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Abstract 

In this thesis we study several aspects of gauge/ gravity dualities. We start by 

analyzing the structure of the UV divergences of the Wilson loop for a general 

gauge/gravity duality. We find that, due to the presence of a nontrivial NSNS B­

field and metric, new divergences that cannot be subtracted out by the conventional 

Legendre transform may arise. We also derive conditions on the B-field and the 

metric, which when satisfied, the leading UV divergence will become linear, and 

can be canceled out by choosing the boundary condition of the string appropriately. 

Our results, together with the result of [15], where the effect of a nontrivial dilaton 

on the structure of UV divergences in Wilson loop is analyzed, allow us to conclude 

that Legendre transform is at best capable of canceling the linear UV divergences 

arising from the area of the worldsheet, but is incapable to handle the divergences 

associated with the dilaton or the B-field in general. We also solve the conditions 

for the cancelation of the leading linear divergences generally and find that many 

well-known supergravity backgrounds are of these kinds, including examples such as 

the Sakai-Sugimoto QCD model or N = 1 duality with Sasaki-Einstein spaces. We 

also point out that Wilson loop in the Klebanov-Strassler background have a diver­

gence associated with the B-field which cannot be canceled away with the Legendre 

transform. Moreover, our results indicate that the finiteness of the expectation value 

of the Wilson loop does not depend on the supersymmetry. 

In the next chapter, we propose a definition of the Wilson loop operator in the 

N = 1 ,6-deformed supersymmetric Yang-Mills theory. Although the operator is not 

BPS, it has a finite expectation value, result that come from the work in the previous 
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chapter but also from the field theory calculations at least up to order (g2 N)2 . We 

also derive the general form of the boundary condition satisfied by the dual string 

worldsheet and find that it is deformed. Finiteness of the expectation value of 

the Wilson loop, together with some rather remarkable properties of the Lunin­

Maldacena metric and the B-field, fixes the boundary condition to be one which is 

characterized by the vielbein of the deformed supergravity metric. The Wilson loop 

operators provide natural candidates as dual descriptions to some of the existing 

D-brane configurations in the Lunin-Maldacena background. We also construct the 

string dual configuration for a near-1/4 BPS circular Wilson loop operator. The 

string lies on a deformed three-sphere instead of a two-sphere as in the undeformed 

case. The expectation value of the Wilson loop operator is computed using the 

. AdSjCFT correspondence and is found to be independent of the deformation. 

In the next chapter we focus on a different topic, and find point-like and classical 

string solutions on the AdS5 X X 5' where X 5 are the 5-dimensional Sasaki-Einstein 

manifolds yp,q and £P,q,r. The number of acceptable solutions is limited drastically in 

order to satisfy the constraints on the parameters and coordinates of the manifolds. 

vVe find the energy-spin relations of the above solutions and see that they depend 

on the parameters of the Sasaki-Einstein manifolds. A discussion on BPS solutions 

is presented as well. 

In the last chapter we present a general discussion on topics which related closely 

to all previous chapters. Among other things we also give some comments on the 

form of the Wilson loop operator in the ABJM superconformal Chern-Simons theory. 



Declaration 

The work in this thesis is based on research carried out at the Centre for Particle 

Theory and Department of Mathematics, the Department of Mathematical Sciences, 

University of Durham, England. No part of this thesis has been submitted elsewhere 

for any other degree or qualification and it all my own work unless referenced to the 

contrary in the text. 

Chapter 1 presents an introduction on aspects of the AdS/CFT and some other 

gauge/gravity dualities with less supersymmetries. This material is known and can 

be found in several relevant reviews. Chapter 2 and 3 consists is original work 

and based on a published work done with collaboration with Prof. Chong-Sun 

Chu, [63], [24]. Chapter 4 is also original work based on my publication [114]. 

Chapter 5 consists of a general discussion on topics closely related to chapters 2, 3 

and 4. Part of this chapter based on work published in [63]. 

Copyright © 2009 by Dimitrios Giataganas. 

"The copyright of this thesis rests with the author. No quotations from it should be 

published without the author's prior written consent and information derived from 

it should be acknowledged". 

IV 



Acknowledgements 

Foremost I would like to thank my supervisor Chong-Sun Chu, for the guidance 

and support. I believe that I benefited greatly and in many different ways from our 

discussions on the physics problems. 

I would also like to thank many other professors of Maths department of Durham 

University, that I interact with, during my PhD studies. I must also thank many 

professors that I had during my undergraduate studies in the National Technical 

University of Athens, Greece (N.T.U.A.). Furthermore, I want to acknowledge some 

teachers that I was lucky to have during my school years, especially during the period 

of my last years in Senior High school education, the last step before entering the 

university. I am avoiding to mention any names because I do not want to forget 

anyone. 

Moreover, I would not forget to acknowledge George Zoupanos for his continuous 

support and the Department of Physics, of N. T. U. of Athens for hospitality during 

my visits in Greece. 

I would also like to thank Thanasis Tsougranis for teaching me many different 

topics and methods in mathematics during my late school years, and for many 

discussions we had on mathematics. 

Furthermore, I must offer thanks to the EPSRC for their financial support with 

the studentship that I had. 

Finally, I would like to thank my family, m particular my parents for their 

support. 

V 



Contents 

Abstract ll 

Declaration iv 

Acknowledgements V 

1 Introduction 1 

1.1 A general description of the ADS/CFT correspondence . 1 

1.2 The Holography . 5 

1.3 Wilson Loops .. 7 

1.3.1 Wilson loop operator in N = 4 Super Yang-Mills 8 

1.3.2 Wilson loops in ADS/CFT ..... 10 

1.3.3 Wilson Loop and minimal surfaces 11 

1.4 Semiclassical String Solutions in AdSjCFT 13 

1.4.1 Brief Overview 13 

1.4.2 Introduction . 14 

1.4.3 BMN Limit 15 

1.5 Beta deformed theories 17 

1.5.1 Conformal deformations on N = 4 SYM 17 

1.5.2 Supergravity dual solutions generation methods 19 

1.5.3 Brief Review on the work on the f3 deformed theories 21 

1.6 Sasaki-Einstein dualities .................... 25 

2 UV-divergences of Wilson Loops for Gauge/Gravity Duality 28 

Vl 



Contents vii 

2.1 Structures of UV divergence in the Wilson loop in general supergrav-

ity background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

2.1.1 Conditions on the supergravity background and the string 

worldsheet for cancelation of leading order divergence 31 

2.1.2 Comments: boundary constraint as loop constraint . 38 

2.2 General solution to the conditions on SUGRA background and exam-

ples . . . . . . . . . . . . . . . . . . . . . . . . 39 

2.2.1 General solution to the metric condition 39 

2.2.2 Examples 41 

2.3 Discussions . . . 46 

3 Wilson Loop in ,8-deformed Theories 48 

3.1 The Lunin-Maldacena Background . . . . . . . . . 51 

3.1.1 Properties of the deformed metric and B-field 51 

3.2 Near-BPS Wilson Loop and Deformed Boundary Condition . 54 

3.3 Near-1/4 BPS Wilson Loop . . . . . . . . . . . . . . 57 

4 Semi-classical Strings in Sasaki-Einstein Manifolds 64 

4.1 The backgrounds . 65 

4.1.1 yp,q Metrics 65 

4.1.2 V,q,r Metrics 66 

4.2 String solutions in yp,q background 

4.2.1 Equations of motion and conserved quantities 

4.2.2 Discussion on BPS solutions 

4.2.3 One angle solution ... 

4.2.4 The two Angle Solutions 

4.3 String solutions in V,q,r background 

4.3.1 Equations of motion and conserved quantities 

4.3.2 One angle solution ... 

4.3.3 The two angle solutions 

4.4 Discussions . . . . . . . . . . . 

68 

68 

70 

74 

78 

84 

84 

86 

87 

89 



Contents 

5 Concluding Remarks 

A 

B 

Appendix 

A.1 

A.2 

A.4 

B.1 

B.2 

Wilson loop from U(N + 1)---+ U(N) x U(1) breaking .. 

The deformed metric in the Cartesian coordinate system 

Cancelation of UV divergences up to order (g2 N) 2 

Some formulas of Sasaki-Einstein manifolds ..... 

Definition of functions used in y.q,r string solutions 

viii 

91 

98 

98 

98 

101 

103 

106 

106 

107 



List of Figures 

4.1 We plot Y± = 1 ± JI=Ci'c?o/ J3 together with the yq+, Yq- versus 

a, e. The yq_, Yq+ surfaces are colored red and green respectively, 

while y_, Y+ colored blue and orange respectively. From the figure 

we notice that both Y± are greater than Yq+ for the whole range of a 

and e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

4.2 Plotting the roots y (blue) of (4.57) with Yq- (red), Yq+ (green) versus 

a. This color mapping to the solution will be the same in the other 

plots too. In the first plot we see that the smaller solution y_ is 

between the two roots of q(y) = 0 and in the second one that the 

greater root Y+ is outside the allowed area since Y+ > 1. . . . . . . . 76 

4.3 We plot Y± versus n, a where w1 = n w3 with n > 1/2. In the first 

plot with Y+ we clearly see that there is no acceptable solution. In 

the second plot, the Y- give acceptable solutions. . . . . . . . . . . . 79 

4.4 Plotting y, Yq+, Yq- versus w3 , m 1. The transparent plane is at a = 

1/2. When ( 4.80) satisfied, a < 1/2 and hence our solution lives in 

the area between the Yq+, Yq-. Also notice that for a > 1 there is no 

green surface, since the values of Yq+ become complex, as expected. . 81 

4.5 In the first plot is the energy versus m 1 , a. In the second plot the 

expression E · (1 - c11 ) is plotted versus ltat, a, and one can notice 

the sharp rise of the energy as a ~ 1/2. The plot range on energy is 

restricted intentionally to finite region in order to have a clear shape 

of the surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

lX 



List of Figures 

4.6 In the plot are presented the solutions of ~(x), x 1 and x2 , together 

with x (4.111) versus the manifold parameters o:, ,6. The solution x 

is plotted with blue and we see that there is no region such that x is 

X 

between of x 1 , x2 where the manifold constraints are satisfied. 88 

A.1 1-loop contribution to scalar propagator . . . . . . . . . 104 

A.2 Feynman diagrams of leading and next-to-leading orders 104 



Chapter 1 

Introduction 

1.1 A general description of the ADS/CFT corre­

spondence 

The idea that large N gauge theories may have a string theory description was 

proposed a long time ago [1], but the first concrete proposal was given by Maldacena 

with the conjectured AdSjCFT correspondence [2-6]. 

This correspondence relates a conformal field theory in d dimensions and a grav­

ity theory in d + 1 dimensional Anti de Sitter space. More specifically a type liB 

string theory compactified on AdS5 x S 5 is dual or mathematically equivalent to 

N = 4 super-Yang-Mills theory. To motivate this relation and make it clearer we 

can start with a type liB string theory in flat ten dimensional Minkowski space. 

Let us begin by taking N parallel D3 branes very close to each other. In this 

background the perturbative excitations are of two different types. The excitations 

of the empty space are the closed strings and the excitations of the D3 branes are 

the open strings which are ending on them. By considering energies lower than 

the string scale 1/ls, only massless string states can be excited and we can write 

down the effective Lagrangian. The closed string massless states form a gravity 

supermultiplet in ten dimension and have low energy effective lagrangian of type 

liB supergravity. The open string massless states give an N = 4 vector super 

multiplet in (3 + 1) dimensions and their low energy effective lagrangian is of N = 4 

1 
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U(N) super Yang-Mills theory. By taking account of the interactions the complete 

effective action of the massless modes will be 

S = S~mtk + Sbrane + Sint . (1.1) 

As we said above the Sbulk is the action of the ten dimensional supergravity plus 

some higher derivatives and in the low energy limit S~mtk -. Ssupergravity· Similarly 

the Sbrane is the action of theN= 4 super-Yang Mills and in the low energy limit 

Sbrane -+ SN=4· The Sint term describes the interaction of the bulk modes and the 

brane modes. But for this term one can see that Sint ex: k "' g5 a'2 where k is the 

square root of the Newton constant. At the low energy limit a' -+ 0 and k2 -+ 0, 

which states the fact that the gravity and thus supergravity, becomes free at long 

distances. So, in this limit we get two decoupled systems: the free gravity in the 

bulk spacetime and the 4 dimensional N = 4 super Yang-Mills gauge theory on 

the D3 branes which is known to be conformal. Notice also that the Lagrangian 

( 1.1) although it contains only the massless fields, takes into account the effects of 

integrating out the massive fields. 

Now one can consider the same system from a point of view of supergravity 

description. The D3 brane solution of the supergravity is given by 

f 

f- 112( -dt2 + dxi + dx~ + dx~) + j 112(dr2 + r2 dr2~) 

(1 + * )dtdx1dx2dx3dj-1 , 
R4 

1 + 4 , R4 = 4?Tgsa'2 N . 
r 

(1.2) 

(1.3) 

(1.4) 

Notice that 9tt depends on r, and that means that the energy Ep measured at a 

point r and the energy E measured at infinity are related by 

So for an observer at infinity, who measures the energy of an object moving from 

infinity to r = 0, would see that the energy of the object reduces. By keeping the 

energy Ep fixed as r -+ 0 the energy observed at infinity E goes to zero, thus we 

are in the low energy regime. In this picture there are two kinds of low energy 

excitations from the point of view of the observer at infinity. We can have massless 
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particles propagating in the bulk with very low energies, i.e. big wavelengths, or we 

can have any other kind of excitation which comes closer to r = 0. If one calculate 

the absorbtion cross section of the waves at large r, can find that it is close to zero 

since the wavelength of the particle become much more bigger than the typical size 

of the brane. On the other hand, for the second type of excitations which live close 

to r = 0, can not climb the gravitational potential and escape to infinity. 

Hence we see that from the point of view of open strings living on the D3 branes 

and from the point of view of the supergravity description we have two decoupled 

low energy theories. One of them, the free gravity at large distances is common. 

Therefore, we can identify the other two low energy systems that appear in both 

descriptions and we arrive to the conjecture that theN= 4 U(N) super Yang-Mills 

theory in 3 + 1 dimensions is dual to type I I B superstring theory on AdSs x ss. 
In the near horizon limit the metric (1.2) becomes 

r 2 dr2 

ds 2 = -(-dt2 + dx2 + dx 2 + dx2
) + R 2

- + R 2 dD} (1.6) R2 1 2 3 r2 "' ' 

which is the geometry of AdSs x ss. To make things more clear we can change the 

coordinates r"/ R = R/ x0 and then we get 

d 2 = R2 -dt2 + d£1 + dx5 R2dn~ 
s 2 + :J' 

Xo 
( 1. 7) 

where the AdS space is in Poincare coordinates and has the same radius R with the 

sphere. 

But, let us explain better how we take the near horizon limit in the supergravity 

side. In order to be able to consider arbitrary excited string states in the near horizon 

region, we would like to keep fixed the energies of the objects in string units, and 

at the same time to take c/ ---t 0, which means that a' Ep stays fixed. For small a' 

the energy measured from infinity is E "' Epr / .J(;i and to keep it fixed we need to 

consider rjo:' fixed. By defining the new variable U = r/o:' the metric (1.6) takes 

the form 

This is a metric which will be the starting point in the Wilson loop calculations 

later. 
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What we should not forget to mention is the notion of the singletons. If we want 

to be more precise we should say that the AdS theory in the bulk is describing the 

SU(N) part of the gauge theory. This is because, a U(N) gauge theory is equivalent 

to a product of a U(l) vector multiplet and an SU(N) gauge theory up to some 

ZN identifications and in the dual string theory all modes interact with gravity, so 

there are no decoupled modes. Hence, the excitations we did not consider before, 

are these that are connecting the throat with the bulk and correspond to the U(l) 

degrees of freedom. This vector multiplet is related to the center of mass motion 

of all branes. In case we want to consider a correspondence to the U(N) theory we 

need to take account of them. 

What we should also do, is to verify the basics of the correspondence by checking 

that the global symmetries are the same in both sides. To start doing that we should 

know that the parameter N, appears in string theory side as the flux of the five-form 

Ramond-Ramond field strength on the ss: 

{ Fs = N, 
ls5 (1.9) 

while the gyM is related to gs and the angle () to the expectation value of RR scalar 

x through 
47fi () i X 

T := - 2- +- =- +- . (1.10) 
gyM 27f g8 27f 

One can check that the field theory as well the string theory are invariant under an 

SL(2, Z) acting on T. 

Moreover the liB string theory on AdSs compactified on ss has an isometry 

group S0(2, 4) x S0(6). The S0(2, 4) group is the conformal group in 3 + 1 di­

mensions, and this is in agreement with the field theory side since N = 4 super 

Yang-Mills is known to be conformal. The S0(6) symmetry or the covering group 

SU ( 4) since spinors are involving, can be identified with the SU ( 4) R-symmetry 

group of the field theory. Hence the isometries of the AdSs x ss are also symmetries 

that appear in the field theory side. 

In the end of this general discussion on the AdS/ C FT we are going to specify 

the limits of validity of this identification. The supergravity approximation is valid 

when the curvature of the background is much more larger compared to the string 
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length 
R4 
[4 "'9sN "'g~MN » 1 . 

s 
(1.11) 

In order to make the string corrections to be small one has to consider 9s ----> 0, which 

implies that N ----> oo in order to keep >. = g~.11.1N fixed and large. 

On the other hand the SU(N) Yang-Mills gauge theory can be trusted in the 

perturbative regime when 't Hooft coupling is small 

R4 
g~ MN"' 9sN "' [4 « 1 

s 
(1.12) 

which is the opposite case of the supergravity approximation of the AdS/CFT. 

Hence the duality is difficult to be proven since the two different sides are valid in 

different regions, but at the same time is very useful since we can calculate quantities 

in different regimes which otherwise would be impossible using only the field theory 

or the supergravity description. 

We can however extend the discussion of the validity of the conjecture more. 

The conjecture in the limits we described above is in the weakest form, since we did 

not say anything for the case we go to the full string theory, away from large gJv. 

A stronger version would be that the AdS/ C FT is valid at any g5 N, while keeping 

the limits for N and 9s as above. In this case, the results will agree to ci corrections, 

but the quantum string corrections governed by 9s may not. The strongest version 

of the conjecture, which is believed to be true and is the most interesting one, is 

that the two theories are exactly the same for all values of o:' and 9s· 

1.2 The Holography 

In quantum gravity theory all the physics in a volume can be described in terms of 

some theory on the boundary. This is the holographic principle statement and can 

be motivated by the Bekenstein bound. This bound says that the maximum entropy 

in a region of a space is Smax = Area/GN where the area is that of the boundary 

of the region. If one apply this relation in the case of the formation of black holes, 

he can see that the bound is correct otherwise the second law of thermodynamics is 

violated. 
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An example of a holography is the AdS/ C FT correspondence, since the physics 

in the bulk of the AdS space can be described by a conformal field theory which 

lives on the boundary. Here we try to count the number of degrees of freedom in 

both sides. The area of the boundary of the AdS space is infinite and moreover the 

field theory has an infinite number of degrees of freedom, so we have to introduce 

somehow a cutoff on the number of degrees of freedom and then examine how we 

can obtain similar results in the gravity dual. 

To this direction Susskind and Witten [7] noticed that infrared effects in the bulk 

correspond to ultraviolet effects on the boundary. One way to see that is to start 

by expressing the metric of the AdS space in Poincare coordinates 

ds2 = R2 -dt
2 + difl + dz

2 

z2 (1.13) 

If a wave propagating in this space has a spatial extent >. in the x direction then it 

should have also in the z direction, since the parameter >. can be eliminated by the 

x -t >.x and z -t .Az transformations. Then we can consider a cutoff 

(1.14) 

where <5 is small and corresponds to the ultraviolet cutoff in the field theory. To see 

that, is convenient to use the metric 

ds2 = R2 [- (1 + r2)2 dt2 + 4 (dr2 + r2d02)] 
1 - r 2 (1 - r 2 )2 ' 

(1.15) 

where the radial position plays the role of some energy scale, since we approach the 

boundary when we do a conformal transformation that localizes objects in conformal 

field theory. Since the boundary is at r = 1 we can calculate the correlation functions 

at r = 1 - <5 and then take the limit <5 -t 0 which corresponds on going to the UV 

of the field theory. Hence the relation (1.14) is a UV /IR relation. 

To proceed to the final stage of finding the equation we are seeking, consider a 

U(N) gauge theory on a three dimensional sphere with a short distance cutoff <5. So 

the total degrees of freedom are roughly N 2 , which are approximately the number 

of independent fields, divided by <53 which are the partitions of the sphere. 

The area of the surface at r = 1 - <5 for <5 « 1 is 

(1.16) 
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since G N "' 1 I N 2
. Thus we find that the conformal field theory number of degrees 

of freedom agrees with the number of physical degrees of freedom. 

Very recently there is an attempt to extend the holographic correspondence. 

In [8] it is claimed that any CFT with a gap and a planar expansion is generated 

via the AdSICFT dictionary from a local bulk interaction. The authors arrive to 

this conjecture by counting arguments on each side and by verifying the conjecture 

to explicit solutions. 

In the next section we are going to introduce the Wilson loop operators and see 

how one can treat them in the context of the AdS I C FT correspondence. 

1.3 Wilson Loops 

The Wilson loop is a physical gauge invariant object which can be used to measure 

the interaction potential between two quarks. The Wilson loop operator can be 

elementary defined by 

W(C) = tr [Pexp (i i A)] , ( 1.17) 

where the trace is over some representation of the gauge group and we focus here 

only on the fundamental representation. The loop C is the loop in four dimensional 

space were the gauge theory lives. 

To understand better the definition, we can consider the path ordered exponential 

(1.18) 

along a curve. By considering the a U(1) gauge field AJ.L and a complex scalar field 

q; charged under the U(1) we see that the action of W(y, x; P) to the scalar cf;, under 

a gauge transformation gives 

W(y, x; P)cj;(x)--+ eix(Y)(W(y, x; P)cp(x)) , (1.19) 

which means that the field cp(x) is parallel transported to the point y. The equa­

tion ( 1.19) follows from the fact that the path ordered exponential we defined is 

transformed under a gauge transformation 6A~-' = 8J.lx, as 

W(y, x; P) = eix(Y)W(y, x; P)e-ix(x) . (1.20) 
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However notice that by identifying the x with y and hence producing a closed curve 

the expression (1.19) is gauge invariant. 

For a nonabelian gauge field which is the case of interest, the things are different. 

Here the gauge transformation is 

(1.21) 

where Sl(x) = eix(x) is an infinitesimal transformation, for small x(x) = xaTa. The 

gauge transformation is similar to (1.20), hence again W(y, x; P) defines a parallel 

transport. Since we are in the nonabelian case, when we consider close loop, the 

path integral is covariant and not gauge invariant. To make it gauge invariant we 

can take the trace of the object, which is the Wilson loop as defined above. 

1.3.1 Wilson loop operator in N = 4 Super Yang-Mills 

The Wilson loop of the theory N = 4 SYM is an operator [11] 

WR[C] = ~ TrRP exp (i dT(iAJ.LxJ.L + <p(z/)), (1.22) 

where AJ.L are the gauge fields and 'Pi are the six real scalars. The loop C is 

parametrized by the variables (xJ.L( T ), yi( T)), where (xJ.L( T)) determines the actual 

loop in four dimensions, and (yi(T)) can be thought of as the extra six coordinates 

of the ten-dimensional N = 1 super Yang-Mills theory, of which theory is the di­

mensionally reduced version. R is the representation of the gauge group G. In this 

chapter we will be interested in the case G = U(N). In (1.22), the coupling to the 

gauge fields and the scalar fields is controlled by i;J.L and i/. In particular, Wilson 

loop operator satisfying the constraint 

( 1.23) 

is locally BPS. Moreover it has a finite expectation value. 

The derivation of the constraint (1.23) can be achieved using different meth­

ods. It can come from the gravity side, by considering the minimal surfaces and 

appropriate boundary conditions, and we will mention more on this on the next 

section. Also it can be derived in the gauge theory side, by requiring finite ex­

pectation value of the Wilson loop using perturbation theory, or by breaking the 
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gauge group U(N + 1) ____, U(N) x U(1) by the Higgs mechanism, and try to get rid 

off of a term which is not reparametrization invariant after a correlation function 

calculation. Actually, by using the Higgs mechanism we can derive the whole loop 

operator. 

In order to understand better the derivation we describe first, briefly the Higgs 

mechanism as done in [13]. In super Yang-Mills theory in 4 dimensions we do not 

have matter fields to define directly the Wilson loop, so we use the Higgs mechanism 

and give expectation value to a field where we simultaneously break the U(N + 1) ____, 

U(N) x U(1). This happens by taking the bosonic action for the U(N + 1) theory 

and decomposing the fields as 

( 1.24) 

where All and All are the U(N + 1) and U(N) gauge fields respectively and similarly 

with the scalar fields. By calculating a specific correlation function of W's we can 

find the Wilson loop operator. To reach to the final expression one has to use the 

reparametrization invariance of an integral and the constraint that must satisfied in 

order this invariance to hold is the (1.23). 

So using the Higgs mechanism we can derive the Wilson loop operator and the 

Wilson loop constraint inN= 4 super Yang-Mills theory. The other way to obtain 

the constraint (1.23) in field theory is to calculate perturbatively the expectation 

value of a smooth loop. By keeping the first order terms in g~ M and by regularizing 

the operator with cutoff E, since it is linear divergent we obtain 

W = 1 + (2:)2E f dslxl ( 1 - ~:) +finite . (1.25) 

It is obvious that when the Wilson loop constrain (1.23) holds, the divergent term 

cancels. There are symmetry arguments based on the dimensional reduction, that 

any order in the perturbation expansion cancels when the (1.23) satisfied. 

Hence we see that when the constraint i:2 = il holds the expectation value 

of the Wilson loop is finite in N = 4 supersymmetric Yang-Mills. Moreover in 

this theory, when the constraint satisfied the Wilson loop is locally BPS. Since the 

scalar field and the gauge boson are in the same supermultiplet, the supersymmetric 
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transformations relates them and it can be seen that the Wilson loop satisfying the 

constraint is locally half BPS. 

Because of this reason it is natural to associate the UV finiteness of the Wilson 

loop as being due to the existence of local supersymmetry. However later we will 

prove that this is a simple coincidence and might not hold general for different 

theories. 

1.3.2 Wilson loops in ADS/CFT 

The Wilson loop as a boundary operator has his dual description in terms of 

AdSjCFT. The motivation to what object corresponds comes from QCD, where 

we expect that the Wilson loop is related to a string running from the quark to 

antiquark. The quarks are considered very heavy and the distance between them 

can be considered fixed in time. 

The analogous of this picture, would be a string which is on the boundary of 

AdS. To be more precise [11], start with a gauge group U(N + 1) which by giving 

an expectation value to one of the scalars breaks to U(N) x U(l). The dual picture 

is to have a D3 brane localized at a point of S 5 and in some radial position U in 

AdS. From the point of view of U(N) gauge theory we can view the off-diagonal 

states as massive quarks with mass proportional to the radial direction which also 

act as a source for the vector fields. By taking infinite mass which means infinite U, 

we get a non-dynamical source which will correspond to the Wilson loop operator. 

Hence the string, starts from a D3 brane and ends on the boundary of AdS. Since 

the Wilson loop contour is at the boundary of the AdS where the gauge theory lives, 

it can be assumed that the contour acts as a boundary for the string. Hence the 

string world-sheet stretches between the contour C at the boundary to a point at 

finite distance in AdS. 

However, the strings can also be extended on the S5 parametrized by the coordi­

nates 81 with 812 = 1. The 81 's should be coupled to the six scalars r.p 1 of the N = 4 

SYM. The scalar fields appear since the string that ending on a p-brane act as a 

source for the scalar fields and not only of electric field. Additionally, the precise def­

inition of Wilson loop operator which corresponds to the superstring should include 
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also the field theory fermions. However here we ignore the fermion contribution. 

The Wilson loop operator in the Euclidean N = 4 SYM theory is given by (1.22). 

To obtain the dual description of the expectation value of the Wilson loop operator, 

we have to compute the string theory partition function on AdS5 x 5 5 with the 

condition that the string worldsheet is ending at the loop C which is placed at the 

boundary of the AdS where the gauge theory lives, 

(W[C]) = ix=c VX exp( -~S[X]) , ( 1.26) 

for some string action S[X]. When we go to the supergravity regime the leading 

contribution to this partition function comes from the area of the string worldsheet 

(W) ~ exp( -~A) . (1.27) 

However one must be careful with the boundary condition of the worldsheet ending 

on the loop, and also to notice that the area defined above is divergent. We expect 

finite expectation value of the Wilson loop, since a divergence would have implied 

a mass renormalization on the BPS particle. Moreover, as we said in a previous 

section the perturbative computation in the field theory shows that the expectation 

value of the Wilson loop is finite. The solution to this mismatch, comes when we 

notice the gravity configuration is not fully Dirichlet, so one needs to consider a Leg­

endre transform of the minimal area with respect to the string coordinates obeying 

Neumann boundary conditions, namely the string coordinates corresponding to 01 

and the radial coordinate u. We are going to present a more extended discussion in 

the next section since we also need it for later reference. 

1.3.3 Wilson Loop and minimal surfaces 

The first step should be to define the boundary conditions for the string worldsheet. 

To do that one should start from the 10 dimensional Yang-Mills theory which live 

on D9 branes. The strings ending on the D9 branes obey full Neumann boundary 

conditions. This means that the Wilson loop in 10 dimensions corresponds to an 

open string worldsheet with full Dirichlet boundary conditions, since the conditions 

imposed by the Wilson loop are complementary to the ones imposed on the strings 
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ending on D9 branes. To get the 4 dimensional Yang Mills theory we perform a 

T-duality along the 6 dimensions. The T-Duality changes the 6 Dirichlet boundary 

conditions for the open string, to 6 Neumann. As a result we will have a string 

worldsheet with 4 Dirichlet and 6 Neumann boundary conditions. 

In order to be able to write these boundary conditions explicitly we have to make 

a coordinate transformation to the classic metric of the near horizon geometry of N 

D3 branes. The near horizon geometry of N D3-branes is given by the metric 

ds2 U2 3 
dU2 

= LdXJ.LdXJ.L + J47rg8 N-? + J41fg8Nd0~, 
o:' J 41fg8 N J.L=O U-

(1.28) 

By rescaling the coordinates XJ.L by 1/J47rg8 N and introduce new coordinates yi = 

()ijU (i = 1, · · · , 6), where ()i are the coordinates on S 5 and ()2 = 1, the metric 

becomes 

(1.29) 

Where we now have the boundary of the AdS at the boundary of AdS5 at Yi = 0. 

To write down the boundary conditions we are choosing the string world-sheet 

coordinates to be (a, T) such that the boundary is located at T = 0. It is obvious 

that the XJ.L should be identified 4 dimensional coordinates where the gauge theory 

lives and hence it is natural to impose Dirichlet conditions on XJ.L, so that 

(1.30) 

The remaining 6 string coordinates Yi(a1
, a 2

) should obey Neumann boundary con­

ditions which proposed to be 

(1.31) 

where Jaf3 (o:, f3 = 1, 2) is the complex structure on the string worldsheet given in 

terms of the induced metric 9af3, 

J {3 = _1_g E-y/3 
a .J?j O<"f 

(1.32) 

The loop constraint is most easily derived using the Hamilton-Jacobi equation. This 

equation for the area of a minimal surface on a Riemannian manifold with a metric 

Gu takes the form, 

(1.33) 
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After some calculations by using the above boundary conditions we find that there 

is only one minimal surface that terminates at the boundary of AdS5 and it requires 

the constraint ( 1.23) to hold. 

Moreover as we already noticed, we need to use the Legendre transform of the 

area functional 

(1.34) 

to get rid of the linear divergences since the problem is not fully Dirichlet. The 

new action has the same equations of motion and still solved by the same minimal 

surface. After performing some calculations ones get 

- 1 f A= - ds (1±1 - IYI) +finite , 
27l"E 

( 1.35) 

which means that when the Wilson loop constraint satisfied we get a finite area for 

smooth loop. 

We will see more details of the above calculations and a more general view of the 

problem in the next chapters where we will investigate the Wilson loop properties 

in different gauge/gravity dualities. For now we move on and describe another 

very interesting aspect of the AdS/CFT duality, which are the semiclassical string 

solutions. 

1.4 Semiclassical String Solutions in AdS/CFT 

1.4.1 Brief Overview 

When >.approaches infinity the dual gauge theory is strongly coupled and not under 

best control, which makes the calculations on the gravity side valuable and the 

correspondence useful. On the other hand, this fact make difficult to realize the 

concrete connection between the string theory and the gauge theory beyond the 

supergravity approximation. 

Work in this direction was made in [83], where certain gauge theory operators 

with large R-symmetry charge was proposed to be dual to all type liB string states 

in a RR-charged pp-wave background [90], which is a Penrose limit of AdS5 x S 5 

[91]. A generalization came in [92], where with the use of classical solitons and an 
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appropriate quantization of the string theory, it has been shown that there are some 

semiclassicallimits where the string/ gauge duality can be reliable. For short strings, 

where one can approximate AdS5 by a flat metric near the center, the leading closed 

string trajectory is reproduced. On the other hand for long strings, the strings feel 

the metric near the boundary of AdS, and reproduce the logarithmic behavior of the 

scaling of the wavefunction renormalization and hence the anomalous dimension for 

operators with "dimension minus spin" equal to two. Based on this work, a further 

generalization was made by considering multi-spin string states [93,94]. At this time, 

many papers were published with the aim of finding new close string solutions, for 

example see [95] and references inside. 

Another significant step was the identification of the one loop scalar dilatation 

operator with the Hamiltonian of integrable S0(6) spin chains [14]. This has brought 

impressive quantitative agreements between the energy of certain string solutions 

and the anomalous dimensions for very long operators [96]. Almost one year later, 

it was shown [97] that the spin chain in a certain subsector, in the limit of a large 

number of sites, can be described by a sigma model which agrees with the sigma 

model obtained from the rotating string in the appropriate limit. In the next sec­

tions we describe briefly how one can deal with the semiclassical string solution in 

AdSjCFT. 

1.4.2 Introduction 

In general to determine the dimensions of local gauge-invariant operators one needs 

to find the anomalous dimension matrix to all orders in A and then diagonalize it. 

One case that this situation is different, is for the BPS operators whose dimension 

is protected. An other case are the long operators which contain large number of 

fields under the trace. 

For theN= 4 supersymmetric Yang-Mills the closed string states can be classi­

fied by the values of the Cartan charges of the symmetry group 50(2, 4) x S0(6). 

These will be, in the AdS5 the energy E and the two spins 51 , 52 and in the S 3 

part the three spins J1, h, J3 and are related each other by the Virasoro constraint. 

The BPS string states are point-like strings, the near-BPS(BMN) states are nearly 
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pointlike, and the far-from BPS states are represented by extended closed string 

configurations. 

The Ad5ICFT duality maps the closed string states in Ad55 x 5 5 to quantum 

super Yang-Mills states at the boundary, which are single-trace operators. The 

dictionary says that the energy of the string should be equal to the conformal di­

mension of the operator, and all the other charges mapped each other trivially, ie. 

the J charge of the string on the 5 5 will be mapped to the 50(6) charge of the 

operator in field theory. 

However, there is a difficulty checking the relation E = .6. because these two 

quantities depend on ). and are calculated in completely opposite limits. Generally 

the p·erturbative expansion in string side gives E = 2::~=-l cnl( J>..)n while on the 

SYM side the perturbation theory will give the eigenvalues of the anomalous di­

mension matrix as .6. = L:~=o an>-n. Of course there is a class of operators, the 112 

BPS, where the matching can be made easily since their energies and dimensions are 

protected from corrections. Otherwise the problem is non-trivial and the solution 

comes by considering the BMN limit. 

1.4.3 BMN Limit 

One should consider the limit Q ____. oo for the charges Q, and then define a new 

'effective' coupling constant as ~ = >-IQ2
, and keep it fixed. 

In string theory the fraction Q I J>,. = 1 I .J:X" plays the role of a semiclassical 

parameter and can be taken to be large, implying an energy for these states of 

the form E = Q + f(Q, >.) where f ____. 0 for ). ____. 0. These semiclassical string 

states as well as states of small fluctuations near them, should be dual to long SYM 

operators with large number of fields or derivatives under the trace, and hence have 

large canonical dimension. 

The simplest case is to take a BPS state with large quantum number and consider 

small fluctuations around it. Then we have a set of near-BPS states characterized by 

a parameter. So one can consider a pointlike string moving along the geodesic in 5 5 

(massless geodesic) and take large angular momentum Q = J. Then we have E = J 

and the dual operator inN= 4 SYM is tr<I.>J, for <I> = cp1 + icp2 . Considering small 
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fluctuations, give small ultrarelativistic closed strings, where their kinetic energy is 

much larger than their mass. Their dual, is an extension of the previous operators, 

namely tr( q,J ... ) where the dots mean a small number of other fields or covariant 

derivatives. If one calculates the energy of these small fluctuations, finds that is an 

analytic expression of~' making possible a direct comparison with the perturbative 

field theory. It is checked that the terms up to ~ agree precisely with the one 

and three loop terms in the anomalous dimension of the corresponding operators. 

However there is no proof yet of why this happens. Moreover, the understanding of 

why the limits J --t oo and A --t 0 and the corresponding ones in field theory, give 

the same expressions for the energies/dimensions even though in general the limits 

may not commute, is far for complete so far. 

For semiclassical string states with several large spins form non-BPS string states, 

and their energy E in powers of A can be matched with the perturbative expansion 

of the field theory. 

Let us be more precise in that case. The energy of a classical rotating closed 

string solution is E = ~£(wi) with Ji = ~wi so that E = E(Ji, A). In that case 

the energy does not have a ~ factor in the expansion and is of the form 

A A2 
A '2 

E = J + c1 J + c2 J3 = J(1 + C1A + c2A + ... ) , (1.36) 

where J = z:=;=l Ji, ~ = A/ J2 and Cn are functions of ratios of the spins Jj J. In 

the field theory side, one should be able to compare the coefficients en to the coeffi­

cients in the expression of anomalous dimension of the corresponding SYM operators 

tr( <Pf1 <P£2 <Pj3 + ... ) . However, to compute ~ in general, we need to diagonalize the 

anomalous dimension matrix defined on a set of long scalar operators. The way to 

simplify this calculation found in [14], where the one-loop planar dilatation operator 

in the scalar sector can be interpreted as a Hamiltonian of an integrable 50(6) spin 

chain and thus can be diagonalized by the Bethe ansatz method. When we find 

the dimension, one has to expand it, firstly in A and the in 1/ J. The expansion of 

the anomalous dimensions should have a similar form to the energy above with the 

relevant coefficients to agree each other. 

In the next section we will describe a deformation of the original AdS/ C FT 

conjecture, since a part of our work is to apply and examine several issues we 
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discussed so far in the marginally deformed AdSjCFT conjecture which involve 

conformal theories with less supersymmetries. 

1. 5 Beta deformed theories 

Since the original Maldacena conjecture were formulated, there proposed other inter­

esting conjectures. One of them is the Lunin-Maldacena conjecture which obtained 

from a marginal deformation of the original one. 

The beta deformation is a special case of the Leigh-Strassler deformation [21]. In 

this section we review the /3 deformed theory and then the gravity dual construction. 

1.5.1 Conformal deformations on N = 4 SYM 

We are writing the superpotential of N = 4 supersymmetric Yang-Mills in terms of 

N = 1 superfields, 

( 1.37) 

Here cl> 's are three complex chiral superfields transforming in the adjoint representa­

tion of the gauge group and we concentrate on the bosonic part of the action which 

reads 

where the indices i, j, k = 1, ... , 3. Moreover, the SU(N) generators are normalized 

as Tr (TaTb) = c5ab_ 

This theory can be marginally deformed to N = 1 super Yang-Mills. Leigh 

and Strassler [21] found that there is a 3-complex parameter family of marginal 

deformations which preserves theN= 1 supersymmetry. This family can be written 

explicitly by replacing the superpotential ( 1.37) with the 

(1.39) 

where the deformed theory is parametrized by four complex constants h, h', /3, T, with 

T being the usual complexified gauge coupling. At classical level the deformation is 

marginal but at the quantum level is not, since the operators can develop anomalous 
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dimensions. However Leigh and Strassler showed that at the quantum level the 

deformation is marginal when a constraint 

'Y(h, h', {3, r) = 0 (1.40) 

is satisfied, where 'Y is the sum of the anomalous dimensions of the three scalar fields. 

Hence there is a 3-complex dimensional surface defined by (1.40), of conformally 

invariant N = 1 theories obtained as marginal deformations of N = 4 super Yang­

Mills theories. 

The deformation used by Lunin-Maldacena is a special case of the previous one 

which comes by setting h = g, h' = 0 and {3 to be real. Then the deformation (1.39) 

simplified to 

( 1.41) 

The consequence of setting h' = 0 is that the deformed theory preserves a global 

U(1) x U(1) symmetry, 

U(1)1 : 

U(1)2 : 

( <l>1, <l>z, <l>3) ___. ( <l>1, ei<P 1 <l>z, e -i<Pt <I>3) 

(<I>1, <l>z, <l>3) ___. (e-i<P2 <I>l, ei<P2 <f>z, <l>3) 

which is important in order to find the gravity dual background. 

(1.42) 

Lunin and Maldacena also noticed that the above deformation can be viewed as 

arising from a new definition of the product of fields in theN= 4 supersymmetric 

Yang-Mills Lagrangian 

f * g = ei11'/3(Q{Q~-Q~Qi) fg (1.43) 

where f g is an ordinary product and ( Qfeld, Q~eld) are the U ( 1) 1 x U ( 1 )2 charges of 

the fields (f or g). The values of the charges for all fields are read from (1.42): 

(Ql,Qz)=(0,-1) 

(Ql ,Qz) = (1, 1) 

(Ql ,Qz) = (-1 ,0) 

where of course for the conjugate fields <f?i the charges are opposite. 

(1.44) 

( 1.45) 

(1.46) 
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Moreover we introduce the ,8-deformed commutator of fields which will be needed 

to write the Lagrangian in a more compact form. The commutator defined as 

[f. g ·] . - iTr/3ij f· . - -iTr/3ij ·!· 
" J /3;j .- e t9J e 9J t · ( 1.4 7) 

and ,Bij is defined as 

(1.48) 

Using the star-product ( 1.43), the component Lagrangian of the ,8-deformed theory 

(1.41) follows from (1.38) where only the third term in the relevant Lagrangian 

change, such that in total we have 

.c = Tr l FIL'"' F!LV + ( D!Lcf.>i) ( D !L <Pi) - g; [<Pi' <P j l/3ij [cf.>i' cf.>J]/3ij + ~ [<Pi' cf.>i][ <P j' cf.>J] ' 
( 

. ') 2 . ) 

(1.49) 

where we have used the definition (1.47). It is also worth mentioning that the ,B 

deformation change the fermionic part of the Lagrangian in a similar way, where 

also one can define star product between the fields. 

1.5.2 Supergravity dual solutions generation methods 

The solution generation for the dual beta deformed background based on the idea 

to preserve the global U(1) x U(1) symmetry. There are many equivalent techniques 

that one can generate these backgrounds. It seems that the most useful is the 

TsT transformation, which consists of a T-duality transformation on a coordinate 

parameterizes one U ( 1) isometry, followed by a shift of another U ( 1) coordinate 

which involves the initial one and where the deformation parameter enters, and 

finally a T duality follows on the initial coordinate. But let us mention briefly all 

the generation technics. 

The deformed theory is still conformal, so any deformation involved in the back­

grounds should be on the U(l) coordinates of the S 5 which correspond to the su­

persymmetry and not in AdS space which would affect the conformal symmetry. 

Moreover, the deformation can be always applied to theories with a U(1) x U(1) 

global symmetry. 
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Initially in the paper of Lunin and Maldacena the SL(2, R) transformation was 

used on the Kahler modulus T as 

. T 
T = B + zy'g ___. T1 = ---

1 + /T 
(1.50) 

where g is the metric of the two torus and r is the deformation parameter in gravity 

side. This is a solution generating technic and produce an eight dimensional theory 

on a two torus and is preserving the U(l) x U(l) global symmetry. 

Hence the idea is to write down the B field and the metric of the two torus of 

the initial background, perform an SL(2, R) transformation as in (1.50) and in the 

final result identify the real part as the new B field and the imaginary one as the 

new metric of the torus. 

The calculations simplified a lot if one identify the 0(2, 2, JR) [49] which is act­

ing on the background matrix T = g +B. One has to write down the r matrix 

which contains the deformation parameters according to some rules [54]. Then the 

new background can be found simply as E' = g' + B' = E(r E + 13)-1 . Moreover, 

a function G =det(r E + 13 )-1 of the deformed background which depends on the 

parameter /, appears due to deformation, as a multiplicative factor to the expo­

nential of dilaton. Using this method we can construct a deformed background in a 

relatively direct way and we can even extend the method to multiple f3 deformations. 

Another very useful solution generating technic is the TsT transformation, for­

mulated by Frolov [23] and also proposed in the paper of Maldacena. The method 

is described step by step in Frolov's paper, and using it one can also show that the 

solutions of the string theory equations of motion in the deformed background are 

in one-to-one correspondence with those in AdS5 x S 5 with twisted boundary condi­

tions imposed on the U(l) coordinates. Moreover in this paper were introduced the 

multi-/3 deformations, which break all the supersymmetries and hence the resulting 

/3-deformed field theory, which can be constructed by a generalization of the f3 de­

formed product (1.43), has no supersymmetry. More explicitly the process consists 

of a TsT transformation with T-dualities acting on the first angle say cp1 and the shift 

parameter equal to i 3 to the torus (cp1, cp2), then a second TsT transformation with 

the shift parameter equal to i 1 to the torus ( cp2 , cp3 ), and finally a third TsT trans­

formation with the shift parameter equal to i 2 to the torus ( cp3 , cp1 ). The parameters 
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~ are directly related to the parameters {3 of the field theory from (1.52) and the 

supergravity description is valid in the limit of small curvature R = ( 47rg5 N) 114 » 1 

and 

R{3 « 1, ( 1.51) 

with 

(1.52) 

Using the {3 deformations it is useful and convenient to check if certain properties 

of a theory or the operators are depended on supersymmetry. For example, one can 

start from N = 4 supersymmetric Yang-Mills and investigate some operator proper­

ties there; then by reducing toN= 1 or toN= 0 Yang-Mills by {3 deformations can 

see how and if this operator's properties depend on supersymmetry. An example to 

where this can be applied, is the expectation value of the Wilson loop, and whether 

or not the UV finiteness of its expectation value depends on the supersymmetry. 

A final remark is that when all the deformation parameters are integers, there 

is no deformation in the field theory, so it is supersymmetric. However the defor­

mation in the dual supergravity background is present. This could be similar to 

the phenomena of 'supersymmetry without supersymmetry' [51-53] where there ex­

ist supersymmetric string vacua for which the corresponding supergravity solution 

does not have any Killing spinors. 

The deformed AdS5 x S5 background will be written down in a following chapter 

where we use it. 

1.5.3 Brief Review on the work on the (3 deformed theories 

There is done lot of work in the {3 deformed theories. Usually the work is in the 

direction to extend the original AdS j C FT and see how some specific results change 

in theories with less supersymmetries. Here we are going to present a very short and 

not complete review with some representative work done in the Lunin-Maldacena 

conjecture. 

In the large N it was noted that there exist many similarities between the de­

formed and the undeformed theories. This is due to the fact that several times in 
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field theory, the /3 parameter appear as a factor in exponential divided by N and 

multiplied by i, and in the large N limit it becomes one and does not affect the 

results. In [25] it was shown that in perturbation theory there are many similarities 

between the scattering amplitudes in the (real) /3 deformed and in theN= 4 initial 

theory. This happens because all amplitudes in the /3 deformed theory are given by 

the corresponding N = 4 amplitudes multiplied by an overall /3 dependent phase 

factor with the form mentioned above. 

When one goes to non-perturbative effects, can consider instantons [26]. By 

considering operators which are the lowest Kaluza-Klein modes on the deformed 

sphere it is shown that the correlation functions in /3 deformed N = 4 theory is 

in correspondence with the relevant supergravity results. More precisely the multi­

instanton contributions to Gn will reconstruct the moduli forms fn ( T, l) which appear 

in the effective supergravity action. This agreement is completely non-trivial since 

the dilaton in the /3 deformed theory is not anymore constant and the dilaton­

axion parameter T is not equal to the one in the undeformed theory. By doing the 

calculation one sees that the exponent of the k-instanton action exp 21fkTo becomes 

exp 21fkT which is the desired one. 

We can then go to the multi-/3 deformed non supersymmetric theory [27] and 

perform the same calculations. These calculations can investigate the role of the 

supersymmetry in various properties of the theories. So in this paper the authors find 

that the leading order contributions in Yang-Mills instantons calculated at g~ MN « 
1 are in agreement with contributions of D-instantons in the limit g~ MN » 1 even in 

this non-supersymmetric case. This fact is also true in the original AdSjCFT, and 

only for the instanton solution, since generally perturbative effects from string theory 

and gauge theory do not match. This implies the existence of a non-renormalization 

theorem for the instanton effects [29, 30]. But since the agreement continues to 

persist in non-supersymmetric case it is a normal clue that the non-renormalization 

theorem is independent of supersymmetry. However, one should leave open the 

option that the peculiar structure of the non supersymmetric beta deformed theories 

somehow can reproduce results that hold in supersymmetric theories. The fact 

that these results indicate common behavior to the /3 supersymmetric and non-
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supersymmetric theories, might not mean that this can be upgraded to general 

statements. 

As one may be able to guess, a lot of work in the Lunin-Maldacena conjecture has 

been done focusing on the semiclassical string solutions. In [31] some semiclassical 

string states are compared with scalar operators whose 1-loop anomalous dimensions 

are described by an integrable spin chain. It is found that the results obtained 

in the undeformed case can be straightforward generalized to the deformed case, 

and clear evidence of the existence of integrable structures on the two sides of the 

duality have been found. In a later paper [32] these calculations are extended in the 

multi-,8 deformed non-supersymmetric case. Relative work, where authors calculate 

the energy of semiclassical string configurations is done in many papers, see for 

example [33,34]. 

Another part of solutions examined in these backgrounds are the giant gravitons 

[35-37]. The giant gravitons and their stability are examined in the supersymmetric 

and non-supersymmetric ,8 deformed theory. The interesting part here is that the 

fields in the DBI and the WZ parts of the action for some D3-brane (dual) giant 

configurations, combine nicely and turn out to give an action independent of the 

deformation parameter and hence undeformed. For the D5-brane dual giants action 

turn out to be proportional to the inverse of the deformation parameter. In the 

case discussed here, the branes have a world-volume gauge field strength turned on 

along the torus, which also has the inverse linear dependence on the deformation 

parameter. The quantization condition of the U(1) flux requires the deformation 

parameter to be rational. For these deformation values one can find that in the 

gauge theory there are additional branches of vacua [38-40] and the gauge theory 

dual configurations to D5-brane dual giants are found to be related to rotating 

vacuum expectation values in these branches. 

Another interesting classical solutions, called magnons have also considered in 

the ,8 deformed backgrounds where derived the exact dispersion relation for these 

solutions [28]. By trying to solve the equations of motion one can see that any ,8-

deformation of the 52-solution of Hoffman and Maldacena will necessarily live on the 

5 3-sphere. This seems to be a more general fact, that in many cases configurations 
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that live on a S2 sector and parametrized by two angles of the undeformed sphere, 

should be modified to be parametrized by three parameters of the sphere in the 

deformed background. 

There are several other papers examining the properties of the {3 deformed the­

ories. For example in [41] by embedding the spacetime filling D7-branes in the 

deformed background the authors achieve to examine the mesons in these theories 

and to find the exact mesonic mass spectrum. An other work which generalizes the 

TsT transformation toTs ... sT is done in [42]. There the multishift deformations 

considered, and by using similar arguments with Frolov in [23] the authors show 

that the currents in the deformed and undeformed backgrounds are equal. The 

resulting background is of course non-supersymmetric in general. Moreover it was 

shown in [43] that by inspection of the planar diagrams in the {3-deformed theory 

(or even multi-{3) shows that the scattering amplitudes to all orders in perturbation 

theory are the same as in the undeformed N = 4 SYM theory. Furthermore, in the 

{3 deformed backgrounds (as well as in non-commutative ones) the basic properties 

of the quark gluon plasma theories such as: universal ratio between the shear vis­

cosity and the entropy density, jet quenching parameter etc. do not change, and 

the calculations are almost similar to the undeformed cases. This is due to the fact 

that most of these properties are most sensitive to the AdS part of the metric than 

to the S5 part, which in our case can be deformed. For example in the paper [44] is 

shown that the jet quenching parameter is modified only in the cases of complex {3 

deformations and this is due to an overall factor in front of the metric. 

Other work in beta deformed background can be found in [45-4 7], or extensions 

of the {3 deformations in several other ways [48, 50]. 

So far we gave a brief overview of the Lunin-Maldacena conjecture. In the next 

section we are going to introduce a new class of gauge/gravity dualities which also 

have reduced amount of supersymmetry. 
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1.6 Sasaki-Einstein dualities 

Another famous gauge/gravity correspondence for theories with less supersymme­

tries, contains a class of backgrounds with at least N = 1 supersymmetry, which 

are type liB and with the form AdS5 x X 5 , where X 5 is a Sasaki-Einstein manifold 

and are dual to superconformal gauge theories called quivers. 

A Sasakian manifold is a Riemannian manifold whose metric cone is Kiihler. A 

Kiihler manifold is a Hermitian manifold (M, g), say of dimension m, whose Kiihler 

form n, defined by 

( 1.53) 

where JP is the almost complex structure, it is closed. This form can be used to 

prove that a complex manifold is orientable, since the real 2m form [2 A ... A f2 

vanishes nowhere and it serves as a volume element. Additionally, if the manifold 

M is compact and admits a Ricci flat metric, then its first Chern class must vanish 

and the manifold is called Calabi-Yau. The Sasaki-Einstein manifolds, are manifolds 

whose metric cones are Ricci flat and Kiihler. 

The first non-trivial example in the AdS/CFT correspondence with the use of 

these manifolds was made in the case of the manifold ru [98]. It was noted there 

that the interactions between the fields can be encoded in quiver diagrams which 

arising from the low energy excitations of a stack of N D3-branes placed at a singular 

point of the conifold geometry. For this case, which can be described as a coset space 

manifold of SU(2) x SU(2)/U(l) and has topology 5 2 x 5 3
, it was proposed the 

super potential of these theories to be 

(1.54) 

since is the only possible choice consistent with the superconformal invariance that 

preserves a global SU(2) x SU(2) flavor symmetry. The two SU(2) symmetries 

act on the two different doublets A1, A2 and Bi, B2. Since ru can be seen as a 

U(l) fibration over the regular Kiihler-Einstein manifold CP1 x CP1
, except this 

SU(2) x SU(2) symmetry we just mention, should be an additional U(l)R symmetry 

which acts to the 4 bifundamental fields with charge 1/2. Hence the superpotential 

have a total R-charge 2 and it is a marginal operator. 
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Significant progress has been made m Sasaki-Einstein backgrounds and their 

dual field theories, almost a year before the Lunin-Maldacena correspondence was 

formulated, when it was found that for five-dimensional Sasaki-Einstein manifolds 

y' there is an infinite family of inhomogeneous metrics on yp,q ~ S2 X S3 ' which 

is characterized by relatively prime positive integers p, q with 0 < q < p [99-101]. 

In this case, there is an effective action of a torus T 3 ~ U(1) 3 on the C(Yp,q) 

which preserves the symplectic form on it and the metric, since it is an isometry. 

The isometry group of these spaces is S0(3) x U(1) x U(1) for both p, q odd and 

U(2) x U(1) otherwise. In [102] there is an extensive discussion on the geometric 

features of these manifolds and in a paper [103] that followed some days after, the 

superconformal quiver gauge theories dual to type liB string theory on AdS5 x yp,q 

was proposed. 

We are not going to present here an extensive discussion on the conifold field 

theory. The basics we must know, is that the field theory has a product gauge 

group U(N) x U(N), with the matter chiral superfields to live in the bifundamental 

representations of this gauge group. This means that there are two fields, say A1 

and A2 transforming in the (N, f\1) representation, and two other fields Bi and B2 

transforming in the (IV, N) representation. 

The spaces yp,q are of cohomogeneity one, but the correspondence can be gen­

eralized to spaces with cohomogeneity two, called V,q,r spaces [104]. These are 

characterized by the relative positive coprime integers p, q and r with 0 < p :::; 

q, 0 < r < p + q and with p, q to be coprime to s = p + q- r and have isometry 

U(1) x U(1) x U(1). The metrics yp.q are a special case of V,q,r where p + q = 2r. 

Moreover, like all theories with at least a U(1) x U(1) global symmetry, the 

toric quiver gauge theories and their gravity dual theories admit f3 deformations 

[105], which also give space for further analysis. The gravity dual backgrounds 

can be found by performing a TsT transformation involving two of the angles that 

parametrize the U(1) directions [23], or by using the T-duality group [49]. An 

extended discussion for (3-deformed Sasaki-Einstein dualities is presented in [106], 

where giant gravitons are also analyzed. 

Hence the use of the Sasaki-Einstein dualities can contribute to the extensive 
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attempt to understand better the AdS/ C FT correspondence using theories other 

than N = 4 supersymmetric Yang-Mills. In a following chapter we investigate 

semi-classical string solutions in general yp,q and LP,q,r manifolds. Work in this 

direction has been done for the very special case of AdS5 x T 1'1 examined in [107 -109]. 

Moreover, a study for the case of BPS massless geodesics and their dual long BPS 

operators has been done in [111] for yp,q manifolds and in [112] for Lp,q,r. Dual giant 

gravitons have been studied in [110] and recently giant magnons and spiky strings 

moving in a sector of AdS5 x Tl,l have been examined in [113]. 

More details on the metrics of these backgrounds and their general properties 

will be written in the relevant chapter where we will need them and in the appendix. 

We already mention several gauge/gravity dualities with reduced supersymmetry. 

Moreover, we gave an introduction of how the Wilson loops can be seen in the 

original Maldacena conjecture. As a next step one can ask several questions; for 

example when the Legendre transform in other general gauge/gravity dualities can 

be used to eliminate the linear divergencies in Wilson loop expectation value. Or 

even to try to propose a Wilson loop operator in other field theories motivated by 

the gravity results, or to derive it with the field theory methods mentioned above. 

One more realistic question would be to consider specific Wilson loops in deformed 

gauge/gravity dualities, eg. generalizations of the 1/4 BPS Wilson loop of N = 4 

super Yang-Mills and see if and how the expectation values change in these theories. 

One other thought would be to find semiclassical string solutions in the Sasaki­

Einstein manifolds and investigate the energy-spin relations. In the next chapters 

we try to address these questions among many other topics. 



Chapter 2 

UV -divergences of Wilson Loops 

for Gauge/Gravity Duality 

So far there has not been much discussions on the structure of the UV divergences 

and their cancelation for Wilson loops in more general gauge/gravity correspondence 

beyond the original AdS5 x S 5 case. In a general supergravity background where 

the metric is different from the simple AdS5 x S5 one, and where a nontrivial B­

field and dilaton could be present, there can be new kind of UV divergences. It 

is interesting to ask whether the implementation of the Legendre transform can 

cure all the UV divergences or not. In [15], the effects of a varying dilaton were 

analyzed by including the Fradkin-Tseytlin term for the dilaton [16]. It was found 

that new UV-divergent terms proportional to J17E and log 1/E occurs 1
. Moreover 

these divergent terms cannot be subtracted away by the application of Legendre 

transform. A direct subtraction is applied to extract a finite result. However, the 

subtraction of the log-divergent term is associated with a finite ambiguity and further 

physical input is needed to fix the supergravity prediction for the expectation value 

of the Wilson loop. This is unlike the cancelation of the leading linear divergence 

in the Polyakov action through a quadratic constraint on the loop variables, which 

1These divergences were computed for the worldsheet associated with the Wilson line operator 

with fermion bilinear insertion. However it is easy to see that these divergences are common to 

Wilson loop too. 

28 
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has a nice geometrical and physical interpretation. 

In this chapter, we focus on the gravity dual analysis of the UV divergences from 

a nontrivial metric and B-field. The main motivation of our work is to provide a 

general analysis of the kind of UV divergence that may occur in the Wilson loop 

correspondence and to provide a prescription for their cancelation. We show indeed 

in general there are new kinds of UV divergences associated with the metric and 

the B-field that cannot be canceled away by the Legendre transformation. However, 

when certain asymptotic conditions for the metric and the B-field are satisfied, the 

leading UV divergence becomes linear and one can cancel out the divergence with the 

Legendre transform by choosing the open string boundary condition appropriately. 

Things are different for the B-field. We find that the situation is similar to the 

dilaton: in general the divergences (if any) associated with the B-field cannot be 

canceled by the Legendre transformation. 

Another motivation of this work is to understand the role of supersymmetry in 

the holographic correspondence of Wilson loop in a general gauge/gravity duality. 

In theN= 4 case, the Wilson loop operator (1.22) preserves some amount of local 

Poincare supersymmetry and is sometimes referred to as "locally BPS". One may 

wonder if the finiteness of the Wilson loop is related to the preservation of local su­

persymmetry. Wilson loop operator, being a nonlocal divergent functional, cannot 

be renormalized by the ordinary R-operation [17] restricted to the local operators. 

The renormalization properties of Wilson loop with pure glue has been studied in, 

e.g. [18-20], and it was found that, apart from the conventional wavefunction and 

coupling renormalization, the only divergence in W[C] is a factor e-K L, where K 

is a regularization dependent linear divergent constant and L is the length of the 

loop. This is independent of the form of C and hence the Wilson loop is multiplica­

tive renormalizable. In N = 4 SYM there is no wavefunction renormalization or 

coupling renormalization, thus the finiteness of the expectation value of the locally 

BPS Wilson loop means that the multiplicative renormalization factor is finite. As 

is common in a supersymmetric field theory, it is natural to associate the absence 

of renormalization of this class of Wilson loop operators with the presence of local 

supersymmetry, and to suspect that the later is responsible for it. It is thus inter-
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esting to consider Wilson loop which preserves less or no local supersymmetry and 

check if this is correct. 

Originally this work motivated from the examination for the Wilson loop cor­

respondence in the Lunin~Maldacena duality [22], which is the topic of the next 

chapter. For now we mention only that among other results we found there, the 

absence of the divergence of the minimal surface in supergravity side, is due to some 

special properties satisfied by the metric and the B-field. Although the operator 

we proposed is non-BPS, still there is the possibility that the cancelation of the UV 

divergence is due to the underlying N = 1 supersymmetric dynamics. So a natural 

question we asked and try to answer in this chapter is in what extension these results 

hold in general gauge/ gravity dualities. 

In this chapter, we find that the finiteness of the Wilson loop has nothing to 

do with supersymmetry at all. As in the AdS5 x S5 case, the boundary constraint 

of the worldsheet has an intermediate interpretation as a constraint on the loop 

variables of the field theory Wilson loop operator. It is a pure coincidence that this 

loop constraint also implies a preservation of local Poincare supersymmetry in the 

N = 4 SYM theory. In general, this condition has nothing to do with preservation 

of any supersymmetry. In fact, as we will see, the multi-parameters J)-deformed 

supergravity background is an example where the Wilson loop expectation value is 

finite and where the background is not supersymmetric. 

The plan of the chapter is as follows. In section 2.1, we present our analysis 

of the UV divergence in the supergravity Wilson loop associated with the B-field 

and the metric. In general the divergence that may arises from the B-field coupling 

is of a different structure from that in the Legendre transform and so cannot be 

subtracted away. For background where such divergences are absent, the leading 

order divergence arises from the area and it can be canceled away using Legendre 

transform if certain asymptotic conditions are satisfied for the metric and the B-field 

and if the boundary coordinate of the open string satisfy a certain constraint. As a 

consistency check, we show that this loop constraint guarantees that the loop equa­

tion is satisfied. Subleading divergences could be present in general. We provide a 

stronger criteria on the supergravity background where the subleading divergences 
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are absent and the Wilson loop is expected to be finite. In section 2.2, we ana­

lyze the conditions for the cancelation of leading divergence and show that they 

can be solved quite generally. Some explicit backgrounds which satisfy these con­

ditions are given as examples. Many of them also satisfy the stronger form of the 

cancelation conditions and so for these backgrounds, Wilson loop computed using 

the supergravity description (1.27) is finite. As a final example, we consider the 

Klebanov-Strassler background and show that the leading linear divergence in the 

area can be canceled away as usual. However there are subleading divergences of 

order (log c) 2 associated with the B-field and this cannot be canceled away with the 

Legendre transform. 

2.1 Structures of UV divergence in the Wilson 

loop in general supergravity background 

2.1.1 Conditions on the supergravity background and the 

string worldsheet for cancelation of leading order di-

vergence 

Consider a general supergravity background. The string worldsheet is sensitive to 

the metric, NSNS B-field and the dilaton. The structure of UV divergence associated 

with a varying dilaton has been analyzed in [15] and we will focus on analyzing 

the effect of a general metric and transverse B field on the UV divergences of the 

supergravity Wilson loop. Denote the metric in the string frame as 

(2.1) 

where /-L, v = 1, ... , m denotes the indices of a m-dimensional spacetime; and i, j = 

1, ... , n denotes the indices of a n-dimensional internal manifold. For this metric 

to be relevant for a holographic correspondence, we assume that the metric has a 

(conformal) boundary at Y = 0, where Y := J{ry is the radial variable and is of 

length dimension. It is also convenient to introduce the angular variables (Ji where 

yi = y(Ji with (Ji 2 = 1. We will assume that in the leading order in Y, the metric 
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have the following asymptotic dependence near the boundary: 

hJ.LV 
G =-+··· J.LV ya ' G · · = kij + · · · as Y ---> 0 

t) y.B ' (2.2) 

for a, j3 2:: 0. Here hJ.Lv, kij are functions of (Ji only and · · · denotes subleading terms. 

Next let us analyze the string boundary condition. Let (0'1 , 0'2 ) = (T, 0') be the 

worldsheet coordinates. The worldsheet action of the string is 

(2.3) 

where 9a.6 = Gu8aX18.6XJ is the induced metric. We note that since the world­

sheet is an open one, the B field coupling itself is not invariant under the gauge 

transformation 6B = dA. ·In order to be gauge invariant, the B term should be 

supplemented with a boundary coupling faL A. Without writing this term, we are 

assuming we are in a gauge where A= 0 and B is the corresponding potential in this 

gauge. However how to fix this choice of B-field is a subtle issue. Similar subtlety 

also arise in the computation of Wilson loop expectation value using D3-brane dual 

where one need to know the form of the RR 4-form potential C4 used in the WZ 

coupling of the D3-brane [59]. There a symmetry criteria is used to pick a certain 

natural form of C4 . We will assume that similar considerations can be applied and 

the correct form of B field is used in the analysis below. 

The equation of motion implies the Hamilton-Jacobi equation 

where 

(2.5) 

are the momentum and 

.6 - 1 rf3 .la - -ga,E 
y'g 

(2.6) 

is the complex structure (a, j3 = 1, 2) on the worldsheet. Substitute the conjugate 

momentum, we obtain 

(2. 7) 
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near Y = 0. 

One like to know how this equation put constraint on the boundary variables of 

the theory. To do this we need the boundary conditions for the string coordinates. 

Suppose that the Wilson loop is parametrized by (xJ.L(O"I),yi(0"1 )) and choose the 

world-sheet coordinates such that the boundary is located at 0"2 = 0. First we have 

the Dirichlet boundary condition for the coordinates 

(2.8) 

For the remaining coordinates Yi(0"1 ,0"2 ), due to the presence of the B-field, we 

propose the mixed boundary condition 

(2.9) 

where Ek 1 is some invertible matrix which can depend on Y, ()i. Its form will be 

determined later. 

For now, focus on the first term on the RHS of (2.7). For a string which termi­

nates at the boundary, it is Yi(0"1 , 0) = 0. This would imply also &1Yi(0"1 , 0) = 0. If 

(3- a $. 0, then we can get rid of this term immediately. If (3- a > 0, then this term 

indeterminate. To proceed, we consider a limiting process of letting Y ---+ 0. One 

can get rid of this term if 2 &1Yi = o(Y
13
;''). As in the AdS5 x 8 5 case, the term 

hJ.LvJ1a&aXJ.LJ1o:8aXv on the LHS of (2.7) has to vanish near a smooth boundary 

since otherwise the determinant of the induced metric will blow up and this will 

cost an infinite area. Therefore we arrive at the condition 

h . J.L. 1/ - 1 k J Q ::::1 yij /3::::1 yj J.LVX X - y/3-a ij 1 Ua 1 Uf3 (2.10) 

for a worldsheet which terminates on the boundary Y = 0. In order for the condition 
. /3-n 

to make sense, one need }1 a a ay~ to be of the order of Y -2-. 

2We use the symbol f = o(g) to mean lim f / g = 0, i.e. f tends to infinity slower than g or f 

tends to zero faster than g. We also use f = O(g) to mean lim f /g = k, 0::; k < oo. i.e. f tends 

to infinity not faster than g or f tends to zero not slower than g or f tends to infinity not faster 

than g. 
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Before analyzing further the boundary condition, let us turn to an analysis of 

the divergence in the worldsheet action I and its Legendre transform 

(2.11) 

As in the AdS5 x S 5 case, the area A may pick up a divergent contribution from the 

boundary. This can be seen by writing the metric in the form 

(2.12) 

where · · · denotes terms coming from the subleading expansion terms in the metric 

(2.2). Near the boundary, A picks up the dominant contribution 

(2.13) 

Since the metric is singular at Y = 0, we introduce a regulator Y = E and evaluate 

the regularized action for Y ~ E. The divergent part of the area is 

(2.14) 

where c 1 := (a+ (3)/2- 1 and · · · denotes possible subleading divergent terms. 

The B-field coupling can be written as 

(2.15) 

With the cutoff Y = E, the first term on the RHS contributes the boundary term 

(2.16) 

which cancels against the B-dependent term from the Legendre transform 

(2.17) 

Therefore we can write 

(2.18) 

where 

(2.19) 
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(2.20) 

are the Legendre transform modified contributions of the area and B-coupling term. 

There is a reason we group the terms in this way. Note that the term Gij Yi J 1 °0a yi 

is of the order of 1/Yo~13 - 1 and is of precisely the same order of divergence as in A. 

Note also that A has a dependence in J1°00 Yi due to (2.10). Thus it is in principle 

possible to cancel the divergence in A using the term§ Gi1YiJ1°o0 Yi. On the other 

hand, the term I B depends on 81 Yi. This dependence is different from the other 

terms. Thus the B-field contribution, if divergent, corresponds to a new divergence 

with a different type of functional dependence on the variables of the theory. 

Let us consider a B-field such that 

(2.21) 

This implies that the divergence in iB will be subleading compared to fA. This con­

dition also implies that the second term on the LHS of (2.9) behaves asymptotically 

as 
. k l 13-o zB t81Y = o(Y-2-). (2.22) 

Since ] 1°o0 Yk is the order of Y
6 ;o, one can drop the B-term in (2.9). It is con­

venient to define Ek1 = Y
6
;" l\.k 1 and the boundary condition (2.9) can be written 

as 

The Hamilton-Jacobi equation (2.10) becomes 

h · J.L • v _ k l\.i .f\.l · m · n 
J.LVX X - ij m nY Y · 

(2.23) 

(2.24) 

This condition will play a key role in the cancelation of the divergences in /.4. To 

see this, note that 

(2.25) 

where · · · denotes the subleading contribution from the asymptotic expansion of 

the metric (2.2). This is to be compared with the leading divergence Jki1BiBi · 
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JhJ.L"i;J.Li:" /Y"!
8 

-
1 in A, which, using (2.10), can be written as follows: 

Jkijeiej 
y~-1 

(2.26) 

Obviously (2.25) and (2.26) cannot match in general. Doing so will require an extra 

constraint among the derivatives of ei and Y, which, first of all, is not obvious 

it is in consistent with the relation (2.10). Moreover this relation does not have 

any obvious physical interpretation in field theory. On the other hand there is a 

particularly simple set of conditions which guarantee that (2.25) and (2.26) are 

equal, namely, 

{3- a< 2. 

(2.27) 

(2.28) 

In fact the first condition implies immediately kiJeioaBJ = 0 and hence the vanishing 

of the second term in (2.25) and (2.26); while the second condition says that the 

last term in (2.26) is subleading compared to the first term. As a result of (2.21), 

(2.27) and (2.28), we can write 

G yi J1aa yJ = -
1
-J1aa Y + · · · = -

1
- · 1k· J1aa YiJ1aa YJ + · · · (2.29) ZJ Q y~-1 Q y~-1 V ZJ Q Q 

near Y = 0, and the Legendre transform contributes the singular terms 

f d(J"1~yi = E(a+;)/2-1 f d(J"1 JkijNmAJn i;myn + ... ' (2.30) 

where we have used (2.23). Therefore the leading divergence term in (2.14), (2.30) 

cancels if c = 1, i.e. if the leading divergence is linear: 

JA = ~ f ( JhJ.L"i;J.Li;"- JkijNmAjn ymyn) + · · · , (2.31} 

and if the Hamilton-Jacobi condition (2.24) holds. Here · · · denotes the subleading 

contribution from the asymptotic expansion of the metric (2.2). Whether there are 

further subleading singularity (like, for example, 1/ .JE or log E type) or not will 

depend on the specific details of the asymptotic form of the background metric. 

Note that since 81 Yi is of order Y, the sufficient condition (2.21) for the I a-term to 

be subleading divergent can be written as 

(2.32) 
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On the other hand, if 

BiJ = o (:2 ), (2.33) 

then the Is-term is non-divergent. 

Summarizing in a general supergravity background, the B-field coupling in the 

worldsheet action generically generates a divergence which cannot be canceled with 

the Legendre transform. A sufficient condition for the B-field contribution to be 

finite is (2.33). When there is no such divergence, the leading order divergence in 

the Wilson loop arises from the area and it can be canceled with the application of 

Legendre transform if the following conditions are satisfied: 

1. supergravity background: 

- The supergravity metric takes the asymptotic form (2.2) near the boundary. 

Moreover 

a + j3 = 4, j3 - a < 2. (2.34) 

- The boundary metric h~"v is independent of Bi. The transverse part of the 

metric satisfies the boundary condition 

(2.35) 

These conditions are conditions on the background and do not impose any 

extra constraint on the form of the Wilson loop variables. 

2. string worldsheet: 

The boundary constraint (2.24) for the string worldsheet is satisfied. 

In general, once the leading UV divergences are canceled, there may be further 

subleading singularity (like, for example, 1/ y'E or log t: type). An extensive analysis 

of them will need information on the specific details of the asymptotic form of the 

background metric, the B-field and the dilaton. Generally we don't expect the 

subleading divergences can be canceled with the application of Legendre transform. 

A special situation with no further subleading divergence is if the leading cor­

rection term in the asymptotic conditions (2.2) and (2.33) are of at least order Y. 

We will examine some examples of this kind later. 
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2.1.2 Comments: boundary constraint as loop constraint 

Just as in the original AdS5 x 5 5 case, one would like to interpret the boundary con­

straint (2.24) for the open string as a condition in the field theory. Since the Wilson 

loop is specified by the loop variables :i;ll- and i/, and Oi does not play any role, the 

loop constraint should not depend on Oi. This means hll-11 should be independent of 

ei. For the same reason, one should choose A km such that kk1A k mA1 n is independent 

of ei. Generally this can be achieved by taking A km of the form 

A k _A, k Mt 
m- l m: (2.36) 

where 'A_kl is the vielbein of the metric kkt and M 1m is an invertible matrix which is 

independent of ei but can depends arbitrarily on parameters which have meaning 

both in supergravity and in the field theory (e.g. the 't Hooft coupling or parameters 

in the theory such as the ,8-deformation parameter in the Maldacena-Lunin duality). 

As a result, the condition (2.24) takes the form 

i,j = 1,··· ,n (2.37) 

where we have defined aij := .T'vfniMnj· In general the form of the matrix aij will 

be a function of the couplings of the theory and cannot be fixed from the super­

gravity analysis alone. In the original N = 4 SYM case, the matrix aij is given by 

aiJ = 8ij [13]. We have also computed the constraint for theN = 1 ,8-deformed 

superconformal field theory and find aij = 8ij up to .A2 order in perturbation the­

ory [24]. We emphasize that in general the constraint (2.37) has nothing to do with 

preservation of any supersymmetry. It is a pure coincidence that this loop con­

straint also implies a preservation of local Poincare supersymmetry in the N = 4 

SYM theory. 

Let us make a consistency check on the boundary constraint (2.37). In the large 

N limit of gauge theory, Wilson loop satisfies a closed set of equations called the loop 

equation [60]. To further justify the supergravity procedure for the computation of 

the Wilson loop expectation value, one should check that the supergravity ansatz 

(1.27) satisfies the loop equation [60]. As in the AdS5 x 5 5 case, although the leading 

linear divergence cancels out when the loop constraint (2.37) is satisfied, the loop 
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variation does not commute with the constraint and so the linear divergence may 

gives a divergent contribution and violate the loop equation. We show this is not 

the case. 

The loop derivative operator is given by 

, f js+1) ( 52 . . 152 ) 
L = ~~ ds s-1) ds' bxJL(s')bxJL(s) - atJ <5yi(s')<5yi(s) . (2.38) 

That this definition is correct can be confirmed by checking that L(W) = 0 in field 

theory for the Wilson loop operator (1.22). As usual the loop regulator 'TJ has to be 

taken much smaller than the UV cutoff scale E in order to extract the equation of 

motion terms. Now acting on the supergravity ansatz (1.27) with the loop operator, 

we get the leading term in large .>., 

(2.39) 

Let us now extract the divergent contribution from lA in (2.31). Given the condition 

(2.37), we can choose a parametrization such that hJL,i;JLi;"' = aiii/ii = 1 and get 

(2.40) 

For a smooth loop the terms in the integral are finite. Therefore by taking 'TJ going 

to zero faster than c2
, we find 

i(w·) = o (2.41) 

and the loop equation is satisfied. 

2.2 General solution to the conditions on SUGRA 

background and examples 

2.2.1 General solution to the metric condition 

The condition (2.27) on the metric may look a little restrictive at first sight. We 

show now that it is in fact satisfied by a general class of metric of the form 

(2.42) 
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where ei, i,j = 1, · · · ,n are the coordinates of then- 1 dimensional space Xn_ 1; 

and the metric 9iJ is a function of Yi, e.g. as in the Klebanov-Strassler metric [61]. 

The metric can be thought as a warped product of the boundary spacetime (T, X) 

and the transverse space (Y, (Ji). 

Defining Yi = YOi and making the coordinate transformation we get 

(2.43) 

So our metric become 

(2.44) 

where 

(2.45) 

and 

A ·- eketeieJ [j[ej {J/ei . ij .- 9ij + 9kl - 9i!U - 9JW · (2.46) 

The matrix AiJ satisfies the following identity, 

(2.47) 

and so 

(2.48) 

Note that (2.48) is of the form of (2.27). Therefore if F behaves as 

1 
F(Y) = yo, Y ---.. 0, (2.49) 

near the boundary, then the condition (2.27) is satisfied. Therefore if also a+ (3 = 4 

and (3- a < 2, then the metric conditions are satisfied. 

It is easy to give example where the condition (2.27) is not satisfied. For example, 

if we have started with a metric with an additional cross-terms dY d(Ji 

(2.50) 

then under the same coordinate transformation, the additional term takes the form 
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f.kl satisfies the following identities 

(2.52) 

Denote the whole metric as Gij := Hij + y-If.ij, where Hij is given by the RHS of 

(2.45). It is 

(2.53) 

Since the right hand side is generally not proportional to Bi, the condition (2.27) is 

no longer satisfied. Note that the cross-terms in (2.50) may be eliminated with a 

shift of Bi -t Bi + ai(Y). However the new B's will not satisfy the condition (Bi) 2 = 1 

anymore. This is another way to see that the metric conditions are not satisfied. 

2.2.2 Examples 

Here we examine some backgrounds with known dual field theories, to which our 

analysis can be applied . 

• Background with AdS5 X X 5 metric 

This is a standard example. The metric of the space can be written as 

(2.54) 

where X 5 is an internal compact space. In this case o: = 2 = {3 and the condition 

(2.34) is satisfied. The linear divergence in A is canceled by the Legendre transform 

and fA is finite Some explicit examples are X 5 = 55 S5 S5 T 1.l yp,q £P,q,r 
. ' ' '"11('12,"/'3 1 ' ' ' 

etc., where respectively these spaces are the 5-sphere for the original Maldacena 

AdS/CFT correspondence, the {3-deformed 5-sphere for the Lunin-Maldacena {3-

deformation [22], the multi-parameter {3-deformed sphere, and the Sasaki-Einstein 

spaces [100-103]. The boundary condition for the string minimal surface is 

(2.55) 

It is easy to see that f 8 is finite for these cases. In the AdS5 x 55 case or in the 

duality with Sasaki-Einstein spaces, there is simply noB-field. In the {3-deformation 
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or the multi-parameters ,8-deformation, the B-field is of the form 

(2.56) 

where 2:(f.la) 2 = 1, c/Ja (a= 1, 2, 3) are the azimuth angles defined by (3.6) and Bab is 

a function of f.la given from (3.20). This form of the B-field respects the symmetries 

of the ,8-deformed sphere and we will take it to be the B-field where the string is 

coupled to. In general one may get a different answer by using a different gauge 

equivalent B-field. This is similar to the situation discussed in [59] where an open 

D3-brane is employed to compute the expectation value of Wilson loop in higher 

representation. There the answer is shown to depend on the gauge choice of the 

RR 4-form potential C4 which appears in the Wess-Zumino coupling. A symmetry 

argument was used to suggest the natural form of the C4 to be used. 

Obviously the B-term in the worldsheet action is finite. For the piece BiiYia1Yi 

in the Legendre transform, since Bij is of order 1/ Y 2
, this term is potentially linear 

divergent. However this does not happen since, as we will show in the next chapter 

using the relations (3.20), a B-field of the form (2.56) satisfies the condition 

(2.57) 

exactly [24]. 

As a result, the piece Bii Yia1 yi in the Legendre transform is zero. Therefore, 

there is no divergence associated with the B-field. This can also be checked using 

(2.20). For example the contributions from B12 , B 15 to a2 (Bija1 Yi)Yi is of the form 

,...__ Y4~2 )
2 

81 Y1 82 ~. This is finite as Y ---+ 0 and so 18 is free from any divergence. 

Also since there is no subleading correction terms to the metric and the B-field, 

there is no subleading divergence at all. The Wilson loop is finite. 

We remark that the background AdSs X s~ 'V 'V for the multi-parameters ,8-
,~, ,2,3 

deformation is not supersymmetric, but the Wilson loop expectation value is finite. 

This clearly shows that supersymmetry or the satisfaction of the BPS condition for 

the loop is not what is required for the finiteness of Wilson loop expectation value. 

• Supergravity background with asymptotically AdS5 x X 5 metric 

The first kind of example is given by a finite temperature deformation of any of the 
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metric above. For example for N = 4 at finite temperature, the metric is 

(2.58) 

Asymptotically, the metric behaves identically to that of the AdS5 X S5 background. 

So the cancelation of the infinity occurs with the same boundary conditions as in the 

AdS5 x 5 5 case. Putting a finite temperature deforms the asymptotic form of the 

metric with power-like terms and this does not introduce any additional subleading 

singularity. 

• Sakai-Sugimoto QCD model 

The background consists of a dilaton, a RR 3-form potential and the metric [62] 

e<l> UkK 
j(U) = 1- []3· (2.59) 

Here XJ.L (p, = 0, 1, 2, 3) is the spacetime. z = X 5 is periodic and describes the 

compact direction of the D4-brane. U > UKK corresponds to the radial direction 

transverse to the D4-brane. With the coordinate transformation Y = R2 /U, the 

metric near the boundary U = oo reads 

(2.60) 

In this case o: = 3/2, f3 = 5/2 and the condition (2.34) is satisfied. The leading 

UV divergence is a linear one and it can be canceled with a choice of the boundary 

condition for the string minimal surface 

(2.61) 

The vielbein is trivial since kij = 6ij (i,j = 1,· · · ,5) for the boundary metric. 

Including the contribution of the pion field c.p0 , we propose the following form of the 

Wilson loop operator for the Sakai-Sugimoto QCD model, 

W[C] = ~ Tr P exp (i dT(iAJ.Li:J.L + ic.p0 z + c.pi'fi)) , (2.62) 

and the constraint is 
. 2 . 2 ·2 

xll- = Yi - z . (2.63) 
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Moreover since the subleading correction terms to the metric is power-like, therefore 

there is no further subleading UV divergences. 

• Klebanov-Strassler background 

Another example is the Klebanov-Strassler background [61] which describes a warped 

deformed conifold. In this case the asymptotic behavior of the metric is different 

from the power ansatz (2.2). However it is not difficult to repeat our analysis above. 

The background has a constant dilaton, a RR 2-form, and the metric and B-field 

31/3 [ 1 T 
ds2 = h-112m 2dxmdXm + h1

/
2 

2413 K 
3

K 3 (dT2 + (95)2
) + cosh2 2[(93) 2 + (94)2

] 

+sinh2 ~[(9t) 2 + (92)2
]], (2.64) 

(2.65) 

where 9i is a basis of invariant one-form on T 1
,
1 

1 
91 = J2( -std4h - c..ps2d(P2 + s..pd82), 

1 
92 = J2(d81 - S..pS2dcP2- C..pd82), 

1 
93 = J2( -s1d(h + c..ps2d(P2- s..pd82), 

1 
94 = J2(d81 + S..pS2dcP2 + C..pd82), 

95 = d'lj; + c1dcP1 + c2dcP2· (2.66) 

The B-field respects the symmetries of T 1,1 and we will assume that this is the 

proper B-field where the string is coupled to. h, K, f and k are some functions ofT 

whose form can be found in [61]. For our purpose, we record their asymptotic form 

for large T, 

T-1 f ___. ~- re-r + O(re-2r)' (2.68) 

In this limit, the metric becomes 

(2.69) 

where the radial variable is defined by 

(2. 70) 



2.2. General solution to the conditions on SUGRA background and 
examples 45 

for some resolved scale r 8 • The warp factor is 

h = ]__ (log 2:._ - !) + o (-
1 

(log 2:._ )2
) 

r4 rs 4 r 10 r 8 

(2.71) 

and ds~ is the cone metric over T 1
•
1 

2 d 2 2 2 ds6 = r + r dsr1.1. (2. 72) 

The B-field behaves 

(2.73) 

Putting Y = 1/r, we have near the boundary Y = 0 

(2.74) 

(2.75) 

and 

B· = O(logY) 
'J Y2 . (2.76) 

Here h1w = 'flp,v and kij can be worked out using the metric of ru. These details 

will not be important for us. Note that the metric (2.64) is of the form (2.42) and 

so it satisfies the condition (2.48). 

The Hamilton-Jacobi equation (2. 7) is replaced by 

(log Y)ki1J1 o:ao:yi J1 138!3Y1 +hp,vll o:ao:XI-L J/aaxv = (log Y)ki181 yial Y 1 +hp,valx/1-alxv. 

(2. 77) 

The string boundary condition is given by the same Dirichlet condition (2.8) and 

mixed boundary condition (2.9). For a string terminating on the boundary, we 

have Yi(0'1 , 0) = 0. To get rid of the first term on the RHS of (2.77), we require 

that 81Yi(0'1 ,0) = o(1/JlogY). This also implies that the B-term in the mixed 

boundary condition 

(2. 78) 

The Hamilton-Jacobi equation in the limit Y ___. 0 makes sense if 11 o:ao:Yi( 0'1 , 0) is 

of the order of 1/ Jlog Y. Therefore, we can drop the B-term in the mixed boundary 

condition (2.9) and write 

(2.79) 
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The Hamilton-Jacobi equation finally gives 

h 'J.L'V-k Ai Aj ·m·n 
J.LVX X - ij H m nY Y · 
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(2.80) 

Now we examine the structure of UV divergences. For the area part, it is easy 

to see that we get the same linear divergence (2.31) as before and so fA is finite if 

the loop condition (2.80) is satisfied. As for the B-field, since 82(Bij81 Yi)YJ is of 

the order of log Y /Y, therefore 

- 2 Is"" (log E) . (2.81) 

This is a new divergence which can not be canceled with the Legendre transform. 

2.3 Discussions 

In this chapter, we have analyzed of the structure of UV divergences in the Wilson 

loop from the supergravity point of view by including the effect of a non-trivial metric 

and a NSNS B-field. We find that in general there can be new divergences which 

cannot be canceled with the Legendre transform. We also find that when certain 

conditions are satisfied by the B-field and the metric, the leading UV divergence 

becomes a linear one and this can be canceled away by choosing the boundary 

condition of the string appropriately. In general there may still be divergences 

associated with the B-field, and if they do exist, there is no way to cancel them 

with the Legendre transform. This is similar to the result of [15] where analyzed the 

effect of a nontrivial dilaton on the structure of UV divergences in Wilson loop. We 

conclude that the Legendre transform is at best capable of canceling only linear UV 

divergences, but is incapable to canceling any subleading divergences which may be 

present, no matter whether it is due to the dilaton or the NSNS B-field. 

Our analysis is performed on the supergravity side. It is an interesting question 

to check and confirm the form of the loop constraint (2.37) from the field theory 

perspective. To do this, one need to know the form of the Wilson loop operator 

that is dual to the supergravity computation. In the simplest case where the field 

theory has the same number of (adjoint) massless scalar with the dimension of the 

internal manifold,· the natural candidate for the operator is a direct generalization 
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of (1.22). However, the field theory may have different number of scalar fields 

in general. This is the case, for example, in the quiver theories that are dual to 

backgrounds with Sasaki-Einstein spaces [100-103]. There the form of the Wilson 

loop operator is unknown. In this example one may try to exponentiate a product 

of the bifundamental fields in order to construct the Wilson loop. But since scalar 

field has dimension one in four dimensions, one needs to compensate the dimension 

with another dimensional quantity. This is not completely clear what it might be 

in a conformal theory. It will be interesting to analyze this further and to construct 

the Wilson loop operator for these theories. 

Since we already analyzed of the structure of UV divergences in the Wilson loop 

for a general gauge/gravity duality, would be very interesting to consider particular 

dualities, with less supersymmetries and see how these general features can be apply 

there. Moreover, the derivation of the Wilson loop operator in any theory it is 

important task on its own. These are some issues that we try to investigate in the 

,B-deformed theories in the next chapter. 



Chapter 3 

Wilson Loop in jJ-deformed 

Theories 

In this chapter we are looking at the Wilson loops in the Lunin-Maldacena corre­

spondence. Aspects of the supergravity duals of Wilson loops in the ,B-deformed 

SYM theory has been studied before [37, 82]. The work of [37] is a generalization 

of the fact that the Wilson loops in the symmetric or antisymmetric representa­

tion in the original AdS/CFT correspondence can be described in terms of a single 

D3-brane or D5-brane with worldvolume RR flux. See [59, 64-69] for the 1/2 BPS 

case and [70] for the D3-brane dual for 1/4 BPS Wilson in symmetric representation. 

Moreover, analogous to the approach of [77], the supergravity description for certain 

half BPS Wilson loop has also been obtained [78-81]. 

However in the relevant works for the ,B deformed theory, the form of the field 

theory operators that are dual with the supergravity configurations has not been 

identified. We note that here the Wilson loop operator (1.22), (1.23) is non-BPS 

since the gauge bosons and the scalars are in different N = 1 supersymmetry multi­

plets and so their supersymmetry variations cannot cancel out each other. Confor­

mal supersymmetry also does not mix these multiplets. 1 One can check that even 

1 We note, however, that the Wilson loop operator (1.22) is half BPS if the curve is taken to be 

a lightlike line (possible in the Lorentzian case) and with i/ = 0. This operator has no coupling 

to the scalar fields and is not sensitive to the deformation. In this chapter we focus in the case 

where the Wilson loop has coupling to the scalar fields since we are interested in the effects of the 

48 
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by allowing general fermion coupling, it is not possible to construct a supersym­

metric Wilson loop. It thus appears impossible to construct a Wilson loop operator 

which respects some of theN = 1 superconformal symmetries of the ,8-deformed 

SYM. 

Moreover as we saw before and we point out here again, although the Wilson 

loop operator (1.22), (1.23) is non-BPS 2 , it shares a distinguished property of the 

locally BPS Wilson loop operator in the N = 4 theory - namely, it has a finite 

vev. This is not true for a generic non-BPS Wilson loop. To distinguish it from a 

generic non BPS loop, we call the operator (1.22), (1.23) in the ,6 deformed theories 

a near BPS Wilson loop operator (or maybe another appropriate name would be 

like BPS Wilson loop operator). An analogous example is the BMN operator in the 

N = 4 SYM theory. The BMN operator is not a BPS operator, but it has a finite 

anomalous dimensions in a particular double scaling limit [83]. This operator is very 

interesting and have been studied extensively. We stress that the near BPS Wilson 

loop operator is not a deformation of a BPS one. The use of "near" is to emphasize 

that although it is not BPS, but it has finite expectation value just as a BPS Wilson 

loop operator in the N = 4 theory does. 

We propose that dual operators for the D-brane configurations in [37] are given 

by the near BPS Wilson loop operators (1.22), (1.23) whose path is a circle in 

the x-space and a point in the transverse space. When ,6 ::::::: 0, an approximate 

half of the associated N = 4 supersymmetry is preserved. And one may call this 

Wilson loop operator near-half BPS. We also consider the near-1/4 BPS case and 

construct the dual microscopic string description. The Wilson loop's expectation 

value is computed using the AdS/CFT correspondence and, as expected, it is finite. 

Unlike the near-1/2 BPS Wilson loops where the authors find that precisely the 

same undeformed ansatz has to be taken to construct the desired dual D-branes 

configurations, here we find that one has to employ a modified ansatz to construct 

the dual string minimal surface. 

/)-deformation. We thank Nadav Drukker for a discussion on this. 
2 non-BPS in the local sense. For simplicity, unless otherwise stated, we will omit "local" in the 

following. The meaning should be clear from the context. 
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The chapter organized as follows. In section 3.1, we review the Lunin-Maldacena 

background in its original form where the deformed sphere metric is written in the 

angular coordinate system. Since the 1/4 BPS Wilson loop necessarily involves a 

non-trivial coupling to the six real scalars field, for the purpose of using AdS/CFT, 

it is more convenient to re-express the deformed five-sphere metric and the B-field 

in terms of the embedding R 6 coordinates. We then show that the metric satisfies 

the properties we expect according to our discussion in the previous chapter and we 

point out the remarkable property satisfied by the B-field, which used in chapter 2. 

In section 3.2 we claim, using some field theory arguments, that the form for the 

Wilson loop operator could remain undeformed in the ,B deformed theory. We also 

support our claims with the appendix A.1, where we try to derive the form of the 

Wilson loop in the large N limit using the phase factor associated with the infinitely 

massive quark obtained from the breaking U(N + 1) --t U(N) x U(1). We finish, by 

giving in section 3.3 the dual string solution in the Lunin-Maldacena background 

of a near-1 /4 BPS circular Wilson loop. Unlike the undeformed case where the 

string surface is confined on a 52 in the five-sphere, the string now extends on a 

deformed S3 . The expectation value of the Wilson loop is computed and found to 

be undeformed. This could mean that the exact expectation value of the Wilson 

loop is given by the same matrix model as in the undeformed case. 

A number of additional appendices are included. In appendix A.2, we collect 

some of the formula of the deformed metric expressed in the Cartesian coordinates. 

The Hamiltonian-Jacobi equation in the presence of B-field is also derived in Ap­

pendix A.3. Finally, we show that the 1-loop corrected scalar propagator and gauge 

boson propagator in the Feynman gauge remains equal. Using this result, we show 

that our near BPS Wilson loop operator is free from UV divergences up to order 
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3.1 The Lunin-Maldacena Background 

The type liB supergravity solution that is dual to the ,6-deformation of N = 4 super 

Yang Mills was found in [22]. In the string frame it is: 

ds
2 ~ R' [ ds~dS, + ~ ( dl'! + G I'! d4>i) +1' G l'i l'll'l( ~ d<f,) '] 

B = R2i G (p,ip,~dt/>1 A dt/>2 + p,~p,~dt/>2 A dtj>3 + p,~p,idt/>3 A dtj>I), 

C2 = -4R2i w1 1\ (dt/>1 + dt/>2 + dtj>3), 

C4 = w4 + 4R4G w1 A dt/>1 A dt/>2 1\ d4>3 , 

where R 4 = 47rg5 N (in units where d = 1), 

(3.1a) 

(3.1b) 

(3.1c) 

(3.1d) 

(3.1e) 

(3.2) 

The parameter i appearing in ( 3.1) is related to the deformation parameter f3 of 

the gauge theory by: 

(3.3) 

The definition of w1 and w4 can be found in [22]. 

The background has the U ( 1 )3 symmetry 

for arbitrary constant 8k, (k=1,2,3). (3.4) 

This is in correspondence with the U(1)3 symmetry of the (3-deformed super Yang­

Mills theory which is also invariant under the same symmetry. Where, it's action 

on the scalar components is invariant under 

for arbitrary constants 8k, (k = 1, 2, 3). (3.5) 

3.1.1 Properties of the deformed metric and B-field 

It is convenient to introduce the Cartesian coordinates where the deformed S5 is 

embedded 

Y1 = Ye1 = Y f.L1 cos cP1, Y 4 = Ye4 = Y f.L1 sin t/>1, 

Y 2 = Ye2 = y f.L2 cos cP2, Y5 = Ye 5 = y f.L2 sin cP2, (3.6) 

Y 3 = Ye3 = y f.La cos tP3, Y 6 = Ye6 = y f.L3 sin tP3· 
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Here Y2 = (Yi)2 and (Bi)2 = 1. With respect to this basis, the symmetry (3.4) is 

translated to 

(3.7) 

The metric (3.la) becomes 

R2 ( 
3 

_ ) R2 ( 3 6 ) 
ds2 = y 2 ~ dXJ.LdXJ.L + dY2 + Y2 d0~ = y 2 ~ dXJ.LdXJ.L + ~ GijdYidYj , 

(3.8) 

where Gij is the embedding metric of the deformed S5 . The diagonal terms of the 

metric are 

where, for convenience, we have defined the new quantities 

M 1 '2 2 ') 
I = + I f-L2f-L3 , (3.10) 

The non-diagonal elements are 

'2 

G12 = ~2 G/-L1/-L2/-L~sinc/>1 sinc/>2, 
'2 

G I G 2 . ,-~.. . ,-~.. 
13 = y 2 1-L1 !-L2/-L3 sm '1'1 sm '-~'3 , 

,') 

T 2. 
G15 = - y 2 G/-L1/-L2/-L3 sm c/>1 cos c/>2, 

'2 

G 16 = - ~2 G /-L1 f-L~/-L3 sin c/>1 cos c/>3,( 3.11) 
'? 

G r- 0 2 . ,-~.. . ,-~.. 
23 = y 2 f-LJ/-L2/-L3 sm '1'2 sm '-~'3 , 

'2 

G26 = - ~2 Gf-Lif-L2/-L3 sin c/>2 cos cp3. 

The elements G45, G46, G24 , G34, G56, G35 differ respectively from G12, G13, G15 , 

G 16 , G23 , G26 by switching all the cos and sin in each case. The remaining elements 

are 

In the above we have given the metric elements as a function of the angles. For 

convenience, we have also recorded in the appendix A.2 the expressions of the metric 

elements as a function of Yi. 
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Even if as expected this deformed metric is not conformally flat, it displays some 

remarkable symmetries. One can check that the following identity is satisfied 

(3.13) 

which leads to 

(3.14) 

where we have defined 

(3.15) 

The 9ii is finite at the boundary as can be easily seen from (3.9), (3.11), (3.12). 

Another interesting property of the deformed metric is that 

(3.16) 

where 8a is an arbitrary derivative. Also we have 

(3.17) 

which follows immediately from (3.14), (3.16). 

The B-field also satisfies an interesting identity. Writing the B-field as 

(3.18) 

where 

(3.19) 

It is 

b3 = y-4 (Y4 Y 5dY 1 A dY 2 + Y 1Y 2 dY4 A dY5 + Y 1Y 5 dY2 A dY4
- Y 2 Y 4dY1 A dY5

), 

b2 = -Y-4 (Y 4Y 6dY 1 A dYa + Y 1YadY4 A dY6 + Y 1Y 6dY3 A dY4
- Y 3Y 4dY 1 A dY6

), 

b1 = y-4 (Y 5Y 6dY 2 A dYa + Y 2YadY 5 A dY6 + Y 2Y 6dY3 A dY 5
- Y 3Y 5dY 2 A dY6

). 

(3.20) 

It is easy to check that the B-field gives the identity 

(3.21) 
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In fact the stronger form 

(3.22) 

holds for the individual pieces composing the B-field. 

In the following section we use the results of the previous chapter, and the 

equations (3.14), (3.17), (3.21) of the metric and the B-field to study briefly the 

deformed boundary condition for the macroscopic string ending on the Wilson loop. 

Moreover we propose that the Wilson loop operator in the {3 deformed theories could 

remain undeformed. 

3.2 Near-BPS Wilson Loop and Deformed Bound­

ary Condition 

We start out by recalling the arguments for the form of the Wilson loop operator 

( 1. 22) and the constraint ( 1. 23) in the original undeformed N = 4 case. Firstly, one 

can examine the unbroken supersymmetry on the Wilson loop operators [13, 84, 85]. 

The Wilson loop operator is locally supersymmetric if the constraint (1.23) is satis­

fied. A second way is from perturbation theory. One finds that the above constraint 

must be satisfied in order for the UV-divergence to cancel out in the expectation 

value of W. This is easy to check in the leading order in l N := A and can be ex­

tended to arbitrary higher orders in A using arguments based on the present 50(6) 

symmetry [13]. Another way to derive the Wilson loop operator is by decomposing 

the gauge group U(N + 1) ---+ U(N) x U(1) in order to use the W-bosons, that 

appear from this breaking [11, 13]. Finally, the constraint can also be understood 

from the dual supergravity point of view [13]. Imposing appropriate boundary con­

ditions and using the Hamilton-Jacobi equation for the minimal surface, one can 

show for a smooth loop, that the minimal surface ends on the AdS boundary if and 

only if the loop variables obey the constraint x2 = fl. We remark that the first two 

methods work for any gauge group and any representation, while modifications will 

be needed in order to generalize the third and the fourth methods to other gauge 

group or higher representation. 
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In the ,8-deformed theory, as we explained in the introduction, it appears impos­

sible to construct a supersymmetric Wilson loop. On the other hand, supergravity 

configurations have been constructed whose dual operators would have finite vev. 

We propose to study this form of the Wilson loop operator (1.22), (1.23) and that 

it provides the dual of the the D-brane configurations constructed in [37] 3 . 

We first give field theory arguments for the choice of this operator in the beta­

deformed theories. First, as in the undeformed case, one may define the Wilson loop 

as the phase factor associated with the W-boson probe arising from the breaking 

U(N + 1) ___. U(N) x U(l). In appendix A.l, we calculate the deformed N = 4 

Lagrangian arising from this decomposition. The action looks quite complicated at 

finite N. However all the ,8-dependence drops out in the large N limit of the classical 

action and the resulting operator takes the form of (1.22), (1.23). We propose this 

form of the Wilson loop for any N. 

Another field theory reason is that if ones tries to derive the constraint in the 

,8-deformed theory using perturbation methods, the result at the leading order of 

't Hooft coupling A is the same as in the undeformed theory since the propaga­

tors of the ,8-deformed theory are not modified. Hence the UV pole cancels if the 

condition (1.23) is satisfied, as in the undeformed case. At higher orders of A, the 

,8-deformation breaks the 50(6) invariance of the scalars and the simple argument 

of the undeformed case does not hold anymore. However one can check explicitly 

the gauge boson and scalar propagator remains equal up to order A. As a result, the 

UV divergence cancels out explicitly up to order A2 if the constraint (1.23) holds. 

The details is presented in the appendix A.4. This could mean that the UV diver­

gences cancel exactly in the ,8-deformed SYM theory. A better understanding of 

perturbative properties of the beta-deformed theory would give an answer to this 

problem. 

This result is quite remarkable since although the 50(6) symmetry is broken by 

the ,8-deformation, a 50(6) invariant constraint is constructed. The same constraint 

is also obtained from the SUGRA analysis performed in the next subsections and 

i y. 

3 In this case, the loop is taken to be a circle in the x-space and a point in the transverse space 
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give support to the validity of this constraint (1.23) and the form (1.22) of the 

Wilson loop operator. 

We next turn to the supergravity picture for support of the form of the constraint 

(1.23) and the conjecture on the UV finiteness of the Wilson loop. Before we do 

this, a comment is in order. In order for the Wilson loop operator to respect the 

U(l) 3 symmetry (3.5) of the ,6-deformed SYM, one need to assign a corresponding 

rotation 

to the loop variables Yi. Here we have used the identification of the scalar fields 

(A.4). The transformation properties (3.23) and (3.7) leads one to associate Yi with 

Yj. This fact is important as, given a specific configuration of the loop variables Yi in 

the field theory, it tells which Yi should be activated for the dual string configuration 

in supergravity. An example will be shown in next section. 

Before we finish this section we make a comment on the Neumann boundary 

conditions. As we saw in chapter 2, for the ,6 deformed case we have the Neumann 

boundary condition (2.55) which we write again here in terms of Akm 

(3.24) 

As we also saw there, that the Hamilton-Jacobi equation for the backgrounds dis­

cussed, which the beta deformed was a particular example, gives at the end of the 

relevant analysis a constraint 

·2 Ak Al ·m ·n 
X = 9kl m n Y Y · (3.25) 

In particular for the Lunin-Maldacena theories, the constraint derived from super­

gravity agrees with the constraint ( 1.23) derived from field theory considerations of 

the condition if the matrix A k i satisfies the condition 

(3.26) 

This means that the boundary condition matrix A km is the vielbein of the deformed 

metric 9kt· We remark that in [37], the D-brane boundary condition in the f)­

deformed theory was obtained out using TsT transformation on the original uncle­

formed boundary condition. It was easy in that case since only angles was involved. 
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In our case we still expect that one can perform a TsT-transformation on the angles 

to derive the modified boundary condition (3.24), (3.26), although it is less direct 

since the boundary condition is formulated in terms of the Cartesian coordinates 

while TsT transformations operates on the angles. 

3.3 Near-1/4 BPS Wilson Loop 

In the above, we have proposed that the D-brane configurations considered in [37] are 

dual to the near-1/2 BPS operators where the circular loop has a trivial dependence 

in the transverse space. Now we look at next non-trivial case where the loop involves 

a non-trivial rotation in the transverse space as well, 

(3.27) 

where the loop is a circular path of radius Ro in space 

1 D_ '> D_ ' 
X =-'I{) COST, x- =-'I{) S1n T, (3.28) 

and the coupling to the three scalars <p 1 , <p2 , <p5 is parametrized by 

e1 = cos eo, e2 = sin eo cosT, e5 =sin eo sin T, (3.29) 

with an arbitrary fixed e0 . This operator in the undeformed theory is 1/2 BPS 

when eo = 0 and 1/4 BPS in general [59]. In this section we use the AdS/CFT 

correspondence to compute the value for the circular near BPS Wilson loop operator 

in the ,6-deformed SYM. 

We use the following form for the (Euclidean) AdS5 metric 

(3.30) 

For the deformed 5 5 (3.1a), we parametrize the f.1i coordinates via 

/11 =cos e, /12 = sine cos a, /13 =sine sin a (3.31) 

so that 2::.:: df.1T = de2 + sin2 eda2 . For Euclidean space, the worldsheet coupling to 

the B-field get an extra factor of -i. 
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To find the dual string configuration, we note that 

cos 00 , 

Sine eiT 
0 ' (3.32) 

Comparing with the definition (3.6) for Bi, and using (3.31), this means the dual 

string configuration must satisfy cp2 = T, and e = 00 , cp1 = a = cp3 = 0 at the 

boundary. Minimally, one wants to consider an a.nsa.tz involving only two angles cp2 

and e. However due to the B-field, one can see easily that this is inconsistent. Let 

us therefore consider a motion on R2 x fp where R2 c AdS5 is pa.rametrized by 'ljJ 

and p, and the deformed 3-sphere is pa.ra.metrized by the three angles e' c/Jl' cpz with 

a = cp3 = 0. The Polya.kov action for the Euclidea.n worldsheet (a, T) is 

s = ..;>.. J dadT [p'2 + ii + sinh2 p('!j;'2 + ;p2) + 0'2 + iP + G cos2 B(cp' 2 + ~2 ) 4n 1 1 

+Gsin2 B(cp;2 + ~D- 2iiGsin2 Bcos2 B(~1c/J2'- c/J1'~2)J~·33) 

where' (resp. ·) denotes 8u (resp. 87 ) derivative. Due to the extra. factor of -i 

in the B-field coupling, a real configuration is possible only if one perform a. Wick 

rotation cp1 --. icp1. To match with the path specified by (3.28), (3.29), we look for 

solution of the form 

u = 0, p = p( a), 'ljJ = T 

e = B(a), c/Jl = c/J1(a), c/J2 = T. 

(3.34) 

(3.35) 

We remark that, compared to the solution [86] for the undeformed case, our a.nsa.tz 

has an additional angle cp1 turned on. This is similar to the situation in the story of 

magnon. There the string configuration dual to the magnon was found [28] to expand 

from a motion on 52 for the undeformed case to a motion on a deformed 3-sphere 

when the jJ-deformation is turned on. We also remark that the Wick rotation on 

cp1 is natural and is consistent with a semi-classical interpretation of the AdS/CFT 

correspondence as a tunneling phenomena. 
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The classical equations of motion for our ansatz (3.34), (3.35) takes the form 

p" cosh p sinh p, 

e" 1 1 
28e(Gsin2 0)-

2
ae(Gcos2 0) <P~ 2 + 8e(iGsin2 0 cos2 0)<P~, 

The equation (3.39) is satisfied trivially. Equation (3.38) gives 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

For the surface to be closed, it must be possible to reach e = 0 (north pole) or 1r 

(south pole), and there the derivatives </Y 1', <P2 ' should be zero since no rotation is 

possible. Therefore c1 = 0 and we have 

Equation (3.37) then becomes 

"" , , . 2 e 
'f'l = !Slll . (3.41) 

(3.42) 

where c2 is a constant. Notice how the G dependence disappears in the above 

calculations. Finally, we check also the Virasoro constraints, which reads 

which implies 

(3.43) 

Again here notice that the G dependence disappears. To get a surface in correspon­

dence to a single circle, we set c2 = 0, and the final form of the equations of motion 

is 

sinh2 p, 

sin2 e. 

(3.44) 

(3.45) 
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This give the solution 

. h 1 
Slll p = -.--, 

smh a 

. 1 
Slll 8 = {::} COS 8 = tanh( ao ±a) 

cosh( a0 ± a) 

and 

c/>1 = '1'( tanh(a ± a0 ) =t= tanh(a0)). 

To see how our solution behaves, consider the limits 

a _. 0 ::::} p _. oo, and e _. 80 , c/>1 _. 0, 

(j - 00 ::::} p - 0, and e- 0 or Ti. 
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(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

Here cos80 = tanha0 . Depending on the sign in (3.47), the surface extends over the 

north or south pole of § 5 . 

Next we evaluate the action for this configuration. The bulk term is 

S V>.! (" 2 .') bulk= 
2

7r dadT smh p+sm-e), (3.51) 

from which we find 

Sbulk = J>: (cosh Pmax =t= cos Bo). (3.52) 

Here we have introduced a cutoff amin to regulate the boundary contribution, and 

Pmax is the corresponding cutoff on p. The cosh Pmax term will cancel with boundary 

term coming from the Legendre transformation as we have showed above. Hence, 

the final result is 

Stot = =t=v'>: COS Bo, (3.53) 

and 

(W) rv exp ( ± J>: cos Bo), (3.54) 

where the sign is chosen to minimize the action. This is the same vev as the 1/4 

BPS Wilson loop in the undeformed theory. 
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We note that in addition to this supergravity solution which involves 3 angles, 

one can also construct a solution which involves only the two angles 

f)= fJ(O"), a= T, (3.55) 

together with (3.34). This solution is exactly the same as the undeformed one given 

in [86] and gives rises to the same expectation value for the dual Wilson loop. It is 

straightforward to work out the Wilson loop operator that is dual to it. It is defined 

by the loop 

fJ1 = cos fJ0 , fJ2 = sin fJo cosT, fJ3 = sin fJ0 sin T. (3.56) 

Due to a lack of S0(6) invariance, the Wilson loop operator with the loop (3.56) is 

different from the one with the loop (3.29). It is quite amazing that they have the 

same expectation value. 

To understand this result better. Let us first recall how the expectation value 

of the 1/2 BPS circular Wilson loop was computed in gauge theory [88, 89]. The 

circular loop is related to the straight line by a conformal transformation, one can 

therefore relate the circular Wilson loop to the expectation value of the vVilson 

straight line, which is one. The result is however non-trivial since under the confor­

mal transformation, the gluon propagator is modified by a singular total derivative 

which gives non-zero contribution only when both ends of the propagator are lo­

cated at the point which is conformally mapped to the infinity. It was conjectured 

by [88] that diagrams with internal vertexes cancel precisely and this is supported 

by a direct calculation at order g4 N 2 . Assuming this is true, [89] showed that the 

sum of all the non-interacting diagrams can be written as a Hermitian matrix model 

(3.57) 

This is exact to all order in). and 1/N [89]. Explicit evaluation of the integral and 

hence the Wilson loop expectation value has been performed for loops in various 

representations [59, 64, 66, 67, 88, 89]. This argument has also been applied to the 

1/4 BPS fundamental Wilson loop [86]. 

Now the ,8-deformed theory is exact conformal. So the above argument of con­

formal anomaly applies. The only thing one need to be sure is how interacting 
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diagrams contribute. If they again sum up to zero, then there is no /3-dependence 

left and one will get the same result as in the undeformed case. Our result of get­

ting the same expectation value for the undeformed and the deformed Wilson loop 

operators suggests that the interacting diagrams again cancel exactly, at least in the 

large 't Hooft coupling limit. This is however not easy to prove from perturbation 

theory since one needs to identify terms with dependence on /32 N at each order of 

1 j N. We believe a similar mechanism as in the undeformed case is at work. If this is 

the case, the exact expectation value of the circular Wilson loop in the /3-deformed 

SYM will be given by the same matrix model as in the undeformed N = 4 case. A 

better understanding of how this works in the undeformed case is necessary and will 

be very interesting. 

For the same reason, we conjecture that the expectation value of the near-1/4 

BPS Wilson loop in higher representations will also be unmodified. It will be inter­

esting to construct the D3-brane and D5-brane dual to these Wilson loops in higher 

representations for the /3-deformed theory and check this. 

To summarize briefly, in this chapter we have proposed a definition of a near 

BPS Wilson loop operator in the /3-deformed SYM theory. We conjectured that this 

operator has finite vev and provided supporting evidences both from field theory 

and from supergravity. Thus this operator is a natural candidate of a Wilson loop 

operator which admits a holographic description in the /3-deformed AdS/CFT cor­

respondence. We show, using the results of the chapter 2, that on the supergravity 

side, the finiteness of the vev of the Wilson loop implies the same constraint on the 

loop as is derived from the field theory analysis. That this is true relies on some re­

markable properties satisfied by the metric and the B-field of the Lunin-Maldacena 

background, which classify these backgrounds to be special cases of the ones we 

examine in chapter 2. It will be interesting to be able to formulate and understand 

these symmetry properties in terms of the dual field theory language. Its origin is 

likely to be nonperturbative. This should provide us a better understanding of the 

mechanism responsible for the finiteness of the vev of the Wilson loop. Finally we 

also construct the string dual configuration for a near-1/4 BPS circular Wilson loop 

operator and its expectation value is computed using the AdS/CFT correspondence 
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and found to be undeformed. 

In the next chapter we move to a different gauge/gravity duality and start to 

investigate some semiclassical solutions of the Sasaki-Einstein backgrounds. 



Chapter 4 

Semi-classical Strings in 

Sasaki-Einstein Manifolds 

In this chapter we investigate semi-classical string solutions in general yp,q and 

V,q,r manifolds. Work in this direction has been done for the very special case 

of AdS5 x Tu examined in [107-109]. Moreover, a study for the case of BPS 

massless geodesics and their dual long BPS operators has been done in [111] for yp,q 

manifolds and in [112] for Lp,q,r. Dual giant gravitons have been studied in [llO] 

and recently giant magnons and spiky strings moving in a sector of Ad55 x T 1•1 have 

been examined in [ll3]. 

Here we mainly work on the gravity side and examine the motion of the string 

along some U(l) directions in Sasaki-Einstein spaces which is localized at p = 0 in 

the AdS space. We will see that in some cases it is difficult to find acceptable string 

solutions, due to the constraints imposed on the Sasaki-Einstein parameters. For the 

solutions we find, we present the energy-spin relation. The energy expressed in the 

momenta, depends on the manifold considered i.e. on p, q, r. We also present an ex­

tensive discussion on point-like BPS string solutions. Notice that we do not examine 

the string dynamics in AdS5 which are identical to the maximally supersymmetric 

case, since all the equations can be decoupled. 

64 
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4.1 The backgrounds 

4.1.1 yp,q Metrics 

The Sasaki-Einstein metrics yp,q on S2 x S3 can be presented in the following local 

form [100]: 

ds2 1 ~cy(dfP+sin2 ()dq})+ w(y~q(y)dy2 + q~)(d'lj;-cos()dcjJ) 2 

+ w(y) [da + f(y)(d'lj;- cos()dcjJ)] 2
, (4.1) 

or more compactly 

(4.2) 

where 

w(y) 
2(a- y2

) 

1- cy 

q(y) 
a- 3y2 + 2cy3 

a- y2 

f(y) 
ac- 2y + y2c 

6(a- y2) 
(4.3) 

For c = 0 the metric takes the local form of the standard homogeneous metric on 

T 1
,
1

. Generally we can scale the constant c to 1 by a diffeomorphism, and this is 

what we do in the rest of the paper. 

To make the space B a smooth complete compact manifold we should fix the 

coordinates appropriately [100]. The parameter a is restricted to the range 

0<a<1. ( 4.4) 

To make the base B4 an axially squashed S2 bundle over the round S2 one can 

choose the ranges of the coordinates ( (), cjJ, y, 'ljJ) to be 0 :::; () :::; 1r, 0 :::; cjJ :::; 21r, 

y1 :::; y :::; y2 and 0 :::; '1/J :::; 21r. The parameter 'ljJ is the azimuthal coordinate on the 

axially squashed S2 fibre and the round sphere S2 parametrized by ((),cjJ). Also, by 

choosing the above range for a, the following conditions of y are satisfied: y2 < a, 

w(y) > 0 and q(y) :2: 0. The equation q(y) = 0 is cubic and has three real roots, one 

negative and two positive. Naming the negative root Yq- and the smallest positive 

root Yq+ we must choose the range of the coordinate y to be 

(4.5) 
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with the boundaries corresponding to the south and north poles of the axially 

squashed 5 2 fibre. Also, it is necessary to have pj q rational in order to have a 

complete manifold. Note that 

(4.6) 

where ~ is defined for later use. Therefore, if the roots Yq+, Yq- are rational we 

speak for quasi-regular Sasaki-Einstein manifolds with the property that the volume 

of these manifolds having a rational relation to the volume of the 5 5
. However the 

rationality of pj q can be achieved even in cases that the two roots are irrational 

which gives irregular Sasaki-Einstein metrics. 

Using the expressions (B.1) presented in the appendix B.1, we can express Yq­

in terms of~ 

(4.7) 

where 0 < ~ < J3. Since Yq- is the root of the cubic, a can be expressed in terms 

of~ 

(4.8) 

and in order to ensure that Yq+ is the smallest positive root we constrain ~ to the 

range 0 < ~ < 3/2. If we prefer, we can express a in terms of p, q using (4.6) 

- ~ - p2 - 3q2 . I 4 2 - 3 2 (4.9) 
a- 2 4p3 v P q ' 

then the period of a is given by 2rrl where 

l= q 
3q2 - 2p2 + p( 4p2 - 3q2) 1/2 

(4.10) 

4.1.2 V,q,r Metrics 

The metric of this manifold is [104] 

ds;,q,r = ( d~ + CJ )
2 + ds[4J , ( 4.11) 

where 

( 4.12) 

( 4.13) 
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and 

(J = (a - X~ sin
2 
8 dcj; + ((3 - X~ COS

2 
8 d'l/J ' 

~(x) x(a- x)(/3- x)- 1-L, 

p2 = h(B)- X ' 

h(B) acos2 e + f3sin 2 e. 
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( 4.14) 

(4.15) 

( 4.16) 

( 4.17) 

Here p, q and r are relative positive coprime integers and 0 < p ::; q, 0 < r < p + q 

and p, q are coprime to s = p + q - r. The metrics depends on two non-trivial 

parameters since a, /3, 1-L are constants, and we can set one of them equal to a non­

zero number by rescaling the other two and x. The function ~(x) plays a similar 

role to the function f(y) in the yp,q manifold, so x should be restricted between the 

two lowest roots of ~(x) = 0, namely x1 and x2 , where 

(4.18) 

Moreover, in order to have a smooth geometry in 5 dimensions the parameters should 

satisfy a, f3 2: x2 where x2 2: x1 2: 0, which imply the already presented inequalities 

for p, q, r. The constants appearing in the metric are related to the roots of ~(x) 

as follows: 

(4.19) 

where x3 is the other root of ~(x). 

The metrics ( 4.1) of yp,q can be derived as a special case of Lp,q,r when p+q = 2r, 

which implies a = /3. The coordinate transformation is 

- - 7/J+c/J 
c = - 2a ""' = -- + 3a .., ' '+' 2 ' 

"~, = 7/J - q; + 3,.,, - e _ (2y + 1 )a 
'+' 2 '-'<, 8 = 2' x = 3 ' ( 4.20) 

with 1-L related to a by 

(4.21) 

where we redefine the coordinates and the constants of y.q,r using bars, in order to 

distinguish them from the ones of yp,q. 

We also present the metric of AdS5 in the Hopf coordinate system although we 

will be using the time element only 

( 4.22) 
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where the ranges of the angles are 0 ::; /31 ::; 1r /2, 0 ::; /32 , /33 ::; 21r. 

4.2 String solutions in yp,q background 

4.2.1 Equations of motion and conserved quantities 

In this section we present some spinning string solutions in the yp,q manifold. We 

will fix the angle e and hence we are allowing the string to move on a circle of 

the round sphere S 2 parametrized by the coordinate cp. On the squashed sphere 

the string can move on its azimuthal coordinate 1);, and sit at a constant value y0 

between the north and south poles. This value will be chosen carefully by solving 

the equations of motion. Finally, the string can move on the principle S 1 bundle 

over B parametrized by a. Notice that each of the directions that the string is 

allowed to spin has a U(1) symmetry. As usual the global time is expressed through 

the world-sheet time as t = K,T, and the string is localized at the point p = 0. The 

Polyakov action in the conformal gauge is given by 

s = J). J [ '2 12 1 - y . ? 12 1 . 2 12) -- dTdcr -(-t +t )+--(-0-+8 )+-(-y +y 
47r 6 wq 

+( 1- Y s~ +_(le~+ wf2e~)( -~2 + cp'2) + ( _ll + wf2)( -7};2 + 1);'2) + w( -a?+ a'2) 
6 9 9 

-2e0 (~ + wf2)( -·~~ + 1./J'cp') + 2wf( -a1}; + a''lj;')- 2wfeo( -a~+ a'cp')] . 

For convenience we do not write explicitly the dependence of y in the functions f, w 

and q. The classical equations of motion for constant e and y take the form 

1- Y( '? 12) (q f2)( ( .? ~'2) 2 ( /. : !' '')) -
6

- -cp- + cf> 820 + g + W 820 c/J~ - '+' + So -'!{XfJ + 'liJ <fJ 

+2wfso(-a~+a'cp')=O, (4.23) 

s~ ( ~2 - cp'2) + ( Q + Al) ( e~( -~2 + cp'2) -7};2 + 1);'2 - 2eo( -1};~ + 1./J' cp')) 
6 9 

+ W( -a2 + a'2 ) + 2A3 ( -a1}; + a''lj;'- eo( -a~+ a' cp')) = 0 , ( 4.24) 

8tJbt38 (w8oa + wf(801j;- eo8oc/J))] = 0, (4.25) 

88 ["Yi18 
( 
1 ~ y s~88 cp + (~ + wf2 )(e~8o<P- eo8o1./J)- wfeo8oa)] = 0, (4.26) 

8ebt38 ((~ + wr)(ao1./J- eoOoc/J) + wfaoa)] = 0, (4.27) 
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where we have used the conventions 

and we have written the three last equations in a more compact form since for the 

ansatze we will choose they are satisfied trivially. In addition to the above equations, 

we get two more which come from the variation of the action with respect to the 

worldsheet metric. These are equivalent to the components of the energy-momentum 

tensor being set to zero. The Virasoro constraints read 

1 ~ y s~~cp' + (~ + wf2 )(c~~cp' + ~'lj;'- ce(~'lj;' + ~cp')) + wixo:' 

+wf(O:'l/J' +~a:'- (ixcp' + ~o:')ce) = 0, (4.29) 

_'""2 + 1 ~ y s~(~2 + cp'2) + w(0:2 + o:'2) + 2wf(O:~ + o:''lj;'- (0:~ + o:'q/)ce) 

+(~ + wf2)(c~(~2 + cp'2) + ~2 + 'l/;'2- 2ce(~~ + cp''l/J')) 

+ 1 -6 Y (iJ2 + 8'2) + _1 (:z/ + y'2) = 0, (4.30) 
wq 

where only in the last equation ( 4.30) we include the terms corresponding to a 

non-constant 8 and y for later use in section 3.2. 

The symmetry of yp,q admits three conserved charges which are the angular mo­

menta corresponding to strings rotating along the a:, cp and 'lj; directions. Moreover, 

there exists one more conserved quantity, the classical energy, which is generated by 

the translational invariance along t. All of them are presented below: 

E ./). 1211" 
- da'"" 
27f 0 ' 

./). 127r . . 
- da (wa- wfcec/Y + wf'lj;) , 
27f 0 

./). {
27r ( . 1 - y 2 q 2 2 2) . 

2
7r la da - wfcea + (-

6
-s8 +gee+ wf c8 cp 

q 2 . ) -(g + wf )ce'l/J 

./). 12rr q . q . 
- da (wfa- (- + wf2)cec/Y + ( -

9 
+ wf2)'l/J) . 

27f 0 9 

(4.31) 

( 4.32) 

( 4.33) 

(4.34) 

Let us also define the new quantities Jtot = Jo. + J<P + J,p, £ = E/..fi, .:7; = Jd..fi 

and Jtot = Jtot! ..fi for later use. The conserved quantity corresponding to the total 



4.2. String solutions in yp,q background 70 

SU(2) angular momentum is 

1 2 12 1 ( )2 J2 = e + 2 J<P + ceJ'I/J + 1/.> • 
se 

( 4.35) 

Finally, for point-like stings localized at constant points on () and y, the following 

identity holds 

( 4.36) 

In the following we will choose an ansatz where the string is moving in yp,q along 

the three angles a, cp, '1/J and is at rest along all the other directions 

() = eo and y = Yo, 

( 4.37) 

( 4.38) 

where ()0 , y0 are constants and their exact values should be chosen to be consistent 

with the solutions of the equations of motion and the Virasoro constraints. Notice 

also, that due to the periodicity condition in the global coordinates of the manifold 

on CJ, the winding numbers have to be integers. For the linear dependence on T, f7 of 

(4.37), the equations of motion (4.25), (4.26) and (4.27) for a, cp and '1/J respectively, 

are trivially satisfied. 

4.2.2 Discussion on BPS solutions 

In this section we discuss the BPS point-like solutions. The R-symmetry in the 

field theory is dual to the canonically defined Reeb Killing vector field K on the 

Sasaki-Einstein manifolds [102, 103], given by 

and the R-charge is equal to 

K = 3_.?_- ~~ 
8'1/; 28a 

1 
QR = 2J,p- -Jex 3 . 

(4.39) 

( 4.40) 

Now in order to express the Hamiltonian in terms of the momenta, we are initially 

considering a general situation, where all the parameters in the internal manifold 

are dependent on T : 

(4.41) 
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and later we will focus on the string configurations mentioned in the previous section. 

The reason we are doing this, is to show how the general BPS solutions behave if 

we generalize our ansatz and activate simultaneously the motion on all angles. The 

process is equivalent to finding massless geodesics and is examined in [110, 111]. 

We start by expressing the energy in terms of the momenta. Now since we 

consider motion on thee and y coordinates, we have the-non zero conjugate momenta 

J 
- .f).127r d 1 . -- a--y 

y 211 0 w q l 

Jo = V>. {271" do- 1 - Y iJ . 
211 }0 6 

( 4.42) 

It is straightforward to substitute in the second Virasoro constraint the velocities in 

terms of their momenta and get 

(4.43) 

The energy of the string is given by (4.31), and is equal to the conformal dimension 

~ of the dual operator, and to find the lower bound of it, we should express ( 4.43) 

in terms of the R-charge. Using (4.40), we obtain via the algebra in (4.43): 

2 ( 3 ) 2 1 )? ? 6 ( 2 2) ~ = -')QR + -(Ja + 3yQR - + wqJ; + -- J - J,p . _ wq 1- y 
( 4.44) 

Since Yq+ < 1, which is the upper bound of y, and J 2 ~ JJ, all the terms in 

the above equation are positive, which leads to the inequality ~ ~ 3/2 Q R· The 

solutions generated by the equality correspond to BPS operators, and in order to 

saturate the bound, all the following equations must be satisfied 

Jy = 0, Jo = 0, Ja. = -3yQR. (4.45) 

The two first equations fix e and y to unknown constants. The next two can be 

used to determine the relationship between a, cp, 'ljJ using the constants y, e. The 

situation now is getting closer to our initial configuration in the previous section 

where we considered y, e as constant, with the difference that the T dependence of 

the U(1) angles is now unknown, and needs to be determined by the equations of 

motion and the Virasoro constraints. In order to find BPS solutions we need to solve 

the equations of motion (4.23-4.27) together with (4.45) and use (4.30) to calculate 

the energy. The first Virasoro constraint ( 4.29) is trivially satisfied. 



4.2. String solutions in yp,q background 72 

It is more convenient to proceed by solving first the equations ( 4.25), ( 4.26) and 

(4.27) for constant y and B, since their solutions are very special. As we said above, 

these equations are satisfied trivially for angles with linear dependence on T, i.e. the 

one written in ( 4.37) where for the point-like case is equivalent to set all the mi zero. 

The rest of the solutions we get constrain y to live on its maximum or minimum 

values, which means on the poles of the squashed sphere. More specifically the 

solutions are 

'l/J = w3T or 
1- y .. 

Q=--1/J. 
6y 

( 4.46) 

( 4.4 7) 

However, when we take account of the boundary conditions in (4.47), we see that 

?j; = 0, since we are at the poles of the squashed sphere. This fixes 1/J to be constant 

and the other two U ( 1) angles to have linear dependence on T. This makes in a 

sense (4.47) a special case of (4.46). So the only way to satisfy the above equations 

for the non-constant angles is to have a linear dependence on T, where the B and y 

are not yet fixed to a specific value. 

Bearing the above results in mind, we proceed by finding general solutions that 

satisfy the two first equations of motion (4.23), (4.24), together with the BPS equa­

tions ( 4.45) and present some solutions, starting with a solution which was also 

found in [111] 

<P = 0, ( 4.48) 

We see that this solution is valid for any y that satisfies the inequality (4.5), since 

in this case, the last equation of (4.45) is satisfied trivially. Additionally, the third 

equation in (4.45) is satisfied also trivially and hence B can take any constant value 

inside the region where it is defined. However notice that in order for the solution 

to satisfy (4.25-4.27), the a and 'ljJ angles must have a linear dependence on T, and 

hence 
W3 

a= - 6 T, 'l/J = W 3 T. (4.49) 

The energy for this solution is equal to E = J:Xi-J;I/3 and the conserved momenta 
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in this case are 

1 1\ . 
J<P = 9v >.(y- 1)c8 'lj;, 

and are related each other by 

In this case the energy can be written as 

1 1\ . 
J>/J = --v >.(y- 1)'lj; 

9 

E= 3 IJ I 
I(Y- 1)(ce- 1)- 6yl tot · 
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( 4.50) 

(4.51) 

(4.52) 

Notice that in the above relation the factor of proportionality is independent of a, 

and hence on the manifold considered. 

Another set of possible solutions different than ( 4.49) are: 

() = 0, vr-=a 
y=1± J3 ' 

. q;- 'lj; 
Q=--

6 ' 
(4.53) 

where again er, 4;, 'ljJ have to be linear with T in order for the above expressions to 

satisfy (4.25), (4.26) and (4.27). They solution is a special case of (4.55) for()= 0 

and as we show in the next section, it is unfortunately always greater than Yq+ 

except in the limit y = Yq+ = 1. This is the case where a = 1 and we are not going 

to examine it any further. However, to be more accurate here, we have to set~= 0, 

since for () = 0 we are on the pole of 5 2 and there is no meaning in defining rotation 

along 4; direction. Hence, the corresponding equation in ( 4.53) should be modified 

to a = --J; /6. 

More interesting are the following solutions where y lives on its boundaries 

() = 0, q; = 0, 
. y+ 2. 

Q = -f;y'lj;, ( 4.54) 

and the dependencies of the non-constant angles on T are linear. This solution 

is acceptable since the inequality (4.5) is satisfied. However, by considering the 

boundary conditions, the solution become trivial, since we are on the poles of the 

squashed sphere where rotation along the 1/J direction cannot be defined. Hence, we 

have to impose 'lj; = 0 and then the whole string ansatz becomes static. 

One could possibly find, other non-interesting solutions at the limits a = 0, 1, 

but it seems that there are no other BPS solutions than the ones presented above, 
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which allow a to be at other points except zero and one. The solution (4.54) has as 

its main property to restrict y to the boundaries of (4.5) and to localise the string 

on the two three-submanifolds obtained by the initial manifold for y = Yq±, and 

denoted by ~- ~ 5 3 I Zp+q, ~+ ~ 5 3 I Zp+q· The cones over these Lens spaces are 

divisors of C(YP,q) and hence supersymmetric submanifolds [102]. This is because 

the induced volume form on ~ is equal to the four-form :J = J A J 12 , where J here 

is the Kahler symplectic form. Hence, these cones are calibrated with respect to :f. 

However, by imposing the boundary conditions the string ansatz becomes static. 

In the following sections, non-BPS point-like, as well as extended string solutions, 

will be examined. 

4.2.3 One angle solution 

In this section we examine the simplest case, where only the angle which parametrizes 

some U(1) direction of the manifold in this coordinate system is turned on. In this 

case it is known that classical spinning string solutions that wrap around the circle 

do not exist due to diffeomorphism invariance, or equivalently because the first Vi­

rasoro constraint forces the metric element in the spinning direction to vanish1
, or 

make the string ansatz trivial. In yp,q manifolds however, we just mention for com­

pleteness, that the diagonal metric elements in these three Killing vector directions 

can not vanish for y in the range (4.5) and hence the Virasoro constraints force the 

ansatz in that case to become static. Let us show briefly that the diagonal metric 

elements in the U(1) directions can not vanish. 

For the 9acx, this is obvious since it is equal to zero for y = ±Ja and we already 

know that these values do not satisfy (4.5). For the 9<t><P element, the situation is 

more complicated since it is equal to zero for 

;r=a~ 
Y± = 1 ± J3 ( 4.55) 

Obviously the Y+ solution is discarded since is bigger than one, but also the Y­

solution is outside the desirable area as can be seen in Figure 4.1. The last diagonal 

1 which conceptually does not look right since we consider motion along this direction only. 
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Q 1.0 

Figure 4.1: We plot Y± = 1 ± v'!=ac~/J3 together with the yq+, Yq- versus a, B. 

The yq_ , Yq+ surfaces are colored red and green respectively, while Y- , Y+ colored 

blue and orange respectively. From the figure we notice that both Y± are greater 

than Yq+ for the whole range of a and (). 

metric element 9w1/J is zero for Y± = 1 ± v'!=a! J3, where Y- is the lower bound of 

the previous solution and obviously this metric element cannot be zero too. 

Let us now begin by looking for point-like string solutions. By allowing the string 

to move only along the a direction , and using the ansatz a = w1 t , the only non­

trivially satisfied equation that we need to solve is (4.24), which takes the simple 

form: 

( 2 _ 2(a- 1)) 2 = 0 
( )

2 wl , y-1 
( 4.56) 

and has solutions 

Y± = 1± v'1=(l. (4.57) 

These solutions are plotted with Yq± (Figure 4.2), and is obvious that only Y- is 

an acceptable solution , since Yq- :::; Y- :::; Yq+ for the whole range of a. Then, for 

y = y_ the second Virasoro constraint ( 4.30) gives 

K-
2 = w w~ => K-

2 = 4 (1- v'!=a) w~ . ( 4.58) 
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Figure 4.2: Plotting the roots y (blue) of (4.57) with Yq- (red), Yq+ (green) versus 

a. This color mapping to the solution will be the same in the other plots too. In the 

first plot we see that the smaller solution y_ is between the two roots of q(y) = 0 

and in the second one that the greater root Y+ is outside the allowed area since 

Y+ > 1. 

Then using (4.31)- (4.34), we get for energy and the non zero conserved charges 

E 

Combining the above relations we end up with 

E= ~* V ;J;; E = .j). J 1 J' 
2 1-JI=Q: 0 

( 4.59) 

( 4.60) 

( 4.61) 

Note that the energy depends linearly on Jo = .:ltat and depends on the manifold 

yp,q, since a is related top, q by the equation ( 4.8) , with the factor of proportionality 

being a monotonically decreasing function with respect to a. On the other hand, 

the function of the energy in terms of a, w1 is a monotonically increasing function 

with respect to a as can be seen from ( 4.58). As a final remark, we mention that all 

the calculations are independent of the angle () , which can be chosen as any constant 

angle. 

For completeness we now can consider a static string along the a direction with 

a = m 1CJ. The solution of the equation of motion remains the same, given by (4.57). 

The only difference is that all the momenta are now equal to zero and the energy is 

expressed as 

~2 = wmi * E = 2~ V(1-~) mi. ( 4.62) 
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Following a similar procedure we choose a different angle cp with a similar ansatz 

and consider a point-like string motion with cp = w2 t. Then, the non-trivial equations 

are (4.23) and (4.24), which take the form 

(a- 1)s2a 2 _ 
0 18(y - 1) w2 - ' 

( 4.63) 

a- 7- 6(y- 2)y +(a- 1)c2a 2 
36(y - 1 )2 w2 = 0 ' ( 4.64) 

and do not give any new real solution, since the first equation is solved for () = 

mr /2, n = (0, 1, 2) and the second one can not be solved for real y. The situation is 

similar when we choose the static string ansatz cp = m2cr, where the above equations 

remain the same with w2 replaced by m 2 , and obviously again they do not give any 

new solutions. 

Finally, for the third angle which parametrizes the remaining U(1) direction, 

again consider the string ansatz 1/J = w3t. The only non-trivial equation of motion 

is ( 4.24) 
a- 4 - 3(y - 2)y 2 

18(y- 1)2 w3 = 0 ' (4.65) 

which has solutions y = 1 ± J -1 +a/ V3 and are not real. The situation is similar 

for the ansatz 1/J = m 3cr, since the equation (4.65) remains the same, with only 

difference the replacement of w3 by m3 . 

Summarizing, if we restrict the string to rotate or wrap only along one U(1) 

direction in yp,q as we have done above, there is only one possible configuration. It 

is the point-like string moving along the fibre direction a = w1 1. This is one spin 

solution, where the energy is proportional to Jc~ and depends on the manifold yp,q 

in a way that the factor of proportionality is a decreasing function of a. We expect 

that the solution ( 4.57) is not BPS. More specifically the Hamiltonian here is 

H = JX~ww~ = 2/X (1- v'l=a) wi. ( 4.66) 

Hence the R-charge and the conformal dimension of the dual operator can be written 

as 
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It is obvious that L1 > 3/2 Q R always, since the expression ( 4a - w) is always 

positive, and become equal to zero only in the limits a = 0, 1. Hence, the solution 

is non-BPS. 

4.2.4 The two Angle Solutions 

Here we examine some solutions where the strings are moving along two U(l) direc­

tions. We are looking for possible string solutions, with motion along the directions 

a, 1/J, motivated by the fact that motion in these directions gives one BPS solution. 

Considering point-like strings and the simple ansatz2 

( 4.67) 

we get only one non-trivial equation (4.24). This is solved by 

( 4.68) 

We do not examine solutions in the limits a = 0, 1 and in the rest of the analysis 

we will ignore solutions that are valid only there. The solution w1 = -w3 /6 is BPS 

and is examined in a previous section. The other solution for y, is acceptable in a 

region which will be specified. Notice, that for 

y+2 
w1 = -~w3, (4.69) 

which is the solution derived in (4.54), the solution (4.68) becomes BPS and lives 

on y = Yq±, but by considering the boundary conditions becomes static. 

For the general case, first of all, one must find the values for which the square 

root is real and these are for 

w3 > 0, 

w3 < 0, 

( 4. 70) 

( 4. 71) 

2Whenever we are writing an ansatz we suppose that all the parameters w;, m; are non-zero. 
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1.0 I ) 

Figure 4.3: We plot Y± versus n, a where w1 = nw3 with n > 1/2. In the first plot 

with Y+ we clearly see that there is no acceptable solution. In the second plot, the 

y_ give acceptable solutions. 

Then we can see that indeed there exists solutions of y that are between Yq- and 

yq+. Actually, the two solutions of ( 4.68) are equivalent depending on the sign of 

numbers w1 , w3 , i.e. if they are positive or negative. What one can say directly, is 

that the solution for y with RHS equal to 'one minus a positive quantity', is the one 

that could be acceptable in some intervals. In order keep the presentation simpler 

we choose w1, w3 > 0. To give a visual picture of how the solutions behave we plot 

the surfaces for some random relation between w 1 , w:3 , say w 1 = n w3 in Figure 4.3. 

We see that y_ is an acceptable solution for 

4(7 + 18n) 
a> (1 + 6n) 3 ' 

which also implies n > 1/2 in order for a to be smaller than 1. 

For the general case, the equation ( 4.30) gives 

where we have substituted the solution y. 

( 4. 72) 

(4. 73) 
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The conserved charges for our solution, given from (4.32), (4.33), (4.34) are 

lo = V,\ ( 4w
1 
+ 4( -3w~ + w3) (1- a)(6w1 + w3)) 

(4.74) 
3(2wr- w3) ' 

]<I> 
(1 - a)(6w1 + w3) 

( 4. 75) 
3(2wr - w3) 

J..p J:i:w3 (1 - a)(6wr + w3) 
( 4. 76) = -

3 3(2wr- w3) 

where ( 4.68) used. Notice the relation J <P = -coJ..p. It seems that the energy 

depends on the momenta in a transcendental way. This is due to the complicated 

expression of y which depends on w1,3 , and enters in the momenta through the 

functions w, q, f. On the other hand, as we can see from (4.73), the energy is a 

monotonically increasing function with respect to a when w1 , w3 are fixed. This 

behavior is similar to the one angle solution we found before, but it will be more 

interesting to have an energy-spin relation, which could be found by substituting in 

the second Virasoro constraint the wu with two conserved charges. 

To finish, let us consider the example of Y2,1 . To find the corresponding value 

of a we can use ( 4.8) and find that 

1 ( v'l3) a = 4 2 - -
8
- ~ 0.387327 . (4.77) 

Substituting in (4.72), we see that indeed we can get solutions for y that are inside 

the desirable interval when w1 > 0.8568w3, or equivalently n > 0.8568. To simplify 

things even more we can choose()= 0, and solve for w1 , w3 in terms of la, J..p to get 

the energy-spin relation. The energy-spin relation looks lengthy and complicated 

and seems to be completely transcendental, so we choose not to present it here. 

Generalizing the ansatz by adding a O" dependence on the angle a and allowing 

the string to spin along this direction, we search for string solutions using 

'lj; = W3T. (4.78) 

The non-trivial equations that needs to be solved in this case are ( 4.24) and ( 4.29). 

One acceptable solution is 

y =a, (4.79) 
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"'3 
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Figure 4.4: Plotting y , Yq+ , Yq- versus w3 , m1 . The transparent plane is at a= 1/2. 

When (4.80) satisfied , a< 1/2 and hence our solution lives in the area between the 

Yq+, Yq-· Also notice that for a> 1 there is no green surface, since the values of Yq+ 

become complex, as expected. 

By considering a< 1, and choosing w 1 , w3 > 0, we get \m1 \ > w3 j3. To satisfy the 

condition ( 4. 5) , we have to restrict m 1 further as 

( 4.80) 

Hence solutions that satisfy the above condition are acceptable as can be also seen 

clearly in Figure 4.4. 

To calculate the energy we use ( 4.30) which gives 

(4.81) 

and the corresponding charges are given by 

Before we continue, we point out that one has to check if the function of a we get 

from (4.79) can give rational values to the expression Yq+ ~ Yq -· This was not done 

in the previous cases since a was not dependent on w or m , and hence it can take 

any appropriate value between zero and one, which would make the subtraction of 

the two roots of q(y) = 0 rational. In this case, one way to solve this problem is to 

equate the expression for a, given in (4.8), with our solution (4.79), and see if we can 

get rational solutions in the acceptable interval for ~. One more reason to express w3 
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in terms of a is that is more preferable to choose a manifold yp,q, and from that to 

specify the allowed values for wi, mi, instead of proceeding in the reverse direction. 

Using (4.8) and (4.79), we get for w3 ,m3 

3Ja 3J9 + J9- 3e ( -3 + 4~2 ) _ 
w3 = ± m1 = ± m1 = ±Dm1 , 

V2 - a J27 + (3- 4~2 ) J9- 3~2 
( 4.83) 

where D is defined from the above equation. We are going examine the solutions 

with the plus sign which imply m 1 > 0. For 0 < ~ < 3/2, the multiplicative factor 

satisfies 0 < D < 3, and by imposing the constraint ( 4.80), we are limited in the 

interval 
J3 1 

~<-{:}a<-.., 2 2 ' ( 4.84) 

which also means that D < J3. The corresponding conserved charges in terms of 

a, m 1 are 

JQ = 0, 

or using w's 

J. = -~(1- 2a)cew
3

. 
q> 9 ' 

J _ ~(1- 2a) 
1/;-

9 
W3 · 

The sum of the momenta is 

fo(2a- 1)(ce- 1) 
ltot= ~ m1 · 

3v2- a 

Finally, the relation between the charges is 

ce 
J,p = -ceJ7}; = ---Jtot . 

1- ce 

( 4.85) 

( 4.86) 

( 4.87) 

( 4.88) 

Notice, that the zeroth momentum ] 0 can follow from a more general solution such 

as y = a and w1 = w3 j6. 

To find the energy, we use ( 4.30) to get 

2 a(5- 4a) 2 
K. = 2 ml ' -a 

( 4.89) 

which can be written in terms of w3 by solving ( 4.83) for m,. As before for a fixed 

w3 , the energy is a monotonically increasing function with respect to a for a < 1/2. 

Using ( 4.85), we get the energy of our solution in terms of the m omenta 

" a(5- 4a) 2 - 3v5- 4a J 
E=v>. m t 2 - a 1 - ( 1 - 2a) ( 1 - Ce) ot · 

( 4.90) 
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Figure 4.5: In the first plot is the energy versus m 1 , a. In the second plot the 

expression E · (1 - ce) is plotted versus Jtot, a, and one can notice the sharp rise of 

the energy as a----. 1/2. The plot range on energy is restricted intentionally to finite 

region in order to have a clear shape of the surface. 

The angle e is a constant, but in case we want to eliminate it, we can express c8 in 

terms of the momenta from equation ( 4.88) and get 

E = 3)5 - 4a Jw . 
(1- 2a) · 

( 4.91) 

It is also interesting to insert the ~ parameters in the expressions we calculate using 

( 4. 83). Then the energy in terms of the momenta and the rational number ~ is 

E= 3J3 
(3- 4~2 )(1 - ce) 

( 4.92) 

The equations ( 4.90) or ( 4.92) show that the energy is proportional to the momenta 

and depends on a. The exact dependence of the energy multiplied by ( 1 - c8 ), in 

order to avoid the dependence on the third parameter e and to be able to plot a 

surface, is presented in Figure 4.5. We can see that the factor of proportionality 

between the energy and the momenta, is monotonically increasing with respect to a. 

However, the form of this factor does not seem to follow a specific pattern between 

the different string solutions. This occurs mainly because y depends on w and m 

in a different way for each string solution. Also notice that the momenta are not 

taking continuous values but are quantized on a and m.1. Hence, the energy will not 

be a continuous function of the parameters , even if we plot it as continuous in order 

to show its behavior. 
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To finish the analysis for this case we mention that there are other solutions of 

(4.24) and (4.29), but these solutions are excluded since there is no a that satisfies 

the rationality constraint of Yq+ - Yq- and at the same time gives integer winding 

numbers. 

4.3 String solutions in Lp,q,r background 

4.3.1 Equations of motion and conserved quantities 

In this section we construct solutions for strings moving on the V,q,r manifold. The 

configuration is chosen to be similar with the analysis of the yp,q manifold. Firstly, 

we choose the string to sit at a constant angle 8. In this manifold, the role of the 

previous y coordinate is played by the coordinate x, and so we restrict the string 

to be localized at a constant point x0 , which has to respect the constraint ( 4.18). 

For some configurations the points 8 and x that the string is sitting can be chosen 

arbitrary, but in most cases the equations of the system constrain at least one of 

them. As for the string dynamics, we are going to consider motion along some of the 

three U(l) directions and try to find the energy-spin relation and how the energy is 

related on the properties of the general manifold. 

Furthermore, we are not going to analyze the string dynamics in the AdS5 since 

these are identical to the maximally supersymmetric case. To simplify things we are 

localizing the string also at p = 0 on AdS5 and expressing the global time through 

the world-sheet time by t = KT. Thus, the Polyakov action in the conformal gauge 

is given by 

s = ~jd d [ ( ") '2) ( c2 '2) P
2

( -2 '2) -- T f7 - -t- + i + -.., + ~ +- -X +X + 
471 4.6. 

p2( 8'2 8'2) ((a-x)2 2 .6.s~+hc~(a-x)2) 2( j,2 •12) 
+-h - + + ') so+ 2 ') so -'~-' + cp + 

a- p a-

(
(f3-x)2 2 .6.c~+hs~(f3-x)2 ) 2( oi,2 o/.'2) 

+ 132 eo+ p2f32 eo -'~-' + '~-' + 

+ 2 ((a_ x)(/3 _ x) + .6.- h(a- x)(/3- x)) c~s~ (-?;;~+V;' cj;') + 
p2 a/3 

+2a: x s~( -~~ + (cj;') + 213 ~ x d( -~?;;+(V;') . 
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Again, we do not write the dependence of the functions on their arguments, in order 

to simplify the presentation. Also notice that a should not be confused with the 

same letter used in the case of yp,q manifolds to name the angle. Before we start 

writing down the equations of motion, we define for convenience some new quantities. 

We identify the three expressions which are multiplied by ( -~2 + qP), ( -1/i + 'lj;12 ) 

and ( -?;;~ + 'l/J1ql), in the above action, which also correspond to metric elements, 

with the functions dl (x, e) = gq,q,, d2(x, e) = g'l/;1/; and d3(x, e) = gq,'l/; respectively. 

The partial derivatives of these functions are presented in Appendix B.2, and will 

be used later. The equations of motion for the e, x are: 

8od1 ( -~2 + c/Y12 ) + 8od2( -1/;2 + 'l/J12 ) + 28od3( -?;;~ + 'l/J1 q/) 
a-x .. (3-x .. 

+2-a-S2o( -~cjy + ( cP1) - 2-
13

-s2o( -~'1/J + ('l/J1) = ex 4.93) 

Oxdl ( -~2 + c/Y'2) + Oxd2( -1/;2 + 'l/J12 ) + 28xd3( -1/;~ + 'l/J1 cP1
) 

2 2 . . I I) 2 ") ( . . I I) -;s0 ( -~cjy + ~ cP - """ffic0 -~'1/J + ~ '1/J = 0 (,4.94) 

where we have used the fact that the string is localized at two fixed points e0 , x 0 . 

The equations of motion for the three U(l) directions cjy, 'lj;, and~ are 

( 4.95) 

( 4.96) 

( 4.97) 

Note that they are trivially satisfied for the linear ansatz we choose. Furthermore, 

the Virasoro constraints are given by 

· · . · . a-x · · 
~( + d1cPcP1 + d2'1/J'I// + d3('l/Jc/Y1 + 'l/J1c/Y) + --s~(~cP1 + (cjy) 

a 

+/3; x c~(~'lj;1 + (1/;) = 0 {4.98) 

/"1,2 = ~2 + (2 + dl(~2 + c/YI2) + d2(1;;2 + 'l/JI2) + 2d3(1/;~ + '1/Jicjyl) 

+2 a: X s~(~~ + ( cjy1) + 2(3; X C~(~?p + (·tj/) ( 4.99) 
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Finally, the conserved charges associated to the three U ( 1) isometries are 

(4.100) 

Jq, ( 4.101) 

J'l/; = (4.102) 

where the classical energy is given by (4.31). In the next section we use these equa­

tions to find some string solutions on Lp,q,r. 

The ansatz for the string motion we consider have a linear dependence with T 

and a and are the following 

e = eo and X = Xo, 

where e0 , x 0 are constants and we are also setting J-l = 1. 

4.3.2 One angle solution 

(4.103) 

(4.104) 

It is straight-forward to see that in the coordinate system we chose for the metric, 

there are solutions for point-like strings moving on the direction ~, since the metric 

element 9f,f, is constant. As we also commented in a previous section, a general 

property of the Virasoro constraints is that they do not allow any extended spinning 

string solutions, where the strings are moving only along one U(1) direction. 

We start by considering the trivial case of~ = w1T, where all the equations 

of motion and the first Virasoro constraint are satisfied trivially. The conserved 

momenta are 

( 4.105) 

The second Virasoro constraint gives the energy 

( 4.106) 
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which is presented in terms of the momenta. We see that the energy is proportional 

to the total spin and the factor of proportionality depends on a, /3, and hence on 

the manifold Lp,q,r considered. 

Now consider a point-like string rotating along cp direction with rp = w2T. The 

first two equations of motion give 

( 4.107) 

In the region that a, f3 are defined, the only real solution is when e = 0, which makes 

the 9ri><t> element zero. As a final possibility, consider the string moving according to 

7/J = w3T, which has to satisfy the equations 

( 4.108) 

These have a real solution only for e = 1r /2 which makes the metric element in the 

direction of rotation equal to zero. 

For completeness we mention that the corresponding static string ansatze mi(J, 

gives an acceptable solution only for a wrapping around the a direction, and in this 

case all the conserved momenta are zero. 

4.3.3 The two angle solutions 

In this section we try to sketch a way of finding solutions of strings moving in two 

Killing vector directions simultaneously. 

vVe choose to activate the angles ~' 7/J, and initially look for point-like string 

solutions 

(4.109) 

The equations of motion reduce to 

( 4.110) 

where in order to check easier the inequality ( 4.18), and solve the above equations, 

it is convenient to give an appropriate value to angle e. By choosing e = n/4 we get 

a solution 

a+5~ 
X= 

6 
(4.111) 
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ID 

Figure 4.6: In the plot are presented the solutions of D.(x), x1 and x2 , together 

with x ( 4.111) versus the manifold parameters a ,/3. The solution x is plotted with 

blue and we see that there is no region such that x is between of x 1 , x2 where the 

manifold constraints are satisfied. 

To make sure the solution is real we need to constrain w3 by 

w1 < 0 and 0 < w3 < - 2w1 or w1 > 0 and - 2w1 < w3 < 0 . (4.112) 

Moreover, using the inequalities between x2 , a , and {3 we can easily see that x2 ~ 

(a+ 5{3)/6, which means that x can only be equal to x2 . This seems to be a general 

feature for these solutions, since even for f) = 1r /3, the situation is similar. But for 

a general angle B, it is more difficult to solve the equations of motion and identify 

this behavior. However , in the cases mentioned above, the solution x is always 

strictly greater than x2 , and hence not acceptable (Figure 4.6). There are also other 

solutions that could give acceptable answers , but need more extensive analysis . 

To obtain an extended string configuration consider the ansatz 

( 4.113) 

which gives the following system of equations 

2 2 {3 -x 
8od2( -w3 + m 3)- 2-{3-s2o( - w1w3 + m1m3) = 0 , (4.114) 

2 2 2 2 8xd2( -w3 + m 3)- 7Jc0 ( -w1w3 + m1m3) = 0 , (4.115) 

{3-x2 
w1m1 + d2w3m3 + -{3-c0(w1ma + m1w3) = 0. ( 4.116) 
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For w 1 = m 1 and w3 = m3 reduces to a single equation 

w5 f3- x 2 w3 
1 + d2? + 2-f3-c8 - = 0 

Wi wl 
( 4.117) 

and the simpler solution is for e = 1r 14, 

X= ( 4.118) 

In order this solution to satisfy the inequalities between er, (3, and x, is essential for 

the following inequality I er- /31 < 2//32 to be satisfied. However, one can see that the 

solution is not acceptable because it is always greater than x2 . It is also interesting 

to examine the more complicated solutions, and see if they can satisfy (4.18). 

Since it is complicated to check analytically if the solutions which involve a 

general angle e satisfy the manifold constraints, we choose not to present them here, 

and maybe leave the problem for further investigation in the future. However, we 

already gave the basic setup with all the equations, found some pointlike solutions 

and also show the method to follow to find new string solutions moving in the U(1) 

directions of Lp,q,r manifolds. 

4.4 Discussions 

In this chapter, we initially examine the string motion on yp,q along the U(1) di­

rections. To accept the solutions of the equations of motion and the Virasoro con­

straints, we must make sure that they also satisfy the Sasaki-Einstein constraints in 

a way we described above. Due to the presence of all these constraints, the number 

of acceptable string solutions is limited drastically. Then we show that when the 

energy is expressed in terms of the conserved momenta, the factors multiplied with 

them depend on the manifold, i.e. on the parameter a, and they are monotonic 

functions with respect to it. Hence, the extrema of these functions occur for max­

imum or minimum values of a. Except this behavior, it seems that the dispersion 

relations depend on the parameter a in a transcendental way. 

Furthermore, by looking at massless geodesics, we find that there is a unique 

BPS solution, which was already known. What we see here is that the string co­

ordinates must depend linearly with time. Moreover, for this solution, the string 
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can sit anywhere in the allowed y interval satisfying ( 4.5). An other point-like 

string solution was found which lives on the two supersymmetric three-submanifolds 

5 3 I Zp+q, 5 3 I Zp+q, obtained by the initial manifold for y = Yq±. However, by con­

sidering the boundary conditions, the solution becomes static, and we argue that 

there are no other point-like BPS solutions in the analysis presented above. 

One can work similarly in the cohomogeneity two manifolds Lp,q,r, finding some 

point-like and classical string solutions. Again, we expect that when the energy is 

expressed in terms of the conserved momenta., it does not take the same form uni­

formly over the family of manifolds Lp,q,r, and basically the discussion we presented 

for the yp,q manifold remain similar with the V,q,r manifold. However, in this case, 

due to the large number of parameters, it is more difficult to check analytically in 

full generality whether or not the solutions satisfy the manifold constraints. One 

can certainly try to find some more solutions for these manifolds. 



Chapter 5 

Concluding Remarks 

In this chapter we discuss mostly some extensions of the work presented in the 

previous chapters and some recent developments. 

Let us start this discussion with the Wilson loops in f3 deformed backgrounds. 

There are many indications, like the undeformed expectation value of the near 1/4 

BPS Wilson loop we considered, or the field theory analysis we presented, that at 

least in the large N the Wilson loop operator description is exactly the same with 

the undeformed N = 4 super Yang-Mills. This could be the case even in general, 

considering random N as we already have described. However, it is not impossible 

that for a generic N the Wilson loop operator will be the one in the undeformed 

case, multiplied by an exponential of {3 / N, which in the limit of large N reproduces 

the undeformed result. To get a final definite answer to this question, one has to 

find the Wilson loop operator with the method and the setup presented in Appendix 

A.l. 

In gravity side would be interesting to try to check the supersymmetry of the 

near 1/4 BPS Wilson loop configuration, using the Killing spinors and compare 

the behavior of the calculations with the ones already done in N = 4 super Yang­

Mills [86]. Of course it is expected that no supersymmetry is preserved. 

More interesting in our opinion, is to check in the gravity side whether the Wilson 

loop expectation value in the f3 deformed theories remain undeformed for a general 

smooth loop. It seems that the method that this can be done, is by examining 

the Polyakov on-shell action of the T sT deformed background, of a smooth Wilson 

91 
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loop that sits on the boundary of AdS. The area of the minimal surface that is 

produced it is likely to be undeformed. This analysis could be very demanding, so 

one can choose particular ansatze, other than the one considered above, of circular 

Wilson loops and check whether their areas of minimal surfaces are undeformed. 

If this happens, it is a strong evidence that in the general case the area of the 

minimal surface of the deformed background remains undeformed, but not a proof. 

To summarize, the problem is well defined: Take any minimal surface on AdS5 x S5 

with boundary on AdS and the desirable boundary conditions, deform the sphere, 

and consider again the minimal surface with the deformed boundary conditions. 

The question to be answered is whether the area of this minimal surface change, 

and if yes how depends on the deformation parameter. We have shown that at least 

in one case does not, and it seems that this could happen in more general cases too, 

but this is not proven yet. 

From the work in chapter 2 it seems that the cancelation of the UV divergence 

and the Wilson loop constraint, are not related to the preserved supersymmetry of 

the theory. We saw several examples with theories with reduced supersymmetries, 

where the cancelation of the divergence with the use of Legendre transform and the 

Wilson loop constraint is possible. In most of these cases the Wilson loop constraint 

seems not to be possible to come from the supersymmetry preservation. One case, 

that it is definitely worth mentioning, is the case of the multi-,8 deformed theories, 

which do not preserve any of supersymmetries. In this theory the cancelation of the 

divergences with the use of the Wilson loop constraint and the Legendre transform 

is still accomplishable, and since there is no supersymmetry the cancelation can 

not depend on it. However, when one is using the ,B deformed backgrounds, should 

be aware that there could be some kind of hidden structure, that gives to these 

backgrounds some supersymmetric-like properties. This saying, is just a speculation 

and maybe not true, but we have to be cautious since several other results i.e. 

instantons, produced in the original theories, seems to carry on in the deformed 

theories, without affected crucially from this supersymmetry reduction. Of course, 

is more likely that these results are independent of the supersymmetry. In any case 

the conclusions for the UV divergences of the Wilson loops and their no relation to 
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the supersymmetry are true, since we use several other backgrounds with reduced 

su persymmetries. 

Furthermore, the fact that the Wilson loop expectation value for the case of the 

Sakai-Sugimoto model is finite can be used to produce several useful results in holo­

graphic models of QCD [115]. Moreover, recently it is examined the correspondence 

between the Wilson loops in (p + 1) dimensional super Yang-Mills and the minimal 

surface in the black p-brane background [116]. It seems that our analysis for the 

cancelation of the divergences with the Legendre transform, can be repeated there 

in a straightforward way. It is also straightforward to say that our results can be 

extended in different dimensions or similar spaces. For example one should expect 

that the Wilson loops in the AdS3 x S7 will have divergence which canceled with 

the Legendre transform. 

One very interesting case, is the Wilson loop operator in the 3-dimensional N = 6 

supersymmetric Chern-Simons theory [58], where recently the correspondence of 

Wilson loop has been analyzed [71-74] (see also [75] for related discussions). The 

ABJM theory has a U(N) x U(N) gauge and opposite levels k and -k. The matter 

fields are bifundamental scalar fields A 1 , A 2 in the representation (N, N) and anti­

bifundamental fields B 1 , B2 in the representation (N, N) and fermions. On the field 

theory side, a vVilson loop operator which couples to a certain bilinear combination 

of the bifundamental fields has been considered 

W[C] = ~ Tr P exp [i. dr (iAJLi;JL + 
2
: I±IM/Y1Y])] , (5.1) 

where Y 1 = (A 1 , A2 , B 1 , B2 ) and the curve C is a straight line or a circle. For the 

special case where C is spacelike and l'vf = diag(1, 1, -1, -1), the operator is 1/6 

BPS. In this case the UV divergences of this operator canceled in the perturbation 

theory. It was also argued [72] that this 1/6 BPS Wilson loop operator describes 

a string smeared over a CP1 in CP3 . The smeared string preserves a SU(2) x 

SU(2) subgroup of the SU( 4) isometry, which is precisely the amount of R-symmetry 

preserved by the operator ( 5.1) for this particular choice of M. As a smeared 

configuration, one would not expect to have a relation like (2.23) to relate the 

worldsheet boundary conditions with the couplings of the scalar fields in the Wilson 

loop. In general one may consider localized string in CP3 and ask how it's boundary 
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condition appears in the Wilson loop. We will consider a natural proposal in the 

following. However it turns out the correct operator has to be more complicated 

than this. 

To describe the string theory on C P 3 (see for example, [76]), it is convenient to 

use the complex coordinates w1 

4 

L wiii/ = 1, (5.2) 
1=1 

subjected to the constraint 

4 

"""( 18 -I _ -la I) _ 0 L...., W aW W aW - , 0:'=1,2. (5.3) 
1=1 

This construction is a realization of the Hopf fibration since the first constraint 

describes a 57 and the second constraint describes a U(1) symmetry which reduces 

the embedding to C P 3 . Using this description, one can think about the transverse 

space to the boundary spacetime R3 as described by the four coordinates zi := Y w1 

where Y is the radial coordinate of AdS4 . In terms of Z 1 , we have I::i=l zi Z1 = Y2 

and 
4 

L(zi 8aZ1 
- Z 1 BaZI) = 0, 0:' = 1, 2. (5.4) 

I=l 

The string boundary condition is then given by the three Dirichlet conditions for 

the longitudinal coordinates and the eight Neumann boundary conditions 

(5.5) 

Note that the boundary condition (5.5) is consistent with the constraint in (5.4) 

since zi ( T, 0) = 0. In terms of real coordinates Z 1 = Y 1 + iY5
, Z 2 = Y2 + iY6

, Z 3 = 

Y 3 + iY7
, Z 4 = Y 4 + iY8

, the embedding reads 2::~= 1 (Yi )2 = Y2 and 

4 

L(Y18ayi+4 - yi+48aYI) = 0. (5.6) 
I=l 

The boundary condition reads 

(5.7) 
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To write down the Wilson loop, we note that due to the presence of the product 

gauge group, there are two independent Wilson loops one can write down. Let 

us concentrate for the moment on the first U(N), one can form adjoint fields by 

multiplying the hi-fundamental fields in a certain order. It is natural to consider 

where C is a general spacelike curve. This operator is invariant under arbitrary 

reparametrization 7 ----7 7, including orientation reversing ones. Since scalar fields 

in three-dimensions is of dimension half, the variables aab and bab are of length 

dimension and therefore it make sense to try to identify them with the boundary 

variables zi in (5.5). Since Aa (or Ba) is a doublet of SU(2)I, AaAb (or BaBb) 

contains a singlet and a triplet of SU(2)I. Our proposal is to identify 

. 2v'27r ~( i) ·i aab = -k- L....t O" abY , b. 2v'27r ~( i) ·i+4 
ab = ~ L....t 0" abY (5.9) 

i=1 i=1 

where O"i = ( 7 1
,7

2
, 7

3
, 1) and 7

1
•
2

•
3 are the Pauli matrices. Note that the ABJM the­

ory is manifestly invariant under SU(2) x SU(2) of the SU(4) R-symmetry. There­

fore (5.8) respects this symmetry if we assign (y1
, y2

, y3 ) (respectively (y5
, y6

, y7
)) to 

be a triplet and y4 (respectively y8
) to be a singlet SU(2h (respectively SU(2)2). 

For convenience, we have put a factor of 2 v'21r / k above since the propagator of the 

gauge bosons and the scalar field is different. This turns out to be a convenient 

normalization in perturbation theory. We remark that the identification (5.9) can 

also be written as 

· ·. 2J21r ~( I) ·I aab + zbab = ~ L....t 0" abZ 
I=1 

(5.10) 

and our proposal for the Wilson loop operator that is dual to a string with the 

boundary condition (5.5) is 

W = ~ TrPexp [i d7(iA~'x~' + 
2
; t ;/ fii + zi RI)]. 

c I=1 

(5.11) 

Here RI is the composite scalar RI ·- (AI+ iBI)/J2 where AI := Aa(O"I)abih, 
I - I l3 := Ba(O" )abBb · 
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By doing a perturbative computation as in, e.g. [72-74], one can show that the 

Wilson loop is in general linear divergent: 

(5.12) 

Therefore the divergence cancels if the loop constraint 

. 2 ·2 
X = y (5.13) 

is satisfied. The fact that we obtain precisely the same constraint as obtained from 

the Hamilton-Jacobi analysis provides some support that the ansatz (5.11) correctly 

encodes the boundary conditions of the dual open string. However this cannot be 

correct due to a mismatch. In fact, a half BPS string configuration which is localized 

at a point in CP3 has been considered in [72-74]. One can show that there is no 

choice of z1 to make (5.11) half BPS. Even worse, it is easy to show, for the ansatz 

(5.1) which is coupled to a bilinear of scalars, there is no choice of the Hermitian 

matrix M so that there is 1/2 unbroken supersymmetry. Therefore the correct 

Wilson loop operator that is dual to localized string must be more complicated. 

The understanding of this will be very interesting. 

Another more general direction to look at, is to try to apply our analysis to 

Wilson loops in higher representations. In these cases the suitable dual description 

is in terms of 03-branes or 05-branes [59, 64-70]. Presumably the correspondence 

will continue to hold for a more general class of gauge/gravity duality. It will be 

interesting to analyze the structure of the UV divergences there and to derive the 

corresponding boundary conditions for the corresponding D-brane description. 

Finally, it is worthy to mention some recent developments in the Wilson loops 

especially in the study of 1/8-BPS supersymmetric Wilson loops in N = 4 super 

Yang-Mills theory and their string theory duals [117, 118]. The operators are defined 

for arbitrary contours on a two-sphere in space-time, and they were conjectured to 

be captured perturbatively by 2 dimensional bosonic Yang-Mills theory. In the AdS 

dual, they are described by pseudo-holomorphic string surfaces living on a certain 

submanifold of AdS5 x 5 5 . It seems that it is important to try investigate more 

this conjecture. Moreover, the dual picture of these Wilson loops in higher repre­

sentations is a very interesting problem and still not solved. Furthermore, it seems 
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that the calibrations and the fact that the dual string worldsheets are pseudoholo­

morphic surfaces with respect to an almost complex structure J, is something that 

depend on the supersymmetry preserved. A very interesting question is what one 

would see for the pseudoholomorphic surfaces in the case of the backgrounds with 

less supersymmetries. It seems that in these backgrounds due to the lack of the 

existence of the S0(6) the relevant analysis become more complicated. However, a 

good start would be to consider the (3 deformed backgrounds, where one hopes that 

their structure would simplify the analysis. 

As far as concerns the semiclassical string solutions in Sasaki-Einstein manifolds, 

is true that the problem did not receive yet much attention in the literature. One can 

certainly try to find more solutions, and try to establish the energy spin relation. An 

interesting extension of this work could be to consider strings having f7 dependence 

on one of they, e angles. By activating simultaneously one more U(l) angle for the 

string's motion, the analysis should not be difficult. However, simultaneous string 

motion on more directions, could lead to systems of differential equations that might 

be difficult to solve. Also, worth looking at, is the effect of the (3 deformations on 

the string solutions on these manifolds. One can initially work with the point-like 

BPS solutions presented above, and try to derive the (3 deformed 'BPS condition'. It 

can be checked then if the BPS massless geodesics found above, remain undeformed. 

It must be possible to support these results accordingly in the dual beta deformed 

theory. Another interesting topic is to examine the string motion simultaneously in 

several U(l) directions, and to analyze the energy-spin relations. Finally, it would 

be very good to identify the solutions found in this paper with the corresponding 

operators in field theory. Some of the above issues will be examined in a forthcoming 

publication [119]. 



Appendix A 

A.l Wilson loop from U(N + 1) ~ U(N) x U(l) 

breaking 

For real ,8-deformation, the bosonic part of the Lagrangian of the ,8-deformed SYM 

theory is given by 

where <I> a (a= 1, 2, 3) are the scalar components of theN= 1 chiral superfield. 

Next, let us break the gauge group U(N + 1) ___, U(N) x U(1) by turning non-zero 

vacuum expectation values for the scalar fields 

_ ( ONxN 0 ) 
<Pa- ' 

0 M8a 
a= 1, 2, 3. (A.1) 

Here 8a lies on a 5-sphere, 8a8a = 1, corresponding to the direction of the sym­

metry breaking. Decomposing the fields as 

A. -Jl.- (A.2) 
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we obtain the action in terms of W0 , Ya : 

A 12 - 1- - --s = 4F~"v + (DIL<I>o)(DIL<I>o) + 2[<I>a, <I>a][<I>-y, <I>-y] + [<I>a, <I>-y]i3a;[<I>a, <I>-y]i3a; 

+((D~"- ia~")W1) ((D~" + ia~")Ya) + ((D~" + ia~")Y~) ((D~"- ia~")W a) 

+~ f~v + (81LMe~)(8wMeo) 
-2Yt (<~> <I> e-2irri3a-r -<I> <I> + ~(<I> - Me )(<I> - Me ) + M2e e (e2irr/3o., - 1)) wt o '"! o o '"! 2 o o '"! '"! • et I I 

-2Ya ( <I>-y<I>ae-2irri3a-r - <I>a<I> 1 + ~(<I>a- Mea)(<I>-y- Me,)+ M2eae1 (e2irr/3a;- 1)) W
1 

+Y~ ( (2(<1>,..- Me,..)* *i3ak(<I>,..- Me,..)+ [<I>k, <I>"l)8a1 - 2(<1>1 - Me-y) *!3a, (<I>a- Mea) 

+(<I> a- .Mea)(<I>1 - Me-y)) W'"~ 

+Ya ( (2(<I>K- Mek) * *!3ak(<I>K- MeK) + [<I>K, <I>Kl)8o-y- 2(<1>,- Me,) *i3a; (<I> a- Mea) 

+(<I>a- Mea)(<I>,- Me,))w~ + ... , (A.3) 

where we have defined 

( m. Me ) * * (m. Me ) ·- m. m. + M2e e m. Me e2irri3a" Me m. e-2irr.i3a" '¥K.-... K .80 ,.., '¥/'i- ti .- '¥1'\.'J:'K. K K- '*'K K -.. K'i:'K ~ 

In (A.3), · · · denotes terms of higher order (fourth) in the fields W, Y, and Trover 

U(N) is understood. 

Next, we go to the real basis by introducing 

and similarly for Ya and ea. The terms Y~(- · · )W.J, Ya(- · · )W,, Ya(· · · )W~ and 

Y~ ( · · · ) W1 become 

6 6 

L w1 [I: CJJ- c~]wi 
i=l j=l 

+ L wi [ 2Aij - c~ + 2i sin 27i/3 L Sikl'f?k.Met] Wj + c. c. 
ij=l4,25,36 kl 

6 

(A.6) 

+ L wt[ 2Aij - c~ - 2M2Biej (cos 27i/3 - 1) + 2i L siklj sin 27i /3( 'Pk'Pl - M2
Bkel)] Wj 

ij,.014,25,36 k,l=l 
i,.Oj 

+ c.c., 
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where we have defined 

C;j := (c.p;eirr{3- MB;e-i"f3)(c.pje-irr{3- MBjeirr{3) ' 

A;1 := r.p;<p1 - 'Pi'Pi cos 2~t/3 , 

100 

(A.7) 

(A.8) 

(A.9) 

and c~ = C;j(/3 = 0). The quantities Sijk, sijkm are equal to ±1 or zero, and their 

non-zero elements are shown below: 

S;kL = 1 for ikl = 125, 163, 241, 236,314,352, and S;kL = -s;1k , 

S;kLj = 1 for 'iklj = 2451,1245,4512,5124,1643,6431,3164,4316, (A.lO) 

3562,2356,5623,6235. 

We have written our result in this form, so to be clear as much as possible the 

separation between the deformed and the undeformed part of the Lagrangian. 

Following the derivation of [13], one can derive the form of the deformed Wilson 

loop. What is relevant is the eigenvalues of the mass matrix (A.6). In the uncle­

formed case, the mass matrix has an eigenvalue which is 5-fold degenerated and 

a zero non-degenerate eigenvalue. The supersymmetric Wilson loop (1.22), (1.23) 

is derived from the (infinitely) massive quark probe. In the /3-deformed case, the 

eigenvalues are generally deformed and degeneracy is lifted. However it is clear that 

the large N vVilson loop will be the same as in the undeformed case because there 

isn't any multiplicative factor depending on N in the mass matrix (A.6), therefore 

the classical Lagrangian is the same as the undeformed one in the large N limit 

(1.51). 

For finite N, one will need to keep track of all the dependence of /3 in the 

Lagrangian (A.6). Due to the large amount of computational work, we were not 

able to work out the explicit expressions of the eigenvalues. However for the cases 

we have checked (for example by setting some of the <Pk and ek zero), it appears 

that there is always an eigenvalue which is equal to the undeformed one. It is the 

phase factor which is associated with this quark which gives rises to the Wilson loop 

(1.22), (1.23). 

We remark that one may also utilize the star product (1.43) and use a star 

product path ordering to define the Wilson loop operator. Unlike the Wilson loop 
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in the ordinary noncommutative geometry which is highly non-local [55], the closed 

Wilson loop operator is immediately local and there is no need to employ an open 

Wilson line. When one expands the exponent, will get higher and higher powers of 

the scalar fields and each of them is accompanied with a phase factor which depends 

on the charge configuration of the scalars. Since these phase factors becomes higher 

and higher power in f3, in general one cannot drop the /3-dependence even in the large 

N limit. This operator is not what one obtains from the probe analysis presented 

above. It is an interesting question whether this noncommutative Wilson loop also 

admits a nice holographic interpretation, and how. 

A.2 The deformed metric in the Cartesian coor-

dinate system 

For convenience we collect and present the metric in the coordinate system (3.6) 

expressed in Yi coordinates. Defining 

At = 1 + ')-2Y-4(Y22 + ys2)(Y32 + Y6\ 

.42 = 1 + i'2y-4(Yl2 + y42)(Y32 + Y6\ 

.43 = 1 + i'2Y-4(Y12 + y42)(Y22 + ys\ 

the metric elements are: 

G - y-2 (Yl2 + GY42 Al) 
n - Yl2 + Y42 

-2 (Y22 + cys2 .42) 
G22 = y Y22 + Y52 , 

G - y-2 (Y32 + GY62 .43) 
33 - y 32 + y62 , 

(A.11) 

(A.12) 

Gl2 = 2Y-6')-2G(Y32 + y62)Y4Ys, G13 = 2Y-6')-2G(Y22 + ys2)Y4Y6, 

Gls = -2Y-6fG(Y32 + y62)Y2Y4, G16 = -2Y-6')-2G(Y22 + y52)Y4Y3, 

G23 = 2Y-6')-2G(Yt2 + y42)Y5Y6, G24 = -2Y-6')-2G(Y32 + y62)Y1Ys, 

G26 = -2Y-6')-2G(Y12 + y42)Y3Ys, G34 = -2Y-6')-2G(Y22 + y52)Y1Y6, 

G3s = -2Y-6i2G(Y12 + y42)Y2Y6, G4s = 2Y-6i2G(Y32 + y62)yty2, 

G46 = 2Y-6i2G(Y22 + y52)yty3, G56 = 2Y-6i2G(Yl2 + y42)Y2Y3, 
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(A.13) 

Substituting from (3.6) the coordinates we express the metric in angles, the diagonal 

terms are 

The non-diagonal elements are 

G 1 ,?G ? . ,-~.. . ,-~.. 
12 = Y2,- J.LIJ.L2J.L3 Sill 'f'l Sill 'f'2, 

1 
G13 = y2 ·lGJ.L1J.L~J.L3sincjJlsincjJ3, 

G 1 ·2c 2 . ""' ""' 15 = - Y2 'Y J.LIJ.L2J.l3 Sill <ill cos t;J2' G 1 ·?c 2 . . .-~-. 16 = - Y2 ~~- J.LIJ.L2J.l3 Sill <PI cos 'f'3, 

G 1 de ? . , • .-~-. 
23 = y 2 'Y- J.LiJ.L2J.L3 Sill <P2 sm 'f'3, G 1 ·2c ? .-~-. • .-~-. 24 = - Y2 'Y J.LIJ.L2J.L3 cos 'f'l Sill 'f'2l 

1 '2 2 . 
G26 = - Y2' GJ,LIJ.L2J.L3 Sill cP2 cos cP3, G 1 ·2c 2 -~. . .-~-. 

34 = - Y2' J.LIJ.L2J.l3 cos <ill Sill 'f'3: 

G 1 ·2c 2 .-~-. . , 
35 = - Y2 'Y J.LIJ.L2J.L3 cos 'f'2 Sill CfJ3' 

1 ·2c 2 G45 = Y2 'Y J.LIJ.L2J.l3 cos cPl cos cP2, 

G 1 ·2c 2 .-~-. , 46 = y 2 I J.L1J.L2J.L3 cos 'f'l cos cp3, G 1 .?G 2 , ,-~.. 
56 = Y2 y J.LIJ.L2J.L3 cos <P2 cos <p3, 

and 

G14 = 2~2 sin 2cjJI (1 - GM1), G25 = 2~2 sin 2cjJ2(1- GM2 ), 

G35 = 2~ 2 sin 2cjJ3(1 - GM3 ) . (A.14) 

Appendix A.3: Derivation of the Hamilton-Jacobi Equation 

In this appendix we shortly derive the Hamilton-Jacobi (HJ) equation (2.4). Con­

sider the action for the string 

(A.15) 
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where 9at3 := Gu8aX1813X 1 , cx,(3 = 1,2. The conjugate momentum is 

65 1 J J . J . J 
PT= b(B

2
X 1) = V§Gu(gn82X - 91281X ) + zBu81X :=PT+ zBu81X , 

(A.16) 

where we have introduced P1 as defined above. This turns out to be a convenient 

variable for expressing the HJ equation. The Hamiltonian is 

Eliminate 82X1 in terms of PT and note that PT81X1 = 0, we obtain 

H = J9 (GuP1PJ- 9n). 
911 

And we obtain the HJ equation H = 0, 

This is the form of HJ equation we used in the main text of the thesis. 

(A.17) 

(A.18) 

(A.19) 

A.4 Cancelation of UV divergences up to order 

We first demonstrate that that the scalar propagator and the gauge boson propa­

gator in the Feynman gauge remains equal up to first order in g2N. The simplest 

way to show this is to use superspace Feynman graphs. In terms of superfields, the 

Lagrangian for the {3-deformed SYM theory is 

L = j d2 Bd2B Tr(e- 9v <I>ie9v <Pi)+ ~ j d2B TrW0 W0 + c.c. (A.20) 
2g-

+ ih J d2B Tr(eirr/3<I>1<I>2<I>3- e-irr/3<I>1<I>3<I>2) + ih* J d2B Tr(eirr/3<I>1<I>2<I>3- e-irr/3<I>l<I>3<I>2)· 

Using !abc := -iTr(Ta[n, Tc]), dabc := Tr(Ta{Tb, Tc} ), the superpotential can be 

written as 

(A.21) 

The relation between h and g is obtained from the requirement of superconformal 

invariance, which gives up to two-loop order [56, 57], 

(A.22) 
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Figure A.l: 1-loop contribution to scalar propagator 

CDCDO 
a b c 

d e f 

g h 

Figure A.2: Feynman diagrams of leading and next-to-leading orders 

Here !abc!a'bc = 8aa'C2, dabcda'bc = 8aa'D2 and Tr(TaTa') = 8aa'/2. Now the 1-loop 

correction to the scalar propagator is contained in the diagrams in figure 1. It is ob­

vious that the graph (b) is independent of {3. For the graph (a), it has a interaction 

vertex proportional to \h\2Uabc!a'bc cos2 1r{J + dabcda'bc sin2 1r{J). Using the supercon­

formal invariance condition (A.22), this is equal to g2N8aa' and is independent of 

{3. Thus the one loop contribution to the scalar propagator is independent of {3. 

It is obvious that the one loop contribution to the gauge boson propagator is also 

independent of {3. Using the result of [88], we conclude that the scalar propagator 

and the gauge boson propagator remains equal up to first order in g2 N. 

Using this result, it is easy to see that the Wilson loop operator (1.22) is free 

from UV divergence up to order (g2 N) 2 if the constraint (1.23) is satisfied. The 

proof is a slight adaption of the computation of [85]. At leading and next-to-leading 

orders, we have the Feynman diagrams given in figure 2. The linear divergences 

in diagrams (a-g) got canceled out immediately due to the equality of the 1-loop 
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corrected scalar and gauge boson propagators. As for the diagrams (h) and (i), we 

have 

(h)+ (i) = 2(g2 N)2 J d4 x f ds1ds2ds38c(sl,s2,s3) · 

·(DxxJJ>.Dxx2 - O>.Dxx 1 Dxx2 )Dxx3 X; · (xix~t51"v- Y~W~-J23) 

The contribution to (A.23) from the region SI rv s2 rv 83 is linear divergent for a 

generic loop, 

(h)+ (i) rv f dsl ~(xi- Yi +E). (A.24) 

However when the constraint ( 1.23) is satisfied, the contribution is finite. Thus we 

conclude that the Wilson loop operator (1.22) has a expectation value that is free 

from UV divergence up to order (g2 N)2 when the constraint is satisfied. 

We also remark that, due to the equality of the propagators, the Wilson loop 

operator with the constraint [85] 

·i _ Mi ·~" y - . !LX ' (A.25) 

has expectation value 1 up to order (g2 N)2 . This Wilson loop possibly has an exact 

expectation value 1 just as in theN= 4 theory. 



Appendix B 

B.l Some formulas of Sasaki-Einstein manifolds 

The three roots of cubic satisfy 

and also can be expressed in terms of p, q 

Yq± = 4~ (2p ± 3q- J 4p2
- 3q2

), y3 = 4~ (2p + 2) 4p2
- 3q2

) (B.2) 

and the period of a ( 4.10), can be rewritten in a more compact form 

q 
l =- 2 . 

4p Yq+Yq-, 
(B.3) 

which is always positive since Yq- is negative. The volume yp,q is given by 

(B.4) 

and is bounded by 

(B.5) 
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B.2 Definition of functions used in y,q,r string so­

lutions 

In order to make the presentation shorter we define the following functions as 

(B.6) 

(B.7) 

(B.8) 

which have the following partial derivatives. With respect to B: 

52£J ( 4J.L(a- x) 2 
) 

8od1(x, B)= ?( (3) J.L +a( a- f3)(a- x)- ( (3 2 ( (3) )2 , a- a - a + - X + a - C20 

52B ( 4J.L(f3- x)2 ) 
8od2(x, B) = (32(a- (3) 1-l + (3((3- a)((3- x)- (a+ (3- 2x +(a- (3)c2o)2 ' 

>:~ d ( n) _ J.L52B ((x- ac~)c?o- (x- (3s~)5~) 
Uf) 3 X, U - ? 

a(3 ( -x + a~ + (35~t 

and with respect to x: 

We use the above expressions to write the equations of motion and the Virasoro 

constraints in a more compact form. 
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