 
responsible for the generation of 3D avatar 
representations, tracking the subject’s head, classifying 
his/her current expression, packaging up this data and then 
transmitting the packaged data to the decoder via the 
network.  
   Our decoder accepts network packets and extracts the 
rotation/translation and expression information from the 
incoming data stream. It handles generating the 
appropriate expression, and rotating/translating the avatar 
representation. We implement expression 
classification/reconstruction via an expression/emotion 
database that contains a listing of all expressions known to 
the system as well as deformation information required to 
generate each of the listed expressions.  
   Our implementation is overlaid on top of a Virtual 
Reality system that has been under development for some 
time at Rhodes University.  The system (called CoRgi) is 
a second generation, object-oriented component-based 
distributed Virtual Reality system. The choice of this 
system has not only enabled quick prototyping of the 



framework discussed in this paper, but its component 
nature has also had an impact on the development of that 
framework. 

2 Framework 
Our framework can be decomposed into 6 major 
categories, as ill ustrated in Figure 1. It involves an 
encoding/decoding process. 
   The encoding part is responsible for model acquisition, 
audio capture, head tracking and expression analysis. 
The model acquisition component is not linked to any 
other component on the encoding side because it 
represents a process that occurs only once, when a new 
user is introduced to the system. 
   The decoding part of the system is responsible for the 
avatar management and is comprised of three more 
specific tasks: controlli ng the movement of the avatar 
(such as rotation and translation of the head), expression 
generation and expression management. Expression 
generation is considered core, but falls within the realm of 
the avatar management component.  
   The last major component that is responsible for 
communication between the encoding and decoding parts 
of our system is the networking component.  

  Although audio capture is important, it is considered 
beyond the scope of this discussion.  

2.1 Model acquisition 

We must have some method of generating 3D avatars. The 
aim here is to provide users with the abilit y to represent 
them in a virtual videoconference. This translates to 
performing some kind of  “reconstruction” of the user 
with the result being the development a 3D model that 
“looks” like the user. In addition to this though, the 
system must be general enough to allow for the use of any 
predefined 3D representation.  

2.2 Head Tracking 

There must be some way of determining the pose and 
orientation of the subject. The common ways include 
image-processing approaches such as the one presented 
below in our implementation, or the use of electro-
magnetic trackers similar to the ones available from 
Polhemus Inc2. These systems have the advantage of 
being invariant to the occlusions and shadowing that 
plague image-processing based approaches, and provide 
better than real-time feedback; the Polhemus trackers 
typically return 3D coordinate positions at a rate of sixty 
updates a second. They are ideal for any real-time tracking 
requirements, including pose estimation. The downside of 
these electromagnetic tracking systems is that they may be 
prohibitively expensive.  

2.3 Expression Analysis 

This section deals with the process of facial expression 
classification. There must exist of some mapping function 
(pre-defined table) that defines the way in which the 
expression identified will be overlaid over the avatar.  

2.4 Expression Generation 
This component refers to the method used to generate the 
expression with the avatar. This typically translates to 
some deformation approach. Deformation algorithms can 
be classified into two broad categories, namely: 
• Free Form Deformation algorithms allow an 

object’s topology to be altered by moving certain 
control points surrounding the object to affect its 
shape. The maintenance of C1 and C2 surface 
continuity is important. To this end vertices are added 
to and removed from the deforming object to 
guarantee a realistic deformation. This process tends 

                                                           
2 More information about this company is available at 
http://www.polhemus.com/ 

Figure 1: A conceptual design of our framework. 
The components in bold indicate those that are 
core to our design. 
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to be computationally expensive and has been avoided 
for our purposes. For a more complete discussion on 
traditional FFD issues, refer to [6]; 

• Vertex Interpolation - these algorithms simulate the 
complexities of traditional FFD algorithms by moving 
vertices without actually introducing new vertices to 
the geometry. Vertex interpolation enables us to 
"deform" an object in real-time. 

3 Background and Related Work 
 Research into the development of a complete virtual-
videoconferencing system has been the focus of a number 
of projects. None of the systems discussed below provide 
any mention of integration of their systems with any sort 
of VR system, but are rather discussed as independent 
applications, which is a unique aspect of our work. 
    Escher et al.[2] propose a complete virtual-
videoconferencing system that uses a generic mesh of a 
face, which is then deformed and textured to suit the real 
face being modelled.  Although the system Escher et al.[2] 
describe provides real-time response and modelli ng, their 
parallel implementation uses 4 SGI workstations, which 
leads to a  very expensive system. 

3.1 Model Acquisition 

General reconstruction techniques employed for the 
generation of 3D models include the use of Cyberware-
type laser scanners, and pulsed lasers [15] and the 
deformation of generic head templates to suit the profile 
of the subject (Thalmann et al. [11]). Head template 
deformation is suited to solving the problem of human 
head modelli ng only. While this suff ices for a virtual-
videoconferencing system, the reconstruction system we 
envisage makes no assumptions regarding the structure of 
the final reconstructed object. 

3.2 Head Tracking 

   In their discussion on determining the epipolar geometry 
of a stereoscopic scene, Zhang et al. [17] make use of 
Normalised Cross Correlation (NCC) to determine pixel 
matches between stereoscopic image pairs. Their 
motivation for this is that NCC is very robust, a fact that 
we have confirmed with our own experiments (see Figure 
5) Given a pixel in a source image, NCC in its traditional 
form performs a 2D search around that pixel position in 
the target image, and returns a match for the original pixel 
only if a specified matching threshold has been exceeded. 
NCC returns -1 for a complete mismatch and 1 for a 
complete match. We have extended the notion of NCC 
matching on stereoscopic image pairs to video sequences.  

This approach is similar to the optical flow approach. 
(Reddi, [14]) 

3.3 Expression analysis 

   The analysis of facial expressions is done either by 
image tracking using skin colour identification and edge 
detection, or through the evaluation of sound generated 
through speech. The latter determines the list of Oxford 
phonemes (and associated lengths) that constitutes the 
input sound stream. These phonemes are then used to 
determine what the shape of the mouth should be for the 
current expression. For details of this implementation see 
Thalmann et al.[11]. Also, the effectiveness of the sound-
processing component of the system with non-English 
speaking users is questionable.  

3.4 Expression Generation 

   Much of the work in this field is based on research by 
Eckman et al. [1]. Their major contribution to the field of 
expression modelli ng is that of FACS (Facial Action 
Coding System). This system provides an enumeration of 
all the possible facial movements required to generate any 
possible expression. They call these mappings “action 
units”. Essa et al. [3] criticize this system by stating that it 
provides only an ‘approximate’ mapping. This is because 
“some muscles give rise to more than one action unit”. 
They go on to develop a model that enhances the basic 
FACS system. 
   The MPA (minimal perceptible action) as well as FACS 
systems are based on the idea that any expression that a 
“typical” person can generate can be decomposed into a 
combination of basic facial movements. The MPEG-4 
face specification is also based on this approach. The 
standard makes use of a Face Animation Table (FAT) to 
determine a mapping between incoming Face Animation 
Parameters (FAP), the vertices affected by the current 
FAP and the way in which these vertices are affected. See 
the MPEG-4 specification for details on this approach [8]. 
   The Motion Pictures Expert Group has ratified the final 
MPEG-4 specification, part of which involves the 
encoding of video sequences using VRML-like (Virtual 
Reality Markup Language) scene-graph specifications. 
Lee et al. [10] pioneered the use of this standard. The Face 
and Body animation Ad Hoc Group (FBA) that is a subset 
of the MPEG-4 group, has defined a specification for both 
the description and animation of human bodies and faces. 
The specification for facial animation is broken down into 
2 categories, namely Face Animation Parameters (FAP) 
and Face Definition Parameters (FDP). Lee et al.[10] 
affords a brief discussion of these categories and their 



implementation for a system conforming to this part of the 
MPEG-4 specification.  

4 Design 

4.1 Model Acquisition 

   We have developed and completely implemented the 
core modules listed below for our own model acquisition. 
This work builds on an earlier discussion in [12].  
   The reconstruction algorithm can be classified as a 
“visual hull” reconstruction method. A number of images 
of the object to be reconstructed are used as input to the 
reconstruction process. The idea is that each image 
contains what is called a “visual cone” enclosing the 
object of interest. The final reconstruction is the 
intersection of all the visual cones in all the images. Refer 
to Kutulakos et al. [9] and Seitz et al. [16] for a discussion 
on reconstruction approaches similar to the one discussed 
here. One shortcoming of these systems is that they do not 
discuss the efficient generation of polyhedral meshes from 
the reconstruction process. 

4.1.1 Shape Carving 
Our object is assumed to reside within a bounding volume 
of evenly spaced voxels3 i.e. a regular grid. Several 
pictures of the object are taken from different angles and 
the backgrounds are stripped from these images using a 
chroma-keying approach. Each of these images is then 
projected into the voxel space orthogonally. A voxel is 
disabled if a background pixel projects on to. Doing this 
for all the images results in a set of active voxels 
representing the object. For the purposes of later 
isosurface extraction and texture generation, we keep 
track of the image (as well as the position in that image) 
that each voxel is closest to. 

4.1.2 Isosurface Extraction 
We have implemented an algorithm for removal of those 
voxels that are not associated with the surface of our 
object. A voxel is classified as internal if it is completely 
surrounded by active voxels. If any voxel fits this 
criterion, we remove it.  
   Applying this algorithm to the voxels remaining after 
shape carving results in a hollow shell, and a large 
decrease in the number of voxels representing our object. 

                                                           
3 The term “voxel” (as used in this paper) refers to a 
1x1x1 cube in 3D space.  

4.1.3 Mesh Connectivity 
The mesh connectivity algorithm takes as input the hollow 
shell of active voxels generated by the isosurface 
extraction algorithm. We assume that since our voxel 
space is regular 3D, the active voxels comprising the 
hollow shell will occur at fixed positions.  The following 
algorithm generates an edge connected mesh of all the 
active voxels, and thus a mapping from our voxel 
representation to a vertex-based polyhedral representation 
of the object.  
  FOR all active voxels DO 

- Let position of voxel be (X,Y,Z) 
- Generate a list of active 

neighbours from position 
(X+1,Y,Z) to (X+1,Y+1,Z+1) 

- Generate all possible triangles 
by joining voxel and neighbour 
pairs. 

  END FOR 
The triangle generation is achieved with a lookup table 
that lists all the possible triplet combinations that are 
allowed.  

4.1.4 Mesh Decimation 
We have implemented a mesh decimation algorithm to 
simplify the polyhedral mesh generated by the mesh 
connectivity algorithm. We have developed this algorithm 
because of in the following observation: the likelihood of 
our mesh containing large rectangular patches is quite 
high. This is a direct result of the regularity of our voxel 
space. Each rectangle is composed of a number of evenly 
spaced vertices. A simplification that forms the basis of 
our decimation implementation is that all vertices that are 
part of a rectangular patch but not part of the perimeter 
can be disregarded from the final polyhedral mesh.  
   Our algorithm can be described as a maximum growth, 
removal algorithm and is illustrated in Figure 2. Starting 

Figure 2: The decimation process in one dimension. 
Once the largest rectangular patch has been found, the 
voxels internal to the patch are disabled. The two 
triangles formed by the gray voxels are generated as 
output for the polyhedral mesh. 



with each active voxel, we grow outwards in each of the 3 
planes (X-Y, X-Z, Y-Z) and find the rectangle covering 
the largest number of active voxels for each plane.  All 
voxels lying within each rectangle’s perimeter are 
disabled. 
   The decimation algorithm differs slightly from the 
traditional academic mesh decimation algorithms in the 
way reduction is performed. Traditional algorithms will 
remove a vertex if the distance from the plane formed by 
its neighbours is less than some threshold value. We avoid 
this calculation because of the guarantee that our voxel 
space is regular. The final implementation of our 
decimation approach is thus significantly quicker that 
traditional algorithms.  

4.1.5 Texture Generation 
Texture generation with our algorithm is based on a 
relatively novel approach. It is equivalent to the approach 
of Seitz et al.’ s[16] in that the voxels that remain after the 
space carving process has been performed are coloured to 
represent the object’s surface.  They refer to this approach 
as “voxel colouring”. We tak e the notion of voxel 
colouring further by generating a vertex colour map of the 
voxels representing the surface of the reconstructed 
object.  
    We simulate traditional texture mapping with vertex 
colouring and Gouraud shading. The object 
reconstruction, isosurface extraction and finally the 
connectivity implementations described earlier result in a 
closed, connected and hollow polyhedral mesh. In 
addition to the vertices representing the final mesh, we 
also have associated RGB values with each of the vertices. 
We are able to "texture map" an object without actually 
resorting to the computational expense of doing this. 
Experiments by Fourie [5] reveals that texturing causes a 
drop of 63% in the rendering performance of an SGI 
Octane Graphics Workstation in experiments conducted or 
as much as 80% on standard PC workstations. The reason 
for this performance degradation arises from the fact that 
the traditional graphics pipeline forces the recalculation of 
texture information with every frame that must be 
rendered, discarding any previously computed results. 
This arises out of the necessity to maintain visual quality, 
in addition to other issues mentioned below. 
   The advantages offered by our approach are numerous:  
• the removal of inverse-perspective calculations; 
• the texturing of curved surfaces; this is trivial with 

our approach; 
• objects scale very well without artefacts appearing 

when close to the surface. 

  A number of problems with our method still t o be 
addressed include: 
• large memory/bandwidth requirements with complex 

objects; this is as a direct result of the vertex density 
(how far the vertices are from one another).  A higher 
vertex density means a superior textured result at the 
expense of more vertices. The situation imposes 
processing overhead in terms of the vertex processing.  

• diff iculty when performing optimisations, such as the 
decimation approach mentioned above; changing the 
structure of the object in any way will affect the 
texture effect.  

• “albedo”. The albedo of a particle is given by the 
“amount of light scattered by this particle in all 
directions in relation to the amount of incoming light” 
[13]. The fact that our object is textured from 
photographs implies that any part of a surface 
reflecting light in the original images will be 
disseminated to the textured object. To minimise this, 
we ensure that there is enough ambient lighting in the 
scene and that no light is directly reflected off the 
surface of our object. 

4.2 Head tracking/Pose Estimation 

   We address the problem of head tracking by tracking a 
number of features on a person' s face. We are able to 
predict which are the good matches and which matches 
are bad because of the video stream’s temporal nature. 
NCC tends to be invariant to rotations of the subject' s 
face, including yaw, and suits our needs perfectly. We are 
able to obtain rotational and translation information from 
the subject, which we can then apply to our avatar. 
Tracking 4 points on a person' s face provides a basis for 
calculating the following information: 
a) Rotation (rotation in X-Y)- via triangulation of the 
points; 
b) Translation (movement in X-Y);  
c) Scaling (movement in Y-Z) - The distances between the 
tracked pixels are used as a measure of how far the subject 
is from the camera. 

4.3 Expression Analysis  

   Our experiments in emotion analysis have been 
restricted to two emotions/facial expressions, namely 
smili ng and frowning. 
   Our implementation assumes that 4 points around the 
subject’s mouth are tracked. These are: nose tip, area half 
way between chin tip and middle of the lower lip, left 
edge of mouth, and right edge of mouth. We monitor these 
four pixels, and use thresholds to decide whether, for 



example, the subject is smiling or has his/her mouth open. 
The thresholds are determined from the initial calibration 
stage, when the user chooses the points to be tracked on 
the subject’s face. The intersection between the two lines 
formed by the four pixels is used to decide upon the 
expression to be identified. As the points are tracked, so 
the intersection moves around. If at any point the 
intersection lies above the initially calculated intersection, 
the expression is classified as a smile, while a frown 
occurs only when the intersection lies below the initial 
intersection.  
   Changing the subject to be tracked causes thresholds to 
be automatically recalculated. This occurs during the 
initial calibration stage when the points around the user’s 
face are specified. 

4.4 Expression Generation/Replication 

Once our Emotion/Expression analyser has managed to 
identify an expression (smile, open mouth or closed 
mouth), the expression has to be replicated.  We proceed 
to deform our 3D model to have the same expression as 
the real-world subject.   
   Our implementation is based on Equation 1.1, an 
algorithm proposed by Hung et al.[7], that has complexity 
O(n). The different components of this equation are as 
follows: 
• P = current vertex; 
• K = direction of deformation; 
• Po = point of source force; this is the position at 

which the deformation force originates;  
• Pd = point of destination force; this denotes the place 

when the effect of the deformation force ends; 
• R = radius of influence;  
• t = the current time (time 0=no deformation; time 1 = 

complete deformation).  
   The radius of influence is a very important variable in 
the equation. This component dictates the extent of the 
deformation’s impact on the object.  
   This algorithm provides three-tier control of the 
deformation process.  The first method of control arises 

from the source/target force combination. The control of 
the deformation using time provides accurate control over 
the animation generated by the deformation. Finally, as 
mentioned above, the radius provides control over how 
much of the object gets deformed. Additionally we also 
support multiple deformations being performed on an 
object at the same time. 
    Our implementation further introduces the concept of 
an Emotion Database. An emotion database is likened to 
the MPA or FACS system. It provides a mapping between 
high level expressions and the facial movements required 
to generate these expressions. Each avatar has the 
following entries in the database: 
• the emotion/facial expression classification (e.g. a 

smile); 
• the forces required to achieve the required expression 

(e.g. deform left cheek and deform right cheek); 
• the deformation information (the forces to be applied 

and the length of time for each deformation). 
   This deformation algorithm inherently depends on the 
object’s vertex density, with a higher density generating 
smoother deformations. Our object reconstruction 
implementation generates objects that are very conducive 
to this deformation approach.  

4.5 Networking 

The information that is transmitted across the network is:  
• The pose the avatar is to assume; 
• The expression the avatar must have.  
   When our system engages in a conferencing session, a 
network connection is established between the encoder 
and decoder. The decoder obtains the name of the avatar 
to be used during the virtual conference. If it does not 
have a copy of the avatar and its associated emotion 
database, the encoder sends it a copy of all this 
information. 
   The result of this process is the conversion of the video 
into a string and a number of integers. It affords an 
efficient compression of the video source.  

4.6 Avatar management 

The management of the avatar is the responsibility of the 
client. This core component is responsible for 3 actions, 
namely: 
• translating and rotating the avatar to simulate the pose 

of the user; 
• generation of expressions (expression replication); 
• the management of expressions; 
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The first of these functions involves moving the avatar 
around in the virtual environment according to the data 
generated by the encoder’s head tracking module.  
   The replication of facial expressions can be achieved 
using approaches such as Free Form Deformation. Escher 
et al. [2] make use of Dirichlet Free Form Deformation to 
generate expressions with their models. The process of 
expression management dictates that there must be 
methods in place to allow avatar expressions to be 
managed at the decoding end. If the decoder is instructed 
to deform the avatar to a smile and then to a frown, a 
protocol must exist to specify the process that is to be 
followed to achieve this transition. Incoming expressions 
can either be queued up and processed one at a time or if a 
more “re al-time” effect is desired, the current expression 
being generated is interrupted (neutral expression is 
immediately regenerated) and the new expression 
generated.  

4.7 Implementation in CoRgi 

We mentioned in the introduction that we have made use 
of CoRgi to perform our sample implementation. We now 
outline how the implementation of the various 
components discussed in the previous section have been 
integrated into an encoding and a decoding system. This is 

illustrated in Figure 3.  
   The encoder is responsible for collecting images from 
our CCD camera (VideoSource), performing expression 
analysis and head tracking (VideoAvatarTracker), and 
then preparing the data for network transmission 
(VRNetworkInput).  
  On the decoding end, the incoming network packet is 
analysed, and the appropriate expression deformations and 
Avatar translation/rotation is performed 
(VRPuppetNetworkManager). Finally the virtual scene is 
rendered (VRSink).  
   The implementation of the final system is almost 
complete. The only section still to be implemented is the 
Expression Analysis section of the VideoAvatarTracker 
component. The rest of the components have been 
implemented, with the basic functionality of these 
components in place. System integration is complete, with 
the interfaces for each of the components defined.  
  Issues relating to the usability of the system as a whole 
are not discussed. This will be the focus of later research. 

5 Results 

5.1 Model Acquisition 

Figure 4 illustrates a reconstruction generated by the 
Model Acquisition algorithm. The reconstruction took 
place using (initially) a 1003 voxel bounding volume. The 
resulting 3D model took 12 seconds to reconstruct from 
initialisation to generation of the final polyhedral 
representation and associated vertex colour representation. 
The subject was placed on a chair that could be rotated, 
and pictures were then taken of him at 30o rotation 
intervals. The images were captured with a standard CCD 
camera and were then used as input for the reconstruction 
algorithm. The final reconstruction generated by the 
model acquisition implementation consists of 16386 
vertices and 52456 triangular polygons. 
   The figure also reveals the limitations of our texture-
mapping approach. The side of the head has been 
reconstructed quite well, while the front of the face is 
actually not very good. We suspect this is due to the 
concave nature of the front of the face. The 
implementation of concave support with this algorithm is 
imperative to ensure the removal of these problems. 
   One other observation to be made from the image is the 
shape of the resulting object; the reconstructed shape is 
quite good and actually looks like the person on the left. 
Additionally, perspective does not appear to have caused 
too many problems with this reconstruction. The result of 
our model acquisition implementation is a reconstruction 
method that is able to generate an approximation of a real-

Figure 3: Component-based implementation 
overlaid on top of the CoRgi VR system. The 
beveled squares represent the data that is 
constructed as each components performs its  
task. 
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world object using a plain CCD camera. This compares 
favourably with traditional model acquisition systems 
such as Cyberware laser scanners, which tend to be 
prohibitively expensive. 
   Our reconstruction algorithm still requires a number of 
improvements. These problems include: 
• no compensation for perspective in the source 

images; solutions include the use of Normalised Cross 
Correlation and Epipolar Geometry to perform 3D 
reconstruction. (Zhang et al,[17]); 

• concave surface reconstruction; this applies when we 
attempt to reconstruct an object that is not equivalent 
to its visual hull . We are currently only able to able to 
provide a good reconstruction if that object being 
reconstructed is equivalent to its visual hull .  

The inabilit y of the present algorithm to handle non-
equivalence cases implies that: 
• the reconstruction has a “shrink-wrapped” look;  
• our texture generation suffers; because of the “shrink-

wrapped” problem, voxels that are not actually part of 
the real object cause the generated texture to include a 
noise factor. 

Better reconstruction results can be achieved by looking at 
spline-based reconstruction methods. Here the voxels 
remaining after isosurface extraction are used as control 
points to generate a smooth B-Spline surface. An example 
of this approach is discussed by Forsey et al.[4] 

5.2 Head Tracking 

The images in Figure 5 ill ustrate the robustness of the 
Normalised Cross Correlation approach to tracking and 
expression analysis. Our efforts are concentrated mainly 
around the mouth. As is ill ustrated in the images, the NCC 

algorithm is invariant to rotations, translations, and 
changing facial expressions (open mouths etc.) It must be 
mentioned though that although these images indicate 
promising results, the application that generated the 
images had to be recalibrated a number of times before the 
results presented here were achieved. This is due (as 
explained previously) to the sluggishness of our NCC 
implementation. In all situations where the algorithm 
failed, the person being tracked moved too quickly or 
changed expressions too rapidly, causing large inter-frame 
changes. 
   Tracking time for the 4 areas in each of the images was 
approximately 3 seconds per frame. A 4x4 search window 
was used in this case.  
   The current implementation is a very naïve one. It does 
not maintain a historical view of the tracked points. A fast 
implementation of the NCC algorithm (possibly in 
hardware) would imply that inter-frame changes were kept 
to a minimum. This would be a source of improved 
tracking results.  
   The sluggishness of the NCC algorithm also results in 
false matches being generated when a person’s expression 
changes too much. This is simply because the inter-frame 
changes are too great.  
   While NCC offers a robust way of tracking a person' s 
face, it is very slow, sometimes taking 1 second to return a 
single match. Despite this lack of performance, we feel 
that the benefits to be had from NCC vastly outweigh its 
performance penalty. The primary benefit of NCC is its 
ratio-based approach. Because it performs comparisons 
using intensity ratios, it can track points of interest on 
curved surfaces without the results being affected by the 

Figure 5: Head tracking performed using the NCC 
tracking algorithm. From top left to bottom right: 
neutral pose, roll l eft, roll right, yaw right, open 
mouth, smile, frown. 

 

    

   

Figure 4: Model Acquisition results. A vertex-
coloured polyhedral avatar representation of the 
subject in above.  

   

   



illumination changes due to surface curvature. 

5.3 Facial Modelling 

Figure 6 illustrates the resulting expressions generated 
using our deformation implementation. The resulting 
smile and frown are the most basic of expressions, but 
indicate the versatility of this deformation algorithm. The 
smile deformation was generated using four global 
deformations. The expressions generated were correctly 
identified by a number of individuals.  
   The implementation with CoRgi has shown that this 
algorithm has a negligible impact on the 
execution/rendering speeds of our graphics sub-systems, 
even with objects containing as many as 5000 vertices. 
This has been confirmed with the rendering performance 
measured for the expressions in Figure 6. The 
performance decreased from an average of 15.4 fps 
(frames per second) to approximately 14.6 fps during the 
generation of the expressions. This result was achieved on 
an SGI Octane with a dual MIPS R10000 processor 
configuration. The performance of the deformation 
implementation is a factor of the processor speed and not 
the graphics hardware.  

5.4 Overall System Performance 

    We have implemented the major and most 
computationally intensive components of the system, 
namely that of head tracking and expression generation. 
The final expression analysis implementation will not add 
too great an overhead to performance, since it is designed 
to make use of the points tracked by the head-tracking 
module. The implemented components provide us with a 
relatively accurate indication of the performance of the 
complete implementation.  
   The time taken to transmit an identified expression and 
head tracking information to the decoding end for 
expression generation and avatar movement does not 
require real-time constraints. This is because the 
expression generation always trails the expression 
identification. The fact that deformation implementation 
(for expression generation) is also dependent on a time 
factor (t) means that an expression is generated 
independent of the time taken for the user to exhibit the 
relevant facial expression.  
   We have mentioned previously that the major 
performance penalty with our system is the NCC tracker. 
Its slowness also affects its robustness, with large inter-
frame changes (due primarily to changing facial 
expressions) causing the system to fail during the tracking 

process. A faster NCC algorithm (possibly a hardware 
implementation) offers two benefits: 
• reduced inter-frame changes, leading to more robust 

tracking; 
• more points can be tracked, allowing for more 

expressions to be classified and generated.  
   With the current implementation, our performance sits at 
about 4 seconds to classify an expression and (as 
mentioned above) a rendering performance of 
approximately 15 fps for the expression generation. 
   An idea of the networking performance is illustrated by 
the following example: a 100x100 uncompressed 8 bit 
video frame, represents about 78Kb of data. Our 
“compression” method transforms this into about 25 bytes 
of data (5 bytes for the avatar id, about 16 bytes for 
position and orientation, and 4 bytes for the expression 
id).  

6 Conclusion 
We have discussed the implementation of a framework for 
the development of a virtual-videoconferencing system 
using a low bandwidth network model and overlaid on top 
of a VR system. We have identified six main components 
required for the development of such a system, namely 
model acquisition, head tracking, expression analysis, 
avatar management and expression modelling using a low-
bandwidth network model.  
   We have discussed our model acquisition 
implementation and mentioned the current shortcomings 
of this system, namely the lack of appropriate depth 
recovery in terms of concave surface reconstruction as 
well as the lack of perspective correction. Results indicate 
that these shortcomings do not really affect the generation 
of avatar heads for a virtual-videoconferencing system, 
bar texture generation. The major advantage our 

Figure 6: A deforming head. The first image indicates 
a neutral expression while the second shows a smile, 
The last image depicts the avatar frowning. These 
expressions have been generated using our Vertex 
Interpolation Deformation implementation. The head 
model depicted here contains 7013 vertices and 13338 
polygons, all triangulated. 

   



acquisition implementation has over implementations 
using laser-range scanners is that it is cheap, only 
requiring the use of a general CCD camera.  
   We have described our implementation of an eff icient, 
yet flexible deformation system that enables real time 
expression generation. The framework developed achieves 
our primary goal with this project, namely the 
development of a virtual videoconferencing framework 
for low-bandwidth conditions that is also acceptably 
cheap.  
   Many improvements are still t o be made to the current 
implementation/framework development. We feel that the 
most pertinent developments are required in the following 
areas: 
• Normalised Cross Correlation – because this 

algorithm forms an integral part of our system as a 
whole, the fastest possible implementation is required. 
We are investigating the use of Field Programmable 
Gate Arrays or DSPs for a possible hardware 
implementation; 

• Expression Database – we want to expand the number 
of expressions; 

• Expression analysis – complete the implementation. 
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