
Advanced Materials Research, 2011, volume 225-226, Issue 1-2, pp1254-1257

Special issue: Advanced Research on Automation, Communication, Architectonics and Materials

Size estimation of tomato fruits based on spectroscopic analysis
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Abstract. This study used visible and near-infrared (VIS-NIR) spectroscopy for size estimation of
tomato fruits of three cultivars. A mobile, fibre-type, VIS-NIR spectrophotometer (AgroSpec, Tec 5,
Germany) with spectral range of 350-2200 nm, was used to measure reflectance spectra of on-vine
tomatoes growing from July to September 2010. Spectra were divided into a calibration set (75%) and
an independent validation set (25%). A partial least squares regression (PLSR) with leave-one-out
cross validation was adopted to establish calibration models between fruit diameter and spectra.
Furthermore, the latent variables (LVs) obtained from PLS regression was used as input to
back-propagation artificial neural network (BPANN) analysis. Result shows that the prediction of
PLSR model can produce good performance with coefficient of determination (R2) of 0.82,
root-mean-square error of prediction (RMSEP) of 4.87 mm and residual prediction deviation (RPD)
of 2.35. Compared to the PLSR model, the PLS-BPANN model provides considerably higher
prediction performance with R2 of 0.88, RMSEP of 3.98 mm and RPD of 2.89. It is concluded that
VIS-NIR spectroscopy coupled with PLS-BPANN can be adopted successfully for size estimation of
tomato fruits.

Introduction

Fruit size has been one of important focuses for tomato growers, fruit retailers and cultivar genetic
researchers. Firstly, as a market grading standard, fruit size is considered as a direct indicator of
tomato quality [1]. Although fruit grading for market is mostly based on the conditions and the quality
of the fruits, retailers have differential prices for size-graded fruits as against size-ungraded ones. For
export, tomatoes are usually packed in cardboard boxes with a certain standard volume. Size-graded
fruits are pattern-packed in layers to make best use of the box. Secondly, fruit size, expressed as fresh
fruit mass or weight [2,3], is an important parameter for yield prediction and growth mode
characterization of greenhouse tomatoes [4]. Yield is of interest to greenhouse growers for developing
short-term crop management strategies and long-term marketing and labor management. Finally, fruit
size of tomatoes has been one of important targets for genetic research on tomato cultivars.
Domesticated tomatoes can be up to 1000 times larger than their wild relatives due to historical
selection of large-size cultivars and modern transgenic variety improvement [5]. Although it has been
known that tomato size is manipulated by gene and can be inherited by reproduction [6,7], it has been
difficult to clone these genes in tomatoes even with modern advanced genomics tools. The challenges
is owing to the fact that fruit size of tomatoes is not influenced by one gene, but many genes acting



together, which are called quantitative trait loci (QTLs). Size measurement of fruit can help plant
breeders to identify phenotypic expression of target genes possibly linked with fruit size.

Size measurement of tomato fruits has been conducted in history for a long time by mechanic way
[8]. Human operation is often a labor intensive, tedious and subjective task. Based on the close
relationship between size and fresh fruit weight [2], electronic weigh buckets for processing tomatoes
based on impact principles have been tested in laboratory and in-field for fruit grading of tomatoes [9].
However, the majority of these fruit-grading systems for tomatoes is often cumbersome, only
available for off-vine fruit measurement, and cannot be used for in situ measurement of on-vine
tomato fruits. With the development of image sensing and processing techniques, the measurement of
fruit size could be conducted based on machine-vision technique [1, 10-12]. One method for size
measurement of fruits was to use the area occupying fruit and an equivalent circle diameter after
binarization based on the color information [13]. Alternatively, digital reflective near-infrared
imaging was examined for automatic fruit grading [14]. Although these optical methods for size
measurement of fruits are much convenient for in-field conditions compared to the mechanical
predecessors, they often suffered from the ambiguity of computer vision due to the quality of captured
images. Often due to the unstructured nature of typical agricultural settings and biological variation of
plants within them, object identification based on machine vision is considerably more difficult [12].

Recently, due to relative low cost, fast acquisition rate of data and excellent repeatability, visible
and near infrared (VIS-NIR) spectroscopy [15-17] has become a successful technique for the
measurement of physicochemical qualities of tomato fruits. Of them, some of growth-related
parameters, including ripeness, firmness and concentration of some chemicals, like sugar and acidity
have been tested under laboratory conditions [18-20]. Tomato color has been correlated with firmness
maturity [18-19] or with lycopene [23-25]. Although these studies on internal qualities of tomato
fruits using VIS-NIR spectroscopy may lead to fast determination of what degree of ripeness a tomato
fruit is, there is still lack of information about how large a tomato fruit is. To our knowledge, no
published studies have addressed the use of VIS-NIR spectroscopy for in situ measurement of tomato
fruit size.

The aim of the paper is to implement the VIS-NIR spectroscopy for in situ size estimation of
tomato fruits with different cultivars. Performance of different calibration models is to be compared

Materials and Methods

Tomato Samples. Three tomato cultivars were planted at the Silsoe Horticultural Centre,
Bedfordshire, the United Kingdom, in the summer growing season from July to September 2010.
Spectral measurement started on the 24th July and was repeated every 2-3 days until the target
tomatoes were fully ripen and picked. Fruit diameter was measured using a digital calliper
(0-150±0.01mm, Neiko, UK). The sample statistics are listed in Table 1.

Table 1. Sample statistics of tomato fruits
Data Sample Fruit diameter
set number Range (mm) Mean (mm) Standard deviation Coefficient of variation

Calibration 618 12.67-62.20 35.41 11.65 0.329
Independent validation 202 13.26-58.52 35.52 11.50 0.324

Optical measurement. The reflectance spectra of tomato fruits were measured by a mobile,
fibre-type, VIS-NIR spectrophotometer (AgroSpec, Tec5 Co., Germany) with spectral range of
350-2200 nm. A 100% white reference was used before scanning. Spectral measurement was made in
three separate positions on the equator of a fruit. A total of ten scans were measured at each position
and the spectra from the three positions were averaged in one spectrum.

Spectral Pretreatment and Data Analysis. Due to the low signal-to-noise ratio of both ends of each
spectrum, only the region of 400-2100 nm was used. Several spectral pretreatment algorithms,



including Savitzky-Golay smoothing, multiplicative scatter correction (MSC), standard normal
variation (SNV), 1st and 2nd order de-trending, baseline offset correction and 1st and 2nd derivatives
were investigated. Spectra were divided into a calibration set (75%) and an independent validation set
(25%). The calibration spectra were subjected to a partial least squares regression (PLSR) with
leave-one-out cross validation. The optimal number of latent variables (LVs) was determinate by
minimizing the predicted residual error sum of squares (PRESS). The PLSR calibration models were
evaluated using coefficient of determination (R2) in calibration and cross-validation,
root-mean-square error of calibration (RMSEC) and cross validation (RMSECV). The coefficient of
determination (R2) and root-mean-square error of prediction (RMSEP) were used for the evaluation of
prediction performance of the established PLS models based on the independent validation set. Also,
the prediction accuracy of each PLS model was evaluated using the residual predictive deviation
(RPD), which is the ratio of standard deviation of reference size to RMSEP of the independent
validation set. We propose that RPD between 1.8 and 2.0 indicates good, quantitative
model/prediction; RPD between 2.0 and 2.5 indicates very good, quantitative model/predictions; and
RPD>2.5 indicates excellent model/predictions. Generally, a good model would have high values of
R2 and RPD, and low values of RMSEC, RMSECV and RMSEP. Spectra pretreatment and PLSR
were conducted using the Unscrambler software (CAMO Software AS, Oslo, Norway).

After PLSR analysis, the optimal number of latent variables (LVs) enabling the minimization of
PRESS was used as input to a standard three-layer back-propagation artificial neural network
(BPANN) to build PLS-BPANN models aiming at improving the results obtained with the PLS. The
tan-sigmoid function and a linear function were adopted in the hidden and output layers, respectively.
The momentum was set as 0.9, the learning rate as 0.05, the threshold residual error as 0.001 and the
training epochs as 8,000. After training, the number of neural nodes in the hidden layer was adjusted
to achieve the best results. To avoid over-fitting, the cross-validation option was adopted. PLS-
BPANN was conducted using Matlab software (The Math Works, Natick, MA, USA).

Results and Discussion

PLSR Models. Table 2 reports the results of the PLSR models. In general, the performance of most of
these models for size measuremnt is good with RPD>1.8. The best prediction accuracy for individual
cultivar 1, 2 and 3 is obtained by de-trending with 1st or 2nd order polynomial approximation with R2
of 0.68-0.74 and RPD of 1.84-1.99. Compared to the models developed for individual cultivars,
models developed for mixed spectra are considerably more accurate, although they are calibrated with
larger numbers of latent variables (15-20). The general models with mixed spectra provide very good
prediction performance achieved after baseline offset correction with R2 of 0.82 and RPD of 2.35 for
the independent validation set (Table 2).

Table 2. Performance of best PLS models built individually for cultivars 1, 2, 3 and for mixed spectra
collected from across the whole growing stages

Method LVs
Calibration Validation Independent validation Model

evaluationRMSEC RMSECV RMSEP Bias RPD
None 15 0.78 5.42 0.74 5.98 0.74 5.81 0.23 1.98 Good
SNV 13 0.78 5.52 0.73 6.05 0.72 6.04 0.13 1.90 Good
MSC 12 0.80 5.16 0.77 5.54 0.80 5.03 -0.04 2.28 Very good

1st Det 15 0.80 5.24 0.75 5.78 0.79 5.27 0.10 2.18 Very good
2nd Det 18 0.85 4.46 0.81 5.13 0.81 5.02 0.18 2.29 Very good
BOC 20 0.86 4.43 0.81 5.18 0.82 4.87 0.07 2.35 Very good

1st Der 10 0.77 5.55 0.71 6.18 0.73 5.89 0.12 1.95 Good
2nd Der 15 0.80 5.24 0.68 6.60 0.69 6.46 0.30 1.80 Good

PLS-BPANN Models. Although it is successful to establish models for tomato size prediction using
PLSR models, the prediction accuracy is still low. Table 2 also shows large number of LVs (10-20)
needed to establish PLSR models. These high dimensional data structures may not be dealt well with
linear calibration methods like PLSR. Alternatively, non-linear methods might be more suitable.



BPANN is one of best candidates due to its flexible data structure and adaptive training process.
Compared to the best PLSR model, the PLS-BPANN model produces better prediction performance
with R2 of 0.88, RMSEP of 3.98 mm and RPD of 2.89, which is regarded as excellent.

Conclusions

The visible and near-infrared (VIS-NIR) spectroscopy was used for size estimation of tomato fruits of
three cultivars. Combined with relevant pre-treatment algorithms, the partial least squares regression
(PLSR) enabled establishing correlation between fruit diameter and VIS-NIR spectra. Prediction of
the PLSR model for independent validation set achieves good or very good performance for the
measurement of tomato size. Further improvement in the prediction accuracy of fruit size is obtained
using PLS-BPANN analysis. The result shows that the PLS-BPANN model achieves best prediction
performance with R2 of 0.88, RMSEP of 3.98 mm and RPD of 2.89, which suggests that the
methodology proposed in this study is worthy of further investigation in other tomato cultivars.
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