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Abstract

The research presented in this thesis is concerned with the development of

numerical techniques and mathematical models for non-Newtonian fluids

and two-phase flows in pipes and channels.

Single phase, turbulent flow calculations of non-Newtonian fluids were per-

formed initially. Based on the literature a revised approach to wall mod-

elling is proposed and implemented. The approach uses analytical and

experimental analyses of the turbulent boundary layer structure. A com-

parison with the standard approach is presented.

The interaction between turbulence and non-Newtonian behaviour is stud-

ied by examining the rate of strain induced by fluctuating components of

velocity. The statistical analysis of published DNS data is performed. Fi-

nally, a model is proposed where the turbulent rate of strain is determined

from turbulence quantities used by the Reynolds-averaged Navier–Stokes

model and used in the calculation of molecular viscosity.

For two-phase flow, the solution procedure using periodic boundary condi-

tions was developed under an assumption of a flat interface. The numerical

technique was verified by comparing to an analytical result obtained for

laminar flow in a channel. An extension to three dimensional flow is per-

formed.

With periodic boundary conditions standard turbulence models are applied

to two-phase stratified flow. Several models and their corrections for two-

phase flow are assessed and a new model is proposed. The numerical studies

were carried out primiarily in the open-source code OpenFOAM, but initial

attempts were made in commercial packages such as STAR-CD and FLU-

ENT. Experimental data collected from the literature are used to verify the

results showing good agreement in pressure drops and phase fractions.



Acknowledgements

It is a pleasant duty to express gratitude to all those who have contributed

to the completion of the presented work. I would like to acknowledge the

work of my supervisor Professor Chris Thompson who offered many stimu-

lating discussions and introduced me to this fascinating field. It is also my

privilege to acknowledge Professor Ray Chhabra, Doctor Fernando Pinho,

Doctor Robert Poole and Doctor Murray Rudman for supplying me with

experimental data and for many comments. Many thanks to Doctor Dag

Biberg for providing his own code, consultancy and many useful hints and

to Doctor Mustapha Gourma for his critical remarks. I am also immensely

grateful to Sarah Jones for offering an engineering perspective in numerous

discussions and for invaluable assistance in language matters. Last, but def-

initely not least I would like to thank my closest family for their constant

support.



ii



Contents

List of Figures vii

List of Tables xi

List of Symbols xiii

1 Introduction 1

1.1 Modelling in computational fluid dynamics . . . . . . . . . . . . . . . . 3

1.2 Non-Newtonian flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Computational multiphase fluid dynamics . . . . . . . . . . . . . . . . . 6

1.4 Areas of application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Presented contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Finite volume method 13

2.1 Domain discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Equations discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Face interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Discretisation of transport equation terms . . . . . . . . . . . . . 21

2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The system of linear equations . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Under-relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Volume of fluid method with periodic boundaries 27

3.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Phase fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



CONTENTS

3.1.2 Continuity and momentum Equations . . . . . . . . . . . . . . . 34

3.1.3 Turbulence equations . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4 Additional constraints . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Pressure-velocity coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 SIMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 PISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Additional discretisation considerations . . . . . . . . . . . . . . 41

3.3 Periodic boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Single-phase pressure-correction . . . . . . . . . . . . . . . . . . . 43

3.3.3 Two-phase pressure-correction . . . . . . . . . . . . . . . . . . . 45

3.3.4 Liquid height correction . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.5 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.6 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Non-Newtonian properties in turbulence modelling 51

4.1 Newtonian turbulence in channels and pipes . . . . . . . . . . . . . . . . 52

4.1.1 Logarithmic law of the wall . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Friction factors for pipelines . . . . . . . . . . . . . . . . . . . . . 55

4.1.3 Relevant quantities and their order of magnitude analysis . . . . 56

4.1.4 Near-wall treatments . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Constitutive laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Reiner–Rivlin fluids . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Generalised Newtonian fluids . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Viscoplasitc fluids . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Viscoelastic fluids . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.5 Non-dimensional parameters . . . . . . . . . . . . . . . . . . . . 66

4.3 Friction factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Dodge and Metzner . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Clapp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.3 BNS equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.4 Other friction factor correlations and some comparisons . . . . . 69

iv



CONTENTS

4.4 Non-Newtonian wall function . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Rate of strain in turbulent flow 79

5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Relation to vorticity . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Probabilisitc information . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Analysis of DNS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Comparison of viscosity fields . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Rate of strain magnitude . . . . . . . . . . . . . . . . . . . . . . 88

5.3.3 Yield stress and unyielded regions . . . . . . . . . . . . . . . . . 90

5.3.4 Statistical hypothesis testing . . . . . . . . . . . . . . . . . . . . 91

5.4 CFD two-equation models . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Modelling stratified flow 107

6.1 Empirical pressure drop correlations . . . . . . . . . . . . . . . . . . . . 108

6.1.1 Stratified gas/Newtonian liquid . . . . . . . . . . . . . . . . . . . 108

6.1.2 Stratified gas/non-Newtonian liquid . . . . . . . . . . . . . . . . 110

6.1.3 Farrooqi and Richardson . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.4 Dziubinski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Analytical velocity profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Laminar profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.2 Turbulent profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Comparison against CFD . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.1 Laminar profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.2 Turbulent profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Non-Newtonian fluid and two-phase flow . . . . . . . . . . . . . . . . . . 134

6.5 Recent DNS and LES results . . . . . . . . . . . . . . . . . . . . . . . . 138

6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

v



CONTENTS

7 Summary 143

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2 Suggestions for future work . . . . . . . . . . . . . . . . . . . . . . . . . 145

References 149

A Low-Re models test 161

B Holdup and pressure drop correlations 169

B.1 Laminar flow in a channel . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.2 Pipe flow with Taitel–Dukler correlation . . . . . . . . . . . . . . . . . . 171

B.3 Biberg model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

C Heat transfer modelling 177

C.1 Temperature effect on viscosity . . . . . . . . . . . . . . . . . . . . . . . 179

C.1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.1.2 Reference scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C.1.3 Main analytical results . . . . . . . . . . . . . . . . . . . . . . . . 182

C.2 Periodicity in heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . 184

C.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

D Data collected from the literature review 189

vi



List of Figures

1.1 Flow patterns in horizontal flows. Picture taken from Brennen (2005) . 8

1.2 Flow map in a horizontal pipe of diameter 5.1cm Picture taken from

Brennen (2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Finite volume notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Normalised value diagrams for HRIC. The shaded area represents schemes

satisfying convective boundedness criteria. . . . . . . . . . . . . . . . . . 18

2.3 The NVD diagram for Superbee scheme. . . . . . . . . . . . . . . . . . . 20

2.4 Dirichlet and Neuman boundary conditions. . . . . . . . . . . . . . . . . 23

2.5 Robin and periodic boundary conditions. . . . . . . . . . . . . . . . . . . 23

3.1 Quartic scheme for two neighboring cells and its iso-surfaces. . . . . . . 30

3.2 Capturing the interface at the front of a displaced phase region. The

velocities in each cell are equal and the values of phase fraction were

chosen arbitrarily to create a two-cell wide interface. Note the lack of

treatment on the first face. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Capturing the interface at the back of displaced field. Note the increased

diffusion from the last cell. Velocities in each cell are equal and the values

of phase fraction were chosen arbitrary to create a two-cell wide interface. 32

3.4 The comparison of different interpolation schemes for Riemann problem.

Courant number equals to 0.1. . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 The structure of a segregated solver. . . . . . . . . . . . . . . . . . . . . 38

3.6 Intuitive idea for the phase correction algorithm. . . . . . . . . . . . . . 46

3.7 Typical results from a 3D periodic simulation of a stratified flow. . . . . 49

vii



LIST OF FIGURES

4.1 Channel flow: stress and velocity profile sketch. . . . . . . . . . . . . . . 52

4.2 Turbulent boundary layer structure with respect to the first computa-

tional cell. High and low Reynolds number approaches i.e. wall function

against fine grid (possibly with damping functions). . . . . . . . . . . . 58

4.3 Various classes of genaralised Newtonian fluids. . . . . . . . . . . . . . . 64

4.4 Prediction of non-Newtonian friction factors with standard wall functions. 73

4.5 Prediction of non-Newtonian friction factors with Dodge and Metzner

(1959) using only the profile constants. . . . . . . . . . . . . . . . . . . . 73

4.6 Prediction of non-Newtonian friction factors with Clapp (1961) using

only the profile constants. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Prediction of non-Newtonian friction factors with Dodge and Metzner

(1959) using wall distance calculation. . . . . . . . . . . . . . . . . . . . 74

4.8 Prediction of non-Newtonian friction factors with Clapp (1961) using

wall distance calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 Velocity profiles for n = 0.7 and ReMR = 106. . . . . . . . . . . . . . . . 77

4.10 Laminar and turbulent viscosity profiles for n = 0.7 and ReMR = 106. . . 77

5.1 Vortex stretching phenomena that occurs in the in the presence of shear. 82

5.2 DNS grid by Rudman et al. (2004). . . . . . . . . . . . . . . . . . . . . . 87

5.3 The radial interpolation of viscosity field. . . . . . . . . . . . . . . . . . 88

5.4 Top: rate of strain based on mean (left) and rate of strain based on

instantaneous velocity (right). Bottom: the ratio of instantaneous to

mean rate of strain. Reg regions show signficant differences between

shear rate caused by mean and fluctuating components. . . . . . . . . . 89

5.5 Ratios of instantaneous to mean rate of strain for τY = 0.28 (Left)

τY = 0.85 (Right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 The logarithm of shear-stress normalised by yield stress for τY = 0.28

(Left) τY = 0.85 (Right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 The difference between the rate of strain (RoS) calculated from the mean

velocity and instantaneous velocity, averaged over all radial points. . . . 92

5.8 p-values for the equal mean hypothesis. . . . . . . . . . . . . . . . . . . 92

5.9 Skewness (left) and kurtosis (right) of the probability distribution. . . . 94

viii



LIST OF FIGURES

5.10 The p–values associated with hypothesis of log-normality of instanta-

neous rate of strain (H2) and normality of mean rate of strain (H2’). . . 96

5.11 The p–values associated with hypothesis of log-normality of the fluctu-

ating rate of strain H2’. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.12 The QQ plot for the one of the fitted histograms. . . . . . . . . . . . . . 97

5.13 Probability density functions of strain rates of mean (left) and instanta-

neous (right) fields. (Rudman et al. (2004)). . . . . . . . . . . . . . . . 98

5.14 Left: Cross model with parameters fitted for 0.09% solution of CMC in

water. Right: Laminar, steady calculation. . . . . . . . . . . . . . . . . . 101

5.15 Left: Turbulent velocity profile in physical coordinates. Right: Turbu-

lence intensity. The error of the turbulent intensity prediction was less

than 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.16 Viscosity profiles in FLUENT for Rudman et al. (2004) cases. . . . . . . 103

5.17 Viscosity profiles for ReW = 7000 τY = 0.24 (left) τY = 0.85 (right).

The viscosity of the flow is closely reproduced. . . . . . . . . . . . . . . 105

6.1 Sketch of the physical problem. . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Turbulent profiles in steady state fully developed channel flow: shear

stress (left), eddy viscosity (centre), mean velocity (right). . . . . . . . . 116

6.3 The behaviour of liquid height and pressure gradient with respect to

Reynolds number in laminar flow. . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Typical velocity profiles obtained with OpenFOAM: Profiles on the left

have ReG = 150 on the right ReG = 1500. Profiles at the top have

ReL = 150 and at the bottom: ReL = 1500. . . . . . . . . . . . . . . . . 124

6.5 Top: the grid employed, Bottom: The normal velocity distribution and

the phase fraction distribution. . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 FLUENT results for turbulent quantities from top to bottom: turbulence

intensity, turbulence dissipation and effective viscosity. . . . . . . . . . . 127

6.7 Standard turbulence models against Akai et al. (1981). Velocity profiles

on the gas (left) and liquid (right) sides. Top: ReG = 2.34× 103 Centre:

ReG = 6.52× 103, Bottom: ReG = 1.32× 104. . . . . . . . . . . . . . . . 128

6.8 a) Curvilinear mesh (Issa (1988)) b) Single phase with moving wall

(Holm̊as and Biberg (2007)). . . . . . . . . . . . . . . . . . . . . . . . . 129

ix



LIST OF FIGURES

6.9 Egorov (2004) type correction: pressure gradient predictions. Smooth

and wavy lines are plotted according to Biberg (2007) model. Top:

ReL = 255 Centre ReL = 745, Bottom: ReL = 255 but with constant

B = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.10 Modified turbulence models against Akai et al. (1981). Velocity profiles

on the gas (left) and liquid (right) sides. Top: ReG = 2.34× 103 Centre:

ReG = 6.52× 103, Bottom: ReG = 1.32× 104. . . . . . . . . . . . . . . . 135

6.11 Estimated against experimental pressure gradients and liquid height. . . 136

6.12 Biberg model against Akai et al. (1981). Velocity profiles on the gas (left)

and liquid (right) sides. Top: ReG = 2.34×103 Centre: ReG = 6.52×103,

Bottom: ReG = 1.32× 104. . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.13 The influence of non-Newtonian property on the velocity profile of the

two-phase flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.1 Laminar profiles. Coarse mesh Re = 100 . . . . . . . . . . . . . . . . . . 163

A.2 Laminar profiles. Fine mesh Re = 100 . . . . . . . . . . . . . . . . . . . 164

A.3 Transitional profiles: fine mesh Re = 1000 . . . . . . . . . . . . . . . . . 165

A.4 Turbulent profiles. Fine mesh Re = 5000 . . . . . . . . . . . . . . . . . . 166

B.1 Notation required for Taitel–Dukler method of calculating pressure gra-

dients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.2 Non-dimensional height as a function of Lockhard–Martinelli parameter. 174

B.3 Non-dimensional gas pressure gradient as a function of Lockhard–Martinelli

parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C.1 Top: temperature variation in a 10 diameter long channel section. Bot-

tom left: laminar velocity profile. Bottom right: temperature at the

outlet and the inlet of the section. Self-similar solution was obtained. . . 187

C.2 Comparison of maximum temperature for different inlet bulk temperatures.187

x



List of Tables

5.1 Flow-rate predictions showing improvements in accuracy for selected cases.105

6.1 VOF turbulence interface damping mechanisms. . . . . . . . . . . . . . . 133

B.1 File list for laminar two-phase calculation profile and pressure drop cal-

culation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.2 File list for Taitel–Dukler scripts. . . . . . . . . . . . . . . . . . . . . . . 173

B.3 File list for Taitel–Dukler scripts. . . . . . . . . . . . . . . . . . . . . . . 175

D.1 Form and content of obtained data sets . . . . . . . . . . . . . . . . . . 190

D.2 Bruno (1988) 1“ channel data . . . . . . . . . . . . . . . . . . . . . . . . 193

D.3 Flow values and rheology of used data sets . . . . . . . . . . . . . . . . . 194

xi



LIST OF TABLES

xii



List of Symbols

Abbreviations

CFD Computational fluid dynamics

CICSAM Compressive interface capturing scheme for arbitrary meshes

DNS Direct numerical simulations

FDM Finite difference method

FEM Finite element method

FVM Finite volume method

GNF Generalised Newtonian fluids

HRIC High resolution interface capturing

LES Large eddy simulation

NVD Normalised value diagram

PCG Preconditioned conjugate gradient

PDF Probability density function

PISO Pressure-implicit split-operators method

RANS Reynolds-averaged Navier–Stokes

SIMPLE Semi-implicit method for pressure-linked equations

STACS Switching technique for advection and capturing of surfaces

xiii



LIST OF TABLES

URF Under-relaxation factor

VOF Volume of fluid

Greek Symbols

ε Turbulence dissipation [m2/s3]

Γ Scalar diffusivity coefficient

µ Molecular viscosity [Pa s]

µt Eddy viscosity [Pa s]

ν Kinematic viscosity [m2/s]

νt Eddy kinematic viscosity [m2/s]

ω Specific dissipation [s−1]

φ Scalar quantity

ρ Denisty [kg2/m3]

τi Interface shear stress [Pa]

τw Wall shear stress [Pa]

εijk Levi-Civita symbol

ζi Vorticity component [1/s]

Roman Symbols

Sij Mean rate of strain [1/s]

sij Fluctuating rate of strain [1/s]
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Chapter 1

Introduction

With the progress of science and technology, the study of flows with more than one

phase receives increasing attention among practitioners. Currently, there are many

branches of industry where multi-component flows are commonplace. The natural

world also abounds in phenomena that are inherently multiphase giving an incentive

and opportunities to study multiphase fluid dynamics. Equipment such as coolant

systems, long pipelines and separators interact with at least two component flow. The

optimal design, maintenance and control of these devices require a better understanding

of the complex flow phenomena that are involved. Therefore, the development of current

predictive techniques must include the modelling of multiple phases and the interactions

that occur between them.

Experimental studies and the resulting empirical correlations are still the most common

approaches in investigations of multiphase flows and the design processes. In some cases

these techniques proved to be successful but in general multiphase flows encompass

many complex mechanisms of mass, momentum and heat transfer that take place inside

and between phases e.g. turbulence, surface tension, buoyancy. This, in turn, gives rise

to many non-dimensional numbers parameterising the flow and the lack of universally

established scaling laws makes it difficult to design efficient and meaningful experiments.

An additional difficulty is intrusiveness of most measurement devices. The empirical

correlations that come from these experiments are usually of limited applicability.

Moreover, empirical correlations are usually of a global character whereas fluid flows

often exhibit transient or local phenomena that can significantly affect the bulk quan-

tities. The local distribution of volume phase fractions can lead to many different flow
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1. INTRODUCTION

regimes such as dispersed flows, stratified flows or slug flows. All of these regimes will

have their own distinguishing features. Also, separation or inversion of phases might

occur within the time frame of interest. Separation is often induced by design in pro-

cess engineering in order to isolate the components of the flow that are later subject to

further processing. Phase inversion is a phenomenon when the dispersed phase becomes

continuous and vice versa. This effect occurs at high dispersed phase volume fractions

and is known to produce high effective viscosity in the bulk fluid. None of the current

methodologies is able to predict accurately this onset of inversion over a wide range of

conditions.

This behaviour of the bulk quantities such as effective viscosity resembles the behaviour

of non-Newtonian fluids. These are fluids which exhibit a non-linear relation between

stress and the rate of deformation. Originally, they were studied in single phase flows

with small polymer additives, but the term may also apply to multi-component flows

such as crude oils or emulsions. This has to be viewed as a modelling assumption that

allows us to look at two phases as a single phase but with a non-trivial stress-to-strain

relation. Employing this approach can lead to enhanced, experiment-based correlations

for multiphase flow, but suffers from the same deficiencies as outlined above.

Computational fluid dynamics (CFD) is an alternative technique which uses computer

simulations in the study of fluid flows. It is a very versatile tool and with the progress of

computational methods as well as the development of hardware and associated software

it is becoming ubiquitous in many branches of science and industry. CFD can address

local and transient phenomena and thereby overcomes some of the difficulties addressed

above. Still, it often requires a significant amount of computational resources and mod-

elling assumptions about the underlying physics. The latter may become advantageous

in some cases since it simplifies the flow case but still retains the transient and local

information that is the key output of CFD. This is why combining non-Newtonian and

two-phase flow modelling may lead to models that improve accuracy while remaining

computationally feasible.

This introduction is divided as follows. In Section 1.1 a general overview of CFD and

modelling in CFD is given. An emphasis is put on turbulence modelling and the level

of detail. Next, in Section 1.2 a historical perspective on the study of non-Newtonian

flow is given. Section 1.3 describes the most important multiphase governing equation

formulations. In Section 1.4 some example applications are listed. Sections 1.5 and 1.6
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give the initial objectives and the contributions of this study. Section 1.7 serves as an

outline for the remaining part of this thesis.

1.1 Modelling in computational fluid dynamics

CFD is an important tool in the study of complex flows. It relies on the numerical

solution of the partial differential equations that govern the motion of the fluids. Until

recent CFD was mostly applied to single phase flow. This proved surprisingly diffi-

cult due to the high computational requirements when dealing with turbulent flow.

Nevertheless, the progress in numerical techniques, modelling and computer hardware

allowed the incorporation of CFD as an industry standard in the development of many

products. Multiphase CFD attempts to build on this success by extending the current

techniques.

Many challenges have to be overcome. Firstly, there is still much uncertainty in the

formulation of the governing equations that capture the essential physics of the flow in

question. Currently there is no universal approach and different multiphase flows will

require a different set of equations. Furthermore the equations might pose additional

numerical difficulties such as in stability or excessive numerical diffusion.

Single phase CFD encountered significant problems when dealing with turbulence. The

source of these problems is the energy cascade that can be described as large scale mo-

tions giving rise to small scale motions. The small scale motion in turn affect the large

scale structures, giving rise to a multi-scale phenomenon. The computational resources

required to capture this energy cascade grow rapidly with the Reynolds number of the

flow.

Direct numerical simulation (DNS) addresses the problem by resolving all the motions

that contribute to the energy spectrum of the fluid. This approach requires the im-

plementation of high accuracy numerical schemes leading also to high computational

effort. For scientific purposes DNS is a preferred method if it can be applied since it is

equivalent to experimental data but it benefits from the non-intrusiveness of the mea-

surement technique. For engineering applications the results are usually not directly

applicable and additional post-processing is required in order to obtain bulk quantities

or quantities averaged over time.

3



1. INTRODUCTION

On the other end of the spectrum we have the Reynolds-averaged Navier–Stokes (RANS)

equations framework. This approach expresses the governing equations in terms of first

and second order statistical quantities i.e. mean flow and variance (second central mo-

ment). The results from this approach must be understood as an ensemble average of

a collection of experiments. In practice, since the whole turbulent energy spectrum is

modelled, the modelling assumptions might give a completely distorted picture of the

flow. Nevertheless, this approach usually produces results that are directly applicable

for engineering purposes and in comparison with other approaches it has the lowest

computational requirements. It became a standard in industrial applications where

large or complex geometries are involved.

Large eddy simulation (LES) tries to combine the best of both worlds by only modelling

a portion of the energy spectrum (usually ≤ 20%). This makes the various statisti-

cal assumptions more applicable since it is known that turbulent structures at small

scales are independent of the large scale motions and exhibit properties like isotropy

or homogeneity. Despite the progress in LES, these calculations still require signifi-

cant computational times and common models of turbulence have to be altered when

inter-phase effects become important.

1.2 Non-Newtonian flows

Chhabra (2006) discerns three stages in the development of fluid mechanics. At the first

stage, studies were focused on ideal fluids i.e. fluids without viscosity, compressibility,

elasticity and with all the remaining material properties kept constant. Those kind of

fluids are purely imaginary concepts1 and were used mainly for the purpose of analysis.

Despite the seemingly crude approximations, inviscid and incompressible theories led

to ground-breaking results in many areas of science and engineering (e.g. accurate

prediction of lift force, which paradoxically is a viscous effect).

The next step was to introduce viscous effects. This was pioneered by Ludwig Prandtl

who assumed that viscosity becomes important only in the boundary layer, formed in

the direct vicinity of a solid surface. Hence, the flow domain was decomposed into

region of ideal fluid (far from the surface) and a viscous fluid (close to the surface).

This approach is the basis for classical fluid dynamics.

1Except for some unusual situations like superfluidity.
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1.2 Non-Newtonian flows

Finally, the third stage, which is still an active area of research, addresses the departure

from Newton’s linear law of viscosity. Its importance was appreciated at the beginning

of the last century as many industrial materials could not be accurately described with

this simple relation. Two sources of non-Newtonian behaviour can be distinguished. On

a microscopic level, it is the molecular structure of fluid particles. Spherical and roughly

spherical particles produce a Newtonian behaviour whilst the addition of long chains

of particles might cause Newton’s approximation to become invalid. On a macroscopic

level, mixtures such as emulsions or slurries may become Non-Newtonian despite the

fact that the components are Newtonian. The discipline which deals with flow of matter

is called rheology.

Doraiswamy (2002) gave a very precise date for the foundation of the science of rhe-

ology as the 29 April 1929, which is the date of the Third Plasticity Symposium and

the formation of the first permanent organisation keeping watch over the emerging dis-

cipline. Among the participants of the Society of Rheology we can mention Eugene

Bingham, Winslow Herschel, Wolfgang Ostwald, Markus Reiner and Ludwig Prandtl.

Doraiswamy (2002) also reviews the roots of fluid dynamics and surveys with regard to

rheology to eventually present modern issues in this discipline. According to this survey

problems of elastic solids were studied in the 17th century by Hooke, Young and Cauchy.

The empirical law of viscosity was given by Newton in 1687 but it took almost two

centuries to incorporate viscosity in to the governing equations by Claude-Louis Navier

and George Gabriel Stokes. The conjunction of the two empirical laws of viscosity and

elasticity led in mid 19th century to linear viscoelasticity and a Maxwell model. In the

20th century Arthur Metzner was one of the first to introduce generalized Newtonian

fluids in industrial applications on a wide scale and popularised these concepts outside

of scientific society.

A more mathematical view of non-Newtonian fluids is due to James Oldroyd who

introduced convected derivatives and constitutive law admissibility conditions. This

allowed a more qualitative understanding of fluid behaviour although it was at the

expense of quantitative accuracy.

Toms (1949) description of drag reduction in polymers has been a source of increased

interest in non-Newtonian turbulence. To this day it is still an area of active research

including experimental studies, DNS and modelling of these fluids.
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1.3 Computational multiphase fluid dynamics

Multiphase computational fluid dynamics deals with the formulation and solutions of

fluid flow equations where the flow under investigation has more than one component.

Three models have gained particular recognition and are commonly used in academic

and industrial applications: volume of fluid (VOF), Eulerian–Lagrangian and Eulerian–

Eulerian formulations. All of these models possess different benefits and limitations

making them applicable to different, usually exclusive, flow regimes. All of these ap-

proaches take the Eulerian approach as its base i.e. they solve the governing equations

on fixed control volumes.

VOF, also known as the “one fluid” method, comprises one set of momentum equations,

the continuity equation and a scalar transport equation that represents the distribution

of the second phase. The material constants are calculated using weighted averages of

the components. This approach works when there is clear separation between phases

e.g. in stratified flows or for bubbles that are much larger than the mesh size.

The Eulerian–Lagrangian (EL) approach distinguishes between the carrier and the

dispersed phases. The carrier phase is treated as a continuous medium and its evolution

is modelled via a set of momentum equations and continuity equations. These equations

contain special source terms that represent the influence of the dispersed phase such

as the drag that a particle exerts. The dispersed phase is modelled as a set of discrete

particles with specified position and velocity. The velocity is calculated based on the

forces acting on a particle. Then the position is advanced and the forces recalculated

again using the continuous phase equations. For turbulent dispersions a random walk

algorithm may be invoked. If this is the case several trajectories for a given particle are

calculated and then averaged over realisations. Phase coupling in EL can be a one-way

or a two-way coupling. The latter is usually more accurate than the former but may

encounter significant numerical stability problems. Two-way coupling will face similar

problems to those encountered in pressure-velocity coupling in single phase CFD. The

solution of one set of equations might give a large residual in the second set of equations.

Therefore, care must be exercised in the coupled (both sets solve simultaneously) or

the segregated (iterative alternating solution) approach.

Finally, the Eulerian–Eulerian (EE) approach uses two sets of momentum equations,

continuity and phase fraction equations. Again, various source terms are used to model
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phase interactions which can take the form of mass, momentum or energy transfer. EE

does not intrinsically assume that the phase is dispersed or continuous but the choice

of source terms may limit the scope of applicability to a given flow regime.

Solving additional equations is not the only complication when dealing with multiphase

flows. The behaviour of the fluid is related to the pattern of the phase distribution that

is dominant at a given time. Many one dimensional computer codes will utilise some

modelling expressions that are specific to a given pattern, thereby increasing the ac-

curacy at the expense of applicability. Three dimensional CFD has the potential to

address a wider range of flow patterns accurately but might demand more computa-

tional resources.

One of the ways to catalogue these patterns are so called flow maps. See Figure 1.2

for an example. The problem with composing such a chart is the dependency on the

composition of phases, volume fractions and geometry and inclination of the bounding

surface. The validity of a particular flow map is usually confined to specific values of

above properties.

1.4 Areas of application

Non-Newtonian and multiphase flow appear often in industrial processes or everyday

life phenomena. This study will focus mainly on transportation in horizontal conduits

that is typical in the petroleum industry, but other areas of application suggested by

Chhabra (2008) may involve:

Biology: animal waste, blood.

Chemistry: pharmaceutical products, polymer melts and solutions.

Engineering: fire fighting foams, viscous coupling unit in four wheel drive.

Food processing: diary products, fruit or vegetable purees, ice creams.

Geo-sciences: drilling muds, magmas, molten lava.

Transportation: waxy crude oil, sewage sludge, coal slurries, drilling muds, mine

tailings, mineral suspensions.
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Figure 1.1: Flow patterns in horizontal flows. Picture taken from Brennen (2005)

Figure 1.2: Flow map in a horizontal pipe of diameter 5.1cm Picture taken from Brennen

(2005)
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1.5 Objectives

The main objective of this study was to improve CFD methods for predicting stratified

gas/liquid flows in long horizontal conduits. Speed and robustness were the key features

that were targeted. Additionally, the models of the flow were to take non-Newtonian

properties of the liquid phase into account. Several tasks were identified and studied

separately:

1. Modelling of turbulent flow. A RANS approach was employed in order to give

directly applicable information quickly.

2. The model must allow the specification of effective viscosity in laminar and turbu-

lent flow of the fluid. In the context of turbulence modelling, turbulent boundary

layer modelling is required.

3. Effective methods for solving the equations in large or repetitive domains. Current

multidimensional CFD for multiphase flows limits the computational domain size.

4. Modelling of turbulent flow in the vicinity of the gas/liquid interface. Standard

RANS methods overpredict turbulent momentum transfer at the interface.

1.6 Presented contributions

1. Non-Newtonian wall functions. Based on the literature review, four different wall

functions i.e. the models for turbulent boundary layer behaviour were proposed

and assessed. The advantage of using rheology aware wall functions was demon-

strated and some of the functions exhibited good predictive capabilities against

empirical friction factor curves. The advantage of having an accurate wall func-

tions is decreased demand for computational resources. On the other hand, the

solution becomes sensitive to wall mesh refinement since the empirical correlations

hold only within a certain range of values.

2. Statistical analysis of non-Newtonian DNS data. The data collected through the

literature review and private communication was subject to rigorous statistical

analysis in order to test the two hypotheses proposed. The first conjectured that

the average rate of strain calculated from the instantaneous velocity is larger
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than the rate of strain calculated from the averaged velocity. This statement was

not falsified by the data. The second one assumed a form of distribution of the

turbulent rate of strain, but this hypothesis was largely disproved.

3. Effective molecular viscosity model for the bulk flow. This represents the effect of

turbulence on non-Newtonian rheology in the bulk of the turbulent flow. In the

turbulent core region modeled by the RANS equations the effective turbulence

viscosity should dominate. A model linking rheological and turbulent quantities

is proposed and compared against experimental data.

4. Periodic boundary conditions for two-phase flow. The implementation of periodic

boundary conditions is extended to encompass stratified two-phase flow of two

incompressible fluids under specified mass fluxes. Two and three-dimensional

extensions are given and in case of two-dimensional flow the results are compared

against the analytical solution.

5. Models for effective viscosity at the interface of two-phase stratified flow. RANS

modelling of stratified flow is compared against experimental data and against

other flow models obtained from the literature. Various corrections of turbu-

lence at the interface are subsequently reviewed and assessed. A new method is

proposed and tested.

1.7 Outline

The structure of the remaining part of the document and its relation to the objectives

listed in Section 1.5 are given in Figure 1.3. Chapter 2 begins the dissertation by

explaining the principles of the discretisation with the finite volume method. This is

the first chapter because it all the subsequent chapters solve the equations obtained

by this method. Chapter 3 describes the VOF method in detail and introduces pe-

riodic boundary conditions for multiphase flows. Next, in Chapter 4, non-Newtonian

fluids are described and the special wall functions are presented. Chapter 5 focuses

on the theoretical formulation of effective viscosity models and contains the statistical

analysis of DNS data. CFD simulations using effective viscosity models are also shown

there. Modelling of turbulent and laminar flow in the stratified regime is presented in

Chapter 6.
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Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Obj. 3

Obj. 1 & 2

Obj. 4

Figure 1.3: The outline of the thesis

Chapters 4 and 5 consider only single phase flows whereas Chapters 3 and 6 consider

multiphase flows. This is justified, since periodicity for multiphase is an extension of

single phase flow and all of the single phase solutions use this periodicity in order to

focus on the behaviour of turbulence models in long conduits.

Finally, the conclusion and the outline of possible extensions to this work are outlined

in Chapter 7.
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Chapter 2

Finite volume method

Discretisation of partial differential equations allows the transformation of a problem

from a continuous to a discrete domain. There are many methods that achieve this goal

e.g. finite difference (FDM), finite volume (FVM) or finite element methods (FEM). In

general these methods can lead to systems of algebraic equations which give solutions

that do not correspond to the original continuous system.

FVM can be seen as a special case of FEM (see Chung (2002)) where the basis function

is a linear combination of Dirac deltas and the test functions are indicator functions

for each control volume. The test functions do not appear explicitly in the formulation

making the method easier to implement in a computer code. Although not as general

as FEM, FVM has proven to be reliable and it is in use in many commercial and

open-source CFD codes. Its properties and behaviour are often more intuitive and the

solutions less diffusive since the quantities are located in a single point within a cell.

There is abundant literature on FVM (Patankar (1980), Ferziger and Perić (2002),

Chung (2002), Rusche (2002)) and Toro (2009)). The aim of this chapter is to recall

the fundamentals that are required for the exposition of a solver that uses periodic

boundary conditions and conserves mass flux constraints. In this chapter the discreti-

sation techniques are covered with particular emphasis on difference schemes used in

multiphase calculations.
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2. FINITE VOLUME METHOD

f
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Figure 2.1: Finite volume notation.

2.1 Domain discretisation

The solution of a system of partial differential equations is a function that varies in time

and space. We will proceed with a description of the temporal and spatial discretisation

of the solution domain.

Time discretisation breaks the time interval into time steps of length ∆t. These can have

uniform length or vary in a predefined manner, usually according to some simulation

parameters. Most of the modern methods will automatically decrease the time step if

higher accuracy is required.

The spatial discretisation requires the division of the space into non-overlapping control

volumes with adjacent faces. In this study only flat faces will be considered although

it is generally possible to accommodate curved faces as well.

A pair of cells is depicted in Figure 2.1. It is common to denote a cell of interest as P ,

a face as f and a neighbouring cell with common face f as N(f), Sf as a vector normal

to the surface with a magnitude equal to the area of the surface. Since, in general, the

shapes of faces and control volumes are arbitrary the definition of face centre xf and

cell centres xP are as follows: ∫
S

(x− xf ) dS = 0 (2.1)∫
VP

(x− xP ) dV = 0 (2.2)
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2.2 Equations discretisation

If d = xN − xP satisfies d · Sf = |d||Sf | then we say that the grid is orthogonal.

Otherwise the grid is called non-orthogonal and will require special treatment during

a further discretisation process.

Furthermore the grids can be divided into structured and unstructured. Structured

grids consist of cuboids i.e. control volumes are quadrilateral polyhedrons isomorphic

to a cube. In unstructured grids the only requirements is that the control volume

remain convex. When implementing solvers for unstructured girds additional care must

be taken to account for connectivity.

There is also a choice of the location where the independent and dependant quantities

are calculated. If all the data are estimated at cell centres than such arrangement is

called a collocated grid. However, due to some numerical effects, it can be beneficial to

store some quantities at the face centres. Such arrangement is called a staggered grid.

2.2 Equations discretisation

After discretising the domain the next step is to discretise the equations describing the

phenomenon under study. This procedure transforms continuous differential equations

to a system of discrete algebraic equations where the vector of unknowns represents

field values in every point in the grid and for each time step. The equations solved

in fluid dynamics problems are all based on conservation laws and take the form of a

general scalar transport equation:

∂ρφ

∂t︸︷︷︸
Transient term

+ ∇ · (ρUφ)︸ ︷︷ ︸
Convective term

= ∇ · (Γ∇φ)︸ ︷︷ ︸
Diffusion term

+ Sφ(φ)︸ ︷︷ ︸
Source term

,

where φ is a scalar, ρ density, U velocity, Γ diffusion rate and Sφ a source term. In

FVM the algebraic equations are formed by taking an integral over volume and over

time of the above equation. This leads to:∫ t+∆t

t

[∫
VP

∂ρφ

∂t
dV +

∫
VP

∇ · (ρUφ) dV

]
dt =∫ t+∆t

t

[∫
VP

∇ · (Γ∇φ) dV +

∫
VP

Sφ(φ) dV

]
dt. (2.3)

The next step is to apply the divergence theorem to turn some of the spatial integrals

into surface integrals. If F is a vector field then the divergence theorem states:∫
VP

(∇ · F ) dV =

∮
SP

F dS, (2.4)
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where SP is the surface encompassing the cell containing point P . In a collocated

arrangement the appearance of surface integrals and therefore surface values forces

us to approximate them from the values at cell centres. The collocated arrangement

admits certain oscillating solutions that are unrealistic from the physics point of view

and would not appear in the originally continuous system. Techniques to alleviate this

problem will be discussed later.

The next subsection will be devoted to face interpolation schemes. Then we will proceed

to the discretisation of particular terms that appear in Equation (2.3).

2.2.1 Face interpolation

The choice of a face interpolation method has been an active area of research since the

emergence of FVM. There seems to be a frustrating lack of universality and schemes

that perform better under one set of circumstances will manifest deficiencies under a

different set of conditions. It is perhaps worth mentioning that a simple 1D, advection

equation still remains a benchmark problem (see Toro (2009), Leonard (1991)).

If there exist regions where the flow characteristics change sharply (e.g. the interface

in stratified flow) the choice of an appropriate interpolation scheme can significantly

affect the result. For scalar convection problems the scheme should exhibit the required

accuracy whilst minimising numerical diffusivity and satisfying boundedness.

Fields describing real-life phenomena often have to satisfy certain boundedness criteria

e.g. temperature in K must be positive, phase indicator function must be between

0 and 1 etc. Certain choice of interpolation may lead to schemes that violate these

bounds giving unrealistic solutions. A canonical example is given in Patankar (1980).

The choice of central differencing as the discretisation of spatial derivative in heat

convection/diffusion problem gives a scheme that admits solutions with values that

exceed given bounds.

The central difference scheme corresponds to an interpolation based on piecewise linear

functions that connect the values at central points. It takes the form of:

φf,CD = fxφP + (1− fx)φN , (2.5)

fx =
|xf − xN |

|xf − xN |+ |xf − xP |
. (2.6)
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This is a second-order accurate scheme, which stems from the fact that we match the

second term in the Taylor series. It can be shown that even for simple, 1D, heat transfer

this method can give unbounded, unrealistic solutions (see e.g. Patankar (1980)).

To address these difficulties an upwind scheme is often used. It can be formulated as

follows:

φf,UD =

{
φP U · Sf > 0
φN U · Sf < 0

, (2.7)

This scheme is only first-order accurate, is diffusive, but is bounded.

These two extreme approaches show the typical dilemma one faces in the choice of

an appropriate scheme: improving some properties usually proves detrimental in other

areas. To tackle this, a hybrid method can be proposed by introducing a blending

factor.

φf,BD = γφf,UD + (1− γ)φf,CD, (2.8)

where 0 < γ < 1.

Numerical diffusion is especially detrimental in keeping a sharp interface between

phases. The problem can be addressed to some extent with increased grid resolution.

However in industrial-scale, multiphase, VOF models this can lead to high computa-

tional cost. On the other hand, coarser meshes will lead to significant loss of accuracy

and therefore the so-called interface capturing schemes became an important compo-

nent of these simulations.

Some of the first developments in this area were DAS (Donor–acceptor scheme) by

Hirt and Nichols (1981), SLIC (Simple line interface capturing) by Noh and Woodward

(1976) and PLIC (Piecewise linear interface capturing) by Youngs (1982). More re-

cently, activities involved extension of these ideas into spline fitting, e.g. López et al.

(2004), or fitting with least squares method as in Pilliod (2004).

The above methods take the mesh structure into account making them less versatile

under changing geometries. Also the computational cost can be prohibitive in large-

scale calculations. Three widely recognised schemes, applicable to both structured and

unstructured meshes, are (according to Darwish (2010)):

• CICSAM (Compressive interface capturing scheme for arbitrary meshes),

• HRIC (High resolution interface capturing),
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Figure 2.2: Normalised value diagrams for HRIC. The shaded area represents schemes

satisfying convective boundedness criteria.

• STACS (Switching technique for advection and capturing of surfaces).

All of these methods can be described using a normalised value diagram (NVD). Here,

only the second one will be briefly presented. More detailed descriptions as well as

comparative surveys can be found in: Muzaferija et al. (1999); Ozkan et al. (2007);

Ubbink and Issa (1999). First the cell value φC is normalised with respect to upwind

φU and downwind φD values:

φ̂C =
φC − φU
φD − φU

. (2.9)

Gaskell and Lau (1988) formulated so-called convective boundedness criteria (CBC) as:

φ̂f = φ̂C φ̂C < 0 or 1 ≤ φ̂C , (2.10)

φ̂C ≤ φ̂f ≤ 1 0 ≤ φ̂C < 1. (2.11)

The objective of HRIC is to minimise diffusion while simultaneously satisfying CBC.

Next the normalised value at the face is calculated. This procedure can be seen as a

hybrid between downwind and upwind:

φ̂f =


φ̂C φC < 0 or φC > 1

2φ̂C 0 < φC < 0.5

1 0̂.5 ≤ φC ≤ 1

, (2.12)
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So far the switching between downwind and upwind depends only on spatial distribution

of φ. It is known that this can produce stability problems and therefore the following

correction is introduced to enable switching according to the dynamics of the process

(see Figure 2.2 ):

φ̂∗f =


φ̂f Co < 0.3

φ̂C + 0.7−Co
0.7−0.3

(
φ̂f − φ̂C

)
0.3 ≤ Co < 0.7

φ̂C 0.7 ≤ Co

, (2.13)

here Co =
U·Sf
d·Sf ∆t is a local Courant number. Since a downwind scheme can cause

alignment of the interface with the mesh there is need of a correction that takes the

grid alignment into account. This is performed in the following way:

cos(θ) =
∇φ · d
|∇φ||d|

, (2.14)

φ̂∗∗f = φ̂∗f
√

cos(θ) + φ̂C
√

1− cos(θ). (2.15)

θ is simply the angle between the grid alignment and the normal to the interface.

Eventually the scheme is just a blending between downwind and upwind schemes.

γ =
(1− φ∗∗f )(φD − φU )

φD − φC
(2.16)

φf = γφC + (1− γ)φD (2.17)

Two features that appear in the above description are common to all the interface

capturing schemes. They are all a combination of compressive and high resolution

schemes, and the blending is a function of the angle between the grid orientation and

the interface direction.

Another scheme that was used in this study was developed by Roe (1985) and is called

Superbee. Superbee is really a limiter function that can be used together with a class

of flux-limited numerical schemes. The idea originates from the piecewise constant

approximation (Godunov scheme) that is extended into piecewise linear interpolation

i.e. values are assumed to be changing linearly between the nodes. Based on this subgrid

scale model an average flux is calculated. The only unknown of this model are the slopes

of the linear functions that are used for interpolation. The flux equations are closed

using various expressions involving the node values e.g. central difference (Fromm’s

method), upwind difference (Beam–Warming method) or downwind difference (Lax–

Wendroff method).
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Figure 2.3: The NVD diagram for Superbee scheme.

The piecewise linear approximation can, however, introduce unphysical oscillations in

the vicinity of a sharp discontinuity and this is where flux-limiters are used. The idea

of using a flux limiter is to remove these oscillations at discontinuities but retain high

accuracy at smoothly varying regions.

To detect the regions in which discontunity might occur a ratio of gradients of the form:

r =
φC − φU
φD − φC

(2.18)

is introduced. Based on this ratio a limiting function, denoted here by φl, can be

defined. For Superbee it is given by:

φl(r) = max {0,min {2r, 1} ,min {r, 2}} . (2.19)

Finally the approximation of the value is:

φf = φC +
1

2
(1− Co)φl(r)(φD − φC), (2.20)

which is shown on the NVD diagram in Figure 2.3. Superbee is known for being

highly compressive and therefore it is useful in the context of preserving the interface

discontinuity.
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2.2 Equations discretisation

2.2.2 Discretisation of transport equation terms

Now we shall proceed to the discretisation of each term in Equation (2.3). To discretise

the time derivative of the form ∂ρφ
∂t a simple backward Euler scheme is used and then

integrated over the cell volume:∫
V

∂ρφ

∂t
dV =

ρnPφ
n
P − ρ0

Pφ
0
P

∆t
VP (2.21)

where φn = φ(t+ ∆t) and φ0 = φ(t).

The next term is the convective term which as remarked earlier is first turned into the

surface integral:∫
VP

∇ · (ρUφ) dV =

∮
SP

(ρUφ) · dS ≈
∑
f

Sf · (ρU)fφf =
∑
f

Ffφf , (2.22)

where Ff = Sf · (ρU)f is the mass flux and φf is a face value that can be evaluated in

a way described in Section 2.2.1.

Similarly we treat the diffusion term:∫
VP

∇ · (Γ∇φ) dV =

∮
SP

(Γ∇φ)f · dS ≈
∑
f

Γf · ∇fφ, (2.23)

where the only additional difficulty is the gradient term. On orthogonal meshes, the

above approximation is second order accurate, but for non-orthogonal meshes further

corrections are required. Since this study uses only orthogonal meshes the issue will

not be discussed.

Finally, we arrive at source terms of Equation (2.3). The spatial discretisation proceeds

with the linearisation and then integration of these terms:∫
VP

Sφ(φ) dV ≈
∫
VP

SIφ+ SE dV = SIVPφP + SEVP . (2.24)

Additional care has to be taken in the temporal discretisation. Two options are to use

the value of φP from the current or from the previous step. These two treatments are

called respectively implicit and explicit discretisations. Since eventually the discretisa-

tion process will lead to a system of algebraic equations it is important to think about

the resulting matrix of the system and a vector of coefficients. The general strategy

is to increase the diagonal dominance of the corresponding linear equation system and

therefore whenever the SI is negative an implicit treatment is advised. Contrariwise

when SI is positive an explicit formulation is better.
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2. FINITE VOLUME METHOD

2.3 Boundary conditions

All the control volumes inside the domain are discretised in the same manner. The

fluxes are expressed in terms of values of neighbouring cells as described in Section 2.2.1.

The problem of estimating fluxes arises only at the boundaries where no neighbouring

cells exist and hence an extrapolation is required.

For differential equations three types of boundaries are usually possible:

1. Dirichlet boundary conditions, where the value at the boundary points are spec-

ified.

2. Neuman boundary conditions, where the normal gradients at the boundary points

are specified.

3. Robin or mixed boundary conditions where a combination of the above boundaries

is specified.

4. Periodic boundary conditions.

Now a review of these four primitive boundary types is presented. But it is worth noting

that in a multidimensional flow there is a number of possible boundaries reflecting

various physical situations e.g. free surfaces, far-field boundaries, inlets, outlets, etc.

These conditions express the influence of the surrounding that is not captured by the

equations defined at interior points. Since this study focuses on internal flows, only the

boundaries specific to this class will be reviewed.

In the finite volume approach we seek to evaluate the fluxes at the boundaries of each

control volume. We can distinguish two types of fluxes: convective fluxes and diffusive

fluxes. The former will usually be prescribed at the inflow boundaries and vanish at

impermeable walls. The diffusive fluxes may be specified at a wall where the difference

is used to approximate the normal gradient.

Dirichlet A specification of a value φb is provided at the boundary. This means that

the equation for a control volume adjacent to this boundary will have φf = φb. If

the equation contains a gradient then a an approximation of the following form

can be used

S · ∇fφ = |S|φb − φP
|dB|

. (2.25)
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φe = φb b
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Figure 2.4: Dirichlet and Neuman boundary conditions.
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Figure 2.5: Robin and periodic boundary conditions.

Often inlet boundaries are treated this way.

Neuman The fixed gradient at the boundary is known and given as gb = ∇fφ. Now

it is the value at the face which is unknown but can be obtained by for example:

φf = φP + db∇fφ = φP + dbgb. (2.26)

This treatment is often employed in outlet boundary conditions or at a wall in

heat transfer where the normal gradient denotes the prescribed heat flux through

the wall (if gb = 0 than an adiabatic wall is obtained).

Robin boundaries fix only the linear combination of the normal gradient and the value.

This is often conveniently expressed as:

∂φ

∂n
= h(φ∞ − φb), (2.27)

where h is the diffusion rate at the wall and φb is the value of the scalar in the

environment surrounding the boundary. This can be explicitly expressed through
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2. FINITE VOLUME METHOD

centroid values after approximating the gradient with a finite difference:

φP − φb
|d|

= hb(φ∞ − φb), (2.28)

which after rearrangement gives:

φb =
φP + |d|hbφ∞

1 + |d|hb
, (2.29)

that eventually leads to an estimate of the value at the face in the transport

equation for the boundary control volume.

This condition determines the medium “impedance” it can be used in heat transfer

problems where it models the heat exchange between the environment and the

material behind the wall.

Periodic boundaries consist of two sets of faces often referred to as periodic zone and

shadow zone. Each face on the periodic boundary requires a specification of the

corresponding face in the shadow zone. Then the regions are matched and behave

as if they were adjacent. The cells which are adjacent through a periodic zone are

considered neighbours adjusting appropriately the fluxes in the control volume

transport equation. Essentially, the equations for the boundary cells are now

exactly the same as for internal cells.

2.4 The system of linear equations

The final form of the linear equations is obtained by substituting the discretised and

linearised terms back into Equation (2.3). The most compact way of expressing the

resulting system of linear equations takes the form:

aPφP +
∑
N

aNφN = RP , (2.30)

where aP , aN s are coefficients which depend on the choice of discretisation method.

Equation (2.30) expressed in matrix notation is:

Aφφ = R. (2.31)

Matrix Aφ contains aP coefficients on the diagonal and aN outside of it. φ is a vector

of unknowns and R a source vector. This equation can be fed into a linear equation

solver.
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2.4 The system of linear equations

Now Equation (2.31) has to be solved with respect to φ using a viable numerical tech-

nique. Linear equation solvers can be broadly split into two groups: iterative and direct

methods. The latter ones usually give an exact answer in a finite number of steps how-

ever the number of steps usually grows as a cube of the number of unknowns, making

the total cost prohibitively high for large scale computations. Iterative methods begin

with an initial guess and at each step attempt to improve the solution. Convergence of

these methods depends on the form of the matrix and will usually require satisfaction

of some additional criteria.

For the estimate of computational resources required to solve Equation (2.31) it is

important to note that Aφ is usually a sparse matrix i.e. only a relatively small subset

of coefficients has non-zero values. Choosing a solver that preserves this property will

limit memory requirements. It is also important to notice that discretisation errors

are usually an order of magnitude higher than the errors coming from the solution of

Equation (2.31) and therefore there is no need for a high accuracy solution of the linear

equation.

In the discretisation every term treated explicitly will contribute to the source vector R

whilst implicit terms might contribute to both A and R (c.f. Subsection Section 2.2.2)

A matrix is said to be diagonally dominant if for all P it satisfies
∑

N |aN | ≤ |aP |.
For Jacobi and Gauss–Seidel methods diagonal dominance is a sufficient condition for

the convergence of the algorithm. Therefore, increasing the diagonal dominance will

enhance the performance of the linear solver.

A solver used in this study for symmetric matrices is a preconditioned conjugate gra-

dient (PCG). The original method was proposed by Hestens and Stiefel (1952). It

converges in a number of steps less than or equal to the number of equations. The

exact number of steps depends on the dispersion of eigenvalues characterised by so

called condition number. In general condition number is a property of the problem

that measures how much the output values change with small perturbations of input

values. If the change is large than the problem is said to be ill-conditioned and if the

change is small it is said to be well-conditioned.

For an arbitrary matrix the condition number is the ratio of the highest to the lowest

singular value from the matrix singular value decomposition. For real, square matri-

ces this simplifies to the ratio of the maximal eigenvalue to the minimal eigenvalue.

Preconditioner is a method of preprocessing of the matrix in order to decrease this
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2. FINITE VOLUME METHOD

value. The preconditioner used in this study is diagonal incomplete Cholesky (DIC).

For asymmetric matrices the solver used was the Preconditioned Bi-Conjugate Gradient

(PBiCG) with a Diagonal Incomplete LU (DILU) as a preconditioner.

2.4.1 Under-relaxation

For steady state calculations, which are often undertaken in this study, the time deriva-

tive is neglected which significantly decreases the diagonal dominance of matrix A. In

the absence of implicit source terms the matrix can be at best diagonally equal mak-

ing it unsuitable for iterative linear solvers (see Rusche (2002)). To enhance diagonal

dominance an artificial term is introduced

aPφ
n
P +

1− λ
λ

aPφ
n
P +

∑
N

aNφN = RP +
1− λ
λ

aPφ
0
P , (2.32)

where 0 < λ ≤ 1 is an under-relaxation factor (URF), and φn,φ0 are the current and

the previous iteration values of the solution respectively. If we rewrite this equation to

a form:
1

λ
aPφ

n
P +

∑
N

aNφ
n
N = RP +

1− λ
λ

aPφ
0
P , (2.33)

where it is clear that decreasing λ increase the diagonal dominance of the left hand side.

With this modification the simulation is considered converged when φn approaches φ0.
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Chapter 3

Volume of fluid method with

periodic boundaries

A single scalar transport equation of the form presented in the previous chapter is in-

sufficient to describe the governing equations of fluid dynamics. The equations derived

from the conservation of momentum form a vector transport equation. The first im-

portant difference is that the convection term now ties together the values of all vector

components creating a coupling between equations. This vector equation is further

coupled with a continuity equation through the pressure field. The pressure term in

momentum equations can be treated as a source term which leads to a non-conservative

formulation or as a surface force which leads to a conservative formulation (see Ferziger

and Perić (2002)).

In this chapter we present the standard equations solved by computational methods

and then we review the techniques commonly employed to resolve with the pressure-

velocity coupling. Then we move to a special treatment of periodic boundary conditions

for single phase and multiphase flows. Validation against an analytical result is also

presented.

3.1 Governing equations

In the community of multiphase flows, the methodology presented here is called as “one

fluid” approach (see Prosperatti and Tryggvason (2006)) since only one set of momen-

tum equations and one continuity equation will be solved. If we are to take account
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3. VOLUME OF FLUID METHOD WITH PERIODIC BOUNDARIES

of the different properties of the fluids it is necessary to account for varying material

constants i.e. density, viscosity or thermal properties as well as to add appropriate

terms to the momentum equations to account for interfacial phenomena (e.g. surface

tension).

For a two-phase flow, the constituent fluids can be identified with an indicator function

H(x). We assume that the fluids are immiscible and therefore only one phase can

occupy point x and consequently the indicator will take only two possible values: 1 if

area is occupied by the denoted phase and 0 otherwise. For two-phase flow only one

indicator is necessary.

If both of the fluids are incompressible the density is given by

ρ(x) = H(x)ρ1 + (1−H(x))ρ2. (3.1)

Similar equations can be derived for other material properties, but it is important to

note that the constants appearing in the diffusion terms might be further related to the

position of the interface. In these cases the relation between the direction of diffusion

and the position of the interface might significantly affect the rates of diffusion.

To account for interfacial effects in the momentum equations it is necessary to localise

the interface in the spatial domain. The interface is marked by a non-zero gradient of

the indicator function. Therefore we need to calculate the gradient of H. The indicator

function can be re-expressed in terms of delta functions as follows:

H =

∫
A
δ(x1 − x̂1)δ(x2 − x̂2) dx̂, (3.2)

where A corresponds to an area occupied by the phase denoted by H. The gradient

can be expressed as

∇H =∇x

∫
A
δ(x1 − x̂1)δ(x2 − x̂2) dx̂

=

∫
A
∇xδ(x1 − x̂1)δ(x2 − x̂2) dx̂

=−
∫
A
∇x̂δ(x1 − x̂1)δ(x2 − x̂2) dx̂

=−
∮
S
δ(x1 − x̂1)δ(x2 − x̂2)n′ dŝ′, (3.3)

where S is the bounding surface of A. The transformation of the variables in the

gradient was possible because δ is antisymmetric with the integration of the variable.
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3.1 Governing equations

Now we introduce a new coordinate system. The first coordinate will be the distance

s along the bounding surface. The second coordinate is the length of a vector normal

to the surface S. This is denoted by n. With the new coordinate system it is possible

to write:

δ(x1 − x̂1)δ(x2 − x̂2) = δ(n)δ(s). (3.4)

And eventually the Heaviside function is expressed:

∇H = −
∮
S
δ(s′)δ(n′)n ds′ = −δ(n)n. (3.5)

For the sake of brevity the above derivation has been written for two-dimensional flow.

A generalisation to three dimensions is possible and will be used subsequently. This

allows us to write down the momentum equations

∂ρU

∂t
+∇ ·

(
ρUUT

)
=−∇p+∇ · τ + g + σκδ(n)n, (3.6)

where κ is the curvature of the interface, ρ density, µ viscosity, and σ surface tension

coefficient.

The above equations contain discontinuities over the material interfaces and therefore

cannot be solved with the FDM. However, the finite volume method can obtain a

solution to an equivalent integral form, which admits discontinuous solutions.

In the discretisation process the indicator function will be turned into a scalar field.

The corresponding scalar transport equation must be added to the system.

3.1.1 Phase fraction

In the VOF approach the indicator function becomes another scalar field which enters

the system of governing equations as an unknown. Let α denote a volume fraction

occupied by the first phase within a given control volume. This study adopts the

following equation to capture the evolution of the phase distribution:

∂α

∂t
+∇ · (αU) + ∇· (α(1− α)Uc)︸ ︷︷ ︸

interface compression

= 0, (3.7)

where Uc is an additional velocity field required to compress the interface. This equa-

tion differs from an ordinary scalar transport equation ( Equation (2.3)). The third

term on the left hand side has no physical meaning and it has been artificially added in
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Figure 3.1: Quartic scheme for two neighboring cells and its iso-surfaces.

order to counteract numerical diffusion and keep the interface between phases sharp.

Note that the weighting α(1 − α) ensures that the whole term is effective only in the

region where both phases coexist.

After discretisation with FVM Equation (3.7) will take the form:

αP − αold
P

∆t
+
∑
f

Ffαf +
∑
f

F cfwf (α)wf (1− α) = 0, (3.8)

where F = U ·S is the flux surface field and αf is a face value of α estimated according

to a chosen interpolation scheme. Fcf , appearing in the third term, is the compressive

flux and w(·) is quartic weighting which is described below in greater detail.

The additional flux F c is designed to keep the interface sharp. The approach adopted

in this study, calculates it as a flux equal in magnitude to the original flux, but pointing

in the direction of the phase fraction gradient. The flux direction is expressed by:

n̂ =
∇α

|∇α|+ δ
, (3.9)

where δ is the smallest positive number available in a given digital representation,

included to prevent numerical instabilities.

Fc = |F |
(

n̂ ·
Sf
|Sf |

)
. (3.10)

The special weighting wf (·), employed in Equation (3.8), is calculated in the following

way:
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Flow direction
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Figure 3.2: Capturing the interface at the front of a displaced phase region. The velocities

in each cell are equal and the values of phase fraction were chosen arbitrarily to create a

two-cell wide interface. Note the lack of treatment on the first face.

w∗f (αN , αP ) = 1−max
{

(1− 2αP )4, (1− 2αN )4
}
, (3.11)

wf (αN , αP ) =

{
0 w∗f (αN , αP ) < 0

w∗f (αN , αP ) otherwise
. (3.12)

The interface compression weighting scheme is based on the quartic scheme and is

depicted in Figure 3.1. The values are obtained for each face based on two neighbouring

cells. Also, the function in Equation (3.11) is symmetric with respect to a point (0.5, 0.5)

and therefore for 0 ≤ α ≤ 1

wf (αN , αP ) = wf (1− αN , 1− αP ). (3.13)

The interface compression term is inactive if the there are less than two layers of cells

with phase fraction between zero and one. For wider interfaces the treatment is not

symmetric with respect to the side of the front: the method behaves differently in

the case of a phase entering the control volume and for the phase leaving the control

volume. The first example is depicted in Figure 3.2. The method is inactive if any

of the neighboring cells is 1 or 0. This means that numerical diffusion is counteracted

only in the region between transition cells and not in the first cell of the interface.

If the phase is leaving the control volume (see Figure 3.3) then the non-zero compressive

flux is positioned between the last cell containing the phase and its upwind neighbour.

This time the compressive treatment increases the transport rate of the phase and

therefore keeps a sharper gradient at the phase boundary.
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Figure 3.3: Capturing the interface at the back of displaced field. Note the increased

diffusion from the last cell. Velocities in each cell are equal and the values of phase fraction

were chosen arbitrary to create a two-cell wide interface.

To summarise, in front of the displaced phase a rarefaction wave will be formed, which

connects continuously regions of two phases. This effect will decay fairly quickly since

subsequent cells will receive an anti-diffusion treatment which hinder an increased scalar

spreading. At the back of the bubble the discontinuity will remain sharp due to en-

hanced diffusion. Simple tests show an exponentially decaying region at the front of a

displaced phase and a sharp interface on its back. This result is in contradiction with

a weak solution of a Riemann problem for Burgers equation where an exactly opposite

picture emerges (i.e. a discontinuity at the front and a rarefaction at the back of the

displaced phase).

A comparison between various interpolation schemes of the kind presented in Chapter 2

with the method presented in this section is shown in Figure 3.4. The test is the result of

advancing a 1D linear advection equation on a uniformly spaced grid with the Courant

number equal to 0.1. This demonstration serves to show that the artificial flux method

presented in this section can perform the task of advecting a discontinuity in a similar

way to the more established methods.

The definition of a phase fraction indicator, α, allows the calculation of material con-

stants as averages where α takes the role of weighting function:

ρ = αρG + (1− α)ρL, µ = αµG + (1− α)µL (3.14)

and similar relationships for thermodynamical properties. Again we point out that in
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Courant number equals to 0.1.
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3. VOLUME OF FLUID METHOD WITH PERIODIC BOUNDARIES

some cases the orientation of the interface with respect to diffusion should be taken

into account.

3.1.2 Continuity and momentum Equations

The material properties calculated in the previous stage allow us to obtain coefficients

for momentum equations properly accounting for the differences between phases. This

leads to a single set of governing equations with varying coefficients which represent

averages over control volumes. The equations for a single phase flow with varying

coefficients have been derived by many authors (see e.g. Batchelor (1967), Landau

and Lifshitz (1987), Anderson (1995), Panton (1996)). The form that is relevant to

two-phase flows needs additional terms that model phase interactions e.g. gravity force

or surface tension.

To simplify the specification of pressure at the boundary a modified pressure is usually

introduced. The equations are then solved with the modified pressure as an independent

variable.

p̂ = p− ρg · x. (3.15)

This also eliminates the constant gravity source term that appears on the right hand

side of Equation (3.6) since the gradient of pressure is now expressed by:

∇p = ∇p̂+ g · x∇ρ+ ρg. (3.16)

To include the effects of surface tension the curvature coefficient κ has to be calculated.

In the interface capturing methodology there is no explicit interface and κ has to be

extracted from the phase fraction distribution. Using the interface normal vector n̂

obtained in the previous section, the curvature can be obtained as:

κ = ∇ · n̂. (3.17)

The form of the stress tensor is derived based on the following assumptions. The

tensor must be related to the local deformation of the fluid, which can be expressed

by velocity gradients. If we assume that the deformations are small, we can postulate

that the stress depends only on the first derivative of velocity and the dependency is

linear. Also, there can be no terms which are independent of velocity derivatives, since
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3.1 Governing equations

the tensor has to vanish for a constant velocity field. The most general tensor of rank

two satisfying these condition is (see Landau and Lifshitz (1987)):

τ = µ

(
∇U + (∇U)T − 2

3
Itr∇ ·U

)
+ ζItr∇ ·U, (3.18)

where I is the identity tensor, µ is the shear viscosity and ζ is the extensional viscosity.

In incompressible flows the term containing extensional viscosity vanishes and therefore

this constant will not be taken into account. In some cases, relevant to multiphase flow

it is important to introduce it, e.g. Batchelor (1967) studies the extensional viscosity

of bubbly liquids.

With these relations the general equations of momentum transfer are:

∂ρU

∂t
+∇ ·

(
ρUUT

)
= −∇p̂+∇ · µ(∇U + (∇U)T )︸ ︷︷ ︸

viscous stresses

+

− g · x∇ρ︸ ︷︷ ︸
gravity

+ σκ∇α︸ ︷︷ ︸
surface tension

, (3.19)

where the stress tensor has been further expanded taking into account that viscosity

now varies spatially.

Apart from the conservation of momentum, the overall mass conservation must be

satisfied.

∂ρ

∂t
+∇ · (ρU) = 0 (3.20)

3.1.3 Turbulence equations

If Equation (3.19) was solved for high Reynolds number flow than a very fine mesh

would have to be adopted in order to resolve all the scales of turbulence. This equation

would constitute the core of DNS approach. In this study turbulence modelling is

adopted and therefore the above equations are derived for averaged velocities. This

procedure gives an additional term on the right hand side:

∂ρU

∂t
+∇ ·

(
ρUUT

)
= −∇p̂+∇ · µ(∇U + (∇U)T )+

− g · x∇ρ+ σκ∇α+ ∇ · ρuu︸ ︷︷ ︸
Reynolds stress

, (3.21)

where U has a meaning of average velocity and there is an additional term which

needs to be modelled. The modelling assumption usually adopted is called Boussinesq
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eddy viscosity assumption. It expresses the unknown correlations in terms of averaged

velocities and turbulent viscosity that is derived from scaling arguments.

ρuu = µt

(
∇U + (∇U)T

)
− 2

3
ρIk, (3.22)

Turbulence and turbulence modelling are described in more detail in Chapter 4. Here it

is only important to mention that apart from momentum and mass balance equations,

a set of scalar transport equations is also solved. As an example a Wilcox (1988) k–ω

turbulence model equations are presented here. The two additional quantities and their

corresponding transport equations are.

µT = ρ
k

ω
(3.23)

∂

∂xi
(ρuik) = µT

(
∂ui
∂xj

)2

− ρCkkω +
∂

∂xj

[
(µ̂+ σkµt)

∂k

∂xj

]
(3.24)

∂

∂xi
(ρuiω) = µTC1ω

(
∂ui
∂xj

)2 ω

k
− ρC2ωω

2 +
∂

∂xj

[
(µ̂+ σωµt)

∂ω

∂xj

]
(3.25)

The constants in the above equations are Ck = 0.09, C1ω = 5
9 , C2ω = 3

40 , σk = 1
2 ,

σω = 1
2 .

3.1.4 Additional constraints

Equations (3.7), (3.21), (3.24) and (3.25) are solved inside every control volume. For

the control volumes that do not border with any boundaries the fluxes are expressed

using the values in neighbouring cells. For the control volumes on the border of the

domain, the fluxes need to be specified. Here, we use no-slip boundary condition for

every solid wall i.e. the convective flux over the patch is equal to zero. The diffusive

fluxes are approximated using the value of wall velocity.

The velocity inlet and the pressure outlet can be used for inlet/outlet modelling, how-

ever, this study focuses on periodic boundary conditions. Neighborhood list of the

control volumes adjacent to the inlet now includes the control volumes adjacent to the

outlet.

Furthermore a mass flux over the periodic surface is imposed. Because each of the

phases is incompressible, this is conveniently expressed through superficial velocities,

36



3.2 Pressure-velocity coupling

which are bulk velocities of a given phase if the phase were to occupy the whole cross-

section. If the periodic cross-section is denoted by S, then

1

|S|

∫
S
αU · dS = Usg

1

|S|

∫
S

(1− α)U · dS = Usl (3.26)

where Usg and Usl are known superficial velocities. The imposition of these mass fluxes

completes the specification of the problem.

3.2 Pressure-velocity coupling

The governing equations presented in Section 3.1 are a system of coupled, non-linear

equations. If the coupling between these equations is weak then an efficient strategy of

obtaining a solution is to solve these equations sequentially. In this approach we begin

with an initial guess and correct each unknown field assuming that the remaining fields

do not change.

In general, the governing equations have to be solved in both time and space. During

the calculation various coefficients in these equations might change. Therefore there

is a need to distinguish between inner and outer iterations. The solution procedure

can be repeated several times taking the previous solution as an initial guess. These

repetitions are called inner iterations and the series of inner iterations coupled with a

stopping criterion is an outer iteration. For example an inner iterations might be run

for a given time step and then every execution of inner iterations leads to an improved

solution for a given time step. When the stopping criterion has been met, the equation

is advanced in time and another series of inner iterations is performed.

Convergence criteria can be specified in many ways. For transient simulations it is

necessary to prescribe the end time of the simulation. For inner iterations of transient

calculations or for steady state calculation a relative residual is usually given.

Rn < εR0, (3.27)

where ε is a specified number. In this study ε = 10−6 is used. Figure 3.5 summarises

the above algorithm for the governing equations presented in Section 3.1.

The momentum equations, Equation (3.19), are discretised according with the FVM

which leads to the following form

ADU∗ = AH −∇p̂∗ − g · x∇ρ+ σκ∇α, (3.28)
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Figure 3.5: The structure of a segregated solver.

where U∗ and p̂∗ are vectors of unknowns corresponding to values at cell centres. AD

is a matrix of diagonal generated from time derivatives and the implicit source terms.

The matrix AH is:

AH = AR −ANUold (3.29)

where AR is a term derived from the discretisation of the explicit source vector and AN

is a matrix of off-diagonal coefficients coming from the convective and viscous terms,

Uold is a velocity vector from the previous iteration. We can re-express Equation (3.28)

as:

U∗ =
AH

AD
− 1

AD
∇p̂∗ − 1

AD
g · x∇ρ+

1

AD
σκ∇α (3.30)

since division is well-defined for non-singular, diagonal matrices. Now if we express this

in terms of volumetric fluxes for each of the cell bounding surfaces we get:

φ = φold −
(

1

AD

)
f

|S|∇⊥f p̂∗ (3.31)

where S is the surface vector and subscript f denotes the quantity interpolated at the

surface. φold is:

φold =
AH

AD
· S− 1

AD
(g · x)f |S|∇

⊥
f ρ+

1

AD
(σκ)f ∇

⊥
f α. (3.32)
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Equation (3.31) substituted in the continuity equation gives a Poisson equation:

∇ ·

[(
1

AD

)
f

|S|∇⊥f p̂∗
]

= ∇ · φold. (3.33)

Solving the above equation will give a velocity and pressure field that satisfy the conti-

nuity equation but might not satisfy the momentum equation. At this point we execute

the next inner iteration by using the new values for velocity and pressure. We continue

until convergence is reached.

The above is a classical example of so called projection methods, which projects out the

divergence producing part. Other commonly used methods rely on a decomposition of

velocity and pressure into a provisional value and a correction required to satisfy the

original set of equations. The decomposition is denoted by:

U∗ = Uold + U′, p̂∗ = p̂old + p̂′, (3.34)

It is assumed that the equation p̂old and Uold satisfy the momentum equation although

they do not have to satisfy the continuity equations. Subtracting the momentum equa-

tions with the old values from the current iteration values gives:

U′ = −ANU′

AD
−
(

1

AD

)
∇p̂′, (3.35)

which ties the correction of velocity to the correction of pressure. By expressing this

correction in terms of volumetric fluxes this can be substituted back in the continuity

equation:

φ′ = (φ′)
old −

(
1

AD

)
f

|S|∇⊥f p̂′, (3.36)

(φ′)
old

= −ANU′

AD
· S, (3.37)

∇ ·

[(
1

AD

)
f

|S|∇⊥f p̂′
]

= ∇ · φold +∇ · (φ′)old
, (3.38)

which must be implicitly solved for p̂′ and U′. Many methods have been proposed based

on the treatment of the last term on the right hand side. Two extreme approaches will

be presented here.
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3.2.1 SIMPLE

In the semi-implicit method for pressure-linked equations the effect of the last term

on the right hand side of Equation (3.38) is neglected and the correction of velocity is

expressed by:

U′ = −
(

1

AD

)
∇p̂′. (3.39)

There is no formal justification for this step. However, if the method converges, then

the values of p′ and U′ are small in comparison with p̂old,Uold and therefore the coupling

term will have little effect, vanishing if the exact solution is recovered.

The price paid for this simplification is that the method is known to converge slowly

(see Ferziger and Perić (2002)) and often does not converge at all. Under-relaxation

factors have to be used to control the convergence rate.

3.2.2 PISO

Pressure-implicit split-operators method performs a series of corrections to velocity and

pressure. The first iteration, similarly to SIMPLE, neglects the correction coupling

term. However, subsequent iterations use the velocity corrections calculated in the

previous stage giving an explicit estimate of the last term in Equation (3.38):

U′′ = −ANU′

AD
−
(

1

AD

)
∇p̂′′. (3.40)

Since the velocity field U′ obtained in the previous stage from Equation (3.39) al-

ready satisfies continuity conditions now only the velocity of U′′ is substituted back to

continuity giving:

∇ ·

[(
1

AD

)
f

|S|∇⊥f p̂′′
]

= ∇ ·
(
φ′
)old

. (3.41)

This procedure can be repeated several times giving many interim estimates of pressure

and velocity fields. There is no need to use to the under-relaxation factors in this

approach.
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3.2 Pressure-velocity coupling

3.2.3 Additional discretisation considerations

As mentioned in Chapter 2 collocated grid may introduce solution that do not have a

meaningful physical interpretation. This is caused by the fact that after discretisation

of pressure term in the momentum equation with simple linear interpolation the central

value of pressure for each control volume vanishes.

This leads various spurious solutions e.g. for 1D and 2D are respectively the so called

zigzag solution and the checkerboard solution. These solutions use an interchanging

pattern of values e.g. for 2D p2i = 100 and p2i+1 = 500 (example from Patankar (1980).

Since the central value is not accounted in the control volume discretised momentum

equation, pressure will be solved on the twice as coarse grid as every other quantity

interchanging values will be perceived by the method as a uniform pressure field. This

is sometimes called odd-even decoupling.

In structured grids a remedy to this problem is to adopt the staggered arrangement:

pressure is solved for the points in the centre of the control volume whilst velocity is

solved for the points that lie on the faces of control volumes. Staggered grid, however,

becomes more difficult to implement in complex geometries when unstructured grids

need to be used.

Rhie–Chow interpolation alleviates this problem by including such a correction term in

convective velocities that the central value of pressure does not vanish from the pressure

correction equation and an odd-even decoupling does not take place.

aPUiP + [∇p]P = HP , (3.42)

aNUiN + [∇p]N = HN , (3.43)

where i denotes the direction, aP , aN denote corresponding coeffcients in matrix AD

and H denotes remaining terms after discretisation. Now we write the same equation

for the face value:

afUif + [∇p]f = Hf . (3.44)

Rhie–Chow interpolation assumes that the value for the face can be described as a

weighted average of HN and HB, which after simple algebraic transformations leads to

Uif = U if +
1

af

(
∇ip −∇ip

)
, (3.45)
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where an overbar denotes the weighted average. The key benefit from this formulation

is that the values included in the weighted average come from the centres and the

gradients from the centres will use face values which in turn will use the central values

again. As a result more values will be used and most importantly the central values

will be retained (they will not simplify).

The methods presented in preceding subsections circumvent these difficulties by calcu-

lating flux with face values of pressure in Equation (3.31) and then solving for centroid

values in Equation (3.33). This can be termed as a correction in the spirit of the Rhie–

Chow interpolation since approximation in Equation (3.45) never appears explicitly.

3.3 Periodic boundary conditions

Periodic boundary conditions alter the solution procedure at the level of pressure-

velocity coupling. Firstly, observe that the constraint expressed by Equation (3.26) has

a global character and involves two independent quantities, namely velocity and phase

fraction. This is different from a single phase, incompressible flow case, where velocity

was the only independent quantity.

On its own, the multiphase equivalent of the problem will have many solutions. How-

ever, if we confine ourselves to stratified flows only, then the we expect the steady state

solution to have the liquid at the bottom and gas at the top of the channel. This limits

the number of solutions and allows the development of effective procedures.

The assumption of having a heavier phase at the bottom simplifies the goal of calculat-

ing the height and the pressure gradient. At each step three quantities will be modified:

pressure, velocity and phase fraction. Many approaches have been attempted in this

study. Eventually a three step method has been proposed. In the first step we account

for continuity using the PISO algorithm to resolve pressure-velocity coupling. This is

a standard procedure in segregated solvers. In the second step streamwise pressure

gradient and velocity are corrected for gas and liquid separately. This generalises the

procedures described in Murthy and Mathur (1997), Patankar and Spalding (1972),

Beale (2007). Note, that these correction are performed separately.

The next step compares the pressure gradients in liquid and gas phases and performs a

local correction to the phase fraction distribution that moves the interface in the normal

direction in such a manner that the streamwise pressure gradients in each phase become
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equal. The idea behind the local correction was guided by an attempt to keep the shape

of the interface intact. This would allow us to obtain the shape of interface from the

solution of VOF equation and then move it in the normal direction to account for

constraint of Equation (3.26). The simulation is said to converge when the pressure

gradients in both phase are sufficiently close to each other.

This method is applied here for steady state calculations only. However, it is possible to

incorporate it as an inner loop of an unsteady simulation. In this case the modification

would work only on the periodic patch, whilst the internal control volumes would solve

the full unsteady form of the governing equations. The shape of the interface would

appear due to modifications caused by gravity and surface tension, whilst its exact

position would be calculated using the above procedure.

3.3.1 Notation

Consider the domain of length L, with a periodic patch applied at both ends. This

should represent a repeatable segment of the original flow problem. Let e be a normal

to the periodic patch. Then, similarly to Murthy and Mathur (1997), periodicity can

be described as follows:

U(x) = U(x + eL), (3.46)

p̂(x + eL)− p̂(x)

L
=
p̂(x + 2eL)− p̂(x + eL)

L
. (3.47)

As opposed to the velocity field, the pressure field is not strictly periodic, since there is

a jump of constant height between the outlet and the inlet of each segment. To perform

periodic calculations we must include the jump of pressure at the periodic patch.

p̂(x) = p̂∗(x) + (x · e)β (3.48)

where β will designate a constant, streamwise pressure gradient and p̂ will be the

periodic pressure field.

3.3.2 Single-phase pressure-correction

Some of the first publications on periodic boundary conditions in three-dimensional

flows were those by Patankar and Spalding (1972), Patankar et al. (1977). In the

former one the FDM was used to solve continuity, momentum equation and a general
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scalar transport equation. To run a 3D calculation with a speed comparable to 2D

a Tri-Diagonal Matrix Algorithm in y and z is employed. When sweep in one of the

direction is performed the values in the other transverse direction are held constant.

In the latter temperature equation is also considered with a special consideration of

wall-boundary conditions as the choice of these, alter the form of the resulting periodic

equations.

Murthy and Mathur (1997) reports a development of a FVM code on unstructured

meshes, generalising the previous results. Using this technique they study triangular

ducts, serrated channel and pipe bundles. Application to offset-fin heat exchangers was

presented by Beale (2007).

Using periodic boundary conditions Kawamura (1998), Tiselj et al. (2001), Kozuka

et al. (2009) performed a series of direct numerical simulations that allow the study

of the turbulent heat flux budget, temperature variation, heat dissipation and other

statistical quantities related to thermal fields of a turbulent flow.

In a single phase flow only one equation for the mass flux is necessary. In the in-

compressible case we can use constant volumetric flux or average velocity instead of

constant mass flux. The average velocity at a discretised periodic face is given by:

1

|S|
∑
f

Uf · Sf = Ub, (3.49)

where Ub is a given bulk velocity that has to be specified as an input to the procedure.

We decompose velocity according to Equation (3.34) and reorganise the terms to get

the corrections on the left hand side.

1

|S|
∑
f

(U′f ) · Sf = Ub − Uold
b , (3.50)

Similarly to pressure, the pressure drop across the periodic patch has to be decomposed

into the current value and the correction:

β = βold + β′. (3.51)

Now in case of the SIMPLE algorithm we can express the velocity correction in terms

of a pressure correction according to Equation (3.39), a discretisation of the gradient

and the decomposition of pressure in Equation (3.48) and we obtain:

β′ = −
Ub − Uold

b∑
f d
−1
f

, (3.52)
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where df is a diagonal value of matrix AD. Ultimately, the calculation using periodic

boundaries with a specified mass flux requires us to solve the momentum equations for

the points inside the domain and subsequently apply the correction for β which leads

to a correction of the values on the boundary of the domain.

3.3.3 Two-phase pressure-correction

As described at the beginning of this section, for two-phase flow we solve two periodic

problems separately. First we decompose β in the following way:

β = αβG + (1− α)βL, (3.53)

where βG and βL are streamwise pressure drops across the periodic boundary for gas

and liquid respectively. This effectively makes β a function dependant on spatial coor-

dinates. Now our task is to calculate the constants βP , where P=G,L. Again, we can

decompose these phase values into the current value and the correction:

βP = βold
P + β

′
P . (3.54)

The discretised form of Equation (3.26) is given by:

1

|S|
∑
f∈B

αfUf · Sf = UsP (3.55)

where B is the periodic streamwise boundary through which the net mass flux is im-

posed. Using specified superficial velocities and pressure-velocity coupling we can derive

a correction for βP similarly to Murthy and Mathur (1997):

β
′
P = −

UsP − Uold
sP∑

f αfd
−1
f

. (3.56)

After correcting the respective βP the rest of the correction to velocity proceeds in the

same manner as in single phase flow.

3.3.4 Liquid height correction

Correction of the velocity completes the second step. Now Equation (3.26) is satisfied

but βL and βG might differ. The problem we face now is to adjust the phase distribution

in such a way that will be closer to equilibrium in the next iteration. The intuitive idea
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Figure 3.6: Intuitive idea for the phase correction algorithm.

for this scheme is presented in Figure 3.6. If the streamwise gradient is lower on the

liquid side than the interface is moved down which increased gas phase width, decreasing

the pressure gradient and decreases liquid phase width, increasing the pressure gradient

there. If the pressure gradient is lower on the gas side the correction is performed in

the opposite direction with an analogous effect.

The realisation of this idea can be performed via the iteration of the advection equation

for the values of phase fraction at the patch:

∂α

∂t
+∇(Ucorrα) = 0 (3.57)

where Ucorr is an artificial velocity that is specified to secure the direction for the

correction according to the above logic. Its specification is a part of an algorithm and

in this study the following formula proved to be sufficient:

Ucorr =
(|βG| − |βL|)υ

max {|βL| , |βG|}
. (3.58)

where υ is a constant with the dimension of velocity.

Finally, the procedure is said to converge when the difference between streamwise pres-

sure gradients in both phases is longer small than a given tolerance:

|βG − βL| < ε (3.59)

This modification is performed only for the cells at the periodic patch. The time step

in Equation (3.57) is a fractional time step for unsteady simulation and the number
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of iterations is another parameter of the solution procedure. A simple explicit scheme

was adopted to solve Equation (3.57) with the Superbee interpolation scheme for the

divergence term. Superbee is renowned for its ability to keep discontinuities compressed

and was therefore suitable for a task of moving the interface.

3.3.5 Other approaches

The above approach includes artificial flux that acts only as a way to impose mass flux

constraints. Provided the method converges, the artificial flux vanishes and therefore

the resulting field is a solution to the problem posed at the beginning of this chap-

ter. Since the indicator function is directly translated this may cause smearing of the

interface which will deteriorate the quality of the results.

A way to address this problem would be to keep the value of interface height explicitly

in the code, modify it at every step of the procedure and then invoke a reinitialisation

to keep the interface compressed. This approach has been successfully implemented in

the progress of this study in FLUENT and STAR-CD commercial packages, however

the results are not presented here, since the method does not generalise easily to three

dimensions. In three dimensions concave and convex or irregular interfaces are possible,

which would require further parametrization and suitable corrections.

A use of geometrical interface reconstruction could alleviate some of the problems but

this approach is not followed here.

A completely different approach would be to formulate the problem where the pressure

gradient is known and the mass fluxes are to be calculated. Such approaches have been

already presented in the literature for instance Lombardi et al. (1996) or Fulgosi et al.

(2003). Specifying the pressure gradient alone leads to a strong dependency on initial

solution since the dependency on the distribution of the phase fraction will determine

different velocity fields under the same pressure gradient. An otter algorithm could be

then implemented which would perform a search for a pressure gradient and an initial

phase fraction distribution that satisfy given mass fluxes. Although this procedure is

essentially equivalent to the one proposed above, it is argued that in practical terms

it will incur a higher computational cost. This is caused by the fact that every time

the CFD calculation is executed the initial condition might vary significantly leading

to decreased convergence rate or even convergence problems.
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3.3.6 Preliminary results

Figure 3.7 show a typical result of a periodic calculation. Phase fraction and velocity

field are obtained. It was discovered that incorporating additional layers in the stream-

wise direction enhanced the stability of the procedure. More results follow in the

Chapter 6 where for simpler cases a comparison with analytical solution is presented.

For turbulent flows a comparison with experimental data is carried out.

3.4 Concluding remarks

The novel approach to periodic boundary for two-phase calculations is presented here.

The solution procedure combines single phase periodicity in such a way as to assure

the fluxes over the periodic face remain constant and equal to a specified number. In

the following chapter VOF method is used with inlet and outlet boundary conditions.

The periodic boundary condition is used only with flat interface assumption. However,

there is no contraindication for this procedure to work with VOF, provided that the

modification is limited to the cells adjacent to the periodic boundary. The compatibility

with VOF method is achieved by defining corrections for phase indicator function.

A simpler version would be to apply periodicity with specified pressure drop across

the periodic face, a given initial condition and evolve the state of the system with the

governing equations. Unfortunately, this method has no way of preserving the relative

mass fluxes and the physical Reynolds number characterising the flow, might change

over time. The periodic boundary method presented here is used in the following

chapters as a tool for assessing turbulence model and preserving the physical Reynolds

number is an important feature.
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Figure 3.7: Typical results from a 3D periodic simulation of a stratified flow.
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Chapter 4

Non-Newtonian properties in

turbulence modelling

Despite being more than a hundred years since the pioneering work of Boussinesq and

Reynolds on the statistical nature of turbulent flow, turbulence modelling remains a

very active area of both science and engineering. The lack of universally applicable

models on one side, and numerous applications and the ubiquitousness of turbulence

on the other, proved to be extremely motivating factors and led to multiple specialised

branches. One of them is turbulent flow of non-Newtonian fluids with turbulent drag

reduction in polymeric solutions appearing as an important and distinguishing feature.

The chapter begins with recalling one of the main results in the Newtonian case, namely

the logarithmic law of the wall and corresponding friction factors that were obtained

for channel and pipe flows. These formulae assist engineers in calculating pressure

gradients and therefore are useful for pipe design purposes. Then we move to results

in rheology that have been pioneered by Dodge and Metzner (1959), who observed a

necessity of introducing power-law viscosity equations to describe some fluids of interest

to industry. We follow the results that have been obtained in this context and eventually

we arrive at the recent turbulence models of non-Newtonian fluids.

In this chapter a new approach to calculating turbulent flows of power-law and yield

stress fluids is proposed. Emphasis is put on correcting the near wall modelling which

in standard approaches does not take the fluid rheology into account. In the spirit of

the RANS wall function modelling several possible corrections are proposed and tested

on a wide range of experimental conditions.
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Figure 4.1: Channel flow: stress and velocity profile sketch.

4.1 Newtonian turbulence in channels and pipes

Consider the flow presented on Figure 4.1. Consider the flow is steady and fully de-

veloped so that all streamwise and time derivatives vanish. If additionally the flow is

incompressible than the simplified single phase momentum equations are as follows:

∂Ui
∂xi

= 0, (4.1)

0 = −1

ρ

∂p

∂x1
− ∂

∂x2
u1u2 + ν

∂2U1

∂x2
2

, (4.2)

0 = −1

ρ

∂p

∂x2
− ∂

∂x2
u2

2 , (4.3)

where uiuj is the Reynolds stress i.e. correlation between fluctuating velocities. The

second momentum equation can be readily integrated giving:

p

ρ
+ u2

2 =
pw
ρ
, (4.4)

where pw = p(x1, 0, 0) is a pressure at the wall and therefore is a function of the axial

coordinate only. Upon substitution of this equation into the first momentum equation,

recalling that velocity statistics are independent of the axial coordinate (fully developed

flow) and with subsequent integration along x2 we obtain:

0 = −x2

ρ

∂pw
∂x1
− u1u2 + ν

∂U1

∂x2
− u2

τ (4.5)
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where uτ =
√

τw
ρ relating it to shear stress at the wall. At this stage Equation (4.5) still

has many solutions. There are two unknown functions: Reynolds stress and velocity.

By applying a symmetry condition of the form u1u2 + ν ∂U1
∂x2

= 0 at H/2 we observe

that the balance between remaining terms gives:

−δ
ρ

∂pw
∂x1

= u2
τ , (4.6)

where 2δ = H. After substitution to Equation (4.5) we arrive with:

−u1u2 + ν
∂U1

∂x2
= u2

τ

(
1− x2

δ

)
. (4.7)

With these simplifications, further analysis will just be an exercise in coordinate per-

turbation coupled with dimensional analysis. The reasoning is based on Tennekes and

Lumley (1972).

The xmomentum balance equation may written in the following non-dimensional forms:

−u1u2

u2
τ

+ Re−1
τ

∂

∂η

U1

uτ
= 1− η (4.8)

−u1u2

u2
τ

+
∂

∂y+

U1

uτ
= 1− Re−1

τ y+ (4.9)

scaled by η = x2/δ, y
+ = x2uτ/ν and with Reynolds number as Reτ = uτδ/ν.

Lastly, from the purely mathematical standpoint the symmetry condition does not have

to hold. Also the point where the stress is equal to zero does not have to coincide with

the centre of the channel. This assumption was introduced on empirical grounds only.

A plausible justification is that steady state, fully developed flow without Reynolds

decomposition has the zero stress point exactly in the centre. It is the introduction of

a new function, namely Reynolds stress, which distorts the symmetry that is contained

in the original equations.

4.1.1 Logarithmic law of the wall

In the large Reynolds number limit Equation (4.9) the Reynolds number effect on the

RHS becomes negligible. Therefore, the left hand side terms have to be functions of

y+ only:

u1u2

u2
τ

= g(y+) (4.10)

U1

uτ
= f(y+) (4.11)
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4. NON-NEWTONIAN PROPERTIES IN TURBULENCE MODELLING

Function f will play the role of an inner expansion. After neglecting Reynolds stress,

which vanishes at the wall anyway, we can integrate Equation (4.9) and obtain a linear

profile which is valid close to the wall.

U1

uτ
∼ y+ (4.12)

Unfortunately the asymptotic form of the momentum equations will reveal nothing

more. To obtain proper scaling relations we have to turn to the turbulent kinetic

energy equation. For this case it takes the form:

u1u2
∂U1

∂x2
= − ∂

∂x2

(
1

ρ
pu2 +

1

2
uiuiu2

)
− ε. (4.13)

From Equation (4.8) we know that u1u2 scales as u2
τ . Based on this, an argument can

be constructed for pure shear flows (see Tennekes and Lumley (1972)) that the RHS of

the above scales as u3
τ/δ. With this estimate1 the velocity gradient scales as:

∂U1

∂y
=
uτ
δ

∂F

∂η
, (4.14)

where F is an unknown function that will play the role of an outer expansion.

Having defined inner and outer expansions the third step is to match the functions in

the limits where one coordinate begin to overlap the other (coordinate perturbation).

Instead of matching the functions themselves it is better to perform matching on the

functions’ derivatives. Using the inner expansion the velocity gradient can be expressed

as:

∂U1

∂y
=
u2
τ

ν

∂f

∂y+
, (4.15)

and the matching condition is:

uτ
δ

∂F

∂η
=
u2
τ

ν

∂f

∂y+
, (4.16)

which upon multiplication by y gives:

η
∂F

∂η
= y+ ∂f

∂y+
. (4.17)

1To obtain it a set of equations describing the evolution equation of u2
i for each i have to be derived

and compared the dissipation term that is known to scale as u3
τ/δ. The lack of production terms in

equations for components normal to the mean flow suggests that the energy is redistributed through

pressure interaction terms which have to sum up to zero due to incompressibility. Note that the flow

is not isotropic.
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4.1 Newtonian turbulence in channels and pipes

Now assuming that η and y+ are independent quantities, we may conclude that the left

and right side of Equation (4.17) has to be equal to a constant:

η
∂F

∂η
=

1

κ
(4.18)

The outer solution might not be valid close to the wall and therefore the integration

has to be conducted from the centre of the channel leading to:

Uc − U1

uτ
= F (η) (4.19)

where Uc = U1(δ) is the mean velocity at the centre. After integration we obtain:

Uc − U1

uτ
= F (η) =

1

κ
ln η + C1, (4.20)

U1

uτ
= f(y+) =

1

κ
ln y+ + C2, (4.21)

which is the well-known logarithmic law of the wall. The above analysis can be repeated

for pipelines which will also result in a logarithmic velocity profile (see Pope (2000);

Tennekes and Lumley (1972)).

4.1.2 Friction factors for pipelines

There are numerous laws relating, pressure gradient, flow rates and other problem

parameters. For pipeline design and also for validation of turbulence models the Darcy–

Weisbach friction factor expression is commonly used:

f =
∆pD

1
2ρU

2
b L

, (4.22)

where L is pipe length, D pipe diameter, ρ density, Ub is the stream-wise velocity

averaged over crossection. Averaged values must be understood in a sense appropriate

for a given flow problem e.g. in the context of pipelines the bulk velocity which is given

by:

Ub =
1

πR2

∫ R

0
2U1(r)πr dr (4.23)

Writing down the equations of motion in cylindrical coordinates (convenient for a

pipeline) and with the above definitions it is already possible to draw several relations

(see Pope (2000)):

uτ
Ub

=

√
1

f
(4.24)
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An analysis similar to Section 4.1.1 but performed in cylindrical coordinates can be

now applied to yield an estimate of bulk velocity.

Moreover the so called “friction law of smooth pipes” can be obtained which explicitly

captures the Reynolds number effect. The law may be obtained by simply adding

Equations (4.20) and (4.21) which eliminates dependency on the y+ coordinate leading

to:

U0

uτ
=

1

κ
ln

(
Re

(
U0

uτ

)−1
)

+ C1. (4.25)

This result with appropriate constants which have to be given empirically is:

1√
f

= 2.0 log10

(√
fRe

)
− 0.8 (4.26)

where the empirical constants have been chosen to fit Nikuradse (1932) data who per-

formed a number of experiments for turbulent flows in pipes.

The above law performs well for smooth pipes. In practice, the internal surface might

not be smooth. Nikuradse (1933) presents friction factor data for rough pipes.

f =
1(

2 log R
kr

+ 1.74
)2 , (4.27)

where R = D/2 and kr is the roughness parameter.

Smooth and fully rough pipes represent two extreme cases for friction factors. The

experimental data reveal also an existence of a transition region. To account for it in

a friction factor expression Colebrook (1939) proposed:

1√
f

= 1.74− 2.0 log10

(
kr
R

+
18.7√
fRe

)
. (4.28)

This formula reduces to Prandtl law of smooth pipes if kr is set to zero. The von

Karman law, which captures the rough pipe data, is recovered if Re→∞.

4.1.3 Relevant quantities and their order of magnitude analysis

For the purpose of developing turbulence models, especially low-Reynolds number tur-

bulence models, it is necessary to secure so called asymptotic consistency with the wall

behaviour. To gain into insights about the variation of Reynolds stresses in the vicinity
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4.1 Newtonian turbulence in channels and pipes

of a solid wall a Taylor expansion of fluctuating components is carried out:

u1 = a11 + a12x2 + . . . , (4.29)

u2 = a21 + a22x2 + . . . , (4.30)

u3 = a31 + a32x2 + . . . . (4.31)

By applying a no slip boundary condition we observe that the first terms of each equa-

tion ai1 vanish. Moreover substituting these expansions into the continuity equation

results in a22 = 0. With these relations we can estimate the Reynolds stresses and

consequently terms in the equations of turbulent kinetic energy. The equation for fully

developed flows is the following:

∂

∂x2

(
1

2
uiuiu2 +

1

ρ
u2p′ − ν

∂

∂x2

(
k + u2

2

))
= P − ε (4.32)

where p′ denotes fluctuating pressure. With

P = O(x3
2) ε = O(1), (4.33)

ν
d2k

dx2
2

= O(1), ν
d2u2

2

dx2
2

= O(x2
2) (4.34)

∂

∂x2

(
1

2
u2uiui

)
= O(x3

2)
∂

∂x2

(
u2p′

ρ

)
= O(x2) (4.35)

The above estimates are important as they provide the desirable asymptotic behaviour

of low-Reynolds number models.

4.1.4 Near-wall treatments

The structure of a turbulent boundary layer exhibits large gradients of velocity and

quantities characterising turbulence, compared with the flow in the core region. In a

collocated grid these gradients will be approximated using discretisation procedures

which are not suitable for such high variation since they usually assume linear interpo-

lation of values between cell centres.

Moreover, the additional quantities appearing in the two-equation models that were

briefly presented in Chapter 3 require specification of their boundary conditions that

from purely physical grounds cannot be specified a priori.

This situation gave rise to a plethora of near-wall treatments. Two approaches can be

distinguished:
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Log-law

Buffer region

Viscous sublayer

bP1 b

Figure 4.2: Turbulent boundary layer structure with respect to the first computational

cell. High and low Reynolds number approaches i.e. wall function against fine grid (possibly

with damping functions).

• Low Reynolds number treatment (LRN) integrates every equation up to the vis-

cous sublayer and therefore the first computational cell must have its centroid at

y+ ∼ 1. This results in very fine meshes close to the wall. Additionally, for some

models additional treatment (damping functions) of the equations is required to

guarantee asymptotic consistency with the turbulent boundary layer behaviour.

This often makes the equations stiff and further increases computation time.

• High Reynolds number treatment (HRN) also known as the wall functions ap-

proach relies on a log-law velocity profile and therefore the first computational cell

must have its centroid in the log-layer. Use of HRN often enhances convergence

rate and numerical stability.

Interestingly, neither of the current approaches can deal with buffer layer i.e. the layer

in which both viscous and Reynolds stresses are significant. The first computational cell

should be either in viscous sublayer or in log-layer – not in-between. Automatic wall

treatments, available in some codes, are an ad hoc solution but the blending techniques

employed there are usually arbitrary and though they can achieve the switching between

HRN and LRN treatments they cannot be regarded as the correct representation of the

buffer layer.
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4.1 Newtonian turbulence in channels and pipes

4.1.4.1 Low Reynolds-number treatment

Low Reynolds approaches employ fine grids to resolve the turbulent boundary layer.

Some models require additional care in order to guarantee consistency with the known

asymptotic behaviour at the wall. In particular in a standard k-ε model eddy viscosity

vanishes as y4 at the wall, whereas from the considerations presented in Section 4.1.3

it is supposed to vanish as y3.

To deal with the problem many low Reynolds-number corrections have been proposed.

These models use additional functions that dampen some terms in model equations.

As an example and also for future reference Lam and Bremhorst (1981) k-ε model

equations are:

νt = Cµfµk
2/ε, (4.36)

∂k

∂t
+
∂Uik

∂xi
=

∂

∂xi

[
(ν + νt/σk)

∂k

∂xi

]
+ P − ε, (4.37)

∂ε

∂t
+
∂Uiε

∂xi
=

∂

∂xi

[
(ν + νt/σε)

∂ε

∂xi

]
+ C1εf1Pε/k − C2εf2ε

2/k, (4.38)

with the damping functions:

fµ = [1− exp(−0.0165Rew)]2/(1 + 20.5/Ret), (4.39)

f1 = 1 + (0.05/fµ)3 (4.40)

f2 = 1− exp(−Re2
t ) (4.41)

where Rew =
√
kyw/ν is a wall Reynolds number with yw being the wall distance.

Finally, Ret = k2/(εν) is a turbulent Reynolds number. A Taylor expansion around

the wall will show that νt now vanishes as y3. Unlike HRN approaches, LRN can

reproduce classical laminar solutions e.g. a parabolic velocity profile in a channel or

a pipeline. This is demonstrated in Appendix A where it is also compared with other

commercially available LRN models and with laminar model for a range of Reynolds

numbers and meshes.

4.1.4.2 High-Reynolds number treatment

There are two possible ways of implementing wall functions in a finite volume code:

• Additional source term in the momentum equations.
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4. NON-NEWTONIAN PROPERTIES IN TURBULENCE MODELLING

• Modification of turbulent viscosity in cells adjacent to solid walls.

The source term in the first approach is simply the difference between the logarithmic

and linear interpolation of velocity gradient multiplied by viscosity (the difference be-

tween a shear stress using linear interpolation and the shear stress from logarithmic

interpolation). The second approach does not attempt to reproduce the correct veloc-

ity gradient. Instead, turbulent viscosity is modified in such a way as to guarantee the

correct shear stress. After reorganising Equation (4.21) and using τw = ρu2
τ we obtain:

τw =
ρuτκU

lnEy+
, (4.42)

where E = 9.8 is equivalent to additive constants. On the other hand, the linear

interpolation for shear stress U
∣∣
y=0

= 0 we have:

τw = ρ(νt + ν)
Up
yp
. (4.43)

Comparing Equations (4.42) and (4.43) an expression for turbulent viscosity can be

obtained:

νt = ν

(
y+κ

lnEy+
− 1

)
. (4.44)

Note that uτ has been been incorporated in y+. The latter remains the only unknown

in the equation and has to be estimated for the current velocity field. In the standard

approach this cannot be done explicitly and instead an implicit way of obtaining y+

has to be employed.

After multiplying Equation (4.21) by yp/ν we obtain a compact version

κUpyp
ν

= y+ lnEy+, (4.45)

This equation can be solved numerically with respect to y+ for example via root search-

ing algorithms e.g. Newton’s method for specified Up, yp and ν. One iteration in a

Newton’s method for Equation (4.45) is

y+
n+1 =

κUpyp
ν + y+

n

1 + lnEy+
n
. (4.46)

Thus obtained y+ is then substituted to Equation (4.44). Eventually the estimated uτ

serves also to define the values of turbulent quantities in the cell adjacent to the wall:

kp =
u2
τ√
Cµ

, ωp =

√
kp

C
1/4
µ κyp

, (4.47)

60



4.2 Constitutive laws

which are the values for k and ω according to Wilcox (2006) asymptotic analysis of log

layer. These wall functions for k and ω are a results of a solution of model equation

for the logarithmic layer.

The above methodology is known in the literature as Standard Wall Functions. It has

been shown that this approach has many limitations, especially in separated flows like

backward facing step, where uτ becomes zero by definition in separation and reattach-

ment points. A different approach is to use the relation uτ = C
1/4
µ

√
k in both y+ and

Equation (4.42) leading to:

νt = ν

(
y∗κ

lnEy∗
− 1

)
, (4.48)

where

y∗ =
ypC

1/4
µ

√
k

ν
(4.49)

To guarantee the correct behaviour of k in the first cell the production term is adjusted:

Pp = −u1u2
∂U1

∂x2
= (νt + ν)

∂U1

∂x2︸ ︷︷ ︸
Boussinesq assumption

C
1/4
µ

√
kp

κyp︸ ︷︷ ︸
Logarithmic velocity

(4.50)

and ωp is specified as in Equation (4.47).

This enhancement has been proposed by Launder and Spalding (1974). For rough

surfaces a different form of log law velocity has to be used to derive the correct wall

functions.

4.2 Constitutive laws

From a mathematical point of view a non-Newtonian rheology changes the stress term

in the Navier–Stokes equation. The modifications may come under various forms in-

cluding the introduction of viscometric functions or a new differential equation relating

stress tensor to the rate of strain tensor. Viscometric functions introduce a variation

of viscosity with relation to the scalar invariants of the rate of strain tensor. The dif-

ferential equation can account for history and can capture effects like viscoelasticity.

The former is usually applied for robust engineering calculations of steady state flow

whereas the latter is used primarily for scientific purposes to understand the impact of

non-Newtonian behaviour in transient and complex flow simulations.
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4.2.1 Reiner–Rivlin fluids

Reiner–Rivlin fluids arise by applying principles of material isotropy and homogeneity

(see Astarita and Marrucci (1974)) to an equation of the form:

τ = g(Ŝ), (4.51)

where

Ŝ = [ŝij ]ij , ŝij =
1

2

(
∂ûi
∂xj

+
∂ûj
∂xi

)
, (4.52)

where ûi is an instantaneous velocity. The hat symbol was introduced to distinguish

between instantaneous and fluctuating values. By homogeneity we mean that the ma-

terial function g does not change with respect to translation of the frame of reference.

Isotropy states that any rotation of the frame of reference leaves the form of the function

g intact. The latter can be formally rewritten as:

Q · g(Ŝ) ·QT = g(Q · Ŝ ·QT ), (4.53)

where Q is an orthogonal tensor. Isotropic and symmetric tensor function can only be

of the following form:

g(Ŝ) = φ01 + φ1Ŝ + φ2Ŝ
2
. (4.54)

The scalar coefficients can depend only on the tensor scalar invariants IS , IIS , IIIS

defined as:

IS = trŜ, (4.55)

IIS = trŜ
2 − trŜ

2
, (4.56)

IIIS = detŜ, (4.57)

where tr is the trace. The first invariant, denoted IS vanishes for incompressible flows.

The first term in Equation (4.54) can also be neglected since we expect the stress to

be zero if no deformation occurs. Therefore we have:

τ = φ1 (IIS , IIIS) Ŝ + φ2 (IIS , IIIS) Ŝ
2
. (4.58)

A fluid that satisfies above equation is called Reiner-Rivlin fluid and the functions φ1,

φ2 are often referred to as material functions. Newtonian case is reconstructed by

taking φ1 = 2µ, φ2 = 0. The main drawback of this model is its inability to account

for normal-stress effects.
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4.2.2 Generalised Newtonian fluids

An important subclass of Reiner–Rivlin fluids is a group called generalised Newtonian

fluids (GNF). This class is obtained by taking:

φ1(IIS , IIIS) = µ(IIS), (4.59)

φ2(IIS , IIIS) = 0. (4.60)

The literature usually denotes

γ̇ =
√

2IIS , (4.61)

and defines viscosity models with respect to this parameter.

The most popular is the Ostwald–de Waele model (see Chhabra (2006)), also known

as power-law model. It aims to describe a log-linear relation that commonly observed

in many industrial processes.

µ = K (γ̇)n−1 (4.62)

where K is a so called consistency index and n is a power-law index, both chosen

empirically. Based on the latter one we can introduce the following distinction:

1. n < 1 is called shear-thinning fluid,

2. n > 1 is a shear-thickening fluid,

3. n = 1 is a Newtonian fluid.

It should be emphasized that the power-law is applicable on finite shear intervals only.

Also it exhibits a singularity close to γ̇ = 0 which can cause numerical solvers to

complain. This is why various regularisation are considered, of which the most common

is:

µ =


K (γ̇)n−1 µ0 6 K (γ̇)n−1 6 µ∞
µ0 K (γ̇)n−1 < µ0

µ∞ K (γ̇)n−1 > µ∞

, (4.63)

where limiting viscosities µ0, µ∞ have been imposed somewhat brutally.

A more elegant solution is the Cross model which is defined on a single interval and

guarantees a smooth1 transition between limiting viscosities.

µ = µ∞ +
µ0 − µ∞

1 + (λγ̇)1−n . (4.64)

1The function is in C∞ i.e. having continuous derivatives

63



4. NON-NEWTONIAN PROPERTIES IN TURBULENCE MODELLING

γ̇

τ

Newtonian
She

ar-
th
ick
en
ni
ngShe

ar-t
hinn

ing

Bi
ng
ha
m

Figure 4.3: Various classes of genaralised Newtonian fluids.

4.2.3 Viscoplasitc fluids

Another class of fluids are fluids that do not yield if the stress does not exceed certain

critical value called yield stress. The Herschel–Bulkey fluid is a constitutive law that

models this behaviour:

Kγ̇n =

{
0 τ < τY
τ − τY otherwise

, (4.65)

where τy is the yield stress, K is a consistency index, n is a power law index, τY is a

yield stress. For τy = 0 the model reduces to power-law model of Ostwald–de Waele

and for n = 1 Bingham plastic behaviour is reproduced.

Two regularisations used in the literature and computational codes are

µ =

{
µy γ̇ < τy/µy
τy
γ̇ +Kγ̇n−1 otherwise

(4.66)

and the exponential one suggested by Papanastasiou (1987):

µ =
(
1− e−mγ̇

) (τy +Kγ̇n)

γ̇
. (4.67)

These regularised forms can be also considered as examples of Reiner–Rivlin fluids

4.2.4 Viscoelastic fluids

A viscoelastic fluid is a one which combines viscosity and elasticity. The link between

these behaviours can be postulated by equation:

τ21 +
µ

G

∂τ21

∂t
= −µγ̇21. (4.68)
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In steady state the second term on the left hand side is small and the equation reduced

to the well-known Newtonian relation between strain rate and stress.

If the first term is neglected the integration of both sides gives Hooke’s law:

τ21 = −Gγ (4.69)

where γ is the infnitesimal strain (as opposed to strain rate). A more general equation

is given by:

τ + λ1
∂τ

∂t
= −µγ̇ (4.70)

We can easily solve this equation obtaining

τ (t) = e−t/λ1
(∫ t

−∞
− µ

λ1
γ̇(t′)et

′/λ dt′ + C

)
(4.71)

which shows the most important aspect of this model, namely the relationship between

the stress and the history of strain.

Further generalisation of this model is the so called Jeffreys model which relates stress

to the strain rate time derivative.

τ + λ1
∂τ

∂t
= −µ

(
γ̇ + λ2

∂γ̇

∂t

)
(4.72)

The experiments reported by Toms (1949) gave rise to research into a phenomenon

called polymeric turbulence drag reduction. The work that has been undertaken since

then had shown that it is possible to reduce the friction factor in a turbulent flow by

up to 80% by adding just a few tens of parts per million (ppm) of long chain polymers.

As Lumley (1964) points out this effect cannot be tied to purely viscous non-Newtonian

effects and therefore has to rely on elastic effects. The DNS work by De Angelis et al.

(2002); Sureshkumar et al. (1997); Vaithianathan (2003) shows, that the phenomenon

can be explained by the higher extensional viscosity which inhibits vortex dynamics.

This qualitative picture is yet to be furnished with quantitative predictions that relate

rheology of the fluid to the actual flow as in Pinho et al. (2008).

Interestingly, a similar phenomenon can be observed in liquid with a fiber suspensions.

Even more surprising is the fact that underlying mechanism of drag reduction in this

case, despite some similarities with polymer solutions, is actually different. The most

convincing demonstration of this fact is a mixture of polymer solutions with a fiber

suspension which exhibits drag reduction greater than the sum of drag reduction of

components alone.
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4.2.5 Non-dimensional parameters

A common procedure when describing fluid dynamics problems is to non-dimensionalise

the equations and then work only with non-dimensional groups e.g. Reynolds or Prandtl

number to capture the relative contribution of various terms. Such ratios are useful in

estimating the impact of corresponding effects.

In the context of viscoelastic fluids an important role is played by the Deborah1 number

which is a ratio of elastic to viscous forces and is given by:

De =
λ

tf
(4.73)

where λ is a time scale describing the slowest molecular motion or a time constant

stemming from linear viscoelasticity (Bird et al. (1987)) while tf is a problem related

time scale related to the longest path a fluid element is traveling e.g. L/U for steady

state flows, where U is the magnitude of velocity and L length along velocity direction.

As proposed by Reiner, the purpose is to measure the solid-like response of the fluid

(see Phan-Thien (2008)) in the following sense: for De→∞ the material behaves like

a solid and for De = 0 we have a liquid behaviour.

The other non-dimensional number, the Weissenberg number, measures the ratio of

elastic effects to viscous effects by relating fluid relaxation time to strain rate:

We = λκ (4.74)

where κ is characteristic strain rate e.g. U/D for steady state flow, whereD is the length

along the directions associated with the largest velocity gradient. The Weissenberg

number can be only defined for flows with constant stretch history2.

Finally the definition of known Newtonian dimensional numbers is slightly altered for

above models. The first approximation of non-Newtonian turbulence might rely on the

calculation of a Newtonian fluid with a viscosity equal to the wall-viscosity of non-

Newtonian fluid. The estimate of non-Newtonian fluid wall viscosity can be expressed

1Deborah was a female prophetess of the Old Testament. The quantity was introduced by Reiner

and the name refers to the following passage of Deborah’s song: “Even the mountains will flow before

the Lord”. The Lord as a being with an infinite amount of time can indeed observe the viscous

behaviour of mountains visible only on a sufficiently large time scale.
2Flows where the history of stretch does not depend on the time instant t but only on the time lag

t2 − t1.
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in terms of wall shear-stress:

µw = K
1
n τ

n−1
n

w , (4.75)

µw =
K

1
n τw

(τw − τy)
1
n

(4.76)

for power-law and Herschel–Bulkley fluids respectively. This allows us to define a wall

Reynolds number:

Rew =
ρUbD

µW
, (4.77)

where Ub is the bulk velocity, D is the diameter and ρ the density of the fluid. We can

combine these expressions now and couple them with friction factor expressions.

4.3 Friction factors

Recent review papers such as El-Emam et al. (2003) report more than 14 friction factors

for non-Newtonian fluids in pipes. Most of them are accompanied by an analysis of

the logarithmic region behaviour. This section briefly presents the results from the

literature with some remarks about their applicability and derivation.

For laminar flows Metzner and Reed (1955) suggested a correlation utilising a gener-

alised Reynolds number called henceforth Metzner–Reed (M–R) Reynolds number.

f =
64

ReMR

(4.78)

ReMR =
U2−n
b Dn

8n−1K
(4.79)

where D = 2R is a pipe diameter.

4.3.1 Dodge and Metzner

The first theoretical analysis of turbulent non-Newtonian pipe-flows is ascribed to

Dodge and Metzner (1959). They divided a flow in a pipe into three regions: lam-

inar, transition and turbulent core. By applying dimensional analysis arguments and

performing an asymptotic matching in the transition region they obtained velocity pro-

files in the transition and turbulent core regions. The velocity profile in the core region

was then integrated yielding eventually an estimate of average velocity.
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The formulae they obtained are the following:

Uc − U1

uτ
= −nA ln

( y
R

)n
(turbulent core region), (4.80)√

1

f
=

2

n0.75
log
[
ReMRf

1−n/2
]
− 0.2

n1.2
(friction factor). (4.81)

4.3.2 Clapp

A similar relation for channel flow was derived by Clapp (1961) who applied the Prandtl

mixing length hypothesis to close the channel flow Reynolds-averaged Navier–Stokes

equations. The asymptotic analysis for laminar, transition and turbulent core region

gave the following relations:

u+ = (y+)1/n (laminar region), (4.82)

u+ =
5.0

n
ln y+ − 3.05 (transition region), (4.83)

u+ =
C1

n
ln y+ +

C2

n
(turbulent core) (4.84)

where u+ = U1/uτ , y+ = ρu2−n
τ yn/K, and the friction factor:

1√
f

=
√

2

((
C2

2
− 3C1

4

)
log ReMR(

√
f)2−n + 0.174C1

(
5n− 8

n

))
. (4.85)

The integration constants C1 and C2 were obtained as a result of experiment.

4.3.3 BNS equation

Szilas, Bobok and Navratil (1981) collected all the known friction factors at the time

and derived a new one from the pipe flow momentum balance equation written in

cylindrical coordinates. They approximated Reynolds stress using a closure by von

Karman who derived it from similarity considerations:

u1u2 = −κ2

(
∂U1

∂r

)4(∂2U1

∂r2

)−2

. (4.86)

where r is the radial coordinate. The rest of the analysis was conducted in a usual

manner. An additional difficulty was the need to estimate the viscous sublayer width.
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The resulting velocity profiles and friction factors are given below:

U1

uτ
=
Uc
uτ

+
1

κ

(√
r

R
+ ln

(
1− r

R

))
(turbulent core), (4.87)

umax

uτ
=

1

nκ
ln

[
ReMR

(
uτ
u 2

)2−n
]
−

1

κ

(
1 +

lnα

n

)
+
(α

8

)1/n 6n− 2

n
(maximum velocity), (4.88)

1√
f

=
0.8141

nκ
log ReMRf

1−n/2 + 0.7532
n− 2

2nκ
−

0.3535

[
1

κ

(
2.238 +

lnα

n

)
+
(α

8

)1/n 6n− 2

n

]
(friction factor). (4.89)

The M–R Reynolds number used in the above formulae has the following form:

ReMR =
U2−n
b Dnρ

K
8

(
6n+2
n

)n . (4.90)

4.3.4 Other friction factor correlations and some comparisons

Of course there are other non-Newtonian friction factor correlations. See El-Emam

et al. (2003) for a more complete review. Worth noting are Tommita and Shaver–

Merril (S–M). Shaver and Merrill extended the Blasius formula for pseudoplastic fluids

while Tommitta got approached it from a similarity consideration. The latter confirmed

the resulting predictions with experiments on lime slurries.

f =
0.316

n5RemMR

(Shaver–Merrill) (4.91)

m =
2.63

1.05n
(4.92)

1√
f

= 2 log

(
Re

√
f

2

)
− 0.2 (Tommita’s) (4.93)

Comparisons of the accuracy of friction factors have been conducted by Szilas et al.

(1981) and El-Emam et al. (2003). In the first review four out of five of the above equa-

tions were compared with experimental data gathered on the Algyö-Százhalombatta

crude oll pipeline. The pipeline is 161.3 km long and 305 mm in diameter. Five series

of measurements were taken at seven test points at Reynolds numbers varying for 104

to105. The best mean relative error of 0.39% was been obtained for the BNS equation.

The next two were Clapp and Dodge–Metzner formulae with -1.75% and 1.96% relative

errors. Tommita and S–M resulted in errors around 20%.
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In the second review carried out by El-Emam et al. (2003) the friction factor data have

been gathered from four different sets available in the literature. Ten friction factor

formulae have been compared. According to the presented results the most accurate

description, in a sense of mean deviation, was provided by a model using a regression

analysis carried out by the authors in the same papers. Other equations performed

reasonably well only on data for which they were calibrated. On average S–M and

BNS equations were the second and third best, giving a percentage relative mean error

below 10%, while D–M and Clapp were low in the ranking, scoring mean errors close

to 20%.

4.4 Non-Newtonian wall function

Two ways of modifying wall functions are proposed here. The first one uses only

the altered constants from Clapp (1961) and Dodge and Metzner (1959). The second

one uses also an altered way of calculating wall distance based on the non-Newtonian

definition of y+.

The alteration of wall distance procedure based on Clapp (1961) and Dodge and Met-

zner (1959) formulae for the logarithmic layer is proposed here. The stage that has to

be adjusted is the solution of y+ from law of the wall. We assume that logarithmic law

describes correctly the wall behaviour. For a non-Newtonian fluid the general form is

given as:
U1

uτ
= An ln y+ +Bn, (4.94)

where An and Bn are coefficients derived from experimental data and depend on the

power-law index n. For Dodge and Metzner (1959) these coefficients are:

An =
5.66

n0.75 ln 10
, (4.95)

Bn = − 0.4

n0.75
+

2.458

n0.75

(
1.96 + 1.255n− 1.628n log10

(
3 +

1

n

))
. (4.96)

And for Clapp (1961) we have

An =
2.78

n
, (4.97)

Bn =
3.8

n
. (4.98)
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4.4 Non-Newtonian wall function

This can be expressed in a more compact form by:

U1 =
uτ
κn

lnEny
+ (4.99)

where En = exp(Bn/An) and κn = 1/An. Currently Equation (4.94) has two unknowns,

y+ and uτ and two experimental coefficients, En and κn. Using simple algebraic trans-

formations it is possible to remove one of the unknowns.

κ2−n
n U2−n

1 = u2−n
τ

(
lnEny

+
)2−n

. (4.100)

Now multiplying by yn/K the left hand side can be expressed as a non-Newtonian

Reynolds number and on the right hand side non-Newtonian y+ emerges.

κn
U2−n

1 yn

K
= y+

(
lnEny

+
)2−n

. (4.101)

Now for a given velocity field the left hand side is known. The procedure of calculating

y+ is derived based on one iteration of Newton’s method of the function:

F (y+) = Reκ − y+
(
lnEny

+
)2−n

. (4.102)

The derivative of F with respect to y+ is:

F ′(y+) = − ln
(
Eny

+
)2−n − (2− n) ln

(
Eny

+
)1−n

. (4.103)

In Newton’s method we start with an initial guess for y+ which we will denote as y+
0 .

This is always initialised with the laminar value y+ = 11. Then the procedure iterates

using the following equations:

y+
n+1 = y+

n −
F (y+)

F ′(y+)
, (4.104)

y+
n+1 =

lnn−1 (Eny
+) Reκ + (2− n)y+

ln(Eny+) + (2− n)
, (4.105)

which is a generalisation of Equation (4.46).

Wall functions that automatically calculate the coefficients for a given power-law index

n have been implemented in OpenFOAM. Moreover the altered way of calculating wall

distance has been implemented as an optional modification. Equation (4.105) is iterated

no more than ten times and the tolerance is set statically in the code to 10−2. The

static set up is justified by the universality of the log-law behaviour and by the fact
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that the procedure is executed as an inner iteration of the iteration of the main solver.

A simple cross-check with FLUENT was also run to ensure that the wall functions from

OpenFOAM give the same results. The test was successful and serves as validation of

standard wall function in OpenFOAM.

A series of simulations was run to reproduce friction factor curves from Clapp (1961).

Clapp (1961) is preferred to Dodge and Metzner (1959) because the final friction factor

equation was correlated on the wider range of Reynolds numbers. All of these friction

factor expressions are actually Fanning friction factors so they had to be additionally

transformed into the Darcy–Weisbach formulation. The values of the parameters were

non-dimensionalised and the simulated segment had a length of 10 diameters. Periodic

boundary conditions were used at each end and the mass flux was specified using mean

velocity. Axial symmetry was utilised. Because OpenFOAM is a three dimensional

code only a circular sector instead of a 2D mesh was used. The sector had an angle of

1◦ and there was only one layer of cells in the angular direction. The number of cells in

radial direction depended on y+. For each case two meshes were used. The fine mesh

kept y+ ∼ 100 whilst the coarse mesh had y+ ∼ 300. The streamwise direction was set

to 300.

Power-law fluid with a cut-off was used for this test because the original log-law was

derived for this case. The cut-off values are set up so that the lowest viscosity is never

reached. This causes the power-law behaviour to affect the whole boundary layer. Also,

the choice of a classical power-law makes the above methodology directly applicable.

For Cross or Carreau–Yasuda, a suitable relationship between power-law indices would

have to be used.

The error of the prediction is calculated in the following way:

e =
|fClapp − fCFD|

fClapp
100% (4.106)

where fClapp is the friction factor corresponding to Clapp friction factor curve and the

fCFD is the friction factor obtained from the calculation.

Figures 4.4 to 4.7 show the friction factors predicted with standard and modified wall

functions. The continuous lines represent experimental curves from Clapp (1961) .

The results agree well for flows with high Reynolds number but depart from the the

experimental curves as Reynolds number decreases. Despite the proposed methodology
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Figure 4.4: Prediction of non-Newtonian friction factors with standard wall functions.
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Figure 4.5: Prediction of non-Newtonian friction factors with Dodge and Metzner (1959)

using only the profile constants.
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Figure 4.6: Prediction of non-Newtonian friction factors with Clapp (1961) using only

the profile constants.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

10
3

10
4

10
5

F
ri
c
ti
o

n
 f

a
c
to

r

Reynolds number

Clapp n=1.0
Clapp n=0.9
Clapp n=0.8
Clapp n=0.7

CFD n=1.0
CFD n=0.9
CFD n=0.8
CFD n=0.7

Figure 4.7: Prediction of non-Newtonian friction factors with Dodge and Metzner (1959)

using wall distance calculation.
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Figure 4.8: Prediction of non-Newtonian friction factors with Clapp (1961) using wall

distance calculation.

it was impossible to keep y+ above buffer layer values and the cell point was entering

the buffer layer in the low Reynolds number cases.

The standard wall function is largely insensitive to fluid rheology and gives similar

friction factor estimates for different values of power law index. Small discrepancies are

the result of the wall viscosity entering the expression for y+ in Equation (4.46). This

is, however, not enough to account for the effect of the power-law index. Eventually,

this results in errors of the order of 10% for Newtonian case but increasing to 35% with

increasing the power-law index.

Non-Newtonian wall functions are rheology-aware and correctly predict the translation

of the friction factor curve. As remarked on above the results deteriorate due to overly

low y+ values for the low Reynolds number cases. The main advantage is the modelling

of the turbulent boundary layer for high Reynolds number.

The Newtonian behaviour is represented by the curve n = 1 and is reproduced correctly

by all formulations of wall functions. The modified wall function correctly captures the

Newtonian behaviour. A small discrepancy is caused by the difference in the exper-

imental parameters used by Dodge and Metzner (1959) and Clapp (1961) which do
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not coincide exactly with values from Nikuradse (1932). The best result was achieved

with Dodge formulation where the error for high Reynolds numbers and most non-

Newtonian fluid was reduced to within 1%. For the low Reynolds number the error of

prediction remained at the level of 10%.

Moreover, Figure 4.10 compares the prediction of velocity and viscosity (both laminar

and turbulent) profiles for the modified and unmodified function for the cases with the

lowest n considered, which represents the furthest departure from Newtonian behaviour.

We can see that the laminar viscosity changes across the pipe radius, which means that

the cut-off values are not used and therefore should have no influence on the results.

Turbulent viscosity shows the same trend but is altered due to different wall shear stress

estimates imposed by the wall function. Moreover the values of turbulent viscosity

compared with laminar viscosity are much larger which means that the rheology does

not have significant impact far away from the wall.

4.5 Concluding remarks

Analytical investigation of the boundary layer can significantly improve the predictions

of bulk quantities. Two benefits can be distinguished. Firstly, a friction factor expres-

sion can be derived based on the boundary layer analysis. This can lead to a robust

method that can be of direct use to engineers designing pipelines. Secondly a model of

near wall behaviour can be supplied for the purpose of CFD solvers, which which leads

to a diminished demand for wall refinement and a more stable method.

As outlined in the literature review non-Newtonian properties alter the structure of

the boundary layer by changing the coefficients in the universal laws for velocity. This

leads to different expressions from those used in Newtonian flows and it is clear that

the power-law index can affect the friction factor curve by translating it up or down

depending on the power-law index.

In this chapter several modifications of standard wall functions have been proposed and

tested against known friction factor expressions. The maximum improvement achieved

was 35%. The result is promising but its practical application in situations relevant

to engineering might pose serious difficulties. On one hand, the correct estimates for

high Reynolds number are crucial since the friction factor is multiplied by the velocity

squared which for high Reynolds number will be typically very large. But on the
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other hand for high Reynolds number the Colebrook-White equation suggests that

pipe roughness might have a more important effect. This might further diminish the

effect of fluid properties in the formation of the boundary layer.

A two layer model wall function could further explore possible advantages of the known

rheology. Also, it is important to mention that only the constants in the νt wall function

have been changed. To make these changes compatible with the whole wall function

approach we also need to change the ε wall function. Still the presented results are

a demonstration of the significance of including the power law index in the near wall

modelling. The modification of ε wall function appears straightforward and is proposed

as a further refinement of the method.
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Chapter 5

Rate of strain in turbulent flow

The review of generalized Newtonian fluid (GNF) presented in Chapter 4 shows that all

rheology models commonly used in the industry express viscosity in terms of the rate of

strain. For RANS based CFD this means that both molecular and turbulent viscosity

are functions of the flow field. Turbulent viscosity is expressed via the Boussinesq

approximation, whereas molecular viscosity is expressed by a constitutive law.

In this chapter a relation between turbulent flow and the estimate of the rate of strain

is studied. The issue of correct rate of strain and subsequently the correct viscosity

estimation arose after running well known models against available experimental data.

For some cases the predicted flow would have a laminar profile. The postulated reason

for this behaviour was the flat velocity profile, characteristic for turbulent flow, and

consequently molecular viscosity being large compared to eddy viscosity. This caused

viscous effects to manifest themselves unnaturally far from the viscous sublayer, where

one would normally expect them to be located.

Two hypotheses are proposed and examined.

1. The magnitude of the rate of strain of the instantaneous velocity field is an order

of magnitude higher than the magnitude of the mean velocity field.

2. The instantaneous rate of strain follows a log-normal distribution.

The theoretical basis for these hypotheses is discussed in Section 5.1. Its verification

is then presented in Section 5.3, where we look at DNS data that have been published

in the literature. MATLAB has been used to construct histograms and best fit curves

to collect other statistics of the relevant flow quantities. The chapter concludes with

79



5. RATE OF STRAIN IN TURBULENT FLOW

Section 5.4 where the model is proposed and subsequently compared against other

approaches in a set of new CFD calculations.

5.1 Theory

In a physical system that contains a GNF fluid, viscosity depends on the instantaneous

rate of strain. However, in the RANS approach we are restricted to expected values

of random variables and their second moments. The standard formulation of the k-ε

turbulence model gives the rate of strain as the symmetric part of the mean velocity

field gradient. This neglects any additional variation due to the fluctuating field. In

the context of shear-thinning and yield stress fluids this leads to increased values of

viscosity.

The following heuristic analysis provides some insight as to the significance of the

neglected fluctuating terms. To examine the behaviour of rate of strain we decompose

strain into mean and fluctuating parts:

ŝij = Sij + sij (5.1)

and therefore the magnitude is:

γ̇ =
√

2ŝij ŝji =
√

2SijSji + 4Sijsji + 2sijsji. (5.2)

By invoking Jensen’s inequality we have

√
2SijSji 6 γ̇ 6

√
2ŝij ŝji =

√
2SijSji + 2sijsji (5.3)

For homogeneous, isotropic, fully developed turbulence in a pure shear flow the trans-

port equation for turbulence kinetic energy reduces to:

−uiuj Sij = 2νsijsij (5.4)

which comes from the assumption that production equals dissipation (see Tennekes

and Lumley (1972)). Now assuming that turbulence is shear-generated with only one

length scale l and one velocity scale u we can transform the above to:

ulSijSij ∼ νsijsij . (5.5)
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And now dividing both sides by ν will cause Reynolds number to appear on the left

hand side:

ReSijSij ∼ sijsij . (5.6)

Since we assume Reynolds number to be large the following relation must hold:

SijSji � sijsji . (5.7)

Therefore, in any self-maintained turbulence the correlation of fluctuating rates of strain

must be at least an order of magnitude higher than the squared mean rate of strain. Ne-

glecting the fluctuating term will lead then to a significant underestimation of the rate

of strain values which for shear-thinning and yield stress fluids correspond to increased

values of viscosity. For turbulence simulation it means increased values of dissipa-

tion, lower Reynolds numbers and possibly the flow becoming laminar. Subsequently,

the values of laminar viscosity will be incorrect in homogeneous region. Moreover the

constitutive relationship will have a direct effect on the mean flow far away from the

wall.

By examining the behaviour close to the wall we can further develop Equation (5.3).

First recall that applying a no slip condition and the continuity equation leads in a fully

developed flow to the following asymptotic behaviour of velocities close to the wall:

u1 ∼ x2, u2 ∼ x2
2, u3 ∼ x2. (5.8)

These approximations lead to sijsij ∼ O(1). Which remains in contradiction with the

observation that in the vicinity of the wall fluctuating components vanish and only the

mean flow contributes to the rate of strain. It is therefore concluded that the inequality

in Equation (5.3) must be strict.

Furthermore, the expansion of the expression for the rate of strain magnitude variance

sijsij :

2sijsij =
∂ui
∂xj

∂ui
∂xj

− ∂2uiuj
∂xi∂xj

. (5.9)

shows that we are dealing with two quantities that are not known a priori. We are

facing here a problem similar to the problem of the closure of the RANS equations. If

we adopt a turbulence model for Reynolds stress the second term on the right hand

side of Equation (5.9) becomes known, since it is the second derivative of the Reynolds

stress. However the first term remains an unknown and requires further investigation.
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Figure 5.1: Vortex stretching phenomena that occurs in the in the presence of shear.

5.1.1 Relation to vorticity

Let us introduce fluctuating vorticity as:

ζi = εijk
∂uk
∂xj

, (5.10)

where εijk is a Levi-Civita symbol and ζi is the i’th component of vorticity and should

not be confused with specific disspation ω known from the k-ω model.

One of the characteristic features of turbulence is a phenomenon called vortex stretch-

ing. In the language of statistical turbulence it can be expressed in the following way:

the contribution to the Reynolds stress terms is highest in the regions of the flow that

have the vorticity aligned with the mean strain rate. This effect can be tentatively

explained by the conservation of angular momentum. Imagine a rotating filament of

fluid. If the axis of the filament is aligned with positive shear rate then the filament will

stretch in the direction normal to the basis and with the radius of the basis decreasing.

To preserve the angular momentum the vorticity must increase. Similarly, the vorticity

will decrease if the axis is aligned with negative shear rate. A sketch is provided on

Figure 5.1.

For isotropic turbulence Tennekes and Lumley (1972) show:

ε = 2νsijsij = 15ν

(
∂u1

∂x1

)2

. (5.11)
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For this flow the Taylor microscale can be defined1 as:(
∂u1

∂x1

)2

=
u2

λ2
. (5.12)

Moreover, according to Hinze (1959) we can write the following relationship for turbu-

lent dissipation:

ε = 15ν
u2

λ2
. (5.13)

Through a simplified energy budget expressed by Equation (5.4) and with the scaling

assumptions Sij ∼ u/l and ui ∼ u, we can relate the Taylor microscale to the integral

scale l:

A
u3

l
= 15ν

u2

λ2
. (5.14)

And then the ratio of these two lengthscales is:

λ

l
=

(
15

A

) 1
2

Re
−1/2
l =

15

A
Re−1

λ (5.15)

Where Reynolds number the subscript denotes the length scale that the number is

based on.

Defining the rotation tensor as the anti-symmetric part of the velocity gradient:

rij =
1

2

(
∂uj
∂xi
− ∂ui
∂xj

)
, (5.16)

the vorticity magnitude and strain rate magnitude can be linked with following rela-

tions:

ζiζi = 2rijrij , (5.17)

sijsij − rijrij =
∂2

∂xi∂xj
(uiuj ) . (5.18)

Now we will use the scaling properties in Equations (5.11) and (5.12). The first term

on the left hand side of Equation (5.18) is of the order O(u2/λ2). The term on the right

hand side of the same equation is of the order O(u2/l2). According to Equation (5.15)

this means that sijsij dominates in Equation (5.18) and therefore rijrij must be of the

same order. Together with Equation (5.17) this means that:

ζjζj ∼ 2sijsij . (5.19)

1The general definition of Taylor lengthscale is given as the reciprocal of the square root of the

second derivative of the longitudinal integral length-scale at the origin.
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Which means that for large Reynolds number and for isotropic turbulence the unknown

shear rates in Equation (5.3) scale as fluctuating vorticity magnitude.

5.2 Probabilisitc information

Even if the above considerations give an accurate model of the rate of strain it does

not necessarily lead to an accurate estimate of mean viscosity. This is caused by the

non-linear relationship between rate of strain and viscosity.

Mathematically the problem can be stated as follows: if one random variable is a func-

tion of the other, what is the probability distribution of the former if the distribution of

the latter as well as the function itself are known. This problem has no definite answer

in general, but many specific results have been proven.

Monin and Yaglom (1975) argue that under certain self-similarity assumptions of a

high-Reynolds number flow, turbulence dissipation in an inertial region is a random

variable with a log-normal distribution. Their reasoning applies for any non-negative

quantity related to small-scale and locally isotropic motions of turbulent flow.

If the rate of strain was a random variable with a log-normal distribution then its

probability density function would be expressed as follows:

fP(γ̇) =
1

γ̇σ
√

2π
exp

{
1

2

(
ln γ̇ −M

σ

)2
}
, (5.20)

where M and σ are parameters of the distribution. It can be verified that for each real

valued power m, the following holds true:∫ ∞
0

γ̇mfP(γ̇) dγ̇ = exp

(
mM +

m2σ2

2

)
. (5.21)

In other words, every moment can be expressed in terms of M and σ. The former can

be factored out and expressed in terms of the first moment. In the case of Herschel–

Bulkley mean viscosity one can observe that all the components are powers of rate of

strain magnitude giving us:

ν =

∫ ∞
0

ν(γ̇)fP(γ̇) dγ =

∫ ∞
0

τY γ̇ +K (γ̇)(n−1) dγ̇ =

=τY γ̇
−1 +Kγ̇ (n−1) exp

(
σ2

2
(n− 2)(n− 1)

)
(5.22)
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The result in Equation (5.22) is valid only when we assume that the logarithm of γ̇ has

a normal distribution. This section sketches a proof supporting this assertion.

To prove the assertion expressed by Equation (5.20) let us assume that the flow in

question can be enclosed in volume V0 which has a length-scale of L0. Let γ̇ be a

random variable defined for each point in space and for any volume V let us introduce

the following spatial average:

γ̇V =
1

|V |

∫
V
γ̇ dV. (5.23)

Note that this average is itself a random variable that depends upon the position in

space.

Let us denote two volumes V ′ and V ′′. Both volumes have corresponding length-

scales: L′ and L′′. Moreover, the volumes and length-scales must satisfy V ′ ⊃ V ′′,

L � L′ > L′′ � η, where η is the Kolmogorov scale and L is a characteristic length

of the whole domain. In other words one volume contains the other and their length-

scales are much larger than Kolmogorov scale but much smaller than the scale of the

problem. For such volumes the assumption, which is often called the condition of scale

similarity of turbulent fields (see Gurvich (1967); Novikov (1969)), states that if the

Reynolds number is large the following holds true:

fP

(
γ̇V ′

γ̇V

)
∼ L′

L
(5.24)

fP

(
γ̇V ′′

γ̇V ′

γ̇V ′

γ̇V

)
= fP

(
γ̇V ′′

γ̇V ′

)
fP

(
γ̇V ′

γ̇V

)
. (5.25)

In other words the distribution of the ratio depends only on the ratio of scales and the

ratios are independent. From these assumptions one can easily arrive at:

fP

(
γ̇V ′′

γ̇V ′

)
∼ L′′

L′
. (5.26)

Now let us take a sequence of volumes such that V0 ⊃ V1 ⊃ . . . ⊃ Vm ⊃ . . . with corre-

sponding length-scales L0 > L1 > . . . > Lm > . . . and adopt the following notation:

γ̇m = γ̇Vm Rm =γ̇m/γ̇m−1 (5.27)

First, observe that the ratios of averages Rm are independently distributed. Using the

above hypothesis we can write:

Rm+1Rm ∼
Lm+1

Lm

Lm
Lm−1

=
Lm+1

Lm

Lm
Lm−1

∼ Rm+1Rm (5.28)
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which proves the independence of Rm and Rm+1. The central equality is trivial since

the length scale ratios are simply constants.

The next step is to observe that each average can be expressed in terms of ratios:

γ̇m = γ̇0R1R2 . . . Rm−1 (5.29)

Taking the logarithm of the above expression, setting each Li/Li−1 = const we get

ln
γ̇m
γ̇0

= lnR1 + lnR2 + . . . lnRm−1. (5.30)

The sum on the right hand side according to our hypothesis comprises mostly terms

that are independently, identically distributed random variables. Now the central limit

theorem can be invoked and leads to:

ln
γ̇m
γ̇0
∼ N(Mm, σm). (5.31)

The relation is only approximate since there are terms in the sum of the right hand

side of Equation (5.30) for which the conditions of the similarity hypothesis do not

hold. The influence of these terms is assumed to be confined to the parameters of the

distribution since they are either very small or constant in a given volume.

5.3 Analysis of DNS data

The DNS data from Rudman et al. (2004) have been chosen for investigation of the

relative magnitude and the hypothesis about the log-normal distribution. The data

has been obtained through a private communication. The level of detail that can be

achieved in DNS flow was the main reason for choosing this data set. The typical data

set contained 384 cross-sections with each cross-section comprising 12705 grid points

refined near the wall. The grid is presented on Figure 5.2.

Moreover, the Rudman et al. data consists of shear-thinning as well as yield stress fluids.

The investigation of the former has been undertaken by Pinho (2003) and resulted in a

development of a zeroth order model for power-law fluids. This study extends his work

into yield stress fluids.

All the values were normalised by bulk velocity, density and pipe diameter of the

pipe. The data were transformed to polar coordinates and interpolated to a radial

grid to facilitate the construction of radial statistics. The interpolation was performed
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Figure 5.2: DNS grid by Rudman et al. (2004).

using a Delaunay triangulation (de Berg et al. (2000)). Delaunay triangulation is

a triangulation in which every triangle circumscribed circle does not contain in its

interior any other point of the triangulation. This allows the interpolation of values

within each triangle as a convex combination. This procedure is implemented in the

MATLAB in-built functions.

After data transformations the rates of strain have been obtained from velocity field.

Two types of this quantity are used here: rate of strain based on mean velocity field

and rate of strain based on instantaneous velocity field. In polar coordinates the rate

of strain tensor has the following form:

Ŝ =


∂U1
∂r

1
2

(
r ∂U2/r

∂r + 1
r
∂U1
∂θ

)
1
2

(
∂U3
∂r + ∂U1

∂z

)
1
2

(
r ∂U2/r

∂r + 1
r
∂U1
∂θ

)
1
r
∂U2
∂θ + U2

r
1
2

(
∂U2
∂z + 1

r
∂U3
∂θ

)
1
2

(
∂U3
∂r + ∂U1

∂z

)
1
2

(
∂U2
∂z + 1

r
∂U3
∂θ

)
∂U3
∂z

 (5.32)

5.3.1 Comparison of viscosity fields

The viscosity field was computed by estimating the rate of strain from the velocity field

and substituting it into the Herschel–Bulkley fluid constitutive law with rheological

parameters taken from Rudman et al. (2004). Subsequently, it was compared with the

viscosity field supplied with the data. The field has been averaged over all angles and

over all cross-sections to obtain the graph presented in Figure 5.3. It can be seen that

the viscosity field obtained from interpolation agrees with the data close to the wall. A
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Figure 5.3: The radial interpolation of viscosity field.

small discrepancy is observed towards the centre of the pipeline. It is stipulated that

the agreement is correlated to the grid structure which is coarser at the centre. Also,

close to the wall the mesh from Rudman et al. (2004) resembles a radial grid whilst

further away from the wall it changes into rectangular blocks.

5.3.2 Rate of strain magnitude

Figure 5.4 presents a typical cross-section showing magnitudes of the rate of strain.

Obviously, the values based on instantaneous rates show much bigger variation. To

compare these two data sets a third snapshot was constructed showing the ratio of in-

stantaneous to mean velocity based rate of strain. The simulations reveal the existence

of regions where the rate of strain of instantaneous velocity field is at least an order

of magnitude higher than the rate of strain of mean velocity field. These regions are

formed at the distance from the wall that corresponds to a peak turbulence intensity

region. Then the region moves towards the centre of the pipeline where it remains for

a short time until it dissipates completely. These results present only the snapshots for

yield stress fluids, but for shear-thinning fluids similar behaviour was observed.

This picture shows a qualitative similarity to the vortex stretching phenomena depicted

in Figure 5.1. The vortices that are formed in the presence of the mean velocity gra-

dient travel towards the pipe centre, expanding and diminishing in magnitude. This

additional motion causes the local rate of strain to increase, showing that in the in-

stantaneous picture the mean rate of strain can be increased by coherent structures of

88



5.3 Analysis of DNS data

x/D

y/
D

 

 

−0.5 0 0.5
−0.5

0

0.5

0

5

10

15

20

25

30

x/D

y/
D

 

 

−0.5 0 0.5
−0.5

0

0.5

0

5

10

15

20

25

30

x/D

y/
D

 

 

−0.5 0 0.5
−0.5

0

0.5

0

2

4

6

8

10
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stantaneous velocity (right). Bottom: the ratio of instantaneous to mean rate of strain.

Reg regions show signficant differences between shear rate caused by mean and fluctuating

components.
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turbulence.

To investigate the matter further we decided to gauge the effect of yield stress. A second

dataset with a yield stress four times larger has been examined and the resulting ratios

are compared on Figure 5.5. The evolution of shear regions at a higher rate is greatly

attenuated by a much faster dissipation away from the wall, which is in agreement with

Rudman et al. (2004). The frequency of occurrence of these regions is of the same

magnitude which suggests that turbulence in a non-Newtonian fluid remains a wall

phenomenon.

5.3.3 Yield stress and unyielded regions

As outlined above the higher yield stress attenuates turbulence in the core flow. More-

over, shear stress decreases towards the centre of the pipe. This means that at a certain

point it will pass the yield threshold and unyielded regions may form. In GNF the vis-

cosity is a function of shear rate tensor invariants. Since the viscosity and rate of strain

fields have been already calculated it was straightforward to calculate shear stress.

Figure 5.6 presents a typical snapshot of shear-stress in a cross-section. The shear-stress

has been normalised with yield stress so the value of one corresponds to an unyielded

region. We can observe a significant difference between the two presented cases. When

the yield stress is higher there is a large region of shear stress values close or exactly

equal to one. For lower values of yield threshold the regions tend to be smaller and are
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confined only to the centre of the pipeline, appearing and disappearing in a transient

fashion.

5.3.4 Statistical hypothesis testing

Rigorous hypothesis testing requires tools of statistical inference. In particular a null

hypothesis must be identified and tested with an arbitrary significance level. This

methodology leads to four possible situations:

1. Failing to reject a true null hypothesis.

2. Rejecting a true null hypothesis – this is called Type I error or false positive.

3. Failing to reject a false null hypothesis – this is called Type II error or false

negative.

4. Rejecting a false null hypothesis.

With this distinction, statistical inference becomes a particular type of constrained

optimization problem. We want to minimize the probability of Type II error with a

specified probability of Type I error. The specification of the probability of Type I

error is the choice of significance level:

Pr(A|H0) = 1− α (5.33)

where Pr(·|·) is the conditional probability, A is the event observed, H0 is the null

hypothesis and α ∈ [0, 1] is the level of significance. We will adopt here α = 0.05.

Therefore, the test will treat as extraordinary all the values that under the null hy-

pothesis comprise the 5% of possible realisations. If such a value appears in the test the

null hypothesis is rejected. Increasing the level of significance is equivalent to reducing

the probability that the result occurred by chance.

A closely related concept is the confidence interval. The confidence interval is an

interval which contains the values of the random variable with a specified probability

given the null hypothesis is true.

Firstly, we investigate the hypothesis about the difference of means calculated from

mean rate of strain and from instantaneous rate of strain. To this end we adopt the
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Figure 5.8: p-values for the equal mean hypothesis.
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equality of means as the null hypothesis. To establish the equality of means in two

samples a modified t-Student test is used.

t =
X 1 −X 2√

1
n (Var(X1) + Var(X2))

, (5.34)

where X is the sample mean, n is the population size and Var(·) is the variance.

Under the null hypothesis this statistic will have a t-distribution with the degrees of

freedom equal to 2n − 2. Subsequently a two tailed test is performed. A two tailed

tests calculates:

p = Pr(|T | > t), (5.35)

where T is the random variable following the t-distribution as described above. If p is

below the level of significance the null hypothesis is rejected.

Figure 5.7 shows the means calculated from the instantaneous rate of strain and mean

rate of strain, for the power-law fluid in Rudman et al. (2004). The estimates exhibit a

discrepancy that is especially pronounced around the centre of the pipe but decreases as

the wall is approached. It important to observe that the systematic difference remains

close to the wall, although it is decreased in magnitude. The p-value calculated from

Equation (5.35) and displayed on Figure 5.8 confirms this visual observation as the

value never surpasses the 0.05 significance level. The large population size allows us to

detect even the small discrepancy close to the wall.

The second hypothesis was the log normality of the rate of strain calculated from

instantaneous data. Therefore, the logarithm of the values should have approximately

normal distributions. This hypothesis is adopted directly as the null hypothesis. In the

literature many tests of data normality were proposed. The test used in this study was

proposed by D’Agostino et al. (1990) and it uses the fact that the sample skewness and

sample kurtosis must have values of zero and three respectively for normally distributed

populations.

More specifically, the skewness and kurtosis are defined in terms of central moments:

γ1 =
E (X − EX)3(

E (X − EX)2
)3/2

, (5.36)

γ2 =
E (X − EX)4

(E (X − EX)2)2
, (5.37)
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Figure 5.9: Skewness (left) and kurtosis (right) of the probability distribution.

where E denotes expected value. The geometrical representations of these concepts are

shown on Figure 5.9. If X is normally distributed then we have:

γ1 = 0, γ2 = 3. (5.38)

The sample equivalents are:

g1 =
m3

m
3/2
2

, (5.39)

g2 =
m4

m2
2

, (5.40)

mk =
1

n

n∑
i=1

(
Xi −X

)k
(5.41)

Both, g1 and g2 are asymptotically normal. Therefore, it is possible to construct the

confidence interval for these values and compare it against the values obtained exper-

imentally. Unfortunately in practice the rate of convergence is very slow and conse-

quently requires a prohibitively large population size.

D’Agostino (1970) and Anscombe and Glynn (1983) propose transformations of these

sample quantities in such a way that the transformed quantities have an increased rate

of convergence to the normal distribution. These formulae are a good approximation

for sample sizes larger than twenty. Using these formulae the test for skewness can be
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expressed as follows:

Y =
√
g1

(
(n+ 1) (n+ 3)

6 (n− 2)

) 1
2

, (5.42)

γ2(
√
g1) =

3(n2 + 27n− 70)(n+ 1)(n+ 3)

(n− 2)(n+ 5)(n+ 7)(n+ 9)
, (5.43)

W2 = −1 + (2 (γ2(
√
g1)− 1))

1
2 , (5.44)

X =

(
2

W2 − 1

) 1
2

, (5.45)

Z(g1) = δ ln

(
Y

X
+

((
Y

X

)2

+ 1

))
, (5.46)

where Z(g1) has a normal distribution. The test for kurtosis is expressed by:

E(g2) =
3 (n− 1)

n+ 1
, (5.47)

Var(g2) =
24n (n− 2) (n− 3)

(n+ 1)2 (n+ 3) (n+ 5)
, (5.48)

√
γ1(g2) =

6(n2 − 5n+ 2)

(n+ 7)(n+ 9)

√
6(n+ 3)(n+ 5)

n(n− 2)(n− 3)
, (5.49)

A = 6 +
8√
γ1(g2)

(
2√
γ1(g2)

+

√(
1 +

4

γ1(g2)

))
, (5.50)

Z(g2) =

√
9A

2

(1− 2

9A

)
−

 1− 2/A

1 + g2−E(g2)√
Var(g2)

√
2/ (A− 4)


1/3
 . (5.51)

Finally, we construct an omnibus test i.e. a test which simultaneously verifies skewness

and kurtosis:

K2 = Z2 (g1) + Z2 (g2) . (5.52)

Since both components have a normal distribution the sum have has a χ-squared dis-

tribution with two degrees of freedom. This allows us to construct a simple one sided

test that gives the probability of being simultaneously away from normal distribution

skewness and kurtosis.

Figure 5.10 shows the p-values for the log normality hypothesis. It can be seen that

the data fails this test for most of the radial points. This leads to rejection of the null
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Figure 5.10: The p–values associated with hypothesis of log-normality of instantaneous

rate of strain (H2) and normality of mean rate of strain (H2’).
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hypothesis. Moreover the normality of mean strain rate has been also assessed and is

denoted on the diagram as H2’. The normal distribution of the mean estimate fails in

an even larger regions and therefore must be deemed as coincidental. The log-normality

does not fail in some region, but this result is not repeated with the Herschel–Bulkley

data where log-normality assumption failed for every radial point.

If the hypothesis H1 was modified to pertain only to the fluctuating part of the rate of

strain then the similar analysis would lead to Figure 5.11. The fluctuating part of the

rate of strain does not fail the log-normality hypothesis in a large region away from the

wall and this region was reproduced for both Herschel–Bulkley fluids. This shows that

there may be a region where the log-normality of the fluctuating strain is an accurate

description of the flow.

For the radial points that did not fail the test histograms, QQ plots were constructed.

QQ plots are visual tests of normality which plot the quantiles of the standard normal

distribution against the sample quantiles. QQ plots are a more general tool since

they allow us to compare any two distributions and the equivalence of quantiles is the

equivalence of distributions. If the distributions are the same, the values should align

on the line.
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Figure 5.13: Probability density functions of strain rates of mean (left) and instantaneous

(right) fields. (Rudman et al. (2004)).

For the purpose of histogram construction, values were collected for one radial point

over all angles and over all cross-sections. The values of the histograms were normalised

with respect to the area under the curve, hence giving an approximation of Probability

Density Function (PDF). For these points the log-normal distribution approximates

accurately the population, but since the result cannot be generalised to the bulk of the

flow the log-normality will not be considered in further investigations.

5.4 CFD two-equation models

In this chapter the model based on the previous consideration is proposed and compared

against other models for non-Newtonian fluid turbulence.

To the best of the author’s knowledge the first study in the area of CFD modelling has

been undertaken by Malin (1997) who incorporated non-Newtonian properties into low-

Reynolds number models, showing first that a standard version of a Lam–Bremhorst

low-Reynolds number was inadequate to describe velocity profiles and friction factors.
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He introduced a simple modification of the damping function

fµ = [1− exp(−0.0165Rew)/n1/4]2/(1 + 20.5/Ret). (5.53)

where n corresponds to power-law index in the consitutive law of Ostwald–de Waele

fluid. Compare this form with Equation (4.39).

The model has been shown to improve friction factor and velocity profiles predictions

although in the latter case the accuracy of the velocity profile result cannot be estab-

lished easily because the results are plotted in physical coordinates and therefore the

thin boundary layer is not visible clearly. As expected the model was able to reproduce

laminar power-law velocity profiles for sufficiently low Reynolds numbers. The model

was also tested against Herschel–Bulkley fluids. The runs reported in Malin (1998)

prove to be sufficiently accurate in a number of flow cases. This model is unable to

predict any of the elastic, unsteady effects and therefore it will not exhibit turbulent

drag reduction.

Pinho (2003) develops a k − ε model by introducing a decomposition of viscosity into

mean and fluctuating component in the same manner as turbulence theory decomposes

velocities:

ν = ν + ν ′. (5.54)

With this assumption the derivation of kinetic energy equation is conducted. Then,

based on a constitutive equation that is a modification of a GNF fluid to incorpo-

rate elastic effects an estimate for mean viscosity is given. Subsequently, an order of

magnitude analysis eliminates most of the equation terms and the eventual transport

equation for k and ε, based on low Reynolds number from Nagano and Hishida (1987)

simplified to a channel flow, is given by:

0 =
∂

∂x2

[
νT
σk

∂k

∂x2
+ ν

∂k

∂x2

]
− u1u2

∂u

∂x2
− ε (5.55)

0 =
∂

∂x2

[(
ν +

νT
σε

)
∂ε

∂x2

]
+ f1Cε1

ε

k
Cν
k2

ε

(
∂u

∂x2

)2

+ Cε3
ε

ν

∂ν

∂t
+

+ Cε4
νT
σεν

∂ε

∂x2

∂ν

∂x2
(5.56)

Moreover the classical turbulent viscosity damping function fµ is decomposed into

viscometric damping and elongation viscosity damping:

fµ = fµvfµe (5.57)
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The damping functions are derived in a similar way to Van Driest function and are

given by:

fµv = 1−
[
1 +

∣∣∣∣1− n1 + n
y+

∣∣∣∣]|(1+n)/(1−n)|(1/A+)

(5.58)

fµe = 1−
[
1 +

∣∣∣∣p− 1

3− p
y+

∣∣∣∣C(1−p)/(2−p)
]−|(3−p)/(p−1)|(1/A+)

(5.59)

(5.60)

where p is a power index that accounts for elongation viscosity properties in the GNF

constitutive equation

Friction factors and velocity profiles correlate favourably with experimental and previ-

ous computational data. However kinetic energy and dissipation are not quantitatively

correct. Only the qualitative shift of turbulence production peak value was observed.

The model has been recommended for low values of turbulence intensities.

A Finitely Extensive Nonlinear Elastic with Peterlin’s approximation (FENE-P) is a

molecular model that results in a constitutive equation of the Metzner–White type. So

far it has been mostly used in DNS simulations but recently an attempt by Pinho et al.

(2008) has proved to be successful for a low turbulent Reynold numbers. The model

is based on and validated against recent DNS data. A similar derivation of damping

function and model equations has been conducted but its presentation will be omitted

since this study does not deal with drag reducing fluids.

5.4.1 Results

The main aim of the computational studies undertaken here was to predict the flow

rate given the pressure gradient. For the experimental and DNS data presented here

the latter is not readily available and has to be estimated from the wall shear-stress

that is either reported Escudier et al. (2005) or can be extracted from the data Pinho

(2003); Rudman et al. (2004).

Since the rate of strain at the wall and the rheological properties were given, it was

possible to calculate the pressure gradient (see Pope (2000)):

∂p

∂x
= − 2

R
τw. (5.61)

Two types of meshes were generated in GAMBIT. Both of them were 2D with axisym-

metric boundary conditions imposed. The first mesh had dimensions corresponding to
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Figure 5.14: Left: Cross model with parameters fitted for 0.09% solution of CMC in

water. Right: Laminar, steady calculation.

a 14m long pipe of with 105mm ID (compare Escudier et al. (2005)), whilst the other

was a shorter section with a length equal to 4π diameters (compare Rudman et al.

(2004)). In case of the former inlet/outlet boundary conditions were imposed. In case

of the latter periodic boundary conditions were used.

In the vicinity of the wall a laminar sublayer will develop regardless of the constitutive

law of the fluid. This stems from the fact that the inertial terms in the Navier-Stokes

equation become negligible there. If we are to take full account of non-Newtonian

rheology we have to solve the equation close to the wall up to the laminar sublayer.

The wall Reynolds number was known a priori and hence it was possible to specify the

mesh size and refinement. The number of radial points varied from 64 to 128. All of

the meshes were refined towards the wall with a growth ratio varying between 1.05 and

1.15. Since for experimental data the pressure gradient and therefore the wall shear-

stress was known, it was possible to calculate wall viscosity and subsequently the wall

coordinates. Wall coordinates allow us to establish the resolution required to capture

the laminar sublayer.

In FLUENT we can choose between six k-ε low-Reynolds turbulence models. When a

Lam–Bremohorst (LB) model is chosen a non-Newtonian turbulence modification ap-

pears in the Text User Interface. For the k-ω model, low-Reynolds number corrections

can be also switched on.

Initially, the Lam–Bremhorst model with non-Newtonian modification was chosen. The

fluid used for validation was a 0.09% aqueous solution of CMC from Escudier et al.
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Figure 5.15: Left: Turbulent velocity profile in physical coordinates. Right: Turbulence

intensity. The error of the turbulent intensity prediction was less than 5%.

(2005). This fluid was well described by the Cross model which is described in Sec-

tion 4.2.2.

The results presented in Figure 5.15 show good agreement with the experimental data.

The velocity profile in wall and physical coordinates as well as the ultimate estimate of

the flow rate were within 5% of experimental data. Observe also that the specification

of turbulent quantities did not much affect the flow field downstream. After two metres

the turbulence intensity seems to stabilise around a value that is within 5% of the values

reported in the experiment.

This positive agreement was also repeated for all of the shear-thinning fluids from

Escudier et al. (2005). It is important to note that these fluids were well described by

Carreau–Yasuda or Cross rheologies. These constitutive laws remove the singularity

occurring in a classical power-law through limiting viscosities. The variation of viscosity

occurs only close to the wall whilst in the rest of the pipe the low-shear limit is reached.

The simulation of a yield-stress fluid was more complicated due to the fact that the low-

shear viscosities were not given in the Escudier experiment and therefore they became

subject to arbitrary choice. Following Rudman and Blackburn (2006) the choice of cut-

off parameters was such that the cut-off values were used only when the local strain

rate was 104 times lower than the average. The straightforward application of the

low Reynolds-number model on the full pipe mesh was completely unsuccessful. The

turbulence intensity was vanishing downstream from the inlet and the resulting velocity

profiles became laminar. The pressure drops were consequently underestimated. These
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Figure 5.16: Viscosity profiles in FLUENT for Rudman et al. (2004) cases.

negative results gave rise to the theoretical studies presented at the beginning of this

chapter.

5.4.1.1 Models with Turbulent Rate of Strain

We assume then that the rate of strain has the form:

γ̇ =
√

2SijSij + γ̇t (5.62)

where the γ̇t represents the effect of turbulence on the rate of strain. The form of this

term is established based on dimensional analysis and the preceding considerations.

Depending on the choice of the two-equation model, there are two pairs of quantities

describing turbulence in the flow: k and ε or k and ω. Using these scales it it possible

to construct a quantity with dimensions equal to the dimension of sij .

γt = fε(k, ε) = hε (Ret)
ε2

k2
, (5.63)

γt = fω(k, ω) = hω (Ret)ω
2, (5.64)

where an additional damping function was added. In the above expressions Ret is the

turbulent Reynolds number i.e. the Reynolds number based on turbulence quantities.

This is to counteract the asymptotic behaviour of the wall of turbulence quantities. As

outlined in Section 4.1.3 k tends to x2
2 as we approach the wall whilst ε is of the order

of 1. Therefore, if no damping is used than the above expressions will tend to infinity

at the wall. This is why a damping function of the following form is used:

hε (Ret) = hω (Ret) = 1− exp (Ret) . (5.65)
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The turbulence Reynolds number is expressed in the k-ε model for a power-law fluid

as:

Ret =
k2

εν
, (5.66)

where the viscosity is taken from the previous iteration of the algorithm.

Simulations have been run for all available cases. Periodic boundary conditions have

been adopted to simulate fully developed flow. When necessary a pressure drop has been

calculated from the profile and given data. An initial guess was that of a Newtonian

fluid with viscosity equal to the wall viscosity reported in corresponding publications.

The results of these calculations are presented in Table 5.1. The simulations utilising

DNS viscosity profiles show clearly the benefit of an accurate estimation of this quantity,

both results were significantly improved with respect to the unmodified model. For the

Pinho (2003) data most of the results were giving similar and accurate results and

for the experimental Herschel–Bulkley data from Escudier et al. (2005) the results

from the original model were much better. Two conclusions can be drawn from this

result. Firstly, estimating the average velocity in the bulk of the fluid matters but only

when the values of viscosity reach the low-shear cut-off and only if the cut-off value

is comparable to the turbulent viscosity achieved at the centre. An accurate model

of turbulent strain in the bulk of the fluid will not on its own improve the result. To

suppose otherwise would be equivalent to believing that the viscous effects manifest

themselves far from the boundary layer and although such a supposition would not be

entirely unjustified for non-Newtonian fluids, the conclusion would further contradict

the significance of convective terms that should dominate outside the boundary layer.

A further investigation of viscosity profiles calculated from the proposed models shows

that k-ω gave the closest approximation (see Figure 5.17). The viscosity profiles show

good agreement with those obtained with DNS. These were the results for which the

highest in pressure gradient prediction accuracy was obtained.

5.5 Concluding remarks

The analysis presented in this chapter establishes that the mean rate of strain can be as

much as seven times higher than the mean velocity strain in some regions of the flow.

For the instantaneous rate of strain this value can be even larger. Both, power-law and
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Table 5.1: Flow-rate predictions showing improvements in accuracy for selected cases.

Source
Unmodified Model

Predicted

flow-rate

[m/s]

Error

Predicted

flow-rate

[m/s]

Error

Pinho (2003)

3.16 0.06 3.18 0.06

1.48 0.06 1.49 0.04

1.3 0.03 1.31 0.02

Rudman et al. (2004)
0.7 0.3 0.88 0.12

0.84 0.16 0.97 0.02

Escudier et al. (2005) 2.18 0.07 2.39 0.17
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Figure 5.17: Viscosity profiles for ReW = 7000 τY = 0.24 (left) τY = 0.85 (right). The

viscosity of the flow is closely reproduced.
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Herschel–Bulkley fluid exhibit this different, but in case of the latter the difference is

more vital as it controls the yielded and unyielded regions that can appear throughout

cross-section.

The investigations of the probabilistic information of the rate of strain conclude that

the log-normality cannot be regarded as an accurate description. For the fluctuating

rate of strain, however, there seems to be a fairly good match in some regions and

this effect appears in both: power-law and Herschel–Bukley fluids. This finding is

potentially useful for developing an effective molecular viscosity model.

The applicability of these findings in CFD calculations depends on the regularisation

of the constitutive law. If the regularisation limits the maximum value of viscosity to

be an order of magnitude smaller than the effective eddy viscosity than the proposed

corrections will not take place. Otherwise, for the cases were regularisation does not

play a leading role, this study shows that the predictions can be improved by as much

as 18%.
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Chapter 6

Modelling stratified flow

Stratified flow is one of the most common patterns in multiphase flows. The pattern

forms when gravity dominates and leads to segregation. This occurs, when one fluid

has a much larger density than the other.

Initial research in this area was focused on empirical correlations that allow the predic-

tion of bulk quantities such as gas hold-up or pressure drops in long pipelines with or

without inclination. This chapter surveys some of these correlations, concluding that

none of them is universal, which shows that there is still some unknown dependency

that affects the models.

This chapter also presents derivations of two velocity profiles. Similarly, to single phase

flow, the laminar profile can be derived analytically without any additional closures.

The interfacial shear-stress appears as an integration constant and it can be expressed

in terms of known parameters. The resulting relationship between mass-flow-rate and

pressure is not given explicitly. The turbulent profile has been proposed by Biberg

(2007) and here even the interfacial-shear stress is not given explicitly. The mass-flow-

rate to pressure relation can be extracted after solving the model equations in terms of

the liquid height and shear-stress ratios.

With the correlations and analytical velocity profiles we can study the accuracy of CFD

results. We employ the periodic boundary conditions described earlier and compare

the results with unsteady simulations. It is argued that CFD-turbulence models are

inadequate if they do not contain models of interfacial turbulence. DNS data supply

additional evidence that the phase coupling, as well as turbulent effects, have a major
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6. MODELLING STRATIFIED FLOW

impact on bulk quantities and are required for scientific understanding and robust

engineering predictions.

6.1 Empirical pressure drop correlations

The empirical correlations surveyed here were developed to solve a common engineering

problem: estimate the gas phase volumetric fraction and the pressure drop in the pipe,

if the superficial velocities of gas and liquid phases are known. The superficial velocity

of phase P is the volumetric flow rate of phase P divided by cross-sectional area i.e.

UsP =
1

|A|

∫
A
αPU · dS, (6.1)

where αP is the phase fraction and A is the cross-sectional area. This quantity takes

into account the phase distribution and therefore it does not reflect the actual average

velocity with which the phase is moving. The superficial velocity of phase P is the

average velocity as if P were the only phase present in the cross-section. Superficial

velocity can be directly computed from mass flow rate, which is often known a priori.

The actual average velocity of the phase can be calculated only if the phase distribution

is known. Then it can be calculated as the velocity averaged over a cross-sectional phase

fraction.

Two situations are surveyed here:

1. Co-current, stratified flow: gas/Newtonian liquid.

2. Co-current, Stratified flow: gas/non-Newtonian liquid.

6.1.1 Stratified gas/Newtonian liquid

The first attempts to understand and predict friction factors in two-phase flows were

undertaken by Lockhart and Martinelli (1949) and Martinelli and Nelson (1949). Both

approaches begin with a friction factor correlation and assume that that the pressure

drops computed from the parameters of both phases are equal.

dp

dx
=

2ρfPU
2
P

µP
(6.2)

where P denotes the phase. The second assumption is the steady state for phase

fraction: the flow under consideration comprises two co-current streams and the volume
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6.1 Empirical pressure drop correlations

fraction remains constant throughout the pipe. The relaxation of the second assumption

was addressed by Martinelli and Nelson (1949). By defining hydraulic diameters as dG

and dL certain area ratios were defined:

κP =
4AP
πd2

P

(6.3)

where AP = αPA. To predict friction factors the empirical formulae were utilised

fP = CP (ReP )−mP (6.4)

The parameter mP adopts a value 1/4 or 1 if the phase P is respectively in the turbulent

or laminar regime. The pressure is non-dimensionalised with the pressure drop that

would occur if only one phase was transported through a pipe.

φ2
P =

(
dp
dx

)
TP(

dp
dx

)
P

(6.5)

Simple algebraic transformations lead to

αG = 1− κ(3−mL)/(mL−5)
L φ

4/(mL−5)
L = κ

(3−mG)/(mG−5)
G φ

4/(mG−5)
G (6.6)

which can be solved giving the pressure drops results. Usually for the sake of data

presentation a Martinelli parameter is introduced.

X2 =
φ2
g

φ2
l

=

(
dp
dx

)
g(

dp
dx

)
l

(6.7)

Comparison with experiments shows that the derived equations overestimate the real

value of pressure drops. This over-prediction is due to the assumption of constant

wall shear stress which is definitely an overly pessimistic approximation. Normally the

phases will interact with each other and the stress on the smooth interface will be lower

than the wall stress thus leading to friction reduction. Conversely a rough interface

will lead to increased friction.

A modification worth mentioning taking the above issues into account is the one per-

formed by Chisholm (1967), who applied some geometrical considerations to evaluate

the effective wall shear stress. For a stratified flow he obtained:

α1−0.5mL
L

(
A

A−AL

)1−0.5mG

=
X2

Z

(d
′
G)0.5(1+mG)

(d
′
L)0.5(1+mL)

(6.8)

φ2
L =

1

d
′
G

(
1 +

AG
AL

)1−mL ( AG
ALZ2

+ 1

)
(6.9)
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where d
′
P are phase hydraulic diameters non-dimensionalised with the hydraulic radius

of a single phase flow and Z is another non-dimensional quantity defined by:

Z =

(
1 + τ

′
AG/AL

1− τ ′

)
(6.10)

where τ
′

is a non-dimensional stress.

Comparisons with more recent procedures presented by Brennen (2005) reveals that

the above approaches can provide a robust engineering approximation.

6.1.1.1 Taitel and Dukler

The approach proposed by Taitel and Dukler (1976) begins with assuming stratified

flow in a pipeline and then writing the momentum balance equations for both phases:

−Al
dp

dx
− Slτwl + τiSi = 0 (6.11)

−Ag
dp

dx
− Sgτwg − τiSi = 0, (6.12)

where AP is the phase cross-sectional area, SP is the phase wetted perimeter, Si is the

interface cross-sectional length, τwP is the wall shear-stress and τi is the shear-stress at

the interface.

Now assuming that the pressure drop is constant and the same for both phases this

can be simplified to one equation.

τwg
Sg
Ag
− τwl

Sl
Al

+ τiSi

(
1

AL
+

1

AG

)
= 0 (6.13)

Subsequently friction factors are used to estimate wall shear stresses. Eventaully an

implict procedure is developed that chooses the gas phase fraction so as to minimise

the residuum of Equation (6.13).

Further details of the derivation and the MATLAB scripts developed to calculate the

gas phase fraction and corresponding pressure drop can be found in Appendix B.

6.1.2 Stratified gas/non-Newtonian liquid

There is extensive literature on two-phase, non-Newtonian fluid friction factors. This

interest can be explained by the fact that non-Newtonian fluids are typically fluids of

high viscosities and their transport can pose serious engineering difficulties. Moreover,
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certain mixtures of phases can exhibit non-Newtonian properties of their bulk quanti-

tites e.g. bulk viscosity of slurries has yield stress and power-law behaviour. Treating

one of the phases as non-Newtonian in stratified flow, allows us to study flows that can

comprise more than two phases.

It is not entirely true that only high viscosity fluids can have non-Newtonian proper-

ties. Even water has its own non-trivial rheology which Newtonian behaviour merely

approximates. However, in a highly viscous fluids these changes are easier to observe

and are more significant from an engineering design standpoint.

6.1.2.1 Heywood

The analysis of non-Newtonian liquid–gas flows in horizontal pipes has been first con-

ducted by Heywood and Charles (1979) as an extension of Newtonian liquid–gas case.

The analysis was limited and did not encompass liquid turbulent flow. The liquid as-

sumed to behave as in an open channel and gas as in a closed duct giving well-defined

concepts of hydraulic diameters and friction factors.

The algebra eventually leads to:

φ2
L =

ûnL
D̂1+n

, (6.14)

where D̂ is the hydraulic diameter non-dimensionalised with respect to pipe diameter

and û is a velocity non-dimensionalised by a single phase liquid velocity under the same

condition.

One of the main advantages of the formula shown is that it predicts drag reduction

due to decreased wetted perimeter which is not the case with Martinelli correlations.

Validation of the results was performed by comparison with computational results.

6.1.3 Farrooqi and Richardson

Farooqi and Richardson (1982) considered three-phase gas/liquid flows where, the liquid

was additionally a mixture of a Newtonian and non-Newtonian fluid. The Lockhart–

Martinelli predictions were, as usual, overestimating the results but were still within

+/- 30%.

Their studies included the drag reduction phenomenon in shear thinning suspensions

which has been reported to occur when air was injected into a laminar flow of liquid
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suspension. The maximum drag reduction has been correlated with a ratio of the

apparent viscosity to the apparent viscosity at ReMR = 2000. An empirical correlation

of this maximum drag reduction has been obtained and is the following

minφ2
L =


λ0.205 if 0.6 < λ < 1
1− 0.0315λ if 0.35 < λ < 0.6
1.9λ if 0.05 < λ < 0.35

, (6.15)

where λ = (u1/utr)
1−n which according to power-law model is the same as mentioned

above viscosity ratio.

The accuracy of the Heywood and Charles (1979) prediction has been also validated

for power-law indices in the interval from 0.14 to 0.326 but inaccurate for greater n

where it was over-predicting the actual values.

6.1.4 Dziubinski

Dziubinski (1995) attempted to develop a general correlation for intermittent two-phase

flows in a pipe where one phase had non-Newtonian properties. His analysis was based

on a loss coefficient which is of the form:

Λ =
τwρD

2

µ2
=

τw
ρu1

2
Re2 =

f

8
Re2, (6.16)

for Newtonian fluids and:

Λ = K(
4n

3n+ 1
)Re2

MR, (6.17)

for non-Newtonian fluids. By performing analogous steps as in the Newtonian case and

by substituting friction factor correlations for laminar (Equation (4.78)) and turbulent

flow:

f = 0.3164Re
−1/4
MR , (6.18)

Dziubinski reports the resulting formulae for loss coefficient which have a form:

Λ = 8αLCLReTP (laminar) (6.19)

CL =
1 + 1.036 10−4Re1.235

TP

1 + 1.036 10−4Re1.235
L

(6.20)

Λ = 0.0131αL

(
3n+ 1

4n

)−5

exp 1.745
3n+ 1

4n
− 0.634αLRe

7/4
TP (turbulent) (6.21)
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Figure 6.1: Sketch of the physical problem.

agree quite well with extensive experimental data giving an error of +/ − 15% and

+/− 30%

Xu, Wu, Shi, Lao and Li (2007) extended the analysis of Heywood and Charles (1979)

to inclined pipes. Two flow patterns were considered: stratified flow, which is more

common in downward inclined pipe and slug flow which appears more often in upward

sloped pipes. In the first case liquid, due to its high viscosity has been assumed to be

laminar while in the second case both possibilities were considered. The analysis begins

with a force balance equation accounting for buoyancy effects and interfacial stresses.

Typical correlations relating Reynolds number and friction factors were substituted

into the equations. Formulae for pressure drops for stratified and slug flow in inclined

pipes were obtained. Comparison with experimental data has shown that proposed

equations deviated 20% and 30% in case of stratified and slug flow respectively.

6.2 Analytical velocity profiles

In this section we present the derivations of velocity profiles for channel flow. These

profiles are further considered in the solution of the pressure drop and holdup predic-

tions.

It is often assumed that the origin of the coordinate system is at the interface. In some

cases it can significantly simplify the analysis.
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6.2.1 Laminar profiles

Laminar profiles have been derived by Bird et al. (1960), Biberg and Halvorsen (2000)

and Sim (2006). Bird et al. derives the profiles for rectangular channel flow but

under the assumption that the liquid pool height is known. This eliminates one of the

unknowns. Subsequently they obtain explicit expressions for the physical velocities of

both phases. Biberg and Halvorsen focuses on pipeline flow. Sim derives the profiles for

channel flow with stationary and oscillating walls. However, he deals with the inverse

problem i.e. he assumes the pressure drop and the liquid height to be known and

obtains the formulas for average velocities which are than compared with results from

numerical simulations.

In this section we deal with channel flow and we assume that only phase mass fluxes

or superficial velocities are given. The problem under consideration is depicted in

Figure 6.1. It involves two incompressible, Newtonian fluids, further denoted as g and

l, flowing between two flat plates set H apart. At a distance h from the lower plate there

is a phase interface over which fluid density and viscosity change but with velocity and

shear-stresses assumed to be continuous. Gravity acts in −x2 direction. The problem

is essentially two-dimensional.

We adopt the assumption that the flow is fully developed which means that the velocity

and the phase fraction profiles do not change with the axial coordinate x. Material

properties of both phases are assumed to be constant. The equations of motion for

case simplify to:

∂p

∂x
=

∂

∂y

(
µ
∂U

∂y

)
(6.22)

∂p

∂y
= ρg. (6.23)

The assumption of fully developed flow also means that the RHS of Equation (6.22)

and RHS of Equation (6.23) depend only on the coordinate y. Integrating the latter

between 0 and y gives:

p(x, y) = ρgy + p(x, 0), (6.24)

which leads to a conclusion that ∂p
∂x is a function of x only. Since the LHS of Equa-

tion (6.22) is a function of x and the RHS is a function of y, we conclude that both
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sides of this equation must be constant. Therefore, the streamwise pressure gradient

does not change with the axial coordinate:

∂p

∂x
= const. (6.25)

To solve this equation with respect to the pressure gradient and interface height h we

assume that the velocity profiles are continuous over the interface:

lim
y→h+

U(y) = lim
y→h−

U(y) = ui (6.26)

and that viscosity can be expressed as

µ =

{
µg y > h
µl y < h

. (6.27)

Solving this with the assumption that the interface is at level h and that the velocity

profile is continuous gives a concatenation of two “mirror” Couette flows:

U =

{
∂p
∂x

1
2µg

(
y2 − (H + h)y +Hh

)
+ ui

H−h(H − y) y > h
∂p
∂x

1
2µl

(
y2 − hy

)
+ y

hui y < h
, (6.28)

where ui is the velocity at the interface. We further assume that the stress at the

interface is also continuous so that we can put an equality between the left and right

side limits:

lim
y→h+

τ = lim
y→h−

τ (6.29)

and therefore

lim
y→h+

µg
∂U

∂y
= lim

y→h−
µl
∂U

∂y
, (6.30)

which after substituting Equation (6.28) gives the interface velocity in terms of height

and pressure gradient:

ui = −∂p
∂x

H

2µl

1
1
h +

µg
µl

1
H−h

= −∂p
∂x

H

2

h(H − h)

µgh+ µl(H − h)
(6.31)

We have now expressed the velocity profile in terms of pressure gradient and height.

These are the unknowns which can be calculated only if additional conditions are

imposed on the system. One way is to specify phase mass fluxes:

1

H

H∫
h

U(y) dy = Usg
1

H

h∫
0

U(y) dy = Usl. (6.32)
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Figure 6.2: Turbulent profiles in steady state fully developed channel flow: shear stress

(left), eddy viscosity (centre), mean velocity (right).

Substituting the velocity profile and subsequent integration gives a system of two non-

linear equations
(
∂p
∂x

1
2µg

(
y3/3− (H + h)y2/2 +Hhy

)
+ ui

H−h(Hy − y2/2)
) ∣∣∣∣H

h

= Usg

∂p
∂x

1
2µl

(
−1/6h3

)
+ h

2ui = Usl

, (6.33)

where the first equation has only been written symbolically for the sake of brevity. This

system of equations can be ultimately solved numerically. The roots of these rational

expressions will give ∂p
∂x and h, satisfying the constraints in Equation (6.32).

To solve this problem numerically a set of MATLAB scripts were written. The script use

Newton’s method for finding roots of a differentiable function and are further described

in Appendix B.

6.2.2 Turbulent profiles

To investigate turbulent flow profiles we adopt the averaged Navier–Stokes equations.

The derivation begins with a decomposition of instantaneous velocities into their mean

and fluctuating components and applying the averaging operation to the system of

equations. This leads to equations for mean velocity profiles containing the Reynolds

stress term which has to be expressed in terms of known parameters. It is now conve-

nient to assume that the origin of the coordinate system is at the interface.
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6.2 Analytical velocity profiles

Integration of Equation (6.22) will give a linear profile of shear-stress.

τxy =
∂p

∂x
y + τi. (6.34)

This is depicted on Figure 6.2. Let hP denotes the position of the wall wetted by phases

P . Then we can express the wall shear stress by:

τwP =
∂p

∂x
hP + τi. (6.35)

Combining the two above expressions gives:

τxy = τi − (τwP − τi)
y

hP
. (6.36)

The shear stress can now be expressed as a sum of Reynolds stress and the stress coming

from molecular viscosity:

τxy = µ
∂U

∂y
− ρuv. (6.37)

The Reynolds stress terms is expressed by:

−ρuv = µt
∂U

∂y
. (6.38)

Biberg (2007) proposes an algebraic model of turbulence that reproduces log-layers

at both wall regions. Both phases in the flow are analysed separetely and the the

coupling between phases is ensured through continuity conditions at the interface and

specification of turbulence levels. We will now focus on the model applicable within

one phase and because of this the indices denoting the phase are temporarily dropped.

The non-dimensional profile is expressed using two new parameters.

R =
τi
τw

Y =
y

h
. (6.39)

Additionally, there is a parameter measuring the level of turbulence at the interface.

For know we define the parameter as the rescaled interfacial eddy viscosity from Biberg

(2011)

K =
µt
∣∣
Y=0

ρκhu∗i
, (6.40)

where κ is the von Karman constant. Eddy viscosity at the interface, and therefore K,

is not known a priori. Therefore, the closure of K is the key element of the model and

will be discussed separately.
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First let us consider the mixing length model. Prandtl originally expressed the eddy

viscosity in the following way:

µt = ρlvt, (6.41)

where l is the mixing length and vt, considering the momentum transfer between flow

strata (see Schlichting (1955)), is further approximated by:

vt = l
∂U

∂y
. (6.42)

Substituting back into Equation (6.38) and then back into equation Equation (6.37)

and then neglecting the viscous term we arrive at:

vt =

√
τxy
ρ

(6.43)

From this point onwards the derivation assumes that the profile at the wall follows the

logarithmic distribution with respect to wall proximity:

U =
u∗

κ
ln (1− Y ) + C1, (6.44)

where u∗ =
√

τw
ρ and the constant C1 is:

C1 = sgn (τw)
u∗

κ

(
ln

(
u∗h

ν

)
+ κB

)
. (6.45)

If we substitute Equation (6.44) into Equation (6.41) and use the auxillary expression

in Equation (6.43) we arrive with

l = κh(1− Y )

√∣∣∣∣τxyτw
∣∣∣∣ (6.46)

as Y approaches the wall. The conclusion from above derivation is that the mixing

length must be of the form in Equation (6.46) in the vinicity of the wall to reproduce a

logarithmic velocity profile. Using this intuition from mixing length theory the algebraic

model of viscosity is decomposed in the following way:

l = LF, (6.47)

where L is the turbulent length scale and F represents the effect of non-constant shear

stress. The postulate on F is the following:

lim
Y→1

F (Y ) =

√∣∣∣∣τxyτw
∣∣∣∣, lim

Y→0
F (Y ) =

√∣∣∣∣τxyτi
∣∣∣∣. (6.48)
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6.2 Analytical velocity profiles

Note that for Y = 0 or Y = 1, F (Y ) = 1.

According to Equation (6.46) limY→1 L (Y ) = κh(1 − Y ). This enforces the following

set of conditions:

L(1) = 0
∂L

∂Y
(1) = −κh (6.49)

On the side of the interface L must be related to the interfacial turbulence level K.

The interface turbulence length scale li is obtained from K after rescaling by channel

height which is the only dimensional quantity containing unit length scale.

li = κhK (6.50)

The condition limY→0 L(Y ) = li is now imposed. In terms of non-dimensional param-

eters this is expressed by:

L (0) =
µ
∣∣
Y=0

ρvt
= κhK. (6.51)

The second order polynomial which satisfies the required condition has the following

form:

L = κh (1− Y ) (Y +K (1− Y )) . (6.52)

The remaining terms in Equation (6.41) and approximation proposed Equation (6.47)

can be treated together as one function:

U = Fvt (6.53)

and interpolated using the third order rational polynomial:

U =
b1 + b2Y + b3Y

2 + b4Y
3

1 + b5Y + b6Y 2
. (6.54)

The conditions for U are derived from Equation (6.48)

U (Y → 1) =
1

u∗
|τxy|
ρ

, U (Y → 1) =
1

u∗i

|τxy|
ρ

, (6.55)

where u∗i =
√
|τi|
ρ is the interface friction velocity. Using the defined non-dimensional

parameters and expressions for shear-stress we obtain

τxy = sgn (τw) ρu∗2 (R (1− Y )− Y ) , (6.56)
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Now substituting back to Equation (6.55) and taking first and second order derivatives

it is possible to obtain six conditions.

U
∣∣
Y=1

= u∗ U,Y
∣∣
Y=1

= u∗(1 +R) U,Y Y
∣∣
Y=1

= 0 (6.57)

U
∣∣
Y=0

= u∗ U,Y
∣∣
Y=0

= −u∗(1 + 1/R) U,Y Y
∣∣
Y=0

= 0 (6.58)

Solving for the polynomial constants gives:

U =
u∗
(
Y 3 + |R|5/2 (1− Y )3

)
R2(1− Y )2 +R (1− Y )Y + Y 2

. (6.59)

Combining all the interpolated expressions, the final form of the Biberg (2007) algebraic

turbulence model is given by:

µt
ρhu∗

=
κ (1− Y ) (Y +K (1− Y ))

(
Y 3 + |R|5/2 (1− Y )3

)
R2 (1− Y )2 +R (1− Y )Y + Y 2

(6.60)

With this algebraic viscosity model it is possible to obtain the velocity distribution by

integrating Equation (6.38)

U =

∫
τxy
µt

dy (6.61)

Using partial fractions the final velocity profile is given by

U = sgn(τw)
u∗

κ
∆ + C (6.62)

where

∆ = ln(1− Y ) +

(
K3 +R3

)
ln (Y +K (1− Y ))

|R|5/2 −K3

+
(R+

√
|R| 3
√
|R| ln(Y + |R|5/6(1− Y ))

3
(
K − |R|5/6

)
−

(R+
√
|R|)(K + 2|R|5/6) 3

√
|R| ln

(
Y 2 − (1− Y )

(
Y − (1− Y ) |R|5/6

)
|R|5/6

)
6
(
K2 + |R|5/6K + |R|5/3

)
+

K
(
R+

√
|R|
)

3
√
|R

√
3
(
K2 + |R|5/6K + |R|5/3

) arctan

(
2 (Y − 1) |R|5/3 + (2Y − 1) |R|5/6 + 2Y√

3|R|5/6

)
(6.63)

where C is a function of the Reynolds number and can be given explicitly by recalling

that at the wall the profile should reproduce Equation (6.44):

lim
Y→1

U =
u∗

κ
ln (1− Y ) + C1. (6.64)
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6.2 Analytical velocity profiles

Therefore the constant C is expressed by:

C = C1 +
u∗

κ
Ψ(R,K) (6.65)

where

Ψ = −
K
(
R+

√
|R|
)

√
3
(
K2 + |R|5/6K + |R|5/3

)tan−1

(
1 + 2

|R|5/6√
3

)
(6.66)

Using these profiles the expression for average velocity can be derived. This can be tied

back to the original problem of predicting pressure drop and phase fraction, given su-

perficial velocities. Unfortunately the expression for interface friction will not be given

explicitly and has to be obtained numerically. An algorithm using a double bracket-

ing root search algorithm is proposed in Biberg (2007). Biberg gives an algorithm for

pipelines, but for the purpose of this thesis a channel version has been written.

The additional advantage with respect to the correlations given in the previous section

is the ability to investigate the details of the flow i.e. velocity and viscosity profile.

This can be used as a tool for the validation of CFD codes (this is pursued in the next

section).

The above derivation introduces two unknown quantities: the non-dimensional tur-

bulence levels at the interface Kg and Kl. Similarly to the laminar case, turbulent

viscosity is not necessarily continuous over the interface. There is common agreement

that the gas phase perceives the liquid phase as a moving wall. The eddies in the gas

phase will usually have insufficient energy to significantly deform the liquid. On the

liquid side, the interface fluctuations are inhibited by the stabilising presence of gravity

(see Hunt (1984)).

Eventually two types of interfaces are distinguished: smooth and wavy interfaces. This

classification mirrors closely the distinction between smooth and rough wall surfaces.

Smooth interfaces are considered when the there is no deformation or the deformations

are small in comparison with pipeline diameter. Wavy interfaces allow larger interface

oscillations but the waves must be beyond the point of breaking. The effect of the

perturbed interface is manifested by an increased roughness parameter in the flow

model.

Smooth interface closures are given by:

Kg =
8νg

|Ug − Ul|hg
, Kl =1. (6.67)
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The wavy interface closures are:

Kg = 0.065
ρg(Ug − Ul)2

(ρl − ρg) ghg
, Kl =10

√
ρg
ρl

∣∣∣∣Ug − UlUl

∣∣∣∣ . (6.68)

The constants in these expressions have been adjusted to fit the experimental data of

Espedal (1998).

6.3 Comparison against CFD

Validation of the method proposed in the previous chapter has been conducted. Recall,

that the problem specifies mass fluxes or superficial velocities as the only input to the

calculation. Therefore, the height and actual velocities for the respective phases are

unknown a priori. To facilitate comparisons the Reynolds number employed is based

on superficial velocity.

ReG =
UsgH

νG
ReL =

UslH

νL
(6.69)

Two approaches have been compared: steady state calculations performed in Open-

FOAM and unsteady calculations run in FLUENT. The OpenFOAM model uses the

periodic boundary conditions described in the previous chapter whilst the FLUENT

model uses a full length channel 50 inlet diameters in length with split velocity inlet and

pressure outlet boundary conditions. The channel inlet was split using User Defined

Functions and constant velocities, reflecting the specified superficial velocity have been

imposed. In some cases the split has been moved down (towards the liquid side), to

decrease the initial change in liquid height. Because OpenFOAM is a three dimensional

finite volume code and the problem addressed here is two-dimensional, a periodic patch

is applied on the faces with a normal aligned with the third dimension.

Because FLUENT performs a full channel simulation, the computational times are not

comparable. Unsteady simulations are at a disadvantage as they need to solve the

problem in spatial and temporal domains until the steady state is reached. They also

require a finer mesh as they need to resolve the effect of the inlet and outlet boundary

conditions which constrains the choice of time steps in explicit VOF, since large time

steps in comparison with the width of spatial discretisation will results in a high Courant

number and unstable behaviour. The comparison aims only at reproducing the fully

developed flow conditions and comparing the profiles with analytical or experimental
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results. In principle, it can be expected that FLUENT full simulation will reproduce

the experimental data more faithfully since it resolves the inlet and outlet effects.

6.3.1 Laminar profiles

An implicit solution of equation Equation (6.33) was implemented in MATLAB in order

to calculate the profiles in Equation (6.28) and obtain the characteristics of the flow for

given superficial velocities. The code is documented and appended to this document.

To demonstrate the effects of both Reynolds numbers on the flow profiles, three different

liquid Reynolds number have been chosen and a range of gas Reynolds numbers have

been examined. First, a purely analytical examination have been carried out to gauge

the effects of Reynolds numbers on characteristics of the flow. The results are depicted

in Figure 6.3. Subsequently four typical velocity profiles have been chosen to compare

against CFD calculations. OpenFOAM calculations are compared against analytical

solutions. The number of outer loop iterations in periodic boundaries has been set to 3×
103. PISO algorithm was used to account for pressure velocity coupling and no solution

of momentum equation has been performed (no predictor step). Convergence in the

inner loops for the solution of the pressure equation was set to 10−10 residual tolerance.

PCG method was used to solve the pressure equation and Diagonal Incomplete Cholesky

was used as the preconditioner. The cell count in the transverse direction was set

initially to 20 and then was increased up to 60. On the last increase the difference in

estimated pressure gradients was less than 5% of the actual value and therefore further

refinement has been abandoned.

Discrepancy between pressure the calculated and analytical pressure gradient was less

than 5% and the profiles remain in close correspondence. The profiles were normalised

with physical gas velocity so that the area under the gas profile is one. This allows to

compare shapes rather than particular values. The number of outer iterations before

reaching convergence was an average less than 2× 103 whilst the number of iterations

was on average 2.33.

From the solution of Equation (6.33) an asymptote at ReG = 0 is clearly visible. As

anticipated an increase in liquid Reynolds number is much more pronounced than the

increase in gas Reynolds number. Two profiles after rescaling with gas velocities are

actually identical.
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Figure 6.3: The behaviour of liquid height and pressure gradient with respect to Reynolds

number in laminar flow.
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Figure 6.4: Typical velocity profiles obtained with OpenFOAM: Profiles on the left have

ReG = 150 on the right ReG = 1500. Profiles at the top have ReL = 150 and at the

bottom: ReL = 1500.
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Figure 6.5: Top: the grid employed, Bottom: The normal velocity distribution and the

phase fraction distribution.

The results obtained for the 3D model of a pipeline are shown in Figure 6.5. A script was

first developed in order to create meshes for the 3D problem. Note that in Figure 6.5

the grid is divided into three regions in the cross-section: the central quadrilateral and

an outer and inner circles. The script allows the specification all the dimensions of

the problem i.e. the diameter, the length of the section, the concaveness of the middle

section and the ratio of each cross-sectional section diameter to the diameter of the

whole pipe.

The results in Figure 6.5 are the results of for the laminar model with ReL = 1500

and ReG = 600. Other Reynolds number were covered as well and it was discovered

that the method correctly conserves the specified mass fluxes. The method creates a

“smeared” interface at the place where the interface connects with the wall. This may

be caused by the cells being rotated in such a way the surface normals are no longer

aligned with the direction of the consecutive corrections.

Both, the Superbee scheme and the artificial flux method (described in Section 3.1.1)
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were used. The differences between these approaches was small in comparison with the

cell size.

To obtain these results, the surface tension term in Equation (3.6) had to be suppressed.

The inclusion of this term renders the method unstable. The reason for this unstable

behaviour have not been investigated since the study was focusing on turbulent flow

where the surface tension is expected to play a very minor role. The validation of the

method for 3D cases would require further investigations.

6.3.2 Turbulent profile

The RANS equations as described in Section 3.1.3 are adopted as a model of turbu-

lent. Therefore, only the mean velocity field is calculated. The influence of fluctuating

components is modelled through Reynolds stresses that are closed by the Boussinesq

hypothesis and eddy viscosity is expressed by k and ω for which additional transport

equations are solved. For the results presented in this section a two-equation k-ω model

was used with various turbulence interface corrections. At the end of this section results

from the MATLAB code implementing the Biberg model are also presented.

Discretsation and the linear solvers are the same as in laminar cases. Additional trans-

port equations are solved with Preconditioned Biconjugate Gradient with Incomplete

LU decomposition. Mesh refinement was performed until the resulting pressure gradi-

ent difference was lower than 5%.

Results using a standard RANS turbulence model are shown in Figure 6.7. All of these

models consistently predict the pressure gradient to be higher than experiment e.g.

FLUENT calculations for ReG = 1.32×104 and ReL = 8.04×104 were giving an average

pressure gradient in the fully developed region of 741 Pa, whereas the experimental value

for this point was 285 Pa.

This effect is caused by an overly dissipative solution. The effective viscosity calculated

in these cases exhibits a maximum around the interface which results from the large

velocity gradient in the k-equation production term. Two-equation models are known

to produce artificially high effective viscosity in regions of large normal strain (see Pope

(2000)). This is shown in Figure 6.6. Qualitative and quantitatively similar results were

obtained with OpenFOAM which leads to a conclusion that the problem is related to

the model that is being used.
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Figure 6.7: Standard turbulence models against Akai et al. (1981). Velocity profiles on

the gas (left) and liquid (right) sides. Top: ReG = 2.34 × 103 Centre: ReG = 6.52 × 103,

Bottom: ReG = 1.32× 104.
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a) b)

Figure 6.8: a) Curvilinear mesh (Issa (1988)) b) Single phase with moving wall (Holm̊as

and Biberg (2007)).

Various interface treatments are employed to attenuate this artificial dissipation of

RANS models. To date, there has been no effort to derive RANS models specifically

for VOF multiphase model. Instead, single phase models have been used with various

ad -hoc corrections.

Akai et al. (1981) use one of the low-Re k-ε models. The authors are using a finite

difference method where the coordinate system is so defined as to have one direction

normal to the interface and with the origin at the interface. This provides a clear dis-

tinction between liquid and gas phases and allows them to specify boundary conditions

for k and ε, where empirical correlations obtained from Akai et al. (1980) are used.

It also limits the solution to steady steady flows with flat interfaces in channels. The

liquid pool height is obtained via scaling of coordinates.

Issa (1988) uses low and high Re k-ε models. The liquid pool height is obtained by

fitting a special curvilinear mesh that fills the circular cross-section and has one chord

denoting the interface position (see Figure 6.8). Therefore only flat interfaces can be

obtained and only steady solutions can be considered. Subsequently, Issa imposes mass

fluxes and chooses the position of the chord as to minimise the residuals in mass flux

constraints.

In the VOF framework Egorov (2004) (ANSYS CFX) and Ghorai and Nigam (2006)

(FLUENT) both use high Reynolds number models to simulate long channels. It is

reported that the standard models in these commercial packages fail to predict the

experimental data correctly. Then, Ghorai and Nigam modified the profiles around the

interface by imposing log-layers. This is only of limited applicability as a logarithmic
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profile does not necessarily emerge at the interface (see Biberg (2007)). Holm̊as and

Biberg (2007) use the k-ω model. Only the gas phase is simulated - the liquid is

modelled as a moving wall. Egorov includes an additional dissipation term in the

equation for specific dissipation ω:

∂ρω

∂t
+∇ ·Uρω =ρC1ω

ω

k
uiuj

∂Ui
∂xj
− ρC2ωω

2 +
∂

∂xj

[
(µ+ σµT )

∂ω

∂xj

]
+ ρ

|∇α|
max |∇α|

C2ωω
2
i︸ ︷︷ ︸

interface treatment

(6.70)

where ωi has a form of the wall value for ω if viscous sublayer is resolved, that is:

ωi = B
µP

ρPC2ω(∆n)2
. (6.71)

In this formula ρP and µP are the density and viscosity respectively of a given phase,

∆n is width of the cell and B is an adjustable constant. The main difficulty with this

approach lies with the adjustable constant. Egorov argues that it is mesh dependent

but there can also exist an additional parametric dependency related to the specific

problem. Figure 6.9 shows only the pressure gradient predictions for Bruno (1988)

air/water cases. The same meshes are employed, but two different liquid Reynolds

numbers and a range of gas Reynolds number are investigated. Two different values of

B are required in order to obtain the estimates for pressure gradients that are close to

experimental values. This suggests that the slip velocity might be a relevant parameter

in the scaling of B. When the choice of B is lower than the optimal value for a given set

of experiments, then we clearly see a diverging behaviour as the slip velocity increases.

Physically, B might be tied to interface “roughness”. It increases the specific dissipation

at the interface.

Additional difficulty in estimating ωi is the width of the cell ∆n. In general, with an

unstructured mesh and with an arbitrary interface shape this may pose a significant

difficulty. In this study, advantage was taken of the fact that the flows are stratified,

with the normal to the interface parallel to the gravity direction. Moreover, a structured

rectangular shape grid is employed and therefore the spatial dimensions of each cell can

be calculated by iterating over all faces and taking a projection of the difference of cell

and surface centroids onto a unit vector of a specific axis.
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Figure 6.9: Egorov (2004) type correction: pressure gradient predictions. Smooth and

wavy lines are plotted according to Biberg (2007) model. Top: ReL = 255 Centre ReL =

745, Bottom: ReL = 255 but with constant B = 1.
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In their LES work Lakehal and Liovic (2011); Liovic and Lakehal (2007) develop a

special treatment that dampens the sub grid scale effective eddy viscosity. Two algo-

rithms are developed that calculate the distance to the interface and the interface shear

velocity. With these two quantities an interface distance in shear-based units y+
int can

be obtained. Subsequently a van Driest type formula is used with different coefficients

for the polynomial in the exponent. For the gas side the damping is given by:

f(y+
int) = 1− exp

(
a1Gy

+
int + a2G(y+

int

)2
+ a3G(y+

int)
3), (6.72)

whereas on the liquid side:

f(y+
int) = 1− exp

(
a1Ly

+
int + a2G(y+

int)
2
)
, (6.73)

where aiP are coefficients obtained from previous DNS studies (see the survey of recent

DNS in Section 6.5).

Finally, Lo and Tomasello (2010), working with RANS equations of the k–ω model,

review various approaches, including constant multiplicative damping of the effective

viscosity at the interface:

µ
′
T =

{
C
′
µT 0 < α < 1

µT otherwise
(6.74)

where C
′

is a constant and α is VOF indicator function.

Lo and Tomasello (2010) propose another correction which again requires the calcu-

lation of interface distance. The distance to the interface is estimated based on the

scaling laws of specific dissipation ω. It has been pointed out by Masson and Gleize

(2004) that according to asymptotic analysis the following scaling is approximately

correct for log-layers and the viscous sublayer:

1

ω

∂ω

∂y
∼ 1

y
. (6.75)

and therefore a reciprocate of the function

Fint(ω) = N
1

ω

∂ω

∂y
(6.76)

is proportional to the interface distance. N is an adjustable parameter. Using this

additional information that we obtain from solving turbulence transport equations it

is possible to define y+
int as

y+
int =

ρPuτ
Fint(ω)µP

. (6.77)
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Source Mechanism Coefficients

Egorov (2004) Equations (6.70)

and (6.71)

B = 2500 (depends on

slip velocity)

Lo and Tomasello (2010) Equation (6.74) C
′

= 0.01

Lo and Tomasello (2010) Equation (6.78) C
′

= 0.1, A+ = 2500,

A+ = y+
lim = 500

Lakehal and Liovic (2011) Equation (6.72),

Equation (6.73)

a1G = −0.00013,

a2G = −0.00036,

a3G = −1.08 × 10−5,

a1L = −0.0014,

a2L = −0.00064

Table 6.1: VOF turbulence interface damping mechanisms.

Moreover, this modification also allows switching between low and high Reynolds num-

ber formulations making the k-ω model insensitive to wall refinement. This approach

has some drawbacks and its further developed in Masson and Gleize (2004). For our

purposes it is also important to note that Lo and Tomasello (2010) conclude with simple

van Driest damping in the vicinity of the interface:

µ
′
T =

{
C
′
(

1− exp
(
y+int
A+

))
y+

int < y+
lim

µT otherwise
(6.78)

where coefficients C
′
, y+

lim and A+ are adjusted to fit the experimental data.

Interface treatments used in concatenation with VOF boundaries are summarised in

Table 6.1. Constant coefficients that have been reported in the original papers are also

shown there.

Another treatment that is proposed in the current study combines the approach of

Egorov with automatic switching between low and high Reynolds number approaches

proposed by Menter (1994) for k-ω model. The aim was to remove the sensitivity to

near wall refinement that appeared in RANS turbulence models. The motivation to

use this method in this study is to remove mesh-dependant constants in Egorov model.

Menter uses a composite value of ω expressed in the following form:

ωw =
√
ω2

Lam + ω2
Log (6.79)
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where ωw is the value at the wall, ω2
Lam ω2

Log are the values coming from an analytical

approximation of the logarithmic and the laminar sublayer in turbulent boundary layer

of the k-ω model:

ωLam =
6νw

Cµ∆y2
, ωLog =

√
k

4
√
Cµκ∆y

, (6.80)

where ∆y is the distance from the wall.

In the laminar expression for turbulence we identify Equation (6.71) from Egorov model.

So eventually the model for the interface:

ωi = B̂
√
ω̂2

Lam + ω̂2
Log (6.81)

where

ω̂Lam =
6νw

C2ω(∆n)2
, ω̂Log =

√
k

4
√
C2ωκ∆n

, (6.82)

and the parameteric dependency was retained due to unsatisfactory results of initial

attempts.

The results are shown in Figure 6.10, they were obtained with the value of B̂ = 100

which in a much stronger damping of turbulence than in the case of Bruno (1988) cases.

This might be caused by the higher density ratio as in Akai et al. (1981) cases we are

dealing with mercury as opposed to water. The choice of the value was preceded b the

fine tunning process and within 20% variation of the mesh size the predictions were

consistent. Care must be taken in chooshing the mesh size since the limitations are

imposed not only by interface modelling but also by the wall function modelling.

Last but not least, the Biberg model is employed. The prediction of pressure gradient

and liquid height is shown on Figure 6.11 where pressure gradient prediction of a CFD

turbulence model is also depicted. Moreover, velocity profiles are plotted in Figure 6.12.

Only the wavy cases have been examined. The coefficients in Equation (6.68) is changed

to 0.013 (original value×1.5 ), to better reflect the data at large pressure gradients.

6.4 Non-Newtonian fluid and two-phase flow

The periodic boundary conditions together with the k-ω turbulence model presented in

the preceding section were used in order to analyse the velocity profile as a function of

the power-law index in the constitutive law describing the viscosity of the liquid phase.
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Figure 6.10: Modified turbulence models against Akai et al. (1981). Velocity profiles on

the gas (left) and liquid (right) sides. Top: ReG = 2.34 × 103 Centre: ReG = 6.52 × 103,

Bottom: ReG = 1.32× 104.
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Figure 6.11: Estimated against experimental pressure gradients and liquid height.
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Figure 6.12: Biberg model against Akai et al. (1981). Velocity profiles on the gas (left)

and liquid (right) sides. Top: ReG = 2.34 × 103 Centre: ReG = 6.52 × 103, Bottom:

ReG = 1.32× 104.
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The cases developed on Bruno (1988) were used as a base Newtonian fluid, since for

these cases it was possible to obtain a good approximation of pressure gradients. For

the non-Newtonian behaviour the Cross-model, described in Chapter 4, was used in

order to avoid problems with zero-shear singularity.

A typical change of the velocity profile is shown in Figure 6.13. Despite the effective

viscosity being dominated by the eddy viscosity (derived Boussinesq hypothesis) the

change is clearly visible. Liquid laminar viscosity at the interface decreases with de-

creasing n and the profile on the gas side becomes less skewed. Additionally, it should

be noted that with the increase of the power-law index the phase fraction of the gas

phase increased. Since the Lockhart–Martinelli parameter is positive for these flows the

correlations, developed through analysis and experimental investigations by Xu et al.

(2007), confirm this prediction.

6.5 Recent DNS and LES results

The numerical investigation of interface flows can be divided into simulations with

shear-free surfaces (free surface) and with sheared surfaces. The literature from the
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6.5 Recent DNS and LES results

last two decades exhibits a steady progress in the numerical investigations of these

flows.

Lam and Banerjee (1992) apply no-slip and free-slip boundary conditions in their DNS.

They observed that the nature of the boundary was less significant compared with the

magnitude of shear applied on the boundary. Despite the fact that vortex structures

behave differently at each boundary i.e. vortices can attach to a free-slip boundary, but

they cannot attach to a no-slip boundary, turbulent streaks appear on both sides and

their characteristics are related to S̃ = S|u1u3 |/ε. Lam and Banerjee conclude with a

criterion for turbulent streak formation based on S̃.

Handler et al. (1993); Nagaosa (1999); Pan and Banerjee (1995); Shen et al. (1999); Tsai

(1998) study free-surface flows numerically. These papers focus on coherent structures

on the liquid side, just below the interface. Two types of characteristic structures that

are identified to occur are splats/antisplats and swirls. Splats are structures deflected

by the interface, whilst swirls are attached vortices with vorticity aligned with the

normal to the interface. Various correlations between these events are examined. Most

importantly, the contribution to Reynolds stress is assessed through quadrant analysis.

It is found that swirls, if not disturbed by interface movement, are relatively long lived

and can interact with each other. Additionally, Nagaosa and Handler (2003) studied

heat flow at the phase boundary.

Subsequently, sheared interfaces between fluids of high density ratios have been studied

by Lombardi et al. (1996). Continuity of velocity profiles and shear stresses was adopted

as the interface boundary condition and free slip boundaries were imposed on the

domain boundaries parallel to the interface. Periodic boundaries have been applied on

other boundaries with the streamwise boundary having a specified pressure gradient.

Both the statistical and instantaneous structure of turbulence are reported in their

paper. The statistics of turbulence on the gas side, compared with wall bounded

flow, are not altered significantly whereas on the liquid side the mean velocity profile

normalised with interface friction velocity is markedly different from the Nikuradse log

law. Also the turbulent energy budget is different: the production peak is increased

and shifted towards the boundary. Turbulent diffusion has a completely different trend

(with the peak value at the interface): the dissipation rates are higher. Reynolds

stresses on the liquid side are non zero and show a positive trend as y+ decreases.
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6. MODELLING STRATIFIED FLOW

Instantaneous coherent structures were studied as well. The objective was to evaluate

the robustness of the Lam and Banerjee (1992) criterion and to establish whether

turbulent events are correlated on both sides. It has been confirmed that at least

20% of events are correlated across the interface although this estimate might be overly

pessimistic due to the strict spatial coherence criterion that was adopted. The coupling

was dominated by gas ejection–liquid ejection type events, but also gas sweep–liquid

ejection had a significant contribution. Coupled events comprised 60% of the Reynolds

stress.

Gas turbulence over wavy walls and slightly deformable interfaces has been studied

by De Angelis et al. (1997), Fulgosi et al. (2003) and Lin et al. (2008) . In the first

paper two sine waves have been imposed using coordinate transformation, whilst in the

remaining two an advection equation for liquid elevation has been solved for Froude and

Weber numbers that secure a non-breaking interface. All these studies confirm that

the structure of turbulence is altered in the near-interface region. Particularly in the

case of a slightly deformable interface it has been observed that the turbulent as well as

dissipation at the interface are dampened, although, unlike the wall boundary, turbulent

kinetic energy has a non zero value at the interface. In the Reynolds stress budget it

can be seen that the redistribution of energy is mostly affected. The mean velocity

profile on the gas side differs from the flat interface case significantly. Similarly to the

flat interface case Reynolds stresses on the liquid side increase towards the interface.

Finally, breaking waves are studied with LES approach by Lakehal and Liovic (2011).

The authors use VOF method to track the interface. Subgrid scale turbulence is mod-

elled with Smagorinsky model and a van Driest type damping of eddy viscosity at the

interface is used. To this end an algorithm for interface distance reconstruction and

calculation of shear velocity is also employed, these data extraction algorithms are all

described in Liovic and Lakehal (2007). In the exponent the damping uses a third order

polynomial on the gas side and a second order polynomial on the liquid side with coef-

ficients extracted from Fulgosi et al. (2003). With this model the authors study wave

breaking events and its interactions with turbulence and mean flow. Averaged velocity

profiles are reported and the turbulent kinetic energy budget is plotted. Interestingly,

during wave breaking events pressure diffusion terms and turbulent transport terms

around become significant contributors to the turbulent kinetic energy budget.
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All of these studies are of immense importance in the development of RANS models

as they provide relevant statistics such as: mean profiles, Reynolds stresses, turbulence

kinetic energy budget etc. Based on these data the constants in interpolation functions

or damping terms can be adjusted. The changes in turbulent kinetic energy budget,

especially the increased role of turbulent transport and pressure diffusion might mean

that the gradient diffusion hypothesis which approximates these terms in the standard

two-equation RANS formulation might no longer be valid.

6.6 Concluding remarks

The test cases performed show that the periodic CFD code based on the method pre-

sented in Chapter 3 can correctly predict stratified flows in laminar and turbulent

regime, although in the latter case significant modelling difficulties were encountered.

The development of better models is ongoing research.

From a commercial standpoint the CFD modelling of stratified flows in long pipelines is

long-term research. This is mainly because simpler models and 1D codes are available

that give robust estimates under these conditions e.g. the Biberg model. Therefore

there is no direct incentive to supply such models but in the long run the future CFD

modelling of multiphase flows must be able to predict these flows correctly. This would

justify the use of CFD in more complex flow regimes, unsteady and local modelling

of complex geometries cases where simpler models or 1D codes working with averaged

equations might not work.

This long term goal is being advanced in the research community through DNS and,

more recently, LES studies. The statistical structure of the boundary layer around

the interface has been recently revealed and hence the multiphase community is in an

analogous situation to the one formerly encountered in single phase research i.e. with

the new data available there is an opportunity to develop better turbulence models.

This avenue is explored in this study and leads to significant improvements

As for the method, the laminar results presented for two-dimensional flows are in agree-

ment with the theoretical result. The three-dimensional version still requires some

refinements in order to incorporate all the relevant physics.

On the turbulence modelling side, there is not enough evidence to stipulate that con-

stants in Egorov model and its variation introduced above are mesh-dependant. The
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most likely interpretation is a missing dependency on the physical parameters describ-

ing the flow. The situation seems to be analogous to wall modelling in RANS, where

it was crucial to understand the local behaviour and introduce an approximation that

captures the effect of it on the bulk flow. With the new contribution in DNS studies

it should be soon possible to develop an equivalent of a wall-function that would be

suitable for stratified flows in turbulent regimes.
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Chapter 7

Summary

The research presented in this thesis addresses CFD modelling of single phase flow

of non-Newtonian fluid and two-phase flow of Newtonian fluids. The standard turbu-

lence models were examined and refined to account for non-Newtonian properties and

interphase momentum and turbulence transfers. Although initial efforts to combine

these sets of developments into a composite model, that is described in Chapter 1,

were carried out in Section 6.4 a justification of the RANS results is difficult due to

uncertainties with modelling the interfacial turbulence. The main contributions are

therefore the improved models for non-Newtonian fluids, the implementation of peri-

odic boundary conditions for two-phase flows and improved models of turbulence for

stratified flows.

The last chapter of this thesis is divided as follows. In Section 7.1 all the results are

collected and the main conclusions are drawn. Section 7.2 outlines possibilities for

further refinements and developments.

7.1 Conclusions

• The standard wall function approach is not rheology-sensitive and does not agree

well with the experimental friction factor curves available in the literature. To ac-

count for the non-Newtonian boundary layer different log-layer interpolation must

be imposed leading to development and implementation of new wall functions.

These non-Newtonian wall functions presented in this thesis can correctly repro-

duce the translation of friction factor curve and give more accurate predictions
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of friction factors. The maximum improvement achieved was 35

• The mean rate of strain of instantaneous velocity field is larger than the rate

of strain of the mean velocity field. This hypothesis was evaluated with the

use of statistical inference methods and successfully passed all the tests. The

analysis of DNS data shows that although the averaged rate of strain of the

instantaneous field and the rate of strain of the averaged velocity field can be twice

as large (and instantaneous values can be even 10 times larger), the corresponding

change in viscosity results in molecular viscosity that is still much smaller than

the effective viscosity caused by turbulent flow. Simple regularisations of the zero-

shear singularity are usually sufficient for the accurate prediction of pipe flows.

For some cases an improved model based on dimensional analysis and order of

magnitude estimates gives improved predictions for power-law fluids.

• A new analysis presented in Chapter 5 which tests the hypothesis that under

certain self-similarity assumptions the rate of strain of the fluctuating field has a

log-normal distribution. This could lead to accurate models for effective molecular

viscosity in turbulent flow. Statistical analysis of DNS data establishes that this

assumption is valid only in a narrow region of the flow.

• For stratified, two-phase flow in a pipeline or channel a simulation on a full

geometry can be approximated with a simulation of a pipe section. The geometry

must be periodic in the streamwise direction. The problem is closed by applying

periodic boundary conditions on both ends and by specifying mass fluxes for

both phases. A novel solution procedure for periodic boundary is proposed. The

procuedure gives correct liquid height, pressure gradient and velocity profiles for

fully developed laminar flow in a channel. For the purpose of this validation an

analytical expression for laminar case has been derived.

• The standard RANS models for two-phase flow become predict too high turbu-

lence viscosity in the vicinity of the interface. This results in the prediction of

pressure gradients are typically larger by around one order of magnitude than

those reported in experimental investigations. A similar phenomenon was ob-

served for LES models. DNS studies, on the other hand, reveal that turbulence

around a flat interface behaves like turbulence in the vicinity of a moving wall.
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Several corrections based on this observation are assessed in this study and a new

approach was proposed. Improved predictions of pressure gradients and liquid

heights were obtained.

• The Biberg model was implemented and applied for the cases obtained from

the literature review. With an adjustment of turbulence level at the interface

the Biberg model reproduced the pressure gradients, liquid heights and gave a

very close approximation of velocity profiles. This demonstrates the necessity of

modelling the turbulence level at the interface.

7.2 Suggestions for future work

• Low- and high-Reynolds number approaches to the turbulence level at the in-

terface. The research carried out shows that the modelling of turbulence in the

vicinity of the interface cannot be neglected and may lead to large discrepancies

if not addressed. Ultimately the goal is to develop and implement a two-equation

RANS model that would correctly predict the behaviour of turbulence statistics

for two-phase stratified flow. The main challenge here is to describe correctly

the behaviour of the flow at the interface. This would require advances in the

fundamental understanding of phase interactions and gives an opportunity for

original contributions in the theory of two-phase turbulence. Similarly to the

wall modelling, wall function and damping function will arise as modelling tools

which will act as mathematical models of local behaviour.

• Combine the presented approaches into a composite model. The composite model

must be validated against experimental data. This can be carried out only when

the uncertainties caused by the interface modelling are eliminated (in Newtonian

cases). If this condition is not met, it will not be clear whether the results are an

effect of the fluid rheology or the interface turbulence model.

• The development of a thermal boundary condition for two-phase flow. Inclusion

of thermal calculations would enable us to investigate important two-phase flow

scenarios that arise in long fluid conduits e.g. hydrate formation. Initial attempts
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have been performed and are reported in Appendix C. Different types of ther-

mal conditions necessitate different implementation of periodicity. A validation

against DNS or experimental data will provide further insights and direction of

development. It seems natural to expect similar difficulties in modelling the heat

transfer at the interface.

• A two-layer implementation of wall function for non-Newtonian fluids. A two-

layer wall function could further explore possible advantages of the known rheol-

ogy. This could potentially make the model more accurate on a wider range of

cases including complex flows.

• v2 -f model for non-Newtonian fluids. Turbulence models may be formulated

using different quantities characterising turbulence. The model based on the

variance of the normal velocity component i.e. v2 has gained some acceptance.

This model is described by quantities that have known and finite values at the

wall. Moreover, these quantities are of direct use for the purpose of turbulent

rate of strain estimates and could therefore be used to give an effective molecular

viscosity model that accounts for the strain caused by the turbulent flow.

• The Biberg model with non-Newtonian fluids. The Biberg model does not inte-

grate the momentum balance equations up to the laminar layer, but imposes a

logarithmic profile in the vicinity of the wall and used friction factor expresions

to obtain wall shear-stresses. It appears straightforward to change the logarith-

mic form to account for non-Newtonian behaviour and formulate a model for

two-phase stratified flow with the liquid component having non-Newtonian prop-

erties.

This study was focused on RANS models and numerical techniques for non-Newtonian

fluids and two-phase flows. Although many problems still remain open to further

investigation, the presented contributions bring us several steps forward in the search

for robust predictive tools and more accurate multiphase CFD. Due to diversity of the

flow phenomena involved, both, the numerical and physical models, suffer from certain

limitations and it is unlikely that any one methodology will prove to be applicable

within the whole range of physical parameters that is of practical use. In this respect,
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7.2 Suggestions for future work

it is the author’s hope that the novel work presented here, as well as other findings,

will assist multiphase modellers in further development of this field.
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A. LOW-RE MODELS TEST

Standard k-ε model uses special interpolation schemes at the wall, called wall functions.

These allow to perform the calculations on more coarse meshes, saving the computa-

tional time, but limiting the applicability of the model.

Low-Reynolds number models (for good survey papers see Rodi and Mansour (1993),

Hrenya et al. (1995), Wilcox (2006)) integrate turbulence equations up to the viscous

layer without the use of wall functions. Instead they use special damping terms in order

to secure the right asymptotic behaviour of turbulence quantites.

2D calculations in FLUENT have been performed using two meshes: 32x128, 64x128.

These meshes are rescaled so that the height of the mesh is 1m and the length is 10m.

Axis boundary conditions are applied on the bottom edge of the mesh. Velocity inlet

is used and the velocity is set to 1m
s . Pressure boundary is used as outlet and wall bc

is set on the top edge of the mesh. Solver is set for axisymmetric problems.

Density is normalised to 1 and the Reynolds number is varied by changing the viscosiy.

Three different Reynolds numbers have been chosen for comparison:

1. Re = 100

2. Re = 1000

3. Re = 5000

All of the k-ε models are used in this study and compared against laminar viscosity

model. Results are presented on figures A.1, A.2, A.3, A.4.
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Figure A.1: Laminar profiles. Coarse mesh Re = 100

163



A. LOW-RE MODELS TEST

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1

U

y

Laminar
Abid

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1

U

y

Laminar
Lam-Bremhorst

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1

U

y

Laminar
Launder-Sharma

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1

U

y

Laminar
Yang-Shih

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1

U

y

Laminar
Abe-Kondoh-Nagano

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1

U

y

Laminar
Chang-Hsieh-Chen

Figure A.2: Laminar profiles. Fine mesh Re = 100
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Figure A.3: Transitional profiles: fine mesh Re = 1000
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Figure A.4: Turbulent profiles. Fine mesh Re = 5000
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All of the models correctly predict laminar profiles for low Reynolds numbers. As we

go into transition laminar model “breaks” but low-Re still gives reasonable profiles.

Turbulent profiles are also correctly predicted.

Further mesh refinement studies could be performed and the detailed study of transition

region could be examined. This however has been covered by the existing literature

(see below) and will not be pursued here.
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Appendix B

Holdup and pressure drop

correlations
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B. HOLDUP AND PRESSURE DROP CORRELATIONS

File name Comment

eq1.m Gives a residual of Equation (6.33).

Uprofile.m Calculates the velocity profile from Equation (6.28).

interfaceVelocity.m Calculates the interface velocity from Equation (6.31)

getPD.m Was used to create Figure. It contains an example of usage.

Table B.1: File list for laminar two-phase calculation profile and pressure drop calculation.

B.1 Laminar flow in a channel

The derivation of the velocity profile in a stratified channel flow is shown in Sec-

tion 6.2.1. This section contains only a description of the files that are attached with

the dissertation.

The files are to be used with MATLAB. The standard procedure is to use MATLAB

in built functions for solving function handles. As for version 7.1 the default MAT-

LAB method for solving a set of non-linear equations is Trust-Region Dogleg Method.

Trust-Region Methods define a model function at each step and use the model func-

tion in order to choose the direction. Trust regions are introduced in order to limit

the search space performed on the model function. If the model function gives a good

approximation of the original function the trust region can be expanded. Contrariwise

if the model function does not give a good approximation then the region is contracted.

Simple thresholding is used in order to control this mechanism. The goal of this ap-

proach is to improve the robustness of the method, especially in cases where the initial

guess is far from optimum and in regions where Jacobian might might be singular.

Matlab uses quadratic function as a model function. Instead of iterating a standard

Newton method given by

F (xk + d) = F (x) + J(xk)d (B.1)

where F is the function, xk is the current search point, d is the direction and J is the

Jacobian, MATLAB minimizes

m(d) =
1

2
F (xk)

TF (xk) + dTJ(xk)
TF (xk) +

1

2
dTJ(xk)

TJ(xk)d (B.2)
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B.2 Pipe flow with Taitel–Dukler correlation

D

h

Ag

Sg

Si

AlSl

Figure B.1: Notation required for Taitel–Dukler method of calculating pressure gradients

on a trust region given such that ‖Dd‖ < ∆, where D is the diagonal scaling and ∆ is

the region radius (nomenclature taken from MATLAB (2010)). Table B.1 is a list of

files that were used to calculate laminar profiles.

B.2 Pipe flow with Taitel–Dukler correlation

Figure B.1 explains the notation used in Taitel–Dukler methodology. For a fully devel-

oped pipeline flow the momentum balance simplifies to:

−Al
dp

dx
− Slτwl + τiSi = 0, (B.3)

−Ag
dp

dx
− Sgτwg − τiSi = 0, (B.4)

where Ag is the area occupied by the gas, Al is the area occupied by the liquid, whilst

Sg and Sl are the wetted perimeters of gas and liquid respectively. Si is the interface

area. Since the pressure gradients is equal these two equations can be combined into

one

τwg
Sg
Ag
− τwl

Sl
Al

+ τiSi

(
1

AL
+

1

AG

)
= 0 (B.5)

The wall shear stresses are expressed in terms of friction factors:

τwg = fl
ρlu

2
l

2
, τwl = fg

ρgu
2
l

2
, τwi = fi

ρg(ug − ul)2

2
. (B.6)
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B. HOLDUP AND PRESSURE DROP CORRELATIONS

The additional assumption is that ug � ul and that fg ∼ fi so the interface shear

stress becomes equal to gas wall shear-stress. The quantities describing the area are

normalised with D2 whilst the quantities described in length units are normalised with

D. With some simple algebraic transformation the following formula can be derived:

fl
fg

ρlû
2
l

ρgû2
g

Ŝl

Âl
û2
l +

(
Ŝg

Âg
+
fi
fg

(
Ŝi

Âl
+
Ŝi

Â g

))
û2
l = 0. (B.7)

The Blasius equation is used for friction factors. It is expressed by:

fg = Cg

(
ugDg

νg

)−ng
fg = Cl

(
ulDl

νl

)−nl
, (B.8)

where Dl and Dg are the hydraulic diameters. The parameters are chosen depending

on the regime in which the phases are flowing. For laminar flow we have CP = 16

and nP = 1, where P = g, l, whilst for turbulent flow CP = 0.046 and nP = 0.2. The

hydraulic diameters are expressed as Dl = 4Al/Sl and Dg = 4Ag/(Sg +Si). Subsisting

this to the Equation (B.7)

−X2 (ûlDl)
−nl

(ugDg)−ng
Ŝl

Âl
û2
l +

(
Ŝg

Âg
+
fi
fg

(
Ŝi

Âl
+
Ŝi

Â g

))
û2
l = 0. (B.9)

where X is the Lockhart–Martinelli parameter. Using trigonometry all the quantities

can be expressed in terms of liquid height h.

Âl =
1

4

(
π − arccos(2ĥ− 1) + (2ĥ− 1)

√
1− (2ĥ− 1)2

)
(B.10)

Âg =
1

4

(
(2ĥ− 1)

√
1− (2ĥ− 1)2

)
(B.11)

Ŝl = π − arccos(2ĥ− 1) (B.12)

Ŝg = arccos(2ĥ− 1) (B.13)

Ŝi =

√
1− (2ĥ− 1)2 (B.14)

ûl =
Â

Âl
(B.15)

ûg =
Â

Âg
(B.16)

These relations can be subsisted into Equation (B.9) and Equation (B.9) can be then

implicitly solved for ĥ. Note that the Lockhart-Martinelli paramter is the only input

to this procedure.
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B.3 Biberg model

File name Comment

getFrictionFactor.m Blasius expression for calculation of friction factors.

bisection.m The implementation of bisection method. This serves the

implicit solution of Equation (B.9)

getDimensionless.m Calculates all non dimensional parameters given by equa-

tions Equations (B.10) to (B.16)

dimensionlessPressureDrops.m Calculates the dimensionless pressure drop with Equa-

tion (B.17).

eq7.m This is the residual of Equation (B.9) for a given set of input

paramters. In Taitel and Dukler (1976) this equation was

references as Eq. 7.

circularSegmentArea.m Calculation of a circular segment area.

taitel.ods OpenOffice spreadsheet for calculating Lockhart–Martinelli

parameter for a give flow case.

Table B.2: File list for Taitel–Dukler scripts.

After the solution of Equation (B.9) the non-dimensional pressure gradient can be

recovered from

φ2
g =

1

4
û2
g

(ûgDg)
−ng

Âg

(
Ŝg +

fi
fg
Ŝi

)
. (B.17)

Figures B.2 and B.3 show the results for a range of Lockhart–Martinelli paramters cal-

culated from the Taitel–Dukler method that was implemented in MATLAB. Moreover,

a file list is given in Table B.2

B.3 Biberg model

Biberg model is described in section 6.2.2. To solve the equations of the model two

bisection algorithm is requires i.e. the root search algorithm invokes another root

search to evaluate the function. The model is solved in terms of Rg and h. Table B.3

gives a summary of the functions implemented. Apart from MATLAB scripts, Maxima

files have been written in order to cross-check the results of the functions that are

implemented at various stages of calculation procedure.
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Figure B.2: Non-dimensional height as a function of Lockhard–Martinelli parameter.
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Figure B.3: Non-dimensional gas pressure gradient as a function of Lockhard–Martinelli

parameter.
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B.3 Biberg model

File name Comment

bisection.m Implementation of the bisection method.

calcKgKlRl.m Calculation of gas and liquid interface turbulence level, and

Rl.

Eq39.m The dimensionless eddy viscosity profile for a single fluid.

Eq48.m The dimensionless velocity profile for a single fluid.

Eq51.m The dimensionless velocity profile translation Ψ.

Eq59.m The dimensionless mean velocity for a single fluid.

lambdaWall.m Wall friction factor.

profiles.m The function calculating the profiles given liquid height and

Rg.

stratFlowFric.m OpenOffice spreadsheet for calculating Lockhart–Martinelli

parameter for a give flow case.

stratFlow.m The main function of this collection. It calculates the pro-

files, pressure gradient, liquid height, shear-stresses and

other flow parameters, given superficial velocities, fluid

properties and channel or pipeline dimensions.

test.m A script containing example usage.

Table B.3: File list for Taitel–Dukler scripts.

Both versions i.e. channel and pipeline were implemented.
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C. HEAT TRANSFER MODELLING

The general equation of heat transfer for a single phase flow is given by Landau and

Lifshitz (1987):

∂

∂t

(
1

2
ρ|U|2 + ρe

)
= ∇ ·

(
ρU

(
1

2
ρ|U|2 + ρh

)
− k∇T

)
, (C.1)

where e is internal energy per unit mass, h is specific enthalpy and k is a coefficient

of thermal conductivity. The terms on the right hand side represent respectively: the

convective and conductive heat transfer. Viscous heating effect has been neglected.

With the help of thermodynamic relations the continuity and momentum equations

Equation (C.1) can be expressed in terms of enthalpy alone. First, the left hand side

can be rewritten as follows:

∂

∂t

(
1

2
ρ|U|2 + ρe

)
=

1

2
|U|2∂ρ

∂t
+ ρU · ∂U

∂t
+
∂ρ

∂t
e+ ρ

∂e

∂t
. (C.2)

Now, some of the time derivatives can be expanded with the use of the momentum and

continuity equations:

∂

∂t

(
1

2
ρ|U|2 + ρe

)
=− 1

2
|U|2∇ · ρU− ρU · ∇1

2
|U|2 −U · ∇p

+ e∇ · ρU + ρ
∂e

∂t
, (C.3)

where the stress tensor has been neglected under the assumption that it is small

compared with other terms. To remove time derivatives of e the relation de =

T ds− p/ρ2 dρ, where s stands for entropy, is used. This gives:

∂e

∂t
= T

∂s

∂t
+

p

ρ2

∂ρ

∂t
= T

∂s

∂t
+

p

ρ2
∇ · ρU. (C.4)

Now, using the definition of enthalpy h = e + p/ρ, e can be removed from the above

equation to give:

∂

∂t

(
1

2
ρ|U|2 + ρe

)
=−

(
1

2
|U|2 + h

)
∇ · ρU− ρU · ∇1

2
|U|2 −U · ∇p

+ ρT
∂s

∂t
. (C.5)

The entropy is removed with the aid of relation dh = T ds+ dp/ρ:

∂

∂t

(
1

2
ρ|U|2 + ρe

)
=−

(
1

2
|U|2 + h

)
∇ · ρU− ρU · ∇1

2
|U|2 + ρ

∂h

∂t

− Dp

Dt
, (C.6)
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C.1 Temperature effect on viscosity

where a symbol of material derivative D
Dt has been used to simply the notation. Now

adding and subtracting ρU · ∇h the equation can be simplified to:

∂

∂t

(
1

2
ρ|U|2 + ρe

)
=−∇ ·

(
ρU

(
1

2
|U|2 + h

))
+ ρ

∂h

∂t
+ ρU · ∇h− Dp

Dt
, (C.7)

which after substitution in Equation (C.1) gives:

ρ

(
∂h

∂t
+ U · ∇h

)
= ∇ · k∇T +

Dp

Dt
. (C.8)

For an incompressible fluid the energy equation can be simplified (see Landau and Lif-

shitz (1987) and solved for temperature only. At constant pressure the thermodynamic

relationship gives: (
∂h

∂T

)
p

= cp, (C.9)

where cp is the specific heat capacity. Using chain rule we obtain:

∂h

∂t
=

(
∂h

∂T

)
p

∂T

∂t
. (C.10)

This means that Equation (C.8) can be transformed to:

ρcp

(
∂T

∂t
+ U · ∇T

)
= ∇ · k∇T (C.11)

which can be used in the context of two-phase flow if no phase transitions are expected.

C.1 Temperature effect on viscosity

The standard approach to fluid dynamic problem is to assume that all material param-

eters are constant. The discussion above relates the changes of viscosity in terms of

strain rate or more general the relation between stress and strain rates. In this section

we will look at variation of viscosity function with relation to temperature.

According to Bird et al. (1987) the variation of these density and viscosity is much

more pronounced pronounced than variation of any other. The literature supplies us

with several expressions relating temperature to viscosity. Most of them are purely

empirical however after exposition of the models of strain rate and stress it is obvious

that correlating temperature history would be also possible (and in fact was postulated

by Oldroyd!).
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C. HEAT TRANSFER MODELLING

Piecewise-polynomial

for T ∈ [Tmin,1, Tmax,1] T = a1,1 + a1,2T + . . .
...

for T ∈ [Tmin,k, Tmax,k] T = ak,1 + ak,2T + . . .

(C.12)

Power-law
µ

µ0
= a

(
T

T0

)b
(C.13)

Exponential-law
µ

µ0
= a exp

(
b
T

T0

)
(C.14)

Sutherland’s law based on kinetic theory

µ =
aT 3/2

T + b
(C.15)

It is now worth spending a while to develop a non-dimensional governing equations of

flows with temperature related viscosity.

C.1.1 Governing equations

We confine our attention to steady flows. Variations of density are assumed to be

negligible with the exception of buoyancy term where we assume that temperature

variation can lead to small differences in density approximated by a first order Taylor

expansion (Boussinesq approximation).

We assume a temperature dependant viscosity. Possible constitutive laws relating tem-

perature to viscosity are given at the end of this section.

∂uj
∂xj

= 0 (C.16)

ρuj
∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj
(µ(T )γ̇ij) + ρgiβ(T − T∞) (C.17)

ρCpuj
∂T

∂xj
=

∂

∂xj
k
∂T

∂xj
+

1

2
µ(T )

(
∂ui
∂xj

∂uj
∂xi

)
(C.18)

where ρ density, µ(T ) is a temperature dependant viscosity, k is a conductivity, Cp is

heat capacity, β is heat expansion coefficient and γ̇ij is strain rate given by:

γ̇ij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
(C.19)
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The boundary conditions we would like to impose on this system are the following:

k
∂T

∂n
= h(T∞ − T ), u = 0 at the wall (C.20)

T = T0 at the inlet (C.21)

where h is the heat transfer coefficient and T∞ is the temperature of the surrounding

of the pipe. The form of this condition corresponds to so called Newton’s cooling law.

We assume that it is much lower than temperature of the pipe by imposing T∞ = O(ε).

Therefore we can say that Neumann boundary conditions were applied for the pipe wall

and Dirichlet boundary conditions at the inlet. For this problem formulation existence

and uniqueness of weak solution has been proved under certain circumstances (see e.g.

Chung et al. (2006)).

One of the possible non-diemnsionalisation can be given by:

ûi =
ui
U0
, x̂i =

xi
R
, p̂ =

Rp

µ0U0
, T̂ =

T − T∞
T0 − T∞

. (C.22)

With these variables and with a little bit of terms rearrangement to form non-dimensional

groups we obtain:

∂ûi
∂x̂i

= 0, (C.23)

Re ûj
∂ûi
∂x̂j

= − ∂p̂

∂x̂i
+

∂

∂x̂j

(
µ(T )

µ0

˙̂γij

)
+

Gr

Re
T̂ , (C.24)

Pé ûj
∂T̂

∂x̂j
=

∂T̂

∂xi∂xi
x̂i +

1

2
Br

(
µ(T )

µ0

)(
∂ûi
∂x̂j

∂ûj
∂x̂i

)
, (C.25)

and the non-dimensional numbers are:

Re =
ρU0R

µ0
Gr =

gβR3(T∞ − T0)ρ2

µ2
0

, Pé =
ρCpRU0

k
, Br =

µ0U
2
0

k(T∞ − T0)
, (C.26)

where reference scales denoted by subscript zero are chosen based on the problem or

information we are seeking. To describe the average behaviour in the cross-section we

take U0 as bulk velocity, µ0 as bulk viscosity and R the radius of a pipe.

It is clear from these equations that the buoyancy contribution compared to momentum

transport can be measured by the ratio:

Gr

Re2 =
gβR(T∞ − T0)

U2
0

(C.27)

The value of temperature expansion coefficient was based on Arafin et al. (2006)
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C. HEAT TRANSFER MODELLING

C.1.2 Reference scale

The presented equations pose several problems related to scaling. Because of the non-

trivial rheology of the fluid in question it is uncertain if reference scales should refer to

the process scales (e.g. wall temperature) or to rheology of the fluid (e.g. temperature

required to achieve reference viscosity).

The choice of temperature non-dimensionalization was arbitrary and related to the the

process values, but for completeness and perhaps future use let us also present other

possibilities:

∆T1 = T∞ − Tw, ∆T2 =
∆p

ρCp

∆T3 =
µU2

0

ρk
, ∆T4 =

∣∣∣∣ µ

∂µ/∂T

∣∣∣∣
T=T0

. (C.28)

∆T1 is the process temperature difference scale referring to boundary conditions. ∆T2

is an adiabatic temperature of the process. ∆T3 is the temperature required to balance

viscous heating and conduction terms and ∆T4 is a temperature difference required to

make a substantial change to viscosity. Notice that it still requires a value of reference

temperature.

C.1.3 Main analytical results

An asymptotic analysis for the above case for negligible viscous heating has been con-

ducted in Marušić-Paloka and Pažanin (2009). Additionally it has been assumed that

the temperature of the surrounding T∞ and conduction parameter k varies with axial

coordinate x1. The analysis has been performed in the limit of a thin pipe. The pa-

rameter ε of the expansion was the thickness of the pipe, while the length of the pipe

was assumed to be of the order of one. This result is equally valid for a long pipe with

small ratio of thickness to length. The variables have normalised in order to eliminate

pressure and heat capacity from the equation.

Tε(x) = θ0(x1) +B0

(
x1

ε
,
x
′

ε

)
+H0

(
x1 − l
ε

,
x
′

ε

)

ε

(
θ1(x1) +B1

(
x1

ε
,
x
′

ε

)
+H1

(
x1 − l
ε

,
x
′

ε

))
+ ε2θ2

(
x1,

x
′

ε

) (C.29)
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C.1 Temperature effect on viscosity

where x
′

= (x2, x3) are the cross-section coordinates of the pipe. Bn andHn are the n’th

order corrections to the boundary layer due to outlet and inlet boundary conditions.

and θn are the terms of the expansions which are the unique solutions of the boundary

value problems for the following ODEs:
(
kθ
′
0

)′
− 2γθ0 = 0, γ = h

ε = O(1)

θ0(0) = 1
π

∫
B T∞(y

′
), θ0(l) = 1

π

∫
B T∞(y

′
), y

′
= x

′
/ε)

(C.30)


(
kθ
′
1

)′
− 2γ(T∞ − γθ1) = 0,

θ1(0) = k
′
(0)

πk(0)

∫∞
0 s

∫
B
∂B0

∂y′
(s, ·) ds, θ0(l) k

′
(l)

πk(l)

∫ 0
−∞ s

∫
B
∂H0

∂y′
(s, ·) ds,

(C.31)

where θ2 = −1
4

(
(k(x1)θ

′
0

)′
k(x1) |y′ |2. Prime denotes the derivative with respect to axial coor-

dinate x1. Parameter γ in Equation (C.30) confines our attention to the only non-trivial

case namely the one when the variation of temperature is present throughout the pipe.

If this condition is not satisfied the temperature is either dominated by inlet boundary

condition with almost no heat transfer through the wall or the liquid is cooled very

quickly so that no variation of temperature and therefore the viscosity gradient are not

negligible.

The approximation for velocity and pressure are given by:

uε(x) =
1

2µ(θ0)

(
1− |x

′ |2

ε2

)(
f1(W̄ )− P ′0

)
e1 (C.32)

pε(x1) = −C1

∫ x1

0
µ(θ0(ξ)) dξ +

∫ x1

0
f1(W̄ (ξ))dξ + q0 (C.33)

where W̄ (x1) = θ0(x1)− 1
l

∫ l
0 θ0(ξ)dξ and

C1 =

(
q0 − ql +

∫ x1

0
f1(W̄ (ξ)) dξ

)(∫ x1

0
µ(θ0(ξ)) dξ

)−1

The error analysis of the above solution leads to the following results:

V −1/2‖T − Tε‖ = O(ε
√
ε) (C.34)

V −1/2‖ε−2u1 − uε‖ = O(ε), V −1/2‖ε−2p1 − pε‖ = O(ε) (C.35)

where V is the volume of the pipe and the symbol ‖ · ‖ should be understood as L2(R)

norm.
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C. HEAT TRANSFER MODELLING

C.2 Periodicity in heat transfer

In a subsea pipeline we usually face a problem of transporting hot material in a cold

environment. The material transported cools down as it progresses through the pipe.

There are two types of heat transfer mechanism involved. One comes from convection

caused by the hot material moving through the domain. The second mechanism removes

the heat through the pipe wall releasing it to the environment. The third possible

mechanism would be viscous heating but in this case it is assumed to be negligible.

As the temperature of the material approaches ambient temperature less and less heat

is being released and therefore the assumption of constant heat flux is invalid. Impo-

sition of the wall temperature is also dubious since sufficiently close to the inlet the

temperature will be dominated by inlet fluid temperature and initial sections might not

contain any region where the temperature is equal to temperature of the environment.

For the momentum equations the periodic boundary conditions are specified as in

Chapter 3. Only the treatment of temperature will be considered here.

Obviously, the heat transfer does not admit a periodic solution. In the subsea pipeline

example we see that the surrounding will remove the heat from the pipeline. Each

adjacent cross-section will contain less thermal energy. However the evolution of the

thermal profile might still be periodic under suitable rescaling. In other words the

temperature will be different but the shape of temperature profile might be the same.

In order to examine this resemblance we need to introduce some local reference quantity.

For this purpose the mass averaged temperature is considered here. Depending on

the choice of wall boundary conditions, different rescaling have to be used. Three

posibilities for wall boundary conditions are:

• Fixed wall temperature or Dirichlet condition for temperature

T
∣∣
x=wall

= Tw, (C.36)

where Tw is a wall temperature that needs to be specified.

• Fixed wall heat flux or Neumann condition for temperature

k
∂T

∂n
= qw, (C.37)

where qw is the wall heat flux that needs to be specified.
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C.2 Periodicity in heat transfer

• Newton’s Cooling law or Robin condition for temperature

k
∂T

∂n
= β(T − Ta), (C.38)

where Ta is an ambient temperature and β is a heat transfer coefficient that needs

to be specified.

Moreover, the mass averaged temperature at the cross-section is defined

Tb(x) =

∫
B(x) Tρu · dS∫
B(x) ρu · dS

, (C.39)

where B(x) is the set of points in the cross-section located at x, where x is the stream-

wise coordinate.

Only the fixed wall temperature will be considered here. The normalisation for this

case takes the form:

θ =
T − Tw

Tb(x)− Tw
. (C.40)

Introducing a non-dimensional bulk temperature streamwise gradient as:

λ(x) =
1

Tb(x)− Tw
∂Tb
∂x

, (C.41)

the temperature equation can be recast into the non-dimensional form as follows:

u1
∂θ

∂x
+ u2

∂θ

∂y
− α

(
∂2θ

∂x2
+
∂2θ

∂y2

)
= λ

(
2α
∂θ

∂x
− u1θ

)
+ αθ

(
λ2 +

∂λ

∂x

)
, (C.42)

where α = k/(ρcp) is the thermal diffusivity coefficient.

The problem that now appears is the new variable i.e. function λ. To obtain λ Equa-

tion (C.42): is first solved for θ with a guessed λ. Next, the advantage is taken of the

fact that for every cross-section a quantity

Ω(x) =

∫
B(x) ρu1θ dx∫
B(x) ρu1 dx

(C.43)

should be exactly one. The solution of Equation (C.42) does not have to satisfy this

constraint. Therefore, after solving Equation (C.42) for θ, Ω is calculated for each

section and the following variable transformation is employed:

θ(x, y)∗ =
θ(x, y)

Ω(x)
. (C.44)

Afterwards θ∗ is substituted into Equation (C.42) as θ and the same equation is solved

now for λ. The procedure iterates until the steady state is reached.
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C. HEAT TRANSFER MODELLING

C.3 Results

The parameters of the momentum equation solver were set in the same way as in .

In this study a constant temperature wall was set to 277 K. The inlet bulk tempera-

ture is used as an additional constraint for the inlet temperature. Four different inlet

temperatures are set: 299 K, 307 K, 347 K.

Figure C.1 and Figure C.2 show the results that were obtained with the method de-

scribed above. The self-similarity of the solution, which was the underlying assumption

of the method, is clearly manifested in the temperature profiles. The magnitude of the

change between various inlet temperatures seems to be consistent, however the peak

temperature in the cross-section is much higher than expected. Further testing is re-

quired in order to prove the efficiency of the method or in order to identify possible

flaws in the methodology. The asymptotic solution by Marušić-Paloka and Pažanin

(2009) in previous section is a viable route for a thorough validation.
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C.3 Results

Figure C.1: Top: temperature variation in a 10 diameter long channel section. Bottom

left: laminar velocity profile. Bottom right: temperature at the outlet and the inlet of the

section. Self-similar solution was obtained.

Figure C.2: Comparison of maximum temperature for different inlet bulk temperatures.
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Appendix D

Data collected from the literature

review
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D. DATA COLLECTED FROM THE LITERATURE REVIEW

Table D.1: Form and content of obtained data sets

Source Type Content

Farooqi and Richardson (1982) Tables
friction factors, two-phase

flow

Pinho (2003) CSV
1D velocity field, turbulence

scalar fields, wall coordinates

Rudman and Blackburn (2006) CSV

3D velocity field, 3D viscosity

field, 3D Reynolds stress field

for a given pressure drop

Rudman and Blackburn (2006) Graphs
1D velocity field, turbulence

scalar fields

Escudier et al. (2005) xls rheology and 1d velocity fields

Rhyne (2010) Tables

two-phase flow, friction fac-

tors, superficial velocities, an-

imations

During the last year literature review a following set of relevant data has been identified.

1. Farooqi and Richardson (1982) has conducted an experimental investigation to

establish the effect of non-Newtonian rheology in liquid/gas flow. The flow in

stratified regime with gas being either laminar or turbulent and liquid remaining

only in laminar state. The data comprise fluids rheology, flow rates and corre-

sponding pressure drops.

2. Malin (1997) and Malin (1998) were, to the best of author’s knowledge, the

first simulations of turbulent flows taking non-Newtonian properties into account.

Malin uses power-law and Herschel–Bulkley fluids. Lam and Bremhorst (1981)

turbulence model was used as a base, low-Reynolds number model. The modifica-

tion he introduces power-law index in damping function. The data he published

comprises velocity profiles, in physical coordinates though, Moody diagrams and
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turbulence kinetic energy profiles. The simulations incorporate axisymmetric

boundary conditions on the mesh with 120 radial cells.

3. Escudier and Presti (1999): these experimental data comprise viscoelastic drag

reducing fluid. In a laminar shear flow the fluids were well described by a

Cross model. The measurements of extensional viscosity have been performed.

Reynolds numbers 104 - 5 105 were achieved. Wall coordinate velocity profiles

have been published.

4. Pinho (2003): is a presentation of low Reynolds-number model for viscous and

viscoelastic non-Newtonian effects. The rheology model used in a study is based

on the assumption that viscous and elastic response are both power-law function

of shear rate magnitude and displacement magnitude respectively. Nagano and

Hishida (1987) model was used as a base. Profiles of velocity, turbulence kinetic

energy, dissipation and molecular viscosity were plotted in wall-coordinates.

5. Rudman et al. (2004), and Rudman and Blackburn (2006): direct numerical Sim-

ulations undertaken in these study used power-law and Herschel–Bulkley fluid.

To facilitate the development of transitionally invariant flow the periodic bound-

ary conditions were imposed on inlet and outlet. The Reynolds numbers, based

on wall viscosity, were around 5-7 104. DNS calculations allowed to publish an

extensive survey of various results spanning velocity/viscosity profiles, turbulence

kinetic energy, dissipation, Reynolds’s stresses etc.

6. Escudier et al. (2005): experimental data of reporting the profiles of fully devel-

oped turbulent flows. The pipeline cross-section had 100mm of internal diame-

ter. The measurements were taken 12m from the inlet. Flow regimes spanned

laminar, turbulent and transitional regimes. In case of the latter one the axisym-

metric velocity profiles have been reported. The kinds of fluids span Newtonian,

Carreau-Yasuda fluids, Herschel–Bulkley fluids.

7. Rhyne (2010): is a set of tables describing two-phase flows in a pipeline under

varying pressure drops and inclinations. Tables have been supplemented with

films showing the flow regimes.
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8. Akai et al. (1980): experimental data describing the co-current flow of air and

mercury flow in a square channel. The channel was 18mm high and 48mm wide.

The distance between the inlet section and the measurement devices was 3m.

The reported results comprised flow rates and corresponding pressure gradients,

velocity profiles as well as the profiles of turbulent kinetic energy in both gas and

liquid phases.

9. Bruno (1988): the original thesis has not been obtained, but the data set extracted

from Smith et al. (2010) was used instead. It contains sixteen different pairs of

liquid and gas Reynolds number and their corresponding pressure gradients. This

is shown in Table D.2

Most of the above data have been obtained by the means of private correspondence or

directly from the publication through a specialised data extraction tools. Obviously,

when the private correspondence has been involved the data came in many different

forms (consult the Table D.1).

To extract the data from published graphs a program g3data (see Frantz (2008)) was

used. It is an open source software for Linux system that allows a user to import a

graph, define the frame of reference, read the coordinates of any point, and export

the values to a CSV file. Additionally a magnifying tool is provided to facilitate an

accurate extraction of points.
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Table D.2: Bruno (1988) 1“ channel data

ReG ReL Pressure gradient [Pa/m]

11000 745 26.2

10050 745 20.5

9000 745 19.0

7670 745 13.9

6100 745 9.7

4750 745 6.4

11000 255 18.7

10050 255 16.3

9000 255 12.6

7670 255 9.1

6100 255 6.5

4750 255 4.3
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