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Abstract

Unmanned aerial vehicles technologies are getting smaller and cheaper

to use and the challenges of payload limitation in unmanned aerial

vehicles are being overcome. Integrated navigation system design re-

quires selection of set of sensors and computation power that pro-

vides reliable and accurate navigation parameters (position, velocity

and attitude) with high update rates and bandwidth in small and

cost effective manner. Many of today’s operational unmanned aerial

vehicles navigation systems rely on inertial sensors as a primary mea-

surement source. Inertial Navigation alone however suffers from slow

divergence with time. This divergence is often compensated for by

employing some additional source of navigation information external

to Inertial Navigation. From the 1990’s to the present day Global

Positioning System has been the dominant navigation aid for Inertial

Navigation. In a number of scenarios, Global Positioning System mea-

surements may be completely unavailable or they simply may not be

precise (or reliable) enough to be used to adequately update the Iner-

tial Navigation hence alternative methods have seen great attention.

Aiding Inertial Navigation with vision sensors has been the favoured

solution over the past several years. Inertial and vision sensors with

their complementary characteristics have the potential to answer the

requirements for reliable and accurate navigation parameters.

In this thesis we address Inertial Navigation position divergence. The

information for updating the position comes from combination of vi-

sion and motion. When using such a combination many of the difficul-

ties of the vision sensors (relative depth, geometry and size of objects,

image blur and etc.) can be circumvented. Motion grants the vision

sensors with many cues that can help better to acquire information



about the environment, for instance creating a precise map of the en-

vironment and localize within the environment.

We propose changes to the Simultaneous Localization and Mapping

augmented state vector in order to take repeated measurements of

the map point. We show that these repeated measurements with cer-

tain manoeuvres (motion) around or by the map point are crucial for

constraining the Inertial Navigation position divergence (bounded es-

timation error) while manoeuvring in vicinity of the map point. This

eliminates some of the uncertainty of the map point estimates i.e.

it reduces the covariance of the map points estimates. This concept

brings different parameterization (feature initialisation) of the map

points in Simultaneous Localization and Mapping and we refer to it

as concept of aiding Inertial Navigation by Simultaneous Localization

and Mapping.

We show that making such an integrated navigation system requires

coordination with the guidance and control measurements and the ve-

hicle task itself for performing the required vehicle manoeuvres (mo-

tion) and achieving better navigation accuracy. This fact brings new

challenges to the practical design of these modern jam proof Global

Positioning System free autonomous navigation systems.

Further to the concept of aiding Inertial Navigation by Simultaneous

Localization and Mapping we have investigated how a bearing only

sensor such as single camera can be used for aiding Inertial Navi-

gation. The results of the concept of Inertial Navigation aided by

Simultaneous Localization and Mapping were used. New parameter-

ization of the map point in Bearing Only Simultaneous Localization

and Mapping is proposed. Because of the number of significant prob-

lems that appear when implementing the Extended Kalman Filter in

Inertial Navigation aided by Bearing Only Simultaneous Localization

and Mapping other algorithms such as Iterated Extended Kalman Fil-

ter, Unscented Kalman Filter and Particle Filters were implemented.

From the results obtained, the conclusion can be drawn that the non-

linear filters should be the choice of estimators for this application.
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Chapter 1

Introduction

Today Unmanned Aerial Vehicles (UAV’s) have become an indispensable ingre-

dient for many applications where human operation is considered unnecessary,

too dangerous or impossible [Shim et al., 2005]. These applications include plan-

etary explorations, environmental and climate research and monitoring, traffic

monitoring, inspection of man-made structures such as power lines and pipelines,

urban planning, pollution studies and many others. Today’s intelligence gather-

ing, surveillance and reconnaissance missions are not possible to be carried out

without UAV’s.

Figure 1.1: Quadrotor UAV equipped with single video camera navigating over
a house

1



All these applications and missions require UAV’s to operate in a partially

known or unknown environments. There we usually have limited knowledge of

the environment or we don’t have any knowledge, see figure (1.1).

Typically in these applications and missions the need for safety is arising. Safety

here simply implies that the UAV’s are not damaged or destroyed during the

mission [Sivakumar and Sengupta, 2004]. Part from factors such as vehicle con-

straints, environment factors (strong winds, icing, thunderstorms) and enemy

fire, reliable navigation parameters play crucial role in the safety of the UAV’s.

Supplying wrong or not precise navigation parameters (position, velocity and at-

titude) to the Guidance and Control System very often turn to be catastrophic for

the UAV’s. Simple approach of integration of several complementary navigation

systems will provide more accuracy than that of individual systems. Many of

today’s operational UAV navigation systems rely on inertial sensors as a primary

measurement source. From the early 1960’s when the Inertial Navigation (IN)

was introduced has been used for many navigation tasks and on many types of

vehicles: land, sea, air and low orbit. The majority of the Inertial Navigation

Systems (INS) were extremely expensive because, in part, of the cost of high-

quality, well characterized sensors and typically the need for a stabilized sensor

platform. This high cost limited such systems primarily to military, scientific,

and commercial aircraft applications. In addition, the use of stabilized platforms

resulted in this class of INS having size and power requirements too large for

many applications [Farrell and Barth, 1999].

High-quality, individually selected and characterized sensors are required in cer-

tain navigation applications to meet the relatively high-accuracy requirements

over long-duration mission without external positioning aiding. Advances in the

MEMS technology and material processing have made it possible to produce

small, low-cost inertial sensors. Although the low-cost sensors cannot be expected

to meet the accuracy and precision specifications for all navigation applications,

they have opened the doors and bringed the IN technology to the wide university

and education communities for research and development. Today, almost every

university runs a laboratory or has a research group for autonomous systems,

where they use various inertial sensors in their research.

There are two primary INS implementation approaches. The first approach uses a

2



stabilized platform mechanized as the vehicle moves to maintain sensor alignment

with a predetermined reference frame. The second approach uses a strap-down

platform rigidly attached to the vehicle reference (body) frame. The stabilized-

platform has two main advantages over that of strapdown systems [Farrell and

Barth, 1999]:

• The inertial sensors are subjected only to small angular rates. In a high-

accuracy system without external aiding, this is important for three rea-

sons:(1) sensors nonlinearity may be exited by high dynamic loads; (2)

lower sensor bandwidth results in an increased signal-to-noise ratio; (3)

lower sensor range allows increased sensor sensitivity.

• The computational load of a stabilized-platform system is smaller than that

of a strapdown system.

But this stabilized-platform has several detractors which make it undesirable:

• Friction in the bearings exists and motors are not perfect (i.e. dead zones,

etc.).

• The process of keeping the platform aligned with the reference frame con-

sumes power which is not practical for an embedded system.

• There are high cost involved due to the need for high quality motors, bear-

ings and other mechanical parts.

• Regular maintenance requires trained and certified personnel which can be

difficult for an autonomous navigation systems.

The main benefits of the strap-down approach are the decrease in navigation

system size, power, and cost because of the elimination of the stabilized platform

and its actuators [Farrell and Barth, 1999]. This system is a major hardware

simplification of the old gimballed systems. The accelerometers and gyros are

mounted in body coordinates and are not mechanically moved. Instead, a soft-

ware solution is used to keep track of the orientation of the Inertial Measurement

Unit (IMU) (and vehicle) and rotate the measurements from the vehicle (body)

3
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Figure 1.2: Inertial Navigation diverging slowly from the real measurements with
time

frame to the reference frame. Inertial Navigation (IN) alone however suffers many

drawbacks that complicate its usage as a standalone navigation system. Instru-

mentation, computational, alignment and environmental errors cause the IN to

diverge slowly with time, as shown on figure (1.2). The inertial divergence is

often compensated for by employing some additional source of navigation infor-

mation, external to IN. Before the 1990’s near landfall, the IN was updated by a

VHF omnidirectional range (VOR) navigation system fix after which the aircraft

would navigate to its destination on the VOR airways. On long flights, in order

to correct the inevitable drift of the inertial navigators, long range (LORAN)

navigation system was used. In the 1970’s because of the scanty coverage of the

LORAN chains outside the developed areas, it was supplemented by OMEGA

navigation system [Kayton, 2003]. From the 1990’s to the present day Global

Positioning System (GPS) has been the dominant navigation aid for IN, see fig-

ure (1.3). GPS and IN have complementary characteristics and GPS aided IN

has been used successfully for surveying, mining, dredging, automotive, railroad,

and aircraft applications for commercial, military and scientific customers [Farrell
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Figure 1.3: Additional sources of navigation parameters to Inertial Navigation
[Ching-Fang, 1991]. (Noninteractive aiding information’s)

and Barth, 1999]. However, in a number of scenarios, GPS measurements may be

completely unavailable or they simply may not be precise (or reliable) enough to

be used to adequately update the IN. Tunnels, canyons, forests and urban areas

are typical examples where this can occur and, in addition, in a military environ-

ment, the GPS signal may be deliberately jammed. Driven primarily by these

reasons alternative methods of aiding IN have seen great attention. Worth men-

tioning here as a concept is IN aided using aircraft dynamics, an approach that is

described in [Koifman and Bar-Itzhack, 1999], where the authors show that under

some specific conditions the aircraft dynamic model can be used to aid the IN.

Aiding IN with vision sensors has been the favored solution over the past several

years. The idea is to develop a viable solution (i.e. sensor fusion algorithm) that

will provide a source of reliable aiding information to IN from pure vision means.

The algorithm should not assume any knowledge of the environment and should

not require information from separate range sensors. This would create a passive

jam proof, GPS free, autonomous navigation system. Traces of the idea of aiding

IN with vision sensors can be found in the late 1970’s. In [Bar-Itzhack, 1978] the

author addresses the problem of IN error divergence with time and he proposes

that the vehicle carry a sighting device (SD) like radar or optical devices in order

to estimate the IN errors.
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In [Sinopoli et al., 2001], [Watanabe et al., 2005] vision information is used for

detection and investigation of objects of interest as well as the vehicle itself in

order to plan a path from its current position to the terminal point. Video camera

information in [Call et al., 2006], [Watanabe et al., 2005] is used as primary sensor

for obstacle detection and avoidance. In [Brzezinska et al., 1998] IN, GPS and

video camera information are integrated for creating an airborne mobile mapping

system. Some preliminary results of navigation aided image processing and im-

age processing oriented sensor management architecture for UAV surveillance are

presented in [Nygards et al., 2004]. A control and image processing system that

enables a UAV to track structures such as oil-gas pipes, roads, bridges, canals

etc. is described in [Rathiman et al., 2006] in which the system was tested with a

road and an aqueduct. Biologically inspired navigation methods for example the

”bee navigation” method, based on optical flow field are studied in [Franceschini,

2004], [Lerner et al., 2004]. In these methods, ego-motion is derived from the

optical-flow field. In ego-motion integration approach, the motion of the camera

with respect to itself is estimated [Lerner et al., 2004]. Once the ego-motion is

obtained, one can integrate this motion to derive the camera’s path.

Vision based navigation algorithm for a vertical take-off and landing (VTOL)

UAV where the navigation Extended Kalman filter (EKF) filter uses vision data

from ground feature tracking based on Lucas-Kanade algorithm in order to com-

pensate for the GPS failures is developed in [Koch et al., 2006]. Similarly, in

[Webb and Prazenica, 2007] the authors show that it is possible to estimate an

aircraft states from a set of tracked fixed feature points in inertial frame by using

single video camera mounted on a micro air vehicle (MAV).

All these applications indicate a widespread use of vision sensors in various UAV

tasks but not for directly aiding IN per se. The previously mentioned IN aiding

methods (VOR, LORAN, OMEGA and GPS), fall into a group of methods using

so-called non interactive aiding information, figure (1.3). The non interaction be-

ing with the surrounding (environment) of the vehicle since the measurements are

usually given in a form of position fixes, ground speed, radials and are computed

external to the IN i.e. are not computed relative the vehicle.

Vision sensors fall in the group of interactive aiding information since they

provide relative measurements between the vehicle and its environment. Because
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of the nature of the measurements being relative, they interconnect the IN and

the environment. If we have a known environment then, using the relative mea-

surements, we can improve IN performance (localization) and vice versa. Also,

if we have perfect IN parameters then we can create a map of the environment

(mapping), figure (1.4). In reality both the environment and IN are uncertain

and therefore this is a ”chicken and egg” problem and the solution appears to

be to run the localization and the mapping simultaneously as the vehicle moves

through the environment. This is the Simultaneous Localization and Mapping

(SLAM) problem. SLAM permits navigation in an initially unknown environment

using only onboard sensing (relative) measurements, and therefore can be used in

situations where GPS is unavailable. In the case when the vehicle process model

is represented by IN equations, and when the relative measurements between the

vehicle and the map points are measured by vision sensors, this can be considered

as special case of vision aided IN. This case is called Airborne SLAM [Kim, 2004],

[Langelaan, 2006], [Watkins, 2007], [Ivey and Johnson, 2006], [Jung and Lacroix,

2003], where as the onboard sensors are taking the relative measurements of the

map points and the vehicle itself the SLAM estimator augments the map point

positions to the map and begins to estimate the vehicle and map states together

with successive observations.

In this thesis we address IN position divergence. The information for updating

the position comes from combination of vision and motion. When using such a

combination many of the difficulties of the vision sensors (relative depth, geometry
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and size of objects, image blur and etc.) can be circumvented. Motion grants the

vision sensors with many cues that can help better to acquire information about

the environment, for instance creating a precise map of the environment and

localize within the environment. We propose changes to the SLAM augmented

state vector in order to take repeated measurements of the map point. We show

that these repeated measurements with certain manoeuvres (motion) around or

by the map point are crucial for constraining the IN position divergence (bounded

estimation error) while manoeuvring in vicinity of the map point. This eliminates

some of the uncertainty of the map point estimates i.e. it reduces the covariance of

the map points estimates. This concept brings different parameterization (feature

initialisation) of the map points in SLAM and we refer to it as concept of aiding

IN by SLAM. We show that making such an integrated navigation system requires

coordination with the guidance and control measurements and the vehicle task

itself for performing the required vehicle manoeuvres (motion) and achieving

better navigation accuracy. This fact brings new challenges to the practical design

of these modern jam proof GPS free autonomous navigation systems. Further to

the concept of aiding IN by SLAM we have investigated how a bearing only

sensor such as single camera can be used for aiding IN. The results of the concept

of IN aided by SLAM were used. New parameterization of the map point in

BOSLAM is proposed. Because of the number of significant problems that appear

when implementing the Extended Kalman Filter (EKF) in IN aided by BOSLAM

(Jacobians, highly nonlinear system, second and higher order errors that are not
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negligible) other algorithms such as Iterated Extended Kalman Filter (IEKF),

Unscented Kalman Filter (UKF) and Particle Filters (PF) were implemented in

IN aided by BOSLAM, which perform better then EKF in this application.

1.1 Related Work

All the up to date advances in the area of aided IN can be divided in several

sections, each one representing the approaches and the latest research findings.

1.1.1 GPS Aided IN

GPS aided IN today can be considered as well understood and mature integration

solution. As we have mentioned before GPS aided IN have been used successfully

for surveying, mining, dredging, automotive, railroad, and aircraft applications

for commercial, military and scientific customers.

A large number of articles and papers that discuss about GPS aided IN are

available today. Specialized books that treat IN, GPS and their integration in

a unified framework, are also available [Farrell and Barth, 1999], [Grewal et al.,

2001], [Biezad, 1999]. Most of the Kalman filtering textbooks use GPS aided

IN as an example of typical Kalman filter implementation [Brown and Hwang,

1992], [Grewal and A.P.Andrews, 2001], [H.W.Sorenson, 1985], [Leondes, 1982].

This fact without no doubts emphasizes the popularity of this integration and

solution. As will be described later in section 2.5 of the thesis, both GPS and

IN measurements can be combined using either direct or indirect filter configu-

rations.

Current research activities in this area are focused on implementation of differ-

ent filter techniques then the classical Kalman Filter. The apparent goal is to

”improve” the Kalman Filter results. GPS aided IN with implementation of Un-

scented Kalman Filter can be found in [Zhang et al., 2005], [Crassidis, 2006].

Expectation-maximization (EM) method for GPS aided IN for land vehicle navi-

gation is proposed in [Huang and Leung, 2004]. The problem of GPS/IN integra-

tion by using a Rao-Blackwellized Particle filter is addressed in [Giremus et al.,

2004], [Vernaza and Lee, 2006].
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1.1.2 Vision Based Navigation

Visual information is the must nowadays in terms of navigation and guidance

measurements for autonomous vehicles. This perception technique is famous be-

cause of its long-range, high resolution and most important because of its passive

property (it does not emit energy, which makes it possible to incorporate other

heat-sensitive sensors, such as infrared) [Zhenhe et al., 2007]. The latest advances

in computer vision theory has paved the way and encouraged many researchers

to implement vision in various applications from autonomous navigation and

guidance of robots to medical diagnostics and food quality evaluation. On the

hardware side, both the video camera and computer technology have made sig-

nificant progress so that high resolution images are processed at real-time at high

rates or transferred to the end users in part of a second. In [Sinopoli et al., 2001]

and [Watanabe et al., 2004] vision information was used for detection and investi-

gation of objects of interest and the vehicle itself in order to plan a path from its

current position to the terminal point. Video camera information in [Call et al.,

2006] and [Watanabe et al., 2005] is used as primary sensor for obstacle detection

and avoidance. In [Brzezinska et al., 1998] INS, GPS and Video camera infor-

mation’s are integrated for creating an airborne mobile mapping system. Some

preliminary results of navigation aided image processing and image processing

oriented sensor management architecture for UAV IR/EO surveillance are pre-

sented in [Nygards et al., 2004]. The control and image processing system which

enables an UAV to track structures like oil-gas pipes, roads, bridges, canals and

etc. is described in [Rathiman et al., 2006]. There the system was tested with a

road and an aqueduct. Biologically inspired navigation methods for example the

”bee navigation” method, based on optical flow field are studied in [Franceschini,

2004], [Lerner et al., 2004]. In this methods from the optical-flow field ego-motion

can be derived. In ego motion integration approach the motion of the camera

with respect to itself is estimated [Lerner et al., 2004]. Once the ego-motion

was obtained, one can integrate this motion to derive the camera’s path. One of

the factors that make this approach attractive is that no specific features need

to be detected and only the correspondence between the two consecutive images

should be found in order to derive the optical-flow field [Lerner et al., 2004]. The
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weakness of ego-motion integration comes from the fact that small errors are ac-

cumulated during the integration process. Hence, the estimated camera’s path is

drifted and the pose estimation accuracy decrease with time. Vision based nav-

igation algorithm for a VTOL-UAV where the navigation EKF filter uses vision

data from ground feature tracking based on Lucas-Kanade algorithm in order to

compensate for the GPS failures is developed in [Koch et al., 2006]. Similarly,

in [Webb and Prazenica, 2007] the authors showed that it is possible to estimate

the aircraft states from a set of tracked fixed feature points in inertial frame by

using video camera mounted on a micro air vehicle (MAV).

1.1.3 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) is the process of simultaneously

estimating the state of an autonomous vehicle and the map points in the environ-

ment. It permits vehicle navigation in an initially unknown environment using

only onboard sensing (relative) measurements, and therefore can be used in sit-

uations where GPS is unavailable. In the case when instead the ground vehicle

model the driver of the process model is IN, and when the relative measurements

between the vehicle and the landmarks are measured by vision sensors this can

be considered as special case of vision aided IN. This case is used in the so called

Airborne SLAM [Kim, 2004], [Langelaan, 2006], [Watkins, 2007], [Ivey and John-

son, 2006], [Jung and Lacroix, 2003] where as the onboard sensors are taking the

relative measurements of the map points and the vehicle itself the SLAM esti-

mator augments the map point positions to the map and begins to estimate the

vehicle and map states together with successive observations. The fundamental

advantage of SLAM algorithms is that they account for the statistical correla-

tions that exist between the vehicle position and the landmarks positions. On the

other hand, the main limitation of SLAM is its high computational complexity

and thus performing SLAM in environments with thousands of landmarks still

remains a great challenge.
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1.2 Contributions of the Thesis

• Many of the authors in SLAM use trigonometric functions in their obser-

vation models. The use of trigonometric functions has, apart from the

fact that they may have singularities at certain points, the disadvantage

of making computer processing slow. As such, it is recommended to avoid

trigonometric functions. Since vectors have power to simplify geometrical

problems we have used vectors to explain the vision sensors geometry. Each

measurement from the vision sensors is represented by a line. Instead of

using angles like bearing or azimuth to the map points we use unit direction

vectors to the map point. This approach presents an important trigonomet-

ric substitution and is more efficient in terms of computational speed and

accuracy.

• In the theory of SLAM the unknown map points are added to the map

when they are first observed from the vehicle. One map point estimate is

added to the map for each map point. This initialization of the map points

does not follow the accumulation of the vehicle error gradually. It maps

the environment using the vehicle error positions and when closes the loop

i.e. revisits the stored map points, it updates the augmented state vector

(the vehicle state and the map). Within this parameterizations of the map

points, taking repeated observations of the map point cannot further reduce

the covariances of the map points. These facts ask for other alternative form

of the augmented state vector in order to implement SLAM as sensor fusion

algorithm for aiding IN and constraining the IN position divergence while

manoeuvring in vicinity of the map point.

• When manoeuvring in vicinity of the map point, note in the SLAM theory

is made to the SLAM augmented state vector in order to take repeated

measurements of the map point. These repeated measurements with certain

movements around or by the map point provide the valuable information

for constraining the IN position divergence.

• The concept of aiding IN by SLAM clearly shows that making such an

integrated navigation system requires coordination with the guidance and

12



control measurements and the vehicle task itself for performing the needing

vehicle maneuvers (movements) and achieving better navigation accuracy.

This facts brings new challenges to the practical design of these modern

jam proof GPS free autonomous navigation systems.

• Further to the concept of aiding IN by SLAM, we focused our research on

BOSLAM. We have investigated how a bearing only sensor such as single

camera can be used for aiding IN. We used the results from SLAM aided

IN. Since the range to the map points is unknown in BOSLAM, criterion

needs to be used to choose certain number of ”most promising” map point

estimates in the augmented state vector. New parameterization of the map

point in BOSLAM is proposed. Because of the number of significant prob-

lems that appear when implementing EKF in IN aided by BOSLAM (Jaco-

bians, highly nonlinear system, second and higher order errors that are not

negligible) other algorithms such as IEKF and UKF, PF are implemented,

which perform better then EKF.

1.3 Reader’s Guide

The remainder of this thesis is organized as follows:

Chapter 2: Inertial Navigation starts with the basic definition of Inertial

Navigation, then caries out defining the coordinate reference frames, the shape of

the Earth and variation of the Earth’s gravity field used in deriving the naviga-

tion equations. These equations first are derived with respect to fixed (inertial)

frame, then with respect to rotating frame. Detailed navigation equations are

also included. This chapter ends with the part where the sources of error in Iner-

tial Navigation and aided IN as alternative approach for dealing with the errors

are described.

Chapter 3: Vision Sensors are nowadays considered essential for UAV nav-

igation, firstly because they are cost effective, small, compact and reliable passive

sensors and secondly because they are capable of providing a rich source of in-
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formation about the vehicle environment. The single camera and stereo camera

setups and its vector applications are explained in this chapter. The limitations

of the both setups are carefully described.

Chapter 4: Sensor Fusion introduces us to the concept of sensor fusion.

Here we present the most famous sensor fusion algorithms such as the classic

linear Kalman Filter, the Extended Kalman Filter, Iterated Extended Kalman

Filter, Unscented Kalman Filter and the Particle Filters.

Chapter 5: Simultaneous Localization and Mapping is the chapter

where the main characteristics of the SLAM problem are elaborated. The current

trends in SLAM are presented. Limitations of the SLAM solutions are included

in this chapter as well.

Chapter 6: Inertial Navigation Aided by Simultaneous Localization

and Mapping chapter describes the concept of aiding IN by SLAM. We describe

the changes to the SLAM augmented state vector that are needed in order to take

repeated measurements of the map point. We show that repeated measurements

with certain movements around or by the map point are crucial for constraining

the IN position divergence while manoeuvring in vicinity of the map point.

Chapter 7: Inertial Navigation Aided by Bearing-Only Simultane-

ous Localization and Mapping chapter follows the results from the previous

chapter. Here we augment the state vector with certain number of estimates for

each map point. We take repeated measurements of the map points with certain

manoeuvres and constrain the vehicle position divergence while manoeuvring in

vicinity of the map point. New parameterization of the map point in BOSLAM is

proposed in this chapter. The performance of four nonlinear filters (EKF, IEKF,

UKF and PF) has been investigated. From the results we conclude that nonlinear

filters should be the choice of estimators for the problem of IN aided by BOSLAM.

Chapter 8: Conclusions summarizes the results of the research. Future

work activities are also presented here.
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Chapter 2

Inertial Navigation

Inertial Navigation (IN) is the process of calculating position by integration of

velocity and computing velocity by integration of the total acceleration where

the total acceleration is calculated as the sum of gravitational acceleration, plus

the acceleration produced by applied non gravitational forces (known as spe-

cific force acceleration) [Savage, 1998a], [Savage, 1998b]. For the several past

decades, IN has been used for many navigation tasks. The majority of these

systems were extremely expensive and this high cost limited the usage of such

systems primarily to military and commercial aircraft application. High quality

and characterized sensors in the Inertial Measurement Unit (IMU) are required

in certain navigation applications to meet the relatively high accuracy require-

ments over a long-duration mission. Today increasing powerful, smaller, and less

expensive computational equipments allows strap-down navigation algorithms to

be implemented accurately on inexpensive small packages.

2.1 Coordinate Frames and Transformations

Fundamental to the process of Inertial Navigation is the precise definition of a

number of Cartesian coordinate (reference) frames. Each frame is an orthogonal,

right-handed, coordinate frame or axis set. For navigation over the Earth, it is

necessary to define axis sets which allow the inertial measurements to be related

to the cardinal directions of the Earth, that is, frames which have a physical
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significance when attempting to navigate in the vicinity of the Earth.
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Figure 2.1: Coordinate frames. Earth Centered Earth Fixed Frame
E(Oe; xe; ye; ze), Navigation frame N(O; x0; y0; z0), and Body frame B(P ; x; y; z)

2.1.1 The shape of the Earth

Before we define the reference frames and determine position on the Earth using

inertial measurements, it is necessary to make some assumptions regarding the

shape of the Earth. The spherical model of the Earth is not sufficiently represen-

tative for very accurate navigation. Owing to the slight flattening of the Earth

at the poles, it is customary to model the Earth as a reference ellipsoid which

approximates more closely to the true geometry.

One such reference ellipsoid model is the WGS 84 model, defined by the World

Geodetic System Committee in 1984 [Farrell and Barth, 1999], [Titterton, 1997].

The WGS 84 ellipsoid parameters as defined in Table 2.1 are used throughout

the discussion.
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Table 2.1: WGS 84 ellipsoid parameters

2.1.2 Variation of the Earth’s gravity field

Accelerometers provide measurements of the difference between the acceleration

with respect to inertial space and the gravitational attraction acting at the loca-

tion of the navigation system. In order to extract the precise estimates of true

acceleration needed for accurate navigation in the vicinity of the Earth, it is nec-

essary to model accurately the Earth’s gravity field. The gravity field is defined

as the acceleration field arising from the combined effects of the earth’s gravita-

tional field and the inward centripetal acceleration due to the earth’s rotation.

If we assume that the earth is conformed to the reference ellipsoid model, the

gravity vector would be normal to the reference ellipsoid and its magnitude could

be precisely calculated. Since the actual earth’s surface deviates from the refer-

ence ellipsoid both the magnitude and the direction of the gravity vector vary

with position on the Earth’s surface and altitude above it. Such deviations in the

magnitude and direction of the gravity vector are known as gravity anomalies.

Mathematical representations of the Earth’s gravitational field, the centripetal

acceleration and the gravity anomalies are discussed in more depth in [Britting,

1971], [Farrell and Barth, 1999]. For many applications it is sufficient to assume

the variation of gravity field is with altitude and is given by the following relation

[Farrell and Barth, 1999]:

g(h) ≈ g0(1−
2h

a
) (2.1)

where g0 is the equatorial value of gravity which for the WGS 84 model is g0 =

9.7804900 m/s2.
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2.1.3 Earth Centered Earth Fixed Frame (ECEF)

The Earth Centered Earth Fixed Frame E(Oe; xe; ye; ze) as shown on figure 2.1

has its origin fixed to the center of the Earth and its axis Oexe and Oeye are

fixed to the Earth and rotate together, with a rate ωie around the Oeze axis. The

Oexe axis is extended through the intersection of the prime (Greenwich) meridian

and the equator (point A on figure 2.1). The position of any point on the Earth

for example the point O, can be described by the ECEF spherical coordinates:

ϕ−latitude and λ−longitude, or by the ECEF rectangular coordinates: xe, ye, ze,

as shown on figure 2.1.

2.1.4 Navigation frame

The Navigation frame N(O; x0; y0; z0), has its origin on the surface point on the

Earth (point of interest), for example point O, see figure 2.1. The z0 axis is point-

ing toward the interior of the Earth perpendicular to the reference ellipsoid. The

x0 axis points to true north while y0 axis points east. For short term navigation

where the navigation period is short as required for many tactical UAV applica-

tions and missions the rotation of the Earth can be neglected and the Navigation

frame can be considered as inertial frame. Very often there is a need to transform

measurements from the ECEF frame to Navigation frame and opposite. The

transformation matrix of vectors from the ECEF frame to Navigation frame is

given as [Farrell and Barth, 1999]:

Cn
e =







− sinϕ cosλ − sinϕ sinλ cosϕ

− sinλ cosλ 0

− cosϕ cosλ − cosϕ sinλ − sinϕ






(2.2)

The transformation of the coordinates of a point from the Navigation frame to

the ECEF frame is:

[xe, ye, ze]
T = [xe(0), ye(0), ze(0)]

T + Ce
n[x0, y0, z0]

T (2.3)
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where, Ce
n = (Cn

e )
T and [xe(0), ye(0), ze(0)]

T are the ECEF coordinates of the

origin of the Navigation frame.

2.1.5 Body frame

The Body frame B(P ; x; y; z) is rigidly attached to the vehicle usually at the

center of gravity. The x axis is defined in the forward direction. The z axis is

perpendicular to the x axis and is pointing to the bottom of the vehicle. The y axis

completes the right handed orthogonal coordinate system. The transformation

matrix for transforming Navigation frame coordinates into vehicle Body frame

coordinates is defined by the series of three plane rotations involving the three

Euler angles (φ-roll, θ-pitch and ψ-yaw), typically used in aerospace applications.

Cb
n =







cψcθ sψcθ −sθ

−sψcφ+ cψsθsφ cψcφ+ sψsθsφ cθsφ

sψsφ+ cψsθcφ −cψsφ+ sψsθcφ cθcφ






(2.4)

The transformation matrix for transforming Body frame coordinates into Naviga-

tion frame coordinates is Cn
b = (Cb

n)
T . When using the matrix (2.4) and when the

pitch angle is θ = ±90◦ we have singularity in the matrix. Often for defining the

transformation matrix we can use the quaternion method for parameterizing the

rotation angles. Quaternion parametrizations are singularity free and are more

computationally efficient then the Euler angles [Farrell and Barth, 1999].

Cn
b =







(q20 + q21 − q22 − q23) 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) (q20 − q21 − q22 + q23)






(2.5)

The quaternion approach is often the preferred implementation approach as the

linearity of the quternions, the lack of trigonometric functions, and the small

numbers of parameters that allow efficient implementation [Farrell and Barth,

1999]. The only shortcoming of the quaternions is that they don’t have simple
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geometrical representation and because of this can’t be measured directly. But

this is not a problem because there is a connection between the relation (2.4) and

(2.5), more about this can be found in [Titterton, 1997].

2.2 Navigation Equations

2.2.1 Navigation with respect to a fixed frame

In a situation where we need to navigate with respect to inertial or fixed non-

accelerating and non-rotating set of axis, the measured components of specific

force and estimates of the gravitational field are summed to determine the com-

ponents with respect to that space fixed reference frame. These quantities can

be integrated once in order to determine the velocity and once more in order

to determine the position in that frame. The mathematical expression of this

process can be done in the following manner. Let r represent the position vector

of some point P with respect to O, the origin of the reference frame, as shown

on figure 2.2.

iZ

O

iX

iY

P

r

P'

Figure 2.2: Position vector with respect to reference frame
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The acceleration of P with respect to this space fixed axis set denoted by the

subscript i, (read inertial) is defined by:

ai =
d2

dt2
r |i (2.6)

A triad of perfect accelerometers will provide a measure of the specific force act-

ing at the point P where:

f =
d2

dt2
r |i − g (2.7)

in which g is the mass attraction gravitation vector. Rearranging equation (2.7)

yields the following equation:

d2

dt2
r |i = f + g (2.8)

This is called the navigation equation since, with suitable integration it yields the

navigation quantities of velocity and position. The first integral gives the velocity

of point P with respect to the i-frame:

vi =
d

dt
r |i (2.9)

whilst a second integration gives its position.

2.2.2 Navigation with respect to a rotating frame

In practice, we often need to derive the estimates of a vehicle’s velocity and posi-

tion with respect to a rotating reference frame, as when navigating in the vicinity

of the Earth. In this situation, additional apparent forces will be acting which

are functions of the reference frame motion. This results in a revised form of

the navigation equation which may be integrated to determine the ground speed

of the vehicle ve, directly. Alternatively, ve may be computed from the inertial
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velocity vi, using the theorem of Coriolis, as follows,

ve =
d

dt
r |e = vi − Ωie × r (2.10)

where Ωie =
[

0 0 ωie

]T

is the turn rate of the Earth frame with respect to

the i-frame and × denotes a vector cross product.

2.3 Detailed Navigation Equations

The navigation equation (2.8) may be solved in any one of the reference frames

defined in section 2.1. If the Earth frame is chosen, then the solution of the

navigation equation, most commonly the velocity is given in the local Navigation

frame and the position is given with ECEF rectangular or spherical coordinates.

One such mechanization is the one derived by Britting in [Britting, 1971]. This

mechanization is suitable for navigation of UAV’s over large distances around the

Earth and it also allows very easy integration of the information’s from the GPS

receiver. As derived in [Britting, 1971], the IN mechanization equations are the

computer implementation of the IN equations, where x̂ denotes the computed

value of the variable x. The IN state vector x, which can be written as, ẋ =

f(x, u, t) + w contains the following states:

x = [ ϕ λ h VN VE VD q0 q1 q2 q3]
T

As mentioned before the position is given with ECEF spherical coordinates where,

ϕ is the latitude, is λ longitude, both in radians, h is the altitude in meters,

VN , VE , VD are the components of the velocity vector vn = [VN , VE, VD] given in

Navigation frame, q0, q1, q2, q3 and are Euler-Rodriguez quaternions, representing

the attitude. Inputs u to the IN are the measurements from the IMU such as

accelerations
[

fx fy fz

]T

and angular rates [ p q r]T measured in body

frame and w represents white noise process with known covariance. From the

measured accelerations we can calculate the components of the velocity by the
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following equations:

˙̂
VN = −(

˙̂
λ+ 2ωie) sin(ϕ̂)V̂E + ˙̂ϕV̂D + f̂N

˙̂
VE = (

˙̂
λ+ 2ωie) sin(ϕ̂)V̂N + (

˙̂
λ+ 2ωie) cos(ϕ̂)V̂D + f̂E

˙̂
VD = − ˙̂ϕV̂N − (

˙̂
λ+ 2ωie) cos(ϕ̂)V̂E + f̂D + ĝ







fN

fE

fD






= Cn

b







fx

fy

fz







where, ωie is the inertial rate of rotation of the earth in rad/s, g is the local

gravitational acceleration in m/s2,
[

fN fE fD

]T

denotes the specific force

vector in Navigation frame, and Cn
b is the transformation matrix (2.5) given in

quaternion form which transforms the measurements from the Body frame to the

Navigation frame.
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ĥ

q
atitude

)ˆˆ/(1 hR +ϕ

ϕ+λ ˆcos)ˆˆ/(1 hR

Atitude
equations

Accel.

Gyros

dt)(�

ϕ	̂

Figure 2.3: IN mechanization diagram

Thus the computed velocity in Navigation frame, is given by

v̂n =

∫

˙̂vndt+ v̂n(0).
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As the latitude ϕ, longitude λ and the altitude h are related to the velocity

components, these quantities can be calculated as follows.

˙̂ϕ =
V̂N

(R̂ϕ + ĥ)

˙̂
λ =

V̂E

(R̂λ + ĥ) cos(ϕ̂)

˙̂
h = −V̂D

where, Rϕ represents the meridian radius in meters, Rλ is the normal radius also

in meters. The latitude, longitude and altitude are obtained by integrating the

above equations with the suitable initial conditions:

ϕ̂ =

∫

˙̂ϕdt+ ϕ̂(0)

λ̂ =

∫

˙̂
λdt+ λ̂(0)

ĥ =

∫

˙̂
hdt+ ĥ(0)

The attitude equations given in quaternions can be used which integrate the

angular rates vector [ p q r]T and are given by the following relation:

˙̂q0 = −1

2
(q̂1p+ q̂2q + q̂3r)

˙̂q1 =
1

2
(q̂0p+ q̂2r − q̂3q)

˙̂q2 =
1

2
(q̂0q + q̂3p− q̂1r)

˙̂q3 =
1

2
(q̂0r + q̂1q − q̂2p)

But as we have mentioned before in section 2.1, for very short term navigation as

required for many tactical UAV applications and missions further simplifications

to the system mechanization may be permitted.
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For instance, when the navigation period is short the effects of the rotation of the

Earth on the attitude computation process can sometimes be ignored. Coriolis

corrections are no longer essential in the velocity equations to give sufficiently

accurate navigation [Titterton, 1997]. In this case we can neglect the Earth

curvature and the Navigation frame can be considered as inertial frame.

atitude

n

bC
bf

qAtitude

equations

Accel.

Gyros

Gravity

dt)(∫ dt)(∫
np

ng

bω

n
f

nv

nv

Figure 2.4: IN mechanization diagram - Navigation frame

In this case the navigation equation can have the following form (including the

attitude equations):

ṗn = vn

v̇n = Cn
b f

b + gn

q̇n
b
= 1

2
Ωqn

b

These equations modeled discretely take the following form:







pnk
vnk
qk






=







vnk−1∆t + pnk−1

[Cn
b f

b
k + gn]∆t + vnk−1

1
2
Ωqk−1∆t + qk−1







2.4 Sources of Error in Inertial Navigation Sys-

tem

IN presents many drawbacks, which complicate the usage as alone navigation

system. Error in the calculated navigation system state can arise from four main

sources:
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1. Instrumentation Errors: The sensed variables may not equal the physi-

cal quantities because of imperfections in the sensors (e.g., bias, scale factor,

nonlinearity, and random noise).

2. Computational Errors: The navigation equations are typically imple-

mented by a digital computer. Quantization, overflow, and numeric (e.g.,

integration) errors can occur.

3. Alignment Errors: The sensors and their platform cannot be aligned

perfectly with their assumed directions.

4. Environment Errors: The environment cannot be modeled exactly and

affects compensation of the measurements.

All these errors make the IN system diverging slowly from the real measure-

ments with time. The rate at which navigation errors grow over long periods

of time is governed predominantly by the accuracy of the initial alignment, im-

perfections in the inertial sensors used by the system, and the dynamics of the

trajectory followed by the vehicle. To illustrate Table 2.2 is showing the quadratic

effect of the accelerometer bias on the position [Walchko, 2002].

error =
1

2
bias · t2

Hence, sensor biases can be included as part of the state vector of the IN state

Bias  
2/ sm  

       Error (m) 
      t=100 sec 

        Error(m) 
        t=30 min 

0.1               500               162000 
0.01                 5                16200 
0.001                0.5                 1620 
0.0001               0.05                  162 

 

Table 2.2: Quadratic effect of the accelerometer bias on the position

vector and estimated along with the position, velocity and attitude. As shown

in [Franklin et al., 2000], [Hong and L. M. Chun, 2005] in order to estimate the

biases (disturbances), we must provide a model of how they behave.
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If we assume the bias is constant, the model is quite simple:

α̇a = 0

α̇g = 0

where αa is accelerometer bias, αg is qyro bias. But, we could extend the idea

to other kinds of behavior, for example as shown in [Farrell et al., 2000] we can

model the biases as random walk processes. The random walk process better

known as Wiener or Brownian-motion process is implemented by integrating the

output of white noise source. Then for the accelerometer and gyro bias we have:

α̇a = ωa(t)

α̇g = ωg(t)

where the covariance’s for the driving white noise processes ωa and ωg can be

obtained by analysis of the instrument biases over extended period of time. In

actuality, αa and αg represent a composite of accelerometers and gyro errors,

more in [Farrell et al., 2000]. We need to be aware that the bias model needs to

have different values for each accelerometers and gyros.

2.5 Aided Inertial Navigation System

To make up for the inertial measurement drifts, an alternative approach, con-

sisting in employing some additional source of navigation information, external

to the inertial system to improve the accuracy of the inertial system, is needed.

For example GPS Aided IN today is well understood and widely implemented

on many aerial and ground vehicles. The advantages and disadvantages of the

GPS and IN systems make them complementary, and the best estimates of the

position, velocity and attitude can be obtained by combining both GPS and IN

measurements using one of the following Aided Inertial Navigation Filter Con-

figuration: Within an integrated navigation system, the filter can be configured

either as a direct or indirect form depending on the types of sensors and the

complexities of the system [Kim, 2004].
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Figure 2.5: (a) The direct filter configuration and (b) the indirect filter

In a direct configuration, the filter directly estimates the states of interest. It

typically constitutes a main functional block within the system performing both

the Inertial Navigation equations and the observation fusion. In the indirect

formulation, the filter estimates the error quantities of the states, and applies

this error to the external Inertial Navigation equations loop for correction, hence

it estimate the state indirectly. By dealing with the error quantities, the filter

can now be decoupled from the main loop and can operate in a complementary

fashion.
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Chapter 3

Vision Sensors

Vision sensors are nowadays considered essential for UAV navigation, firstly be-

cause they are cost effective, small, compact and reliable passive sensors and sec-

ondly because they are capable of providing a rich source of information about

the vehicle environment.

3.1 Single Camera

The single camera as projective sensor is an ideal hardware setup for aerial ve-

hicles as it has small weight and can be easily mounted on the vehicle. A major

drawback of a single camera is the absence of depth information i.e. relative range

to the map points, see figure (3.1). By performing motion i.e. taking measure-

ments of the map points from two or more camera positions, depth information

can be estimated. This technique correlates the depth information with the cam-

era motion and raises the issue of great uncertainty in the depth information. It

is possible that the growth of uncertainty in the camera motion is quite rapid and

this large uncertainty is reflected in the depth estimates that also become uncer-

tain. Since vectors have power to simplify geometrical problems we have used

vectors to explain the vision sensors geometry. With reference to figure (3.1),

when the vehicle moves, the camera observes the map point M with position

vector m, repeatedly as it translates through the camera image. At each image,

the camera is capturing a projection ray from the map point M to the perspec-

29



by

x

bx
bz−

ρ

r̂

u

v
0

m

p

b

y

z

0

P

M

B

Figure 3.1: Single camera (vectors application)

tive center P of the camera with position vector p. Each projection ray from

the camera is represented by a line ρr̂. Instead of using angles such as bearing

or azimuth to the map points we use unit direction vectors r̂ to the map points.

This approach is more efficient in terms of computational speed and accuracy,

allows us to make important trigonometric function substitutions in the vision

sensors geometry, and addresses the problem of singularities in the trigonometric

functions at certain points. It is assumed that the single camera is mounted in

such a way that the camera frame (P ; xb, yb, zb) is at (or very near to) the center

of gravity of the vehicle and is aligned with the vehicle body frame (V ; xb, yb, zb).

The origin of the camera frame is at the perspective center P of the camera i.e.

the center of gravity of the vehicle. The xb axis is defined in forward direction

and is perpendicular to the horizontal component u of the camera image. The

zb axis is perpendicular to xb axis and is equal to the focal length of the camera.

The negative sign appears when zb axis is pointing to the center of the camera

image. The yb axis completes the right-handed orthogonal coordinate system and

is perpendicular to the vertical component v of the camera image, see figure (3.1).

In the camera (body) frame we measure the camera vector rb. The unit vector
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in the direction rb notated as r̂b may be evaluated as:

r̂b =
rb
∣

∣rb
∣

∣

(3.1)

Unit vector r̂b can be transformed in the navigation frame (0; x, y, z) with the

transformation matrix that transforms body frame coordinates into navigation

frame coordinates Cn
b , equation (2.5):

r̂ = Cn
b r̂b (3.2)

As we can see from equations (3.1) and (3.2) the use of unit direction vectors

as measurements to the map points involves a non linear transformation from

the fundamental camera vector. This transformation will introduce correlations

between the errors on the components of the unit direction vector. Both the

transformation matrix in equation (3.2) and the normalizing term in equation

(3.1) are with very small quantities and the errors on successive measurements

can be omitted and treated as approximately uncorrelated. This allows the mea-

surement covariance matrix to be considered as diagonal matrix. This assumption

in most practical cases allows fast processing of the measurements and is saving

a significant amount of processing time [Wade and Grewal, 1988].

3.2 Stereo Camera

For the stereo camera setup, a second camera is mounted with known offset D

from the first. We assume no angular offset from the vehicle body frame. The

origin of the second camera frame is at the perspective center P ′ of the second

camera with position vector p′, see figure (3.2). With a stereo camera, we can

estimate the map point positions and the range to the map points. These two

facts are the major advantages of the stereo camera over the single camera. The

range vector ρ being the difference between the map point vector m and the

position vector p may be written as

ρ = m− p (3.3)
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From the definition of vector product, the minimum distance d from a point to
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Figure 3.2: Stereo camera (vectors application)

a line is (Appendix A):

d =
∣

∣(m− p)× r̂
∣

∣ (3.4)

Using the stereo camera we have measurements of the map point M from the

positions P and P ′ each represented by a line (p+ρr̂) and (p′+ρ′r̂′). For a single

measurement, let us choose an error weighting function of the magnitude of the

minimum distance d squared:

e =
∣

∣(m− p)× r̂
∣

∣

2
(3.5)

Expanding equation (3.5)

e = mTRm− 2mTRp+ pTRp (3.6)
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where R = [(r̂T r̂)I − 0.5(r̂r̂T + r̂r̂T )]. However, since r̂ = [ a b c ]T is unit

length:

R = [I − r̂r̂T ] =







(1− a2) −ab −ac
−ab (1− b2) −bc
−ac −bc (1− c2)






(3.7)

For multiple measurements the mean error is given by:

E =
1

n

n
∑

i=1

ei (3.8)

Since m is constant:

E = mT 1

n

n
∑

i=1

(R)im − 2mT 1

n

n
∑

i=1

(Rp)i +
1

n

n
∑

i=1

(pTRp)i

E = mTAm− 2mT b+ c

Differentiating with respect to m

dE

dm
= 2Am− 2b (3.9)

where A = 1
n

n
∑

i=1

(R)i, b =
1
n

n
∑

i=1

(Rp)i, c =
1
n

n
∑

i=1

(pTRp)i. Equating equation (3.9)

and solving for m estimates the map point position vector

m = A−1b (3.10)

We use this method for estimation of the range vector ρ. Using the measured

vectors rb, r
′
b we calculate the two unit direction vectors:

r̂b =
rb

|rb|

and

r̂′b =
r′b
∣

∣

∣
r′b

∣

∣

∣

.
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With the two unit direction vectors r̂b = [ a1 b1 c1 ]T and r̂′b = [ a2 b2 c2 ]T

using equation (3.7), we calculate R1 and R2 matrices. The matrix A is then

calculated:

A =
1

2
(R1 +R2)

If we let the position vector to be p = 0 and accordingly p′ = p+D i.e. p′ = D we

can calculate the body frame components [ ρbx ρby ρbz]
T of the relative range

ρb to the map point. From the vectors b1 = R1p and b2 = R2p
′ we calculate the

vector b

b =
1

2
(b1 + b2)

Applying equation (3.10) gives the body frame components of the relative range

ρb

ρb = A−1b (3.11)

The navigation frame components [ ρx ρy ρz ]
T of the relative range vector ρ

can be calculated as:

ρ = Cn
b ρb (3.12)

The range ρ in the navigation frame is

|ρ| = Cn
b ρb (3.13)

As with the single camera for the stereo camera the use of range components

as measurements to the map points involves a non linear transformation from

the fundamental camera vectors which will introduce correlations between the

errors on the range components. As with the single camera we assume that

these quantities can be omitted and consider the measurement covariance matrix

as diagonal matrix. The stereo camera has drawbacks however, the main one

being the limited estimability range [J.Sola. et al., 2008]. The stereo camera can

provide reasonably good map point position estimates to a limited range. These

estimates depend on the camera offset D (figure (3.2). The solution seems to

be to increase the offset. This will increase the estimability range but will add

mechanical complexity to the sensor. Large camera offsets are typically used for
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aerial vehicles. The feature matching in these stereo camera setups becomes a

challenging problem. In this thesis, we assume that all the image processing and

feature matching are solved and that they are provided as pixel values of the map

points in the camera images and that the errors in the camera images act as zero

mean white noise with known covariance.
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Chapter 4

Sensor Fusion

Sensor fusion can be regarded as a method for integrating information from var-

ious sensors. The idea of integration is to take advantage of the complementary

strengths of the sensors and to obtain the best estimate for a dynamic system’s

states. Sensor fusion algorithms are particularly useful in low-cost UAV applica-

tions, where acceptable performance and reliability is desired, given a limited set

of inexpensive sensors [Niculescu, 2001].

The sensor fusion system can provide:

• filtered high-rate navigation and control data for increased performance,

estimation of the flight parameters which are not measured directly (i.e.

attitude angles, angle-of-attack, sideslip),

• detection of significant changes in aircraft dynamics (i.e. icing, airframe

damage),

• ability to replace failed sensor outputs with estimates.

One of the aims of this thesis was to study the applicability of various fil-

tering algorithms which can be applied in sensor fusion like the classic linear

Kalman Filter (KF), the natural extension for systems with nonlinear dynamics

the Extended Kalman Filter (EKF), Iterated Extended Kalman Filter (IEKF)

Unscented Kalman Filter (UKF) and Particle Filters (PF).
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4.1 The Problem of Nonlinear Filtering

Nonlinear filtering is a problem of estimating a state of a stochastic dynamic

system from noisy measurements. In this thesis the state space approach is used

for modeling the dynamic systems with discrete time formulation of the problem.

We are adopting the Bayesian approach as general framework for state estimation

with assumption that the dynamic system model and the measurement model

are available in probabilistic form. Within the Bayesian approach we attempt to

construct the posterior probability density function (pdf) of the state based on

all the available statistical information including the available measurements. If

the system and/or the measurements models are nonlinear then the posterior pdf

is non-Gaussian [Ristic et al., 2004]. This posterior pdf can be an answer of what

the solution i.e. the estimate of the state should be and with respect to a ceratin

criterion the best (optimal) solution can be obtained.

Consider the following discrete-time system model which describes the evolution

of the state:

xk = fk(xk−1, wk) (4.1)

where fk is a nonlinear function of the state xk−1 and wk is a zero mean process

noise sequence. The noisy measurements zk are related to the state estimate xk

via the following measurements equation:

zk = hk(xk, vk) (4.2)

where hk is a known nonlinear function and vk is an measurement noise sequence.

The noise sequences wk and vk are assumed to be white with known pdf and

mutually independent. It is assumed that an initial pdf p(x0|z0) known as prior

is available. From Bayesian perspective the required posterior pdf p(xk|z1:k) can
be obtained, recursively, in two stages: prediction and update [Ristic et al., 2004].

Prediction stage gives the prior pdf of the state at time k

p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (4.3)
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where it is supposed that the required pdf p(xk−1|z1:k−1) at time k−1 is available.

The probabilistic model of the evolution of the state p(xk|xk−1) is defined by

equation (4.1) and the known statistics of the process noise wk.

Update stage involves update of the prior pdf using the Bayes’ rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

∫

p(zk|xk)p(xk|z1:k−1)dxk
(4.4)

where the likelihood function p(zk|xk) is defined by equation (4.2) and the known

statistics of the measurement noise vk. This recursive propagation of the posterior

pdf is only a conceptual solution and in general cannot be determined analytically.

Solutions exist in restrictive set of cases. For a linear-Gaussian case the Kalman

filter is being the most popular. Others solutions that approximate the optimal

solution such as the Extended Kalman Filters, Unscented Kalman Filter and the

Particle filters are possible and will be presented later in this chapter.

4.2 Kalman Filter

The Kalman filter assumes that the posterior density is Gaussian and is com-

pletely characterized by its mean vector and covariance matrix. This fact makes

the linear filtering problems particularly tractable [Jazwinski, 1970]. Equations

(4.1) and (4.2) for the linear dynamic system can be rewritten as:

xk = Fkxk−1 + wk (4.5)

zk = Hkxk + vk (4.6)

where Fk is a linear state transition matrix, Hk is the measurement (observation)

matrix which relates the state vector xk with the measurements zk. The zero

mean white Gaussian sequences wk and vk are mutually independent and have

covariances Qk and Rk respectively.

The Kalman filter equations are derived using equations (4.3) and (4.4) with the

involved densities being Gaussian:

p(xk−1|z1:k−1) = N(xk−1; x̂k−1|k−1, Pk−1|k−1) (4.7)
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p(xk|z1:k−1) = N(xk; x̂k|k−1, Pk|k−1) (4.8)

p(xk|z1:k) = N(xk; x̂k|k, Pk|k) (4.9)

where N(x;m,P ) represents a Gaussian density with argument x, mean m and

covariance P . The appropriate means and covariances of the Kalman Filter are

computed as follows [Ristic et al., 2004], [Jazwinski, 1970]:

Prediction

x̂k|k−1 = Fkx̂k−1|k−1 (4.10)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (4.11)

Update

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (4.12)

Pk|k = Pk|k−1 −KkHkPk|k−1 (4.13)

where the Kalman gain is calculated by

Kk = Pk|k−1H
T
k [HkPk|k−1H

T
k +Rk]

−1 (4.14)

4.3 Extended Kalman Filter

To estimate the state of a non linear system, a modified form of the Kalman Filter,

the Extended Kalman Filter (EKF) is used. EKF approximates (linearizes) the

dynamic system model (4.1) and the measurement model (4.2) by the first terms

in their Taylor expansion. These equations for the nonlinear dynamic system

with additive noise can be rewritten as:

xk = fk(xk−1) + wk (4.15)

zk = hk(xk) + vk (4.16)

Within EKF the posterior density p(xk|z1:k) is approximated as Gaussian and the

relationships (4.7) to (4.9) are assumed to apply:

p(xk−1|z1:k−1) ≈ N(xk−1; x̂k−1|k−1, Pk−1|k−1) (4.17)

40



p(xk|z1:k−1) ≈ N(xk; x̂k|k−1, Pk|k−1) (4.18)

p(xk|z1:k) ≈ N(xk; x̂k|k, Pk|k) (4.19)

The appropriate means and covariances of the EKF are computed as follows

[Ristic et al., 2004], [Jazwinski, 1970]:

Prediction

x̂k|k−1 = fk(x̂k−1|k−1) (4.20)

Pk|k−1 = ∇fx
kPk−1|k−1∇fx

k
T +Qk (4.21)

Update

x̂k|k = x̂k|k−1 +Kk[zk − hk(x̂k|k−1)] (4.22)

Pk|k = Pk|k−1 −Kk∇hxkPk|k−1 (4.23)

where the Kalman gain is calculated by

Kk = Pk|k−1∇hxkT [∇hxkPk|k−1∇hxkT +Rk]
−1 (4.24)

The Jacobian ∇fx
k of the nonlinear function fk is with respect to the state xk

and is evaluated at x̂k−1|k−1. Similar the Jacobian ∇hxk of the nonlinear function

hk is with respect to the state xk and is evaluated at x̂k|k−1. They are the local

linearizations of the nonlinear functions and serve as satisfactory description of

the nonlinearities.

4.4 Iterated Extended Kalman Filter

Iterated Extended Kalman Filter (IEKF) is largely based on EKF. IEKF presents

an algorithm which is extremely effective in accounting for measurement nonlin-

earities [Jazwinski, 1970]. It is known as local iteration algorithm. By local

iteration, we mean iteration at a point tk, or on an interval [tk−1, tk]. The pur-

pose of the iterations is to improve the reference trajectory, and thus the estimate,

in the presence of significant nonlinearities. Since the iteration is local, the recur-
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sive filter structure is retained; new estimates are computed as new observations

become available. The IEKF uses the EKF equations (4.22) replaced by:

ηi+1 = x̂k|k−1 +Kk[zk − hk(ηi)−∇hηik {x̂k|k−1 − ηi}] i = 1, . . . , l (4.25)

x̂k|k = nl (4.26)

The iteration starts with η1 = x̂k|k−1, and terminates when there is no significant

difference between consecutive iterates. Note that the Kalman gain Kk, equation

(4.24) is revaluated on each iteration, as are the measurement function hk and

the matrix ∇hηik of the nonlinear function hk with respect to ni. The last iterate,

say nl, is taken for the estimate x̂k|k.

4.5 Unscented Kalman Filter

Numbers of significant problems appear when implementing EKF. The first is

the need to analytically evaluate the Jacobian matrices of the dynamic system

model and the measurement model. The Jacobian is not guaranteed to exist, or

might not have a finite value. Further, there can be considerable implementation

difficulties when the system is composed of many states and is highly non-linear.

Finally, the assumption that the second and higher-order errors might not be

negligible and linearization can introduce significant errors [Julier, 1997]. The

Unscented Kalman Filter (UKF) addresses the approximation issues of the EKF.

It does not approximate the nonlinear functions instead it approximates the pos-

terior density p(xk|z1:k) as a Gaussian density but now specified using a minimal

set of carefully chosen sample points called sigma points. These sample points

completely capture the true mean and covariance of the Gaussian density, and

when propagated through the true nonlinear system, capture the posterior mean

and covariance accurately to the second order (Taylor series expansion) for any

nonlinearity [Haykin, 2001].
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4.5.1 The Unscented Transformation

The unscented transformation is a method that calculates the statistics of a ran-

dom variable which undergoes nonlinear transformation [Julier, 1996]. Given

n−dimensional random variable xk−1 with mean x̂k−1|k−1 and covariance Pk−1|k−1

is propagated through a nonlinear function x̂k|k−1 = f(x̂k−1|k−1). The calculation

of the statistics of the random variable x̂k|k−1 is made by 2n+1 weighted samples

(sigma points) that are selected by the following algorithm:

χ0
k−1|k−1 = x̂k−1|k−1

χi
k−1|k−1 = x̂k−1|k−1 + (

√

(n + λ)Pk−1|k−1)i

χi+n
k−1|k−1 = x̂k−1|k−1 − (

√

(n+ λ)Pk−1|k−1)i

(4.27)

and the associated weights

Wm
0 = λ/(n+ λ),W c

0 = λ/(n+ λ) + (1− α2 + β)

Wm
0 = W c

0 = 1/{2(n+ λ)}, i = 1, . . . , 2n

where the parameter λ is a scaling parameter defined as λ = α2(n + κ) − n.

The constant α determines the spread of the sigma points around x̂k−1|k−1, and

is usually set to small positive value (e.g. 1 ≤ α ≤ 10−4). The constant κ

is a secondary scaling parameter, which is usually set to 3 − n, and β is used

to incorporate prior knowledge of the distribution (for Gaussian distributions,

β = 2 is optimal). (
√

(n+ λ)Pk−1|k−1)i is the i-th column of the matrix square

root [Haykin, 2001]. Given the set of samples generated by equation (4.27) each

sigma point is instantiated through the process model to yield a set of transformed

samples:

χi
k|k−1 = f [χi

k−1|k−1, uk] i = 1, . . . , 2n (4.28)

The mean and covariance are computed as

x̂k|k−1 =
2n
∑

i=0

Wm
i χ

i
k|k−1 (4.29)
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Pk|k−1 =

2n
∑

i=0

W c
i

{

χi
k|k−1 − x̂k|k−1

}{

χi
k|k−1 − x̂k|k−1

}T
(4.30)

and the cross-covariance as

P c
k|k−1 =

2n
∑

i=0

W c
i

{

χi
k−1|k−1 − x̂k|k−1

}{

χi
k|k−1 − x̂k|k−1

}T
(4.31)

The mean and covariance are directly calculated using standard vector and matrix

operations. This means that the algorithm can be applied to almost any choice

of process model, and the ”implementation overhead” is low because it is not

necessary to evaluate Jacobians or any other derivatives. The method has a

further advantage: it yields more accurate predictions than those determined

through linearization [Julier, 1997]. The unscented transform described above

can be written conveniently in matrix form as follows:

χk−1|k−1 = [ x̂k−1|k−1 · · · x̂k−1|k−1 ] +
√
c[ 0

√

Pk−1|k−1 −
√

Pk−1|k−1]

χ̂k|k−1 = f [χk−1|k−1, uk]

x̂k|k−1 = χ̂k|k−1wm

Pk|k−1 = χ̂k|k−1Wχ̂T
k|k−1

P c
k|k−1 = χk−1|k−1Wχ̂T

k|k−1

where χk−1|k−1 is the matrix of sigma points, function f(·) is applied to each

column of the argument matrix separately, c = α2(n + κ) , and vector wm and

matrix W are defined as follows [Sarkka, 2006]:

wm =
[

Wm
o · · · Wm

2n

]T

W =
(

I −
[

wm · · · wm

])

× diag (W c
0 · · ·W c

2n)×
(

I −
[

wm · · · wm

])T

.
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4.5.2 Unscented Kalman Filter

Using the matrix form of the unscented transform described above the prediction

and update steps of the Unscented Kalman filter (UKF) where the noises are

additive can be computed as follows:

Prediction:

χk−1|k−1 = [ x̂k−1|k−1 · · · x̂k−1|k−1 ] +
√
c[ 0

√

Pk−1|k−1 −
√

Pk−1|k−1]

χ̂∗
k|k−1 = f [χk−1|k−1, uk]

x̂k|k−1 = χ̂∗
k|k−1wm

Pk|k−1 = χ̂∗
k|k−1W ˆχ∗

k|k−1

T
+Qk

Update:

χk|k−1 = [ x̂k|k−1 · · · x̂k|k−1 ] +
√
c[ 0

√

Pk|k−1 −
√

Pk|k−1]

Zk|k−1 = h[χk|k−1]

ẑk|k−1 = Zk|k−1wm

P zz
k|k−1 = Zk|k−1WZT

k|k−1 +Rk

P xz
k|k−1 = χk|k−1WZT

k|k−1.

Then we compute the filter gain Kk and we update the mean and covariance as

follows:

Kk = P xz
k|k−1P

zz
k|k−1

−1

x̂k|k = x̂k|k−1 +Kk{zk − ẑk|k−1}

Pk|k = Pk|k−1 −KkP
zz
k|k−1K

T
k
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4.6 Particle Filters

The EKF, IEKF and UKF nonlinear filters rely on Gaussian approximations.

These techniques show limitations and inconsistencies in the solutions in appli-

cations with highly nonlinear models. The more non-Gaussian noise is with the

inputs and the measurements and/or the more non-linear the models are, the

more significant the problems become.

The current state-of-the-art filtering (estimation) theory looks for reliable and

accurate recursive estimation techniques for non-linear and non-Gaussian appli-

cations. Very popular are the sequential Monte Carlo methods, known as Particle

filters (PF). The central idea of the PF is to represent the required probability

density function as a set of random samples (particles), rather then as a function

over the state space [Gordon et al., 1993]. As the number of particles becomes

very large they provide equivalent representation of the required probability den-

sity function. Directly from the particles, estimates of the moments such as the

mean and covariance can be obtained.

4.6.1 Introduction to Monte Carlo Techniques

In many scientific problems it is of essential importance to compute the integral

I =

∫

D

g(x)dx, (4.32)

where D is often a region in a high dimensional space and g(x) is target function

of interest. If we can draw independent and identically distributed (i.i.d.) random

samples x(1), . . . , x(n) uniformly from D (by a computer), an approximation to I

can be obtained as [Liu, 2001]:

În =
1

n
{g(x(1)) + . . .+ g(x(n))} (4.33)

The average of many independent random variables with common mean and finite

variances tends to stabilize at their common mean that is,

lim
n→∞

În = I with probability of 1,
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which is stated and guaranteed by the law of large numbers. Assessment of the

convergence rate can be made by the central limit theorem (CLT) [Liu, 2001]:

√
n(În − I) → N(0, σ2) in distribution,

where σ2 = var{g(x)}. Hence the error term of this Monte Carlo approximation

is O(n−1/2), regardless of the dimensionality of x.

4.6.2 Importance Sampling

The Monte Carlo techniques suffer from wasting a lot of effort in evaluating ran-

dom samples located in regions where the function value is almost zero. The idea

of importance sampling suggests that we should focus on the regions of ”impor-

tance” so as to save computational resources [Liu, 2001]. This idea of biasing

towards ”importance” regions is particularly useful for Monte Carlo computation

with high dimensional models.

Suppose that p(x) ∝ π(x) is a probability density function from which it is diffi-

cult to draw samples but for which π(x) can be evaluated [Doucet et al., 2000],

[Arulampalam et al., 2002]. Let x(i) ≈ g(x), i = 1, . . . , N be samples that are

drawn from a trial (proposal) density g(·) called importance density function that

is similar to π(x). Then a weighted approximation to the discrete density p(x) is

given by

p(x) ≈
Ns
∑

i=1

w(i)δ(x− x(i)) (4.34)

where the normalized importance weight of the i− th sample is

w(i) ∝ π(x(i))

g(x(i))
(4.35)

If the samples x
(i)
0:k were generated from the importance density g(x0:k|z1:k) then

the weights defined with (4.35) become

w(i) ∝ p(x
(i)
0:k|z1:k)

g(x
(i)
0:k|z1:k)

(4.36)
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4.6.3 Sequential Importance Sampling

The sequential importance sampling uses the strategy of building up the im-

portance density sequentially. In this case suppose that at time k − 1 we have

samples constituting an approximation to p(x0:k−1|z1:k−1). We want with the

measurements zk at time k to approximate p(x0:k|z1:k) with a set of new samples.

If we decompose the importance density such as

g(x0:k|z1:k) = g(xk|x0:k−1, z1:k)g(x0:k−1|z1:k−1) (4.37)

then we can obtain samples x
(i)
0:k ≈ g(x0:k|z1:k) by augmenting each of the existing

samples x
(i)
0:k−1 ≈ g(x0:k−1|z1:k−1) with a new state x

(i)
k ≈ g(xk|x0:k−1, z1:k). Thus

the weight update equation can then be evaluated as [Arulampalam et al., 2002]:

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)k )p(x
(i)
k |x(i)k−1)

g(x
(i)
k |x(i)k−1, zk)

(4.38)

where the condition g(xk|x0:k−1, z1:k) = g(xk|xk−1, zk) is satisfied and the impor-

tance density becomes only depended on xk−1 and zk. Equivalently sequential

importance sampling algorithm approximates the density p(xk|z1:k) as

p(xk|z1:k) ≈
Ns
∑

i=1

w
(i)
k δ(xk − x

(i)
k ) (4.39)

with normalized importance weights defined by:

w̄
(i)
k =

w
(i)
k

N
∑

j=1

w
(j)
k

(4.40)

It can be shown that as N → ∞ the approximation given by (4.39) approaches

to the true posterior density p(xk|z1:k) [Ristic et al., 2004], [Arulampalam et al.,

2002].
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The estimated mean value x̂k and the covariance Pk can be computed using

the current state xk and the weight w̄
(i)
k as

x̂k = E{xk} =

N
∑

i=1

w̄
(i)
k x

(i)
k (4.41)

Pk = E
{

[xk −E{xk}][xk − E{xk}]T
}

≈
N
∑

i=1

w̄
(i)
k (x

(i)
k − x̂k)(x

(i)
k − x̂k)

T
(4.42)

Within the sequential importance sampling algorithm the best possible choice for

the importance density function should be the posterior density p(xk|z1:k). How-
ever for importance functions of the form (4.37) the variance of the importance

weights can only increase over time [Doucet et al., 2000]. This variance increase

is known as degeneracy phenomenon or degeneracy problem. It means that af-

ter certain number of recursions easily we encounter a situation where almost

all but one of the importance weights is very close to zero. This brings large

computational effort for updating the trajectories whose contribution to the ap-

proximation p(xk|z1:k) is almost zero. The degeneracy problem is unavoidable and

can be regarded as problem which was preventing the practical implementations

of the PF for many years.

4.6.4 Resampling

The idea behind the resampling method is by measuring the degeneracy of the

sequential importance sampling algorithm to remove the samples with very small

weights and multiply samples with large weights. This method works on reducing

the effects of the degeneracy. A suitable measure of degeneracy of the sequential

importance sampling algorithm is the effective sample size Neff , which can be

estimated by [Arulampalam et al., 2002]:

N̂eff =
1

N
∑

i=1

(w
(i)
k )2

(4.43)
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Usually the resampling method in the sequential importance sampling algorithm

will not be performed on every time step, but only when needed i.e. when Neff

falls bellow some threshold NT . The resampling step involves generating a new

set of samples {x(i)∗k }Ni=1 by resampling N times from the approximate discrete

representation given by

p(xk|z1:k) ≈
Ns
∑

i=1

w
(i)
k δ(xk − x

(i)
k ) (4.44)

so that Pr(x
(i)∗

k = xjk) = wj
k. The resulting sample is an i.i.d. sample from the dis-

crete density (4.44) and hence the new weights are uniform [Arulampalam et al.,

2002]. One efficient algorithm for the resampling, which is easy to implement

and is with O(N) complexity is the systematic resampling scheme [Ristic et al.,

2004].

4.6.5 Generic Particle Filter

The sections from 4.5.3 to 4.5.5 are presenting the building blocks of the Generic

Particle Filter (GPF). Its pseudocode is given on Table 4.1.

__________________________________________________________________ 

],},[{]},[{ 1

)(

1

)(

11

)()(

k

N

i

i

k

i

k

N

i

i

k

i

k zwxPFwx
=−−=

=

1. Filtering via sequential importance sampling algorithm (section 4.5.4) 
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2. Calculate effN̂  using equation (4.42) 

3. IF Teff NN <ˆ  

Resample (section 4.5.5) 
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4. END IF

__________________________________________________________________ 

Table 4.1: Generic Particle Filter

The sequential importance sampling algorithm is the basis for most of the PF

that are proposed in the literature. Many special cases of PF may be treated
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as different in a sense that different important density function is chosen and/or

there is a modification in the methodology for reducing the effects of degeneracy.

Presenting all the versions of the PF is out of the scope of this thesis. For more

detailed coverage of the PF please refer to [Ristic et al., 2004], [Doucet et al.,

2001], [Arulampalam et al., 2002], [Daum, 2005].

4.6.6 Rao-Blackwellized Particle Filter

The Rao-Blackwellization method recommends that we carry out analytical com-

putations as much as possible. For number of applications with high dimensional

state vectors the implementation of PF becomes problematic. This is a case be-

cause for high dimensional state vectors we need bigger number of samples to

cover the state space efficiently. Rao-Blackwellized Particle Filter (RBPF) ad-

dresses this issue and splits the state vector into two parts, one part xpk which is

estimated using the PF and other part xxk which is estimated in a closed form

for example with the Kalman-like filtering algorithms. RBPF uses the following

factorization of the posterior distribution of the state vector,

p(xp1:k, x
k
k|z1:k) = p(xkk|xp1:k, z1:k)p(x

p
1:k|z1:k) (4.45)

which follows from the Bayes’ rule. The measurements z1:k = {z1, . . . , zk} are up

to time k. When the term p(xkk|xp1:k, z1:k) of equation (4.45) is linear Gaussian,

the KF will be used for the estimation, whereas for the nonlinear non-Gaussian

part p(xp1:k|z1:k) PF will be used. The interpretation is that the KF is associated

with each of the samples in the PF. This gives mixed state space representation

with xpk represented with samples and xxk represented with a KF for each sample

[Hendeby et al., 2010].

4.6.7 Local Linearization Particle Filter

One of the most critical design issues of the PF is the choice of importance density

g(xk|x(i)k−1, zk). We are looking for importance functions which are minimizing the

variance of the importance weights. Ideally it should be an optimal importance

density function conditioned upon x
(i)
k−1 and the zk. In general this is possible in
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some special cases and class of models, for example when xk is a member of a finite

set or in a case of linear observation model where the optimal importance density

is Gaussian [Ristic et al., 2004]. The suboptimal methods that approximate the

optimal importance density are commonly used. The most popular suboptimal

choice is the transition prior,

g(xk|x(i)k−1, zk) = p(xk|x(i)k−1) (4.46)

For an additive zero mean Gaussian process noise model the transition prior is:

p(xk|x(i)k−1) = N(xk; f(x
(i)
k−1), Qk−1), (4.47)

Substitution of (4.46) into (4.38) then yields

w
(i)
k ∝ w

(i)
k−1p(zk|x

(i)
k ) (4.48)

Note that when the optimal importance function is used, the importance weights

can be computed before the particles are propagated to time k. Equation (4.48)

states that this is not possible with the transition prior [Ristic et al., 2004].

Other popular suboptimal method for approximation of the optimal importance

density is the local linearization method [van der Merwe et al., 2000]. It incor-

porates the most current observation with the optimal Gaussian approximation

of the state based on the EKF or the UKF. The idea is to use for each particle

with index−i a separate EKF(i) or UKF(i) to generate a Gaussian importance

density, that is

g(x
(i)
k |x(i)k−1, zk) = N(x

(i)
k ; x̂

(i)
k , P̂

(i)
k ), (4.49)

where x̂
(i)
k and P̂

(i)
k are estimates of the mean and covariance computed by EKF(i)

or UKF(i) at time k using measurements zk. This Particle Filter is known as

Local Linearization Particle Filter (LLPF). Its pseudocode is given on Table 4.2.

Use of the UKF for the local linearization makes the Unscented Particle Filter

(UPF). This method preforms the resampling at every time step and therefore the
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importance weights are not passed from one iteration to the next (this is similar

to the Sampling Importance Resampling Filter or Bootstrap Filter [Gordon et al.,

1993]). The use of UKF for the local linearization instead of the EKF is reported

to improve the performance [Ristic et al., 2004], [van der Merwe et al., 2000].
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Table 4.2: Local Linearization Particle Filter (Unscented Particle Filter)
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Chapter 5

Simultaneous Localization and

Mapping (SLAM)

The Simultaneous Localization and Mapping (SLAM) problem asks if it is pos-

sible for an autonomous vehicle to start in an unknown location in an unknown

environment and then to incrementally build a map of this environment while si-

multaneously using this map to compute the vehicle position. The SLAM problem

also can be found abbreviated as Concurrent Mapping and Localization (CML)

problem in the literature. It presents one of the most fundamental problems in

robotics today [Thrun et al., 2005].

5.1 Formulation of the SLAM Problem

In SLAM the vehicle is starting at an unknown location and is moving through an

environment with population of landmarks1. Assume that the absolute positions

of the landmarks are not available. The vehicle is equipped with a sensor which

gives relative measurements between any individual landmark and the vehicle

itself, as shown on figure (5.1).

1the terms landmark and map point will be used synonymously in this thesis
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Figure 5.1: The vehicle taking relative measurements to the landmarks

At time instant k, the following quantities are defined:

• xvk - vehicle state vector

• uk - the control input

• mi - vector describing the position of the i-th landmark whose true position

is assumed time invariant

• zik - observation taken from the vehicle of the position of the i-th landmark

at time k.

• mk = [ m1 m2 · · · mn ]T - map vector of the landmarks in the environ-

ment systems.

From a probabilistic perspective the SLAM problem involves estimating the pos-

terior probability density function (pdf) of the vehicle state xvk along with the

map m, given the measurements z1:k and control inputs u1:k up to time k:

p(xvk, m|z1:k, u1:k) (5.1)

In general a recursive solution of the SLAM problem is desirable. Suppose that the

required pdf p(xvk−1, m|z1:k−1, u1:k−1) at time k − 1 is available. From Bayesian

perspective the posterior pdf p(xvk, m|z1:k, u1:k) can be obtained in two stages:

prediction and update.
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Prediction

p(xvk, m|z1:k−1, u1:k) =

∫

p(xvk|xvk−1, uk)p(x
v
k−1, m|z1:k−1, u1:k−1)dxk−1 (5.2)

Update

p(xvk, m|z1:k, u1:k) =
p(zk|xvk, m)p(xvk, m|z1:k−1, u1:k)

∫

p(zk|xvk, m)p(xvk, m|z1:k−1, u1:k)dxk
(5.3)

Equation (5.2) and (5.3) provide the conceptual solution of the SLAM problem.

This recursive solution is a function of the probabilistic model of the evolution

of the state (vehicle model) p(xvk|xvk−1, uk) and the likelihood function (observa-

tion model) p(zk|xvk, m). The most common solution which represents the vehicle

model and the observation model in a state-space form with additive Gaussian

noise is the Extended Kalman Filter (EKF). Other alternative solution uses the

Rao-Blackwellized Particle Filter (RBPF) and is known as FastSLAM algorithm.

This solution describes the vehicle model with a set of samples (trajectory par-

ticles). After updating these samples it builds the corresponding map in closed

form i.e. analytically. Newer solutions with much potential have been proposed

including the use of the information state form [Durrant-White and Bailey, 2006].

5.2 Kalman Filter Solutions to the SLAM Prob-

lem

Kalman Filter solutions to the SLAM problem describe the probabilistic model

of the evolution of the state (vehicle model) p(xvk|xvk−1, uk) as

xvk = f(xvk−1, uk) + wk (5.4)

where f(·) describes the motion of the vehicle through the environment and wk is

the process noise being zero mean white Gaussian sequence with covariance Qk.

The observation model p(zk|xvk, m) is described in the form

zk = hk(x
v
k) + vk (5.5)
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where h(·) relates the measurements zk with the vehicle state xvk and vk is the

measurement noise being zero mean white Gaussian sequence with covariance

Rk. Equations (5.4) and (5.5) involve nonlinear terms and require use of EKF

that approximates (linearize) the nonlinear functions. The EKF-SLAM solution

is very well know and inherits many of the same benefits and problems as the

EKF solutions in navigation and tracking applications [Durrant-White and Bai-

ley, 2006].

5.2.1 Vehicle and Augmented State Vector

As the environment is explored new landmarks are observed and are added along

the vehicle state thus creating single augmented state vector. This form of the

state vector allows the Kalman filter to maintain in its covariance matrix a mea-

sure of all the correlations between the errors in the vehicle and the map. The

augmented state vector and the covariance matrix take the following form:

xk =













xvk
m1

...

mn













(5.6)

Pk =



















P vv P vm1 · · · P vmn

Pm1v Pm1m1 · · · Pm1mn

Pm2v Pm2m1 · · · Pm2mn

...
...

. . .
...

Pmnv Pmnm1 · · · Pmnmn



















(5.7)

where P vv is the covariance of the vehicle estimate and P ii is the covariance of

the i-th landmark. The elements P vi = P ivT measure the correlation between the

error in the vehicle and the landmarks and P ij = P jiT measure the correlation

between the errors in two map point estimates xmi
k and xmj

k .
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5.2.2 The Estimation Process

After the augmentation of the vehicle state with the map and creating the aug-

mented state vector, EKF update equations can be applied to compute the mean

and covariance

Prediction

x̂k|k−1 = fk(x̂k−1|k−1) (5.8)

Pk|k−1 = ∇fx
kPk−1|k−1∇fx

k
T +Qk (5.9)

where ∇fx
k is the Jacobian of the nonlinear function f(·) is with respect to the

state xk and is evaluated at x̂k−1|k−1.

Update

x̂k|k = x̂k|k−1 +Kk[zk − hk(x̂k|k−1)] (5.10)

Pk|k = Pk|k−1 −KkSkK
T
k (5.11)

where the innovation covariance Sk and the Kalman gain Kk are calculated by

Sk = ∇hxkPk|k−1∇hxkT +Rk (5.12)

Kk = Pk|k−1∇hxkTS−1
k (5.13)

Similar ∇hxk is the Jacobian of the nonlinear function h(·) is with respect to the

state xk and is evaluated at x̂k|k−1.

5.3 Structure of the SLAM Problem

This section presents results underlying the structure of the SLAM problem.

They are addressing a linear model of the evolution of the state (vehicle model),

equation (5.4) and linear observation model, equation (5.5), see [Dissanayake

et al., 2001], [Csorba, 1997] for more details.

The correlations between the landmark estimates increase monotonically as more

relative measurements are made. The complete covariance matrix Pk in block

form is shown with equation (5.7). The determinant of the state covariance

matrix presents a measure of the volume of the uncertainty ellipsoid (contour
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ellipsoid, see Appendix B) associated with the state estimate. The algorithm is

initialized using a positive semidefinite (psd) state covariance matrix Pk−1|k−1.

The matrices Qk and Rk are both psd, and consequently the matrices Pk|k−1, Sk,

KkSkK
T
k and Pk|k are all psd. The update equations ensure that total uncertainty

of the state estimate does not increase during an update:

detPk|k = det[Pk|k−1 −KkSkK
T
k ] ≤ detPk|k−1 (5.14)

The general properties of psd matrices ensure that this holds for any submatrix

of the map covariance matrix. The proof of this property for more general prob-

abilistic case still remains an open problem [Durrant-White and Bailey, 2006].

The correlations are critical part of the SLAM problem and none of these correla-

tions can be assumed zero. As relative measurements are taken during the update

process, correlations ensure that all landmarks are updated and the knowledge of

the position of the landmarks improves. Important note is that the improvement

in the knowledge in the map does not mean that the determinants of the land-

marks covariance matrices will tend to zero. The limiting covariance of the map

can never be below a certain limit which is a function of the initial covariance

of the vehicle estimate P vv
0 and the process and measurement noise matrices Qk

and Rk, respectively.

5.4 Limitations of the Kalman Filter Solutions

to the SLAM Problem

Almost any practical SLAM application will involve nonlinear vehicle and/or ob-

servation models. These models can only be approximately applied within the

Kalman filter equations using linearization of some kind. By far, the most com-

mon is the use of the Extended Kalman filter (EKF) to solve the SLAM problem.

Nonlinearities can be a significant problem here and can lead to inconsistency in

the solutions, as shown in [Julier and Uhlmann, 2007]. Unfortunately, the errors

incurred by the linearization are introduced into both the vehicle and landmark

estimates, but because the errors are unknown, the effect on the cross covariance
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cannot be determined [Julier and Uhlmann, 2001]. Smith, Self and Cheeseman in

their original work [Smith et al., 1990], address the errors due to the nonlinear-

ities and they argue that these errors can be greatly reduced by iteration using

the Iterated Extended Kalman Filter equations. In contrast Julier and Uhlmann

in [Julier and Uhlmann, 2001] argue that by replacing the Kalman filter by more

sophisticated methods (such as Unscented Kalman filter or the Iterated Extended

Kalman Filter) does not significantly affect the results. The reason they say, is

that any errors will ultimately undermine the integrity of the filter.

The computational issue raising from the real-time implementations of the Kalman

filter based SLAM is still present. This is due the observation update step, which

requires that all landmarks and the joint covariance matrix be updated every

time an observation is made. Naively, this means that the computation grows

quadratically with the number of landmarks. The standard formulation of the

EKF-SLAM solution is especially fragile to incorrect data association of observa-

tions to landmarks. The loop-closure problem, when a vehicle returns to reobserve

landmarks after a large traverse, is especially difficult. The association problem is

compounded in environments where landmarks are not simple points and indeed

look different from different viewpoints [Durrant-White and Bailey, 2006], [Bailey

and Durrant-White, 2006].

5.5 Rao-Blackwellized Particle Filter Solution

to the SLAM Problem

The implementation of the Rao-Blackwellized Particle Filter (RBPF) as solution

to the SLAM problem is known as the Fast-SLAM algorithm, first introduced

in [Montemerlo et al., 2002]. This algorithm was first to directly represent the

nonlinear process model and the non-Gaussian vehicle states distribution and

has made the fundamental conceptual shift in the design of probabilistic SLAM

[Durrant-White and Bailey, 2006].
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The RBPF as solution to the SLAM problem estimates the posterior given by

equation (5.1). With the key factorization

p(xvk, m|z1:k, u1:k) = p(m|xvk, z1:k)p(xvk|z1:k, u1:k) (5.15)

we derive the recursive algorithm which in each iteration updates the samples

(trajectory particles) x
v(i)
k and then builds the corresponding map mi in closed

form i.e. analytically.

The RBPF iteration steps are as follows:

1. First, new samples x
v(i)
k are drawn from the proposal (importance) density

function g(·) from the previous samples x
v(i)
k−1

2. Then we assign the importance weights to each of the samples using equa-

tion (4.38)

w
(i)
k ∝ w

(i)
k−1

p(zk|xm(i)
k−1 , x

v(i)
k )p(x

v(i)
k |xv(i)k−1, uk)

g(xvk|x
v(i)
k−1, zk, uk)

(5.16)

3. Perform the resampling method given in section 4.6.4.

4. For each sample the corresponding landmark estimate p(mi|xv(i)1:k , z1:k) is

computed based on the trajectory of the samples x
v(i)
1:k and the measurements

z1:k.

The robustness and efficiency of the RBPF strongly depends on the proposal

(importance) density g(·). If the density differs too much from the true posterior

then there is a high risk that the filter might be divergent.
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Chapter 6

Inertial Navigation Aided by

Simultaneous Localization and

Mapping

Integrated navigation system design requires selection of set of a sensors and

computation power that provides reliable and accurate navigation parameters

(position, velocity and attitude) with high update rates and bandwidth in small

and cost effective manner. Inertial and vision sensors with their complementary

characteristics have the potential to meet these requirements. In this chapter we

present a sensor fusion algorithm that provides aiding information to IN from

vision sensor. Using vision sensors and with no a priori knowledge of the environ-

ment while maneuvering in vicinity of the map point it is shown that it is possible

to constrain the Inertial Navigation position divergence (to bound the estimation

error) and to eliminate some of the uncertainty of the map point estimates. This

concept brings different parametrization (feature initialization) of the map points

in SLAM and we refer to it as concept of aiding IN by SLAM.
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6.1 Simultaneous Localization and Mapping as

Sensor Fusion Algorithm

As mentioned in chapter 4, sensor fusion can be regarded as a method for in-

tegrating information from various sensors. The idea of integration is to take

advantage of the complementary strengths of the sensors.

SLAM uses relative measurements (range and bearing) from the vehicle with re-

spect to the environment to build a map of the environment whilst simultaneously

using the generated map to compute vehicle position, see figure (6.1). There, the

true trajectory of the vehicle is represented by solid line, the estimated trajectory

by a dashed line.
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Figure 6.1: Simultaneous Localization and Mapping
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In SLAM, both the estimated trajectory of the vehicle and the estimated position

of all the map points m1, m2, . . . , m7 are generated online without the need for a

priori knowledge of environment [Durrant-White and Bailey, 2006], [Bailey and

Durrant-White, 2006]. With reference to figure (6.1), as the vehicle moves and

explores the environment, new map points are observed from vehicle positions

and added to the map. The approaches dealing with SLAM in [Smith et al.,

1990], [Dissanayake et al., 2001] and [Csorba, 1997] augment the vehicle states

with these new map positions thus creating single augmented state vector. These

processes provide a general representation for the spatial relationships of the map

points and the vehicle where all the spatial variables are tied together in one vec-

tor. The problem arises that the estimated vehicle positions (light blue triangles)

will differ from the true vehicle positions (blue triangles) due to accumulated un-

certainty in the vehicle position and hence will add errors to the map positions

and will correlate the map point estimates with one another. As the vehicle pro-

gresses through the environment these errors become increasingly correlated, and

never will become less correlated [Dissanayake et al., 2001].

When the vehicle revisits the stored map points, for example the map point m1,

the accumulated uncertainty in the vehicle position (grey ellipses on figure (6.1))

can be estimated and the map point m1 uncertainty can be reduced. The map

points are all correlated therefore are updated and the overall map accuracy is

improved. The revisiting process makes it possible to build a precise map, where

the error in each map point reaches a lower bound determined only by the initial

uncertainty of the vehicle position. Within this form of the augmented state vec-

tor, taking repeated measurements of the map point cannot further reduce the

uncertainty of the map points [Dissanayake et al., 2001].

Certain movements of the vehicle around or nearby the map point provide valu-

able information’s of the spatial relationship of the map point and the vehicle,

see figure (6.2). SLAM theory is interested in the bigger picture of the spatial

relationships of how to build a map of the environment and simultaneously to

use the map to compute the vehicle position and does not use this information’s.

Our interest is towards the smaller picture. We are looking for solution that

will constrain the position divergence and will reduce the uncertainty of the map

points while maneuvering in vicinity of the map point.
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Figure 6.2: Repeated relative measurements of a map point (circular movement)

As the vehicle moves and circles, the map point m is observed from the vehicle

positions p1, p2, . . . , p6. The problem arises that the estimated vehicle positions

(light blue triangles) will differ from the true vehicle positions (blue triangles)

due to accumulated uncertainty in the vehicle position (grey ellipses on figure

(6.2)). This uncertainty will be transferred to the map point. The measurement

errors cause the relative measurements to be not perfect, see the gray relative

measurements on figure (6.2). Because of the accumulated uncertainty in the

vehicle position and the measurement errors we cannot compute the map point

position exactly. Instead from each vehicle position pk = [ x y z ]T an map

point position estimate xmi
k = [ xi yi zi ]T can be calculated. Figure (6.2)

shows six vehicle positions p1, p2, . . . , p6, which will bring six map point estimates

xm1, xm2, . . . , xm6 calculated by

xmi
k = pk + ρkr̂k (6.1)
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where the unit direction vector r̂k and the range ρk are the relative measurements.

This equation can be written in component form, within a more a general model

with the vehicle position part of the vehicle state xvk, the relative measurements zk

and the measurement errors vk which we assume that are zero mean with known

covariance.

xmi
k = gi[xvk, zk, vk] =







x+ ρr̂x

y + ρr̂y

z + ρr̂z






(6.2)

This requires the spatial variables i.e. the map point estimates and the vehicle

states be treated as an intrinsic part of the spatial representation. The gen-

eral representation used in SLAM where vehicle states are augmented with the

map point estimates and where the associated covariance matrix represents the

uncertainty of each of the map point estimates and their inter-dependencies is

appropriate. This representation will bring different parameterization (feature

initialization) of the map point and we refer to it as concept of aiding IN by

SLAM. The approach proposed is to augment the state vector not only with one

map point estimate but with certain number of estimates for each map point.

In theory, the number of augmented map point estimates for each map point

can go to infinity. Heuristically through simulation we realized that we need

more then three map point estimates. The idea of augmenting the state vector

with number of map point estimates should perhaps have been noted sooner in

SLAM. In [Kwok and Dissanayake, 2004] the authors augment the state vector

with multiple hypotheses i.e. map point estimates for each map point. They

do this in order to solve the map point initialization problem in Bearing-Only

Simultaneous Localization and Mapping (BOSLAM). As successive observations

of the map point are made, they remove all but one hypothesis from the map and

use that one in the update.

6.1.1 Inertial Navigation and Augmented State Vector

When SLAM is performed on aerial vehicles as in [Kim, 2004], [Watkins, 2007],

[Langelaan, 2006], [Ivey and Johnson, 2006], [Jung and Lacroix, 2003] the vehicle

state xvk can be represented by Inertial Navigation (IN) mechanization equations
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which give position pnk = [ x y z ]T , velocity vnk = [ Vx Vy Vz ]T and attitude

quaternion qk = [ q0 q1 q2 q3]
T of the vehicle in navigation frame:







pnk
vnk
qk






=







vnk−1∆t + pnk−1

[Cn
b f

b
k + gn]∆t + vnk−1

1
2
Ωqk−1∆t + qk−1






(6.3)

or

xvk = fv(x
v
k−1, uk) + wv

k (6.4)

where f b
k = [ f b

x f b
y f b

z ]T are the Inertial Measurement Unit (IMU) acceleration

measurements given in body frame. These measurements account the measure-

ments errors such as the additive accelerometer noise wa
k = [ wax way waz ]T

and the accelerometer bias αa
k = [ αax αay αaz]T . The gravity model in nav-

igation frame gn can be assumed constant. The transformation matrix Cn
b is

that transforms body frame coordinates into navigation frame coordinates given

in quaternions. The matrix Ω is the angular rate matrix as a function of IMU

angular rates (gyro) measurements ωb
k = [ p q r ]T :

Ω =













0 −p −q −r
p 0 r −q
q −r 0 p

r q −p 0













(6.5)

The gyro measurements account the measurements errors such as the additive

gyro noise wg
k = [ wgx wgy wgz ]T and the gyro bias αg

k = [ αgx αgy αgz]T

as well. The acceleration measurements errors cause the IN velocity and position

to diverge with time, see equation (6.1). The gyro measurements errors cause

the attitude quaternion [ q0 q1 q2 q3]
T to diverge as well. The process noise

matrix wv
k models these error processes as zero-mean white Gaussian with known

covariance Qv
k:

Qv
k = diag [σ2

x σ2
y σ2

z σ2
Vx

σ2
Vy

σ2
Vz

σ2
q0 σ2

q1 σ2
q2 σ2

q3 ] (6.6)
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As proposed in section 6.1, the approach is to augment the vehicle state with

number of map point estimates xmi
k = [ xi yi zi]T i = 1, 2, . . . , n of the

map point:

xmk = [ xm1
k

T
xm2
k

T
. . . xmn

k
T ]T (6.7)

By assumption the unknown map point is stationary so no process noise acts

upon the map point estimates:

xmi
k = xmi

k−1 (6.8)

The augmented state vector containing the vehicle state and the map point esti-

mates is denoted as:

xk = [ xvk
T xm1

k
T

. . . xmn
k

T ]T (6.9)

The augmented process model is of the form

xk = f(xk−1, uk) + wk =













fv(x
v
k−1, uk) + wv

k

xm1
k−1
...

xmn
k−1













(6.10)

where wk is the augmented process noise matrix with covariance matrix Qk:

Qk =









Qv
k · · · 0
...

. . .
...

0 · · · 0









.

The corresponding covariance Pk of the mean xk of the augmented state vector

(6.9) is:

Pk =



















P vv
k P vm1

k · · · P vmn
k

Pm1v
k Pm1m1

k · · · Pm1mn
k

Pm2v
k Pm2m1

k · · · Pm2mn
k

...
...

. . .
...

Pmnv
k Pmnm1

k · · · Pmnmn
k



















(6.11)
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where P vv
k is the covariance of the vehicle state estimate and P ii

k is the covariance

of the i-th map point estimate. The elements P vi
k = P iv

k
T
measure the correlation

between the error in the vehicle and the map point estimates and P ij
k = P ji

k

T

measure the correlation between the errors in two map point estimates xmi
k and

xmj
k . The method for augmenting the map point estimates, equation (6.9) and

building the covariance matrix, equation (6.11) is as follows. The new map point

estimate is added to the augmented state vector and a new row and column are

added to the covariance matrix to describe the uncertainty in the map point

estimate and the interdependencies of this estimate with the other map point

estimates [Smith et al., 1990]. The expanded system1 is:

x+k = faug[xk, zk] =

[

xk

gi[xk, zk]

]

(6.12)

P+
k = ∇faug(·)Pk∇fT

aug(·) =
[

I 0

∇gxk ∇gzk

][

Pk 0

0 Rk

][

I 0

∇gxk ∇gzk

]T

=

=

[

Pk Pk∇gxkT

∇gxkPk ∇gxkPk∇gxkT +∇gzkRk∇gzkT

]

(6.13)

where ∇gxk and ∇gzk are Jacobians of function g(·) (6.2) with respect to the

augmented state xk and the observation zk respectively and are given in Appendix

C. Equation (6.12) and (6.13) are repeated until we augment the state vector with

”sufficient” number of map point estimates. Through simulation we realized that

we need more then three map point estimates.

6.1.2 Observation Models

After the augmentation of the state vector the vehicle is maneuvering, circling

around the map point. These maneuvers provide the relative measurements (ob-

servations) that can be used to constrain the IN position divergence and reduce

the covariance of the map point estimates. The vision sensor (stereo camera) can

1the plus (+) represents the augmentation of the state vector with the new map point
estimate
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provide observations such as the range components in body frame, see chapter 3

for details:

zk = [ ρbx ρby ρbz]
T (6.14)

where

ρbx = (q20 + q21 − q22 − q23)(x
i − x) + 2(q1q2 + q0q3)(y

i − y) + 2(q1q3 − q0q2)(z
i − z)

ρby = 2(q1q2 − q0q3)(x
i − x) + (q20 − q21 + q22 − q23)(y

i − y) + 2(q2q3 + q0q1)(z
i − z)

ρbz = 2(q1q3 + q0q2)(x
i − x) + 2(q2q3 − q0q1)(y

i − y) + (q20 − q21 − q22 + q23)(z
i − z)

The observation model for the vehicle observations (6.14) of the map point can

be written:

zik = hi[xvk, x
mi
k , vk] = Cb

n







xi − x

yi − y

zi − z






+ vk (6.15)

where Cb
n = (Cn

b )
T is the transformation matrix which transforms navigation

frame coordinates into body frame coordinates and vk is the observation noise

with covariance Rk:

Rk = diag[ σ2
ρbx

σ2
ρby

σ2
ρbz

] (6.16)

If we consider each camera as an independent sensor in the stereo camera setup,

then the vision sensor can provide two unit direction vectors in body frame, see

chapter 3 for details:

zk =
[

r̂bx r̂by r̂bz r̂′bx r̂′by r̂′bz

]T

(6.17)

where for the first camera we have:

r̂bx =
(q20+q21−q22−q23)(x

i−x)√
(xi−x)2+(yi−y)2+(zi−z)2

+ 2(q1q2+q0q3)(yi−y)√
(xi−x)2+(yi−y)2+(zi−z)2

+ 2(q1q3−q0q2)(zi−z)√
(xi−x)2+(yi−y)2+(zi−z)2

r̂by =
2(q1q2−q0q3)(xi−x)√

(xi−x)2+(yi−y)2+(zi−z)2
+

(q20−q21+q22−q23)(y
i−y)√

(xi−x)2+(yi−y)2+(zi−z)2
+ 2(q2q3+q0q1)(zi−z)√

(xi−x)2+(yi−y)2+(zi−z)2

r̂bz =
2(q1q3+q0q2)(xi−x)√

(xi−x)2+(yi−y)2+(zi−z)2
+ 2(q2q3−q0q1)(yi−y)√

(xi−x)2+(yi−y)2+(zi−z)2
+

(q20−q21−q22+q23)(z
i−z)√

(xi−x)2+(yi−y)2+(zi−z)2

For the second camera using its position p′ = p + D and its components x′ =

x + Dx, y
′ = y + Dy and z′ = z + Dz where the camera offset D is a constant
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vector we have:

r̂′bx =
(q20+q21−q22−q23)(x

i−x′)√
(xi−x′)2+(yi−y′)2+(zi−z′)2

+ 2(q1q2+q0q3)(yi−y′)√
(xi−x′)2+(yi−y′)2+(zi−z′)2

+ 2(q1q3−q0q2)(zi−z′)√
(xi−x′)2+(yi−y′)2+(zi−z′)2

r̂′by =
2(q1q2−q0q3)(xi−x′)√

(xi−x′)2+(yi−y′)2+(zi−z′)2
+

(q20−q21+q22−q23)(y
i−y′)√

(xi−x′)2+(yi−y′)2+(zi−z′)2
+ 2(q2q3+q0q1)(zi−z′)√

(xi−x′)2+(yi−y′)2+(zi−z′)2

r̂′bz =
2(q1q3+q0q2)(xi−x′)√

(xi−x′)2+(yi−y′)2+(zi−z′)2
+ 2(q2q3−q0q1)(yi−y′)√

(xi−x′)2+(yi−y′)2+(zi−z′)2
+

(q20−q21−q22+q23)(z
i−z′)√

(xi−x′)2+(yi−y′)2+(zi−z′)2

The observation model for the vehicle observations (6.17) of the map point can

be written:

zik = hi[xvk, x
mi
k , vk] = Cb

n























xi − x

yi − y

zi − z

xi − x′

yi − y′

zi − z′























+ vk (6.18)

where vk the observation noise is with covariance Rk:

Rk = diag[ σ2
r̂bx

σ2
r̂by

σ2
r̂bz

σ2
r̂′bx

σ2
r̂′by

σ2
r̂′bz

] (6.19)

If the vehicle is equipped with single camera then the vision sensor can provide

a unit direction vector in body frame, see chapter 3 for details:

zk =
[

r̂bx r̂by r̂bz

]T

(6.20)

where

r̂bx =
(q20+q21−q22−q23)(x

i−x)√
(xi−x)2+(yi−y)2+(zi−z)2

+ 2(q1q2+q0q3)(yi−y)√
(xi−x)2+(yi−y)2+(zi−z)2

+ 2(q1q3−q0q2)(zi−z)√
(xi−x)2+(yi−y)2+(zi−z)2

r̂by =
2(q1q2−q0q3)(xi−x)√

(xi−x)2+(yi−y)2+(zi−z)2
+

(q20−q21+q22−q23)(y
i−y)√

(xi−x)2+(yi−y)2+(zi−z)2
+ 2(q2q3+q0q1)(zi−z)√

(xi−x)2+(yi−y)2+(zi−z)2

r̂bz =
2(q1q3+q0q2)(xi−x)√

(xi−x)2+(yi−y)2+(zi−z)2
+ 2(q2q3−q0q1)(yi−y)√

(xi−x)2+(yi−y)2+(zi−z)2
+

(q20−q21−q22+q23)(z
i−z)√

(xi−x)2+(yi−y)2+(zi−z)2
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The observation model for the vehicle observations (6.20) of the map point can

be written:

zik = hi[xvk, x
mi
k , vk] = Cb

n











xi−x√
(xi−x)2+(yi−y)2+(zi−z)2

yi−y√
(xi−x)2+(yi−y)2+(zi−z)2

zi−z√
(xi−x)2+(yi−y)2+(zi−z)2











+ vk (6.21)

where vk the observation noise is with covariance Rk:

Rk = diag[ σ2
r̂bx

σ2
r̂by

σ2
r̂bz

] (6.22)

Assuming no attitude errors will avoid the errors (additive gyro noise and gyro

bias) in the angular rates (gyro) measurements and will bring a transformation

matrix Cn
b without errors in equation (6.15). This assumption is very useful in

section 6.2 in the derivation of the convergence properties of the proposed concept

of aiding IN by SLAM. The vision sensor (stereo camera) with the assumption of

no attitude errors can provide range components in navigation frame:

zk = [ ρx ρy ρz]
T (6.23)

The observation model for the vehicle observations of the map point can be

written:

zik = hi[xvk, x
mi
k , vk] =







xi − x

yi − y

zi − z






+ vk (6.24)

where vk the observation noise is with covariance Rk:

Rk = diag[ σ2
ρx σ2

ρy σ2
ρz

] (6.25)

Similar for the single camera, if we avoid the errors in the gyro measurements

and in the transformation matrix Cn
b in equation (6.21), the vision sensor can

provide unit direction vector in navigation frame:

zk =
[

r̂x r̂y r̂z

]T

(6.26)
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The observation model for the vehicle observations of the map point can be

written:

zik = hi[xvk, x
mi
k , vk] =











xi−x√
(xi−x)2+(yi−y)2+(zi−z)2

yi−y√
(xi−x)2+(yi−y)2+(zi−z)2

zi−z√
(xi−x)2+(yi−y)2+(zi−z)2











+ vk (6.27)

where vk the observation noise is with covariance Rk:

Rk = diag[ σ2
r̂x

σ2
r̂y

σ2
r̂z

] (6.28)

6.1.3 The Estimation Process

After the augmentation, we start updating the augmented state vector xk by

using each of the map points estimates at a time. As with the approaches dealing

with SLAM [Smith et al., 1990], [Dissanayake et al., 2001] and [Csorba, 1997]

the EKF can be implemented for the update. The state covariance is propagated

using the Jacobians of the augmented process model:

Pk|k−1 = ∇fx
kPk−1|k−1∇fx

k
T +Qk (6.29)

where ∇fx
k is the Jacobian of the augmented process model (6.10) with respect to

the state xk evaluated at x̂k|k−1 and is given in Appendix D. When an observation

zk occurs we update the augmented state vector and its covariance:

x̂k|k = x̂k|k−1 +Kkvk (6.30)

Pk|k = Pk|k−1 −Kk∇hxkPk|k−1 (6.31)

where vk is the innovation vector and Kk is the Kalman gain. These are computed

by

vk = zk − ẑk|k−1 (6.32)

ẑk|k−1 = h(x̂k|k−1) (6.33)

Kk = Pk|k−1∇hxkT [∇hxkPk|k−1∇hxkT +Rk]
−1 (6.34)
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where ∇hxk is the Jacobian of the nonlinear observation function h(·) (6.15) or

(6.24) with respect to the state xk evaluated at x̂k|k−1 i.e. the vehicle state x̂vk|k−1

and the map point estimate used in the update x̂mi
k|k−1. The Jacobian ∇hxk is

defined in Appendix E and Appendix F, respectively.

6.2 On the Convergence of Inertial Navigation

Aided by Simultaneous Localization and Map-

ping

The covariance matrix Pk gives a measure of the uncertainty of the state esti-

mate x̂k. As described in Appendix B, the contour ellipsoid provides graphical

representation of the uncertainty in different state space directions. With time

the state estimate x̂k becomes more uncertain and the ellipsoid grows, whereas

the measurements tend to reduce the uncertainty and to shrink the ellipsoid. The

convergence of the estimate means that the ellipsoid is shrinking in all directions.

For simplicity in attaining analytical results let’s assume that the vehicle state xvk
and the map point estimates xmi

k are one dimensional vectors. Further lest assume

that we have two map point estimates. The augmented state vector containing

the vehicle state and the two map point estimates can be written:

x̂k = [ xv xm1 xm2 ]T (6.35)

These assumptions make the convergence analysis easily tractable. The results

that follow intuitively apply for the rest of the dimensions of the vehicle state and

the map point estimates. They also apply for greater number of map point esti-

mates augmented in the state vector. The covariance matrix being a symmetric

matrix which describes the uncertainty of x̂k before the measurements is:

Pk =







σ2
11 σ2

12 σ2
13

σ2
12 σ2

22 σ2
23

σ2
13 σ2

23 σ2
33






(6.36)
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where σ2
11 is the initial mean square error in knowledge of the vehicle state xv, σ2

22

is the initial mean square error in knowledge of the first map point estimate xm1,

σ2
12 measures the corresponding cross correlation. The initial mean square error

in knowledge of the second map point estimate xm2 is σ2
33. The cross correlation

between the second map point estimate and the vehicle state is given by σ2
13 and

the cross correlation between the two map point estimates is given by σ2
23.

We wish to find the improvements in knowledge of the vehicle state and the two

map point estimates through a processing a single noisy relative measurement

between the vehicle and the first map point estimate following the observation

model (6.24). The measurement matrix Hk is:

Hk = [ −1 1 0]T (6.37)

with measurement noise covariance Rk = [σ2
R]. Using these matrix quantities the

Kalman gain Kk is calculated, see section 4.2 equation (4.14):

Kk =









−σ2
11+σ2

12

σ2
11−2σ2

12+σ2
22+σ2

R
−σ2

12+σ2
22

σ2
11−2σ2

12+σ2
22+σ2

R
−σ2

13+σ2
23

σ2
11−2σ2

12+σ2
22+σ2

R









(6.38)

After several manipulations and simplifications the updated covariance matrix

Pk is calculated, see section 4.2 equation (4.13). Here Pk is shown only with its

diagonal elements, since they contain the mean square errors:

Pk =









σ2
11(σ

2
22(1−ρ2)+σ2

R)

σ2
11−2ρσ11σ22+σ2

22+σ2
R

σ2
22(σ

2
11(1−ρ2)+σ2

R)

σ2
11−2ρσ11σ22+σ2

22+σ2
R

σ2
33(1−

ρ21σ
2
11−2ρ1ρ2σ11σ22+ρ22σ

2
22

σ2
11−2ρσ11σ22+σ2

22+σ2
R

)









(6.39)

where the correlation coefficients are defined by ρ =
σ2
12

σ11σ22
, ρ1 =

σ2
13

σ11σ33
and

ρ2 =
σ2
23

σ22σ33
. This is done for clarity and better analysis of the following few lim-

iting cases.
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When the correlation coefficients ρ = 0, ρ1 = 0 and ρ2 = 0, a case when there are

no correlations between the estimates or a case when the correlations are ignored,

the final uncertainty in the estimates is given by:

Pk =









σ2
11

(

σ2
22+σ2

R

σ2
11+σ2

22+σ2
R

)

σ2
22

(

σ2
11+σ2

R

σ2
11+σ2

22+σ2
R

)

σ2
33









(6.40)

As we can see from equation (6.40) for the first two diagonal elements of the

updated covariance matrix Pk, the vehicle state and the first map point estimate

are updated. Their uncertainty is reduced since the denominators are bigger

then the numerators in the fractions in the brackets. This reduction depends

on the initial mean square error in knowledge of the vehicle state σ2
11 and the

initial mean square error in knowledge of the first map point estimate σ2
22 and

the measurement noise covariance σ2
R.

As we can see from equation (6.40) for the third diagonal element of the updated

covariance matrix Pk, the final uncertainty of the second map point estimate is

equal to the initial uncertainty. When the correlations are zero or are ignored

nothing can be learned from the relative measurements about the second map

point estimate. In a case when we have a perfect positive correlations i.e. when

ρ = 1, ρ1 = 1 and ρ2 = 1, the final uncertainty in the estimates is given by

Pk =























σ2
11

(

1

1+
(σ11−σ22)

2

σ2
R

)

σ2
22

(

1

1+
(σ11−σ22)

2

σ2
R

)

σ2
33

(

1

1+
(σ11−σ22)

2

σ2
R

)























(6.41)

As we can see from equation (6.41), the vehicle state and the two map point

estimates are updated. The amount of the gained information i.e. the reduction

in the uncertainty of the diagonal elements of the updated covariance matrix Pk

depends upon the ratio of the square of the binomial formed with the standard

deviations of the vehicle state σ11 and the first map point estimate σ22 and the
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measurement noise covariance σ2
R. The covariance matrix shows are the state

estimates converging or not, not whether they are converging to the correct value.

The consistency property addresses the convergence of the estimates to the correct

values. When estimating a state of a dynamic system, the models (the dynamic

equation, the measurement equation and the random variables entering into these

equations) contain certain approximations. In such estimation processes what one

has is the current estimate of the state x̂k|k and its associated covariance matrix

Pk|k. Using these two quantities the consistency asks the state estimator (filter)

to give approximate first and second order moments of the state as:

E[xk − x̂k|k]
∆
=E[x̃k|k] = 0 (6.42)

E[[xk − x̂k|k][xk − x̂k|k]
T ]

∆
=E[x̃k|kx̃

T
k|k]− Pk|k (6.43)

This property is based on finite number of samples (measurements) which re-

quires that the estimation errors are consistent with their theoretical statistical

properties i.e. are unbiased and have covariance matrix as calculated by the filter.

In contradiction the consistency is an asymptotic (infinite size sample) property.

Then the consistency criteria of the filter require that the state errors and the

innovations are zero mean and to have magnitude that commensurate with the

state covariance. Several consistency tests that use either the estimation errors

(Normalized Estimation Error Squared NEES) or the innovations (Normalized

Innovation Squared NIS) are available in the literature to verify the consistency

[Bar-Shalom et al., 2001].

78



6.3 On the Observability Analysis of Inertial Nav-

igation Aided by Simultaneous Localization

and Mapping using Fisher Information Ma-

trix

6.3.1 Introduction

Discussion on the observability of a system provides insights and understanding

of the fundamental limits of the estimation processes. Since observability anal-

ysis can give the best achievable performance even before the system is built, it

can be considered as tool for computer analysis of many complicated estimation

processes. Observability is a property of a specific state space representation for

a system, rather than of the system itself. Certain state space models are more

suitable for estimation purposes than others, even though both might accurately

portray the input - output characteristics of a system [Maybeck, 1982]. If little

is to be gained from the estimation process, then we should consider remodel-

ing the system. This might involve taking additional or alternate measurements,

or redesigning the dynamics of the system [Jazwinski, 1970]. In a determinis-

tic sense one system is completely observable if its initial state can be fully and

uniquely recovered from its output, observed over a finite time interval, and the

knowledge of the input [Bar-Shalom et al., 2001]. When the system is linear

time invariant, observability rank test is performed on the equations. Similar for

linear time variant systems observability Gramian matrix is used. For nonlinear

systems observability analysis most common tools are based on the Lie Algebra,

which suffers of being long and not easy to apply [Hermann and Krener, 1977].

Here the observability is related to indistinguishability of the states with respect

to the control inputs unlike the linear systems.

Alternative to these methods the information matrix which is a statistical gener-

alization of the observability matrix can be used for observability analysis. This

matrix amounts to the information limit being sufficient or insufficient for the

estimation process. It allows an interpretation of the estimation in terms of in-

formation theoretic concepts. The information matrix commonly referred to us
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the Fisher information matrix and its inverse provide the filtering Cramer-Rao

lower bound (CRLB). The CRLB is a lower bound on the mean square error that

can be achieved by any unbiased estimator and is a useful system design tool

today and may be used for comparison of given filtering algorithms performances

[Ristic et al., 2004].

Simultaneous Localization and Mapping (SLAM) uses relative measurements

(range and bearing) from the vehicle with respect to the environment to build

a map of the environment whilst simultaneously using the generated map to

compute vehicle position. In SLAM, both the trajectory of the vehicle and

the position of all the map points are estimated online without the need for

a priori knowledge of environment [Durrant-White and Bailey, 2006], [Bailey and

Durrant-White, 2006]. When talking about observability of the SLAM we need

to recognize the characteristic state vector i.e. augmented state vector consisting

of the vehicle state (described by the process model which evolves with time)

and map state (stationary state which is not changing with time). In the SLAM

literature several approaches are present. In range bearing SLAM case for aerial

vehicle where the SLAM equations are defined as piece-wise linear system which

simplifies the observability analysis of the system is presented in [Bryson and

Sukkarieh, 2008a]. There the authors have investigated how the states are af-

fected by the maneuvers/control actions taken by the vehicle and reveal the need

for vehicle motions for maximizing the observability of the states over multiple

time segments. Similarly using the tools from the control theory, observability

analysis for BOSLAM case for planar vehicle is performed in [Vidal-Calleja et al.,

2007]. Authors clearly emphasize the need to avoid the case of zero velocity and

show that the performance of the estimator in BOSLAM is strongly related to

the trajectories described by the vehicle. Since SLAM is highly nonlinear and

coupled system the nonlinear observability analysis of SLAM is performed in

[Lee et al., 2006]. Alternatively to the approaches presented before these au-

thors address the effects of the control inputs on the observability of SLAM. This

observability study shows that typical planar SLAM is observable when two a

priori known map point’s observations are available. The nonlinear observability

analysis of SLAM is extended in [Perera et al., 2009]. The authors give proofs

of the state observability of SLAM to any number of map points and compare
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the linear and nonlinear observability analysis. The observability analysis of the

SLAM using the FIM (for linear case) is evaluated in [Andrade-Cetto and San-

feliu, 2005]. The authors first employ the observability analysis of SLAM on a

two-dimensional linearized planar vehicle model. Using the FIM for observability

analysis of the SLAM is extended in [Z.Wang and Dissanayake, 2008]. This work

introduced novel technique for observability analysis of SLAM. They reformulate

the augmented state vector to include all the vehicle states (poses) from where the

measurements are taken. This converted the SLAM to a problem of estimating a

set of unknown, constant random variables. This technique also allows capturing

the information contained in the control inputs between two successive vehicles

poses. Two very important conclusions are given in this work. First one is that

the range bearing relative SLAM is observable. Relative SLAM being the case

when the reference frame is attached to the vehicle initial pose and equivalent

to the assumption of perfect knowledge of the vehicle initial pose. The second

one refers to the condition for observability of relative BOSLAM and it says that

necessary and sufficient condition for relative BOSLAM to be observable is that

each feature (map point) present in the environment must be observed at more

than one robot pose; and for each feature, the feature location and all the poses

from which this feature is observed are not collinear. Further they argue that

when the collinearity occur one or both the coordinates of the relevant feature

(map point) can not be uniquely determined, while the observability of the states

related to other features is not affected.

As described in section 6.1 changes to the SLAM augmented state vector are

needed in order to take repeated measurements of the map point and implement

SLAM for aiding IN. The proposed approach is to augment the state vector not

only with one map point estimate but with certain ”sufficient” number of esti-

mates for each map point. This approach further proposes to perform certain

movements around the map point which are crucial for constraining the IN po-

sition divergence and reducing the covariance of the map points. This in turn

provides the map point and the vehicle positions not to be collinear, following

the above condition for observability. In this thesis we use the Fisher information

matrix for observability analysis of the concept of IN aided by SLAM. Here we

will bring more insights and deeper understanding of the limits of the concept.
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6.3.2 Estimation Observability and Information

Apparent to the estimation and control theory is that there is a close connection

between observability and estimation. Observability being a ”yes” or ”no” answer

cannot be given always, as in general nonlinear estimation processes. However a

degree of observability can be given in terms of observed information about the

state. Stochastic observability studies the information theoretical point of view of

observability. In other words it tries to find quantity of information about states

which is contained in the observation process [Mohler and Hwang, 1988].

How well the state is known is measured by the estimation error covariance matrix

Pk. Since Pk depends on its initial condition P0 it doesn’t reflect the uncertainty

in the estimates by virtue of the filtering the data alone. Setting P−1
0 = 0, which

means that no weight is attached to the prior estimate, then in order to determine

the state xk, the information matrix

Jk =

k
∑

i=1

F T
k (i)H

T (i)R−1(i)H(i)Fk(i) (6.44)

must be positive definite [Jazwinski, 1970]. If Jk is singular, then certain linear

combinations of the elements of xk cannot be determined i.e. there is no infor-

mation about them in the measurement data {z1, . . . , zk}. From (6.44) we notice

that the information matrix depends on Fk and Hk, the linear system model (be-

ing noise free) and not on the data themselves. The information matrix satisfies

the following difference equation [Maybeck, 1982], [Jazwinski, 1970]:

Jk = F T
k|k−1Jk−1Fk|k−1 +HT

k R
−1
k Hk (6.45)

and is related to the covariance matrix by

Jk = P−1
k − F T

k P
−1
0 Fk (6.46)

If there were no a priory information about the state, i.e. if P−1
0 = 0, then the

information matrix is the inverse of the estimation error covariance matrix. The

larger the eigenvalues of Jk, the smaller the eigenvalues of Pk and the more precise

the estimate is. If any eigenvalues of Jk are zero, there are directions in state
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space along which the measurements gives us no information [Maybeck, 1982].

The information matrix is commonly referred to us as Fisher information matrix

(FIM) and its inverse provide the filtering Cramer-Rao lower bound (CRLB).

Consider a nonlinear estimation problem defined by:

xk = fk(xk−1) + wk

zk = hk(xk) + vk

For x̂k an unbiased estimator of the state vector xk, based on the measurement

data {z1, . . . , zk}, with prior knowledge of initial density p(x0), the covariance

matrix Pk has a lower bound (CRLB) expressed as follows:

Pk = E
{

[x̂k − xk][x̂k − xk]
T
}

≥ J−1
k (6.47)

The inequality in (6.47) means that the difference Pk−J−1
k is a positive semidefi-

nite matrix. Matrix Jk being the FIM and its inverse the CRLB. Intuitively more

information we have the lower the CRLB is. Essential property of the FIM is

that it is additive for independent measurements. For consistent estimator, for

N independent and identically distributed samples (measurements) the FIM is N

times the individual Fisher information [Cover and Thomas, 2006]. Therefore as

more measurements are taken we need to have increasing amount of information.

For many practical applications it is desired to calculate the FIM recursively. An

elegant method is derived in [Thicavsky et al., 1998] also given in [Ristic et al.,

2004] as follows:

Jk = D22
k−1 −D21

k−1[Jk−1 +D11
k−1]

−1D12
k−1 (6.48)

where

D11
k−1 = −E

{

∇xk−1[∇xk−1 log p(xk|xk−1)]
T
}

(6.49)

D21
k−1 = −E

{

∇xk−1[∇xk log p(xk|xk−1)]
T
}

(6.50)

D12
k−1 = −E

{

∇xk[∇xk−1 log p(xk|xk−1)]
T
}

= [D21
k−1]

T (6.51)

D22
k−1 = −E

{

∇xk[∇xk log p(xk|xk−1)]
T
}

−E
{

∇xk[∇xk log p(zk|xk)]T
}

(6.52)
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The expectation E {·} in (6.49), (6.50) and (6.51) is with respect to xk−1 and xk,

whereas in (6.52 is with respect to xk−1, xk and zk. In absence of process noise

i.e. Qk = 0, the evolution of the state vector is purely deterministic. Hence the

expectation operator can be dropped out [Ristic et al., 2004]. The recursion of

(6.48) then can be written as:

Jk = Q−1
k + H̃T

k R
−1
k H̃k −Q−1

k F̃k−1[Jk−1 + F̃ T
k−1Q

−1
k F̃k−1]

−1F̃ T
k−1Q

−1
k (6.53)

Using the matrix inversion lemma this simplifies to:

Jk = [Qk + F̃k−1J
−1
k−1F̃

T
k−1]

−1 + H̃T
k R

−1
k Hk (6.54)

Due to the absence of process noise it further simplifies to:

Jk = [F̃−1
k−1]

TJk−1F̃
−1
k−1 + H̃T

k R
−1
k H̃k (6.55)

Compare (6.55) to the covariance computation in Extended Kalman Filter (EKF)

in section 4.3. If we replace Jk by P−1
k and apply the matrix inversion lemma,

these two become identical in their form. The only difference is that the EKF

equation features the Jacobians F̂k−1 and Ĥk, while (6.55) is based on Jacobians

F̃k−1 and H̃k. The difference between a Jacobian with hat ˆ and with a tilde

sign˜ is that the latter is evaluated at the true value of the state vector (which

obviously is no available to the EKF) [Ristic et al., 2004]. The conclusion is that

the CRLB recursion for nonlinear estimation, in the absence of process noise is

identical to the covariance matrix propagation of the EKF, where the Jacobians

are evaluated at the true state vector xk, as first reported in [Taylor, 1978].

6.3.3 Observability Analysis of Inertial Navigation Aided

by Simultaneous Localization and Mapping

6.3.3.1 Nonmaneuvering Case (stationary vehicle)

For the nonmaneuvering case of the observability analysis of IN aided by SLAM,

the vehicle is stationary. With the vision sensor we are taking repeated mea-

surements (6.15) of the map point. The control input to the IN mechanization

84



equations (6.3) is uk = [ 0 0 f b
z 0 0 0 ]T . The f b

z acceleration measure-

ment appears in the control input due to the Earth gravity field. Ideally this

acceleration measurement after the transformation to navigation frame is to be

compensated with gn, the gravity model in navigation frame, see equation (6.3).

Considering a case with single map point estimate in the augmented state vector

xk = [ xvk
T xm1

k
T ]T , the process model (6.10) gives the following state transition

matrix Fk:

Fk =


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(6.56)

In the case of stationary vehicle no process noise acts upon the augmented state

vector xk. This allows making the assumption of zero process noise. Then FIM

can be computed recursively using equation (6.55), repeated here for convenience:

Jk = [F̃−1
k−1]

TJk−1F̃
−1
k−1 + H̃T

k R
−1
k H̃k (6.57)

where F̃k is given by equation (6.56). The H̃k the Jacobian of the nonlinear

function h(·) (6.15) with respect to the augmented state vector xk is defined in

Appendix E. The recursion (6.57) is initialized by

J0 = P−1
0 ,
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where P0 is the initial covariance matrix of the state estimate. The measurement

noise Rk is modeled as zero-mean white Gaussian sequence with known covariance

(6.16).

6.3.3.2 Maneuvering Case (coordinated turn)

For the maneuvering case of the observability analysis of IN aided by SLAM, the

vehicle performs a circular movement around the map point commonly referred as

coordinated turn (CT). This vehicle maneuver is executed under constant speed

and constant turn rate along a circular path at a constant altitude. When the

vehicle with CT motion has a constant speed, it satisfies a kinematic constraint:

V · A = 0, where V is the vehicle velocity vector and A being the acceleration

vector. Although the CT model prescribes constant speed and constant turn

rate it is an idealization which is not met in practice. The Inertial Navigation

mechanization equations (6.3) in component from when the vehicle performs CT

become:
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(6.58)

and the control input uk = [ 0 0 f b
z 0 0 r ]T . The yaw angular rate r is

constant. As in the nonmaneuvering case, the f b
z acceleration measurement ap-

pears in the control input due to the Earth gravity field. Ideally this acceleration

measurement after the transformation to navigation frame is to be compensated

with gn, the gravity model in navigation frame. In this case we assume zero

process noise. White noise in accelerometers and gyro measurements can cause a
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long-term accumulation of errors, known as random walk [Webster, 1999]. In our

simulation we operate the IMU for a short period of 100 seconds. This allows us

to make the assumption of no white noise in the accelerometers and gyro measure-

ments. This deterministic maneuvering trajectory is not achievable in practice

and will give us an FIM which is conservative and overly optimistic. Nevertheless

this conservative FIM as we will show in the simulation results is very useful in

assessing the comparative error performance of the IN aided by SLAM concept.

Again considering a case with single map point estimate in the augmented state

vector xk = [ xvk
T xm1

k
T ]T and IN mechanization equations (6.3) when the ve-

hicle performs CT, the process model (6.10) gives the following state transition

matrix Fk:

Fk =
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(6.59)

As in the nonmaneuvering case the FIM is computed recursively using equation

(6.55), with same initialization conditions, but with a difference that F̃k is given

by equation (6.59).
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6.3.4 Observability Analysis of Inertial Navigation Aided

by Simultaneous Localization and Mapping Assum-

ing no Attitude Errors

As we mentioned in the section 6.3.1, the observability is a property of a specific

state space representation for a system, rather than of the system itself. If little

is to be gained from the estimation process, then we should consider remodeling

the system. This might involve taking additional or alternate measurements, or

redesigning the dynamics of the system [Jazwinski, 1970].

6.3.4.1 Nonmaneuvering Case (stationary vehicle)

As in section 6.3.3.1 for the nonmaneuvering case of the observability analysis the

vehicle is stationary. The initialization conditions and the state transition matrix

Fk are same as in 6.3.3.1. The difference are the repeated measurements given by

equation (6.24) and H̃k the Jacobian of the nonlinear function h(·) (6.24) with

respect to the augmented state vector xk, defined in Appendix F.

6.3.4.2 Maneuvering Case (coordinated turn)

As in section 6.3.3.2, for the maneuvering case of the observability analysis the

vehicle performs the coordinated turn (CT) maneuver. The initialization condi-

tions and the state transition matrix Fk are same as in 6.3.3.2. The difference

are the repeated measurements given by equation (6.24) and H̃k the Jacobian of

the nonlinear function h(·) (6.24) with respect to the augmented state vector xk,

defined in Appendix F.

6.3.5 Simulation Scenario and Results

A simulation scenario where the vehicle is stationary (first case) and when it

performs the CT maneuver around a map point (second case) are used for ob-

servability analysis of IN aided by SLAM without and with the assumption of no

attitude errors, see figure (6.3) and figure (6.4).
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Figure 6.3: Simulation scenario where the vehicle is stationary (first case)
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Figure 6.4: Simulation scenario where the vehicle performs CT maneuver around
a map point (second case)
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Figure 6.5: Fisher Information Matrix for the vehicle position and the map point
estimate (stationary vehicle) without the assumption of no attitude errors
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Figure 6.6: Fisher Information Matrix for the vehicle position and the map point
estimate (vehicle performs CT maneuver) without the assumption of no attitude
errors
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Figure (6.5) and (6.6) present the simulation results for the observability analysis

of IN aided by SLAM without the assumption of no attitude errors. Figure (6.5)

shows the information content for the vehicle position and the map point estimate

in the scenario when the vehicle is stationary. Figure (6.6) shows the information

content for the vehicle position and the map point estimate in the scenario when

the vehicle performs CT maneuver. If we compare the results we can see that

the maneuver is increasing the amount of information content. Figure (6.7) and

(6.8) present the simulation results for the observability analysis of IN aided by

SLAM with the assumption of no attitude errors.
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Figure 6.7: Fisher Information Matrix for the vehicle position and the map point
estimate (stationary vehicle) with the assumption of no attitude errors
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Figure 6.8: Fisher Information Matrix for the vehicle position and the map point
estimate (vehicle performs CT maneuver) with the assumption of no attitude
errors

91



Figure (6.7) shows the information content for the vehicle position and the map

point estimate in the scenario when the vehicle is stationary. Figure (6.8) shows

the information content for the vehicle position and the map point estimate in the

scenario when the vehicle performs CT maneuver. If we compare these results

(figure (6.7) and figure (6.8)) with the previous (figure (6.5) and figure (6.6))

we can see that the amount of information content with the assumption of no

attitude errors is ”blooming” compared with the information content without the

assumption of no attitude errors. From this observability analysis conclusion can

be drawn that the measurements given by equation (6.24) give more information

and will give better results then measurements given by equation (6.15) in the

update process of the augmented state vector, see equations (6.30) to (6.34).

6.4 On the Performance of Inertial Navigation

Aided by Simultaneous Localization and Map-

ping Assuming no Attitude Errors

6.4.1 Simulation Scenario and Results

A simulation scenario where the vehicle performs certain maneuvers (circles)

around a map point is used to validate the implementation of SLAM as sen-

sor fusion algorithm for aiding IN with vision sensors. The processes of con-

straining the IN position divergence and reducing the covariance of the map

points will be shown. In the simulation scenario the true map point position is

M = [ 400 550 3 ]T .

Real vision sensors i.e. video cameras consist of an illumination source, a lens to

gather and focus light, an image detector to capture the image, and an interface

to pass the data. The image detector is the heart of the vision sensor. In our

simulation we have simulated an image detector with 4mm in width and 4mm

in length. Its performance is perturbed by white noise sequence with standard

deviation of σc = 0.07mm, which introduces errors into the camera measurements

(observations errors). The lens has focal length of 8mm.
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In the simulation for the measurements errors in the accelerometer and gyro

measurements we have assumed that the accelerometer bias αa
k and the gyro bias

αg
k are not present. Only the accelerometer noise wa

k and gyro noise wg
k were

simulated. We have taken in consideration that each accelerometer and gyro are

perturbed by same white noise sequence. The standard deviation of the white

noise sequence for the accelerometers is σwa = 0.02236m/s2, whereas the standard

deviation of the white noise sequence for the gyros is σwg = 0.01732deg /s. The

parameters of the video camera and the inertial sensors used in the simulation

summarized in a table are as follows:

Name Notation Value Unit 

Video camera 
White noise std 

c
σ

07.0 mm

Accelerometer
White noise std 

a
w
σ

0.02236 2/ sm

Gyro 
White noise std 

g
w
σ

0.01732 sdeg/

Table 6.1: Video camera and inertial sensors performance

The initial vehicle state estimate, vehicle error covariance matrix, process noise

matrix, and measurement noise matrix are

xv0 = [ 555.688 394.212 200 22 0 0 1 0 0 1 ]T ,

P vv
0 = diag[ 0 0 0 0 0 0 0 0 0 0 ],

Qv
0 = diag[ 2.3 1.8 1.3 0 0 0 0.0003 0.0003 0.0003 0.0003 ],

R0 = diag[ 0.00005 0.00005 0.00005 ].

Note that the initial condition of the vehicle state estimate is usually given as

xv0 = [ 0 0 0 0 0 0 0 0 0 0 ]T which means that the starting vehicle po-

sition is at the coordinate origin and P vv
0 = diag[ 0 0 0 0 0 0 0 0 0 0 ]

which means that no map point is observed and there is no uncertainty associated

with the vehicle yet.
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After the start of the simulation using equation (6.12) the state vector is aug-

mented with five map point estimates and its covariance built using equation

(6.13). These five map point estimates are shown on figure (6.9). After the aug-

mentation of the state vector with these map positions the vehicle continues to

circle around the map point.
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Figure 6.9: Map point estimates

These maneuvers provide the necessary relative measurements for the update

stage of the estimation process. Using relative measurements, the EKF updates

the augmented state vector as a whole (the vehicle state and each map point

estimate). Figure (6.10) shows the uncorrected IN vehicle trajectory (red dashed

line) and it can be seen that it is significantly divergent from the true vehicle

trajectory (black solid line). Figure (6.11) gives closer look at the true trajectory

(black solid line), the estimated trajectory (green dotted line) and the uncor-

rected divergent IN vehicle trajectory (red dashed line). From this figure it can

be seen that the estimated vehicle trajectory is following very closely the true

trajectory where it is very difficult to distinguish one from another. Further to

the process of constraining the position divergence, the position errors in each

axis are shown in figures (6.12), (6.13) and (6.14). We can see that they are

bounded, vary cyclically with each encirclement, and have zero mean. Figures

(6.15), (6.16), (6.17) show the process of convergence of the map point estimates

in the update stage of the estimation process.
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Figure 6.13: Position errors y axis

0 50 100 150 200 250 300 350
-3

-2

-1

0

1

2

3

4
position errors

t[s]

z
 [

m
]

Figure 6.14: Position errors z axis
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Figure 6.15: Map point estimates x axis
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Figure 6.16: Map point estimates y axis
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Figure 6.17: Map point estimates z axis
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Because of the correlation of the map point estimates, the EKF updates all the

map point estimates at the same time. As time progresses and the vehicle cir-

cles around the map point (in our case four circles), the map point estimates are

updated and all converge to the true map point of M = [ 400 550 3 ]T .

6.4.2 Interpretation of the results

In the interpretation of the results, we will consider the covariance matrix and

its elements. In the analysis of the covariance matrix, two key results from the

SLAM theory are assessed to see if they are satisfied by this approach. The first

result from [Csorba, 1997] states that: ”The determinant of the covariance matrix

of all the map point estimates and the determinant of the covariance matrix of

any group of map points estimates are both monotonically non-increasing func-

tions of the time step”.
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Figure 6.18: Determinant of the covariance matrix of the first map point estimate

It can be seen from figure (6.18) that the determinant of the covariance matrix of

the first map point estimate decreases monotonically and therefore satisfies the

first result. This result also applies to all the other map point estimates.

Figure (6.19) shows the 95% contour ellipsoid of the covariance matrix of the first

map point estimate at the beginning and at the end of the simulation. We can

see that the covariance is reduced by about half. The second result from [Csorba,

1997] states that: ”The relative distance vectors between all possible pairs of map

point estimates are monotonically decreasing”.
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Figure 6.19: The 95% contour ellipsoid of the covariance matrix of the first map
point estimate

As can be seen from figure (6.20), the relative distance between the first and

second map point estimates is monotonically decreasing and satisfies the second

result. These results apply for all the other map point estimates.
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Figure 6.20: The relative distance between the first and second map point esti-
mates

Next figure (6.21) shows the correlation coefficient between the first and second

map point estimate. As we can see from the beginning of the simulation, the cor-

relation coefficient very fast reaches the limit (perfect positive correlation) and

stays there till the end of the simulation. This result applies for the rest of the

correlation coefficients of the map point estimates. Following the proof in section

6.2 regarding the convergence of the map point estimates, figure (6.21) assures

that at the limit (perfect positive correlation) when one map point estimate is

updated all of the map point estimates are updated.
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Figure 6.21: Correlation coefficient between the first and second map point esti-
mate (x-axis)

Further to the comparison with the SLAM theory, we should also analyze the

covariance matrix of the vehicle. In [Csorba, 1997] it is stated that ”The deter-

minant of the covariance matrix of the vehicle is not monotonic and is evolving

as separate unit to the map covariance”. We can see from figure (6.22) that the

determinant of the covariance matrix of the vehicle position is not monotonic but

has sinusoidal shape.
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Figure 6.22: Determinant of the covariance matrix of the vehicle position

Figure (6.23) shows the 95% contour ellipsoid of the covariance matrix of the

vehicle position at the beginning and at the end of the simulation.
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Chapter 7

Inertial Navigation Aided by

Bearing Only Simultaneous

Localization and Mapping

Bearing Only Simultaneous Localization and Mapping (BOSLAM) is very attrac-

tive these days because it permits the use of single camera as sensor for measuring

the bearing i.e. unit direction1 to the map points. BOSLAM as solution to the

SLAM problem when single camera is used has great potential for autonomous

navigation. Major importance comes from the fact that the single camera address

many of the critical requirements and needs of the aerial systems, for example

the requirement for limited payload, then the need for low cost and low power

consumption sensors. The major drawback of this solution is the problem of map

point initialization from a single measurement. In this chapter following the con-

cept of aiding IN by SLAM presented in chapter 6 and the results given there

for aiding IN by BOSLAM we augment the state vector with certain number of

estimates for each map point. We take repeated measurements (unit direction

vectors) of the map points with certain maneuvers in vicinity of the map point.

It is shown that it is possible to constrain the Inertial Navigation position diver-

gence and to eliminate some of the uncertainty of the map point estimates. This

concept brings new parameterization of the map point in BOSLAM.

1the terms unit direction and bearing will be used synonymously in this thesis
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Figure 7.1: IN aided by BOSLAM with repeated observations of the map point
with a circular maneuver

7.1 Bearing Only Simultaneous Localization and

Mapping as Sensor Fusion Algorithm

As in chapter 6 in IN aided by BOSLAM the IN mechanization equations repre-

sent the vehicle state and are given by equation (6.3). The vehicle is equipped

with single camera which provides unit direction vectors represented by observa-

tion models (6.21) and (6.27), see chapter 3 for details.

In IN aided by BOSLAM as in BOSLAM the range to the map points is not avail-

able so we cannot compute the map point estimates directly. From figure (7.1)

we see that this is not a problem. The range can be considered as constant real

number which in theory can have a value from zero to infinity ρ ∈ [0,∞]. Typi-

cally we will constrain the range into an interval for a given application and will

have values from zero to the maximum range ρ ∈ [0, ρmax]. Using the equation for

computing the map point estimates, equation (6.1) and moving the range from

zero to the maximum range in some units (can be in meters or parts of meters)

ρ = 0, 1, 2, 3, . . . , m instead of having single map point estimate we will have m
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map point estimates from each vehicle position p1, p2, . . . , pn:

xm1
k = [ xm10

k
T

xm11
k

T
xm12
k

T
. . . xm1m

k
T ]T

xm2
k = [ xm20

k
T

xm21
k

T
xm22
k

T
. . . xm2m

k
T ]T (7.1)

...

xmn
k = [ xmn0

k
T

xmn1
k

T
xmn2
k

T
. . . xmnm

k
T ]T .

Calculation of each of the elements in equation (7.1) in more general form is

xmij
k =







xij

yij

zij






=







xi + j ∗ r̂xi
yi + j ∗ r̂yi
zi + j ∗ r̂zi






(7.2)

where pi = [ xi yi zi ]
T i = 1, 2, 3, . . . , n are the vehicle positions and j is a

parameter that moves from zero to the maximum range i.e. j = 0, 1, 2, 3, . . . , m.

The map point estimates vectors xmi
k , i = 1, 2, . . . , n given by equation (7.1)

of the unknown map point represent the map

xmk = [ xm1
k

T
xm2
k

T
. . . xmn

k
T ]T (7.3)

The augmented state vector containing the vehicle state and the map stays same

as in IN aided by SLAM, see equation (6.9):

xk = [ xvk
T xm1

k
T

. . . xmn
k

T ]T (7.4)

In this way we have succeeded in maintaining the mapping process within IN aided

by BOSLAM. Also we have succeeded to maintain the method for augmenting the

map point estimates, equation (6.12) and building the covariance matrix, equation

(6.13) which ensured the consistency of the map. The Jacobian ∇gxk with respect

to the augmented state xk stays same as in section 6.1. The Jacobian ∇gzk with
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respect to the observation zk is changed and is given in Appendix G. One issue

appears at this moment and that is the huge dimension of the augmented state

vector. This requires bigger memory and will bring additional computational

cost in the algorithm. However, since we are not updating the augmented state

vector xk at this moment, this is not a problem. In order to solve it we need an

algorithm or criterion that will choose a certain number of map point estimates

and will remove the other from the augmented state vector. This issue would be

a critical aspect of a real application. Simple approach is first to calculate an

map point estimate using equation (3.10) from two consecutive vehicle positions

and then to search for its nearest neighbor in the augmented state vector with

some of the nearest-neighbor search algorithms. Algorithms such as the simple

nearest-neighbor search which performs best for small number of map points (say

n ≤ 100) or other more sophisticated algorithms such as the kd-tree or Voronoi

diagrams can be implemented as suggested in [Skiena, 2008]. After choosing

the ”most promising” map point estimates and removing the other from the

augmented state vector as the vehicle circles around the map point and provides

repeated observations of the map point, we can begin updating the augmented

state vector xk by using one of the map points estimates at a time. As in IN aided

by SLAM the Extended Kalman filter (EKF) can be implemented, equations

(6.29) to (6.34). The matrix ∇hxk i.e. the Jacobian of the nonlinear observation

function h(·) (6.21) and (6.27) with respect to the state xk evaluated at x̂k|k−1

i.e. the vehicle state x̂vk|k−1 and the map point estimate used in the update x̂mi
k|k−1.

The Jacobians ∇hxk are given in Appendix H and Appendix J, respectively.

7.2 On the Map Point Initialization and Para-

metrization in Bearing Only Simultaneous

Localization and Mapping

Much of the research in BOSLAM is focused towards the problem of initializa-

tion of the map points from single camera measurements. In the literature two

techniques are proposed to address the problem of map point initialization. The

first technique involves delaying the map point initialization until a criterion is
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fulfilled and sufficient baseline is available from different vehicle positions to ini-

tialize the map point [Davison, 2003], [Deans and Hebert, 2000], [Bailey, 2003],

[Bryson and Sukkarieh, 2008b]. The second technique tries to avoid the delay and

initialize the map point from a single measurement [Vidal-Calleja et al., 2007],

[Sola et al., 2005]. The fact that after the first observation, the map point lies

along on the line from the vehicle to the map point (the projection ray) is used.

The range along the line is not known and uncertain and can be modeled in the

range between the minimum and maximum range. In [Vidal-Calleja et al., 2007]

multiple hypotheses are used each with different range. In the augmented state

vector each hypothesis is treated as a separate map point. As successive observa-

tions of the map point are made all but one hypothesis (the most promising) is

removed from the augmented state vector. In [Sola et al., 2005], since the range

is unknown, they initialize the map point estimate to lie between the minimum

and maximum range for their application and create on the optical ray a priori

uniform pdf. Then they approximate the a priori pdf with a sum of Gaussians.

After additional observations of the map point they prune the less likely Gaus-

sians of the ray leaving only one and declare this as a map point. In [Montiel

et al., 2006] authors proposed a new unified parameterization for the map points

within BOSLAM. They use the direct parameterization of the inverse depth (in-

verse of the range to the map point). This is based on the fact that due to the

inverse depth parameterization the measurement equation has low linearization

error and thus allows estimation uncertainty to be accurately modeled as Gaus-

sian. This method doubles the size of the map point state which increases the

computational complexity and it suffers from the issue of negative depth. A so-

lution to the latter problem is proposed in [Parsley and Julier, 2008].

The approach proposed in section 7.1 to augment the state vector not only with

one map point estimate but with certain number of estimates for each map point

brings new parameterization of the map point in BOSLAM. The novelty comes

from the usage of the certain number of map point estimates for update of the

whole augmented state vector together with a combination of repeated measure-

ments and motion in vicinity of the map point. This specific update process

constrains the vehicle position divergence and makes the map point estimates to

converge to the true map point. This approach brings delayed initialization of
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the map points since it uses number of vehicle positions for choosing the ”most

promising” map point estimates augmented in the state vector. The combina-

tion of motion and repeated measurements for update of the whole augmented

state vector distinguishes this approach from the before mentioned initialization

approaches.

7.3 On the Observability Analysis of Inertial Nav-

igation Aided by Bearing-Only Simultane-

ous Localization and Mapping using Fisher

Information Matrix

The observability analysis of the IN aided by BOSLAM follows the observability

analysis of IN aided by SLAM. Very similar to section 6.3, we study the in-

formation theoretical point of view of the observability analysis of IN aided by

BOSLAM. The Fisher Information Matrix is used to quantify the information

content provided by the applied observation models. Scenarios with stationary

and maneuvering vehicle trajectories are used to better understand, compare and

provide realistic measurement sequences for determining the best achievable esti-

mation performance. The differences between this observability analysis and the

observability analysis of the IN aided by SLAM section 6.3, are as follows. With

the vision sensor (single camera) we are taking repeated measurements (6.21) of

the map point. The Jacobian of the nonlinear function (6.21) with respect to the

augmented state vector xk is given in Appendix H. When assuming no attitude

errors with the vision sensor (single camera) we are taking repeated measure-

ments (6.27) of the map point. The Jacobian of the nonlinear function (6.27)

with respect to the augmented state vector xk is given in Appendix J.

7.3.1 Simulation Scenario and Results

A simulation scenario where the vehicle is stationary and where it performs the

CT maneuver around a map point are used for observability analysis of IN aided

by BOSLAM without and with the assumption of no attitude errors, see figure
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(6.3) and (6.4) from section 6.3.5. Figure (7.2) and (7.3) present the simulation

results for the observability analysis of IN aided by BOSLAM without the as-

sumption of no attitude errors. Figure (7.2) shows the information content for

the vehicle position and the map point estimate in the scenario when the vehicle

is stationary. Figure (7.3) shows the information content for the vehicle position

and the map point estimate in the scenario when the vehicle performs CT ma-

neuver. If we compare the results we can see that the maneuver is increasing the

amount of information content.
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Figure 7.2: Fisher Information Matrix for the vehicle position and the map point
estimate (stationary vehicle) without the assumption of no attitude errors
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Figure 7.3: Fisher Information Matrix for the vehicle position and the map point
estimate (vehicle performs CT maneuver) without the assumption of no attitude
errors
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Figure 7.4: Fisher Information Matrix for the vehicle position and the map point
estimate (stationary vehicle) with the assumption of no attitude errors
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Figure 7.5: Fisher Information Matrix for the vehicle position and the map point
estimate (vehicle performs CT maneuver) with the assumption of no attitude
errors
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Figure (7.4) and (7.5) present the simulation results for the observability analysis

of IN aided by SLAM with the assumption of no attitude errors. Figure (7.4)

shows the information content for the vehicle position and the map point estimate

in the scenario when the vehicle is stationary. Figure (7.5) shows the information

content for the vehicle position and the map point estimate in the scenario when

the vehicle performs CT maneuver. If we compare the results we can see that the

maneuver is increasing the amount of information content. In addition we have

bigger amount of information content with the assumption of no attitude errors.

From this observability analysis conclusion can be drawn that the measurements

given by equation (6.27) give more information and will give better results then

measurements given by equation (6.21) in the update process of the augmented

state vector, see equations (6.29) to (6.34).

7.4 The effect of nonlinearities in Inertial Navi-

gation Aided by Bearing-Only Simultaneous

Localization and Mapping

IN aided by BOSLAM as well as many other navigation problems are nonlinear

and must be linearized (approximated) before applying the popular Kalman-like

filtering algorithms. An EKF presents one such approximation. The EKF is very

commonly used algorithm and, because of its simplicity, is very often chosen as

the ”best” algorithm for implementation.

EKF will be the ”best” choice as long as deviations from the true trajectory

are ”small” (say in the least square sense), and the higher order terms in the

Taylor series expansion are negligible. In a case where the higher order terms in

the Taylor series expansion are large they have a biasing effect on the estimate

[Jazwinski, 1970]. Inspection of the approximate nonlinear filters reveals the size

of nonlinearities depends not only on the size of the second order partial deriva-

tives (fxx and hxx ), but also on the estimation error variance. The second order

terms appear as Phxx in the case of measurement nonlinearity, and as Pfxx in the

case of system nonlinearity. These are the expected values of the second order

terms in the Taylor series expansion. As a consequence, these nonlinear terms
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can be large because the second partial derivatives are large (real nonlinearity),

or because the estimation error variance is large (induced nonlinearity), or both

(mixed nonlinearity) [Jazwinski, 1970].

7.5 On the Performance of Inertial Navigation

Aided by Bearing-Only Simultaneous Local-

ization and Mapping

As with section 6.4 when the performance of IN aided by SLAM assuming no

attitude errors was validated, for IN aided by BOSLAM the same simulation

scenario is used. The true map point position is sameM = [ 400 550 3 ]T . The

parameters of the video camera and the inertial sensors used in the simulation

scenario are same as in Table 6.1. The initial vehicle state estimate, vehicle error

covariance matrix, process noise matrix, and measurement noise matrix are

xv0 = [ 555.688 394.212 200 22 0 0 1 0 0 1 ]T ,

P vv
0 = diag[ 0 0 0 0 0 0 0 0 0 0 ],

Qv
0 = diag[ 0.8 0.8 0.2 0 0 0 0.0003 0.0003 0.0003 0.0003 ],

R0 = diag[ 0.00005 0.00005 0.00005 ].

Note that the initial condition of the vehicle state estimate is usually given as

xv0 = [ 0 0 0 0 0 0 0 0 0 0 ]T which means that the starting vehicle po-

sition is at the coordinate origin and P vv
0 = diag[ 0 0 0 0 0 0 0 0 0 0 ]

which means that no map point is observed and there is no uncertainty associated

with the vehicle yet. After the start of the simulation the process of initialization

of the map point estimate starts as described in in section 7.1. After the ini-

tialization, investigation of the EKF, IEKF, UKF and UPF update equations is

performed. Figure (7.6) shows the true, IN divergent and estimated EKF, IEKF,

UKF and UPF vehicle trajectories. Figure (7.7), (7.8) and (7.9) show position

errors in each axis. Figure (7.10), (7.11) and (7.12) show the map point estimates

in each axis with EKF, IEKF, UKF and UPF implementation.
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These simulation results show the performance of the four nonlinear filters (EKF,

IEKF, UKF and UPF). The problem of IN aided by BOSLAM exhibits a high

degree of nonlinearity. In these applications the EKF introduces large estimation

errors (observe the vehicle position error variance on figure (7.7), (7.8) and (7.9).

IEKF shows improvements in the results but still the position error variance is

large. UKF and UPF demonstrate best performance and appears to be an effi-

cient estimators for the problem of IN aided by BOSLAM. While the UKF and

UPF produce good performance with the vehicle state they exhibit large initial

variance with the map point estimates and converge slowly then the EKF and

IEKF, see figure (7.10), (7.11) and (7.12) as well as (7.15) and (7.16).
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The UPF show small improvements then the UKF, as the map point estimates

try slightly faster to converge to the true map point. Both EKF and IEKF show

similar performance with the map point estimates and slowly converge to the true

map point, (7.13), (7.14). The computational load of the four algorithms should

be noted. The simulation results showed that the UKF not only outperforms the

EKF and IEKF in accuracy, it also does that with no extra computational cost.

The superior performance of the UKF over the EKF and IEKF has been noted

in numerous publications. The UPF compared to UKF requires bigger compu-

tational power and did not improved the UKF results much. In the simulation

scenario the process and measurement noises were modeled as white Gaussian

noise sequences and this may be one of the reasons for the noted UPF perfor-

mance.
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Figure 7.13: Map point estimates EKF implementation

116



0 10 20 30 40 50 60 70 80 )0 100
3)6

3)7

3)8

3))

400

401

402
map point

t[s]

x
 [

m
]

0 10 20 30 40 50 60 70 80 90 100
548

548*5

54+

54+*5

550

550*5

551

551*5

552

552*5

553
map point

t[s]

,
- m

]

0 10 20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4

4.5
map point

t[s]

/
0 m

]

Figure 7.14: Map point estimates IEKF implementation
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Figure 7.16: Map point estimates UPF implementation
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Chapter 8

Conclusions

Many of today’s operational UAV navigation systems rely on inertial sensors as

a primary measurement source. IN alone however suffers from slow divergence

with time. This divergence is often compensated for by employing some addi-

tional source of navigation information external to IN. From the 1990’s to the

present day Global Positioning System (GPS) has been the dominant navigation

aid for IN. In a number of scenarios, GPS measurements may be completely un-

available or they simply may not be precise (or reliable) enough to be used to

adequately update the IN hence alternative methods of aiding IN have seen great

attention. Aiding IN with vision sensors has been the favoured solution over the

past several years.

In this thesis we address the IN position divergence and propose solutions (i.e.

sensor fusion algorithms) that provide a source of reliable aiding information to

IN from vision sensors. Using vision sensors and with no a priori knowledge of

the environment we show that, with certain manoeuvres around a map point, it

is possible to both constrain the IN position divergence and to reduce some of

the uncertainty at the map point estimates.

In chapter 3 we used vectors to explain the vision sensors geometry. Many of

the authors in SLAM use trigonometric functions in their observation models.

The use of trigonometric functions has, apart from the fact that they may have

singularities at certain points, the disadvantage of making computer processing

slow. In this thesis each measurement from the vision sensors is represented by

a line. Instead of using angles like bearing or azimuth to the map points we use
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unit direction vectors to the map points. This novel approach presents an impor-

tant trigonometric substitution and is more efficient in terms of computational

speed and accuracy. Further the use of vectors for the vision sensors geometry

(see sections 3.1 and 3.2), contributes to the SLAM theory in using vectors in the

vision sensors observation models.

In chapter 6 we propose changes to the SLAM augmented state vector in or-

der to take repeated measurements of the map point and implement SLAM for

aiding IN. The novel contributions in this chapter are based on the following.

Certain movements of the vehicle around or nearby a map point provide valu-

able information’s of the spatial relationship of the map point and the vehicle.

SLAM theory being interested in how to build a map of the environment and

simultaneously to use the map to compute the vehicle position does not use these

information’s. As the vehicle moves and circles, the map point is observed from

the vehicle positions. The problem arises that the estimated vehicle positions

differ from the true vehicle positions due to accumulated uncertainty in the ve-

hicle position. Because of this accumulated uncertainty in the vehicle position

and the measurement errors we cannot compute the map point position exactly.

Instead from each vehicle position an map point position estimate can be calcu-

lated. This requires the spatial variables i.e. the map point estimates and the

vehicle states be treated as an intrinsic part of the spatial representation. The

general representation used in SLAM where vehicle states are augmented with

the map point estimates and where the associated covariance matrix represents

the uncertainty of each of the map point estimates and their inter-dependencies

is used. This representation brings different initialization of the map point and

we refer to it as concept of aiding IN by SLAM. The approach proposed is to

augment the state vector not only with one map point estimate but with certain

number of estimates for each map point. After the augmentation of the state

vector with manoeuvring, for example circling around the map point and using

the relative measurements from the vision sensors and updating the augmented

state vector the vehicle position divergence is constrained and the uncertainty of

the map points is reduced, as shown in section 6.4. There the key results from

the SLAM theory are assessed to see if they are satisfied by this novel approach.

Further to the concept of aiding IN by SLAM, in this thesis we have contributed
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and investigated how a bearing only sensor such as single camera can be used for

aiding IN. The results of IN aided by SLAM were used. New parameterization of

the map point in BOSLAM is proposed in chapter 7. This new parametrization

uses the map point estimates for update of the whole augmented state vector with

a combination of repeated measurements and motion in vicinity of the map point.

This concept of aiding IN by BOSLAM in parallel with bounding the position

errors also bounds the velocity errors as shown in [Silson and Sazdovski, 2011].

Aiding IN by BOSLAM exhibits a high degree of nonlinearity and typically in

these applications an EKF introduces large estimation errors. Because of this

and a number of other significant problems such as Jacobian implementation and

the neglect of the higher order error moments that appear when implementing

the EKF, other algorithms such as IEKF, UKF and UPF were implemented. It

is shown in section 7.5 that the UKF and UPF demonstrate best performance

and appear to be efficient estimators for the concept of IN aided by BOSLAM.

The SLAM aided IN and BOSLAM aided IN sensor fusion algorithm present re-

liable solutions that provide aiding information to IN from vision sensors. These

algorithms successfully integrate the inertial and vision sensors with no a priori

knowledge of the environment. In section 6.4, when the performance of the IN

aided by SLAM was assessed, we find out that such an integrated navigation

systems require further integration/coordination with the guidance and control

measurements and the vehicle task itself to perform the needing manoeuvres

and to achieve the needing navigation accuracy. Further with the observabil-

ity analysis of the IN aided by SLAM and IN aided by BOSLAM (section 6.3

and 7.3), we have shown that manoeuvres increase the amount of information

content. This means that for certain or desired accuracy of the navigation pa-

rameters the manoeuvres are essential. Simply passing or flying by a map point

with no manoeuvre will not help much for autonomous navigation. These facts

bring new challenges to the practical design of these modern jam proof GPS free

autonomous navigation systems.
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Chapter 9

Future Work

Our future research work will be focused on the practical aspects of the both

SLAM aided IN and BOSLAM aided IN sensor fusion algorithms. We will work

on the practical implementation of the proposed concepts and propose to validate

these algorithms on aerial vehicle. Quadrotor UAV is the chosen platform for the

practical experiments.

In the thesis the simulation model process and measurement noises were modelled

as white Gaussian noise sequences. We would like our simulation model to better

represent the ”harsh” real environments in which the proposed integrated navi-

gation systems will operate, but we are aware that this is very difficult to achieve

and we expect that our model to a confident degree is appropriate representation

of the reality. We are aware that the non-Gaussian nature of the input noise and

the measurements when the practical experiments will be carried out may lead to

different results from the simulated one. From our previous practical experiences

we expect that the practical experiments of the proposed algorithms will follow

the simulation results. We are looking at the nonlinear filters (UKF and UPF)

to achieve satisfactory estimation accuracy and to appear as efficient estimators

for the both SLAM aided IN and BOSLAM aided IN.

Further we are looking forward the implementation of the Rao-Blackwellized Par-

ticle Filter. The idea is to partition the augmented state vector so that the map

partition can be worked out analytically using the EKF (note the satisfactory

performance of the map point estimates within the EKF framework in section

7.5, figure (7.13)). The Particle Filter is to be used for the IN partition of the

125



state vector. Rao-Blackwellization is widely accepted variance reduction method

and is potentially applicable in both SLAM-aided IN and BOSLAM-aided IN.

The experiences with RBPF given in chapter 12 [Ristic et al., 2004] and chapter

24 [Doucet et al., 2001] will be used. Use of the SLAM-aided IN algorithm for

exploring unknown environments from a practical point of view presents an inter-

esting challenge. The idea here is that, at the beginning of the exploration of the

environment, the UAV performs SLAM-aided IN with certain manoeuvres around

or nearby a map points. This will constrain both the IN position divergence and

will reduce the covariance of the map point estimates. When the desired accuracy

of navigation parameters is achieved the UAV can start navigating through the

environment and perform SLAM.

The theory side of our future work will include the following two investigations.

The first one will investigate and try to develop intelligent manoeuvre strategies

which are connected to the energy efficiency of the vehicles. We think that there

is no point of UAV circling around a map point, trying to constrain its naviga-

tion parameters and spend its whole battery power or fuel. We will be looking

for energy gaining manoeuvres that will help the UAV to conserve its energy and

use environment factors like the winds, for example.

The second area of future theoretical work is the investigation of cooperation

between several UAV’s performing SLAM aided IN over same map point. This

investigation is expected to address the issues when low accuracy vision sensors

are used on UAV’s. In this scenario the UAV’s can take measurements not just

of the map feature but also of each other. These measurements can be used

to accelerate the convergence of the localization and mapping processes on both

UAV’s.
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Appendix A

Vector Algebra

This section gives some basic rules. Here we consider how vectors may be used

to describe lines and we look at the practical use of vectors in finding distances.

Representation of a line in three dimensional space

Consider the line passing through a fixed point P with position vector p and

having a direction r, figure (9.1) [Riley et al., 2006]. It is clear that the position

vector p of a general point B on the line can be written as

b = p+ µr (9.1)

since B can be reached by starting from O, going along the translation vector

p to the point P on the line and then adding some multiple µr of the vector r.

Different values of µ give different points B on the line. We may also find the

equation of the line that passes through two fixed points P and C with position

vectors p and c. Since PC is given by c−p, the position vector of a general point

on the line is

b = p+ µ(c− p) (9.2)
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O

P

B

r

p

b

Figure 9.1: The equation of a line

Distance from a point to a line

Figure (9.2), shows a line having direction r that passes through a point P

whose position vector is p. To find the minimum distance d of the line from

a point M whose position vector is m, we must solve the right-angled triangle

shown. We see that d =
∣

∣m− p
∣

∣ sin θ, so from the definition of vector product, it

O

P

M

r

p

m

d

θ

pm −

Figure 9.2: The minimum distance from a point to a line

follows that

d =
∣

∣(m− p)× r̂
∣

∣ (9.3)
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Appendix B

Geometry of Multivariate Normal Distribution (the contour

ellipsoids)

If we have n × 1 random vector x that has multivariate normal distribution

with mean vector µ and covariance matrix Σ, then this random vector x has

probability density function given by

p(x) =

(

1

2πσ2

)n/2

|Σ|−1/2 exp{−1

2
(x− µ)TΣ−1(x− µ)} (9.4)

Things to note about the multivariate normal distribution:

1. The term appearing inside the exponent of the multivariate normal distri-

bution is a quadratic form:

(x− µ)TΣ−1(x− µ) (9.5)

This particular quadratic form is called the squared Mahalanobis dis-

tance between the random vector x and the mean vector µ.

2. If the variables are uncorrelated then the covariance matrix is diagonal with

variances of the variables appearing on the diagonal elements of the matrix
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and zeros elsewhere:

Σ =













σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
n













From equation (9.6) we note that the density function p(x) only depends on x

through the squared Mahalanobis distance:

(x− µ)TΣ−1(x− µ) (9.6)

Thus the density is constant for all values of p(x) such that the Mahalanobis

distance equals a constant c2

(x− µ)TΣ−1(x− µ) = c2 (9.7)

This is the equation for a n-dimensional ellipsoid centered at µ. For a bivariate

normal distribution where n = 2 we have an ellipse as shown below on figure

(9.3). The question that we should ask now is: ”What is the probability that an

arbitrary or random observation will fall inside the ellipsoid?”. The probability

can be determined by the following preposition.

Preposition: If we have n× 1 random vector x then the squared Mahalanobis

distance between and the mean vector µ is going to be chi-square distributed with

n degrees of freedom.

(x− µ)TΣ−1(x− µ) ≈ χ2
n (9.8)

So if we define a specific n-dimensional ellipsoid by taking the squared Maha-

lanobis distance equal to a critical value χ2
n of the chi-square distribution with n

degrees of freedom and evaluate this at α the so-called significance level, then the
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Figure 9.3: Contour ellipse for bivariate normal distribution

probability that the random value x will fall inside the ellipsoid is going to be

Pr{(x− µ)TΣ−1(x− µ) ≤ χ2
n,α} = 1− α (9.9)

The ellipsoid is defined by

(x− µ)TΣ−1(x− µ) = χ2
n,α (9.10)

and this particular ellipsoid is called the (1 − α) × 100% contour ellipsoid for a

multivariate normal vector with mean vector µ and covariance matrix Σ.

In order this ellipsoid to be n-dimensional, Σ must be positive-definite and sym-

metric with all its elements real. Under this conditions and assuming that the

mean vector µ = 0 there exists an orthogonal matrix S such that Σ can be

transformed to a diagonal matrix D by the relation

D = STΣS (9.11)
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The diagonal elements of D are the eigenvalues of Σ and the column vectors of

S are the orthonormal eigenvectors of Σ. Since Σ is nonnegative definite, the

eigenvalues of are nonnegative. They are all positive when Σ is positive-definite.

The number of nonzero eigenvalues is equal to the rank of Σ. Let

x = S−1y = STy

and suppose that Σ is positive definite. The inverse of S exists and is equal to

ST since S is orthogonal. Thus,

xTΣ−1x = yTSΣ−1STy = yTD−1y

or

xTΣ−1x =

n
∑

i=1

y2i
λi

= χ2
n,α (9.12)

Divide this relation by χ2
n,α,

n
∑

i=1

y2i
χ2
n,αλi

= 1 (9.13)

Equation (9.13) is the normal form of an n-dimensional ellipsoid. The n-principal

semiaxes of the ellipsoid are

li =
√

χ2
n,αλi i = 1, 2, . . . , n (9.14)

Since the columns ei of the matrix S are orthonormal eigenvectors of Σ, it follows

immediately that the ei define the directions of the axes of the ellipsoid. When an

eigenvalue is zero, the corresponding eigenvector indicates the direction normal

to the subspace which contains (n− 1) dimensional ellipsoid.

The significance of the ellipsoids stems from the fact that they have a simple

probabilistic interpretation. For the important case when n = 3, χ2
3,α = 7.815

yields 3-dimensional contour ellipsoid of 95% probability. More data can be

checked in the table of chi-square distribution with 3-degrees of freedom.
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Appendix C

The Jacobians ∇gxk and ∇gzk are Jacobians of function g(·) (6.2) with respect to

the state and the observation respectively are:

∇gxk =









∂gxi

∂x
∂gxi

∂y
∂gxi

∂z
∂gxi

∂Vx

∂gxi

∂Vy

∂gxi

∂Vz

∂gxi

∂q0

∂gxi

∂q1

∂gxi

∂q2

∂gxi

∂q3
∂gyi
∂x

∂gyi
∂y

∂gyi
∂z

∂gyi
∂Vx

∂gyi
∂Vy

∂gyi
∂Vz

∂gyi
∂q0

∂gyi
∂q1

∂gyi
∂q2

∂gyi
∂q3

∂gzi
∂x

∂gzi
∂y

∂gzi
∂z

∂gzi
∂Vx

∂gzi
∂Vy

∂gzi
∂Vz

∂gzi
∂q0

∂gzi
∂q1

∂gzi
∂q2

∂gzi
∂q3









=

=







1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0







∇gzk =









∂gxi

∂ρx

∂gxi

∂ρy

∂gxi

∂ρz
∂gyi
∂ρx

∂gyi
∂ρy

∂gyi
∂ρz

∂gzi
∂ρx

∂gzi
∂ρy

∂gzi
∂ρz









=

=











ρx r̂x√
ρ2x+ρ2y+ρ2z

ρy r̂x√
ρ2x+ρ2y+ρ2z

ρz r̂x√
ρ2x+ρ2y+ρ2z

ρxr̂y√
ρ2x+ρ2y+ρ2z

ρy r̂y√
ρ2x+ρ2y+ρ2z

ρz r̂y√
ρ2x+ρ2y+ρ2z

ρxr̂z√
ρ2x+ρ2y+ρ2z

ρy r̂z√
ρ2x+ρ2y+ρ2z

ρz r̂z√
ρ2x+ρ2y+ρ2z










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Appendix D

The Jacobian ∇fx
k of the augmented process model (6.10) with respect to the

vehicle state xvk is:

∇fx
k =







φ1 φ2 φ3

φ4 φ5 φ6

φ7 φ8 φ9







where

φ1 =







∂x
∂x

∂x
∂y

∂x
∂z

∂y
∂x

∂y
∂y

∂y
∂z

∂z
∂x

∂z
∂y

∂z
∂z






=







0 0 0

0 0 0

0 0 0







φ2 =









∂x
∂Vx

∂x
∂Vy

∂x
∂Vz

∂y
∂Vx

∂y
∂Vy

∂y
∂Vz

∂z
∂Vx

∂z
∂Vy

∂z
∂Vz









=







1 0 0

0 1 0

0 0 1







φ3 =







∂x
∂q0

∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y
∂q0

∂y
∂q1

∂y
∂q2

∂y
∂q3

∂z
∂q0

∂z
∂q1

∂z
∂q2

∂z
∂q3






= 04×3
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φ4 =







∂Vx

∂x
∂Vx

∂y
∂Vx

∂z
∂Vy

∂x
∂Vy

∂y
∂Vy

∂z
∂Vz

∂x
∂Vz

∂y
∂Vz

∂z






= 03×3

φ5 =









∂Vx

∂Vx

∂Vx

∂Vy

∂Vx

∂Vz

∂Vy

∂Vx

∂Vy

∂Vy

∂Vy

∂Vz

∂Vz

∂Vx

∂Vz

∂Vy

∂Vz

∂Vz









= 03×3

φ6 =







∂Vx

∂q0
∂Vx

∂q1
∂Vx

∂q2
∂Vx

∂q3
∂Vy

∂q0

∂Vy

∂q1

∂Vy

∂q2

∂Vy

∂q3
∂Vz

∂q0
∂Vz

∂q1
∂Vz

∂q2
∂Vz

∂q3






=

where
∂Vx

∂q0
= 2q0ax − 2q3ay + 2q2az

∂Vx

∂q1
= 2q1ax + 2q2ay + 2q3az

∂Vx

∂q2
= −2q2ax + 2q1ay + 2q0az

∂Vx

∂q3
= −2q3ax − 2q0ay + 2q1az

∂Vy

∂q0
= 2q3ax + 2q0ay − 2q1az

∂Vy

∂q1
= 2q2ax − 2q1ay − 2q0az

∂Vy

∂q2
= 2q1ax + 2q2ay + 2q3az

∂Vy

∂q3
= 2q0ax − 2q3ay + 2q2az

∂Vz

∂q0
= −2q2ax + 2q1ay + 2q0az

∂Vz

∂q1
= 2q3ax + 2q0ay − 2q1az

∂Vz

∂q2
= −2q0ax + 2q3ay − 2q2az

∂Vz

∂q3
= 2q1ax + 2q2ay + 2q3az
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φ7 =













∂q0
∂x

∂q0
∂y

∂q0
∂z

∂q1
∂x

∂q1
∂y

∂q1
∂z

∂q2
∂x

∂q2
∂y

∂q2
∂z

∂q3
∂x

∂q3
∂y

∂q3
∂z













= 03×4

φ8 =













∂q0
∂Vx

∂q0
∂Vy

∂q0
∂Vz

∂q1
∂Vx

∂q1
∂Vy

∂q1
∂Vz

∂q2
∂Vx

∂q2
∂Vy

∂q2
∂Vz

∂q3
∂Vx

∂q3
∂Vy

∂q3
∂Vz













= 03×4

φ9 =













∂q0
∂q0

∂q0
∂q1

∂q0
∂q2

∂q0
∂q3

∂q1
∂q0

∂q1
∂q1

∂q1
∂q2

∂q1
∂q3

∂q2
∂q0

∂q2
∂q1

∂q2
∂q2

∂q2
∂q3

∂q3
∂q0

∂q3
∂q1

∂q3
∂q2

∂q3
∂q3













=













0 −p/2 −q/2 −r/2
p/2 0 r/2 −q/2
q/2 −r/2 0 p/2

r/2 q/2 −p/2 0












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Appendix E

The Jacobian ∇hxk of the nonlinear observation function h(·) (6.15) with respect

to the augmented state vector i.e. the vehicle state and the map point estimate

used in the update is:

∇hxk =
[

ϕ1 ϕ2 ϕ3

]

where

ϕ1 =







∂hρbx
∂x

∂hρbx
∂y

∂hρbx
∂z

∂hρby
∂x

∂hρby
∂y

∂hρby
∂z

∂hρbz
∂x

∂hρbz
∂y

∂hρbz
∂z







∂hρbx
∂x

= −q20 − q21 + q22 + q23
∂hρbx
∂y

= −2(q1q2 + q0q3)
∂hρbx
∂z

= −2(−q0q2 + q1q3)

∂hρby
∂x

= −2(q1q2 − q0q3)
∂hρby
∂y

= −q20 + q21 − q22 + q23
∂hρby
∂z

= −2(q0q1 + q2q3)

∂hρbz
∂x

= −2(q0q2 + q1q3)
∂hρbz
∂y

= −2(−q0q1 + q2q3)
∂hρbz
∂z

= −q20 + q21 + q22 − q23
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ϕ2 =









∂hρbx
∂Vx

∂hρbx
∂Vy

∂hρbx
∂Vz

∂hρbx
∂q0

∂hρbx
∂q1

∂hρbx
∂q2

∂hρbx
∂q3

∂hρby
∂Vx

∂hρby
∂Vy

∂hρby
∂Vz

∂hρby
∂q0

∂hρby
∂q1

∂hρby
∂q2

∂hρby
∂q3

∂hρbz
∂Vx

∂hρbz
∂Vy

∂hρbz
∂Vz

∂hρbz
∂q0

∂hρbz
∂q1

∂hρbz
∂q2

∂hρbz
∂q3









=







0 0 0 ∂hρbx
∂q0

∂hρbx
∂q1

∂hρbx
∂q2

∂hρbx
∂q3

0 0 0
∂hρby
∂q0

∂hρby
∂q1

∂hρby
∂q2

∂hρby
∂q3

0 0 0 ∂hρbz
∂q0

∂hρbz
∂q1

∂hρbz
∂q2

∂hρbz
∂q3







∂hρbx
∂q0

= 2q0(−x+ xi) + 2q3(−y + yi)− 2q2(−z + zi)
∂hρbx
∂q1

= 2q1(−x+ xi) + 2q2(−y + yi) + 2q3(−z + zi)
∂hρbx
∂q2

= −2q2(−x+ xi) + 2q1(−y + yi)− 2q0(−z + zi)
∂hρbx
∂q3

= −2q3(−x+ xi) + 2q0(−y + yi) + 2q1(−z + zi)

∂hρby
∂q0

= −2q3(−x+ xi) + 2q0(−y + yi) + 2q1(−z + zi)
∂hρby
∂q1

= 2q2(−x+ xi)− 2q1(−y + yi) + 2q0(−z + zi)
∂hρby
∂q2

= 2q1(−x+ xi) + 2q2(−y + yi) + 2q3(−z + zi)
∂hρby
∂q3

= −2q0(−x+ xi)− 2q3(−y + yi) + 2q2(−z + zi)

∂hρbz
∂q0

= 2q2(−x+ xi)− 2q1(−y + yi) + 2q0(−z + zi)
∂hρbz
∂q1

= 2q3(−x+ xi)− 2q0(−y + yi)− 2q1(−z + zi)
∂hρbz
∂q2

= 2q0(−x+ xi) + 2q3(−y + yi)− 2q2(−z + zi)
∂hρbz
∂q3

= 2q1(−x+ xi) + 2q2(−y + yi) + 2q3(−z + zi)

ϕ3 =







∂hρbx
∂xi

∂hρbx
∂yi

∂hρbx
∂zi

∂hρby
∂xi

∂hρby
∂yi

∂hρby
∂zi

∂hρbz
∂xi

∂hρbz
∂yi

∂hρbz
∂zi







∂hρbx
∂xi

= q20 + q21 − q22 − q23
∂hρbx
∂yi

= 2(q1q2 + q0q3)
∂hρbx
∂zi

= 2(−q0q2 + q1q3)
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∂hρby
∂xi

= 2(q1q2 − q0q3)
∂hρby
∂yi

= q20 − q21 + q22 − q23
∂hρby
∂zi

= 2(q0q1 + q2q3)

∂hρbz
∂xi

= 2(q0q2 + q1q3)
∂hρbz
∂yi

= 2(−q0q1 + q2q3)
∂hρbz
∂zi

= q20 − q21 − q22 + q23
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Appendix F

The Jacobian ∇hxk of the nonlinear observation function h(·) (6.24) with respect

to the augmented state vector i.e. the vehicle state and the map point estimate

used in the update is:

∇hxk =
[

ϕ1 ϕ2 ϕ3

]

where

ϕ1 =







∂hρx
∂x

∂hρx
∂y

∂hρx
∂z

∂hρy
∂x

∂hρy
∂y

∂hρy
∂z

∂hρz
∂x

∂hρz
∂y

∂hρz
∂z






=







−1 0 0

0 −1 0

0 0 −1







ϕ2 =









∂hρx
∂Vx

∂hρx
∂Vy

∂hρx
∂Vz

∂hρx
∂q0

∂hρx
∂q1

∂hρx
∂q2

∂hρx
∂q3

∂hρy
∂Vx

∂hρy
∂Vy

∂hρy
∂Vz

∂hρy
∂q0

∂hρy
∂q1

∂hρy
∂q2

∂hρy
∂q3

∂hρz
∂Vx

∂hρz
∂Vy

∂hρz
∂Vz

∂hρz
∂q0

∂hρz
∂q1

∂hρz
∂q2

∂hρz
∂q3









=







0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0







ϕ3 =







∂hρx
∂xi

∂hρx
∂yi

∂hρx
∂zi

∂hρy
∂xi

∂hρy
∂yi

∂hρy
∂zi

∂hρz
∂xi

∂hρz
∂yi

∂hρz
∂zi






=







1 0 0

0 1 0

0 0 1






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Appendix G

The Jacobian ∇gzk of the function g(·) (6.2) with respect to observation zk is:

∇gzk =









∂gxi

∂r̂x

∂gxi

∂r̂y

∂gxi

∂r̂z
∂gyi
∂r̂x

∂gyi
∂r̂y

∂gyi
∂r̂z

∂gzi
∂r̂x

∂gzi
∂r̂y

∂gzi
∂r̂z









=







ρ 0 0

0 ρ 0

0 0 ρ






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Appendix H

The Jacobian ∇hxk of the nonlinear observation function h(·) (6.21) with respect

to the augmented state vector x(k) i.e. the vehicle state and the map point

estimate used in the update is:

∇hx(k) =
[

ϕ1 ϕ2 ϕ3

]

where

ϕ1 =







∂hr̂bx
∂x

∂hr̂bx
∂y

∂hr̂bx
∂z

∂hr̂by
∂x

∂hr̂by
∂y

∂hr̂by
∂z

∂hr̂bz
∂x

∂hr̂bz
∂y

∂hr̂bz
∂z







∂hr̂bx
∂x

=
(q20+q21−q22−q23)(−x+xi)

2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(q1q2+q0q3)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(−q0q2+q1q3)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

q20+q21−q22−q23√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bx
∂y

=
(q20+q21−q22−q23)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(q1q2+q0q3)(−y+yi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(−q0q2+q1q3)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(q1q2+q0q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

147



∂hr̂bx
∂z

=
(q20+q21−q22−q23)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(q1q2+q0q3)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(−q0q2+q1q3)(−z+zi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(−q0q2+q1q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂by
∂x

= 2(q1q2−q0q3)(−x+xi)
2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

(q20−q21+q22−q23)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(q0q1+q2q3)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(q1q2−q0q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂by
∂y

= 2(q1q2−q0q3)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

(q20−q21+q22−q23)(−y+yi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(q0q1+q2q3)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

q20−q21+q22−q23√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂by
∂z

= 2(q1q2−q0q3)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

(q20−q21+q22−q23)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(q0q1+q2q3)(−z+zi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(q0q1+q2q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bz
∂x

= 2(q0q2+q1q3)(−x+xi)
2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(−q0q1+q2q3)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

(q20−q21−q22+q23)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(q0q2+q1q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bz
∂y

= 2(q0q2+q1q3)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(−q0q1+q2q3)(−y+yi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

(q20−q21−q22+q23)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(−q0q1+q2q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2
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∂hr̂bz
∂z

= 2(q0q2+q1q3)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(−q0q1+q2q3)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

(q20−q21−q22+q23)(−z+zi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

q20−q21−q22+q23√
(−x+xi)2+(−y+yi)2+(−z+zi)2

ϕ2 =









∂hr̂bx
∂Vx

∂hr̂bx
∂Vy

∂hr̂bx
∂Vz

∂hr̂bx
∂q0

∂hr̂bx
∂q1

∂hr̂bx
∂q2

∂hr̂bx
∂q3

∂hr̂by
∂Vx

∂hr̂by
∂Vy

∂hr̂by
∂Vz

∂hr̂by
∂q0

∂hr̂by
∂q1

∂hr̂by
∂q2

∂hr̂by
∂q3

∂hr̂bz
∂Vx

∂hr̂bz
∂Vy

∂hr̂bz
∂Vz

∂hr̂bz
∂q0

∂hr̂bz
∂q1

∂hr̂bz
∂q2

∂hr̂bz
∂q3









=







0 0 0 ∂hr̂bx
∂q0

∂hr̂bx
∂q1

∂hr̂bx
∂q2

∂hr̂bx
∂q3

0 0 0
∂hr̂by
∂q0

∂hr̂by
∂q1

∂hr̂by
∂q2

∂hr̂by
∂q3

0 0 0 ∂hr̂bz
∂q0

∂hr̂bz
∂q1

∂hr̂bz
∂q2

∂hr̂bz
∂q3







∂hr̂bx
∂q0

= 2q0(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+

2q3(−y+yi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

−
2q2(−z+zi)√

(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bx
∂q1

= 2q1(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+

2q2(−y+yi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+

2q3(−z+zi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bx
∂q2

= − 2q2(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+

2q1(−y+yi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

−
2q0(−z+zi)√

(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bx
∂q3

= − 2q3(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+

2q0(−y+yi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+

2q1(−z+zi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2
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∂hr̂by
∂q0

= − 2q3(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+

2q0(−y+yi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+

2q1(−z+zi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂by
∂q1

= 2q2(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

−
2q1(−y+yi)√

(−x+xi)2+(−y+yi)2+(−z+zi)2
+

2q0(−z+zi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂by
∂q2

= 2q1(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+

2q2(−y+yi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+

2q3(−z+zi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂by
∂q3

= − 2q0(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

−
2q3(−y+yi)√

(−x+xi)2+(−y+yi)2+(−z+zi)2
+

2q2(−z+zi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bz
∂q0

= 2q2(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

−
2q1(−y+yi)√

(−x+xi)2+(−y+yi)2+(−z+zi)2
+

2q0(−z+zi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bz
∂q1

= 2q3(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

−
2q0(−y+yi)√

(−x+xi)2+(−y+yi)2+(−z+zi)2
−

2q1(−z+zi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bz
∂q2

= 2q0(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+ 2q3(−y+yi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

−
2q2(−z+zi)√

(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bz
∂q3

= 2q1(−x+xi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+ 2q2(−y+yi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

+

2q3(−z+zi)√
(−x+xi)2+(−y+yi)2+(−z+zi)2
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ϕ3 =







∂hr̂bx
∂xi

∂hr̂bx
∂yi

∂hr̂bx
∂zi

∂hr̂by
∂xi

∂hr̂by
∂yi

∂hr̂by
∂zi

∂hr̂bz
∂xi

∂hr̂bz
∂yi

∂hr̂bz
∂zi







∂hr̂bx
∂xi

= − (q20+q21−q22−q23)(−x+xi)
2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(q1q2+q0q3)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(−q0q2+q1q3)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

q20+q21−q22−q23√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bx
∂yi

= − (q20+q21−q22−q23)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(q1q2+q0q3)(−y+yi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(−q0q2+q1q3)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(q1q2+q0q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bx
∂zi

= − (q20+q21−q22−q23)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(q1q2+q0q3)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(−q0q2+q1q3)(−z+zi)
2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(−q0q2+q1q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂by
∂xi

= − 2(q1q2−q0q3)(−x+xi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

(q20−q21+q22−q23)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(q0q1+q2q3)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(q1q2−q0q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂by
∂yi

= − 2(q1q2−q0q3)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

(q20−q21+q22−q23)(−y+yi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(q0q1+q2q3)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

q20−q21+q22−q23√
(−x+xi)2+(−y+yi)2+(−z+zi)2
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∂hr̂by
∂zi

= − 2(q1q2−q0q3)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

(q20−q21+q22−q23)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(q0q1+q2q3)(−z+zi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(q0q1+q2q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bz
∂xi

= − 2(q0q2+q1q3)(−x+xi)
2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(−q0q1+q2q3)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

(q20−q21−q22+q23)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(q0q2+q1q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bz
∂yi

= − 2(q0q2+q1q3)(−x+xi)(−y+yi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(−q0q1+q2q3)(−y+yi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

(q20−q21−q22+q23)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

2(−q0q1+q2q3)√
(−x+xi)2+(−y+yi)2+(−z+zi)2

∂hr̂bz
∂zi

= − 2(q0q2+q1q3)(−x+xi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

2(−q0q1+q2q3)(−y+yi)(−z+zi)

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
−

(q20−q21−q22+q23)(−z+zi)2

((−x+xi)2+(−y+yi)2+(−z+zi)2)3/2
+

q20−q21−q22+q23√
(−x+xi)2+(−y+yi)2+(−z+zi)2
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Appendix J

The Jacobian ∇hxk of the nonlinear observation function h(·) (6.27) with respect

to the augmented state vector x(k) i.e. the vehicle state and the map point

estimate used in the update is:

∇hx(k) =
[

ϕ1 ϕ2 ϕ3

]

where

ϕ1 =







∂hr̂x
∂x

∂hr̂x
∂y

∂hr̂x
∂z

∂hr̂y
∂x

∂hr̂y
∂y

∂hr̂y
∂z

∂hr̂z
∂x

∂hr̂z
∂y

∂hr̂z
∂z






=









(xi−x)2

r3/2
− 1√

r
(xi−x)(yi−y)

r3/2
(xi−x)(zi−z)

r3/2

(xi−x)(yi−y)

r3/2
(yi−y)2

r3/2
− 1√

r
(yi−y)(zi−z)

r3/2

(xi−x)(zi−z)

r3/2
(yi−y)(zi−z)

r3/2
(zi−z)2

r3/2
− 1√

r









ϕ2 =









∂hr̂x
∂Vx

∂hr̂x
∂Vy

∂hr̂x
∂Vz

∂hr̂x
∂q0

∂hr̂x
∂q1

∂hr̂x
∂q2

∂hr̂x
∂q3

∂hr̂y
∂Vx

∂hr̂y
∂Vy

∂hr̂y
∂Vz

∂hr̂y
∂q0

∂hr̂y
∂q1

∂hr̂y
∂q2

∂hr̂y
∂q3

∂hr̂z
∂Vx

∂hr̂z
∂Vy

∂hr̂z
∂Vz

∂hr̂z
∂q0

∂hr̂z
∂q1

∂hr̂z
∂q2

∂hr̂z
∂q3









=







0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0






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ϕ3 =







∂hr̂x
∂xi

∂hr̂x
∂yi

∂hr̂x
∂zi

∂hr̂y
∂xi

∂hr̂y
∂yi

∂hr̂y
∂zi

∂hr̂z
∂xi

∂hr̂z
∂yi

∂hr̂z
∂zi






=









1√
r
− (xi−x)2

r3/2
− (xi−x)(yi−y)

r3/2
− (xi−x)(zi−z)

r3/2

− (xi−x)(yi−y)

r3/2
1√
r
− (yi−y)2

r3/2
− (yi−y)(zi−z)

r3/2

− (xi−x)(zi−z)

r3/2
− (yi−y)(zi−z)

r3/2
1√
r
− (zi−z)2

r3/2









where r = (xi − x)2 + (yi − y)2 + (zi − z)2.
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