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SUMMARY

iy
Expressions are derived for f; and 2y of nose
ailerons and nose elevators on a delta wing, as depicted in
Pigs 1, in supersonic flight. Nose and truiling edge controls

on delte wings in cupersonie [1ight are ecompared.
Gonclusions

On delta wings of moderate aspect ratio (sayj>4)
nosc controls arc comparable with trailing edge controls. Nose
controls are incffective on delta wings of very small aspect

ratio (say<1).

For the samc cffccts, the controls arc deflected up-
words vhen trailing edoe controls would be deflected dowvmwards

and viec versa,

me= 00000 ===~

(Thesis presented for the College Diploma,

June, 1949)
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§ e Introduction

The nose controls considered here are equal, flat
triangular surfaces located symmetrically on each side of a
flat delta wing or tailplane, with the hinge lines meeting at

the apex. (Sec Fig.1).

The controls may be deflected symmetrically (ive,
either both moved up or both moved down through the same angle)
to produce a 1ift forcc. The controls then act as elevators.
Alternatively, the controls may be deflected anti-symmetrically
(i.e. one moved up and the other moved down through the same
angle) to produce a rolling moment, the controls then acting

as allerons.

a
In S 5 tne lift force and rolling mement are calcu-
lated on the assumptions of linearised theory. These results

vield expressions for (i)'g for nose ailerons and (ii) a

2

an

for nosc elevators.

Two kindes of supersonic flow over the wing or tail-
plane are possible, depending on the Mach number () and the

apex angle (EY)_- They ares
(1) i flow in which the leading edges lie outside
b w = =
the Mach cone of the opex . This type of flow occurs at
higher speeds, corresponding to the analytic condition

M %oscc Na

(1i) A flow in vwhich the leading edges lie inside
the Mach cones This type of flow occurs at lower speceds, i.e.
when M% cosce e

Physically, these flows are different - in the first
flow the pressure distribution on either the upper or the
lower surface is unaffected by the shape of the other surface,
while in the sccond flow the pressure on either surface is
affected by the shope of both upper snd lower surfaces. (This
follews from a property of supersonic flow, viz. that a small
disturbance at a peint in the field can only be communicated

to the region within the Mach cone of that point).

/ Il'l the e

Hercafter, the liach cone of the apex will be referred to

hz liach cone'.




8 4. (Contd.)

In the inalysis thesc two kinds of flow are treated
separatoly and yield different formuloe. Flow (i) can be
further subdivided into lwo cases in which the hinge lines lie
{a:l outside and {h) insidc the Mach cone. This distinction
is importent when performing certain of the integrations, but
the method of sclution is f‘mdxmt;ntally the same in both cases
and the fermwlac that are derived for -f”g and a, are the same,

—
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g 2. NOTATION

a speed of sound
&y 1ift slope of delta toilplane
ap ratc of change of 1ift coefficient of delta tail-

, oL /4 2
ane AR &l avrakar G SO L s
. plane with slevator angle = /2 P UO 8
A agpect ratio of delba wing or tailplane = 4 tany
ovgrall aspon of delte wing or tailplane

7
JU  dan

maxira chord of delta wing or tailplane

G B o
i

Q
=

1ift coeificient

(]
— L

rolling menent coefficient

B (u) complete elliptic integral of the sccond kind
P 5 -
{ £ e =
=0 f’: - 1 ain Qf' dﬁ
;;JO et Ll
E'(u) complenicibary couwplete olliphic integral of the

second kind & o
';: TS W W
={° M - (1=u”) sin“@| ag
AEe L

B' = B' (B)
k, = cot
n
5 cot (1_:‘)
K(U.) complete elliptic iutegrsl of the first kind

~
H

A ~ ek
£ 2 .2 aE®
£ iﬁ ~ 1" gin ﬂj ad
¢ o) 99
K! (u) complenentary complete elliptic integral of the

first kind .x

) j" [1 o (heutY i ﬁ]% o

non-dimensionnl derivative of rolling wmoment with
o, 11 : 2

mrmfen il &b

p/L4t o

non~dimensional derivative of rolling momeut with

rate of roll

-‘::‘,,gi'l‘:\

Y .
® . oL / 4 2
aileron angle = -é-: F_p:_' P Uo Sb
. . '
L 1%
L rolling moment (+ ve when starboard tip tends 4o dip)

M Mach number
P

n-‘| ]"1 ! [

2 kg/ B

rige ¢ pressure above pressure at infinity

rate of roll a
s o)
tan {i“j: /"%IC".}"L Ar = 4 - ——

2
5 . ) 2
area of delta wing or tailplane = ¢ tan ¥

v nn W K|
]

sun of arcas of port and starboord controls

) u
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2, (Contd.)

k,]y

X
o
X

induced component of velocity in =x direction
free stream velocity

induced component of veloeity in y direction
induced component of velocity in 2z direction
chord-wise coordinate (measured from the apex in
the direction of flow)

spanwise coordinate (+ ve to starboard)

normal coordinate (+ ve above wing)

incidence of wing (or tailplane)
2

P-4

apex semi~angle

elevator deflection (+ ve when an elevator is
deflected up)

control deflection (+ ve when starboard control is
deflected up) _

semi-angle included between control hinge lines
slope of wing or tailplane surface in x direction

y/x

T

complete elliptic integral of the third kind

A S

o

nof

1

| =8
<

S i
(1 + nsin” @)~ i1 - u° gin® ) } ag

. ey /___,m__“ }---—5»—?“
= l’I (:Lj?rnj "-'1.9.\"-‘; 1 == B'g) g Kl (B) + i fﬂ"I) g

B r s A=r

{-g“ + [K' (B) - B’ (B'):; 51‘.!.-'1 (r,B) - K'(B).E (sin—'1 r,]é);é_

air density
aileron defleection (+ ve when starboard ailcron is
deflected up)

induced wvelocity potential
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2. for explanation of symbols),

Leading ud.zn "idc llach { Leading Bdges Inside Mach Cone
Cone (B> 13i.e. M2 cosec v) 63571; l.c, M= cosecc Y)
= p 3
2
» v 2
% 2 (d-r 2 (-9
fﬁ e 5 sintttan v - ? H sin (tan v
/(1 -B r
Nose flcvators
%eadinglgdg?s O Leading Edges Ingide Mach Cone
Cone (B 21;i (Bf&], i.e. M cosec v)
i) e et e w—— —— s ]
53 P —
b#£0 . !(.1 —p
B g
br(er II-1)y (1-B"2%) sinfidtan y
a Ed=p siﬁ{;}tﬂﬂ e BSO(l'c. D,
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o
g Vi Discussion of Results

I General Remarks and Conclusions

At supcrsonic speeds, nose controls are unsuitable for
delta wings or tailplones of very low aspect ratio (say<1).
Thiz is because the slope P\Of o deflected nose control surface
in the direction of tie moin stream is proportional to sinif}
(where 2&3? is the angle between the control hinge lines.) The
1ift force or rolling moment produccd, being proportional to A »
is then proportional to sin(Eﬁ. At very small aspect ratios

Mlis also very emall and the controls are thercfore relatively

ineffective.

It is possible that in a viscous fluid nose controls
moy have some advantages over trailing edge controls, guch as
greater maximum ailcron (or clevator) vower. This, however,

remains to be investigated.

At moderate aspoct ratios (say > 4) the effectiveness at
supersonic speeds of nose controls (as measured by {1 and &?)

is comparsble with, although less than, the effectiveness of
trailing edge controls.

Tt should be noted that nose controls must be deflec-
ted up instead of down cnd down instead of up in order to
produce the same cffects as conventional (i.c. trailing cdge)

controls.

his 2 Nosc Ailcrons

#

g

In Fige1dy=———= is plotted against B
sintitan v

(qﬁi2—1 tan y) for several values of r (= tan(/tan v). Onm
£

all the curves of constant v, -% is a maximun at B=l, i.e.
B da

when M = cosec ¥, il.c. when the Ilach cone just touchos the lead-
ing cdges. For a given wing (Lics ¥ nndﬂ@ s and thercfore o,

. Lo ; i
glven) the curvee show the variation of ”f; with V11 =1,

Curves of nﬁi against aileron arca for several ilach
munbers between 1 and 3 are plotted for aspect ratios of 23,4
and 6,9 in. Figs. 12 and 13,
4 [

[
: C ; -
In practice == would probably not cxcecd Q.3. Tith

(=]

this limitation, it will be seen that except for wings of higher

=

i
aspect ratios at llach numbers ncar 1, —%; 1s considerably less

b

than for conventional ailerong in incompressible flow.

/Rate of Roll.




Rate of Roll

+t is readily showm that the steady rate of roll p

of a wing is given by:

Jﬂ,f
"B

In ref. 1 it i shom in Fig, 2 that -£ decreases
with M. If M cosec ', ~f increases with M. (See Fig.11).

Hence by the above equation p increases with WM, Lf

: o
M>cosec vy it is proved in ref. 1 that{'f veries as (M°-1)

b

and it is proved in this report that'éé also varies as H2—1)Hf
Hence p varies as U and increasesg ;ith i, Thus at all
supersonic specds the steady rate of roll produced by the ail-
erons increases with increase of speed, and is directly propor-

tional to speed when M2 cosec y.

Comparison of Noge and Trailing Edge Ailerons

Using the approximste Tormula for trailing cdge ail-
erons derived in Appendix V, a comparison between tho effective-
ness of nose and trailing edge ailerons is made in Table 1, on
the basis that the speed and the ratio,control area/wing arca,
arc the same in both cases. From this table it appears that
with moderate aspect ratios [4 to 7) nose clev.tors are, very
approximately, two thirds as effective as trailing edge allerons
at supcrsonic spceds, the discrepancy increasing as aspect ratio

decreascs.

{;}j
CONDITION | ili0S2

1_%;3/3
A = 6i9 !
g Q.73
£ 8 0.2 :
A =k

P 0.56
.I..S_..g . O P 5 [
S - . & i
LaBIE 1.

'COMPARISON OF NOSE ATLERONS WITH TRATLING EDCE AILERONS

L Note vie
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Note. These figures arc based on the assumptions that the
leading edges of the wing lie outside the Mach cone, that the
agpect ratio of thebtrailing edge ailerons is large comparcd

with % and that i % . (See Appendix V).

e 5, Nose Elcvators

It is shovm in 5.123 and 5.22 that the force produced
hy nose elevator deflections acts always on the centre-linc, at
two thirds of the maximum chord from the apex. This point is
also the centre of pressure of a delta wing, so that nose ele-
vators fitted to a delta wing cannot trim the wing, i.e. cannot

act as elevators.

It would be possible, however, to trim a wing by means
of ncse controls fitted to it provided the wing plan form is

gimilar to either of the two types showm belows

/7/\

Fa

HINGE /
/
LINES //

i ¥

With either of these plan forms, the centre of pressure of the
force produced by control doflections would differ from the
centre of pressurc of the wing at incidence, Deltas of this

type, with bent trailing cdges, are not dealt with in this

report, however,

The analysis of nose elevators of this report is
applicable to delta tailplanes on supersonic sircraft, The
remarks in the remainder of 4.3 refer to sguch a tailplane,

-
In ¥ig., 14, e is plotted ageinst B for
sini) tan s
several values of r. For a given tailplane thesc curves show

W

the variation of a, with ¢H™-1.
&

Curves of 2o against elevator area for four llach

mmbers between 1 and 3 are nlotted for aspect ratios of

2.3, L and 6,9 in Figs. 15 and 1&  On 2ll these curves 2

rises to a maximum value, O at a certain valuc of

SC
/‘éﬂ LR




-10=

s
5~ » usually about 0.6,

a
The quantity —2:235 is plotted against agpect ratio
il

in Pig. 17, where a, is the 1ift slope of the delta tailplane.

a 1
th -
is & function of both M and A, but vhen

In gencral

i

2 max
a
1

%4

a
2 max

1
and a, both vary as 612-1) %, and

M >coscc v, &y

is thus a function only of A, Only two curves, viz. those

for M =1 and MZcosecy, cre therefore shown in Fig. 17.

; 2 . B e

At Mach numbers between 1 and cosec v the value of s

.1

o«
; ~2 max
lies between the valueg of St at M =1 andatbt M = cosecy,
1
and may be found approximately by interpolation between the two
- : 42 max
curves. It will be scen that the values of =—=—== are lcss
o i

than conventional values of Eﬁ for trailing edge elevators in

4 :
low~speed flow, particularly at small aspcct ratios.

Reference to Figs. 15 and 16 shows that at a given

)
X i . .
aspect ratio the value of = that gives the maximu value of

5
& varics slightly with I However, an optimum valuc off
S . . ;
_c may be chosen at a given aspect ratio such that at any Mach
5

number a., is within 1,gcr cent of its corresponding mazimum

is plotted in FPig. 18 against

e

o B (&)
This quantltyi'g“ o
3 .5/ opp

aspect ratio,. It does not vary greatly from the value 0.6.

(ot}

Comparison of Nose and Trailing Edge Blevators

Using the approxzimate formula for trailing edge cle-
vators derived in Appendix V, a comparison between the effect-
iveness of nose and trailing edge elevators is made in Table 2,
on the basis that speed and the ratio control arce/ tailplanc
area are the same in both cases. From this table it appears
that with moderate aspecet ratios (4 to 7) noge e¢levators are,

4

very approximately, half as cffective as trailing edge eleva-

1
]

aspect

i

tors at supersonic gpceds, the discrepancy increasing as

ratio decreascs.
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CONDITION Eq—"‘%n—osﬁ
“2/T/E

e
A = 6.9
s 0465
g =05
Moy =
EE e Ouli5
S = L]

TABLE 2,

COMPARTSON OF NOSE SIEVATORS WITH TRAILING =RBDGE ELEVATORS

Note. These figures are based on the assumptions that the lead-
ing edges of the tailplane lic outside the linch cone and that
the aspect ratio of the trailing edge clevators is large com-

pared with % .

g Ba Analysis

As stated in the Introduction there arce two different
conditions of flow to consider, viz. (i) the leading edges lying
outside the lach cont and (ii) the lcading cdges lying insidce
the Mach cone,

5¢1.  Pressure Distributions with Leading Zdges Lying Qut-

side Mach Conc

With the assumption of small perturbation of flow, the
equation giving the induced velocity potenticl @  in three

dimensional, inviscid, isentropic, steady flow past a body is:

2 2 Z
od . 9 d

-'[32 ,-)+ %"‘Og = O 1001-0111-1(1)
ox~ o9y~  az”

OonsidL}r ,d - ; Hq -.----...--(2)
] il 2 g
;(x~g) e ;Qyﬂn) +zJ

v

It is readily verificd that @ as given by equation
(2) satisfics cquation (1). It may be shown that equation (2)
gives the velocity potential of a supcrsonic source of strength
q at (-‘:‘;,7’],0)- .

/ BY 4o




.0 (E&T]) ety 3 .ao..---so-(j)
w-—f‘(::--i? ) 2"132 l(y“ﬂ ) E*Z?j

is alsoc 2 solubtion of eguation (1). Equation (3) gives the
velocity potentisl of a continuous distribution of clementary
gources g (£,)8Ean. Ve shall investigate whether with corr-

cet choice of the distribuition function g, equation (3) will

give the flow pest the dclva wing.

Trom edunbion (5, the noemel velsoity -w 2g given byl

e i) g Em) Eam
H_L__:_"__,...L_ }} )mé
Al f i o
ety lom ) | 2
{ {
L L |
- N o o
- .(w;zm‘o : S B B B 5§

To the accuracy of the lineaviscd theory it is correcl ho assuaue |

that the veloelity at . noink on the wing is the velocity at the I
J

projecvion of that peinl ca tne plane z = o. Therefore from

equation (L),

o (W>|T/S . .4»---|¢uea(5)

(where the su’ficez 'T,/S' un? 'U/S' rofer to the lower and upper !

N surfaces of the wing roste cti‘-.r(ﬂ.y)"

Actualliy the conditicn represcnted by equation (5) is |

not satisfied in ouwr problom since |

(‘:':.}T_I/S = \JL}{'L = (WJU/S 3 |

(Where f‘\ is the slore of the surface in the x direction at
any point of the swufa ce,)  However, the flow above the wing
is independent of the flow Lelow it, becausc the leading edges
lie outsids the lisca cone. We are therefore justified, when
confining our aticabion to cue curface, in assuming that equa-
tion (5) is satisficd. Equation f” therefore gives the wvel-
ocity potential correctly vhen considering onc surface.

The pesclt is proved in ref.2, cquation (45}, thats

{5\ a8\
%) =1 = 2nq
l\ B8 s \-.a“,)z,: 0 '

Since == = w, this bocomes:

7 Ga) i




R <
(W)z%o W s T G '

With equation (4), this gives:

q = () Z={0

A
=

orif W, denote the couponent of velocity in the z-direction

at the upper surface,

T

o 5

i —

% o 5 L
i

Hinge Lincs Outside the lisch Cone

HINGE
LINE

e

V. MACH

TG 2

It ig sw'ficlont to consider an upward deflection 6 |
of the starboard control only, since the cffect of deflecting
the port control as well may be found by superposition. W
iz then zero cveryvherc on the wing except on the control sur-
face, where w g [ S.L"‘l@ There is thus a uniform source
)

distribution (- - UO 9] mn(’jj}) over 0B, (See Fig.2). This

is equivalent to twe uniform source distributions:

U e sin@
I o]
(1) Qo & i insmmamte OV OBMz, and

~MmM

U 6 sin@D
(ii) q, = + ————— over Obll,.

EAS

Tt should be noted that the effects of deflecting control bOB

are confined to the rogion 1‘.{20]3 of the wing.

Let 1-‘1 (x;. ) be o point on the upper surface in the

region BOU,. (Ses Fig.Q).

Then due to Ay the potential @ at P1 (x‘,y) is

Jeiven ..




given bys

the dintegration extending over the region R1 2 y o 42 where

PE ond P S,i care Hach lines through P.

e
—

Iet B = f;’,—lcq'r]

x-K,y M
1 s, P
o a o B 9 as L dn__
{to i nR1P1 \/(x—s-k,i’.-”,) w3 Ay )
V=i, Y T 4O
- 1
= """"“,,..__j:....i'—" { dy v an
(3" 8 } 2 NG
ng 4 k- d = J*-J nO“C \/C . (Tl_rngf:
{" (5“‘3)}{1 -B ¥
5 A v
4} o] 1_:2 . 82
where 1
3
{ g(**“s“y kdj)
C !
2 2
S k1 - 'G
"'F-J.] Ax"k-;y
S e % ds
4 5
1/‘}(?‘)2 & k:i O
Ly
iv Ca Q = ":""‘“ (K - k1y)
£ 0 L
VB =y
v, oo B 2 %

i
e U= e - s e — = P 3 TL‘fh.crc n1 - .é_-

ox — ~.
> 2 7 Loy
{141 BJ1 n,

In linecarised. theory the pressure is given by:

P == P UO .
Henea at points such as P’%’ the upper surfoce pressure duc to
A, is given bys

% p il
P"’ _.._.._,._,{fi, o-c-olnos.:(6;1)

/Sj.ﬁlila.:["ly a0
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Sinilarly at points within 'DOI:I,[, the upper surface
pressure duc to %, is given by
P Uo 9

—m—— .

v n?

P PSSP | <X B

k?

(vhere n, = -BH P

Let P2 be a point on the upper surface in the region
I\.-L[O Mz.

Due *to Y

@ = = a dedn » the integration extend-

\/( £)2.62 (o) 2
LJ L X"'\‘_:.,) —B Y""n)

over P2 Q2 08

o
Let S =2 tg + B‘n-

3

Y. Tk

o.a Qf = - q,l J ds d:r]_
2 o2 ?
o i sg@xﬁ-x \Ax-—rﬁﬁn) - (=)

~x+By . s
=" Y ds k1+ﬁ an .
i. . i E—t@lﬁ \/QB(X—S+ﬁy)ﬂ+(x_s)2_52y2
2B
e
- n= g
X+ By -—_—’t
-4 [ Vaplamsspring ms) % |
o B (x=s+By) A
= —-@L-Q 8
Let 4?; x-s+0y. i
; . g =
X+By , : “
-', Q’ - - (_L‘ "/g[:lf’l"j_+ ({)"BV_)Z—BZy2 d_é}
o ” B+ p |
TN Eéz:_l |
2P
X+ 4 /Qk‘l -B) 62"25 é‘(k1y_x) ]
it BEY ky + B d
0
-4
/ i B sraen




) G

x+[5y
"’q*l 5 K, 28 (x-lwy A,
= B - k ’g E dg

2 (x-k1 y)

Let fﬁ r:L2. T———— —-:-E-—
P =X £

ttL%‘

nf{ x, ) (e+py)
hay (=k,y) B y) /“"—"‘2* 2
I ————————— . - m i

2 2
p "k.} 0

e = -

29y (xekyy) f \/(:52-1«:?) (x*-%7) j(B-k 1) (erBy) }

2B (x=k,v) 2B(x=Kk,y) -k, ¥y
JB I *

2 (x=k ) (B=kc, ) (x4
o 0o O ?\ . 1Y j e x_kx-i- ) /x - yzl

Vi

; r_3g e ) \//(13 (X*'BY) 1 X 2

2;3::—1{ E X + ﬁyj

L

k_1y
Let t = =——
X
i e TG 2 . (1 1) *t) 1'11“G
« e D= B sin”
Ty

lnl-lo-.no|(7o1)
at points such as P2’ due to A

Sinmilarly, at points such as PZ’ the pressure duc

to q2 is given by:

pU g 1=n ) n +‘t n -t
g - / / i { (7.2)
} 2n (‘l-'t n2+t

Evhere t = ---).

Lie]
1
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Hinge Lines Inside liach Cone

PIG, 3

Due to the source distribution q, over C)Bi‘i2 the
pressure is given still by equations (7,1) and (6,1), but the

equations for pressure duec to 9, are different.

The effects of g, are confined to the triangle

2
M 1 OI‘.IQ.

Let P1 be apoint on the upper surface in the region

bOM (Seec Pig.3).

I
Due to dy» the potential @ at P,[ is given by:

= = q? p £l
J j \/(K-F;)g-*ﬁz(y-ﬂ)d

the integration extending over the region OR,] Q1.

Put s = E~By.

x~By e A
. f":2ﬁ an

o dsa. - S s )

i .
) o J %E \/25 (By=x+s)n+ (x=s) 2-82y2




A B

" =

1

] 2
{rx~By (23(,'3.'Y"X+S)'?’]+(X-s)2—[32y"§’ e
L T i

S J
W o B (By-x+s)
st ‘g = By=x+s f’
+x~Ly
w-g’rl— kQMB

f2 2 i
3, J‘;PY“X }/éb |1+(By-£) J H_;:x_f

= Eﬂ \KkQ—B ;O %": a+#
L U
oy
-~ _ af |
+ f x4y , b
J o V-7 [

?sﬂ(k oYX

gy-x JFF {)
To evaluate [‘ dé} -

-26 (k,y=x) e
put { = ._,_k____é_____ n? , Jeo 8% o8
o*P t m

o8 (i, y-x) |
{By-x \/_{,,2 e v f?j ;E) |
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Finally, let P, be a point in the region bOl‘.-Iz,(See
Fige3)e

Due to q,, the potertial d at B, (x,y) is given by:

the integration extending over P, Q, 0 8
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5,41 Controls Used as Ailerons = Calculation of -%{

/ﬂ‘

0 —_
2c s

e Tz —wl i =

FIG- é:'

Along a radial line through the apex 0 the pressure,

- i ‘l o There T Foe il o
being only a function of &, 38 constant. Therefore the res

ultant force on a thin triangular strip of the wing, of area dA,
/w:'l_"ch e
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with vertex at 0 acts at a point G on x = i
Remembering that the effects of 4, are confined to

MEOB, the rolling moment due to a, is given by:

2 2
[=)
Now dA = 24t = £ g4 = S~ g4¢
oE 2 ,;]c,I 2[31’11 ¢
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by equations (6,1) and (7.1)
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It is proved in Appendix I +that:
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5,111 Hinge Lines Lying Outside the Ilach Cone

Similarly, using the pressure formulae (6.2) and (7.2),

the rolling moment f2 due to 4 is given by

2
. 2c”pU_q 4
£, = —5== { ()
58
= ﬂcijOQZ 1
ine' L2 = 5 2-’-1
5B n,

Hence the rolling moment due to the deflection of the

starboard control, isi

3 . 1

- = PUO 1 \ 1 ]

ﬂs- = L,l + ﬂz = G <% B 1‘ + 47" 1 l
3 B n;| fr I[’].2
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-

With sterboard aileron deflection 6 =&, 4y, and

1, are given by
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An equal rolling moment is produced by the port ail-

eron. Hence the total rolling moment L is given by

L=2T =~
8
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e ! = [ tan ¥y

50112 Hinge Lines Lying Inside llach Cone

The pressure is given by equations (8) and (9) and

therefore, due to 955

L2 =

1l

()]

)

(]

iees b

w/ﬁ r LJ’nz

3
2c pU0q2

ct

sinh”

(n 1)(ﬂ +t

2n (1ut}

’Rpﬂoqzc3

2 2
3Bk,

n

wg,y [

3 o

fr B

1—n2 s by the result of
Appendix II.

> is the same as when the hinge lines liec outside the

Mach Conc. f1 remains unchanged, Hence Jé; is given as

before by

£

5.12 Controls uscd as Elevators - Calculations of a

('151"‘) sin“ta.n Y

2

The: 1ift: due %o 9 is given bys

L,

2pdA (Sec Fig.l
P
M, 0B
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5.121 Hinge Lincs Lyving Cutside the llach Conc

Similarly the 1if+t L, due to 45 is given by

2
2
_ wc pU g,
Li, & —*"-74145 il + 1
& [Bc 11,2

Hence due to the deflection of the starboard control
]

the 1ift is given by:

) e 3
oo meil /1, )]
LS = L1 + L, = - ———;-2-- &Y \Ef T + 4 (Ery + ’lJ

With elevator deflection 6 =1, 9 and ¢q, arc

given by




An equal 1if't is produced by the port elevator. Hence

the total 1lift is given bys
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50122 Hinge Lincs Lying Inside Mach Cone
By cquations (8) and (9),
&
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B L0 il ek ; at &
2 2 } T
B™n, | P N gt
€. Ei'J 2 (=
{

T ) 1
oL g [l @t M2 ) () 6,41) (%, 5
e sinh i sinh

V;‘ng._,' -n, \ 2112(1—'[:) NE 3 Zn ('t—1)
e onq’_ . i o
B i TR Ln?+'1 ), by Appendix 1V,
52 .
[2 112
o j.rf Ionqz fﬂ-’-’-- 41
= O
7 (%
&

i.c. L, 1is the some as when the hinge lines lie outside the
linch cone. T, remains unchanged, Henee 2, is given as

befora by
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5.127 Position of Centre of Prcssurc due to Blevator

Deflection
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The pressure is constant over elementary triangular
strips of the wing with vertex st the wing apex. The result-
ant force on such a strip acts at a2 point whose abscissa is

Ca The centre of pressure nust therefore liec on the line

Howafro

¢, and by symmetry it lics on the centre linc of the wing.

o

Thus the centre of pressure due to deflection of the elevators

lies on the centre line of the wing,

. 2
distant = ¢ from the apex.
% o

-

5.2 Solution with Leading Edges Insidc Mach Cone

The solution depends on the fact that the wvelocity at
any point upstream of the trailing cdge is of degree zero in X, |

y and z. This is proved as follows:

Let P (x,y,z) bc any such point, By dimensional

theory, a typlcal velocity component u is given bys

F -
:_.fy....’.:ﬁ.
il ol
o}

The flow at P is uninfluenced by conditions downstream of P

(oo} Forll

so that if the wing is rceplaced by a similar wing of larger

chord s the velocity at P will be umaltered,

¥ -
Z X u n Z b f
e £{2. 2.5 5 g =il Ligog) P g
14 o :

o

Hence u nust be indcpendent of

eIz}
5._1.
E:.
=l |
]
in
B

degree zero in x, y and z. |

u, v and w are therefore of degrees zcero in X,Y¥, Ze

Now u, v and w all satisfy the equations

ARG S
where T =\A -3y =Bz .

Let w denote the complex variable.
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Then we may write: u

R [v ()]
=R [V @)]
R ET (c))] i

Inside the Mach cone r is real, and therefore

<
1

W

i

y ) £y
12 _ BEGREY _ xPerf _ xex
lol” = Peries; 27 xX+r
(x+r) (}:»i-r)“

"o |of< 1 except on the Mach cone where r =0 and [o] =
Thus the Mach cone and its interior are represented in the
w=plane by unit circle and its interior.
At the wing, 2 20, "« ® = N AR
g &2
X+ Jx ~By

By

Py
v

which is real and increagesg with ’; . At the leading edges;

Toie G = 4

¥y = + x tan ¥;

T 1B tany I
g il prmmee gl 2
1+ \;1-B‘tan2y

where k' :\/I --kz = 8 tania,

The serofoil therefore becomes the portion of the
It
1+k 7

real axis between <+ in the w-planc. (Sec Fig.6).

The boundary conditions of the problem are:
(1) Component of velocity at the wing surface normal to
the surface is zerod

(ii) u, v and w are all zero on the Mach cone.

Condition (ii) follows from the assumptions of

lincarised the ory.

It is possible to find functions U, V and W that
satisfy thege boundary conditions by transforming from the
w=planc into & new plans, the T-planc, using the transforma=-
tion:

cn('r,k) = g;.gu_o 3

="
(where cn('i:,k) is one of the Jacobian c¢lliptic functions of

modulus k).

/Fig. 5.
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FIG. 5 FIG. 6
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PIG. 7
THE 1~PLANE

The interior of unit circle in the w-plane becomes the

interior of the rectangle, vertices # 2iK', K+2iK',

In Fig. 7, the section aa' of the imaginary axis rep-

resents the Mach conc and the parallel line C. C! represents

U U

/ the wing.
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the wing, A and E represent port and starboard lecading edges.
AE represents the lower surface of the wing; AC,, and EOUF rep-

resent the port and slarboard halves of the upper surface, res-

vectively. By and By represent the port hinge line on the

L
upper and lowesr surfaces; DU and DL repregent the starboard

hinge line on the upper and lower surfaces. C represents the
g

8]
wing centre line on the lower surface; CU and Cﬁ both rep-
resent the wing centre line on the upper surface, 0C. 1zxepres=~

ents the portion of the xg planc between the lower surface of the

wing and the IMach cone.

For given control deflections, the Liosl boundory coa-
dition (sce p.28) defines w on the wing, i.e. on GU Cl. The
sccond boundary condition requires that w =0 on ea'. Also
(a) since u, v and w are continuous across the Mach cone, g} 3
%% and %% must be firite at the Mach cone, (b) the aerodyn-
amic forces must be finitc, so that the integrsl of u with
respect to area must be finite, (c) the only places where an
infinite pressure is admissible are along the hinge lincs and
leading edges, (d) u, v and w must be single valued.

Q.

These conditions cnable us to Tind =, The
art
relationss:
@ 4
de B dt
S
drt ~ G dr 2

derived in Ref, 3, from the conditicn that a welocity potential
: : 18}
exists, then determinc é; and %E «» u, and hence the pressure
11
are found by integrating %% with respect to 7.

-

The above is a modified representation of Stewarl's

method (Ref. 4).
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Controls Used ag Ailerons
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The boundary condition at the wing is:

- Uo E min (:“)

W = W_, over the starboard aileron,
w = ~W_, over the port aileron,
w = 0 elsewherc at the wing;

e, 40 Pig. B,
WA ol B Bes Be iDL iAnded. 1Or
[ T U U
W =W, on D]-J D.U
W= onbB. B
o} UL
P i avr ) : . :
Thus in integrating iy along CL C’U’ w must Junp in
i
value by an amount (~w_) at B. and (+w at . Hence ===
Lue py ( G) T, ( O) BU 5 glad s posa
must have simple poles at BL and BU with residucs of imagin-
i Yo o, S K
ary parts -— and o respectively. Similarly 7 must have
s
simple poles at DT_ and DU with residues of imaginary parts
-V Wo
—and ==,
= b
Bxeepl when changed by discontinuitiesg, the value of
w is counstant on the wing.,. Also w 1is everywhere zero and so
i
coustant, on the Mack cone, Therefore E{- must be real on the
wing and Mach cone.
. aw : s :
Hence 7 must b2 chosen to satisfy the following

conditions:

P 4




(1)

(2)

(3)
(&)

(6)

(7)

(8)

an

=50

T nust be real on the wing and -.ach cone and its integ-
ral along OC L rom 0 o C;, must be zero or imaginary

since w 38 zero at 0 and 2t C

Ll
A1 c 2
ong g =~ =gt have poles B it
& Oyt Gy s 37 @ 3t hav po;e at DU and By with
- 7 0
residues of imaginary part g and at D and BL
-nT‘,’I.J'
; . s 2 o
with residuzs of imaginary part e
\
awy Y ) b
o must be finite on the Mach cone.
v 5

du
dt

wrep B T !
T3 av : ay
an % = /} and &= (r— -1 sn 1 gz/ must also

be finite on the Mach cone., Therefore -d_" must have
b

l
g
ge=l S

at least simple zeros at » 3K!.

Apart from ths poZLc? at DU’ BU’ DL and BL’ the conly sing-

ularities of -E;E- on or inside the rectangle may be
poles with zero or real residues.

The only places where uw néy be infinite ave ™ 4, E, BU,
By Dy and Dp.

Any infinity of u muct be such that the integral of u

with respect to area 1enains finite.

u, v and w rmust be single valued.

The required function isi

ilc'BCK'w -
8] w i | ; ;
e - s 7 o ol }nc(ft-a.l) + 11c ('E-l-aj.)]
7D i

dt
LNotc, The symbols C,D and S (which is introduced later)

are defined bys

given bys

C = cnfa,k')
D= rln(:-. k')
i
S = sala,x') 5
i 1.)
C W
T3 -
(e1%) - = cn % & o --;:\---:’ ad T cd T ]‘nc (fﬁ—-&i) + ne (zeai)].
az B dt wpED L

&t 0O on the Mach cene, u = Q.

Thereforc at cny point (K+it) on the wing, u is

g;x-" L L i
,-:IT i ;

o dt F
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W o=
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since the omitted part of the integral, from O to K, is real.
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The pressure is given by:

B o - onu
k'pU w L i )
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On the wing 7 = K+it and o = b

I
:c+/}c‘—-(j v
Substitubing these values in cn(t,k) = 2 givess
X 1=
- ik! Si}.(t,k') = M_ﬁ
2 2.7
X =gy
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a
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On the starbosrd upper surface, cn(t, k') = - N -y tany
the sign of the root being determined by K' 2t 22K .
Thus on the storboard upper surface, the pressure is

given by
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The rolling mement is given by
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The limit terms both vanish as (= =20,
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2k'03‘t:an2YpU W 03
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Using the relations of p,34, we haves

tan @

ena,k') = 3 =

i tan ¥
ena,k') = C =\/i-—--t3.n975}/tan2wf
F ? )
dn(a,k') =D =\ 1= ban (1
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When the Mach cong just touches the lesading edges
(ivce Btan ¥ = 1) the above formula and the formula derived

in 5,112 both give the same cxpresaion for ‘E;

5.22 Controlsg Used as Dlevators
The boundary condition at the wing is nowl
Wz o~ UO T sin "(‘.'-ﬂl = W, over the port and starboard
elevators
w ='0 . elsewhere zt the wing.
B aw .
The conditions that i must satisfy are exactly as
. ; ) diy
before in the aileron case, exccpt that now pee must have
poles c?'b DU and BL (sce Pig.9), with residues of imaginary
Yo : s . -
part -— , and at DL and BU with residues of imaginary part
Wo el
?_‘_. -

/ Pig. 9.
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where A is found from the condition that w = 0 on the Mach

cone and on the centre line of the wing,
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where TI™ (=D, k) and E arc complete elliptic integrals of

the third and sccond kinds with modulus Ik,
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To the limit as _'i-—; 0, it is in Lppendix VI

: . b
haty BK' (B)~:’—Z~ 0; and in Appendix VII that; j sn i (r,B)-H(sin 11-,}3)‘.{»}{' (B)=0 |
) ;

N P
and gn (r,B)=sin r.
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Hence the expression for a, becomes?
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FPosition of the Centre of Pressure

i

due_to Deflection of the

_JJ_L: V- Lto

The pressiwe ig agrin 2 funetion only of '3’5- s 80 that

the centre of pressure due to deflection of the elevators is, i

as before, at % ¢, 0 .
= - o ' - . 1 |
5e3 Effects of Preassure at the Leading Edge

o

When the leading edges lie inside the Mach cone the

leading edge pressure is infinite. (See pp. 2} and 39 )

It may be proved that with the controls set at an
angle © and the wing at incidence @, the total velocity g
1 . 7 i % - 3
at a point P (:»:'__1- iz, ¥ han ¥) very near the starboard leading
Lt L

cdge is normal to the leading

cage and ds given by

4+ pounded terms

vhere the cocfficia ¢, and ¢, are functions enly of U ,
: _ e o
Ys @) and o (This is truc for both the elevator and aileron

= £
Laeus)u

By the result proved in 4appendix IV of Ref.3, the

suction foree per uwait leng leading edge in a direction
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normal to the lecadir
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APPENDIX TIT

EVALUATION OF A DEFTNITE INTEGRAIL
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LVATUATION OF 4 DEFINITE INTEGRLL
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i e { i e
A 11 /n-t 2 ! . =1 F(n=1) (net)
{--’j - j % \;j n+% v oo { Sinl onil1=-% %
+ F J ~n =1 I on

;\,l’l

+

3 5ir111_1
(% 1

e )
.- ] / nm‘r:
Let /]1 & g \{‘! s dt
- e i

It

{: ; -1 / ( Sl ] '(ll.+tj - /(n—i-'l ) (ﬂ—t)
S f - inh +
{j ] j! - ainh 9, 5 J.(A dt { sS1inn \’ ‘—(—H 1 dtb

1t
=]
3

. ‘j 2 i
. 9 4= _n + An
il " e~
L Ji ol .
W 1 "'1

; 1 i {.,. e O

. 1 _ \ {
) ;"J - -/ 1 N (n-‘| (n+t n |
I-Jox.f,;, ,}" :t; _,r 1 sinh W -—t)_ dt + !
€2 Jej-n &

£

L.

~7

H

- (nﬂ) (11—L)

'.." 1 -t.r Ji

ainlh

T4

Integrating by Parts

t 4t

(het) L o™

t 4%

e 5 P
(1=t)/n"~t"




52

o | / . o .
- :_;@.[__t (1-£&) s:'.nh-fi \/ (E%:{I;Q) - (1+€')sinhﬂv (%@

£ =20

& a3k
J -n (et )t it

= - il
_F gmh..q / n-1) @1=€) _ ;4 / (n+1) (n=1-C |
26 n 2f-n .
b*?o i :

-€ mh“’i \/ (11-; )G(nM =€) st /il {n—-1 -€) f(
\/n—ﬂ’{- /( a E"n at
z \/—t .} - (1—t)\/—2:§5'

The 1imit texrm iz zero from the results E1 = E2 =0

proved in Appendix T1.

i f-é-m Jﬂf: e '
Henceﬁ,} B Vzn 1 } ok |
) 2 |
& 2—1:2 f J (A=t n°-t
. .
V/n "1 : — (putting t = - n cos2€)
T+n cos2e ) * PULUIDE T E i
Jo
2 y Rl &
=NE= % o 2 — .1, (putting v = tané)
s Jo (14n) = (n=1)v"
v
1‘12—1 i
8" = x, the second term vanishing because (n-1,> O,
s 2 o
e = 7n + , = TO O+
& \/né—1 ¢

/Appendix V ..,




=5 B
APPENDIX V

APPROXTIMATE THEORY FOR TRATLING EDGE CONTRCOLS

—— ks

o i MADH

FIG. 10

The induced flow due to deflection of the control
surface 4BCD can only affect the arca M1BFHL of the wing.
Over the area 1‘-.-1;, M, CB, flow conditions are .'truly two=dimen=
sional. If the Mach angle @ (= +u 4Bi,) is small or if the
aspect ratio _-';o of the control is sufficiently large, it is
Justifiable to neglect crrors introduced by assuming that the
flow over I, Bl and M5CD is alsc two dimensional and by ncg-

CD when calculating

)

lecting the end effcects over 1_'1’11‘5;‘. and M

forces produced by the controls.

r

]
: : v Il g N : ;
Therefore assuming AN -1 > 21, the 1ift increment

per control is given by

Z-‘.‘! fal
5 I

F_\LT

. (This follows from Ackeret's

AL =

JHu & 8

theory for a two dimensional Il"“g) .

If the controls are elevators, L =

I L C
giving, a., & T ey ‘
el = £ it 12

e
=1

With our assumptions, the resultant force due to def-

LING

lection of a control surface acts at its centroid. Let b _ be
Q
the distance between the centroidse of the ailerons. The rolling

moment is then glven byl
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SZVALUATTON OF A LIMIT

The limit to be evaluated is:
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AFPPENDIX VIT

EVALUATTION OF A LIMIT

The 1imit to be evaluated is:
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