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Abstract 
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Abstract 

This thesis focuses on the incorporation of carbon nanoparticles within continuous fibre 
reinforcements by liquid composite moulding processes, in order to provide enhanced electrical 
and delamination properties to the multiscale composites. The mechanisms controlling the flow 
and filtration of these nanoparticles during liquid composite moulding are studied, in order to 
develop a predictive 1-D model which allows design of the processing of these composite 
materials.  

Five different carbon nanoparticles at 0.25 wt% loading, three unmodified and one surface 
modified carbon nanotube systems and one carbon nanofibre system, were utilised to modify a 
commercial two-component epoxy resin utilised to impregnate carbon and glass reinforcements 
at high fibre volume fraction by resin transfer moulding. The dispersion of the nanofillers in the 
prepolymer was carried out by ultrasonication, high shear mixing or triple roll milling or a 
combination of the three. Electrical conductivity measurements of the carbon nanoparticle liquid 
suspensions during dispersion, alongside optical microscopy imaging and rheological analysis of 
these allowed the selection of the concentration of nanofiller and the appropriate dispersion 
technique for each nanoparticle system.  

The resin transfer moulding process required adaptation to incorporate the dispersion and 
modify degassing steps, especially when utilising unmodified carbon nanoparticles suspensions, 
due to their higher viscosity and tendency to be filtered. Nanoparticle filtration was identified by 
electrical conductivity measurements and microscopy of specimens cut at increasing distances 
from the inlet. Cake filtration was observed for some of the unmodified systems, whereas deep 
bed filtration occurred for the surface modified CNT material. Property graded composites were 
obtained due to filtration, where the average electrical conductivity of the carbon and glass 
composites produced increased by a factor of two or one order of magnitude respectively. The 
effect of filler on the delamination properties of the carbon fibre composites was tested under 
mode I. The results do not show a statistically significant improvement of delamination 
resistance with the presence of nanoparticles, although localised toughening mechanisms such 
as nanoparticle pull-out and crack bridging as well as inelastic deformation have been observed 
on fracture surfaces.  

Particle filtration and gradients in concentration resulted in non-linear flow behaviour. An 1-D 
analytical and a finite difference model, based on Darcy’s law accompanied by particle mass 
conservation and filtration kinetics were developed to describe the flow and filtration of carbon 
nanoparticle filled thermosets. The numerical model describes the non-linear problem by 
incorporating material property update laws, i.e. permeability, porosity and viscosity variations 
on concentration of retained and suspended particles with location and time. The finite 
difference model is consistent and converges to the analytical solution. The range of 
applicability of the analytical model is limited to lower filtration coefficients and shorter filling 
lengths, providing an approximate solution for through thickness infusion; whereas the 
numerical model presents a solution outside this range, i.e. in-plane filling processes. These 
models allow process design, with specified carbon nanoparticle concentration distributions 
achieved via modifying the nanofiller loading at the inlet as a function of time.  
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Flow and filtration modelling: 

A Kozeny-Carman constant 

η viscosity [Pa.s] 

ηI intrinsic viscosity[-] 

mϕ  filler maximum packing fraction  

ε porosity [-] 

ρ density [kg/m3] 

h flow front position [m] 

C concentration of suspended carbon nanoparticles[kg/m3] 

σ retention of carbon nanoparticles[kg/m3] 

K permeability [m-2] 

k0 filtration coefficient[1/m] 

kr re-suspension coefficient [1/m] 

L length [m] 

U Darcy’s velocity [m/s] 

M  total number of time increments [-] 

N total number of grid points [-] 

Po inlet Pressure [Pa] 

P∞ outlet Pressure[Pa] 

Vf fibre volume fraction [%] 

Vo initial prescribed velocity [m/s] 

T total concentration of nanofiller in the composite[kg/m3] 

Indices  

o initial 

i, j position, time 
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Mode I delamination testing: 

P load [N] 

δ  load line displacement [mm] 

a crack delamination length [mm] 

ao initial pre-crack length [mm] 

b specimen width [mm] 

l specimen length [m] 

h half DCB beam thickness [mm]  

GIC critical strain energy release rate for mode I [J/m2] 

KIC critical stress intensity factor [Pa.m1/2] 

C beam compliance [N/mm] 

F correction factor for large beam deformation [-] 

N correction factor for stiffening of the load blocks [-] 

∆ correction factor for accounting with not perfectly built-in specimen [-] 

Indices  

init crack initiation values 

re-init crack re-initiation values 

prop crack propagation values 

arrest crack arrest values during propagation 

Uniaxial compression testing: 

A area [m2] 

F load [N] 

σyc uniaxial compressive yield strength [MPa] 

ε strain [%] 

ν Poisson’s ratio [-] 

Indices  

o initial 

c compression values 

y yield  

t tension values 
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Abbreviations 

AC Alternating Current

BSI British Standards Institution 

CNF Carbon Nanofibre

CNP Carbon Nanoparticles 

CNT Carbon Nanotube 

COSHH Control of Substances Hazardous to Health 

CVD Catalytic vapour deposition 

DC Direct Current 

E-glass  Electrical grade glass

FDS Finite Difference Scheme

LCM Liquid Composite Moulding 

LSP Lightning Strike Protection 

MWCNT Multi-Walled Carbon Nanotube

NP Nanoparticles 

PTFE  Polytetrafluoroethylene

RTM Resin Transfer Moulding 

SEM   Scanning Electron Microscope 

SM Shear Mixing 

SWCNT Single-Walled Carbon Nanotube 

TEM Transmission Electron Microscope 

TRM Triple Roll Milling 

UD Unidirectional 

µPIV micro-Particle Image Velocimetry 

US Ultrasonication 

VARTM Vacuum Assisted Resin Transfer Moulding 

VBA   Visual Basic for Applications 
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Resin + CNT = Nanocomposites 

Resin + CNT + Fibres = Multiscale composites 
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1 Introduction 

In recent years, significant research efforts have focused on the processing and 

performance of fibrous composites with nanoparticle modified resins, in particular 

carbon nanotubes and carbon nanofibres. The extraordinary electrical, mechanical and 

thermal properties of these nanofillers can offer potential multifunctionality when 

incorporated within conventional fibrous composites, along with improved out-of-plane 

properties. These multiscale composites can present additional functions such as strain, 

stress and damage sensing, preventing crack propagation, alongside electromagnetic 

interference shielding, internal self-healing and active noise and vibration control [1]. 

Ultimately, these multiscale polymer composites have attracted great interest from the 

aerospace industry as a lightweight solution for the efficient lightning strike protection 

of composite structures. The electrically conductive nature of these nanofillers offers a 

lightweight solution for dissipation of the high current (up to 200 kA) carried by 

lightning strikes. The currently available lightning strike protection (LSP) structures 

rely on bonded aluminium and copper foils or meshes. These are normally placed on the 

outer skin in order to dissipate the current flow along a conductive pathway. Ideally, the 

current should flow throughout the composite skin to avoid degradation of the laminate 

layers (Figure 1.2), damaging the structure or interfering with sensitive electronic 

equipment on board. 

    

Figure 1.1 Lightning strike tests being performed on wind blade structures [2, 3] 
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Figure 1.2 Epoxy/carbon fibre composite panels lightning strike tested, where (a) has no 

LSP and (b) has an embedded copper mesh at the top surface. After the lightning strike 

test, tufting and copper sublimation occurs for panel (a) and (b), respectively. 

The multifunctional behaviour of these fillers offers advantages when aiming to 

combine electrical conductivity with enhanced delamination properties, known to be a 

frequent failure mode in fibre reinforced composites. At present, processing and 

transferring carbon nanoparticles exceptional properties to these fibrous composites is 

still seen as a challenge. The transfer of carbon nanofiller properties to composites 

hinges primarily on the achievement of homogenous and stable dispersions. Liquid 

composite moulding processes are widely utilised to produce these multiscale 

composites. However, increasing suspension viscosities associated to higher 

concentration of fillers and filtration phenomena taking place during infusion lead to 

longer process cycles and to a composite structure characterised by a graded 

concentration of carbon nanoparticles. Process optimisation and the possibility of using 

graded concentration versions of these hybrid composites as lightning strike protection 

a b

50 mm 50 mm

3 mm

before

after

3 mm

1 mm

1 mm
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solutions (Figure 1.3) motivates the development of predictive models of the flow of 

carbon nanoparticle filled resins during liquid composite moulding, and of the 

concentration distribution C of these nanoparticles in the final component. 

 

Figure 1.3 Schematic representation of a carbon filled composite with a graded conductive 

structure suitable for lightning strike protection applications. 

This thesis focuses on the feasibility of incorporating different carbon nanoparticles into 

polymer matrices to infuse carbon and glass performs by liquid moulding processes, in 

order to provide enhanced electrical properties to the multiscale composites produced, 

whilst ensuring no degradation of mechanical performance. The study of the 

relationship between particle filtration and transfer of properties to the final composite 

was analysed. An analytical and a finite difference model, which describes the flow and 

filtration in liquid moulding, when utilising carbon nanoparticle modified resins was 

developed. The aim of this study was to control the flow and filtration of nano-filled 

resins during liquid composite moulding in order to tailor the final composite structure 

properties to suit the requirement of their end application. For this purpose a set of 

objectives was defined: 

 development of dispersion methodologies for the carbon nanofiller/epoxy resin 

systems of this study;   

C (r,t)

C2

C1

C4
C3

r

C1> C2>C3>C4
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 establishing the relationship between the dispersion state of carbon nanoparticles 

in epoxy, concentration and type of nanofiller, and corresponding electrical 

conductivity of such suspensions;  

 adaptation and optimisation of resin transfer moulding for carbon nanoparticle 

filled epoxy systems; 

 measurement of the effect of carbon nanoparticles on the flow of suspensions 

during RTM, alongside with identification of particle filtration by microscopy; 

 evaluation of the enhancement of dielectric and delamination properties of the 

carbon nanoparticle hybrid composite panels produced by RTM; 

 development and verification of predictive analytical and numerical models of 

the flow of nanoparticle filled resins during liquid composite moulding, which 

accounts for filtration of particles; 

 implementation of the flow and filtration model in process design. 

The current state of the art in processing carbon nanoparticle modified composites and 

modelling approaches for the prediction of the flow and particle filtration during liquid 

composite moulding is presented in chapter 2. The electrical and mechanical 

performance of multiscale composites is also reviewed in this chapter. 

A detailed description of the materials utilised to manufacture the nanocomposites and 

multiscale composites in this study is presented in chapter 3. The dispersion 

methodologies, manufacturing procedures and characterisation are detailed in chapter 4. 

The main outcomes of this work are reported in chapters 5 to 8. Chapter 5 and chapter 8 

are extended and edited versions of papers submitted for publication. The main results 

are presented and discussed and the main conclusions are summarised in each of these 

chapters. Chapters 5 and 6 are dedicated to the processing of carbon nanotube and 

carbon nanofibre composites respectively. Detailed characterisation of nanofiller 

dispersion in epoxy, achieved by microscopy imaging and electrical conductivity 

measurements is presented alongside dispersion monitoring results using impedance 

spectroscopy. The results on flow of suspensions and particle filtration during filling of 

the fibrous reinforcement are also reported and form the basis for the development of 

the process model described in chapter 8. The delamination properties of the carbon 
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nanoparticle multiscale composites presented in chapter 5 and 6 are reported in chapter 

7. The potential of using carbon nanoparticles for toughening is investigated. 

Analytical and numerical finite difference models, incorporating appropriate material 

sub-models simulating the flow and filtration phenomena in liquid composite moulding 

of nanoparticle loaded resins are presented in chapter 8. These models are verified in 

terms of consistency and convergence and the process applicability of each of them is 

investigated. Process design examples are presented to demonstrate the capability of 

utilising these models in an industrial scale. 

The main scientific findings are brought together in chapter 9, in the form of an overall 

discussion on the processing and modelling of carbon nanoparticle multifunctional 

composites. This chapter also discusses suggestions for future research aiming at 

exploiting the full potential of carbon nanoparticles on offering enhanced properties to 

polymer composites, alongside with strategies for the validation of the models 

proposed. Chapter 10 summarises the main conclusions of the work. 
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2 Literature review 

2.1 Liquid moulding of composite materials containing carbon 

nanoparticles 

The use of nanocomposites as part of high performance components in the aerospace 

industry necessitates the incorporation of nanoparticles within continuous fibre, usually 

carbon, composites. In recent years fibrous nanoparticles, such as CNFs and CNTs, 

have been introduced into the manufacture of high performance continuous fibre 

reinforced structural composites for aerospace applications, mainly in an attempt to 

improve their out-of-plane mechanical and electrical properties [4]. These hierarchically 

structured materials are usually referred to as ‘multiscale polymer composites’. 

Conductive multiscale composites have also attracted great interest as structural health 

monitoring structures. For this function, carbon black nanoparticles [5] have been 

recently replaced by CNTs [6-8], due to their better electrical properties, which allow 

stress-strain monitoring, detection of structural damage, or even hydrothermal 

degradation [9], since variations in the composite electrical resistivity can be related to 

structural damage at the matrix level. The use of conductive matrix fillers for health 

monitoring is especially relevant in insulating materials, such as glass reinforced 

composites; in carbon composites, the conductive carbon fibres can act as sensors [10]. 

The enhancement in the electrical conductivity of these multiscale composites relies on 

the achievement of a percolated conductive network of carbon nanoparticles in the resin 

matrix prior infusion by liquid moulding routes.  

 

Figure 2.1 Schematic of RTM and VARTM processes [11] 

RTM VARTM
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The manufacture of these composites is generally achieved by employing and adapting 

existing liquid moulding processes, such as Resin Transfer Moulding (RTM) [12-15] 

and Vacuum Assisted Resin Transfer Moulding (VARTM) [6, 16-19]. The transfer of 

the unique properties of CNPs to these hierarchically structured composites still remains 

a challenge, and depends strongly on optimising the liquid moulding processing steps 

(Figure 2.2) to manufacture a multiscale polymer composite laminate.  

 

Figure 2.2 Liquid Composite Moulding processing steps 

The manufacture of multiscale composites begins with the incorporation of the CNPs 

within the composite: either by dispersing the CNPs in a liquid polymer matrix, or by 

grafting them onto the fibrous reinforcement (Figure 2.3). This is followed by the 

removal of moisture and volatiles within the polymer resin or suspension prior to 

infusion. At this stage, the resin is brought into contact with the fibrous preform until its 

complete impregnation. Cure followed by post cure allows the complete solidification 

of the composite. 

 

Figure 2.3 CNTs incorporation in fibre reinforced polymer composites [20]. 

Dispersion

Grafting

Degassing Infusion Cure Post-Cure
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The dispersion of carbon nanoparticles in polymer matrices is a crucial and still 

challenging step on the preparation of these materials. The achievement of a 

homogeneous and stable dispersion is the first and possibly the most important step 

towards the transferability of CNP properties to the final composite structure [21, 22]. 

The definition of a ‘good’ dispersion is not yet clear in quantitative terms and relies 

mainly on a qualitative assessment using microscopy techniques, such as optical and 

scanning electron microscopy (SEM). Freiman et al. [23] introduced the term ‘optically 

dispersed’, for suspensions where the aggregate size falls below 1µm. However, a good 

dispersion, characterised by very small aggregates, may not lead to transferable 

properties to the final composite, e.g. better electrical properties are obtained when a 

certain level of reaggregation is allowed [24]. 

The difficulty in dispersing CNTs arises from a combination of factors. Commercial 

CNTs are usually supplied in an entangled form. This is a consequence of the way 

commercial CNTs are manufactured, generally growing in entangled assemblies. In 

addition, strong van der Waals forces acting on a high specific surface area - which can 

reach values over 1000 m2/g [7] - generate a high attractive force between CNTs. In 

order to overcome this problem, both physical and chemical dispersion enhancement 

methods have been used to obtain satisfactory and stable suspensions. The main 

techniques utilised to disperse CNTs in polymeric matrices were reviewed by a number 

of authors [25-27]. When processing thermosetting resins, ultrasonication, shear mixing 

and triple roll milling are among the most common physical dispersion methods, whilst 

CNP surface functionalisation, polymer wrapping and surfactant assistance promote the 

bonding of CNPs to the polymer, by modification of nanofiller surface properties [28].  

Ultrasonication is the process of applying ultrasound energy to agitate particles in a 

suspension, causing the loosening of the outer layers of dense aggregates. It is the most 

common dispersion technique in low viscosity liquids. This technique can be applied in 

two ways, i.e. in low power mode using an ultrasonic bath [12, 29], or by means of a 

high specific power source, when using an ultrasonic horn or tip immersed in the liquid 

suspension [16, 30]. Shear mixing is generally associated to stirring processes, where 

the size and shape of the propeller and the mixing speed control the efficiency of the 

process. Usually for highly entangled CNPs systems high shear forces are required [30, 

31]. Triple roll milling employs the shear force generated by the movement of three 
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rollers, running at different speeds to disperse CNP within the polymer. In order to 

maximise this dispersion, a viscous suspension is forced to pass between adjustable 

rollers several times, while the minimum gap distance between rollers can be set to 1-5 

µm. This technique offers the advantage of processing large quantities of material 

without compromising the efficiency of the dispersion [32]. Successful dispersions of 

CNTs have been achieved when employing this technique [32, 33]  

Surface and defect functionalisation are chemical methods based on the covalent 

linkage of functional groups onto CNT sidewalls or ends. Surface functionalisation is 

achieved through a series of chemical treatments, causing a change of hybridisation 

from sp2 to sp3, together with delocalisation of the π electron of the graphene outer layer 

of a nanotube. Defect functionalisation uses defect sites, such as open ends or holes in 

the sidewalls, pentagon or heptagon irregularities in the hexagon graphene lattice, or 

creates new defects by carrying out oxidative processes with strong acids in order to 

attach functional groups to CNTs (e.g. –OH and –COOH). These chemical techniques 

promote the interfacial bonding of functionalised CNPs to the polymer, providing 

enhanced mechanical and functional properties to the nanocomposite. However, these 

covalent methods generate a large number of defects on the CNTs sidewalls, and can 

ultimately originate CNT fragmentation. Lower aspect ratios and disruption of the π 

electron system of CNTs have a detrimental effect especially on their transport 

properties, as defect sites scatter electrons and phonons responsible for the electrical and 

thermal conduction of CNTs [25, 27]. 

Polymer wrapping and surfactant assistance/adsorption are alternative non-covalent 

functionalisation methods. Polymer wrapping consists of wrapping a polymer 

containing aromatic rings around CNTs by van der Waals interactions and π-π stacking. 

Surfactant assistance consists of the physical adsorption of a surfactant on the CNT 

surface. This physical method reduces CNT surface tension, preventing the formation of 

CNT aggregates. These methods increase the compatibility between polymer and 

functionalised CNPs, promoting the process of dispersion [25, 34, 35]. 

The liquid suspension route is advantageous over the fibre grafting technique, due to its 

simplicity and compatibility with the conventional industrial practice. However it is 



Literature review 

11 

limited to CNT contents below 0.3 wt%, as stable and homogenous dispersions of 

suspensions containing higher CNT loadings may lead to unacceptably high resin 

viscosities and render the application of liquid moulding technologies very difficult [13, 

15]. As an exception, Thostenson et al. [17] reported the successful impregnation of 

unidirectional glass preforms by VARTM, with vinyl ester suspensions containing 

MWCNT loadings as high as 0.75 wt%. Degassing of the polymeric suspension is 

required prior to impregnation of the preform for the removal of volatiles and moisture. 

High temperatures or extremely long degassing times can promote reaggregation to 

undesirable levels. Therefore, this is an important stage, which might require 

optimisation in order to guarantee that the level of dispersion achieved in previous steps 

is not compromised. 

In addition to the viscosity issues related to high CNT contents [13], filtration of the 

nanofiller by the fibrous medium during LCM [12, 36] may also lead to inadequate final 

component quality. Particle filtration causes the clogging of the porous medium 

channels, slowing down the resin flow front progression and thus resulting in longer 

infusion cycles and filler concentration gradients in the final composite structure. 

Grafting of CNPs onto the fibrous reinforcement [37-39], or even manufacturing 

processes such as hand layup [14, 38, 40, 41] or ‘transfer-printing’ of CNTs forests to 

prepregs [42] (Figure 2.4) offer potential solutions for the manufacture of multiscale 

composites with higher concentrations of nanoparticles. 

When designing LCM processes with CNPs, the effect of post-cure also needs to be 

taken into account. Gojny et al. [13] found that post-cure had a detrimental effect on the 

composite electrical conductivity. This suggests that reaggregation was related to the 

loss of conductive links during this stage. Despite the problems associated with the 

processing of such multiscale composites, enhanced mechanical and electrical 

properties have been reported and are reviewed in subsequent sections.  
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contaminated ground water flow [48, 49], paper processing [50], among others; where a 

high filter efficiency is essential. 

The two-phase flow can be described by the flow of a suspension of either solid, 

gaseous or liquid domains dispersed in a liquid or gaseous medium through a granular 

or fibrous porous media. The operating filtration mechanisms involved in two-phase 

flow depend on the particles size, type of porous media, fluid flow rate, and mechanical 

and physicochemical interactions in the particle-fluid-porous medium system [51]. 

This work is focused on the two phase flow of solid particles in liquids through fibrous 

porous media. The two main filtration mechanisms in this case are cake filtration and 

deep bed filtration, which are depicted in Figure 2.5. 

Cake filtration is a mechanism of volume capture taking place when the particle size is 

larger than the pore size. It is generally characterised by a deposit of particles, the filter 

cake, which builds-up at the surface of the porous media (filter), blocking the passage of 

particles suspended in the incoming fluid made to pass through the filter. It is usually 

employed in chemical processing industries to separate particles from dense 

suspensions with solid volume fractions higher than 2000 ppm [52]. 

 

Figure 2.5 Schematic representation of cake filtration and deep bed filtration through 

porous medium. 
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Deep bed filtration is characterised by the gradual capture of particles smaller than the 

pore channels through a deep porous medium. In contrast to cake filtration, where the 

accumulation of particles happens at the surface of the filter medium, in deep bed 

filtration retention occurs inside the porous bed. Particles are brought into contact with 

the available retention sites when flowing through the porous medium. These particles 

can be retained on those sites or be carried further away by the flow of liquid. 

Moreover, retained particles can be eventually re-suspended spontaneously or when the 

flow conditions change. Continuous capture of particles leads to the narrowing of the 

available pore channels which may result ultimately in cake filtration behaviour. 

Deep bed filtration can be divided into two main variants, ‘dead end’ and ‘cross flow’ 

filtration, as depicted in Figure 2.6. The main difference between them is the direction 

of the fluid feed stream, which occurs perpendicular or parallel to the filter bed for dead 

end or cross flow filtration, respectively.  

 

Figure 2.6 Schematic of the two types of deep bed filtration, namely dead end filtration 

and cross-flow filtration [53]. 
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The capture of particles by the porous media (Figure 2.7) can occur by [51, 54]: 

 Inertial impact. When particles have high inertia, either due to their weight, or 

high flow velocity they can deviate from the fluid streamlines and be deposited 

on the porous medium. 

 Direct interception, can occur even when the particles pass in the vicinity of 

the porous bed, colliding with the walls of the filter bed due to their size.  

 Diffusion by Brownian motion results from the random motion of very small 

particles, making them reach areas which are not typically irrigated by the 

liquid, resulting in their capture. Their zigzag path increases the probability of 

capture. 

 Electrostatic attraction is another form of deposition which happens when 

opposite electric charges exist between the particles and the porous media. 

 Hydrodynamic effects occur due to a non-uniform shear field and non-

sphericity of particles, causing lateral migration of suspended particles which 

may be brought into contact with retention sites. 

 Size exclusion or sieving, occurs when the particles are trapped at the entrance 

of a pore due to their larger dimensions. The larger the particles and the 

smaller the pores are the more intensive is the filtration process resulting in 

increased permeability drop [55-57]. 

 Sedimentation or gravitational settling. When the particles have a different 

density from the liquid, they are subjected to gravity forces and their velocity is 

not the same as the fluid they are in. 

According to Herzig et al. [54], particle size governs the distinct volume and/or surface 

phenomena taking place during deep bed filtration. Generally, for suspensions 

containing large particles (diameter d ≥ 30 µm) volume phenomena prevail over surface 

phenomena; whilst for small particles (d ~ 1 µm) surface phenomena are predominant; 

whereas for particles with dimensions between 3 µm and 30 µm, both volume and 

surface phenomena are as likely to occur. Other classifications of the filtration 

mechanisms are based on the ratio between the particle mean diameter and the grain 

mean diameter of a grain bed [58, 59]. These criteria are hardly applicable to fibrous 

porous reinforcements and tubular particles like the ones used for liquid moulding of 
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composites filled with carbon nanotubes and carbon nanofibres since they refer to 

geometrically distinct porous media and particle shape.  Besides, in a liquid moulding 

scenario for manufacturing composite structures, filtration involves not only a drop in 

porosity and consequently permeability of the porous media, but it also affects the 

suspension viscosity and may slow down the resin flow front progression leading 

ultimately to longer infusion cycles. 

 

Figure 2.7 Main particle capture processes during two-phase flow (adapted from [60, 61]). 

In order to describe the intrinsically transient deep filtration phenomena, both 

macroscopic and microscopic modelling approaches have been proposed in the 

literature. In macroscopic models the physical and chemical characteristics of the 

suspension and the flow field of the porous media are implicitly accounted for [62]. In 

contrast, microscopic approaches characterise the geometrical structure of the porous 

medium and accounts for dynamic changes caused by particle deposition, in order to 

establish a relationship with the macroscopic properties, providing knowledge on the 

nature of the filtration mechanisms present during processing. The microscopic 

approach can take into account the type of porous media or even the particle trajectory 

during flow. Generally, phenomenological models utilised to predict the filter efficiency 

are based on the classical deep bed filtration model. 

Sedimentation

Hydrodynamic

Size exclusion



Literature review 

17 

2.2.2.1 Classical deep bed filtration model  

The classical deep bed filtration theory which is utilised to model the flow and filtration 

of suspensions through porous media is generally described by a combination of 

Darcy’s law [63], mass conservation and kinetics of particle retention [54, 64]. The 

classical system of equations for deep bed filtration is as follows, 

 

( , ) ( , ) ( , ) 0

( , ) ( ) ( , )

( )

o

o

C x t U C x t x t
t x t
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⎧ ∂ ∂ ∂
+ + =⎪ ∂ ∂ ∂⎪

⎪
∂⎪ =⎨ ∂⎪

⎪
∂⎪ = −⎪ ∂⎩

 (2.1) 

In this system of equations, U(t) is Darcy’s velocity; C(x, t) is the concentration of 

suspended particles; σ(x, t) is the concentration of deposited/filtered particles; ε is the 

porosity of medium; Ko the initial permeability of the porous medium, while K(σ) is a 

function which accounts for changes in permeability with particle filtration, generally 

named ‘formation damage function’; ko is the initial filtration coefficient and F(σ) is the 

retention function. The model described in (2.1) is accompanied by the following 

boundary and initial conditions: 

 
0 : (0, )

0 : ( ,0) 0; ( ,0) 0

ox C t C

t C x xσ

= =⎧⎪
⎨
⎪ = = =⎩

  (2.2) 

These conditions correspond to a constant fluid concentration at the inlet; and a zero 

concentration of suspended and retained particles before injection, which corresponds to 

a clean state of the porous medium. 

The filtration coefficient can be described by a function which accounts for the 

probability of filtering a particle during the flux of liquid through a porous medium. 

This coefficient can not be determined beforehand as in the microscopic approach, but it 

needs to be determined from experimental results for the system being studied. This 

coefficient depends on the concentration of filtered particles σ, and also on the 
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geometrical characteristics of the particles and pores and the interaction forces within 

the system. It can be determined from the concentration curve corresponding to the 

liquid exiting the porous media (breakthrough curve), by solution of the inverse 

problem [44]. After the calibration of model parameters using the breakthrough curve, 

the profile of deposited particles can be predicted by either solving the direct analytical 

or numerical problem [43]. According to Herzig et al. [54] this coefficient is dynamic 

since it changes with particle deposition. Several expressions have been proposed in the 

literature to describe the particle filtration kinetics equation [52, 54, 64]; the one shown 

in the system of equations (2.1) describes the case where spontaneous re-suspension is 

negligible and the probability of retention koF(σ ) is independent of the suspension 

concentration C. The empirical determination of the retention function F(σ) can be 

described by a general equation proposed by Ives [61] and Mohanka [65] as follows, 

 
1 2 3

max
( ) 1 1 1

1 o o
F

α α α
σ σ σσ

ε ε σ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (2.3) 

where 1 2,α α  and 3α are empirical constants, and maxσ is the maximum value of σ . 

According to Tien and Payatakes [52], experimental data indicate that maxσ varies from 

system to system but is usually in the range of 0.2 oε to 0.4 oε . 

A constant filtration coefficient ko, can be determined using equation (2.4) [66], where L 

is the porous media length, and Cin and Cout are the particle contents at the inlet and 

outlet of the filter medium, respectively. 

 1 ln in
o

out

Ck
L C

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (2.4) 

If the re-suspension coefficient kr is considered independent of σ and C, then the 

filtration kinetics equation can be written as follows, 

 o rk UC k
t
σ σ∂

= −
∂

 (2.5) 

The re-suspension term at the RHS of equation (2.5) can be particularly relevant if flow 

conditions change, mainly in terms of the magnitude and especially the direction of the 
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fluid flow. This effect is particularly important when medium and small sized particles 

(diameter < 30 µm) are present in the suspension [54]. In contrast, large particles 

(diameter ≥  30 µm) seem to be irreversibly attached to the porous media even when 

subjected to changes in the fluid flow rate. Only changes in the flow direction can cause 

considerable re-suspension of such particles. Spontaneous re-suspension of particles, 

which is caused by local variations of the flow conditions, such as flow rate and 

pressure, in the vicinity of deposited particles; or even due to the collision of a moving 

with a retained particle is less likely. This is especially unlikely at the initial stages of 

filtration, but could be relevant when the bed is saturated at which point the interstitial 

velocity becomes considerably higher.   

Macroscopic approaches are focused on the phenomenological description of the 

process, the prediction of its dynamic behaviour, and the development of methodologies 

and techniques for design, calculation and optimisation of the process. In contrast, 

microscopic theories, though more complex, provide information and understanding of 

the mechanisms of filtration and the conditions at which filtration is likely to occur. In 

addition, these approaches characterise the structure of the porous medium and how the 

deposition of particles affects that structure. The filter bed is generally described by an 

array of single collectors, characterised by a particular geometry, around or through 

which the fluid flows. The collector is defined as the fibre or grain of the porous 

medium at which the particles are deposited. There are three main categories of porous 

media models which are commonly used to study the physical and chemical phenomena 

taking place in the porous media, namely the capillary model, a number of spherical 

models and the constricted tube model [62]. The determination of the rate of particle 

filtration can be done by trajectory analysis. The collector geometry and size, the flow 

field around or within the specified collector, as well as the forces acting on particles 

during flow need to be specified for trajectory calculation [52]. 

Destephen and Choi [67],  proposed a stochastic approach based on the Monte Carlo 

method as an alternative to both conventional macroscopic and microscopic models, to 

simulate liquid filtration of spherical particles through fibrous media including re-

suspension phenomena. The re-suspension term is an essential factor in predicting the 

drop in efficiency of the filter as a function of time. The major advantage of this model 
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is the calculation of the global filter efficiency, instead of the prediction of the initial 

filtration performance. However, better description of the particle and fluid flow can be 

obtained via the trajectory analysis, rather than a simplified three-dimensional particle 

random motion. 

Several changes have been made to the classical model described in (2.1) to incorporate 

other physical factors into the problem, such as the particle diffusivity [68], and particle 

and pore size distributions [45]. Santos et al. [45] applied average micro-models, by 

incorporating particle and pore-size distributions, in order to predict pore blocking and 

the permeability reduction during deep bed microfiltration in membranes, both in dead 

end and cross-flow filtration. A detailed description of the pore and particle size 

distributions is essential for the accuracy of this type of model prediction [45]. 

 

2.2.3 State of the art for particle filled composite materials 

The phenomena of particle filtration during composites manufacturing by liquid 

moulding should not only be seen in the light of conventional filtration processes, where 

filtration efficiency is of primary importance, but as a phenomenon which can be 

controlled to the benefit of the end application. In composites manufacturing by liquid 

moulding, the objective may be to entrap all the particles in one layer, or achieve a 

uniform distribution of particles all over the composite, or even create a particle 

concentration gradient characterised by high content at specific regions to reinforce and 

negligible loadings at unimportant areas. Therefore, a good understanding of the process 

and the parameters involved is essential for efficient control of the process in order to 

achieve reproducible and optimum results. However, the subject of modelling flow and 

filtration of particle filled resins in fibrous porous media in the manufacture of fibre 

reinforced composites by LCM has received limited attention up to date. 

2D Eulerian and Lagrangian multiphase approaches combined with a control volume 

finite element model have been developed by Elgafy et al. [69, 70] in order to predict 

the trajectories of spherical carbon nanoparticles in a resin suspension during liquid 

moulding. The Eulerian approach considers both the fluid and solid phase as a 
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continuous medium; whilst the Lagrangian approach treats the solid phase as separated 

particles that interact with the fluid flow, with position and velocity  traced by means of 

a Lagrangian equation of motion. The effects of the solid phase are accounted for by 

adding mass and force terms into the continuity and momentum equations of the 

continuum fluid phase. The Lagrangian approach is especially relevant when interested 

in studying the behaviour and interaction of the solid phase entities, i.e. particles, with 

the continuous phase, i.e. fluid. The interfacial fluid layers around the microfibers are 

areas of high friction, which may result in sticking of particles on those sites. This effect 

was found preventable by applying convective currents around the fibre walls, causing 

vortices around them, preventing the deposition of particles on the microfiber walls. 

Other research works concluded that particles tend to be deposited in regions where 

shear strain rates are low [71, 72]. 

Particle filtration mechanisms were also investigated by Nordlund et al. [73] in a resin 

infusion scenario by means of micro-particle image velocimetry (µPIV) and 

microscopy, by setting up various meso-scale experiments and performing in-plane 

infusions in order to validate the meso-scale experiments. The use of fluorescent 

particles was used for tracking particle locations by µPIV. Preferential retention sites 

were identified around and in front of the fibre bundles. Particle size relative to intra-

bundle spacing, and stationary flow regions located in channels perpendicular to the 

main flow direction were identified as the main factors responsible for particle filtration. 

Though several suggestions are given by Nordlund et al. [73] to minimise particle 

deposition, some of them like utilising preferably fabrics consisting of straight and 

unperturbed inter-bundle channels or orienting the fabric in order to reduce possible 

stagnation regions of the flow seem to be unrealistic when manufacturing advanced 

composite structures where very complex fabric reinforcements and lay-ups are 

required. 

According to Destephen and Choi [67], when a fibrous porous medium is present, at 

least four capture mechanisms should be considered, such as particle capture by sieving, 

particle capture by fibres, particle capture by blocked pores and particle re-suspension. 

Erdal et al. [74] developed a 2D macroscopic model which incorporates Darcy’s law 

with transient particle filtration kinetics to describe moulding of particle filled 
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preceramic polymers of continuous fibre ceramic composites. This model takes into 

account an empirical viscosity function which is dependent on particle loading, as well 

as a dependence of the filtration coefficient on permeability. The modelling results 

provided a better understanding of the process. Particle filtration was found to be 

insensitive to the injection flow rate and to the concentration of particles in the 

suspending fluid. 

Darcy’s law combined with permeability drop, as a function of particle filtration, was 

used in combination with probabilistic methods by Chohra et al. [75] in order to 

determine the particle concentration distribution in each layer of a composite 

manufactured by through the thickness VARTM infusion. A non curing resin was used 

for this purpose in order to facilitate the quantification of the amount of particles in each 

layer. Results of the parametric study confirmed the importance of particle size 

distribution in relation to pore size distribution on the particle deposition pattern in the 

composite structure. 

Macroscopic models of filtration were enhanced by Lefevre et al. [76, 77], who 

combined Darcy’s flow solution coupled with conservation of mass, and filtration 

kinetics, to solve the 1D problem of infusing a fibrous reinforcement during liquid 

moulding.  In addition Lefevre et al. [76, 77] accounted for porosity and permeability 

changes with retention content and viscosity variation with suspended particle content 

and shear rate, in time and position. The simulation process starts with the 

determination of Darcy’s law solution by means of a finite difference solver; this 

solution then feeds to a finite element code which solves the filtration problem. At this 

point the material properties are updated and the process is repeated for each time step 

and position.  The results seem to describe better the cases where lower particle contents 

are utilised. Lefevre et al. [76, 77] utilised an unsaturated polyester resin filled with 

spherical glass or ceramic microbeads to infuse either a synthetic or an E-glass fibre 

mat. These materials are convenient choices when burning off samples along the 

composite length for the evaluation of particle content. In addition the micron-sized 

particles and their relatively high content are advantageous when compared to carbon 

nanoparticles, which cause an increase of the suspension viscosity, and their small 

content becomes very difficult to be determined by a process of sample burning off. 
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A recent work from Akinyede et al. [78] presented an experimental study of 

nanoparticle filtration in a VARTM infusion scenario. Nano-alumina was utilised as a 

filler of an epoxy resin at 4 wt% content. Particle concentration was evaluated by 

thermo gravimetric analysis (TGA) using samples collected at various locations along 

the mould. According to this study, a higher rate of filtration is observed for fibre lay- 

ups which do not include a flow media on top of the plies. 

2.3 Electrical behaviour of fibrous composites filled with carbon 

nanoparticles 

2.3.1 Nanocomposites 

The high electrical conductivity of carbon nanoparticles makes them very attractive 

polymer fillers, as minimal CNT loadings in an insulating resin can result in 

considerable improvements in the electrical properties of the produced nanocomposites 

[79, 80]. The transition from an insulating to a conducting polymer system as a function 

of carbon nanoparticles content is described by percolation theory. The percolation 

threshold is defined as the critical CNP volume fraction to allow the formation of a 

continuous network. This corresponds to a substantial increase of the system electrical 

conductivity by several orders of magnitude (Figure 2.8). 

Four main classes of percolation models can be found in the literature [81], i.e. 

statistical, thermodynamic, geometrical and structure oriented, which take into account 

the surface energies, viscosity, orientation and aspect ratio of the filler. However, the 

majority of the percolation models found are statistical predictions of the system 

conductivity, according to the probability of particle contact formation within the 

composite. The statistical percolation model [82] predicts the dependence of 

conductivity on filler concentration, in the form of a power law, 

 ( ) ,t
f c cσ σ φ φ φ φ= ⋅ − ≥  (2.8) 

where σ is the composite conductivity, fσ is the filler conductivity, φ  is the volume 

fraction of the filler, cφ is the percolation threshold and t  is an exponent dependent on 

the geometry of the lattice. 
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Figure 2.8 Electrical conductivity dependence on filler content (adapted from [81]). 

A theoretical approach to estimate the percolation threshold of composites filled with 

statistically dispersed non-spherical particles is the excluded volume theory. The 

excluded volume exV  is defined as “the volume around an object in which the centre 

of another similarly shaped object is not allowed to penetrate” [83, 84]. The percolation 

threshold cφ can be approximated by the ratio between the volume of randomly oriented 

cylinders in the composite and exV , and consequently becomes a function of the 

aspect ratio, i.e 1/c aφ ≈ [83], and 0.7 /c aφ ≈ [84]. 

Kovacs et al. [24] proposed the coexistence of two characteristic percolation thresholds 

for composite materials with low viscosity behaviour during processing, i.e. a static and 

kinetic network formation processes. The higher threshold is described by the statistical 

percolation model and is independent of the processing conditions. The kinetic 

percolation threshold can reach very low filler concentrations, since it accounts for 

particle movement and reaggregation during dispersion processing. In fact, conductivity 

is highly dependent on process parameters, and a certain level of reaggregation is 

favourable to the formation of a conductive network [24, 85, 86]. This is in line with the 

extremely good dispersions, but higher percolation thresholds achieved when utilising 

functionalised CNTs as fillers [79]. The filler functional groups react with the polymer 

matrix forming an electrically insulating layer between nanoparticles, which increases 

the distance between CNTs. The higher compatibility with the polymer matrix hinders 

Percolation 
threshold
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reaggregation, reducing the final conductivity of the composite [79]. Nevertheless, 

functionalisation boosts the interfacial adhesion between CNTs and polymeric matrix, 

leading to enhanced mechanical properties. Furthermore, lower percolation thresholds 

are generally obtained for fibre-shaped particles, like CNTs, than for spherical particles 

which have a lower aspect ratio [79]. 

A comprehensive review on the electrical percolation of CNTs in polymer 

nanocomposites has been recently published by Bauhofer and Kovacs [87]. Most of the 

publications found in the literature are based on epoxy composites.  The lowest 

percolation thresholds have been reported for epoxy systems. According to Bauhofer 

and Kovacs [87], the high percolation thresholds and high CNT contents to achieve 

maximum conductivity reported in Figure 2.9(a) and (b) are a consequence of poor CNT 

dispersion processing. 

 

Figure 2.9 Comparative study of the maximum electrical properties of polymeric 

CNTs systems as a function of the CNT content (adapted from [87]). 

According to Gojny et al. [79], MWCNTs have the highest potential to improve the 

electrical conductivity of epoxy composites, due to their high aspect ratio and relatively 

low surface area. The percolation threshold is increased if any kind of treatment, e.g. 

functionalisation, ultrasonication, results in the reduction of the aspect ratio of CNTs. 

However, the minimum percolation thresholds and maximum conductivities are 

dependent more on the polymer type and dispersion method, than on the type and 

manufacturing method of CNTs [87]. 

a b
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2.3.2 Multiscale composites 

A number of publications have reported improvements in the electrical conductivity of 

multiscale composites when carbon nanoparticles are used as fillers at contents above 

the percolation threshold. A highly anisotropic electrical behaviour was reported for 

glass fibre based composites [13, 15, 17], where the in-plane conductivity was found to 

be more than one order of magnitude higher than in the out-of-plane direction [13, 15]. 

The matrix channels between glass fibres were reported to be preferential sites for the 

formation of an electrically conductive CNT network [13]. In addition, the composite 

in-plane conductivity in the fibre direction was reported by Thostenson et al. [17], to be 

one order of magnitude higher than in the transverse direction and independent of the 

processing conditions, i.e. the fibre alignment with the flow direction. However, the 

anisotropic behaviour is essentially explained by the alignment of the resistive 

components of the composite, i.e. resin and fibres, in relation to the direction of the 

measurement. For measurements in the fibre direction, resin and fibres behave like 

parallel resistors, while in the transverse direction, they behave like serial resistors. 

Hence higher resistance values are expected in the transverse direction. 

A detrimental effect of post-cure on the overall electrical conductivity of 0.3 wt% 

functionalised DWCNT-NH2 glass composite was reported by Gojny et al. [13]. This 

behaviour was related to the breaking up and interruption of the conductive paths 

formed by CNTs during post-cure and shrinkage, respectively. Figure 2.10 (b) 

summarises the electrical conductivity dependence on direction and cure stage of these 

modified composites. Despite better dispersability and mechanical properties associated 

with functionalised CNTs fillers, functionalisation processes reduce CNT electrical 

conductivity and consequently compromise the transferability of this property to 

multiscale composites [13, 18]. 
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Figure 2.10 Electrical conductivity of the carbon nanoparticle filled epoxy (a) and of the 

nano-filled glass fibre composite in different orientations (adapted from [13]]) 

 

According to Wichmann et al. [15], a better enhancement is obtained when MWCNTs 

are utilised as matrix fillers. A comparative study of the electrical conductivity of glass 

composites modified with a number of distinct carbon nanoparticles at 0.3 wt% loading 

was presented in [15], and is shown in Figure 2.11. MWCNTs were found to be 

preferential modifiers for enhancing electrical conductivity of fibre composites, when 

compared to carbon black (CB), pristine and functionalised DWCNTs, reaching 

conductivity values similar to the corresponding nanocomposite system. Two fibre 

volume fractions were utilised in DWCNT systems in order to evaluate the effect of 

fibre volume fraction on electrical conductivity. It was found that higher fibre volume 

fractions cause a slight improvement of the overall composite conductivity instead of its 

reduction. This occurs, as long as an increase in fibre volume fraction does not cause the 

destruction or blocking of the conductive network by e.g. the insulating glass fibres, 

otherwise a detrimental effect would be expected. In the z-direction, the glass fibres 

perpendicular to the electric pathway act as stronger barriers to the current passage. The 

application of an electric field in the z-direction during the cure process can oppose this 

effect, leading to improvements of more than one order of magnitude for the DWCNTs 

system (Figure 2.11(b)). 

a b
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Figure 2.11 Electrical conductivity of the carbon nanoparticle filled laminates in the 0º-

direction (a), and z-direction (b) (adapted from [15]). 

Improvements in the electrical conductivity of carbon fibre composites have been also 

reported despite their intrinsic conductive nature [4, 88]. The intrinsically anisotropic 

electrical behaviour encountered in carbon composites is mainly governed by the 

conductivity [89] and orientation of the carbon fibres, the fibre type, the fibre volume 

fraction and the stacking sequence of the plies [90]. In glass composites the formation 

of CNP conductive pathways, especially along the flow direction, controls this 

anisotropic behaviour. Similar behaviour may be present in carbon composites, yet the 

inherent carbon fibre conductivity could be disguising this effect [91]. Hence, the higher 

improvements in electrical conductivity are expected to occur in the out-of-plane 

direction, where these composites generally exhibit poorer performance, since this 

direction is dominated by the polymer matrix. 

A two fold improvement in the through thickness electrical conductivity of SWCNTs 

filled carbon composites was reported by Bekyarova et al. [4], when depositing 0.25 

wt% CNTs (with respect to the fibre reinforcement) by electrophoresis; whilst the in-

plane conductivity was unaffected. When higher contents of MWCNTs and CNF, such 

as 0.6 and 0.5 wt% are deposited by electrophoresis in carbon fibres, improvements of 

about one order of magnitude were reported by Lee et al. [88]. 

Exceptional improvement of the overall electrical conductivity are achieved when very 

high volume fraction (0.5 - 3%) of extremely long, dense and aligned MWCNTs are 
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grown on a ceramic fibre reinforcement [38, 92], achieving a 3D reinforcement. 

Reductions of 106 and 108 Ohm.mm were reported by Garcia et al. [38] for the in-plane 

and out-of-plane directions, respectively. The lower resistivity results in the through 

thickness direction are attributed to the orientation of the CNT long axis in this 

direction, bridging the insulating epoxy matrix between the fabric plies. 

2.4 Delamination properties of carbon nanoparticle filled composites  

Fibre reinforced composite materials are primarily chosen for their excellent in-plane 

mechanical properties. However, in general these composites present poor interlaminar 

properties when subjected to out-of-plane stresses. As a result delamination occurs. 

Overcoming this problem is still one of the major challenges for the composites 

industry. Several toughening techniques are available and include 3D-reinforcement and 

matrix modification. 3D weaving, z-pinning, tufting and stitching have shown good 

results in improving interlaminar toughness [93-96] . The damage caused by the through 

thickness reinforcement can compromise in-plane properties [97, 98]; however, careful 

selection of process parameters can minimise or eliminate this effect [99]. Toughening 

can be also achieved by adding modifiers to the thermoset resin such as thermoplastics, 

rubbers, and inorganic particles. Stiffness can remain unaltered or be adversely affected 

when thermoplastics [100, 101] or rubbers [102] are utilised as modifiers. 

Nanoparticles can be seen as promising materials for matrix toughening in 

nanocomposites or multiscale composites. The mechanisms of nanoparticle toughening 

taking place in composite materials, along with reported improvements in the 

toughenability of multiscale composites when utilising different manufacturing 

approaches, are reviewed in the following sections. 

2.4.1 Mechanisms of nanoparticle toughening 

The main parameters influencing nanocomposites toughening are the intrinsic 

toughenability of the matrix, particle volume fraction, particle size and shape, interfacial 

bonding, and dispersion state. The most important micro-mechanical mechanisms 

leading to the increase of toughness in a resin when incorporating micro and nano-
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particles have been widely studied in [103-106]. The mechanisms involved in 

toughening are as follows: 

 Localised inelastic matrix deformation and void nucleation is characterised by 

the inelastic deformation of the matrix around the voids left by the debonded 

particles [105, 107]. According to Kinloch and Taylor [107] such voids can 

close when subjected to thermal treatment, above the glass transition 

temperature, and allowed to relax, as shown in Figure 2.12. Gojny et al. [108] 

report observation of shear bands around the agglomerates of DWCNTs and 

cavities. 

 

Figure 2.12 Fracture surface of cyanate-ester polymer modified with 10% wollastonite 

tested at 150⁰C: (a) fracture surface, and (b) fracture surface after heating for 10 minutes 

at 10⁰C above Tg [107]. 

 Crack deflection occurs when the crack front tilts on encountering particles and 

then twists when propagating around them (Figure 2.13). As reported by Faber 

et al. [109] higher toughening is expected for rod-shaped particles than disc-

shaped or spherical ones. The higher aspect ratio of the rod-shaped particles the 

more effective in toughening they are since a higher deflection results in the 

generation of an increasing surface area, as illustrated schematically in Figure 

2.14 [109]. 

 

(a) (b)



Literature review 

31 

 

Figure 2.13 SEM picture during indentation fracture showing crack deflection by 

zirconia particles in a hydroxyapatite matrix [110]. 

 

Figure 2.14 Schematic representation of crack deflection around rod-shaped particles with 

two aspect ratios R, at constant volume fraction [109]. 

 Crack pinning, [111] which is  shown in Figure 2.15, is comparable to the 

resistance to movement of dislocations in metals, which occurs when interstitial 

defects, interfaces and other dislocations act as pinning point during the 

movement of dislocations in the crystal lattice. Dislocations bow between 

particles and therefore increase in length. In a similar way cracks bow between 

particles increasing the energy required for propagation. Generally the presence 

of bowing lines on the fracture surface, such as these shown in Figure 2.16, is 
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indicative of this toughening mechanism. This mechanism is unlikely to occur in 

nanoparticles toughening since the crack-opening displacement is much larger 

than the actual particle size. Nonetheless, for the cases where micrometric CNT 

agglomerates are present in the final suspension, crack pinning could be 

considered as a possible toughening mechanism. 

 

Figure 2.15 Schematic representation of the toughening process of crack pinning 

(adapted from [104]) 

 
Figure 2.16 SEM micrograph of a fracture surface of an epoxy resin filled with spherical 

glass particles showing the ‘tails’ behind the particles. Arrow indicates the direction of 

crack propagation (adapted from [112]) 

 Fibre pull out can significantly increase the work of fracture due to interfacial 

friction between fibre and matrix, while bridging the crack. The interfacial 

strength and the interfacial area are the main contributors for an improved GIC 
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[21]. These properties are particularly relevant for modifiers such as surface 

modified CNTs, which combine extraordinary high interface area with very 

strong interfacial bonding. Amino-functionalised and as-received DWCNTs 

were shown bridging the crack while being pulled out of the epoxy matrix by 

Gojny et al. [108], see Figure 2.17. 

 

Figure 2.17 SEM-micrographs of amino-functionalised (a) and non-functionalised (b) 

DWCNTs bridging a crack induced by etching on epoxy nanocomposites [108]. 

Special attention has been given to CNTs as tougheners due to their excellent 

mechanical properties. However, for a better exploitation of CNTs properties, a 

sufficient stress transfer from the CNTs to the matrix is necessary. This can be achieved 

by means of an efficient CNTs dispersion and by utilising functionalised CNTs, which 

will promote the interfacial bonding between CNT and matrix [108, 113]. 

Possible fracture mechanism of CNTs are suggested by Gojny et al. [108], as shown in 

Figure 2.18. The initial situation refers to an isolated CNT completely surrounded by 

the resin (Figure 2.18(a)). The failure mechanisms depicted in Figure 2.18 (b) - (e) were 

proposed for CNTs bridging a crack. These failure mechanisms are mainly dependent 

on the interfacial adhesion and the mechanical properties of CNTs. For poor interfacial 

adhesion, simple pull-out from the matrix occurs (Figure 2.18 (b)). Stronger bonding 

between the matrix and the CNTs leads to CNT rupture (Figure 2.18 (c)) or to the 

fracture of the outer layer and a telescopic pull out of the inner tube(s) (Figure 2.18 (d)). 

This mechanism is also named ‘sword-in-sheath’. For stronger interfacial bonding 

between the reactive groups and the matrix, partial debonding allows the bridging of the 

crack (Figure 2.18 (e)). Increasing stresses would ultimately lead to CNT failure, as 

shown in Figure 2.18 (c) and (d). 

(a) (b)
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toughness have been reported when adding carbon nanoparticles. However the transfer 

of these improvements to a fibre reinforced composite is still considered a challenge. 

2.4.2 Improvements in toughness properties of carbon nanoparticles multiscale 

composites  

The enhancement of the interlaminar properties of multiscale composites modified with 

rod-shaped carbon nanoparticles has been an important matter of research within the 

composites community. Improvements in composites interlaminar properties have been 

reported when utilising different manufacturing routes. 

A successful example of employing this technique in composites toughening is 

described in [36] when 1wt% functionalised CNF were incorporated in a polyester resin 

for subsequent impregnation of a glass preform by VARTM. Improvements of 100% in 

delamination resistance were observed and attributed to the fibre bridging toughening 

mechanism. In contrast, Wichmann et al [15], reported a decrease in the interlaminar 

toughness of 0.3 wt% DWCNTs filled epoxy glass fibre reinforced specimens tested in 

Mode I. This decrease was associated to difficulties during the testing caused by the 

obstructed tracking of the crack tip in the opaque resin using the conventional visual 

crack tracking method. These results contradict the improvements reported in previous 

work at the nanocomposite level [108, 113]. Zhou et al. [19] used a similar 

manufacturing process to produce MWCNTs modified multiscale composites, reporting 

improved toughness for the nanocomposite materials. 

As high carbon nanoparticle content is a requirement for a significant improvement in 

toughness, the high viscosities associated with suspensions would hinder the use of 

liquid moulding processes. As a consequence alternative manufacturing routes to liquid 

moulding processes have been devised, to avoid problems associated with dispersion 

and reaggregation of nanoparticles, viscosity, and eventual filtration of the particles. 

A technique involving the use of an interleaf film filled with 0.5 wt% functionalised or 

as-received CNTs on the composite mid-plane was utilised by Sager et al. [116]. An 

increase of 18% and 36% in GIC for crack initiation was measured for the composite 

containing the functionalised CNTs filled interleaf film when compared to standard and 
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neat epoxy interleaved panels, respectively. No relevant improvement was observed for 

the as-received CNT filled panels for crack initiation. The crack propagation results 

suggest a decreasing trend especially for neat and as-received CNT interleaved panels 

when compared to standard ones. In contrast, the crack propagation for the 

functionalised interleaved panel remained similar to the non interleaved material. 

However, these results are presented and compared by Sager et al.[116] considering 

panels with variable interleaved film thicknesses. Toughness increases with the 

thickness of the interleaf film until a maximum value where a plateau is reached [117]. 

Therefore, for an adequate comparison of toughness a constant interleaf thickness would 

be necessary. A similar manufacturing route to the one described in [116] is present in 

[118] but utilising CNFs as modifiers of the interlayer films instead of CNTs. 

Improvements of 50 % and 20 %  were reported for the initiation and propagation 

fracture toughness, respectively, for a CNF density of 20 g/m2. This CNF density 

corresponds to an interleaf thickness of 100-150 µm, which was found to lead to 

optimal delamination properties of the CNF filled composites studied. 

 

Figure 2.19 Carbon fibre reinforced composites fracture toughness for crack initiation 

and crack propagation between crack lengths 70-90 mm, as in [119]. 
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The prepreg technique was utilised by Godara et al. [119] to manufacture a range of 

fibre composites modified with different CNTs. For 0.5 wt% CNT content in the resin, 

fracture toughness was improved in crack initiation and propagation (Figure 2.19). 

Moreover, improvements of approximately 83% in crack propagation resistance were 

achieved when modified CNTs were utilised as fillers which was attributed to deflection 

and crack bridging. 

An alternative route for producing multiscale composites with a focus on high loading 

in the direct incorporation of CNTs on the surface of the reinforcement was utilised in 

[4] to deposit by electrophoresis MWCNTs and SWCNTs on woven carbon fabric for 

subsequent VARTM, and improvements of ~ 30 % were reported for interlaminar shear 

strength. The idea of growing CNTs on the surface of  the carbon fibres has been tested 

and resulted in improvement of the fracture toughness of about 50% [120, 121]. Blanco 

et al. [122] consider vertically aligned CNTs, also named “nano-stitches” advantageous 

when compared to stitches or z-pins. These CNTs can bridge the crack until they are 

completely pulled out from the matrix. 

 

 

Figure 2.20 Schematic diagram of the steps involved in manufacturing multiscale 

composites [92]. 
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Improvements in toughness are explained by frictional sliding during pull-out from the 

matrix or ‘sword-in-sheath’ pull-out, where the outer layer remains attached to the 

matrix whilst the inner tube(s) are pulled out from this outer tube followed by their 

fracture [122]. CNT forests were grown on SiC plain-weave fabric by CVD and the 

multiscale composites were processed following the scheme shown in Figure 2.20 [92]. 

Significant improvements (> 300%) in mode I fracture toughness were associated to 

CNT bridging of the plies. 

 

Figure 2.21 Schematic representation of CNTs bridging the crack in a fibre reinforced 

composite [42]. 

Many other attempts have been made by researchers in recent years, to modify the 

interlaminar surface by incorporating perfectly aligned CNT forests specifically for 

crack bridging (see Figure 2.21). Recent approaches integrated the idea of aligned CNT 

forests into carbon fabric prepregs [42, 122]. The CNT forests initially grown on a 

silicon substrate were then ‘transfer-printed’ to the tacky surface of carbon fibre 

prepregs, so that they are oriented in the laminate thickness direction. An increase in 

Mode I fracture toughness of 1.5 - 2.5 times was observed for the CNT modified 

interface composites, justified by CNT bridging and pull-out. This idea was taken 

further in [39] where a interlaminar and intralaminar CNT reinforcement was created by 

growing CNT on fibres in an alumina fibre woven fabric using the CVD process, as 

shown in Figure 2.22. Improvements of 76% for steady state Mode I interlaminar 

fracture toughness were associated to CNT pull-out and bridging. Although this 

improvement is stated to be comparable to that provided by stitching and z-pinning 
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3 Materials 

This chapter describes the materials utilised for the preparation of conductive 

nanocomposites and multiscale composites. The first section includes the chemical 

characterisation and properties of the epoxy system, while the second and third sections 

provide a description of carbon nanoparticles properties and the fibrous reinforcements 

utilised, respectively. 

3.1 Epoxy resin LY 564 and amine hardener HY2954 

The resin system used in this work was a two-component thermoset epoxy resin 

(Huntsman Araldite LY564) with an amine hardener (Huntsman Aradur 2954). The 

epoxy chemical constituents are butanedioldiglycidyl ether (14.00 – 22.00 %) and 

bisphenol A- (epichlorhydrin) (78 – 90%); while the hardener is 2,2’-dimethyl-

4,4’methylenebis (cyclohexylamine) [124]. 

This is a low viscosity resin (900 mPas) suitable for RTM applications. The epoxy to 

hardener ratio is 100/35, and the recommended cure cycle is 1h at 80⁰ C, followed by 

post cure at 140⁰ C for 8 hours. This system offers advantages over monocomponent 

resins, since the dispersion of carbon nanoparticles only takes place in one of the 

components, the epoxy, avoiding problems with premature initiation of cure during 

processing. This is particularly important as it gives more flexibility when higher 

temperatures are required during dispersion processing. 

3.2 Carbon nanoparticles 

3.2.1 Carbon nanotubes 

Multiwalled carbon nanotubes (MWCNT) were used to modify the epoxy resin 

described in section 3.1. Three unmodified MWCNTs, namely P940, C100 and 

Hyperion, and one system of surface modified MWCNTs were utilised as modifiers. 

P940 and C100 were supplied in a powder form, whilst Hyperion and surface modified 

MWCNTs were supplied by BAE Systems in a pre-batch form. Figures 3.1 and 3.2  
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Figure 3.1 SEM micrographs of as received P940 MWCNTs. 

 

Figure 3.2 SEM micrographs of as received C100 MWCNTs. 

200 µm

200 nm

2 µm

a b

c

20 µm

200 nm

2 µm

a b
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show SEM micrographs of the highly entangled structure of as-received MWCNTs at 

different magnifications. The characteristics of the unmodified MWCNTs as provided 

by the manufacturers are summarised in Table 3.1. 

Table 3.1 Characteristics of MWCNTs (adapted from the respective manufacturers 

datasheets) 

 P940 C100 

Manufacturing process CVD CVD 

Manufacturer Thomas Swan CNT Co. 

Diameter 10 – 12 nm 10 – 40 nm  

Length tens of microns 1 – 25 µm 

Purity 70 – 90 % > 93 wt.% 

Average BET* surface 

area (m2/g) 250 – 300 150 – 250 

Metal oxide content < 5wt.% < 7 wt.% 

*BET stands for the initials of the scientists who invented the technique, namely Brunner, Emmet and 
Teller. 
 

3.2.2 Carbon nanofibres 

The carbon nanofibres (CNF) used to modify the two-component epoxy resin are PR-

24-XT-LHT [125] manufactured by Pyrograf Products, Inc. and supplied by BAE 

Systems in the form of a black powder. High magnification SEM micrographs of the 

structure of this powder material are illustrated in Figure 3.3. The diameters of these 

nanoparticles vary between 60 nm and 115 nm. This grade material is produced by 

CVD and heat treated at 1500ºC. This thermal treatment converts any chemically 

vapour deposited carbon on the surface to a short range ordered structure. Hence, the 

inherent electrical conductivity of the fibre is enhanced. The properties of the CNF as 

provided by the manufacturer are detailed in Table 3.2. 
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Figure 3.3 SEM micrographs of CNFs powder. 

 

Table 3.2 CNF properties as provided by the supplier [125, 126] 

 CNF 

Fibre diameter (average) 100 nm 

Fibre length 30 – 100 µm 

Overall surface area 43 m2/g 

Bulk density 16 – 48 kg/m3 

Iron content < 14000 ppm 

 

 

 

200 µm

200 nm

2 µm

a b

c
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3.3 Fibrous reinforcement  

Two pseudo-unidirectional (uniweave) carbon and glass fabrics were selected to 

reinforce the composite panels manufactured by RTM. 

3.3.1 Uniweave carbon fabric 

A uniweave carbon fabric was supplied by Toho Tenax in the form of a 1.3 m wide roll. 

The warp filament is a high tensile strength carbon fibre and the dry fabric areal weight 

as evaluated in-situ is 280 g/m2. The fabric architecture and description are specified in 

Figure 3.4 and Table 3.3. 

 

 

Figure 3.4 Uniweave carbon fabric 

 

Table 3.3 Uniweave carbon fabric description 

Warp Weft (stitch) 

Primary 
fibre type 

Fibre 
tex 

Count 

ends/cm 
Filaments/tow 

areal weight 

(g/m2) 
Filament 

type 
Coups-

picks/cm 

Carbon 400 6.6 6k 280 glass 3 

 

1 cm
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3.3.2 Uniweave glass fabric  

A uniweave E-glass fabric UT-E500 (Figure 3.5) manufactured by SP Gurit in the form 

of a 0.5 m wide roll, was supplied by Marineware. The areal weight of the dry fabric as 

measured in-situ is 480 g/m2. Fabric characterisation as provided by the manufacturer is 

described in Table 3.4. 

 

Figure 3.5 Uniweave glass fabric 

Table 3.4 Glass fabric description (adapted from SP Gurit datasheet) 

Warp Weft (stitch) 

Primary 
fibre type Fibre tex 

Count 

ends/cm 

theoretical 

areal 

weight 

(g/m2) 

Filament 
type Fibre tex Count 

ends/cm 

theoretical 
areal 

weight 
(g/m2) 

E-glass 1200 4.16 500 polyester 10 0.56 2 
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4 Experimental methods and manufacturing  

This chapter presents the procedures utilised for the preparation and characterisation of 

carbon nanoparticles filled epoxies and the corresponding multiscale composites. The 

first section includes the processing techniques utilised for dispersing carbon 

nanoparticles in the two component epoxy resin. The second section describes the 

microscopic methods utilised to characterise the morphology of as-received carbon 

nanoparticles, liquid and cured nanocomposites and delamination fracture surfaces of 

the multiscale composites. In addition, this section details the procedure utilised for 

estimating the intermediate resin-rich layer thickness of the multiscale composites 

manufactured by RTM. In section 4.3, the electrical conductivity techniques used to 

characterise liquid and solid state nanomodified suspensions, and multiscale composites 

are detailed. Section 4.4 reports the rheological technique utilised to evaluate the 

viscosity of the suspensions. Section 4.5 details the RTM manufacturing process utilised 

to produce multiscale composites. Section 4.6 describes the C-scan technique utilised to 

evaluate fibre composites quality. Sections 4.7 and 4.8 explain the procedures employed 

for the determination of multiscale composites toughness, and the compressive yield 

strength of the corresponding nanocomposites, respectively.  

4.1 Dispersion of carbon nanoparticles 

4.1.1 Dispersion monitoring 

Several suspensions containing P940 carbon nanotubes at various loadings were 

prepared utilising two distinct dispersion techniques in order to evaluate the relationship 

between the state of dispersion and electrical conductivity. Each suspension was 

ultrasonicated up to a total energy input of 1300 J/g, utilising a Branson S-450D horn 

sonicator shown in Figure 4.1; whilst the others were shear mixed at 2400rpm up to 

72000 cycles, at 50˚ C, in a DISPERMAT CN F2 high shear mixer, shown in Figure 

4.2. 
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Figure 4.1 Ultrasonication set up (a), ultrasonic horn (b) and ultrasonic cell disruptor (c). 

 

Figure 4.2 Dispermat high shear mixer and dissolver disc (stirrer). 

Ultrasonication was carried out using the setup shown in Figure 4.1 (a). The 1/2” 

titanium ultrasonic horn (Figure 4.1 (b)), with a mean operating frequency of 19.95 ± 

0.1 kHz, was immersed in the suspension mixture together with a temperature probe. 

a

cb
Temperature 

probe

Magnetic 
plate

Ultrasonic 
horn
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Both ultrasonic horn and temperature probe are connected to a Branson S-450D Digital 

Sonifier® (Figure 4.1 (c)) which controls the ultrasonic input. In order to guarantee 

efficient dispersion throughout the resin, the suspension containing a magnetic stirrer 

was placed on a magnetic plate during ultrasonication. The ultrasonic horn was operated 

under the maximum temperature mode at 40% amplitude, which corresponds to 160W 

of applied power. The temperature range during the process was set so that 

ultrasonication was applied to the suspension until a temperature of 50oC was reached, 

after which the ultrasonication was temporarily suspended until the temperature dropped 

3oC below the setpoint. The ultrasonication was stopped after the chosen level of energy 

was reached. Similar ultrasonication and high shear mixing procedures were followed 

for suspensions containing CNFs at various loadings. The suspensions were stored in a 

freezer at -18oC after the dispersion process. 

4.1.2 RTM batches 

A process step achieving the dispersion of 0.25 wt% carbon nanoparticles in the resin 

was performed prior to the injection of nano filled resin in the RTM mould. Before 

processing, each suspension was split into three batches of approximately 130g, in order 

to guarantee a better efficiency of the dispersion process. The two suspensions 

containing unmodified nanotubes (C100 and P940) were processed in situ using a 

distinct dispersion step, whereas modified CNTs were supplied as a ready to use 

suspension. The suspension containing Hyperion CNTs was supplied pre-processed by 

BAE SYSTEMS using triple roll milling. In addition, this suspension was ultrasonicated 

in-situ up to a total energy input of 100J/g. 

C100 nanotubes were dispersed in the epoxy resin at a loading of 1.5 wt% by four 

passes at 50 rpm in a triple roll milling (TRM Torrey Hills Technologies), illustrated in 

Figure 4.3. This high concentration suspension was then diluted in resin to a 

concentration of 0.3375 wt%, which upon addition of the hardener results in a 0.25 wt% 

loading. The suspension was shear mixed for 15000 cycles, at 1500 rpm, in a high shear 

mixer and then ultrasonicated with a total energy input of 650 J/g. P940 carbon 

nanotubes were dispersed by ultrasonication up to a total energy input of 800 J/g, whilst 

CNFs were dispersed by high shear mixing at 2400 rpm up to 72000 cycles at 50˚ C. 
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These conditions were selected based on monitoring of the evolution of resistivity 

during the process. The procedure for these tests is described in section 4.3.1 and the 

corresponding results in sections 5.1, 5.2, 6.1 and 6.2. 

  

Figure 4.3 Triple roll mill 

In the following, the same CNT content is reported for both the liquid and cured resins, 

however, this value corresponds to the cured state concentration of CNTs, which takes 

into account the amount of hardener added after the dispersion process. The reference 

materials, either the liquid or the cured resin, as well as fibrous composites are referred 

to as ‘control’.  

4.2 Morphological characterisation 

4.2.1 Optical microscopy 

The state of dispersion of the CNTs in the epoxy resin at any given stage of dispersion 

was ascertained by examining the samples by transmission optical microscopy using an 

Olympus BH-2 microscope. A droplet of sufficient size of the liquid suspension was 

placed between a microscope glass slide and a cover slip. The average sample thickness 

was 20 ± 10 µm. 

Cured samples of the resin containing P940 and C100 MWCNTs were also examined 

by transmission optical microscopy. A droplet of the two component resin system with 

CNTs was placed between a glass slide and a cover slip and allowed to cure in an oven 
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at 80 ⁰C for 1h 30 min and post cured at 140 ⁰C for 8h. The cured film thickness was 40 

µm and 60 µm for the C100 and P940 nanocomposites respectively. 

4.2.2 Scanning electron microscopy 

Dry carbon nanoparticles, cured nanocomposites, delamination fracture surfaces and 

transverse and longitudinal surfaces of multiscale composites were examined by SEM. 

The electron microscope used for the analysis of these specimens was a FEI FEG-SEM. 

The preparation of dry carbon nanoparticle powders for SEM analysis was carried out 

by placing a carbon conductive tape strip on an aluminium stub and immersing it into 

the as-received carbon nanoparticles container. Carbon nanoparticle aggregates become 

easily attached to the adhesive tape and any excess is removed by tapping the edge of 

the stub on a firm surface covered with a damp cloth, in order to collect any 

nanoparticles released from the stub. 

Cured suspensions were prepared by cryofracture. The specimens were initially cut in 

the shape of a small prism and a small notch was made with a diamond saw installed in 

a low speed cutting machine. The notched specimens were fractured immediately after 

immersion in liquid nitrogen for 2-5 min. 

Delamination fracture surfaces of the fibre composite panels tested under DCB mode I 

were also investigated by SEM in order to evaluate the extent of filtration along the 

mould. Areas of approximately 10x20mm were cut at approximately 100mm and 

200mm away from the inlet. 

Two 20x3.3 mm representative sections of the transverse and longitudinal surfaces of a 

carbon fibre reinforced composite manufactured by RTM were cut with a low speed 

saw and polished before SEM analysis in order to evaluate the thickness of the resin-

rich mid-layer of these composites. High magnification pictures (500x) were randomly 

taken along the specimen mid-layer, for both the transverse and longitudinal surfaces. 

For every picture several measurements of the resin thickness at the mid-layer were 

taken using the image analysis software AxioVision Rel. 4.6. 
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The AC electrical response of liquid suspensions was measured via AC impedance 

spectroscopy using a Solartron SI 1260 frequency response analyser at different stages 

of processing. Twenty five frequencies from 1 Hz to 1MHz were swept on a logarithmic 

scale. The electrical resistance of the samples was determined from the peak value of 

the imaginary impedance spectrum as described in [127] as follows, 

 ''2 peakR Z= ×  (4.1) 

The DC electrical resistivity of carbon composite samples was measured using a DC 

precision current source (Keithley model 6220) and a nanovoltmeter (Keithley model 

2182A) via the three-point delta current reversal technique. The volume resistivity of 

the samples was calculated according to 

 2,R A where A r
t

ρ π⋅
= =  (4.2) 

where R is the resistance measured, A is the specimen cross-sectional area, r is the 

copper cylinder radius and t is the thickness of the specimen. 

4.3.2 Cured nanocomposites 

CNF filled suspensions dispersed by shear mixing and ultrasonication processes were 

cast into moulds and cured to evaluate the conductivity of the corresponding solid 

nanocomposites. The mould used for the manufacture of these specimens was 

assembled using a 3mm thick U-shaped silicone shim placed between two released 

glass plates (10x10cm) held together with the help of metal clamps. Each suspension 

was poured into the standing mould and cured in an oven at 80ºC for 1 hour. After cure, 

each specimen was demoulded, and post-cure was carried out in an oven at 140ºC for 8 

hours. The 3.5x3.5 cm nanocomposites surfaces were coated with conductive silver 

paste  for the measurement. The resistance of these nanocomposites was measured with 

a Keithley 6517 electrometer, which measures resistances up to 1012Ω. The resistivity of 

the CNF nanocomposites was calculated according to equation (4.2). 
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4.3.3 Multiscale composites 

The electrical measurements of cured samples of fibrous composites were carried out on 

rectangular specimens with dimensions of 30 × 30 × 3.2 mm for carbon fibre 

composites and 30 × 30 × 3.7 mm for glass fibre composites. The surfaces of interest 

were painted with a silver paste, as shown in Figure 4.5.  

 

Figure 4.5 Schematic of the electrical conductivity measurement directions of multiscale 

composites. 

The DC electrical resistivity of carbon composite samples was measured using the same 

equipment utilised for the liquid suspensions. The measurements were performed in 

three directions (through thickness, transverse and longitudinal), as depicted in Figure 

4.5, using a current of 100 µA. 

Through thickness AC measurements of the glass composite samples were carried out 

during this investigation. Twenty nine frequencies from 1 Hz to 1 MHz were swept on a 

logarithmic scale. The electrical resistance of the samples was determined from the peak 

value of the imaginary impedance spectrum using equation (4.1). 

 

through the thickness transverse longitudinal 
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4.4 Rheological analysis of the carbon nanoparticle filled LY564 

Samples of the suspensions utilised for RTM were collected for rheological 

measurements. A Bohlin CVO rheometer with a 4⁰/40 mm cone and plate geometry 

(Figure 4.6) was used in steady shear mode, at the corresponding mould temperature. 

The viscosity of the suspensions was measured in the 0.1 to 1000 s-1 shear rate range. 

 

Figure 4.6 Bohlin CVO rheometer 

4.5 Resin transfer moulding 

Moulding was carried out with a newly commissioned Isojet piston driven RTM setup, 

shown in Figure 4.7 (a). This computer controlled equipment allows both flow rate and 

pressure controlled resin injections, along with online monitoring of the process 

parameters like resin temperature and volume, mould temperature, injection and 

vacuum pressures and flow rate. 

Twelve layers of one of the uniweave fabrics were laid up on the mould cavity in the 0º 

direction (Figure 4.7 (b)), in order to attain a final composite theoretical fibre volume 

fraction of approximately 57% and 59%, for carbon and glass fibre reinforced 

composites, respectively. The theoretical fibre volume fraction of each fibre reinforced 

panel was calculated according to equation (4.3), which is based on the number of dry 
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fabric layers n, the areal density of the fabric ρA,f, the density of the fibre ρ f , and the 

final panel thickness t.  

 
,(%) A f

f
f

n
V

t
ρ

ρ
⋅

=
⋅

  (4.3) 

 

 

Figure 4.7 Isojet RTM unit (a), mould (b) and PTFE film placement (c) 

  

The areal weight of each fabric includes the combined weight of either the carbon or the 

glass fibres and the non-structural stitching yarn per unit area. The areal weight was 

determined by measuring the weight of three samples with a minimum area of 200 x 

200 mm.  

A 10-15 μm PTFE insert film, supplied by GoodFellow was placed at laminate mid 

thickness, as indicated in Figure 4.7 (c), which introduces a pre-crack necessary for 

DCB tests. The cavity thickness was controlled by metal shims and silicone seals of 

variable thickness placed around the mould. Before each resin injection, the mould 

a b

c
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cavity and the top cover were released with at least two layers of release system 

(Chemlease® PMR-90, Chem Trend), to guarantee an easy detachment of the 

composite panels from the mould surfaces after cure. 

The resin suspension was heated up to 40º - 50º C in order to reduce the viscosity and 

facilitate the diffusion of gases and moisture retained in the resin during the degassing 

stage. This process was carried out in a vacuum chamber for a period of 20 - 30 min. 

When degassing was finished the hardener was added to the resin and the mixture was 

stirred for two minutes. A final degassing step of the mixture was preformed for a 

period no longer than 10 min. Subsequently, the resin mixture was placed inside the 

piston chamber of the Isojet equipment at a temperature of 30 ºC. No temperature drop 

is expected from the piston chamber to the inlet of the mould since the inlet pipe passes 

within a heated tube set to 30 ºC. Lineal infusion, which uses one edge of the mould 

along which the resin is injected and allows injection along a linear flow front, was 

selected for all the cases. This type of infusion was found suitable to minimise particle 

filtration, since the main direction of the flow occurs primarily along the fibre direction 

of the unidirectional layup and not across fibre bundles. Filling was performed under 2 

bar pressure. The mould used for the infusion is an aluminium tool, provided with 

internal heat-cartridge elements, and with a glass top cover, allowing visual monitoring 

of the flow front position during injection. The mould temperature at injection was set 

between 65 ºC – 75ºC. The cure cycle for all systems was 1h 30min at 80 ºC (1 bar). 

Post cure was carried out in an oven at 140 ºC for 8h. The panels were left to cool in the 

oven in order to avoid high thermal stresses due to rapid cooling. The panel in-plane 

dimensions were 340 × 340 mm. 

4.6 C-scan  

Composite panels manufactured by RTM and subsequently post-cured were examined 

for defects, such as dry spots, incomplete impregnation and to confirm location of the 

PTFE film inserted at mid-thickness, using the immersion-reflector plate C-scan 

method. Each panel was immersed in a water tank and placed over a glass reflector 

plate. The panels were supported at the edges with small PMMA blocks keeping them 

flat at about 10 mm above the glass plate. The transducer is a 5 MHz ultrasonic probe, 
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positioned normal to the panel, was immersed in the water tank in order to allow 

transmission of the ultrasonic waves to the composite. To measure the time of flight or 

attenuation of the ultrasonic signal, the ultrasonic scan was utilised in pulse-echo mode, 

i.e. using a single pulser/receiver transducer. This transducer is used to generate 

ultrasonic sound waves and receive the reflected beams from the glass plate located 

underneath the composite panel. The transducer obtains the travelling sound-waves 

amplitude signal with time, which is displayed on the oscilloscope. A computer gathers 

the amplitudes over the panel and forms a scan image. C-scan images of the panels were 

acquired with a resolution of 0.5 mm. 

4.7 Mode I Interlaminar fracture toughness 

DCB mode I tests were performed on carbon nanoparticle modified epoxy carbon 

reinforced composites to evaluate the effect of various carbon nanoparticles on the 

toughness resistance of these composites. These tests were carried out to measure the 

interlaminar fracture toughness GIC according to BS ISO 15024:2001.  

 

Figure 4.8 DCB specimen mounted on test jig 

Samples were cut to the specified width and length (20 mm and minimum of 125 mm 

respectively) with their longitudinal axes parallel to the fibre direction. Specimens 

approximately 3.3 mm thick were used for this study. Specimen dimensions were 

measured three times along the width and thickness to make sure that tolerances (width 

δ
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±0.5 mm; thickness ±0.1 mm) were according to BS ISO 15024:2001. The specimens 

were then painted on one side with white correction fluid. Two mm increments were 

marked for the first 40 mm and then every 5 mm over the total specimen length (Figure 

4.8). This technique allows the monitoring of the crack tip propagation during the test. 

The PTFE insert film creates an existing sharp crack opening in the material, and causes 

minimal disturbance of the individual plies and the resin flow front behaviour during 

infusion. 

Load blocks were bonded onto the edge of the specimen using super glue 

(cyanoacrylate based adhesive). This adhesive guarantees a fast and good attachment of 

the specimen to the load-blocks. The specimen was then loaded in the testing machine 

by means of two loading pins made to pass through the load block holes and the test 

machine fixture. A Zwick Z010 screw driven controlled displacement test machine, 

equipped with a 2 kN cell was utilised for this study with a cross-head displacement of 

2 mm/min. 

 

Figure 4.9 Geometry for the DCB carbon fibre reinforced composite specimen with a 

starter delamination and bonded loading blocks. 

Every specimen was wedge pre-cracked by hand to identify the tip of the insert film 

position and to extend it 2-3 mm further. This is done to guarantee that initiation data 

(VIS point) gathered during the delamination test starts within the material do not 

correspond to the insert film. 
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The position of the crack tip was monitored by means of a hand held magnifying glass 

and a desk lamp with a mechanism to allow the light bulb to be tilted. As the specimen 

deformed the load and head displacement (loading point deflection) were recorded by 

the data acquisition system. The crack tip position was noted down as the crack tip 

progressed through the marks drawn on the specimen. Simultaneously the data 

acquisition system was triggered to plot markers on the load vs. displacement curve. 

When the test was completed these markers were correlated with the crack tip position 

values. Subsequent analysis allows the calculation of initiation and propagation values 

for GIC as a function of the delamination length. There are three ways to determine the 

initiation fracture according to BS ISO 15024:2001, such as the NL, the VIS and the 5% 

MAX point. The difference between them lies on how initiation is identified in the force 

vs. displacement curve. The 5% MAX point was selected as the initiation value for the 

calculation of the initiation fracture toughness GIC in the comparative analysis of results. 

GIC was determined utilising the corrected beam theory (CBT) as follows  

 3
2 ( | |)IC

P FG
b a N

δ
= ×

+ Δ
 (4.4) 

where P is the load, δ the load line displacement, b the specimen width, a the 

delamination length, as represented in Figure 4.9. This method takes into account three 

correction factors F and N described by equations (4.5) and (4.6), and || Δ which 

corresponds to the x-intercept of the linear fit data extrapolation in the (C/N) 1/3 vs. 

delamination length graph. || Δ  extends the beam theory approach, which 

underestimates the compliance, to account for a specimen that is not perfectly built-in, 

by considering a longer delamination length. l1 and l2 are represented in Figure 4.9. 
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 (4.6) 

The large displacement correction F, accounts for large displacements and is especially 

significant if 4.0>
a
δ . The stiffening caused by the load blocks is corrected by factor N. 
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4.8 Compressive Yield Strength 

Uniaxial compressive tests were performed on nanocomposite specimens for 

determining compressive yield stress σyc, according to the ISO 604:2003 standard. 

Nanocomposite specimens were cut either from off cuts of the 0.25 wt% CNP 

multiscale composites manufactured by RTM or from comparable cast nanocomposites. 

The latter comprise a 0.5 wt% CNF nanocomposite shear mixed up to 72000 cycles and 

a 0.25 wt% P940 nanocomposite dispersed by ultrasonication up to 1300 J/g. The 

specimens were cut using a diamond blade installed in a low speed saw. Specimen 

thickness was left unchanged, while length and width followed the dimensions specified 

in the standard ISO 604:2003, as shown in Figure 4.10 (b). Special care was taken 

during machining to guarantee flat and parallel surfaces and sharp edges. At least five 

specimens were prepared for each system, except the control for which 3 specimens 

were used. Before testing, all the test specimens were placed in a desiccator for 24h. 

 

Figure 4.10 Compression test set up (a) and specimen dimensions (b). 

The compression tests were carried out at 22ºC on an Instron 5500R displacement 

controlled test machine with a 5kN load cell. An Instron compression cage, loaded in 

tension, allowed the compression of the nanocomposite specimens placed between two 
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m

m
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parallel plates as shown in Figure 4.10 (a). The specimens were compressed along their 

major axis at a constant speed of 0.6 mm/min [128] until yielding was observed, and 

force and displacement were recorded. 

The σyc values of the nanocomposites were taken from the maximum value of the 

corrected stress vs. strain curves, when present, or otherwise from the intersection point 

between the test curve and a straight line with the same slope as the linear part of the 

stress vs. strain curve, offset by 5%. The compressive stress is described by the ratio 

between F and the corrected cross-sectional area of the specimen, as follows 

 ,c o
o

F A A
A A

σ Δ νε
Δ

= =
+

 (4.8) 

where Ao is the initial cross-section area, ν the Poisson’s ratio and ε the strain value. 
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5 RTM processing and electrical performance of carbon 
nanotube modified epoxy/fibre composites  

This chapter was adapted from a paper accepted by Composites Part A - Applied 

Science and Manufacturing journal. It is focused on the transfer of the enhanced 

electrical properties of CNT modified resin to the final multiscale composite structure. 

Microscopy was utilised to evaluate the state of dispersion in the liquid and cured 

nanocomposite states, whilst electrical conductivity allowed the selection of the most 

appropriate dispersion methods. A range of different CNT modified suspensions were 

used to infuse both carbon and glass fibre fabrics using the RTM process, where 

adjustments in processing conditions were highlighted. The extent and nature of particle 

filtration were identified and the electrical conductivity of the produced multiscale 

composites was evaluated. 

5.1 Effect of dispersion on the electrical properties of MWCNT 

suspensions 

5.1.1 Liquid nanocomposite suspensions 

The effects of varied CNT content and different mixing processes on the dispersion 

state and the electrical conductivity of the liquid samples were investigated, as basis for 

the selection of adequate suspensions to be utilised in the infusion of carbon and glass 

reinforcements.  

 

Figure 5.1 Liquid state optical transmission micrographs of 0.5 wt% P940 filled epoxy at 

different dispersion/processing levels: before ultrasonication (a); initial stages (b) and 

after completion of the process (c). 

200 µm a b c
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Figure 5.2 Liquid state optical transmission micrographs of 0.25 wt% P940 filled 

suspensions at different dispersion/processing levels: before dispersion (a); initial stages of 

ultrasonication (b) and high shear mixing (d); after completion of the process of 

ultrasonication (c) and high shear mixing (e). 

Figures 5.1 and 5.2 illustrate the evolution of microstructure associated with the 

dispersion of 0.5 wt% and 0.25 wt% P940 MWCNTs in the epoxy resin. Figures 5.4 and 

5.5 summarise the evolution of AC and DC electrical conductivity of the suspensions 

during dispersion processing. Highly entangled large and isolated MWCNTs primary 

aggregates with well defined boundaries characterise the initial resin suspension 

(Figures 5.1(a) and 5.2 (a)). As the total ultrasonic energy input to the suspension 

increases, the aggregate boundaries become blurred as CNTs gradually unravel forming 

areas of separate and individual CNTs around the aggregate dense core (Figures 5.1 (b) 

and 5.2 (b)). Although dimensionally large aggregates are still present at intermediate 

levels of dispersion, such as those shown in Figures 5.1 (b) and 5.2 (b), a significant 

increase of the electrical conductivity of all the suspensions is observed (Figure 5.4), 

which implies that at this stage, the number of conductive links formed increases 

considerably. Further ultrasonication of the 0.25 wt% and 0.5 wt% P940 suspension, up 

to 1300 J/g, results in suspensions characterised predominantly by a homogenous 

distribution of carbon nanotubes where few dense aggregates with a maximum 

dimension of up to 50 μm and 70 μm respectively can be observed.  
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The electrical conductivity of all ultrasonicated suspensions rises sharply after the initial 

stages of ultrasonication. After 350 J/g and 200 J/g of processing, the conductivity of 

suspensions filled with 0.5 wt%, 0.25 wt% and 0.125 wt% P940 becomes 

approximately constant until the end of the process (Figure 5.4). Higher electrical 

conductivity is associated with efficient dispersions containing increasing content of 

dispersed CNTs. However, the electrical conductivity results for 0.25 wt% and 0.5 wt% 

P940 suspensions dispersed by ultrasonication are similar. Considerably lower electrical 

conductivity, of about one order of magnitude, is obtained for the suspension containing 

0.125 wt% P940 CNTs when processed by ultrasonication. 

 

Figure 5.3 Liquid state optical transmission micrographs of 0.125 wt% P940 filled epoxy 

resin after 1300 J/g ultrasonication input, at increasing magnification. 

The transmission optical microscopy pictures shown in Figure 5.3 are representative of 

the state of dispersion of this suspension after the final ultrasonication stage. This 

suspension is characterised by irregularly shaped loose CNT aggregates (secondary 

aggregates) surrounding a number of very dense and nearly round primary aggregates 

ranging from few microns to 150 µm diameter, in a medium of large areas of neat resin. 

A better dispersion state would lead to reduced size of the areas microscopically 

deprived of CNTs and would instead be characterised by a homogenous distribution of 

CNTs over the entire suspension. In general, these features are associated to 

suspensions with enhanced electrical conductivity properties.  

High shear mixing is not as effective as ultrasonication in reducing the size of large 

primary aggregates in suspension. At the initial stages (11000 cycles), CNTs start to 

unravel from considerably large primary aggregates into loose aggregates or individual 

particles (Figure 5.2 (c)). At the final stage of dispersion (72000 cycles), very large 

primary aggregates with approximately 100 µm diameter and large resin rich areas are 

still present, despite the increase in loose aggregate areas seen in suspension (Figure 5.2 

200 µm 100 µm 50 µm
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(d)). This indicates a very different morphology and dispersion level from the 

ultrasonicated material at the end of processing. 

The conductivity of the 0.5 and 0.25 wt% high shear mixed suspensions is very similar 

both at the initial and at the final stage of dispersion (72000 cycles). At an intermediate 

stage (33000 cycles and 36000 cycles) the conductivity of the 0.5 wt% suspension 

appears higher than the one with half the CNT loading. The overall effect of 

ultrasonication process is a step change of electrical conductivity of the suspension by 

nearly three orders of magnitude. In contrast, the electrical conductivity of the high 

shear mixed liquid suspensions shows an increase by two orders of magnitude (Figure 

5.4). These results indicate that ultrasonication is a more effective route of dispersing 

unmodified nanotubes in the epoxy system of this study. 

 

Figure 5.4 Evolution of the AC electrical conductivity during ultrasonication and shear 

mixing of P940 filled epoxy at different loading (filled symbols represent ultrasonicated 

material; open symbols represent high shear mixed suspensions). 
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Figure 5.5 Evolution of the DC electrical conductivity during ultrasonication and shear 

mixing of P940 filled epoxy at different loading (filled symbols represent ultrasonicated 

material; open symbols represent high shear mixed suspensions). 

An electrical conductivity plateau region is observed for ultrasonication energy inputs 

between 550 J/g and 1.3 kJ/g for both 0.25 and 0.5 wt% loaded suspensions. 

Consequently, for RTM manufacturing purposes a total energy input of 800 J/g was 

chosen to disperse P940 CNTs in the epoxy resin at 0.25 wt% CNT loading, since 0.5 

wt% CNT contents lead to extremely viscous suspensions. 

A similarity between the trends for AC and DC electrical conductivity of suspensions 

with the same CNT content and dispersed utilising the same technique can be observed 

in Figures 5.4 and 5.5. Despite this apparent resemblance between curve trends, DC 

results are approximately one order of magnitude lower than AC. Polarisation effects 

are believed to influence the DC response, causing this divergence between results 

[129]. These effects are particularly relevant at lower frequencies, especially in the case 

of DC measurement, where time is required for response stabilisation. These effects are 

also present in the complex impedance response at lower frequencies [130]. However, 

the AC conductivity is evaluated from the complex impedance spectra at a frequency 

region were charge migration is the main conduction mechanism and polarisation can be 
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neglected. Therefore, for these reasons the AC conductivity method is preferred when 

comparing different materials. 

Higher electrical conductivity results were associated with efficient dispersed 

suspensions containing increasing content of CNTs. However, for 0.25 wt% and 0.5 

wt% P940 suspensions dispersed by ultrasonication the electrical conductivity evolution 

was found to be very similar along the entire dispersion range. The same is not verified 

at intermediate stages of dispersion when these suspensions are dispersed by means of 

high shear mixing technique. Only at the final stage of dispersion (72000 cycles) by 

high shear mixing, the suspension containing 0.25 wt% P940 reaches conductivity 

values identical to the one filled with 0.5 wt% P940 CNTs. 

5.1.2 Dispersion monitoring of liquid CNT nanocomposites using dielectric 

spectroscopy 

The response to an AC field is related to the reorientation of permanent and induced 

dipoles and electrical conduction [131]. The complex resistivity spectra obtained from 

AC spectroscopy can provide information about the effect the evolution of CNT 

dispersion has on electrode polarisation, charge migration and dipolar relaxation 

phenomena occurring in thermosetting resins [132]. The CNT suspension can be 

described by two parallel RC sub-circuits connected in series, where the bulk represents 

the conductive areas, corresponding to primary or secondary aggregates and the 

interface corresponds to the insulating resin rich areas separating these conductive 

regions (Figure 5.6). This equivalent circuit is based on the bricklayer model used to 

simulate the behaviour of polycrystalline ceramics [133], and allows the determination 

of the resistor and capacitive elements of each phase. 

The results of impedance spectroscopy for the 0.25 wt% P940 CNT/epoxy resin are 

presented in Figure 5.7. The evolution of dispersion observed in the ultrasonicated and 

the shear mixed material, illustrated in Figure 5.2 (a) and (b), was accompanied by an 

improvement of the suspension electrical conductivity, which is demonstrated by the 

drop in the complex impedance peak magnitude. At the initial state (0 J/g 

ultrasonication energy and 0 cycles) the imaginary resistivity of the unprocessed 

material decreases slightly up to 10 Hz, rising sharply after that up to 1 kHz, frequency 
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at which a peak followed by a linear drop towards higher frequencies occur. This 

behaviour is typical of thermosetting materials, when the spectrum is dominated by 

charge migration. At the initial stage, the resistivity is independent of the CNT content 

and very similar to that of the liquid epoxy [134], since a percolated network has not 

been formed yet. This behaviour is also observed for the 0.5wt% (Figure 5.8) and 0.125 

wt% (Figure 5.9) CNT suspensions. 

 

Figure 5.6 Schematic of the bricklayer model for polycrystalline materials and equivalent 

circuit (adapted from [132]). 

Both dispersion processes change the appearance of these impedance spectra 

considerably and differently, with a movement towards lower resistivities, which 

corresponds to the increase in conductivity shown in Figure 5.4. In addition, the 

impedance spectra of the 0.25 wt% and 0.5 wt% P940 suspensions dispersed by 

ultrasonication at lower frequencies changes considerably after an energy input of 350 

J/g, with the appearance of a knee towards lower impedance resistivities before the 

peak. 

The impedance spectrum of the 0.125 wt% P940 suspension (Figure 5.9) shows the 

narrowing of the peak present at intermediate frequencies, together with the appearance 

of a secondary peak at higher frequencies, representative of an interfacial relaxation 

mechanism. This is due to the production of a conductive phase covering a larger 

volume of the suspension, as the CNT particles break up from primary aggregates 

forming loose aggregates. 
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Figure 5.7 Evolution of imaginary impedance spectrum during the dispersion of 0.25 wt% 

P940 CNT/epoxy nanocomposite by ultrasonication (a) and shear mixing (b). 

 

Figure 5.8 Evolution of imaginary impedance spectrum during the dispersion of 0.5 wt% 

P940 CNT/epoxy nanocomposite by ultrasonication (a) and shear mixing (b). 
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Figure 5.9 Evolution of imaginary impedance spectrum during the dispersion of 0.125 

wt% P940 CNT/epoxy nanocomposite by ultrasonication. 

Both dispersion processes result in impedance resistivity peaks moving towards slightly 

higher frequencies. Ultrasonication seems to be a better way of dispersing these CNTs 

in epoxy than high shear mixing, as only an ultrasonic input of 200 J/g results in a 

distinctive reduction of the impedance resistivity by more than two orders of magnitude. 

In addition, at the end of processing the impedance resistivity is consistently lower for 

ultrasonicated materials than high shear mixed ones. 

 

5.1.3 Cured nanocomposites 

Figure 5.10 shows SEM micrographs of the fracture surfaces of P940 cured 

nanocomposites, used to evaluate the combined effect of ultrasonication and cure on the 

final morphology of the carbon nanotube network.  
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Figure 5.11 SEM micrographs of fracture surfaces of 0.5 wt% P940/epoxy nanocomposites 

prior processing (a) and after completion of shear mixing (b) and ultrasonication (c) 

processing. 

Figures 5.11 and 5.12 show SEM micrographs of the fracture surfaces of 0.5 wt% P940 

cured nanocomposites at different levels of dispersion.  The initial state of dispersion 

prior to processing is depicted in Figure 5.11 (a), where large aggregates of about 200 

µm can be observed. After completion of ultrasonication and high shear mixing 

processing, a significant reduction of the aggregates dimensions was observed, as 

shown in Figures 5.11 (b) and (c) respectively. Aggregates ranging from about 10 µm 

up to 100 µm can still be seen after complete ultrasonication (Figure 5.11 (b)), whereas 

after high shear mixing a range of aggregates from about 30 to 55 µm dimension are 

present (Figure 5.11 (c)). Despite the similarity between suspensions processed by 

ultrasonication or high shear mixing, possible damage caused to CNTs during high 

shear mixing could have compromised the electrical conductivity of the nanocomposite. 

Figure 5.12 presents the intricate morphology and level of CNT entanglement at the 

core of CNT aggregates, which are present in suspension even after completing the 
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dispersion processing. Transitional areas between aggregates and resin, observed by 

optical microscopy in Figure 5.1, were also seen by SEM in Figure 5.13. 

 

Figure 5.12 SEM micrographs of fracture surfaces of 0.5 wt% P940/epoxy nanocomposites  

 

 

Figure 5.13 SEM micrograph of the fracture surface of 0.5 wt% P940/epoxy 

nanocomposites after completion of the ultrasonication process. 
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5.1.4 RTM suspensions 

Figure 5.14 summarises the liquid electrical conductivity values for the various 

suspension formulations of this study. Dispersion processing of the C100 nanotube 

system by triple roll milling and high shear mixing leads to an increase in conductivity 

by two orders of magnitude, as shown in Figure 5.14. Further processing by 

ultrasonication causes a slight reduction in the electrical conductivity of the suspension, 

which may be explained by damage (reduction of the aspect ratio) of the CNTs during 

ultrasonication; indeed Figure 5.15 indicates a finer structure of loose aggregates in the 

ultrasonicated material. The sharp reduction in conductivity observed when the 

suspension of C100 nanotubes was heated up for 30 min at 40ºC (Figure 5.14) is due to 

reaggregation of the carbon nanotubes, accelerated by the elevated temperature. Such 

reaggregation could disrupt the conductive network formed by the nanotubes during 

dispersion processing. However, the conductivity remains higher than that of the 

original suspension, which indicates that the reaggregated agglomerates of nanotubes 

exhibit a looser structure compared to the aggregates of the material prior to dispersion. 

The electrical conductivity of the initial C100 suspension is lower than that of the 

corresponding P940 suspension, which is consistent with the lower average aspect ratio 

for the C100 system. 

 

Figure 5.14 Electrical conductivity of CNT filled liquid resins. 
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Figure 5.15. Liquid state transmission optical micrographs of the C100 filled suspensions 

at different dispersion steps: after triple roll milling and shear mixing (a) and after 

ultrasonication (650 J/g) (b). 

Micrographs of the surface modified MWCNT filled suspension are shown in Figure 

5.16, characterised by a stable and uniform dispersion of CNTs throughout the resin. 

Relatively small and loose aggregates and individual carbon nanotubes coexist in 

suspension, surrounded by areas of clear epoxy resin. The suspension conductivity of 

the surface modified system is low and comparable with the conductivity of the C100 

system. This can be attributed to the limited tendency of the surface modified system to 

aggregate and form a conductive network and the effect of surface modification to the 

conductivity of the network of CNTs. 

 

Figure 5.16 Liquid state optical transmission micrographs of the surface modified CNT 

filled epoxy at low (a) and high (b) magnification. 

The phenomenon of cure-induced reaggregation was investigated for the cases of C100 

and P940 nanotubes, as shown in Figure 5.17. Reaggregation observed in both materials 

was manifested as an increase in the amount and size of clear resin areas and by the 

formation of relatively denser (darker) aggregates. 
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Figure 5.17 Liquid and cured state transmission micrographs of C100 and P940 filled 

epoxy: liquid C100 system (a); cured C100 system (b); liquid P940 system (c); cured P940 

system (d). 

5.2 RTM adaptation and processing issues in manufacture of 

multiscale composites 

Pseudo-unidirectional uniweave fabrics were selected as reinforcement to avoid 

complications in processing that could result from multiple fibre orientation as the 

permeability of the fabrics and the rate of filtration of nanoparticles is expected to be 

uniform across the thickness. Also, the electrical properties measured after infusion and 

curing correspond to a single fibre orientation, allowing an evaluation of the effects of 

carbon nanotube addition to material properties to be made. 

Compared to normal composite processing, RTM infusion with carbon nanoparticle 

filled resins requires process modification regarding the degassing steps as well as the 

selection of an appropriate mould filling temperature to compensate for the increased 

viscosity of the resin. CNT reaggregation during degassing was observed in the case of 

the P940/epoxy system. High suspension viscosity at the standard degassing 

temperature of 40ºC for this system resulted in an unacceptably long degassing process. 
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Ultimately the suspension was heated up to 50 ºC to reduce the suspension viscosity 

sufficiently to allow efficient removal of volatiles. The duration of this process was 

approximately one hour and the dispersion state was compromised as a consequence, 

with slightly larger aggregates present in the sample after degassing. In the case of the 

C100 system as well as of the surface modified material changes to the procedure of 

resin degassing were not required, as the lower viscosity of these systems allowed the 

process to be completed at 40 ºC within an acceptable time. 

These results and the results on the electrical response of nanocomposites presented in 

the previous section point to the difficulties arising due to the interplay between the 

state of dispersion, processability and electrical performance. Dispersion states 

corresponding to high conductivities such as these observed in the P940 nanocomposite 

are inherently more difficult to degas and require modification of the degassing cycle 

usually involving higher temperatures and/or longer process times. A balance between 

the benefits of degassing and the loss of electrical performance due to extensive 

reaggregation is necessary when designing the modified process. 

5.2.1 Rheology 

Figure 5.18 shows the viscosity dependence on the shear rate for all the suspensions 

utilised for liquid moulding at the corresponding filling temperature. Shear rate 

dependent suspensions such as the ones filled with unmodified CNTs show higher 

viscosities. In contrast, the unfilled and the surface modified CNT filled epoxy show 

negligible shear rate dependence and have lower viscosity. The viscosities of the P940 

system are the highest observed at low and intermediate strain rates. This result is 

consistent with the observations during degassing where modification of the schedule is 

required to complete the process for this system. As the shear rate increases the 

viscosity of all systems tends to plateau at a level that is similar to that of the unfilled 

epoxy. 
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Figure 5.18 Suspension viscosity as a function of shear rate. 

 

5.2.2 Filtration 

Figure 5.19 shows the resin flow front during RTM injection together with a close view 

of the flow front where inter-tow and intra-tow flow can be distinguished, for the case 

of C100 CNTs and glass fabric. CNT filtration was observed macroscopically for the 

systems containing unmodified CNT. Resin was seen running clear at the outlet gate for 

the injection of carbon reinforcement composite with P940 filled suspension. In glass 

reinforced composites infused with C100 filled epoxy some colour variation in the final 

composite was a clear indication of CNT filtration by the porous media. In contrast, 

surface modified CNTs did not show macroscopic and qualitative evidence of filtration, 

since resin was not seen running clearer at the outlet gate. 

The solution of Darcy’s problem for a fluid of constant viscosity η, in a porous medium 

of constant effective permeability K and porosity ε in an one dimensional situation with 

prescribed pressures at the inlet and outlet can be described by the following expression: 
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Here h(t) denotes the flow front position at time t, and po and p∞ are the prescribed 

pressures at the inlet and outlet of the mould respectively. This solution implies a linear 

dependence of flow front position on the square root of time. 

 

Figure 5.19 Resin flow front during RTM injection of glass composite with C100 filled 

suspension. 

 

Figure 5.20 illustrates the measured resin flow front position versus the square root of 

time alongside a linear fit using Eq. (5.1). Significant deviation from the linear 

behaviour is observed in both cases of unmodified CNTs. In contrast, the control and 

surface modified carbon nanotubes filled material follow the linear fit closely. Deviation 

from the square root dependence can be attributed both to the highly non Newtonian 

behaviour of the modified resin and the retention of nanoparticles by the reinforcement 

which modifies the resin viscosity and influences slightly the local permeability of the 

fabric. Longer filling times were also characteristic of the two unmodified CNT filled 

materials. This can be attributed to their intrinsically higher viscosity profiles and the 

reduction of the reinforcement porosity caused by the clogging of the available pores 

through which resin circulates, which is expected to be a secondary effect. 
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Figure 5.20 Resin flow front profiles during RTM injection. 

The distribution of CNTs at the inlet and outlet regions, and on delamination surfaces of 

the composite panel was investigated for all the systems by means of SEM. Very large 

aggregates (~ 50 µm) were found at the inlet for the case of P940 CNTs. A partial view 

of one of these aggregates is shown in Figure 5.21(a). The composite structure 

incorporates two pore scales through where resin flow occurs (100 µm and 10 µm). 

These are characteristic of the inter and intra-tow spacing dimensions. Large and highly 

entangled CNT aggregates concentrated in resin rich pockets, located between the 

carbon tows and the non structural stitches, are observed on the composite delamination 

surface of the P940 material in Figures 5.21 (c) and (d). These aggregates become less 

frequent away from the resin inlet due to filtration. Furthermore, the resin located at the 

outlet region contains virtually no CNT agglomerates as shown in Figure 5.21 (b). 

These observations indicate the occurrence of cake filtration at a microscopic level. Size 

exclusion is considered as the main filtration mechanism for this CNT system. In 

addition, the non-Newtonian behaviour of the suspension associated to hydrodynamic 

effects, caused by a non-uniform shear field during fluid flow and nonsphericity of the 

particles [54], can also contribute to preferential particles deposition especially in 

stagnation zones where low shear strains are present. Though not observed in SEM, 

other potential mechanisms of filtration in fibrous media for CNT filled suspensions 

such as inertial effects and direct interception with the fibre surface could be active. 
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Figure 5.21 SEM micrograph of the fracture surface of the P940 filled resin at the inlet (a) 

and outlet region (b); and delamination surface of the corresponding fibre composite 100 

mm away from the inlet (c) showing CNT filtration at resin rich pockets (d). 

 

C100 nanotubes were also filtered when passing through the glass porous media. 

However, smaller and looser aggregates (10 µm maximum dimension) than the ones 

seen in P940 filled resin were present at the inlet region as illustrated in Figure 5.22. 

Also small and loose CNT aggregates were found in resin rich pockets and inter-fibre 

areas of the composite as shown on Figure 5.22 (c). In contrast to the P940 system 

where cake filtration is observed, the gradient in nanotube concentration in the C100 

system is significantly lower which indicates that deep bed filtration is the dominant 

mechanism in this system in the initial stage of filling. Later in the process the 

accumulation of retained nanoparticles might lead to retention via size exclusion and 

cake filtration. 
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negligible filtration as evidenced by the uniform presence of 2-3 µm size loose 

aggregates both at the inlet and outlet regions of surface modified CNT panels as 

illustrated in Figure 5.23. 

5.3 Evaluation of composites quality 

Visual inspection and c-scanning were utilised to evaluate the existence of dry spots and 

the impregnation. Figure 5.24 shows the output c-scans of the composites produced. 

 

Figure 5.24 C-scan images of the control carbon composite (a), P940 (b), surface modified 

(c) and C100 (d) CNT multiscale composites 

Darker regions define the presence of defects, i.e. porosity. The black rectangle present 

on the right hand side of each panel corresponds to the location of a PTFE film 

necessary to generate a pre-crack for the composite DCB specimens (section 4.7). The 

dark regions at the outlet side of each composite and all over the surface modified CNT 

composite are representative of incomplete saturation of the top surface of these 

composites, as confirmed by inspection of cross sections across these regions. The only 
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c d
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exception is the dark region at the right hand side corner of the P940 CNT composite 

(Figure 5.24 (b)), where dry fibres can be seen by visual inspection. The surface dry 

areas are associated with insufficient degassing of these suspensions, relatively high 

viscosity of the suspension at the infusion temperature to allow adequate removal of 

volatiles, and insufficient amount of resin in the case of the surface modified CNT 

composite (Figure 5.24 (c)). Special care was taken to avoid testing specimens within 

these regions. 

5.4 Electrical properties of the CNT modified fibre composites 

The results of electrical measurements of carbon laminates indicate highly anisotropic 

electrical behaviour of the composite as shown in Figure 5.25. The electrical 

conductivity in the fibre direction is two to three orders of magnitude higher that the 

conductivity in the in-plane transverse and through thickness directions respectively. 

This is expected as the carbon fibres form continuous conductive paths in the 

unidirectional material, governing the conductivity in this direction. The drop in the 

longitudinal electrical conductivity when adding CNTs to the composite is within the 

scatter of results. The conductivity in the in-plane transverse direction is one order of 

magnitude higher than that in the through thickness direction. In this case the level of 

contact between adjacent carbon fibres is the governing parameter and the packing of 

fibres in the in-plane direction is denser than that between successive layers in the out-

of-plane direction. Consequently, the addition of carbon nanotubes has an effect only in 

the conductivity of the through thickness direction of carbon composites where the 

electrical behaviour of resin rich areas plays a more significant role. The improvement 

in through thickness conductivity of carbon laminates is more significant for the 

unmodified CNTs (P940) than the surface modified system due to the tendency of 

unmodified nanotubes to form a conductive network via reaggregation. However, the 

scattering in conductivity values is higher in the unmodified system which is indicative 

of non-uniformity caused by filtration in this material. 
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Figure 5.25 Electrical conductivity of the CNT filled carbon (a) and glass fibre composites 

(b), and evolution of through thickness electrical conductivity of the nanoparticle filled 

carbon composites as a function of the distance from the inlet gate (c). 

The addition of C100 carbon nanotubes in the glass composite also increases the 

through thickness conductivity of the glass composite. The increase is relatively modest 

(approximately one order of magnitude), a result which is in line with the relatively low 

conductivity of the C100 suspension reported in Figure 5.14. Similarly to the 

unmodified CNT system used with carbon fibres, the conductivity of the CNT loaded 

material exhibits high scatter in its values, as a result of filtration effects. 

Filtration is also investigated in Figure 5.25 (c), by identifying spatial variations of 

through thickness conductivity of carbon reinforced composites. A slight reduction of 

the electrical conductivity of the composite can be observed. This phenomenon occurs 

even in the case of surface modified CNTs indicating filtration at the microscopic level. 
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5.5 Conclusions 

The outcome of this investigation demonstrates the feasibility of processing realistic 

aerospace grade composites, comprising aerospace materials, such as high temperature 

epoxies and carbon fibres at high fibre volume fraction, with CNT loaded epoxy 

matrices, resulting in enhanced electrical performance. A range of possibilities exists for 

the design of the process and the selection of materials. 

The modification of epoxy resins by carbon nanotubes lead to the need to modify the 

process route for the manufacture of multiscale composite laminates via liquid resin 

moulding processes. A dispersion step needs to be added before the filling process 

during which the nanotubes are suspended in the liquid resin with the aim of 

maximising their eventual performance enhancement effects. The state of dispersion can 

be evaluated successfully by carrying out measurements of electrical conductivity 

during the dispersion process. In the formulations tested here it was found that 

additional dispersion processing was only necessary for unmodified carbon nanotubes 

which enter the process in an aggregated form and also have the tendency to reaggregate 

during processing. Electrical conductivity measurements have shown that 

ultrasonication is a better way of dispersing P940 CNTs when compared to high shear 

mixing. P940 contents of 0.5 wt% were found to cause just a slight improvement in the 

electrical conductivity of the suspension when compared to 0.25 wt%. In addition, the 

higher viscosity of the 0.5 wt% suspension was found to be inappropriate for RTM. 

Therefore, the CNT loading for all the systems was kept at 0.25 wt%. 

Degassing schedules for well dispersed unmodified CNT-containing systems need to be 

carried out at elevated temperatures, to compensate for the increase in viscosity. This 

process modification is not straightforward as the increase in temperature also 

accelerates reaggregation effects that could potentially degrade the efficiency of 

nanotube addition with respect to electrical performance and can also initiate the curing 

reaction and increase the viscosity of the system further. The increase in viscosity also 

plays a role during the filling stage of liquid moulding processes by slowing down the 

progression of the flow front. 
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Surface modified nanotubes offer an easy processing solution, requiring minimum 

process modifications but at the cost of higher material cost and lower achievable 

electrical conductivity compared to the composites made with unmodified multiwalled 

nanotubes. Unmodified nanotubes require adaptations both in the degassing and filling 

stages of the RTM process. The cost of these needs to be set against the higher raw 

material cost of unmodified tubes and higher potential for enhancement of the electrical 

behaviour. 

The interaction of suspended and aggregated nanotubes with the reinforcement fibres 

results in filtration effects that can be significant in unmodified CNT- containing 

systems. The state of dispersion of the nanoparticles and their tendency to reaggregate 

governs the type of filtration behaviour. Cake filtration dominates in situations where 

aggregates with sizes comparable to the pores of the reinforcement are present in the 

suspension. In these systems relatively large CNT aggregates are found in resin rich-

pockets closer to the inlet side of the mould, whereas very few nanoparticles are present 

in the outlet side of the composite. In contrast deep bed filtration occurs in situations 

where the size of aggregates remains relatively small compared with the pores. 

Filtration effects affect the macroscopic resin flow in the mould due to the dependence 

of viscosity and permeability on the local concentration of nanoparticles as well as the 

modification of porosity with the accumulation of retained particles on the fabric.  

Both carbon and glass fibre reinforced composites containing the CNT-filled matrix 

were prepared, resulting in fibre volume fractions of 57% and 59% respectively. The 

enhancement of electrical behaviour by the addition of CNTs in carbon composites 

followed the anisotropic character of these materials. The through-thickness 

conductivity almost doubled with the addition of nanotubes and the enhancement was 

stronger for unmodified nanotubes. The conductivity in the in-plane directions, which is 

dominated by that of the carbon fibre, remained unaffected. The electrical conductivity 

of glass composites increased by one order of magnitude with the addition of nanotubes, 

to a level which can still be considered modest. Electrical conductivity measurements of 

specimens at different locations in the mould were found useful to evaluate the extent of 

CNT filtration during injection, especially for the case of surface modified CNTs. 

Despite the larger extent of filtration verified for the unmodified CNT system, these 
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CNTs provide a better improvement of the composite electrical conductivity properties 

when compared to surface modified CNTs. 
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6 RTM processing and electrical properties of CNF 
modified epoxy/fibre composites 

This chapter focuses on the transfer of the enhanced electrical properties of a CNF 

modified resin to the final multiscale composite structure. Optical microscopy and SEM 

was utilised to evaluate the state of dispersion in the liquid and cured nanocomposite, of 

varied content of CNF modified suspensions when using ultrasonication and high shear 

mixing processes. Electrical conductivity measurements of these suspensions allowed 

the selection of the most appropriate dispersion method for this modified system. A 0.25 

wt% CNF modified suspension was used to infuse a pseudo UD carbon fabric using the 

RTM manufacturing process. Adjustments to the processing conditions were carried out 

and the quality of the produced composite was evaluated. The extent and nature of 

particle filtration were identified microscopically and macroscopically and the electrical 

conductivity of the fibre composite was evaluated. 

6.1 Effect of dispersion on the electrical conductivity of liquid 

nanocomposites 

The effects of different mixing processes and CNF content on the dispersion state and 

the electrical conductivity of CNF liquid samples were investigated, as basis for the 

selection of adequate suspensions to be utilised in the infusion of carbon 

reinforcements. Figures 6.1 and 6.2 illustrate the evolution of microstructure associated 

with the dispersion of 0.5 wt% and 1 wt% CNFs in the epoxy resin, respectively, by 

means of ultrasonication and high shear mixing. Figure 6.3 summarises the evolution of 

AC electrical conductivity of these suspensions during dispersion processing. Entangled 

aggregates found in a variety of dimensions ranging from a few microns to 250 µm, are 

seen surrounded by individual CNF nanoparticles in both initial suspensions (Figure 6.1 

(a) and Figure 6.2 (a)). The AC conductivity of the unprocessed suspension containing 1 

wt% CNF is approximately 3 orders of magnitude higher than the corresponding one 

loaded with 0.5 wt% CNF. 



RTM processing and electrical performance of carbon nanofibre composites 
 

92 

 

Figure 6.1 Liquid state optical transmission micrographs of the 0.5 wt% CNF filled 

suspensions at different dispersion/processing levels: before processing (a); after 

completion of high shear mixing (b) and ultrasonication (c) processes. 

Ultrasonication and high shear mixing processing lead to very distinct states of 

dispersion, as shown in Figures 6.1 (b) and (c), and Figures 6.2 (c) and (d). At the initial 

stages of dispersion processing by high shear mixing (11000 cycles) the AC 

conductivity of the suspension loaded with 1 wt% CNF reaches a maximum value. At 

this point, the majority of large and dense aggregates have been unravelled, and form 

regions of looser aggregates at the periphery of the smaller dense aggregates (Figure 6.2 

(b)). As processing continues the AC conductivity drops slightly and by the end of 

processing reaches values similar to the unprocessed suspension. Despite the 

detrimental effect on the conductive network caused by continuous processing, the final 

state of dispersion shown in Figure 6.2 (c) reveals a loosely aggregated structure, 

characterised by very small dense aggregates and individual CNFs. In contrast, 

continuous shear mixing of 0.5 wt% CNF suspension led to an improvement of the AC 

conductivity by as much as two orders of magnitude, which implies that at this stage the 
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number of conductive links formed increases considerably. Nonetheless, the 

considerably more aggregated morphology of this suspension seems to suggest that a 

certain level of aggregation benefits the overall electrical conductivity. This is 

confirmed by the extremely poor electrical performance of CNF suspensions processed 

by ultrasonication, where a finer morphology and a more homogenous dispersion are 

observed (Figures 6.1 (b) and 6.2 (d)). Although ultrasonication improves the state of 

dispersion, the overall effect on the electrical conductivity of the suspensions filled with 

0.5 wt% CNFs is considered negligible, whereas for the case of suspensions with 1 wt% 

CNFs ultrasonication was detrimental. Ultrasonication might be impeding the formation 

of a percolated conductive network and/or causing damage to the CNFs. These results 

indicate that high shear mixing is a more effective method of dispersing CNFs in the 

epoxy system of this study. 

 

Figure 6.2 Liquid state optical transmission micrographs of the 0.5 wt% and 1 wt% CNF 

filled suspensions at different dispersion/processing levels. 
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Figure 6.3 Evolution of the AC electrical conductivity during ultrasonication and shear 

mixing of CNF filled epoxy (filled symbols represent ultrasonicated material; open 

symbols represent high shear mixed suspensions). 

 

Figure 6.4 Evolution of the DC electrical conductivity during ultrasonication and shear 

mixing of CNF filled epoxy (filled symbols represent ultrasonicated material; open 

symbols represent high shear mixed suspensions). 
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The evolution of DC electrical conductivity of the suspensions during dispersion 

processing is shown in Figure 6.4. For most of the cases the conductivity values for 

each suspension are nearly one order of magnitude lower than for the corresponding AC 

conductivity results, with the exception of the ultrasonicated suspension containing 0.5 

wt% CNF. Deviations between DC and AC results are dominated by polarization effects 

present when utilising the DC method [129]. Therefore, for the reasons described in 

section 5.1, the AC conductivity method was preferred when comparing different 

materials. 

6.2 Dispersion monitoring of liquid CNF nanocomposites using 

dielectric spectroscopy 

The results of impedance spectroscopy for the 0.5 wt% CNF modified epoxy resin are 

presented in Figure 6.5. The evolution of dispersion observed in the ultrasonicated 

material, illustrated in Figure 6.1 (a) to (c), was not accompanied by an improvement of 

the suspension electrical conductivity. This is manifested by little variation in the 

complex impedance peak position and magnitude (Figure 6.5 (a)). In contrast, when the 

same content of CNF is dispersed by high shear mixing, the impedance spectrum 

changes considerably with the enhancement of the level of dispersion, as shown in 

Figure 6.5 (b). 

At the initial state (unprocessed material) the imaginary resistivity remains practically 

constant up to 10 Hz, after which a rise in resistivity results in a peak at 600 Hz 

followed by a linear drop towards higher frequencies.  

After the initial stage of dispersion (3300 cycles) the impedance behaviour is 

considerably different from that of the unprocessed suspension. The peak value 

decreases by more than one order of magnitude, and becomes broader than that of the 

unprocessed suspension. Continuous dispersion enhances these effects and results in the 

appearance of a knee at high frequencies indicating an interfacial relaxation mechanism. 

When 1 wt% CNF loadings are used the impedance spectra becomes distinctively 

different than the one observed for 0.5 wt% CNF modified epoxy. The unprocessed 

material is characterised by a considerably small imaginary resistivity. The dispersion 

by ultrasonication seems to cause a detrimental effect on the electrical properties of the 
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suspension. Higher and slightly narrower imaginary resistivity peaks are observed for 

increasing dispersion steps, as shown in Figure 6.6. (a). Similarly, high shear mixing 

process also results in impedance spectra where higher imaginary resistivity peaks tend 

to move towards lower frequencies as the processing level increases. 

 

Figure 6.5 Evolution of imaginary impedance spectrum during the dispersion of 0.5 wt% 

CNF/epoxy nanocomposite by ultrasonication (a) and shear mixing (b). 

 

Figure 6.6 Evolution of imaginary impedance spectrum during the dispersion of 1 wt% 

CNF/epoxy nanocomposite by ultrasonication (a) and shear mixing (b). 
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6.3 Effect of dispersion on the electrical conductivity of cured 

nanocomposites 

The electrical conductivity of the cured nanocomposites was investigated, as shown in 

Figure 6.7. Cured nanocomposites processed by high shear mixing and containing 

higher content of CNFs lead to nanocomposites with enhanced electrical conductivity. 

This is in agreement with the conductivity results obtained in the liquid state. Despite 

the similar conductivity results between the two ultrasonicated suspensions in the liquid 

state at the end of processing, the same behaviour is not verified after cure of these 

suspensions. The conductivity of 1 wt% CNF ultrasonicated nanocomposite is more 

than 4 orders of magnitude higher than the corresponding nanocomposite at a lower 

concentration of 0.5 wt% CNF. Cure induced reaggregation is likely to have occurred to 

a certain extent together with re-establishment of CNF conductive links, causing the rise 

in conductivity of the 1 wt% CNF ultrasonicated nanocomposite to a value similar to 

the corresponding shear mixed nanocomposite. 

 

Figure 6.7 Electrical conductivity of the cured CNF filled epoxy at the end of 

ultrasonication and shear mixing processing. 

Figure 6.8 illustrates the initial state of dispersion of 0.5 wt% and 1 wt% CNF/epoxy 

nanocomposites using SEM. Similarly to what was observed by optical microscopy of 

the untreated suspensions in the liquid state, the fracture surface of the nanocomposite 

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

CNF 1% SM CNF 1% US CNF 0.5% SM CNF 0.5% US

C
on

du
ct

iv
ity

 [S
/m

]



RTM processing and electrical performance of carbon nanofibre composites 
 

98 

containing higher CNF loading (Figure 6.8 (b)) exhibits a larger number of aggregates, 

ranging from a few microns to more than 100 µm dimension, than the nanocomposite 

loaded with 0.5 wt% CNFs (Figure 6.8 (a)). 

 

Figure 6.8 SEM micrographs of fracture surfaces of 0.5 wt% (a) and 1 wt% CNF (b) 

epoxy nanocomposites at the beginning of processing. 

 

Figure 6.9 SEM micrographs of the fracture surface of 0.5 wt% CNF/epoxy 
nanocomposite at the end of high shear mixing process. 

At the end of processing by high shear mixing, very large aggregates of approximately 

150 µm dimension can still be seen on both nanocomposite fracture surfaces (Figures 

a b
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6.9 (a) and 6.10 (a)). These highly entangled aggregates are surrounded by individual 

CNFs as observed in Figures 6.9 (b) and 6.10 (b). 

 

Figure 6.10 SEM micrographs of the fracture surface of 1 wt% CNF/epoxy nanocomposite 
at the end of high shear mixing process. 

The smoother fracture surface shown in Figure 6.8 becomes rougher as the dispersion 

level is improved, such as in the fully ultrasonicated systems (Figure 6.11). This feature 

indicates a relatively more homogeneous distribution of CNFs within the epoxy. 

However, medium size aggregates of approximately 15 µm dimension (Figure 6.12 (b) 

and (c)) can still be found among individual CNFs in the fracture surface of 0.5 wt% 

CNF nanocomposite after completion of the ultrasonication process. The high level of 

entanglement of one of these dense aggregates can be seen in Figure 6.12 (d). High 

shear mixing although not as effective as ultrasonication in reducing dense aggregate 

size and achieving a more homogenous dispersion, leads to better electrical conductivity 

of CNF filled nanocomposites. 
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Figure 6.11 SEM micrographs of the 0.5 wt% and 1 wt% CNF filled suspensions at the 

end of the ultrasonication process. 

 

 

Figure 6.12 SEM micrographs of the fracture surface of 0.5 wt% CNF/epoxy 
nanocomposite at the end of the ultrasonication process. 
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6.3.1 Dispersion state of 0.25 wt% CNF/epoxy suspension during processing 

The dispersion state of the 0.25 wt% CNF filled epoxy was assessed by transmitted 

optical microscopy at different stages of processing, as illustrated in Figures 6.13 and 

6.14. The initial suspension (0 cycles) is characterised by a variety of extremely 

entangled aggregates, whose dimensions range from few micrometers to more than 300 

µm (Figure 6.13). These aggregates appear as black regions of low transmission of 

light, whose fuzzy boundaries reveal the outer ends of individual CNFs entangled 

within the aggregate core. The high light transmission zones around the CNF aggregates 

are areas of clear epoxy resin where randomly dispersed individual CNFs can be found. 

As the number of cycles increases, the aggregate boundaries become blurred as CNFs 

gradually disentangle forming areas of looser CNF aggregates around the dense core, or 

even separate from it. After 11000 cycles, the number of loose aggregates dispersed in 

the resin increases considerably. In addition, a global interconnected network of CNFs 

is formed between loose and dense CNF aggregates. Extremely large and dense 

aggregates (~500 µm) can still be observed in suspension. However, their extremely 

fuzzy edges reveal loosening of the CNFs from within the highly entangled aggregate 

core, as shown in the inset of Figure 6.13.  

Reaggregation of loose aggregates in suspension can be observed in Figure 6.14 with 

continuous processing by high shear mixing. As the processing time increases, the loose 

and structurally fine aggregates within the epoxy resin tend to assemble into larger and 

darker aggregated structures.  Further high shear mixing up to 72000 cycles results in a 

suspension characterised by a range of dimensionally distinct loose aggregates, where a 

small number of very dense aggregates with a maximum dimension of 170 µm can be 

observed. 
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Figure 6.13 Liquid state optical transmission micrographs of the 0.25 wt% CNF filled 
suspensions at different dispersion/processing levels (from 0 to 11000 cycles). 
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Figure 6.14 Liquid state optical transmission micrographs of the 0.25 wt% CNF filled 

suspensions at different dispersion/processing levels (from 20000 to 72000 cycles). 
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6.4 RTM processing 

An epoxy suspension containing 0.25 wt% CNF dispersed by high shear mixing was 

chosen for RTM purposes, since higher contents, such as 0.5 wt% and 1 wt% CNF 

result in extremely viscous suspensions for infusion. High viscosity suspensions can 

lead to very slow infusions, and can ultimately result in incomplete filling of the fibrous 

reinforcement. High shear mixing was selected for processing this suspension since the 

results obtained for higher CNF contents (section 6.1) indicate that this is a better 

process than ultrasonication for enhancing the electrical properties of these 

nanocomposites. 

6.4.1 RTM adaptation 

A preliminary preparation and assessment of the CNF dispersed suspension is 

mandatory when infusing nanomodified resins by RTM. A pseudo-unidirectional 

uniweave carbon fabric was utilised as reinforcement for this 0.25 wt% CNF/epoxy 

system. The selection of this reinforcement is explained in detail in section 5.2. RTM 

infusion involving CNFs filled resins, similarly to other nanoparticle filled resins such 

as CNTs filled epoxies, require process modifications with respect to degassing 

temperature and time as well as selection of appropriate mold filling temperature, in 

order to overcome potential issues arising from the increased resin viscosity. In order to 

facilitate the degassing process of this CNF filled suspension, degassing took place 

during shear mixing processing at about 50⁰ C, which guaranteed lower suspension 

viscosity and efficient removal of volatiles due to the continuous shearing action.  

6.4.2 Rheology 

Figure 6.15 shows the viscosity dependence on shear rate for the reference epoxy 

(control) and the CNF filled suspension utilised for liquid moulding at the 

corresponding filling temperature. The viscosity behaviour of the CNF filled epoxy is 

similar to the CNT modified systems reported in section 5.2.1. This system is a shear 

rate dependent suspension showing higher viscosity values than the unfilled epoxy resin 

at the temperatures studied. In contrast, the viscosity of the reference epoxy does not 

vary significantly with shear rate. As the shear rate increases the viscosity of the CNF 
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filled epoxy tends to plateau to a level similar to that of the reference epoxy. During 

infusion, due to the dual pore scale nature of the fabric, the resin is expected to be 

subjected to a range of shear rates. 

 

Figure 6.15 Suspension viscosity as a function of shear rate 

6.4.3 Filtration 

Figure 6.16 illustrates the resin flow front position versus the square root of time 

together with a linear fit using 1D Darcy’s solution (Eq.5.1). 

 

Figure 6.16 Resin flow front profiles during RTM injection of carbon fibre 

reinforcements. 
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In contrast to the control system, which follows the linear fit closely, the CNF filled 

epoxy deviates significantly from the linear behaviour predicted by Eq.5.1. This 

deviation from the square root of time linear dependence, also observed in some of the 

CNT modified systems, is attributed both to the non Newtonian behaviour of the 

nanomodified resin and the retention of nanoparticles by the reinforcement. Particle 

filtration leads to variations primarily in viscosity but also in the local permeability of 

the fabric. In addition, longer filling times were typical of the nanomodified systems, 

such as the CNF suspension. Despite the low CNF content in the epoxy resin, 

intrinsically high viscosities and particle filtration led to a very long infusion time of 

about 30 min. 

Filtration was observed macroscopically for this CNF system, as resin was seen running 

clear at the outlet gate. This phenomenon was also investigated microscopically by 

SEM of the fracture surfaces of the CNF multiscale composite at the inlet and outlet 

regions (Figure 6.17). 

 

Figure 6.17 SEM micrographs of fracture surfaces at the inlet (a-c) and outlet (d) regions 

of CNF modified carbon fibre composite. 
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Aggregates of about 10 µm size and individual CNFs were found at the inlet region, as 

shown in Figure 6.17 (a) to (c), while no evidence of these CNF structures were seen at 

the outlet region (Figure 6.17 (d)). The existence of bent (Figure 6.17 (b)) and fractured 

CNFs at the inlet region (Figure 6.17 (c)) indicates CNF damage possibly caused during 

shear mixing processing, as no damaged CNFs were observed in the as-received 

material by SEM. 

 

Figure 6.18 SEM micrographs of the delamination fracture surfaces of CNF/epoxy filled 

carbon composites at increasing distance from the inlet.  
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Despite the absence of CNFs in the outlet gate resin, both individual and aggregated 

CNF structures were observed in the composite delamination fracture surface as far as 

110-120 mm away from the inlet. CNF aggregates were found within the carbon fibre 

bundles at the intra tow level (Figure 6.18 (a)). In addition, CNF aggregates as large as 

15 µm and individual CNFs were also found in resin-rich pockets, as shown in Figure 

6.18 (b) to (d). At distances from the inlet of 190-200 mm, the amount of CNFs per area 

drops considerably. Only very few CNFs, such as the ones shown in Figure 6.18 (e) and 

(f) were found in a resin rich pocket in that region. 

This nanomodified system is characterised by intrinsically long CNFs and the presence 

of a number of very large aggregates, which are more likely to be captured by the 

fibrous reinforcement. In fact, any of the large CNF aggregates present in the injected 

resin, as observed by optical microscopy in Figure 6.14, were found at this location. 

Therefore, size exclusion is considered the governing filtration mechanism for this 

nanomodified resin system. Aggregates dimensionally larger than the pore channels 

would be filtered microscopically by cake filtration, while the absence of smaller 

aggregates and even some individual CNFs in the outlet resin indicates deep filtration 

along the porous bed. 

6.5 Evaluation of composite quality  

Visual inspection and c-scanning were utilised to evaluate the existence of dry spots and 

complete impregnation of the fibrous reinforcement during infusion of the post-cured 

multiscale composite. Figure 6.19 (a) shows the output of a c-scan. Darker areas 

represent the presence of defects, i.e. porosity. The black rectangle corresponds to the 

PTFE film necessary to generate a pre-crack for the composite DCB specimens (section 

4.7). Despite the dark patch at the bottom right corner of the panel, where dry fibres can 

be seen by visual inspection, the remaining dark regions are mainly representative of 

incomplete saturation of the top surface of the composite panel (Figure 6.19 (b)), as 

verified by examination of cross sections across these regions. However, special care 

was taken to avoid testing specimens within these regions. This localised surface 

roughness is associated with insufficient degassing of the CNF filled suspension, 
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possibly after adding in the hardener, and relatively high viscosity of the suspension at 

the infusion temperature to allow efficient extraction of volatiles in the liquid resin. 

 

Figure 6.19 C-scan image of CNF carbon composite (a) and corresponding panel top 

surface showing partial fibre impregnation (b). 

6.6 Electrical properties of the CNF multiscale composites 

The electrical properties of the control and CNF filled carbon fibre composites are 

shown in Figure 6.20. As discussed in section 5.4, these composites exhibit an 

anisotropic electrical conductivity response, which is fibre dominated especially in the 

in plane directions. Therefore, the effect of CNFs in these directions can be considered 

negligible. The major contribution of the presence of nanoparticles, such as CNFs, to 

the composite electrical conductivity is in the through thickness direction. CNFs cause a 

considerable increase of about 84% in the through thickness average electrical 

conductivity of the carbon fibre composite when compared with the control composite. 

Through thickness electrical conductivity results were obtained for specimens cut along 

the panel and are presented in Figure 6.21. However, these results are inconclusive 

concerning to the spatial evaluation of particle filtration, since SEM micrographs shown 

in Figure 6.18 indicate significant particle filtration before a drop in conductivity is 

observed in Figure 6.21. 
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Figure 6.20 Electrical conductivity of the CNF filled carbon fibre composite. 

 

 

Figure 6.21 Evolution of through thickness electrical conductivity of CNF filled carbon 

composites as a function from the distance from the inlet gate. 

 

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

Control CNF

El
ec

tr
ic

al
 C

on
du

ct
iv

ity
 (

S/
m

)

Through thickness direction
Transverse direction
Longitudinal direction

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350

El
ec

tr
ic

al
 C

on
du

ct
iv

ity
 (

S/
m

)

Distance from inlet (mm)

Control

CNF



RTM processing and electrical performance of carbon nanofibre composites 

111 

6.7 Conclusions 

An aerospace grade composite with a 57% fibre volume fraction and enhanced electrical 

properties was successfully manufactured by RTM process, when an appropriate 

process was selected to disperse CNFs in epoxy prior infusion of a uniweave carbon 

preform. CNFs offer a less costly alternative to CNTs, in providing improved electrical 

properties to polymer composites. Processing of CNF multiscale composites requires 

the incorporation of a dispersion step preceding filling, in order to guarantee efficient 

transfer of CNFs properties to the final composite. The level of dispersion was 

evaluated by electrical measurements of the liquid suspensions. High shear mixing, 

though not as effective as ultrasonication in dispersing highly entangled CNF 

aggregates in epoxy, was found to be a better way of achieving a percolated CNF 

network. For RTM purposes, the CNF content was limited to 0.25 wt%, since higher 

CNF loadings, despite providing better electrical properties, led to extremely viscous 

suspensions for infusion. However, even at this lower CNF content, the high viscosity 

of the suspension together with particle filtration resulted in a long infusion. The flow of 

resin can be significantly affected by filtration, due to viscosity and permeability 

dependence on the local CNF concentration and porosity variation with particle build up 

on the fabric channels. Cake filtration and deep bed filtration are considered the main 

filtration mechanisms taking place during infusion of this CNF carbon composite. 

Particle filtration leads to structures with gradient in properties; this phenomenon if 

controlled can provide the possibility of introducing high CNF content into critical areas 

of a component. These multiscale composites have a highly anisotropic electrical 

behaviour, where improvements in the through thickness electrical conductivity of 

~84% were obtained. In contrast, the conductivity in the in-plane directions is mainly 

dominated by the carbon fibres. 
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7 Delamination properties of fibrous composites filled 
with carbon nanoparticles  

This chapter presents the effect of carbon nanoparticles on the delamination properties 

of fibrous composites, under mode I interlaminar fracture. A range of four different 

carbon nanoparticles comprising three types of CNTs and one of CNFs were utilised to 

modify a carbon fibre uniweave fabric composite. The results for initiation and 

propagation toughness under mode I are presented and discussed. The fracture surfaces 

of these specimens were analysed by SEM in order to identify the type of failure 

(cohesive or interfacial) and the presence of toughening mechanisms characteristic of 

toughening by rod-shaped nanoparticles. The potential of carbon nanoparticles in 

toughening this fibrous composite was evaluated by means of an elasto-plastic model. 

This model was utilised to estimate the size of the plastic zone which was compared 

with the thickness of the interlaminar resin-rich layer in these composites to asses the 

potential of toughening of the fibrous material. 

7.1 Effect of carbon nanoparticles on Mode I interlaminar fracture 

toughness of multiscale composites  

DCB test specimens of carbon nanoparticle multiscale composites, reinforced with 

carbon fibres arranged in a uniweave fabric, were manufactured according to the 

specification described in section 4.1.2 and 4.5, and prepared for testing as detailed in 

section 4.7. Two sets of experiments were performed for the measurement of crack 

delamination resistance of DCB specimens. The initiation toughness results presented 

herein consist of results acquired from both experimental sets. Crack propagation results 

are acquired from just one trial set, which involved careful monitoring of the crack re-

initiation and arrest positions during crack propagation. The number of specimens tested 

for the crack initiation and crack propagation analysis is indicated in Table 7.1and Table 

7.2, respectively. 

Figure 7.1 and Table 7.1 report the results for initiation. In general the presence of 

carbon nanoparticles as modifiers does not result in statistically significant modification 

of initiation toughness. However, there is a tendency for a very slight increase in the 
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critical energy. The higher increase in GIC init was observed for the CNF filled panel. 

This could be related with CNFs considerably larger size, when compared to MWCNTs. 

In addition, despite filtration of these particles by the carbon reinforcement during RTM 

infusion, SEM images taken at the onset of the crack delamination region, located at 

~110 mm away from the inlet, revealed extended CNF presence between fibres and in 

the resin-rich areas, as demonstrated in 6.4.3. CNFs presence at this region might have 

played a role in inhibiting the initiation of the crack and contributing therefore to an 

increase in initiation toughness. 

 

Figure 7.1 Crack initiation toughness (5% Max) in Mode I (error bars represent the 

standard deviation value). 

Table 7.1 Increase in crack initiation resistance for carbon nanoparticle filled composite 
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A ‘saw-tooth’ response R-curve was observed for all the specimens tested in the second 

set of experiments. The standard procedure BS ISO 15024:2001, was developed for 

normal unidirectional laminates, which have generally a smooth propagation R-curve. 

This type of curve, presented in Figure 7.2, is characteristic of a ‘stick-slip’ behaviour, 

similar to what was reported and explained by the fibre arrangement of orthogonal 

woven fabrics utilised by Alif et al. [135]. 

 

Figure 7.2 R-curve of a P940 filled specimen representative of stick-slip behaviour and 

correspondence between the specimen stitching lines and the crack re-initiation peaks. 
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The presence of non-structural stitches holding the carbon fabric together in the 

orthogonal direction relative to the crack propagation, located at approximately 3-4 mm 

intervals in the fabric is the cause of the stick-slip nature of crack propagation in these 

samples. The location of these stitching lines corresponds exactly to points of crack re-

initiation in the R-curve, as demonstrated in Figure 7.2. The arrest points represented in 

the R-curve in Figure 7.2 correspond generally to inter-stitch regions. Similar evidence 

was found by Brunner et al. [136] when investigating the delamination fracture of 

0⁰/90⁰ cross-ply laminates and comparing it with unidirectional ones. Steeper R-curves 

observed in cross-ply laminates, reflect the higher delamination resistance of these 

composites when compared to unidirectional lay-ups. 

Figure 7.3 illustrates some characteristic R-curves corresponding to the delamination of 

control and carbon nanoparticle modified composite specimens. The overlapping of 

these curves shows the absence of statistically significant toughening due to the 

presence of nanoparticles. 

 

Figure 7.3 Representative delamination R-curves. 
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curves were compared. This resulted in only one specimen considered for the analysis 

of both CNF and Hyperion CNT filled composites. 

 

Figure 7.4 Crack re-initiation and arrest toughness values during crack propagation in 

carbon multiscale composites (error bars represent the standard deviation value, where 

appropriate). 

Table 7.2 Increase in crack re-initiation and arrest toughness values during crack 
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GIC arrest increase 

[%] 

Control 2 - - 
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Hyperion 1 ~ 18 ~ 18 

Surface modified 2 ~ 21 ~ 21 
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propagation delamination resistance in both crack re-initiation and crack arrest values 

was observed for the surface modified CNTs system (~ 21%). Improved toughness has 

been reported by several authors [36, 116, 119] for composites containing surface 

functionalised carbon nanoparticles, when compared to composites filled with non-

functionalised ones. Functionalisation is thought as fundamental for toughening through 

improved interfacial bonding between particles and matrix. As perceived by the analysis 

of these data sets, carbon nanoparticles do not cause a detrimental effect in the 

composite delamination resistance but are able to cause a slight improvement on this 

property. This modest toughening effect shown by the carbon nanoparticles is counter to 

the considerably high improvements claimed by many other authors [36, 119, 137, 138] 

when utilising carbon nanoparticles randomly dispersed in the resin. 

The filtration of particles observed for the P940 and CNF systems, described in chapter 

5 could also explain the lower crack propagation toughness increase in relation to 

initiation values. For the systems where particle filtration can be considered negligible, 

as for surface modified and Hyperion systems, the increase in propagation toughness is 

considerably higher than the increase for initiation toughness, which suggests some 

form of CNT toughening. 

7.2 Fractography 

The delamination fracture surface of DCB specimens representative of each composite 

panel have been examined by SEM according to the procedure described in section 

4.2.2. Some evidence of poor interfacial bonding between matrix and fibres was 

observed for all the composite specimens. Figure 7.5 to Figure 7.7 depict carbon fibre 

imprints of a fibrous reinforcement detached from the resin matrix, indicative of 

predominant interfacial failure. 
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Figure 7.5 Delamination surface of control specimen showing interfacial debonding both 

on the carbon fibres (a) and stitches (b)  

 

Figure 7.6 Delamination fracture surface of CNF multiscale composite specimen (carbon 

fibre imprint) 

 

 Figure 7.7 0.25 wt% surface modified delamination fracture surface composite: glass 

stitches and carbon imprint (a) carbon fibres and respective imprint (b)  
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Despite the existence of areas of interfacial failure, the P940 and Hyperion systems 

present some regions of better interfacial adhesion between the epoxy matrix and the 

fibres, as shown in Figures 7.8 and 7.9. These areas which are representative of good 

adhesion between the constituents of the composite were not identified in the other 

systems. 

 

Figure 7.8 0.25 wt% P940 delamination fracture surface composite: carbon imprint (a) 

and stitch imprint (b) 

 

Figure 7.9 Delamination fracture surface of P940 (a) and Hyperion (b) modified composite 

specimens showing regions of good interfacial adhesion. 

The participation of P940 CNTs in the failure process was observed, as they are seen on 

the fracture surfaces in Figure 7.10. P940 CNTs are shown in Figure 7.11 bridging 

secondary cracks in resin rich areas. Other regions show holes left by individual CNTs 

which had been pulled-out, as indicated by the white circles in Figure 7.12. These are 

common toughening mechanisms when utilising rod-shaped carbon nanoparticles as 

modifiers. However, the extent at which they occur does not contribute to a significant 

enhancement of the composite interlaminar properties. The increase in propagation 
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Figure 7.12 Delamination fracture surface of P940 multiscale composite specimen, where 

CNT pull-out holes seen in a resin rich area have been highlighted with white circles (a: 

60-65 mm) 

7.3 Evaluation of the effect of carbon nanoparticles on the plastic 

deformation region 

The development of a plastic zone at the crack tip of the interlaminar resin rich layer in 

a fibre reinforced composite, under Mode I crack growth, determines the crack 

resistance of this bond. In addition, an adequate thickness of the bonding zone is 

paramount for attaining the maximum GIC value possible for the system. Kinloch and 

Shaw [139] developed an elastic-plastic model, using bulk adhesive properties, for the 

determination of the deformation zone 2rIy around the crack tip, when using a plane-

stress (Eq. (7.1)) or a plane-strain (Eq. (7.2)) condition, 

 2
1

6
f ICbulk

Iy
yt

E G
r

π σ
=   (7.1) 

 2 2
1 1

6 (1 )
f ICbulk

Iy
yt

E G
r

π σ ν
=

−
  (7.2) 

where rIy is the plastic zone radius, Ef is the flexural modulus of the resin, GICbulk is the 

initiation fracture toughness of the bulk material, ytσ is the uniaxial tensile yield stress 

of the nanocomposite and ν is the Poisson’s ratio. 

500 nm

250 nm
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Figure 7.13 Simple elastic-plastic model for deformation zone at adhesive crack tip [139]. 

 

 

Figure 7.14 Relationship between bond thickness t and plastic zone diameter, and 

consequent degree of constraint affecting GIC joint (adapted from [139]). 

According to Kinloch and Shaw [139], a maximum value of GIC joint is achieved when 

the bond thickness (tm) equals the diameter of the crack tip plastic zone (2rIy). These 

relationships are described in Figure 7.14. 
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The fracture toughness GIC of the surface modified nanocomposite and respective 

reference material were obtained from equation (7.3), considering Ef and KIC values 

reported in [115]. Improvements in fracture toughness of ~174% were obtained for this 

surface modified nanocomposite with respect to the unmodified polymer. The value of 

ytσ  for the surface modified nanocomposite is reported in [115]. The Poisson’s ratio for 

both materials was assumed to be 0.3. 

 
2
IC

f
IC

KE
G

∼  (7.3) 

The yield behaviour of the nanocomposites, corresponding to the multiscale composites 

tested under mode I, was evaluated under uniaxial compression, since epoxy resins tend 

to have a brittle fracture before yielding under uniaxial tension. Therefore, the value of 

ytσ  was obtained from the compression test results [139] according to Eq. (7.4), where 

ycσ is the uniaxial compression yield stress. 

 0.75yt ycσ σ≈ ⋅  (7.4) 

Representative compression curves of each nanocomposite system tested are shown in 

Figure 7.15. The values obtained for the compressive yield stress are listed in Table 7.3. 

The incorporation of CNPs within the epoxy resin did not cause a significant effect on 

the material yielding properties. The compressive yield stress values are very similar to 

these obtained for the control material. The highest increase was obtained for the 

surface modified CNT filled epoxy. Functionalisation promotes the bonding between 

resin molecules and CNTs, which may lead to an increase of the stiffness of the 

nanocomposite system due to a reduction of the mobility of the matrix by interfacial 

interactions. The epoxy filled with 0.5 wt% CNF showed the second highest increase in

ycσ . This increase was considered very modest when compared with the yield stress 

values of the nanocomposites containing half the amount of CNPs. Slightly lower 

values were obtained for the systems containing unfunctionalised MWCNTs. 
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Figure 7.15 Compression curves of representative carbon nanoparticle filled 

nanocomposites. 

 

Table 7.3 Compression yield stress for different nanocomposites  

System 
σyc 

(MPa) 

Control 105 (± 1) 

P940 100 (± 2) 

CNF 107 (± 2) 

Hyperion 103 (± 2) 

Surface Functionalised 108 (± 1) 

 

The size of the plastic zone for plane strain was selected for comparison with the actual 

thickness of the resin-rich mid-layer. The diameter of the plastic zone and the main 

parameters utilised for its calculation are listed in Table 7.4. 
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Table 7.4 Properties of the reference and nanocomposite material described in [115] 

 Control 
0.34 wt% surface modified 

CNTs [115] 

KIC (MPa.m1/2) 0.72 1 1.23 2 

GIC (J/m2) 165 1 917 

Ef (GPa) 3 1.65 2 

σyt (MPa) 78 66 2 

2rIy (µm) ~10 ~41 

1 [140]; 2 [115] 

The thickness of the resin-rich mid-layer was evaluated for only one material since the 

type of fabric, fibre volume fraction and mould thickness were kept the same during the 

manufacture of the different composite panels. It was assumed that viscosity changes 

among different CNP filled systems would not cause significant variation on the range 

of thickness values. 

 

Figure 7.16 SEM micrographs of the longitudinal (a) and transverse (b) cross-sections of a 

carbon fibre composite specimen. 

The resin-rich mid layer dimension varies between about 2 µm to 200 µm, depending 

mainly on the level of nesting between fabric layers. However, the average thickness of 

the interlaminar resin-rich layer is considered to be ~30 µm. Figure 7.16 shows this 

variation in the resin-rich area diameter. Since the resin-rich layer thickness is not 

constant, toughness is expected to vary from region to region. Therefore, the fabric 

architecture and the degree of nesting influence the level of constraint of the plastic 

zone. For the majority of the locations measured, along the longitudinal and transverse 

a b

500 µm
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surfaces, the thickness of the resin at the mid-layer is considerably larger than the 

plastic zone diameter measured for the control resin (~10 µm) This means that the 

interface is considered to be unconstrained for the majority of the cross-sectional area, 

and for that reason the GIC interface is similar to the GIC bulk. In contrast, if a nanomodified 

resin system like the one reported in [115], which provides enhanced toughness at the 

nanocomposite level and generates a larger plastic zone of ~41µm, would be utilised to 

impregnate this fabric, the plastic zone would be higher than the thickness of the resin-

rich layer for the majority of the cross-sectional area. Hence, in this case the plastic 

zone would be over-constrained and the GIC interface would be below the possible 

maximum. Therefore, the toughening effect caused by the presence of carbon 

nanoparticles at the nanocomposite level would become weaker in the fibre composite. 

The existence of similar relationships could have also inhibited potential enhancement 

of these composites toughness. Although the objective of this work was not the 

optimisation of the resin rich layer thickness to match the plastic zone diameter, this 

effect can be relevant when exploiting the potential of CNPs in increasing composites 

toughness. 

7.4 Conclusions 

The presence of different carbon nanoparticles as modifiers of fibre reinforced 

composites at 0.25 wt% loading in the resin did not result in statistically significant 

improvements in toughness. Despite the cases of CNP pull out and bridging observed 

by SEM, filtration, interfacial failure and constraints in the plastic zone are considered 

as the main reasons for this behaviour. 
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8 Modelling flow and filtration in liquid composite 
moulding of nanoparticle loaded thermosets 

This chapter was adapted from a paper submitted to Composites Science and 

Technology. It presents the derivation of an analytical solution for the linear flow of 

carbon nanoparticle filled resins during liquid moulding of composites. In addition a 

finite difference filling simulation methodology accounting for porosity, permeability 

and viscosity variations with time and position is implemented for the non-linear case. 

The two models are compared and the convergence of the numerical model is 

investigated. The limits of validity of the linear approximation associated with the 

analytical solution are explored over a wide range of processing conditions. The process 

design capability of these models is evaluated for two scenaria where either a uniform 

or a localised concentration of carbon nanoparticles in the final composite is required. 

8.1 Model development 

8.1.1 Boundary value problem 

The physics of flow and filtration are represented by conventional Darcy’s law  

(Eq.(8.2)) associated with a continuity condition (Eq. (8.1)) and a particle mass 

conservation (Eq.(8.3)) combined with filtration kinetics (Eq.(8.4))  [76, 77]. The 

suspension Darcy velocity U is driven by the pressure gradient in the cavity, and is 

proportional to the permeability over viscosity ratio K/η. The mass balance represented 

by Eq.(8.3) accounts for the amount of particles entering and exiting the domain, which 

corresponds to the total flux of retained and suspended particles. The concentration time 

derivative of retained tσ ∂∂  and suspended particles tCε ∂∂ , together with the flux of 

suspended particles along the reinforcement length xCU ∂∂  contribute to the total 

balance of particles in the composite at each time step and position. A constitutive law 

(Eq.(8.4)) describes the kinetics of retention and possible re-suspension of particles. The 

first term of Eq.(8.4) corresponds to the retention of particles which is proportional to 

the flux of suspended particles UC. The proportionality constant ko is called the 

filtration constant. The second term in the RHS of Eq.(8.4) represents the rate of particle 

re-suspension. The latter is considered to be proportional to the product of the 
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concentration of retained particles by the flux of suspended particles and kr represents 

the re-suspension constant. 

 0U
x

∂
=

∂
 (8.1) 

 K PU
xη

∂
= −

∂
 (8.2) 

 ( ) 0C CU
t x

σ ε∂ + ∂
+ =

∂ ∂
 (8.3) 

 0 rk UC k UC
t
σ σ∂

= −
∂

 (8.4) 

The resin flow front position (h) is considered equal to zero at the beginning of the 

filling process. Throughout the injection period, the concentration of suspended 

particles at the inlet equals the initial concentration of particles in the resin C0, whilst 

the retention of particles at the resin flow front position is considered to be equal to 

zero. The pressure at the flow front position is equal to the vacuum pressure P∞. 

The boundary condition of the flow problem at the inlet of the flow can be of the first 

type (Dirichlet), the second type (Neumann) or a combination of the two depending on 

the control strategy implemented in production. When considering a pressure controlled 

injection, the pressure at the inlet position corresponds to the injection pressure Po. In 

the case of flow control the resin flow at the inlet Vo is kept constant throughout the 

process. In the case of flow control with a maximum pressure constraint, which is the 

most realistic condition for an industrial setup, the resin flow is constant at Vo up to the 

time to at which the pressure required to sustain the constant flow exceeds a certain 

pressure limit Po. This type of boundary condition is implemented as a complementarity 

problem. Eqs. (8.5) - (8.6c) summarise this set of boundary conditions. 

 ( ) ( ) ( )( ) ( )( )0  0   0,   0,    ,   ,    0,   ,   h C t C h t t P h t t Pσ ∞= = = =  (8.5) 

 ( )0,     oP t P=  (8.6a) 

 ( ) 0,   oU t Vε=  (8.6b) 

 ( )( ) ( ) ( ) ( )0, ( 0, ) 0,  0, 0,  0, 0o o o oP t P U t V P t P U t Vε ε− ⋅ − = − < − <  (8.6c) 
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where Eq.(8.6a) corresponds to a prescribed pressure condition at the inlet, Eq.(8.6b) to 

prescribed flow and Eq.(8.6c) to prescribed flow subject to a pressure constraint. 

8.1.2 Analytical solution of the linear problem  

The solution for the concentration of suspended C and retained particles σ presented in 

Eqs.(8.7) and (8.8)  is independent of the inlet flow boundary condition type (Eq.(8.6)) 

and is determined via combination of Eq.(8.3) and (8.4) and considering the linear 

assumptions of constant permeability, viscosity and porosity; zero re-suspension of 

particles (kr = 0), assuming that the direction and magnitude of the flow are held 

constant during filling; and retention rate proportional to the flux of particles. 

 ( )expo oC C k x= −  (8.7) 

 ( )( , ) exp [ ( ) ]o o ox t k C k x h t xσ ε= − −  (8.8) 

Term h (t) refers to the flow front evolution which depends on the inlet boundary 

condition. Under linearity the concentration of suspended particles is dependent only on 

position as a consequence of the assumptions of zero re-suspension and proportionality 

of retention rate to the flux of particles. In contrast, the concentration of retained 

particles is time dependent due to the cumulative character of filtration. 

The total concentration of nanoparticles T is obtained by combining Eqs.(8.7) - (8.8) 

with the solutions of the linear free boundary 1-D Darcy’s.  The solution for the case of 

prescribed pressure at the inlet (Eq.(8.6a)) is: 

 ( )2( , ) 1ok x
o o o

KT x t C e k P P t xε
εη

−
∞

⎡ ⎤⎛ ⎞
= + − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (8.9) 

In the case of prescribed flow at the inlet (Eq. (8.6b)) the boundary value problem yields 

 ( )( , ) 1ok x
o o oT x t C e k V t xε− ⎡ ⎤= + −⎣ ⎦  (8.10) 

 In the case of the combined boundary condition expressed by Eq. (8.6c) the solution is: 
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 (8.11) 

8.1.3 Non-linear material models 

Filtration of carbon nanoparticles by the reinforcement results in variations in material 

properties. These variations need to be addressed for an accurate prediction of the flow 

solution, when some of the linearity assumptions break down. 

The narrowing of the reinforcement flow channels caused by the accumulation of 

nanoparticles results in a reduction of porosity as the resin flow front progresses. The 

following relation is adopted to account for this effect: 

 ( ),
( , ) o

NP

x t
x t

σ
ε ε

ρ
= −  (8.12) 

where εo denotes initial porosity and ρNP the density of the nanoparticles. The volume of 

entrapped liquid resin between retained CNPs and/or between retained CNPs and the 

fibre reinforcement, which does not participate in the flow, can be neglected for dilute 

suspensions and/or small retention of CNPs.  

The Kozeny-Carman relation can be used to describe the dependence of permeability on 

porosity [141, 142] as follows: 

 
( )

( )( )

3

2

,
( , )

1 ,

x t
K x t A

x t

ε

ε
=

−
 (8.13) 

where A represents a constant. 

Variations in suspended particle concentration lead to variations in viscosity. The model 

presented in [143] was adopted here to represent this effect as follows: 

 
( , )( , ) 1
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o
m NP

C x tx t
η ϕ

η η
ϕ ρ

−
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⎝ ⎠

 (8.14) 
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Here ηo denotes the viscosity of the liquid medium, φm is the packing fraction of the 

filler and ηI  is the intrinsic viscosity of the filler which expresses the sensitivity of the 

suspension viscosity to the filler volume fraction at the limit of negligible filler content. 

The implementation of this macroscopic model where flow is described by Darcy’s law 

requires the assumption of a constant shear rate for the description of the viscosity 

dependence on concentration. Therefore, the shear rate dependence with pore size was 

assumed to be zero. 

8.1.4 Finite difference formulation and implementation 

A 1-D finite difference model accounting for the material nonlinear behaviour was 

developed. The formulation is suitable for the simulation of both 1-D in-plane flow in 

an RTM scenario and through the thickness flow in infusion. It should be noted that the 

implementation also allows for the incorporation of a generic filtration kinetics equation 

instead of Eq.(8.4). However, the type of kinetics presented in Eq. (8.4) is used here, 

whilst all the results presented concern the case of zero re-suspension coefficient. 

The finite difference implementation uses a uniform grid representation of the domain 

of total length L comprising N grid points with coordinates 

 , 0,..., , 1i
Lx i x i N x NΔ Δ= = = −  (8.15) 

The time discretisation is non uniform and allows a convenient treatment of the one 

dimensional free boundary problem by selecting a time step that matches the movement 

of the flow front from its current position to the next grid point as follows: 

 1 1 1
1, ..., , ..., , /o j M j j j j

it t t t t x Uε Δ− − −
−− =  (8.16) 

Here M is the total number of time increments in the solution, which is not known a 

priori and is governed by the length of the modelling domain and the evolution of 

velocity during the solution. The pressure, concentration of suspended, concentration of 

retained and total concentration of particles are denoted at the spatial-temporal nodal 

points (xi ,t j) as j
iP , j

iC , j
iσ , and j

iT  respectively. Due to the 1-D character of the 

problem Darcy velocity does not vary in space but only in time with nodal values jU
 

corresponding to time t j. The flow front position at time tj is denoted as jh . Porosity, 
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permeability and viscosity are also considered as spatial-temporal variables with 

discretised values j
iε , j

iK , and j
iη  respectively. 

The implementation performs the solution of the filtration and flow problems as well as 

property updating as shown in Figure 8.1. 

  

Figure 8.1 Flow chart of the flow and filtration FD model implementation. 

The solution of the filtration problem is performed first at each increment via the 

discretised forms of Eqs. (8.3) and (8.4). Using a forward scheme Eq. (8.4) yields 

 ( ) ( )1 1 1 1 1 1
0 , 0... 1j j j j j j j j

i i i r it t k U C k U i jσ σ σ− − − − − −= + − − = −  (8.17) 

Input

Po P∞  εo   ηo ηI   Vo Co Ko ko kr Δx ρNP φm A

Initial conditions Filtration solution
Eqs. (8.17)-(8.18)

yes

no

End

Output

Start

oo
0 VεU =

o
0
0 CC =

0σ0
0 =

ttt 1jj Δ+= −

Increment time
Eq. (8.16)

j
j0

j
j0 σC ...... ,

Property updating
Eqs. (8.12)-(8.14)

j
j0

j
j0

j
j0 ηεK ......... ,,

Flow solution
Eqs. (8.19)

jj
j0 UP ,...

Flow front updating
xhh 1jj Δ+= −

0σ j
j =

Lh j <

M0M0M0
N0

M0
N0

M0
N0 hUPσC .........

...
...
...

...
... ,,,,

Flow/pressure 
control

Flow solution
Eqs. (8.20)

flow

pressure



Modelling flow and filtration in LCM of nanoparticle loaded thermosets 

135 

which accompanied by the boundary condition at the flow front ( 0j
iσ = ) allows the 

explicit calculation of the retained concentration profile at time t j+1 based on the 

solution for the previous increment. 

 The finite difference form of Eq. (8.3) follows a backward time-forward space scheme 

 
1 1

1
1 1 1 1 , 0... 1

j j j j
j j j i i i i

i i ij j j j j
C CxC C i j

U t t t t
σ σΔ ε

− −
−

+ − − −

⎡ ⎤− −
= + − − = −⎢ ⎥

− −⎣ ⎦
 (8.18) 

which accompanied by the condition of prescribed concentration at the inlet ( 0C j
0 = ) 

allows the explicit calculation of the suspended concentration at nodal points, using the 

suspended concentration solution for the previous increment and the retained 

concentration solution for the current increment. The calculation of the retained and 

suspended concentration allows the updating of material properties via Eqs. (8.12) -

(8.14), which enables the solution of the flow problem to be made taking into account 

the non-linearities due to filtration. The finite difference formulation of the flow 

problem differs depending on the type of boundary condition at the inlet (Eq.(8.6)). In 

the case of flow control (Eq.(8.6b)) the fluid velocity is known a priori and Eq.(8.2) can 

be solved explicitly using a trapezoidal scheme 

 

1
1 0 1

1
, 0... 1

2

j j
j j j ji i

i i i ij j
i i

xP P V i j
K K
η η Δε ε−

− −
−

⎛ ⎞
= + + = −⎜ ⎟

⎝ ⎠
 (8.19) 

subject to the boundary condition of prescribed pressure at the flow front ( j
iP P∞= ). 

In the case of pressure control (Eq.(8.6a)) a centered approximation of Eqs.(8.1) and 

(8.2) yields 

1 1 1 1
1 1

1 1 1 1
2 0, 0... 1i i i i i i i

i i i
i i i i i i i

K K K K K K KP P P i j
η η η η η η η

+ + − −
+ −

+ + − −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − + + + + = = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (8.20) 

which accompanied by the outlet condition  and the inlet pressure boundary condition (

o
j

0 PP = ) form a system of equations that is solved to compute the pressure profile 

approximation. 
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The implementation of the flow solution follows the generic boundary condition 

expressed by Eq.(8.6c). When the code starts flow control is enabled and at the end of 

each increment the pressure at the inlet is compared with the pressure constraint Po. If 

the inlet pressure is greater than Po pressure control is enabled. The monotonous 

increase of pressure at the inlet ensures that once pressure control is enabled the status 

of the type of solution required does not change. 

8.2 Results and discussion 

8.2.1 Convergence and stability of the finite difference model 

Successful simulation of the non linear flow/filtration fields using finite differences is 

conditional on the appropriate numerical behaviour of the scheme proposed. The 

convergence of the scheme is supported by theoretical evidence available for the linear 

version of the problem as well as empirical evidence that concerns the full non-linear 

version of the flow and filtration set of differential equations (Eqs.(8.1)-(8.6) and (8.12)

-(8.14)). 

The linear version of the filtration problem, where properties are constant and re-

suspension is considered negligible (kr=0), can be addressed by applying the Von 

Neumann stability analysis on the combination of Eqs.(8.17)-(8.18). Taking into 

account the relation between time step and velocity (Eq.(8.16)) yields 

 1 1
1

j j j
i i o iC C k xCΔ− −
+ = −  (8.21) 

which corresponds to the following error growth factor 

 ( ) ( )
1

exp
ok xg l

I l x
Δ
Δ

−
=  (8.22) 

with 1I −= . Stability is ensured if ( ) 1lg 2 ≤
 

which holds unconditionally. The 

stability of the retained concentration solution for the linear case follows, as the 

integration implied by Eq.(8.17) converges when the term koUC is bounded and 

continuous. The linear versions of Eqs.(8.19)-(8.20) result in linear systems of equations 

with a bounded inverse matrix and thus are unconditionally stable. 
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The consistency of the finite difference scheme in the linear case is tested via a 

comparison with the analytical solution of the flow/filtration problem (Eqs.(8.7)-(8.11)). 

The input parameters utilised, which correspond to in-plane filling of an epoxy/0.25 

wt.% CNT carbon fibre composite, are listed in Table 8.1 (column Linear case). The 

inlet boundary condition of the flow problem is flow control under a pressure constraint 

(Eq.(8.6c)). Finite difference simulations were carried out using a grid size ranging from 

3.125 mm to 100 mm. A comparison between the finite difference solution and the 

analytical model is illustrated in Figure 8.2. 

Table 8.1. Input parameters used in simulations. Column Linear case corresponds to the 

comparison between linear finite differences and analytical solution in section 8.2.1; 

column Non-linear case 1 corresponds to the stability analysis for the non-linear finite 

differences model in section 8.2.1;column non-linear case 2 corresponds to the study of 

limits of validity of the analytical solution in section 8.2.2. 

Parameters Linear case Non-linear case 1 Non-linear case 2 

K [m2] 1.57 10-11 1.57 10-11 1.57 10-11 
ηo[Pas] - 0.054 0.054 
η[Pas] 0.211 - - 
εo 0.43 0.43 0.43 
Po [Pa] 2.0 105 2 105 2 105 
P∞ [Pa] 2.0 103 2 103 2 103 
Vo[m/s] 7.43 10-3 7.43 10-3 7.43 10-3 
Co [kg/m3] 2.78 5.56 2.78, 6.95 

ρNP [kg/m3] 1660 1660 1660 

Α - 6.4 10-11 6.4 10-11 

φm - 0.55 0.55 
ηI - 812.6 812.6 
ko[1/m] 0.1 0.1 0.01-10 
kr 0 0 0 
L[m] 0.3 0.2 0.001-10 

 

The simulation converges to the analytical solution as the relative error in the 

computation of pressure, flow front position, and retained and suspended concentrations 
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is about 5% for a grid size below 6 mm and 2% for a grid size below 3 mm (Figure 

8.2(a)). The evolution of the flow front position predicted by the finite difference 

solution converges to the analytical solution as the grid is refined (Figure 8.2(b)), with 

the solutions being practically indistinguishable for a mesh size below 10 mm. The 

distributions of field variables (pressure, particle concentration) become virtually 

identical to the analytical solution as the grid is refined; the results in Figure 8.2(c) and 

(d) showing the distribution of pressure and retained particles at a flow front position of 

0.2 m are typical of all filling times. 

 

Figure 8.2 Consistency and convergence of the finite difference solution based on a 

comparison with the analytical solution in the linear case: (a) average relative error 

against the analytical solution; (b) flow front position evolution; (c) pressure distribution 

for flow front at 0.2 m; (d) distribution of retained loading for flow front at 0.2 m. The 

parameters of the model are listed in Table 8.1 (Linear case). 
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Figure 8.3 Stability of the finite difference solution with respect to mesh refinement: (a) 

average relative error against the finest mesh (1.5625 mm); (b) flow front position 

evolution; (c) pressure distribution for flow front at 0.1 m; (d) distribution of retained 

loading for flow front at 0.1 m. The parameters of the model are listed in Table 8.1 (Non-

linear case 1). 

Further evidence of the convergence properties of the finite difference scheme can be 

obtained by a mesh stability analysis for the case of non-linear properties. The model 

inputs for this investigation are listed in Table 8.1 (column Non-linear case 1) and the 

results are illustrated in Figure 8.3. The finite difference solution of a very fine mesh 

(grid size of 0.15625 mm) is used as a reference for the calculation of the error. The 

average relative error is below 5% for grid size below 5 mm and decreases to values 

below 2% at a grid size of about 3 mm. The flow front position converges to the finer 

mesh values for a grid size below 10 mm (Figure 8.3(b)). Equivalent stability is 

observed for the pressure distribution and concentrations; the results for pressure and 
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retained concentration at a flow front position of 10 cm (Figure 8.3(c) and (d)) are 

characteristic of the whole solution. 

The analysis presented here demonstrates the validity of the finite difference model 

solution as the linear case can be shown to be stable and consistent with the analytical 

solution. Furthermore, the non-linear version of the finite difference model is stable 

with mesh refinement. Thus, the numerical implementation can be considered 

appropriate. Future experimental validation will allow testing of the validity of the 

material laws used. 

8.2.2 Range of applicability of the analytical model 

The analytical model is preferable in the context of process design mainly due to the 

computational efficiency, when iterative use is necessary, as well as the relative 

simplicity of its input. An evaluation of the range and extent of its validity in 

approximating a non-linear situation is valuable in deciding whether its usage is 

adequate in a certain design situation. Two process parameters were identified as the 

most appropriate set for evaluating the effect of non-linearity; namely the filtration 

constant (ko), which was varied between 0.01 and 10 1/m, and the length of the filling 

domain (L), which was varied between 1 mm and 10 m. The study was carried for two 

different nanoparticle loadings (0.25 and 0.625 wt%).  Other factors influencing non-

linearity such as intrinsic viscosity as well as porosity and permeability variations could 

be included in such a study. However, these are limited in a relatively narrow range for 

realistic systems and their variations can be considered of secondary importance. 

Simulations were carried out using the inputs listed in Table 8.1 (column Non-linear 

case 2) and the average relative difference between the results of the analytical 

simulation and the non-linear finite difference solution was calculated. Figure 8.4 

summarises the error distributions over the filtration constant-length space for the two 

loading levels investigated. The error of the analytical solution increases as both the 

filtration constant and length increase, showing a stronger effect of non-linearity for 

higher values of these parameters as expected. 



Modelling flow and filtration in LCM of nanoparticle loaded thermosets 

141 

 

Figure 8.4 Limits of applicability of the linear analytical solution using the non linear 

finite difference solution as a benchmark: (a)-(c) average relative error in flow front 

position, pressure and total concentration for low nanoparticle content (0.25 wt%); (d)-(f) 

average relative error in flow front position, pressure and total concentration for high 

nanoparticle content (0.625 wt%); The parameters of the model are listed in Table 8.1 

(Non-linear case 2). 

Filtration (1/m)

Le
ng

th
 (m

)

Concentration

0.40.25
0.15

0.10.05

0.03
0.01 0.005

10
‐2

10
‐1

10
0

10
1

10
‐3

10
‐2

10
‐1

10
0

10
1

Filtration (1/m)

Le
ng

th
 (m

)

Pressure

0.0050.01
0.03

0.05

0.40.25
0.150.1

10
‐2

10
‐1

10
0

10
1

10
‐3

10
‐2

10
‐1

10
0

10
1

Filtration (1/m)

Le
ng

th
 (m

)

Concentration

0.40.25
0.15

0.10.05

0.035

10
‐2

10
‐1

10
0

10
1

10
‐3

10
‐2

10
‐1

10
0

10
1

Filtration (1/m)

Le
ng

th
 (m

)
Pressure

0.1 0.15 0.25 0.4

0.05

0.03

10
‐2

10
‐1

10
0

10
1

10
‐3

10
‐2

10
‐1

10
0

10
1

Filtration (1/m)

Le
ng

th
 (m

)

Flow front

0.4
0.250.150.1

0.05

0.03

0.01

10
‐2

10
‐1

10
0

10
110

‐3

10
‐2

10
‐1

10
0

10
1

Filtration (1/m)

Le
ng

th
 (m

)
Flow front

0.40.250.150.1

0.05

0.03

0.01
0.005

10
‐2

10
‐1

10
0

10
110

‐3

10
‐2

10
‐1

10
0

10
1

(b) (e)

(c) (f)

(a) (d)

0.25 wt% CNP 0.625 wt% CNP
Average relative error



Modelling flow and filtration in LCM of nanoparticle loaded thermosets 
 

142 

The effect of loading is also positive on the error as it can be seen by comparing Figure 

8.4 (a)-(c) with Figure 8.4 (d)-(f). For the low loading (Figs.(a)-(c)) the error of the 

analytical solution is limited below approximately 3 % for lengths up to 1 cm. This 

result is relevant for through thickness infusion and shows that the analytical 

approximation can be used in this scenario. The sensitivity to the filtration constant is 

also limited in this range of lengths with the error remaining practically constant up to 

filtration constant levels over 100 %/m. As the length increases the sensitivity to the 

filtration constant increases, with error approaching 10% in the 10-50 %/m filtration 

constant range (Figure 8.4 (a)-(c)) for lengths corresponding to in-plane filling (~1 m). 

Thus, the applicability of the analytical solution in in-plane processes is limited to the 

cases of low filtration constants. The errors in total concentration (Figure 8.4 (c)) tend 

to be lower than for pressure and flow front position as a result of the significant steady 

state component in the solution for suspended concentration. The results for high 

loading (0.625 wt.%) follow the same trends with an overall stronger effect of non-

linearity. Thus, the low error area is limited to lengths below a few millimetres – a value 

which is still relevant to through thickness infusion. Similarly, the transition to levels of 

error over 10 % for lengths relevant to in-plane processes (~1 m) occurs in the 1-10 

%/m filtration constant range. Overall, these results indicate that the analytical solution 

is useful in through thickness infusion and limited to only very low filtration constants 

in in-plane infiltration of hybrid composites. Use of the finite difference model is 

appropriate in conditions outside this envelope. 

8.2.3 Demonstration of process design capabilities 

The application of the numerical model proposed is mainly on process design. Two 

realistic situations are presented here for the production of carbon nanoparticle 

multiscale composites in a RTM scenario with controlled concentration profiles, where 

either a uniform or a localised carbon nanoparticle profile are required. The parameters 

utilised for the process design simulations are listed in Table 8.2. 

The first case presented aims at manufacturing of a multiscale composite with a uniform 

nanofiller distribution throughout the whole structure. For that purpose the boundary 
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condition describing the concentration of incoming resin at the inlet gate (Eq.(8.5)) was 

replaced by Eq.(8.23). 

Table 8.2 Parameters utilised for the two process design simulation cases 

Parameters 
Uniform concentration 

profile 
Localised concentration 

profile 

K [m2] 1.57 10-11 1.57 10-11 
ηo[Pas] 0.054 0.054

εo 0.43 0.43

Po [Pa] 2.0 105 2 105

P∞ [Pa] 2.0 103 2 103

Vo[m/s] 7.43 10-3 7.43 10-3 
Co [kg/m3] 5.56 5.56

ρNP [kg/m3] 1660 1660 

Α 6.4 10-11 6.4 10-11 

φm 0.55 0.55 

ηI 812.6 812.6 
ko[1/m] 3 3 and 5 
kr 0 0

a, b, c - 2, 0.1, 0.05 
L[m] 0.3 0.3

This linear equation controls the adjustment of the nano filled suspension concentration 

at the inlet gate, by decreasing its value to compensate for the continuous capture of 

particles during impregnation. Coefficient w controls the adjustment of the initial 

concentration during filling in order to achieve an uniform particle distribution in the 

final composite. 

 ( ) ( )(0, ) 1o o
L hC t w C w C

L
−

= ⋅ + − ⋅  (8.23) 

The RTM filling of a 0.3 m long carbon nanoparticle multiscale composite, where a 

uniform particle concentration is required, was simulated using the non-linear model 

described in Figure 8.1 with the input parameters detailed in Table 8.2, alongside with 

Eq. (8.23) as a boundary condition for the inlet. The results for this simulation are 
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presented in Figure 8.5, for a range of w values. When w is equal to 1 the boundary 

condition at the inlet is equivalent to Eq.(8.5). A coefficient equal to 0.2 results in an 

approximately uniform distribution of nanoparticles in the final composite. 

 

Figure 8.5 Carbon nanoparticle concentration profile design of a composite which 

requires an uniform particle distribution. 

When localised carbon nanoparticle reinforcement is required, e.g. in the case of a 

location that is expected to carry a high current density during lightning strike, the 

boundary condition for the inlet concentration as a function of time needs to be 

modified in order to describe the target shape of the concentration profile. The boundary 

condition can be described by the following equation 

 2
( )(0, ) exp

2o
h bC t a C

c
−⎛ ⎞= ⋅ −⎜ ⎟

⎝ ⎠
 (8.24) 

where a, b and c correspond to the coefficients governing the peak height, its position 

and its breadth respectively. 

This situation was simulated for an RTM filling scenario, utilising the non-linear model 

described in Figure 8.1 with the input parameters detailed in Table 8.2 for the localised 

concentration profile, and Eq.(8.24) as boundary condition. The results for the final 

concentration profile of suspended and retained particles are presented in Figure 8.6, 
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when considering two different filtration coefficients. A better control of the process 

can be achieved when lower filtration coefficients are present. 

 

Figure 8.6 Carbon nanoparticle concentration profile design for a composite which 

requires localised reinforcement.  

8.3 Conclusions 

The analytical approximation and the non-linear finite difference model developed here 

offer a complementary range of solutions for the simulation of flow and filtration in 

liquid moulding of nanoparticle loaded resins. The analytical approximation can be 

applied to processes involving short filling lengths, i.e. through thickness infusion. The 

non-linear numerical approximation is appropriate for processes involving infiltration 

lengths in the meter range, e.g. resin transfer moulding. 

The models have been verified in terms of consistency and, for the numerical case, 

convergence. Future experimental validation will allow evaluation of the material 

models selected here as well as of the basic physical laws used for the representation of 

the flow and filtration phenomena. Extensions to different material models, which can 

incorporate different retention or suspension kinetics, different viscosity and 

permeability dependence on loading as well shear rate dependent rheological behaviour 

of the suspensions, can be implemented as part of the current numerical formulation. 
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The models can find direct application to the expanding field of processing of hybrid 

composites. Process feasibility investigations are possible using both the analytical and 

the numerical solutions. The analytical model lends itself to process design due to its 

computational efficiency and simplicity in input parameters. Furthermore, these models 

enable process design of graded nanocomposites to be made. The capability to predict 

the distribution of concentration of nanoparticles will lead to the development of 

processes producing hybrid composites with strategically selected nanoparticles 

distribution, maximising both performance and efficiency of the reinforcement. 

Examples of two design process scenaria presented here are proof of that, and confirm 

the relevance of such models in an industrial scale. 
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9 Overall discussion and suggestions for further 
research 

9.1 Overall discussion 

This study focused on the incorporation of carbon nanoparticles, in particular CNTs and 

CNFs, within continuous fibre reinforcements for the manufacture of multifunctional 

composite materials. The enhancement in electrical conductivity and the potential for 

improved delamination properties makes this class of materials highly attractive for 

aerospace applications, in particular for lightning strike protective structures. In this 

study, different carbon nanoparticles at 0.25 wt% content were utilised to modify 

aerospace grade composites, comprising carbon fibre reinforcement at high volume 

fraction impregnated with a thermosetting epoxy resin suitable for RTM applications. 

In the last decade, the transfer of the exceptional properties of these nanofillers to 

polymer nanocomposites and ultimately to fibre reinforced composites has been 

attracting an intense interest. Achieving a homogeneous and stable dispersion of these 

nanoparticles in the polymer is still seen as a challenging task, especially when utilising 

unmodified and highly entangled carbon nanoparticles as modifiers. The state of 

dispersion can be qualitatively and easily accessed by optical transmission microscopy 

of the suspensions produced. In this study the state of dispersion was accessed 

successfully with microscopy techniques and complemented with measurements of 

CNT and CNF filled epoxy electrical conductivity at different stages of dispersion 

processing. A strong correlation between the suspension electrical conductivity, the 

state of dispersion and the type and concentration of carbon nanoparticle in suspension 

was found for the systems studied. It should be noted that the existence of this 

correlation hinges on the presence of primary aggregates in the unprocessed system, 

with released nanoparticles forming a percolated network upon dispersion. The 

electrical conductivity of a suspension can be improved when utilising higher contents 

of nanofiller, as long as an appropriate dispersion technique is selected for that 

particular nanofiller. For instance, ultrasonication was found to be a better way of 

dispersing unmodified CNTs in the epoxy of this study, whilst high shear mixing is a 

more effective method of dispersing CNFs in the same material. Despite the better 
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dispersion state achieved by ultrasonicated CNF suspensions, when compared to high 

shear mixed ones, which present a large number and size of primary aggregates, 

ultrasonication was detrimental in achieving enhancement of electrical properties using 

these fillers. This behaviour proves that not always the best dispersion leads to 

enhanced target properties, as generally assumed in many research studies. In addition, 

the effect of temperature activated reaggregation in the electrical conductivity of the 

material should be studied, as excessive reaggregation might disrupt the conductive 

network. Unmodified CNTs can provide enhanced electrical conductivity at lower 

loadings than CNFs and the surface modified CNTs of this study. The type of CNP and 

its aspect ratio, the level and type of dispersion processing as well as the suspension 

stability under high temperature, are closely interconnected and govern the properties of 

the final composite material. These relationships should be taken into account when 

designing composites for a specific application. 

The viscosity of carbon nanoparticle suspensions increases significantly with filler 

content and improved dispersion state. In addition, generally higher nanofiller contents 

lead to enhanced electrical properties. However when this increase is not significant 

enough to compensate for the rise in viscosity associated with higher filler content, as 

seen for the case of 0.5 wt% and 0.25 wt% unmodified CNT suspensions dispersed by 

ultrasonication, the lower loading should be selected. The significant increase in 

viscosity makes highly loaded suspensions unsuitable for the production of multiscale 

composites by liquid moulding routes, as it leads to extremely slow progression of the 

resin flow front and could ultimately result in incomplete filling of the fibrous preform. 

Prepregs and hand-layup processes offer alternative solutions in this situation. 

The studies of dispersion allowed the selection of the appropriate suspensions for 

infusion by RTM, where the nanofiller loading was kept at 0.25 wt% in order to avoid 

high viscosity during infusion. Modifications to the liquid moulding process need to be 

made in order to guarantee successful infusions of carbon nanoparticle modified 

suspensions. These include the incorporation of a dispersion step of the carbon 

nanofilled suspension prior to infusion and optimised degassing strategies. The 

dispersion process is tailored to maximise the eventual performance of the final 

composite structure. Control over the aggregate size governs the type of filtration 
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occurring during filling, i.e. cake filtration or deep bed filtration. Optimisation of 

degassing guarantees the efficient removal of volatiles without compromising the level 

of dispersion of the suspension. Moreover, a good control of the rheological behaviour 

of the suspension can offer the possibility of adjusting process variables such as mould 

temperature and pressure in order to avoid deceleration of filling and premature cure.  

Very small amounts of unmodified carbon nanoparticles in the epoxy resin, i.e. 0.25 

wt%, lead to enhanced performance, especially in what concerns the electrical 

behaviour of these multiscale composites. The electrical conductivity almost doubles for 

unmodified CNP carbon composite systems. Despite the minimal dispersion processing 

required when utilising surface modified CNTs, the capability of providing significant 

enhancement of electrical properties to composites is hindered by the functionalisation 

process which inhibits reaggregation phenomena. However, virtually uniform 

concentration distribution can be achieved with these functionalised particles. Electrical 

conductivity measurements of specimens along the composite length offer a simple 

method to access particle filtration.  

Despite the better capability of unmodified CNPs to provide enhanced electrical 

properties, when compared with surface functionalised systems, their incorporation in 

the production of large composite structures using in-plane flow routes at an industrial 

scale is not viable at this concentration. High suspension viscosity associated with 

extensive particle filtration would result in difficulties in achieving complete filling of 

the preform. In this case, surface modified CNP should be considered as an alternative, 

despite their higher cost and reduced capacity in providing enhanced electrical 

properties. 

Ideally a multifunctional composite would combine electrical performance with 

improved resistance to delamination. However, the limited presence of toughening 

mechanisms, like CNP pull-out and bridging, alongside potential localised inelastic 

deformation, prevents significant improvements in the delamination properties of the 

composites in this study. Despite the general belief by significant part of the community 

on the extreme toughenability provided by CNP to fibrous composites, the results 

presented here show that this is not possible in composites based on neat epoxies. The 

fillers used in this study represent a large part of the range of carbon nanoparticles, 
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whist their processing has been optimised to address incorporation via liquid moulding. 

Improvements in the delamination behaviour are expected to occur with CNTs and 

CNFs as long as manufacturing routes such as grafting of aligned carbon particles, due 

to their capability of incorporating high fractions of nanoparticles at critical locations. 

The resin flow front progression for all the systems was monitored during the infusion. 

The flow through a porous medium can be described by Darcy’s law. However, the 

viscosity dependence on particle concentration for unmodified carbon nanoparticle 

systems, alongside the filtration of particles by the reinforcement occurring during 

infusion, lead to deviations from the square root dependence on time described by the 1-

D Darcy’s law result. For these situations a non-linear solution for the flow and 

filtration problem is required, in order to account for changes in suspension viscosity 

due to reduction of suspended particles in the moving resin to the porous media and 

local variations in the fibrous reinforcement porosity and permeability. An analytical 

solution for the 1-D linear flow and filtration was derived for liquid composite 

moulding of carbon nanoparticle filled thermosets. This solution is based on 1-D 

Darcy’s law, associated with a continuity condition and a conservation of mass for the 

particles combined with a filtration kinetics equation. Based on the latter a finite 

difference scheme, accounting for permeability, porosity and viscosity variations with 

time and position, which allows for the solution of the non-linear problem was 

developed. The finite difference solution for the pressure, flow front position and 

concentration of suspended and retained particles is consistent and converges to the 

analytical solution. The analytical model is suitable for the flow and filtration problem 

when lower filtration coefficients and shorter filling lengths are simulated, i.e. in a 

through thickness infusion by VARTM, whilst the non-linear approach offers a solution 

outside this range, i.e. for processes involving infusion of longer components like RTM, 

where higher particle filtration is expected. The models proposed in this study require 

validation of the property sub-models and the kinetics of filtration, in order to allow for 

its incorporation in process design of composite components produced by liquid 

moulding at an industrial scale.  

The incorporation of the viscosity dependence on particle concentration along with 

shear rate effects is important to access since the dual scale pore nature of conventional 
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fibre reinforcements, results in two distinct flow profiles, i.e. a faster velocity in inter-

fibre pores, followed by a slower movement of the suspension at the intra-tow level. 

Addressing this aspect within the model developed in this study, where a continuum 

medium is assumed, could require the incorporation of a second flow model descriptive 

of the microscopic flow.  

A measurement method for the determination of the concentration of suspended and 

retained carbon nanoparticles at different locations of the composite needs to be 

established in order to allow model validation. Thermogravimetric analysis (TGA) can 

be utilised to access particle concentration in the resin. This method can be utilised as 

long as the relative content of filler in the specimen tested is higher than the residual 

weight of the pan and resin. CNP contents lower than 0.3 wt.% are extremely difficult 

to access, without the use of preliminary processes where controlled degradation of the 

resin at temperatures below the carbon degradation, would allow to concentrate a 

specific amount of material. These measurements would allow a better description of 

the kinetics of filtration, by incorporation of a coefficient of filtration which is a 

function of retained particles and changes as filling progresses.  

 

The phenomenon of filtration plays an important role in the morphology of the final 

multiscale composite, with high filtration effects observed in injection of material with 

unmodified nanotubes, leading to significant gradients in nanofiller concentration. This 

naturally leads to gradients of properties, especially electrical conductivity, in the cured 

component. Although this can be considered a problem, it could also be seen as an 

opportunity offered by the possibility of introducing high carbon nanoparticle loading 

into critical areas of the component where high electrical conductivity is required. The 

models developed in this study allow process design of these multiscale composites 

around this concept. Modification of boundary conditions is an example of this, 

allowing control over the distribution of carbon nanoparticle concentration in the 

composite structures produced, for the cases where localised or uniform properties are 

required.  
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9.2 Suggestions for further research 

Validation of the 1-D flow and filtration model 

The flow and filtration non-linear model proposed in this study requires validation, 

especially of the viscosity dependence on suspended concentration and the filtration 

kinetics equation. The viscosity dependence on concentration of suspended particles can 

be checked by evaluating the viscosity response of different filler contents dispersed 

similarly in epoxy for a selected CNT/resin system. The development of methodologies 

which allow accurate evaluation of the concentration of particles at different locations 

and/or at specified times can be useful in describing the kinetics of filtration for a 

particular system.  

Development of new modelling approaches for LCM of CNP loaded thermosets 

Improvements to the 1-D flow and filtration macroscopic model developed in this study 

could be implemented in future research, by the incorporation of microscopic models 

which account for pore and aggregate size distributions, as well as interactions between 

particles, suspended fluid and fibre walls, as well as viscosity dependence on shear rate 

at the intra-tow pores. In addition, the development of a 2-D model, can offer 

advantages in predicting flow and filler concentration gradients for peripheral or central 

infusion scenaria, for filling of complex shaped components and through thickness 

infusions with a significant planar flow component.  

Fabrication of electrically optimised CNP hybrid composites for lightning strike 

protection applications 

Electrically conductive CNP filled composites have been obtained for carbon 

composites, as shown in Figure 5.25. The capability of optimising liquid moulding 

processes of CNT modified thermosets is extremely important in order to achieve 

adequate concentration distribution, hence properties profile capable of providing 

dissipation of high currents carried by lightning strikes, without compromising the 

integrity of the composite structure. The relationship between particle distribution 

profiles, particle concentration and the corresponding electrical properties needs to be 
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known in order to meet the electrical behaviour requirements required for lightning 

strike protection. 

Investigation of the potential of CNP/epoxy films of varied thickness for providing 

maximal toughness to multiscale composite 

Delamination properties might have been hindered by the level of constraining caused 

by the fibre reinforcement to the plastic zone. The ability to maximise fibre composites 

toughness when utilising suspensions of randomly dispersed CNP to impregnate the 

preform, could rely on the capability of controlling the thickness of the interlaminar 

resin-rich layer to values identical to the dimension of the plastic zone of the 

corresponding nanocomposite system. The incorporation of nanomodified epoxy films 

with controlled thicknesses at the interlaminar region can be investigated for a range of 

different carbon nanoparticles and loadings.   
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10 Conclusions 

The main conclusions of this study are: 

• Electrical conductivity can be utilised to assess the state of dispersion of CNPs 

in epoxy resins. 

• CNTs can provide enhanced electrical conductivity at lower loadings than 

CNFs and surface modified CNTs. 

• For the purpose of enhancing nanocomposites electrical conductivity: high 

shear mixing is a better way of dispersing CNFs in the epoxy of this study, 

while ultrasonication is a better technique of dispersing unmodified CNTs.  

• Manufacturing of CNP multiscale composites requires adaptation of 

conventional composites processing by incorporation of a dispersion step and 

the modification of the degassing stage.  

• Unmodified CNPs are more prone to filtering by the fibrous reinforcement than 

surface modified CNTs. 

• Unmodified carbon nanoparticle filled suspensions do not follow a linear Darcy 

flow behaviour.   

• Electrical conductivity almost doubles for 0.25 wt% unmodified CNP carbon 

fibre composites, whilst a modest increase of one order of magnitude occurs in 

fibrous glass composites. 

• Electrical conductivity measurements can be utilised to assess particle filtration 

by the fibrous reinforcement. 

• 0.25 wt% and 0.5 wt% CNP loadings led to a modest increase of the 

nanocomposites uniaxial compressive yield stress.  

• CNPs at 0.25 wt% did not provide statistically significant improvements of 

carbon composites toughness. 

• CNFs provide the highest increase in initiation toughness. 

• Toughening mechanisms for rod-shaped particles, like CNT bridging and pull-

out as well as potential localised inelastic deformation are present, however the 

extent at which they occur is not sufficient to cause significant improvement on 

composites toughness. 
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• An analytical solution of the 1-D linear flow and filtration problem is possible. 

• The non-linear finite difference scheme developed is stable and consistent.  

• The range of applicability of the analytical model is limited to lower filtration 

coefficients and shorter filling lengths, while the numerical model offers a 

solution outside this range. 

• The models developed here can be used for designing a process resulting in 

prescribed nanoparticle concentration distributions 
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Appendix A - 1D flow and filtration model code 

Option Base 1 

Option Explicit 

Sub run() 

Dim i As Integer, j As Integer, M As Integer, n As Integer, Coeffs_Size As Integer, 

Mesh_Size As Integer, dt As Double 

Dim P() As Double, C() As Double, S() As Double, V() As Double, X() As Double 

Dim eta() As Double, K() As Double, phi() As Double, Coeffs() As Double, Inf_time() 

As Double, position As Double, step As Double 

'read inputs 

Coeffs_Size = Application.Count(Worksheets("inputs").Range("B:B")) 

ReDim Coeffs(Coeffs_Size) As Double 

For i = 1 To Coeffs_Size 

    Coeffs(i) = Cells(i, 2) 

Next i 

'coeffs(1) Po 

'coeffs(2) ko 

'coeffs(3) kr 

'coeffs(4) Poo 

'coeffs(5) Ko 

'coeffs(6) Phi 

'coeffs(7) eta 

'coeffs(8) Vo 

'coeffs(9) Co 
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'coeffs(10) Convergence_Limit 

'coeffs(11)CNT density 

'coeffs(12) Kozeny-Carman constant 

'coeffs (13) viscosity of control resin 

'coeffs (14) maximum packing fraction (viscosity function) 

'coeffs (15) intrinsic viscosity (viscosity function) 

 

'Read mesh 

 

Mesh_Size = Application.Count(Worksheets("inputs").Range("C:C")) 

ReDim P(Mesh_Size, Mesh_Size) As Double, C(Mesh_Size, Mesh_Size) As Double, 

S(Mesh_Size, Mesh_Size) As Double 'pos 1st index, time: 2nd index 

ReDim V(Mesh_Size) As Double, X(Mesh_Size) As Double, Inf_time(Mesh_Size) As 

Double 

ReDim eta(Mesh_Size, Mesh_Size) As Double, K(Mesh_Size, Mesh_Size) As Double, 

phi(Mesh_Size, Mesh_Size) As Double 

For i = 1 To Mesh_Size 

    X(i) = Cells(i + 1, 3) 

Next i 

Initial conditions 

For i = 1 To Mesh_Size 

    C(i, 1) = Coeffs(9) 

    P(i, 1) = Coeffs(4) 

    S(i, 1) = 0 

    phi(i, 1) = porosity(S(i, 1), Coeffs) 
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    K(i, 1) = Permeability(C(i, 1), S(i, 1), phi(i, 1), Coeffs) 

    eta(i, 1) = Viscosity(C(i, 1), Coeffs) 

Next i 

V(1) = Coeffs(8) 

C(1, 1) = Coeffs(9) 

Inf_time(1) = 0 

'Incremental solution 

For j = 2 To Mesh_Size 

    Call Load_Previous_to_Current(j, K) 

    Call Load_Previous_to_Current(j, phi) 

    Call Load_Previous_to_Current(j, eta) 

    Call Load_Previous_to_Current(j, P) 

    Call Load_Previous_to_Current(j, C) 

    Call Load_Previous_to_Current(j, S) 

    Call Solve_Flow_Filtration(j, X, K, phi, eta, P, C, S, V, j, Coeffs, dt) 

    Inf_time(j) = Inf_time(j - 1) + dt 

Next j 

---------------------------------------------------------------------------------------------------------- 

'output 

    Sheet2.Cells(1, 1) = "t/P" 

    Sheet3.Cells(1, 1) = "t/S" 
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    Sheet4.Cells(1, 1) = "t/C" 

    Sheet5.Cells(1, 1) = "t" 

    Sheet5.Cells(1, 2) = "F_F" 

    Sheet6.Cells(1, 1) = "t" 

    Sheet6.Cells(1, 2) = "V" 

    Sheet10.Cells(1, 1) = "phi" 

    Sheet12.Cells(1, 1) = "K" 

   

For i = 1 To Mesh_Size 

    Sheet2.Cells(1, i + 1) = X(i) 

    Sheet4.Cells(1, i + 1) = X(i) 

    Sheet3.Cells(1, i + 1) = X(i) 

    Sheet10.Cells(1, i + 1) = X(i) 

    Sheet11.Cells(1, i + 1) = X(i) 

    Sheet12.Cells(1, i + 1) = X(i) 

     

Next i 

For j = 1 To Mesh_Size 

    Sheet2.Cells(j + 1, 1) = Inf_time(j) 

    Sheet3.Cells(j + 1, 1) = Inf_time(j) 

    Sheet4.Cells(j + 1, 1) = Inf_time(j) 
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    Sheet5.Cells(j + 1, 1) = Inf_time(j) 

    Sheet5.Cells(j + 1, 2) = X(j) 

    Sheet6.Cells(j + 1, 1) = Inf_time(j) 

    Sheet6.Cells(j + 1, 2) = V(j) 

    

        For i = 1 To Mesh_Size 

        Sheet2.Cells(j + 1, i + 1) = P(i, j) 

        Sheet4.Cells(j + 1, i + 1) = C(i, j) 

        Sheet3.Cells(j + 1, i + 1) = S(i, j) 

        Sheet10.Cells(j + 1, i + 1) = phi(i, j) 

        Sheet11.Cells(j + 1, i + 1) = eta(i, j) 

        Sheet12.Cells(j + 1, i + 1) = K(i, j) 

    Next i 

Next j 

End Sub 

---------------------------------------------------------------------------------------------------------- 

Sub Load_Previous_to_Current(step As Integer, Arr() As Double) 

Dim i As Integer 

For i = 1 To UBound(Arr, 1) 

    Arr(i, step) = Arr(i, step - 1) 

Next i 
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End Sub 

---------------------------------------------------------------------------------------------------------- 

Sub Solve_Flow_Filtration(step As Integer, X() As Double, K() As Double, phi() As 

Double, eta() As Double, P() As Double, C() As Double, S() As Double, V() As 

Double, Front_Position As Integer, Coeffs() As Double, dt As Double) 

 

dt = (X(Front_Position) - X(Front_Position - 1)) * phi(Front_Position - 1, step - 1) / 

V(step - 1) 

 

Call Solve_Filtration(step, X, phi, eta, V, C, S, Front_Position, dt, Coeffs()) 

Call Update_Properties(step, K, phi, eta, C, S, Coeffs(), Front_Position) 

Call Solve_Flow(step, X, K, phi, eta, P, V, Front_Position, Coeffs()) 

End Sub 

---------------------------------------------------------------------------------------------------------- 

Sub Solve_Filtration(step As Integer, X() As Double, phi() As Double, eta() As Double, 

V() As Double, C() As Double, S() As Double, Front_Position As Integer, dt As 

Double, Coeffs() As Double) 

Dim i As Integer, dx As Double 

 

' x=0 C=Co 

C(1, step) = Coeffs(9) 

'x=flow_front S=0 

S(Front_Position, step) = 0 

'Filtration kinetics 
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For i = 1 To Front_Position - 1 

    S(i, step) = S(i, step - 1) + dt * C(i, step - 1) * Filtr(C(i, step - 1), S(i, step - 1), 

Coeffs) * V(step - 1) + dt * S(i, step - 1) * Resusp(C(i, step - 1), S(i, step - 1), Coeffs) 

Next i 

'Mass conservation 

For i = 2 To Front_Position 

    dx = X(i) - X(i - 1) 

 C(i, step) = C(i - 1, step) + dx / V(step - 1) * (-phi(Front_Position - 1, step - 1) *  

*(C(i- 1, step) - C(i - 1, step - 1)) / dt - (S(i - 1, step) - S(i - 1, step - 1)) / dt) 

Next i 

End Sub 

---------------------------------------------------------------------------------------------------------- 

‘Properties Update 

Sub Update_Properties(step As Integer, K() As Double, phi() As Double, eta() As 

Double, C() As Double, S() As Double, Coeffs() As Double, Front_Position As Integer) 

Dim i As Integer 

For i = 1 To Front_Position 

     phi(i, step) = porosity(S(i, step), Coeffs) 

    eta(i, step) = Viscosity(C(i, step), Coeffs) 

    K(i, step) = Permeability(C(i, step), S(i, step), phi(i, step), Coeffs) 

Next i 

End Sub 

---------------------------------------------------------------------------------------------------------- 
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‘Material sub-models: 

‘Permeability 

Function Permeability(C As Double, S As Double, phi As Double, Coeffs() As Double) 

Permeability = Coeffs(12) * phi ^ 3 / ((1 - phi) ^ 2) 

'Permeability = Coeffs(5) 'linear 

End Function 

---------------------------------------------------------------------------------------------------------- 

‘Porosity 

Function porosity(S As Double, Coeffs() As Double) 

porosity = Coeffs(6) - (S / Coeffs(11)) 

'porosity = Coeffs(6) 'linear 

End Function 

---------------------------------------------------------------------------------------------------------- 

‘Viscosity 

Function Viscosity(C As Double, Coeffs() As Double) 

Viscosity = Coeffs(13) * (1 - (C / (Coeffs(11) * Coeffs(14)))) ^ (Coeffs(14) * 

Coeffs(15)) 

'Viscosity = Coeffs(7) 'linear 

End Function 

---------------------------------------------------------------------------------------------------------- 

Sub Solve_Flow(step As Integer, X() As Double, K() As Double, phi() As Double, eta() 

As Double, P() As Double, V() As Double, Front_Position As Integer, Coeffs() As 

Double) 
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Dim i As Integer, n As Integer 

n = Front_Position 

'Assuming flow control 

For i = Front_Position To 2 Step -1 

    P(i - 1, step) = Coeffs(8) * (phi(i - 1, step) * eta(i - 1, step) / K(i - 1, step) + (phi(i, 

step) * eta(i, step) / (K(i, step))) * (X(i) - X(i - 1)) / 2) + P(i, step) 

Next i 

V(step) = Coeffs(8) 

If P(1, step) > Coeffs(1) Then  'Pressure control 

    ReDim B(1 To n) As Double 

    ReDim a(1 To n, 1 To n) As Double 

    Dim AuxP() As Double 

    For i = 2 To n - 1 

        a(i, i - 1) = (K(i, step) / (eta(i, step)) + (K(i - 1, step)) / eta(i - 1, step)) 

        a(i, i + 1) = (K(i + 1, step) / eta(i + 1, step)) + (K(i, step) / eta(i, step)) 

        a(i, i) = -a(i, i - 1) - a(i, i + 1) 

    Next i 

    'p=po at x=0 

    a(1, 2) = 0 

    a(1, 1) = 1 

    B(1) = Coeffs(1) 



Appendix A - 1D flow and filtration model code 
 

180 

    'p=p∞ at flow front 

    a(n, n - 1) = 0 

    a(n, n) = 1 

    B(n) = Coeffs(4) 

    'solve system 

    AuxP = SolveSystem(a, B) 

    For i = 1 To n 

        P(i, step) = AuxP(i) 

    Next i 

    V(step) = -(K(n, step) + K(n - 1, step)) / (eta(n, step) + eta(n - 1, step)) * ((P(n, step) - 

P(n - 1, step)) / (X(n) - X(n - 1))) 

End If 

End Sub 

---------------------------------------------------------------------------------------------------------- 

Function Resusp(C As Double, S As Double, Coeffs() As Double) 

Resusp = Coeffs(3) 

End Function 

---------------------------------------------------------------------------------------------------------- 

Function Filtr(C As Double, S As Double, Coeffs() As Double) 

Filtr = Coeffs(2) 

End Function 

---------------------------------------------------------------------------------------------------------- 
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Function SolveSystem(Amat() As Double, Bvec() As Double) 

Dim AuxX As Variant 

Dim AuxB As Variant 

Dim AuxA As Variant 

Dim i As Integer 

Dim X() As Double 

AuxA = Amat 

AuxB = Bvec 

AuxX = Application.MMult(Application.MInverse(AuxA), 

Application.Transpose(AuxB)) 

ReDim X(LBound(AuxX, 1) To UBound(AuxX, 1)) 

For i = LBound(AuxX, 1) To UBound(AuxX, 1) 

    X(i) = AuxX(i, 1) 

Next i 

SolveSystem = X 

End Function 
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