
Durham E-Theses

Functional characterisation of a predicted chloroplastic

plant protein phosphatase

Seymour, Michael David John

How to cite:

Seymour, Michael David John (2009) Functional characterisation of a predicted chloroplastic plant protein

phosphatase, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/2086/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2086/
 http://etheses.dur.ac.uk/2086/ 
htt://etheses.dur.ac.uk/policies/


Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk


Functional Characterisation of a Predicted Chioroplastic 

Plant Protein Phosphatase 

A thesis submitted by Michael David John Seymour B.Sc in accordance with the 

requirements of Durham University for the degree of Doctor of Philosophy. 

The copyright of this thesis rests with the 
author or the university to which it was 
submitted. No quotation from it, or 
information derived from it may be 
published without the prior written 
consent of the author or university, and 
any information derived from it should be 
acknowledged. 

Department of Biological and Biomedical Sciences 

Durham University 

2009 

1 6 MAR 2009 



Abstract ' 

Abstract 

The phosphatase AtPTPKISl is involved in the control of starch metabolism in 

Arabidopsis thaliana leaves at night. The SEX4 (Starch Excess 4) mutants, lacking 

this predicted phosphatase, have strongly reduced rates of starch metabolism. It is 

shown that this chloroplastic protein can bind to glucans through a carbohydrate 

binding domain (CBM) located within its previously predicted kinase interaction 

sequence (KIS), while another novel KIS containing protein (AKINPy) shows no 

such interaction. Further analysis of the C B M identifies conserved residues vital for 

carbohydrate binding and common to CBMs, as well as sugar tongs, not present in 

similar CBMs or the GBD/KIS domain of the previously studies A M P K p , but found 

within the binding domain of the PTPKIS family proteins. 

While PTPKIS 1 shows activity to generic phosphatase substrates, it is unable to 

dephosphorylate either phosphotyrosine or phosphothreonine containing peptides. It 

does however show phosphatase activity towards phosphorylated starch and 

amylopectin, comparable to that of the mammalian protein laforin. Remarkably, the 

most closely related protein to PTPKIS 1 outside the plant kingdom is laforin, 

required for the metabolism of the mammalian storage carbohydrate glycogen and 

implicated in a severe form of epilepsy (Lafora disease) in humans, through the 

formation of insoluble starch like polyglucans (lafora bodies). 

In addition to PTPKIS 1, PTPKIS2 (At3g015180) is identified, a predicted 

phosphatase, with a domain structure homologous to that of PTPKIS 1, termed. The 

PTPKIS2-SALK (PTPKIS2 knockout) mutant, lacking this predicted phosphatase, 

has a reduced rate of starch metabolism. It is shown that this mutant causes a 

phenotype similar to SEX4, but less extreme. It is further shown that this protein can 

bind to glucans through a carbohydrate binding domain (CBM), but unlike PTPKIS 1 

shows no activity towards any phosphate substrates. PTPKIS2 does however 

modulate the activity of PTPKIS 1, causing a 4-fold increase in the activity of 

PTPKIS 1 against phosphorylated starch, when both enzymes are present in 

equimolar concentrations. 

Finally, a hypothesis is proposed as to the roles of PTPKIS 1 and PTPKIS2 in starch 

metabolism, and the similarity of function seen in the mammalian protein Laforin. 
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Chapter 1 

INTRODUCTION 

1.1 PHOSPHATASES 

Phosphatases are a class of enzyme, which catalyse the removal of a phosphate 

group f rom a substrate. The catalysis results in the formation of a phosphate ion and 

a molecule with a free hydroxy group. This hydrolysis is the reverse reaction of that 

mediated by phosphorylases and kinases, which attach phosphate groups to a 

substrate, often via the use of energetic molecules such as ATP. 

Phosphatases can be categorised into two main groups, cysteine-dependent 

phosphatases (CDPs) and metallo-phosphatases (Barford, 1996). As their names 

suggest, CDPs require an active site cystine to catalyse the hydrolysis reaction, while 

metallo-phosphatases require coordination of a specific metal ion(s) in their active 

site for activity. There are additional enzymes, which fa l l outside of their groupings, 

such as those using an active site histidine in place of a cysteine, for example the 

hPAP protein, but these are much less common. 

L L 1 Protein Phosphatases 

The addition or removal of a phosphate group on a protein can have a significant 

effect, on the structural and thereby functional properties of a protein. 

Phosphorylation can regulate the interactions between protein partners in a protein 

complex (Pawson, 1995; Aparicio-Fabre et ai, 2006), act directly to regulate 

enzymatic activity through the initiation of conformation changes in the protein 

(Johnson et aL, 1993; Johnson and O'Reilly, 1996), and is also required by some 

proteins in order to target regions of the cell in which they function (Guan et ai, 

2006). 
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Due to this capability, a large majority of cell functions involve reversible 

phosphorylation. This includes stress response (Maya et ai, 2001; Park et ai, 2006), 

ion transport (Kahle et al., 2005; Delpire and Gagnon, 2006), metabolism, cell cycle, 

and developmental control. 

The majority of protein phosphorylation occurs at serine and threonine residues, with 

phosphorylation at tyrosine residues being less common. In a small number of cases 

histidine residues may be phosphorylated. This range of phosphorylation types also 

results in a range of different phosphatases, each one able to deal with a different 

phosphorylates residue. 

1.1.2 Serine/Threonine Phosphatases 

Phosphorylation and dephosphorylation of proteins most commonly occurs at serine 

and threonine residues. Phosphorylation and dephosphorylation of serine and 

threonine residues in plant signal transduction accounts for around 97% of the 

protein phosphorylation events in this pathway (Smith and Walker, 1996). 

Serine/Threonine phosphatases were initially divided into 2 groups through their 

pharmacological properties and substrate specificity (Cohen, 1989). 

Serine/Threonine phosphatase type 1 (PPl), prefers the Beta-subunit of 

phosphorylase kinase substrate and is inhibited by nanomolar concentrations of two 

small peptide inhibitors, inhibitor 1 and 2. In PPl there is a diverse array of different 

holoenzymes in which the same catalytic subunit (PPlc) is complexed to distinct 

regulatory and targeting subunits, which control the activity and specificity of the 

catalytic subunit (Faux and Scott, 1996; Hubbard and Cohen, 1993). 

Serine/Threonine phosphatases type 2 (PP2) is preferentially dephosphorylated by 

the alpha-subunit of phosphorylase kinase and is insensitive to inhibitor 1 and 2. PP2 

is further split into 3 subgroups: PP2A, which does not require divalent cat ions for 

activity (like PPl's); PP2B, which is regulated by Ca2+; PP2C, which is regulated by 

Mg2-H. 
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Following sequence and structural analysis of the products of identified 

serine/threonine phosphatases an alternative nomenclature has been suggested. PPl, 

PP2A, and PP2B are closely related and termed the PPP family, while PP2C, 

Pyruvate dehydrogenase phosphatase, and several other Mg2-i- dependent Ser/Thr 

phosphatases are similar, and so termed the PPM family (Barford, 1996; Cohen, 

1997). 

L L 3 Tyrosine Phosphatases 

The tyrosine phosphatase superfamily includes all the protein phosphatases that are 

capable of hydrolysing phosphotyrosine residues. They have a conserved catalytic 

motif, VHCX5R, containing a cysteine residue that requires reduced conditions for 

catalytic activity. Tyrosine phosphatases are divided into tyrosine specific and dual 

specific phosphatases. The role of tyrosine phosphorylation has not been studied in 

the same detail as serine/threonine phosphorylation. In animals and lower eukaryotes 

such as yeast, transduction of signals such as hormones, growth factors and 

cytokines (Fauman and Saper, 1996; Darnell, 1997; Hunter, 1998), involves the 

reversible phosphorylation of tyrosine residues. Tyrosine phosphatases, which form 

a large superfamily that can be divided into families, based on sequence homology 

and functional properties (Barford, 1995; Barford et al., 1995; Neel and Tonks, 

1997), can be further catagorised by their phosphoamino acid specificity. 

Tyrosine-specific PTP can dephosphorylate phosphotyrosine but not 

phosphoserine/threonine, and Dual-specificity PTPs (DsPTP) can dephosphorylate 

phosphotyrosine and phosphoserine/threonine (also termed DSP - dual-specificity 

phosphatases). Examples of DsPTPs include M A P kinase phosphatases, cell cycle 

regulator cdc25 phosphatase (Dunphy, 1994), and tumour suppressor PTEN 

(Maehama et al., 2001). 

Tyrosine-specific PTP's can further be divided into 2 catagories: Receptor like, 

which generally have extracellular putative ligand-binding domain, a single Trans

membrane region and one or two cytoplasmic PTP domains; Intracellular, which 

contain single catalytic domains and various amino or carboxyl terminal extensions 
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including SH2 domains (e.g. SHPl from Neel and Tonks (1997)) that have targeting 

or regulatory functions. A l l PTP's are characterized by a lack of metal ion 

requirement for catalytic activity, the ability to hydrolyze p-nitrophenyl phosphate, 

insensitivity to okadaic acid and sensitivity to vanadate. 

Until recently no PTP had been characterised in plant systems and the understanding 

of their roles in the plant was limited. Xu et al (1998) reported the characterisation of 

the first plant PTP, AtPTPl , f rom Arabidopsis cDNA. Soon afterwards this 

characterisation was improved upon (the first published sequence was found to be 

chimeric) and homologues of AtPTPl f r o m non-Arabidopsis species (pea and 

soybean) were reported (Fordham-Skelton et al., 1999). The first DsPTP, AtDsPTPl 

was characterised by (Gupta et al., 1998) and found to negatively regulate an 

Arabidopsis mitogen-activated protein kinase (MARK) , AtMPK4. Similarly, another 

DsPTP, A t M K P l , has been shown to dephosphorylate and deactivate a M A R K in 

Arabidopsis having a role in genotoxic stress relief (Ulm et al, 2001). 

1.2 CARBOHYDRATE BINDING MODULES 

While there are a number of different carbohydrate binding proteins, such as lectins, 

antibodies, and a number of glycolytic enzymes, not all are classed as containing a 

carbohydrate binding module (CBM). CBMs were originally classified as cellulose 

binding domains, due to the initial discovery of several cellulose binding modules 

(Gilkes et al., 1988; Tomme et al., 1988). Following the identification of a number 

of binding modules specific for carbohydrates other than cellulose, these binding 

modules were reclassified under the name Carbohydrate Binding Modules. 

A C B M can be defined as a continuous amino acid sequence within a carbohydrate-

associating enzyme with a discrete fold having carbohydrate-binding activity 

(Boraston et al., 1999; Coutinho et al., 1999). The classifications for CBMs can be 

found in the Carbohydrate-Binding Module Family Server (CAZy) (http://afmb.cnrs-

mrs.fr/~pedro/CAZY/cbm.htm 1). with the binding domains having been classified 

into over 40 families, f rom over 50 different species, based on binding specificity, 

amino acid sequence, and structure, with CBMs containing anywhere f rom 30 to 200 
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amino acids. The CBMs can be located anywhere within the protein, but occur with 

higher frequency at the C- or N - terminals, while also existing as a single, double, or 

in some cases triple domain within a single protein. 

In order to greater understand the mechanism of CBM-carbohydrate recognition and 

interaction, the three-dimensional structure of members of over 20 C B M families 

have been studied. These data indicate structural similarities between the families 

(review see (Boraston et al, 2004), with their carbohydrate binding ability due in 

part to several aromatic amino acids forming a hydrophobic region within the 

binding fold. 

Using the three dimensional data, it has been possible to further classify CBMs, 

based on their structure, into one of seven " fo ld families": "b-Sandwich" (family 1), 

"b-Trefoi l" (family 2), "Cysteine knot" (family 3), "Unique" (family 4), "OB fo ld" 

(family 5), "Hevein fo ld" (family 6), and "Unique; contains hevein-like fo ld" (family 

7) (Boraston et al., 2004). This categorisation however fails to take into account 

functional similarities, and so they are also classified into three types: "surface 

binding" (type A ) , "glycan chain binding" (type B) , and "small sugar binding" (type 

C) (Boraston et ah, 2004). While the members of each fold family usually occur in 

the same functional type, members of the b-sandwich family (family I) can be found 

in all of the functional types. 

1.2.1 Starch and Glycogen Binding Domains 

There are currently seven starch binding domain (SBD) families in the CAZy 

database (http://afmb.cnrs-mrs.fr/~pedro/CAZY/cbm.htmn: CMB20, CBM21, 

CBM25, CBM26, CBM34 CBM41 and CBM45. Those families in which one or 

more members have had the three dimensional structure studied (CBM20 and 

CBM34) both fall into the b-Sandwich fold family (family 1) as well as the same 

functional type; "glycan chain binding" (type B) (Boraston et al., 2004). It has 

recently been proposed that CBM20 and CBM21 be combined to form a larger 'clan' 

due to their sequence similarity and specificities (Machovic et al., 2005). Initially 

CBM20 was believed to be located exclusively at the C-terminal end of their parent 
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proteins, wish CBM21 being located exclusively at the N-terminal end (and often 

referred to as glycogen binding domain), following work almost 20 years ago, 

showing the sequence similarities of the two families (Svensson et ai, 1989). 

The CBM20 family is the most heavily studied of the SBD families, with in excess 

of 100 proteins identified and the three dimensional structures of 13 studied. The 

module contains ~100 amino acid residues and has been found linked to a diverse 

range of catalytic domains. CBM21 is not as heavily characterised as CBM20, with 

considerably fewer proteins identified, and three-dimensional structure of only two 

proteins, having been studied. 

As with CBM20 and C B M 2 1 , CBM25 and CBM26 show some degree of sequence 

homology, with both families containing less than 20 members. Members of these 

families often occur in tandem repeats, such as those seen in Paenibacillus polymyxa 

multidomain amylase (Kawazu et al., 1987) and in two Streptomyces a-amylases 

(Yin et al., 1998; Bentley et ai, 2002) in the CBM25 family. In CBM26, there are 

tandem repeats present in Lactobacillus amylovorus and Lactobacillus plantarum A6 

a-amylases (Giraud and Cuny, 1997). 

CBM45 is the most recently catagorised family, and containing only 20 members, all 

of which are from the plant kingdom. It is composed of CBMs from a number of 

amylases, but primarily contains the CBMs f rom the Glucan Water Dikinase (GWD) 

proteins ( G W D l , GWD2, and GWD3/PWD1) (Mikkelsen et al., 2006). 

1.3 KINASE INTERACTION SEQUENCE DOMAINS 

Kinase Interaction Sequence (KIS) domains are found throughout animal, plant and 

yeast systems, where they act in the assembly of the Plant SNFl related kinases 

(SnRK) multiprotein complexs responsible for regulation of multiple metabolic 

processes. In plants SnRKs have been shown to regulate the activity of rate limiting 

metabolic enzymes, including 3-hydroxy-3-methylglutaryl-CoA reductase, nitrate 

reductase, and sucrose phosphate synthase (Sugden et al., 1999), as well as the 
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transcription of glucose and stress-regulated genes (Bhalerao et al., 1999). SnRK's 

are, as their name suggests related to the sucrose non-fermenting kinase (SNFl) of 

yeast {Saccharomyces cerevisiae) and animal AMP-activated protein kinases 

(AMPK)(Alderson et al., 1991; Mitchelhill et al., 1994; reviewed in Halford et al., 

2000). In animals and yeast SNFl and A M P K ' s regulate many of the cellular 

responses to environmental and nutritional stress (Hardie et al., 1998; Halford et al., 

2000). The SNFl and A M P K complexes consist of the kinase and two additional 

subunits, termed the P and y subunits, these additional units f u l f i l both scaffolding 

and regulatory roles (Jiang and Carlson, 1997; Hardie et al., 1998). The kinase 

subunits are composed of an N-terminal serine/threonine kinase domain and a C-

terminal regulatory domain (Celenza and Carlson, 1986; Gancedo, 1998). 

During evolution, the family of plant SnRKs has diverged into three subfamilies: 

SnRKla / lb , SnRK2, and SnRK3. Only the SnRKl subfamily represents direct 

structural and functional homologues of the S N F l / A M P K family (Halford and 

Hardie, 1998), while members of the SnRK2 and SnRK3 subfamilies show unique 

function among plants. The SnRKl homologs f rom various plant species have been 

shown to complement yeast snfl defective mutant phenotypes, suggesting its 

function is evolutionary conserved (Rolland et al., 2006). 

The (3 subunit (SIP1/SIP2/GAL83 in yeast) is made up of two protein interaction 

domains, allowing it to bind to the kinase and the y subunit. The first of these 

domains, termed the KIS (kinase interaction sequence) domain (Jiang and Carlson, 

1997), binds to the C-terminal region of the kinase. The second domain, termed the 

ASC domain (association with SNFl complex) interacts with the y regulatory subunit 

(SNF4 in yeast) (Fig. 1.1). 

Figure 1.1 Standard Configuration 

of SnRK/AMPK/SNFl Complexes 

Diagramatic representation of the predicted 

interaction.s between the members of the 

SnRK, A M P K , and S N F l complexes. 

Where a represents the catalytic subunit, (3 

represents the scaffold subunit, and y 

represents the regulatory subunit 
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Plant SnRK's form part of the CDPK-SnRK superfamily of protein kinases (Hrabak 

et al, 2003), this consists of seven types of serine-threonine protein kinases: 

calcium-dependent protein kinase (CDPKs), CDPK-related kinases (CRKs), 

phosphoenolpyruvate carboxylase kinases (PPCKs), PEP carboxylase kinase-related 

kinases (PEPRKs), calmodulin-dependent protein kinases (CaMKs), calcium and 

calmodulin-dependent protein kinases (CCaMKs), and SnRKs. 

Homologues of p and y SnRK subunits have been identified and characterised in 

plants (Bouly et al., 1999; Lakatos et al., 1999; Kleinow et al., 2000). However, 

higher plants have been shown to possess novel proteins, which contain regions 

similar in sequence and function as the KIS domain, but are fused to other domains 

not found in the (3 subunit. The first of these was designated AKINPy (Lumbreras et 

al., 2001) and contained an N-terminal KIS domain fused to an SNF4-like 

polypeptide. The second of these was designated PTPKISl (Fordham-Skelton et al., 

2002) and contained a C-terminal KIS domain fused to a PTP catalytic domain (Fig. 

1.2). This suggests that higher plants have evolved SnRK complexes, which have a 

different subunit composition f rom the yeast and animal models (Lumbreras et al., 

2001; Fordham-Skelton et al., 2002). This implies that higher plants may have 

evolved unique regulatory mechanisms, using their SnRKs, to respond to metabolic 

and environmental stress unique to plants. 

A K I N 1 0 / 1 1 . 
A K I N 1 0 / 1 1 

A K I N P Y P T P K I S I ^ P T F 

Figure 1.2 Alternative SnRK Conformations Unique to Plants. Diagramalic representation 

of the predicted interaction between the catalytic subunit of the plant SnRK complex, and AKINPy or 

P T P K I S l 
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A recent paper has reported the presence of a functional glycogen-binding domain in 

the mammalian AMPK(3 subunit of the SNFl complex (Polekhina et ai, 2003). It 

was found that the new glycogen-binding domain overlapped with the KIS domain 

and that it was the glycogen-binding portion of this region that was most conserved 

across species. It was found that the KIS domain was not necessary for the 

formation of the heterotrimeric complex and it was thus suggested that calling this 

region of the protein the glycogen binding domain rather than the KIS domain would 

be more appropriate (Hudson etai, 2003). 

There is evidence for variable specificity across the KIS domains of various proteins 

in plants (Gissot et ai, 2006). One such example is AtHSPROl and AtHSPR02 

which interact with the A K I N ^ y KIS domain but not with KIS domains of A K I N B l , 

B2, and B3. AKINB3 contains a KIS domain lacking the previously characterised 

glycogen binding domain in Polekhina et al (2003) and Hudson et al (2003) but is 

still capable of rescuing yeast siplAsip2Agal83A mutant. Interaction between 

AKIN(33 and other A K I N complex subunits f rom A. thaliana were detected by two-

hybrid experiments and in vitro binding assays (Gissot et al., 2004) supporting the 

suggestion that KIS domains do not always posses carbohydrate binding abilities. 

1.4 TRANSIENT L E A F STARCH METABOLISM 

The energy storing macromolecule a-glucans, glycogen and starch, are widespread 

throughout a variety of kingdoms: in vertebrates, plants and fungi (Ganesh et al., 

2003; Kerk et al., 2006). Their structure is optimised to minimize storage space and 

maximize energy concentration, and provide a further layer of regulation of 

biosynthesis and degradation (Manners, 1988; Manners, 1990). In animals and fungi 

the a-glucan is glycogen, and in plants it is starch. The two forms of energy storage 

share a lot of common features by being macromolecules, built solely from glucose 

residues (Manners, 1988; Manners, 1990). 

In plants, carbohydrate is stored as large starch particles, consisting only of glucose 

residues joined by a-1,4 linkages, with some degree of a-1,6 branch points. Starch 



Chapter 1 Introduction 10 

contains far fewer a-1,6 branch points than glycogen, with starch usually contains 
two distinct components; amylose, containing no branch points at all, linear polymer; 
and amylopectin, containing infrequent branch points. The ratio of amylose and 
amylopectin varies between plant species. The crystalline starch granules are found 
in the amyloplasts in heterotrophic tissue and chloroplasts in autotrophic tissue. 
Starch granules form with internal growth rings, where crystalline lamellae alternate 
with amorphous lamellae with a frequency around 9nm (Baker et al., 2001; Pilling 
and Smith, 2003). Buleon et al. (1998) state that the crystalline structure is based on 
interactions between the double helices formed by the branched side chains, while 
the amorphous regions are formed by the branch points in the amylopectin structure. 
The crystalline lamellae are approximately 5-7nm, while the amorphous regions are 
approximately 2-4nm (Blennow et al., 2002). Two different kinds of starch can be 
identified, namely storage starch such as that present in rice grains, and transient 
starch present in photosynthetic and autotrophic tissue such as leaves (Buleon et al., 
1998; Smith a/., 2005). 

1.4.1 Starch Granule Formation 

Starch is synthesized in the stroma of the chloroplasts through photosynthetic 

reactions during the light period. Glucose-1-phosphate is synthesized f rom triose 

phosphate via the intermediate fructose-1,6-bisphosphate f rom the Calvin cycle. The 

first committed step in starch synthesis is the conversion of glucose-1-phosphate to 

the precursor of starch synthesis ADP-glucose, catalysed by the enzyme ADP-

glucose pyrophosphorylase (AGPase) (E.C.2.7.7.27). This reaction requires ATP and 

generates pyrophosphate and ADP. This is the critical step in starch synthesis, as it is 

an irreversible reaction. AGPase is allosterically regulated by direct binding of either 

the activator 3-phospho-glycerate or the inhibitor orthophosphate. 

The next step in the synthesis of starch is the addition of the glucose moiety of ADP-

glucose to the nonreducing C4 of the terminal glucose residue of the growing chain 

(Fig. 1.3). This reaction is catalysed by two different enzymes; for amylopectin it is 

catalysed by soluble-starch synthase (SSS) (E.C.2.4.1.21), for amylose it is 

catalysed by granule-bound starch synthase (GBSS) inside the granule (reviewed by 
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Buleon et al., 1998). There are at least five different isoforms of the SSS, termed 

SSSI-SSSV. 

~ \ " } - \ Amylopection 

Calvin Cycle 

PG 

SS 
AGPase PGM 

ADP-Glucose^< G-l-P M G-6-P 

rr^n 

STARCH GRANULE 

Figure 1.3 Starch Granule Synthesis. Diagramatic representation of starch granule synthesis 

from the products of the calvin cycle. Glucose-6-Phosphate (G-6-P), Glucose-1-Phosphate ( G - l - P ) , 

Phospho-glucoisomerase (PG), Phosphoglucomutase (PGM), ADP-glucose pyrophosphorylase 

(AGPase), Starch Synthase (SS), Starch Branching Enzyme ( S B E ) , Debranching Enzyme ( D B E ) . 
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An additional enzyme is needed to synthesize the a-1,6 linkage in amylopectin; 
starch branching enzyme (SBE) (E.C.2.4.1.18). SBE cleaves an a-1,4 glycosidic 
bond in the reducing end of the glucan chain, and transfers the glucan fragment to a 
new position, establishing the a-1,6 linkage between the glucan and a glucose 
residue, resulting in the formation of a new branch. There are several different 
isoforms of the SBE, which can be divided into two types or families: The A family 
(or SBEII) and the B family (or SBEI) (Burton et al., 1995). The two isoforms 
cooperate in forming amylopectin, where the A-family transfers shorter glucan-
chains than the B-family. Recently, a third group has been identified in Arabidopsis, 
rice and Populus (Han et al., 2007). 

According to the so-called glucan trimming model, there are specific isoamylases 

(ISA) involved in maturation of the starch molecule (Ball et al., 1996; Myers et al., 

2000). In Arabidopsis thaliana, the debranching enzymes (DBE) I S A l and ISA2 are 

suggested to hydrolyse the excess a-1,6 branches from the outer side chains in the 

outer layers of the granule synthesised by SBE. I f these surplus branches are not 

hydrolysed, the resulting glucan wi l l not be able to crystallise. This can cause 

disturbance in storing the starch in a granular structure (Reviewed by Ball et al., 

1998, and Smith et a/., 2005). 

1.4.2 Starch Granule Degradation 

At night, transient starch is degraded to release carbohydrate compounds that are 

accumulated through photosynthesis in the daytime. This provides nutrients to the 

non-photosynthetic parts of the plant, as well as carbon skeletons, energy and 

reductants in the leaves (Smith et al., 2005). It is a composite process, differing 

slightly among species, involving several enzymes, some of which are not known, 

poorly characterised, or the roles of which remain to be identified. This section is 

concentrating on the mobilisation of transient starch in Arabidopsis thaliana, f rom 

plastidic granular starch to cytosolic hexose phosphates. 

In recent research, the fol lowing pathway has been suggested in Arabidopsis 

thaliana, however, the exact order of reactions is not clarified. Based on starch 
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excess (SEX) phenotypes of knock-out plants (as reviewed by Smith et al., 2005), it 
has been established, that G W D , Isoamylase 3 (ISA3) and P-amylase are required 
for starch degradation, while a-amylase activity has been shown not to be required 
for degradation of leaf starch. 

In Arabidopsis thaliana, starch degradation starts with starch phosphorylation, 

through GWDs. An autophosphorylation of an internal histidine takes place in the 

enzyme glucan water dikinase 1 ( G W D I ) (E.C.2.7.9.4), using the |3-phosphate f rom 

ATP. The autophosphorylated enzyme then transfers the phosphate group to the C3-

or C6-position of the glucose residue in the amylopectin chain (Reviewed by Smith 

et al., 2005). After this phosphorylation, glucan water dikinase 3 (GWD3) 

(E.C.2.7.9.4), which requires a pre-phosphorylated substrate, can also act upon the 

glucan chain. GWD3 phosphorylates glucose residues at the C-3 position in the 

glucan molecule (Baunsgaard et al., 2005; Kotting et al., 2005). The phosphorylation 

of the starch molecule is required for the break down of starch. This requirement 

may be due to phosphorylation increasing starch solubility (Blennow et ai, 2002; 

Baunsgaard et al., 2005). The phosphorylation of the starch granule by G W D l and 

GWD3, allows other enzymes to degrade the molecule (Blennow et al., 2002; Lloyd 

et al., 2005; Edner et al., 2007). 

P-amylase (E.C.3.2.1.2) is an exo-acting enzyme responsible for hydrolysing a-1,4 

glycosidic linkages in the non-reducing end of polyglucans, yielding P-maltose 

However, the |3-amylase lacks the ability to cleave a-1,6 bonds. This is believed to 

be carried out by the isoamylase 3 (ISA3, E.C. 3.2.1.68), which hydrolyses the small 

a-1,6 glycosyl branching points on the chain, allowing the |3-amylase to further 

degrade the amylopectin to maltose units (Delatte et al., 2006). The maltose 

molecules are then exported f rom the chloroplast to the cytosol via the maltose 

exporter M E X l (Niittyla et al., 2004) for further metabolism (Smith et al., 2005). 

As |3-amylase can only work on chains longer than four glycosyl residues, this 

enzymatic digestion is also expected to yield a second product, maltotriose. One of 

the few reported genes in the plant genome producing enzymes capable of degrading 

maltotriose is disproportionating enzyme 1 (DPEl) , an a-1,4 glucanotransferase 
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(E.C.2.4.1.25). DPEl transfers one glucose unit f rom the non-reducing end of the 
donor molecule to the acceptor, a linear glucan, thereby releasing one glucose 
molecule (Reviewed by Smith et al., 2005). DPEl is located in the stroma of the 
chloroplast, whereas another disproportionating enzyme also taking part in the starch 
degradation process has been localised to the cytosol. This is the cytosolic 
transglucosidase (DPE2) (E.C.2.4.1.25) (reviewed by Smith et al., 2005). DPE2 acts 
on the maltose transfered to the cytosol through the M E X l transporter in the 
chloroplast membrane, transferring one glucose unit f rom maltose to a glucan 
acceptor, suggested to be an a-1,4, a-1,6 heteroglucan. The reaction yields the 
release of one free glucose unit for further cellular metabolism, and the lengthening 
of the heteroglucan by one glucose residue (Smith et al., 2005), which may be 
degraded by cytosolic amylases. 

1.4.3 Starch Metabolism Related Mutations 

One method used in order to understand the proteins involved in starch granule 

degradation and formation is to identify mutant plants in which starch metabolism is 

altered, and identify the mutated gene responsible for this. This approach has 

identified a number of genes that would be expected to be involved in starch 

metabolism as well as some where links were less obvious. 

Mutations in dbel (ISA2) lead to the formation of starch that is highly branched, has 

shorter branches and is water-soluble (Zeeman et al., 1998). Since these altered 

properties of the glucan resemble those of glycogen, the polymer is termed 

phytoglycogen. The content of glucans is less then half of the starch content in the 

corresponding wildtype, however about 20% of the glucans is normal starch. Of 

interest, the phytoglycogen appears to be as accessible to the plant in the same way 

as starch, while it is the reduced amount of glucan, which affects the phenotype 

negatively (Zeeman etal., 1998). 

The starch excess phenotype of sex] is caused by a mutation in the G W D l locus. 

This hinders the initial phosphorylation of the starch granule and results in the 

accumulation of starch. In addition, the sex] mutant has reduced growth in 
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comparison to the corresponding wildtype, further emphasising that the plant has 
diminished access to its energy reserves (Yu et al., 2001). 

Analysis of mutants in the single chloroplastic a-amylase in A.thaliana (AtAMYB) 

showed no alteration in transitory starch breakdown in leaves, something also seen in 

triple knockout mutants of all three A.thaliana a-amylase genes (Yu et al., 2005). 

This suggested that starch degradation in leaves was likely to require a combined 

action of (3-amylase and debranching enzyme, instead of the previously predicted 

activity of a-amylase. 

The identification of the chloroplastic maltose transporter ( M E X l ) (Niittyla et al., 

2004) supported the surprising findings of the a-amylase mutants. Mutations of 

M E X l cause an increase in chloroplastic maltose levels, due to an inability to 

transport maltose into the cytosol. This supports the hypothesis that P-amylase acts 

upon the starch granule (producing maltose) instead of a-amylase, which would 

result in glucose production. Al lowing a means for the maltose produced by P-

amylase activity upon starch granules, to be transported to the cytosol for further 

degradation. 

] .5 COMPARISON OF STARCH AND GLYCOGEN METABOLISM 

Glycogen is a heterogeneous, irregular structure containing up to 120,000 glucose 

units per molecule, interlinked by a-1,4 bonds and branched on average on every 

10"" to 14* residue by a-1,6 glycosidic linkages (Manners, 1990). Structurally, 

glycogen resembles amylopectin, one of the two polyglucans in starch (Buleon et al., 

1998). About 20-30% of a starch granule is made f rom the linear a-1,4 amylose 

chains consisting of 600-6000 glucose residues internally linked by a-1,4 glycosidic 

linkages. The remaining 70-80% of starch is made f rom a-1,6 branched polyglucan 

amylopectin, where the glucan chains is built f rom 15-30 a-1,4 linked glucose units, 

connected by a-1,6 linked branch points (Manners, 1988). 
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Both glycogen and starch are built in a comparable tree-like structure, with one 
reducing end, and many nonreducing ends. The nonreducing ends have a free 
hydroxyl group on the C4 of the last glucose unit, f rom which the molecule can be 
elongated. The relatively long side chains of amylopectin cause the starch granule to 
crystallise, while the relatively shorter side chains of glycogen do not produce this 
structure. The glycogen molecule is therefore non-crystalline, and stored in granules 
measuring 10 - 40 nm in diameter. These are localised in the cytosol of somatic and 
some neuronal cells. 

Glycogen reserves are found predominantly in the skeletal muscle and the liver. 

With a glycogen content of 95mg per g tissue, the liver is the organ with the highest 

concentration of glycogen in the body, followed by skeletal muscles, which have a 

glycogen content of 12.8 mg per g tissue, and the heart, which has a glycogen 

content of 5.9mg per g tissue (Alonso et al., 1995). But as the skeletal muscles are 

much more abundant in the body, in assembly, the largest amount of glycogen is 

localised here. 

To synthesize glycogen f rom glucose, glucose must be in its activated form, UDP-

glucose, unlike in starch synthesis where ADP-glucose is used. This metabolite is 

synthesized f rom glucose-1-phosphate and uridine triphosphate (UTP), catalyzed by 

the enzyme UDP-glucose pyrophosphorylase (E.C. 2.7.7.9). The newly formed 

UDP-glucose is transferred to a nonreducing end of the glycogen molecule, and this 

reaction is catalyzed by the glycosyltransferase, glycogen synthase (GS, E.C. 

2.4.1.11). In mammals, two isoforms of GS exist. One isoform is expressed in many 

tissues, muscles being the predominant tissue, and the other isoform is expressed in 

the liver (reviewed by Roach, 2002). The GS proteins show homology with the SS 

proteins found in plants, which carry out a similar role. 

GS can only add glucose residues to an existing chain. Hence, the GS needs an 

initiating protein. The priming protein of glycogen synthesis is a glycosyltransferase 

termed glycogenin (E.C.2.4.1.186), on which an oligosaccharide chain of up to 10 

glucose residues can be synthesised. This oligosaccharide chain attached to the 

glycogenin is the primer of glycogen synthesis. Humans have two isoforms of the 

glycogenin. Glycogenin 1 is the predominant form, and is expressed in the muscles. 
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Glycogenin 2 is expressed in the liver, in the heart, and to a less degree in the 
pancreas (reviewed by Roach, 2002). So, this tissue specificity supports that 
glycogen metabolism is regulated differently in the respective tissues, with the 
different isoforms of the enzymes. This differs f rom starch formation in plants, 
where no protein primer has been identified. 

The branch points of the glycogen molecule are synthesised by the glycogen 

branching enzyme (GBE, E.C. 2.4.1.18). GBE cleaves an a 1,4 glycosidic linkage, 

thus excising an oligosaccharide which GBE subsequently transfers back on the 

glycogen branch and ends up forming a new a-1,6 glycosidic linkage between the 

liberated chain and another outer chain of the glycogen molecule in the same way as 

the starch branching enzyme of plants. This reaction provides new non-reducing 

ends for the glycogen synthase to act upon (reviewed by Roach, 2002). 

The enzyme primarily responsible for the degradation of glycogen is the 

glycosyltransferase termed glycogen phosphorylase (GP, E.C.2.4.1.1). This enzyme 

phosphorolyses the end glucose residue f rom the non-reducing end by adding 

orthophosphate to the C-1 of the glucose unit, thus cleaving the glycosidic a-1,4 

bond, yielding glucose 1-phosphate and a glycogen molecule shortened by one 

glucose residue. While similar proteins are present in plants (termed starch 

phosphorylase) they have been shown to play only a minor role in starch 

degredation. 

The GP cannot cleave a 1,4 glycosidic linkages close to the branch points, and 

additional enzyme activity is needed to continue the degradation. This ' trimmed' 

glycogen molecule, with its shortened branches acts as the substrate for glycogen 

debranching enzyme (GDBE) (E.C.3.2.1.68). The GDBE has two catalytic activities, 

a transferase activity and an a-1,6 glucosidase activity. The transferase part of the 

enzyme catalyses the hydrolysis of an a-1,4 glycosidic linkage in a branch of the 

glycogen molecule, excising a maltotriose and leaving a single glucose residue on 

the branch. Then, the enzyme transfers the excised maltotriose to the longer chain, 

forming an a 1,4 glycosidic linkage. The second activity of the GDBE is an a-1,6 

glucosidase activity, removing the remaining glucose unit by cleaving the branch 

point. When the glycogen molecule is linearized, the GP can carry on the 
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degradation (Roach, 2002), as is seen in starch degredation with the inter play of 
beta-amylases and ISA3. 

The enzyme acid a-glucosidase (E.C.3.2.1.20) catalyses the hydrolysis of both a-1,4 

and a-1,6 glycosidic linkages, (Roach, 2002) and is thus capable of complete 

degradation of glycogen in place of the above enzymes. 

Apart f rom the obvious similarity between the two energy storage forms, there are 

differences in their synthesis and degradation, however, as comparison of the two 

systems continues, it grows more obvious that what was often seen as very different 

systems, share a great deal of commonality, not just at the level of the primary 

enzymatic proteins, but also through their regulation, and the other proteins and 

mechanisms involved in the macromolecular carbohydrates degradation and 

formation 

1.5.1 Glycogen Metabolism Related Mutations 

Mutations in enzymes involved in mammalian glycogen metabolism generally tend 

to cause a glycogen excess phenotype, in preference to a glycogen lacking 

phenotype. This may indicate that a storage disease leading to insufficient amounts 

of glycogen may be fatal to mammals. There are a number of genetically determined 

glycogen metabolism related disorders, which make up the family of glycogen 

storage diseases (GSD), along with Lafora disease. 

GSD type I V , also termed Andersens disease, is a deficiency of GBE caused by 

mutations of the coding gene. This leads to the formation of glycogen containing 

long unbranched glucose chains, which have a low solubility, and can precipitate 

out. As a result, polyglucosan bodies are formed in the central nervous system (CNS) 

in astrocytes, but not in the neurons. Disease onset occurs in infancy, and manifests 

as liver cirrhosis, cardiomegaly and muscle involvement (Raben et al., 2001). The 

patients generally die in early childhood (Minassian et al., 2002). 
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Adult polyglucosan body disease (APBD) is a progressive neurologic disorder. In 
Ashkenazi Jewish patients, the disease caused by mutations in GBE leads to less 
severe symptoms; in non-Ashkenazi Jewish patients, the disease is not observed in 
association with reduced activity of the GBE, indicating that other genes may be 
involved. Polyglucosan bodies accumulate in the axons, and not in the perikarya and 
the dendrites as in Lafora Disease (Minassian et al., 2001). The disease has a late 
onset, and manifests as peripheral neuropathy and CNS dysfunction (Raben et al., 
2001), motor and sensor control is affected along with the onset of dementia, but 
seizures or myoclonias do not occur (Minassian et al., 2001). 

Raben et al., (2001) argue that since all these glycogen storage diseases, 

characterized by the presence of polyglucosan bodies, are caused by mutations 

affecting either the GBE or the GS, polyglucosan bodies arise f rom an imbalance in 

the level of activity between these enzymes. This theory may help to not only 

understand glycogen storage disease, but also other carbohydrate storage diseases 

such as the starch excess mutations in plants. 

1.5.2 Lafora Disease and Laforin 

Lafora Disease (LD) is an autosomal, recessive Progressive Myoclonus Epilepsy 

(PME), which was first described by Gonzales Lafora in 1911. The disease is 

associated with myoclonic seizures, intellectual decline and a fatal outcome 

(Reviewed by Minassian, 2002). The lafora bodies consist of 80-93% crystallized 

a 1,4- a 1,6 glucans and 6% protein (Ganesh et at., 2006). They are mainly found in 

the cytoplasm in the perikaryal region of neurons and in the dendrites, but not in the 

axons (Chan et al., 2004). The Lafora bodies are believed too dense to be degraded 

by enzymes during mobilisation of glycogen, while its precipitation in the cytoplasm 

suggests at features in common with plant starch (Wang and Roach, 2004). Unlike 

other glycogen storage disorders, it is not caused by mutation in genes encoding 

GBE or GS, but by one in a gene encoding at least one of the proteins; Laforin 

(product of EPM2A gene), Malin (product of EPM2B gene) (Gentry et al., 2005; 

Worby et al., 2008) or a yet to be identified protein (product of EPM2C gene). 
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L D sets in during the first or second decade of l i fe , with a clinical course of epileptic 
seizures, rapid intellectual decline, myoclonic and tonic-clonic seizures caused by 
progressive central nervous system degeneration. Also severe motor and 
coordination deterioration, focal occipital seizures and constant myoclonus is 
observed, and death wi l l set in within ten years of onset (Gentry et al., 2005). One of 
the characteristics of the disease is the presence of lafora bodies in the neurons of 
several tissues including brain, liver, skeletal muscle and heart (Reviewed by 
Minassian, 2002). 

The laforin protein is a phosphatase with a carbohydrate binding domain, which 

preferentially binds to polyglucans (Chan et al., 2004). It is involved in glycogen 

metabolism in mammals, and the gene coding for Laforin has been localised to 

chromosome 6q24 by homozygosity mapping and linkage analysis (Minassian et al., 

1998; Fernandez-Sanchez et al., 2003). The gene product is a 331 amino acid 

protein, in the C-terminal encoding a DSP, while the N-terminal contains a CBM20 

motif. 

Using alignments of the Homologous laforin sequences f rom the mammalian, the 

avian and the fish genome, 13 of the 14 known L D missense mutations in EPM2A 

were located in residues conserved among the laforin homologues. Furthermore, it 

was found that these mutations for the most part are in the phosphatase domain or in 

the CBD (Ganesh et al. 2004) 

Previous work (Fordham-Skelton et al., 2002) has shown sequence similarity 

between the N-terminal PTP domain of PTPKISl , and the C-terminal phosphatase 

domain of laforin. At the time, this was the only similarity drawn, since the PTP 

domain in laforin was associated with a carbohydrate binding domain and that of 

PTPKISl associated to the predicted KIS domain. With the evidence that the KIS 

domain of PTPKISl can itself act as a carbohydrate binding module (Kerk et al., 

2006; Niittyla et al., 2006), the homology seen in the PTP domain sequence becomes 

even more relevant, since the two proteins both contain both PTP and C B M 

domains. Phosphatases with carbohydrate binding modules, similar in structure to 

laforin or PTPKISl , are present throughout a range of different organisms including 

protists, evolved f rom a progenitor red alga (Gentry et al., 2007). The assumed 



Chapter 1 Introduction 21 

functional similarity between laforin and PTPKISl is also reflected in a similar 
phenotype resulting f rom inactivation of the proteins. While a deleterious mutation 
in the gene encoding AtPTPKIS I leads to the SEX4 phenotype, in which large starch 
granules form with high levels of un-branched amylose are present, similar 
mutations in the genes producing mammalian laforin result in the formation of lafora 
bodies, themselves high in un-branched amylose (Chan et al., 2004). 

In addition to its similarity to laforin, the phosphatase domain of PTPKISl was also 

shown to have sequence similarity to two other proteins in Arabidopsis thaliana. 

These proteins, encoded by genes At3g01510 and At3g 10940 were also identified in 

the publication by Fordham-Skelton et al, (2002) as having homologous PTP 

regions, with At3g01510, containing a C-terminal domain similar to that of the KIS 

domain in PTPKISl . 

1.6 AIMS AND OBJECTIVES 

The aim of this project was to study the previously identified PTPKISl proteins as 

well as the paralogues encoded by At3g01510 and At3g 10940, with regards to their 

role as phosphatases and any carbohydrate binding ability they may exhibit. Through 

expression of these as recombinant proteins it was possible to study their ability to 

dephosphorylate a number of substrates and characterise their binding to 

carbohydrates in vitro. In addition, analysis of their role in vivo was carried out 

through analysis of transcription levels and metabolite profiling of mutant lines in 

which the PTPKISl enzyme or the product of the At3g01510 gene were not present. 
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Chapter 2 

MATERIALS AND METHODS 

2.0.1 Chemicals and Reagents 

AH chemicals and reagents were supplied by BDH Chemicals Ltd (Poole, Dorset, 

U K ) and Sigma Chemical Company (St Louis, USA). Chemicals and reagents were 

of analytical grade, or best commercially available. 

2.0.2 Plant Material 

Arabidopsis thaliana ecotype Columbia and mutant lines were grown from seed in 

growth chambers at 20°C, 70% humidity and a photon flux density of 120 pimo\ 

photons m"- sec' with an 8-h or 12-h photoperiod. S E X 4 - ] , SEX4-3 and PTPKIS2-

S A L K lines were kindly donated by Alison Smith (JIC). 

2.0.3 Standard Molecular and Biochemical Techniques 

All standard techniques are as used in the Department of Biological and Biomedical 

Sciences, Durham University, and were based on protocols in Molecular Cloning: A 

Laboratory Manual (Sambrook et ai, 2001); unless stated otherwise. Equipment for 

routine DNA work was sterilised by autoclaving. While working with RNA all 

equipment was treated with 0.1% (v/v) diethyl pyrocarbonate (DEPC) overnight at 

37°C and then autoclaved. 
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2.1 STANDARD DNA WORK 

2.1.1 Plasmid DNA Mini-Preparations 

Plasmid DNA was isolated from up to 10 ml of overnight E.coli culture with the 

Wizard® Plus SV Miniprep kit (Promega), according to manufacturers instructions. 

In brief bacteria were alkaline lysed and genomic DNA was precipitated. Plasmid 

DNAs were recovered in a spin column and washed with ethanol. Plasmid DNAs 

were eluted in water. This method consistently gave plasmid DNA concentrations of 

100-250 nglpil Isolated plasmid DNA was stored at -20°C. 

2.1.2 Restriction Endonuclease Digestion 

Restriction endonuclease (RE) digests were carried out using buffers and 

temperatures recommended by the manufacturers. Typical digests were carried out at 

37°C on 2 fig of DNA using 2-10 units of R E (under optimal conditions 1 U of R E 

will completely digest 1 ;<g of DNA in a 50 n\ reaction volume). Restriction 

products were separated by agarose gel electrophoresis and visualised under UV 

light following ethidium bromide staining. 

2.1.3 Agarose Gel Electrophoresis of DNA 

Mixtures of DNA were separated according to size by submarine agarose gel 

electrophoresis (NBL medium size gel apparatus and Pharmacia GNA 100 

apparatus), as described by Sambrook (2000). Gels contained agarose up to a 

concentration of 2% (w/v) in I X T A E buffer (20 mM glacial acetic acid, 0.2 mM 

E D T A , 40 mM Tris, pH 7.2) and ethidium bromide (0.5 piglml). Prior to loading, 

DNA samples were mixed with 1/6 sample volume of 6X loading dye (10 mM Tris-

HCl at pH 8.0, 10 mM E D T A , 30% (w/v) glycerol, 0.1% (w/v) orange G). Samples 

were loaded onto horizontal gels submerged in I X T A E buffer containing ethidium 

bromide (0.5 piglmX) and run at room temperature between 50-lOOV (constant 

voltage). Size markers covering the appropriate molecular range were run alongside 

DNA samples. Size markers included Hindlll or Eco471 digested lambda DNA 
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(MBl-Fermentas). The ethidium bromide stained gels were viewed using either a 
Bio-Rad Gel Doc 2000 imaging system with images captured on a PC running 
Quantity One software (Bio-Rad), or a Gene Flash gel imaging system (Syngene). 

2.1.4 Recovery of DNA Fragments From Agarose Gels 

D N A gels were visualised on a trans-illuminator (UVB, X 302 nm) and appropriate 

bands were excised by using a single edged razor. Excess agarose was trimmed from 

the gel piece. D N A was purified from the agarose by using QIAquick gel extraction 

kit (Qiagen), or a Perfectprep Gel Cleanup kit (Eppendorf AG) according to 

manufacturers instructions. In brief, gel pieces up to 400 mg were dissolved in a 

chaotropic agent at 50°C. The dissolved agarose was loaded onto a silica spin 

column, which binds up to 10//g DNA. Following ethanol washes the DNA was 

eluted in 50/il nuclease-free water 30/<l elution buffer. Eluted DNAs were stored at -

20°C. 

2.1.5 DNA Precipitation 

D N A was precipitated f rom solution by adding 1/10 volume of 3 M sodium acetate 

(pH 5.2) and 2 volumes of ice-cold ethanol. The tube was vigorously mixed and then 

placed at -20°C for at least 1 hour. For small amounts of D N A (<0.1 ;<g/ml) 

glycogen was added as a carrier molecule (final concentration SO/ig/ml) and MgC12 

(final concentration lOmM). Precipitated D N A was pelleted by centrifugation 

(13,000 X g for 15 minutes, 0°C). The supernatant was removed and the pellet was 

washed in 70% (v/v) ethanol. Following centrifugation (13,000 x g for 5 minutes, 

0°C) the supernatant was removed and the pellet was dried in a 37°C block for 10 

minutes OR in a vacuum. The D N A pellet was then dissolved in an appropriate 

volume of nuclease free water. 

2.1.5 DNA Ligation 

Following restriction enzyme digestion, D N A for ligation was separated by agarose 

gel electrophoresis and purified f rom the gel. DNAs with compatible ends for 
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ligation were set up in standard 10 //I reactions using commercially available T4 
ligase and buffer (Promega), according to manufacturers instructions. A typical 
ligation reaction used 100 ng of plasmid DNA, in a 1:3 molar ratio of vector:insert. 
Sticky-end ligations were incubated at 22°C for a minimum of 3 hours or at 4°C 
overnight, while blunt end ligations were left overnight at 4°C. Following ligation 
the DNA was used to transform E.coli cells of an appropriate strain. 

2.1.6 Nucleotide Sequence Analysis 

Nucleotide sequence was determined by DBS Genomics (School of Biological and 

Biomedical Sciences, University of Durham), using BigDye Terminator with 

AmpliTaq DNA polymerase (ABI Biosciences). Reaction products were analysed on 

automated sequencers (ABI Prism 373 S T R E T C H and ABI Prism 377 X L ) . 

Expression constructs were completely sequenced on both strands of the DNA. 

Contiguous sequences were produced in SequencherTM Version 4.1.2 (Gene Codes 

Corporation) on a Macintosh computer. Edited nucleotide data was used in B L A S T X 

similarity searches against the NCBI database 

(http://wwvv.ncbi.nlm.nih.gov/BLAST/) and identification of sequence features in 

encoded polypeptides was performed using the CBS prediction servers 

(http://www.cbs.dtu.dk/services/). 

2.1.7 Oligonucleotides 

Oligonucleotides were chemically synthesised on a solid support by T A G N Ltd 

(International Centre for Life, Newcastle; http://www.vhbio.com/tagn/) or Sigma-

Genosys Ltd. Upon receipt primers were resuspended in sterile water to a final 

concentration of 100pmol//il and stored at -20°C. In PCR reactions non-degenerate 

primers were used at a final concentration of 0.2 ^M. Melting temperature (Tm) was 

calculated using the following formula: Tm = 69.3-1- 0.41x(%G+C)-

650/(nA+nG+nC-)-nT). The annealing temperature (Ta) of a particular 

oligonucleotide was commonly 3°C below the calculated Tm. 
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2.1.8 Standard Polymerase Chain Reaction 

PCR reactions were set up on ice according standard procedures. PCR reactions (25-

100 fi\) were set up in thin walled PCR tubes and consisted of 0.2mM each of dATP, 

dGTP, dCTP and dTTP, 2.5mM MgCl,, I X PCR buffer (50mM K C l , 0.1% (v/v) 

Triton X-100, lOmM Tris-HCl, pH 9.0), DNA template (5-100 ng) and 1 Unit of Taq 

polymerase (Promega) per 50!LI1 reaction (where l U calatalyses the incorporation of 

10 nmol of dNTP into an acid insoluble form at 74°C). Gene specific oligonucleotide 

primers were used at 0.2//M. For multiple PCR reactions a master mix containing all 

common components was mixed in a 1.5ml eppendorf tube, and then aliquoted to 

individual PCR tubes. Setting up multiple PCR reactions in this way reduced pipette 

error and ensured consistency across all reactions. PCR thermocycling was 

performed on a Perkin Elmer 2400 thermal cycler. 

2.1.9 Subcloning PCR Products for pCR2.1 TOPO Cloning System 

PCR products were resolved by agarose gel electrophoresis and visualised by 

ethidium bromide staining. Bands corresponding to the predicted size were cut from 

the gel and purified. Purified DNA was resuspended in a minimal volume of water 

and subcloned into the pCR2.] TOPO vector using the TOPO cloning kit 

(Invitrogen) according to the manufacturers instructions. Transformed clones were 

selected on the basis of blue/white colour selection, picked using sterile tooth picks 

and grown overnight at 37°C in 10 ml L B M broth containing 50;/g/ml kanamycin. 

Liquid cultures were placed on a rotary shaker set at 200 rpm. Plasmid DNA from 

positive transformants was isolated by mini-preparation (Promega) and checked by 

restriction enzyme digest and sequencing. 

2.1.10 Subcloning PCR Products for Gateway pENTR TOPO System 

Primers were designed according to the guidelines provided in the pENTR 

directional TOPO cloning kit (Invitrogen). PCR was carried out using Phusion 

polymerase (Finnzyme), According to manufacturers instructions, PCR products 

were resolved by agarose gel electrophoresis and visualised under U V light 
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following ethidium bromide staining. Bands corresponding to the predicted size were 
cut from the gel and purified. Purified DNA was resuspended in a minimal volume 
of water and subcloned into the pENTR/D-TOPO vector using the pENTR 
directional TOPO cloning kit (Invitrogen) according to the manufacturers 
instructions. Transformed clones were selected on plates containing 50/<g/ml 
kanamycin, picked using sterile tooth picks and grown overnight at 37°C in 10 ml 
L B M broth containing 50fig/m\ kanamycin. Liquid cultures were placed on a rotary 
shaker set at 200 rpm. Plasmid DNA from positive transformants was isolated by 
mini-preparation (Promega) and checked by restriction enzyme digest and 
determining of the nucleotide sequence. 

2.1.11 Gateway BP Reaction 

Primers were designed according to the guidelines provided in the Gateway 

Technology Manual (Invitrogen) containing attB sequences in each primer. PCR was 

carried out using Phusion polymerase, PCR products were resolved by agarose gel 

electrophoresis and visualised by ethidium bromide staining. Bands corresponding to 

the predicted size were cut from the gel and purified. Purified DNA was then cloned 

into the pDONR20] vector (Invitrogn) Using the BP Clonase Enzyme Mix 

(Invitrogen) according to the manufacturers instructions. Transformed clones were 

selected on plates containing 50//g/ml kanamycin, picked using sterile tooth picks 

and grown O/N at 37°C in 10 ml L B M broth containing 50pig/m\ kanamycin. Liquid 

cultures were placed on a rotary shaker set at 200 rpm. Plasmid DNA from positive 

transformants was isolated by mini-preparation (Promega) and checked by restriction 

enzyme digest and sequencing. 

2.1.12 Gateway L R Reaction 

Plasmids produced through either the pENTR TOPO method or BP reaction method 

were used in order to subclone the PCR product they cloned into the expression 

vectors p D E S T l S and pDEST17. The pENTR or BP clones were mixed with the 

pDEST15 or pDEST17 plasmid, in the presence of the L R clonase mixture, 

according to the manufacturers instructions. Following transformation into E.coli, 
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Transformed clones were selected on plates containing 75//g/ml carbenicillin, picked 
using sterile tooth picks and grown O/N at 37°C in 10 ml L B M broth containing 
75//g/ml carbenicillin. Liquid cultures were placed on a rotary shaker set at 200 rpm. 
Plasmid D N A from positive transformants was isolated by mini-preparation 
(Promega) and checked by restriction enzyme digest and sequencing. 

2.1.13 Site Directed Mutagenesis 

Specific mutations were generated using the Stratagene "Quick Change" 

mutagenesis kit. Primers were designed according to the Quick Change Mutagenesis 

Ki t instructions (Stratagene). Following mutagenesis plasmid D N A from positive 

transformants was isolated by mini-preparation (Promega) and checked by restriction 

enzyme digest and sequencing. 

2.1.14 Colony PGR 

Colony PCR was used as a method for rapid screening of recombinant plasmids. Ten 

to twenty colony transformants f rom recombinant E. coli were picked and 

resuspended in 10 ml distilled water; this was then used in a standard PCR reaction 

as previously described. 

2.2 STANDARD RNA WORK 

2.2.1 RNA Isolation 

RNA was isolated f rom leaf material using the RNeasy Plant M i n i Ki t (Qiagen) 

according to the manufacturers instructions. RNA was quantified by spectral 

absorbance at 260 and 280 nm (A260/280). 
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2.2.2 Reverse Transcription-PCR (RT-PCR) 

RT-PCR was carried out using the Access To RT-PCR kit (Promega) according to 

the manufacturers instructions. PCR thermocycling was performed on a Perkin 

Elmer 2400 thermal cycler. Reaction products were seperated using agarose gels and 

ethidium bromide stained gels were viewed using either a Bio-Rad Gel Doc 2000 

imaging system with images captured on a PC running Quantity One software (Bio-

Rad), or a Gene Flash gel imaging system (Syngene). 

2.2.3 Real-Time RT-PCR 

Following quantification by spectral absorbance, 2/<g of total R N A was treated with 

deoxyribonucleasel (DNasel) according to the manufacturers instructions. 2^g 

RNA, 2fi[ lOx reaction buffer and 2^1 amplification grade DNasel were combined in 

a total volume of lOpil with RNase free water, and incubated for 15 minutes at room 

temperature. Following incubation, 2//1 of stop solution were added and the reaction 

heated at 70°C for 10 minutes before being chilled on ice. was retained for use as 

controls, while the remainder was used in cDNA synthesis. 

cDNA synthesis was carried out using iScript (Bio Rad), using 10//1 of the DNasel 

treated R N A in each reaction according to the manufacturers instructions. Reactions 

were first incubated at 25°C for 5 minutes, followed by a 30 minute incubation at 

42°C and finally 5 minutes at 85°C prior to being frozen at -20°C until used in real

time RT-PCR reactions. 

The real-time RT-PCR reaction was performed on an iCycler Instrument (Bio-Rad) 

using the iQ SYBR Green Supermix kit for PCR (Bio-Rad) according to the 

manufacturer's instructions. Each reaction was performed with 5^1 of between 1:10 

and 1:100 dilutions of the first-strand cDNA (concentrations being standardised 

following quantification by spectral absorbance) in a total volume of 20^1. 
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The reactions were incubated at 96°C for 2 min to activate the hot start recombinant 
Taq DNA polymerase, followed by 50 cycles of 30 sec at 96°C, 30 sec at 60°C and 1 
min at 72°C. Gene-specific primers (listed in the relevant sections) were used. 
Specificity of the PCR amplification was confirmed with a heat dissociation protocol 
(melt curve) (from 65 to 95°C) following the final cycle of the PCR. The efficiency 
of the primer sets was calculated by performing real-time PCR on several dilutions 
of first strand cDNA. The efficiency of the different primer sets was found to be 
comparible. The results obtained for the different conditions analyzed vvere 
standardized to the A C T I N l Real Time RT-PCR product level. 

2.3 STANDARD B A C T E R I A L WORK 

2.3.1 Escherichia coli Strains 

Escherichia coli strains were used for plasmid propagation. Plasmid DNAs were 

maintained at high copy numbers in the following E.coli strains: DH5a (genotype: F 

(t)80d/acZAM15, A(/acZYA-ar5F)U169, deoR recAl, endAl, hsdRllirt,-, r r x y ^ ) , 

phoA, supE44, , X', thi-l, gyrA96, relA\) and TOP 10 (genotype: F- mcrA A.(mrr-

hsdRMS-mcrBC) <I)80/ocZAM15 AlacX74 recAl deoR araD\39 A{ara-leu)1691 

ga(\5 galK rpsL (StrR) endA] nupG). DH5a and TOPIO cells were purchased f rom 

Gibco BRL and Invitrogen, respectively. 

Escherichia coli strain DB3.1 was used for propagation of Gateway Destination 

Vectors containing the CcdB gene (genotype: F- gyrA462 endAl A(srl-recA) mcrB 

mrr hsdS20(rB-, mB-) supE44 aral4 galK2 lacYl proA2 rpsL20(Smr) xyl5 Aleu 

m t l l ) . DB3.1 cells were purchased from Invitrogen. 

For over expression of recombinant proteins expression plasmids were transferred to 

an E.coli host containing a chromosomal copy of the T7 R N A polymerase gene 

under lacUV5 control or the arabinose-inducible araBAD promoter. These strains 

were BL21 STAR (DE3) (genotype: F ompT hsdS^ {rB'mB) gal dcm rnelSJ (DE3)) 

and BL21-AI (genotype: F ompT hsdSg {r^'mB ) gal dcm <3raB::T7RNAP-tetA) 
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Respectively. BL21 STAR (DE3) and B L 2 I - A I cells were purchased from 
Invitrogen. 

2.3.2 Bacterial Gulture 

For routine work, bacteria were propagated in sterile Luria-Bertani Medium ( L B M ) 

(10 g/1 tryptone, 5 g/1 yeast extract, 10 g/1 NaCI). Liquid cultures were inoculated 

with single bacterial clone and grown overnight (approx. 16 hours) at 37°C, with 

shaking at 220 rpm. For growth of bacteria on solid L B M agar, liquid media was 

prepared and Bacto Agar (15 g/1) was added prior to autoclaving, upon cooling agar 

was poured into sterile petri dishes. Inoculated dishes were inverted and incubated at 

37°C overnight. Where necessary antibiotics were added to the culture medium. 

2.3.3 Transformation of Competent E.coli Gells 

Competent cells were removed f rom - 8 0 ° C storage and thawed on ice. Plasmid 

D N A for transformation (10 ng plasmid D N A in a maximum of 3 was added to 

the cells and gently mixed. Cells were incubated on ice for 30 minutes and then heat 

shocked for 30-60 seconds at 42°C followed by a return to ice for 2 minutes. 

Following transformation 0.25 ml of L B M or SOC broth was added to each 

transformation and tubes were placed at 37''C for 1 hour, with shaking (220 rpm). 

Transformants were selected by plating cells (100-200 on LBM-agar containing 

an appropriate antibiotic. For plasmid DNAs allowing blue/white screening L B M -

agar was supplemented with 40 fxg/ml 5-bromo-4-chloro-3-indoyl-P-D-gaIatoside 

(X-Gal) 
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2.4 STANDARD PROTEIN WORK 

2.4.1 SDS-PAGE 

Protein samples were analysed by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE), using 12.5%, 15% or 17.5% resolving gel (12.5%, 

15% or 17.5% (w/v) Protogel (37.5:1 acrylamide:bisacrylamide) (National 

Diagnostics, www.nationaldiagnostics.com), 0.375 M Tris/HCl (pH 8.8), 0 .1% (w/v) 

SDS, 0.075% (w/v) ammonium persulphate, 0.05% (v/v) T E M E D {N, N, N'. N'-

tetramethylethylenediamine) and 2.5% stacking gel (2.5% Protogel, 0.125M 

Tris/HCl (pH 6.8), 0 .1% (w/v) SDS, 0 .1% (w/v) ammonium pershulphate and 

0.075% (v/v) T E M E D according to Laemmli (Laemmli, 1970)). Minigels (8 x 10cm) 

were prepared and run in 1 x reservoir buffer (0.025M Tris/HCl pH 8.3, 0.192 M 

glycine, 0 .1% (w/v) SDS) at 70 V through the stacking gel and 120 V through the 

resolving gel using an A T T O AE-6450 gel tank apparatus (Genetic Research 

Instrumentation Ltd. http://www.gri.co.uk/). Protein samples were prepared by 

adding SDS sample buffer to a 1 x concentration (from a 2 x or 5 x stock solution 

depending on the volume of protein solution in the sample) (0.1 M Tris/HCl (pH 

6.8), 10% (v/v) glycerol, 1% (w/v) SDS, 0.001% (w/v) bromophenol blue, 1% p-

mercaptoethanol) and heated in boiling water for 5 minutes before loading onto gel. 

A molecular weight marker was used to calibrate gels. Proteins were visualised on 

gel using either Coomassie blue or Kenacid blue stain solution. 

2.4.2 Coomassie Blue / Kenacid Blue Staining of P A G E Gels 

After polyacrylamide electrophoresis proteins in the pig range were visualised by 

staining with 0.25% (w/v) Coomassie Brilliant Blue G250 (or Kenacid blue), in 10% 

(v/v) glacial acetic acid, 40% (v/v) methanol, followed by destaining with 10% (v/v) 

glacial acetic acid, 40% (v/v) methanol. Gels were stained for a minimum of 3 hours, 

both staining and destaining were carried out at room temperature with gentle 

agitation. 
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2.4.3 Western blotting 

Proteins were transferred f rom polyacrylamide gel to nitrocellulose membrane 

(Protran BA85, Whatman Ltd. www.whatman.com) by semi-dry blotting. Six sheets 

of 3 M M paper (Whatman Ltd. www.whatman.com) and one sheet of nitrocellulose 

membrane were cut to the same size as the gel and soaked for 10 minutes in Towbins 

buffer (25mM Tris, 20% (v/v) MeOH, 192mM Glycine). The blotting sandwich was 

then prepared in an ATTO blotting apparatus (Genetic Research Instrumentation Ltd. 

http://www.gri.co.uk/) as follows: ANODE; 3x sheets of 3 M M paper; nitrocellulose 

membrane; gel; 3x sheets of 3 M M paper; CATHODE. Electroblotting was carried 

out at 150-200 mA for 1 hour. For visualization of protein standard marker transfer 

prior to immunodetection, the nitrocellulose membrane was soaked in Ponceau S 

stain (0 .1% Ponceau S, 5% Acetic Acid) for 5 minutes and rinsed thoroughly in 

water. 

For immunodetection, the nitrocellulose membrane was blocked for either I hour at 

room temperature or at 4°C overnight in blocking buffer (1.5 m M K H 2 P O 4 , 8mM 

Na2HP04, 0.137 M NaCl, 1% Tween-20, 5% (w/v) non-fat milk powder). Following 

3 x 5 minute washes in antisera buffer (1.5 m M ICH2PO4, 8mM Na2HP04, 0.137 M 

NaCl, 0 .1% Tween-20, 5% (w/v) Non-fat milk powder), primary antibody was 

diluted 1:3000 (anti-GST) in 10 ml anti-sera buffer and the membrane incubated 

overnight at 4°C. The membrane was then washed in anti-sera buffer for 3 x 5 

minutes at room temperature. IgG horseradish peroxidase conjugate (Biorad, 

www.biorad.com) was used as a secondary antibody in 10 ml blocking buffer at a 

] :5000 dilution and incubated with the membrane at room temperature for 3 hours. 

This was followed by 1 x 5 wash in anti-sera buffer then 1 x 1 5 minute and 2 x 5 

minute washes in PBS-T (1.5 m M K H 2 P O 4 , 8mM Na2HP04, 0.137 M NaCl, 0 . 1 % 

Tween-20) and several rinses in distilled water. 

Enhanced chemoluminescence (ECL) reagents (GE healthcare, 

www.gehealthcare.com) were used for detection according to the manufacturer's 

instructions and proteins were visualized by exposure to X-ray f i l m (Fuji SuperRX, 

Fuji Photo. Fi lm Ltd , www.fuj i f i lm.co.uk) . Autoradiographs were either developed 
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using an automatic developer (Xograph Imaging Systems Compact X4, 
www.xograph.com) or manually. 

2.4.4 Estimation of Protein Concentration 

Protein concentrations were determined by using the Bio-Rad protein assay. Assays 

were set up in micro-titre plates and bovine serum albumin (BSA) was used as a 

protein standard, with dilutions prepared in the same buffer as the sample. BSA 

dilutions were used to plot a standard curve. Protein solutions of an unknown 

concentration were predicted using the standard curve. In microtitre plates ]Ofi\ of 

each standard or unknown sample was added to 150/<1 of water in separate wells and 

then mixed with 40^1 of Bradford reagent. Absorbance was read at 570 nm using a 

Dynatech M T 5000 microtitre plate reader 

2.4.5 Expression of GST-Tagged Proteins in BL21 AI Cells 

BL21 A I (Invitrogen) were transformed with the expression constructs for 

AtPTPKISl , AtPTPKIS2, A tPTPKILl or S tPTPKLl . Clonal transformants were 

grown in liquid L B M broth containing carbenicillin (50//g/ml) at 37°C with shaking 

(200 rpm) until an O D X̂ oonm 0.6-0.8. Mid-log cells were induced for expression with 

the addition of L-arabinose at a concentration of 0.02% (w/v) and continued growth 

for 16 hours post induction under similar growth conditions, with the temperature 

reduced to 28°C. Cells were collected by centrifugation (6,000 x g for 30 min, 4°C) 

and resuspended in 150mM HEPES to 1/20''' the initial culture volume. Cells were 

lysed through sonication followed by centrifugation (10,000x g for 20 minutes, 4°C) 

to remove cell debris. Soluble protein was filtered and purified using 1ml 

Glutothione Sepharose FF from Amersham Biosciences fol lowing the manufacturers 

guidelines. 

2.4.6 Expression of GST-Tagged Proteins in BL21 (DE3) STAR Cells 

BL21(DE3) STAR (Invitrogen) were transformed with the expression constructs 

encoding the predicted KIS/CBM domains f rom AtPTPKISl and AtPTPKIS2 or the 
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control plasmid pGEX5xl(Amersham Biosciences). Clonal transformants were 
grown in liquid L B M broth containing carbenicillin (50 ptg/ml) at 37°C with shaking 
(200 rpm) until an OD Xf^^^^ 0.6-0.8. Mid- log cells were induced for expression with 
isopropyl (3-D-thiogalactoside (0.1 mM) and continued growth for 3 hours post 
induction under similar growth conditions. Cells were collected by centrifugation 
(6,000 x g for 30 min, 4°C) and resuspended in PBS to 1/20"̂  the initial culture 
volume. Cells were lysed through sonication followed by centrifugation (10,000x g 
for 20 minutes, 4°C) to remove cell debris. Soluble protein was filtered and purified 
using 1ml GSTrap FF from Amersham Biosciences following the manufacturers 
guidelines. 

2.5 M E T A B O L I T E ANALYSIS 

2.5.1 Glucose, Fructose and Sucrose Analysis 

For measurement of glucose, fructose and sucrose, leaf tissue was harvested and 

frozen in liquid N , . Frozen leaf material was then powdered using a shaking steel 

ball mi l l at 30Hz for 30 seconds, and extracted in 200pi\ of 0.7 M perchloric acid for 

30 minutes on ice. After centrifugation (5900g for 5 minutes at 4°C), 75/<l of the 

supernatant was neutralised with 35^1 2 M K O H . Following centrifugation (5900g 

for 5 minutes at 4°C), 50fi\ of the supernatant was analysed for glucose, fructose and 

sucrose content. Glucose, fructose and sucrose levels were identified through 

enzymatic assay, using the conversion of N A D to N A D H as a method for 

quantifying glucose, fructose, and sucrose content sequentially as described in 

Muller-Rober et al. (1992). 

2.5.2 Glucose-6-Phosphate Analysis 

Leaf tissue was harvested throughout the day/night period f rom plants grown in short 

day conditions (8h light, 16h dark), flash frozen in N , and stored at -80°C prior to 

analysis. 300mg frozen material and 10/̂ 1 lOOmM glucose 1,6 biphosphate (for use 

as an internal standard) was incubated with 5ml 80% ethanol for 15 minutes prior to 
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centrifugation at 3000g for 10 minutes. Supernatant is collected and stored, before 
plant material was resuspended in 5ml 25% ethanol at 0°C for 30 minutes. Following 
centrifugation at 3000g for 10 minutes, the supernatant was removed and stored, and 
plant material resuspended in 2ml water at 0°C for 15minutes. Following 
centrifugation at 3000g for 10 minutes, supernatant was removed and stored, while 
the plant material was resuspended in 2ml water at 0°C for 5 minutes. Following 
centrifugation at 3000g for 10 minutes, the supernatant was removed and combined 
with all the other supernatants at room temperature. To this mixture, 2ml of 
dichloromethane was added and mixed gently before the mixture was centrifuged for 
10 minutes at 3000g. The upper water phase was then removed, and re-extracted 
with 2ml dichloromethane. The final water phase was evaporated using a speedvac at 
room temperature overnight and the remaining material resuspended in 200;<1 water. 

Phosphorylated sugars were then subjected to HPAEC-PAD on a PA-1 column 

(Dionex, R0dovre, Denmark) according to Blennow et al. (1998) using glucose-1, 6-

bisphosphate as an internal standard. 

2.5.3 Starch Content Analysis 

Samples of leaf tissue were taken throughout the day/night period f rom plants grown 

in short day conditions (8h light, I6h dark) and their starch content quantified. 

Soluble carbohydrates were extracted using water and ethanol, before the remaining 

starch was isolated and determined through enzymatic assay as described in Muller-

Rober et al. (1992). 

2.5.4 Starch Bound Phosphate Analysis 

Leaf tissue (400mg) was extracted 3 times for 5 minutes with 90% ethanol at 80°C, 

and then washed 3 times for 5 minutes with 50mM Na Acetate, pH 4.0 at room 

temperature. The leaf material was then washed twice in water, before 100//1 

Termamyl (Novozymes) was added to degrade the starch at 100°C for 30 minutes 

with agitation. Following centrifugation for 5 minutes at 20,000g, the supernatant 

was removed and stored, while the plant material was extracted twice more with 
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water. A l l supernatant fractions were combined and the water evaporated o f f in a 
speedvac, before the remaining material was dissolved in 100/<1 water. This material 
was then subject to acid hydrolysis with HCl at a final concentration of 0.7M for 4 
hours at 100°C. Following acid hydrolysis the solution was neutralised with the 
addition of NaOH and the neutralised hydrolysate subjected to HPAEC-PAD on a 
PA-1 column (Dionex, R0dovre, Denmark) according to Blennow et al. (1998). 

2.5.5 Iodine Staining of Leaf Starch 

Mature leaves were harvested at the end of the light and dark periods f rom plants 

grown in short day conditions (8 hours light, 16 hours dark). Leaves were 

discoloured in 3 incubations with 90% ethanol at 80°C for 10 minutes. They where 

then incubated in 20% ethanol at room temperature for 5 minutes, before being 

rehydrated in 3 incubations with water at room temperature for 5 minutes. Following 

removal of the supernatants, the leaf material was incubated with Lugol solution (5g 

iodine, lOg potassium iodide in lOOml distilled water) for 10 minutes. The leaf 

material was then washed 3 times in water to remove excess iodine, before imaging 

on a scanner. 

2.6 PHOSPHATASE ASSAYS 

In all assays results were shown as the activity with the mass of enzyme used 

discounting and additional sequences (such as GST tag) introduced through 

recombinant expression. 

2.6.1 P-nitrophenyl Phosphate Assays 

/?-nitrophenyl phosphate assays were carried out on clear flat bottomed micro-titre 

plates at room temperature. Each reaction was to a final volume of lOOfxl and 

contained lOmM p-nitrophenyl phosphate and 0. I m M D T T unless stated otherwise. 

Reactions were terminated with the addition of NaOH to a final concentration of 

0.2M. The absorbance at 405nm was measured using a Dynatech MR5000. 
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Standards were generated using p-nitrophenyl to calculate the total product 
generated. Phosphatase inhibitors phenylarsine oxide and vanadate were used as 
described previously (Fordham-Skelton et al., 1999). 

2.6.2 Malachite Green Assays 

Malachite Green solution was made according to Baykov et al., (1988). 

Concentrated sulphuric acid (60ml) was slowly added to water (300ml) and allowed 

to cool to room temperature, before malachite green (0.44g) was added. Prior to use 

7.5% ammonium molybdate (2.5ml) and 11% Tween 20 (0.2ml) were added to the 

malachite green solution (10ml). Following the phosphatase reaction, four volume of 

this coloured reagent was mixed with one volumes of the reaction solution. 

Reactions were kept at room temperature for 5 minutes and the absorbance 

measured. The absorbance at 620nm was measured using a Dynatech MR5000. 

Phosphorylated peptides (Biomol) were resuspended in distilled water and used at a 

final concentration of lOOjxM with free phosphate release measured using Malachite 

Green. Carbohydrate substrates were used at ~100!J,g in 80|xl and reactions lightly 

agitated throughout the assay. Buffers used were as stated in the results section. 

Following reaction, the assays were centrifuged (10,000g for 4 minutes at 4°C) and 

the supernatant removed for assay with malachite green. The reaction was stopped 

through heating or the addition of a terminator such as N-ethylmaleimide (to a final 

concentration of 50mM). 

2.6.3 Radiolabeled Phosphoglucan Assay 

Phosphoglucans were created using standard techniques (Mikkelsen et al., 2004), 

with the scaffold of potato amylopectin being replaced by liver glycogen. Elongated 

glycogen was phosphorylated using G W D l , incorporating a radioactive label, as 

described by Mikkelsen et al. (2004). Following washing, phosphoglucans were 

incubated for 30 minutes at room temperature with the assayed protein. The reaction 

was terminated, and polyglucans precipitated with the addition of 18x reaction 

volume of 75% Methanol. The supernatant was removed and dried to remove 
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methanol before re-suspension in 400;<1 of water. The released radioactivity was 
measured using a MicroBeta Trilux liquid scintillation counter (Wallac). 

2.7 CARBOHYDRATE BINDING ASSAYS 

2.7.1 Glycogen Binding Pull-Down Assay 

Protein-free glycogen (5 mg/ml) in 50 m M Tris-HCl, pH 7.5, 150 m M NaCl, 0 . 1 % 

(v/v) 2-mercaptoethanol, 0.02% (w/v) Brij-35, 0.1 mg/ml BSA (Armstrong et ai, 

1998) was mixed with GST fusion protein. After incubation on ice for 30 min, the 

samples were centrifuged for 90 min at 100000 g. Pellets were washed in 200ul 50 

m M Tris-HCl, pH 7.5,150 m M NaCl, before resuspension in 4x SDS sample buffer 

(8% P-mercaptoethanol), and run on SDS-PAGE gel. 

2.7.2 Starch Binding Pull-Down Assay 

Potato Starch (sigma) (5 mg/ml) in 50 m M Tris-HCl, pH 7.5, 150 m M NaCl, 0 .1% 

(v/v) 2-mercaptoethanol/0.02% (w/v) Brij-35/0.1 mg/ml BSA (Armstrong et ai, 

1998) was mixed with GST fusion protein. After incubation on ice for 30 min, the 

samples were centrifuged for 10 min at 10,000g. Pellets were washed in 200ul 50 

m M Tris-HCl, pH 7.5,150 m M NaCl, before resuspension in 4x SDS sample buffer 

(8% p-mercaptoethanol), and run on SDS-PAGE gel. 

Quantification of protein content in protein bands on SDS gel was carried out using 

Quantity One (BioRad) to calculate the protein content of a band relative to that o f 

known bands on the same gel. 
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2.7.3 Native PAGE 

Protein samples were analysed by polyacrylamide gel electrophoresis (PAGE), using 

10% or 7.5% resolving gel (10% or 7.5% (w/v) Protogel (37.5:1 

acrylamide.bisacrylamide) (National Diagnostics, www.nationaldiagnostics.com), 

0.375 M Tris/HCl (pH 8.8), 0.075% (w/v) ammonium persulphate, 0.05% (v/v) 

T E M E D (A', N, N', A^'-tetramethylethylenediamine) and 2.5% stacking gel (2.5% 

Protogel, 0.125 M Tris/HCl (pH 6.8), 0 . 1 % (w/v) ammonium persulphate and 

0.075% (v/v) TEMED, modified f rom Laemmli (Laemmli, 1970). Minigels (8 x 

10cm) were prepared and run in 1 x native reservoir buffer (0.025 M Tris/HCl pH 

8.3, 0.192 M glycine) at 70 V through the stacking gel and 120 V through the 

resolving gel using an ATTO AE-6450 gel tank apparatus (Genetic Research 

Instrumentation Ltd. http://www.gri.co.uk/). Protein samples were prepared by 

adding native sample buffer to a Ix concentration (from a 2 x or 5 x stock solution 

depending on the volume of protein solution in the sample) (0.1 M Tris/HCl (pH 

6.8), 10% (w/v) sucrose, 0.001% (w/v) bromophenol blue). 

Where starch or glycogen was used in native gels, it was included in the resolving 

gel at the concentration given in the results section. Soluble starch and bovine 

glycogen were purchased from Sigma-Aldritch. 

2.8 BIOINFORMATICS 

2.8.1 Protein Sequence Analysis 

Where possible sequence information corresponding to these proteins was retrieved 

f rom the NCBI database (http://www.ncbi.nlm.nih.gov/). Using DNASTAR software 

(version 3.16) run on a Macintosh computer, protein sequences were aligned within 

the MegAlign programme using ClustalV algorithm. Prediction of secondary 

structure was carried out using Protean, part of the DNASTAR software suite. 
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2.8.2 Nucleotide Sequence Analysis 

Identification of homologous or similar sequences was carried out using similarity 

searches against the NCBI database (http.7/ww\v.ncbi.nlm.nih.gov/BLAST/), 

including its Nucleotide collection databa.se, and its Expressed Sequence Tag (EST) 

database, using nucleotide and translated nucleotide searches. Contiguous sequences 

were produced in SequencherTM Version 4.1.2 (Gene Codes Corporation) on a 

Macintosh computer. 
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Chapter 3 

PHOSPHATASE ACTIVITY OF PTPKIS FAMILY 

PROTEINS 

3.1 INTRODUCTION 

PTPKIS 1 was originally identified by Fordham-Skelton et al., (2002) and was 

described as "a novel higher plant protein tyrosine phosphatase", due to the pre.sence 

of a C-terminal domain classed as a kinase interaction sequence (KIS) domain in 

combination with the N-terminal PTP domain. The study showed evidence of in 

vitro interaction between this sequence and the plant SnRK A K I N l l , a protein 

related to AMPKs and SNFl in the budding yeast Saccharomyces cerevisiae 

(Alderson er al.., 1991; Mitchelhill et al.., 1994; reviewed in Halford et al.., 2000). 

This led the authors to surmise that PTPKIS 1 may act to regulate A K I N l 1 activity in 

the plant through dephosphorylation of the A K I N l l kinase. This may itself, be 

responsible for regulating a number of metabolic pathways, as has been identified 

with its homologues in budding yeast and animals (Hardie et al., 1998; Halford et 

al.., 2000). Unfortunately the authors were unable to show significant biological 

activity upon phosphorylated tyrosine peptides, and were unable to express 

recombinant full-length protein from the Arabidopsis thaliana sequence. 

More recently it has been shown that the previously identified Starch EXcess 4 

phenotype (SEX4) was not in fact caused through mutation to a chloroplastic starch-

hydrolysing enzyme (Zeeman et al., 1998), but due to mutation of the At3g52180 

gene encoding AtPTPKISl (Niittyla et al., 2006). This publication as well as two 

others (Kerk et al., 2006; Sokolov et al., 2006) also showed the ability of the 

previously identified KIS domain to act as a carbohydrate binding module as well as 

association of PTPKIS 1 to starch granules. It was also shown that PTPKIS 1 

localised to the chloroplast, making it unlikely it would be able to interact with 

A K I N l 1 (Kerk et al., 2006; Niittyla et al., 2006; Sokolov et al., 2006). 
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In Fordham-Skelton et al., (2002), comparison was drawn between the sequences of 

the N-terminal protein tyrosine phosphatase (PTP) domain of PTPKIS 1, and the 

phosphatase domain of the animal protein laforin. At the time, this was the only 

similarity drawn, since the PTP domain in laforin was C-terminal to an N-terminal 

C B M that showed little similarity to the PTPKIS 1 sequence. With the evidence that 

the KIS domain of PTPKIS 1 can itself act as a carbohydrate binding module, the 

similarity in PTP domain sequence becomes even more relevant, since the two 

proteins both contain two domains with similar functions. While this piece of work 

discusses the PTPKIS 1 proteins present in higher plants, recent publications have 

also shown the presence of phosphatases with carbohydrate binding modules, similar 

in structure to laforin, present throughout a range of different organisms including 

protists, evolved from a progenitor red alga (Gentry et al., 2007). The assumed 

functional similarity between laforin and PTPKIS 1 is also reflected in a similar 

phenotype resulting f rom inactivation of the proteins. While a deleterious mutation 

in the AtPTPKISl leads to the SEX4 phenotype, in which large starch granules form 

with high levels of un-branched amylose are present, similar mutations in 

mammalian laforin result in the formation of lafora bodies (Chan et al., 2004). These 

lafora bodies are formed f rom insoluble un-branched glycogen, in a similar fashion 

to starch granules (Chan et al., 2004). 

In addition to its similarity to laforin, the phosphatase domain of PTPKIS 1 was also 

shown to have sequence similarity to two other proteins in Arabidopsis thaliana. 

These proteins, encoded by genes At3g01510 and At3gl0940, were also identified in 

the publication by Fordham-Skelton et al, (2002) as having homologous PTP 

regions, with At3g01510 (from now on referred to as AtPTPKlS2), containing a C-

terminal domain similar to that of the KIS domain in PTPKIS 1. Using the sequence 

from AtPTPKISl it was possible to search the GeneBank dbEST database of EST's 

using the ' T B L A S T N ' program, which generates a large set of sequences with 

potential homology to AtPTPKISl (Appendix 1). Where possible, multiple 

sequences f rom one species were compiled to generate a predicted f u l l length 

sequence, which showed homology to PTPKIS 1 (Fig. 3.1). 
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This chapter wi l l aim to characterise the phosphatase activity of PTPKIS I f rom both 
Arabidopsis thaliana and Solanum tuberosum, as well as the activities of the protein 
products of the At3g 10940 and PTPKIS2 genes, in order to better understand their 
roles within the plant, and the relevance of these phosphatases to the degradation of 
leaf starch, as shown through the SEX4 mutation. 
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Figure 3.1 P T P K I S l Hoitiologues. 

A . Alignment of predicted full length PTPKISl homologuc sequences generated 

through similarity searches of the EST database. ESTs used in the generation of these 

sequences are found in Appendix I. Those residues common to AtPTPKISI are 

highlighted in black 

B , Phylogenetic tree of predicted full length PTPKISl homologue sequences 

generated through similarity searches of the EST database. ESTs used in the 

generation of these sequences are found in Appendix I. Bootstrap values are show. 
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3.2 G E N E R A L PHOSPHATASE ACTIVITY OF PTPKISl 

3.2.1 Expression and Purification of AtPTPKISl 

cDNA corresponding to the previously identified AtPTPKISl (Fordham-Skelton et 

al., 2002) (accession number: NP_566960) was used to generate a BP clone (see 

materials and methods) using the Gateway System (Invitrogen), Plasmid pDONR201 

and primers: 

Forward: 5' - G G G G A C A A G T T T G T A C A A A A A A G C A G G C T T C A T G A A T T G T 

CTTCAGAATCTTCCC - 3' 

Reverse: 5' - GGGGACCACTTTGTACAAGAAAGCTGGGTTATGAACTTCT 

GCCTCAGAA CAAGTCTC - 3' 

The resulting clone, termed R B P l , which contained the complete coding sequence 

for PTPKIS 1 was then used in the gateway reaction with pDEST15 to generate a 

plasmid encoding AtPTPKISl with an additional N-terminal GST Tag for 

purification (Fig. 3.2). This plasmid was transformed into E.coli strain BL21AI , 

which was used for protein expression. Cultures were grown at 28"C and induced 

with 0 .01% L-Arabinose for 16 hours before being pelleted and stored at -20°C. The 

low growth temperature and low level of induction were selected to maximise the 

amount of soluble recombinant protein. GST-PTPKISl was purified from cell 

supernatant by affinity batch absorption on glutathione-Sepharose, followed by 

washing and elution with Tris-HCl buffer at pH 8.0 (Fig. 3.2). 
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A 
AtPTPKISI attR2 T7term 

B 

FIGURE 3.2 Expression of 
Recombinant AtPTPKISI. 
(A) Western blot using anti-GST 
antibody (invitrogcn) showing 
expression of AtPTPKISI. Lane 
1. uninduced whole cell protein. Lane 
2. induced whole cell protein. Lane 3, 
Purified protein. Band x, represents 
full length recombinant protein. Band 
y represents cleaved GST protein. Left 
hand lane is standard size markers, 
value shown are in kDa. 
(B) Diagrammatic representation of 
the plasmid construct used for 
expression of recombinant 
AtPTPKISI. 
(C) Diagrammatic representation of 
recombinant protein, containing GST 
tag, and with highlighted predicted 
phosphatase domain (PTP) and 
carbohydrate binding / KIS domain 
(CBM) 

1 2 3 

GST 
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3.2.2 Identification of PTPKIS 1 in Solanum tuberosum 

The sequence corresponding to the previously identified AtPTPKISl (Fordham-

Skelton et al., 2002) (accession number: NP_566960) was used to search the 

GeneBank dbEST database of EST's using the ' T B L A S T N ' program. This produced 

11 overlapping EST sequences for Solanum tuberosum (Appendix I ) , which were 

assembled into an open reading frame of 1113 base pairs, encoding an AtPTPKISl 

orthologue, termed StPTPKISl (Fig. 3.1). The predicted sequence of StPTPKISl 

was very similar to the previously identified tomato orthologue LePTPKISl 

(Fordham-Skelton et al., 2002) (accession number: CAC44460). 

To isolate a sequence encoding StPTPKISl, RT-PCR was carried out using primers: 

Forward: 5' - ATGAATTGCCTTCAGAATCTTCCC - 3' 

Reverse: 5' - C T T C A A G A A A T C G T T C A A T T A T G A - 3' 

D N A produced f rom the RNA extracted f rom young potato tuber gave a PCR 

product of the expected size, showing that StPTPKlSl is expressed in this tissue, 

while DNA produced from the RNA extracted f rom mature, freshly wounded tubers, 

and mature wounded tubers after 16 hours showed no expression of StPTPKISl (Fig. 

3.3). Young tubers were those tubers still developing on young potato plants prior to 

RNA extraction, while mature tubers were those harvested and stored before RNA 

isolation was carried out. EST databases suggested expression of StPTPKISl was 

affected by the developmental stage of the tuber and also by stress conditions. 

The PCR product was cloned, and was confirmed to correspond to the expected 

product by D N A sequence determination. Following sequence confirmation the 

cDNA was cloned into pDONR201 using the Gateway BP reaction and primers: 

Forward: 5' - G G G G A C A A G T T T G T A C A A A A A A G C A G G C T T C A T G A A T T G C 

CTTCAGAATCTTCCC - 3' 

Reverse: 5' - G G G G A C C A C T T T G T A C A A G A A A G C T G G G T T C T T C A A G A A A T 

C G T T C A A T T A T G A - 3' 

An expression clone for a recombinant GST-StPTPKlSl protein was prepared in the 

same way as described for recombinant GST-AtPTPKIS I clone. The resultant clone 

was used to produce recombinant protein, which was purified as described above for 

AtPTPKISl (Fig.3.3). 
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FIGURE 3.3 Expression of 
Recombinant StPTPKISl. 
(A) Agarose gel image of RT-PCR 
amplification of StPTPKlSl coding 
sequence. Arrow indicates band 
corresponding to StPTPKISl coding 
sequence. Left hand lane contains 
Lambda DNA/Eco471 (Avail) Marker, 
numbers shown are in nucleic acid 
base pairs (bp) 
(B) Western blot using anti-GST 
antibody (Invitrogen) showing 
expression of StPTPKISl. Lane 1, 
uninduced whole cell protein. Lane 2, 
induced whole cell protein. Lane 3, 
Purified protein. Band x, represents 
full length recombinant protein. Band 
y represents cleaved GST protein. Left 
had lane is standard size markers, 
value shown are in kDa. 
(C) Diagrammatic representation of 
the plasmid construct used for 
expression of recombinant 
StPTPKISl. 
(D) Diagrammatic representation of 
recombinant protein, containing GST 
tag, and with highlighted predicted 
phosphatase domain (PTP) and 
carbohydrate binding / KIS domain 
(CBM) 
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3.2.3 Phosphatase Activity of PTPKIS 1 

Purified recombinant AtPTPKISI and StPTPKISI protein hydrolysed the generic 

phosphatase substrate j:7-nitrophenyl phosphate at a maximum rate similar to that 

previously estimated for the recombinant tomato enzyme LePTPKISl (Fordham-

Skelton et al., 2002). Estimated values for Vmax were 8.2 ± 1.3nmoles/min/ug 

protein and 8.7 ± l.lnmoles/min/ug protein (at pH7), respectively, for the 

Arabidopsis and potato recombinant proteins. The presence of a strong reducing 

agent such as DTT was necessary for maximal activity, with little activity in its 

absence, indicating the necessity of maintaining the active site cysteine residue in 

reduced form, and its sensitivity to oxidation. Against p-nitrophenyl phosphate 

AtPTPKIS and StPTPKISI have K m values of 0.445mM and 0 .45 ImM respectively 

(Table 3.1) at pH7. 

Enzyme Substrate Vmax Km 

AtPTPKISI p-nitrophenyl phosphate 8.2 ± 1.3 (nmoles/min/ug) 0.445mM AtPTPKISI 

Peptide Substrate] 0.41 ± 0 . 4 3 (pmoles/min/ug) 

AtPTPKISI 

Peptide Substrate 2 0.37 ± 0.40 (pmoles/min/ug) 

StPTPKISI p-nitrophenyl phosphate 8.7 ± 1 . 1 (nmoles/min/ug) 0.45 ImM StPTPKISI 

Peptide Substrate I 0.52 ± 0.50 (pmoles/min/ug) 

StPTPKISI 

Peptide Substrate 2 0.38 ± 0.39 (pmoles/min/ug) 

Table 3.1 Phosphatase Activity against /7-nitrophenyl phosphate and Peptide 

Substrates. Table showing the activity of recombinant AtPTPKISI and StPTPKISI against the 

general phosphatase substrate /7-nitrophenyl phosphate and 2 synthetic phosphopeptide substrates. 
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The similarity in the kinetic parameters for AtPTPKISI and StPTPKISl is also 

reflected in the pH optimum; both enzymes had a pH optimum around pH 7, as can 

be seen in figure 3.4. This is slightly above the pH optimum of 6.8 in Fordham-

Skelton et al., (2002), and below the pH 8.0 suggested as an optimum in the recently 

published paper (Gentry et al., 2007). This does however place the optimum activity 

in the biological range of pH 7-8 found in the plant chloroplast throughout the day 

and night cycle, with the enzymes having >50% activity in the range of pH6.25-pH8. 

PTPKIS 1 Activity over a Range of pH Values 

= 0.08 

5 0.04 

-AlPTPKISl — • SlPTPKlSl 

Figure 3.4 pH Activity Curve of AtPTPKISI and StPTPKISl . Graph 

showing the activity of AtPTPKISI ( • ) and S t P T P K I S I ( B ) over a range of pH, 

against /j-nitrophenyl phosphate, using standard assay conditions. 

In addition to the use of the standard phosphatase substrate p-nitrophenyl phosphate, 

the phosphatase activity of AtPTPKIS 1 and StPTPKIS 1 towards two phosphopeptide 

substrates was also studied (see Table 3.2). Substrate 1, was a protein phosphatase 

peptide substrate containing a phosphorylated threonine residue, commonly used as a 

substrate for several seine/threonine phosphatases. Substrate 2 was a protein tyrosine 

phosphatase peptide substrate, containing a phosphorylated tyrosine residue, which 

acts specifically as a peptide substrate for tyrosine phosphatases. Assays were 

carried out at room temperature, at pH 7.0, and free phosphate content was measured 

using the malachite green method. 
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Sequence 

Substratel H-Arg-Arg-Ala-pThr-Val-Ala-OH 

Protein Phosphatase Substrate ( R R A p T V A ) 

Substrate2 H-Glu-Asn-Asp-pTyr-Ile-Asn-Ala-Ser-Leu-OH 

Protein Tyrosine Phosphatase (ENDpYINASL) 

Substrate 

Table 3.2 Peptide substrates used in phosphopeptide phosphatase assay. 

In both cases the phosphatase activity shown by both AtPTPKISI and StPTPKISl 

was not significant, with any phosphate release being barely detectable above 

background. The activity observed was orders of magnitude lower than that of a true 

protein phosphatase used as a positive control, (recombinant soybean tyrosine-

specific PTP; (Fordham-Skelton et al., 1999)), and was similar to that of the 

previously characterised LePTPKISl (Fordham-Skelton et al., 2002) (Table 3.1) 

showing little or no significant activity. 

3.2.4 Inhibition Of Phosphatase Activity 

The phosphatase activity of AtPTPKISI and StPTPKISl towards p-nitrophenyl 

phosphate was assayed in the presence of either vanadate or phenylarsinine oxide 

(PAO), both of which are used commonly to distinguish PTP's f rom other protein 

phosphatases. Both enzymes were inhibited in a concentration dependent manner by 

both agents (Fig 3.5). Vanadate was the more potent inhibitor of both enzymes, with 

an IC50 value of approx. 0.2fxM, while the IC50 value for PAO was approx. 2.5piM. 

The inhibition observed was similar to that previously characterised for LePTPKISl 

(Fordham-Skelton et al., 2002). 
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Figure 3.5 Inhibition of PTPKISl by Vanadate and PAO Graphs showing the effect of 

increasing concentrations of Vanadate or PAO upon the activity of AtPTPKISl (•) and 

StPTPKISl(B), with activity measured relative to the enzymes activity without cither Vanadate or 

PAO present. 

In addition to the standard inhibition assays using phosphatase inhibitors carried out 

for PTP's, additional assays were carried out in recognition of the presence of the 

carbohydrate binding domain in PTPKIS 1 and its possible effect upon phosphatase 

activity. Using p-nitrophenyl phosphate to measure activity, the effects of reagents 
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which could interact with the carbohydrate-binding domain were assayed. 
Maltooligosaccharides are predicted to be capable of binding to the protein and 
could hinder access to the active site of the phosphatase domain, and thus could have 
an inhibitory effect. Assays showed that while no maltooligsacharide caused 
complete inhibition of the enzyme's phosphatase activity, unlike vanadate or PAO, 
the presence of the carbohydrates had a significant effect on phosphatase activity, 
dependent on the size of maltooligosacharide used (Fig. 3.6). 

Activity of PTPKIS 1 in the presence of Maltooligosacharides 
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Figure 3.6 Activity of PTPKIS 1 in the Presence of Maltooligosacharides. Effect on 

AtPTPKISl (light grey) and StPTPKISl (dark grey) activity in standard phosphatase assays using p-

nitrophenyl phosphate as a substrate, of the inclusion of SOug/ml maltooligosacharide agent at 

50ug/ml. Activity is given relative to PTPKIS 1 activity in the absence of any maltooligosacharide 

agent. 

In the case of both AtPTPKISl and StPTPKISl activity increases in activity of up to 

20% were observed in the presence of polysaccharides containing 3, 4 and 5 glucose 

units (maltotriose, maltotetraose and maltopentaose), but activity was reduced by up 

to 40% in the presence of polysaccharides containing 2 and 7 glucose units (maltose 

and maltoheptaose). This may have biological significance i f the activity of 

PTPKIS 1 is in part regulated by the ratios of different maltooligosacharides. 
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3.3 PHOSPHOGLUCAN PHOSPHATASE A C T I V I T Y OF 
PTPKIS l 

Following the observation that maltooligosacharides o f variable length have different 

effects on the activity of the PTPKIS 1 phosphatase domain, it was important to study 

the possibility that PTPKIS 1 was not a protein phosphatase, but a phosphoglucan 

phosphatase, capable of dephosphorylating the glucans already phosphorylated by 

glucose-water dikinase ( G W D l ) . Inactivation of G W D l gives a starch excess 

phenotype designated SEXl which is distinct f rom, and non-allelic to, the SEX4 

phenotype produced by PTPKIS 1 inactivation. 

3.3.1 Activity On Elongated Phosphorylated Glucan Substrates 

In collaboration with the Starch group at K V L (Denmark), phosphoglucans were 

created using standard techniques (Mikkelsen et al., 2004), with the scaffold of 

potato amylopectin being replaced by liver glycogen. Elongated glycogen was 

phosphorylated using G W D l , incorporating a radioactive label, as described by 

Mikkelsen et al. (2004). Following washing, phosphoglucans were incubated for 30 

minutes at room temperature with StPTPKISl. To estimate the released phosphate, 

the polysaccharides were precipitated, and the radioactivity in the supernatant was 

estimated by scintillation counting after drying down and resuspension. 

The results of this assay do not support a role for PTPKIS 1 as a phosphoglucan 

phosphatase. While there is a slight increase in released radioactivity in the presence 

of PTPKIS 1, at no point does this increase become significant (Fig. 3.7). While this 

result shows it is unlikely that there is any PTPKISl activity upon this substrate, it 

does not rule out activity towards naturally formed substrates, such as starch, which 

have a complex branching structure which may be important for binding and 

phosphatase activity. In addition, phosphorylation of glucans by G W D l alone in 

vitro may not replicate the phosphorylation of starch in vivo. 
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Dephosphorylation of Glucans by StPTPKISl-GST at pH 8.0 
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Fig 3.7 - Phosphate Release f rom Phosphorylated Glucans. Phosphoglucans created using standard techniques (Mikkelsen et al., 2004), 

using elongated glycogen phosphorylated using GWDl, were used as a substrate for StPTPKlSl. Assays were carried out in standard conditions. 

Activity is shown as CCPMl, counts per minute corrected for background and efficiency. 
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3.3.2 Activity on 'Natural' Glucan Substrates 

In order to ascertain the potential for PTPKIS 1 to act upon phosphorylated glucan 

substrates in vivo, its activity against a number of naturally generated glucan 

substrates was studied. Activity of AtPTPKISl and StPTPKISl was compared with 

that of a mutated AtPTPKISl , in which the aspartic acid residue at position 166 of 

AtPTPKIS 1 was mutated to form an alanine residue in order to produce a substrate 

trap (Sylviane Comparot-Moss, JIC. Personal communication). This mutant was 

termed D166A-FL and generated using the Stratagene "Quick Change" mutagenesis 

kit (see Methods section), using primers: 

Forward: GC TGT G A A A T T A G A GCC TTT GAT GCA TTT G A T TTG 
Reverse: C A A ATC A A A TGC ATC A A A GGC TCT A A T TTC ACA GC 

The mutated form of AtPTPKIS 1 was produced as a recombinant protein as 

described for AtPTPKIS 1. It showed no phosphatase activity towards P-nitrophenyl 

phosphate. 

Release of phosphate f rom samples of amylopectin (Sigma), soluble potato starch 

(Sigma) and starch prepared f rom leaves of SEX4 Arabidopsis plants (see methods 

section) was assayed using the malachite green method (see materials and methods). 

It was shown that AtPTPKIS 1 and StPTPKISl efficiently liberate phosphate f rom all 

of the naturally occurring polysaccharides, with similar activities for both enzymes 

against all three substrates (Fig. 3.8). The inactive D166A-FL mutant of AtPTPKIS 1 

gave levels of released phosphate that were not significantly above background, 

showing that enzyme activity was necessary for phosphate release. 

This activity is ~40x less than towards p-nitrophenyl phosphate, which could be 

predicted due to p-nitrophenyl phosphates solubility, and the ease at which it is 

hydrolysed by other phosphatases. 
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PhosphoGlucan Phosphatase Activity of PTPKIS 1 
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Figure 3.8 PhosphoGlucan Phosphatase Activity of PTPKISl. Graph showing the activity of AtPTPKISl (black), 

StPTPKISl (white) and the AtPTPKISl mutant D166A-FL (grey). Against 3 substrates, potato amylopectin, soluble potato 

starch and starch isolated from SEX4-3 plants at the beginning of the dark period. 
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3.4 PHOSPHATASE A C T I V I T Y OF PTPKIS2 

AtPTPKIS2 was identified in previous publications (Fordham-Skelton et al. 2002; 

Kerk et al. 2002) as having a high degree of similarity in its predicted PTP domain to 

that of A tPTPKIS l , while also having a similar predicted KlS/carbohydrate binding 

module at its C-terminal region (Fig3.9). As with AtPTPKISl , the predicted 

sequence of AtPTPKIS2 (Accession number: NP_566139) was used to search the 

GeneBank dbEST database of EST's using the ' T B L A S T N ' program. From the EST 

sequences identified, it was possible to generate full-length sequences encoding a 

single protein in Solanium tuberomun (StPTPKIS2) and two in Oryza sativa 

(OsPTPKIS2a and OsPTPKlS2b). Analysis of the Oryza sativa sequenced genome 

showed the OsPTPKIS2a and OsPTPKIS2b were splice variants of the same gene 

(Os08g29160) (see Appendix 2), with OsPTPKIS2b containing additional sequences 

in its N-terminal region. When predicted protein sequences for AtPTPKIS2, 

StPTPKlS2 and OsPTPKIS2a are compared they show great similarity throughout 

the PTP and KIS/carbohydrate binding module regions as well as in a region at the 

N-terminus between residues 70 and 135 (Fig 3.10). This N-terminal region was 

identified by Fordham-Skelton et al. (2002) as having similarity to a PDZ domain, 

often used for protein- protein interaction. In addition to these full-length sequences, 

additional EST's were found for 10 other higher plants, including barley, spruce, 

soya, and tomato (see appendix 1). 
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Figure 3.9 Sequence similarity of PTPKISl and PTPKIS2 

A . 

Alignment of some of the predicted PTPKIS2 and PTPKISl proteins. 

Those residues identical to the consensus sequence are highlighted in 

black. Those that differ from the consensus, but are identical to cither 

AtPTPKISl or AtPTPKIS2 are shown highlighted in grey. 

B. 

Phylogenetic tree of predicted full length PTPKIS 1, PTPKIS2 and 

PTPKL homologue sequences generated through similarity searches of 

the EST database. ESTs used in the generation of these sequences are 

found in Appendix I. Numbers shown are bootstrap values. 
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Figure 3.10 PTPKIS2 Homologues. Alignment of the predicted PTPKIS2 protein homologues. Those residues identical to the 
consensus sequence are highlighted in black. 
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3.4.1 Expression of Recombinant AtPTPKIS2 

The coding sequence of AtPTPKIS2 was isolated f rom cDNA generated f rom R N A 

isolated f rom leaf tissue under light conditions using the primers: 

Forward: ATGGCGTTTCTTCAACAAATCTCCGG 

Reverse: CTACGACTTTGGGCATAGTCTTATTGG 

These primers amplified the complete coding sequence including the start codon. 

The predicted amplification product was a fragment of 1776bp. When the A.thaliana 

cDNA was amplified with these primers, a single fragment was observed fol lowing 

agarose gel electrophoresis, of approximately 1700bp - 1800bp (Fig 3.11). 

The fragment was purified by excision of band f rom gel, isolation of D N A , and 

cloning in a specialised vector for PCR products (pCR2.1), using the TOPO TA 

cloning system (Invitrogen). Clones resulting from this operation were characterised 

by DNA sequencing, which confirmed the clone as being identical to the predicted 

sequence, apart f rom a small number of single nucleotide changes, which did not 

alter the encoded amino acids. 

Using the characterised clone encoding AtPTPKIS2 as a template, the coding 

sequence was amplified using primers: 

Forward: 5'- G G G G A C A A G T T T G T A C A A A A A A G C A G G C T T C A T G G C G T T T C 

T T C A A C A A A T C T C C G G - 3' 

Reverse: 5' - GGGGACCACTTTGTACAAGAAAGCTGGGTTATGCGACTTT 

GGCGATAGTCTTAT - 3' 

These contained the addition of an at tBl and attB2 site respectively in order to allow 

the insertion into the gateway donor vector pDONR201 (Invirogen). This clone, 

termed A B P l , was then used in the gateway reaction with pDEST15 (Invitrogen) to 

generate a plasmid encoding AtPTPKIS2 with an additional N-terminal GST Tag for 

purification (Fig. 3.11). This plasmid was transformed into E.coli strain BL21AI , 

which was used for protein expression, employing a similar method to that used for 

PTPKIS 1 production. Cultures were grown at 28°C and induced with 0.01% L -

Arabinose for 16 hours. GST-PTPKIS2 was purified f rom cell supernatant by 
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affini ty batch absorption on glutathione-Sepharose, followed by washing and elution 
with Tris-HCl buffer at pH 8.0 (Fig. 3.11). 

3.4.2 Phosphatase Activity of AtPTPKIS2 

Purified recombinant AtPTPKIS2 was assayed for phosphatase activity using the 

same methodology as AtPTPKISl and StPTPKISl. When assayed against the 

generic substrate p-nitrophenyl phosphate and the phosphorylated peptides used to 

assay PTPKIS 1, there was no activity above background. When phosphatase activity 

was assayed using amylopectin, soluble starch and starch from SEX4 plants there 

was also no measurable activity above background. 

This inability to show any activity towards any of the phosphatase substrates 

provided suggests that AtPTPKIS2 is catalytically inactive. This may be due to a 

significant difference in the amino acid sequence in its active site region compared to 

that of PTPKISl . A conserved histidine residue in PTPKIS 1 is replaced with 

threonine in PTPK1S2. This histidine residue forms part of the conserved diagnostic 

motif (HCX5R) shared by PTPKIS 1, tyrosine-specific PTPs and dsPTPs (Denu and 

Dixon, 1998) 
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Figure 3.11 Expression and 
Purification of Recombinant 
AtPTFKISZ. 
(A) Agarose gel image of RT-
PCR amplification of AtPTPKIS2 
coding sequence. Arrow indicates 
band corresponding to 
AtPTPKIS2 coding sequence. 
Left hand lane contains Ikb Plus 
DNA Ladder (Invitrogen), 
numbers shown arc in nucleic acid 
base pairs (bp) 
(B) Western blot using anti-GST 
antibody (Invitrogen) showing 
expression of AtPTPKISl. Lane 
1, uninduced whole cell protein. 
Lane 2, induced whole cell 
protein. Lane 3, Purified protein. 
Lane L contains Protein 
Molecular Weight Standards 
(Molecular Probes). 
(C) Diagrammatic representation 
of the plasmid constructs used for 
cloning and expression of 
recombinant AtPTPKIS2. 
(D) Diagrammatic representation 
of recombinant protein, 
containing GST tag, and with 
highlighted predicted phosphatase 
domain (PTP) and carbohydrate 
binding / KIS domain (CBM) 
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3.5 MODULATION OF T H E PHOSPHATASE A C T I V I T Y OF 
PTPKISl BY PTPKIS2 

Due to the inability of AtPTPKIS2 to dephosphorylate generic substrates, or 

phosphoglucans, it was important to consider other possible roles for the protein. 

Plants in which PTPKIS2 had been knocked out show a starch excess phenotype, 

similar, but not as extreme as that of SEX4 (see Chapter 5), and so it is important to 

try and identify the potential role of PTPKIS2. 

3.5.1 Activity on Generic Substrates 

When combined with AtPTPKIS2 at an equimolar concentration. Purified 

recombinant AtPTPKISl and StPTPKISl protein hydrolysed the generic 

phosphatase substrate /j-nitrophenyl phosphate at a comparative rate to that seen 

without AtPTPKIS2. AtPTPKISl + AtPTPKIS2 released phosphate at a maximal 

rate of 8.4±1.6 (nmoles/min/ug protein AtPTPKISl) , and StPTPKISl -i- AtPTPKIS2 

released phosphate at 8.8+1.5 (nmoles/min/ug protein StPTPKISl), both at pH7. As 

before the assays required the presence of a strong reducing agent, such as DTT, in 

order to show this activity. 

When phosphatase activity was assayed using the previously used phosphopeptides, 

the results remained unchanged, independent of the amount of AtPTPKIS2 added to 

the reaction. 

These results show that the addition of the AtPTPKIS2 protein to these proteins has 

no effect on phosphatase activity against general phosphate substrates, or general 

phosphopeptides. While this does not preclude an interaction between PTPKIS 1 and 

PTPKIS2 it suggests that such an interaction is unlikely to alter the activity of 

PTPKIS 1 towards phosphorylated proteins. This suggests that the phenotype seen 

through mutation of the AtPTPKIS2 gene cannot be the result of the AtPTPKIS2 

protein directly affecting the ability of PTPKIS I to dephosphorylate proteins. 
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3.5.3 Activity on Glucan Substrates 

In order to ascertain the potential for PTPKIS2 to alter the activity of PTPKIS 1 

towards phosphorylated glucan substrates in vivo, the activity against the naturally 

generated glucan substrates already examined was studied in the presence of 

AtPTPKIS2. Activity of AtPTPKISl , StPTPKISl and D166A-FL, were compared 

with and without the presence of AtPTPKIS2 at equimolar concentrations. 

As previously shown, AtPTPKISl and StPTPKISl efficiently liberate phosphate 

f rom amylopectin, starch, and starch isolated f rom SEX4 plants (Fig. 3.8) on their 

own. In presence of AtPTPKIS2 the activities of AtPTPKISl and StPTPKISl 

towards these phosphoglucan substrates both increased by approximately 4-fold (Fig 

3.12). The rate of phosphate release in the presence of AtPTPKIS2 is comparable to 

the recorded values for the phosphatase activity of laforin upon amylopectin (Worby 

et al., 2006; Gentry et al., 2007) suggesting the possibility of similar roles in vivo for 

laforin and the PTPKIS 1/PTPKIS2 combination. As expected, the inactive D166A-

FL mutant of AtPTPKISl showed no significant rate of phosphate release whether or 

not AtPTPKIS2 was present, confirming that AtPTPKIS2 itself has no phosphatase 

activity towards these substrates. 
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Phosphoglucan Phosphatase Activity of PTPKIS 1 in the Presence of AtPTPKIS2 
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3.6 PHOSPHATASE A C T I V I T Y OF P T P K L l 

3.6.1 Identification and Isolation of PTPKLl 

Analysis of data published in Fordham-Skelton et al. (2002) and Kerk et al. (2002) 

showed that an additional predicted phosphatase with sequence similarity to 

AtPTPKISl existed in the Arabidopsis genome (accession number: NP_566383), 

and was identified as the gene product of At3g 10940. In Kerk et al., (2002) it was 

shown that AtPTPKISl (At3g52180), AtPTPKIS2 (At3g01510) and At3gl0940 also 

had sequence similarity to the animal laforin dual specificity protein phosphatases, 

as had been noted in Fordham-Skelton et al., (2002). The At3g 10940 gene encodes a 

protein predicted to be 282 amino acids long, containing a phosphatase domain 

homologous to that of PTPKIS 1 and to a lesser extent PTPKIS2 (Fig. 3.9) , but 

lacking the C-terminal KIS/CBM region. This protein was termed PTPKLl 

(PTPKis l Like 1), and like other members of the PTPKIS family seemed to be 

present, and expressed in other plant species, through identification of homologues 

(Fig. 3.13) in the EST database (see Appendix 1.) 

The coding sequence of A tPTPKLl was isolated f rom cDNA generated from RNA 

isolated f rom leaf tissue under light conditions using the primers: 

Forward: A T G A G T G T G A T T G G A A G C A A G A G C 

Reverse: TCAGGTTCCACGGAGGGCCCGAAC 

These primers amplified the complete coding sequence including the start and stop 

codons. The predicted amplification product was a fragment of 852bp. When the 

A.thaliana cDNA was amplified with these primers, a single fragment was observed 

following agarose gel electrophoresis, of approximately 850bp - 860bp (Fig 3.14). 

The fragment was purified by excision of band from gel, isolation of DNA, and 

cloning in a specialised vector for PGR products (pCR2.1), using the TOPO TA 

cloning system (Invitrogen). Clones resulting from this operation were characterised 

by D N A sequencing, which confirmed the clone as being identical to the predicted 

sequence, apart f rom a single nucleotide change, which did not alter the encoded 

amino acid. 
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FIGURE 3.13 PTPKLl Homologues. Alignment of the predicted PTPKLl protein homologues. 

Those residues identical to the consensus sequence are highlighted in black 
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3.6.2 Expression Of Recombinant AtPTPKLl 

Using the characterised clone encoding A t P T P K L l as a template, the coding 

sequence was amplified using primers: 

Forward -

G G G G A C A A G T T T G T A C A A A A A A G C A G G C T T C A T G A G T G T G A T T G G A A G C 

A A G A G C 

Reverse -

GGGGACCACTTTGTACAAGAAAGCTGGGTTCATTCCACGGAGGGCCCGA 

AC 

These contained the addition of an attBl and attB2 site respectively in order to allow 

the insertion into the gateway donor vector pDONR201 (Invirogen). This clone, 

termed A B P l , was then used in the gateway reaction with pDEST15 (Invitrogen) to 

generate a plasmid encoding AtPTPKLl with an additional N-terminal GST Tag for 

purification (Fig. 3.14). This plasmid was transformed into E.coli strain BL21AI , 

which was used for protein expression. Cultures were grown at 28°C and induced 

with 0.01% L-Arabinose for 16 hours. GST-PTPKLl was purified from cell 

supernatant by affini ty batch absorption on glutathione-Sepharose, followed by 

washing and elution with Tris-HCl buffer at pH 8.0 (Fig. 3.14). 
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Figure 3.14 Expression of Recombinant A t P T P K L l . (A) Agarose gel image of RT-
PCR amplification of AtPTPKLl coding sequence. Arrow indicates band corresponding to 
AtPTPKLl coding sequence. Left hand lane contains Lambda DNA/Eco47I (Avail) Marker, 
numbers shown are in nucleic acid base pairs (bp) (B) Western blot using anti-GST antibody 
(Invitrogen) showing expression of AtPTPKLl. Lane 1, uninduced whole cell protein. Lane 
2, induced whole cell protein. Lane 3, Purified protein. Left had lane is standard size 
markers, value shown are in kDa. (D) Diagrammatic representation of recombinant protein, 
containing GST tag, and with highlighted predicted phosphatase domain (PTP). 
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3.6.3 Dephosphorylation Of Standard Substrates 

Purified recombinant AtPTPLl protein hydrolysed the generic phosphatase substrate 

p-nitrophenyl phosphate at a maximum rate of 9.1±0.8 nmoles/min/ug protein This 

rate is comparable to the maximal rate for the already characterised LePTPKlSl 

(Fordham-Skelton et al., 2002), as well as those of AtPTPKISl and StPTPKISI 

which are characterised above. Like these enzymes, A tPTPKLl also required the 

presence of a strong reducing agent such as DTT to show activity, most likely to 

enable the reduction of an active site cysteine as found in the PTPKIS 1 proteins. 

Like AtPTPKISl and AtPTPKIS2, A tPTPKLl showed no measurable phosphatase 

activity above background towards either of the phosphopeptide substrates used, 

suggesting it may play a role that does not require it to dephosporylate protein, or 

that the sequence of peptide it acts upon is highly specific, so that it does not show 

activity on the peptides used as general phosphoprotein phosphatase substrates. 

3.6.4 Inhibition Of Phosphatase Activity 

The phosphatase activity of AtPTPKLl towards /?-nitrophenyl phosphate was 

assayed in the presence of either vanadate or phenylarsinine oxide (PAO), both of 

which are used commonly to distinguish PTP's f rom other protein phosphatases. 

Both enzymes were inhibited in a concentration dependent manner by both agents 

(Fig 3.15). Vanadate was the more potent inhibitor of both enzymes, with an IC50 

value of approx. 0.2^,M, while the IC50 value for PAO was approx. 5\iM. The 

inhibition observed was similar to that previously characterised for LePTPKISl 

(Fordham-Skelton et al., 2002) and AtPTPKISl and StPTPKISI assayed earlier in 

this chapter, although the IC50 with PAO was slightly higher. 
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Figure 3.15 Inhibition of AtPTPKLl by Vanadate and PAO. Graphs showing the effect of 

increasing concentrations of Vanadate or PAO upon the activity of AtPTPKLl, with activity 

measured relative to the enzymes activity without either Vanadate or PAO present 
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3.6.5 Phosphatase Activity On Phosphoglucans 

Following the identification of phosphoglucan phosphatase activity in PTPKIS 1, it 

was important to ascertain i f such activity was present in PTPKL, given its lack of 

carbohydrate binding module. 

As with PTPKIS 1 and PTPKIS2, A tPTPKLl was assayed for phosphatase activity 

using soluble starch. Analysis showed activity an order of magnitude lower than that 

of both AtPTPKISl and StPTPKISl (Fig. 3.16). Unlike PTPKIS 1, addition of 

AtPTPKIS2 did not increase the phosphoglucans phosphatase activity seen. 

Combination of recombinant AtPTPKISl and A t P T P K L l , in equimolar 

concentrations, cause no increase in activity over what would be predicted as a sum 

of the individual activities. 

Additional phosphatase assays, using Glucose 6-Phosphate as a substrate, were 

carried out with AtPTPKISl , StPTPKISl, AtPTPKIS2 and A t P T P K L l . It was not 

possible to show phosphatase activity against that particular phosphomonosacharide 

for any of the proteins tested (data not shown). 
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Phosphoglucan Phosphatase Activity of AtPTPKLl in the Presence of AtPTPKISl or 
AtPTPKIS2 

800 4 

AtPTPKISl AtPTPKISl+AtPTPKIS2 AtPTPKLl AtPTPKLl+AtPTPKIS2 AtPTPKLl+AtFrPKISl 

• Amylopectin • Soluble Potato Starch m SEX4 Starch 

Figue 3.16 PhosphoGlucanPhosphatase activity of A t P T P K L L Graph showing the activity of AtPTPKLl with or without an 

equimolar concentration of recombinant AtPTPKIS 1 or AtPTPKIS2, against potato amylopectin (black), soluble potato starch (white) and starch 

isolated from SEX4-3 plants at the beginning of the dark period (grey). 
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3.6.6 Identification Of PTPKLl Homologues 

Through analysis of the global sequence databases (genomic DNA sequences, cDNA 

databases, and Expressed Sequence Tag (EST) databases) it has been possible to 

identify sequences f rom other plant species, which are orthologous to those of 

A t P T P K L l (Fig. 3.13). For most plant species only one PTPKLl was identified, 

however in Rice two PTPKL proteins were identified. These differed in only 4 

amino acid substitutions. Genomic study localised these sequences to chromosome 

11 and 12 and so they have been termed P T P K L l 1 and PTPKL 12 respectively. EST 

data suggests that both proteins are expressed in roots under the same conditions (see 

appendix 1). The presence of EST's encoding PTPKLl homologues throughout the 

animal kingdom suggests the PTPKLl protein is used in a common process 

throughout the plant kingdom, while the lack of homologues within other kingdoms, 

or at least homologues which do not contain carbohydrate binding modules, suggests 

a evolutionary role unique to plants. 

Study of EST databases for lower plants provided a group of EST's f rom 

Chlamydomonas reinhardtii, a green algae, which encode a protein, of 298 amino 

acids in length, showing great similarity to that of A tPTPKLl (Fig. 3.17). This 

protein shows greater similarity to A tPTPKLl than to previously identified dsPTP's 

in green alga (e.g. Chlamydomonas eugameto VH-PTP13, accession: Q39491). 

However, C. reinhardtii may contain several dsPTPs, since EST searches have also 

suggested at the presence of a VH-PTP13 like protein in this species (see 

appendix]). 

A ' a b l d o p s i s P T P K L l Q ^ ff^^^TaB ^ ̂ f f ^ ^ ^ ^ ^ T B I ^ M ^ T F " ^ D THV S K H B B I H M K G 2 3 4 

V H - P T P 1 3 B - Q V C L B B B ' ' ' H ' * ' H " r ^ ^ B S " fl Q GEIP Y T I M R A M V R R AB S - K 2 0 8 

C r e P T P K L l mm V K I E D | | ' ^ I 3 A H < ^ < H S H EBm^MMiB < cBB3 K A iHcHB H THA CBMHG 172 
A r a b i d o p s i s P T P K L l B09 I C L D S f l v Q R Q K E L C.H R BIWilSHIIiWM P L B R S OIBB K H B S SME WH V S E 184 
V H - P T P 1 3 L K P S H = G R F T Y L S L Q I L Q M E G Q D ! V A L | E S C F Q H Q QHQDS 1 6 4 

1 

Figure 3.17 Chlamydomonas reinhardtii PTPKLl . Alignment of the PTP domains of AtPTPKLl 

and VH-PTP13 with the predicted Chlamydomonas reinhardtii PTPKLl (CrePTPKLl). Residues 

matching the consensus are highlighted in black. 



Chapter 3 Phosphatase Activity Of PTPKIS Family Proteins 79 

3.7 DISCUSSION 

Work described here on the phosphatase activity of AtPTPKlSl and StPTPKISl 

shows great levels of consistency with previously published results (Fordham-

Skelton et al., 2002; Kerk et al., 2006; Sokolov et al., 2006; Gentry et al., 2007). For 

example both enzymes show similar K m values with p-nitrophenyl phosphate to that 

recently published (Gentry et al., 2007). In particular, the identification of PTPKIS 1 

phosphoglucan phosphatase activity (Gentry et al., 2007) and the absence of 

significant protein phosphatase activity towards phosphorylated peptides is 

consistent with the published data. While the ability to dephosphorylate substrates, 

such as starch and amylopectin, seems to be contradicted by its inability to 

dephosphorylate elongated glucans previously phosphorylated by G W D l , there are a 

number of reasons to account for this. 

It may be possible that the location of phosphate along the carbohydrate backbone is 

important to the activity of PTPKIS 1. This possibility is supported by the effect 

variation in maltooligosacharide length has on the phosphatase activity of PTPKIS 1 

towards the general phosphatase substratep-nitrophenyl phosphate. Due to G W D l ' s 

ability to phosphorylate glucose residues at both the C6 and C3 position, it is 

possible to discard the notion of PTPKIS 1 only acting upon one of these phosphatase 

sites as the reason for its inability to dephosphorylate the synthetic substrate. In vivo, 

however GWD3 is also present to increase the percentage of phosphorylation at the 

C3 position (Baunsgaard et al., 2005; Kotting et al., 2005). 

While the location of the phosphate residue may be of importance, so may be the 

structure of the surrounding glucan. It is possible that the C B M of PTPKIS 1 is 

specific to positions within a starch granule, with branch points, and amylose content 

playing an important role. The elongation of the glucan chains on a glycogen 

backbone may not provide the required structure for PTPKIS 1 binding. Recent work 

by Hejazi et al. (2008) has shown that the physical arrangements of glucans to effect 

activity of G W D in vitro, this may be the case with PTPKIS 1. 
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Expression and analysis of the AtPTPKIS2 showed a protein with no identifiable 
phosphatase activity towards any of the protein peptides or carbohydrates used 
previously. In addition it also failed to dephosphorylate the general phosphatase 
substrate p-nitrophenyl phosphate. It is likely this inactivity is due to the replacement 
of its active site histidine with threonine. This histidine usually forms part of the 
conserved diagnostic motif (HCx5R) found in other PTPs. The absence of this 
histidine residue, while being a possible explanation of the inactivity of this 
predicted phosphatase, does not help to explain its role in vivo. 

The increase in phosphoglucan phosphatase activity when PTPKIS 1 and PTPKIS2 

were combined may suggest a role for the PTPKIS2 protein as a partner for 

PTPKIS I . While combining both shows an increase in activity against 

phosphoglucans, it does not increase activity against peptide substrates or p-

nitrophenyl phosphate, suggesting that the increase in activity is likely to be due to a 

more favourable association with the phosphoglucans carbohydrate structure, caused 

by the presence of the C B M on both PTPKIS 1 and PTPKIS2. When fu l l length 

PTPKIS2 is replaced in this assay with just its C B M as used in Chapter 4, there is no 

noticeable increase in PTPKIS 1 phosphoglucan phosphatase activity (data not 

shown) suggesting that the interaction between the 2 proteins is at some other region. 

Possibly this involves the predicted PDZ domain proposed in Fordham-Skelton et al. 

(2002). 

There are other dimeric phosphatases, given the functional similarity to PTPKIS 1, it 

is of particular interest that laforin, which also contains a carbohydrate-binding 

domain, albeit at its N-terminus, has also been shown to form dimers which exhibit 

increased activity over the monomeric form (Liu et al., 2006). 

Expression and analysis of the A t P T P K L l protein, a predicted PTP domain 

containing protein, lacking the CBM/KIS domain of PTPKIS 1 or PTPKIS2 showed 

a protein with comparable activity towards /7-nitrophenyl phosphate to PTPKIS 1. 

A t P T P K L l however showed a greatly reduced activity towards starch, most likely 

due to absence of a C B M like that found in PTPKIS 1, A t P T P K L l activity towards 

starch was comparable to that shown for activity of AtPTPKIS 1 with mutations 
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inactivating its C B M (Gentry et al, 2007), suggesting that this reduced activity is 
solely due to its lack of a C B M . 

While PTPKIS 1 is likely to act upon the starch granule, it may be possible that 

P T P K L l acts upon shorter chain phosphoglucans produced during the degradation of 

starch granules in the dark period (Smith et al., 2005). This however would require 

the generation of shorter length maltooligosacharides with specific phosporylation 

patterns in order to study further. 

As previously identified by Fordham-Skelton et al., (2002) and supported by the 

work of Sokolov et al., (2006) it is shown that reducing conditions are required in 

order for PTPKIS 1 to show phosphatase activity. It has also shown that A tPTPKLl 

requires reducing conditions in order to show phosphatase activity. The reduction of 

the active site may be one of the mechanisms {in vivo) for regulation of activity. It 

has been shown that other proteins involved in starch degradation, such as G W D l , 

require reducing conditions to become active (Mikkelsen et al., 2005). This redox 

control may be a common element in regulation of starch metabolism. 

For all the above phosphatase, it may be possible that they do in fact act upon 

specific protein sequences, however recent assays using the D166A protein as a 

substrate trap have yielded no likely protein candidate for dephosphorylation by 

AtPTPKISl (Nana Chougule, School of Biological and Biomedical Sciences, 

Durham University, Personal Communication), supporting its classification as a 

phosphoglucan phosphatase. 
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Chapter 4 

CARBOHYDRATE BINDING ACTIVITY OF PTPKIS 

FAMILY PROTEINS 

4.1 INTRODUCTION 

In the original publication identifying PTPKIS 1, Fordham-Skelton et al. (2002) 

proposed that this protein, which was assumed to be a protein phosphatase on the 

basis of sequence similarity, was novel due to its C-terminal domain, which was 

similar in sequence to a domain designated KIS. KIS domains are present in a 

variety of proteins and are known to mediate protein-protein interactions; 

specifically, they are responsible for binding the scaffold protein(s) to the regulatory 

SNFl kinase in yeast as part of the SNFl complex. Fordham-Skelton et al (2002) 

showed interaction between the recombinant KIS domain of AtPTPKIS 1 and the 

A.thaliana SnRK, A K I N l 1 (a protein related to AMPKs in animals (Halford et al., 

2000)) in both pull down and yeast-2-hybrid analysis. These results supported a role 

for PTPKIS 1 in regulating the activity of the plant regulatory kinase complex. 

However the pull down assay, included another protein containing a KIS domain, 

designated AKINpy (Lumbreras et al., 2001). The KIS domain f rom AKINPy 

appeared to showed a greater affinity for A K I N 11 than the KIS domain f rom 

AtPTPKIS 1. In itself, this result would not be sufficient to call the hypothesised role 

for the KIS domain in PTPKIS 1 into doubt, but further data have since appeared 

which suggest that the binding to A K I N 11 observed by Fordham-Skelton et al. 

(2002) in vitro may not be relevant in vivo. 

Hudson et al. (2003) and Polekhina et al. (2003) showed that the KIS domain region 

of the mammalian A M P K p interacted with glycogen and thus acted as a 

carbohydrate-binding domain. The designation " K I S " domain may therefore be 

incorrect in this case. The sequence similarity between the " K I S " domains in 
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A M P K p and PTPKIS 1 suggests that the " K I S " domain in the latter may also have a 
carbohydrate-binding function. Subsequent work by this author (Niittyla et al., 2006) 
as well as additional work (Kerk et al., 2006; Sokolov et al., 2006; Gentry et al., 
2007), has confirmed this prediction, and shown that PTPKIS 1 has the ability to bind 
to carbohydrates through the C-terminal region, previously termed the KIS domain. 
This region has therefore been redesignated as a Carbohydrate Binding Module 
(CBM), and wi l l be referred to as this subsequently. 

This chapter w i l l deal with the functional characterisation of the Carbohydrate 

Binding Module (CBM) found in AtPTPKISl and AtPTPKIS2, the identification of 

key residues, and the study of a conserved 'sugar tong' region within the CBMs of 

PTPKIS family proteins. 

4.2 IDENTIFICATION OF A CBM IN PTPKIS FAMILY 

MEMBERS 

Using the work by Hudson et al., (2003) and Polekhina et al., (2003) as a starting 

point, an amino acid sequence alignment was created using the A M P K p subunits 

f rom mammals, AMPK(3 subunits homologues f rom A.thaliana and GAL83 from 

S.cerevisiae. In addition the predicted KIS domains f rom 7 PTPKIS 1 proteins, 

identified in chapter 3, and the glycogen binding domain f rom the GBE protein 

found in E.coli were added to the alignment (Fig. 4.1). A l l the sequences used for the 

alignment contained a clearly defined C B M ; this domain is not defined in the 

Interpro database, but is present as an unclassified domain in the Panther database 

(PTHR10353) (www.pantherdb.org). The domain has sequence similarity to 

carbohydrate-binding domains CBM20 and CBM21 , as defined in the C A Z Y 

database (http://afmb.cnrs-mrs.fr/~pedro/CAZY/cbm.html). 

This alignment (Fig. 4.1) showed a number of residues conserved among the aligned 

sequences, in particular those identified by Hudson et al., (2003) and Polekhina et 

al., (2003) as being required by AMPKP subunits to bind to glycogen. Previous 

alignments of PTPKIS 1 and PTPKIS2 (Chapter 3) showed a high degree of 

homology in those regions, supporting the potential of the predicted PTPKIS2 KIS 
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domain also acting as a C B M . Alignment of predicted sequences for PTPKIS 1 and 

PTPKIS2 show conservation of residues with potential roles in carbohydrate binding 

(Fig. 4.2). 
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Figure 4.1AIignment of CBMs f rom PTPKISl, E. coll GBD, AKINpy, and Snf l 
family of P subunits. Zea mays AKINPyl (AKINbgl(Zm), accession number 
NP_001105005). Zea mays AKlNPyZ (AKINbg2(Zm), accession number NP_001105555), A. 
thaliana AMPKpi, (AMPKbl(At), accession number NP_197615), Human AMPKpi 
(AMPKbl(Hs), accession number Q9Y478), Rat AMPKpi (AMPKbl(Rn), accession number 
P80386), Human AMPKP2 (AMPKb2(Hs), accession number NP_005390), S. ccrevisiae 
GAL83 (Gal83(Sc), accession number Q04739), E. coli glycogen branching enzyme 
(GBE(£.co//), accession number P07762). PTPKISl sequences were generated from EST 
alighnments (sec appendix 1). Amino acid sequences were aligned with clustalw. Amino acids 
identical to the concensous sequence were highlighted in black, amino acids similar to 50% of 
other sequences are shaded in grey. Residues highlighted with a star (*) were shown by 
Polekhina et al., (2003) to be required for carbohydrate binding. 
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StPTPKISI 
LePTPKISl 
MtPTPKISl 
AtPTPKISl 
OsPTPKISl 
AtPTPKIS2 
StPTPKIS2 
0SPTPKIS2 

24 6 PVKLTWH-GDNCTTIEIS - L D I G GQRTPLKFDEGQGLWTLQ 
246 PVTLTWH-GDNCTT EIS -LDIG GQRIPLKFDEERGLWTLQ 
262 PVTLSWG-HRNCST EIS -LDIG GQRVPLNFDDKQGSWFLK 
254 TVTLTLK-DKGFSR EIS -LDIG GQRIPLTLDKGTGFWILK 
246 SITLKWE-SDSCSS EIS -LDVG GQIIPLTYNKEKRAWYLE 
4 66 SVTFVWN-GHEGEE LLV DFTGN KEPIKATHKGGPR-FETE 
459 AVTFVWN-GHEGED YLV DFTGN KEPIQALHKGGPR-FEAE 
4 58 SVCFVWNSGREGED|ELVIDFTSNIKDKVKCDHKGGSR-YEAE 

StPTPKISI 287 KDLHE KYE YK VD 
LePTPKISl 287 KDLHE KYE YK Y VD 
MtPTPKISl 303 KEMFE RYE YK Y VD 
AtPTPKISl 295 RELPE QFE YK Y I D 
OsPTPKISl 287 RELPE RYE YK Y VD 
AtPTPKIS2 505 VRLTQ KYY YK Y I N 
StPTPKIS2 497 VRLSQ KYL YK V I S 
0SPTPKIS2 497 IRLRH KYY YK AG 
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Figure 4.2 Alignment of predicted C B M s for P T P K I S l and P T P K I S 2 . Alignment of 

predicted CBMs using sequences generated from alignment of EST data (appendix 1). Amino acid 

sequences were aligned with clustalw. Amino acids conserved throughout all sequences were 

highlighted in black. Residues highlighted with a star (*) were shown by Polekhina et al., (2003) to be 

required for carbohydrate binding. Numbers shown refer to the position of the first amino acid on each 

line in the wild type protein. 

4.2.1 Expression Of Predicted CBMs 

Constructs to produce CBMs f rom AtPTPKIS 1 and AKINPy have been described by 

Fordham-Skelton et al., (2002). These constructs produce C B M as a C-terminal 

fusion to glutathione-S-transferase (GST); GST itself, produced by the vector, 

(pGEX5) was used as a negative control for binding assays. Assembly of the 

constructs, and expression of the recombinant proteins, is described in Materials and 

Methods. GST fusions were purified f rom cell supernatant of recombinant bacterial 

clones expressing the proteins by affinity absorption on glutathione-Sepharose 

columns (Amersham), followed by washing and elution wi th Tris-HCl buffer at 

pH8.0 

Using the fu l l length sequence for AtPTPKIS2 as a template, primers were designed 

in order to amplify the predicted KIS/CBM and allow insertion into the cloning 

vector p G E X 5 X l using restriction enzymes (EcoRI and Xhol) as had been used 
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previously for the KIS/CBM of AtPTPKlSl . The primers used to amplify the C B M 
and containing the required restriction sites used were: 
Forward: 5' - GAATTCTCTGTAACCTTTGTG - 3' 
Reverse: 5' - C T C G A G A T C A C C A A C T A C A A T - 3' 

This GST-KIS (AtPTPKIS2) construct was used to generate recombinant protein for 

use in binding assays (see materials and methods). The protein was purified by 

affinity chromatography on glutathione-Sepaharose as described above 

4.2.2 Carbohydrate Binding 

In order to determine i f predicted CBMs f rom AtPTPKISl and AKIWPy showed 

binding to carbohydrate as seen in Polekhina et al., (2003), pull down assays using 

bovine glycogen (Sigma) were carried out (as described in materials and methods) 

using GST-KIS (AtPTPKISl) , GST-KIS (AKINpy) , and GST as soluble proteins. 

Bovine serum albumin (BSA) was used as a non-specific binding blocker in these 

assays. Glycogen was pelleted by centrifugation after incubation of the recombinant 

proteins with soluble glycogen. The presence, in identifiable quantities, of GST-KIS 

(AtPTPKISI) in the 100,000g pellets only when incubated in the presence of 

glycogen suggests binding of the GST-KIS (AtPTPKISI) protein to glycogen (Fig. 

4.3). The inability to identify any bands corresponding to GST alone gave no band in 

the 100,000g pellet both with and without glycogen showing that this co-

sedimentation of the GST-KIS(AtPTPKIS]) protein with glycogen is due to the KIS 

region of the GST-KIS (AtPTPKISI) protein. GST-KIS (AKINPy) showed no 

presence in the 100,000g pellets with and without glycogen incubation, suggesting 

that it has no direct binding to glycogen. 

While this assay showed the presence of glycogen binding, additional pull-down 

assays were carried out using granular potato starch as a more physiologically 

relevant material. Pull down assays using granular starch (Sigma), were carried out 

(as described in materials and methods) using GST-KIS (AtPTPKISI) , GST-KIS 

(AKINpY), GST-KIS (AtPTPKIS2), and GST. The presence, in identifiable 

quantities, of GST-KIS (AtPTPKISI) and GST-KIS (AtPTPKIS2) bands in the 

10,000g pellets only when incubated in the presence of granular potato starch 
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suggests binding o f the GST-KIS (AtPTPKISl) and GST-KIS (AtPTPKIS2) proteins 
to granular potato starch (Fig. 4.4). The inability to identify any bands corresponding 
to GST alone with and without starch suggest this co-sedimentation with starch is 
due to the KIS region of the GST-KIS (AtPTPKISl) or GST-KIS (AtPTPKISl) 
proteins. GST-KIS (AKINPy) showed no presence in the 10,000g pellets with and 
without starch incubation, suggesting that it has no direct binding to starch. 

BSA 
^ l i i i i i i i i l i i i i i i i ' ' •'iiiiiiiyiiii!iiiiiiiiiiiiijj||iii' 

GST-KIS 

Figure 4.3. Glycogen pull down assay with G S T - K I S ( A t P T P K I S l ) and G S T - K I S 
( A K I N P Y ) and G S T . As published by the author previously in Niittyla et a/., (2006) SDS-PAGE 
gel, stained with Coomassic Brilliant Blue G250, showing protein content of pellets from glycogen 
binding assay. 1&2 are from tubes containing GST and B S A only, 3&4 are from tubes containing 
GST-KIS and B S A only, and 5&6 are from tubes containing G S T - A K I N PY(KIS) and B S A only. 
Tubes 1, 3, and 5 contained glycogen, while tubes 2,4, and 6 did not contain glycogen. (This figure 
was previously published in Niittyla etal., (2006)) 
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M 1 

1 

8 M 

GST-KIS 
(AtPTPKISl) 

GST-KIS 
(AtPTPKIS2) 

Figure 4.4. Starch pull down assay with GST-KIS (AtPTPKISl) , GST-KIS (AKIN^y), GST and 

GST-KIS (AtPTPKIS2). SDS-PAGE gel, stained with Coomassie BriHiant Blue G250, showing 

protein content of pellets from granular starch binding assay. 1&2 are from tubes containing GST-KIS 

(AtPTPKISl) and BSA only, 3&4 are from tubes containing GST-KIS ( A K I N P Y ) and BSA only, 5&6 

are from tubes containing GST-KIS (AtPTPKIS2) and BSA only, and 7&8 are tubes containing GST 

and BSA only. Tubes 1, 3, 5. and 7 contained granular starch, while tubes 2,4, 6, and 8 did not contain 

granular starch. Lane M is standard protein size markers. 

The inability of the C B M in GST-KIS (AKINpy) to bind to glycogen or starch, 

suggests that this carbohydrate-binding ability is not common to all KIS domains. 

Using the Gamier-Robson method for predicting beta sheets in protein tertiary 

structure, it was possible to compare KIS /CBM regions of AtPTPKISl , AKINPy and 

a fungal starch-binding domain (accession no. AAP04499) (Fig. 4.5) 
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W278 W293' 

P6 

-325 AtPTPKISl 
K306 W313 

Fungal Starch 
620 Binding 

Domain 

105 ZmAKINPY 

Figure 4.5. Diagrammatic representation of beta sheet arrangement in AtPTPKISl , 

ZmAKINpY and a fungal starch binding domain. Grey arrows represent beta sheets, black bands 

represent conserved tryptophan residues thought to be involved in carbohydrate binding, and white 

bands represent conserved lysine residues thought to be involved in carbohydrate binding. 

Arabidopsis thaliana PTPKIS 1 (AtPTPKISl, accession number CACI7593, residues 260-325), 

Aspergillus niger Glucoamylase (accession number AAP04499, residues 560-620), Zea mays 

AKINPyl (ZmAKINPyl. accession number NP_00I105005, residues 25-105). p2-P6 refer to the P-

sheets described previously (Polekhina etcil., 2003). 

The Gamier Robson method shows that A K I N ^ y does not contain a predicted p4 

region common to both the AtPTPKISl and Fungal Starch Binding Domain. It also 

shows that A K I N ^ y lacks the conserved tryptophan residue found in or around the 

|35 region when compared with AtPTPKISl and the fungal starch binding domain. I f 

this prediction is correct, the shape of the binding site may be altered f rom that of a 

C B M . Combined with the loss of the conserved tryptophan residue, this could 

account for its inability to bind carbohydrates, while still being classified as a KIS 

domain on the basis of sequence similarity. 
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4.3 BINDING PARAMETERS OF PTPKIS CBM 

Following the identification of carbohydrate binding activity in the " K I S " domains 

f rom AtPTPKISI and AtPTPKIS2, the binding parameters of these domains with 

physiological substrates were studied to obtain potential insights into the possible 

role of these proteins in vivo, and to compare these CBMs with previously 

characterised CBMs found in proteins involved in starch metabolism, such as G W D l 

(Smith et al., 2005; Mikkelsen et al., 2006). 

Interactions between CBMs and carbohydrate were studied using the co-

sedimentation (pull-down) method used previously, using granular potato starch as a 

substrate. In addition, interactions with solublised starch were studied using PAGE 

gels containing variable soluble starch concentrations, measuring retardation in the 

protein's mobility relative to gels containing no starch. This method has previously 

been used in the characterisation of interactions between proteins and carbohydrates 

in starch-binding enzymes (Blennow et al., 1998; Mikkelsen et al., 2006). 

4.3.1 Co-Sedimentation Assay Binding Parameters 

Co-sedimentation experiments were carried out in the presence of varying 

concentrations of potato starch. The fraction of protein present in the pellet (i.e. 

bound to starch) was estimated by quantitating the protein present in bands formed 

on SDS-PAGE gels (see materials and methods). This allowed a curve of fraction of 

protein bound against starch concentration to be plotted; results are shown in figs. 

4.6 and 4.7. Using curve-fitting, it was possible to calculate the K^ values (estimated 

as the concentration of starch at which half the maximum amount of protein was 

bound) of 4.88mg/ml and 5.41mg/ml for GST-KIS(AtPTPKISI) and GST-

KIS(AtPTPKIS2) respectively. B^.^,,, the maximum fraction of protein bound was 

estimated as 0.53 and 0.43 for GST-KIS(AtPTPKISl) and GST-KIS(AtPTPKIS2) 

respectively (Table 4.1). Using an equation equivalent to the H i l l equation 

(Mikkelsen et al., 2006) it was possible to evaluate the degree of co-operativity for 

granular starch binding. A H i l l factor {h) of 1.03 and 1.08 was calculated for GST-

KIS(AtPTPKISl) and GST-KIS(AtPTPKIS2) respectively (Fig. 4.8). The results 
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quoted above are close to 1, indicating that each binding event is independent. The 

H i l l factors support the hypothesis that the predicted KIS/CBM domain contains 

only one binding site for polysaccharide molecules, since multiple binding events 

would involve significant steric hindrance giving H i l l factors significantly <1 . 

u. 0.2 

Granular starch (mg/ml) 

•-GST-KtS (AtPTPKISl) 

Figure 4.6 Sedimentation of G S T - K I S ( A t P T P K I S l ) with Starch. Graph showing the 

fraction of bound GST-KIS(AtPTPKISl) protein as the amount of granular starch was increased. 
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- * - G S T - i a S (AtPTPKIS2) 

Figure 4.7 Sedimentation of G S T - K I S ( A t P T P K I S 2 ) with Starch Graph showing the 

fraction of bound GST-KIS(AtPTPKIS2) protein as the amount of granular starch was increased. 

80 

max 

A GST-KIS (AtPTPKISl) 

log(conc. granular starch (mg/ml)) 

GST-KIS (AtPTPKIS2) AtPTPKlSl (Trendline) AtPTPKIS2 (Trendline) 

Figure 4.8 Graphical Representation of Hill Factor as Calculated for G S T -

K I S ( A t P T P K I S l ) and G S T - K I S ( A t P T P K I S 2 ) . The gradient of the trendline gives the Hill 

factor (h) for each of the assays. The insert is the Hill equation, as shown in Mikkelsen et al (2006). 
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The values for K^ and B"""' determined for GST-KIS(AtPTPKISl) and GST-

KIS(AtPTPKIS2) are comparable to those observed for other CBMs (Penninga et al., 

1996; Paldi et al., 2003; Mikkelsen et ai, 2006). This comparability of binding 

parameters supports a role in carbohydrate binding for the predicted KIS/CBM 

domain. 

In order to further characterise the binding parameters of these predicted KIS /CBM 

domains, inhibition of binding by p-cyclodextrin, a commonly used inhibitor of 

carbohydrate binding in proteins containing CBM20 and CBM21 domains (Paldi et 

al., 2003) was determined. Using the co-sedimentation assay as a basis for this 

analysis, protein was pre-incubated with variable concentrations of p-cyclodextrin 

before granular starch (Sigma) was added. The fraction of protein in the sedimented 

pellet was determined as above, by SDS-PAGE gel analysis and quantitation of 

protein bands on the gel (see materials and methods) (Fig. 4.9 & 4.10). Inhibition of 

binding was found to be similar to that of previously characterised KIS /CBM 

domains (Polekhina et al., 2003). Half maximal inhibition occurring with ~ 1.1 m M 

p-cyclodextrin for GST-KlS(AtPTPKISl) and with ~ 0.9mM p-cyclodextrin for 

GST-KIS(AtPTPKIS2). 
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(At PTPKIS I ) ^ ^ ^ -
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Figure 4.9 Inhibition of G S T - K I S ( A t P T P K I S l ) Starch Binding. Graph showing the effect 

increasing concentration of the starch binding domain inhibitor, P-Cyclodextrin (p-CD), has upon 

GST-KIS(AtPTPKISl) binding and subsequent sedimentation with granular starch. Insert shows 

Coomassie staining of SDS gel containing fractions from the experiment. 

120 

|3-CD(mM) 0 

GST-KIS 
(AtPTPKIS2) 5 80 

1 1.5 
^-Cyclodatrin Cone. (mM) 

2.5 

Figure 4.10 Inhibition of G S T - K I S ( A t P T P K I S 2 ) Starch Binding. Graph showing the effect 

increasing concentration of the starch binding domain inhibitor, P-Cyclodextrin (P-CD), has upon 

GST-KIS(AtPTPKIS2) binding and subsequent sedimentation with granular starch. Insert shows 

Coomassie staining of SDS gel containing fractions from the experiment. 
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4.3.2 Estimation of Carbohydrate Binding Parameters by P A G E 
Mobility Shift Assays 

In addition to the co-sedimentation study, binding of CBMs to carbohydrates was 

studied using PAGE gels containing soluble starch. Using a set of native PAGE gels, 

containing a range of soluble starch concentrations, it is possible to measure the 

degree of retardation relative to a native PAGE gels without added starch. The 

relative mobility of a protein in this assay gives an estimate of the strength of 

interaction with the carbohydrate, and can be used to calculate its binding 

parameters. This method has been used previously in the characterisation of starch 

binding enzymes (Blennow et al., 1998; Mikkelsen et al., 2006). Using a set of 

native PAGE gels, containing a range of soluble starch concentrations, it is possible 

to measure the degree of retardation relative to native PAGE gels without added 

starch. Previous analysis of the recombinant CBMs showed that addition of glycerol 

affected the sedimentation assays, and so this was omitted f rom the native protein 

loading dye used. In addition markers were run within the gels, as guides to ensure 

accuracy in comparison across the native PAGE gels (see materials and methods). 

Analysis of gel image data showed retardation of both GST-KIS(AtPTPKISl) and 

GST-KIS(AtPTPKIS2) by inclusion of soluble starch or glycogen in the gels, with 

the degree of retardation increasing in a concentration dependent manner (Fig. 4.11 

& 4.12). Starch (higher proportion of unbranched chains) was more effective than 

glycogen (higher proportion of branched chains) in retarding the CBMs. 
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Glycogen (mg/ml) Starch (mg/ml) 

0 0.75 1.5 3.0 0 0.75 1.5 3.0 

Rn 

Figure 4.11 Mobility Gels of GST-KIS(AtPTPKISl) . Native gels 
containing variable concentrations of either soluble starch or glycogen. 

Glycogen (mg/ml) Starch (mg/ml) 

0 0.75 1.5 3.0 0 0.75 1.5 3.0 

• 
Figure 4.12 Mobility Gels of GST-KIS(AtPTPKIS2). Native gels 
containing variable concentrations of either soluble starch or glycogen. 
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For each lane the relative mobility ( R „ ) of the protein was calculated for the given 

substrate concentration (S) and the relative mobility of protein (Rq) in gels without 

substrate (S) determined. Using these data, the K^ was calculated f rom \ fR^ versus 

[S] plots as described in previous publications (Blennow et al., 1998; Mikkelsen et 

al., 2006) using the expression: 

1 [S]] 
K 

This gave a K^ of 1.37mg/ml and 1.43mg/ml for GST-KIS (AtPTPKISl) and GST-

KIS (AtPTPKIS2) respectively for soluble starch (Table 4.1). When glycogen was 

used as a substrate this gave a K j of 9.0mg/ml and 9.9mg/ml for GST-KIS 

(AtPTPKISl) and GST-KIS (AtPTPKIS2) respectively. While this interaction with 

soluble starch is a weaker interaction than other CBMs (Penninga et al., 1996; Paldi 

et al., 2003) it does show similarity to that identified for G W D l (Mikkelsen et al., 

2006). 
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- Soluble Starch 
-Glycogen 

Figure 4.13 Relative Mobility of G S T - K I S ( A t P T P K I S l ) . Graphical representation of relative 

mobility of GST-KIS(AtPTPKISl) against variable carbohydrate concentrations. 
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Figure 4.14 Relative Mobility of G S T - K I S ( A t P T P K I S l ) . Graphical representation of relative 

mobility of GST-KIS(AtPTPKISl) against variable carbohydrate concentrations. 

Substrate GST-KIS 

(AtPTPKISl) 

GST-KIS 

(AtPTPKIS2) 

Granular Starch 4.88 (mg/ml) 5.41 (mg/ml) 

g m a x 0.53 0.43 

Soluble Starch 1.37 (mg/ml) 1.43 (mg/ml) 

Glycogen 9.0 (mg/ml) 9.9 (mg/ml) 

Table 4.1 Binding Parameters. GST-KIS(AtPTPKlSl) and GST-KIS(AtPTPK]S2) 

binding parameters to granular starch, soluble starch and glycogen. 



Chapter 4 Carbohydrate Binding Activity of PTPKIS Family Proteins 99 

4.4 IDENTIFICATION OF K E Y RESIDUES CONSISTENT WITH 
T H E CLASSIC MODEL OF CBM's 

In order to investigate the roles of the conserved tryptophan residues within the 

predicted KIS/CBM, consistent with other similar sequences shown in figure 4.1, a 

mutational analysis was carried out. Using the GST-KIS (AtPTPKISl) plasmid as a 

basis, the following mutants were constructed: W278L, W293L, W313L and W293A 

(Fig. 4.15). The mutation of W293 was carried out with two different amino acids 

due to concerns over the low levels of soluble protein f rom the W293L construct. In 

both cases the constructs produced soluble protein, which performed in the same 

manner during analysis. 

In addition to the mutation of the conserved tryptophan residues, a conserved lysine 

residue, homologous to one identified in AMPKP as being involved in carbohydrate 

binding (Polekhina et al., 2003), and conserved through the identified PTPKIS 1 and 

PTPKIS2 sequences studied, was carried out. Using the GST-KIS(AtPTPKISl) 

plasmid as a basis the mutant K307Q was constructed (Fig. 4.15). 

Specific mutations in the predicted KIS/CBM region were generated using the 

Stratagene "Quick Change" mutagenesis kit (see Materials and Methods chapter), 

using primers shown in Table 4.2. As with the previous GST-KIS fusions, the 

resulting recombinant proteins were purified f rom cell supernatants of bacterial 

clones by affini ty absorption on glutathione-Sepharose columns (Amersham), 

followed by washing and elution with Tris-HCl buffer at pH 8.0 (see Materials and 

Methods chapter). 
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Mutation Primer Name Primer Sequence 

K307Q 

W278L 

W293L 

W314L 

W293A 

K307QFd 5 ' - GGA C A G T T T GAA T A T c A A TAG A T C A T A G A T 
G G T G - 3 ' 

K307QRV 5 ' - C A C C A T C T A T GAT G T A T T g A T A T T C AAA 
C T G T C C - 3 ' 

W 2 7 8 L F d 5 ' - C T GGC C T T GAG A T T GGA T t G GGA CAG AGG 
A T A C C - 3 ' 

W 2 7 8 L R v 5 ' - GG T A T C C T C T G T C C C a A T C C AAT G T C AAG 
G C C AG - 3 ' 

W 2 9 3 L F d 5 ' - G GAG AAG GGA A C A GGA T T C T t G A T C C T A 
AAG AGA G - 3 ' 

W293LRV 5 ' - C T C T C T T T A G GAT C a A GAA T C C T G T T C C 
C T T G T C C - 3 ' 

W314LFV 5 ' - C A T C A T A GAT G G T GAA T t G ACA C A C AAT 
GAG G C C G - 3 ' 

W314LRV 5 ' - C GGC C T C A T T G T G T G T C a A T T C A C C A T C 
T A T GAT G - 3 ' 

W293A Fd 5 ' - G GAC AAG GGA ACA GGA T T C g c G A T C C T A 
AAG AGA G - 3 ' 

W293ARV 5 ' - C T C T C T T T A G G A T C g c GAA T C C T G T T C C 
C T T G T C C - 3 ' 

Table 4.2 Site Directed Mutagenesis Primers 1. Table of primers to be used for site directed 

mutagenesis of key residues in the GST-KIS(AtPTPKISl) recombinant protein. Nucleic acids, which 

are to be mutated, are shown in lower care and highlighted in bold. 
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GAA GGT COT GGG ATC CCC GAA TTC AGG AAG A C T G T T A C T C T G A C A 
E G R G I P E F - R K T V T - L H 

C T G AAA GAT AAG GGG T T C T C C AGA G T A GAA A T T T C T GGC C T T GAC 
L K D K G F S R V E I S G L D 

A T T GGA T G G GGA CAG AGG A T A C C T C T A A C A C T G GAC AAG GGA A C A 
I G W G Q R I P L T L D K G T 

W278 

GGA T T C T G G A T C C T A AAG AGA GAA C T G C C T GAA GGA CAG T T T GAA 
G F W I L K R E L P E G Q F E 

W293 

Figure 4.15 G S T . K I S ( A t P T P K I S l ) 

Sequence. The coding sequence from the 

KIS/CBM of region of AtPTPKISl in the 

pGEX5xl. Regions from the pGEXSxl 

vector are show in italics. Residues that are 

mutated are highlighted in bold, numbers 

shown arc the residues position if the native 

AtPTPKISI protein. 

T A T AAA T A C A T C A T A G A T G G T GAA T G G A C A C A C A A T GAG G C C GAA 
Y K Y I I D G E W T H N E A E 

K 3 0 7 W314 

C C G T T T A T A GGA C C T AAC AAA GAC GGC C A T A C C AAC A A T T A C G C T 
P F I G P N K D G H T N N Y A 

AAA G T A G T G GAC T G A CTC GAG CGG CCG CAT CGT GAC TGA 
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In order to determine if G S T - K I S (AtPTPKISl) mutant proteins showed binding to 

carbohydrate, pull down assays using granular potato starch (Sigma) were carried 

out, using the same methodology used to identify the carbohydrate binding of the 

predicted KIS/CBMs (as described in materials and methods). 

The co-sedimentation assay showed that besides the positive control GST-

KIS(AtPTPKlSl ) only the K307Q mutant gave a band indicating that protein was 

present in the 10,000g pellets when incubated in the presence of granular potato 

starch. The inability to identify any bands corresponding to W278L, W293L, W313L 

and W293A in the pellet with and without starch suggests co-sedimentation, and thus 

binding to starch, requires the involvement of these tryptophan residues (Fig. 4.18). 

Binding of the K307 protein to granular potato starch (Fig. 4.16) was significantly 

weaker than for the positive control, showing that this mutation had decreased the 

binding ability of the C B M . 

M GST-KIS K307Q W278L W293L W313L W293A 

— BSA 

'S 
S 

-a c 
3 

O 
4—» 

~S 
OH 

g 
1) 
a. 
=3 

C/3 

Figure 4.16. Starch pull down assay with GST-KIS(AtPl PKISl)Mutants. SDS-PAGE 
gel, stained with Coomassie Brilliant Blue G250, showing protein content of pellets and the 
supernatant, from granular starch binding assay. Lane M is standard protein size markers. 
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Figure 4.17 Relative Mobility of G S T - K I S ( A t P T P K I S l ) Mutants. Graphical representation 

of relative mobility of GST-KIS(AtPTPKIS 1) and the K307Q, W278L, W293L, W313L, and W293A 

mutants against variable carbohydrate concentrations. 

A retardation assay using native P A G E in gels containing soluble starch was used to 

confirm the results of the cosedimentation assay. No retardation was observed for the 

W278L, W293L, W313L and W293A mutants (Fig. 4.17), showing an absence of 

starch binding. Both techniques show that residues W278, W293 and W313 are 

required for starch binding, and mutation in any of these leads to an inability to bind 

starch. The result of P A G E gel retardation assay with the K307Q mutant showed a 

slight alteration in mobility with starch concentration (Fig. 4.17), but not as 

pronounced as that seen with the "wild-type" protein, indicating weaker binding of 

the K307Q mutant to soluble starch, in agreement with the co-sedimentation assay. 

Both techniques show that the K307 residue plays a role in starch binding, but its 

role is less vital to the binding than the tryptophan residues. 
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4.5 NOVEL "SUGAR TONGS" IN T H E BINDING SITE OF 
PTPKIS CBM 

Study of the alignment of the PTPKIS CBMs, shows a conserved pair of tyrosine 

residues flanking the highly conserved lysine residue (K307 in AtPTPKISl ) in 

predicted PTPKIS 1 and PTPKIS2 proteins in plants with the exception of the 

predicted O.sativa homologue, which only contains one of the tyrosine residues 

flanking the conserved lysine residue (Fig. 4.18). Analysis of proteins involved in 

carbohydrate degradation have shown regions away from the active site, containing 

such residues, termed sugar tongs (Robert et al., 2003). While these 'sugar tongs' are 

usually found away from the catalytic site of the enzymes they have been shown to 

increase the enzyme's activity towards its substrate (Bozonnet et ai, 2007), with 

mutations in this region causing a reduction in enzymatic activity. While many 

residues have been shown to be conserved between PTPKIS family proteins and 

other carbohydrate binding proteins (Fig. 4.1), the pair of 'sugar tongs' seems only 

to be common within the PTPKIS family (Fig. 4.19) 

StPTPKISl 
LePTPKISl 
MtPTPKISl 
AtPTPKISl 
OsPTPKISl 
PtPTPKISl 
CsPTPKISl 
AtPTPKIS2 
StPTPKIS2 
0SPTPKIS2 

287 KDLHEGK|E 
287 KDLHEGKIE 
303 KEMFEGR|E 
295 RELPEGQFE 
287 RELPEGRIE 
296 RELPEGR 
296 RELPEGR 
505 VRLTQGK 
4 97 VRLSQGK 
497 IRLRHGK 

IVDGEWICNEFEPITSPNKDGHVNNY 324 
IVDGEWICNEFEPITSPNKDGHVNNY 324 
IVDGEWTCNNDELVTSPNKDGHVNNF 340 
IIDGEWTHNEAEPFIGPNKDGHTNNY 332 
IVDGKWVCNDNEKKTKANADGHVNNY 32 4 
IVDGEWTCNKYELVTYPNKDGHVNNY 333 
IVDGEWTCNKYELVSSPNKDGHVNNY 333 
IINGDWRHSATSP-TERDDRGNTNNI 542 
IISGNWRHSTNSP-TERDERGNLNNV 534 
'lAGGQWRHSTSLP-TETDEHGNVNNV 534 

Figure 4.18 Alignment of Predicted Sugar Tong Region in PTPKISl and 
PTPKIS2. Alignment of predicted CBMs using sequences generated from alignment of EST 
data (appendix!). Amino acid sequences were aligned with clustalw. Amino acids making up 
the predicted sugar tongs (Y306 & Y308 in AtPTPKISl) and sandwiched lysine residue (K307 
in AtPTPKISl) conserved throughout all sequences were highlighted in black. Additional 
tyrosine residues were highlighted in grey. Solanum tuberosum PTPKIS 1 (StPTPKISl), 
Lycopersicon esculentum PTPKIS 1 (LePTPKISl), Medicago truncatula PTPKIS 1 
(MtPTPKISl), Arahidopsis thaliana PTPKIS 1 (AtPTPKISl), Oryza sativa PTPKIS 1 
(OsPTPKISl), Poncirus trifoliate! PTPKIS 1 (PtPTPKISl), Citrus sinensis PTPKIS 1 
(CsPTPKISl), Arabidopsis thaliana PTPKIS2 (AtPTPKIS2), Solanum tuberosum PTPKIS2 
(StPTPKIS2), Lycopersicon esculentum PTPKIS2 (LePTPKIS2). Numbers refer to the position 
of the first and last amino acid in the native protein. 
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StPTPKISl 287 
LePTPKISl 287 
AtPTPKISl 295 
AtPTPKIS2 505 
AKINPyl(Zm) 67 
A K I N P Y2(Zm) 66 
AMPKPI(Hs) 116 
AMPKP2(Hs) 116 
AMPKpi(Rn) 116 
GAL83(Sc) 203 

KDLHEGKlE 
KDLHEGK|E 
RELPEGQFE 
VRLTQGK 
CSLSPGIHE 
CSLSPGIHE 
LDLPEGEHQ 
LDLPEGEHQ 
LDLPEGEHQ 

IVDGEWICNE 309 
IVDGEWICNE 309 
IIDGEWTHNE 317 
IINGDWRHSA 527 
F|VDGEWRHDE 8 9 
FFVDGEWRHDE 8 9 
FFVDGQWTHDP 138 
FFVDGQWVHDP 138 
FFVDGQWTHDP 138 

LQLPPGTHRFRFIVDNELRFSD 225 

Figure 4.19 Alignment of Predicted Sugar Tong Region in K I S domains. 
Alignment of predicted CBMs using sequences generated from alignment of EST data 
(appendix!). Amino acid sequences were aligned with clustalw. Amino acids making up the 
predicted sugar tongs (Y306 & Y308 in AtPTPKISl) and sandwiched lysine residue (K307 in 
AtPTPKISl) conserved throughout sequences were highlighted in black. Additional tyrosine 
residues were highlighted in grey. Solanum tuberosum PTPKISl (StPTPKISl), Lycopersicon 
esculentum PTPKISl (LePTPKlSl), Arabidopsis thaliana PTPKISl (AtPTPKISl), 
Arabidopsis thaliana PTPKIS2 (AtPTPKIS2), Zea mays AKINPyl (AKINbgl(Zm), accession 
number NP_001105005), Zea mays A K I N P Y 2 (AKINbg2(Zm), accession number 
NP_001105555), Human AMPKpi (AMPKbl(Hs), accession number Q9Y478), Human 
AMPKP2 (AMPKb2(Hs). accession number NP_005390), Rat AMPKpi (AMPKbl(Rn), 
accession number P80386), S. cerevisiae GAL83 (Gal83(Sc), accession number Q04739). 
Numbers refer to the position of the first and last amino acid in the native protein. 

In order to investigate the possibility that these conserved residues may play an 

important role in carbohydrate association, mutant protein was expressed, in which 

the predicted sugar tongs of the AtPTPKISl C B M were mutated. Using the G S T -

K I S (AtPTPKISl) construct generated in Fordham-Skelton et al., (2002), specific 

mutations in the predicted sugar tong region were generated using the Stratagene 

"Quick Change" mutagenesis kit (see Materials and Methods chapter), using primers 

shown in Table 4.3. As with the previous G S T - K I S fusions, this was purified from 

cell supernatant by affinity absorption on glutathione-Sepharose columns 

(Amersham), followed by washing and elution with Tris-HCl buffer at pH 8.0 (see 

Materials and Methods chapter). 
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Mutation Primer Name Primer Sequence 

Y306F-
Y308F 

Y306F-Y308F Fd 5 ' -
T t C 

- CCT GAA GGA CAG TTT GAA T t T AAA 
ATC ATA GAT GGT G - 3 ' 

Y306F-Y308F Rv 5 ' -
AAA 

- C ACC ATC TAT GAT GaA TTT AaA TTC 
CTG TCC TTC AGG - 3 ' 

Y306F Y306F Fd 5 ' -
TAC 

CCT GAA GGA CAG TTT GAA T t T AAA 
ATC ATA GAT GGT G - 3 ' 

Y306F Rv 5 ' -
AAA 

C ACC ATC TAT GAT GTA TTT AaA TTC 
CTG TCC TTC AGG - 3 ' 

Y308F Y308F Fd 5 ' -
T t C 

CCT GAA GGA CAG TTT GAA TAT AAA 
ATC ATA GAT GGT G - 3 ' 

Y308F Rv 5 ' -
AAA 

C ACC ATC TAT GAT GaA TTT ATA TTC 
CTG TCC TTC AGG - 3 ' 

Y306Q-
Y308Q 

Y306Q-Y308Q Fd 5 ' -
c A a 

CCT GAA GGA CAG TTT GAA c A a AAA 
ATC ATA GAT GGT G - 3 ' 

Y306Q-Y308Q Rv 5 ' -
AAA 

C ACC ATC TAT GAT t T g TTT t T g TTC 
CTG TCC TTC AGG - 3 ' 

Table 4.3 Site Directed Mutagenesis Primers 2. Table of nucleotide primers used for site 

directed mutagenesis of key residues in the predicted "sugar tong" region of GST-KIS(AtPTPKISl). 

Nucleic acids, which are different from the wild type form, are shown in lower care and highlighted in 

bold, 

As with the other mutants studied previously, pull down assays using granular potato 

starch (Sigma) were carried out to identify the carbohydrate binding of the predicted 

KIS/CBMs (as described in materials and methods) using GST-KIS(AtPTPKISl ) 

and mutant protein as generated above. 

The co-sedimentation assay showed that the positive control GST-KIS(AtPTPKISl ) 

was present in the 10,000g pellets when incubated with potato starch, as were, to a 

much smaller level, the Y306F and Y308F mutants (Fig. 4.20). Bands corresponding 

to Y306F-Y308F and Y3G6Q-Y308Q mutants were not observed in the pellets both 

with and without starch. These data suggest that the Y306F and Y308F proteins are 
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able to bind to granular potato starch, but binding is weaker than for the "wild type" 
sequence or for the K307Q mutant. The double mutants do not co-sediment with 
starch (Fig. 4.20). These data suggest that these 'sugar tong' residues are important 
in binding to starch. Disruption of one residue causes a marked decrease in binding 
affinity, and disruption of both causes a loss of binding ability. 

As with the previous analysis of predicted KIS/CBMs, P A G E retardation assays 

were carried out using a range of starch concentrations. As was expected from the 

sedimentation analysis, the Y306F-Y308F and Y306Q-Y308Q mutants showed no 

retardation by starch. The Y306F and Y308F showed very minimal retardation, 

indicative of weak interaction with starch, in agreement with the results of the co-

sedimentation assay (Fig 4.21). 

M GST-KIS Y306F Y308F Y306F Y306Q M 
Y308F Y308Q 

BSA 

G S T - K I S 

Figure 4.20 Starch pull down assay with GST-KlS(AtPTPKISl) Sugar Tong 
Mutants. SDS-PAGE gel, stained with Coomassic Brilliant Blue G250, showing 
protein content of pellets, from granular starch binding assay. Lane M is standard 
protein size markers. 
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Carbohydrate (mg/ml) 

— Y306F — • — Y306F-Y308F - -x- -Y308F A Wild Type 

Figure 4.21 Relative Mobility of G S T - K I S ( A t P T P K I S l ) Sugar Tong Mutants. Graphical 

representation of relative mobility of GST-KIS(AtPTFKISl) and the Y306F, Y308F, and Y306F-

Y308F mutants, against variable carbohydrate concentrations. 
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4.6 DISCUSSION 

Work described here identifies the previously predicted KIS domains of AtPTPKISl 

and AtPTPKIS2 as being CBMs, while showing that not all K I S domains can act as 

CBMs. Analysis of the identified PTPKIS 1 and PTPKIS2 sequences shows the 

existence of C-terminal sequences, overlapping previously predicted K I S domains, 

with significant similarity to CBMs of family 20 and 21, and that identified in 

AMPKp. 

Starch binding properties of the identified CBMs were demonstrated using 

recombinant protein expressed and purified from E. coli. Experiments using granular 

potato starch showed a clear binding of the predicted K I S / C B M , in addition to the 

clear interaction with soluble starch as observed using native P A G E experiments. 

Inhibition of this binding was shown to occur using (3-cyclodextrin as is common in 

members of the C B M 20 and 21 family (Paldi et ai, 2003; Polekhina et al., 2003). 

While the binding kinetics are comparable to previously studied CBMs involved in 

starch metabolism, the kinetics of the CBMs in both AtPTPKISl and AtPTPKIS2 

show a great deal of similarity to that of the previously characterised G W D l 

(Mikkelsen et al., 2006). Mutation in either of the PTPKIS genes, or the G W D l gene 

results in a starch excess phenotype. 

Aromatic residues of well characterised CBMs have been shown to play key roles in 

substrate binding (Svensson et al., 1989; Williamson et al., 1997; Mikkelsen et al., 

2006). This was seen in AMPK(3 (Polekhina et al., 2003) and substitution of W278, 

W293, and W3I3 in AtPTPKISl , resulted in loss of starch binding function. This 

identifies these tryptophan residues as being actively involved in carbohydrate 

recognition. The requirement for all these residues to be present, in combination with 

the calculated Hill factor of almost 1, supports the assumption that this C B M 

contains only one binding site, employing a binding mechanism similar to that of 

other CBMs, with tryptophan residues binding to the glucose residues via stacking 

interactions (Simpson et al., 2000; Polekhina et al., 2003; Boraston et al., 2004). 
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Previous analysis of the phosphatase domain of PTPKIS 1 and PTPKIS2 showed 
great similarity in sequence to Laforin, a protein containing both phosphatase and 
C B M domains, mutation of which results in formation of starch like lafora bodies in 
animals. Identification of a C B M in both AtPTPKISl and AtPTPKIS2 suggests a 
possible similarity in function between Laforin and the PTPKIS proteins. 

Study of the alignment of the PTPKIS CBMs, shows a conserved pair of tyrosine 

residues flanking the highly conserved lysine residue (K307 in AtPTPKISl ) in 

PTPKIS 1 and PTPKIS2. Previous analysis of some enzyme's involved in 

carbohydrate metabolism has identified regions, away from catalytic active sites, 

containing tyrosine residues, which act to bind carbohydrates (Robert et al, 2003; 

Bozonnet et al., 2007). Mutation of these sugar tongs reduces the enzymes 

carbohydrate binding ability, while not affecting the active site. Substitution of Y306 

and Y308 in AtPTPKISl , resulted in loss of starch binding function, while 

substitution of a single residue (either Y306 or Y308) resulted in a reduction in 

binding ability, greater than substitution on the conserved lysine residue (K307) 

between them. This identifies these tyrosine residues as being actively involved in 

carbohydrate recognition. This suggests a possible role in effecting the specificity of 

the CBMs of the PTPKIS proteins, giving them a preference to binding regions of 

some carbohydrates more readily than those CBMs without the identified 'sugar 

tongs'. 

The predicted OsPTPKIS2 sequence, confirmed through analysis of both genomic 

and E S T sequences lacks one of the conserved lysine flanking tyrosine residues 

(region 306-308 in AtPTPKISl) . While this may alter the enzymes affinity to 

carbohydrate, this may be counteracted by the increase other tyrosine residues local 

to the predicted 'sugar tong' region. 

In this chapter it has been shown that the KIS domains of AtPTPKISl and 

AtPTPKIS2 act as CBMs in a physiologically relevant manner, while showing that 

carbohydrate binding is not common to all K I S domains. The presence of this C B M 

and the previously characterised phosphatase activity of the enzymes, suggests a 

comparable role with that of Laforin. 



Chapter 5 Metabolomic and Transcriptomic Analysis of Starch Excess Mutants 11 • 

Chapter 5 

ANALYSIS OF SEX MUTANTS: CARBOHYDRATES 

AND EXPRESSION OF S E L E C T E D GENES 

5.1 INTRODUCTION 

The Arabidopsis S E X 4 phenotype, characterised by accumulation of higher than 

normal amounts of starch in leaves, was originally identified by Zeeman et al. 

(1998). These authors suggested that the phenotype was the result of mutation in a 

gene encoding a "chloroplastic starch-hydrolysing enzyme", resulting in an inability 

to break down the carbohydrate end-product of photosynthesis in chloroplasts, and 

thus accumulation of excess starch. Analysis of starch levels showed that the 

increase in leaf starch changed with aging, the variation between starch levels of 

wild type and S E X 4 plants being smaller in younger leaves than older tissues 

(Zeeman and Rees, 1999). More recent publications have shown that accumulation 

of excess starch in Arabidopsis lines showing the SEX4-1 phenotype is due to 

deletion of the N-terminal region of gene At3g52180 (Niittyla et al., 2006). The 

polypeptide encoded by At3g52180, designated AtPTPKISl , was originally 

identified by Fordham-Skelton et al., (2002) as a novel plant protein tyrosine 

phosphatase, whose sequence shows no evidence for glycohydrolase activity, in 

terms of sequence similarity to known glycohydrolases, or presence of sequence 

motifs typical of glycohydrolases. The SEX4-1 phenotype cannot therefore be a 

direct consequence of failure to hydrolyse starch. However, it could result from an 

effect of the activity of AtPTPKISl , possibly as part of a metabolic regulatory 

system. In addition to the SEX4-1 line, further Arabidopsis lines have been 

identified in which mutations in the At3g52180 gene cause a starch excess 

phenotype (Fig 5.1) (Niittyla et al., 2006). Analysis of metabolite levels in S E X 4 

lines, and other knockouts, can throw light on the effects of the P T P K I S l , and 

similar enzymes, on metabolic regulation. 



Chapter 5 Metabolomic and Transcriptomic Analysis of Starch Excess Mutants ' 12 

As determined in the previous chapters and in a number of recent 

publications (Kerk et ai, 2006; Niittyla et al., 2006; Sokolov et al., 2006; Gentry et 

al., 2007), AtPTPKISl (and homologues in other species) has the ability to bind to 

carbohydrates through a region of its C-terminus showing similarity to characterised 

carbohydrate binding modules, which can thus be identified as a carbohydrate-

binding domain. These results provide a basis for models which link the activity of 

PTPKIS 1 to the regulation of starch metabolism, through an association of the 

enzyme with starch granules, but leave open the problem of whether the regulatory 

effect of the enzyme is through its action on phosphorylated proteins associated with 

starch, or on phosphorylated sugar residues in starch itself. The N-terminal region of 

the protein, identified as the phosphatase domain, shows sequence similarity to 

protein phosphatases, suggesting that the substrate is phosphorylated protein(s), but 

recent results have provided evidence that phosphatase activity towards 

phosphoglucans can be detected, suggesting that the enzyme acts directly on starch. 

Analysis of metabolites in lines containing PTPKIS knockouts may provide useful 

evidence to distinguish between these possibilities. 

As described in previous chapters, a second gene with sequence similarity to 

AtPTPKISl , designated AtPTPKIS2 (AtBgOlSlO) is present in the Arabidopsis 

genome, and has been shown to increase AtPTPKISl phosphatase activity towards 

phosphoglucans. While containing a similar domain structure to AtPTPKISl , with a 

predicted PTP domain and a C-terminal carbohydrate binding domain, AtPTPKIS2 

showed no independent phosphatase activity. Analysis of a S A L K insertion mutant 

in the At3g01510 gene (termed PTPKIS2-SALK) showed that a starch excess 

phenotype was present, similar to that of the At3g52180 insertion line SEX4-3 (Fig 

5.1). The basis for this phenotype is as yet unclear, but analysis should show whether 

the similar overall phenotype results from similar changes to metabolism. 
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End of Light Period End of Dark Period 

Wild Type 

S E X 4-3 

P T P K I S 2 - S A L K 

Figure 5.1 Iodine Stained Starch in Leaves of Mutant and Wild Type Plants 

Images of leaves harvested at the end of the dark or light period, stained with lugols solution, 

which turns black in the presence of starch. Leaves were taken from mature plants, at the end 

of the light and dark periods, before being stained as described in materials and methods. 

This chapter aims to characterise the change in glucose, fructose and sucrose levels 

caused by mutations in the AtPTPKISl and AtPTPKIS2 genes, in addition to the 

analysis of phosphate levels in the starch of these mutant lines. The levels of relevant 

transcripts were also studied, along with a study of the expression profiles of the 

previously studied members of the PTPKIS family. 
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5.2 M E T A B O L I T E ANALYSIS OF STARCH E X C E S S LINES 

5.2.1 Sugar Levels of AtPTPKISl Mutants SEX4-1 and SEX4-3 During 

the Diurnal Cycle 

Initial published metabolomic data for the S E X 4 mutation (AtPTPKISl knockout) 

was generated using the SEX4-1 mutant line. This line was generated by X-ray-

mutagenesis (Zeeman et al., 1998), which resulted in a deletion on the first 6 exons 

of At3g52180 as well as the 5' UTR and the region up stream of this. Further 

investigation has shown that this deletion extends into the upstream gene At3g52170 

(Sylviana Comparot-Moss, Personal Communication), which shows homology to a 

DNA-binding protein PD2 from Pisum sativum. It is therefore possible that the 

phenotype observed could also result from disruption of gene At3g52170. In order to 

confirm the original results, a comparison of metabolites from SEX4-1 plants and 

SEX4-3 ( S A L K line S A L K _ 102567) plants was carried out. The SEX4-3 line 

contains a T-DNA insertion within the 7'*" exon, resulting in disruption within the 

phosphatase domain of the protein (Fig 5.2). 

Deleted (5ex4-1 ) ^ 

(At3g52170 
Promoter) 

5 ' -UTR V7 3 ' -UTR 

-^-CKh-D-D-D D-^—[HHHK>-

N H / P T P ~\\ C B M _ 2 0 ^=1^ C O O H 

Figure 5.2 SEX4-1 and SEX4-3 mutations in At3g52180. Diagrammatic representation of 

the AtPTPKISI gene (At3g52180) and the location of the SEX4-1 and SEX4-3 disruptions. 

Large grey boxes represent the exons, with the 5' and 3' UTR labelled. 

In order to determine if there were any significant changes in the glucose, fructose 

and sucrose levels, samples of leaf tissue were taken throughout the day/night period 

from plants grown in short day conditions (8h light, 16h dark). Sugars were extracted 

(as stated in the materials and methods) and their concentrations were determined 

through enzymatic assay (Fig 5.3 - 5.5). 
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Glucose Levels in Wild Type, SEX4-1 and SEX4-3 

8 12 

Time (hours) 

Wild Type — • — SEX 4-1 

16 

-A- -SEX4-3 

20 24 

Figure 5.3 Glucose Levels in Wild Type, SEX4-1 and SEX4.3. Graph showing the levels of leaf glucose, isolated from mature 
w l ^ ' l '̂ ^W'^ ['^ ^ ^ ^ ^ - ^ P'̂ "̂ ^̂  throughout a 24-hour period. Samples were taken though the 8 hours of light and 16 hours darkness. Error bars represent standard error at each time point. " 
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Fructose Levels in Wild Type, SEX4-1 and SEX4-3 

2 0.6 

12 

Time (hours) 

•Wild Type SEX 4-1 - -A- - S E X 4-3 

^ f v l ' t n W^d T ' ' " r . ^ ^ ^ ' p v i ' ; ^^^"^ ^•^^'^^^^ * ^ '^^^'^ - ^ ^ ^ ^ d from mature 
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Sucrose Levels in Wild Type, SEX4-1 and SEX4-3 

4 1 2 

Time (hours) 
16 20 24 

• Wild Type SEX 4-1 - -A- -SEX4-3 

Figure 5.5 Sucrose Levels in Wild Type, SEX4-1 and SEX4-3. Graph showing the levels of leaf sucrose, isolated from mature 
flfL'JI ^"^A ^' ^""^ ^^^^-^ P'̂ "^^ throughout a 24-hour period. Samples were taken though the 8 hours of light and 16 hours darkness. Error bars represent standard error at each time point. ^ 
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During the light period, levels of sucrose in wi ld type, and both SEX4 mutants rise, 

with SEX4-1 showing a significantly higher level of sucrose in the middle of the 

light period than wi ld type and SEX4-3 plants. Upon the onset of darkness, sucrose 

levels drop in w i ld type plants, before rising again to levels similar to those before 

the onset of darkness,, and then declining during the rest of the dark period. This 

however is not mirrored in either of the SEX4 lines, which show a consistent 

decrease in sucrose levels during the latter part of the light period and the early part 

of the dark period, followed by a steady level during the rest of the dark period, with 

consistently lower sucrose levels than those in wi ld type plants (Fig. 5.5). I f sucrose 

levels during the dark period are regarded as products of starch breakdown, these 

results are consistent with decreased hydrolysis in the SEX4 lines. Higher levels of 

sucrose during the light period in the mutant lines establish that sucrose synthesis is 

not impaired, supporting this conclusion. 

Glucose levels of SEX4-1 during the light period are significantly higher than those 

of both wi ld type and SEX4-3 plants. This significantly higher glucose level through 

the day is consistent with the findings of Zeeman et al, (1999). Following the onset 

of darkness, the glucose levels in all plants decreases, with both SEX4-I and SEX4-3 

showing similarly low levels, significantly lower than those seen in wi ld type plants 

(FigS.B). This is again consistent with a failure to break down starch in the SEX4 

mutants, and the concomitant inability to generate glucose at the same rate as the 

wi ld type plants. 

Fructose levels in all plants fol low a similar pattern to that seen in glucose levels, 

with fructose being, in general, half as common as glucose. Of note is the fact that, 

as with glucose and sucrose, during the light period SEX4-3 is similar to wild type 

plants in its sugar levels, but with the onset of night, shows greater similarity to the 

sugar levels of SEX4-1. This may suggest that the mutation in SEX4-1 affecting the 

upstream gene At3g52170 may cause additional sucrose, glucose and fructose to be 

present in plant leaves during the light period. It is not clear whether this is due to 

mutation in At3g52l70 and At3g52180 genes, or just the At3g52l70 gene. 
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C B M 20 

5.2.2 Comparison Of The Sugar Levels in AtPTPKISl Mutant SEX4-3 

And The AtPTPKIS2 S A L K Mutant 

The S A L K insertional mutant SALK_053285 causes interruption of the 5' UTR of 

gene At3g01510 (Fig. 5. 6), referred to as AtPTPKIS2 previously in this work. This 

mutant line shows a starch excess phenotype similar to that of SEX4 when leaves, 

harvested at the end of the dark period, are stained for starch content with iodine (Fig 

5.1). 

T-DNA 
(PTPKIS2-SALK) 

5'-UTR r? 3-UTR 

COOH 

Figure 5.6 PTPKIS2-SALK mutation in At3g01510. Diagrammatic representation of the 

AtPTPKIS2 gene (At3g01510) and the location of the PTPKIS2-SALK insertion. Large grey boxes 

represent the exons, with the 5' and 3" UTR labelled. 

In Chapter 3 it was shown that AtPTPKIS2 alone was incapable of showing any 

phosphatase activity, but was instead able to increase phosphatase activity of 

PTPKISl towards phosphoglucans. In order to further understand the role of 

AtPTPKIS2 it was important to determine i f there were any significant changes in 

the glucose, fructose and sucrose levels between the SEX4-3 mutant line and the 

PTPKIS2-SALK mutant line. To do this samples of leaf tissue were taken 

throughout the day/night period f rom plants grown in short day conditions (8h light, 

16h dark) and their levels of these sugars studied. Sugars were extracted (as stated in 

the materials and methods) and their concentrations were determined through 

enzymatic assay (Fig 5.7 - 5.9). 
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Glucose Levels in Wild Type, SEX4-3, and PTPKIS2-SALK Plants 

12 

Time (hours) 
16 20 24 

— • — W i l d Type - -A- -SEX 4-3 — X - -PTPKIS2SALK 

Figure 5.7 Glucose Levels in Wild Type, SEX4-3, and PTPKIS2-S A L K Plants. Graph showmg the levels of leaf fructose 
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Fructose Levels in Wild Type, SEX4-3, and PTPKIS2-SALK Plants 

12 

Time (hours) 
16 20 24 

— • — W i l d Type - -A- -SEX 4-3 — X - -PTPKIS2SALK 

Figure 5.7 Fructose Levels in Wild Type, SEX4-3, and PTPKIS2-SALK Plants. Graph showing the levels of leaf fructose 

J ^ v i S n l ' T r 8 K '^^"^^ ^^^^-^ ^"^ PTPK1S2-SALK ( X ) plants throughout a 24-hour period Samples were 
t̂ iken though the 8 hours of light and 16 hours darkness. Error bars represent standiird ê ror at each Time point. ^ 
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Sucrose Levels in Wild Type, SEX4-3, and PTPKIS2-SALK Plants 

?o 0.8 

•Wild Type 

12 16 

Time (hours) 

k- -SEX4-3 — X - -PTPKIS2SALK 

20 24 

Figure 5.7 Sucrose Levels in Wild Type, SEX4-3, and PTPKIS2-SALK Plants. Graph show.ng the levels of leaf sucrose 
isolated from mature leaves in Wild Type ( • ) SEX4-3 C A I anH PTPK- i* ;? l A i k-/•v^ . , i ^ „ t o »u u . ,. • , „ 
taken though the 8 hours of light and h\LhTnJ. ^ E t ^ o r b ^ S ^ f t a n ^ ' d i r ^ ISoZ e S i m e ' o i n t ' ^ " " " ' ^ 
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These data show, that throughout the dark period, the PTPKIS2-SALK line shows 
significantly lower sucrose, glucose and fructose levels than wi ld type plants, but 
also significantly higher levels than found in SEX4-3 lines. While having similar 
peak levels of glucose and fructose during the daytime, hexose levels in PTPKIS2-
S A L K appear to peak 4 hours later compared to wi ld type and SEX4-3 (Fig 5.7 & 
5.8). While the sucrose levels of PTPKIS2-SALK fol low a similar pattern to wi ld 
type, they however show an increase in sucrose levels during the light period, being 
up to 30% higher in the middle of the period (Fig 5.9). 

Comparison of sugar levels over the diurnal period in PTPKIS2-SALK and SEX4-3 

show significant differences in both the amounts and the patterns with time, 

suggesting that the effect of knocking out either gene has a different effect on the 

plant. Furthermore it suggests that the enzymes PTPKISl and PTPKIS2 are not 

interchangeable, and f u l f i l unique roles within starch metabolism. 

5.2.3 Glucose-6-Phosphate Levels In Wild Type And SEX4-3 Plant 

Lines 

It has previously been shown that the levels of sucrose, fructose, and glucose in the 

SEX4-1 mutant line differ significantly from those of wi ld type plants. In order to 

determine i f there were any significant changes in the hexose phosphate levels, 

samples of leaf tissue were taken throughout the day/night period and the levels of 

glucose-1-phosphate, glucose-6-phosphate, and fructose-6-phosphate were 

determined. Phosphorylated sugars were extracted in ethanol and water, and then 

subjected to HPAEC-PAD on a PA-1 column (Dionex, R0dovre, Denmark). During 

the extraction glucose-1, 6-bisphosphate was added as an internal standard. 

Results showed that on average, through out the day/night cycle, SEX4-3 plants 

contained around 10 times the concentration of glucose-6-phosphate present in wi ld 

type plants. Whereas glucose-6-phosphate levels in wi ld type plants showed little 

evidence of variation over the day/night cycle, in SEX4-3 plants there was a marked 

diurnal cycle in levels, with a peak of glucose-6-phosphate during the light period, 

and a decrease during the dark periods (Figure 5.10). In comparison levels of 
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glucose-1-phosphate and fructose-6-phosphate showed no notable variation between 
wild type and SEX4-3 plants (data not shown). 

2.5 

1.5 

OS 

Glucose-6-Phosphate Content of Leaves During The Light-Daric Cycle 

12 

Time (hours) 

-WildType - * - •SEX4-3 

16 20 24 

Figure 5.10 Glucose-6-Phosphate Content of Leaves. Graph showing the 
glucose-6-phosphate content of leaves from mature Wild type (•) and SEX4-3 (•) 
plants throughout a 24-hour period. Samples were taken though the 8 hours of light 
and 16 hours darkness. Error bars represent standard error at each time point. Note: 
some of the error bars are too small to see clearly on the graph 

5.2.4 Starch Levels in Wild Type, SEX4-3 and PTPKIS2-SALK plants 

While the mutant lines for AtPTPKISl and AtPTPKIS2 (SEX4-3 and PTPKIS2-

SALK respectively) show a starch excess phenotype (Fig. 5.1), the degree to which 

they retain starch in comparison to wild type plants, and to each other, may help in 

understanding the in vivo role for both proteins. To do this samples of leaf tissue 

were taken throughout the day/night period f rom plants grown in short day 

conditions (8h light, 16h dark) and their starch content determined. Soluble 

carbohydrates were extracted using water and ethanol (as stated in the materials and 

methods) before the remaining starch was isolated and determined through 

enzymatic assay. 
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The data shows increased levels of starch in both SEX4-3 and PTPKIS2-SALK lines 

when compared to wild type plants, with PTPKIS2-SALK showing lower levels than 

seen in SEX4-3 (Fig5.11). While both SEX4-3 and PTPKIS2-SALK have significant 

levels of starch fol lowing the dark period, there is evidence for some starch 

degradation activity in both mutant lines, but not at the same rate as that of wild 

type. The PTPKIS2-SALK line shows less starch accumulation, and more evidence 

of breakdown, that the SEX4-3 line. 

Starch Content Of Mature Leaves From WUd TVpe, SEX4-3 and PTPKIS2-SALK plants 
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20 

Figure 5.1 1 Starch Content of Leaves. Graph showing the starch content of 
leaves from mature Wild type (•) , SEX4-3 (•) and PTPKIS2-SALK ( A ) plants 
throughout a 24-hour period. Samples were taken though the 8 hours of light and 16 
hours darkness. Error bars represent standard error at each time point. Note: some 
of the error bars are too small to see clearly on the graph 
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5.2.5 Starch-Linked Glc-3-P And Glc-6-P In Wild Type and AtPTPKISl 
Mutant (SEX4-3) 

The SEX4-I mutant accumulates starch gradually during consecutive photoperiods 

with a low starch degradation rate during the dark (Zeeman and Rees, 1999). It has 

been previously shown that differences in phosphorylation of the C-6 (Yu et al, 

2001; Ritte et al, 2002) and C-3 (Baunsgaard et ai, 2005; Kotting et al., 2005) 

hydroxyl group can effect starch mobilisation in transient leaf starch. 

To determine any difference in C-6 and C-3 hydroxyl group phosphorylation 

between AtPTPKISl Mutant SEX4-3 and wi ld type starch, starch isolated f rom 

plants grown in short photoperiod at the end o f the light period was used. This starch 

was subject to acid hydrolysis and the neutralised hydrolysate subjected to HPAEC-

P A D on a PA-1 column (Dionex, R0dovre, Denmark) according to (Blennow et al., 

1998). The concentration of Glc-6-P and Glc-3-P linked to starch was 5.4 ± 0.6 nmol 

mg"' starch, 0.21 ± 0.03 nmol mg"' starch for wi ld type and 5.1 ± 0.8 nmol mg ' 

starch and 0.18 ± 0.05 nmol mg"' starch for SEX4-3 respectively (Fig. 5.12); 

although there is a small decrease in phosphorylated glucose residues in SEX4-3 

starch, the differences are not significant 
Starch Linked Glc-6-P and Glc3-P in AtPTPKIS 1 Mutant (SEX4-3) 

I Wild Type 
SEX4-3 

Glc-6-P Glc-3-P 

Figure 5.12 Starch linked Glc-6-P and Glc -3-P Levels. Graph showing the starch 
linked Glc-6-P and Glc -3-P Levels content of leaves from mature Wild type (black bars) 
and SEX4-3 (white bars) plants at the end of the light period. Error bars represent standard 
error at each time point. Note: some of the error bars for Glu-3-P are too small to see 
clearly on the graph. 
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5.3 SELECTED GENE EXPRESSION ANALYSIS OF STARCH 
EXCESS LINES 

5.3.1 Transcript Levels Of AtPTPKISl In Wild Type And AtPTPKIS2 

Mutant Backgrounds Through the Light-Dark Cycle. 

Total RNA was isolated from the leaves of wi ld type and AtPTPKIS2 mutant plants 

( S A L K line SALK_053285) during the diurnal cycle. Plants were grown in short day 

conditions ( I6h dark, 8h light) with RNA pooled from 6 independent plants. Specific 

primers were designed (Table 5.1) for the ORF of AtPTPKISl and Ac t in l (used to 

standardise samples) and Real Time PCR was conducted. 

Gene Forward Primer Reverse Primer 

Actin 1 TGGAACTGGAATGGTTAAGGCTGG TCTCCAGAGTCGAGCACAATACCG 

AtPTPKIS 1 TGGTGAATGGACACACAATGAGGC CCACACTTGTTGGATCGTCCACT 

(At3g52I80) 

Table 5.1 Primers used in Real Time PCR 

The transcript level for both groups of plants increased initially during the light 

period, reaching a peak at the middle of the light period before decreasing. Wi ld type 

plants transcript levels remain consistently low throughout the dark period. In 

comparison the transcript levels of the mutant plants increases rapidly after 4 hours 

of the dark period, reaching a peak after 8 hours of darkness, with transcripts around 

6 times higher than during the peak in the light period (Fig. 5.13). 

These data indicate that the transcription of the AtPTPKIS 1 gene is affected during 

the dark period in plants lacking the AtPTPKIS2 protein. Even with this increase in 

expression of AtPTPKIS 1, the mutant plants still show a starch excess phenotype 

suggesting either an independent role for both proteins or a requirement for both to 

be present in order to f u l f i l all of their required activities. 
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Relative Expression levels of PTPKIS1 in Wild Type and Mutant Plants 
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5.3.2 Correlation In Gene Expression Of AtPTPKISl , AtPTPKIS2 And 
AtPTPKLl 

Gene expression data were mined f rom public databases for AtPTPKISl 

(At3g52180), AtPTPKIS2 (AtSgOlSlO) and A t P T P K L l (At3g 10940). Using data 

from a developmental survey of Arabidopsis (Schmid et al., 2005) obtained using 

the Aff imetr ix A T H l Arabidopsis Genome array, a transcript co-response analysis 

was carried out through the Compatative Systems Biology Project (CSB) 

(Steinhauser et al., 2004) with AtPTPKISl (At3g52180), AtPTPKIS2 (At3g01510) 

and A t P T P K L l (At3g 10940). This showed a strong correlation between the 

expression patterns of transcripts encoded by the loci of the three putative 

phosphatases. The correlation coefficients for single gene comparisons, shown as 

spearman coefficients fol lowing non-parametric Spearman's Rho rank correlation, 

are: A tPTPKISl / AtPTPKIS2 (0.8023); AtPTPKISl / A tPLKISI (0.7432); 

AtPTPKIS2/ AtPLKISI (0.8717) (Table 5.2). These data suggest similar 

mechanisms for regulation of expression for the above proteins, supporting their 

involvement in a common process. 

Gene 1 Gene 2 Spearman's Rho rank p value 

AtPTPKIS2 AtPTPKLl 0.8717 O.OOe-hOO 

AtPTPKISl AtPTPKIS2 0.8023 2.66e-15 

AtPTPKISl A tPTPKLl 0.7432 3.05e-12 

Table 5.2 Transcript Co-Response Analysis. Table showing the correlation coefficients for 

single gene comparisons, as spearman coefficients following non-parametric Spearman's Rho rank 

correlation on AtPTPKISl, AtPTPKISZ and AtPTPKLl. Data used was from a developmental survey 

of Arabidopsis obtained using the Affimctrix ATH1 Arabidopsis Genome array (Schmid et al., 2005). 
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5.4 DISCUSSION 

The similarity in starch phosphorylation levels in wi ld type and SEX4-3 mutants 

greatly reduces the likelihood that the starch excess phenotype seen in SEX4 mutants 

is due to an effect on the activity of G W D l or GWD3/PWD1. It is however 

important to consider the fact that this method of measuring starch phosphorylation 

fails to discriminate between the phosphorylation of starch on the surface of the 

granule and that found deep within the granule. Due to the increased size of the 

starch granules in SEX4 plants (Zeeman et al., 2002), any variation in 

phosphorylation local to the starch granule surface could quite easily be hidden by 

the phosphoylation levels of the starch in the interior of the granule. While it is 

possible to rule out variation in G W D l or GWD3/PWD1 activity as causing the 

starch excess in SEX4, as this is identifiable in lower levels of total phosphate (Glc-

6-P and Glc-3-P) and Glc-3-P respectively throughout the starch (Yu et al., 2001; 

Baunsgaard et al., 2005; Kotting et al., 2005), it is not possible to rule out some 

effect on phosphorylation/dephosphorylation of the starch granule in localised 

regions. 

The starch accumulation phenotype is a result of decreased degradation, which was 

shown by the assays of starch content carried out. Nevertheless, all lines do show 

some starch degradation, with the relative activity being wi ld type line > PTPKIS2-

S A L K line > SEX4-3 line (PTPKIS 1 mutant). The severity of the mutation, with 

regards starch degradation, is consistently less when PTPKIS2 is knocked out than i f 

the knockout is in PTPKIS 1. Since PTPKIS2 does not appear to be an active 

phosphatase, it is less likely to have a direct effect in metabolic regulation and may 

play the role of a modulator. The decreased degradation of starch in the mutant lines 

is also shown by lower levels of hexoses during the dark period, when 

photosynthesis is not taking place, and starch degradation is the primary source of 

free hexoses. Once again, the PTPKIS 1 knockout shows a more marked decrease in 

hexose levels than the PTPKIS2 knockout. The shift of diurnal regulation in the 

latter line is again indicative of a modulator function for PTPKIS2. The altered 

transcription of the PTPKISl gene in the PTPKIS2 knockout line, compared to wi ld 

type, once again suggests a modulatory function. 
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In the analysis of the variation of sugar and starch levels throughout the day/night 

period between wild type, SEX4-1 and PTPKIS2-SALK lines show a pattern similar 

to those previously identified in the starch excess phenotype by Zeeman et al., 

(1999), with the exception that the SEX4-3 line does not show the high daytime 

levels of leaf glucose and fructose previously identified in the SEX4-1 line. There is 

a small increase in the levels of hexoses, but <10% over wild-type, whereas levels in 

the SEX4-1 mutant are increased by >50%. Further research wi l l be necessary to 

show whether the increased levels of free hexoses in the SEX4-1 line result solely 

f rom PTPKISl knockout, in view of the mutation in this line possibly affecting a 

neighbouring gene. Nevertheless, effects of PTPKISl knockout on hexose levels are 

seen in the SEX4-3 line, in the form of accumulation of glucose-6-phosphate. 

The presence of high levels of glucose-6-phosphate in SEX4-3 plants may suggest 

that PTPKISl acts as a phosphatase towards this metabolite; however no activity 

was seen when glucose-6-phosphate was used as a phosphate substrate for any of the 

studied proteins in chapter 3. It is more likely this high glucose-6-phosphate level is 

due to the general effects of the starch excess phenotype upon the plant, or an 

inability to dephosphorylate longer chain phosphoglucans, such as 

phosphomaltooligosaccharides, or starch. Hydrolysis of starch containing glucose 

residues phosphorylated at the C-6 - O H would lead to production of glucose-6-

phosphate, but it is not clear why this metabolite is not then immediately converted 

to glucose-1-phosphate by phosphoglucomutase for starch synthesis, or fructose-6-

phosphate by phosphoglucose isomerase for glycolysis. 

The similar expression patterns seen between PTPKISI , PTPKIS2 and PTPKLI 

suggest their expression is controlled in a similar way, supporting involvement in a 

common process. The PTPKISI , PTPKIS2 and PTPKLI genes in Arabidopsis also 

show similarity in expression pattern to other genes involved in starch degradation, 

(Smith et al., 2004; Niittyla et al., 2006) which supports them having a role in the 

process of starch degradation. 
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Chapter 6 

GENERAL DISCUSSION 

Energy storing macromolecules of a-glucans are widespread in a variety of 

kingdoms; in animals and fungi the a-glucan is glycogen, and in plants it is starch. 

The structure of these macromolecules is optimised to minimize storage space and 

maximize energy concentration while providing a further layer of regulation of 

biosynthesis and degradation (Manners, 1988; Manners, 1990). While glycogens 

highly branched and soluble structure seems greatly different f rom the insoluble 

starch with its limited branching, the two forms of energy storage share a lot of 

common features. Mutations in enzymes involved in the metabolism of glycogen, 

such as glycogen branching enzyme (Raben et al., 2001) or Laforin (Minassian, 

2002), can result in a phenotype similar to that of starch where large insoluble a-

glucans fo rm in the cells. Alternatively, mutations in starch metabolism enzymes can 

result in highly branched phytoglycogen (Zeeman et al., 1998b). Within different 

starch there is a range of branching, f rom some showing high levels of branching to 

those containing high levels of amylose. These similarities between glycogen and 

starches should not be unexpected when considering the similarity in the enzymes 

responsible for their formation (see introduction). 

The aim of this work was to study AtPTPKIS I and its homologues in order to better 

understand its function within plants. Originally it was suggested that PTPKISl 

formed a group of novel KIS domain containing proteins which acted to regulate 

SnRKs in a novel manner when compared to the standard SnRK complexes 

previously identified in plants, yeast, and animals (Lumbreras et al., 2001; Fordham-

Skelton et al., 2002). Recently published data has shown that AtPTPKIS 1 localises 

to the chloroplast in plants (Niittyla et al., 2006), reducing the likelihood of it 

interacting with SnRKs found in the cytoplasm. Results presented here and in recent 

publications (Kerk et al., 2006; Niit tyla et al., 2006; Sokolov et al., 2006; Gentry et 

al., 2007) have shown AtPTPKIS 1 to be a phosphoglucan phosphatase with a C-
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terminal C B M . Mutations in this gene are shown to be responsible for the previously 
identified SEX4 phenotype. Previous comparisons drawn between the predicted FTP 
domain of AtPTPKISI and Laforin have become more significant with the 
identification of phosphoglucan phosphatase activity in both enzymes, and the 
identification of a C-terminal C B M in PTPKISl comparable to that found at the N -
terminus of Laforin. While their phosphatase domains are homologous, the CBMs 
lack a similarly high degree of homology while being located at opposite ends of the 
protein. 

Mutation in the laforin gene not only results in decreased branching of the glycogen 

molecule, but also an increase in the glycogen bound phosphate (Tagliabracci et al., 

2007) while mutation of the AtPTPKISl gene (SEX4) results in an increase in starch 

and like mutations in laforin, a decrease in the branching of that starch (Zeeman et 

al., 2002). The data presented here shows no significant increase in starch bound 

phosphate in plants unable to produce active PTPKISl protein. This may suggest a 

variation in role between Laforin and PTPKISI , or it may be due to the insoluble 

nature of starch and any change in starch bound phosphate may only be present in 

the surface of the granule. 

While no G W D I or GWD3/PWD1 homologues have been identified in animals, 

when laforin is mutated there is evidence for an increase in the phosphate levels of 

glycogen, suggesting the presence of an enzyme with a similar role to 

GWD1/GWD3. Analysis of genes whose mutation is responsible for the formation 

of lafora bodies has identified Laforin (EPM2A) and Malin ( N H L R C l ) but these 

alone do not account for all the cases of lafora disease (Chan et al., 2003; Ganesh et 

al., 2006). It may be possible that a protein with a similar role to that of G W D I and 

GWD3/PWD1 is involved in glycogen metabolism, and it may be mutation in this, 

which results in the additional cases of Lafora disease. While it may not have 

homologous structure to G W D I or GWD3/PWD1, it is possible that it has a similar 

function. 

Redox regulation is seen in a number of enzymes involved in starch metabolism, 

such as ADP-glucose pyrophosphorylase in which post-translational redox 

modification regulates activity (Tiessen et al., 2002; Hendriks et al., 2003). Results 
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presented here and previously (Fordham-Skelton et al., 2002; Sokolov et ai, 2006) 
show that PTPKISl activity is redox regulated, requiring reduction in order to be 
active. G W D l has been shown previously to show a similar expression pattern to 
that of AtPTPKISl (Smith et ai, 2004), and has also been shown to require 
reduction in order to phosphorylate glucans (Mikkelsen et al., 2005) with reduction 
by thioredoxin activating oxidised starch bound G W D l . Together this suggests that 
redox regulation of activity plays an important role in the regulation of a number of 
the enzymes involved in starch metabolism. 

Evidence presented in this work shows that PTPKIS2 may act to modulate the 

activity of PTPKISl and that when present, it can increase the phosphatase activity 

of PTPKISl against phosphoglucans to a comparable level of Laforin (Gentry et al., 

2007), which in itself has been shown to be more active in its homodimeric form 

(Liu et al., 2006). Work in which the SEX4 phenotype was partially rescued through 

transformation with a vector encoding a chloroplastic localised laforin (Gentry et al., 

2007) suggests at a similarity of function. However the lack of complete rescue 

makes it likely that either the regulation of their phosphoglucans phosphatase 

activity, or the role of the protein in some other capacity, is not being duplicated in 

laforin. The variation in the SEX4 and PTPKIS2-SALK phenotypes supports this 

theory, as it suggests a similarity in function, but not a co-dependence for activity. 

Identification of the phosphatase activity of the A tPTPKLl protein, given its 

similarity in expression when compared to AtPTPKISl and AtPTPKIS2 suggests a 

role in starch metabolism. Its inability, like PTPKISl , to show activity against 

synthetic phosphopeptides, while showing some activity against phosphoglucans, 

supports this. While the activity seen against macromolecular phosphoglucans was 

significantly lower than that of AtPTPKISl , this could be attributed to the latter 

containing a carbohydrate binding domain. It may be possible that A tPTPKLl acts 

within the chloroplastic stroma upon shorter phospho-maltooligosacharides, released 

through normal starch degradation. 
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6.1 Phosphate Wave Hypothesis 

Using the information provided within this section of work, in combination with that 

previously published, it is possible to postulate a number of theories as to the 

mechanism of starch degradation. While a lot has been published recently on the 

processing of linear glucans into maltose and its subsequent export into the cytosol 

(Smith et al., 2005), there is still a lot of conjecture around the initial attack upon the 

transient leaf starch granule. 

The SEX I mutants, deficient in G W D l , have shown a requirement for starch 

phosphorylation in order to facilitate starch mobilisation (Yu et al., 2001; Ritte et al., 

2002). With it being postulated that phosphate increases the surface solubility of 

starch (Baunsgaard et al., 2005), allowing other enzymes to act upon it more freely. 

It may be possible that unphosphorylated starch is diff icul t for ^-amylase to act 

upon, and in turn the insolubility would l imit the accessibility of ISA3 to the 

branched regions below the granules surface. Recent publications have shown that 

activity of ^-amylase is greatly increased in the presence of G W D l (Edner et al., 

2007) and that phosphorylation of glucans resulting in greater beta-amylase activity 

upon them (Hajezi et al 2008). 

In contrast, the SEX4 mutation would remove, or at least reduce, the potential to 

dephosphorylate starch. This would suggest an increase in the surface solubility of 

the starch granule, a situation likely to be favourable for p-amylase to act upon the 

granule. While this work shows that the level of phosphate within the granule as a 

whole in comparable to wild type plants, this does not rule out a redistribution, in 

which phosphorylated starch is more common at the granule surface. While it is 

possible to predict that a more soluble starch granule would be more susceptible to 

attack by (3-amyiase, it is possible that the increased phosphate levels would act to 

inhibit the ^-amylase activity, in a similar way to that seen by branch points. This is 

supported by data f rom SEX4 mutants which shows an increase in p-amylase levels, 

while there is only limited evidence of starch degradation (Zeeman et al., 1998a). 
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Starch levels do decrease in both SEX4 and PTPKIS2-SALK, this may be due to the 
ability to degrade the surface slowly with this increase in ^-amylase levels. 
Alternatively this increased phosphorylation may allow ISA3 greater access to the 
bands of highly branched starch. In SEX4 mutants, levels of unbranched starch was 
seen to be higher than both wild type and SEXl mutants lines (Zeeman et ai, 1998a) 
This increased percentage of unbranched starch, may be due to reduced efficiency of 
P-amylase acting upon the crystalline lamellae, while the amorphous lamellae is still 

susceptible to degradation by ISA3 and P-amylase so removing the branched 
regions, leaving behind unbranched regions. 

This may suggest that for optimal degradation of starch granules, a balance must be 

met between the need to be phosphorylated to increase accessibility, and the need to 

have unphosphorylated regions so as to not inhibit degradation. Similarly, is could 

be seen as an equilibrium between G W D l and GWD3/PWD1 on one side, and 

PTPKISl and PTPKIS2 on the other. An example of such a mechanism can be seen 

in figure 6.1. 

Figure 6.1 Phosphate Wave Hypothesis. (Following page) Starch chains on the surface of 
the granule are phosphorylated by GWDl and GWD3 increasing the solubility of these 
regions. With this increase in solubility, the PTPKISI/PTPKIS2 complex is able to more 
readily access the surface of the starch granule, dephosphorylating those phosphate residues 
near the surface. This dephosphorylated starch, with phosphate residues at its base, is 
attacked more easily by (3 amylase. When the (3 amylase reaches the phosphorylated glucose 
residues, its activity is greatly reduced. At this point, GWDl and GWD3 again 
phosphorylated the deeper surface residues, allowing the cycle to continue 

When amorphous, branched regions are reached by degrading enzymes, ISA3 and P-
amylase act together to break down the highly branched region into maltose and other 
maltooligosacherides. Released phosphomaltooligosacharides may be dephosphorylated in 
the stroma by general phosphatases, PTPKLl, or PTPKIS 1/PTPKIS2. 
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Figure 6.1 Phosphate Wave Hypothesis. 
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6.2 Branch Regulation Hypothesis 

Mutation in PTPKISl and PTPKJS2 causes a phenotype in which starch degradation 

is reduced. This suggests a role in starch degradation, but it is also possible that 

PTPKISl and PTPKIS2 play a role in starch synthesis, and it is alteration in the 

structure of the starch during synthesis, which results in an altered rate of 

degradation. The similarities between the structure and activity of Laforin and 

PTPKISl , combined with the similarity of affect mutations in either have on 

glycogen and starch structure respectively, provide us with an insight into alternative 

roles in starch synthesis. 

Recent publications have shown that the glycogen bound phosphate levels in mice in 

which the laforin gene (Epm2a) is knocked out, was around 40% higher 

(Tagliabracci et al., 2007). It has been proposed that this phosphorylation may result 

in aberrant branching resulting in the formation of lafora bodies. This may suggest a 

similar action in starch, where without PTPKISI to dephosphorylate the starch, 

branching occurs less frequently, resulting in a granule with a higher amylose 

content, which is in turn more insoluble, requiring greater ^-amylase activity, as is 

seen in the SEX4 mutants (Zeeman et al., 1998a), in order to degrade the starch. 

Unlike mutations in Laforin, SEX4 shows no elevated levels in starch bound 

phosphate. This may be accounted for by the variation in the ratio of amylose to 

amylopectin found between starch f rom wild type and SEX4 mutants, as it may be 

possible that it occurs more in one than the other. 

Branching may be inhibited by the presence of phosphate residues. G W D l has a 

higher activity near branch points, as it gets further f rom branch points during starch 

synthesis, its activity drops. This combined with the activity of the phosphatase 

(PTPKISl and PTPKIS2) means that there is a decrease in phosphorylated residues 

as the distance f rom the initial branch point increases. This allows branching 

enzymes to act, resulting in a branched region, forming the layer of highly branched 

starch of the amorphous lamellae. In this way, the width o f the crystalline lamellae 

and the amorphous lamellae could be described in terms of the equilibrium between 

G W D l and GWD3/PWD1 activity as it decreases over distance f rom branch point 
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and the activity of PTPKIS 1 and PTPKIS2. An example of such a mechanism can be 
seen in figure 6.2. 

Alternatively to regulating directly the position of branch points, phosphorylation 

may regulate the removal of branch points. It has been shown branches are formed 

and then removed throughout starch synthesis by very short pulse methods. In many 

ways this could act in a similar fashion to the previous phosphate wave theory, with 

the activity occurring during branch formation with phosphate being removed to stop 

branching enzyme activity 

Figure 6.2 Branch Point Hypothesis. (Following page) Starch chains on the surface of the 
granule are phosphorylated by GWDl and GWD3, resuUing in an inability for Starch 
Branching Enzyme (SBE) to form branch points, while Starch Synthase (SS) continues to 
elongate the starch chains. The phosphoglucans phosphatase activity of the 
PTPKIS 1/PTPKIS2 complex is much lower than the activity of GWDI/GWD3, resulting in 
a higher occurrence of phosphorylated glucose residues. 

As the length of the un-branched starch chain increases, GWD acts further from the original 
branched region, resulting in a decrease in GWD activity. The ratio of GWD:PTPKIS 
activity moves in favor of PTPKIS activity. Dephosphorylation by PTPKIS I/PTPKIS2 
results in lower numbers of phosphorylated residues further from the branched region. 
Which allows SBE to act, forming branch points, with the distance between this branched 
region and the previous one a result of the interplay of activities of GWDI/GWD3 and 
PTPKIS 1/PTPKIS2 



Chapter 6 General Discussion 

"l̂  Un-branched region 
(crystalline lamellae) 

Branched region 
(amorphous lamellae) 

STARCH 
GRANULE 

r 

GWD1/GWD3 

GWD Activity Decreases as it moves away 
from branch points 

Ratio of GWD:PTPKIS activity moves in 
favour ofPTPKIS 

STROMA 

i 

SBE 

PTPKISl & P T P K I S 2 

New Branched region 
(amorphous lamellae) 

Figure 6.2 Branch Point Hypothesis. 
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6.3 Starch and Glycogen Metabolism 

The mutations in Laforin and PTPKISl show the importance of phosphoglucan 

phosphatases in glycogen and starch metabolism respectively. As with mutations in 

other glycogen/starch metabolism enzymes, mutations in either the PTPKJSl or 

Laforin gene cause of similar physiological chance in the carbohydrate storage 

molecule. While starch and glycogen have a number of differences in their structure, 

there are a great deal of similarities in the enzymes involved, and the regulatory 

mechanisms used. 

A combination of the above branching theory, during macromolecule formation and 

phosphate wave during its degradation could account for the role of both laforin and 

PTPKIS1/PTPKIS2 in starch and glycogen metabolism. In glycogen the major 

determinant of structure would be the branch theory during formation, as seen by the 

limited phosphate content in native glycogen. In plants, the higher activity of G W D l 

and GWD3/PWDI would reduce the branching on formation, and give the phosphate 

wave theory during degradation a bigger role in the determination of the granule 

structure. 
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6.4 Conclusions 

The results of this work show: 

• AtPTPKISl acts as a phosphoglucans phosphatase. 

• AtPTPKIS2 modulates AtPTPKISl activity against phosphoglucans. 

• AtPTPKIS2 shows no phosphatase activity to any generic substrates. 

• A t P T P K L l shows similar levels of phosphatase activity to AtPTPKISl 

against generic substrates 

• A tPTPKLl shows a significantly lower activity against phosphoglucans 

when compared to AtPTPKIS I 

• A tPTPKISl , AtPTPKIS2 and AtPTPKLl show no activity towards 

phosphorylated peptides. 

• The previously predicted KIS domains on AtPTPKIS I acts as carbohydrate 

binding domain 

• Mutational analysis confirms the C B M in AtPTPKISl contains residues 

consistent with standard CBMs f rom the CBM20 family 

• The C B M of AtPTPKIS 1 contains a novel pair of sugar tongs required for 

carbohydrate binding activity. 

• Plants lacking AtPTPKISl or AtPTPKIS2 expression both show a starch 

excess phenotype. 

• Analysis of sugars shows variation between plants lacking AtPTPKIS 1 or 

AtPTPKIS2 expression. 

• Starch bound phosphate shows no variation in the ration of glucose-3-

phosphate and glucose-6-phosphate in starch of AtPTPKIS 1 mutant plants. 

Using this and recently published material it is possible to hypothesis a number of 

roles for PTPKISl and PTPKIS2 in vivo, such as a role in regulation of branch 

points, or in dephosphorylation of starch during starch degradation. 

There are a number of ways in which this work may be carried on. Generation of 

SEX4/PTPKIS2-SALK double mutant would enable conformation of AtPTPKIS2 as 

only acting to modulate AtPTPKIS 1 activity Double mutants showing a SEX4 would 

suggest PTPKIS2 only acted to modulate PTPKISl . I f mutations were cumulative it 
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would suggest alternative roles for AtPTPKIS2 not identified by this work. Site 
directed mutagenesis of the AtPTPKIS2 C B M to further characterise its affinity to 
carbohydrate would act to support that data generated through site directed 
mutagenesis of the C B M of AtPTPKISl . Through generation of 
maltooligosacharides with specific phosphorylation patterns, it would be possible to 
better characterise the phosphoglucan phosphatase activity of PTPKIS 1, PTPKIS2 
and P T P K L l . This may also allow us to identify a role of A t P T P K L l . 

Short pulse label experiments with radiolabeled phosphate in in-vitro assays on 

starch degradation in the presence of PTPKIS and G W D would act to provide data as 

to the role of PTPKIS and G W D in the proposed phosphate wave theory. In a similar 

manner, assays on starch branching enzyme activity against substrates with 

phosphorylation at specific glucose residues would act to support the branch point 

theory. 
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Appendix 

Appendix 1 

ESTs and sequences predicted through database searches to encode AtPTPKlSl 
AtPTPKISl and AtPTPKLl homologues 

PTPKISl HOMOLOGUES 

Oryza sative PTPKISl 
Synonym: OsPTPKISl, RicePTPKISl 

Accession 
No. 
CB652367 
CB652422 
AU225812 
CB631851 
C73079 
CA762883 
CB645161 
CB646492 
CB209746 

Tissue 
Leaf 
Leaf 
Pistil 
Leaf 
Panicle 
Panicle 
Leaf 
Leaf 
Immature Leaf 

Conditions 
Rice Blast 
Rice Blast 
Tri-nucleate pollen stage 
Rice Blast 
Flowering Stage 
Flowering - Water Stress 
Rice Blast 
Rice Blast 

4 Weeks after germination 

Predicted amino acid sequence: 
MNCLQNLLICEPPIVGSRSMRRPSPLNLTMVRGGSRRSNTVKTASGASTSSAS 
GAVEAGTEKSDTYSTNMTQAMGAVLTYRHELGMNYNFIRPDLIVGSCLQSP 
LDVDKLRDIGVKTVFCLQQDPDLEYFGVDICAIQEYCLCKIEHCRAEIDFDAF 
DLRLRLPAVISKLHKJLVNHNGGVTYIHCTAGLGRAPAVTLAYMFWILGYSL 
NEGHQLLQSKRACFPKLEAIKLATADILTGLSKNSITLKWESDSCSSVEISGL 
DVGWGQIIPLTYNKEKRAWYLERELPEGRYEYKYIVDGKWVCNDNEKKTIC 
ANADGHVNNYVQVSRDGTSDEERELRERLTGQNPDLTKEERLMIREYLEQY 
VER 

Solanum tuberosum PTPKISl 
Synonym: StPTPKJSl, PotatoPTPKlS 1 

Accession No. 

BG889548 
BM406110 
BI406739 
CK276028 

BQ511893 

BE343106 
CK276029 

BG890712 

Tissue 
Dormant 
Tuber 
Roots 
Tuber 
Leaf & Root 
Mixed 
Tissue 
Tuber 
Formation 
Leaf & Root 
Dormant 
Tuber 

Conditions 

1 Month post harvest - 4oC 
In Vitro grown Stem cuttings 

Abiotic Stress (Heat, Cold, Salt , Drought) 

Phytophthora Infestans 
Introduction of tuber formation as described in 
Bachem et al. (Plant Journal 1996) 
Abiotic Stress (Heat, Cold, Salt, Drought) 

1 Month post harvest - 4oC 
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BF459745 Tuber 
BI405969 Tuber 

Mixed 

BQ511892 Tissue Phytophthora Infestans 

Predicted amino acid sequence: 
MNCLQNLPRSSGLPLRSFTGNSRKPFSTVVSLGMTKFADQRLSIVAQVVSGP 
ESSTEKDEEKSDTYSHDMTEAMGAVLTYRHDLGMNYNFIRPDLIVGSCLQT 
PEDVDKLRSIGVKTIFCLQQNPDLEYFGVDINAIREYANKCGDIEHLRAEIRD 
FDAFDLRLRLPAVISILNNAINRNGGVTYIHCTAGLGRAPAVALTYMFWVQS 
YKLSEAFDILMSKJlSCFPKLDAIKSATADVLTGLKKMPVKiTWHGDNCTTV 
EISGLDIGWGQRTPLKFDEGQGLWTLQKDLHEGKYEYKYIVDGEWICNEFE 
PITSPNKDGHVNNYVEVLDENPDNITSAAVRJCRLTGDDPDLTSDERLIIEQFL 
EAYADVE. 
Citrus sinensis PTPKISl 
Synonym: CsPTPKISl, OrangePTPKIS 1 

Accession No. Tissue Conditions 
CB292627 Rind - Mature fruit Cold Tennperature 

CB292628 Rind - Mature fruit 

Predicted amino acid sequence: 
MNCLQNLTRSSALPLQSFRFNQRKPTSSSSFNSLGTMNYADLNRRITVKAITG 
STSSKETSDSSEVKEEKSEIYSTNMTEAMGAVLTYRHELRMNYNFIRPDLIVG 
SCLPTPEDVDKLRQIGVKTIFCLQQDPXLEYFGVDIIAXQEYAKTYDDIQHIR 
AEIRDFDAFDLRMQLPAVISKLYKAINRNGGVTYVHCTAGLGRAPAVALAY 
XFWVLGYKLNEAHQLLLSKRPXFPXLDAIKSATADILTGLRKKLVTFSWKG 
KNCTTVEISGIDIGWGQRMPLTFDKEQGLWILKRELPEGRYEYKYIVDGEWT 
CNKYELVSSPNKJDGHVNNYVQVDGAPSSVSEALRNRLTSDDFDLTKDELHK 
IRAFLEACPDYE 

Poncirus trifoliata PTPKISl 
Synonym: PtPTPKISl, PoncirusPTPKJSl 

Accession No. Tissue Conditions 
Phloem - 10 to 30cm 

CD575981 shoots Rootstock infected with citrus tristeza 
Phloem - 10 to 30cm 

CD575173 shoots Rootstock infected with citrus tristeza 

Predicted amino acid sequence: 
MNCLQNLPRSSALPLQSFRFNQRKPTSSSSSFNSLGTMNYADLNRRJTAKAIT 
GSTSSKETSDSSEVKEEKSEIYSTNMTEAMGAVLTYRHELGMNYNFIRPDLl 
VGSCLQTPEDVDKLRQIGVKTIFCLQQDPDLEYFGVDIIAIQEYAKTYDDIQH 
IRAEIRDFDAFDLRMRLPAVVSKLYKAINRNGGVTYVHCTAGLGRAPAVAL 
AYMFWVLGYKLNEAHRLLLSKRPCFPKLDAIKSATADILTGLRKKLVTFSW 
KGKNCTTVEISGIDIGWGQRMPLTFDKEQGLWILKRELPEGRYEYKYIVDGE 
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WTCNKYELVTYPNKDGHVNNYVQVDDAPSSVSEALRDRLTSDDFDLTKYE 
LHKIRAFLEACPDYE 

Medicago truncatula PTPKISl 
Synonym: MtPTPKISl, MedicagoPTPKISl 

Accession No. Tissue Conditions 
Local and Wounded leaves - Spodoptera Exigua (Beet 

BI267614 Systemic Leaves armyworm) 
1 Month post inoculation with Sinorhizobium 

BG581666 Root nodule Meliloti 
1 Month post inoculation with Sinorhizobium 

BG581814 Root nodule Meliloti 

Predicted amino acid sequence: 
MNCLQNLPRSSSVLQFHTLVSPPSTARHHNIFLPSSSSSLSLGINTNSIYTPTML 
LKATSGSIPSAETSSSDVEEEVKSEIYSNNMTEAMGAVLTYRHELGMNYNFI 
RPDLIVGSCLQTPEDVDKLRKIGVKTIFCLQQNSDLEYFGVDIDAIREYANSC 
NDIQHLRAEIRDFDSFDLRKRLPAVISKLYKAINSNGGVTYIHCTAGLGRAPA 
VALAYMFWVQGYKLNEANTLLLSKRSCFPKLDAIKSATADILTGLSKKPVT 
LSWGHRNCSTVEISGLDIGWGQRVPLNFDDKQGSWFLKKEMFEGRYEYKYI 
VDGEWTCNNDELVTSPNKDGHVNNFIEVLDDADSGRASXXERVTGDDPDL 
TKDERNRIIEFLXALPNEDL 

Brassica napus PTPKISl 
Synonym: BnPTPKISl, BrassicaPTPKIS I 

Accession No. Tissue Conditions 
BQ704623 Fourth Leaf 3 week seedlings 
CD814324 Seed 

Predicted amino acid sequence: 
MNCLQNLPRSSVSPMYGFGGNQRVPSSPSSLKMMLLPIKANDLKLRLVLQA 
VSDSKSTGAEVSGVSNKEEEEKSDEYSQDMTQAMGAVLTYRHELGMNYSF 
VRPDLIVGSCLQTPEDVDKLRKIGVKTIFCLQQGPDLEYFGVDIXSIQAYAKT 
FXDIXHIRCXIRDFDAFDLRXRLPAVXSTLYKAVXRNGGVTYVHCTAGMGR 
APAXALXYMFWVQGYKLMEAHXXLMSKRTCXPKLDAIRNATIDILTGLXK 
XTVTLTLRDKGFSTVEISXLDIGWGQRIPLTLDKGTGFWXLKRELPEGQFEY 
KYIIDGEWTYNEQEPFTGPNKDGHTNNYAKVVYDPTSVDGATRERLTSEDP 
ELLEEERLKLIQFLETSSEAEV 
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ESTs which generate partial sequences 

Organism 

Descurainia sophia 

Hordeum vulgare 

Zea mays 

EST Accession No. 

BU238151 

AV91738 
BJ465420 
BJ468667 
BQ763771 
CB870250 
CD053966 

AY106017 
AI920608 
BG267495 
BI542743 
BQ619480 
CFO14674 
CO452300 

Picea glauca CK437744 
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PTPKIS2 HOMOLOGUES 

Oryza sative PTPKIS2 
Synonym: OsPTPKlS2, RicePTPKIS2 
(containing splice variants a and b) 

OsPTFKIS2a 

Accession No. Tissue 
CB629190 LEAF 
CB634603 LEAF 
CB665979 LEAF 
CB665807 LEAF 
CB664108 LEAF 
CB664109 LEAF 
CB665980 LEAF 
CB665982 LEAF 

OsPTPKIS2b 

Accession No. Tissue 
BF430624 LEAF 
CB634604 LEAF 
CB654633 LEAF 
CB641215 LEAF 
CB654633 LEAF 
CB664109 LEAF 
AK119345 
NM_188913 

Conditions 
Rice Blast 
Rice Blast 
Rice Blast 
Rice Blast 
Rice Blast 
Rice Blast 
Rice Blast 
Rice Blast 

Conditions 
150mM NaCI 
Rice Blast 
Rice Blast 
Rice Blast 
Rice Blast 
Rice Blast 
Science. 2003 Jul 18;301(5631) :376-9 

Predicted amino acid sequence: 

OsPTPKIS2a-
MALHLTAAPTIAPSAAAACRSLAPMPPLPAVSCSSRWWRGRRRCVAVVAM 
AAAAAADGERPHGHAAEAGTGRMNLNEYMVAVDRPLGVRFALAVDGRVF 
VHSLKKGGNAEKSRIIMVGDTLKKAGSREGVGFVDIRDLGDTEMVLKETSG 
PCDLVLERPFAPFPIHQLHQNEDYHLLFNKGRVPLTSWNGALLSSKLNESSE 
GNGNPGFAIFSPRLLNSHGWAVLSSEQDGLNQRSTSLANRISEIVGLYSDEDD 
ADTEWAHGSFPLEEYIK7y.DRAKGELYYNHSLGMQYSKITEQIFVGSCLQTE 
RDVKMLSETMGITAVLNFQSESERTNWGINSEAINNSCRENNILMVNYPIRE 
VDSMDLRKKLSFCVGLLLRLIRJCNYRIYVTCTTGYDRSPACVIAYLHWVQD 
TPLHIAHKFITGLHSCRPDRAAIVWATWDLIALVENGRHDGTPTHSVCFVWN 
SGREGEDVELVGDFTSNWKDKVKCDHKGGSRYEAEIRLRHGKYYYKFIAG 
GQWRHSTSLPTETDEHGNVNNVIRVGDIARIRPAPSQLQIRDPTVVKVIERAL 
TEDERFLLAFAARRMAFAICPIRLSPKQ 
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OsPTPKlS2b -
MALHLTAAPTIAPSAAAACRSLAPMPPLPAVSCSSRWWRGRRRCVAVVAM 
AAAAAADGERPHGHAAEAGTGRMNLNEYMVAVDRPLGVRFALAVDGRVF 
VHSLKKGVKHLYHLRLARCGYDATSFVYCLAQSIQSAAAQCSPHPTSLGAV 
QLPQLLLRSKIHRQHHAAHGNAEKSRIIMVGDTLKKAGSREGVGFVDIRDLG 
DTEYGTSKVSLAETKSEALHRIELANVTSATLAMSKYYIMVLKJETSGPCDLV 
LERPFAPFPIHQLHQNEDYHLLFNKGRVPLTSWNGALLSSKLNESSEGNGNP 
GFAIFSPRLLNSHGWAVLSSEQDGLNQRSTSLANRISEIVGLYSDEDDADTE 
WAHGSFPLEEYIKALDRAKGELYYNHSLGMQYSKITEQIFVGSCLQTERDVK 
MLSETMGITAVLNFQSESERTNWGINSEAINNSCRENNILMVNYPIREVDSM 
DLRKKLSFCVGLLLRLIRKNYRIYVTCTTGYDRSPACVIAYLHWVQDTPLHI 
AHKFITGLHSCRPDRAAIVWATWDLIALVENGRHDGTPTHSVCFVWNSGRE 
GEDVELVGDFTSNWKDKVKCDHKGGSRYEAEIRLRHGKYYYKFIAGGQWR 
HSTSLPTETDEHGNVNNVIRVGDIARIRPAPSQLQIRDPTVVKVIERALTEDER 
FLLAFAARRMAFAICPIRLSPKQ 

Solanum tuberosum PTPKIS2 
Synonym: StPTPKIS2, PotatoPTPKJS2 

Accession No. 
BE921193 
BQ112146 
BF054387 

BG600243 

BI436255 

BI436290 

BI178258 

BI178265 
BQ112147 
BE921818 
BI78737 

Tissue 
Leaflets & Petioles 
Mixed Tissue 
Leaflets & Petioles 

Sprouting Eyes from Tubers 
axillary buds of stem explants; growing 
sink-tubers 
axillary buds of stem explants; growing 
sink-tubers 
axillary buds of stem explants; growing 
sink-tubers 
axillary buds of stem explants; growing 
sink-tubers 
Mixed Tissue 
Leaflets & Petioles 

Conditions 
8 Week old 

8 Week old 
12-14 weeks post 
harvest 

8 Week old 

Predicted amino acid sequence: 
MCSLQLPNCRVFNDGNFSSSSSDICFKKCVVFSSFWGVELCFNDGRFTASSAV 
KRRQYRPISVMSSSSDSPFNMNLNEYMVTLVKPLGIRFALSVDGKVFVHALK 
KGGNAEKSRIIMVGDTLKKASDSSTGGLIEIYDFGDTEKMMNENSGPCSLVL 
ERPSFPFPIHQLYLMDDIDIMYNRGRVPVATWNKKLLASNLRTSCEGSGNSG 
FVVFSPKLLTLNGWNVLSDGDQIRQQENLNGTPWLPFSPIINIFSEKDTTDSE 
WAHGNFPLEEYVKALDRSKGELYYNHDLGMRYSKITEQIYVGSCIQKESDV 
EMLSDVGITAVVNFQSGIEAENWGINANIINESCQRFNILMINYPIREGDSFD 
MRKKLPFCVGLLLRLLKJCNHRVYVTCTTGFDRSPACVVAYLHWMTDTSLH 
AAYNFVTGLHLCKPDRPAIAWATWDLIAMVENGAHDGPATHAVTFVWNG 
HEGEDVYLVGDFTGNWKEPIQALHKGGPRFEAEVRLSQGKYLYKYIISGNW 
RHSTNSPTERDERGNLNNVIVVGDVASVRPFIQQQKKDANIMKVIERPLTEN 
ERFMLAKAARCVAFSICPITLAPK 
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P T P K L l HOMOLOGUES 

Oryza sative P T P K L l 1 (Located on Chromosome 11) 
Synonym: OsPTPKISl 1, RicePTPKISI I 

Accession No. Tissue 
C72777 Panicle 
AK072567 
AU173453 Root 
CA762603 Panicle 

Conditions 
Flowering Stage 

Seedling Root 
Drought Stress 

Predicted amino acid sequence: 
MAAMATAPCFPATPGLPARGAVAARSRMAAGGSRSQRRRSSSGVFLCRSST 
TGSSRMEDYNTAMKRMMRNPYEYHHDLGMNYAIISDSLIVGSQPQKPEDID 
HLKDEEKVAFILCLQQDKDIEYWGIDFQTVVNRCKELGIKHIRRPAVDFDPD 
SLRTQLPKAVSSLEWAISEGKGRVYVHCTAGLGRAPAVAIAYMFWFENMD 
LRTAYEKLTSKRPCGPNKRAIRAATYDLAKNDPHKESFDSLPEHAFEGIAGS 
ERSLIQERVRALREA 

Oryza sative PTPKLl2 (Located on Chromosome 12) 
Synonym: OsPTPKISl2, RicePTPKISI2 

Accession No. Tissue 
AU173452 Root 
CB626087 Leaf 
CB626088 Leaf 

Conditions 
Seedling Root 
3 Week old - lesion mimic S P L l l 
3 Week old - lesion mimic S P L l l 

Predicted amino acid sequence: 
MAAMATAPCFPATPGLPARGAVAARSRMAAGGSRSQRRRSSSGVFLCRSST 
TGSTRMEDYNTAMKRMMRNPYEYHHDLGMNYAIISDSLIVGSQPQKPEDID 
HLKDEEKVAFILCLQQDKDIEYWGIDFQTVVNRCKELGIKHIRRPAVDFDPD 
SLRTQLPKAVASLEWAISEGKGRVYVHCTAGLGRAPAVAIAYMFWFENMN 
LKTAYEKLTSKRPCGPNKRAIRAATYDLAKNDPHKESFDSLPEHAFEGIADS 
ERRLIQERVRALREA 

Solanum tuberosum P T P K L l 
Synonym: StPTPKLl, PotatoPTPKLl 

Accession No. 

AW906716 
BG350600 

Tissue Conditions 
Introduction of tuber formation as 

Tuber described in Bachem et al. (Plant 
Formation Journal 1996) 
Tuber Field Grown 



Appendix 1 VII I 

Predicted amino acid sequence: 
MRALWNSTCLSPVQNNPLLFSRSSKKYANSLCNFTNKSFQISCKLPESEVKE 
NHARSSSNKKMEEYNLAMKRMMRNPYEYHHELGMNYTLITEDLIVGSQPQ 
KIEDIDYLKEEENVAFILNLQQDKDIEFWGIDLQSIVTRCSELGIHHMRRPAID 
FDPDSLRSVLPKAVSSLEWAISEGKGRVYVHCTAGLGRAPAVSIAYMFWFC 
GMDLNTAYDTLVSKRPCGPNKRSIQGATYDLAKNDQWKEPFENLPDYAFA 
DVADWERKLIQDRVRALRDT 

Vitis vinifera P T P K L l 
Synonym: VitisPTPKISl, VinePTPKISl, VvPTPKLl 

Accession No. Tissue Conditions 
Late Season - Infected with bacterial pathogen 

CA808154 Leaf (Xylella fastidiosa) 
Late Season - Infected with bacterial pathogen 

CA809091 Leaf (Xylella fastidiosa) 
Late Season - NON-Infected with bacterial pathogen 

CA813296 Leaf (Xylella fastidiosa) 
Late Season - NON-Infected with bacterial pathogen 

CA813425 Leaf (Xylella fastidiosa) 
Late Season - NON-Infected with bacterial pathogen 

CA814373 Leaf (Xylella fastidiosa) 
CD799215 Pedicle Green stage 
CF210907 Flower Bloom 
CF210993 Flower Bloom 

Predicted amino acid sequence: 
MGAlGNSCFHLAFKNPIENGVVLMKNKSSCKLMVPSNSFKVKRiSCKLSESG 
VEESATSNRVSNSNNRMEDYNTVMKGMMRNPYEYHHDLGMNYTLITDHLI 
VGSQPQKPEDVDHLKQEENVAYILNLQQDKDVEYWEVDLPSIIKRCKELEIR 
HMRRPARDFDPDSLRSGLPKAVSSLEWAISEGKGKVYVHCTAGLGRAPAVA 
lAYMFWFCGMDLNTAYDTLTSKRPCGPSKQAIRGATYDLAKNDPWKEPLES 
LPERAFEDVADWERNLIQDRVRSLRGT 



Appendix IX 

Chlamydomonas reinhardtii P T P K L l 
Synonym: CrePTPKLLl 

Accession 
No. 
BQ823280 
BE337148 
BI873597 
BP093950 
BE337148 

Tissue 
Total 
Total 
Total 
Mixed 
Mixed 

Conditions 
Re Synthesizing Flagella 
Grown in TAP Conditions 
Stress Conditions 
Standard Conditions 
Standard Conditions 

Predicted amino acid sequence: 
M Q A H L Q S R P V A L Q Q R A R P A A Q F P S H A G A L G R S R R R Q A V V V S A R H K V D Q N 
A K D D A Y N R N M Q R E M G W S H L N P Y Q Y H W D R G L Y Y H E I I P N L I C G T Q P R N A G E 
V D T L A D N E G I T H I L N L Q E D K D M H Y W G V K I E D I R R A C A K H S I N H M R R P A K D F 
D K G S L R K A I P G A V H T L A G A M A G G G R V Y V H C T A G L G R A P G V C I A Y L Y W F T D 
M Q L D E A Y S H L T T I R P C G P K R D A I R G A T Y D V L V G S G V P H N X H N S N G H H G H H 
X G H G G H G G P Q V A H A P P P L P F E S L P E Q A Y A T L S E D D R F A L Q Y R V L K G L C 



Appendix 2 X 

Appendix 2 

R i c e PTPKIS2 (A & B S p l i c e ) (Os08g29160) Intron/Exon S p l i c e 

(B in italics & underlined) 

(-20) GACGACGAGACCCGCCGGCC 

ATGGCGCTCCATCTCACCGCCGCCCCGACCATTGCCCCCTCCGCGGCCGCCGCCTGCAGG 60 
M A L H L T A A P T I A P S A A A A C R 

TCGCTGGCGCCGATGCCGCCTCTCCCCGCCGTTTCGTGCTCGAGTAGGTGGTGGAGGGGG 120 
S L A P M P P L P A V S C S S R W W R G 

AGGCGGCGGTGTGTCGCGGTGGTGGCCATGGCGGCGGCGGCGGCGGCGGACGGGGAGAGG 180 
R R R C V A V V A M A A A A A A D G E R 

CCGCATGGGCACGCGGCGGAGGCTGGCACTGGGAGGATGAACCTCAACGAGTACATGGTC 2 4 0 
P H G H A A E A G T G R M N L N E Y M V 

GCCGTCGACCGCCCGCTCGGCGTCCGCTTCGCGCTCGCCGTCGACGGACGCGTCTTCGTC 300 
A V D R P L G V R F A L A V D G R V F V 

CACTCCCTCAAGAAAGGGGtaaagcatttgtatcatctccggctcgcccgctgcggttac 3 60 
TAAAGCATTTGTATCATCTCCGGCTCGCCCGCTGCGGTTAC 

H S L K K G V K H L Y H L R L A R C G Y 

g a c g c t a c t t e a t t t g t t t a c t g t t t a g c g c a a t c c a t c c a g t c t g c t g c t g c t c a a t g c 4 20 
GACGCTACTTCATTTGTTTACTGTTTAGCGCAATCCATCCAGTCTGCTGCTGCTCAATGC 
D A T S F V Y C L A Q S I Q S A A A Q C 

t c a c c t c a t c c c a c t t c a c t t g g t g c t g t g c a a t t g c c a c a g c t c c t g c t g c g c a g c a a a 4 80 
TCACCTCATCCCACTTCACTTGGTGCTGTGCAATTGCCACAGCTCCTGCTGCGCAGCAAA 
S P H P T S L G A V Q L P Q L L L R S K 

a t t c a c a g g c a g c a t c a t g c t g c c c a c g t t g g t g t t t a c g g c a t t t c a t t t c a t c t g a t g 54 0 
ATTCACAGGCAGCATCATGCTGCCCACG 
I H R Q H H A A H 

I 
t g a a t t t t a c t g t a a c c a c t c g a t g t t a g t g t c a t g a g c a a g g g g a t a c t g g g a a a t t g t 600 
c g t c t g g t c a a t a g t t g a c a t a c t a g t t t a c t t a a c t t t t c t t c t t g t t c g t t g t g g a a c 6 60 
t a a g a t c t t t a t c a t t t t t a a c t a t c t c t a g t t g g g t a t g g t t g t g g a g g c c t t g c a a t t 720 
ttgctgactgttggtgctgcatccgtgtgacaggGGAATGCGGAGAAATCACGGATTATC 780 

G N A E K S R I I 

ATGGTAGGGGACACTCTGAAGAAGGCTGGCAGTCGTGAGGGCGTGGGTTTTGTTGACATC 8 4 0 
M V G D T L K K A G S R E G V G F V D I 

AGAGACCTAGGTGACACGGAgtatggaactagtaaagtttctctagctgaaacagtattc 90 0 
GTATGGAACTAGTAAAGTTTCTCTAGCTGAAACA 

R D L G D T E Y G T S K V S L A E T 



Appendix 2 XI 

I I A 
c t t t g c t c t t c t g t c t a c a c c a t t t t c t g c a a a a t t t a a t a a a a a a a a t g t g a t a t g a c t 960 
a t t t g g a a c t a g t a a g a t g t a c t g t a t c t a t t g g a a c t t a g a g c t c a t a t t t g a t t a c a t 102 0 
t t g a t a a t t t a a g g t c a c g t c a a a a t t t t a t g a c t g t a a g a t g a t g t a a a a t g g t t t a g t 1080 
t c a a a t g t t c c a g a a a t c a g a a g c t c t g c a c a g a a t a g a g t t a g c a a a t g t g a c a a g t g c 1140 

AAATCAGAAGCTCTGCACAGAATAGAGTTAGOAAATGTGACAAGTGC 
K S E A L H R I E L A N V T S A 

a a c a t t g g c a a t g t c t a a a t a t t a c a t g t c a a c t a a a a a a t a a t a c c a g c a g t g g a g t a a 1200 
AACATTGGCAATGTCTAAATATTACAT 

T L A M S K Y Y I 
I I B 

c a t t t c t a g t t g a t t g t c a a a a t g a a t a c a a c t t t t c t t a t g t t g c c t t t c a a c t t t c a t 12 60 
gtagAATGGTGTTGAAGGAAACGTCAGGGCCATGCGATCTTGTCCTTGAGAGGCCATTTG 1320 

M V L K E T S G P C D L V L E R P F 

CTCCTTTCCCGATACATCAGTTGCATCAAAATGAAGATTATCATCTCCTATTTAACAAGG 1380 
A P F P I H Q L H Q N E D Y H L L F N K 

GTAGGGTTCCTCTTACTAGCTGGAACGGTGCTCTATTATCATCAAAGCTGAATGAATCAT 14 4 0 
G R V P L T S W N G A L L S S K L N E S 

CTGAGGGGAACGGAAATCCTGGATTTGCCATATTCTCGCCAAGGCTGCTAAATTCACATG 1500 
S E G N G N P G F A I F S P R L L N S H 

GATGGGCAGTTTTGTCTAGTGAGCAAGATGGACTTAATCAGCGCAGTACTAGCCTTGCAA 15 60 
G W A V L S S E Q D G L N Q R S T S L A 

ATCGTATAAGTGAGATTGTTGGTTTGTACTCTGATGAGGATGATGCAGATACTGAATGGG 1620 
N R I S E I V G L Y S D E D D A D T E W 

CACATGGTAGCTTTCCTTTGGAGGAGTACATTAAAGCACTAGACCGTGCTAAAGGTGAAC 1680 
A H G S F P L E E Y I K A L D R A K G E 

TGTACTACAATCATTCACTTGGTATGCAATACAGCAAGgtaattgtcctcctataactaa 174 0 
L Y Y N H S L G M Q Y S K 

I I I 
t t a g t t c t t g g a t g t g c a t c a a a a g a t t t t a a t a t t a a c a g t g t t t t t g t c t t g t t g a t a 1800 
t c c t c t c a g g a c t t t a a g c t t a c t c a t t t t c c g t a t a t t t t t t a a c a g A T T A C A G A A C A A 18 60 

I T E Q 

ATATTTGTTGGATCATGCCTACAAACAGAAAGAGATGTGAAAATGCTATCAGAGACTATG 192 0 
I F V G S C L Q T E R D V K M L S E T M 

G t a g g t t c c t c a c a t a t g c a a t g a c a a a t c t c a t a a c t g g t a c t t c g a a a g g c t t t t t g c 1980 

IV 
g t g t c c t t t a a t t a t c a a a t t a a g t t t c t g a t a t t t c a a a a g g c t t c a g g G T A T C A C T G C 2 04 0 

G I T A 

TGTTCTGAATTTTCAAAGTGAAAGTGAGCGCACCAATTGGGGAATCAATTCAGAGGCAAT 2100 
V L N F Q S E S E R T N W G I N S E A I 

CAACAATTCTTGTCGCGAGAACAACATTTTGATGGTTAACTACCCTATACGgtaggatat 2160 
N N S C R E N N I L M V N Y P I R 



Appendix 2 XII 

V 
g g t t t t c t c t t t t t g t a a a a g a t c a t a g t g a a a a a c c t a t t t g a c t c t t g t a g c a t a a t a 2220 
t a t t t g t a g t t g t t a t t g g c a t g c t a a g c t t a t c a g t c t a a t a t t c a t c a a a c t c a a g t g 2280 
gcatttctgatttaattttttcagAGAGGTTGATTCAATGGACCTGAGGAAGAAGCTTTC 234 0 

E V D S M D L R K K L S 

TTTCTGTGTTGGTCTTCTACTGCGGCTTATAAGGAAGAACTACCGCATATATGTGACTTG 2 4 00 
F C V G L L L R L I R K N Y R I Y V T C 

TACCACTGGATATGATAGATCACCAGCATGTGTGATTGCATATCTACATTGGGTGCAGGA 2 4 60 
T T G Y D R S P A C V I A Y L H W V Q D 

TACGCCTCTCCATATTGCTCACAAGTTCATCACTGGTTTGCACTCCTGTAGACCTGACAG 2 52 0 
T P L H I A H K F I T G L H S C R P D R 

VI 
g t g t t g t t a g t t g a c a t a a t t t t c t t a a t t g a c t g g g c t t g a t c c a t c t g c a t a a g c a g t 2 580 
gttgatccttaatgtccacatttgtctgaatatgcagAGCTGCAATTGTGTGGGCAACAT 2 64 0 

A A I V W A T 

GGGATCTCATTGCACTAGTTGAAAACGGAAGACATGATGGTACTCCCACACATTCAGTAT 2 7 00 
W D L I A L V E N G R H D G T P T H S V 

GCTTTGTTTGGAACAGTGGTCGGGAGGtacattttgcctaatgcggaatgcatcaattag 27 60 
C F V W N S G R E 

V I I 
c a g t g t a c t t t t t g t c t a a a a a a t c a c t a t t t t a g c t t g a t a t t c a g t a a a c t g a t g a a g 2820 
ttgaattcacaatttttttctaggGTGAGGATGTGGAATTGGTGGGGGATTTTACAAGTA 2 880 

G E D V E L V G D F T S 

ACTGGAAAGACAAAGTAAAGTGTGACCACAAAGGTGGGTCAAGATATGAAGCTGAAATTC 2 94 0 
N W K D K V K C D H K G G S R Y E A E I 

GACTTCGACATGGGAAGTAagtagtcagtccttcgatcttatattttctaacccagaagc 3000 
R L R H G K Y 

V I I I 
a t g t a a c a t t c t t a t a t g c c t t g g g c t c a a c t t e a t e a t t g g c t g a a a a g g a t a a g g a a c 3 0 60 
a t c a t c t t c c t t c c a t t t c t c c a t t t c t g a t c c c t t c a c t g c t g a t c a a g a g t t a t c t g c 3120 
aactaacaacattttattcaggtaCTATTACAAATTCATAGCAGGGGGCCAGTGGAGGCA 3180 

Y Y K F I A G G Q W R H 

CTCGACTTCATTGCCAACAGAGACTGATGAACATGGGAATGTCAACAATGTTATCAGGGT 32 4 0 
S T S L P T E T D E H G N V N N V I R V 

TGGTGACATCGCTCGTATTCGGCCTGCTCCCAGCCAACTGCAGATAAGGGtatgcatccc 3300 
G D I A R I R P A P S Q L Q I R 

IX 
c a a t t a c t c a c t t g c t c t a g t g a c c c c a a c t g a g a a t a t t t g t g t c t t a g c c c a c c t g c c 33 60 
t a t a t g t a c g c c a g a c a t t c a t t c t c c t c g c t c c a t t g t a t c a t t c a t g c a t a t c a a t t t 342 0 
t t a t a g g t a t a t c t t a t t c g a t t t t t t t a a t a g g t a t a g g t t t a a c a t a t a a a a a a a a t t 34 80 
gtgttttctcccatgtcaggACCCAACTGTTGTCAAGGTCATAGAGAGGGCACTAACTGA 354 0 

D P T V V K V I E R A L T E 

GGACGAGCGATTCTTACTGGCCTTCGCTGCACGCCGCATGGCATTTGCAATCTGCCCAAT 360 0 
D E R F L L A F A A R R M A F A I C P I 

CAGATTGTCTCCCAAGCAATGAACACATCATAATACCTACTGAGATGAACTGCAGCGAAA 3660 
R L S P K Q * 


