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Abstract 

One of the most promising signals of new physics at colliders is the rare 

decay Bg — > / i " * " T h e L H C w i l l be the first experiment to directly 

probe this loop- and helicity- suppressed decay channel down to the 

Standard Model prediction. Deviations f rom the predicted branching 

ratio are a signature of new particles iri the loops. In particular, i t 

is well known that the MSSM prediction scales as tan^/3 due to the 

supersymmetric Higgs penguin diagra,ms, making this a fertile testing-

ground for SUSY. In this study we analyse the MSSM prediction for the 

general process Bg ,j —> in the hertofore unexplored low tan beta 

region of the MSSM parameter space where interference wi th the box 

and Z-penguin diagrams could cause the branching ratio to dip below 

the Standard Model prediction. This decay is particularly important 

since i t could be the first unambigious signal of new physics at the L H C 

and also guide the future LHCb upgrade. 
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Preface 

This thesis describes my research in the rare decay processes ,j ^ I n par

ticular, I w i l l focus on the phenomenologically interesting process 1 ° fi~ in the 

Min ima l Supersymmetric Standard Model at low tan /3 and possible imphcations at the 

LHCb experiment. Whi le the results derived herein are complete and independent, this 

work is a part of a larger project to study the f u l l , one-loop structure and parameter 

space for ^ ^ £+ in the MSSM [ i ; . 

In Chapters 1 and 2 we provide pedagogical introductions to flavour physics in the 

Standard Model and the Min ima l Supersymmetric Standard Model (MSSM). These 

chapters provide the background necessary for a reader familiar w i th quantum field 

theory and the Standard Model, though not necessarily having any formal background 

in supersymmetry. 

In Chapter 3 we review past work on B^^^ —> ̂ ' " ^ ( a n d related K decays), highlight

ing relevant results leading up to the recent interest in this decay mode in the MSSM. 

The large tan P region of the MSSM has been of general interest due to significant en

hancements of the MSSM branching ratio over the Standard Model prediction, making 

this a fertile decay mode to search for signals of new physics. In this thesis, on the 

other hand, the primary interest is the smaU t a n ^ region where the branching ratio 

for B g / L i " * " m a y dip below the Standard Model prediction. This could lead to a 

non-discovery of this branching ratio at the LHCb, requiring us to carefully consider the 

remaining parameter space to optimise the discovery potential of an L H C b upgrade. 

The heart of the calculation is described in Chapter 4. We provide a brief intro

duction to Wilsonian eff'ective field theory and its apphcation to the B^ ^ decay 

rnode. The end result is the brariching ratio in terms of known parameters and Wilson 

coefficients which are functions of the MSSM input parameters. This result is auto

mated into a program which is then set to do a scan over parameter space. The results 

of this parameter scan i n the low tan /3 region are provided in Chapter 5. We wi l l find a 

suggestive cancellation region in the B ° j i ' ^ fi" channel that could point to 'fife beyond 
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minima,l flavour violation. ' We close w i t h a brief discussion of the significance of this 

channel in the context of our broader study. 

To maximise the usefulness of this work, we have collected several results and refer

ences in the appendices. Appisndix A contains a summary of the notation and conven

tions used throughout this work. Appendix B reviews the defi i i i t ion of mixing matrices 

and physical states in association wi th the diagonalisation of the MSSM mass matrices. 

Appendix C collects the relevant Fierz identities used to perform the calculations in this 

work. Appendix D provides a quick guide to deriving simple loop integrals arid then 

lists the relevant analytic forms of the loop integrals for this work. Finally, Appendix E 

summarises the bulk of the calculations of this work by listing the contributions of each 

one-loop MSSM diagram to the Wilson coefficients in the expression for the braiiching 

ratio. 
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"How to calculate 

B to mu-plus mu-minus? 

This is what I did." 

— A haiku 



Chapter 1 

A Quick Review of Selected Topics in 
Flavour Physics 

"It'd be funny if flavour were the only place where new physics showed 

up at the LHC. Such a next-to-nightmare scenario is not so unlikely." 

— Jester, Resonaances [2 

We begin by reviewing key features of the Standard Model flavour sector. We shall 

highlight the origin of the Standard Model's flavour structure to form a foundational 

understanding of the richer flavour structure of the Min imal Supersymmetric Standard 

Model in the next chapter. Detailed reviews on the Standard Model and flavour physics 

can be found in the text by Cheng and L i [3] or the more recent text by Burgess and 

Moore f 11. 

1.1 The unbroken electroweak theory 

The Standard Model is obtained by spontaneously breaking an SU(3)c x SU{2)L X U{1)Y 

nonabelian gauge theory into a S'f7(3)c x U{1)EM theory via the Higgs mechanism. The 

field content and its representations under the unbroken gauge group is listed in Table 

1.1. 
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Field Spin SU{3)c SU{2)L U{1] 

Q \ 3 2 1 
6 

3 1 2 
3 

3 1 1 
3 

^ 2 1 2 L 
2 

2 1 1 ^ 1 

0 0 1 2 1 
2 

1 8 1 0 

/ I 1 1 3 0 

5 1 1 i 0 

Table 1.1: Standard Model particle spectrum and quantum numbers. 

The superscript c refers to charge conjugation, •0'̂  = I'^'^i)* in the Dirac representation. 

A l l fermions above are left-chiral so that, e.g., u is a n^/ i i -chiral field. We have normal

ized the hypercharge generator Y such that the electrornagnetic charge is Q£;A^ = l a H - y , 

where T3 is the th i rd SU{2)L generator. We have suppressed an all-important flavour 

index z = 1, 2, 3 on each fermion species. Finally, the SU{2)i doublets have components 

When necessary, we wi l l explicitly write the chirality to distinguish between the fields 

coming f rom the SU{2)i doublets Q and t f rom the SU(2)i singlets u, d, e and v. For 

example, we w i l l write l i ^ to refer to the left-chira} field coming f rom the first component 

of Q and UR to refer to the right-chiral singlet. For the purpose of this work we shall 

take the strict pre-1998 Standard Model particle content w i th no right-handed neutrino. 

The corrections to the B^ ^ —> calculation, we shall see, are suppressed by a factor 

0{mjMw)-

The Lagrangian before electroweak symmetry breaking is the most general renormal-

isable Lagrangian that obeys the SU{2>)c x SU{2)L X U{1)Y gauge symmetry as well as 

a chiral symmetry that prohibits fermion mass terms. I t takes the form 

C = £Kin. - V - ^ - Wuk., (1.1) 
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where the massless kinetic terms, Higgs potential, and Yukawa potential are respectively 

CK^n. = ^ F I H F + \D,4>?--^F;,F'^^'' (1.2) 

= + (1.3) 

- W u k . = 4>-QyuUR + d-QyddR + (t)-lLyeeR + h.c.. (1.4) 

In the above equations we have wri t ten F to label all fermions in Table 1.1, a to label the 

generators of the complete unbroken gauge group, 0 to represent the SU{2)L conjugate 

of the Higgs field 0 = iT2(p*, the dot ( • ) to represent contraction of SU{2)i indices, and 

Y F to be the flavour space matr ix of Yukawa couplings for the various fermions. 

The terms in £Kin. and respect a global flavour symmetry 

SU{2,f = SU{2,f X SU{2>T X 5^7(3)'^ x SU{2,Y x SU{2,y 

defined by rotat ing each field in flavour space. However, the Yukawa potential, VVuk., 

does not respect this flavour symmetry since i t mixes left- and right-chiral fields f rom 

different generations. That is to say that the Yukawa matrices yp are not diagonal. 

1.2 Eiectroweak symmetry breaking 

Upon eiectroweak symmetry breaking, the Higgs field 4) settles to the minumum of its 

potential. We can choose coordinates such that its vacuum expectation value (vev) is 

where v = (/.t̂ /A)2. Making this replacement in the Yukawa terms turns equation (1.4) 

into a set of mass terms for the quarks and charged leptons, 

- VVuk. ' C^^ss = ULm^,UR +dimddii + eim^eR + Yi.c., (1.5) 

where we've defined the mass matrices m p = TgYF- Note that these matrices carry the 

same flavour structure as the Yukawa matrices and are not diagonal. 
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The propagating states of a theory are eigenstates of the Hamiltonian. Hence the 

chiral fermions wr i t ten in Table 1.1 are not physically propagating states. In order 

to find these states, we must diagonalise the mass (i.e. the Yukawa) matrices. These 

matrices are generally diagonalised through a biunitary transformation, M = S^MT, 

where we've designated the diagonal matr ix w i t h a hat. Thus we can write: 

>C,.a.s = u^SumuTt^Ufi + d^SdmdTirfR-fetSemeT^efi + h.c., (1.6) 

The SU{3)^ flavour symmetry of the rest of the Lagrangian gives us the freedom to 

rotate our fields in flavour space to attempt to diagonalise the above masses. One would 

like to absorb the unitary matrices S and U into the definitions of the chiral fermions. 

We are unable to do this completely, however, since the and fields are part of the 

SU{2)i doublet field Q, and they must rotate the same way in flavour space and hence 

cannot absorb both the Su and Sd rotations. 

By convention we diagonalise the up-qu.ark sector. Focusing on the quarks, let us 

redefine the fields: 

(1.7) 

(1.8) 

(1.9) 

We then are able to write the mass terms for the quark sector as 

Cmass = tZ'^iiiuu'^-1-5'^ S ^ m d r f ' f i + h .c . (1.10) 

V c K M 

We define the C a b b i b o - K o b a y a s h i - M a s k a w a ( C K M ) matr ix V C K M = S^jSd to 

be the unitary flavour mixing matrix in the down quark sector 'leftover' f rom completely 

diagonalising the up quark sector. The physical mass eigenstates that propagate are 

rotated wi th respect to the flavour (interaction) eigenstates by angles encoded in the 

C K M matrix. 

Have the flavour space rotations of our fermions changed any other part of our La-

grangian? Recall that the covariant derivative takes the form 

D, = d^-t^-T-A,-i^-B^. (1.11) 

QL -- Q'L = S^QL 

UR - U'R = TUUR 

dR -- d'R = TadR. 
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In particular, the Ai and A2 terms contain the off-diagonal Pauli matrices TI and T2 

which, in the quark kinetic terms, mix the left-handed up quarks wi th the right-handed 

down quarks and vice-versa. Upon electroweak symmetry breaking, the linear combi

nation of A fields that mediates this interaction is identified w i t h the boson. The 

flavour space rotations we made then diagonahsing the quark mass matrices then intro

duce factors of SjjSd and its hermitian conjugate, i.e. they precisely introduce factors of 

the C K M matrix. Thus the charged weak current mediates tree-level flavour transitions 

between up- and down-type quarks w i t h a mixing determined by the C K M matrix. 

Unless otherwise specified, we w i l l work in the mass eigenbasis for the remainder of 

this thesis and wi l l thus drop the primes and hats decorating the fields and matrices 

above. Further, unless there is an ambiguity, we shall drop the subscript ' C K M ' and 

refer to the C K M matr ix as V . 

1.3 The C K M matrix as an avatar of flavour physics 

The C K M matr ix is the heart of heavy flavour physics'. In this subsection we take a 

brief detour to mention two salient features of the C K M matr ix that provide a broader 

context for why physicists are interested in flavour strucutre. 

First we note that a large part of the current experimental flavour physics programme 

is dedicated to accurate measurements of 'uni tar i ty triangles.' These are formed by 

noting that for a unitary matr ix such as the C K M rhatrix, V ' ^ ' V = fl. Hence one can 

consider oflt-diagonal elements of this product, such as the bd (3-1) element: 

0 = {V^V)^^ (1.12) 

- v:,v^, + v:,v,a + v,iv,, (1.13) 

Each term in the final line is a complex number that can be represented as a vector on 

the complex plane. The fact that these numbers sum to zero mean that the vectors can 

be arranged into a triangle. This is demonstrated in Figure L I . These angles can be 
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I I . I • ' ' ' I — ' '—' 1 ' '—' 

Summer 2007 

Figure 1.1: Example of a unitarity triangle [ ]. 

measured experimentally by looking at flavour-changing decays which are proportional 
to elements of V^V. 

The second feature to note is that the physics of flavour is the physics of CP-
violation. In other words, flavour physics probes questions about why we observe a 
matter-antimatter asymmetry in our universe. This can be seen by a quick analysis of 
the CKM matrix. Consider the Standard Model with A'' flavours. Then the CKM matrix 
has, by unitarity, A''̂  real degrees of freedom. These can be expressed as a set of mixing 
angles and complex phases. The mixing angles are the parameters one would find if you 
restricted V to be an orthogonal (i.e. real) matrix. Subtracting the degrees of freedom 
of an orthogonal N x N matrix, one finds that the CKM matrix has 

I N { N - I ) = 1-N{N + I 

complex phases. These phases aren't all physical since we have the freedom to rephase 
each of the 2A'' chiral quark fields. As a final subtlety, the overall phase of all quarks is 
a symmetry of the action and hence we can only absorb 2N — 1 of these complex phases. 
Thus the total number of physical complex phases in the A^-flavour CKM matrix is 

1,V(A^ + 1 ) _ ( 2 . / V - 1 ) = l ( i V - l ) ( A r _ 2 ) . (1.15) 

'The adjective 'iieavy' is meant to distinguish this from leptonic flavour physics relating to neutrino 
mixing. 
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+ 

d 

Figure 1.2: Standard Model contribution to B — B mixing. 

We note, in particular, that for A'̂  = 3 there is a single complex phase. This phase 
is responsible for CP violation in the quark sector. To see this, consider the flavour^ 
changing charged current terms in the Standard Model Lagrangian and its CV conjugate: 

c D w;:uiv,,YPLd, + w;d,vyrPLU, (1.16) 

(1.17) 

Noting that i and j are dummy flavour indices that are summed over, one can see that 
if the CKM matrix were purely real, then equations (1.16) and (1-17) are equivalent. 
In other words, it is the imaginary phase in the CKM matrix that causes the Standard 
Model to break CV invariance and treat particles differently from aiitiparticles. It is 
clear, then, that flavour physics is the study of why antimatter is different from matter. 

1.4 FCNCs and the GIM mechanism 

We saw above that the charged weak currents mediated tree-level flavour-changing in
teractions. Following the same steps, one notes that tree level flavour-changing neutral 
currents (FCNCs) are prohibited because the unitary tranformations betweien two left-
handed up (down) quarks will cancel one another identically. FCNCs, however, are per
mitted via loop-mediated processes, albeit suppressed by what is called the Glashow-
Iliopoulos-Ma.iani (GIM) mechanism. This will be important for our analysis of 
B^ ^ i'^ i'~ since the hadronic part of this process is a FCNC. 

As an illustrative example, consider S° — B° mixing in the Standard Model. The 
diagrams contributing to thisprocess are shown in Figure 1.2. A detailed calculation isn't 
necessary, to demonstrate the GIM mechanism. Instead, let us estimate the amphtude 
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for this process. First, by dimensional analysis, we know that the effective operator in the 
Lagrangian mediating the bbdd interaction must have mass dimension -2. Alternately, 
we can note that the process contains a momentum integral whose mass dimension is 
-2. The characteristic scale for this integral is given by the mass of the W boson, and 
hence we begin with a factor of M^'. The loop gives us the usual factor of l/(47r)^, 
and each vertex gives a factor of the weak coupling g. In addition, each vertex gives the 
appropriate factors of the CKM matrix or its hermitian conjugate, which one can see 
amounts to a factor of V*^Vid)'. A factor of 2 should also be inserted to account for 
the two diagrams. Thus far we have written 

This approximates the effective operator. In order to convert it to an approximation for 
the amplitude, we must insert the appropriate dimensionful kinematic factor to make it 
dimensionless. Usually this factor is the centre of mass energy, ECM ~ Mgo. However, 
we note that then the entire amplitude would vanish by the unitarity of V: 

= 0- (1.19) 

This is, in essence, the same relation we used in showing how unitarity triangles are 
formed. Hence the only non-vanishing eontributions to the — ^ arnplitude are terms 
that introduce a flavour structure that 'disrupts' this matrix multiplication. Fortunately 
such a structure is available: the up-type quark propagators contain factors of quark 
masses m^^ in their denominators. Indeed, this factor is necessary enforce that all 
fermions participating in this weak {SU{2)L) process are left-chiral. The quark masses 
are 'small' compared to the energy scales of the system, m^, <§: MW,MBO and so we 
may Taylor expand in them to insert the appropriate factors of rriu, into our amplitude. 
This argument breaks down for the top quark whose mass is larger than Mw, M^o. 
However, the smallness of the Vtd matrix element {\Vtd\ -C 1) makes the contribution 
with intermediate tops negligible. Thus we find that the amplitude is approximated by 

" ( | $ ] i ^ ( E K ; V « " « , ) . (L20) 
w 

One more step must be taken. We note that if the quark masses m^,. were degenerate 
(i.e. TJiui = then they would factor out of the product of CKM matrices and the 



A Quick Review of Selected Topics in Flavour Physics 10 

amplitude would again be identically zero. So it is, in fact, the differences of the quark 
masses that lead to non-vanishing amplitudes. With this in mind, instead of Taylor 
expanding in the quark masses themselves, we can Taylor expand in the differences of 
the quark masses Am^^ from an a characteristic reference mass (say i.e. 

1 1 

1 1 

'1.21: 

- A m , , . + • • • . (1.22) 
f — rriu ip — 

Hence, finally, we can write our expression for the ampHtude as 

- 4 ^ ^ ( E K ; v . ^ y . ( - 3 ) 

The most important feature here is that the amphtude is suppressed both by the small-
ness of off-diagonal elements of the CKM matrix, but also by the smallness of the quark 
mass sphttings with respect to the W boson mass. This is also the reason why we can 
neglect the right-handed neutrino in this study. We shall see that the box diagrams 
contributing to B^ ,^^l'^^'~ are analogous to the left diagram of Figure 1.2 with the 
out-states replaced by leptons coupling to a neutrino. By the GIM mechanism, the 
amplitude is thus suppressed by a factor oi Am^/Mw <^ 1-

1.5 Putting it all together 

We've seen how flavour structure comes out of the Standard Model and how this leads 
to loop-level flavour-changing neutral currents. These FCNCs are suppressed via loop 
factors, the smallness of off-diagonal CKM matrix elements, and by the GIM mecha
nism. We shall see in the following chapter how the supersymmetric Standard Model 
introduces analogous flavour structure into the theory with additional particle content 
and couplings. The important feature is that these new particles can influence Stan
dard Model processes by contributing to loop corrections. For decays which occur only 
at loop-level, such as B^^^—^t^l'~, the contribution from new physics can significantly 
alter the branching ratio from the Standard Model prediction. This would then be a 
'smoking gun' signature for physics beyond the Standard Model. 
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It is important to note that a measurement of this decay mode alone does not con
strain the particular type of new physics. However, in concert with data from high-
energy experiments (ATLAS, CMS, ILC) and other low-energy observables (other B 
decay modes, astro/cosmo-particle experiments) one can begin to piece together the 
particle spectrum and flavour structure of what lies beyond the Standard Model. We 
focus here on a particular scenario of new physics, supersymmetry, as a case study for 
what sorts of discrepancies from the Standard Model one could expect in the B^ ^ —> 
channel. We shall see in Chapter 3 that supersymmetry can produce particularly robust 
signals in this sector. 



Chapter 2 

The MSSM in a Nutshell 

•'•'S'o in super symmetry, you have superfields and superpotentials and 
everything is 'super.' At some point this naming convention becomes 
rather ridiculous, doesn't it? Why not 'hyper"? I'll invent my own 
theory and call it 'hypersymmetry;' then everything will be 'hyper. "' 

— Steffen Gielen, 2007 Mayhew Prize Recipient 

In this chapter we briefly review the construction of the Minimal Supersymmetric 
Standard Model and identify its flavour structure. We focus on the 'standard canon' 
of SUSY which are readily described in most texts and reviews such as Baffin and 
Love [li] or Martin [7]. We shall focus only on developing a 'working knowledge' of the 
model's field content and relevant couplings rather than delving in to the rich structure of 
supersymmetry. In particular, we shall avoid detailed discussions of the MSSM kinetic 
terms, off-shell auxiffiary fields, superspace, and generaUties of SUSY gauge theories. 
Readers are directed to the above references for further details on these topics. 

2.1 Supersymmetry in words 

Supersymmetry (SUSY) can be viewed as an extension of spacetime by quantum Grass-
manian dimensions, promoting the usual Minkowski space to a superspace. By doing 
this it extends the usual Poincare spacetime symmetry group, and hence extends rep
resentations of particles living on the space. At the particle-level, this manifests itself 

12 
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(a) (6) 

Figure 2.1: Illustration of one-loop corrections to the Higgs mass from (a) fermions and (b) 
scalars. 

as a symmetry relating integer-spin bosons and half-integer-spin fermions such that ev

ery boson of spin s has a supersymmetric fermionic partner of spin s±^. In slightly 

more pedestrian language, supersymmetry is a correspondence between 'force mediating 

particles' and 'matter particles.' 

SUSY has arguably been the favourite candidate for beyond-the^Standard Model 

physics for the past thirty years. One of its most appeahng model-building features 

is the cancellation of the quadratic divergence in the Higgs mass. For general gauge 

theories, chiral and gauge symmetries can be invoked to explain why mass terrns for 

the fermions and gauge bosons are naturally much smaller than the theory's cutoff A. 

However, scalar particles such as the Higgs have no such protection. The scalar squared 

mass develops a quadratic divergence from the diagrams in Figure 2.1. Thus one would 

expect the Higgs mass to be on the order of the Standard Model cutoff scale which, 

naively, might be very large. The mismatch between such a large Higgs mass and 

the electroweak symmetry breaking phenomena dependent on it is called the hierarchy 

problem. In the hmit of exact SUSY, however, the divergences from a particle running 

in one diagram cancel against the divergences from the particle's superpartner in the 

other diagram. Thus the Higgs mass only runs logarithmically and can be naturally 

small compared to the cutoff. 

Additional generic features of SUSY models are grand unification and dark matter. 
The particle content of supersymmetric versions of the Standard Model (see below) are 
such that the SU(3)c x SU{2)L x U(l)y gauge couphngs unify at some higher scale con
sistent with LEP data. Further, in order to suppress proton decay operators, it is conven
tional to impose a discrete /^-parity symmetry. This makes the lightest supersymmetric 
particles (LSP) stable, hence providing a natural dark matter candidate. Supersymme
try has been of more formal interest as the maximal extension of the Poincare symmetry 
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under the constraint of the Coleman-Mandula no-go theorem, and for its appUcations 
to solitons/instantons in nonperturbative physics and index theorems in mathematics. 

Supersymmetry is a beautiful theoretical construct from a mathematical and phe-
nomenological perspective. However, there is a lesson to be taken from Persian rug-
makers who used to introduce imperfections in ther rugs so as not to be an affront to 
the perfection of God. Nature has apparently deemed SUSY 'too beautiful' and has 
decided to live in a state of broken supersymmetry, as evidenced by the blatant absence 
of superpartners of the Standard Model particles. We wiU see that the way in which 
SUSY is broken has profound ramifications for a model's flavour structure. 

2.2 MSSM field content 

It is important to note is that nature has a large range of possible high-scale (MSUSY > 
TeV) theories incorporating supersymmetry in different ways. Such high-scale theories 
might include multiple (A/" > 1) supersymmetries or one of a large number of possible 
SUSY breaking mechanisms. Near the TeV scale, however, the chiral nature of the Stan
dard Model and cancellation of the chiral anomaly within each generation (rather than 
for each particle) imply that the effective theory can only have J\f = I supersymmetry 
since higher supersymmetries are inherently non-chiral [(>]. Further, our motivation for 
low-scale SUSY constrains the form of the effective TeV-scale SUSY-breaking opera
tors to the so-called soft-breaking terms. Finally, we constrain our field content to the 
Standard Model fields and their supersymmetric partners. In this way construct the 
Minimal Supersymmetric Standard Model (MSSM) as the unique minimal model 
of low-energy supersymmetry. The variety of high-scale models manifests itself in a large 
MSSM parameter space with 0(100) variables, but the low-energy particle content and 
the constraint to soft-breaking terms allows us to make meaningful statements about 
phenomenology. 

Let us now begin to put together the pieces required for constructing the MSSM. 
We begin my promoting the Standard Model field content of Table 1.1 to superfields, 
which are SUSY multiplets of paired bosonic and fermionic degrees of freedom. One 
modification is necessary: the fermionic superpartner of the Higgs field, the Higgsino, 
is a new fermion with nontrivial SU{2)L quantum number. In order to maintain the 
cancellation of the chiral anomaly which occured within each generation of the Standard 
Model, we must include a second Higgs superfield to the theory. Thus the MSSM 



The M S S M in a Nutshell 15 

Superfield Boson Fermion SU{2,)c SU{2)L U{\)y 

Q Scalar Weyl 3 2 1 
6 

U' Scalar Weyl 3 1 2 
3 

Scalar Weyl 3 1 1 
3 

e Scalar Weyl 1 2 1 
2 

Scalar Weyl 1 1 - 1 

Hu Scalar Weyl 1 2 r 
2 

Scalar Weyl 1 2 1 
2 

9 Vector Majorana 8 1 0 
A Vector Majorana 1 3 0 
B Vector Majorana 1 1 0 

Table 2.1: MSSM superfield spectrum and quantum numbers. 

particle spectrum is that of a Type I I two Higgs doublet model (2HDM) with one 

Higgs coupling to the up-type quarks and the other couplings to the down-type quarks 

and leptons'. Upon electroweak symmetry breaking, each Higgs doublet will acquire a 

vacuum expectation value. The ratio of these two vevs is the parameter tan/? = ^ . 

The superfield content of the MSSM before supersymmetry and electroweak symme

try breaking is listed in Ta,ble 2.1. We have exphcitly written out the types of paired 

bosonic and fermionic degrees of freedom. The Standard Model 'matter' particles and 

Higgs fields are contained in chiral multiplets which pair chiral Weyl fermions with com

plex scalar fields. The Standard Model 'force mediating' particles are contained in vector 

multiplets which pair Majorana fermions with real vector fields. 

A bit of nomenclature is now necessary. We shall identify the fermionic partners of 

Standard Model bosons by appending the suffix '-ino' to the Standard Model particle 

name. We shall identify bosonic partners of Standard Model fermions by appending the 

prefix's-' to the Standard Model particle name. The Standard Model component of a 

superfield is denoted by its usual symbol while the supersymmetric partner is generally 

denoted by adding a tilde above this symbol. 

'We choose the more intuitive notation where Hd is the doublet coupling to leptons/down quarks while 
Hu is the doublet coupling to the up quarks. Another common notation is Hi = Hd, H2 = H-^-
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2.3 MSSM field content in slightly more detail 

It is instructuve to employ slightly more formal language to describe these fields. A 
casual reader may omit the remainder of this subsection, though it will help quantify 
the following subsection on generating the MSSM interaction terms. I shall employ the 
notation of [0], though details regarding signs conventions will not be relevant. Let us 
define a superfield ^{x^,9°',6'^) to be a field that takes values over Minkowski space 
extended by two-cornponent Grassmann spinor directions 9'^ and 6 . In order to recover 
our usual component fields, we integrate out these directions in our action to generate 
a Minkowski space theory of bosons and fermions. This is identical to the dimensional 
reduction of higher dimensional theories, except that the extra dimensions are fermionic 
rather than bosonic. 

The (super)covariant derivatives over this superspace are defined to be 

V. = (2,1) 

Left-handed chiral superfields are irreducible SUSY representations that are defined 
to satisfy 

V^{x,e,e) = 0. (2.3) 

Right-handed anti-chiral superfields are defined similarly with 

V^{x,e,e) = 0, (2.4) 

though these wiU not be as relevant for the MSSM. 

Because Grassman variables anticommute, it is possible to expand a general superfield 
as a finite (i.e. terminating) series in the Grassman variable. This expansion makes the 
Minkowski space field content manifest. For a chiral superfield, the constraint of equation 
(2.3) imphes that it is possible to expand the chiral superfield as 

$x(2/.^) = <l>{y) + V26iPiy)^d9Fiy). (2.5) 
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Here y = x + iOa'^O and we have explicitly identified the degrees of freedom associated 

with a chiral superfield: a complex scalar (f), a left-handed Weyl fermion ip and a non-

propagating auxilliary field F that can be integrated out. 

Vector superfields are irreducible SUSY representations that are defiend to satisfy 

K = 

where a is a gauge index. For SUSY gauge theories, chiral superfields transform as 

= exp{-2igt''A'')^^, (2.6) 

where g is a gauge coupling, i° is the Hermitian generator of the gauge group, and A"̂  

is a chiral superfield 'gauge function.' Vector superfields transform as 

exp$v^exp$V = exp(-2z5f''A'')exp$vexp(2zgt"A"). (2.7) 

It is possible to make the field content manifest by going into to the Wess-Zumino 

gauge, in where we may again write the superfield as a terminating expansion in the 

Grassmanian directions, 

$v(x, 9,9) = 6'aW^(x) + i999X{x) - i999X{x) + ^9999D{x). (2.8) 

Here we have explicitly identified the real vector V^, Majorana fermion (gauginos) A, 
and another non-propagating auxilhary field D. 

2.4 Interactions on the limit of unbroken SUSY 

Following the same procedure as section 1.1 for deriving the Standard Model, we would 

now like to identify the permissible renormalisable interaction terms compatible with our 

symmetries: global chiral symmetry, SU{3)c x SU{2)L X U{1)Y gauge symmetry, and 

supersymmetry. The Standard Model has already taught us how to write down terms 

compatible with the first two symmetries. We must now identify the constraints that 

supersymmetry imposes and what new terms might arise from having an additiona.1 

Higgs field. We are especially interested in the relevant flavour structure that might 

arise. 
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Let us begin with the chiral superfields. It can be shown that the product of chiral 

superfields is also a chiral superfield. Further, the auxilliary field (F-term) of a chiral 

superfield is invariant under a supersymmetry transformation up to a total derivative. 

Hence these are natural terms to construct supersymmetry-invariant interaction terms in 

the MSSM Lagrangian. The particular linear combination of chiral superfield products 

that obey our symmetries is called the superpotential, W. The restriction to chiral 

and not antichiral superfields means that the superpotential must be a holomorphic 

function of superfields. Renormalisability tells us to consider terms with up to three 

powers of superfields'". Restricting to the F-term of such a superpotential, we get the 

following contrubition to the Lagrangian: 

£ D -
1 fd^Wiifi) 
2 V d^'d^^ 

^,^pj + h.c. . (2.9) 

This comes from Taylor expanding the superpotential around its scalar component (p, 
taking the F-term, and replacing the auxilliary fields with physical fields through their 

(algebraic) equations of motion. The first term on the right hand side is a contribution 

to the scalar potential, the analogue of equation (1.3). The second term, however, gives 

us a prescription for writing down Yukawa couplings in our theory: 

1. Select any a terin in the superpotential 

2. Set each chiral superfield field to its scalar component 

3. Swap any two of those fields with their fermionic components 

4. This term is part of the Lagrangian. 

For example, the term HuQU in the superpotential would generate the usual up quark 

Yukawa coupling [huUi^un) as well as quark-squark-Higgsino [uuHy) Yukawa couplings. 

In this way we can riead off sets of MSSM interactions (before SUSY breaking) from the 

superpotential the same way we usually read individual interactions from a Lagrangian. 

Before writing down the MSSM superpotential, let us note for completeness that 

the other parts of the Lagrangian do not introduce interesting flavour structure. It is 

possible to construct a SUSY gauge field strenth and then a corresponding kinetic term 

for the vector superfields. This indeed provides kinetic terms for the vector field and 

Majorana fermion field. There is also a quadratic term for the auxilliary field that, upon 

replacement using its equation of motion, gives a contribution to the scalar potential. 

•̂ Since \W\p] < 4 and W = \-69W\f, we must have \W] < 3 since the Grassmann coordinates have 
mass dimension [̂ ] = — | 
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Next one could consider the gauge-invariant kinetic terms of the chiral superfield, the 
so-called Kahler potential. These give the usual kinetic terms for the chiral scalars and 
fermions, with the derivative repalced by the gauge covariant derivative. The additional 
terms include further contributions to the scalar potential, and flavour-diagonal three-
point interactions with the gauginos. A complete discussion of the ful l Feynman rules 
for the MSSM is given in [S . 

Let us now write down an a prion superpotential for the MSSM, including all renor-
malisable interactions consistent with the requisite symmetries. Suppressing flavour 
indices and couplings for simplicity, we find 

+t-iE' + LHu + t-QD 

+UDD. (2.10) 

We can see two immediate problems. The interactions on the second line violate lepton 
number and the interaction ori the third line violates baryon number. Such interactions 
are experimentally constrained to be neghgibly small if at all present, and it seems the 
size of the associated couphngs would diagree with naturalness. 

Fortunately, we may impose a discrete symmetry called i?-parity to remove these 
offending terms. The /^-parity of a superfield is defined as 

= ( _ ) 3 ( B - L ) + 2 s ^2.11) 

With this definition all Standard Model fields and the scalar components of the Higgs 
supermultiplets are H-parity even while their supersymmetric partners have i?-parity 
odd. 

Imposing i?-parity on the superpotential and restoring the coupling constants and 
flavour matrices, the superpotential takes the form 

W = fiH^-H. + Hu-Qy^U' + Ha-Qy^D' + Hd-iyeE'. (2.12) 

The first term is the generalisation of the Higgs mass term in the MSSM. The remaining 
terms give precisely the Yukawa structure of the Standard Model. At this point, we have 
not recovered any new flavour structure in the MSSM. The requirement of i?-parity can 
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be thought of as demanding that the MSSM is minimal not only in particle content, but 

in couplings. 

2.5 SUSY and electroweak breaking 

The remaining ingredient for the MSSM is to exphcitly break supersymmetry, hence in
troducing mass splittings between the observed Standard Model and their yet-unobserved 
superpartners. We shall parameterise the effective low-energy manifestation of a generic 
high-scale SUSY-breaking mechanism in terms of soft supersymmetry breaking 
terms. These are the phenomenologically-viable terms which explicitly break supersym
metry, but rnaintain gauge symmetry, i?-parity, renormalisability, and do not introduce 
any divergences. The additional terms in the Lagrangian are: 

- Q * m | Q - d*inld - S*m?n - tmji - e*m|e 

+IMIBB + ^M2AA + ]^M2~gg + h.c. 

+Hdiaee + HdQadd + HuQa^u + h.c. 

+H:ia[e + H:Qa'dd + H*Qa'^u (2.13) 

where gauge indices are contracted appropriately. 

These terms take the form of mass and three-point scalar couplings. Recall that the 
boldfaced terms are flavour-space matrices that are generally not diagonal. These terms 
introduce new flavour structure in the same way that the off-diagonal mass matrices after 
electroweak symmetry breaking led to the introduction of the CKM riiatrix. Note that 
in the final line contains non-holomorphic three-point Yukawa-type scalar couplings. 

With SUSY now broken, we can proceed to break electroweak symmetry^ This 
proceeds as usual with the modification of having an extended particle and coupling 
content. The physical fields are those that arise from diagonalising the mass matrices of 
the theory, with the theory's flavour structure encoded in the flavour-space mixing ma
trices used to diagonalise these masses. We shall now highlight the low-energy spectrum 
of the MSSM and identify the key mixing parameters. I shall use the conventions of [.̂  . 

^The scalar potential generated for the Higgs bosons generically takes the usual 'Mexican hat' form. 
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A more comprehensive discussion of the diagonahsation and associated deflnitions can 

be found in Appendix B. 

• Gauge bosons. This sector behaves just as in the Standard Model. The Higgs 

mechanism breaks the full gauge group to the SU{3)c x U{1)EM subgroup. The 

A and B bosons combine with components of the Higgs doublets to form massive 

and Z bosons. 

• Higgs scalars. The MSSM's two complex scalar SU{2)L doublets have a total of 

eight degrees of freedom. Three are 'eaten' by the Higgs mechanism to give masses 

to the gauge bosons. The remaning physical spectra include the light Higgs h, 
heavy Higgs CP-odd Higgs and the charged complex Higgs . 

• Standard Model fermions. The quarks and leptons have masses and mixings 

coming from the Yukawa sector, as in the Standard Model case. 

• Gharginos. The Majorana fermions associated with the off-diagonal SU{2)L gen

erators and mix with the two charged Weyl fermion Higgsinos to form two 

charged Dirac fermions called charginos, Xi,2- In more conventional words, these 

are hnear combinations of the superpartners to the bosons. 

• Neutralinos. The Majorana fermions associated with the B and the diagonal 

SU(2) I generator A^ mix with the two neutral Weyl fermion Higgsinos to form four 

neutral Majorana fermions called neutralinos, Xi,2- more conventional words, 

these are linear combinations of the superpartners to the photon and Z boson. 

• Gluinos. The Majorana fermions associated with the eight gluons do not mix since 

SU{3)c is unbroken. 

• Sneutrinos. The three complex scalar superpartners to the right-chiral neutrinos 

mix with a mixing matrix within themselves under a unitary matrix Z,,. 

• Selectrons. The complex scalar superpartners to the left- and right-chiral electrons 
mix within themselves under a unitary matrix ZL. 

• Up squarks. The compelx scalar superpartners to the left- and right-chiral up 

quarks mixing within themselves under a unitary matrix Zu. 

• Down squarks. The compelx scalar superpartners to the left- and right-chiral 

down quarks mixing within themselves under a unitary matrix ZQ-

The MSSM spectrum after electroweak symmetry breaking and diagonalisation in flavour-
space is summarised in Table 2.2. 
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Field Syrnbol Type EM Mixing matrix, field superposition 

Photon Vector 0 dw A\B' " 

Z-boson Vector 0 9w A\ B, G° 

W-boson Vector ± dw 
Light Higgs h Scalar 0 ZR 

Heavy Higgs H Scalar 0 ZR 

CP-odd Higgs Scalar 0 ZH 

Charged Higgs Scalar ± ZH HjyHl 

Up quark u' Dirac ^ 3 Su 
Down quark Dirac 1 

3 Sd 
Electron e Dirac — Se ^L, ^R 

Neutrino Dirac 0 

Chargino Xl,2 Dirac ± z± 
Neutralino Al,2,3,4 Majorana 0 ZN B,A\HlH\ 

Gluiiio Majorana 0 I 

Sneutrino C Scalar 0 z . 
Selectron C Scalar — Z L 

Up squark C Scalar +1 Z u 
Down squark G Scalar 1 

3 Z D 4 , 4 

Table 2.2: MSSM spectrum after electroweak symmetry breaking. 
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9w is the Weinberg angle, represehtihg the usual mixing of the Standard Model elec-

troweak gauge bosons. The Gs are Higgs Goldstone modes f rom electroweak symmetry 

breaking. i,j are flavour indices and bolded matrices contain non-trivial flavour struc

ture. The C K M - m a t r i x V C K M is formed as in equation (1.10). Similarly, one can form 

a super-CKM matr ix V C K M out of Z y and Z D [•') • 

2.6 The SUSY flavour problem 

The introduction of the Z matrices as new flavour structure in the theory immediately 

runs up against experiments. The Yukawa couplings between Standard Model fermions 

and their scalar superpartners permit loop-level processes where the flavour structure of 

the sparticles is carried into the Standard Model particles. Flavour changing processes 

in the Standard Model have been probed to good accuracy by experiments and hence 

the terms leading to the new mixings Z are constrained. The strictest constraints come 

lepton flavour violating processes such as / i ^ 67. These severely hmi t the size of the 

m | , a.e, and soft SUSY breaking terms. Similarly, experimental constraints f rom 

studies of the D and B mesons l imi t the corresponding scalar mass and three-point 

couplings for the squarks. 

I t turns out that most 'garden variety' (generically off-diagonal) values of the mass 

matrices are ruled out experimentally and theorists must be a bit more delicate w i t h 

the flavour structure. In other words, the off-diagonal elements of the mass matrices are 

experimentally constrained to take a priori unnaturally small values. This is called the 

SUSY flavour problem [10 . 

One approach to this problem is to suppress the offending terms completely by fix

ing the SUSY scale (i.e. the scale of the soft-SUSY breaking terms) to be much larger 

than the TeV scale, hence decoupling the flavour-structure f rom the low-energy the

ory. This, however, runs up against the motivation of naturalness for supersymmetry 

since i t introduces a new hierarchy between the weak scale and the SUSY scale. A sec

ond approach postulates that the SUSY-breaking mechanism is flavour-blind such that 

the scalar masses are all proprtional to the unit matr ix in flavour space, prohibit ing 

new contributions to flavour-changing processes. This occurs automatically in gauge-

mediated SUSY breaking scenarios, and hence new effects in the flavour sector would 

strongly constrain this scenario. A final approach to the SUSY flavour problem is al

ternately called alignment or min imal flavour violation ( M F V ) . This states that the 
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flavour structure introduced by the scalar superpartner masses and three-point cou-

phngs is exactly the same as the C K M matrix, i.e. that the squarks and quarks are 

diagonalised by the same rotations in flavour space. This can be motivated through 

horizontal-symmetries between generations and has become a popular model-building 

tool in beyond-the-Standard-Model physics. 

W i t h the looming LHCb heralding a new generation of flavour experiments promising 

even higher sensitivity, there has been a renewed eflPort to study ' beyond-MFV models 

w i t h non-trivial flavour structure [ I 1,12,]. I t is hoped that upcoming experiments may 

find small deviations f rom the Standard Model expectation of flavour-changing observ-

ables that could be accounted for by new physics w i th non-tr ivial flavour structure, such 

as the MSSM. 



Chapter 3 

A Brief History of ^ £+ i ' -

"We abbreviate supergravity by writing 'SUGRA.' I don't really use this 

because it sounds too much like the Spanish word for 'mother-in-law. "' 

— Fernando Quevedo 

In this chapter we begin by highhghting the features of the decay mode > 1~ 

as a model-independent fertile hunting-ground for new physics. We give a brief overview 

of the 'birds and the Bs:' penguin diagrams and B mesons. Finally, we briefly review 

the literature on B^ ^ —>• i'^ in the Standard Model, Type I I two Higgs doublet models 

(2HDM) , and finally the MSSM. We w i l l especially explain the significance of the large 

tan P l imi t that has generated interest in recent years along w i t h the importance of the 

small tan P l imi t that is the focus of this study. We explain the relevance of this work 

in the context of past calculations and current experiments. 

3.1 Looking for new physics: The birds and the Bs 

Compared to other particle collider experiments that focus on directly accessing- new 

energy scales, flavour physics experiments genera,lly probe nature at the mesonic scale. 

Instead of the rational producing new particles on-shell to study their decays directly, 

these low-energy searches for beyond the Standard Model physics rely on measuring the 

off-shell quantum interference of new particles on the decays of mesons, i.e. loop effects. 

25 
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Figure 3.1: Heuristic picture of 6 ^ s transitions and the effect of new physics (dashed hne). 

We noted in Section 1.5 that flavour-changing neutral currents are a natural place 

to look for new physics because the loop-level effects of new physics can be pronounced 

against the Standard Model predictions. We now motivate our interest in the rare decay 

Bg J —)• ^'~ in this context. 

3.1.1 The birds: penguin diagrams 

A very heuristic picture of the effect of new physics on a part of a flavour-changing Feyn-

man diagram is portrayed in Figure 3.1. The endpoints of the diagram are understood 

to be flavour (not mass) eigenstates, the cross is an off-diagonal mass insertion in this 

flavour-basis. The tree-level process contains no new physics and thus contributes to 

a large (relative to the loop-suppressed new physics) Standard Model background. A t 

loop-level, we expect that new physics couphng to Standard Model fields w i l l contribute 

additional diagrams wi th new particles running in the loops. I n this picture, however, 

the factors of 0 (10) mass differences between quark flavours causes decoherence and 

suppresses the t ransi t ion ' . 

One can relieve the momentum difference between the in- and out-states of Figure 

3.1 by allowing the excess momentum to radiate away via, for example, a photon. This 

photon may then decay into a fermion-antifermion pair. The resulting process is then 

allowed to occur on-shell and is a robust means for flavour change. This type of diagram 

is known as a penguin diagram'^, and has been suggestively drawn in Figure 3.2. 

These penguin processes wi l l play an important role in the upcoming discussion, as 

they generally do in flavour physics. 

^In contrast to this, the smallness of the neutrino mass differences permits coherent mixing of neutrino 
species. For a pedagogical discussion see [ I i] . 

^The etymology of this term is a well-known page in the history of modern physics. For historical 
notes, see [14] and [Io]. 
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Figure 3.2: A penguin diagram, drawn suggestively to look somewhat avian. 

3.1.2 The 'bees': B mesons 

The current state-of-the-art laboratory for flavour physics is the B meson. In particular, 

we shall consider the neutral 6 ° and B° mesons, whose basic properties are listed in 

Table 3.1. The quark content of these mesons are B° = bs, B° = bd. These particles are 

especially interesting because they are relatively massive and long-lived, allowing them 

to be easily tagged in particle detectors. Decays of these mesons probe angles of the 

C K M matr ix that were not directly accessible in the previous generation of K meson 

experiments. 

Meson Mass M e a n lifetime 

5.28 GeV 1.53 X IQ-^h 

5.37 GeV 1.44 X lO - i^s 

Table 3.1: Properties of the mesons. 

3.1.3 B g j — : Searching for the birds in the Bs 

The search for new physics in the flavour sector, then, can be summarised as the search 

for the eflFect on observables of quantum interference f rom loop-level (e.g. penguin) 

diagrams. The leading question then is which observables are particularly rich for signals 
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of new physics. In other words, given that we're looking for penguins, where do we look 

for them? 

I f we were to ask biologists this question, the knee-jerk answer we would receive is to 

look in Antarctica. Why? They would tell us that Antarctica is ideal because (1) there 

is very little background, and (2) the penguin is the dominant fauna. This is a t r iv ia l 

statement for anyone who has seen the popular documentary March of the Penguins[\i'> . 

Silliness aside, we now pose the same question to a flavour phenomenologist. One very 

good answer to this question is the set of rare decay modes B^ ^ ^ ^+ £'~. In particular, 

the mode 6 ° — > / i " " " T h e reasons are exactly the same as those for the Antarctic 

penguins: (1) there is very little background, and (2) the penguin is the dominant diagram. 

Let us quat i fy why this is an especially nice and important mode for searching for new 

physics. 

First of all, the background for a signal of new physics is suppressed. When searching 

for new physics, one's 'background' are the Standard Model events which contribute to 

the same process^. There are three sources of suppression for the Standard Model 

process: 

• L o o p suppression. Since the hadronic part of this decay is a FCNC, there are no 

tree-level diagrams and the first Standard Model contribution comes at one-loop 

level. Hence diagrams wi th new particles aren't suppressed by a relative factor of 

1/(4TT)^ to a large tree-level background. 

• G I M suppression. As explained above in section 1.4, the Standard Model de

cay is also suppressed by a powers of V-JK^ {AmuJMw) via the G I M mechanism. 

This would mean models of new physics w i t h new flavour structure or a different 

spectrum of particles in the loop would have the opportunity to stand out. 

• Mass- insert ion suppression. The B° particles are spin-0. Hence, by momentum 

conservation, both the lepton and anti-lepton must have the same helicity (as they 

travel in opposite directions). Since these flavour-changing decays are mediated 

by the weak currents, they couple only to left-chiral fermions. Thus the leptonic 

amplitude must include a mass insertion to swap the helicity of one of the outgoing 

particles. The process is thus further suppressed by the smallness of the lepton 

mass to the characteristic scale of the decay. 

•̂ The term 'background' here is used from a theorist's perspective. An experimentaUst would define 
the background to be those processes which fool the detector that its recording a different process. 
For example, the main source of experimental background for 6 ° —> /d^ is the decay Bg — > T T + T T " . 
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Secondly, the experimental signature is very clean. As i t is purely leptonic, there are 

no hadronic effects (e.g. jets) that require careful analysis. Further, since the decay is 

to two charged leptons, i t is a t r iv ia l event to tag in the detector. Next, the hadrpnic 

uncertainties are restricted to the B° meson decay constants (see below). The branching 

ratio proportional the square of the decay constant, and so this dependence is easily 

quantified and updated wi th updated lattice QCD calculations. Finally, and perhaps 

most importantly, the Standard Model expectation for branching ratio for this process 

w i l l be experimentally accessible at the upcoming LHCb experiment. The first definite 

signal for new physics in the LHC could very well come from this decay rnode. 

In summary, the motivation for looking at i'^ i'~ is that i t is easy to study 

and has significant discovery potential. The currerit experimental bounds and Standard 

Model predictions are listed in Table 3.2. The error in the SM predictions for the 8^4 

C h a n n e l E x p t . B o u n d (90% C L ) S M Predic t ion 

CDF I I [17] < 4.7 X 10-^ (4.7 ± 1 . 8 ) X 10-9 

CDF I I [17] < 1.5 X 10-^ (1.8 ± 0.9) X 10"^° 

CDF [ l.s] < 6.1 X 10-^ Si 0 

B A B A R [ I 1 ) ] < 9.2 X 10-s ^ 0 

Table 3.2: Current experimental bounds and SM expectations for leptonic B decays, 

branching ratios originates primari ly f rom the uncertainty in the decay constants [2()], 

/ s , = 230 ± 30 MeV 

JB, = 200 ± 30 MeV 

hnearly added to the top-strange and top-down elements of the C K M matrix, \Vts\ = 

0 . 0 4 0 6 ± 0 . 0 0 2 7 and \Vtd\ = 0.0074 ± 0.0008 [21]. The B , ^ ^ T+T' decay are omitted 

because current experiments are unable to effectively measure this decay rate. 

The lepton flavour violating (LFV) processes would be a clear signal for new physics, 

though such effects would be very small and are unlikely to be accessibe at current ex

periments. We shall focus on the phenomenologically interesting and timely B^ —> yu"*" fi~ 

mode and later make a note on prospects for the B^ —> /u"*" ^~ mode. 
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3.2 B s,d i - ^ £ ' - in the Standard Model 

Inami and L i m were the first to calculate FCNC meson decay into muons w i t h their study 

of the effect of new particles on K mesons [22]. Their paper includes a fu l l calculation of 

the relevant Standard Model box and penguin diagrams and analytic formulae for the 

associated loop integrals. The result for B mesons is obtained by t r iv ia l ly replacing the 

parameters for the K° quarks wi th the appropriate B quark content. The 0{as) QCD 

corrections to the K l decay were calculated by Buras and Buchalla [2'>], who found for 

the Bg /i"*" n~ decay: 

B r ( B ° - ^ ^ + / i - ) = 3 .5x10" 
1.6 ps 

f t n2 r 

210 MeV 
IK ts\ 

0.040 170 GeV 

3.12 
(3.1) 

We have denoted the running top mass wi th a bar, rrit. 

3.3 B s,d in a 2HDM 

B g j ^ ^ + f " has also been studied for general two Higgs doublet hiodels (2HDM). 

Hewett, Nandi, and Rizzo [2 1], He, Nguyen, and Volkas [2^.], and Logan and Nierste 

2o] identified the importance of tan/3 in producing an excess over Standard Model pre

dictions in this decay rate. The branching ratio in the general 2 H D M case is enhanced 

by the four th power of tan/3. This carries over to the MSSM case, but we shall see in 

the next section that the structure of the MSSM allows an even further enhancernent. 

Logan and Nierste give the following form for the 6 ° —> yU^/i" decay: 

B r ( B ° ^ ^ + / x - ) - 1 .1x10 -5 
1.54 ps 

f t 1 2 

245 MeV 
IK. ts 

0.040 

X { f i x ) g{y,z)' + [giy,z)-Y{mt)f}, 

X 

(3.2) 

w i th the following function definitions. 

f i x ) = 1 - Ax' 
] 0 g £ 
2 - i 

Y{mt) = 0.997 
166 GeV 

1.55 

(3.3) 

(3.4) 

(3.5) 
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rrOt EJO» 

— X — > ^nDciy^ > 
d-L H,, da di g g d.R 

[a] (6) 

Figure 3.3: One-loop contributions to the Hu coupling with down quarks (a) via Higgsinos 
and (b) via gluinos which can lead to FGNCs. Flavour indices are suppressed. 

and the following variable definitions, 

X = ^ (3.6) 

y =^ "1̂ -̂  tan/^ (3.7) 

^ = (3.8) 
mi{mt) 

3.4 B^ j - ^ ^ + £ ' - in the MSSM with large tan/3 

i n the case of the MSSM, Hall , Rattazzi, and Sarid showed that there are further tan/? 

enhancements f rom the non-holomorphic QDHa operator [27]. Blazek, Raby, and Poko-

rski then showed explicitly the effect of large tan /3 on the C K M matrix [28]. In a generic 

Type I I 2 H D M the two Higgses are sequestered into different Yukawa couplings; namely 

Hu couples to up-type quarks while Hd couples to down-type quarks and leptons. Indeed, 

the MSSM superpotential we wrote in equation (2.12) does this manifestly. However, the 

additional structure of the MSSM circumvents this sequestering at the one-loop level. 

Diagrams contributing to the i f „ coupling to down quarks are illustrated in Figure 3.3. 

The neutral component of the doublet is H^. For simplicity we work in the unbroken 

SU{2)L X U{1)Y basis, so that the charged Higgsinos in diagram (a) are, in the broken 

basis, charginos. Note that diagram (b) is perrriitted because of the nonholomorphie 

terms in the soft SUSY-breaking Lagrangian of equation (2.13). The holomorphy of the 

superpotential protects the Type I I 2 H D M sequestering, but the additional structure of 

the nonholomorphic terms and the charginos evade this. 
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The appearance of a loop-level coupling of the down quarks to the up-type neutral 

Higgs generates a term in the effective Lagrangian for the down quark Yukawas, 

^one-loop ^ Hl'T^y^ {e, + 6 , a t , y , ) d^, (3.9) 

where the factors tg and contain couplings and kinematic factors, 

^ ^ M 3 / ( M | , m | , m 5 ) (3.10) 

ea ^ ,^^^Ji*f{^l\ml,mi). (3.11) 

The function / coines f rom performing the loop integral and is given by [2'),;;i i 

x y l n ( ^ ) + y ^ l n ( f ) + x ^ l o g ( f ) 
f { x , y , z ) = f—-w - ' w - - -̂  • 3.12 

{x - y){y - z){z - x) 

I t was shown by Babu and Kolda[;)(j], Choudhury and Gaur [ l i ] , and Huang, Wei, 

Yan, and Zhu [.H2] that this new structure can give rise to significant flavour-violating 

effects in the regime of large tan/3. In particular, the process B^ ̂  —> ^+ i'~ is eiihanced 

by powers of tan p. Let us show this heuristically following the approach of Kane, Kolda, 

and L e n n o n ' [ i ! . 

For simplicity, let us work in the basis where the tree-level down-type Yukawa ma

trices are diagonal, i.e. where the C K M matr ix has been shifted to the up-quark sector. 

Further, let us only consider the two heaviest down-type quarks so that the diagrams in 

Figure 3.3 contain an incorning si quark and an outgoing bR quark. We shall ignore the 

gluino contribution in Figure 3.3b since i t w i l l not produce leading-order enhancements 

in tan/3, and for further simplicity we shall only consider the case au = a u y c - The 

large tan P dependence derived f rom this simplified case is identical to the general case. 

In this approximation, the SLbnHl* coupling of Figure 3.3a takes the form yby'^Visdu^u, 

where yt is the top quark Yukawa and we have used the fact that in the basis where the 

down-type Yukawas are diagonal, the up-type Yukawas are proportional to the C K M 

matrix, V . 

'We follow the argument first four pages of [:i:>], taking the liberty to fix some of its typos. 
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Upon electroweak symmetry breaking, the effective mass term between the two heav

iest down-type quarks then takes the form 

/ 

=) [SR bn) I ° "'^ , (3.13) 
ybCVu rrib 

where we have wr i t ten e = ylVisautu- This means that the one-loop masses are diago-

nalised by rotating the down-quarks in the si — bi plane by an angle sin ^ ~ ybevu/mt,-

Using the relations — y^Vd and tan/? = Vy,/vd, we find 

s in^ ~ etan/5. (3.14) 

Now consider the amplitude M^,i^f( for dilepton 6 ° decay in the one-loop mass eigenba-

sis (denoted by the prime on the s quark). We shall neglect the one-loop FCNC effects 

on the 6 quark for simplicity (6' ^ b) and expand the one-loop strange quark eigenstate 

into it 's tree-level mass eigenstates: 

M,r,^f( = cose{Ms^fe)+sme{Mi,i^f^). (3.15) 

The second term on the right hand side is enhanced by a power of tan /? f rom the sin 6 

and by two additional powers of tan/5 f rom the yb and y^ vertices at tree level, as shown 

in Figure 3.4. This is because the down and lepton Yukawa couplings take the form 

yb,e - — ^ oc - . 3.16 
Vd COS/? 

In the l imi t of large tan/?, however, 1 / cos/? tan/?. Hence the leading-order diagrams 

in tan/? for sb —> fi/j. is enhanced by three powers of tan/?. These factors can overwhelm 

the loop suppression factor e in the large tan/? regime, causing the branching ratio to 

be dominated by the neutral Higgs penguins. 

This regime has generated a lot of interest since the large tan /? ( ~ 50) scenario is 

preferred by grand unified models where the hierarchy between the top and bot tom 

masses are explained by a large difference in the Higgs vevs, hence allowing unification 

of the Yukawa couplings. The 2a signal of an excess in the anomalous magnetic moment 

of the muon — is also suggestive of a large tan /? in certain supersymmetric models, 

such as mSUGRA [31]. The upside is that the tan^/? enhancement in this region pushes 
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Figure 3.4: Tree-level contribution to Mf^^^^j in the tree-level mass eigenbasis. The vertices 
give factors of yt, and yg respectively. 

the MSSM signal above the suppressed Standard Model prediction f rom section 3.1.3, 

rna,king B° ji"^ ii~ a mode wi th a high discovery potential. 

However, because the efliective Yukawa coupling between the down quark and the 

up^type Higgs depends on tan /?, one must be careful about the validity of perturbation 

theory in the large tan /? regime. To this end a method to resum the tan /^-enhanced 

couplings was developed by Dedes and Pilaftsis [:»5] and Buras, Chankowski, Rosiek, and 

Slawianowska [3(i]. The latter of which cite the branching ratio for the phenomenologi-

cally interesting decay —̂  /x"*" ijT in the large tan P l imi t to be 

Br ( B ° ^ A i + A i " ) = 3 . 5 x 1 0 - ^ 
tan/3 

50 1.5 ps 

X 
(167r2e„a„y2) 

230 MeV 
2\2 

IK is I 
0.040 

M\ (1 + {€g + eua^y^,) tan/3)2(l + e^tan/?)^ 
(3.17) 

Here r^ , and f e , as the 1 ° hfetime and decay constant. Here only the Wilson coef

ficients proportional to tan^/3 are taken, w i th the assumption that M^o sii To 

ease comparison we have assumed'' that au — a-uYu- The 'large t a n ^ ' assumption is 

valid for tan/? > 30, w i th SUSY contributions approaching the Standard Model order 

of magnitude for tan/? < 10 [37]. We shall also impl ic i t ly include small MA as part of 

the 'large tan/?' assumption. 

^Buras et al. do not restrict themselves to this assumption, but this limit eases the comparison with 
our definition of the e terms as well as those in the non-resummed analysis by Isidori and Retico 
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3.5 B . ^ i + £ ' - in the MSSM with small t a n ^ 
5,a 

A t the eve of the LHCb era of B physics, i t is t imely to do a complete analysis of the 

Bg for arbitrary tan/3. Indeed, this is one of the 'benchmark' decay modes for 

the LHCb in part because of the aforementioned sensitivity to new physics. Such a 

study was conducted by Chankowski and Slawianowska [38] prior to the development of 

the resummation techniques, but i t focused on the early discovery potential of the large 

tan P regime. 

What remainds to be properly understood are the less favourable regions of param

eter space in the specific context of the LHCb's discovery potential. In particular, we 

would like to plot out the parameter space for possible 'nightmare scenarios' where 

Br(B° —̂  fi^ / i " ) is below the discovery threshold of the LHCb. In other words, we would 

hke to understand how coy nature could be in this decay channel. The LHCb w i l l be 

able to probe just past the Standard Model branching ratio prediction. A plot of LHCb 

sensitivity versus integrated lurninosity is provided in Figure 3.5. I f the decay rate is be

yond this sensitivity, we would like to quantitatively understand what this might tell us 

about supersymmetric models. This is the B physics analog to the recent phenomeno-

logical interest in Higgsless models w i th an eye for 'nightmare scenarios' at the L H C 

general purpose detectors (ATLAS and CMS) where a Higgs is not discovered. 

Further motivation for a broader scan of parameter space comes f rom recent 'beyond 

minimal flavour violat ioi i ' model-buliding efforts. Two such studies are those by Nomura, 

Papucci, and Stolarski [ lO] and Feng, Lester, Nir, and Shadmi [ I l ] . Both advocate the 

hope that nontrivial flavour structure may st i l l be lurking in the MSSM. 

In this study, we would hke to focus on the eff'ects of the small tan /3 (and implic i t ly 

large MA) regime as part of a larger project to develop publically available code for a 

completed, resummed calculation over all of the viable parameter space for B^ t~ 

].]. We shall here focus on the low tan/3 regime where the Higgs penguins are suppressed 

and the box and Z penguins dominate. We shall also mention the intermediate region 

•where all of the above diagrams are of the same order of magnitude. This is particu

larly interesting because the quantum interference between these diagrams can lead to 

potential cancellations and a dip in the overall branching ratio. 

If the branching ratio for B^ ^ —> ^+ is well below the Standard Model prediction, 

the signal for new physics in this channel might be a non-signal at the LHCb. In this case 
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Figure 3.5: LHCb sensitivty to /^"""M^i adapted from [.'•>'.)] 

we may tu rn to current plans for an LHCb upgrade in the next decade [12], but we rnust 

first understand the parameter space of our models before making key decisions about 

how to upgrade the machine. For example, depending on the lower-bound of the MSSM 

prediction for Bg ̂  fi'^ i t may be more strategic to increase luminosity around the 

B° / i+ / i " Standard Model expectation rather than reaching for the Standard Model 

expectation for the B j ji^ ji" branching ratio. 



Chapter 4 

Calculating ^ £+1'~ 

"Shut up and calculate!" 

— R. Feynman (apocryphal) 

In this chapter we go over the calculation of the branching ratio Br ^B^ j —*• j in 

Wilsonian effective field theory. This summarises the bulk of the calculational work done 

on the project. We begin w i t h a brief description of the effective field theory paradigm 

and then explain its apphcation to the decay Bg ̂  We close w i t h some words 

on computational aspects of programming this calculation for numerical results over 

parameter space. 

Our description of effective field theory is based on the effective field theory review ar

ticle by Georgi [13] , the weak decay review article by Buchalla, Buras, and Lautenbacher 

14] and the review of heavy flavour physics by Buras [ .15 . 

4.1 Effective field theory overview 

The goal of Wilsonian effective field theory (EFT) is to understand how a theory at a 

particular energy scale changes as one integrates oii t much heavier degrees of freedom. 

In this way one is able to isolate the relevant physics at the particular energy scale and 

greatly simplify calculations. 

37 
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A heuristic example is Newtonian mechanics, which is s t i l l taught to school children 

even though i t is only the low-energy 'effective theory' of special relativity, or further 

s t i l l of general relativity. Slightly more formally, an effective field theory is obtained by 

taking the rnasses of heavy particles of a ' f u l l theory' to infinity, or alternately taking the 

length scales of the associated physics to zero. In doing this, one impl ic i t ly introduces a 

renormalisation scale and running couphng. Essentially one has traded the logarithmic 

dependence on heavy particle masses in a fu l l theory for a scale dependence of the 

generally nonrenormalisable effective theory' . 

The key idea is that the physics at a given energy scale shouldn't be too sierisitive 

to—i.e. should decouple from—physics at a much higher energy scales. The Wilsonian 

programme makes this decoupling explicit by working w i t h an effective Hami l ton ian 

of the fo rm 

Weff = ^ a { f , , Q ) O M - (4.1) 
i 

The Oi are eflfective local operators that represent the low^energy effective theory while 

the Ci are Wilson coeflScients that encode the relevant information f rom the high scale 

theory. Q is the matching scale at which the high-energy ' f u l l theory' is patched onto 

the low-energy theory. I t represents the "cutoff" at which the effective field theory 

breaks down, i.e. Mw- Finally, /j, is the renormalisation scale that separates the high 

and low scales of the E F T by separating how the information of the running f rom Q is 

divided between the renormalisation of the operators and Wilson coefficients. Formally 

this is just an operator product expansion where nonlocal ojperators, such as those wi th 

a propagating heavy particle, are replaced by a series of local effective operators. The 

amplitude for a given process is then 

M = {n.^) = ^Q{^i,Q)m^i)). (4.2) 
i 

Up to this point the E F T approach may seem to only be calculational convenience. 

For the weak decays of mesons, however, effective field theory is a calculational necessity. 

Mesons are bound states of strongly coupled quarks and gliions, and hence are inherently 

^The intimate relation to the renormalisation group is not coincidental. When we renormalise in the 
Standard Model, we are acknowledging that the Standard Model is itself only an effective field theory 
of some unknown higher-scale physics. Georgi labels this point of view 'continuum effective field 
theory' to differentiate from the 'Wilsonian effective field theory' we describe here j Ui]. The naming 
is somewhat irrelevant, however, as these are just two sides of the sarne coin: high-scale physics is 
decoupled frorn low-scale physics. 
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quantum chromodynamic objects. The details of the QCD that binds the meson together 

at low energies is inescapably nonperturbative, making ' f u l l ' Standard Model calculations 

of mesonic interactions intractable by usual methods. 

However, for the weak (i.e. non-chromodynamic) decays of mesons, one is not in

terested in the details of the 'high-energy' quark-gluon picture. Effective field theory 

allows us to work w i t h a perturbative theory of only the component quarks. For rare 

(semi)leptonic decays, we are often able to completely encode 'high-scale' QCD effects 

into form factors and decay constants that can be determined either by experiment or 

lattice techniques. We shall see that the decays ^ —»• ^+ i'~ are particularly nice in 

this respect since all hadronic uncertainties can be represented by a single number. The 

renormalisation of the effective theory is not problematic, since QS(A )̂ is a reasonable 

perturbation expansion parameter above 0{1 GeV). We shall perform the calculation 

for the decay B° i'^ £'~. The analogous calculation for i'~ is found by t r iv ia l ly 

replacing s —> d. 

The E F T programme for weak decays of mesons can be summarised in these steps: 

1. Ident ify the matching scale Q, renormalisation scale and the effective operators 

Oi in the low-energy regime. 

2. Calculate the Wilson coefficients at the scale Q by matching the high-scale theory 

to the effective theory. 

3. Use the renormalisation group to run the effective operators f rom the matching 

scale to the 'experiment' (mesonic) scale. 

4. Calculate hadronic matrix elements at the low-scale using some nonperturbative 

method. 

The last step usually involves ' taking a result off the shelf f rom, for example, lattice 

QCD calculations. We shall see that in B^^ —> ^+1'" we can perform this last step 

immediately since the hadronic matr ix elements take a particularly simple form. We 

shall match and renormalise at the weak scale, Q = ^ = Mw, hence the renprmahsation 

group equations are simply those of the Standard Model. 

4.2 Effective Operators 

Let us now apply this E F T approach to the decay B^ ^ —̂  i'~. A schematic decompo

sition into box, vector penguin, and scalar penguin 'blob' diagrarns is shown in Figure 
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+ + 

Figure 4.1: Generic box and penguin diagrams contributirig to ^ i'^ l' with our index 
and momentum conventions. 

4.1. We shall label our external fermions w i t h capital Roman indices / , J, K, L, so that 

the decay B° ^ + yu"" would correspond to q-^ — b, q' = s, = = fi, following the 

definit ion of the Bg meson in Section 3.1.2. 

There are three scales in this process. The supersymmetry breaking scale MSUSY 

represents the scale at which gluinos are 'integrated out ' and become inactive. Hence 

below this scale we may ignore their effects on the QCD running and use the Standard 

Model QCD renormalisation group flow. We take our matching scale to be the top 

mass Q = rrit, hence the renormalisation down to the scale won't require further 

QCD matching between numbers of active flavours. The renormahsation scale /i may be 

taken arbitrari ly for now, as we shall show that our amplitude w i l l be a renormahsation 

group invariant. 

Our low-energy effective operators given by 

q^a'^'Pxq' ® Wa^Tyi'^. 

(4.3) 

where X,Y E L, R label chirality and V, S, T label vector, scalar, and tensor operators 

respectively. P^^H = | (1 ^ 75) are the chiral projection operators. This complete basis of 

ten operators explicitly captures the factorisation between hadronic and leptonic matrix 

elements that we w i l l exploit in Section 4.3. A diagrammatic representation of these 

operators is given in Figure 4.2. A t this point, however, one might express some concern 

over diagrams where quark and lepton spinor structures are connected, such as those in 
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Figure 4.2: Diagrammatic form of the effective operators in equation (4.3). 

Figure 4.5. These, however, can be expressed in terms of the above basis using Fierz 

identities. These identities are reproduced for reference in Appendix C. 

We shall normalise our coefficients' so that the efTective Hamiltonian is given by 

^ = E {ClyO\y^C'^yO%y^ClOl). (4.4) 
^ ' X,Y=L,R 

The diagrams contributing to these coefficients are shown below in Section 4.6. We list 

contributions to each Wilson coefficient ( C f y ) . , where i labels the contribution f rom 

a particular diagram, in Appendix E. The fu l l coefficient is given by the sum of each 

contribution, 

CxY = E ( C ' l y ) . - (4-5) 

4.3 Simplification by factorisation 

The decay amplitude for Bg —> i'^ £'~ factorises between the hadronic in i t ia l state and 

the leptonic final state: 

(^ , f i7ieff iB°(p)) = Yl {i,nom{o\o}^mp))- (4-6) 
i=ops 

On the left hand side of this equation is the amplitude for the decay, where Heff is the 

efTective Hamiltonian. On the right hand side is a sum over the product of ampUtudes 

between the external states and the vacuum w i t h respect to efTective operators in the 

•^This normalisation is a relic of the standard definition of the loop integrals with a leading factor of 
l/(47r)^. See Appendix D.2. 
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hadronic and leptonic sectors. This decomposition can be understood by noting that 

the terms in the Standard Model Lagrangian that mediate this decay don't mix quarks 

w i t h leptons. Hence the effective Hamiltonian contains terms of the form O^OQ one can 

insert a complete set of intermediate states between these operators. Since the hadronic 

in-states fu l ly contract the OQ operators and the leptonic out-states fu l ly contract the OL 

operators, only the ground state contributes in the set of intermediate states. Summing 

over the effective operators, one finds the factorisation of equation (4.6). 

Let us now focus on the hadronic amplitudes on the right hand side. Consider the 

relevant vector operator {OQ)^^^ — iny.PL,RS- By Lorentz covariance and because the 

only object available to use as a four-vector is the momentum of the B meson, p, we can 

constrain the fo rm of the hadronic amphtude to be 

(0|67M^L.H51B°(P)) = T\p^fB- (4.7) 

This equation defines the decay constant / s of the B^ meson. This is a number that 

ful ly incorporates the nonperturbative physics of the QCD bound state. I t is calculated 

via lattice methods. We can go further and contract equation (4.7) w i th p^. 

{Q\bfPL,Rs\Ql{p)) = t\MBJB (4.8) 

m{f^+Tf>)PL,Rs\^l{v)) = t\MBJB- (4.9) 

Here we've dropped a term representing the momentum carried by vir tual quarks and 

gluons, fq^QQ since we expect this to be on the order of C(100 MeV) < rrifc. We can now 

apply the quark equations of motion. To do this explicitly, we may Wick contract the 

creation and annihilation operators in the matr ix element to find 

{Q\h{f^ + f)P^^fis\Bl{p)) = v [ p b ) { f , + f ) P L , R u { p s ) (4.10) 

= -mbv{ph)PL,Ru{ps) + msv{pb)PR,Lu{p,) (4.11) 

= - { m i + ms)v{pb)PL,Ru{ps)+ rnsv{pb)u{ps) (4.12) 

= - ( m b + m,)(0 |5PL,f ls |B°(p)) . (4.13) 

Here we've used P L + -PR = 2 and the orthogonality of the plane wave spinors v { p ) u { k ) — 

0. Hence we may write the matrix element for the scalar operators as 

{0\bP,,^s\B'M) = (4.14) 
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We have now wri t ten the vector and scalar hadronic matr ix elements in terms of the 

decay constant and various masses, i.e. in terms of an overall coefficient. 

We can go even further to simphfy the matrix element. The matrix element for 

hadronic tensor operator (0|6(7^^s|Bs(p)) vanishes expUcitly since there is no way to 

create an antisymmetric tensor out of a single momentum p^. Next, the photon penguin 

vanishes since i t is proportional to 

( ^ , f | f 7 , P y ^ | 0 ) ( 0 | f e 7 ' ^ P v 5 | B ° ( p ) ) c x p ^ ( ^ , f | F 7 ^ P y £ | 0 ) , 

which vanishes by the Ward identiy (i.e. conservation of the electromagnetic current). 

4.4 Branching Ratio 

We can now write the amplitude in terms of only leptonic operators: 

M = Fsli + FpHi +Fvp^h^i + FAP^h^-fJ, (4.15) 

where the (S)calar, (P)seudovector, (V)ector, and (A)xial-vector form factors F are 

given by 

_ ^ ^BJB, r<s \ 

- 4 ;;^:T^ ^̂ ^̂  + " ~ '̂̂ ^̂ ' 

4 nib + ms 

FA = - ^ / B . , ( - C r , + C L - C ^ H + ^ ^ H L ) - (4.16) 

Note that we have changed our basis of operators f rom the chiral basis of equation (4..3) 

to a basis where the Lorentz transformation properties are manifest. The diagrammatic 

contributions to the Wilson coefficients are discussed in Section 4.G below. 
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Performing the kinematic integrals, the branching ratio for a scalar particle decaying 

into two spin-1/2 particles is given in terms of the matr ix element M. by 

B r ( B ° - . £ 0 = . J ^ \ ^ J l - ( ! I ^ ^ ± ^ Y (4.17) 
^ ' ^ 1671 M B V \ MB J Y V 7 

where TB is the 8 ° hfetime. Squaring the matrix element of equation (4.15), one finds 

\M\' = 2\Fs\' [Ml - {me, + m,^ , ) ' ] + 2 |Fpp [ M | , - ( m , , - me^f 

+ 2\Fv\^ [ M | , ( m , ^ - me,)' - {mj^ - m \ f 

+ 2|F^|2 {MlXme, + m,,f - {m\^ - m ^ f ] 

+ 4Re(FsF; ) (m^^ - rut^) [ M | , + (m^^ + rrizj-' 

4- 4 R e ( F p F ; ) ( m , , + m , j [ M ^ ^ - ( m , , - m , ^ ) 2 ] . (4.18) 

Note that the contribution of the vector amplitude Fv vanishes in the lepton flavour 

conserving case L = K. In this l imi t the above result agrees w i t h the pubhsh result by 

Bobeth et al. [1*0. 

4.5 Q C D corrections 

We now analyse the renormalisation group flow f rom the rnatching scale down to to 

the renormalisation scale jd. Because electroweak corrections are negligibly small in this 

regime, we only heed to consider the QCD renormalisation of the form factors in equation 

(4.16). These form factors encode all the information about the QCD-sensitive part of 

the amplitude. The one-loop diagrams contributing to this renormalisation are shown 

in Figure 4.3. As QCD is bhnd to the leptonic legs of the effective operators, this is 

just the renormahsation of a two-point function in QCD. In particular, we note that the 

Wilson coeflficients y of the scalar operators O^y in equation (4.3) renormalise as 

quark mass terms, 

m{ji'^) = m((5^)exp L (4.19) 
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Figure 4.3: One-loop gluon diagrams renormalising the effective operators represented in 
Figure 4.2. 

where 7^ is the anomalous dimension and /5 is the QCD beta function. The important 

feature is that this is an overall multiplicative factor. Thus the combination 

TUbiQ) + m,iQ) 

is invariant under the renormalisation group, and the scalar and pseudoscalar form 

factors Fs^p of equation (4.16) does riot renormalise. 

Further, the Wilson coefficients Cxy of the scalar operators Oxy ^re protected by 

the Ward identy associated wi th the conservation of the vector-axial current. Hence 

these operators have vanishing anomalous dimensions and the vector and pseudovector 

form factors Fs,p of equation (4.16) do not renormalise either. 

Hence the fo rm factors are renormahsation group invariants and are independent of 

the renormalisation scale fx, as promised earlier. 

We use this freedom to calculate all parameters in equations (4.16) and (4, IS) at the 

scale of the top mass, Q = rrit. We calculate SUSY corrections in the DR renormahsation 

scheme [17]. The quark pole masses 7Ti(, t are related to the DR running masses ^6, t(Q) 

using the formulae 

mt{mt) 

nib 

rrit 1 -

bas{mjj) 

5Q,(mt) 

1^0 
(4.20) 

(4.21) 

where bo = l l - 2 n / / 3 and the number of effective quarks in the first equation is n / = 5. 

The ini t ia l conditions for parameters have to be converted into the DR scheme, the 

MS DR conversion factor is included in equations (4,20) and (4.21) [18]. We neglect 

the small effects f rom the conversion of gauge couplings beween the schemes. 
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X X v / N X v / 

Figure 4.4: Box diagrams without Majorana fermions. 

4.6 Diagrams and matching 

We now show the MSSM diagrams that contribute to the Wilson coefficients. The results 

for each diagram are listed explicitly in Appendix E. We shall focus on the low tan/3 

regime and hence neglect the effect of the suppressed neutral Higgs diagrams and instead 

focus on the box and Z penguins. 

The box diagrams without Majorana fermions are shown in 4.4. These diagrams are 

the same as those in a minimal Type H 2 H D M . 

In addition, there are the box diagrams shown iri Figure 4.5 containing Majorana 

fermions. These fermions are gauginos that come f rom 'supersymmetrising' the 2 H D M 

boxes above. Note that conventional Feynman rules cannot be used for the fermion 

number violating Majorana interactions. Instead we use the conventions of Denner et 

al. f rom [!')] and [50]. These boxes also generate a different spinor structure that's not au

tomatically factorised. As noted above, one must apply the Fierz identities (reproduced 

in Appendix C) to rearrange the resulting operators into those in equation (4.3). 

Finally, we list the contributions to the Z-penguins. The f u l l contribution to the 

Bg d ̂  amplitude is recovered by mult iplying the penguin amplitude by 

1 e ( l - sm^9w) -„L 
Ml 2 sin 9w cos 9w 

i l . P J ^ . 

The I P I contributions are given in 4.6. 
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H. 

X N X vy± % 

L 9' 

Figure 4.5: Box diagrams with Majorana fermions. 

Ha 

ly 

dp.dp 

Figure 4.6: I P I Z-penguin diagrams. 
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\ 

Figure 4.7: FCNC self-energy diagrams. 

In addition to the I P I diagrams, there are flavour-changing down-quark self-energy 

diagrams shown in 4.7. Each diagram can be inserted into the q^ or the q'^ legs and 

hence represent two Z-penguin topologies. 

4.7 Computational approach 

This calculation is part of a larger project to develop a computer program to calculate 

the f u l l , resummed B^ ^ ^ i'~ branching ratio across all of parameter space to be 

made available for pubhc use [ l ] . The code for this low tan/3 study including only the 

box and Z-penguins was developed independently as a cross check for a simultaneous 

eff^ort to incorporate the same calculations into an existing library of MSSM decays [51 

previously used in studies of supersyinrnetric Higgs decays wi th radiative corrections [52 

and K decays [n.)]. The code was wr i t ten in Fortran 95. This was chosen for its ease in 

coding mathematics and backwards compatibil i ty w i t h Fortran 77 code such as that of 

'A . 

The numerical calculation is automated as a funct ion of MSSM input parameters. 

The reduction of diagrams to effective operators is done by hand in terms of generic 

vertices, such as those in Appendix E . l . The program then diagonalises the MSSM 

following the procedure of Appendix B, fills in the appropriate vertices fiven the MSSM 

input parameters, and calculates the amplitude and branching ratio using the formulae 

in this chapter. 

Scans over parameter space are done by including this code into the existing library 

in I'd] which incorporates all current experimental constrants. 



Chapter 5 

Physics Results and Conclusions 

"And now let's generalise to the case N = 3." 

— Ben Allanach 

We now discuss the results of a scan of the low tan/? (and heavy M ^ ) regime dom

inated by box and Z-penguin diagrams and point towards future directions and impl i 

cations for the L H C b physics programme. 

5.1 General analysis 

We shall focus on the lepton flavour conserving processes Bg ̂  —> ̂ + i~. We shall also 

take the l imi t 

MB , 
3,d 

In this case, the squared amphtude of equation (4.18) reduces to 

\M\'^2Ml^{\Fs\' + |Fp + 2 m , F ^ | 2 ) . (5.1) 

We would like to understand the ininimum of this function, i.e. the minimum of the 

decay B^^^-^i+T. This occurs when |Fsp = |Fpp = |F^ | - = 0. In the hmit of low 

tan/3 and large MA that we're interested in , the SUSY contributions to Fg and Fp 

are tan/3 suppressed and the dominant effects come f rom the axial vector contribution 

FA- This can be seen by considering the order of magnitude of the Wilson coefficients 

49 
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in Appendix E using the analytic integral forms of Appendix D.2. The scalar and 

pseudoscalar operators only contribute f rom the Standard Model Higgs channels, which 

results in contributions on the order of 

B r ( B ° ^ ^ ^ r ) 3 ^ , , ^ ^ ^ < 10-^^ (5.2) 

B r ( B ° - . £ - r ) 3 , , , , ^ ^ ^ < 1 0 - " . (5.3) 

This sets an approximate lower bound on the minimum of \M\^ as we vary while 

considering only the box and Z-penguin diagrams. In other words, i f our calculation 

using only the box and Z-penguin diagrams leads to a vanishing FA , then the branching 

ratio for the process w i l l be given by the estimated Higgs-mediated branching ratios 

above. 

The question now is to understand how small FA can become given the experimental 

constraints f rom K and B physics. 

5.2 Sean of parameter space 

I n order to answer this question we perform a scan of parameter space using the code in 

51] augmented w i t h our calculations. The range of input parameters and the samphng 

steps are given in Table 5.1. By "SUSY" scale we mean a common mass parameter for 

the first two squark generations. A l l mass parameters are in GeV and we have assumed 

that M l is related to M 2 by grand unification boundary conditions. 

The mass insertions S are defined following Gabbiani et al. [51], Misiak et al. [55], and 

Buras et al. ^)'^\\ 

Here 7, J denote quark flavours, X, Y denote superfield chirahty, and Q indicates either 

the up or down superfield sector. This is not necessarily an intui t ive parameter, so a 

brief discussion is in order. Recall f rom Chapter 1 that the flavour strucutre of a theory 

comes f rom mass matrices that are not diagonal in flavour space, leading to a tension 

between interaction eigenstates and propagating eigenstates. Even though we work in 
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Parameter Symbol M i n Max Step 

Ratio of Higgs vevs tan/3 2 10 1 

C K M phase 7 — TT n 7r/25 

CP-odd Higgs mass MA 100 500 200 

SUSY Higgs mixing -450 450 300 

SU(2) gaugino mass 100 500 200 

Gluino mass Ms 3 M 2 3 M 2 0 

SUSY scale MsvSY 200 1000 200 

Slepton Masses Ml M S U S Y / 3 M S U S Y / 3 0 

Left top squark mass 200 1000 200 

Right bot tom squark mass 200 1000 200 

Right top squark mass Mt, 150 450 150 

Mass insertion X23 
^dLL -1 1 1/30 

Table 5.1: Range of input parameters for parameter space. 

a basis where we have diagonalised the MSSM mass matrices to the extent possible, 

i t is useful to parasrneterise the nontrivial i ty of the theory's flavour structure though 

the off-diagonal mass matr ix elements. The normalised mass insertion in equation (5.4) 

represents a two point flavour-changing mass interaction in the flavour basis, which we 

drew heuristically in Figure 3.1. The mass insertions capture all of the flavour structure 

relevant to the flavour transition between and Q'^ quarks, where Q is either up- or 

down-type. In general the mass-insertions may be complex wi th the phase contributing 

to CP-viola t ing effects. The process Bg — ^ ^ " ' " / i " , however, occurs only at one loop and 

so to that order there the CF-phase cancels when squaring the matr ix element. The 

branching ratio thus only depends on modulus of the mass insertions. In what follows 

we shall treat the mass insertions as real, SQ^Y — ^QXY- The imaginary componeints of 

the mass insertions are highly constrained to be near-zero, w i t h |^^ni((5Q^y)| much less 

than the step size of our scan [5f >, . 

The parameter space scan also incorporates the experimental constraints used in [n:?], 

which are reproduced in Figure 5.2. The results of this parameter scan are shown in 

Figures 5.1 and 5.2. 
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Quanti ty Current Measurement Experimental Error 

> 46 GeV 

m ± > 94 GeV 

mi > 89 GeV 

mi > 95.7 GeV 

mh > 92.8 GeV 

\^K\ 2.232-10-3 0.007-10-3 

A M d 3.337 -10-13 GeV 0.033-10-13 GeV 

A M , 116.96-10-13 GeV 0.79 -10-13 GeV 

B r ( B ^ Xsj) 3.34-10-^ 0.38-10-^ 

Br{KL 7r°z/zy) < 1.5-10-1° 

Table 5.2: Constraints used throughout the MSSM scan 

10' 

CD 10" 

10 13 

Ueneral MbyM scan 
-1 1 1 1 \ 1 1 1 r 

J L _L L. 
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

6 l l (23) 

Figure 5.1: Low tan/3 MSSM prediction for B° ji'^ fj.~ vs. LL mass insterion in the d-squark 
sector, 5jlL-
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10 -9 

10' 

Ueneral MSbM scan 

11 I I I I L -I I I L . 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
6ll''(23) 

Figure 5.2: Low tan /3 MSSM prediction for B° vs. LL mass insterion in the d-squark 
sector, 6llj^. 

Focusing on the phenomenologically interesting B^ —> yu"*" ^ ~ decay channel, we can 

see that (and hence the branching ratio) can be significantly cancelled due to the 

gluino-bottom squark self energy contribution in a scenario wi th a large mass insertion 

^dLL- The funnel around « 0.8 dips below the lower bound set by our estimate 

of the Higgs contribution. This is notable for two reasons: (1) this is suggestive of a 

viable region of parameter space 'far away' f rom the minimal flavour violation scenario 

that is significantly below the Standard Model branching ratio prediction, and (2) in the 

regime where the Higgs contribution and the box and Z-penguins are of the same order 

of magnitude, i t is possible that the two sets of diagrams cancel to push the branching 

ratio even sriialler. The B^—^p'^fi" channel, on the other hand, is more stable in this 

region of parameter space. 

References[57] and[r)S] bound the 6 parameters for the MSSM using the mass insertion 

approximation ( M I A ) for a particular point in parameter space, = M3 = 350 GeV. 

They find that < 0.3 and \5'^LR\ < 0.02, seemingly ruling out the funnel region of 

interest. Our analysis here, however, scans over all experimentally allowed parameter 

space and does not resort to M I A . St i l l , since the Higgs contribution may be of the same 

order of magnitude as the Z-penguins, one must be careful to consider their effect on 

this funnel region. Naively, i t may either push the branching ratio smaller, or possibly 

push i t back up towards the Standard Model expectation. 
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Follow-up work conducted as this thesis was being completed has indeed found that 

the structure of minima of the branching ratios for B^.^ —> ̂ + p,~ are changed upon 

including the Higgs penguin [1]. The minimum of Bi{B'^ pt'^ p,~) is s t i l l on the order 

of 10~^^, but now occurs for values of 5^^^ on the order of 0.01. Thus there is stiU a 

non-trivial low-tan /3 cancellation in the dileptonic decays of the neutral 5-mesons. 

5.3 Outlook 

Early deep sea probes surprised marine biologists w i th the discovery of hfe at depths 

previously believed to be uninhabitable. In the same fashion, the low tan/3 parameter 

scan for B^ /i"*" fi~ suggest a robust sector of MSSM theory-space far f rom the minimal 

flavour violation scenarios that have been taken as conventional dogma. A f u l l scan 

incorporating the methods and results of this calculation is now underway to quantify 

the features of the 5^^^ ^ 0.8 cancellation funnel in B" —>/Li"*"/j," [1]. The results of this 

study, coupled w i t h the observations of the more stable B j —> p." predictions, w i l l be of 

significant importance in the event that the LHCb does not detect the B° —* p,'^ p~ decay 

mode before decisions must be made about its upgrade [12]. Given fimited resources, the 

feasibihty of measuring the B° —> p'^ p" mode w i t h higher luminosity must be weighed 

against the potential gains of reaching the B^ —> p'^ p~ branching, ratio (wi th perhaps 

more certainty). 

The complete code including both this low tan (3 analysis and a resummed analysis 

for large tan (3 w i l l be made availble for public use by experimentalists and phenomenol-

bgists. 

We are now approaching an important time in the history of experimental particle 

physics. While many eyes are on the L H C general purpose detectors searching for on-

shell production of new physics, i t may be that nature has been kind to flavour physicists 

and has decided to live in a region of parameter space where an excess in the B^ —> p'^ p~ 

branching ratio can be measured immediately. As we have seen, however, nature may 

also be coy and choose to hide the 6 ° —> p'^ p~ mode f rom experinienta,hsts. I n thjs 

case, the signal for new physics in this channel would then be the non-signal below the 

Standard Model prediction. A n d i t would then require a careful understanding of the 

allowed regions of parameter space to best select an experimental strategy to upgrade 

the LHCb to maximise future discovery potential. 
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Appendix A 

Notation and Conventions 

"General relativists use the metric — I - + + . Particle physicists use the 
metric + — — • String theorists use the metric + + + + + + •••" 

— Anonymous 

We shall use the particle physics ('West Coast') H metric. Unless otherwise 
noted, the indices i,j,k are generally used to label flavour, though we will take the 
liberty to abuse this notation as a generic fermion index when the meaning is unambigu
ous. The indices I,J, K,L are reserved for the flavours of the external fermions in the 
decay B^^^ i'^ i'~. a,b will generally label scalar particles. These index conventions 
are especially important in Appendix E. Pjr,_/j = ^(1 TTs) are the left- and right-hand 
chiral projection operators. Boldfaced terms in equations are matrices in flavour space. 
Matrices with a hat (e.g. m) are diagonal in the basis being used. Our sign and mass-
diagonalisation conventions for the Standard Model follow Burgess and Moore [ l] , while 
those for the MSSM follow Rosiek [8]. In both cases we use ^ = I Feynman gauge. 

Our particular naming scheme for particles may be a bit idiosyncratic, but it is 
motivated by what the author feels is the most natural and accessible convention. It lies 
somewhere between the naming conventions of Rosiek [S] and Martin [7]. Our guiding 
principles for this convention were that (1) physical SUSY partner particles should be 
indicated by tildes and (2) multiple indices should be avoided when possible. We have 
made an exception for the common notation of referring to the neutralinos and charginos 
by X without a tilde. Otherwise, the gluinos, Higgsinos, and scalar superpartners are 
denoted by tildes. This is all summarised in Table 2.2. We will occasionally use a 
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shorthand where we write to label the physical charged Higgs, , and the charged 
Goldstone boson that gives mass to the = . Neutrahnos and charginos are 
indexed in order of ascending mass. 

We deliberately choose to denote the two Higgs doublets with the subscripts u and 
d rather than 1 and 2 as is sometimes used in the literature. We find that the latter 
notation, while lending itself to easy indexing, is especially confusing to students since 
it's not clear which numbered Higgs appears in each Yukawa coupling. Further, the 
definition of the all-important ratio tan/? is not manifestly clear. The author urges the 
community to adopt the Hu,d notation for the sake of clarity. 

Renormalisation is done in the MS scheme with dimensional regularisation. We 
will use the conventional notation and write the renofmahsation scale as ^ with the 
assumption that context will prevent ambiguities with the muon. The relevant 'Buras' 
conventions for loop integrals are given in Appendix D, these closely follow Axelrod 
up to the sign of the first argument of the function. 

Finally, we attempt to consistently use British English speUings and conventions. 
The author apologises for any Yankee mistakes. 



Appendix B 

Diagonalisation of MSSM masses 

"So how do you diagonalise a quadratic form? This reminds me of a 
saying m the USSR. What do you do if there's a nuclear attack? Well, 
you cover your head and slowly walk to the cemetary." 

— Y. Eliashberg, to confused first year mathematics students 

In this section we define the riiixing matrices involved in diagonaHsing the MSSM 
physical spectrum. We reproduce Section 4 of [8] using this work's notation and conven
tions and inserting our own commentary where appropriate. 

B . l Electroweak symmetry breaking 

Upon electroweak symmetry breaking, the up- and down-type Higgses receive vacuum 
expectation values (vevs) 

(B . i ; 

The ratio of the two vevs is defined to be tan/? = Vu/vd- The vevs are constrained to 
reproduce the correct gauge boson masses, i.e. vl + vj = Further self-consistency 

Hd = 
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among the MSSM parameters require 

^2 

[vl + v^+ml^ + \^i\ 

{vl - vl) + ml^ + 

Vd 

-ml^Vd-

(B.2) 

(B.3) 

We have written and cw for sin^vv and cosOw respectively. 6w is the Weinberg 
angle. 

B.2 Gauge bosons 

The eight gluons g°- and the photon 7 are massless, while the and Z have masses 

e 
Mz = 

Mw = 
e 

vl + 

2s w 

(B.4) 

(B.5) 

B.3 Charged scalar Higgses 

Of the four charged scalar Higgses, two have masses 

(B.6) 

The other two charged scalar Higgses become the Goldstone bosons that are 'eaten' by 
the VK±-boson. The H^2 fields are related to the initial Hu-^i fields by the rotation 
matrix Z^-

= Z H (B.7) 

(B.8) 

which is explicitly given in terms of the Higgs vevs as 

ZH = 
Vu -Vd 

(B.9) 
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B.4 Neutral scalar Higgses 

The neutral Higgses are divided into the CP-even Higgses h, H and the CP-odd Higgs 
A^. A fourth CP-odd Higgs is the Goldstone boson that is 'eaten' by the Z-boson. The 
CP terminology only strictly holds if the Lagrangian contains only real parameters in 
the Higgs sector, though the classification of the particles in this limit is standard even 
if the Lagrangian contains complex parameters. 

The 'scalar' Higgses H° = h and H° = H) are defined as 

\ /2Re/f] = Z'^H^,+Vd (B.IO) 

V2ReHl ^ Z]iHf + v^. ( B . l l ) 

Meanwhile, the 'pseudoscalar' Higgses A'- (A^ = A° and A2 = G°, the Goldstone boson) 
are defined as 

V2lmH] = Z]^Al (B.12) 

V2lmHl = Z-^Al (B.13) 

The mass of the CP-odd Higgs is 

M% = ml^+ml^ + 2\^\\ (B.14) 

The Zfi mixing matrix is precisely the same as that for the neutral scalar Higgses. 
Meanwhile, the matrix is given by 

• sma 
ZR = \ I , (B.15) 

cos a 

tan2a = t a n 2 / 3 ^ | ± ^ . (B.16) 

cos a 

sma 
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B.5 Standard Model fermions 

The Standard Model fermions are defined as usual with masses coming from the Yukawa 
couphngs after electroweak symmetry breaking. 

< = o < = 

= < = (B.18) 

In this cpnvention note that the Hd Yukawa couplings are defined to be negative. 

B.6 Charginos 

The Majorana spinors and combine with the Weyl spinors and H'^ to form 
the two chargino Dirac spinors Xi,2- The mixing in {A^, , H^, Hj) space is given by 
the singular value decomposition 

{Z.y I ' = ^ ) . (B.19) 
A. / \ 0 

The unitary matrices Z+ and Z_ are not uniquely specified. We choose their phases 
such that > M^^. The fields Xi are related to the initial spinors via: 

Hi (B.20) 

Hi = z ^ ^ < (B.21) 

A^^iA^ 

7 2 
= ^ZIK^ 

( <\ 

(B.22) 

Xi (B.23) 

B.7 Neutralinos 

The Majorana spinors B and A^ combine with the Weyl spinors H\ and to form the 
four Neutrahno Majorana spinors x?,... 4- The mixing in (B, A^, H\, H^) space is given 
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by the Takagi factorisation [60 

7^ 

/ M l 0 2cw 2cw 
\ 

0 M2 eV(i - e f u 0 M2 2sw 2sw 

2cw 2 s w 0 

\ evu 
2c\Y 

-ev^ 
2s IV 0 / 

The fields x° are related to the initial spinors via 

l^j^Ki 

73i 0 

74z 0 

I M . 

/ 
(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28) 

(B.29) 

B.8 Gluinos 

The eight Majorana spinpr gluinos ^° do not mix. 

B.9 Sneutrinos 

The complex scalar fields ])\ form (neutra,l) complex scalar sneutrino eigenstates The 
mixing is given by 

/ Ml, 

\ 0 

0 

Ml 

\ 

J 

M 2 _ £ M z ^ i + ^ 2 
>̂  ~ R s 2 ^2 " ' Z , ' 

(B.30) 

(B.31) 

where the fields i>' are related to the initial scalars via D\ = Z^^ui. 
• LI U 
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B.IO Selectrons 

The complex scalar fields ê^ and {i — I, • • • ,3) mix to give six charged selectrons e\ 
(z = l , - - - ,6): 

I 

Z,. = 

Ml 0 

M2 

(B.32) 

RR • 4c2, J + ^ + rnR 

(•^i)^/? = ^ (^d(y£/i* - â ) + ?;dâ ) 

(B.33) 

(B.34) 

(B.35) 

The fields are related to the initial fields via 

(B.36) 

B . l l Up squarks 

The complex scalar fields u\ and u\{i = 1, • • • ,3) mix to give six up squarks {i = 
,6): 

{ M l ) , , [ M l ) LR 
Zu = 

\ 0 

0 \ 
(B.37) 
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mu (Ml).. = 

i^u)LR = —^{M^'u + yuf^l + Vuau) 

The fields are related to the initial fields via 

(B.38) 

(B.39) 

(B.40) 

(B.41) 

B.12 Down squarks 

The complex scalar fields and (tpi{i = 1, • • • ,3) mix to give six up squarks d\ {i = 
I , - - - ,6): 

.t / (Ml),, {Ml: LR ZD = 

Ml, 0 \ 
(B.42) 

LL (Ml) 

{Ml),, 

24 s2 -"2 II + 

— il H h mo 

(t'x.(yd/^* - a j ) + 'i;dad^ 

The fields are related to the initial fields via 

(mq 2\T (B.43) 

(B.44) 

(B.45) 

(B.46) 



Appendix C 

Fierz Identities 

"Some of the most important results are so surprising at first sight that 
nothing short of a proof can make them credible. " 

— Sir Harold Jeffreys, Methods of Mathematical Physics 

Here we collect a list of Fierz identities, with and without the charge conjugation 
matrix C. Those with charge conjugation matrices are relevant for calculations with 
Majorana fermions. Here i,j,k,£ label spinor indices. Note that we do not include 
factors of (-1) from fermion anticommutation. Further details about deriving these rules 
can be found in Nishi [t) ll and Nieves and Pal [G2]. 
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G. l Fierz identities without a C-matrix 

{l^PL,R)i3{l,PL,R)H = -{YPL,RUl,PL,R)k, ( C l ) 

{YPL,R)iAl,PR,L)ki = 2{Pn,LUPL,R)kj (C.2) 

{PL,RUPL,R)ki = \{PL^Rh{PL,R)kJ + l { a n ^ e { ^ , . P L , R ) k J (C.3) 

{PL,Rh{PR,L)ki = \{rPR,Lhh,PL.R)kj (C.4) 

{onv{<^,^PL,R)k( = Q{PR,LUPL..R)kJ-\{(Tn^e{<^,^PL,R)k, (C.5) 

{an^e{cr,.PL,R)kJ = \{9'''9'"'T\ie'''''^){c^McTa,6)kj (C.6) 

G.2 Fierz identities with a C-matrix 

(7^^L,HC)i,(C7;.FL,fi)H = -2iPRMPL,H)je (C.7) 

(7'^FL,/^C).,(C7,Pfi,^)« - -irPL,RU{l,PR,Lh. (C.8) 

{PL,RCUCPR,L)ke = -\irPR,LMl,PR,L)je (C.IO) 



Appendix D 

Loop Integrals 

"Pi is almost dimensionful. 4TC'^ has dimensions of inverse loop." 
— S. Dimopoulos 

Since much of the focus in B physics is on loop-level eflFects, it is important to 
have a collection of loop integrals available. Most quantum field theory textbooks would 
present the standard pedagogical canon for performing such integrals using the technique 
of Feynman parameters. Unfortunately, this technique becomes overly cumbersome for 
even moderately complicated integrals. For many diagrams, such as the boxes and 
the I P I penguins, the smallness of external state masses relative to the masses of loop 
particles allows us to take the limit where the external particles are massless. These 
integrals are particularly easy to solve using algebraic recursion relations. Since these 
recursion relations aren't usually taught to students, we present them pedagogically in 
Section D . l . 

Next, in Section D.2, we cite all the result of the relevant loop integrals for this 
work for easy reference. In particular, the Passarino-Veltman B functions appear in 
the self-energy penguin diagrams and are a bit more diflficult to derive as they require 
one to rhaintain nonzero external momenta. Detailed discussions on the 'art' of doing 
loop integrals are available in Pokorski's text [(i^'], the original paper by Passarino and 
Veltman [Gi], Weinzierl's notes or the Compendium of Relations 2.1 [66 . 
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D . l Algebraic techniques for simple loop integrals 

It is important for young physicists to learn how to separate 'physics' from 'mathematics.' 
As a rule of thumb, 'physics' is usually dimensionful and is often interesting for how 
certain quantities scale with respect to other quantities. 'Mathematics,' on the other 
hand, can be written in terms of functions of dimensionless variables (ratios) that can 
be plugged into a computer for analytic or numeric values. In the case of loop-level 
diagrams, this separation means disentangling various masses and momenta so that one 
is left with a generic loop integral that can be looked up in a table. Here we shall 
demonstrate simple methods for performing such integrals in the hmiting case where 
external momenta can be ignored. 

Before starting, factor but all couplings and overall constants outside of the integral. 
One must then completely remove the nontrivial Dirac structure of the amplitude by 
taking the appropriate traces of 7-matrices. Fermion propaga,tors then leave products 
of numerators of the form 

k- Ic . .. h 

These are contracted against factors of the metric which came about from simplifying 
the 7-matrices. Note that the assumption that the external momenta vanish means that 
the denominator of the integral takes the form 

{e-m\)[k^-ml)---{k''-ml). 

The important feature here is that the denominator of the integral is spherically symmet
ric. Hence the entire integral vanishes by symmetry if the power of in the numerator 
is odd. For even powers of A;̂ , we can use the fact that a symmetric product of vectors 
is equal to a linear combination of products of the metric. Thus: 

k,,---k,,^, DC A ; ' "E^^M^ .2 - - -^M . 2n - iM. .„ - (D-1) 
i 

The overall coefficient can be worked out by contracting both sides with, for example, 
5MIM2 ' • • 5M2n-iM2n- Whllc thls bccomes tedious for n > 3, one can work out the first three 
coefficients in general spacetime dimension to find a nice pattern. 



Loop Integrals 69 

After this quick analysis, one is left with a sum of integrals of the form 

(27r)4 (A:2 - m'i){k^ - ml) • • • {k^ - m^)' 
(D.2) 

Such an integral is tedious for medium and large values of n and p. Our strategy will be 
to reduce this into a sum of integrals with smaller values of n and p. It turns out that 
this is very simple to do with the following algebraic relations: 

k'^ — m?-
= 1 + 

k^-m^ 
1 / 1 

- m2)(fe2 - m ? ) 
1 

m J — 7712 yk"^ — m] fc^ — 7712 

(D.3) 

(D.4) 

Voild! Equation (D,3) reduces the power of the nurnerator by two, taking an integral 
of the form /p^"^ into a sum of integrals of the form /pi"~^^ and /p^"~"^\ Similarly, 
equation (D.4) reduces the power of the denominator by one, taking an integral of the 
form Jp̂ "̂  into a diflFerence of integrals of the form /p^"^ The resulting reduction rules, 
written out explicitly, are: 

j{2n-2) (ml--- ,ml,) + mpl'--'Hml--. ,ml,) (D.5) 

•m\ — m p 
-'p-l l " * ! - ,ml) .(D.6) 

The number of terms, of course, grows by a factor of two every time these reductions 
are applied, but one can continue this trick until all terms are written in terms of 
two simple functions: the divergent / 2 ° ' and the convergent These can then be 

solved explicitly using one's preferred method. The results using our conventions, Wick 
rotation, and dimensional regularisation in 4 — e dimensions are: 

li'\mlml) 

4'\mlmlml) 

(47r)^ 
- - J E + log 

47r 

m^ 
+ 1 + 

X 

1-x 
logx 

ml{x - y) (47r)2 

X V 

logx - ^ logy X 1-2/ 

(D.7) 

(D.8) 

where we write x - m\/m\ and y = m\/m\. Note that though the above equations 
aren't manifestly equivalent under interchange of the arguments due to this choice of x 
and y, explicit calculation will show that one may reshuffle the order of the arguments 
without changing the result. 
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Finally, we note that the algebraic tricks above fail if two of the masses are equivalent. 

In this case, however, one can still use the tricks with all pairwise inequivalent masses 

to reduce the integral to the form lf'^\m?, • • • ,m^). This is a particularly well-known 

integral that can be performed using the F function: 

f d-k {ef ^ I , , 6-a-Hn/2 r(b + n/2)r(a - 6 - n/2) 
7 (27r)"(A;2-A2)'^ (4^)"/2 ^ > ^ r (n/2 )r (a) 

where we note that the left-hand side is an integral in n-dimensional Minkowski space. 

D.2 Useful loop integral results 

Here we collect the analytic forms of the relevant loop integrals for this work. We follow 

the 'Buras' convention of Appendix A.5 in [M)]. This convention matches the popular 

convention of Axelrod [59] up to the sign of the first argument of the function. 

The two-point loop integral Bi is defined as: 

' p,B,{p,m\M^) = / T ^ . , , . . . r (0-9) 
(47r)2^'^^^^^"'^'^" ^ - j ^2ny{k^-m^)[{k + pr-M^ 

These integrals appear in the flavour-changing quark self-energy contributions to the pen

guin diagrams. It is necessary to keep the external momentum general (i.e. nonzero) 

until it can be converted into an external mass in the amplitude, after which point one 

may take Bi{p,m^,M^) Bi{Q,m^, M^). 

The three- and four-point loop integrals at vanishing external momenta are defined 

as: 

1 „ , o o r d'^k 

The explicit formula for the two-point loop integral Bi at vanishing external momen

tum is: 

B,iO,x,y) = ^ + ^C,ix,y,y), (D.12) 
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where C2{x,y,y) is given below. 

The exphcit formulae for the three-point integrals at vanishing external momenta 

are: 

Co{x,y,z) 

Co{x,y,y) 

C2ix,y,z) 

C2ix,y,y) 

y log I 
+ 

z log ^ 

{ x - y ) { z - y ) { x - z ) { y - z ) 

x - y 
1 -

2; l o g ! 

x - y 

A + log ^ + _ ^^^^ _ , _ ^^^^ _ 

A + log — + 
y x - y I x - y 

1 -
: c log f 

(D.13) 

(D.14) 

(D.15) 

(D.16) 

where the divergent piece A = ^ + log(47r)7£; - 1 and n is the renormalisation scale. 

These integrals appear in the Z-penguin contributions. 

The explicit formulae for the four-point integrals at vanishing external momenta are: 

ylogl z log: 
Doix,y,z,t) = + 

Do{x,y,z,z) 

D2{x,y,z,t) 

(y - x){y - z ) { y - t) {z - x){z - y){z - t) 

^ l o g | 
{ t - x ) { t - y ) { i - z) 

1 3; log f 

+ 
y log 

{ x - z ) \ y - z ) [ x - y ) { x - z f {y - x){y - z f 

y~\ogl , ^ M o g f 

(D.17) 

(D.18) 

+ 

D2{0,x,y,z) 

D2[x,y,z,z) 

[y - x){y - z){y - t) {z - x){z - y){z - t) 

[ t - x ) { t - y ) \ t - z ) 
1 / X log f y log 

y — z \ X — z y — z 

1 
1 -

y l o g ' 

y - x \ y - x 
z x^log f y2 log ^ 

{ x - z ) { y - z ) { x - y ) { x - z ) ^ {y - x){y - z f 

(D.19) 

(D.20) 

(D.21) 

(D.22) 

(D.23) 

These integrals appear in the box diagram contributions. A null argument represents 

the negligible mass of the neutrino. 



Appendix E 

Wilson coefficients 

"A chef does not need to know gauge theory." 

— S. Dimopoulos, summarising the renormalisation group 

Here we collect the explicit forms of the box and Z-penguin contributions to the 

Wilson coefficients in terms of generic Feynman rules. The effective Hamiltonian is 

given by equation (4.4). In the following sections we list contributions to each Wilson 

coefficient ( C ^ y ) - , where i labels the contribution f rom a particular diagram. The 

f u l l coefficient is given by the sura of each contribution, C f y = ( C f y ) . . Explici t 

diagrams for all the processes in this appendix are shown in Section 4.6. 

E . l Feynman Rules 

We use a shorthand and write generic Feynman rules for the calculations below. Values 

for the generic couplings can be inserted f rom [(,i7]. We denote the left- and right-handed 

spinor projectors by PL^R = | ( 1 =F 7 ^ ) - •S'a and p are generic scalars and fermions, respec

tively. In order to avoid clutter, we suppress particle names in the effective couplings, 

i.e. we write 5^" to rhean 5^^"^. 
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5a' •-> • 

9' 

Ra 

P = iVtsv ip + kY 

— 'iV°- d/̂ " 
— '•^svu9 

E.1.1 Box Diagram Contribution 

Box contributions to the Wilson coefficients are wri t ten here in the form ( C f ? ) . , wi th 

the • denoting box-diagram contribution. Z labels the operator, Z = S,V,T for scalar, 

vector, tensor respectively. XY labels the handedness, X , V € {L,R} w i th X = R'\l 

X = L and vice versa, i labels the particular diagrams included in the term. 
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W/Golds tone contributions 

3 

i j = l a=l 

ij=la=l 

i , j=l a=l 

ij=l a=l 

Pure Higgs/Goldstone contributions 

X,Y e {L, R} refer to helicities, while bars refer to the opposite hehcity. For example, 

X = L\fX = R. 

(r'^0\ _ ^ \ ^ \ ^ rrXJia*yXIibyYejb*yYKja n f ™ 2 2 2 2 x 

i,j = l a,6=l 

i , j= l a,6=1 
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Neutralino contributions 

i,j=l a,b=3 

i,j=l a,b=\ 

•ij = l a,b=l 

a,b=l 

i , j= l a,6=l 

'ij = l a,6=1 

i j = l a,6=1 

i,j=l a,b=l 

The remaining Wilson coefficients are obtained by swapping ( L in the above 

equations. 

Chargino contributions 

The chargino contributions ( C ^ y ) ± have a similar form as the neutralino contributions 

wi th D ^ U, E ^ N, x° ^ X"^ : and the indices i , j running f rom 1 to 2. The main 

difference is that there are no 'crossed fermion' box diagrams. X,Y e {L, R} refer to 

helicities, while bars refer to the opposite helicity. For example, X = L ii X = R. 
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i,j=l a,b=l 

•ij = l a,6=l 

E.1.2 Z-penguins 

(AF^^)^^'^ are one-loop contributions to the X-handed ( X = L, R) d'd-'Z^ coupHng, 

wi th a particular contribution labelled by i. The Wilson coefficients for these penguins 

are derived via 

= ( A F f ) " — - ^ ( l - 2 s i n 2 ^ H ' ) . ( E . l ) 

Here we have wr i t ten the triangle \> to indicate a penguin diagram contribution. 

VT-boson vertex Gontrlbutions 

1=1 
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Higgs-W/Goldstone vertex contributions 

3 2 
,/J 

i=\ a=2 

Higgs vertex contributions 

i j = l a=] 

i j = l a=l 

i j = l a=l 

i= l a,6=l 

i= l a,b=l 

Neutalino vertex contributions 

The neutrahno contributions, (AF^)^ ' ' ^o^o and ( A F ^ ) ^ o ^ ^ , have the same form as 

the Higgs contributions wi th u ^ x^i ~^ the indices i,j running f rom 1 to 

4 and the indices a, b running f rom 1 to 3. 
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Chargino vertex contributions 

The chargino contributions, ( A F ^ ^ ) ^ ' ' ^ ^ ^ ^ and (AF^^)^'^^^j^^, have the same form as 

the Higgs contributions wi th u ^ , U\ and the indices i,j running f rom 1 to 

2 and the indices a, h running f rom 1 to 3. 

Gluiho vertex contribution 

t=l a,6=l 

1=1 a,6=l 

E.1.3 d self-energy contributions 

For the self-energy contributions we use the notation of [-̂ O], highhghted in Figure E . l . 

Figure E . l : One-loop threshold corrections to fermion propagators using notation from 

W-boson d self-energy contributions 

1=1 
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HIggs d self-energy contributions 

3 2 

1=1 a=l 
3 2 

i= l a=l 

j= l a=l 
3 2 

i= l a=l 

Neutralino d self-energy contributions 

The neutralino contributions to E*̂  have the same form as the Higgs contributions wi th 

n —> ~* -Oj and the index i running f rom 1 to 4 and the index a running f rom 1 

to 3. 

Chargino d self-energy contributions 

The chargino contributions to E'̂  have the same form as the Higgs contributions wi th 

u x"^ ̂  R^ ^ ^ X ^ ) and the index i running f rom 1 to 2 and the index a running f rom 

1 to 3. 

Gluino d self-energy contributions 

The gluino contributions to E' ' have the same form as the Higgs contributions wi th 

u g, —^D, and the index i running f rom 1 to 8 and the index a running f rom 1 

to 3. 
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Colophon 

This thesis was made in L^TeX 2e using the "hepthesis" class [(vS], the K D E Integrated 

L^TgX Environment (Kile) [(if)] 1.9.1, and the text editing program TextMate [70 ] . Feyh-

man diagrams were drawn using Jaxodraw [71 . 
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