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Fabrication of ceramic micro-scale hollow components by micro-powder injection moulding

Usama M. Attiaa,* and Jeffrey R. Alcockb

a,* Building 56, Cranfield University, Wharley End, Cranfield, Bedfordshire, MK43 0AL, UK. E-mail:

u.attia@cranfield.ac.uk
b Building 61, Cranfield University, Wharley End, Cranfield, Bedfordshire, MK43 0AL, UK. E-mail:

j.r.alcock@cranfield.ac.uk

Keywords: Injection moulding, PZT, microfabrication, three-dimensional, lost-core, catalytic debinding

Abstract

Rapid developments in microsystem technologies demand ceramic microcomponents of increasing geometrical

complexity. State-of-the-art microfabrication routes of ceramics are either limited in geometrical complexity

and/or high volume capabilities. This paper presents a process route by which ceramic microcomponents with

relatively complex three-dimensional architectures could be realised by a high-volume technique. The proposed

strategy, in which yttria-stabilised zirconia was implemented, combines the capabilities of insert-micromoulding,

powder micro-overmoulding, catalytic debinding and sintering. The produced architectures demonstrate the

capability of the technique to combine the high performance of ceramic materials with the dimensional accuracy

and mass manufacturability of powder micromoulding.

1. Introduction

Ceramic microsystems are gaining increasing significance in applications, such as healthcare, where

properties such as biocompatibility and chemical resistance are desirable. Several fabrication techniques have

been developed for producing ceramic micro-components [1-3], but a major limitation of such techniques is in

their ability to produce truly three-dimensional component with relatively complex geometries. The ability to

produce precise micro-scale cavities or enclosed channels in ceramic structures is crucial for applications such as

microfluidic devices for future chemical and biochemical analysis. Within state-of-the-art technology, such

hollow structures are done by lab-scale techniques and usually require post-processing.

One approach to overcoming process limitations on component geometry is to use lost core techniques.

For relatively large, ‘macro-scale’, ceramic components, there has been increased interest in the idea of using

lost cores as part of the powder injection molding (PIM) process, in order to be able to mould internal geometries

that could not be produced with slides or cores in conventional molding [4-6]. However, these routes introduce

additional process steps for the addition of the core, and for its removal, and they have not yet been tested for

micro-scale components.

Micro-powder injection molding (μPIM) is a process for producing microcomponents of metallic or

ceramic structures. The advantages of the process include shape complexity, replication fidelity, net-shape or

near net-shape forming, availability of commercial feedstock for metals and ceramics, and mass-

manufacturability [7]. The ability to implement a lost-core approach within a μPIM process to produce micro-

scale ceramic components would potentially combine the advantages of shape complexity and mass

manufacturability.

μPIM is at an early development stage as a microfabrication technique of ceramics, so there appear to

be no comprehensive design rules for lost-core processes based on PIM in general. However, authors have

proposed several conditions for a successful lost-core process. One is the necessity of producing a core from a

higher melting temperature material than the overmoulded feedstock, in order to improve shape retention. A

second is the necessity of avoiding full encapsulation of the core to ensure successful core removal [6]. This

paper assesses both conditions through a case study of a ceramic microcomponent with a fully encapsulated

polymeric lost core.



2. Methodology

2.1. Manufacturing principle

The concept behind the fabrication methodology is the ability to “evacuate” a hollow core inside a

miniaturised component by catalytic debinding. Fig. 1 illustrates the concept in which a ceramic powder shell is

overmoulded over a sacrificial core.

The powder feedstock consists of the ceramic powder mixed with a catalytically debindable polymer, in

this case polyoxymethylene (POM). The sacrificial core is made of the same polymer so that both the polymeric

content of the powder feedstock and the core could be simultaneously eliminated during catalytic debinding.

During debinding, nitric acid vapour is used to hydrolyse the POM of both the core and the encapsulation

material into formaldehyde, which is extracted leaving a hollow core inside the structure.

Fig. 1. A schematic illustration of catalytic debinding with a sacrificial core

Catalytic debinding was particularly selected for this route, because it is a direct solid-gas transition

process that takes place below the Tg of the polymer. The process, therefore, results in higher dimensional

accuracy, tighter tolerances and better surface finish relative to other debinding techniques [8].

2.2. Encapsulation design and technique

For the demonstration of the fabrication principle, the structure selected was a miniaturised cube with a

fully-enclosed 3-D cavity. A POM core was micromoulded as a 900-micron-side cube with outer radii of 150

μm. The core was then used as an insert inside a mould to overmould one half of a ceramic powder shell. The

resulting component was used as an insert in another mould for full encapsulation by the powder shell. This

sequential moulding technique was implemented to ensure that the core is placed such that the powder shell

thickness is equal on all sides.

To ensure accurate alignment of the POM core within the powder shell, a micro-mould system was

designed to hold the core in place during micro powder overmoulding. Fig. 2 illustrates the mould designed for

the different stages of the hybrid structure realisation.
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Fig. 2. A schematic diagram of the moulding process of a hybrid structure.

3. Experiments

The fabrication technique comprises three stages: micro-overmoulding, catalytic debinding and sintering:

Stage 1: Polymer micromoulding is used to produce the green hybrid component following the procedure

in Fig. 2. Mould inserts were manufactured in hardened steel (Toolox® 33) using a KERN Evo micro-milling

machine. A set of cutting micro-tools was used to cut and finish the mould inserts, including a high-aspect ratio

tool with a diameter of 300 μm and a cutting length of 2 mm. Finishing was performed with a 300-μm diameter

tool, using a spindle rotational speed of 30,000 rpm, a feed-rate of 40 mm/min and a cutting step between 5 and

10 μm, depending on cutting direction. Cutting steps at both vertical and horizontal directions are responsible for

the linear texture on the mould walls, which is replicated into the architectures.

Polymer molding and powder overmoulding were performed using a Battenfeld Microsystem 50 micro-

molding machine. The core was molded of POM (BASF Ultraform® W2320 003) with melt flow index of 25 to

ensure better filling of micro-cavities; the powder feedstock was composed of a mixture of yttria-stabilised

zirconia particles with average particle size (d50) of 0.3 μm [9] and POM (BASF Catamold® TZP-A). The

molding conditions of both the POM and the PIM feedstock are shown in Table 1.

Table 1

Moulding conditions for POM and powder/POM.

Material
Melt temperature

[°C]

Mould

temperature [°C]

Holding

pressure [bar]

Injection

velocity [mm/s]

Cooling time

[s]

POM 190 100 300 250 10

Powder / POM 190 140 300 250 10

Stage 2: Catalytic debinding took place following the BASF technique [10] at a dwell temperature of

110°C in high-concentration nitric acid (>98%) at an acid feed of approximately 30 ml/h. Debinding takes place
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Step 4: The partially enclosed POM core is used as an insert in another
mould for full encapsulation by powder feedstock (2nd stage moulding in
Figure 5).
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following the shrinking core mechanism illustrated in Fig. 1, by which POM is eliminated layer-by-layer from

the outside into the core. Nitrogen was used as a purging gas at a flow rate of approximately 500 l/h. The

debinding cycle takes approximately 5 to 6 hours.

After debinding, the structure was composed of a powder form within which there was a hollow cavity.

Stage 3: Sintering was conducted following the schedule shown in Table 2, with air as the gaseous

environment. The ceramic powder densified to the final shape.

Table 2

Typical sintering schedule for zirconia debound structures.

Stage Schedule

1 From room temperature to 270°C at the rate of 3°C/min.

2 Hold at 270°C for 1 h.

3 From 270°C to 1500°C at the rate of 3°C/min.

4 Hold at 1500°C for 1 h.

5 From 1500°C to 600°C at the rate of 5°C/min.

6 Furnace cooling.

4. Results

Figs. 3 to 5 show the resulting structures of Stages 1-3 described in the previous section, respectively.

Fig. 3 shows the encapsulation procedure described in Fig. 2 of Section 2.2.
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Fig. 3. Steps for producing fully encapsulated hybrid green ceramic component. a) An SEM image of the core

insert. b) A selection of replicated POM cores, some attached to their sprue. c) an SEM image of a mould insert

with constraining features to position the core. d) a partially encapsulated POM core in a zirconia powder shell.

e) A mould insert for final encapsulation stage. f) An image of a zirconia parts with fully encapsulated POM

core. g) a cross section in a hybrid green component.

Figs. 3a and 3b show the mould and the replicated POM core respectively. Partial encapsulation of the

POM core is shown in Figs. 3c and 3d, where the former shows the encapsulation mould, and latter shows the

partially encapsulated core in a ceramic powder shell. Fig. 3c shows how the mould was designed with four

constraining features to secure the central positioning of the POM core inside the powder shell. Full

encapsulation is shown in Figs. 3e and 3f, where the former shows the third, and final, mould cavity, and the

latter shows the fully encapsulated green zirconia “cube”. Fig. 3g shows a cross section in the hybrid green cube.

Fig. 4 shows the “brown” components after catalytic debinding. Fig. 4a shows an image of the full and

sectioned parts. Fig. 4b is an ESEM image of a debound sectioned component, where no traces of the polymeric

core are left.
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Fig. 4. a) An image of debinded components before sectioning and after sectioning while immersed in resin. b)

An ESEM image of a sectioned brown component showing the hollow core.

Fig. 5 shows a cross section in the final ‘brown’ component after sintering. The image shows the hollow

core at the centre of the cube.

Fig. 5. Core removal by catalytic debinding and sintering: An optical micrograph of a cross section of a sintered

metallic architecture.

5. Discussion

The results illustrated in Fig. 3 show that the micro-overmoulding based fabrication route is a viable

process for introducing sacrificial cores in ceramic powder moulding. One of the precautions suggested in the

literature on lost-core techniques in using the same polymer (POM) for both the powder matrix and the core is

the likeliness of deformation at the interface due to the similar thermal properties [6]. However, this was not

observed during processing, and the cross section in Fig. 3g shows a hybrid green component with good shape

retention, especially at the round corners, and clear boundaries between the powder shell and the polymer core.
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As for the debinding stage, Fig. 4 shows that the manufacturing principle detailed in Section 2.1 is viable

for producing enclosed cavities. The images show that the core was totally consumed whilst the overall

component retains its geometry. Other than a few defects inherited from the moulding process, such as the

broken-gate remains or ejection-pin marks, the debinding process did not distort the geometrical integrity of the

hollow component.

The sintered component illustrated in Fig. 5 shows the cavity maintained in the structure. No visible signs

of slumpage or deterioration have been detected, and shape retention appears of high quality. Again no signs of

particular problems related to full cavity encapsulation were observed.

Fig. 5 indicates the feasibility of the presented process chain in producing ceramic components with

internal micro-scale cavities. This approach should enable the development of microcomponents that are not

viable using state-of-the-art technology. The approach could be used for producing ceramic microfluidic devices

with controlled channel dimensions without the need for attaching a lid in post processing as is typically done

with current manufacturing techniques.

It should be noted, however, that the fabrication strategy has a number of limitations. Firstly, knowing

that the hollow core was originally a moulded polymer, the geometry of the core is limited by moulding design

rules, such as demouldability and maximum aspect ratio [11]. Secondly, considering the powder shell, the shell

size is limited by the particle size, as it’s recommended that the minimum feature size should be at least 10-20

times the particle size [12,13]. In addition, in case the presented technique is used to produce long, tube like

cavities, e.g. microfluidics, there will be relatively long unsupported areas that are likely to sag during debinding

and/or sintering. This needs to be considered in part design.

6. Conclusion

This paper aimed at presenting a manufacturing route for producing ceramic microcomponents with

hollow structures. The fabrication technique combines the advantages of micro-powder over-moulding and

catalytic debinding. A fully encapsulated micro-component was used as a demonstrator for the methodology.

Three-dimensional micro-scale cavities were successfully fabricated in zirconia. The technology presented in

this paper establishes a fabrication route for ceramic microsystem components with complex cavities for use as

micro-engines or high-performance microfluidics.
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