

The Development of a Generic Framework for the
Implementation of a Cheap, Component-Based Virtual Video-

Conferencing System
Soteri Panagou, Shaun Bangay

{ cssp|cssb} @cs.ru.ac.za

Multimedia Centre of Excellence, Computer Science Department, Rhodes University, Grahamstown, 6140, South Africa

Abstract
We address the problem of virtual-videoconferencing. The proposed solution is effected in terms of a generic
framework based on an in-house Virtual Reality system. The framework is composed of a number of distinct
components: model acquisition, head tracking, expression analysis, network transmission and avatar
reconstruction. The framework promises to provide a unique, cheap, and fast system for avatar construction,
transmission and animation. This approach affords a conversion from the traditional video stream approach
to the management of an avatar remotely and consequently makes minimal demands on network resources.

Categories: I.3.7 [Three Dimensional Graphics and Realism], I.4.5 [Reconstruction], I.4.8 [Scene Analysis: Tracking,
Shape, Time-Varying Imagery], H.1.1 [Videoconferencing], H.4.3 [Coding and Information Theory].

1 Introduction and Motivation
To be able to transmit video streams successfully over a
network depends on one of two things: either high-
bandwidth network connectivity or compression of the
video stream to achieve acceptable frame-rates. The
promise of being able to somehow “encode” a video
stream in some very compact form is an exciting one. One
suggestion that has attracted attention recently is based on
the idea of “virtual videoconfererencing” . Rather than
transmitting and displaying the scenes in their original
form, the images seen from the viewer are constructed
from virtual participants (avatars1) whose facial
characteristics are enhanced and manipulated so as to
closely to resemble the real persons who are involved in
the conference. Only pose information for the avatars need
be transmitted.
 This paper discusses a framework for such a system and
sample implementation of the required components.

1 The term “avatar” refers to a 3D representation of a
subject in a virtual environment.

 We adopt an encoding/decoding approach to solving the
problem of virtual videoconferencing. Our encoder is
responsible for the generation of 3D avatar
representations, tracking the subject’s head, classifying
his/her current expression, packaging up this data and then
transmitting the packaged data to the decoder via the
network.
 Our decoder accepts network packets and extracts the
rotation/translation and expression information from the
incoming data stream. It handles generating the
appropriate expression, and rotating/translating the avatar
representation. We implement expression
classification/reconstruction via an expression/emotion
database that contains a listing of all expressions known to
the system as well as deformation information required to
generate each of the listed expressions.
 Our implementation is overlaid on top of a Virtual
Reality system that has been under development for some
time at Rhodes University. The system (called CoRgi) is
a second generation, object-oriented component-based
distributed Virtual Reality system. The choice of this
system has not only enabled quick prototyping of the

framework discussed in this paper, but its component
nature has also had an impact on the development of that
framework.

2 Framework
Our framework can be decomposed into 6 major
categories, as ill ustrated in Figure 1. It involves an
encoding/decoding process.
 The encoding part is responsible for model acquisition,
audio capture, head tracking and expression analysis.
The model acquisition component is not linked to any
other component on the encoding side because it
represents a process that occurs only once, when a new
user is introduced to the system.
 The decoding part of the system is responsible for the
avatar management and is comprised of three more
specific tasks: controlli ng the movement of the avatar
(such as rotation and translation of the head), expression
generation and expression management. Expression
generation is considered core, but falls within the realm of
the avatar management component.
 The last major component that is responsible for
communication between the encoding and decoding parts
of our system is the networking component.

 Although audio capture is important, it is considered
beyond the scope of this discussion.

2.1 Model acquisition

We must have some method of generating 3D avatars. The
aim here is to provide users with the abilit y to represent
them in a virtual videoconference. This translates to
performing some kind of “reconstruction” of the user
with the result being the development a 3D model that
“looks” like the user. In addition to this though, the
system must be general enough to allow for the use of any
predefined 3D representation.

2.2 Head Tracking

There must be some way of determining the pose and
orientation of the subject. The common ways include
image-processing approaches such as the one presented
below in our implementation, or the use of electro-
magnetic trackers similar to the ones available from
Polhemus Inc2. These systems have the advantage of
being invariant to the occlusions and shadowing that
plague image-processing based approaches, and provide
better than real-time feedback; the Polhemus trackers
typically return 3D coordinate positions at a rate of sixty
updates a second. They are ideal for any real-time tracking
requirements, including pose estimation. The downside of
these electromagnetic tracking systems is that they may be
prohibitively expensive.

2.3 Expression Analysis

This section deals with the process of facial expression
classification. There must exist of some mapping function
(pre-defined table) that defines the way in which the
expression identified will be overlaid over the avatar.

2.4 Expression Generation
This component refers to the method used to generate the
expression with the avatar. This typically translates to
some deformation approach. Deformation algorithms can
be classified into two broad categories, namely:
• Free Form Deformation algorithms allow an

object’s topology to be altered by moving certain
control points surrounding the object to affect its
shape. The maintenance of C1 and C2 surface
continuity is important. To this end vertices are added
to and removed from the deforming object to
guarantee a realistic deformation. This process tends

2 More information about this company is available at
http://www.polhemus.com/

Figure 1: A conceptual design of our framework.
The components in bold indicate those that are
core to our design.

Avatar
Management

Model
acquisition

Head
Tracking

Expression
Analysis

Avatar
Movement

(rotation and
translation)

Expression
Generation

Network

Encoding

Expression
Management

Audio
Capture

Decoding

to be computationally expensive and has been avoided
for our purposes. For a more complete discussion on
traditional FFD issues, refer to [6];

• Vertex Interpolation - these algorithms simulate the
complexities of traditional FFD algorithms by moving
vertices without actually introducing new vertices to
the geometry. Vertex interpolation enables us to
"deform" an object in real-time.

3 Background and Related Work
 Research into the development of a complete virtual-
videoconferencing system has been the focus of a number
of projects. None of the systems discussed below provide
any mention of integration of their systems with any sort
of VR system, but are rather discussed as independent
applications, which is a unique aspect of our work.
 Escher et al.[2] propose a complete virtual-
videoconferencing system that uses a generic mesh of a
face, which is then deformed and textured to suit the real
face being modelled. Although the system Escher et al.[2]
describe provides real-time response and modelli ng, their
parallel implementation uses 4 SGI workstations, which
leads to a very expensive system.

3.1 Model Acquisition

General reconstruction techniques employed for the
generation of 3D models include the use of Cyberware-
type laser scanners, and pulsed lasers [15] and the
deformation of generic head templates to suit the profile
of the subject (Thalmann et al. [11]). Head template
deformation is suited to solving the problem of human
head modelli ng only. While this suff ices for a virtual-
videoconferencing system, the reconstruction system we
envisage makes no assumptions regarding the structure of
the final reconstructed object.

3.2 Head Tracking

 In their discussion on determining the epipolar geometry
of a stereoscopic scene, Zhang et al. [17] make use of
Normalised Cross Correlation (NCC) to determine pixel
matches between stereoscopic image pairs. Their
motivation for this is that NCC is very robust, a fact that
we have confirmed with our own experiments (see Figure
5) Given a pixel in a source image, NCC in its traditional
form performs a 2D search around that pixel position in
the target image, and returns a match for the original pixel
only if a specified matching threshold has been exceeded.
NCC returns -1 for a complete mismatch and 1 for a
complete match. We have extended the notion of NCC
matching on stereoscopic image pairs to video sequences.

This approach is similar to the optical flow approach.
(Reddi, [14])

3.3 Expression analysis

 The analysis of facial expressions is done either by
image tracking using skin colour identification and edge
detection, or through the evaluation of sound generated
through speech. The latter determines the list of Oxford
phonemes (and associated lengths) that constitutes the
input sound stream. These phonemes are then used to
determine what the shape of the mouth should be for the
current expression. For details of this implementation see
Thalmann et al.[11]. Also, the effectiveness of the sound-
processing component of the system with non-English
speaking users is questionable.

3.4 Expression Generation

 Much of the work in this field is based on research by
Eckman et al. [1]. Their major contribution to the field of
expression modelli ng is that of FACS (Facial Action
Coding System). This system provides an enumeration of
all the possible facial movements required to generate any
possible expression. They call these mappings “action
units”. Essa et al. [3] criticize this system by stating that it
provides only an ‘approximate’ mapping. This is because
“some muscles give rise to more than one action unit”.
They go on to develop a model that enhances the basic
FACS system.
 The MPA (minimal perceptible action) as well as FACS
systems are based on the idea that any expression that a
“typical” person can generate can be decomposed into a
combination of basic facial movements. The MPEG-4
face specification is also based on this approach. The
standard makes use of a Face Animation Table (FAT) to
determine a mapping between incoming Face Animation
Parameters (FAP), the vertices affected by the current
FAP and the way in which these vertices are affected. See
the MPEG-4 specification for details on this approach [8].
 The Motion Pictures Expert Group has ratified the final
MPEG-4 specification, part of which involves the
encoding of video sequences using VRML-like (Virtual
Reality Markup Language) scene-graph specifications.
Lee et al. [10] pioneered the use of this standard. The Face
and Body animation Ad Hoc Group (FBA) that is a subset
of the MPEG-4 group, has defined a specification for both
the description and animation of human bodies and faces.
The specification for facial animation is broken down into
2 categories, namely Face Animation Parameters (FAP)
and Face Definition Parameters (FDP). Lee et al.[10]
affords a brief discussion of these categories and their

implementation for a system conforming to this part of the
MPEG-4 specification.

4 Design

4.1 Model Acquisition

 We have developed and completely implemented the
core modules listed below for our own model acquisition.
This work builds on an earlier discussion in [12].
 The reconstruction algorithm can be classified as a
“visual hull” reconstruction method. A number of images
of the object to be reconstructed are used as input to the
reconstruction process. The idea is that each image
contains what is called a “visual cone” enclosing the
object of interest. The final reconstruction is the
intersection of all the visual cones in all the images. Refer
to Kutulakos et al. [9] and Seitz et al. [16] for a discussion
on reconstruction approaches similar to the one discussed
here. One shortcoming of these systems is that they do not
discuss the efficient generation of polyhedral meshes from
the reconstruction process.

4.1.1 Shape Carving
Our object is assumed to reside within a bounding volume
of evenly spaced voxels3 i.e. a regular grid. Several
pictures of the object are taken from different angles and
the backgrounds are stripped from these images using a
chroma-keying approach. Each of these images is then
projected into the voxel space orthogonally. A voxel is
disabled if a background pixel projects on to. Doing this
for all the images results in a set of active voxels
representing the object. For the purposes of later
isosurface extraction and texture generation, we keep
track of the image (as well as the position in that image)
that each voxel is closest to.

4.1.2 Isosurface Extraction
We have implemented an algorithm for removal of those
voxels that are not associated with the surface of our
object. A voxel is classified as internal if it is completely
surrounded by active voxels. If any voxel fits this
criterion, we remove it.
 Applying this algorithm to the voxels remaining after
shape carving results in a hollow shell, and a large
decrease in the number of voxels representing our object.

3 The term “voxel” (as used in this paper) refers to a
1x1x1 cube in 3D space.

4.1.3 Mesh Connectivity
The mesh connectivity algorithm takes as input the hollow
shell of active voxels generated by the isosurface
extraction algorithm. We assume that since our voxel
space is regular 3D, the active voxels comprising the
hollow shell will occur at fixed positions. The following
algorithm generates an edge connected mesh of all the
active voxels, and thus a mapping from our voxel
representation to a vertex-based polyhedral representation
of the object.
 FOR all active voxels DO

- Let position of voxel be (X,Y,Z)
- Generate a list of active

neighbours from position
(X+1,Y,Z) to (X+1,Y+1,Z+1)

- Generate all possible triangles
by joining voxel and neighbour
pairs.

 END FOR
The triangle generation is achieved with a lookup table
that lists all the possible triplet combinations that are
allowed.

4.1.4 Mesh Decimation
We have implemented a mesh decimation algorithm to
simplify the polyhedral mesh generated by the mesh
connectivity algorithm. We have developed this algorithm
because of in the following observation: the likelihood of
our mesh containing large rectangular patches is quite
high. This is a direct result of the regularity of our voxel
space. Each rectangle is composed of a number of evenly
spaced vertices. A simplification that forms the basis of
our decimation implementation is that all vertices that are
part of a rectangular patch but not part of the perimeter
can be disregarded from the final polyhedral mesh.
 Our algorithm can be described as a maximum growth,
removal algorithm and is illustrated in Figure 2. Starting

Figure 2: The decimation process in one dimension.
Once the largest rectangular patch has been found, the
voxels internal to the patch are disabled. The two
triangles formed by the gray voxels are generated as
output for the polyhedral mesh.

with each active voxel, we grow outwards in each of the 3
planes (X-Y, X-Z, Y-Z) and find the rectangle covering
the largest number of active voxels for each plane. All
voxels lying within each rectangle’s perimeter are
disabled.
 The decimation algorithm differs slightly from the
traditional academic mesh decimation algorithms in the
way reduction is performed. Traditional algorithms will
remove a vertex if the distance from the plane formed by
its neighbours is less than some threshold value. We avoid
this calculation because of the guarantee that our voxel
space is regular. The final implementation of our
decimation approach is thus significantly quicker that
traditional algorithms.

4.1.5 Texture Generation
Texture generation with our algorithm is based on a
relatively novel approach. It is equivalent to the approach
of Seitz et al.’ s[16] in that the voxels that remain after the
space carving process has been performed are coloured to
represent the object’s surface. They refer to this approach
as “voxel colouring”. We tak e the notion of voxel
colouring further by generating a vertex colour map of the
voxels representing the surface of the reconstructed
object.
 We simulate traditional texture mapping with vertex
colouring and Gouraud shading. The object
reconstruction, isosurface extraction and finally the
connectivity implementations described earlier result in a
closed, connected and hollow polyhedral mesh. In
addition to the vertices representing the final mesh, we
also have associated RGB values with each of the vertices.
We are able to "texture map" an object without actually
resorting to the computational expense of doing this.
Experiments by Fourie [5] reveals that texturing causes a
drop of 63% in the rendering performance of an SGI
Octane Graphics Workstation in experiments conducted or
as much as 80% on standard PC workstations. The reason
for this performance degradation arises from the fact that
the traditional graphics pipeline forces the recalculation of
texture information with every frame that must be
rendered, discarding any previously computed results.
This arises out of the necessity to maintain visual quality,
in addition to other issues mentioned below.
 The advantages offered by our approach are numerous:
• the removal of inverse-perspective calculations;
• the texturing of curved surfaces; this is trivial with

our approach;
• objects scale very well without artefacts appearing

when close to the surface.

 A number of problems with our method still t o be
addressed include:
• large memory/bandwidth requirements with complex

objects; this is as a direct result of the vertex density
(how far the vertices are from one another). A higher
vertex density means a superior textured result at the
expense of more vertices. The situation imposes
processing overhead in terms of the vertex processing.

• diff iculty when performing optimisations, such as the
decimation approach mentioned above; changing the
structure of the object in any way will affect the
texture effect.

• “albedo”. The albedo of a particle is given by the
“amount of light scattered by this particle in all
directions in relation to the amount of incoming light”
[13]. The fact that our object is textured from
photographs implies that any part of a surface
reflecting light in the original images will be
disseminated to the textured object. To minimise this,
we ensure that there is enough ambient lighting in the
scene and that no light is directly reflected off the
surface of our object.

4.2 Head tracking/Pose Estimation

 We address the problem of head tracking by tracking a
number of features on a person' s face. We are able to
predict which are the good matches and which matches
are bad because of the video stream’s temporal nature.
NCC tends to be invariant to rotations of the subject' s
face, including yaw, and suits our needs perfectly. We are
able to obtain rotational and translation information from
the subject, which we can then apply to our avatar.
Tracking 4 points on a person' s face provides a basis for
calculating the following information:
a) Rotation (rotation in X-Y)- via triangulation of the
points;
b) Translation (movement in X-Y);
c) Scaling (movement in Y-Z) - The distances between the
tracked pixels are used as a measure of how far the subject
is from the camera.

4.3 Expression Analysis

 Our experiments in emotion analysis have been
restricted to two emotions/facial expressions, namely
smili ng and frowning.
 Our implementation assumes that 4 points around the
subject’s mouth are tracked. These are: nose tip, area half
way between chin tip and middle of the lower lip, left
edge of mouth, and right edge of mouth. We monitor these
four pixels, and use thresholds to decide whether, for

example, the subject is smiling or has his/her mouth open.
The thresholds are determined from the initial calibration
stage, when the user chooses the points to be tracked on
the subject’s face. The intersection between the two lines
formed by the four pixels is used to decide upon the
expression to be identified. As the points are tracked, so
the intersection moves around. If at any point the
intersection lies above the initially calculated intersection,
the expression is classified as a smile, while a frown
occurs only when the intersection lies below the initial
intersection.
 Changing the subject to be tracked causes thresholds to
be automatically recalculated. This occurs during the
initial calibration stage when the points around the user’s
face are specified.

4.4 Expression Generation/Replication

Once our Emotion/Expression analyser has managed to
identify an expression (smile, open mouth or closed
mouth), the expression has to be replicated. We proceed
to deform our 3D model to have the same expression as
the real-world subject.
 Our implementation is based on Equation 1.1, an
algorithm proposed by Hung et al.[7], that has complexity
O(n). The different components of this equation are as
follows:
• P = current vertex;
• K = direction of deformation;
• Po = point of source force; this is the position at

which the deformation force originates;
• Pd = point of destination force; this denotes the place

when the effect of the deformation force ends;
• R = radius of influence;
• t = the current time (time 0=no deformation; time 1 =

complete deformation).
 The radius of influence is a very important variable in
the equation. This component dictates the extent of the
deformation’s impact on the object.
 This algorithm provides three-tier control of the
deformation process. The first method of control arises

from the source/target force combination. The control of
the deformation using time provides accurate control over
the animation generated by the deformation. Finally, as
mentioned above, the radius provides control over how
much of the object gets deformed. Additionally we also
support multiple deformations being performed on an
object at the same time.
 Our implementation further introduces the concept of
an Emotion Database. An emotion database is likened to
the MPA or FACS system. It provides a mapping between
high level expressions and the facial movements required
to generate these expressions. Each avatar has the
following entries in the database:
• the emotion/facial expression classification (e.g. a

smile);
• the forces required to achieve the required expression

(e.g. deform left cheek and deform right cheek);
• the deformation information (the forces to be applied

and the length of time for each deformation).
 This deformation algorithm inherently depends on the
object’s vertex density, with a higher density generating
smoother deformations. Our object reconstruction
implementation generates objects that are very conducive
to this deformation approach.

4.5 Networking

The information that is transmitted across the network is:
• The pose the avatar is to assume;
• The expression the avatar must have.
 When our system engages in a conferencing session, a
network connection is established between the encoder
and decoder. The decoder obtains the name of the avatar
to be used during the virtual conference. If it does not
have a copy of the avatar and its associated emotion
database, the encoder sends it a copy of all this
information.
 The result of this process is the conversion of the video
into a string and a number of integers. It affords an
efficient compression of the video source.

4.6 Avatar management

The management of the avatar is the responsibility of the
client. This core component is responsible for 3 actions,
namely:
• translating and rotating the avatar to simulate the pose

of the user;
• generation of expressions (expression replication);
• the management of expressions;

() tPP
R

PP

KPP d

o

×−×

















 Π




 −+

×+=
2

cos1
'

Equation 1.1: Vertex Interpolation Equation allowing
us to perform deformations

The first of these functions involves moving the avatar
around in the virtual environment according to the data
generated by the encoder’s head tracking module.
 The replication of facial expressions can be achieved
using approaches such as Free Form Deformation. Escher
et al. [2] make use of Dirichlet Free Form Deformation to
generate expressions with their models. The process of
expression management dictates that there must be
methods in place to allow avatar expressions to be
managed at the decoding end. If the decoder is instructed
to deform the avatar to a smile and then to a frown, a
protocol must exist to specify the process that is to be
followed to achieve this transition. Incoming expressions
can either be queued up and processed one at a time or if a
more “re al-time” effect is desired, the current expression
being generated is interrupted (neutral expression is
immediately regenerated) and the new expression
generated.

4.7 Implementation in CoRgi

We mentioned in the introduction that we have made use
of CoRgi to perform our sample implementation. We now
outline how the implementation of the various
components discussed in the previous section have been
integrated into an encoding and a decoding system. This is

illustrated in Figure 3.
 The encoder is responsible for collecting images from
our CCD camera (VideoSource), performing expression
analysis and head tracking (VideoAvatarTracker), and
then preparing the data for network transmission
(VRNetworkInput).
 On the decoding end, the incoming network packet is
analysed, and the appropriate expression deformations and
Avatar translation/rotation is performed
(VRPuppetNetworkManager). Finally the virtual scene is
rendered (VRSink).
 The implementation of the final system is almost
complete. The only section still to be implemented is the
Expression Analysis section of the VideoAvatarTracker
component. The rest of the components have been
implemented, with the basic functionality of these
components in place. System integration is complete, with
the interfaces for each of the components defined.
 Issues relating to the usability of the system as a whole
are not discussed. This will be the focus of later research.

5 Results

5.1 Model Acquisition

Figure 4 illustrates a reconstruction generated by the
Model Acquisition algorithm. The reconstruction took
place using (initially) a 1003 voxel bounding volume. The
resulting 3D model took 12 seconds to reconstruct from
initialisation to generation of the final polyhedral
representation and associated vertex colour representation.
The subject was placed on a chair that could be rotated,
and pictures were then taken of him at 30o rotation
intervals. The images were captured with a standard CCD
camera and were then used as input for the reconstruction
algorithm. The final reconstruction generated by the
model acquisition implementation consists of 16386
vertices and 52456 triangular polygons.
 The figure also reveals the limitations of our texture-
mapping approach. The side of the head has been
reconstructed quite well, while the front of the face is
actually not very good. We suspect this is due to the
concave nature of the front of the face. The
implementation of concave support with this algorithm is
imperative to ensure the removal of these problems.
 One other observation to be made from the image is the
shape of the resulting object; the reconstructed shape is
quite good and actually looks like the person on the left.
Additionally, perspective does not appear to have caused
too many problems with this reconstruction. The result of
our model acquisition implementation is a reconstruction
method that is able to generate an approximation of a real-

Figure 3: Component-based implementation
overlaid on top of the CoRgi VR system. The
beveled squares represent the data that is
constructed as each components performs its
task.

VideoSource

VideoAvatarTracker

VRNetworkInput

VRPuppetNetworkManager

VRSink

Position
Orientation
Expression

 AvatarID

Position
Orientation
Expression

Avatar
Movement/

Deformation
Control

Network

world object using a plain CCD camera. This compares
favourably with traditional model acquisition systems
such as Cyberware laser scanners, which tend to be
prohibitively expensive.
 Our reconstruction algorithm still requires a number of
improvements. These problems include:
• no compensation for perspective in the source

images; solutions include the use of Normalised Cross
Correlation and Epipolar Geometry to perform 3D
reconstruction. (Zhang et al,[17]);

• concave surface reconstruction; this applies when we
attempt to reconstruct an object that is not equivalent
to its visual hull . We are currently only able to able to
provide a good reconstruction if that object being
reconstructed is equivalent to its visual hull .

The inabilit y of the present algorithm to handle non-
equivalence cases implies that:
• the reconstruction has a “shrink-wrapped” look;
• our texture generation suffers; because of the “shrink-

wrapped” problem, voxels that are not actually part of
the real object cause the generated texture to include a
noise factor.

Better reconstruction results can be achieved by looking at
spline-based reconstruction methods. Here the voxels
remaining after isosurface extraction are used as control
points to generate a smooth B-Spline surface. An example
of this approach is discussed by Forsey et al.[4]

5.2 Head Tracking

The images in Figure 5 ill ustrate the robustness of the
Normalised Cross Correlation approach to tracking and
expression analysis. Our efforts are concentrated mainly
around the mouth. As is ill ustrated in the images, the NCC

algorithm is invariant to rotations, translations, and
changing facial expressions (open mouths etc.) It must be
mentioned though that although these images indicate
promising results, the application that generated the
images had to be recalibrated a number of times before the
results presented here were achieved. This is due (as
explained previously) to the sluggishness of our NCC
implementation. In all situations where the algorithm
failed, the person being tracked moved too quickly or
changed expressions too rapidly, causing large inter-frame
changes.
 Tracking time for the 4 areas in each of the images was
approximately 3 seconds per frame. A 4x4 search window
was used in this case.
 The current implementation is a very naïve one. It does
not maintain a historical view of the tracked points. A fast
implementation of the NCC algorithm (possibly in
hardware) would imply that inter-frame changes were kept
to a minimum. This would be a source of improved
tracking results.
 The sluggishness of the NCC algorithm also results in
false matches being generated when a person’s expression
changes too much. This is simply because the inter-frame
changes are too great.
 While NCC offers a robust way of tracking a person' s
face, it is very slow, sometimes taking 1 second to return a
single match. Despite this lack of performance, we feel
that the benefits to be had from NCC vastly outweigh its
performance penalty. The primary benefit of NCC is its
ratio-based approach. Because it performs comparisons
using intensity ratios, it can track points of interest on
curved surfaces without the results being affected by the

Figure 5: Head tracking performed using the NCC
tracking algorithm. From top left to bottom right:
neutral pose, roll l eft, roll right, yaw right, open
mouth, smile, frown.

Figure 4: Model Acquisition results. A vertex-
coloured polyhedral avatar representation of the
subject in above.

illumination changes due to surface curvature.

5.3 Facial Modelling

Figure 6 illustrates the resulting expressions generated
using our deformation implementation. The resulting
smile and frown are the most basic of expressions, but
indicate the versatility of this deformation algorithm. The
smile deformation was generated using four global
deformations. The expressions generated were correctly
identified by a number of individuals.
 The implementation with CoRgi has shown that this
algorithm has a negligible impact on the
execution/rendering speeds of our graphics sub-systems,
even with objects containing as many as 5000 vertices.
This has been confirmed with the rendering performance
measured for the expressions in Figure 6. The
performance decreased from an average of 15.4 fps
(frames per second) to approximately 14.6 fps during the
generation of the expressions. This result was achieved on
an SGI Octane with a dual MIPS R10000 processor
configuration. The performance of the deformation
implementation is a factor of the processor speed and not
the graphics hardware.

5.4 Overall System Performance

 We have implemented the major and most
computationally intensive components of the system,
namely that of head tracking and expression generation.
The final expression analysis implementation will not add
too great an overhead to performance, since it is designed
to make use of the points tracked by the head-tracking
module. The implemented components provide us with a
relatively accurate indication of the performance of the
complete implementation.
 The time taken to transmit an identified expression and
head tracking information to the decoding end for
expression generation and avatar movement does not
require real-time constraints. This is because the
expression generation always trails the expression
identification. The fact that deformation implementation
(for expression generation) is also dependent on a time
factor (t) means that an expression is generated
independent of the time taken for the user to exhibit the
relevant facial expression.
 We have mentioned previously that the major
performance penalty with our system is the NCC tracker.
Its slowness also affects its robustness, with large inter-
frame changes (due primarily to changing facial
expressions) causing the system to fail during the tracking

process. A faster NCC algorithm (possibly a hardware
implementation) offers two benefits:
• reduced inter-frame changes, leading to more robust

tracking;
• more points can be tracked, allowing for more

expressions to be classified and generated.
 With the current implementation, our performance sits at
about 4 seconds to classify an expression and (as
mentioned above) a rendering performance of
approximately 15 fps for the expression generation.
 An idea of the networking performance is illustrated by
the following example: a 100x100 uncompressed 8 bit
video frame, represents about 78Kb of data. Our
“compression” method transforms this into about 25 bytes
of data (5 bytes for the avatar id, about 16 bytes for
position and orientation, and 4 bytes for the expression
id).

6 Conclusion
We have discussed the implementation of a framework for
the development of a virtual-videoconferencing system
using a low bandwidth network model and overlaid on top
of a VR system. We have identified six main components
required for the development of such a system, namely
model acquisition, head tracking, expression analysis,
avatar management and expression modelling using a low-
bandwidth network model.
 We have discussed our model acquisition
implementation and mentioned the current shortcomings
of this system, namely the lack of appropriate depth
recovery in terms of concave surface reconstruction as
well as the lack of perspective correction. Results indicate
that these shortcomings do not really affect the generation
of avatar heads for a virtual-videoconferencing system,
bar texture generation. The major advantage our

Figure 6: A deforming head. The first image indicates
a neutral expression while the second shows a smile,
The last image depicts the avatar frowning. These
expressions have been generated using our Vertex
Interpolation Deformation implementation. The head
model depicted here contains 7013 vertices and 13338
polygons, all triangulated.

acquisition implementation has over implementations
using laser-range scanners is that it is cheap, only
requiring the use of a general CCD camera.
 We have described our implementation of an eff icient,
yet flexible deformation system that enables real time
expression generation. The framework developed achieves
our primary goal with this project, namely the
development of a virtual videoconferencing framework
for low-bandwidth conditions that is also acceptably
cheap.
 Many improvements are still t o be made to the current
implementation/framework development. We feel that the
most pertinent developments are required in the following
areas:
• Normalised Cross Correlation – because this

algorithm forms an integral part of our system as a
whole, the fastest possible implementation is required.
We are investigating the use of Field Programmable
Gate Arrays or DSPs for a possible hardware
implementation;

• Expression Database – we want to expand the number
of expressions;

• Expression analysis – complete the implementation.

References
[1] Eckman, P., Friesen, W. “Facial Action Coding

System”. Consulting Psychologists Press Inc., 577
College Avenue, Palo Alto, Cali fornia, 1978.

[2] Escher, M., Magnenat-Thalmann, N. “Automatic
Cloning and Real-Time Animation of a Human
Face”. MiraLab, University of Geneva, 1997.
Available at www: http://miralabwww.unige.ch/

 ARTICLES/FACA97.htm
[3] Essa, I., Pentland A. “A Vision System for Observing

and Extracting Facial Action Parameters”. IEEE
CVPR 1994 Conference, Seattle, Washington, 1994.

[4] Forsey, D., Wong, D. “Multi resolution Surface
Reconstruction for Hierarchical B-splines”,
University of British Colombia. Available at www:

http://www.cs.ubc.ca/spider/forsey/Approx/App_1.html
[5] Fourie, F. “D eveloping Eff icient Graphics Rendering

Components”. Honours Thesis, Computer Science
Department, Rhodes University, 1998.

[6] Gain, J. “Virtual Sculpting: An Investigation of
Directly Manipulated Free-Form Deformation in a
Virtual Environment”. MSc Thesis, Department of
Computer Science, Rhodes University, 1996.

[7] Hung, D., Huang, S. H. “Project Deidre (I) –
Modeling Human Facial Expressions”. Cornell
Theory Center, December 1995. Available at www:

http://www.tc.cornell .edu/Visualization/contrib/cs490
-95to96/hjkim/deidre.html

[8] Koenen, R. “Coding of Moving Pictures and Audio:
Overview of the MPEG-4 Standard” International
Organisation For Standardisation, March 1999.
Available at www: http://drogo.cselt.it/mpeg/

 standards/mpeg-4/mpeg4.htm
[9] Kutulakos, K. N., Seitz, S.M. “What Do N

Photographs Tell Us About 3D Shape?” Technical
Report TR680. Rochester University, January 1998.
Available at www: http://www.cs.cmu.edu/~seitz/

 papers/tr680.pdf.
[10] Lee, W., Escher, M., Sennier,G., Thallman, N.

“MPEG-4 Compatible Faces From Orthogonal
Photographs”. MiraLab, CUI, University of Geneva,
1998.

[11] Magnenat-Thalmann, N., Cazedevals, A., Thalmann,
D. “Modelli ng Facial Communication Between an
Animator and a Synthetic Actor in Real Time”. Proc.
Modeling in Computer Graphics, pp. 387-396.Geneva

[12] Panagou, S., Bangay, S. “An Investigation into the
feasibilit y of Human Facial Modelli ng”. Proceedings
of 1st South African Telecommunications, Networks
and Applications Conference, September 1998.

[13] POV-Team. “POV -Ray(tm) User' s Documentation
3.0”,1997. Available at www:http://mirror.det.mun.ca

 /doc/povray-manual/povray.htm.
[14] Reddi, S. “Using optical flow for the recovery of

motion parameters and for gaze control”. PhD Thesis,
Birkbeck College, University of London, 1993.

[15] Roach, L., Jacobs, G. “3D Laser Scanning Speeds 3D
Visualization of Existing Plants and Extends 3D
Visualization into New CPI Applications”. Chemical
Engineering, June 1999.

[16] Seitz, S. M, Dyer, C. R. “Photorealistic Scene
Reconstruction by Voxel Coloring”, Proc. Computer
Vision and Pattern Recognition Conf., 1997, pp 1067-
1073. Available at www: http://www.cs.cmu.edu/
vcolor.html.

[17] Zhang, Z., Deriche, R., Faugeras, O., Luong, Q. “A
Robust Technique for Matching Two Uncalibrated
Images Through the Recovery of the Unknown
Epipolar Geometry”. Rapport de recherche no 2273,
Inria Sophia Antipolis, Projet Robotvis, May 1994.
Available at www: http://www.inria.fr/

